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In this thesis, a personalized automatic sleep staging system is proposed by combining symbolic fusion and feedback system control technique. Symbolic fusion is inspired by the decision-making process of clinical sleep staging. It starts from the extraction of digital parameters from raw polysomnography signals and it goes up to a high-level symbolic interpretation through a features extraction process. At last, the decision is generated using rules inspired by international guidelines in sleep medicine. Meanwhile, the symbols and the features computations depend on a set of thresholds, whose determination is a key issue. In this thesis, two different FSC algorithms, Differential Evolution and Cross Entropy, were studied to compute these thresholds automatically.

Individual variability was often ignored in existing automatic sleep staging systems. However, an individual variability was observed in many aspects of sleep research (such as polysomnography recordings, sleep patterns, sleep architecture, sleep duration, sleep events, etc.). In order to improve the effectiveness of the sleep stages classifiers, a personalized automatic sleep staging system that can be adapted the different persons and take individual variability into consideration was explored and evaluated.

The perspectives of this work are based on evaluating the complexity and the performances of these algorithms in terms of latencies and hardware resource requirements, in order to target an personalized automated embedded sleep staging system.

Résumé

Dans cette thèse, un système personnalisé de stadification automatique du sommeil est proposé, combinant fusion symbolique et système de contrôle rétroactif. La fusion symbolique est inspirée par le processus décisionnel mis en oeuvre par les cliniciens experts du sommeil lors la reconnaissance visuelle des stades de sommeil. Il commence par l'extraction de paramètres numériques à partir des signaux polysomnographiques bruts. L'interprétation symbolique de haut niveau se fait par l'intermédiaire de l'extraction de caractéristiques à partir des paramètres numériques. Enfin, la décision est générée en utilisant des règles inspirées par les recommandations internationales en médecine du sommeil. Les symboles et les valeurs des caractéristiques dépendent d'un ensemble de seuils, dont la détermination est une question clé. Dans cette thèse, deux algorithmes de recherche différents, Differential Evolution et Cross Entropy ont été étudiés pour calculer la valeur de ces seuils automatiquement.

La variabilité individuelle a souvent été ignorée dans les systèmes automatiques de stadification du sommeil existants. Cependant, elle a été démontrée dans plusieurs travaux de recherche vis à vis de nombreux aspects du sommeil (comme les enregistrements polysomnographiques, les habitudes de sommeil, l'architecture du sommeil, la durée du sommeil, les événements liés au sommeil, etc.). Afin d'améliorer l'efficacité des classificateurs des stades de sommeil, un système automatisé de sommeil automatique adapté aux différentes personnes et tenant compte de la variabilité individuelle a été exploré et évalué.

Sleep is an indispensable part of daily life and contributes to self-repairing and selfrecovering. However, sleep disorders involving signs and symptoms like excessive daytime sleepiness, irregular breathing or increased movement during sleep, difficulty in sleeping, and abnormal sleep behaviors are affecting more and more people. It deteriorates the quality of life and becomes a significant cause of morbidity and mortality [START_REF] Jamil | The prevalence, cost implications, and management of sleep disorders: an overview[END_REF]. Figure 1.1 presents the prevalence of one typical sleep disorders: insomnia in Europe. Over 26% people in France were reported suffering with insomnia.

In clinical sleep analysis, an overnight Polysomnography (PSG) test is required for physicians to give an accurate diagnosis and appropriate treatment. It is usually done by a technician by placing sensors on the patient's body for recording multiple bio-signals.

Based on recorded PSG signals, a detailed analysis and interpretation will be given by a physician (Europe) or a sleep expert (USA) with recommendations for the diagnosis and treatment. Sleep staging, as a fundamental step of PSG interpretation, needs 3 to 4 hours for physicians to interpret an overnight PSG recordings. American Academy of Sleep Medicine (AASM) manual, as the gold standard for the sleep study, describes the definitions of sleep events and sleep stages. Physicians can realize clinical sleep staging by combining different sleep events they observed from PSG signals into each stage according to AASM manual. [START_REF] Danker-Hopfe | Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard[END_REF], 80.6% and 82.0% inter-rater reliability was reported by using Rechtschaffen & Kales (R&K) (old gold standard for sleep study) and AASM (new gold standard for sleep study), respectively.

In order to reduce the burden of physicians, automatic sleep staging systems have attracted extensive attention. Numerous attempts have been undertaken to automate interpretation of PSG recordings. Most of existing automatic sleep staging systems are using numerical classification methods without taking medical knowledge or physicians experience into consideration. Numerical methods are used to learn the patterns between features and corresponding stages classes. The pattern recognition is usually established by interaction with a set of training data. Patterns used in the classification of sleep stages are mainly dependent on the training data. Insignificant patterns may be selected independent of medical knowledge and without validation from physicians. However, for physicians, they cannot be easily convinced by these kinds of systems without involving any medical knowledge; thus, these kinds of systems are not really used by physicians in clinical practice.

From physician's perspective, the major issues for most of existing automatic sleep staging systems can be described as: 1) a system without taking any medical knowledge into consideration cannot win fully trust from physicians; 2) most of systems are not yet accepted and validated by physicians. Only by addressing these issues, a system can really be used in clinical practice for help physicians in diagnosis and treatment of sleep disorders.

Thesis Outline

The next chapter explains the major issues of existing sleep staging systems. In chapter 3, state of the art on existing sleep staging systems and thresholds setting-up methods are presented. In chapter 4, an existing Symbolic Fusion-based Sleep Staging System (SF-SSS) is presented followed by an improved release in order to enrich the SF-SSS model. In chapter 5, Manual Thresholds Setting-Up (MTSU) method that used in existing SF-SSS is introduced, followed by detailed analysis of these thresholds. In chapter 6, an Automatic Thresholds Setting-Up (ATSU) method based on Feedback System Control (FSC) is proposed. Two different search algorithms for FSC are evaluated: (1) Differential Evolution; (2) Cross Entropy. Inspired by ATSU method, Personalized Sleep Staging System (PSSS) is investigated by combining symbolic fusion and FSC in an original hybrid expert system. Evaluations of this system are presented in chapter 7. At last, the conclusion and perspectives are given in chapter 8.

Chapter 2

Problem Statement

Problem Statement

In order to mimic clinical sleep staging precess by translating AASM and medical knowledge into computer logic, a Symbolic Fusion-based Sleep Staging System (SF-SSS) was proposed by Ugon, Isabelle, et al. [START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF]. SF-SSS starts from the extraction of digital parameters from raw polysomnography (PSG) signals and goes up to high-level symbolic interpretation of feature parameters while using thresholds. At last, decision is generated using rules inspired by international guidelines in sleep medicine and applied to feature parameters. SF-SSS is a knowledge-based approach, from low-level digital parameters extraction to high-level symbolic interpretation of feature parameters and decision-making rules in decision-level, which is directly inspired from the gold standard AASM manual and medical knowledge. It can be understood, accepted and validated by physicians according to their knowledge and experience.

SF-SSS model is the first attempt by using symbolic fusion to realize sleep staging. However, it is only a proof from conception to validation of symbolic fusion for sleep staging application. There still exist several points which need to be improved in order to enrich the knowledge-based used in the sleep staging system: (1) Pre-processing of PSG signals was not included; (2) Not all the sleep patterns described by AASM manual were implemented; (3) Classification of stage N1 was not performed; (4) After obtaining Hypnogram based on the output of classifiers, smoothing of Hypnogram to detect and remove irregular and incorrect sleep transitions was not included; (5) Manual Thresholds Setting-Up (MTSU) method was performed.

Beside these points motioned above for SF-SSS, there exist several issues which need further research. These issues exist not only in SF-SSS but also in most of sleep staging systems. They are described in below.

1. How to realize automatic sleep staging by taking individual variability into consideration, from the conception to implementation, validation and final practical use?

2. How to assess the effectiveness of personalized sleep staging system?

3. Is it necessary to propose a personalized sleep staging system which can take individual variability into consideration? Or a generalized sleep staging system is sufficient?

Context

In this thesis, SF-SSS model is adopted to develop a sleep staging system which can really be accepted and used for physicians in clinical practice. We start from the comple-Page 16 CHAPTER 2. PROBLEM STATEMENT tion of SF-SSS model by proposing modifications in order to improve the performance of existing SF-SSS.

Then, thresholds used to transform low-level digital parameters into the high-level symbolic interpretation of feature parameters are studied. In SF-SSS model, methods used to extract the digital parameters, symbolic interpretation of feature parameters and decision rules in making classification of sleep stage are generic. While, thresholds used to transform digital parameters into a symbolic interpretation of feature parameters are different. The issues we mentioned above turned out to be thresholds setting-up problems. To address these issues, we researched from the following parts:

1. Semantic interpretations of sleep events by using thresholds: details of thresholds dependencies are analyzed; the number of thresholds used to realize classification of each sleep stage are studied.

Thresholds dependencies among sleep stages have been evaluated to understand whether same thresholds can be used in different sleep stages or different thresholds are required among different sleep stages.

Thresholds dependencies among patients have been evaluated to fully understand whether generalized thresholds are sufficient, or personalized thresholds are required to take individual variability into consideration.

Number of thresholds needed to realize classification of each sleep stage have been researched to understand how many thresholds are required for classifying each stage.

2. An automatic way to set-up thresholds is researched.

An automatic thresholds setting-up method based on Feedback System Control (FSC) is proposed. Inspired by the automatic method we proposed, a personalized sleep staging conception is presented by combining symbolic fusion and FSC. Symbolic fusion is dedicated to mimic the decision-making process of clinical sleep staging. Feedback System Control (FSC) is designed to provide personalized thresholds for Symbolic Fusion in transforming digital parameters into a symbolic interpretation of feature parameters while taking individual variability into consideration. Differential Evolution-based Personalized Sleep Staging System (DE-PSSS) and Cross Entropy-based Personalized Sleep Staging System (CE-PSSS) are presented by using two different search algorithms Differential Evolution and Cross Entropy respectively.

3. Evaluations on a new clinical database for proposed personalized sleep staging systems are presented.

The proposed systems are evaluated on a clinical database of PSG recording from 16 subjects (9 males and 7 females) ranging from 22 to 82 years old. These PSG recordings are fully scored by a physician following the international guidelines in sleep medicine.

Chapter 3

State of the Art

In this chapter, basic information of sleep analysis is introduced. Meanwhile, the state of the art of existing automatic sleep staging systems is presented. Finally, thresholds setting-up problems in sleep staging systems are described followed by a review of existing thresholds setting-up methods.

Introduction on Sleep Analysis

This section mainly introduces basic information of sleep analysis involving, polysomnography (PSG) signals, manuals of clinical sleep staging for better understanding the field of sleep analysis.

Polysomnography (PSG)

Polysomnography is the gold standard test by recording the biophysiological changes that occur during sleep to diagnose sleep disorders. PSG test generally is conducted by a technician using PSG device (Figure 3.1). Several senors (Figure 3.2) will be put on a patient for recording multi-signals like: EEG 1 , EOG 2 , EMG 3 , SpO2 4 , ECG 5 , nasal and oral airflow, limb movement, and body position as shown in Figure 3.3. In sleep staging, EEG, EOG, and EMG are three classical physiological signals which are used for the fundamental sleep analysis and they are described in below:

EEG is a recording of the electrical activity of the brain from the scalp.

EOG is a recording of the voltages generated by eyes movements.

EMG is a recording of chin muscle tone activity.

Clinical Sleep Staging Manual

In 1968, Rechtschaffen and Kales (R&K) sleep scoring manual was published as the first standardized criteria for sleep staging [START_REF] Rechtschaffen | A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects[END_REF]. On the basis of R&K manual, there are 6 sleep stages, namely Stage Wake, S1, S2, S3, S4 and REM. Even R&K manual was considered as the only widely standard for describing the human sleep process for approximately 40 years, it has also been criticized for leaving plenty of room for subjective interpretation, which leads to a great variability in the visual evaluation of sleep stages [START_REF] Himanen | Limitations of rechtschaffen and kales[END_REF].

In 2007, American Academy of Sleep Medicine (AASM) modified the R&K standard guidelines for sleep classification and released a new edition of sleep staging criterion. AASM manual [START_REF] Iber | The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications[END_REF] is the result of a review of the literature, analysis and consensus which addresses 7 topics: reporting parameters for PSG, technical and digital specifications, visual scoring, arousal, cardiac and respiratory events, movements and pediatric scoring. According to AASM manual,there are five sleep stages: stage W, Non-Rapid Eye Movement (stage N1, N2 and N3) and Rapid Eye Movement (stage R). Different stages are used to describe different state from awake to deep sleep.

Stage W represents the wake state, ranging from full alertness through early stages of drowsiness.

Stage N1 is considered as a transition between wake and sleep.

Stage N2 muscle activity decreases and conscious awareness of the outside world begins to fade completely.

Stage N3 often referred as deep sleep or slow-wave sleep and during this period the sleeper is even less responsive to the outside environment.

Stage R is the stage where dreams occur and eyes move rapidly. While the chin muscle tone activity stays low.

In AASM manual, it describes the definitions of sleep events (e.g. Sleep Spindles, K-Complex,etc.) and rules involving sleep events in order to score sleep stages. Details of main rules described in AASM for guidance the classification of different sleep stages are shown in Table 3 

Hypnogram

Hypnogram is used to represent the stages of sleep as a function of time. It provides a visual depiction of the symbolic behavior of sleep. In clinical sleep staging, physicians can realize sleep scoring by interpreting PSG recordings according to AASM manual. Meanwhile, physicians also take the succession of stages through time into consideration in order to integrate all scored stages for generating a Hypnogram. A Hypnogram normally consists of 5 to 6 sleep cycles. A complete sleep cycle takes an average of 90 to 110 minutes. The first sleep cycle has relatively short REM sleep and long periods of deep sleep but later in the night, REM periods lengthen and deep sleep time decreases. Figure 3.4 illustrates hypnogram of a health person. However, in reality, hypnograms deviate from person to person. Especially, for the person with sleep disorders, hypnogram is more disrupted. Figure 3.5 shows a Hypnogram of a patient who suffers from severe sleep apnea. 

Automatic Sleep Staging Systems

Due to the time-consuming and inter-rater reliability of clinical sleep staging, automatic sleep staging systems have attracted extensive attention. Methods used in current sleep staging systems can be classified in machine learning methods, rule-based methods, hybrid method and symbolic fusion method. The details are discussed in the following section.

Machine Learning Methods

Machine learning is the most widespread method in sleep staging. Typical approaches in machine learning such as Decision Tree, Artifical Neural Network (ANN) and Support Vector Machine (SVM) have been widely used in classifying sleep stages. Digital parameters are extracted from PSG signals using time-domain, frequency-domain or non-linear analysis; then different approach is used to learn the patterns between the digital parameters and the corresponding classes. The pattern recognition is usually established by interaction with a set of training data. For the training set, it needs to be scored by physicians in advance. Brief description of these methods is presented in below.

Decision Tree

The history of tree methods can be traced back to 1963 [START_REF] James | Problems in the analysis of survey data, and a proposal[END_REF], since then, Decision tree became very popular. It applies the tree structure which classifies instances from the root to leaf. Each node in the tree specifics an attribute of the instance; each branch from the node corresponds to one of the possible values for this attribute and leaves represent class labels. An instance is classified by starting at the root node of the tree, checking the specified attribute by this node, then moving down the branch which corresponds to the value of the attribute. This process is repeated until it reaches the leaf. Figure 3.6 shows an example of a simple decision tree.

In 2002, an automatic sleep staging system using decision tree was proposed by Masaaki [START_REF] Hanaoka | Automatic sleep stage scoring based on waveform recognition method and decision-tree learning[END_REF]. Six feature parameters are extracted from five biological signals: 2 EEG channels, 2 EOG channels and one EMG channel. In this approach, it takes a tree structure in which the explanatory attributes (feature parameters) correspond to the nodes, their values correspond to the branches, and the classes (sleep stages) are assigned to the leaves. Five decision trees are built based on the training set which involving all the database. Then, classification is made based on the majority decision from the results of these five trees.

In 2012, an automated sleep staging system was proposed based on a single EEG channel using random forest [START_REF] Fraiwan | Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier[END_REF]. In 2013, based on the heart rate variability, an automatic system to identify Stage W, REM and NREM was proposed using random forest [START_REF] Xiao | Sleep stages classification based on heart rate variability and random forest[END_REF].

Besides these Decision Tree methods, there exist several works also using a tree structure to make the decision for classifying different sleep stages [START_REF] Liang | A rule-based automatic sleep staging method[END_REF][START_REF] Khai | A tool for analysis and classification of sleep stages[END_REF]. Figure 3.6 presents a tree build in [START_REF] Liang | A rule-based automatic sleep staging method[END_REF] while using 13 nodes. Comparisons among sleep staging systems based on Decision Tree methods are shown in Table 3.2. As one of the most popular machine learning methods, decision tree is very intuitive and easy to explain with a tree structure. It also can predict a classification with fast speed. However, to build a tree, it requires a large training set. Meanwhile, without proper pruning or limiting tree growth, it tends to over-fit the training data which may make poor classifications. ANN, as an effective approach for pattern recognition and classification, inspired by the architecture and function of the human brain. As the human brain can be described as a biological neural network (an interconnected web of neurons transmitting elaborate patterns of electrical signals. Dendrites receive input signals and, based on those inputs, fire an output signal via an axon), ANN can be described as a network of neurons that receives inputs, processes those inputs, and generates an output [START_REF] Shiffman | The nature of code[END_REF]. The network are typically organized in three layers: input, hidden and output layer. The input layer serves to introduce the information into the network. The hidden layers represent a connection between the input and output layers. The final output of the whole network forms in the output layer. All neurons in adjacent layers are interconnected and each connection is defined as a weight and is represented with a rational number.

In 1993, MultiLayer Perceptron (MLP) as a typical technique of Artificial Neural Network was proposed to realize automatic sleep staging in [START_REF] Schaltenbrand | Neural network model: application to automatic analysis of human sleep[END_REF]. The architecture of this work is shown in Figure 3.7. Seventeen feature parameters were extracted from 4 biological signals: 2 EEG channels, one EOG horizontal channel and one EMG channel. Firstly, a three-layer perceptron network architecture with a 17-unit input layer, a 10unit hidden layer and a 6-unit output layer was build based on a training set. Secondly, ambiguity epochs and artifacts epochs were rejected before the classification. Finally, automatic sleep staging was performed. Since 1993, several research works have also explored the MLP technique in automatic sleep staging [START_REF] Kerkeni | Automatic classification of Sleep Stages on a EEG signal by Artificial Neural Networks[END_REF][START_REF] M Emin Tagluk | Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG[END_REF] which associates different input patterns to a set of output classes during the training set. In 2005, an automatic sleep staging system architecture with 5-unit input layer, a 6-unit hidden layer and a 6-unit output layer based on one channel EEG was proposed [START_REF] Kerkeni | Automatic classification of Sleep Stages on a EEG signal by Artificial Neural Networks[END_REF]. In 2010, a multi-layer neural network with two hidden layers that simultaneously employs EEG, EMG and EOG was proposed [START_REF] M Emin Tagluk | Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG[END_REF]. Comparisons among sleep staging systems based on ANN methods are shown in Table 3.3.

ANN has the learning ability to form its own structure automatically based on training instances, which is robustness to noise and environment. However, when additional learning is performed based on some new training instances, the weights in the network are often changes. A long learning time is required if additional learning is performed by integrating all training instances [START_REF] Hanaoka | Automatic sleep stage scoring based on waveform recognition method and decision-tree learning[END_REF]. Support Vector Machine was introduced by Vladimir N. Vapnik which constructs a linear classifier by finding the hyperplane that maximizes the margin between two classes in 1963 [START_REF] Vapnik | Pattern recognition using generalized portrait method[END_REF]. In 1999, nonlinear classifiers by applying the kernel trick to maximummargin hyperplanes were proposed in non-linear classification problems [START_REF] Vladimir | An overview of statistical learning theory[END_REF]. As SVM is originally designed for binary classification, in order to solve multi-class scenario, different frameworks are proposed involving one-against-one and one-against-all. By constructing and combining several binary classifiers, these frameworks are able to perform multiclass classification by reducing a multi-class problem to binary ones. The one-against-all framework constructs k separate binary classifiers for k-class classification. The i -th binary classifier is trained using the data from the i -th class as positive examples and the remaining (k -1) classes as negative examples. During the test, the class label is determined by the binary classifier that gives maximum output value. Another framework: one-against-one, it evaluates all possible pairwise classifiers and thus induces k(k -1)/2 individual binary classifiers. Applying each classifier to a test example would give one vote to the winning class. A test example is labeled to the class with the most votes.

In 2005, six binary classifiers were constructed in classifying sleep stages into four classes (Wake, Light Sleep, Slow Wave Sleep and REM) by applying one-against-one framework [START_REF] Gudmundsson | Automatic sleep staging using support vector machines with posterior probability estimates[END_REF]. A common Radial Basis Function (RBF) kernel was used to construct each binary classifier based on twenty-three feature parameters which were extracted from EEG. In classification part, each binary classifier is considered to be a voting, the class label of highest number of votes was assigned as the final class label. Based on oneagainst-one framework, a sleep staging system with ten binary classifiers combining EEG, EOG and EMG was proposed in 2010 [START_REF] Miguel | Sleeping with ants, SVMs, multilayer perceptrons and SOMs[END_REF]. Sleep stages were classified into five different stages (Wake, S1, S2, S3&S4 and REM).

In 2014, a sleep staging system based on one-against-all framework were proposed [1]. Five classes binary classifiers were constructed on basis of linear kernel function in classifying Stage Wake, S1, S2, S3 and S4. Each classifier was constructed to separate one class from the rest four classes. In the classification, the final class label was determined by the binary classifier that gives maximum output value. Comparisons among sleep staging systems based on SVM methods are shown in Table 3.4.

For SVM-based sleep staging system, it has high algorithmic complexity and requires extensive memory. For one-against-one framework-based sleep staging system, more binary classifiers need to be constructed. While, for one-against-all framework-based sleep staging system, it imbalances the training set and does not take the competence of classifiers into consideration in the classification part. 

Rule-based Methods

In 2011, a rule-based inference method was proposed by Sheng-Fu Liang [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF]. Nine digital parameters are extracted according to R&K manual. Total 14 fuzzy rules based on these digital parameters are applied in a fuzzy inference system to realize sleep staging.

Sleep staging based on inference system using a set of rules is also proposed in [START_REF] Álvarez | Diagnosis of the sleep apnea-hypopnea syndrome: a comprehensive approach through an intelligent system to support medical decision[END_REF]. Eight digital parameters are extracted according to AASM manual. Based on these digital parameters, total 111 fuzzy rules are used in a fuzzy inference system to perform sleep staging.

In [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF][START_REF] Álvarez | Diagnosis of the sleep apnea-hypopnea syndrome: a comprehensive approach through an intelligent system to support medical decision[END_REF], digital parameters are extracted based on the medical guidance. However, instead of directly translating R&K or AASM manual into machine rules which can be recognized by the computer, set rules are manually defined according to the physician's experience and the distributions of digital parameters respecting to various sleep stages. Directly translating R&K or AASM manual into machine rules is very challenge because of the ambiguous and implicit of information content from the medical guidance. 

Hybrid Methods

Consider advantages/disadvantage of machine learning and rule-based methods, hybrid methods have been proposed in the last few years. Hybrid method either combines two different machine learning methods or combine machine learning method with rulebased method.

In 2011, Haoyu Ma et al. proposed a hybrid classification method using an artificial neural network and decision tree to realize automatic sleep staging [START_REF] Ma | A hybrid classification method using artificial neural network based decision tree for automatic sleep scoring[END_REF]. However, inherent limitation in this method is that it cannot separate W and S1 stages.

In 2015, Tarek Lajnef et al. presented a hybrid classification method using decision tree and support vector machine [START_REF] Lajnef | Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines[END_REF]. The overall accuracy report for this method is high except for stage S1. This method is not suitable to distinguish stage S1 with stage W with high accuracy.

Beside [START_REF] Ma | A hybrid classification method using artificial neural network based decision tree for automatic sleep scoring[END_REF][START_REF] Lajnef | Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines[END_REF], there is also another hybrid method combine rules with machine learning method [START_REF] Amr F Farag | A Sleep Scoring System Using EEG Combined Spectral and Detrended Fluctuation Analysis Features[END_REF]. However, the improvement of accuracy of the hybrid method is not clearly instead of the complexity of algorithm increases. Comparisons among sleep staging systems based on hybrid methods are shown in Table 3 

Symbolic Fusion Method

Symbolic fusion is an efficient decision-making technique involving interdisciplinary among signal processing, artificial intelligent, statics and so on. It has been proven to be efficient to fuse information from different sources, possibly heterogeneous. Considering own limitations and uncertain perceptions from every single source, symbolic fusion provides enhanced and complementary perceptions combining different sources which increase overall accuracy.

Instead of only depending on numerical classification methods like machine learning methods, Symbolic Fusion based method was proposed to realize sleep staging [START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF] in 2013 which adopts three level architecture proposed by Dasarathy as shown in Figure 3.8. It uses AASM manual as a guidance to imitate clinical sleep staging process. With the cooperation between engineers and clinicians, a set of digital parameters was extracted using signal processing methods; then these digital parameters were transferred into symbolic features using manual interpretation of boundaries definition; lastly, a composite decision for sleep staging based on symbolic features and pre-defined rules in accordance with AASM was performed. In comparison to other works, this is the only method based on knowledge instead of based on data.

It has been evaluated on a database of 16 subjects (4 males and 12 females) ranging from 26 to 67 years old. Agreement Rate can reach 76%, 54%, 60% and 71% for stage W, N2, N3 and R respectively. 

Artifacts Detection

To detect and reject artifacts, thresholds have been used in [START_REF] Jy Tian | Automated sleep staging by a hybrid system comprising neural network and fuzzy rule-based reasoning[END_REF]. A pre-defined value was defined as the threshold to differentiate the boundary of artifacts and useful signals. Recorded PSG data which exceeds the threshold is considered to be artifact, otherwise, it considered as useful data.

Body Movement Detection

In [START_REF] Long | Analyzing respiratory effort amplitude for automated sleep stage classification[END_REF], thresholds were used to detect the body movement. A fixed value was defined as threshold to differentiate body movement and non-body movement.

Differentiate Different Features

In rule-based and Symbolic Fusion sleep staging systems, thresholds are widely applied in transforming digital parameters into linguistic or symbolic features in order to model inference process under the guidance of medical knowledge [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF][START_REF] Liang | A rule-based automatic sleep staging method[END_REF][START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF].

The boundaries of linguistic or symbolic features are very flexible. In clinical practice, physician may adjust the boundaries for each linguistic or symbolic feature according to his or her experience and patient information. In sleep staging systems, thresholds used to determine the boundaries in differentiating different features also should have high flexibility which can take individual variability into consideration.

Despite thresholds have been widely applied, there exists very limited research on how to set up these thresholds due to the following reasons: 1) To build a mathematical model or a threshold function to differentiate boundary requires a set of data with sufficient quantity and adequate quality; 2) There is lack of uniformity between subjects and thresholds variability exists.

Several methods to set up thresholds used in existing research are described below:

Set up a fixed value for all the subjects.

It is a simply way to set up thresholds, as shown in [START_REF] Long | Analyzing respiratory effort amplitude for automated sleep stage classification[END_REF]. However, it is not suitable to deal with high inter-subject variability PSG signals in sleep staging analysis. Even with the normalization process, a fixed value is not sufficient.

Manually assigned different values to the thresholds for different subjects.

It takes individual variability into consideration, as shown in [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF][START_REF] Liang | A rule-based automatic sleep staging method[END_REF][START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF], which is more precise than using a fixed value for all subjects. While, it requires manual efforts and it is a time-consuming process.

List several possible thresholds values and choose the optimal values for the thresholds.

Several possible thresholds values are enumerated, and the values which can reach highest agreement rate among enumerated values are selected as the optimal values for the thresholds [START_REF] Virkkala | Automatic sleep stage classification using two-channel electro-oculography[END_REF]. The accuracy of this method highly dependents on values it enumerates. With the number and range of thresholds increase, this method cannot be an effective method.

Besides the methods listed above, Fuzzy Logic also be proposed in setting-up threshold as shown in next section. Meanwhile, a possible Thresholds Setting-Up Method using Feedback System Control technique is presented followed by Fuzzy Logic.

Thresholds Setting-Up Method: Fuzzy Logic

To solve Thresholds Setting-Up problem, fuzzy logic was proposed in recognition of electroencephalogram pattern [START_REF] Hu | Electroencephalogram pattern recognition using fuzzy logic[END_REF][START_REF] Huupponen | EEG alpha activity detection by fuzzy reasoning[END_REF]. Instead of directly setting values of thresholds for the boundaries to differentiate different features, soft boundaries were applied in fuzzy logic. A generic fuzzy logic system is composed of three parts: Fuzzification, Fuzzy Inference Engine and Defuzzification. Crisp inputs are fuzzified into linguistic values to be associated with the input linguistic variables. After fuzzification, the inference engine refers to the fuzzy rule base containing fuzzy IF-THEN rules to derive the linguistic values for the intermediate and output linguistic variables [START_REF] Stachowicz | Analysis of the application of fuzzy relations in modeling[END_REF]. Once the output linguistic values are available, the defuzzifier produces the final crisp values from the output linguistic values.

However, membership functions need to define in Fuzzification and thresholds still requires to be set to transfer linguistic values into the final crisp values in Defuzzification.

Thresholds Setting-Up Method: Feedback System Control

In 2008, a generic platform technology Feedback System Control was proposed by Pro.Chih-Ming Ho [START_REF] Pak | Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm[END_REF]. It can be used to find optimal input parameters combination for guiding the complex system toward to the desired state, which involving four parts: Input Stimuli, Complex System, Objective Functions and Stochastic Search Algorithm.

With its robustness and rapid ability in searching and discovering combinatorial parameters, this technique has been applied in biological cells domain, it has been demonstrated to be very effective in optimizing the combinatorial drugs for eradicating cancers [START_REF] Al-Shyoukh | Systematic quantitative characterization of cellular responses induced by multiple signals[END_REF], inhibiting viral infections [START_REF] Ding | Cascade search for HSV-1 combinatorial drugs with high antiviral efficacy and low toxicity[END_REF][START_REF] Pak | Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm[END_REF] and maintaining human embryonic stem cells [START_REF] Tsutsui | An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells[END_REF].

Typical Stochastic Search Algorithms for Feedback System Control

There are several typical Stochastic Search Algorithms: Gur Game, Evolutionary Algorithm, Simulated Annealing, Tabu Search, Ant Colony Optimization and Cross Entropy. In this section, different types of SSA are introduced and the comparisons among these SSAs are also presented.

Gur Game

Gur Game is a simple, but very popular approach [START_REF] Ml Tsetlin | Finite automata and modeling the simplest forms of behavior[END_REF][START_REF] Tung | Using finite state automata to produce self-optimization and self-control[END_REF]. It is useful for the global optimization problems, where the objective function may be non-convex, nondifferentiable, and possibly discontinuous over a continuous or discrete domain.

Gur Game is based on biased random walks of finite-state automate. The automate describe a set of parameters with assigned values and a set of rules is included for determining how the different values of the parameter switch from one value to the other. Each value of the parameter is referred as a state of the automaton. The overall goal of the automated design is to have the parameters to self-organize (choose the optimal values) in an attempt to maximize the overall performances.

Evolutionary Algorithm

Evolutionary Algorithm is a generic population-based metaheuristic optimization algorithm proposed in 1996 [4]. It is inspired by biological evolution which proposed by Charles Darwin [11]. In Darwin's Theory of Evolution, the adaptive change of species obeys the principle of natural selection, which means individuals that are more fit have better potential for survival, as in the well-known phrase " survival of the fittest ". In a nutshell, as random genetic mutations occur within an organism's genetic code, the beneficial mutations are preserved because they aid survival. These beneficial mutations are passed on to the next generation. Over time, beneficial mutations accumulate and the result is an entirely different organism. In Evolutionary Algorithm, individuals among a population which has higher fitness function values in term of solutions quality can be survived. Survived individuals are taking place after the mutation, recombination, and selection in simulating biological evolution. Typical Evolutionary Algorithm like Differential Evolution and Genetic Algorithm have been widely applied in System Optimization [START_REF] Reddy | Multiobjective differential evolution with application to reservoir system optimization[END_REF], Scheduling [START_REF] Onwubolu | Scheduling flow shops using differential evolution algorithm[END_REF], and Feature Selection [START_REF] Yang | Feature subset selection using a genetic algorithm[END_REF].

Simulated Annealing

Simulated Annealing (SA) is a popular stochastic algorithm proposed by Scott Kirkpatrick [START_REF] Kirkpatrick | Optimization by simulated annealing: Quantitative studies[END_REF] in 1983. It has been widely applied in Network Design [START_REF] Wb Dolan | Process optimization via simulated annealing: application to network design[END_REF], Sequencing [START_REF] Ishibuchi | Modified simulated annealing algorithms for the flow shop sequencing problem[END_REF].

SA is inspired from the physical process of annealing in metal. Annealing involves heating and cooling a material to alter its physical properties due to the changes in its internal structure. Heat a material over melting point and then cool it, the material properties of the substance depend on the rate of cooling. To obtain a perfect or nearly perfect crystal, it must be annealed by first melting and then cooling very slowly. If the substance is cooled very quickly, a crystal with many defects will be formed. Simulated annealing interprets slow cooling as a slow decrease in the probability of accepting worse solutions as it explores the solution space. It models the physical process of heating a material and then slowly lowering the temperature to decrease defects, thus minimizing the system energy.

Tabu Search

Tabu Search, proposed by Fred W.Glover in 1986 [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF] and formalized in 1989 [START_REF] Glover | Tabu search-part I[END_REF]. It is a metaheuristic search method employing local search methods which can be used for solving combinatorial optimization problems. It has been widely applied in VLSI design [START_REF] Sadiq | Performance and low power driven VLSI standard cell placement using Tabu search[END_REF], finical analysis [START_REF] Drezner | Financial applications of a tabu search variable selection model[END_REF] and scheduling [START_REF] Dowsland | Nurse scheduling with tabu search and strategic oscillation[END_REF]. Tabu search uses a local search procedure to iteratively move from one potential solution to its best neighbor, even if this results in a deterioration of the performance measure value. It uses memory structures to record information about solution properties that change in moving from one solution to another. If a potential solution has been previously visited within a certain short-term period or if it has violated a rule, it is marked as "tabu" (forbidden) so that the algorithm does not consider that possibility repeatedly.

Cross Entropy

Cross Entropy was initially proposed to estimate probabilities of rare events for complex stochastic networks by Rubinstein [START_REF] Rubinstein | Optimization of computer simulation models with rare events[END_REF] in 1997. It has been extended to solve combinatorial optimization problems in 1999 [START_REF] Rubinstein | The cross-entropy method for combinatorial and continuous optimization[END_REF], which turned out to be an effective method. Cross Entropy involves an iterative procedure where each iteration can be broken into two phases: 1) Generate a random data sample (trajectories, vectors, etc) according to a specific mechanism. 2) Update the parameters of the random mechanism based on the data to produce the "better" sample in the next iteration. By applying these two phases in each iterative procedure, it has been widely applied in Buffer Allocation [3], Medical Image Segmentation [START_REF] Wu | Cross entropy: A new solver for markov random field modeling and applications to medical image segmentation[END_REF], Network Reliability Estimation [START_REF] Hui | The cross-entropy method for network reliability estimation[END_REF] and so on.

Ant Colony Optimization

Ant Colony Optimization (ACO) proposed by Marco Dorigo in 1992 which initially aimed to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food [START_REF] Colorni | Distributed optimization by ant colonies[END_REF]. Within ants, the media to communicate among individuals information regarding paths and used to decide where to go called pheromone trail. Initially, ants wander randomly, and upon finding food return to their colony while laying down pheromone trails. If other ants find such a path, they are likely to follow the trail instead of keep traveling randomly. If they eventually find food, the pheromone trail will be reinforced. However, the pheromone trail also will evaporate over time which results in reducing its attractive strength. The more time it takes for an ant to travel down the path and back again, the more pheromones will evaporate. In comparison, a short path can get marched over more frequently, and the pheromone density is higher than longer paths. Based on the original idea, ACO has also been diversified to be applied in Water Distribution Systems [START_REF] Holger | Ant colony optimization for design of water distribution systems[END_REF], Routing in Telecommunication Network [START_REF] Di | Ant colony optimization and its application to adaptive routing in telecommunication networks[END_REF] and so on.

SSAs like Tabu Search, Gur Game, Simulated Annealing, Evolutionary Algorithm and Cross Entropy, it has its own pros and cons. While in order to apply SSA for sleep staging system applications, the following constraints should be considered: 1) The search algorithm can search for the optimal thresholds combination efficiently and should be robust. For SSAs, initial values of thresholds will be generated to start searching of the optimal thresholds. Without knowledge of initial values, the search algorithm used in sleep staging system applications should be insensitive to initial values. 2) The search algorithm should be flexible. The search algorithm used in sleep staging system applications should be flexible and adaptive to the increment or decrement of thresholds. 3) In consideration of the further work like an implementation of sleep staging system applications or integrated it with other portable PSG systems for sleep evaluation or home care application, constraints of hardware implementation should also be considered. Table 3.7 shows the comparison among several typical SSAs. Among these SSAs, Differential Evolution and Cross Entropy are more suitable for sleep applications. Differential Evolution (DE) is a popular and efficient method of evolutionary algorithm, it owns many advantages like: 1) DE can mimic natural biological evolution and provide a fast and stable convergence; 2) It is less sensitive to initial population; 3) It is a parallel search method; and 4) It can improve fitness function value iteratively. Cross Entropy (CE) also owns several advantages: 1) CE is a parallel search method; 2) It is based on rigorous mathematical and statistical principles; 3) It provides a sample adaptive procedure.

Conclusion

Compared with other automatic sleep staging methods, symbolic fusion can mimic decision-making process of clinical sleep staging and it has the following features :

1. it can integrate data from different sources, like EEG, EMG and EOG which can provide enhanced and complementary decision in comparison to single source based methods;

2. it can deduce a composite decision because it is based on the cooperation between engineers and clinical experts which can involve medical knowledge and physician's experience;

3. it has less complexity and high flexibility which can represent information by using low-level to high-level architecture.

However, to improve existing symbolic fusion-based sleep staging system, the following points should be taken into consideration: Besides of these points, there exist an inherent flaw: manual thresholds setting up method was applied in transforming digital parameters into the symbolic interpretation of feature parameters.

In this thesis, a personalized automatic sleep staging system is proposed based on a hybrid expert system that combines Symbolic Fusion and Feedback System Control (FSC) technique. Symbolic fusion is used to mimic sleep staging process by integrating knowledge of experts in scoring of PSG signals according to AASM manual; meanwhile, Feedback System Control technique is adopted to realize automatic thresholds setting up with the consideration of individual variability. In order to directly apply existing symbolic fusion method, some modifications are presented in order to improve the accuracy and overcome the limitations. Personalized thresholds can be provided automatically using FSC technique into order to realize personalized automatic sleep staging.

Chapter 4 Symbolic Fusion-based Sleep Staging System

In this chapter, Symbolic Fusion paradigm is introduced. Then, an existing Symbolic Fusion-based Sleep Staging System (SF-SSS) model (proposed by Ugon, Isabelle, et al.) is presented. This model was reached good classification results on a small database. However, this model is not yet completed. In this chapter, I present this model and my contributions in order to enrich this model.

Symbolic Fusion Conception

Symbolic fusion is an efficient decision-making technique involving interdisciplinary among signal processing, artificial intelligent, inference methods, statics and so on. It has been widely applied in image processing [START_REF] Bloch | Data fusion in 2D and 3D image processing: An overview[END_REF][START_REF] Lambert | Symbolic fusion of luminance-hue-chroma features for region segmentation[END_REF], medical analysis [START_REF] Ugon | How to use symbolic fusion to support the sleep apnea syndrome diagnosis[END_REF], TV program [START_REF] Laudy | Information fusion in a tv program recommendation system[END_REF] which proven to be efficient to fuse information from different sources. Considering uncertain perceptions from every single source, symbolic fusion can provide enhanced and complementary perceptions combining different sources which increase overall accuracy.

There exist several different architectures for symbolic fusion, two typical architectures are introduced in the following paragraph.

JDL Architecture

In 1991, the Joint Directors of Laboratories (JDL) provided a definition for symbolic fusion as "A multi-level process dealing with the association, correlation, combination of data and information from single and multiple sources to achieve the refined position, identify estimates and complete and timely assessments of situations, threats and their significance" [START_REF]Data Fusion Lexicon JDL[END_REF]. Meanwhile, JDL also presented a five-level architecture for symbolic fusion.

Level 0: Source Preprocessing Source Preprocessing is the lowest level of the process, it provides estimation and prediction of signal/object observable states on the basis of signal level data association and characterization. It includes signal detection and feature extraction which can reduce the amount of data and maintain useful information for the high-level processes.

Level 1: Object Assessment

Object Assessment provides estimation and prediction of entity states on the basis of observation-to-track association, continuous state estimation and discrete state estimation. It includes spatiotemporal alignment, association, correlation, clustering or grouping techniques, state estimation, identity fusion, and the combining of features that were extracted from signals.

Level 2: Situation Assessment

Situation Assessment estimates and predicts of relations among entities, to include force structure and cross force relations, communications and perceptual influences, physical context, etc.

Level 3: Impact Assessment

Impact Assessment performs estimation and prediction of effects on situations of planned or estimated/predicted actions by the participants; to include interactions between action plans of multiple players.

Level 4: Process Refinement

Process Refinement involves adaptive data acquisition and processing to support mission objectives.

JDL architecture can be used to support human decision-making by refining and reducing the quantity of information from the data instead of knowledge.

Dasarathy Architecture

In 1997, a three-level architecture was proposed by Dasarathy [START_REF] Belur | Sensor fusion potential exploitation-innovative architectures and illustrative applications[END_REF] involving data fusion, feature fusion and decision fusion.

Data Fusion

Data fusion performs signal detection and digital parameters extraction which can maximize useful information and minimize noise and artifacts. It is conducted immediately after the data are gathered from the sensors; then signal processing algorithms are employed to extract features or characteristics that describe an entity in the environment.

Feature Fusion

Feature fusion performs feature set uniformization and normalization, feature reduction and concatenation, and feature matching. It is used to improve, refine or obtain a set of features based on the digital parameters which were extracted in data fusion.

Decision Fusion

In decision fusion, a composite decision is generated based on inference methods. Inference methods which are tolerant of imprecision, uncertainty, partial truth and approximation are usually applied.

Different from JDL architecture, Dasarathy architecture can be used to mimic human decision-making by modeling directly from the knowledge. In comparison with Dasarathy Architecture, JDL Architecture focused on providing communications among fusion researchers and implementation engineers, rather than a prescription for implementing fusion system or exhaustive enumeration of fusion functions and techniques [START_REF] David | Dirty secrets in multisensor data fusion[END_REF]. While Dasarathy Architecture defined a very useful categorization of fusion functions in terms of the types of information that are processed as shown in Figure 4.1. These fusion functions are: 3. Feature In-Feature Out (FEI-FEO) Fusion: In this level, both input and output of the fusion process are features. It addressed a set of features with to improve, refine or obtain new features. This process is also known as feature fusion.

4. Feature In-Decision Out (FEI-DEO) Fusion: It obtains a set of features as inputs and provides a set of decisions as outputs. It has been referred to as either feature fusion or decision fusion.

Decision In-Decision Out (DEI-DEO) Fusion:

In this level, it fuses input decisions to obtain a new decision. It has been commonly referred as decision fusion.

Compare JDL Architecture and Dasarathy Architecture, Dasarathy Architecture is more suitable for the formalization of medical knowledge and experience for sleep staging application. With the guidance of AASM, it can be adopted to mimic the clinical sleep staging process, from low-level digital parameters extraction to high-level feature interpretation and final decision-making.

Existing SF-SSS

In 2013, Adrien, Isabelle, et al. [START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF] proposed Symbolic Fusion-based Sleep Staging System (SF-SSS) using Dasarathy Architecture, as shown in 

Data Fusion

In data fusion, it adopts DAI-DAO fusion, eight digital parameters were extracted using time-domain and frequency-domain signal processing methods. These parameters are used to represent the sleep events which are described in AASM manual. Parameters EEGLowWaveEnergy, EEGSleepSpindles, EEGLWProportion, EEGThetaProportion and EEGStability were extracted from three different EEG channels: C3-A2, C4-A1, O1-A2; parameters EOGEyeMovement and EOGCorrelation were extracted from 2 EOG channels: EOG-L, EOG-R; EMGMovementActivity parameter was extracted from EMG. Below is the brief description of each parameter. These parameters are inspired from AASM manual.

EEGLowWaveEnergy

EEGLowWaveEnergy indicates the energy of the slow wave of frequency between 0.5 Hz to 2 Hz in EEG signal.

EEGSleepSpindles

Sleep Spindle is a train of distinct waves with frequency 11-16 Hz and duration more than 0.5 seconds. It is a significant indicator of stage N2. EEGSleepSpinles represents the number of occurrence of sleep spindles.

EEGLWProportion

EEGLWProportion signifies the power ratio between slow wave (frequency smaller than 2 Hz) and the total power of each 30-s epoch.

EEGThetaProportion

EEGThetaProportion signifies the power ratio between Theta frequency band (frequency between 4 Hz and 7 Hz) and the total power of each 30-s epoch.

EEGStability

EEGStability signifies the power ratio between the fast wave (frequency more than 18 Hz) and the total power. The fast wave is one characteristic of Stage W.

EOGEyeMovement

EOGEyeMovement represents the number of times eye moves during sleep. This parameter is a significant indicator to distinguish between REM and NREM stage.

EOGCorrelation

EOGCorrelation is the correlation between the left and right eye movements. It indicates whether the movement of the two eyes is independent or not.

EMGActivity

EMGActivity represents the mean absolute value of the EMG signal. This parameter is used to indicate the activity level of EMG, which can be used as an indicator of the muscle tone movement in sleep staging.

Feature Fusion

In feature fusion, 2-level fusion was applied. In the first level, digital parameters are transformed into the symbolic interpretation of feature parameters. Eight digital parameters were transferred into 21 different features via 13 thresholds as shown in Table 4.1. In the second level, new feature parameters were integrated either combining 3 EEG channels or 2 EOG channels. The symbolic interpretation of feature parameters is used to represent the semantic description of sleep events in AASM manual. In first level of feature fusion, DAI-FEO fusion is performed. 

Decision Fusion

In decision fusion, inference method is used to fulfill sleep staging task on the basis of feature parameters. In order to generate a composite decision, a set of rules were defined for classifying of stage W, N2, N3 and R under the cooperation between clinical experts and engineers according to the guidance from AASM manual. Rules used to make the decision of each stage are different. Four different classifiers which combined by different rules are proposed for classifying stage W, N2, N3 and R respectively. It can be implemented in embedded systems. SF-SSS has been evaluated on a database of 16 subjects (4 males and 12 females) ranging from 26 to 67 years old. Agreement Rate can reach 76%, 54%, 60% and 71% for stage W, N2, N3 and R respectively.

However, this model is not yet complete and it needs to be enriched, below are some points need tp be completed: According to AASM manual, band pass filters with a cut of frequency of 0.3 -35 Hz, 0.3 -35 Hz and 10 -100 Hz are suggested to perform pre-process for EEG, EOG and EMG respectively. Pre-processing can be used to eliminate some noise and artifacts.

Smoothing of sleep stages

Temporal contextual information was not considered, however, sleep staging is a time-dependent classification problem. A sleep stage could be influenced by the previous sleep stage and it could influence the next sleep stage. Sleep transitions were also not considered. However, there exists some impossible transitions and irregular transitions.

3. Some missing sleep events and rules described by AASM Most of the sleep events described by AASM manual were included in [START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF], however, there is still some sleep events which are not included. E.g. K-Complex, a well-delineated negative sharp wave immediately followed by a positive component standing out from the background EEG signal, with total duration ≥ 0.5 sec [START_REF] Iber | The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications[END_REF], which is also a significant indicator to classify Stage N2.

Classification of Stage N1

In [START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF], classification of Stage W, N2, N3 and R were performed, while classification of Stage N1 was not performed. Stage N1 is considered as a transition between wake and sleep. It occurs upon falling asleep and during brief arousal periods within sleep and usually accounts for 2 -5% of total sleep time.

The detection of N1 is always the most problematic aspect of the sleep stages [START_REF] Virkkala | Automatic sleep stage classification using two-channel electro-oculography[END_REF] in both clinical sleep staging and automatic sleep staging system. Only 63.0 % interscorer reliability for stage N1 is reported among different scorers in [START_REF] Richard S Rosenberg | The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring[END_REF]. Moreover, finding a significant feature that could separate N1 from W, N2, N3 and R, is rather difficult for automatic sleep staging system, because N1 is a transition phase in the changes of wakefulness and other sleep stages.

Modifications of Existing SF-SSS

In this section, modifications for improving existing SF-SSS are proposed.

Sleep Staging Design Flow

A completion of sleep staging design flow is proposed, as shown in Figure 4.8. It consists of three main parts: Pre-processing and Segmentation, Symbolic Fusion and Smoothing. Pre-processing and Segmentation is designed to eliminate noise and artifacts and segment PSG recording into 30-s epochs in accordance with AASM manual. Symbolic Fusion is used to realize sleep staging. Smoothing is proposed to consider the temporal effects of sleep staging process, and to detect and correct falsely sleep transitions. Details of each part are described below. As recommend by AASM, a Butterworth bandpass filter between 0.3 Hz and 35 Hz is designed for EEG and EOG by using Filter Design and Analysis Tool in Matlab. Meanwhile, a Butterworth band-pass filter between 10 Hz and 100 Hz and a band-stop filter with a cut-off frequency of 50 Hz are designed for EMG.

By applying filters proposed in Pro-processing, it can effectively eliminate some noise and artifacts like movement artifacts and power-line artifacts. 

Data Fusion: K-Complex

K-Complex is a significant indicator of stage N2 which was not involved in existing SF-based sleep staging system. To improve the classification performance of stage N2, another significant parameter K-Complex is included and fused to existing SF-SSS model in modifications. In this section, K-Complex is introduced firstly followed by the method we proposed to use for extracting the digital parameter of K-Complex.

In AASM manual, K-Complex is described as "A well-delineated, negative, sharp wave immediately followed by a positive component standing out from the background EEG, with total duration ≥ 0.5 sec, usually maximal in amplitude when recorded using frontal derivations" as shown in Figure 4.11. To extract K-Complex, Teager Energy Operator is introduced and adopted. Teager Energy Operator (TEO) is a non-linear quadratic operator proposed by Kaiser [START_REF] James | On a simple algorithm to calculate theenergy'of a signal[END_REF] as a measure to assess the instantaneous energy of the signal that incorporates both amplitude and frequency of the signal. It owns the advantages for the detection of instantaneous changes in the signal such as discontinuities, increases or decreases of amplitude and frequency. TEO has been widely applied in speech analysis [START_REF] Jabloun | Teager energy based feature parameters for speech recognition in car noise[END_REF]5] and bio-signal analysis [START_REF] Mukhopadhyay | A new interpretation of nonlinear energy operator and its efficacy in spike detection[END_REF]2,[START_REF] Solnik | Teager-Kaiser energy operator signal conditioning improves EMG onset detection[END_REF].

The definition of continuous Teager Energy Operator is shown in Equation 4.1 where x(t) is the signal, ẋ(t) and ẍ(t) are the first and second derivatives of the signal respectively.

Ψ

c [x(t)] = [ ẋ(t)] 2 -x(t)ẍ(t) (4.1) 
In the discrete domain, Teager Energy Operator is expressed as Equation 4.2, where x(n -1), x(n), x(n + 1) are the (n -1)th, nth and (n + 1)th sample value of the signal.

Ψ d [x(n)] = x 2 (n) -x(n -1)x(n + 1) (4.2)
TEO can be used to assess the instantaneous energy of the continuous and discrete signal that incorporates both amplitude and frequency of the signal. In comparison of TEO for K-Complex in stage N2 and TEO for movement in stage W, TEO of movement is much higher than TEO of K-Complex (almost 5 times higher). For each epoch, the maximum value of TEO is represented as the value for digital parameter EEGKComplex .

Feature Fusion: K-Complex

In order to realize semantic interpretation of K-Complex: digital parameter EEGK-Complex based on TEO is extracted in data fusion; transformation of EEGKComplex into symbolic features are performed in feature fusion.

In feature fusion, two thresholds (EEGKCA and EEGKCB ) are used in transforming EEGKComplex into three symbolic features: High, Middle and Low. Epochs with values of digital parameter EEGKComplex that higher than EEGKCA are transformed as High; values between EEGKCA and EEGKCB are transformed as Middle; values lower than EEGKCB are transformed as Low.

For the symbolic interpretation of EEGKComplex, three features are used to distinguish the occurrence of K-Complex and the occurrence of instantaneous movement. TEO value for an instantaneous movement is relatively higher than TEO value for a K-Complex. Meanwhile, TEO value for K-Complex is relatively higher than TEO value for a no occurrence of K-Complex and movement. Only symbolic feature equals to Middle is used to describe as the occurrence of K-Complex. Symbolic feature High is used to reflect the occurrence of movements.

Decision Fusion: K-Complex

In decision fusion, two rules are added based on feature parameter of EEGKComplex. For stage W, EEGKComplex is High. For stage N2, EEGKComplex is Middle. For stage N1, EEGKComplex is Low.

Decision Fusion: Stage N1

Guidance from AASM manual for physicians to classify stage were described in Chapter 2. Vertex sharp waves and slow eye movements are typical characteristics in distinguishing stage N1. To fully mimic clinical sleep staging process, detection of vertex sharp waves and slow eye movements are required. However, as far as we known, there exists very limit and effective method in detection of these characteristics.

Instead of directly extract typical characteristics of stage N1 and fully use existing digital parameters, a rule to classify stage N1 is proposed as shown in Figure 4. [START_REF] Wb Dolan | Process optimization via simulated annealing: application to network design[END_REF] 

Smoothing

The smoothing function is proposed to consider the temporal effects of sleep staging process, and to detect and correct false sleep transitions. In smoothing, temporal contextual information and sleep transitions are considered.

Temporal Contextual Information Smoothing

According to AASM manual, current sleep stage can be influenced by the previous sleep stage and can influence the next sleep stage. In smoothing, we implement generally accepted smoothing rules: the "3-minute rule" [START_REF] Quang | A tool for analysis and classification of sleep stages[END_REF]. If a sequence of six epochs has only one epoch (isolated sleep stage) scored differently from the others (major sleep stage), this one could be replaced according to the following criteria: if the major sleep stage is R/W, then the isolated sleep stage is changed into the major sleep stage R/W.

Sleep Transitions Detection and Correction

In smoothing, we propose impossible transitions and irregular transitions detection and impossible transitions correction and irregular transitions reporting. Impossible transitions and irregular transitions detection are used to detect the impossible transitions and irregular transitions. Impossible transitions correction is used to correct impossible sleep transitions and irregular transitions reporting is used to report the location of irregular transitions. For five different stages, there exist 25 possible sleep transitions. If there is no new sleep event that can be observed, physicians will keep score as the same stage. Meanwhile, according to AASM manual, 6 combinations of sleep transitions have been described in observing new sleep event: N2 to N1, N2 to N2, N2 to R, R to N1, R to N2, R to R as shown in Figure 4.17. Where:

a represents an arousal or a major body movement followed by slow eye movement occurs.

b is a major body movement followed by slow eye movement occurs.

c represents absence of non-arousal associated K complexes and absence of sleep spindles.

d is an increase in chin EMG or an arousal occurs followed by slow eye movement or a major body movement followed by slow eye movement.

e represents K complex or sleep spindle occurs.

f is an arousal without slow eye movement or A major body movement without slow eye movement. To deal with impossible transitions, impossible transitions correction is performed.

For impossible transition Stage W to N3, if there are three consecutive epochs like W, N3, W, it will be replaced with the sequence W, W, W; if there are three consecutive epochs like W, N3, N3, it will be replaced with the sequence N3, N3, N3; otherwise N3 epoch after W will be replaced with N2. For impossible transition Stage N1 to N3, if there are three consecutive epochs like N3, N1, N3, it will be replaced with the sequence N3, N3, N3; if there are three consecutive epochs like N1, N1, N3, it will be replaced with the sequence N1, N1, N1; otherwise N1 epoch before N3 will be replaced with N2. For impossible transition Stage R to N3, if there are three consecutive epochs like N3, R, N3, it will be replaced with the sequence N3, N3, N3; if there are three consecutive epochs like R, R, N3, it will be replaced with the sequence R, R, R; otherwise N3 will be replaced with N2.

Details of correction of impossible sleep transitions are described in Table 4.3. 

Sleep Transitions Impossible Transition Correction W to N3 W, N3, W W, W, W W to N3 W, N3, N3 N3, N3, N3 W to N3 W, N3, N1/N2/R W, N2, N1/N2/R N1 to N3 N1, N3, N3 N3, N3, N3 N1 to N3 N1, N3, N1 N1, N1, N1 N1 to N3 N1, N3, W/N2/R N2, N3, W/N2/R, R to N3 R, N3, N3 N3, N3, N3 R to N3 R, N3, R R, R, R R to N3 R, N3, W/N1/N2 R, N2, W/N1/N2

Thresholds and Symbolic Fusion-based Sleep Staging System

Thresholds are used by Symbolic Fusion-based Sleep Staging System (SF-SSS) model to transform low-level digital parameters into the high-level symbolic interpretation of feature parameters. In this chapter, these thresholds are investigated. Firstly, the Manual Thresholds Setting-Up (MTSU) method, applied in SF-SSS for setting-up these thresholds is presented. Then, issues on these thresholds are discussed. Lastly, thresholds dependencies among sleep stages and patients for SF-SSS model are analyzed in order to understand how many thresholds are required.

Introduction on Thresholds

Thresholds are widely applied in most of the automatic sleep staging system for transforming digital parameters into linguistic or symbolic features for modeling inference process under the guidance of medical knowledge [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF][START_REF] Liang | A rule-based automatic sleep staging method[END_REF][START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF]. In this section, thresholds that used in SF-SSS are introduced.

Explanation of Thresholds

SF-SSS adopts three-level architecture of symbolic fusion to mimic the decision-making process of clinical sleep staging in accordance with AASM as we described in previous chapter.

In this section, we describe how to define and use thresholds to transform digital parameters into the symbolic interpretation of feature parameters. According to AASM rules, we analyzed how it is possible to generate different symbols from one sleep event through thresholds.

Description in AASM

Take chin EMG as an example, in AASM there exist several rules regarding chin EMG which described as below. In AASM, chin EMG/chin muscle tone has been mentioned in three rules for guiding physicians to score stage W, N1 and R respectively.

From AASM to SF-SSS model using Thresholds

In order to formalize these rules into SF-SSS model, the description of chin muscle tone, the chin EMG amplitude and chin EMG tone in AASM are assumed as the same semantic/linguistic representation of chin EMG activity in SF-SSS. Data Fusion, Feature Fusion and Decision Fusion on chin EMG activity are described as follows.

Data Fusion of chin EMG activity

In SF-SSS, digital parameter EMGActivity is extracted by using the mean absolute value of the chin EMG signal as shown in the Equation 5.1; where x(t) is chin EMG signal.

EM GActivity = mean(abs(x(t)))

(5.1)

This parameter can be used to indicate the activity level of chin EMG, which can be used as an indicator of the chin muscle activity during sleep. 

Feature Fusion of chin EMG activity

In feature fusion, thresholds are used to transform digital parameters into symbolic interpretation of feature parameters. To correspond symbolic interpretation of feature parameter with AASM manual, three symbolic interpretation of feature parameters are used: High, Normal and Low.

In Manual Thresholds Setting-Up (MTSU) was used in order to have a first proof of concept for the SF-SSS model. For this reason, the method implies several limitations: 1. It is a time-consuming process and requires manual effort.

Total 15 thresholds need to be manually set for each subject for transforming nine digital parameter into 24 symbolic features. Using MTSU method to set up these thresholds is a time-consuming process. Moreover, the thresholds values remain subjective.

The whole Hypnogram analyzed by experts is required.

In order to set up thresholds for transforming digital parameters into different symbolic features, a whole Hypnogram which analyzed by physicians is required. Without this Hypnogram, thresholds cannot be easily set by MTSU method. Instead of reduce the burden of physician, MTSU needs the analysis from physicians as the necessary prerequisite.

It can only provide estimated values of thresholds.

MTSU can only provide estimated values of thresholds instead of precise values. Most important, to realize the automated process of sleep staging, an automatic way to set-up these thresholds is required.

To release the burden of manual effort in setting-up thresholds and to automate the sleep staging process, an automatic method to set-up thresholds is required. Before studying which algorithm could be used to implement an automatic thresholds setting-up system, an analysis of thresholds is needed. This analysis covers the discussion on thresholds issues to figure out the number of thresholds needed to be configured for SF-SSS model.

Issues on Thresholds

In SF-SSS, thresholds are used to transform low-level digital parameters into the highlevel symbolic interpretation of feature parameters. An automatic thresholds setting-up method is required. There exist several issues need further research:

1) Whether there exists any dependency between thresholds and other conditions like: sleep stages, patients or any other factor? Thresholds & Patients: For different patients, whether generalized thresholds are sufficient or specific thresholds for different patients are required need to be researched to understand whether there is a dependency between Thresholds and Patients or not. For SF-SSS, number of thresholds for classifying each stage needs to be studied. Increase the number of thresholds may increase the precision of symbolic interpretation of feature parameters but it also increase the complexity of SF-SSS. Finding appropriate number of thresholds can balance the precision and the complexity of SF-SSS.

Thresholds in SF-SSS

In this section, thresholds dependencies among sleep stages and patients are discussed. In analysis of thresholds dependencies among sleep stages can help us to understand whether same thresholds can be used in different sleep stages or different thresholds are required for different sleep stages. Meanwhile, in analysis of thresholds dependencies among patients can help us to understand whether generalized thresholds are sufficient or specific thresholds for different patients are required.

In SF-SSS model, nine digital parameters are transformed into 24 features via 15 thresholds as shown in 

Thresholds & Patients

In this section, thresholds dependencies among patients are analyzed to understand whether generalized thresholds are sufficient or personalized thresholds are required.

Take patient 55341 as an example, EMGTh1 =0. For each patient the number of thresholds is same while the values of thresholds may be different.

Thresholds Configuration

In MTSU, total 15 thresholds are used to transform nine digital parameters into 24 symbolic features as shown in Table 5.1 without taking thresholds dependencies among stages into consideration.

For example, EMGActivity are used in classification stage W, N1 and R. Same thresholds EMGTh1 and EMGTh2 are applied in transforming EMGActivity into High, Normal and Low without taking thresholds dependencies among sleep stages into consideration while using MTSU method. However, thresholds variability was observed among sleep stages. In order to improve the classification performance of each sleep stage, different thresholds of EMGActivity are required for stage W, N1 and R. In conclusion, in MTSU method, two thresholds are required for EMGActivity. However, to take thresholds dependencies among stages into consideration, three thresholds are required for EMGActivity. Take all the parameters and thresholds dependencies among stages into consideration, the numbers of thresholds need to be set-up for each stage are listed in 

Conclusion

In this chapter, a brief introduction on thresholds is presented firstly which involves how to use thresholds for formalizing AASM manual into symbolic fusion model. Then Manual Thresholds Setting-Up (MTSU) method used in existing SF-SSS model is introduced with the analysis of its limitations. Then issues on thresholds are described and followed the discussion of thresholds dependencies among sleep stages and patients of SF-SSS. Lastly, thresholds that need to be set up for classifying each stage are listed with the consideration of thresholds dependencies among stages.

Chapter 6

Towards to a Personalized Sleep Staging System

In this chapter, Automatic Thresholds Setting-Up (ATSU) method is introduced to provide optimal thresholds for Symbolic Fusion-based Sleep Staging System (SF-SSS) in accordance with the conclusion of the previous chapter. It is inspired by Feedback System Control (FSC) technique and dedicates in searching optimal thresholds combination for SF-SSS. We propose two different search algorithms: Differential Evolution Cross Entropy of FSC for ATSU. Based on proposed ATSU method, Personalized Sleep Staging System (PSSS) conception is proposed by taking individual variability into consideration.

Automatic Thresholds Setting-Up Method for SF-SSS

In existing SF-SSS model, Manual Thresholds Setting-Up (MTSU) was adopted between Data Fusion and Feature Fusion as shown in Figure 6.1. Details of how to set up these thresholds manually are described in chapter 4. To release the burden of manually setting of thresholds and take individual variability into consideration, an Automatic Thresholds Setting Up (ATSU) for SF-SSS is proposed. ATSU is proposed to provide thresholds automatically in transforming digital parameters into the symbolic interpretation of feature parameters for SF-SSS. It is inspired from Feedback System Control (FSC) technique. To fully understand how ATSU works, a brief introduction of FSC is introduced followed by the details of ATSU.

Feedback System Control technique

Feedback System Control (FSC) is initially proposed to navigate through the large parametric space of different drugs to identify optimal low-dose drug combinations in manipulating the cellular network toward a therapeutic goal [START_REF] Pak | Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm[END_REF] in 2008. In each living cell, the interactions among the biomolecules, proteins and nucleic acids intrinsically serve as the foundation of the extensive networks of signal and regulatory pathways. To explore and understand the cell functions, the bottom-up reductionist approach is very challenge due to the sheer magnitude of pathway processes and pathway crosstalk. FSC manipulates the cellular network as a whole, rather than analyzing the processes through individual signaling pathways to circumvent the need for detailed information of biological signaling and regulatory networks. It proved to be an efficient combinatorial drug screening method in finding optimal drug combinations which can improve treatment efficacy and enable the reduction of side effects and drug resistance.

In 2014, FSC is extended to be a Generic Feedback System Control (G-FSC) technique [START_REF] Ho | Keynote: Personalized medicine enabled by FSC. X technology[END_REF], which can be used to find input variable combination for guiding the complex system toward to a desired state. It can be applied not only in biological cells domain but also many other domains like Internet and financial activities. Without the requirement of detailed information from complex system or how the complex system responds to input stimuli, G-FSC provides a solution to in searching for an appropriate input stimuli which can reach optimal objective value for the complex system.

As shown in Figure 6.2, it consists of 4 parts: Input Stimuli, Complex System, Objective Assessment and Stochastic Search Algorithm. Input stimuli are arbitrarily selected to apply to the complex system; if the specific system output is not met, G-FSC uses an engineering search algorithm that selects the next group of inputs to iteratively feedback to the complex system. Details of each part are described below. 

Input Stimuli

Input Stimuli provides the inputs for the complex system. It can be composed of a parameter or a combination of several parameters. For each parameter, it has its own space (range). The space of each parameter can be continuous or discrete. For example, N parameters with M possible values from each space would result in M N potential input combinations and the input stimuli are from these potential input combinations.

Complex System

A complex system is composed of a large number of interacting building blocks or elements which self-organize, generating emerging properties that are usually not directly linked to those of the individual building elements. Biological cells, the Internet and financial activities are all examples of complex systems.

Objective Assessment

Objective Assessment is used to evaluate the input stimuli impact on the complex system. It can provide systematic quantitative characterization of complex system response to different input stimuli.

Stochastic Search Algorithm

Without knowing the exact mechanism of the complex system and how the complex system responds to manipulation of the inputs, set up a model to stimulate complex system response induced by the inputs is very challenge. However, Stochastic Search Algorithm (SSA) can provide a fast and stable convergence in finding an optimal input for regulating complex systems without the requirement of detailed information about the complex system or how the system responds to input stimuli. Furthermore, it is also robust to random noise and nonlinear changes in the system and the environment, which are commonly observed in complex systems like a biological system.

To solve large-scale combinatorial optimization problems of highly complex systems, FSC provides a rapid and stable search and discovery ability in finding an optimal combination among potential combinations space without the requirement of detailed information about the complex system.

Automatic Thresholds Setting-Up Method

Thresholds are widely applied in decision support systems in transforming digital parameters into linguistic or symbolic features to make the final decision. Sleep staging systems, as one of the typical clinical applications of decision support systems, widely adopts thresholds in transforming digital parameters into linguistic or symbolic features to model inference process under the guidance of medical knowledge [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF][START_REF] Liang | A rule-based automatic sleep staging method[END_REF][START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF]. While, in clinical practice, boundaries of linguistic or symbolic features are very flexible. Physicians may adjust the boundaries for each linguistic or symbolic feature according to their experience and patient information.

However, as far as we know, there are no fully satisfying automatic setting up thresholds methods in existing sleep staging systems. Manually predefined values of thresholds have been widely due to the following reasons: 1) To build a mathematical model or a threshold function in setting up thresholds is very challenge which requires a set of data with sufficient quantity and adequate quality; 2) There is a lack of uniformity between subjects; 3) Interaction among thresholds is not clear. Instead of building a mathematical model or a threshold function, we propose a new solution to thresholds setting-up problems. Assume, there exists a thresholds combination which can reach the highest objective value of sleep staging systems; to set up these thresholds can be described as to find the optimal thresholds combination among the possible thresholds combinations space which can reach the highest objective value of sleep staging system. Then thresholds setting-up problems can be described as a combinatorial optimization problem in finding optimal thresholds combination among possible thresholds combinations space regarding the objective value of sleep staging systems.

Based on FSC technique, ATSU we proposed mainly consists of the following parts: Thresholds Combinations (TC), Symbolic Fusion-based Sleep Staging System (SF-SSS), Assessment of SF-SSS (A-SF-SSS) and Stochastic Search Algorithm (SSA). TC provides a possible thresholds combinations space. SF-SSS is used to performed sleep staging. A-SF-SSS is used to assess the impact of thresholds combination on SF-SSS. Initially, SSA provides randomly thresholds combinations from TC and pass it to SF-SSS. Then A-SF-SSS is performed to evaluate the impact of thresholds combination on SF-SSS with an objective value. With this objective value, SSA will generate new thresholds combinations for the next loop. This process is repeated until optimal thresholds combination is found which can provide good assessment in A-SF-SSS. Details of each part are described in below. 

Symbolic Fusion-based Sleep Staging System

Symbolic Fusion-based Sleep Staging System (SF-SSS) is performed to realize sleep staging as shown in the previous chapter which consists of data fusion, feature fusion and decision fusion. In ATSU method, data fusion only needs to perform once at the beginning to provide digital parameters of selected signals. This is because T hresholds have no impact on Data Fusion. SF-SSS in ATSU is mainly used to perform Feature Fusion and Decision Fusion. Feature Fusion and Decision Fusion are repeated in setting up thresholds until optimal thresholds are found.

Assessment of SF-SSS

Assessment of SF-SSS (A-SF-SSS

) is used to evaluate the thresholds combination impact on SF-SSS. In analysis of a classification, F-Measure is widely applied by considering both precision and recall. In A-SF-SSS, F-Measure is used to evaluate the impact of different thresholds on SF-SSS. The traditional F-Measure also called balanced F-score (F 1 ) is shown in Equation 7.1 which can balance the precision and recall.

F 1 = 2 * P recision * Recall P recision + Recall (6.1)

In F-Measures, Precision and Recall are used which as shown in Equation 7.2 and Equation 7.3, respectively. Precision (also called positive predictive value) is the ratio of all positive predictions among predicted events. Recall (also known as sensitivity or true positive rate) is the ratio of all positive predictions among all true events.

P recision = T P T P + F P (6.2)

Recall = T P T P + F N (6.3)
TP, FN, FP and TN are used to evaluate how good the observations (predictions) reflect the actual events for a classification. True Positives and True Negatives are the observations which were correctly predicted. False Negatives are observations are negative where the actual events are positive. False Positive are observations are positive where the actual events are negative.

Stochastic Search Algorithm

In solving large-scale combinatorial optimization problems as finding an optimal combination from a finite set of combinations, exhaustive search is not feasible. Instead of applying exhaustive search, SSA is used to search for the optimal thresholds combination for SF-SSS in ATSU.

Among typical SSAs, Differential Evolution and Cross Entropy are more suitable for sleep staging application based on thresholds. Both of them are robustness and support parallel searching. Moreover, both of them are flexible which allow to deal with low or high dimension of parameters. For the consideration of hardware implementation, they are not based on memory structure and easy to implement. The SSA is not only used to generate thresholds combination but also controls the stop conditions. The stop criteria for these search algorithms is described in next section.

For Differential Evolution and Cross Entropy, they have own advantages as follows. Differential Evolution is a popular and efficient method of the evolutionary algorithm which has been successfully applied to solve multi-parameter problems in diverse domains like mechanical engineering design or chemical engineering [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF]. It owns many advantages like: 1) DE can mimic natural biological evolution and provide a fast and stable convergence; 2) It is less sensitive to initial population; 3) It is a parallel search method; and 4) It can improve fitness function value iteratively. Cross Entropy also owns several advantages: 1) CE is a parallel search method; 2) It is based on rigorous mathematical and statistical principles; 3) It provides a simple adaptive procedure.

Details of Differential Evolution and Cross Entropy are presented in next section with the procedure and main control parameters analysis.

Differential Evolution

Differential Evolution (DE) was proposed by Stron and Price [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF] in 1997, is one of the most effective and efficient stochastic optimization technique. Since 1997, it obtained great develop and was successfully applied in diverse domains like electronic engineering [START_REF] Muthamil | Power system voltage stability analysis using Modified Differential Evolution[END_REF], chemical engineering [START_REF] Wang | Parameter estimation of a bioreaction model by hybrid differential evolution[END_REF].

To deal with optimization problems, DE starts with a set of initial population (as parents) which are usually drawn randomly from the uniform distribution with the variable space. Then DE operators (mutation and crossover) are applied to each individual in the population to produce another population (as offspring). Both populations then evaluated using fitness function. The individual which can reach better fitness function survives for further reproduction, evaluation and selection until termination criteria meet.

In DE, different strategies can be expressed by DE/x/y/z. DE stands for Differential Evolution, x represents a string denoting the solution to be perturbed, y is the number of different solution considered for the perturbation of x, and z is the type of crossover. Details of DE can be described as follows :

Initialization

As a population based search algorithm, DE starts with an initial population vector shown in (6.4), where the index i denotes the i th individual of the population; G denotes the generation to which the population belongs and N P denotes population size.

X i,G , i = 1, 2, ..., N P (6.4)

The initial population vector is chosen randomly and assumed to cover the entire parameter space using Equation (6.5), where x L ij , x U ij denote the lower and upper limits of the variable in the population respectively, rand ij (0, 1) represents a uniformly distributed random value within [0,1].

x ij = rand ij (0, 1) * (x U ij -x L ij ) + x L ij (6.5)

Mutation

A mutant vector V i,G+1 is generated according to different strategies which are listed below. The indexes r 1 , r 2 , r 3 , r 4 , r 5 are mutually exclusive integers randomly chosen from the range [1,NP] and all are different from base index i. The X best,G is the individual having the best fitness function values in the population at generation G. Mutation Scale Factor F is a real and constant factor belongs to [0,2] which controls the amplification of the differential variation.

DE/rand/1 : V i,G+1 = X r1,G + F * (X r2,G -X r3,G ) (6.6a) DE/rand/2 : V i,G+1 = X r1,G + F * (X r2,G -X r3,G ) + F * (X r4,G -X r5,G ) (6.6b) DE/best/1 : V i,G+1 = X best,G + F * (X r1,G -X r2,G ) (6.6c) DE/best/2 : V i,G+1 = X best,G + F * (X r1,G -X r2,G ) + F * (X r3,G -X r4,G ) (6.6d) DE/randtobest/1 : V i,G+1 = X r1,G + F * (X best,G -X r2,G ) + +F * (X r3,G -X r4,G ) (6.6e)

Crossover

In order to increase the diversity of the DE population, crossover is introduced in Equation (6.7) for generating a crossover vector U i,G+1 . There are two types crossover schemes : exponential(exp) and binomial(bin) in DE.

U i,G+1 = (u 1i,G+1 , u 2i,G+1 , ..., u Di,G+1 ) (6.7)

The binomial scheme takes parameters from the mutation vector v ji,G+1 every time that the generated random number is equal or less than the Crossover Rate as given by randb(j) ≤ CR, else all parameters come from x ji,G . Details of bin scheme is shown in Equation (6.8). Figure 6.8 presents how binomial scheme crossover works.

u ji,G+1 = v ji,G+1 : if (randb(j) ≤ CR) or j = rnbr(i)
x ji,G : if (randb(j) > CR) and j = rnbr(i) (6.8)

In Equation (6.8), randb(j) is the jth evaluation of a uniform random number generator with outcome ∈ [0, 1].

The exponential scheme, an integer rnbr(i) among [1, D] is randomly generated. This integer acts as a starting point to take v ji,G+1 until random number is greater than CR, otherwise all parameters come from x ji,G . Details of exp scheme is shown in Equation (6.9).

u ji,G+1 = v ji,G+1 : f rom j = rnbr(i) while randb(j) ≤ CR x ji,G : otherwise (6.9)

Selection

To decide whether or not it should become a member of Generation G + 1, greedy criterion is used by comparing u i,G+1 to x ji,G as shown in Equation (6.10). Where f is the function to evaluate the population.

x i,G+1 = v i,G+1 : if f (v i,G+1 ) ≥ f (x i,G )
x i,G : otherwise (6.10)

Procedure of Different Evolution

The procedure of Differential Evolution in ATSU is described as follows and the flow chart is shown in Figure 6.4.

Step 1. Initialization Determine several control parameters: population size, mutation factor, crossover factor. Generate initial population (initial thresholds combinations). Details of these control parameters (population size, mutation factor, crossover factor) of DE are explained in next section.

Step 2. Assessment F-Measure is widely used in binary classification, it considers both precision and recall. In this step, F-Measure is used to assess thresholds impact on SF-SSS and it generates from the A-SF-SSS part of ATSU.

Step 3. Check Check whether the terminate condition is satisfied or not. If one of the terminate conditions like, F-Measure reaches to the desired value (FM=0.98) or iteration reaches to the pre-defined maximum iteration number (G=200), is satisfied, then the procedure stops.

Step 4. Mutation and Crossover Do mutation operation and crossover operation to generate provisional population (provisional thresholds combinations).

Step 5. Selection Evaluate F-Measure of the provisional population. Compare F-Measure of the initial population with the F-Measure of the provisional population to generate new population (new thresholds combinations).

Step 6. Repeat from step 2. Rate (CR). NP may play a crucial role in the efficiency and effectiveness: large population size potentially increases the population diversity and computational complexity. F controls the amplification of the differential variation. CR controls the number of components inherited from the mutant vector which can be interpreted as a mutation probability. Details of each control parameter is described as follows:

1. Population Size (NP) : NP may play a crucial role in the efficiency and effectiveness of DE. Large population size potentially increases the population diversity. However, when computational budget is limited, increasing the population size will decrease the number of iterations(generations) but also increase the number of operations in each iteration.

2. Mutation Scale Factor (F) : F controls the amplification of the differential variation. Too small F values increase the risk of premature convergence (i.e. converge to an undesirable point), while too large F values decrease the convergence speed that degrades DE efficiency and may result in early termination [START_REF] Kazimipour | Effects of population initialization on differential evolution for large scale optimization[END_REF].

3. Crossover Rate (CR) : CR controls the number of components inherited from the mutant vector it can be interpreted as a mutation probability. Small CR values can boost convergence speed when a few decision variables are interacting with each other. In turn, large CR values are more effective when lots of decision variables are interacting.

The selection of appropriate parameters can affect the efficiency of ATSU directly. Due to the variability of the underlying mathematical properties of different problems, a fixed set of control parameters that suits well for one problem, or a class of problems does not guarantee that it will work well for another class, or range of problems [START_REF] Ruhul A Sarker | Differential evolution with dynamic parameters selection for optimization problems[END_REF]. That is, the selection of control parameters is problem dependent. To ensure the performance of ATSU, selection of control parameters is extremely important.

To select the appropriate control parameters, trial-and-error approach, is widely used. Several sets of control parameters are tested, then appropriate control parameters can be selected based on the average performance of the problem. Three different population sizes (NP=5D, 10D and 500; where D is the numbers of thresholds which differs for different stage), three different values of mutation factor (F=0.5, 1 and 1.5), three different values of crossover factor (CR=0.1, 0.5 and 0.9) are analyzed to select optimal control parameters for DE-PSSS with analysis results shown in Chapter 6.

Cross Entropy

Cross Entropy was initially proposed to estimate probabilities of rare events for complex stochastic networks by Rubinstein [START_REF] Rubinstein | Optimization of computer simulation models with rare events[END_REF] in 1997. It has been extended to solve combinatorial optimization problems in 1999 [START_REF] Rubinstein | The cross-entropy method for combinatorial and continuous optimization[END_REF], which turned out to be an effective method.

CE is briefly introduced as follows. In solving the combinatorial optimization problem, a maximization problem can be described as shown in Equation 6.11.

γ * = max x∈χ [S (x)] (6.11)
γ * represents the maximal value of S on the domain space χ. To proceed with CE, f (•; v) is defined as a family of Probability Density Functions (PDFs) on χ, with respect to some base measure v. Then γ * can be estimated by (γ) defined in Equation 6.12.

(γ) = P u (S (X) ≥ γ) = E u I {S(X)≥γ} (6.12)
where X is a random vector generated by PDFs with parameter v in f (x, v). P u is the probability of the state {S(X) ≥ γ}, E u is the corresponding expectation operator and I(•) is the indicator function, i.e., I {S(X)≥γ} = 1 only if S(X) ≥ γ, otherwise, it equals to zero.

Based on the important sampling: take N random samples X = (X 1 , X 2 , ..., X N ) from an important sampling density g on χ, the unbiased estimator (γ) of (γ) can be defined as shown in Equation 6.13.

(γ) = 1 N N i=1 I {S(X i )≥γ} f (X i ; v) g(X i ) = (γ) (6.13)
From Equation 6.13, only one sample suffices to estimate (γ) since it is true for all i. While it is difficult to directly compute g because this g depends on the unknown parameter . Moreover, it is convenient to choose a g in the family of densities f (•; v) . The CE method solves this efficiently by finding the minimal Kullback-Leibler distance as shown in Equation 6.14 which defines the distance between g and f (•; v). D(g, f ) = g(x)lng(x)dx -g(x)lnf (x; v)dx (6.14)

In solving combinatorial optimization problems, CE creates a sequence of f (•; v 1 ), f (•; v 2 ), ... of PDFs that are driven in the direction of the theoretically optimal density f (•; v * ). f (•; v * ) corresponds to the degenerate density of the optimal solution. In each iteration, it generates a set of samples and the elite samples (in terms of solution quality) would be selected to update the parameters of the PDF f (x; v) parameterized by v. Since the elite samples are selected in each iteration, γ would be improved and can converge quickly to the optimal solution γ * .

Procedure of Cross Entropy

The procedure of Cross Entropy in ATSU is described as follows and the flow chart is shown in Figure 6.5.

Step 1. Initialization: Define a specified mechanism to generate PDFs. Defined the sample size N, elite sampling rate ρ.

To search for the optimal thresholds combinations for the SF-SSS, normal distribution mechanism is performed to generate PDFs for each threshold which can be presented as N (µ, σ 2 ). µ is the mean of the distribution and σ is the standard deviation. According to normal distribution density function N (µ, σ 2 ), a set of samples (thresholds combinations) are generated.

Step 2. Assessment: F-Measure is used to evaluate the impact of different thresholds on the sleep staging system. F-Measures used in assessment are provided by A-SF-SSS part of ATSU.

Step 3. Check terminate conditions: If one of the terminate conditions like, F-Measure (FM=0.98) reaches to a desired value or iteration reaches to the predefined value (G=200) or the standard deviation σ is close to zero, is satisfied, then the procedure stops.

Step 4. Selection: Rank the values of F-Measure and select elite samples in term of F-Measure. In this step, a number of ρN samples with higher F-Measure are selected as elite samples.

Step 5. Updating: Update the PDFs parameters µ and σ. According to the elite samples, new µ and σ are calculated.

Step 6. Repeat: Repeat from Step 2 to Step 6 until one of the terminate conditions is satisfied. However, large sample size also increases computational time.

2. Elite Sampling Rate (ρ) : ρ controls the number of elite samples which belongs to (0,1). It should ensure the elite samples to be larger enough for obtaining a reliable parameter update for PDFs. In practice, ρ is suggested to select from [0.1, 0.5] in [START_REF] Guillaume | Cross-entropy for Monte-Carlo tree search[END_REF][START_REF] Benham | CEoptim: Cross-Entropy R Package for Optimization[END_REF].

In order to select appropriate control parameters of CE-PSSS, different sample sizes (N=100, 500, 1000 and 10000) and different values of elite sampling rate (ρ=0.1, 0.3, 0.5 and 0.7) are analyzed with results shown in Chapter 7.

Personalized Sleep Staging System

In this section, Personalized Sleep System (PSSS) conception is presented followed by the details of two different PSSS we proposed: Differntial Evoluation-based Personlized Sleep Staging System (DE-PSSS) and Cross Entropy-based Personlized Sleep Staging System (CE-PSSS).

Toward to a Hybrid Expert System for Sleep Staging

As shown in Figure 6.6, a new work flow for Hybrid Sleep Staging System is presented. In this work flow, several epochs will be selected and analyzed by a physician. Based on the selected epochs and partial Hypnogram that analyzed by the physician, thresholds are set up based on ATSU we proposed in the previous section. Then, these thresholds are used in scoring the full epochs by using SF-SSS model and full Hypnogram can be generated at the end. Proposed hybrid sleep staging system combines symbolic fusion and FSC. Symbolic fusion is dedicated to the mimic decision-making process of clinical sleep staging. It starts from the extraction of digital parameters from raw polysomnography (PSG) signals and goes up to high-level symbolic interpretation of feature parameters. At last, decision is generated using rules inspired by international guidelines in sleep medicine and applied to feature parameters. Meanwhile, Feedback System Control (FSC) is designed to provide thresholds automatically for Symbolic Fusion in transforming digital parameters into symbolic interpretation of feature parameters Based on proposed work flow, two different types of thresholds can be set up: Personalized Thresholds and Generalized Thresholds. These two different types are explained in the next section.

Personalized Thresholds and Generalized Thresholds

By applying ATSU method to different training set (which described as selected epoch in Epochs Selection of Figure 6.6), two different kinds of thresholds can be set up: personalized thresholds and generalized thresholds.

Personalized Thresholds

Personalized Thresholds are thresholds that are specific to each person. Personalized thresholds would be more precise for each person by taking individual variability into consideration. However, it would also increase the complexity in setting up thresholds because different thresholds are needed to be set up for the different person. To set up personalized thresholds, epochs selected from each person are required as the training set to provide personalized thresholds which are specific to each person.

Generalized Thresholds

Generalized Thresholds are thresholds that are generic to all the person. Generalized thresholds may result in less precise of the classification. While it would also be less complexity in setting up thresholds.

Personalized Sleep Staging System

In this thesis, a Personalized Sleep Staging System which is able to take individual variability into consideration is proposed. The Details of the PSSS is shown in Figure 6.7. It mainly consists of two parts: Personalized Thresholds Setting-Up part and Personalized Automated Sleep Staging part. For Personalized Thresholds Setting-Up part, it dedicates to provide Personalized Thresholds. Personal Epoch Selection is performed for selecting epochs of each person. Then Personalized Thresholds Setting-Up based on ATSU method is applied to set up personalized thresholds for a different person. After obtaining these personalized thresholds, the scoring of whole PSG signal can be performed in an automated way. 

Differential Evolution-based Personalized Sleep Staging System

In this section, DE-PSSS is introduced. It adopts the conception of PSSS we proposed in Figure 6.7, details of ATSU is shown in Figure 6.8.

In DE-PSSS, five ATSU modules are used to provide optimal thresholds combination for five classifiers. ATSU for stage W is dedicated to search for optimal thresholds combination which can reach high F-Measure in classifying stage W and non-W. While ATSU for stage N1, N2, N3 and R are specific to find optimal thresholds combination for stage N1, N2 N3 and R respectively. At last, personalized thresholds composed of five thresholds combinations are provided by PTSU and passed to evaluation set.

In chapter 5, it presents how many thresholds need to be set in each ATSU. E.g. to classifying stage W, five digital parameters are extracted and 5 thresholds are required in transforming these digital parameters into different features. For stage N1, N2, N3 and R, the numbers of thresholds need to be set are 6, 8, 7 and 8 respectively. In DE-PSSS, personalized thresholds are set based on the selected epochs and then passed to all epochs to realize the automatic classification.

In the evaluation of DE-PSSS, the selected personal epochs are considered as the training set. Remaining epochs are considered as evaluation set.

A small size of training set consumes less time for physician to analyze, while it may result in finding sub-optimal thresholds combination which may not suitable for the large size of evaluation set. Large size of training set may provide better thresholds combination for evaluation set, while it consumes much more time for expert to analyze.

Select the optimal size of the training set for DE-PSSS which can not only consumes less time for a physician to analyze but also can achieve high classification results for evaluation set is required. Different size of the training set is analyzed in chapter 7 to select the optimal size of the training set.

Cross Entropy-based Personalized Sleep Staging System

In this section, CE-PSSS is presented. Instead of using Differential Evolution as the search algorithm in finding optimal thresholds combination for each classifier, CE-PSSS applies Cross Entropy in ATSU as shown in Figure 6.9. In the evaluation of CE-PSSS, the selected personal epochs are considered as the training set. Remaining epochs are considered as evaluation set.

The small size of training set consumes less time for physicians to analyze, while it may result in finding sub-optimal thresholds combination which may not suitable for the large size of evaluation set. Large size of training set may provide better thresholds combination for evaluation set, while it consumes much more time for expert to analyze.

Select the optimal size of the training set for DE-PSSS which can not only consumes less time for physicians to analyze but also can achieve high classification results for evaluation set is required. For selecting optimal training set for CE-PSSS, different size of training set is analyzed in chapter 7.

Conclusion

In this chapter, personalized sleep staging system conception is proposed by combining Feedback System Control (FSC) technique with Symbolic Fusion. Meanwhile, two PSSSs: Differential Evolution-based Personalized Sleep Staging System (DE-PSSS) and Cross Entropy-based Personalized Sleep Staging System (CE-PSSS) are also presented by using Differential Evolution and Cross Entropy respectively. With the feasibility of FSC technique and the flexibility of symbolic intelligence, proposed system can be a reliable computer-assisted tool for assisting clinical sleep analysis and can be integrated with any PSG medical recording device.

Chapter 7

Evaluation of Sleep Staging System

In this chapter, evaluation of modified Symbolic Fusion-based Sleep Staging System (SF-SSS) is analyzed at the beginning, followed by comparison with existing SF-SSS. Then, evaluation of DE-PSSS and CE-PSSS is analyzed involving the selection of optimal control parameters and training set. At last, comparison among two different search algorithm methods based PSSS and SF-SSS using manual setting up thresholds are evaluated.

Database

To evaluate SF-SSS model with proposed modifications, the same database (Database 1) which has been used in existing SF-SSS analysis is adopted in order to make the comparisons. However, this database was recorded before 2006 and it was visually scored by physicians according to the old gold standard of sleep study (R & K manual). However, the evaluation of ATSU method and PSSSs are based on a new database (Database 2) which was recorded in 2016.

Database 1

This database was recorded before 2006 which mainly records PSG signals like, three EEG channels, two EOG channels and one chin EMG channel of 16 subjects. PSG recordings are acquired using Embla System and visually scored by ten physicians using Somnologica software according to the old gold standard of sleep study (R & K manual). Subjects in Database 1 are those people that suspected to suffer from Sleep Apnea Syndrome (SAS) by physicians. In existing SF-SSS analysis, stage awake, S1, S2 and REM scored by R&K are considered as stage W, N1, N2 and R of AASM respectively; stage S3 and S4 scored by R&K are considered as stage N3 of AASM. Details of this database are introduced as follows.

PSG Recordings

Three EEG channels (C3-A2, C4-A1, O1-A2), two EOG channels (EOG-L, EOG-R) and one chin EMG channel were recorded. The sampling frequency for EEG and EOG is 100 Hz. For EMG, the sampling frequency is 200 Hz. Only epochs that analyzed by experted are considered to evaluate the modified SF-SSS. For example, only epochs from 724 to 1798 for subject 627 are used to analyze the modified SF-SSS. Total number of each stage that used to evaluate the modified SF-SSS for all 16 subjects is listed in Table 7 

Database 2

To our knowledge, all the database used in existing sleep analysis are visually scored by using R&K. There is no public database that is scored by using AASM. Thus, a new database was recorded in La Pitié-Salpêtrière hôspital (AP-HP). This new database was visually scored by physicians using AASM. Instead of only providing the final classification results of each stage, it also provides occurrence and location of sleep events that observed by physicians. Details of this new database is introduced as follows. 

PSG Recordings

All PSG recordings were stored in European Data Format (EDF) format. EDF format allows storing multichannel signal with the different sampling frequency. It includes a header and data records. The header contains general information (e.g. patient identification, start time, end time, etc.) and technical specifications of each signal (e.g. sampling frequency, transducer type, etc.) and the data records contain samples. The sampling frequency for EEG, EOG and EMG is 256 Hz.

Expert Analysis

Based on PSG recordings, expert analysis was performed. PSG recordings were segmented into 30s epoch and manually scored by experts into five different stages : W, N1, N2, and N3 and R according to AASM manual. All the expert analysis results were stored in Extensible Markup Language (XML) file. XML is a markup language which was designed to store and transport data, it defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. 

Evaluation of SF-SSS with Modifications

To evaluate SF-SSS with proposed modifications, F-Measure, Agreement Rate and Cohen's Kappa are used. As shown in Figure 7.1, classification result of each stage is obtained after Symbolic Fusion. F-Measure is used evaluate the classification performance of each stage. Based on the classification result of each stage, Hypnogram can be generated. Agreement Rate and Cohen's Kappa are calculated according to Hypnogram for evaluating the classification result of whole sleep stage. In F-Measure, Precision and Recall are used which as shown in Equation 7.2 and Equation 7.3, respectively. Precision (also called positive predictive value) is the ratio of all positive predictions among the predictions. Recall (also known as sensitivity or true positive rate) is the ratio of positive predictions among true events.

P recision = T P T P + F P (7.2)

Recall = T P T P + F N (7.3) 
TP, FN, FP and FN are used to evaluate how good the observations (predictions) reflect the actual events for a classification. True Positives and True Negatives are the observations which were correctly predicted. False Negatives are observations are negative where the actual events are positive. False Positive are observations are positive where the actual events are negative.

To evaluate SF-SSS, F-Measure is calculated for each stage: W, N1, N2, N3 and R. Table 7.5 list the confusion matrix of the classification result of stage W as an example. In column 3, W represent the classification result which classified by modified SF-SSS as stage W. In column 4, NW represent the classification result which classified by SF-SSS as not stage W. F-Measure of each stage using existing SF-SSS and SF-SSS with modifications are listed in Table 7.6. The last column is the mean value of F-Measure for 16 subjects of each stage. By adding modifications we proposed, F-Measure for stage W, N1 and N3 are improved. For stage W, mean F-Measure is improved from 0.6768 to 0.6802; for stage N1, mean F-Measure is improved from 0 to 0.1424 and for stage N2, mean F-measure is improved from 0.3787 to 0.4762. F-Measure for stage N2 of each subject is shown in Figure 7.2. 12 out of 16 subjects, F-Measures are improved by using modified SF-SSS. Three of the subjects like subject 3774 and 3928, F-Measures are slightly decreased by using modified SF-SSS. However, by combining Recall Appendix (8.3) and Precision Appendix (8.3), Recall for subject 3774 and 3928 are improved from 0.8949 to 0.9150, 0.5137 to 0.5167 respectively while Precision are decreased. It is because of the precision of detection K-Complex which may also depend on the thresholds used to transforming K-Complex digital parameter into the symbolic interpretation of feature parameter.

F-Measure of Existing SF-SSS F-Measure of Modified SF-SSS ID W N1 N2 N3 R W N1 N2 N3 R 627 
After adding modifications of existing SF-SSS, F-Measure is improved. However, for stage N1, N2 and R, F-Measure is still low. Here, we don't evaluate the accuracy of Symbolic Fusion itself, because it also depends on the thresholds that were set up in transforming digital parameters into the symbolic interpretation of feature parameters; moreover, more sleep events can be involved to improve the performance and completion of SF-SSS. After obtaining the classification results of each stage, a Hypnogram Generation module was applied in existing SF-SSS which simply generates the Hypnogram according to the writing order of stage N1, R, N3, N2 and W. In details, the classification result of stage N1 will write firstly, followed by R, N3, N2, and W will write lastly. The previously written results can be overwritten by the later results it writes. The method applied in existing SF-SSS to generate Hypnogram is simple, while it needs to be improved in further work. Once Hypnogram generates, Agreement Rate (AR) is used to evaluate the overall performance. AR is the proportion of same results classified by modified SF-SSS and physicians in comparative to results classified by physicians. AR for each stage is shown as follows:

AR{W, N 1, N 2, N 3, R} = T P {W, N 1, N 2, N 3, R} T P {W, N 1, N 2, N 3, R} + F N {W, N 1, N 2, N 3, R} ; (7.4) 
In Equation 7.4,

T P {W, N 1, N 2, N 3, R} is True Positive of stage W,N1,N2,N3,R. F N {W, N 1, N 2, N 3, R} is False Positive of stage W,N1,N2,N3,R.
AR for all stages is defined in Equation 7.5, which equals to the proportion of the sum of same results classified by SF-SSS and physicians for all stages in comparative to results classified by physicians.

AR{T otal} =

T P T P + F N ;

AR for each stage and Total AR using SF-SSS with proposed modifications are listed in Appendix (8.6) in comparison to the results obtained using existing SF-SSS as shown in Appendix (8.5). ARs for stage N1 are still very low, it mainly because of the method we adopted in generating Hypnogram which needs to be improved in our further work.

Total AR of each subject in order to compare modified SF-SSS and existing SF-SSS is shown in Figure 7.3. ARs for 15 out of 16 subjects are increased using modified SF-SSS. Only AR for subject 639 is slightly decreased. However, F-Measure of subject 639 for stage N1 and N2 are improved from 0 to 0.3575, and 0.0635 to 0.2496 respectively using SF-SSS with modifications as shown in Table Appendix (8.3). For other stages like W, N3 and R, F-Measure keeps the same. AR for subject 639 decreases because the Smoothing part adding for SF-SSS model. In Smoothing, a smoothing rule for three consecutive epochs of R, N2, R are replaced with the R, R, R is performed. Figure 7.4 presents the Hypnogram for subject 639 before and after smoothing. After smoothing, AR for stage N2 decreases slightly due to some N2 epochs are labeled as stage R. The main reason why the Smoothing part in modified SF-SSS lower the AR for subject 637 is due to the low precision and recall which obtained in classification for stage N2. 

Confusion Matrix of Existing SF-SSS VS SF-SSS with Modifications

Besides using AR to evaluate the agreement percentage between SF-SSS and experts analysis, confusion matrix is also adopted to provide more details of SF-SSS classification results. The confusion matrix is a square matrix showing the relation between experts analysis and the results obtained using SF-SSS. The values in the diagonal elements represent the number of correctly identified stages and the off-diagonal values are the number of misclassified. An element of row i and column j indicates the number of epochs sleep stage i is misclassified into stage j.

Confusion matrix for the Database 1 using modified SF-SSS is listed in Table 7.8, while the confusion matrix which obtained using existing SF-SSS is shown in Table 7.7. In the last column, AR for each stage and AR for the whole database are presented. Meanwhile, in the last row, Cohen's Kappa value is calculated.

Cohen's Kappa coefficient κ is also estimated because it provides a more robust estimate of the sleep staging performance as compared to the simple agreement percentage. As suggested by Landis and Koch [START_REF] Landis | The measurement of observer agreement for categorical data[END_REF], Kappa values of 0.21-0.4 indicate fair agreement, 0.41-0.6 moderate agreement, 0.61-0.8 substantial agreement, and 0.81-0.99 almost perfect agreement.

The equation for κ is:

κ = p o -p e 1 -p e ; (7.6) 
where p o is the relative observed agreement among SF-SSS and experts analysis, and p e is the hypothetical probability of chance agreement. If results from SF-SSS are in complete agreement with expert analysis then κ = 1. If there is no agreement among SF-SSS classification results and experts analysis other than what would be expected by chance, then κ ≤ 0. In comparison between confusion matrix using modified SF-SSS and existing SF-SSS, the number of correctly identified stages in diagonal elements is increased using modified SF-SSS. AR for stage W, N1, N2, N3 and R is increased from 0.7613 to 0.8540, 0 to 0.0196, 0.5362 to 0.6506, 0.6020 to 0.6098 and 0.7090 to 0.7566 respectively. Total AR is increased from 0.5715 to 0.6422. Cohen's Kappa coefficient is also increased.

To evaluate the performance of modified SF-SSS, F-Measure, Agreement Rate and Cohen's Kappa are used. F-Measure is used to assess the performance of each stage; Agreement Rate and Cohen's Kappa are used to evaluate the performance of overall classification. With the modifications proposed in modified SF-SSS, it reaches higher values of F-Measure, Agreement Rate and Cohen's Kappa in comparison to existing SF-SSS.

Evaluation of Automatic Thresholds Setting-Up Method

To evaluate the Automatic Thresholds Setting-Up method, a new database (Database 2) which was recorded in 2015 is used. We start with the evaluation of Differntial Evoluation (DE) and Cross Entropy (CE) algorithms to select the appropriate control parameter for the sleep staging application. Then, PSSS is evaluated from the selection of training set to the performance of evaluation set. At last, comparison between DE-PSSS and CE-PSSS are made.

Evaluation of Automatic Thresholds Setting-Up Method

Evaluation of ATSU mainly involving the selection of control parameters of DE and CE. In this section, the control parameters selection of DE and CE are analyzed.

Parameters Selection of Differential Evolution

There are three main control parameters of Differential Evolution: Population Size (NP), Mutation Scale Factor (F) and Crossover Rate (CR) as shown in Table 7.9. NP plays a crucial role in the efficiency and effectiveness of DE. Large population size potentially increases the population diversity and computational complexity. F controls the amplification of the differential variation. CR controls the number of components inherited from the mutant vector which can be interpreted as a mutation probability.

Population Size (NP)

Population size is probably the most problem-dependent control parameter. It plays a crucial role in the efficiency and effectiveness of DE. Large population size potentially increases the population diversity. In [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF], NP is suggested from 5*D up to 10*D, where D is the dimension. In ATSU method, D is the number of thresholds.

Mutation Scale Factor (F)

F controls the amplification of the differential variation. Too small F values increase the risk of premature convergence (i.e. converge to an undesirable point), while too large F values decrease the convergence speed that degrades DE efficiency and may result in early termination.

Crossover Rate (CR)

CR controls the number of components inherited from the mutant vector or current vector. It influences the probability for a component to be selected from the mutant vector. CR also heavily depends on the problem, where small CR values are suggested for separable problems and high CR values are suggested for non-separable problems [START_REF] Price | Differential evolution: a practical approach to global optimization[END_REF].

The selection of appropriate parameters can affect the efficiency of ATSU directly. Due to the variability of the underlying mathematical properties of different problems, a fixed set of control parameters that suits well for one problem, or a class of problems does not guarantee that it will work well for another class, or range of problems [START_REF] Ruhul A Sarker | Differential evolution with dynamic parameters selection for optimization problems[END_REF]. That is, the selection of control parameters is problem dependent. To ensure the performance of ATSU, selection of control parameters is extremely important.

To select the appropriate control parameters, trial-and-error approach, is widely used. Several sets of control parameters are tested, then appropriate control parameters can be selected based on the average performance of the problem. To evaluate the impact of different control parameters and strategies of DE, population size 5*D, 10*D and 500; Mutation Scale Factor of 0.5, 1 and 1.5; Crossover Rate of 0.1, 0.5 and 0.9 are used, as shown in Table 7.10. Initially the maximum iteration of DE-PSSS was set to 200, however, the simulation results show after 100 iterations, F-Measure tend to be stable. Thus, the maximum iteration was changed from 200 to 100. With increasing of F, the convergence speed decreases. Among F =0.5, F =1 and F =1.5, 0.5 provides the best convergence speed as shown in Figure 7.5, Figure 7.6 and Figure 7.7. For the same NP and F =0.5, CR=0.9 is relative better than CR=0.1/0.5. In order to evaluate the impact of different population size, Figure 7.8 shows comparison among different NP and CR when F =0.5. Large population size potentially increases the population diversity and may provide fast convergence speed. However, it also increases the computational time. NP =500, F =0.5, CR=0.5/0.9 have fast convergence speed than others. For NP =500, F =0.5, CR=0.1 almost have same convergence speed as NP =5D/10D, F =0.5, CR=0.9.

According to the simulation results, in order to balance F-Measure and computational complexity, NP =5D, F =0.5, CR=0.9 can be suggested as optimal parameters for Strategy 1 which have less computational complexity compared to NP =500 and have slightly better convergence speed than NP =5D, F =0.5, CR=0.1/0.5.

Parameters Selection of Cross Entropy

There are two main control parameters of Cross Entropy: Sample Size (N) and Elite Sampling Rate (ρ).

1. Sample Size(N) : Large sample size potentially increases the population diversity.

However, large sample size also increases computational time.

2. Elite Sampling Rate(ρ) : ρ controls the number of elite samples which belongs to (0,1). It should ensure the elite samples to be lager enough for obtaining a reliable parameter update for PDFs.

To evaluate impact of different control parameters of CE, Sample Size 100, 500, 1000 and 10000; Elite Sampling Rate 0.1, 0.3, 0.5 and 0.7 are used for different strategies as shown in Table 7 7.9 are mean values of 20 independent runs. Initially, the maximum iteration number was set to 200. However, the simulation shows that after 50 iterations, F-Measures stay in the stable. So the maximum iteration number changed from 200 to 50.

Figure 7.10 shows F-Measure dependence on the first 50 iterations. Large sample size potentially increases the sample diversity and may provide fast convergence speed. However, it also increases the computational time. For the same sample size, the increase of elite sampling rate slows down the convergence speed. According to the simulation results, sample size of 500 with elite sampling rate of 0.1 provides optimum between F-Measure and computational complexity. To fully understand how many epochs are required to be scored by physicians in order to set up personalized thresholds, different training set size are selected. Thresholds which can provide highest F-Measure using NP=5D, F=0.5, CR=0.9 control parameters for training set are adopted as the optimal thresholds for evaluation set. F-Measure for each stage of evaluation set is calculated as shown in Appendix (8.7). In order to verify the robustness of DE-PSSS, F-Measures in Appendix (8.7) are the mean value of 20 independently runs. Meanwhile, standard deviation of these 20 runs is also provided Appendix (8.7).

The mean value of F-Measure for 16 subjects is presented in the last column of Appendix (8.7). For stage W, N2 and N3, F-Measure can reach over 0.71. For stage R, the mean value is relative lower than stage W, N2 and N3. This is because for subject 41 and 49, F-Measure is very low which only reaches 0.3138 and 0.1874 respectively. For subject 41, only 2 epochs of stage R are selected among 68 epochs (total epoch number of stage R) as the training set. Thresholds can easily reach high F-Measure for only 2 epochs, while it may not obtain high F-Measure for evaluation set. For subject 49, only 2 epochs of stage R are selected as training set among 62 epochs (total epoch number of stage R).

F-Measure of evaluation set using 10% randomly selected epochs of each stage as training set is shown in Appendix (8.8). F-Measure can reach over 0.73 for stage W, N2 and N3. For stage R, F-Measure can reach 0.6818. F-Measures of evaluation set using 15% and 20% of training are listed in Appendix (8.9) and Appendix (8.10).

In order to select the optimal training set for DE-PSSS, comparison among four different training set & evaluation set is shown in Table 7 With the increment of the training set, F-Measures for evaluation set are increased.

For the consideration of consuming less time for physicians in scoring training set, 5% can be considered as the optimal value for the training set. However, for the consideration of reaching higher F-Measure for evaluation set, 15% can be considered as the optimal value for the training set. In comparison to 20%, 5% more epochs should be scored, while F-Measure for each stage only increases less than 0.01. As training set increases, F-Measures for evaluation set also increases slowly. For the consideration of consuming less time for physicians in scoring training set, 5% can considered as the optimal value for training set. For the consideration of reaching higher F-Measure for evaluation set, 15% can be considered as the optimal value for training set. In comparison to 20%, 5% more epochs should be scored, while F-Measure for each stage only increases approximately 0.01 for stage W and R.

Comparison between DE-PSSS and CE-PSSS

In this thesis, we proposed two personalized sleep staging systems based on ATSU. Two different stochastic search algorithms: Different Evolution and Cross Entropy are used in ATSU. To compare DE-PSSS and CE-PSSS, we start from analyzing the algorithms.

Algorithm Comparison

Table 7.15 lists the comparisons between DE and CE. For DE, three control parameters: Population Size (NP), Mutation Scale Factor (F) and Crossover Rate (CR) are required to be set; for CE, two control parameters: Sample Size (N) and Elite Sampling Rate ρ are required to be set.

In consideration of the maximum iteration number of DE and CE, 200 is set as initially maximum iteration number. Hoverer, for DE, it tends to be stable after 100 iterations and for CE, it tends to be stable after 50 iterations. Thus the maximum iteration number for DE and CE are set to 100 and 50 respectively.

For CE with control parameters (N=500, ρ=0.1), within 10 iterations F-Measure can reach approximate to 0.81 as shown in Figure 7.10 and then F-Measure stays as same.

While for DE with control parameter(NP=5D, F=0.5, CR=0.9),it require approximate 30 iterations to reach 0.81 as shown in Figure 7 With the increment of the training set, F-Measures for evaluation set are also increased. For the consideration of consuming less time for physicians in scoring training set, 5% can be considered as the optimal value for the training set. While if we want to ensure the high performance of evaluation set, 15% can be considered as the optimal value for the training set. In comparison to 20%, 5% more epochs should be scored, while F-Measure for each stage only increases less than 0.01.

Compare DE-PSSS and CE-PSSS, DE-PSSS is much better which can reach higher F-Measure for all stage using the same size of the training set and consume less time.

Proposed DE-PSSS and CE-PSSS are evaluated on the whole night PSG recordings of subjects. While, if a short-time PSG recordings are required to be analyzed (e.g. if we only need to analyze 1 hour PSG recordings), an increment of training set should be taken into consideration to ensure there is enough epochs number for the training set instead of only selecting 5%.

F-Measure Comparison between SF-SSS and DE-PSSS/CE-PSSS

To compare SF-SSS and personalized sleep staging system, F-Measure is used to assess the classification results of each stage.

F-Measure of SF-SSS using MTSU

In SF-SSS model, Manual Thresholds Set Up (MTSU) is used to set up thresholds. Table 7.19 provides F-Measure of each stage using MSUT of SF-SSS model for Database 2. More details of F-Measure for each patient is shown in Appendix (8.15). Compare SF-SSS using MTSU to PSSS using ATSU, F-Measure increased sharply for each stage by using PSSS.

In comparison to SF-SSS, F-Measures increase 0.17, 0.17, 0.34, 0.16 and 0.59 for stage W, N1, N2, N3 and R respectively, by using 5% as the training set for DE-PSSS. By using 5% as the training set for CE-PSSS, F-Measures increased 0.13, 0.11, 0.33, 0.16 and 0.57 for stage W, N1, N2, N3 and R respectively. 

Agreement Rate Comparison between PSSSs and Inter-raters

In clinical sleep analysis, inter-raters variability is a major issues for manually sleep staging. Inter-raters agreement for different stages is reported in [START_REF] Michael | The visual scoring of sleep in adults[END_REF]. Agreement for stage W is among 68%-89%; for stage N1 is among 23%-74%; for stage N2 is among 79%-90%; for stage N3 is around 69%. for stage R is among 78%-94%. Comparisons of PSSSs and inter-rater agreement are presented in Table 7.23. By using DE-PSSS, ARs for stage W, N2 and R are within the inter-raters agreement reported in [START_REF] Michael | The visual scoring of sleep in adults[END_REF]. For stage N3, AR is higher than inter-raters agreement. However, for stage N1, AR is lower than inter-raters agreement.

For CE-PSSS, ARs for stage W and N2 are within the in-raters agreement. For stage N3, AR is higher than inter-raters agreement. While, for stage N1 and R, AR is relative lower than inter-raters agreement. For DE-PSSS we proposed, it can reach higher AR than most of the existing works while using less training set. In comparison to rule-based method, [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF] and [START_REF] Álvarez | Diagnosis of the sleep apnea-hypopnea syndrome: a comprehensive approach through an intelligent system to support medical decision[END_REF] reaches higher AR.

Agreement Rate Comparison between PSSSs and Other Works

In [START_REF] Liang | A fuzzy inference system for sleep staging[END_REF], only young healthy subjects are included. It also used a relative larger training set (20% of the database). Most importantly, in order to reduce the feature variability, for each feature, the mean of maximal 10% data was calculated as the maximum value of the feature, values larger than this maximum value are set to this maximum value. Meanwhile, the mean of minimal 10% data was calculated as the minimum value of the feature, values smaller than this minimum value are set to this minimum value. This process may prevent extremely high or low values for the features, while it may also lose some significant information of the features.

In [START_REF] Álvarez | Diagnosis of the sleep apnea-hypopnea syndrome: a comprehensive approach through an intelligent system to support medical decision[END_REF], AR can reach approximate 84 % without mentioning the size of training set they used. It implemented 111 fuzzy rules which are derived from available medical knowledge and author's experience. However, in our work, 13 rules inspired from the AASM manual are implemented. With the increment of rules, it may potentially improve the performance and it also increased the complexity. In further work, more rules will be involved to complete our model.

Conclusion

In this Chapter, evaluation of SF-SSS with modifications is analyzed. F-Measure, Agreement Rate and Cohen's Kappa are used to assess the performance of SF-SSS with modifications. F-Measure, Agreement Rate and Cohen's Kappa are improved by adding modifications for SF-SSS. Meanwhile, evaluations on ATSU by analyzing the selection of control parameters for Differential Evolution and Cross Entropy are also presented. Followed by evaluations on two PSSSs (DE-PSSS and CE-PSSS). Compare SF-SSS with PSSS, PSSS can reach higher performance by using ATSU to set-up thresholds automatically.

Chapter 8

Conclusions and Perspectives

Conclusions

In this thesis, a personalized automatic sleep staging system was proposed by combining symbolic intelligence and feedback system control technique. Symbolic fusion is dedicated to mimic decision-making process of clinical sleep staging. It starts from the extraction of digital parameters from raw polysomnography signals and goes up to highlevel the symbolic interpretation of feature parameters. At last, decision is generated using rules inspired by international guidelines in sleep medicine. Meanwhile, Feedback System Control technique is designed to provide optimal thresholds for symbolic fusion in transforming digital parameters into symbols while taking individual variability into consideration.

In this thesis, it composed of eight main chapters. The overall description of the first seven chapters is shown below.

In Chapter 1, a brief introduction on sleep staging is presented and the major issues of existing automatic sleep staging systems for the real clinical practical use are discussed. From the physician's perceptive, the major issues can be described as A system without taking any medical knowledge into consideration cannot win fully trust from physicians; Most of systems are not yet accepted and validated by physicians.

Only by addressing these issues, a system can really be used in clinical practice for help physicians in diagnosis and treatment of sleep disorders.

In Chapter 2, Issues on existing automatic sleep stagings systems were discussed. In consideration of real clinical practical use for physicians, a Symbolic Fusion-based Sleep Staging System (SF-SSS) was proposed by Ugon, Isabelle, et al. It is dedicated to mimic clinical sleep staging process by translating AASM and medical knowledge into computer logic. SF-SSS model attempts to realize sleep staging by using symbolic fusion. However, it is only a proof from conception to validation of symbolic fusion for sleep staging application. This model still can be improved. Thus, several issues need further research for this SF-SSS model: How to realize automatic sleep staging by taking individual variability into consideration, from the conception to implementation, validation and final practical use? How to assess the effectiveness of personalized sleep staging system? Is it necessary to propose a personalized sleep staging system which can take individual variability into consideration? Or a generalized sleep staging system is sufficient?

In Chapter 3, information and terminology for understanding the field of sleep analysis are presented at the beginning. It mainly introduces polysomnography (PSG) signals, different sleep stages, manuals of clinical sleep staging. Meanwhile, existing sleep staging methods are analyzed involving machine learning methods, hybrid methods and symbolic fusion method. In the comparison of existing methods, symbolic fusion method owns several advantages like, it is efficient to fuse information from different sources by considering own limitations and uncertain perceptions from every single source and it can mimic clinical sleep staging process under the guidance of AASM manual. However, either symbolic fusion method or most of the existing methods, there exist two problems:

To our knowledge, there is no personalized sleep staging system which can take individual variability into consideration.

Among existing sleep staging systems, thresholds are widely applied in transforming digital parameters into linguistic or symbolic features to model inference process under the guidance of medical knowledge.

As far as we know, there is no fully satisfying automatic method to set up these thresholds instead of manual setting up.

In order to build a threshold function or model to set up thresholds directly, search an appropriate threshold combination among possible combinations space method is inspired by FSC which is proposed as a personalized medicine platform in searching optimal drug combinations for a different patient. Different stochastic search algorithms which can be applied within FSC are analyzed in this chapter. Differential Evolution and Cross Entropy are more suitable to sleep staging in comparison of different properties among all researched search algorithms.

In Chapter 4, an existing Symbolic Fusion-based Sleep Staging System (SF-SSS) is introduced at the beginning. However, there exist several limitations in existing SF-SSS like, pre-processing of PSG signals was not included, smoothing of sleep stages was not included, not all the parameters described by AASM manual were implemented and classification of stage N1 was not performed. To overcome limitations of existing SF-SSS, modifications are proposed in this chapter: Band-pass filters recommended by AASM and band-stop filter designed to reject power line impact are applied to raw PSG signals for eliminating noise and artifacts.

In order to consider temporal effects and sleep transitions of sleep staging, smoothing is proposed. In smoothing, not only temporal contextual information but also sleep transitions detection and correction are performed.

A significant indicator of stage N2, K-Complex is extracted and fuse to existing SF-SSS in order to improve the classification of stage N2.

Rules to classify stage N1 by using existing digital parameters is proposed.

In Chapter 5, thresholds used in SF-SSS to transform digital parameters into a symbolic interpretation of feature parameters are introduced. Manual Thresholds Setting-Up (MTSU) method used in existing SF-SSS are described by the analysis of its limitations. Then, major issues on thresholds are discussed and thresholds dependencies(thresholds & sleep stage, thresholds & patients) are discussed for SF-SSS model. Details of thresholds that need to be set-up for SF-SSS model are presented by taking thresholds dependencies among sleep stages into consideration.

In Chapter 6, an Automatic Thresholds Setting-Up (ATSU) method based on Feedback System Control technique is proposed to overcome the limitations of MTSU. Instead of building a threshold function or model, ATSU provides an idea of finding optimal thresholds combination within possible thresholds combination space. By combining symbolic fusion and feedback system control, a hybrid expert system conception for sleep staging is proposed. Based on this conception, personalized sleep staging system is presented. In personalized sleep staging system, several epochs will be selected and analyzed by physicians. With partial Hypnogram that analyzed by the physicians of selected epochs, personalized thresholds are set up using ATSU. Then, these thresholds are used in scoring all epochs and full Hypnogram can be generated at the end. In this chapter, Differential Evolution-based Personalized Sleep Staging System (DE-PSSS) and Cross Entropy-based Personalized Sleep Staging System (CE-PSSS) are presented by using two different search algorithms Differential Evolution and Cross Entropy respectively.

In Chapter 7, SF-SSS with modifications, ATSU, DE-PSSS and CE-PSSS are evaluated. In comparison existing SF-SSS and SF-SSS with modifications, overall agreement rate is improved from 57.15% to 64.22%, especially for stage N2 which is improved from 53.62% to 65.06%. SF-SSS with proposed modifications can reach higher accuracy than existing SF-SSS. In the analysis of ATSU, impacts of control parameters for Differential Evolution and Cross Entropy are evaluated firstly, NP=5D(D is the number of thresholds), F=0.5, CR=0.9 and N=500, Elite Sampling Rate=0.1 are the optimal controls parameters for DE and CE respectively. To evaluate the DE-PSSS and CE-PSSS, the selection of training set are studied. From the physician's perspective, 5 % can be considered as the optimal training set for DE-PSSS and CE-PSSS which consumes less time for physicians to score and still can ensure the performance of the classification. However, in consideration of reaching high performance, 15 % can be considered as the optimal training set for DE-PSSS and CE-PSSS. In the comparison of modified SF-SSS which using MTSU method with DE-PSSS and CE-PSSS, DE-PSSS and CE-PSSS can reach higher F-Measure and can take individual variability into consideration. Compare DE-PSSS and CE-PSSS, DE-PSSS is much better which can reach higher F-Measure for all stage using the same size of the training set and consume less time.

Overall, the main contributions of this thesis are described as below:

Improved the existing SF-SSS.

Existing SF-SSS model is the first attempt to realize sleep staging by using symbolic fusion. In this thesis, with the analysis of existing SF-SSS model, modifications are proposed in order to enrich the existing SF-SSS. With proposed modifications, SF-SSS can reach higher performance in sleep staging.

Proposed an automatic thresholds setting-up method.

In SF-SSS model, thresholds are used to transform low-level digital parameter into a high-level symbolic interpretation of feature parameters. Details of thresholds dependencies are analyzed and thresholds configuration are studied in this thesis. Then an automatic thresholds setting-up method is proposed to overcome the limitations of manual thresholds setting-up method.

Proposed a hybrid expert system conception for sleep staging application.

A hybrid expert system conception is proposed by combining symbolic fusion and feedback system control technique. Only several epochs are needed to be selected and analyzed by a physician. Then thresholds can be set up based on the selected epochs and partial Hypnogram that analyzed by the physician using feedback system control technique. Finally, these thresholds are used in scoring the full epochs by symbolic fusion and full Hypnogram can be generated at the end.

Proposed a personalized automatic sleep staging system.

In consideration of individual variability, personalized sleep staging system based on the hybrid expert system conception is proposed. By selecting several epochs from different person and set up personalized thresholds, personalized automatic sleep staging can be realized by combining symbolic fusion and the personalized thresholds. The performance of the proposed personalized sleep staging system has also been evaluated: in comparison with SF-SSS model using manual thresholds settingup methods, personalized sleep staging system can reach much better performance in terms of F-Measure.

Perspectives

In this thesis, a hybrid expert system conception to realize automatic sleep staging by combining symbolic fusion and feedback system control is proposed. Based on this conception, personalized sleep staging system is implemented and evaluated. While, in further work, the following points can be also researched:

Based on the proposed hybrid expert system conception, generalized sleep staging system can be also researched to fully understand whether a generalized classification is sufficient, or whether a personalized classification is required to take individual variability into consideration.

After obtaining the binary classification results of each stage, an effective method to generate Hypnogram can also be researched.

To complete the existing SF-SSS, more sleep events and rules described by AASM can be involved. 
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 412 Figure 4.1 -Fusion I/O Characterizations of Dasarathy Architecture
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 42 It starts from the extraction of digital parameters from raw PSG signals and goes up-to high-level symbolic interpretation of feature parameters. Finally, rules are used to make the decision. Digital parameters, symbolic interpretation and rules in SF-SSS are inspired by international guidelines in sleep medicine.
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 42 Figure 4.2 -Sleep Staging Design Flow

Figure 4 .

 4 3 shows an example of first level of feature fusion. In second level of feature fusion, FEI-FEO fusion is adopted, as an example shown in Figure4.4. At least two channels feature parameters are High, the output is High.
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 43 Figure 4.3 -First Level of Feature Fusion -DAI-FEO Fusion
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 44 Figure 4.4 -Second Level of Feature Fusion -FEI-FEO Fusion
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 412 Figure 4.5 illustrates the classification of stage N2 when one of the following rules is satisfied: 1) EOGCorrelation is Disconjugate and EEGSleepSpindles is Confidently Have and EEGStability is Stable. 2) EEGSleepSpindles is Confidently Have and EOGEyeMovement is Lowest or Low and EEGLowWaveEneergy is Low and EEGThetaProportion is High.
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 45 Figure 4.5 -Classification of Stage N2

1 .

 1 Pre-processing of PSG signals Although PSG like EEG, EOG and EMG are designed to record brain activity, eye movement activity and submental muscle activity, it may also record unwanted patterns which are not caused by underlying physiological event of interest. These unwanted patterns are called artifacts. In terms of artifacts, it can be divided into into physiologic artifacts and extra-physiologic artifacts. Physiologic artifacts are generated from body like head or body movement. Extra-physiologic artifacts are generated from outside the body like environment or instrument. Two typical artifacts are shown in Figure 4.6 and Figure 4.7.
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 46 Figure 4.6 -Movement Artifact
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 48 Figure 4.8 -Sleep Staging Design Flow
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 4 9 and Figure 4.10 presents the elimination of movement artifacts and power-line artifacts, respectively.
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 410 Figure 4.10 -Elimination of Power-Line Artifact
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 4 Figure 4.11 -K-Complex

4. 4

 4 .3.2 K-Complex Digital Parameter ExtractionDue to the specific characteristics of K-Complex such as sharp rising and falling edges and long duration, we adopt TEO to extract KComplex parameter as shown in Figure4.12. A Butterworth low pass filter with the cut off frequency of 5 Hz is designed to eliminate high frequency waveforms. Then, TEO is calculate as KComplex Parameter to obtain rapid changes of amplitude and suppressed background activity.
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 4 Figure 4.12 -Block Diagram of K-Complex Parameter Extraction

Figure 4 .

 4 Figure 4.13 shows the TEO output of a 30-s EEG epoch which contains a K-Complex wave. From the figure, we can see, where the K-Complex wave occurs there is a high TEO value. TEO can be effectively present instantaneous changes in the signal like K-Complex in stage N2. Meanwhile, it also can present instantaneous changes like movement in stage W as shown in Figure 4.14.
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 4 Figure 4.13 -EEGKComplex Extraction(EEG K-Complex)
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 4 Figure 4.15 -Classification of Stage N1
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 4 Figure 4.16 -Sleep Transitions Detection and Correction
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 4 Figure 4.17 -Sleep Transitions Described by AASM
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 4 Figure 4.18 -Sleep Transitions: Impossible (Red Arrow) and Irregular (Blue Arrow)

  To deal with irregular transitions, irregular transitions reporting is performed. It gives a warning notice with irregular transitions location at the end of program as shown in Figure4.19. 
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 4 Figure 4.19 -Irregular Transitions Reporting

  Rule E3.c Score epoch as stage W when Irregular, conjugate rapid eye movements associated with normal or high chin muscle tone. Rule F.N3 During stage N1, the chin EMG amplitude is variable, but often lower than in stage W. Rule I.2b Score stage R sleep in epochs with the following phenomena: low chin EMG tone for the majority of the epoch.
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 51 Figure 5.1 -Digital Parameter: EMGActivity

Figure 5 .

 5 Figure 5.1 shows the digital parameter EMGActivity of one subject. For stage W, digital parameter EMGActivity is relative higher as shown in black box; for stage N1 and R, EMGActivity is relative lower as shown in green and pink box respectively.
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 5 3 represents several possible conditions may exist dependency with thresholds. In this section, we mainly focus on the dependency between Thresholds and Sleep Stages, Thresholds and Patients. Thresholds & Sleep Stages: For classifying each sleep stage in accordance with AASM, how many thresholds are required? Whether same thresholds can be reused in different sleep stages or different thresholds are required?
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 53 Figure 5.3 -Dependencies among Thresholds and other conditions

Take

  EMGActivity as an example, 2 thresholds EMGTh1 and EMGTh2 are used in distinguish three different symbolic features: High, Normal and Low as shown in Figure 5.2. Symbolic features of EMGActivity High, Normal and Low are used in classifying stage W, N1 and R. The number of thresholds only depends on the digital parameters and not on sleep stages.5.3.1 Thresholds & Sleep StagesIn existing SF-SSS model, values of EMGTh1 and EMGTh2 are the same for each stage. In existing SF-SSS model, 0.8 and 0.55 are used as the appropriate values for EMGTh1 and EMGTh2 for classifying stage W, N1 and R of patient 3774 (Figure5.4). However, thresholds dependencies among stages are ignored in MTSU method.In Figure5.4, 0.8 and 0.55 can be considered as the appropriate vales for Thresholds EMGTh1 and EMGTh2 respectively in classifying stage W. However, only one thresholds EMGTh2 is required from the technique perspective. Because no matter how we adjust EMGTh1, it has no impact on the classification result for stage W, N1 or R.
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 54 Figure 5.4 -Thresholds for EMGActivity (Stage W) of Patient 3774

  7 and EMGTh2 =0.1 can be considered as appropriate thresholds values in classifying stage W as shown in Figure 5.7. However, values of EMGTh1 and EMGTh2 between patient 3774 and patient 55341 are quite different because of the individual variability of chin EMG signals. For patient 3774, EMGTh1 =0.8 and and EMGTh2 =0.55 are considered as appropriate thresholds values in classifying stage W.
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 58 Figure 5.8 -Thresholds for EMGActivity (Stage N1) of Patient 55341
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 59 Figure 5.9 -Thresholds for EMGActivity (Stage R) of Patient 55341
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 61 Figure 6.1 -Thresholds Setting-Up for Symbolic Fusion based Sleep Staging System
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 64 Figure 6.4 -Flow Chart of Differential Evolution used in ATSU
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 68 Figure 6.8 -Differential Evolution-based Personalized Sleep Staging System
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 69 Figure 6.9 -Cross Entropy-based Personalized Sleep Staging System

7. 1 . 1 . 2

 112 Subjects Description Overnight PSG signals were recorded from 16 subjects (4 males and 12 females) ranging from 26 to 67 years old (µ = 54.8, σ = 12.5) in Hôptial-Tenon (AP-HP) before 2006. AHI (average number of apneas and hypopneas per hour of sleep) ranges from 3.8 to 70.5 (µ = 25.5, σ = 22.7). Details of patient information was shown in

7. 1

 1 .2.1 PSG Recording Device PSG recordings were performed using the Compumedics Grael HD-PSG device which produced by a medical device company called Compumedics Limited from Australia. It recorded the following signals: Fp1-A2, C3-A2, O1-A2 electroencephalogram; bilateral electrooculograms, submental electromyogram, electrocardiogram, oximetry, ribcage and abdominal movement, body position, sound intensity, and bilateral tibial electromyogram.

7. 1 . 2 . 4

 124 Subjects Description Overnight PSG signals were recorded from 16 subjects (9 males and 7 females) ranging from 22 to 82 years old (µ = 45.6, σ = 18.1) in La Pitié-Salpêtrière hôspital (AP-HP) which located in Paris. AHI (average number of apneas and hypopneas per hour of sleep) ranges from 0 to 40.2 (µ = 22.0, σ = 16.1). Details of patient information are shown in
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 71 Figure 7.1 -Evaluation of SF-SSS

F 1 = 2 *

 2 P recision * Recall P recision + Recall (7.1)
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 7 Figure 7.2 -F-Measure of Existing SF-SSS VS SF-SSS with Modifications for stage N2
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 73 Figure 7.3 -Total Agreement Rate of Existing SF-SSS VS SF-SSS with Modifications

10 -Figure 7 . 5 ,

 1075 Figure 7.5, Figure 7.6 and Figure 7.7 shows F-Measure dependence on generation number using Strategy DE/rand/1/bin for Subject 1 in classification of stage W with population size 5*D, 10*D and 500 respectively. Due to the stochastic ability of Differential Evolution, F-Measure in Figure 7.5, Figure 7.6 and Figure 7.7 are mean values of 20 independent runs.
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 7577 Figure 7.5 -DE Control Parameters Selection: DE/rand/1/bin, NP=5D
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 78 Figure 7.8 -DE Control Parameters Selection: DE/rand/1/bin

Figure 7 .

 7 Figure 7.9 shows F-Measure dependence on iteration number for different sample sizes of stage W classification for subject 1. Due to the stochastic ability of Cross Entropy, F-Measure in Figure7.9 are mean values of 20 independent runs. Initially, the maximum iteration number was set to 200. However, the simulation shows that after 50 iterations, F-Measures stay in the stable. So the maximum iteration number changed from 200 to 50.
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 79 Figure 7.9 -CE Control Parameters Selection (Iteration=200)
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 719 Average F-Measures of SF-SSS (with modifications) using MTSU on Database 2 F-Measures for stage W and N3 can reach over 0.5, while F-Measures for stage N1 and R is below 0.1.7.4.2 Comparison among SF-SSS, CE-PSSS and DE-PSSS

Figure 7 .

 7 Figure 7.11 presents the comparison of F-Measure using SF-SSS, DE-PSSS and CE-PSSS. 5% is used as the training set for DE-PSSS and CE-PSSS. The results present that PSSS can reach higher performance than SF-SSS for every stage. For stage N2 and N3, DE-PSSS and CE-PSSS can approximately reach the same F-Measure. While for stage W, N1, and R, DE-PSSS can reach higher F-Measure.
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 711 Figure 7.11 -Comparison between SF-SSS and PSSS

Figure 7 .

 7 Figure 7.13 shows a simple and clear way to present the confusion matrix of Database 2 using DE-PSSS. The gradient indicates percentage agreement, with red indicating a 100% agreement rate and white at 0%. The gradient legend to the right of the figure shows the percentages that correspond to each gray-scale level. X-axis represents classification results of DE-PSSS and Y-axis shows the analyzed results of the physician.

Figure 7 . 13 -

 713 Figure 7.13 -Heatmap of Confusion Matrix of Database 2 using DE-PSSS

  Heatmap of confusion matrix of Database 2 using CE-PSSS is shown in Figure7.14. The gradient indicates percentage agreement, with red indicating a 100% agreement rate and white at 0%. The gradient legend to the right of the figure shows the percentages that correspond to each gray-scale level. X-axis represents classification results of DE-PSSS and Y-axis shows the analyzed results of the physician.
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 714 Figure 7.14 -Heatmap of Confusion Matrix of Database 2 using CE-PSSS
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	6.1 Chapter 1	
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	1.1 Introduction	

  .1. Physicians can realize clinical sleep staging by combining different sleep events they observed from PSG signals into each stage according to AASM manual. In subjects who generate alpha rhythm, score stage N1 if the alpha rhythm is attenuated and replaced by low-amplitude, mixed-frequency activity for more than 50% of the epoch.

	Sleep Stages	AASM
	W	A. Score epochs as stage W when more than 50% of the epoch has alpha
		rhythm over the occipital region.
		B. Score epochs without visually discernible alpha rhythm as stage W if
		ANY of the following are present:
		a. Eye blinks at a frequency of 0.5-2 Hz
		b. Reading eye movements
		c. Irregular, conjugate rapid eye movements associated with normal
		or high chin muscle tone
	N1	A.

B. In subjects who do not generate alpha rhythm, score stage N1 commencing with the earliest of ANY of the following phenomena: a. EEG activity in range of 4-7 Hz with slowing of background frequencies by ≥ 1 Hz from those of stage W b. Vertex sharp waves c. Slow eye movements N2 If EITHER OR BOTH of the following occur during the first half of that epoch or the last half of the previous epoch: a. One or more K complexes unassociated with arousals b. One or more trains of sleep spindles N3 Score stage N3 when ≥ 20% of an epoch consists of slow wave activity, irrespective of age. R Score stage R sleep in epochs with ALL of the following phenomena: a. Low-amplitude, mixed-frequency EEG b. Low chin EMG tone c. Rapid eye movements Table 3.1 -AASM rules for sleep staging

Table 3 . 2

 32 

-Comparison among Decision Tree methods

3.2.1.2 Artificial Neural Network

Table 3 .

 3 

	3 -Comparison among Artificial Neural Network methods
	3.2.1.3 Support Vector Machine

Table 3 . 4

 34 

	Authors	Signals	Database	Classification	Results
	Steinn et al. EEG,EOG	4-night recordings	W, LS(S1,S2),	Agreement Rate:
	[23]	EMG	training: 75% & testing: 25%	SWS(S3,S4),R	76%
	Antonio et al. EEG,EOG	9-night recordings	W,S1,S2	Agreement Rate:
	[50]	EMG	training: 33% & testing: 33%	SWS(S3,S4),R	70%
	Khald et al.		13 subjects	W,S1,S2,	Agreement Rate:
	[1]	EEG	training: 80% & testing: 20%	S3,S4	92%

-Comparison among Support Vector Machine method

  .6.

	Authors	Signals	Database	Classification	Results
	Haoyu et al.		NM 7	W,(W,S1),S2,	Agreement Rate:
	[48]	EEG	training: NM 7 & testing: NM 7	SWS(S3,S4), R	88.8%
	Tarek et al. EEG,EOG	15 subjects	W,S1,S2,	Agreement Rate:
	[40]	EMG	training: 67% & testing: 33%	SWS(S3,S4),R	74%
	Farag et al.		13 subjects	W,S1,S2,	Accuracy:
	[19]	EEG	training: 55% & testing: 45%	S3,R	85.18%

Table 3 . 6

 36 

-Comparison among Hybrid methods

Table 4 .

 4 

	Digital Parameters	Features	Number of Thresholds
	EEGLowWaveEnergy	High -Middle -Low	2
	EEGSleepSpindles	Confidently Have -Not Confident	1
	EEGLWProportion	High -Low	1
	EEGThetaProportion	High -Low	1
	EEGStability	Stable -Not Confident -Unstable	2
	EOGEyeMovement	High -Middle -Low -Lowest	3
	EOGCorrelation	Conjugate -Disconjugate	1
	EMGActivity	High -Normal -Low	2

1 -Correlation Between Digital and First-Level Feature Parameters via Thresholds Setting-Up

Table 4 .

 4 2. For EEG and EOG, a band pass filter between 0.3 Hz and 35 Hz is suggested by AASM; For EMG, a band pass filter between 10 Hz and 100 Hz is recommended.

	AASM Recommendations Low Frequency High Frequency
	EEG	0.3 Hz	35 Hz
	EOG	0.3 Hz	35 Hz
	EMG	10 Hz	100 Hz

Table 4 .

 4 

2 -AASM Recommendations for Filter Settings

  Rule F.Note 3, During stage N1, the chin EMG amplitude is variable, but often lower than in stage W. In translating this rule into exiting SF-SSS model, EMGActivity is used and the rule for classifying stage N1 is composed by one condition: EMGActivity is Low.

	. It
	combines supplementary descriptions from AASM in classifying stage N1 and existing
	parameters.
	E.g. In AASM,

Once EMGActivity is Low, EEGSleepSpindles is Not Confident, EEGStability is Not Confident, EEGLowWaveEnergy is Low and EEGKComplex is Low then this epoch can be considered as stage N1.

Table 4 .

 4 

3 -Impossible Sleep Transitions Correction

  Correspond each digital parameter to AASM manual (e.g correspond digital parameter EMGActivity to chin EMG activity in AASM manual).2. Correspond each digital parameter to the Hypnogram that analyzed by physicians (e.g correspond the digital parameter EMGActivity with Hypnogram).

	3. Estimate values of thresholds for each digital parameter (e.g by comparing the digital
	parameter EMGActivity with Hypnogram to estimate the values of EMGTh1 and
	EMGTh2 ).
	4. Adjust values of thresholds until appropriate thresholds are found (e.g adjust val-
	ues of EMGTh1 and EMGTh2 until appropriate thresholds which can reach high
	classification performance are found).

order to transform EMGActivity into symbolic interpretation of High, Normal and Low, two thresholds EMGTh1 and EMGTh2 are used as shown in Figure 5.2. Values of digital parameter EMGActivity higher than EMGTh1 are interpreted as 1.

Table 5 .

 5 1. SYSTEM 

	Digital Parameters	Features	Number of Thresholds
	EEGLowWaveEnergy	High -Middle -Low	2
	EEGSleepSpindles	Confidently Have -Not Confident	1
	EEGLWProportion	High -Low	1
	EEGThetaProportion	High -Low	1
	EEGStability	Stable -Not Confident -Unstable	2
	EEGKComplex	High -Middle -Low	2
	EOGEyeMovement	High -Middle -Low -Lowest	3
	EOGCorrelation	Conjugate -Disconjugate	1
	EMGActivity	High -Normal -Low	2

Table 5 .

 5 1 -Thresholds used in SF-SSS model

Table 5 .

 5 2. 

	stages Symbolic Features of EMGActivity Thresholds
	W	High or Normal	EMGThN1
	N1	Low	EMGThN2
	R	Low	EMGThN3

Table 5 .

 5 2 -Thresholds of EMGAcitivity including Sleep Stages Dependencies

Table 5 .

 5 3. E.g. to classify stage W, five digital parameters are extracted and 5 thresholds are required in transforming these digital parameters into different symbolic features. For stage N1, N2, N3 and R, the numbers of thresholds need to be set are 6, 8, 7 and 8 respectively. Total 34 thresholds are required.

		Digital Parameters	Symbols	Number of Thresholds
		EEGThetaProportion	Low	
		EEGStability	Unstable	
	Stage W	EEGKComplex	High	5
		EOGEyeMovement	High(Middle)	
		EMGActivity	High(Normal)	
		EEGStability	Not Confident	
		EEGLowWaveEnergy	Low	
	Stage N1	EEGKComplex	Low	6
		EEGSleepSpindles	Not Confident	
		EMGActivity	Low	
		EEGThetaProportion	High	
		EEGStability	Stable	
		EEGLowWaveEnergy	Low	
	Stage N2	EEGKComplex	Middle	8
		EEGSleepSpindles	Confidently Have	
		EOGEyeMovement	Low(Lowest)	
		EOGCorrelation	Disconjugate	
		EEGLWProportion	High	
		EEGStability	Stable	
		EEGLowWaveEnergy	High	
	Stage N3	EEGSleepSpindles	Not Confident	7
		EOGEyeMovement	Low(Middle)	
		EOGCorrelation	Disconjugate	
		EEGThetaProportion	Low	
		EEGLWProportion	Low	
		EEGStability	Not Confident	
	Stage R	EEGLowWaveEnergy	Low	8
		EEGSleepSpindles	Not Confident	
		EOGCorrelation	Conjugate	
		EMGActivity	Low	

Table 5 .

 5 

3 -Thresholds Configuration for Each Sleep Stage CHAPTER 5. THRESHOLDS AND SYMBOLIC FUSION-BASED SLEEP STAGING SYSTEM Page 59

Table 6 .

 6 

	Main Control Parameters of DE	Range
	Population Size(NP)	[5D, 10D] 1
	Mutation Scale Factor(F)	[0, 2]
	Crossover Rate(CR)	[0, 1]

1 -Main Control Parameters of Differential Evolution

Table 7 .

 7 1. In ID column, the identification number of each subject is listed. In G column, it represents Gender of subjects: M is Male and F is Female. TE is the Total Epoch number of the subject during sleep. EASE is Expert Analysis Start Epoch which represents the start epoch analyzed by experts for each subject. EAEE is Expert Analysis End Epoch which represents the last epoch analyzed by expert for each subject. EATE is Expert Analysis Total Epoch which represents the total epoch number that analyzed by expert for each subject. In W, N1, N2, N3, and R column, it lists the epoch number of stage W, N1, N2,N3 and R for each subject.

	AHI 1	ID 2	G 3 Age TE 4 EASE 5 EAEE 6 EATE 7	W	N1 N2 N3 R
	3.8	627	F	41	1800	724	1798	1075	326	54 383 214 98
	4.9	3774	F	26	1830	1	1830	1830	983 165 447 138 97
	5.8	4062	M	62	1860	691	1841	1151	314 153 353 115 216
	7.6	50897 F	57	1773	479	1713	1235	456	46 364 225 144
	8.2	3875	F	29	1830	1	1830	1830	1093	8	445 155 129
	9.8	3870	F	65	1800	481	1624	1144	88	192 331 278 255
	16.2	50062 M	64	1800	585	1721	1137	144	93 274 473 153
	16.3	4064	M	57	1860	628	1731	1104	154 198 306 259 187
	16.3	1818	F	67	1800	583	1800	1218	112	49 610 321 126
	19.6	45813 F	54	1680	542	1549	1008	253 146 476 94	39
	26.3	46618 F	58	1800	751	1731	981	115 272 220 247 127
	33.8	3928	F	64	1797	569	1474	906	216 136 329 162 63
	42.8	56508 F	60	1560	302	1560	1259	126	39 549 194 351
	59	55341 F	51	1740	431	1593	1163	270 133 397 242 121
	67.5	48814 F	56	1560	461	1560	1100	73	78 621 178 150
	70.5	639	M	66	1740	394	1720	1327	24	229 421 321 332

Table 7 .

 7 

1 -Subject Information of Database 1

Table 7 .

 7 .2. 2 -Information of Database 1

	W	N1	N2	N3	R	Total
	Expert Analysis					
	(Epoch Number) 4747 1991 6526 3616 2588 19468

Table 7 .

 7 3. In G column, M represents Male and F represents Female. In Total Epoch column, it lists the number of total epochs which was analyzed by experts for each subject. In W, N1, N2, N3, and R column, it lists the number of epochs of Stage W, N1, N2,N3 and R for each subject. Total number of each stage for all 16 subjects is listed in Table7.4.

	AHI 1 ID 2 G 3 Age Total Epoch W N1 N2 N3 R
	0	10	F	30	1083	105 80 448 250 200
	0	12	F	44	1079	112 50 477 186 254
	0	13	M	33	1237	173 31 530 262 241
	0.5	11	F	23	1018	100 38 420 250 210
	0.7	8	F	28	1004	180 27 488 137 172
	1.1	4	M	22	1214	182 82 520 205 225
	1.6	3	F	61	1071	102 18 539 209 203
	2.4	9	F	40	1247	212 54 417 196 368
	3.3	18	M	61	1184	116 154 527 175 212
	3.9	29	M	29	845	48	24 407 167 199
	4.8	1	M	52	1001	180 45 301 263 212
	5.7	7	M	64	1331	151 104 627 237 212
	22.7	63	M	36	1195	141 111 544 153 246
	28.2	41	F	82	1317	811 80 331 74	21
	35.3	5	M	65	1105	126 158 315 329 177
	40.2	49	M	59	1203	453 266 437 16	31

Table 7 .
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	3 -Subject Information of Database 2	
	W	N1	N2	N3	R	Total
	Expert Analysis					
	(Epoch Number) 3192 1322 7328 3109 3183 18134

Table 7 .

 7 4 -Information of Database 2

Table 7 .

 7 5 -Confusion Matrix of Stage W

			SF-SSS
			W	NW
	Expert Analysis	W	True Positive False Negative
		NW False Positive True Negative

Table 7 . 6

 76 

		0.8089	0	0.6512	0.8327	0.2694	0.8146	0.1467	0.7913	0.8327	0.2694
	639	0.5806	0	0.0635	0.8425	0.5336	0.5806	0.3575	0.2496	0.8425	0.5336
	1818	0.7813	0	0.1047	0.6027	0.2772	0.7732	0.0000	0.6803	0.6027	0.2772
	3774	0.8819	0	0.6780	0.7298	0.3771	0.8831	0.3200	0.6366	0.7298	0.3771
	3870	0.7322	0	0.2750	0.7873	0.5049	0.7322	0.2982	0.3878	0.7873	0.5049
	3875	0.9447	0	0.2432	0.7653	0.2891	0.9447	0.0352	0.4846	0.7653	0.2891
	3928	0.5503	0	0.5331	0.7967	0.3017	0.5503	0.1897	0.5263	0.7967	0.3017
	4062	0.6117	0	0.0887	0.7424	0.6667	0.6117	0.0846	0.1218	0.7424	0.6667
	4064	0.7051	0	0.4043	0.7514	0.2783	0.7051	0.0591	0.4652	0.7514	0.2783
	45813 0.4701	0	0.3192	0.3958	0.0000	0.4888	0.0000	0.3212	0.3958	0.0000
	46618 0.4686	0	0.1835	0.8077	0.6031	0.4686	0.1425	0.2755	0.8077	0.6031
	48814 0.2626	0	0.3904	0.8375	0.4171	0.2913	0.1156	0.4939	0.8375	0.4171
	50062 0.7184	0	0.3710	0.7918	0.6897	0.7184	0.1271	0.3702	0.7918	0.6897
	50897 0.8434	0	0.5914	0.7004	0.5485	0.8434	0.1176	0.5914	0.7004	0.5485
	55341 0.8235	0	0.4370	0.7279	0.5637	0.8235	0.2080	0.4868	0.7279	0.5637
	56508 0.6462	0	0.7246	0.7143	0.6849	0.6531	0.0769	0.7360	0.7143	0.6849
	Mean 0.6768	0	0.3787 0.7391 0.4378 0.6802 0.1424 0.4762 0.7391 0.4378

-F-Measure on Database 1

Table 7 .
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				Existing SF-SSS		
			W	N1	N2	N3	R	Total	AR
		W	3614	0	779	44	310	4747	0.7613
		N1	530	0	815	98	548	1991	0.0000
	Expert Analysis	N2 N3	377 18	0 0	3499 734 1210 2177 211 1916	6526 3616	0.5362 0.6020
		R	67	0	562	124 1835 2588	0.7090
		Total	4606	0	6865 3177 4820 19468 0.5715
		Kappa				0.4368		
	Table 7.7 -Confusion Matrix of Database 1 using Existing SF-SSS
				Modified SF-SSS		
			W	N1	N2	N3	R	Total	AR
		W	4054 13	339	36	305	4747	0.8540
		N1	771	39	519	103	559	1991	0.0196
	Expert Analysis	N2 N3	555 22	12 4246 660 0 1321 2205	1053 68	6526 3616	0.6506 0.6098
		R	61	14	488	67	1958 2588	0.7566
		Total	5463 78 6913 3071 3943 19468 0.6422
		Kappa				0.5266		

8 -Confusion Matrix of Database 1 using Modified SF-SSS

Table 7 .
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	Main Control Parameters of DE	Range
	Population Size(NP)	[5D, 10D] 8
	Mutation Scale Factor(F)	[0, 2]
	Crossover Rate(CR)	[0, 1]

9 -Main Control Parameters of Differential Evolution

Table 7 .

 7 .11. 11 -Parameters used for CE Control Parameters Selection Simulation

		Parameters and Strategy for Simulation
	Sample Size (N)	[100, 500, 1000, 10000]
	Elite Sampling Rate(ρ)	[0.1, 0.3, 0.5, 0.7]

  7.3.2.1 Training Set Selection of DE-PSSSFour different set of values have been used as the size of training set & evaluation set for DE-PSSS: 5% & 95%, 10% & 90%, 15% & 85% and 20% & 80%. DE-PSSS selects the optimal thresholds according to different training sets and passes these thresholds to the corresponding evaluation sets. The selection of 5%, 10%, 15% and 20% of the training set are randomly selected 5%, 10%, 15% and 20% of each stage (W, N1, N2, N3 and R) for each subject.

	Subject ID: 1	W N1 N2 N3 R Total
	Total Number 180 45 301 263 212 1001
	Training Set	9	3	16	14	11	53
	Evaluation Set 171 42 285 249 201	948
	Table 7.12 -Training Set & Evaluation Set: 5% & 95 % for Subject ID=1

Table 7 .

 7 [START_REF] Belur | Sensor fusion potential exploitation-innovative architectures and illustrative applications[END_REF] gives an example of training set and evaluation set for subject 1 using 5% as training set and remaining 95% as evaluation set. Total number of 53 epochs are randomly selected from the over-night training set and the remaining 948 epochs are used as evaluation set.

Table 7 .

 7 .13. 13 -F-Measure Comparison among training set & evaluation set of DE-PSSS

	DE-PSSS(Training Set & Evaluation Set)	W	N1	N2	N3	R
	5% & 95%	0.7137 0.2209 0.7229 0.7363 0.6565
	10% & 90%	0.7335 0.2299 0.7354 0.7487 0.6818
	15% & 85%	0.7411 0.2410 0.7380 0.7568 0.6932
	20% & 80%	0.7452 0.2453 0.7419 0.7623 0.6955

Table 7 .

 7 Measure in Appendix(8.11), Appendix (8.12), Appendix (8.13) and Appendix(8.14) for each subject is the mean value of 20 independently runs.Comparison among F-Measures of evaluation set using different training set is shown in Table7.14. 14 -F-Measure Comparison among training set & evaluation set of CE-PSSS

	7.3.2.2 Training Set Selection of CE-PSSS					
	To evaluate impact of training set selection on CE-PSSS, four different set of values
	have been used to balance the size of training set & evaluation set: 5% & 95%, 10% &
	90%, 15% & 85% and 20% & 80%. DE-PSSS selects the optimal thresholds according to
	different training sets and passes these thresholds to the corresponding evaluation sets.
	Details of F-Measure of evaluation set using 5%, 10%, 15% and 20% are shown in
	Appendix (8.11), Appendix (8.12), Appendix (8.13) and Appendix (8.14) respectively.
	F-CE-PSSS(Training Set & Evaluation Set)	W	N1	N2	N3	R
	5% & 95%	0.6652 0.1566 0.7194 0.7385 0.6326
	10% & 90%	0.6884 0.1683 0.7309 0.7464 0.6632
	15% & 85%	0.6989 0.1804 0.7367 0.7521 0.6756
	20% & 80%	0.7051 0.1835 0.7402 0.7573 0.6824

Table 7 .

 7 .8 but F-Measure still increases after 30 iterations.In consideration of targeting DE-PSSS and CE-PSSS into embedded systems, the performances of Differential Evolution and Cross Entropy algorithms in terms of latencies are evaluated. Table7.16 and Table7.17 gives detailed information on computational time (in seconds) of DE-PSSS and CE-PSSS for one iteration respectively.For different control parameters of DE-PSSS, only Population Size (NP) affects the computational time. For CE-PSSS, only Sample Size (N) affects the computational time. 17 -Computational Time (s) of CE for one iteration Compare the computational time of DE and CE, the time CE (SS=500) consumes is more 8 times than DE (NP=5D) for one iteration. Measure of evaluation set using DE-PSSS and CE-PSSS is also compared by adopting the optimal thresholds which are searched from different size of training set as shown in Table7.18.

		DE			CE
	Control Parameters	NP, F, CR		N, ρ
	Iterations	100			50
	Convergence	slow but stable fast but may trap into local optimal
	Table 7.15 -Comparisons between DE and CE
	7.3.3.2 Computational Time			
	DE-PSSS NP=5D NP=10D NP=500
	folk 9	0.20	0.35		1.65
	trot 10	0.27	0.51		2.31
	Table 7.16 -Computational Time (s) of DE for one iteration
	CE-PSSS N=100 N=500 N=1000 N=10000
	folk 9	0.38	1.67	3.34	31.41
	trot 10	0.53	2.31	5.01	41.78
	7.3.3.3 F-Measure Comparison			
	F-				

Table 7 .

 7 20 and Figure 7.11 provide F-Measure using modified SF-SSS, DE-PSSS and CE-PSSS. In SF-SSS model, thresholds are setting by MTSU method. While in DE-PSSS and CE-PSSS, thresholds are setting by ATSU using Differential Evolution and Cross Entropy respectively.

			W	N1	N2	N3	R
	SF-SSS using MTSU	0.5397	0.0494	0.3859	0.5768	0.0624
		5% & 95% 0.7137 0.2209 0.7229 0.7363 0.6565
	DE-PSSS	10% & 90% 15% & 85% 0.7411 0.2410 0.7380 0.7568 0.6932 0.7335 0.2299 0.7354 0.7487 0.6818
		20% & 80%	0.7452	0.2453	0.7419	0.7623	0.6955
		5% & 95% 0.6652 0.1566 0.7194 0.7385 0.6326
	CE-PSSS	10% & 90% 15% & 85% 0.6989 0.1804 0.7367 0.7521 0.6756 0.6884 0.1683 0.7309 0.7464 0.6632
		20% & 80%	0.7051	0.1835	0.7402	0.7573	0.6824

Table 7 .

 7 20 -F-Measure of SF-SSS and PSSS

Table 7 .

 7 21 -Confusion Matrix of Database 2 using DE-PSSS

			DE-PSSS				
	W	N1	N2	N3	R	Total	AR

Table 7 .

 7 22 -Confusion Matrix of Database 2 using CE-PSSS

			CE-PSSS				
	W	N1	N2	N3	R	Total	AR

Table 7 .

 7 23 -Agreement Rate Comparison between PSSSs and Inter-raters

	Sleep Stages DE-PSSS CE-PSSS Inter-raters
	W	81.23 %	84.30%	68-89%
	N1	12.18%	12.33%	23-74%
	N2	89.26%	82.44%	79-90%
	N3	83.47%	79.83%	69%
	R	82.75 %	69.81%	78-94%

Table 7 .

 7 24 -Agreement Rate Comparison between PSSSs and Other Works

	Methods	Authors	Database	Classification	AR
	Decision Tree	Masaaki et al.	1 male	SWS(S3,S4),SREM,	
		[25]	training: 80% & testing: 20%	S1,S2,S3,S4,MT 6	82%
	Decision Tree	Khai et al.	5 subjects	W,N1,N2,	
		[44]	training: NM 7 & testing: NM 7	N3,R,MT 6	79%
	ANN	Nicolas et al.	12-night recordings	W, MT 6 , S1,	
		[62]	training: 51% & testing: 49%	S2, S3, S4, R	81%
	ANN	Nizar et al.	1 male	W,N1,N2,	
		[37]	training: NM 7 & testing: NM 7	N3,R	76%
	SVM	Steinn et al.	4-night recordings	W, LS(S1,S2),	
		[23]	training: 75% & testing: 25%	SWS(S3,S4),R	76%
	SVM	Antonio et al.	9-night recordings	W,S1,S2	
		[50]	training: 33% & testing: 33%	SWS(S3,S4),R	70%
	Rule-based	Sheng-Fu et al.	16 subjects	W,S1,S2,	
	Method	[45]	training: 20% & testing: 80%	SWS(S3,S4),R	87%
	Rule-based	Diego et al.	33 subjects	W,N1,N2,	
	Method	[18]	training: NM 7 & testing: 100%	N3,R	84%
	Hybrid	Tarek et al.	15 subjects	W,S1,S2,	
	Method	[40]	training: 67% & testing: 33%	SWS(S3,S4),R	74%
	DE-PSSS	Proposed Method	16 subjects	W,N1,N2,	
			training: 5% & testing: 100%	N3,R	80%
	CE-PSSS	Proposed Method	16 subjects	W,N1,N2,	
			training: 5% & testing: 100%	N3,R	75%

Table 7 .

 7 [START_REF] David | Dirty secrets in multisensor data fusion[END_REF] lists comparisons among different methods for sleep staging.

Table 8 .

 8 2 -Precision Comparison between SF-SSS (with modifications) and existing SF-SSS on Database 1

	Page 106				CHAPTER 8. CONCLUSIONS AND PERSPECTIVES
	8.4 Appendix 2								
		Precision of Existing SF-SSS		Precision of SF-SSS (with modifications)
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	627	0.7822 0.0000 0.8015 0.7257 0.1655 0.7772 0.1146 0.7392 0.7257	0.1655
	639	0.4737 0.0000 0.1928 0.7417 0.3971 0.4737 0.4395 0.3726 0.7417	0.3971
	1818 0.9375 0.0000 0.4615 0.5379 0.1642 0.9146 0.0000 0.5475 0.5379	0.1642
	3774 0.9695 0.0000 0.5457 0.5928 0.2373 0.9696 0.2857 0.4881 0.5928	0.2373
	3870 0.7053 0.0000 0.4430 0.7698 0.3506 0.7053 0.2291 0.4779 0.7698	0.3506
	3875 0.9870 0.0000 0.8630 0.7628 0.1709 0.9870 0.0181 0.4054 0.7628	0.1709
	3928 0.7623 0.0000 0.5541 0.7101 0.2328 0.7623 0.2051 0.5363 0.7101	0.2328
	4062 0.6217 0.0000 0.3396 0.6577 0.6157 0.6217 0.0787 0.3514 0.6577	0.6157
	4064 0.6962 0.0000 0.3167 0.7089 0.7442 0.6962 0.1795 0.3284 0.7089	0.7442
	45813 0.3627 0.0000 0.5266 0.2938 0.0000 0.3570 0.0000 0.5263 0.2938	0.0000
	46618 0.3085 0.0000 0.3021 0.7108 0.4949 0.3085 0.1902 0.3497 0.7108	0.4949
	48814 0.5000 0.0000 0.7617 0.8216 0.3235 0.5000 0.0884 0.7832 0.8216	0.3235
	50062 0.8713 0.0000 0.4462 0.7653 0.6627 0.8713 0.1049 0.4439 0.7653	0.6627
	50897 0.9634 0.0000 0.5344 0.6228 0.4158 0.9634 0.0729 0.5344 0.6228	0.4158
	55341 0.8444 0.0000 0.4921 0.5963 0.4007 0.8444 0.1753 0.5096 0.5963	0.4007
	56508 0.9130 0.0000 0.7207 0.6299 0.6084 0.9143 0.0424 0.7076 0.6299	0.6084
	8.5 Appendix 3								
		ID	AR W AR N1 AR N2 AR N3 AR R Total AR	
		627	0.8374	0	0.5692	0.8505	0.5816	0.6791		
		639	0.7500	0	0.2660	0.9626	0.7892	0.5283		
		1818	0.6696	0	0.0885	0.6262	0.8889	0.3629		
		3774	0.8087	0	0.9306	0.0000	0.8969	0.7093		
		3870	0.7614	0	0.2024	0.7698	0.9020	0.5052		
		3875	0.9058	0	0.1483	0.7613	0.9302	0.7071		
		3928	0.4306	0	0.7264	0.6296	0.3810	0.5055		
		4062	0.6019	0	0.6487	0.8348	0.6574	0.5699		
		4064	0.7143	0	0.9575	0.1120	0.1123	0.4103		
		45813 0.6680	0	0.4034	0.2553	0.0000	0.3819		
		46618 0.9739	0	0.3045	0.6883	0.7323	0.4506		
		48814 0.1781	0	0.7230	0.8371	0.5733	0.6336		
		50062 0.6111	0	0.6679	0.6702	0.6863	0.6095		
		50897 0.7500	0	0.6923	0.3911	0.7708	0.6421		
		55341 0.8037	0	0.6121	0.5248	0.9256	0.6010		
		56508 0.5000	0	0.7632	0.2629	0.7778	0.6402		

Table 8 .
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	8.6 Appendix 4					
	ID	AR W AR N1 AR N2 AR N3 AR R Total AR
	627	0.9540	0.0000	0.8799	0.9252	0.5306	0.8353
	639	0.7500	0.0000	0.1971	0.9875	0.8223	0.5207
	1818	0.6071	0.0000	0.9721	0.3302	0.0000	0.6297
	3774	0.8586	0.0000	0.9687	0.0000	0.9691	0.7492
	3870	0.7727	0.0000	0.3414	0.7914	0.9608	0.5647
	3875	0.9323	0.0000	0.6787	0.7355	0.9612	0.8519
	3928	0.6296	0.0000	0.6991	0.7037	0.4286	0.5596
	4062	0.9140	0.0000	0.2833	0.9304	0.8704	0.5934
	4064	0.8571	0.0000	0.9804	0.0000	0.0481	0.4203
	45813 0.9842	0.0000	0.2500	0.2660	0.0000	0.3899
	46618 0.9739	0.0331	0.2864	0.7328	0.9213	0.4913
	48814 0.2466	0.0000	0.6667	0.8989	0.7667	0.6427
	50062 0.7847	0.0000	0.4818	0.8309	1.0000	0.6957
	50897 0.8333	0.0000	0.7967	0.3511	0.8681	0.7077
	55341 0.8185	0.0376	0.6398	0.6198	0.9504	0.6406
	56508 0.6190	0.0256	0.8798	0.2113	0.9145	0.7339

3 -Agreement Rate of existing SF-SSS on Database 1

Table 8 .

 8 4 -Agreement Rates of SF-SSS (with modifications) on Database 1 .0120 0.0312 0.0077 0.0222 0.0469 Mean 0.7137 0.2209 0.7229 0.7363 0.6565 0.0271 0.0335 0.0167 0.0250 0.0320

	8.7 Appendix 5								
			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7490	0.1973	0.6038	0.8007	0.8056 0.0338 0.0344 0.0194 0.0221 0.0313
	3	0.7402	0.1052	0.7616	0.7277	0.8155 0.0191 0.0189 0.0104 0.0173 0.0262
	4	0.5701	0.2972	0.8318	0.8149	0.6865 0.0391 0.0402 0.0219 0.0191 0.0255
	5	0.4320	0.4581	0.5767	0.7795	0.6667 0.0478 0.0368 0.0281 0.0154 0.0434
	7	0.7692	0.3123	0.7486	0.6813	0.8044 0.0262 0.0405 0.0078 0.0221 0.0237
	8	0.7024	0.1121	0.7980	0.6905	0.6100 0.0318 0.0204 0.0183 0.0294 0.0381
	9	0.8924	0.0946	0.6856	0.8327	0.8104 0.0205 0.0221 0.0199 0.0219 0.0172
	10	0.5957	0.2560	0.6829	0.7979	0.7493 0.0346 0.0594 0.0189 0.0168 0.0227
	11	0.7794	0.1984	0.7932	0.8673	0.6556 0.0496 0.0400 0.0204 0.0130 0.0357
	12	0.8628	0.2032	0.7628	0.7569	0.7584 0.0292 0.0387 0.0165 0.0245 0.0196
	13	0.7296	0.1684	0.7630	0.7821	0.7034 0.0234 0.0277 0.0136 0.0140 0.0262
	18	0.5804	0.3370	0.7102	0.6932	0.4401 0.0223 0.0446 0.0108 0.0208 0.0347
	29	0.7179	0.1154	0.7984	0.8488	0.8362 0.0254 0.0229 0.0175 0.0227 0.0225
	41	0.8782	0.0691	0.6643	0.6376	0.3138 0.0051 0.0240 0.0200 0.0296 0.0514
	49	0.8538	0.4418	0.6596	0.4281	0.1874 0.0129 0.0343 0.0155 0.0896 0.0475
	63	0.5662	0.1684	0.7254	0.6419	0.6599 0					

Table 8 .

 8 5 -F-Measures of Evaluation Set using 5% Training Set (DE-PSSS) on Database 2 8.8 Appendix 6 .0155 0.0235 0.0034 0.0156 0.0169 Mean 0.7335 0.2299 0.7354 0.7487 0.6818 0.0202 0.0293 0.0118 0.0210 0.0244

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7691	0.1924	0.6129	0.8127	0.8395 0.0116 0.0297 0.0124 0.0198 0.0204
	3	0.7600	0.1099	0.7688	0.7435	0.8514 0.0153 0.0163 0.0054 0.0133 0.0126
	4	0.6017	0.3226	0.8509	0.8159	0.7155 0.0136 0.0239 0.0112 0.0148 0.0176
	5	0.4663	0.4787	0.6066	0.7949	0.7146 0.0296 0.0213 0.0199 0.0147 0.0214
	7	0.7718	0.3232	0.7499	0.6973	0.8179 0.0239 0.0350 0.0059 0.0107 0.0215
	8	0.7270	0.1050	0.8113	0.7044	0.6379 0.0213 0.0193 0.0147 0.0237 0.0186
	9	0.9213	0.1150	0.7084	0.8464	0.8292 0.0122 0.0297 0.0054 0.0089 0.0114
	10	0.6388	0.2884	0.6901	0.8134	0.7627 0.0566 0.0321 0.0204 0.0134 0.0173
	11	0.8162	0.1984	0.8036	0.8802	0.7027 0.0209 0.0606 0.0124 0.0113 0.0245
	12	0.8743	0.1971	0.7690	0.7633	0.7736 0.0271 0.0482 0.0191 0.0186 0.0214
	13	0.7537	0.1280	0.7842	0.7924	0.7206 0.0133 0.0300 0.0100 0.0153 0.0286
	18	0.5856	0.3507	0.7139	0.7168	0.4702 0.0199 0.0241 0.0060 0.0212 0.0305
	29	0.7296	0.1428	0.8061	0.8775	0.8582 0.0319 0.0323 0.0141 0.0204 0.0146
	41	0.8828	0.0804	0.6819	0.6228	0.3146 0.0030 0.0269 0.0136 0.0300 0.0576
	49	0.8655	0.4673	0.6747	0.4363	0.2063 0.0074 0.0166 0.0143 0.0843 0.0556
	63	0.5730	0.1790	0.7345	0.6614	0.6936 0					

Table 8 .

 8 6 -F-Measures of Evaluation Set using 10% Training Set (DE-PSSS) on Database 2 8.9 Appendix 7 .0188 0.0265 0.0057 0.0105 0.0149 Mean 0.7411 0.2410 0.7380 0.7568 0.6932 0.0184 0.0337 0.0111 0.0175 0.0232

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7697	0.1954	0.6143	0.8147	0.8566 0.0120 0.0329 0.0105 0.0193 0.0078
	3	0.7707	0.1258	0.7696	0.7515	0.8526 0.0161 0.0570 0.0043 0.0120 0.0155
	4	0.6078	0.3250	0.8529	0.8225	0.7131 0.0176 0.0303 0.0129 0.0122 0.0145
	5	0.4867	0.4959	0.6031	0.8044	0.7213 0.0247 0.0184 0.0186 0.0132 0.0217
	7	0.7774	0.3402	0.7538	0.6969	0.8234 0.0209 0.0441 0.0039 0.0103 0.0176
	8	0.7436	0.1171	0.8120	0.7102	0.6328 0.0148 0.0245 0.0172 0.0204 0.0245
	9	0.9273	0.1096	0.7056	0.8489	0.8235 0.0112 0.0265 0.0082 0.0089 0.0142
	10	0.6456	0.3046	0.6965	0.8171	0.7719 0.0518 0.0347 0.0184 0.0113 0.0186
	11	0.8343	0.2227	0.8078	0.8764	0.7092 0.0198 0.0586 0.0114 0.0093 0.0224
	12	0.8861	0.2248	0.7789	0.7746	0.7825 0.0183 0.0508 0.0088 0.0151 0.0097
	13	0.7518	0.1304	0.7853	0.7964	0.7312 0.0141 0.0329 0.0122 0.0126 0.0267
	18	0.5859	0.3775	0.7164	0.7130	0.4900 0.0151 0.0259 0.0072 0.0230 0.0239
	29	0.7568	0.1373	0.8088	0.8828	0.8647 0.0298 0.0369 0.0158 0.0130 0.0107
	41	0.8835	0.0957	0.6895	0.6451	0.3629 0.0039 0.0274 0.0110 0.0337 0.0589
	49	0.8670	0.4651	0.6820	0.4810	0.2536 0.0053 0.0126 0.0121 0.0548 0.0700
	63	0.5628	0.1895	0.7321	0.6737	0.7016 0					

Table 8 .

 8 7 -F-Measures of Evaluation Set using 15% Training Set (DE-PSSS) on Database 2 8.10 Appendix 8 .0151 0.0234 0.0047 0.0133 0.0145 Mean 0.7452 0.2453 0.7419 0.7623 0.6955 0.0156 0.0295 0.0102 0.0150 0.0207

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7679	0.1996	0.6219	0.8206	0.8535 0.0132 0.0498 0.0132 0.0149 0.0150
	3	0.7772	0.1494	0.7722	0.7490	0.8503 0.0139 0.0280 0.0036 0.0139 0.0122
	4	0.6196	0.3023	0.8565	0.8222	0.7224 0.0112 0.0308 0.0083 0.0111 0.0159
	5	0.4785	0.4901	0.6069	0.8041	0.7321 0.0166 0.0177 0.0223 0.0056 0.0222
	7	0.7936	0.3453	0.7553	0.7066	0.8392 0.0207 0.0344 0.0049 0.0122 0.0205
	8	0.7528	0.1248	0.8163	0.7171	0.6418 0.0133 0.0231 0.0145 0.0177 0.0141
	9	0.9368	0.1095	0.7076	0.8496	0.8342 0.0086 0.0252 0.0079 0.0082 0.0080
		0.6418	0.2949	0.7001	0.8167	0.7736 0.0488 0.0340 0.0147 0.0101 0.0150
		0.8379	0.2376	0.8120	0.8818	0.7228 0.0114 0.0404 0.0120 0.0055 0.0193
		0.8822	0.2258	0.7779	0.7910	0.7813 0.0124 0.0263 0.0113 0.0199 0.0155
		0.7541	0.1306	0.7946	0.8019	0.7477 0.0153 0.0333 0.0086 0.0117 0.0143
		0.5978	0.3834	0.7195	0.7342	0.4853 0.0149 0.0247 0.0060 0.0188 0.0284
		0.7641	0.1502	0.8198	0.8888	0.8665 0.0225 0.0411 0.0130 0.0101 0.0087
		0.8833	0.0877	0.6963	0.6591	0.3385 0.0035 0.0263 0.0074 0.0240 0.0504
		0.8666	0.4790	0.6794	0.4827	0.2435 0.0079 0.0138 0.0102 0.0429 0.0569
		0.5689	0.2140	0.7346	0.6718	0.6950 0					

Table 8 .

 8 8 -F-Measures of Evaluation Set using 20% Training Set (DE-PSSS) on Database 2 8.11 Appendix 9 .0275 0.0417 0.0107 0.0142 0.0292 Mean 0.6652 0.1566 0.7194 0.7385 0.6326 0.0261 0.0408 0.0153 0.0200 0.0371

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7479	0.0795	0.6065	0.7942	0.8192 0.0105 0.0381 0.0219 0.0093 0.0278
	3	0.6724	0.0547	0.7535	0.7389	0.8023 0.0496 0.0388 0.0090 0.0151 0.0314
	4	0.5281	0.2398	0.8516	0.8076	0.6807 0.0218 0.0571 0.0107 0.0123 0.0184
	5	0.3511	0.4123	0.5990	0.8046	0.5942 0.0215 0.0458 0.0253 0.0077 0.0426
	7	0.7345	0.2055	0.7536	0.6816	0.7589 0.0095 0.0601 0.0066 0.0162 0.0247
	8	0.6608	0.0404	0.7841	0.7052	0.5965 0.0180 0.0365 0.0135 0.0179 0.0508
	9	0.8646	0.0645	0.6907	0.8304	0.8104 0.0288 0.0257 0.0135 0.0180 0.0155
		0.5373	0.1555	0.6885	0.8014	0.7375 0.0354 0.0452 0.0161 0.0138 0.0217
		0.6698	0.1582	0.7816	0.8701	0.6673 0.0497 0.0588 0.0109 0.0115 0.0279
		0.7619	0.1135	0.7708	0.7547	0.7576 0.0344 0.0456 0.0106 0.0139 0.0220
		0.6693	0.1038	0.7659	0.7923	0.6692 0.0281 0.0320 0.0123 0.0143 0.0410
		0.5573	0.2224	0.6953	0.6959	0.4043 0.0153 0.0480 0.0114 0.0217 0.0491
		0.6043	0.0375	0.7966	0.8497	0.7244 0.0562 0.0242 0.0119 0.0233 0.0584
		0.8759	0.0337	0.6064	0.6045	0.2159 0.0047 0.0310 0.0383 0.0314 0.0730
		0.8542	0.4479	0.6479	0.4238	0.2292 0.0073 0.0240 0.0223 0.0799 0.0605
		0.5532	0.1364	0.7183	0.6609	0.6540 0					

Table 8 .

 8 9 -F-Measures of Evaluation Set using 5% Training Set (CE-PSSS) on Database 2 8.12 Appendix 10 .0123 0.0292 0.0070 0.0120 0.0215 Mean 0.6884 0.1683 0.7309 0.7464 0.6632 0.0208 0.0349 0.0109 0.0166 0.0278

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7642	0.1229	0.6159	0.7942	0.8454 0.0173 0.0551 0.0158 0.0091 0.0121
	3	0.7133	0.0368	0.7661	0.7430	0.8414 0.0287 0.0423 0.0055 0.0107 0.0114
	4	0.5391	0.2753	0.8539	0.8083	0.7037 0.0194 0.0218 0.0061 0.0152 0.0274
	5	0.3655	0.4385	0.6058	0.8062	0.6313 0.0279 0.0284 0.0189 0.0096 0.0316
	7	0.7391	0.2567	0.7567	0.6889	0.7931 0.0120 0.0392 0.0045 0.0148 0.0185
	8	0.6781	0.0146	0.7984	0.7163	0.6247 0.0223 0.0209 0.0131 0.0175 0.0177
	9	0.8996	0.0450	0.6995	0.8487	0.8162 0.0201 0.0246 0.0085 0.0123 0.0142
		0.5779	0.1414	0.6933	0.7967	0.7597 0.0342 0.0442 0.0150 0.0147 0.0225
		0.7140	0.1550	0.7808	0.8748	0.7027 0.0207 0.0347 0.0085 0.0101 0.0258
		0.8077	0.1228	0.7727	0.7606	0.7718 0.0262 0.0613 0.0078 0.0136 0.0128
		0.7023	0.1116	0.7878	0.7958	0.7168 0.0236 0.0442 0.0113 0.0094 0.0287
		0.5760	0.2569	0.7004	0.7077	0.4483 0.0228 0.0305 0.0109 0.0142 0.0267
		0.6398	0.0365	0.8085	0.8685	0.7805 0.0345 0.0343 0.0116 0.0195 0.0413
		0.8789	0.0687	0.6567	0.6129	0.2442 0.0033 0.0254 0.0179 0.0284 0.0678
		0.8608	0.4574	0.6688	0.4511	0.2572 0.0076 0.0219 0.0114 0.0546 0.0650
		0.5581	0.1529	0.7300	0.6685	0.6734 0					

Table 8 .

 8 10 -F-Measures of Evaluation Set using 10% Training Set (CE-PSSS) on Database 2 8.13 Appendix 11 .0175 0.0239 0.0056 0.0103 0.0139 Mean 0.6989 0.1804 0.7367 0.7521 0.6756 0.0185 0.0369 0.0098 0.0146 0.0246

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7714	0.1223	0.6225	0.7963	0.8536 0.0086 0.0529 0.0137 0.0082 0.0121
	3	0.7293	0.0605	0.7665	0.7541	0.8461 0.0142 0.0424 0.0061 0.0126 0.0178
	4	0.5698	0.2698	0.8553	0.8239	0.7090 0.0144 0.0319 0.0078 0.0132 0.0214
	5	0.3759	0.4497	0.6234	0.8089	0.6366 0.0260 0.0243 0.0162 0.0084 0.0384
	7	0.7493	0.2612	0.7576	0.6924	0.8065 0.0104 0.0381 0.0036 0.0094 0.0224
	8	0.6884	0.0281	0.7965	0.7191	0.6431 0.0210 0.0262 0.0127 0.0138 0.0153
	9	0.9147	0.0700	0.7074	0.8503	0.8166 0.0110 0.0217 0.0063 0.0109 0.0125
		0.5884	0.1440	0.7040	0.8081	0.7649 0.0349 0.0460 0.0125 0.0108 0.0137
		0.7424	0.1527	0.7903	0.8806	0.7100 0.0190 0.0802 0.0110 0.0103 0.0233
		0.8111	0.2109	0.7765	0.7592	0.7781 0.0272 0.0380 0.0078 0.0156 0.0144
		0.7130	0.0968	0.7955	0.7929	0.7308 0.0242 0.0489 0.0091 0.0088 0.0233
		0.5889	0.2899	0.7057	0.7113	0.4710 0.0194 0.0336 0.0071 0.0142 0.0282
		0.6377	0.0341	0.8133	0.8801	0.8141 0.0380 0.0439 0.0090 0.0142 0.0361
		0.8769	0.0773	0.6662	0.6290	0.3059 0.0045 0.0245 0.0202 0.0316 0.0478
		0.8658	0.4578	0.6745	0.4568	0.2367 0.0056 0.0131 0.0089 0.0418 0.0538
		0.5599	0.1618	0.7319	0.6708	0.6860 0					

Table 8 .

 8 11 -F-Measures of Evaluation Set using 15% Training Set (CE-PSSS) on Database 2 8.14 Appendix 12 .0120 0.0150 0.0050 0.0166 0.0121 Mean 0.7051 0.1835 0.7402 0.7573 0.6824 0.0172 0.0349 0.0082 0.0146 0.0230

			Mean of F-Measure			Std of F-Measure	
	ID	W	N1	N2	N3	R	W	N1	N2	N3	R
	1	0.7698	0.0913	0.6216	0.7963	0.8509 0.0139 0.0522 0.0159 0.0124 0.0052
	3	0.7436	0.0559	0.7721	0.7490	0.8508 0.0194 0.0421 0.0036 0.0118 0.0149
	4	0.5739	0.2736	0.8607	0.8246	0.7267 0.0165 0.0214 0.0051 0.0155 0.0153
	5	0.3754	0.4537	0.6338	0.8053	0.6564 0.0217 0.0247 0.0142 0.0096 0.0233
	7	0.7458	0.2958	0.7590	0.6993	0.8104 0.0118 0.0340 0.0046 0.0115 0.0190
	8	0.6938	0.0331	0.8001	0.7173	0.6391 0.0228 0.0313 0.0110 0.0182 0.0119
	9	0.9179	0.0460	0.7087	0.8508	0.8325 0.0116 0.0332 0.0058 0.0076 0.0100
	10	0.5890	0.1759	0.7080	0.8101	0.7767 0.0278 0.0421 0.0102 0.0113 0.0145
	11	0.7298	0.1519	0.7974	0.8815	0.7089 0.0185 0.0685 0.0080 0.0071 0.0271
	12	0.8432	0.2029	0.7750	0.7677	0.7825 0.0283 0.0463 0.0062 0.0151 0.0115
	13	0.7308	0.1088	0.7968	0.8031	0.7459 0.0138 0.0429 0.0092 0.0075 0.0105
	18	0.5896	0.3020	0.7072	0.7143	0.4708 0.0154 0.0405 0.0045 0.0146 0.0242
	29	0.6728	0.0195	0.8097	0.8863	0.8282 0.0316 0.0334 0.0082 0.0128 0.0318
	41	0.8834	0.0754	0.6811	0.6461	0.2944 0.0041 0.0197 0.0139 0.0267 0.0579
	49	0.8662	0.4682	0.6794	0.4959	0.2510 0.0060 0.0117 0.0059 0.0355 0.0794
	63	0.5559	0.1816	0.7320	0.6692	0.6932 0					

Table 8 .

 8 12 -F-Measures of Evaluation Set using 20% Training Set (CE-PSSS) on Database 2

	8.15 Appendix 13					
	ID	W	N1	N2	N3	R
	1	0.5897	0.0909	0.2510	0.5670	0.1538
	3	0.6403	0.0000	0.5181	0.5749	0.0000
	4	0.4108	0.3457	0.5274	0.6079	0.4179
	5	0.2356	0.0000	0.4587	0.6603	0.0222
	7	0.6983	0.0000	0.4067	0.6335	0.0279
	8	0.5063	0.0000	0.6233	0.5532	0.0116
	9	0.6984	0.0000	0.4018	0.6248	0.0000
	10	0.3516	0.0000	0.4299	0.7583	0.0000
	11	0.4561	0.0000	0.1658	0.6848	0.0000
	12	0.5976	0.0000	0.4855	0.6639	0.0233
	13	0.6811	0.0000	0.1659	0.6681	0.0486
	18	0.5856	0.2276	0.2769	0.5444	0.1404
	29	0.3345	0.0000	0.6780	0.7444	0.0000
	41	0.5374	0.0000	0.2089	0.3429	0.0000
	49	0.7710	0.0291	0.1896	0.1647	0.0000
	63	0.5416	0.0972	0.3872	0.4352	0.1533
	Mean 0.5397 0.0494 0.3859 0.5768 0.0624

Table 8 .

 8 13 -F-Measures of SF-SSS (with modifications) using MTSU on Database 2 8.16 Appendix 14

	ID Agreement Rate Cohen's Kappa Agreement Rate Cohen's Kappa
		(DE-PSSS)	(DE-PSSS)	(CE-PSSS)	(CE-PSSS)
		0.8152	0.7527	0.7892	0.7189
		0.8637	0.7956	0.8086	0.7149
		0.8147	0.7395	0.7570	0.6602
		0.7258	0.6367	0.6362	0.5115
		0.7919	0.6906	0.7603	0.6541
		0.8496	0.7668	0.7490	0.6130
		0.8861	0.8444	0.8075	0.7398
		0.8006	0.7162	0.7396	0.6297
		0.8546	0.7902	0.7996	0.7087
	10	0.8258	0.7458	0.7878	0.6842
	11	0.8310	0.7534	0.7898	0.6954
	12	0.6883	0.5549	0.6470	0.4968
	13	0.8840	0.8233	0.7893	0.6730
	14	0.8314	0.6848	0.8033	0.6259
	15	0.6642	0.4834	0.6924	0.5306
	16	0.7264	0.5884	0.6561	0.4899

Table 8 .

 8 14 -Agreement Rate and Cohen's Kappa of PSSSs

Movement

√ √ × √Table 3.7 -Comparison among Typical Stochastic Search Algorithms

folk sever: CPU 2xXeon E5-2640; 12 coeurs; 128Go RAM

trot sever: CPU 2xXeon E5-2637; 8 coeurs; 128Go RAM
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High, values between EMGTh1 and EMGTh2 are interpreted as Normal, values lower than EMGTh2 are interpreted as Low. 

Decision Fusion of chin EMG activity

In decision fusion, rules inspired from AASM to make decisions are shown as below.

For stage W: EMGActivity is Normal or High.

For stage N1: EMGActivity is Low.

For stage R: EMGActivity is Low.

In SF-SSS model, digital parameters (e.g.EMGActivity) in the low-level, symbolic interpretation (e.g.High, Normal, Low ) and decision rules in the high-level are inspired from AASM. However, in medical guidance, there has no definition or description on transform process of low-level digital parameters to high-level symbolic interpretation. In other words, from medical guidance, there is no definition or description for guiding setting-up these thresholds. In the first release of SF-SSS model, a Manual Thresholds Setting-Up (MTSU) method was used, this method is described in the next section.

Manual Thresholds Setting-Up Method

Manual Thresholds Setting-Up (MTSU) method was applied in existing SF-SSS [START_REF] Ugon | Fusion symbolique et données polysomnographiques[END_REF]. Values of thresholds are visually determined by the author. MTSU method mainly involves the following steps:

EMGTh1 and EMGTh2 respectively in classifying stage N1. By increasing the value of EMGTh2, more epochs can be correctly classified into stage N1. 

Agreement Rate Comparison between PSSSs and Existing Works

After obtaining the classification results of each stage by using PSSS, Hypnogram is generated according to the writing order of stage N1, R, N3, N2 and W as explained in Section 7.2.0.2. Then Smoothing is applied to detect and correct false sleep transitions for obtaining the final Hypnogram. To evaluate the overall performance of PSSSs, Agreement Rate is adopted. Confusion matrix for the Database 2 using DE-PSSS is presented in Table 7.21 and a heatmap of the same information is shown in Figure 7.13. The ARs for all the stages, except stage N1, are higher than 0.8. The overall AR for five stages also can reaches 0.8. Cohen's Kappa shows a substantial agreement (0.7).

Agreement Rate of PSSSs

Appendix 8.3 Appendix 1

Recall of Existing SF-SSS

Recall of SF-SSS (with modifications)
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