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An E-health System for Personalized Automatic Sleep Stages
Classification

Soutenue le 12 décembre 2016
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Abstract

In this thesis, a personalized automatic sleep staging system is proposed by combining
symbolic fusion and feedback system control technique. Symbolic fusion is inspired by the
decision-making process of clinical sleep staging. It starts from the extraction of digital
parameters from raw polysomnography signals and it goes up to a high-level symbolic
interpretation through a features extraction process. At last, the decision is generated
using rules inspired by international guidelines in sleep medicine. Meanwhile, the symbols
and the features computations depend on a set of thresholds, whose determination is a
key issue. In this thesis, two different FSC algorithms, Differential Evolution and Cross
Entropy, were studied to compute these thresholds automatically.

Individual variability was often ignored in existing automatic sleep staging systems.
However, an individual variability was observed in many aspects of sleep research (such
as polysomnography recordings, sleep patterns, sleep architecture, sleep duration, sleep
events, etc.). In order to improve the effectiveness of the sleep stages classifiers, a person-
alized automatic sleep staging system that can be adapted the different persons and take
individual variability into consideration was explored and evaluated.

The perspectives of this work are based on evaluating the complexity and the perfor-
mances of these algorithms in terms of latencies and hardware resource requirements, in
order to target an personalized automated embedded sleep staging system.
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Résumé

Dans cette thèse, un système personnalisé de stadification automatique du sommeil
est proposé, combinant fusion symbolique et système de contrôle rétroactif. La fusion
symbolique est inspirée par le processus décisionnel mis en oeuvre par les cliniciens ex-
perts du sommeil lors la reconnaissance visuelle des stades de sommeil. Il commence par
l’extraction de paramètres numériques à partir des signaux polysomnographiques bruts.
L’interprétation symbolique de haut niveau se fait par l’intermédiaire de l’extraction de
caractéristiques à partir des paramètres numériques. Enfin, la décision est générée en
utilisant des règles inspirées par les recommandations internationales en médecine du
sommeil. Les symboles et les valeurs des caractéristiques dépendent d’un ensemble de
seuils, dont la détermination est une question clé. Dans cette thèse, deux algorithmes de
recherche différents, Differential Evolution et Cross Entropy ont été étudiés pour calculer
la valeur de ces seuils automatiquement.

La variabilité individuelle a souvent été ignorée dans les systèmes automatiques de
stadification du sommeil existants. Cependant, elle a été démontrée dans plusieurs travaux
de recherche vis à vis de nombreux aspects du sommeil (comme les enregistrements
polysomnographiques, les habitudes de sommeil, l’architecture du sommeil, la durée du
sommeil, les événements liés au sommeil, etc.). Afin d’améliorer l’efficacité des classifi-
cateurs des stades de sommeil, un système automatisé de sommeil automatique adapté
aux différentes personnes et tenant compte de la variabilité individuelle a été exploré et
évalué.
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Chapter 1

Introduction

1.1 Introduction

Sleep is an indispensable part of daily life and contributes to self-repairing and self-
recovering. However, sleep disorders involving signs and symptoms like excessive daytime
sleepiness, irregular breathing or increased movement during sleep, difficulty in sleeping,
and abnormal sleep behaviors are affecting more and more people. It deteriorates the
quality of life and becomes a significant cause of morbidity and mortality [28]. Figure
1.1 presents the prevalence of one typical sleep disorders: insomnia in Europe. Over 26%
people in France were reported suffering with insomnia.

In clinical sleep analysis, an overnight Polysomnography (PSG) test is required for
physicians to give an accurate diagnosis and appropriate treatment. It is usually done by
a technician by placing sensors on the patient’s body for recording multiple bio-signals.
Based on recorded PSG signals, a detailed analysis and interpretation will be given by
a physician (Europe) or a sleep expert (USA) with recommendations for the diagnosis
and treatment. Sleep staging, as a fundamental step of PSG interpretation, needs 3 to
4 hours for physicians to interpret an overnight PSG recordings. American Academy of
Sleep Medicine (AASM) manual, as the gold standard for the sleep study, describes the
definitions of sleep events and sleep stages. Physicians can realize clinical sleep staging by
combining different sleep events they observed from PSG signals into each stage according
to AASM manual.

Figure 1.1 – Prevalence of Insomnia in Europe

Clinical sleep staging is a time-consuming task. Meanwhile, inter-rater reliability con-
cerns also exist due to subjective interpretation and decision by different physicians. In
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[10], 80.6% and 82.0% inter-rater reliability was reported by using Rechtschaffen & Kales
(R&K) (old gold standard for sleep study) and AASM (new gold standard for sleep study),
respectively.

In order to reduce the burden of physicians, automatic sleep staging systems have
attracted extensive attention. Numerous attempts have been undertaken to automate
interpretation of PSG recordings. Most of existing automatic sleep staging systems are
using numerical classification methods without taking medical knowledge or physicians
experience into consideration. Numerical methods are used to learn the patterns between
features and corresponding stages classes. The pattern recognition is usually established
by interaction with a set of training data. Patterns used in the classification of sleep
stages are mainly dependent on the training data. Insignificant patterns may be selected
independent of medical knowledge and without validation from physicians. However, for
physicians, they cannot be easily convinced by these kinds of systems without involving
any medical knowledge; thus, these kinds of systems are not really used by physicians in
clinical practice.

From physician’s perspective, the major issues for most of existing automatic sleep
staging systems can be described as: 1) a system without taking any medical knowledge
into consideration cannot win fully trust from physicians; 2) most of systems are not
yet accepted and validated by physicians. Only by addressing these issues, a system can
really be used in clinical practice for help physicians in diagnosis and treatment of sleep
disorders.

1.2 Thesis Outline

The next chapter explains the major issues of existing sleep staging systems. In chapter
3, state of the art on existing sleep staging systems and thresholds setting-up methods are
presented. In chapter 4, an existing Symbolic Fusion-based Sleep Staging System (SF-
SSS) is presented followed by an improved release in order to enrich the SF-SSS model.
In chapter 5, Manual Thresholds Setting-Up (MTSU) method that used in existing SF-
SSS is introduced, followed by detailed analysis of these thresholds. In chapter 6, an
Automatic Thresholds Setting-Up (ATSU) method based on Feedback System Control
(FSC) is proposed. Two different search algorithms for FSC are evaluated: (1) Differential
Evolution; (2) Cross Entropy. Inspired by ATSU method, Personalized Sleep Staging
System (PSSS) is investigated by combining symbolic fusion and FSC in an original
hybrid expert system. Evaluations of this system are presented in chapter 7. At last, the
conclusion and perspectives are given in chapter 8.



Chapter 2

Problem Statement

2.1 Problem Statement

In order to mimic clinical sleep staging precess by translating AASM and medical
knowledge into computer logic, a Symbolic Fusion-based Sleep Staging System (SF-SSS)
was proposed by Ugon, Isabelle, et al. [76]. SF-SSS starts from the extraction of digital
parameters from raw polysomnography (PSG) signals and goes up to high-level symbolic
interpretation of feature parameters while using thresholds. At last, decision is generated
using rules inspired by international guidelines in sleep medicine and applied to feature
parameters. SF-SSS is a knowledge-based approach, from low-level digital parameters
extraction to high-level symbolic interpretation of feature parameters and decision-making
rules in decision-level, which is directly inspired from the gold standard AASM manual
and medical knowledge. It can be understood, accepted and validated by physicians
according to their knowledge and experience.

SF-SSS model is the first attempt by using symbolic fusion to realize sleep staging.
However, it is only a proof from conception to validation of symbolic fusion for sleep
staging application. There still exist several points which need to be improved in order
to enrich the knowledge-based used in the sleep staging system: (1) Pre-processing of
PSG signals was not included; (2) Not all the sleep patterns described by AASM manual
were implemented; (3) Classification of stage N1 was not performed; (4) After obtaining
Hypnogram based on the output of classifiers, smoothing of Hypnogram to detect and
remove irregular and incorrect sleep transitions was not included; (5) Manual Thresholds
Setting-Up (MTSU) method was performed.

Beside these points motioned above for SF-SSS, there exist several issues which need
further research. These issues exist not only in SF-SSS but also in most of sleep staging
systems. They are described in below.

1. How to realize automatic sleep staging by taking individual variability into consid-
eration, from the conception to implementation, validation and final practical use?

2. How to assess the effectiveness of personalized sleep staging system?

3. Is it necessary to propose a personalized sleep staging system which can take in-
dividual variability into consideration? Or a generalized sleep staging system is
sufficient?

2.2 Context

In this thesis, SF-SSS model is adopted to develop a sleep staging system which can
really be accepted and used for physicians in clinical practice. We start from the comple-
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tion of SF-SSS model by proposing modifications in order to improve the performance of
existing SF-SSS.

Then, thresholds used to transform low-level digital parameters into the high-level
symbolic interpretation of feature parameters are studied. In SF-SSS model, methods
used to extract the digital parameters, symbolic interpretation of feature parameters and
decision rules in making classification of sleep stage are generic. While, thresholds used
to transform digital parameters into a symbolic interpretation of feature parameters are
different. The issues we mentioned above turned out to be thresholds setting-up problems.
To address these issues, we researched from the following parts:

1. Semantic interpretations of sleep events by using thresholds: details of
thresholds dependencies are analyzed; the number of thresholds used to realize clas-
sification of each sleep stage are studied.

Thresholds dependencies among sleep stages have been evaluated to understand
whether same thresholds can be used in different sleep stages or different thresholds
are required among different sleep stages.

Thresholds dependencies among patients have been evaluated to fully understand
whether generalized thresholds are sufficient, or personalized thresholds are required
to take individual variability into consideration.

Number of thresholds needed to realize classification of each sleep stage have been
researched to understand how many thresholds are required for classifying each stage.

2. An automatic way to set-up thresholds is researched.

An automatic thresholds setting-up method based on Feedback System Control
(FSC) is proposed. Inspired by the automatic method we proposed, a personal-
ized sleep staging conception is presented by combining symbolic fusion and FSC.
Symbolic fusion is dedicated to mimic the decision-making process of clinical sleep
staging. Feedback System Control (FSC) is designed to provide personalized thresh-
olds for Symbolic Fusion in transforming digital parameters into a symbolic inter-
pretation of feature parameters while taking individual variability into considera-
tion. Differential Evolution-based Personalized Sleep Staging System (DE-PSSS)
and Cross Entropy-based Personalized Sleep Staging System (CE-PSSS) are pre-
sented by using two different search algorithms Differential Evolution and Cross
Entropy respectively.

3. Evaluations on a new clinical database for proposed personalized sleep staging
systems are presented.

The proposed systems are evaluated on a clinical database of PSG recording from
16 subjects (9 males and 7 females) ranging from 22 to 82 years old. These PSG
recordings are fully scored by a physician following the international guidelines in
sleep medicine.



Chapter 3

State of the Art

In this chapter, basic information of sleep analysis is introduced. Meanwhile, the state
of the art of existing automatic sleep staging systems is presented. Finally, thresholds
setting-up problems in sleep staging systems are described followed by a review of existing
thresholds setting-up methods.

3.1 Introduction on Sleep Analysis

This section mainly introduces basic information of sleep analysis involving, polysomnog-
raphy (PSG) signals, manuals of clinical sleep staging for better understanding the field
of sleep analysis.

3.1.1 Polysomnography (PSG)

Polysomnography is the gold standard test by recording the biophysiological changes
that occur during sleep to diagnose sleep disorders. PSG test generally is conducted by
a technician using PSG device (Figure 3.1). Several senors (Figure 3.2) will be put on a
patient for recording multi-signals like: EEG1, EOG2, EMG3, SpO24, ECG5, nasal and
oral airflow, limb movement, and body position as shown in Figure 3.3.

Figure 3.1 – PSG Device Figure 3.2 – PSG Recordings

1Electroencephalogram
2Electrooculogram
3Electromyogram
4Oxygen Saturation
5Electrocardiogram
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Figure 3.3 – PSG Signals

In sleep staging, EEG, EOG, and EMG are three classical physiological signals which
are used for the fundamental sleep analysis and they are described in below:

� EEG is a recording of the electrical activity of the brain from the scalp.

� EOG is a recording of the voltages generated by eyes movements.

� EMG is a recording of chin muscle tone activity.

3.1.2 Clinical Sleep Staging Manual

In 1968, Rechtschaffen and Kales (R&K) sleep scoring manual was published as the
first standardized criteria for sleep staging [55]. On the basis of R&K manual, there
are 6 sleep stages, namely Stage Wake, S1, S2, S3, S4 and REM. Even R&K manual
was considered as the only widely standard for describing the human sleep process for
approximately 40 years, it has also been criticized for leaving plenty of room for subjective
interpretation, which leads to a great variability in the visual evaluation of sleep stages
[26].

In 2007, American Academy of Sleep Medicine (AASM) modified the R&K standard
guidelines for sleep classification and released a new edition of sleep staging criterion.
AASM manual [67] is the result of a review of the literature, analysis and consensus
which addresses 7 topics: reporting parameters for PSG, technical and digital specifica-
tions, visual scoring, arousal, cardiac and respiratory events, movements and pediatric
scoring. According to AASM manual,there are five sleep stages: stage W, Non-Rapid Eye
Movement (stage N1, N2 and N3) and Rapid Eye Movement (stage R). Different stages
are used to describe different state from awake to deep sleep.

� Stage W represents the wake state, ranging from full alertness through early stages
of drowsiness.

� Stage N1 is considered as a transition between wake and sleep.

� Stage N2 muscle activity decreases and conscious awareness of the outside world
begins to fade completely.

� Stage N3 often referred as deep sleep or slow-wave sleep and during this period the
sleeper is even less responsive to the outside environment.

� Stage R is the stage where dreams occur and eyes move rapidly. While the chin
muscle tone activity stays low.
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In AASM manual, it describes the definitions of sleep events (e.g. Sleep Spindles, K-
Complex,etc.) and rules involving sleep events in order to score sleep stages. Details of
main rules described in AASM for guidance the classification of different sleep stages are
shown in Table 3.1. Physicians can realize clinical sleep staging by combining different
sleep events they observed from PSG signals into each stage according to AASM manual.

Sleep Stages AASM

W A. Score epochs as stage W when more than 50% of the epoch has alpha
rhythm over the occipital region.
B. Score epochs without visually discernible alpha rhythm as stage W if
ANY of the following are present:

a. Eye blinks at a frequency of 0.5-2 Hz
b. Reading eye movements
c. Irregular, conjugate rapid eye movements associated with normal

or high chin muscle tone

N1 A. In subjects who generate alpha rhythm, score stage N1 if the alpha
rhythm is attenuated and replaced by low-amplitude, mixed-frequency ac-
tivity for more than 50% of the epoch.
B. In subjects who do not generate alpha rhythm, score stage N1 commenc-
ing with the earliest of ANY of the following phenomena:

a. EEG activity in range of 4-7 Hz with slowing of background fre-
quencies by ≥ 1 Hz from those of stage W

b. Vertex sharp waves
c. Slow eye movements

N2 If EITHER OR BOTH of the following occur during the first half of that
epoch or the last half of the previous epoch:

a. One or more K complexes unassociated with arousals
b. One or more trains of sleep spindles

N3 Score stage N3 when ≥ 20% of an epoch consists of slow wave activity, irre-
spective of age.

R Score stage R sleep in epochs with ALL of the following phenomena:
a. Low-amplitude, mixed-frequency EEG
b. Low chin EMG tone
c. Rapid eye movements

Table 3.1 – AASM rules for sleep staging

3.1.3 Hypnogram

Hypnogram is used to represent the stages of sleep as a function of time. It provides
a visual depiction of the symbolic behavior of sleep. In clinical sleep staging, physicians
can realize sleep scoring by interpreting PSG recordings according to AASM manual.
Meanwhile, physicians also take the succession of stages through time into consideration in
order to integrate all scored stages for generating a Hypnogram. A Hypnogram normally
consists of 5 to 6 sleep cycles. A complete sleep cycle takes an average of 90 to 110
minutes. The first sleep cycle has relatively short REM sleep and long periods of deep
sleep but later in the night, REM periods lengthen and deep sleep time decreases. Figure
3.4 illustrates hypnogram of a health person. However, in reality, hypnograms deviate
from person to person. Especially, for the person with sleep disorders, hypnogram is
more disrupted. Figure 3.5 shows a Hypnogram of a patient who suffers from severe sleep
apnea.
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Figure 3.4 – An Example of Hypnogram

Figure 3.5 – An Example of Hypnogram of Sleep Apnea Patient

3.2 Automatic Sleep Staging Systems

Due to the time-consuming and inter-rater reliability of clinical sleep staging, auto-
matic sleep staging systems have attracted extensive attention. Methods used in current
sleep staging systems can be classified in machine learning methods, rule-based methods,
hybrid method and symbolic fusion method. The details are discussed in the following
section.

3.2.1 Machine Learning Methods

Machine learning is the most widespread method in sleep staging. Typical approaches
in machine learning such as Decision Tree, Artifical Neural Network (ANN) and Support
Vector Machine (SVM) have been widely used in classifying sleep stages. Digital param-
eters are extracted from PSG signals using time-domain, frequency-domain or non-linear
analysis; then different approach is used to learn the patterns between the digital pa-
rameters and the corresponding classes. The pattern recognition is usually established
by interaction with a set of training data. For the training set, it needs to be scored by
physicians in advance. Brief description of these methods is presented in below.

3.2.1.1 Decision Tree

The history of tree methods can be traced back to 1963 [51], since then, Decision tree
became very popular. It applies the tree structure which classifies instances from the root
to leaf. Each node in the tree specifics an attribute of the instance; each branch from
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the node corresponds to one of the possible values for this attribute and leaves represent
class labels. An instance is classified by starting at the root node of the tree, checking
the specified attribute by this node, then moving down the branch which corresponds to
the value of the attribute. This process is repeated until it reaches the leaf. Figure 3.6
shows an example of a simple decision tree.

In 2002, an automatic sleep staging system using decision tree was proposed by
Masaaki [25]. Six feature parameters are extracted from five biological signals: 2 EEG
channels, 2 EOG channels and one EMG channel. In this approach, it takes a tree struc-
ture in which the explanatory attributes (feature parameters) correspond to the nodes,
their values correspond to the branches, and the classes (sleep stages) are assigned to
the leaves. Five decision trees are built based on the training set which involving all the
database. Then, classification is made based on the majority decision from the results of
these five trees.

In 2012, an automated sleep staging system was proposed based on a single EEG
channel using random forest [20]. In 2013, based on the heart rate variability, an automatic
system to identify Stage W, REM and NREM was proposed using random forest [84].

Besides these Decision Tree methods, there exist several works also using a tree struc-
ture to make the decision for classifying different sleep stages [46, 44]. Figure 3.6 presents
a tree build in [46] while using 13 nodes. Comparisons among sleep staging systems based
on Decision Tree methods are shown in Table 3.2.

Figure 3.6 – An example of Decision Tree

As one of the most popular machine learning methods, decision tree is very intuitive
and easy to explain with a tree structure. It also can predict a classification with fast
speed. However, to build a tree, it requires a large training set. Meanwhile, without
proper pruning or limiting tree growth, it tends to over-fit the training data which may
make poor classifications.
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Authors Signals Database Classification Results

Masaaki et al. EEG, EOG 1 male SWS(S3,S4),SREM, Agreement Rate:
[25] EMG training: 80% & testing: 20% S1,S2,S3,S4,MT6 81. 5%

Luay et al. 16 subjects Accuracy:
[20] EEG training: 66% & testing: 34% W,N1,N2,N3,R 83%

Meng et al. 45 subjects Accuracy:
[84] ECG training: 98% & testing: 2% W,NREM,REM 72.6%

Sheng-Fu et al. EEG,EOG 20 subjects W,S1,S2, Agreement Rate:
[46] EMG training: NM7 & testing: 80% SWS(S3,S4),R 87%

Khai et al. EEG,EOG 5 subjects W,N1,N2, Agreement Rate:
[44] EMG training: NM 7 & testing: NM7 N3,R,MT6 78.8%

Table 3.2 – Comparison among Decision Tree methods

3.2.1.2 Artificial Neural Network

ANN, as an effective approach for pattern recognition and classification, inspired by
the architecture and function of the human brain. As the human brain can be described
as a biological neural network (an interconnected web of neurons transmitting elaborate
patterns of electrical signals. Dendrites receive input signals and, based on those inputs,
fire an output signal via an axon), ANN can be described as a network of neurons that
receives inputs, processes those inputs, and generates an output [64]. The network are
typically organized in three layers: input, hidden and output layer. The input layer serves
to introduce the information into the network. The hidden layers represent a connection
between the input and output layers. The final output of the whole network forms in the
output layer. All neurons in adjacent layers are interconnected and each connection is
defined as a weight and is represented with a rational number.

In 1993, MultiLayer Perceptron (MLP) as a typical technique of Artificial Neural
Network was proposed to realize automatic sleep staging in [62]. The architecture of
this work is shown in Figure 3.7. Seventeen feature parameters were extracted from 4
biological signals: 2 EEG channels, one EOG horizontal channel and one EMG channel.
Firstly, a three-layer perceptron network architecture with a 17-unit input layer, a 10-
unit hidden layer and a 6-unit output layer was build based on a training set. Secondly,
ambiguity epochs and artifacts epochs were rejected before the classification. Finally,
automatic sleep staging was performed.

6Movement
7 Not Mentioned
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Figure 3.7 – Structure of an Artificial Neural Network in [62]

Since 1993, several research works have also explored the MLP technique in automatic
sleep staging [37, 71] which associates different input patterns to a set of output classes
during the training set. In 2005, an automatic sleep staging system architecture with
5-unit input layer, a 6-unit hidden layer and a 6-unit output layer based on one channel
EEG was proposed [37]. In 2010, a multi-layer neural network with two hidden layers that
simultaneously employs EEG, EMG and EOG was proposed [71]. Comparisons among
sleep staging systems based on ANN methods are shown in Table 3.3.

ANN has the learning ability to form its own structure automatically based on train-
ing instances, which is robustness to noise and environment. However, when additional
learning is performed based on some new training instances, the weights in the network
are often changes. A long learning time is required if additional learning is performed by
integrating all training instances [25].

Authors Signals Database Classification Results

Nicolas et al. EEG,EOG 12-night recordings W, MT6, S1, Agreement Rate:
[62] EMG training: 51% & testing: 49% S2, S3, S4, REM 80. 6%

Nizar et al. 1 male W,N1,N2, Agreement Rate:
[37] EEG training: NM7 & testing: NM7 N3,REM 76%

Tagluk et al. EEG, EOG, 21 subjects S1,S2, Accuracy:
[71] EMG training: 98% & testing: 2% S3,R 74.7%

Table 3.3 – Comparison among Artificial Neural Network methods

3.2.1.3 Support Vector Machine

Support Vector Machine was introduced by Vladimir N. Vapnik which constructs a
linear classifier by finding the hyperplane that maximizes the margin between two classes
in 1963 [78]. In 1999, nonlinear classifiers by applying the kernel trick to maximum-
margin hyperplanes were proposed in non-linear classification problems [79]. As SVM is
originally designed for binary classification, in order to solve multi-class scenario, different
frameworks are proposed involving one-against-one and one-against-all. By constructing
and combining several binary classifiers, these frameworks are able to perform multi-
class classification by reducing a multi-class problem to binary ones. The one-against-all
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framework constructs k separate binary classifiers for k-class classification. The i − th
binary classifier is trained using the data from the i − th class as positive examples
and the remaining (k− 1) classes as negative examples. During the test, the class label is
determined by the binary classifier that gives maximum output value. Another framework:
one-against-one, it evaluates all possible pairwise classifiers and thus induces k(k − 1)/2
individual binary classifiers. Applying each classifier to a test example would give one
vote to the winning class. A test example is labeled to the class with the most votes.

In 2005, six binary classifiers were constructed in classifying sleep stages into four
classes (Wake, Light Sleep, Slow Wave Sleep and REM) by applying one-against-one
framework [23]. A common Radial Basis Function (RBF) kernel was used to construct
each binary classifier based on twenty-three feature parameters which were extracted from
EEG. In classification part, each binary classifier is considered to be a voting, the class
label of highest number of votes was assigned as the final class label. Based on one-
against-one framework, a sleep staging system with ten binary classifiers combining EEG,
EOG and EMG was proposed in 2010 [50]. Sleep stages were classified into five different
stages (Wake, S1, S2, S3&S4 and REM).

In 2014, a sleep staging system based on one-against-all framework were proposed
[1]. Five classes binary classifiers were constructed on basis of linear kernel function in
classifying Stage Wake, S1, S2, S3 and S4. Each classifier was constructed to separate one
class from the rest four classes. In the classification, the final class label was determined
by the binary classifier that gives maximum output value. Comparisons among sleep
staging systems based on SVM methods are shown in Table 3.4.

For SVM-based sleep staging system, it has high algorithmic complexity and requires
extensive memory. For one-against-one framework-based sleep staging system, more bi-
nary classifiers need to be constructed. While, for one-against-all framework-based sleep
staging system, it imbalances the training set and does not take the competence of clas-
sifiers into consideration in the classification part.

Authors Signals Database Classification Results

Steinn et al. EEG,EOG 4-night recordings W, LS(S1,S2), Agreement Rate:
[23] EMG training: 75% & testing: 25% SWS(S3,S4),R 76%

Antonio et al. EEG,EOG 9-night recordings W,S1,S2 Agreement Rate:
[50] EMG training: 33% & testing: 33% SWS(S3,S4),R 70%

Khald et al. 13 subjects W,S1,S2, Agreement Rate:
[1] EEG training: 80% & testing: 20% S3,S4 92%

Table 3.4 – Comparison among Support Vector Machine method

3.2.2 Rule-based Methods

In 2011, a rule-based inference method was proposed by Sheng-Fu Liang [45]. Nine
digital parameters are extracted according to R&K manual. Total 14 fuzzy rules based on
these digital parameters are applied in a fuzzy inference system to realize sleep staging.

Sleep staging based on inference system using a set of rules is also proposed in [18].
Eight digital parameters are extracted according to AASM manual. Based on these digital
parameters, total 111 fuzzy rules are used in a fuzzy inference system to perform sleep
staging.

In [45, 18], digital parameters are extracted based on the medical guidance. However,
instead of directly translating R&K or AASM manual into machine rules which can be
recognized by the computer, set rules are manually defined according to the physician’s
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experience and the distributions of digital parameters respecting to various sleep stages.
Directly translating R&K or AASM manual into machine rules is very challenge because
of the ambiguous and implicit of information content from the medical guidance.

Authors Signals Database Classification Results

Sheng-Fu et al. EEG,EOG 16 subjects W,S1,S2, Agreement Rate:
[45] EMG training: 20% & testing: 80% SWS(S3,S4),R 87%

Diego et al. EEG,EOG 33 subjects W,N1,N2, Agreement Rate:
[18] EMG training: NM7 & testing: 100% N3,R 84%

Table 3.5 – Comparison among Rule-based methods

3.2.3 Hybrid Methods

Consider advantages/disadvantage of machine learning and rule-based methods, hy-
brid methods have been proposed in the last few years. Hybrid method either combines
two different machine learning methods or combine machine learning method with rule-
based method.

In 2011, Haoyu Ma et al. proposed a hybrid classification method using an artificial
neural network and decision tree to realize automatic sleep staging [48]. However, inherent
limitation in this method is that it cannot separate W and S1 stages.

In 2015, Tarek Lajnef et al. presented a hybrid classification method using decision
tree and support vector machine [40]. The overall accuracy report for this method is high
except for stage S1. This method is not suitable to distinguish stage S1 with stage W
with high accuracy.

Beside [48, 40], there is also another hybrid method combine rules with machine learn-
ing method [19]. However, the improvement of accuracy of the hybrid method is not
clearly instead of the complexity of algorithm increases. Comparisons among sleep stag-
ing systems based on hybrid methods are shown in Table 3.6.

Authors Signals Database Classification Results

Haoyu et al. NM7 W,(W,S1),S2, Agreement Rate:
[48] EEG training: NM7 & testing: NM7 SWS(S3,S4), R 88.8%

Tarek et al. EEG,EOG 15 subjects W,S1,S2, Agreement Rate:
[40] EMG training: 67% & testing: 33% SWS(S3,S4),R 74%

Farag et al. 13 subjects W,S1,S2, Accuracy:
[19] EEG training: 55% & testing: 45% S3,R 85.18%

Table 3.6 – Comparison among Hybrid methods

3.2.4 Symbolic Fusion Method

Symbolic fusion is an efficient decision-making technique involving interdisciplinary
among signal processing, artificial intelligent, statics and so on. It has been proven to
be efficient to fuse information from different sources, possibly heterogeneous. Consider-
ing own limitations and uncertain perceptions from every single source, symbolic fusion
provides enhanced and complementary perceptions combining different sources which in-
crease overall accuracy.
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Instead of only depending on numerical classification methods like machine learning
methods, Symbolic Fusion based method was proposed to realize sleep staging [76] in
2013 which adopts three level architecture proposed by Dasarathy as shown in Figure 3.8.
It uses AASM manual as a guidance to imitate clinical sleep staging process. With the
cooperation between engineers and clinicians, a set of digital parameters was extracted
using signal processing methods; then these digital parameters were transferred into sym-
bolic features using manual interpretation of boundaries definition; lastly, a composite
decision for sleep staging based on symbolic features and pre-defined rules in accordance
with AASM was performed. In comparison to other works, this is the only method based
on knowledge instead of based on data.

It has been evaluated on a database of 16 subjects (4 males and 12 females) ranging
from 26 to 67 years old. Agreement Rate can reach 76%, 54%, 60% and 71% for stage W,
N2, N3 and R respectively.

Figure 3.8 – Symbolic Fusion-based Sleep staging System Model

3.3 Thresholds Setting-Up Problem and Methods

3.3.1 Thresholds Setting-Up Problem

Thresholds have been widely used in existing sleep staging systems. Three typical
applications of thresholds are described below.

� Artifacts Detection

To detect and reject artifacts, thresholds have been used in [72]. A pre-defined
value was defined as the threshold to differentiate the boundary of artifacts and
useful signals. Recorded PSG data which exceeds the threshold is considered to be
artifact, otherwise, it considered as useful data.

� Body Movement Detection

In [47], thresholds were used to detect the body movement. A fixed value was defined
as threshold to differentiate body movement and non-body movement.

� Differentiate Different Features

In rule-based and Symbolic Fusion sleep staging systems, thresholds are widely ap-
plied in transforming digital parameters into linguistic or symbolic features in order
to model inference process under the guidance of medical knowledge [45, 46, 76].

The boundaries of linguistic or symbolic features are very flexible. In clinical prac-
tice, physician may adjust the boundaries for each linguistic or symbolic feature ac-
cording to his or her experience and patient information. In sleep staging systems,
thresholds used to determine the boundaries in differentiating different features also
should have high flexibility which can take individual variability into consideration.
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Despite thresholds have been widely applied, there exists very limited research on
how to set up these thresholds due to the following reasons: 1) To build a mathematical
model or a threshold function to differentiate boundary requires a set of data with suffi-
cient quantity and adequate quality; 2) There is lack of uniformity between subjects and
thresholds variability exists.

Several methods to set up thresholds used in existing research are described below:

� Set up a fixed value for all the subjects.

It is a simply way to set up thresholds, as shown in [47]. However, it is not suitable to
deal with high inter-subject variability PSG signals in sleep staging analysis. Even
with the normalization process, a fixed value is not sufficient.

� Manually assigned different values to the thresholds for different subjects.

It takes individual variability into consideration, as shown in [45, 46, 76], which is
more precise than using a fixed value for all subjects. While, it requires manual
efforts and it is a time-consuming process.

� List several possible thresholds values and choose the optimal values for
the thresholds.

Several possible thresholds values are enumerated, and the values which can reach
highest agreement rate among enumerated values are selected as the optimal values
for the thresholds [80]. The accuracy of this method highly dependents on values it
enumerates. With the number and range of thresholds increase, this method cannot
be an effective method.

Besides the methods listed above, Fuzzy Logic also be proposed in setting-up threshold
as shown in next section. Meanwhile, a possible Thresholds Setting-Up Method using
Feedback System Control technique is presented followed by Fuzzy Logic.

3.3.2 Thresholds Setting-Up Method: Fuzzy Logic

To solve Thresholds Setting-Up problem, fuzzy logic was proposed in recognition of
electroencephalogram pattern [29, 31]. Instead of directly setting values of thresholds for
the boundaries to differentiate different features, soft boundaries were applied in fuzzy
logic. A generic fuzzy logic system is composed of three parts: Fuzzification, Fuzzy
Inference Engine and Defuzzification. Crisp inputs are fuzzified into linguistic values to
be associated with the input linguistic variables. After fuzzification, the inference engine
refers to the fuzzy rule base containing fuzzy IF-THEN rules to derive the linguistic values
for the intermediate and output linguistic variables [69]. Once the output linguistic values
are available, the defuzzifier produces the final crisp values from the output linguistic
values.

However, membership functions need to define in Fuzzification and thresholds still
requires to be set to transfer linguistic values into the final crisp values in Defuzzification.

3.3.3 Thresholds Setting-Up Method: Feedback System Control

In 2008, a generic platform technology Feedback System Control was proposed by
Pro.Chih-Ming Ho [82]. It can be used to find optimal input parameters combination for
guiding the complex system toward to the desired state, which involving four parts: Input
Stimuli, Complex System, Objective Functions and Stochastic Search Algorithm.
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With its robustness and rapid ability in searching and discovering combinatorial pa-
rameters, this technique has been applied in biological cells domain, it has been demon-
strated to be very effective in optimizing the combinatorial drugs for eradicating cancers
[65], inhibiting viral infections [14, 82] and maintaining human embryonic stem cells [74].

3.3.3.1 Typical Stochastic Search Algorithms for Feedback System Control

There are several typical Stochastic Search Algorithms: Gur Game, Evolutionary Algo-
rithm, Simulated Annealing, Tabu Search, Ant Colony Optimization and Cross Entropy.
In this section, different types of SSA are introduced and the comparisons among these
SSAs are also presented.

� Gur Game

Gur Game is a simple, but very popular approach [73, 75]. It is useful for the
global optimization problems, where the objective function may be non-convex, non-
differentiable, and possibly discontinuous over a continuous or discrete domain.

Gur Game is based on biased random walks of finite-state automate. The automate
describe a set of parameters with assigned values and a set of rules is included for
determining how the different values of the parameter switch from one value to
the other. Each value of the parameter is referred as a state of the automaton.
The overall goal of the automated design is to have the parameters to self-organize
(choose the optimal values) in an attempt to maximize the overall performances.

� Evolutionary Algorithm

Evolutionary Algorithm is a generic population-based metaheuristic optimization
algorithm proposed in 1996 [4]. It is inspired by biological evolution which proposed
by Charles Darwin [11].

In Darwin’s Theory of Evolution, the adaptive change of species obeys the principle
of natural selection, which means individuals that are more fit have better potential
for survival, as in the well-known phrase ” survival of the fittest ”. In a nutshell, as
random genetic mutations occur within an organism’s genetic code, the beneficial
mutations are preserved because they aid survival. These beneficial mutations are
passed on to the next generation. Over time, beneficial mutations accumulate and
the result is an entirely different organism. In Evolutionary Algorithm, individuals
among a population which has higher fitness function values in term of solutions
quality can be survived. Survived individuals are taking place after the mutation,
recombination, and selection in simulating biological evolution. Typical Evolution-
ary Algorithm like Differential Evolution and Genetic Algorithm have been widely
applied in System Optimization [56], Scheduling [53], and Feature Selection[85].

� Simulated Annealing

Simulated Annealing (SA) is a popular stochastic algorithm proposed by Scott Kirk-
patrick [39] in 1983. It has been widely applied in Network Design [15], Sequencing
[32].

SA is inspired from the physical process of annealing in metal. Annealing involves
heating and cooling a material to alter its physical properties due to the changes in its
internal structure. Heat a material over melting point and then cool it, the material
properties of the substance depend on the rate of cooling. To obtain a perfect or
nearly perfect crystal, it must be annealed by first melting and then cooling very
slowly. If the substance is cooled very quickly, a crystal with many defects will
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be formed. Simulated annealing interprets slow cooling as a slow decrease in the
probability of accepting worse solutions as it explores the solution space. It models
the physical process of heating a material and then slowly lowering the temperature
to decrease defects, thus minimizing the system energy.

� Tabu Search

Tabu Search, proposed by Fred W.Glover in 1986 [21] and formalized in 1989 [22].
It is a metaheuristic search method employing local search methods which can be
used for solving combinatorial optimization problems. It has been widely applied in
VLSI design [60], finical analysis [17] and scheduling [16].

Tabu search uses a local search procedure to iteratively move from one potential
solution to its best neighbor, even if this results in a deterioration of the performance
measure value. It uses memory structures to record information about solution
properties that change in moving from one solution to another. If a potential solution
has been previously visited within a certain short-term period or if it has violated
a rule, it is marked as ”tabu” (forbidden) so that the algorithm does not consider
that possibility repeatedly.

� Cross Entropy

Cross Entropy was initially proposed to estimate probabilities of rare events for
complex stochastic networks by Rubinstein [59] in 1997. It has been extended to
solve combinatorial optimization problems in 1999 [58], which turned out to be an
effective method.

Cross Entropy involves an iterative procedure where each iteration can be broken into
two phases: 1) Generate a random data sample (trajectories, vectors, etc) according
to a specific mechanism. 2) Update the parameters of the random mechanism based
on the data to produce the ”better” sample in the next iteration. By applying
these two phases in each iterative procedure, it has been widely applied in Buffer
Allocation [3], Medical Image Segmentation [83], Network Reliability Estimation [30]
and so on.

� Ant Colony Optimization

Ant Colony Optimization (ACO) proposed by Marco Dorigo in 1992 which initially
aimed to search for an optimal path in a graph, based on the behavior of ants seeking
a path between their colony and a source of food [9].

Within ants, the media to communicate among individuals information regarding
paths and used to decide where to go called pheromone trail. Initially, ants wander
randomly, and upon finding food return to their colony while laying down pheromone
trails. If other ants find such a path, they are likely to follow the trail instead of
keep traveling randomly. If they eventually find food, the pheromone trail will be
reinforced. However, the pheromone trail also will evaporate over time which results
in reducing its attractive strength. The more time it takes for an ant to travel down
the path and back again, the more pheromones will evaporate. In comparison, a
short path can get marched over more frequently, and the pheromone density is
higher than longer paths.

Based on the original idea, ACO has also been diversified to be applied in Water
Distribution Systems [49], Routing in Telecommunication Network [13] and so on.

SSAs like Tabu Search, Gur Game, Simulated Annealing, Evolutionary Algorithm and
Cross Entropy, it has its own pros and cons. While in order to apply SSA for sleep stag-
ing system applications, the following constraints should be considered: 1) The search
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algorithm can search for the optimal thresholds combination efficiently and should be
robust. For SSAs, initial values of thresholds will be generated to start searching of the
optimal thresholds. Without knowledge of initial values, the search algorithm used in
sleep staging system applications should be insensitive to initial values. 2) The search
algorithm should be flexible. The search algorithm used in sleep staging system applica-
tions should be flexible and adaptive to the increment or decrement of thresholds. 3) In
consideration of the further work like an implementation of sleep staging system applica-
tions or integrated it with other portable PSG systems for sleep evaluation or home care
application, constraints of hardware implementation should also be considered. Table 3.7
shows the comparison among several typical SSAs.

Properties Gur Game DE SA Tabu ACO CE

Robustness(Insensitive to initial values) ×
√ √

×
√ √

Parallel Searching ×
√

× ×
√ √

Non-Memory-Based Structure
√ √ √

×
√ √

Easy to Implement
√ √ √

× ×
√

Flexible
√ √ √ √

×
√

Table 3.7 – Comparison among Typical Stochastic Search Algorithms

Among these SSAs, Differential Evolution and Cross Entropy are more suitable for
sleep applications. Differential Evolution (DE) is a popular and efficient method of evo-
lutionary algorithm, it owns many advantages like: 1) DE can mimic natural biological
evolution and provide a fast and stable convergence; 2) It is less sensitive to initial pop-
ulation; 3) It is a parallel search method; and 4) It can improve fitness function value
iteratively. Cross Entropy (CE) also owns several advantages: 1) CE is a parallel search
method; 2) It is based on rigorous mathematical and statistical principles; 3) It provides
a sample adaptive procedure.

3.4 Conclusion

Compared with other automatic sleep staging methods, symbolic fusion can mimic
decision-making process of clinical sleep staging and it has the following features :

1. it can integrate data from different sources, like EEG, EMG and EOG which can
provide enhanced and complementary decision in comparison to single source based
methods;

2. it can deduce a composite decision because it is based on the cooperation between
engineers and clinical experts which can involve medical knowledge and physician’s
experience;

3. it has less complexity and high flexibility which can represent information by using
low-level to high-level architecture.

However, to improve existing symbolic fusion-based sleep staging system, the following
points should be taken into consideration:

1. Pre-processing of PSG signals;

2. Involve more sleep patterns described by American Academy of Sleep Medicine
(AASM) manual;
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3. Classification of stage N1;

4. After obtaining Hypnogram based on the output of classifiers, Smoothing of Hypno-
gram in order to detect and remove incorrect sleep transitions.

Besides of these points, there exist an inherent flaw: manual thresholds setting up method
was applied in transforming digital parameters into the symbolic interpretation of feature
parameters.

In this thesis, a personalized automatic sleep staging system is proposed based on
a hybrid expert system that combines Symbolic Fusion and Feedback System Control
(FSC) technique. Symbolic fusion is used to mimic sleep staging process by integrating
knowledge of experts in scoring of PSG signals according to AASM manual; meanwhile,
Feedback System Control technique is adopted to realize automatic thresholds setting up
with the consideration of individual variability. In order to directly apply existing symbolic
fusion method, some modifications are presented in order to improve the accuracy and
overcome the limitations. Personalized thresholds can be provided automatically using
FSC technique into order to realize personalized automatic sleep staging.



Chapter 4

Symbolic Fusion-based Sleep Staging
System

In this chapter, Symbolic Fusion paradigm is introduced. Then, an existing Symbolic
Fusion-based Sleep Staging System (SF-SSS) model (proposed by Ugon, Isabelle, et al.)
is presented. This model was reached good classification results on a small database.
However, this model is not yet completed. In this chapter, I present this model and my
contributions in order to enrich this model.

4.1 Symbolic Fusion Conception

Symbolic fusion is an efficient decision-making technique involving interdisciplinary
among signal processing, artificial intelligent, inference methods, statics and so on. It
has been widely applied in image processing [7, 41], medical analysis [77], TV program
[43] which proven to be efficient to fuse information from different sources. Considering
uncertain perceptions from every single source, symbolic fusion can provide enhanced and
complementary perceptions combining different sources which increase overall accuracy.

There exist several different architectures for symbolic fusion, two typical architectures
are introduced in the following paragraph.

4.1.1 JDL Architecture

In 1991, the Joint Directors of Laboratories (JDL) provided a definition for symbolic
fusion as ”A multi-level process dealing with the association, correlation, combination of
data and information from single and multiple sources to achieve the refined position,
identify estimates and complete and timely assessments of situations, threats and their
significance” [34]. Meanwhile, JDL also presented a five-level architecture for symbolic
fusion.

� Level 0: Source Preprocessing

Source Preprocessing is the lowest level of the process, it provides estimation and
prediction of signal/object observable states on the basis of signal level data associ-
ation and characterization. It includes signal detection and feature extraction which
can reduce the amount of data and maintain useful information for the high-level
processes.

� Level 1: Object Assessment

Object Assessment provides estimation and prediction of entity states on the basis
of observation-to-track association, continuous state estimation and discrete state

32
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estimation. It includes spatiotemporal alignment, association, correlation, cluster-
ing or grouping techniques, state estimation, identity fusion, and the combining of
features that were extracted from signals.

� Level 2: Situation Assessment

Situation Assessment estimates and predicts of relations among entities, to include
force structure and cross force relations, communications and perceptual influences,
physical context, etc.

� Level 3: Impact Assessment

Impact Assessment performs estimation and prediction of effects on situations of
planned or estimated/predicted actions by the participants; to include interactions
between action plans of multiple players.

� Level 4: Process Refinement

Process Refinement involves adaptive data acquisition and processing to support
mission objectives.

JDL architecture can be used to support human decision-making by refining and reducing
the quantity of information from the data instead of knowledge.

4.1.2 Dasarathy Architecture

In 1997, a three-level architecture was proposed by Dasarathy [12] involving data
fusion, feature fusion and decision fusion.

� Data Fusion

Data fusion performs signal detection and digital parameters extraction which can
maximize useful information and minimize noise and artifacts. It is conducted im-
mediately after the data are gathered from the sensors; then signal processing algo-
rithms are employed to extract features or characteristics that describe an entity in
the environment.

� Feature Fusion

Feature fusion performs feature set uniformization and normalization, feature re-
duction and concatenation, and feature matching. It is used to improve, refine or
obtain a set of features based on the digital parameters which were extracted in data
fusion.

� Decision Fusion

In decision fusion, a composite decision is generated based on inference methods.
Inference methods which are tolerant of imprecision, uncertainty, partial truth and
approximation are usually applied.

Different from JDL architecture, Dasarathy architecture can be used to mimic human
decision-making by modeling directly from the knowledge. In comparison with Dasarathy
Architecture, JDL Architecture focused on providing communications among fusion re-
searchers and implementation engineers, rather than a prescription for implementing fu-
sion system or exhaustive enumeration of fusion functions and techniques [24]. While
Dasarathy Architecture defined a very useful categorization of fusion functions in terms
of the types of information that are processed as shown in Figure 4.1. These fusion
functions are:
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Figure 4.1 – Fusion I/O Characterizations of Dasarathy Architecture

1. Data In-Data Out (DAI-DAO) Fusion: This is the basic and elementary form
of fusion which begins from data inputs and resulting in a form of data output.
It has been commonly referred to as data fusion and conducted immediately after
the data are gathered from the sensors. Signal and image processing algorithms are
commonly used in this level.

2. Data In-Feature Out (DAI-FEO) Fusion: Data from different sensors or dif-
ferent bands of one sensor are combined to derive a feature of the object in the
environment or a descriptor of the phenomenon under observation. It has been
looked upon either data fusion or feature fusion.

3. Feature In-Feature Out (FEI-FEO) Fusion: In this level, both input and out-
put of the fusion process are features. It addressed a set of features with to improve,
refine or obtain new features. This process is also known as feature fusion.

4. Feature In-Decision Out (FEI-DEO) Fusion: It obtains a set of features as
inputs and provides a set of decisions as outputs. It has been referred to as either
feature fusion or decision fusion.

5. Decision In-Decision Out (DEI-DEO) Fusion: In this level, it fuses input
decisions to obtain a new decision. It has been commonly referred as decision fusion.

Compare JDL Architecture and Dasarathy Architecture, Dasarathy Architecture is
more suitable for the formalization of medical knowledge and experience for sleep stag-
ing application. With the guidance of AASM, it can be adopted to mimic the clinical
sleep staging process, from low-level digital parameters extraction to high-level feature
interpretation and final decision-making.
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4.2 Existing SF-SSS

In 2013, Adrien, Isabelle, et al. [76] proposed Symbolic Fusion-based Sleep Staging
System (SF-SSS) using Dasarathy Architecture, as shown in Figure 4.2. It starts from the
extraction of digital parameters from raw PSG signals and goes up-to high-level symbolic
interpretation of feature parameters. Finally, rules are used to make the decision. Digital
parameters, symbolic interpretation and rules in SF-SSS are inspired by international
guidelines in sleep medicine.

Figure 4.2 – Sleep Staging Design Flow

4.2.1 Data Fusion

In data fusion, it adopts DAI-DAO fusion, eight digital parameters were extracted
using time-domain and frequency-domain signal processing methods. These parameters
are used to represent the sleep events which are described in AASM manual. Parameters
EEGLowWaveEnergy, EEGSleepSpindles, EEGLWProportion, EEGThetaProportion and
EEGStability were extracted from three different EEG channels: C3-A2, C4-A1, O1-
A2; parameters EOGEyeMovement and EOGCorrelation were extracted from 2 EOG
channels: EOG-L, EOG-R; EMGMovementActivity parameter was extracted from EMG.
Below is the brief description of each parameter. These parameters are inspired from
AASM manual.

� EEGLowWaveEnergy

EEGLowWaveEnergy indicates the energy of the slow wave of frequency between
0.5 Hz to 2 Hz in EEG signal.

� EEGSleepSpindles

Sleep Spindle is a train of distinct waves with frequency 11-16 Hz and duration
more than 0.5 seconds. It is a significant indicator of stage N2. EEGSleepSpinles
represents the number of occurrence of sleep spindles.
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� EEGLWProportion

EEGLWProportion signifies the power ratio between slow wave (frequency smaller
than 2 Hz) and the total power of each 30-s epoch.

� EEGThetaProportion

EEGThetaProportion signifies the power ratio between Theta frequency band (fre-
quency between 4 Hz and 7 Hz) and the total power of each 30-s epoch.

� EEGStability

EEGStability signifies the power ratio between the fast wave (frequency more than
18 Hz) and the total power. The fast wave is one characteristic of Stage W.

� EOGEyeMovement

EOGEyeMovement represents the number of times eye moves during sleep. This
parameter is a significant indicator to distinguish between REM and NREM stage.

� EOGCorrelation

EOGCorrelation is the correlation between the left and right eye movements. It
indicates whether the movement of the two eyes is independent or not.

� EMGActivity

EMGActivity represents the mean absolute value of the EMG signal. This parameter
is used to indicate the activity level of EMG, which can be used as an indicator of
the muscle tone movement in sleep staging.

4.2.2 Feature Fusion

In feature fusion, 2-level fusion was applied. In the first level, digital parameters
are transformed into the symbolic interpretation of feature parameters. Eight digital
parameters were transferred into 21 different features via 13 thresholds as shown in Table
4.1. In the second level, new feature parameters were integrated either combining 3 EEG
channels or 2 EOG channels. The symbolic interpretation of feature parameters is used
to represent the semantic description of sleep events in AASM manual.

Digital Parameters Features Number of Thresholds

EEGLowWaveEnergy High - Middle - Low 2

EEGSleepSpindles Confidently Have - Not Confident 1

EEGLWProportion High - Low 1

EEGThetaProportion High - Low 1

EEGStability Stable - Not Confident - Unstable 2

EOGEyeMovement High - Middle - Low - Lowest 3

EOGCorrelation Conjugate - Disconjugate 1

EMGActivity High - Normal - Low 2

Table 4.1 – Correlation Between Digital and First-Level Feature Parameters via Thresholds
Setting-Up

In first level of feature fusion, DAI-FEO fusion is performed. Figure 4.3 shows an
example of first level of feature fusion. In second level of feature fusion, FEI-FEO fusion
is adopted, as an example shown in Figure 4.4. At least two channels feature parameters
are High, the output is High.
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Figure 4.3 – First Level of Feature Fusion - DAI-FEO Fusion

Figure 4.4 – Second Level of Feature Fusion - FEI-FEO Fusion

4.2.3 Decision Fusion

In decision fusion, inference method is used to fulfill sleep staging task on the basis of
feature parameters. In order to generate a composite decision, a set of rules were defined
for classifying of stage W, N2, N3 and R under the cooperation between clinical experts
and engineers according to the guidance from AASM manual. Rules used to make the
decision of each stage are different. Four different classifiers which combined by different
rules are proposed for classifying stage W, N2, N3 and R respectively.

Figure 4.5 illustrates the classification of stage N2 when one of the following rules is
satisfied:

1) EOGCorrelation is Disconjugate and EEGSleepSpindles is Confidently Have and
EEGStability is Stable.

2) EEGSleepSpindles is Confidently Have and EOGEyeMovement is Lowest or Low
and EEGLowWaveEneergy is Low and EEGThetaProportion is High.
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Figure 4.5 – Classification of Stage N2

4.3 Existing SF-SSS Performances and Limitations

SF-SSS starts from extraction of digital parameters from raw polysomnography (PSG)
signals and goes up-to high-level symbolic interpretation of feature parameters while using
thresholds. At last, decision is generated using rules inspired by international guidelines
in sleep medicine and applied to feature parameters. It owns many advantages like:

� It integrates data from different sources, like EEG, EMG and EOG which can provide
enhanced and complementary decision in comparison to signal source based methods;

� It can deduce a composite decision in accordance with medical knowledge under the
cooperation between engineers and clinical experts; thus, 4 classifiers were designed
to classify 4 out of 5 sleep stages (stage W, N2, N3 and R);

� It can be implemented in embedded systems. SF-SSS has been evaluated on a
database of 16 subjects (4 males and 12 females) ranging from 26 to 67 years old.
Agreement Rate can reach 76%, 54%, 60% and 71% for stage W, N2, N3 and R
respectively.

However, this model is not yet complete and it needs to be enriched, below are some
points need tp be completed:

1. Pre-processing of PSG signals

Although PSG like EEG, EOG and EMG are designed to record brain activity,
eye movement activity and submental muscle activity, it may also record unwanted
patterns which are not caused by underlying physiological event of interest. These
unwanted patterns are called artifacts. In terms of artifacts, it can be divided
into into physiologic artifacts and extra-physiologic artifacts. Physiologic artifacts
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are generated from body like head or body movement. Extra-physiologic artifacts
are generated from outside the body like environment or instrument. Two typical
artifacts are shown in Figure 4.6 and Figure 4.7.

Figure 4.6 – Movement Artifact

Figure 4.7 – Power Line Artifact

According to AASM manual, band pass filters with a cut of frequency of 0.3 - 35 Hz,
0.3 - 35 Hz and 10 - 100 Hz are suggested to perform pre-process for EEG, EOG and
EMG respectively. Pre-processing can be used to eliminate some noise and artifacts.

2. Smoothing of sleep stages

Temporal contextual information was not considered, however, sleep staging is a
time-dependent classification problem. A sleep stage could be influenced by the
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previous sleep stage and it could influence the next sleep stage. Sleep transitions
were also not considered. However, there exists some impossible transitions and
irregular transitions.

3. Some missing sleep events and rules described by AASM

Most of the sleep events described by AASM manual were included in [76], how-
ever, there is still some sleep events which are not included. E.g. K-Complex, a
well-delineated negative sharp wave immediately followed by a positive component
standing out from the background EEG signal, with total duration ≥ 0.5 sec [67],
which is also a significant indicator to classify Stage N2.

4. Classification of Stage N1

In [76], classification of Stage W, N2, N3 and R were performed, while classification
of Stage N1 was not performed. Stage N1 is considered as a transition between wake
and sleep. It occurs upon falling asleep and during brief arousal periods within sleep
and usually accounts for 2 - 5% of total sleep time.

The detection of N1 is always the most problematic aspect of the sleep stages [80] in
both clinical sleep staging and automatic sleep staging system. Only 63.0 % inter-
scorer reliability for stage N1 is reported among different scorers in [57]. Moreover,
finding a significant feature that could separate N1 from W, N2, N3 and R, is rather
difficult for automatic sleep staging system, because N1 is a transition phase in the
changes of wakefulness and other sleep stages.

4.4 Modifications of Existing SF-SSS

In this section, modifications for improving existing SF-SSS are proposed.

4.4.1 Sleep Staging Design Flow

A completion of sleep staging design flow is proposed, as shown in Figure 4.8. It
consists of three main parts: Pre-processing and Segmentation, Symbolic Fusion and
Smoothing. Pre-processing and Segmentation is designed to eliminate noise and artifacts
and segment PSG recording into 30-s epochs in accordance with AASM manual. Symbolic
Fusion is used to realize sleep staging. Smoothing is proposed to consider the temporal
effects of sleep staging process, and to detect and correct falsely sleep transitions. Details
of each part are described below.
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Figure 4.8 – Sleep Staging Design Flow

4.4.2 Pre-processing and Segmentation

Pre-processing is designed to eliminate noise and artifacts. Details of filter setting
recommended by AASM are shown in Table 4.2. For EEG and EOG, a band pass filter
between 0.3 Hz and 35 Hz is suggested by AASM; For EMG, a band pass filter between
10 Hz and 100 Hz is recommended.

AASM Recommendations Low Frequency High Frequency

EEG 0.3 Hz 35 Hz

EOG 0.3 Hz 35 Hz

EMG 10 Hz 100 Hz

Table 4.2 – AASM Recommendations for Filter Settings

As recommend by AASM, a Butterworth bandpass filter between 0.3 Hz and 35 Hz
is designed for EEG and EOG by using Filter Design and Analysis Tool in Matlab.
Meanwhile, a Butterworth band-pass filter between 10 Hz and 100 Hz and a band-stop
filter with a cut-off frequency of 50 Hz are designed for EMG.

By applying filters proposed in Pro-processing, it can effectively eliminate some noise
and artifacts like movement artifacts and power-line artifacts. Figure 4.9 and Figure 4.10
presents the elimination of movement artifacts and power-line artifacts, respectively.
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Figure 4.9 – Elimination of Movement Artifact

Figure 4.10 – Elimination of Power-Line Artifact

4.4.3 Data Fusion: K-Complex

K-Complex is a significant indicator of stage N2 which was not involved in existing
SF-based sleep staging system. To improve the classification performance of stage N2,
another significant parameter K-Complex is included and fused to existing SF-SSS model
in modifications. In this section, K-Complex is introduced firstly followed by the method
we proposed to use for extracting the digital parameter of K-Complex.

In AASM manual, K-Complex is described as ”A well-delineated, negative, sharp wave
immediately followed by a positive component standing out from the background EEG,
with total duration ≥ 0.5 sec, usually maximal in amplitude when recorded using frontal
derivations” as shown in Figure 4.11. To extract K-Complex, Teager Energy Operator is
introduced and adopted.
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Figure 4.11 – K-Complex

4.4.3.1 Teager Energy Operator

Teager Energy Operator (TEO) is a non-linear quadratic operator proposed by Kaiser
[35] as a measure to assess the instantaneous energy of the signal that incorporates both
amplitude and frequency of the signal. It owns the advantages for the detection of instan-
taneous changes in the signal such as discontinuities, increases or decreases of amplitude
and frequency. TEO has been widely applied in speech analysis [33, 5] and bio-signal
analysis [52, 2, 68].

The definition of continuous Teager Energy Operator is shown in Equation 4.1 where
x(t) is the signal, ẋ(t) and ẍ(t) are the first and second derivatives of the signal respec-
tively.

Ψc[x(t)] = [ẋ(t)]2 − x(t)ẍ(t) (4.1)

In the discrete domain, Teager Energy Operator is expressed as Equation 4.2, where
x(n− 1), x(n), x(n+ 1) are the (n− 1)th, nth and (n+ 1)th sample value of the signal.

Ψd[x(n)] = x2(n)− x(n− 1)x(n+ 1) (4.2)

TEO can be used to assess the instantaneous energy of the continuous and discrete signal
that incorporates both amplitude and frequency of the signal.

4.4.3.2 K-Complex Digital Parameter Extraction

Due to the specific characteristics of K-Complex such as sharp rising and falling edges
and long duration, we adopt TEO to extract KComplex parameter as shown in Figure
4.12. A Butterworth low pass filter with the cut off frequency of 5 Hz is designed to
eliminate high frequency waveforms. Then, TEO is calculate as KComplex Parameter to
obtain rapid changes of amplitude and suppressed background activity.

Figure 4.12 – Block Diagram of K-Complex Parameter Extraction
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Figure 4.13 shows the TEO output of a 30-s EEG epoch which contains a K-Complex
wave. From the figure, we can see, where the K-Complex wave occurs there is a high TEO
value. TEO can be effectively present instantaneous changes in the signal like K-Complex
in stage N2. Meanwhile, it also can present instantaneous changes like movement in stage
W as shown in Figure 4.14.

Figure 4.13 – EEGKComplex Extraction(EEG K-Complex)

Figure 4.14 – EEGKComplex Extraction(Movements)

In comparison of TEO for K-Complex in stage N2 and TEO for movement in stage W,
TEO of movement is much higher than TEO of K-Complex (almost 5 times higher). For
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each epoch, the maximum value of TEO is represented as the value for digital parameter
EEGKComplex .

4.4.4 Feature Fusion: K-Complex

In order to realize semantic interpretation of K-Complex: digital parameter EEGK-
Complex based on TEO is extracted in data fusion; transformation of EEGKComplex
into symbolic features are performed in feature fusion.

In feature fusion, two thresholds (EEGKCA and EEGKCB) are used in transforming
EEGKComplex into three symbolic features: High, Middle and Low. Epochs with values
of digital parameter EEGKComplex that higher than EEGKCA are transformed as High;
values between EEGKCA and EEGKCB are transformed as Middle; values lower than
EEGKCB are transformed as Low.

For the symbolic interpretation of EEGKComplex, three features are used to distin-
guish the occurrence of K-Complex and the occurrence of instantaneous movement. TEO
value for an instantaneous movement is relatively higher than TEO value for a K-Complex.
Meanwhile, TEO value for K-Complex is relatively higher than TEO value for a no oc-
currence of K-Complex and movement. Only symbolic feature equals to Middle is used
to describe as the occurrence of K-Complex. Symbolic feature High is used to reflect the
occurrence of movements.

4.4.5 Decision Fusion: K-Complex

In decision fusion, two rules are added based on feature parameter of EEGKComplex.

For stage W, EEGKComplex is High.

For stage N2, EEGKComplex is Middle.

For stage N1, EEGKComplex is Low.

4.4.6 Decision Fusion: Stage N1

Guidance from AASM manual for physicians to classify stage were described in Chap-
ter 2. Vertex sharp waves and slow eye movements are typical characteristics in distin-
guishing stage N1. To fully mimic clinical sleep staging process, detection of vertex sharp
waves and slow eye movements are required. However, as far as we known, there exists
very limit and effective method in detection of these characteristics.

Instead of directly extract typical characteristics of stage N1 and fully use existing
digital parameters, a rule to classify stage N1 is proposed as shown in Figure 4.15. It
combines supplementary descriptions from AASM in classifying stage N1 and existing
parameters.

E.g. In AASM, Rule F.Note 3, During stage N1, the chin EMG amplitude is variable,
but often lower than in stage W. In translating this rule into exiting SF-SSS model,
EMGActivity is used and the rule for classifying stage N1 is composed by one condition:
EMGActivity is Low.

Once EMGActivity is Low, EEGSleepSpindles is Not Confident, EEGStability is Not
Confident, EEGLowWaveEnergy is Low and EEGKComplex is Low then this epoch can
be considered as stage N1.
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Figure 4.15 – Classification of Stage N1

4.4.7 Smoothing

The smoothing function is proposed to consider the temporal effects of sleep stag-
ing process, and to detect and correct false sleep transitions. In smoothing, temporal
contextual information and sleep transitions are considered.

� Temporal Contextual Information Smoothing

According to AASM manual, current sleep stage can be influenced by the previous
sleep stage and can influence the next sleep stage. In smoothing, we implement
generally accepted smoothing rules: the ”3-minute rule” [38]. If a sequence of six
epochs has only one epoch (isolated sleep stage) scored differently from the others
(major sleep stage), this one could be replaced according to the following criteria:
if the major sleep stage is R/W, then the isolated sleep stage is changed into the
major sleep stage R/W.

� Sleep Transitions Detection and Correction

In smoothing, we propose impossible transitions and irregular transitions detection
and impossible transitions correction and irregular transitions reporting. Impossible
transitions and irregular transitions detection are used to detect the impossible tran-
sitions and irregular transitions. Impossible transitions correction is used to correct
impossible sleep transitions and irregular transitions reporting is used to report the
location of irregular transitions.

Figure 4.16 – Sleep Transitions Detection and Correction

For five different stages, there exist 25 possible sleep transitions. If there is no
new sleep event that can be observed, physicians will keep score as the same stage.
Meanwhile, according to AASM manual, 6 combinations of sleep transitions have
been described in observing new sleep event: N2 to N1, N2 to N2, N2 to R, R to
N1, R to N2, R to R as shown in Figure 4.17. Where:
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– a represents an arousal or a major body movement followed by slow eye move-
ment occurs.

– b is a major body movement followed by slow eye movement occurs.

– c represents absence of non-arousal associated K complexes and absence of sleep
spindles.

– d is an increase in chin EMG or an arousal occurs followed by slow eye movement
or a major body movement followed by slow eye movement.

– e represents K complex or sleep spindle occurs.

– f is an arousal without slow eye movement or A major body movement without
slow eye movement.

Figure 4.17 – Sleep Transitions Described by AASM

For another 14 possible sleep transitions which have not been described by AASM,
we verified with physicians about the possibility of the transitions. Impossible tran-
sitions and irregular transitions are defined as shown in Figure 4.18.

Impossible Transitions are used to describe the transitions that will never happen.
Transition from Stage W to N3, N1 to N3 and R to N3 are impossible transition.

Irregular Transitions are used to describe the transitions that rarely happen.
Irregular transitions include transition from Stage N3 to N1.

Figure 4.18 – Sleep Transitions: Impossible (Red Arrow) and Irregular (Blue Arrow)

To deal with impossible transitions, impossible transitions correction is performed.
For impossible transition Stage W to N3, if there are three consecutive epochs like W,



Page 48 CHAPTER 4. SYMBOLIC FUSION-BASED SLEEP STAGING SYSTEM

N3, W, it will be replaced with the sequence W, W, W; if there are three consecutive
epochs like W, N3, N3, it will be replaced with the sequence N3, N3, N3; otherwise
N3 epoch after W will be replaced with N2. For impossible transition Stage N1 to
N3, if there are three consecutive epochs like N3, N1, N3, it will be replaced with
the sequence N3, N3, N3; if there are three consecutive epochs like N1, N1, N3, it
will be replaced with the sequence N1, N1, N1; otherwise N1 epoch before N3 will
be replaced with N2. For impossible transition Stage R to N3, if there are three
consecutive epochs like N3, R, N3, it will be replaced with the sequence N3, N3,
N3; if there are three consecutive epochs like R, R, N3, it will be replaced with the
sequence R, R, R; otherwise N3 will be replaced with N2.

Details of correction of impossible sleep transitions are described in Table 4.3.

Sleep Transitions Impossible Transition Correction

W to N3 W, N3, W W, W, W

W to N3 W, N3, N3 N3, N3, N3

W to N3 W, N3, N1/N2/R W, N2, N1/N2/R

N1 to N3 N1, N3, N3 N3, N3, N3

N1 to N3 N1, N3, N1 N1, N1, N1

N1 to N3 N1, N3, W/N2/R N2, N3, W/N2/R,

R to N3 R, N3, N3 N3, N3, N3

R to N3 R, N3, R R, R, R

R to N3 R, N3, W/N1/N2 R, N2, W/N1/N2

Table 4.3 – Impossible Sleep Transitions Correction

To deal with irregular transitions, irregular transitions reporting is performed. It
gives a warning notice with irregular transitions location at the end of program as
shown in Figure 4.19.

Figure 4.19 – Irregular Transitions Reporting

4.5 Conclusion

In this chapter, Symbolic Fusion-based Sleep Staging model was presented. It can
mimic the clinical sleep staging process by translating AASM manual into computer logic.
Limitations of the existing SF-SSS were analyzed and modifications were proposed in this
chapter. In order to fully understand how SF-SSS use thresholds to transform digital
parameters into symbolic interpretation and propose an automatic way to set up these
thresholds, thresholds are presented in next chapter.



Chapter 5

Thresholds and Symbolic
Fusion-based Sleep Staging System

Thresholds are used by Symbolic Fusion-based Sleep Staging System (SF-SSS) model
to transform low-level digital parameters into the high-level symbolic interpretation of fea-
ture parameters. In this chapter, these thresholds are investigated. Firstly, the Manual
Thresholds Setting-Up (MTSU) method, applied in SF-SSS for setting-up these thresh-
olds is presented. Then, issues on these thresholds are discussed. Lastly, thresholds
dependencies among sleep stages and patients for SF-SSS model are analyzed in order to
understand how many thresholds are required.

5.1 Introduction on Thresholds

Thresholds are widely applied in most of the automatic sleep staging system for trans-
forming digital parameters into linguistic or symbolic features for modeling inference
process under the guidance of medical knowledge [45, 46, 76]. In this section, thresholds
that used in SF-SSS are introduced.

5.1.1 Explanation of Thresholds

SF-SSS adopts three-level architecture of symbolic fusion to mimic the decision-making
process of clinical sleep staging in accordance with AASM as we described in previous
chapter.

In this section, we describe how to define and use thresholds to transform digital
parameters into the symbolic interpretation of feature parameters. According to AASM
rules, we analyzed how it is possible to generate different symbols from one sleep event
through thresholds.

5.1.1.1 Description in AASM

Take chin EMG as an example, in AASM there exist several rules regarding chin EMG
which described as below.

� Rule E3.c Score epoch as stage W when Irregular, conjugate rapid eye movements
associated with normal or high chin muscle tone.

� Rule F.N3 During stage N1, the chin EMG amplitude is variable, but often
lower than in stage W.

� Rule I.2b Score stage R sleep in epochs with the following phenomena: low chin
EMG tone for the majority of the epoch.

49
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In AASM, chin EMG/chin muscle tone has been mentioned in three rules for guiding
physicians to score stage W, N1 and R respectively.

5.1.1.2 From AASM to SF-SSS model using Thresholds

In order to formalize these rules into SF-SSS model, the description of chin muscle
tone, the chin EMG amplitude and chin EMG tone in AASM are assumed as the
same semantic/linguistic representation of chin EMG activity in SF-SSS. Data Fusion,
Feature Fusion and Decision Fusion on chin EMG activity are described as follows.

� Data Fusion of chin EMG activity

In SF-SSS, digital parameter EMGActivity is extracted by using the mean absolute
value of the chin EMG signal as shown in the Equation 5.1; where x(t) is chin EMG
signal.

EMGActivity = mean(abs(x(t))) (5.1)

This parameter can be used to indicate the activity level of chin EMG, which can
be used as an indicator of the chin muscle activity during sleep.

Figure 5.1 – Digital Parameter: EMGActivity

Figure 5.1 shows the digital parameter EMGActivity of one subject. For stage W,
digital parameter EMGActivity is relative higher as shown in black box; for stage N1
and R, EMGActivity is relative lower as shown in green and pink box respectively.

� Feature Fusion of chin EMG activity

In feature fusion, thresholds are used to transform digital parameters into sym-
bolic interpretation of feature parameters. To correspond symbolic interpretation
of feature parameter with AASM manual, three symbolic interpretation of feature
parameters are used: High, Normal and Low.

In order to transform EMGActivity into symbolic interpretation of High, Normal
and Low, two thresholds EMGTh1 and EMGTh2 are used as shown in Figure 5.2.
Values of digital parameter EMGActivity higher than EMGTh1 are interpreted as
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High, values between EMGTh1 and EMGTh2 are interpreted as Normal, values
lower than EMGTh2 are interpreted as Low.

Figure 5.2 – Thresholds for EMGActivity

� Decision Fusion of chin EMG activity

In decision fusion, rules inspired from AASM to make decisions are shown as below.

For stage W: EMGActivity is Normal or High.

For stage N1: EMGActivity is Low.

For stage R: EMGActivity is Low.

In SF-SSS model, digital parameters (e.g.EMGActivity) in the low-level, symbolic inter-
pretation (e.g.High, Normal, Low) and decision rules in the high-level are inspired from
AASM. However, in medical guidance, there has no definition or description on transform
process of low-level digital parameters to high-level symbolic interpretation. In other
words, from medical guidance, there is no definition or description for guiding setting-up
these thresholds. In the first release of SF-SSS model, a Manual Thresholds Setting-Up
(MTSU) method was used, this method is described in the next section.

5.1.2 Manual Thresholds Setting-Up Method

Manual Thresholds Setting-Up (MTSU) method was applied in existing SF-SSS [76].
Values of thresholds are visually determined by the author. MTSU method mainly in-
volves the following steps:
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1. Correspond each digital parameter to AASM manual (e.g correspond digital param-
eter EMGActivity to chin EMG activity in AASM manual).

2. Correspond each digital parameter to the Hypnogram that analyzed by physicians
(e.g correspond the digital parameter EMGActivity with Hypnogram).

3. Estimate values of thresholds for each digital parameter (e.g by comparing the digital
parameter EMGActivity with Hypnogram to estimate the values of EMGTh1 and
EMGTh2 ).

4. Adjust values of thresholds until appropriate thresholds are found (e.g adjust val-
ues of EMGTh1 and EMGTh2 until appropriate thresholds which can reach high
classification performance are found).

Manual Thresholds Setting-Up (MTSU) was used in order to have a first proof of
concept for the SF-SSS model. For this reason, the method implies several limitations:

1. It is a time-consuming process and requires manual effort.

Total 15 thresholds need to be manually set for each subject for transforming nine
digital parameter into 24 symbolic features. Using MTSU method to set up these
thresholds is a time-consuming process. Moreover, the thresholds values remain
subjective.

2. The whole Hypnogram analyzed by experts is required.

In order to set up thresholds for transforming digital parameters into different sym-
bolic features, a whole Hypnogram which analyzed by physicians is required. With-
out this Hypnogram, thresholds cannot be easily set by MTSU method. Instead of
reduce the burden of physician, MTSU needs the analysis from physicians as the
necessary prerequisite.

3. It can only provide estimated values of thresholds.

MTSU can only provide estimated values of thresholds instead of precise values.
Most important, to realize the automated process of sleep staging, an automatic
way to set-up these thresholds is required.

To release the burden of manual effort in setting-up thresholds and to automate the sleep
staging process, an automatic method to set-up thresholds is required. Before studying
which algorithm could be used to implement an automatic thresholds setting-up system,
an analysis of thresholds is needed. This analysis covers the discussion on thresholds
issues to figure out the number of thresholds needed to be configured for SF-SSS model.

5.2 Issues on Thresholds

In SF-SSS, thresholds are used to transform low-level digital parameters into the high-
level symbolic interpretation of feature parameters. An automatic thresholds setting-up
method is required. There exist several issues need further research:

1) Whether there exists any dependency between thresholds and other
conditions like: sleep stages, patients or any other factor?

Figure 5.3 represents several possible conditions may exist dependency with thresholds.
In this section, we mainly focus on the dependency between Thresholds and Sleep Stages,
Thresholds and Patients.
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Thresholds & Sleep Stages: For classifying each sleep stage in accordance with
AASM, how many thresholds are required? Whether same thresholds can be reused in
different sleep stages or different thresholds are required?

Thresholds & Patients: For different patients, whether generalized thresholds are
sufficient or specific thresholds for different patients are required need to be researched to
understand whether there is a dependency between Thresholds and Patients or not.

Figure 5.3 – Dependencies among Thresholds and other conditions

2) How many thresholds are required for SF-SSS model?

For SF-SSS, number of thresholds for classifying each stage needs to be studied. In-
crease the number of thresholds may increase the precision of symbolic interpretation of
feature parameters but it also increase the complexity of SF-SSS. Finding appropriate
number of thresholds can balance the precision and the complexity of SF-SSS.

5.3 Thresholds in SF-SSS

In this section, thresholds dependencies among sleep stages and patients are discussed.
In analysis of thresholds dependencies among sleep stages can help us to understand
whether same thresholds can be used in different sleep stages or different thresholds are
required for different sleep stages. Meanwhile, in analysis of thresholds dependencies
among patients can help us to understand whether generalized thresholds are sufficient
or specific thresholds for different patients are required.

In SF-SSS model, nine digital parameters are transformed into 24 features via 15
thresholds as shown in Table 5.1.
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Digital Parameters Features Number of Thresholds

EEGLowWaveEnergy High - Middle - Low 2

EEGSleepSpindles Confidently Have - Not Confident 1

EEGLWProportion High - Low 1

EEGThetaProportion High - Low 1

EEGStability Stable - Not Confident - Unstable 2

EEGKComplex High - Middle - Low 2

EOGEyeMovement High - Middle - Low - Lowest 3

EOGCorrelation Conjugate - Disconjugate 1

EMGActivity High - Normal - Low 2

Table 5.1 – Thresholds used in SF-SSS model

Take EMGActivity as an example, 2 thresholds EMGTh1 and EMGTh2 are used in
distinguish three different symbolic features: High, Normal and Low as shown in Figure
5.2. Symbolic features of EMGActivity High, Normal and Low are used in classifying
stage W, N1 and R. The number of thresholds only depends on the digital parameters
and not on sleep stages.

5.3.1 Thresholds & Sleep Stages

In existing SF-SSS model, values of EMGTh1 and EMGTh2 are the same for each
stage. In existing SF-SSS model, 0.8 and 0.55 are used as the appropriate values for
EMGTh1 and EMGTh2 for classifying stage W, N1 and R of patient 3774 (Figure 5.4).
However, thresholds dependencies among stages are ignored in MTSU method.

In Figure 5.4, 0.8 and 0.55 can be considered as the appropriate vales for Thresholds
EMGTh1 and EMGTh2 respectively in classifying stage W. However, only one thresholds
EMGTh2 is required from the technique perspective. Because no matter how we adjust
EMGTh1, it has no impact on the classification result for stage W, N1 or R.

Figure 5.4 – Thresholds for EMGActivity (Stage W) of Patient 3774

For classifying stage N1, increment of EMGTh2 value can be more precise as shown
in Figure 5.5. 0.8 and 0.6 can be considered as the appropriate vales for Thresholds
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EMGTh1 and EMGTh2 respectively in classifying stage N1. By increasing the value of
EMGTh2, more epochs can be correctly classified into stage N1.

Figure 5.5 – Thresholds for EMGActivity (Stage N1) of Patient 3774

As for stage R, decrease the value of EMGTh2 value can be more precise as shown
in Figure 5.6. 0.8 and 0.38 can be considered as the appropriate vales for Thresholds
EMGTh1 and EMGTh2 respectively in classifying stage R. By decreasing the value of
EMGTh2, less epochs will be misclassified into stage R.

Figure 5.6 – Thresholds for EMGActivity (Stage R) of Patient 3774

In SF-SSS, MTSU method ignores thresholds dependencies among sleep stages. How-
ever, Figure 5.4, 5.5 and 5.6 show thresholds variability among sleep stages. For classifying
stage W, N1 and R, different thresholds are required. In order to improve the classification
performance for each stage and remove useless (EMGTh1 ) thresholds, different thresholds
are required for different stages while taking thresholds dependencies among sleep stages
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into consideration. Instead of only use two thresholds for EMGAcitivity, three thresholds
are required as shown in Table 5.2.

stages Symbolic Features of EMGActivity Thresholds

W High or Normal EMGThN1

N1 Low EMGThN2

R Low EMGThN3

Table 5.2 – Thresholds of EMGAcitivity including Sleep Stages Dependencies

5.3.2 Thresholds & Patients

In this section, thresholds dependencies among patients are analyzed to understand
whether generalized thresholds are sufficient or personalized thresholds are required.

Take patient 55341 as an example, EMGTh1 =0.7 and EMGTh2 =0.1 can be considered
as appropriate thresholds values in classifying stage W as shown in Figure 5.7.

However, values of EMGTh1 and EMGTh2 between patient 3774 and patient 55341
are quite different because of the individual variability of chin EMG signals. For patient
3774, EMGTh1 =0.8 and and EMGTh2 =0.55 are considered as appropriate thresholds
values in classifying stage W.

Figure 5.7 – Thresholds for EMGActivity (Stage W) of Patient 55341

In Figure 5.8, EMGTh1 =0.7 and EMGTh2 =0.2 can be considered as appropriate
thresholds values in classifying stage N1 for patient 55341. However, for patient 3774,
EMGTh1 =0.8 and and EMGTh2 =0.6 are considered as appropriate thresholds values in
classifying stage N1.
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Figure 5.8 – Thresholds for EMGActivity (Stage N1) of Patient 55341

In Figure 5.9, EMGTh1 =0.7 and EMGTh2 =0.05 can be considered as appropriate
thresholds values in classifying stage R for patient 55341. However, for patient 3774,
EMGTh1 =0.8 and and EMGTh2 =0.38 are considered as appropriate thresholds values
in classifying stage R.

Figure 5.9 – Thresholds for EMGActivity (Stage R) of Patient 55341

For each patient the number of thresholds is same while the values of thresholds may
be different.

5.4 Thresholds Configuration

In MTSU, total 15 thresholds are used to transform nine digital parameters into 24
symbolic features as shown in Table 5.1 without taking thresholds dependencies among
stages into consideration.
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For example, EMGActivity are used in classification stage W, N1 and R. Same thresh-
olds EMGTh1 and EMGTh2 are applied in transforming EMGActivity into High, Normal
and Low without taking thresholds dependencies among sleep stages into consideration
while using MTSU method. However, thresholds variability was observed among sleep
stages. In order to improve the classification performance of each sleep stage, different
thresholds of EMGActivity are required for stage W, N1 and R. In conclusion, in MTSU
method, two thresholds are required for EMGActivity. However, to take thresholds depen-
dencies among stages into consideration, three thresholds are required for EMGActivity.

Take all the parameters and thresholds dependencies among stages into consideration,
the numbers of thresholds need to be set-up for each stage are listed in Table 5.3. E.g.
to classify stage W, five digital parameters are extracted and 5 thresholds are required in
transforming these digital parameters into different symbolic features. For stage N1, N2,
N3 and R, the numbers of thresholds need to be set are 6, 8, 7 and 8 respectively. Total
34 thresholds are required.

Digital Parameters Symbols Number of Thresholds

EEGThetaProportion Low
EEGStability Unstable

Stage W EEGKComplex High 5
EOGEyeMovement High(Middle)

EMGActivity High(Normal)

EEGStability Not Confident
EEGLowWaveEnergy Low

Stage N1 EEGKComplex Low 6
EEGSleepSpindles Not Confident

EMGActivity Low

EEGThetaProportion High
EEGStability Stable

EEGLowWaveEnergy Low
Stage N2 EEGKComplex Middle 8

EEGSleepSpindles Confidently Have
EOGEyeMovement Low(Lowest)

EOGCorrelation Disconjugate

EEGLWProportion High
EEGStability Stable

EEGLowWaveEnergy High
Stage N3 EEGSleepSpindles Not Confident 7

EOGEyeMovement Low(Middle)
EOGCorrelation Disconjugate

EEGThetaProportion Low
EEGLWProportion Low

EEGStability Not Confident
Stage R EEGLowWaveEnergy Low 8

EEGSleepSpindles Not Confident
EOGCorrelation Conjugate

EMGActivity Low

Table 5.3 – Thresholds Configuration for Each Sleep Stage
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5.5 Conclusion

In this chapter, a brief introduction on thresholds is presented firstly which involves
how to use thresholds for formalizing AASM manual into symbolic fusion model. Then
Manual Thresholds Setting-Up (MTSU) method used in existing SF-SSS model is intro-
duced with the analysis of its limitations. Then issues on thresholds are described and
followed the discussion of thresholds dependencies among sleep stages and patients of
SF-SSS. Lastly, thresholds that need to be set up for classifying each stage are listed with
the consideration of thresholds dependencies among stages.



Chapter 6

Towards to a Personalized Sleep
Staging System

In this chapter, Automatic Thresholds Setting-Up (ATSU) method is introduced to
provide optimal thresholds for Symbolic Fusion-based Sleep Staging System (SF-SSS) in
accordance with the conclusion of the previous chapter. It is inspired by Feedback System
Control (FSC) technique and dedicates in searching optimal thresholds combination for
SF-SSS. We propose two different search algorithms: Differential Evolution Cross Entropy
of FSC for ATSU. Based on proposed ATSU method, Personalized Sleep Staging System
(PSSS) conception is proposed by taking individual variability into consideration.

6.1 Automatic Thresholds Setting-Up Method for SF-SSS

In existing SF-SSS model, Manual Thresholds Setting-Up (MTSU) was adopted be-
tween Data Fusion and Feature Fusion as shown in Figure 6.1. Details of how to set up
these thresholds manually are described in chapter 4. To release the burden of manu-
ally setting of thresholds and take individual variability into consideration, an Automatic
Thresholds Setting Up (ATSU) for SF-SSS is proposed.

Figure 6.1 – Thresholds Setting-Up for Symbolic Fusion based Sleep Staging System

ATSU is proposed to provide thresholds automatically in transforming digital parame-
ters into the symbolic interpretation of feature parameters for SF-SSS. It is inspired from
Feedback System Control (FSC) technique. To fully understand how ATSU works, a brief
introduction of FSC is introduced followed by the details of ATSU.

60
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6.1.0.1 Feedback System Control technique

Feedback System Control (FSC) is initially proposed to navigate through the large
parametric space of different drugs to identify optimal low-dose drug combinations in
manipulating the cellular network toward a therapeutic goal [82] in 2008. In each living
cell, the interactions among the biomolecules, proteins and nucleic acids intrinsically serve
as the foundation of the extensive networks of signal and regulatory pathways. To explore
and understand the cell functions, the bottom-up reductionist approach is very challenge
due to the sheer magnitude of pathway processes and pathway crosstalk. FSC manipulates
the cellular network as a whole, rather than analyzing the processes through individual
signaling pathways to circumvent the need for detailed information of biological signaling
and regulatory networks. It proved to be an efficient combinatorial drug screening method
in finding optimal drug combinations which can improve treatment efficacy and enable
the reduction of side effects and drug resistance.

In 2014, FSC is extended to be a Generic Feedback System Control (G-FSC) technique
[27], which can be used to find input variable combination for guiding the complex system
toward to a desired state. It can be applied not only in biological cells domain but also
many other domains like Internet and financial activities. Without the requirement of
detailed information from complex system or how the complex system responds to input
stimuli, G-FSC provides a solution to in searching for an appropriate input stimuli which
can reach optimal objective value for the complex system.

As shown in Figure 6.2, it consists of 4 parts: Input Stimuli, Complex System, Objec-
tive Assessment and Stochastic Search Algorithm. Input stimuli are arbitrarily selected
to apply to the complex system; if the specific system output is not met, G-FSC uses an
engineering search algorithm that selects the next group of inputs to iteratively feedback
to the complex system. Details of each part are described below.

Figure 6.2 – Generic Feedback System Control

� Input Stimuli

Input Stimuli provides the inputs for the complex system. It can be composed of
a parameter or a combination of several parameters. For each parameter, it has its
own space (range). The space of each parameter can be continuous or discrete. For
example, N parameters with M possible values from each space would result in MN

potential input combinations and the input stimuli are from these potential input
combinations.

� Complex System

A complex system is composed of a large number of interacting building blocks or
elements which self-organize, generating emerging properties that are usually not
directly linked to those of the individual building elements. Biological cells, the
Internet and financial activities are all examples of complex systems.

� Objective Assessment
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Objective Assessment is used to evaluate the input stimuli impact on the complex
system. It can provide systematic quantitative characterization of complex system
response to different input stimuli.

� Stochastic Search Algorithm

Without knowing the exact mechanism of the complex system and how the complex
system responds to manipulation of the inputs, set up a model to stimulate complex
system response induced by the inputs is very challenge. However, Stochastic Search
Algorithm (SSA) can provide a fast and stable convergence in finding an optimal in-
put for regulating complex systems without the requirement of detailed information
about the complex system or how the system responds to input stimuli. Further-
more, it is also robust to random noise and nonlinear changes in the system and
the environment, which are commonly observed in complex systems like a biological
system.

To solve large-scale combinatorial optimization problems of highly complex systems, FSC
provides a rapid and stable search and discovery ability in finding an optimal combina-
tion among potential combinations space without the requirement of detailed information
about the complex system.

6.1.0.2 Automatic Thresholds Setting-Up Method

Thresholds are widely applied in decision support systems in transforming digital pa-
rameters into linguistic or symbolic features to make the final decision. Sleep staging
systems, as one of the typical clinical applications of decision support systems, widely
adopts thresholds in transforming digital parameters into linguistic or symbolic features
to model inference process under the guidance of medical knowledge [45, 46, 76]. While,
in clinical practice, boundaries of linguistic or symbolic features are very flexible. Physi-
cians may adjust the boundaries for each linguistic or symbolic feature according to their
experience and patient information.

However, as far as we know, there are no fully satisfying automatic setting up thresh-
olds methods in existing sleep staging systems. Manually predefined values of thresholds
have been widely due to the following reasons: 1) To build a mathematical model or a
threshold function in setting up thresholds is very challenge which requires a set of data
with sufficient quantity and adequate quality; 2) There is a lack of uniformity between
subjects; 3) Interaction among thresholds is not clear. Instead of building a mathemat-
ical model or a threshold function, we propose a new solution to thresholds setting-up
problems. Assume, there exists a thresholds combination which can reach the highest
objective value of sleep staging systems; to set up these thresholds can be described as
to find the optimal thresholds combination among the possible thresholds combinations
space which can reach the highest objective value of sleep staging system. Then thresholds
setting-up problems can be described as a combinatorial optimization problem in finding
optimal thresholds combination among possible thresholds combinations space regarding
the objective value of sleep staging systems.

Based on FSC technique, ATSU we proposed mainly consists of the following parts:
Thresholds Combinations (TC), Symbolic Fusion-based Sleep Staging System (SF-SSS),
Assessment of SF-SSS (A-SF-SSS) and Stochastic Search Algorithm (SSA). TC provides
a possible thresholds combinations space. SF-SSS is used to performed sleep staging. A-
SF-SSS is used to assess the impact of thresholds combination on SF-SSS. Initially, SSA
provides randomly thresholds combinations from TC and pass it to SF-SSS. Then A-SF-
SSS is performed to evaluate the impact of thresholds combination on SF-SSS with an
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objective value. With this objective value, SSA will generate new thresholds combinations
for the next loop. This process is repeated until optimal thresholds combination is found
which can provide good assessment in A-SF-SSS. Details of each part are described in
below.

Figure 6.3 – Automatic Thresholds Setting-Up for Symbolic Fusion based Sleep Staging Sys-
tem

� Thresholds Combinations

Thresholds Combinations (TC) provides possible thresholds combinations space for
SF-SSS. Suppose if these are 15 thresholds needed to set up, each threshold has 10
possible discrete values, it would result in 1015 potential thresholds combinations.
TC provides this potential combination space and every thresholds combination
select by SSA and passes to SF-SSS should within this space.

� Symbolic Fusion-based Sleep Staging System

Symbolic Fusion-based Sleep Staging System (SF-SSS) is performed to realize sleep
staging as shown in the previous chapter which consists of data fusion, feature fusion
and decision fusion. In ATSU method, data fusion only needs to perform once at
the beginning to provide digital parameters of selected signals. This is because
Thresholds have no impact on Data Fusion. SF-SSS in ATSU is mainly used to
perform Feature Fusion and Decision Fusion. Feature Fusion and Decision Fusion
are repeated in setting up thresholds until optimal thresholds are found.

� Assessment of SF-SSS

Assessment of SF-SSS (A-SF-SSS) is used to evaluate the thresholds combination
impact on SF-SSS. In analysis of a classification, F-Measure is widely applied by
considering both precision and recall. In A-SF-SSS, F-Measure is used to evaluate
the impact of different thresholds on SF-SSS. The traditional F-Measure also called
balanced F-score (F1) is shown in Equation 7.1 which can balance the precision and
recall.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(6.1)

In F-Measures, Precision and Recall are used which as shown in Equation 7.2 and
Equation 7.3, respectively. Precision (also called positive predictive value) is the
ratio of all positive predictions among predicted events. Recall (also known as sen-
sitivity or true positive rate) is the ratio of all positive predictions among all true
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events.

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

TP, FN, FP and TN are used to evaluate how good the observations (predictions)
reflect the actual events for a classification. True Positives and True Negatives are
the observations which were correctly predicted. False Negatives are observations
are negative where the actual events are positive. False Positive are observations
are positive where the actual events are negative.

� Stochastic Search Algorithm

In solving large-scale combinatorial optimization problems as finding an optimal
combination from a finite set of combinations, exhaustive search is not feasible. In-
stead of applying exhaustive search, SSA is used to search for the optimal thresholds
combination for SF-SSS in ATSU.

Among typical SSAs, Differential Evolution and Cross Entropy are more suitable
for sleep staging application based on thresholds. Both of them are robustness
and support parallel searching. Moreover, both of them are flexible which allow to
deal with low or high dimension of parameters. For the consideration of hardware
implementation, they are not based on memory structure and easy to implement.
The SSA is not only used to generate thresholds combination but also controls the
stop conditions. The stop criteria for these search algorithms is described in next
section.

For Differential Evolution and Cross Entropy, they have own advantages as follows.
Differential Evolution is a popular and efficient method of the evolutionary algorithm
which has been successfully applied to solve multi-parameter problems in diverse
domains like mechanical engineering design or chemical engineering [70]. It owns
many advantages like: 1) DE can mimic natural biological evolution and provide
a fast and stable convergence; 2) It is less sensitive to initial population; 3) It is
a parallel search method; and 4) It can improve fitness function value iteratively.
Cross Entropy also owns several advantages: 1) CE is a parallel search method; 2) It
is based on rigorous mathematical and statistical principles; 3) It provides a simple
adaptive procedure.

Details of Differential Evolution and Cross Entropy are presented in next section
with the procedure and main control parameters analysis.

6.1.0.3 Differential Evolution

Differential Evolution (DE) was proposed by Stron and Price [70] in 1997, is one of
the most effective and efficient stochastic optimization technique. Since 1997, it obtained
great develop and was successfully applied in diverse domains like electronic engineering
[63], chemical engineering [81].

To deal with optimization problems, DE starts with a set of initial population (as
parents) which are usually drawn randomly from the uniform distribution with the variable
space. Then DE operators (mutation and crossover) are applied to each individual in the
population to produce another population (as offspring). Both populations then evaluated
using fitness function. The individual which can reach better fitness function survives for
further reproduction, evaluation and selection until termination criteria meet.
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In DE, different strategies can be expressed by DE/x/y/z. DE stands for Differential
Evolution, x represents a string denoting the solution to be perturbed, y is the number
of different solution considered for the perturbation of x, and z is the type of crossover.
Details of DE can be described as follows :

� Initialization

As a population based search algorithm, DE starts with an initial population vector
shown in (6.4), where the index i denotes the ith individual of the population; G
denotes the generation to which the population belongs and NP denotes population
size.

Xi,G, i = 1, 2, ..., NP (6.4)

The initial population vector is chosen randomly and assumed to cover the entire
parameter space using Equation (6.5), where xLij, x

U
ij denote the lower and upper lim-

its of the variable in the population respectively, randij(0, 1) represents a uniformly
distributed random value within [0,1].

xij = randij(0, 1) ∗ (xUij − xLij) + xLij (6.5)

� Mutation

A mutant vector Vi,G+1 is generated according to different strategies which are listed
below. The indexes r1, r2, r3, r4, r5 are mutually exclusive integers randomly chosen
from the range [1,NP] and all are different from base index i. The Xbest,G is the
individual having the best fitness function values in the population at generation G.
Mutation Scale Factor F is a real and constant factor belongs to [0,2] which controls
the amplification of the differential variation.

DE/rand/1 : Vi,G+1 = Xr1,G + F ∗ (Xr2,G −Xr3,G) (6.6a)

DE/rand/2 : Vi,G+1 = Xr1,G + F ∗ (Xr2,G −Xr3,G) + F ∗ (Xr4,G −Xr5,G) (6.6b)

DE/best/1 : Vi,G+1 = Xbest,G + F ∗ (Xr1,G −Xr2,G) (6.6c)

DE/best/2 : Vi,G+1 = Xbest,G + F ∗ (Xr1,G −Xr2,G) + F ∗ (Xr3,G −Xr4,G) (6.6d)

DE/randtobest/1 : Vi,G+1 = Xr1,G + F ∗ (Xbest,G −Xr2,G) + +F ∗ (Xr3,G −Xr4,G)
(6.6e)

� Crossover

In order to increase the diversity of the DE population, crossover is introduced in
Equation (6.7) for generating a crossover vector Ui,G+1. There are two types crossover
schemes : exponential(exp) and binomial(bin) in DE.

Ui,G+1 = (u1i,G+1, u2i,G+1, ..., uDi,G+1) (6.7)

The binomial scheme takes parameters from the mutation vector vji,G+1 every time
that the generated random number is equal or less than the Crossover Rate as given
by randb(j) ≤ CR, else all parameters come from xji,G. Details of bin scheme is
shown in Equation (6.8). Figure 6.8 presents how binomial scheme crossover works.

uji,G+1 =

{
vji,G+1 : if(randb(j) ≤ CR) or j = rnbr(i)
xji,G : if(randb(j) > CR) and j 6= rnbr(i)

(6.8)
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In Equation (6.8), randb(j) is the jth evaluation of a uniform random number
generator with outcome ∈ [0, 1].

The exponential scheme, an integer rnbr(i) among [1, D] is randomly generated.
This integer acts as a starting point to take vji,G+1 until random number is greater
than CR, otherwise all parameters come from xji,G. Details of exp scheme is shown
in Equation (6.9).

uji,G+1 =

{
vji,G+1 : from j = rnbr(i) while randb(j) ≤ CR
xji,G : otherwise

(6.9)

� Selection

To decide whether or not it should become a member of Generation G + 1, greedy
criterion is used by comparing ui,G+1 to xji,G as shown in Equation (6.10). Where f
is the function to evaluate the population.

xi,G+1 =

{
vi,G+1 : if f(vi,G+1) ≥ f(xi,G)
xi,G : otherwise

(6.10)

Procedure of Different Evolution

The procedure of Differential Evolution in ATSU is described as follows and the flow
chart is shown in Figure 6.4.

� Step 1. Initialization Determine several control parameters: population size,
mutation factor, crossover factor. Generate initial population (initial thresholds
combinations). Details of these control parameters (population size, mutation factor,
crossover factor) of DE are explained in next section.

� Step 2. Assessment F-Measure is widely used in binary classification, it considers
both precision and recall. In this step, F-Measure is used to assess thresholds impact
on SF-SSS and it generates from the A-SF-SSS part of ATSU.

� Step 3. Check Check whether the terminate condition is satisfied or not. If one of
the terminate conditions like, F-Measure reaches to the desired value (FM=0.98) or
iteration reaches to the pre-defined maximum iteration number (G=200), is satisfied,
then the procedure stops.

� Step 4. Mutation and Crossover Do mutation operation and crossover operation
to generate provisional population (provisional thresholds combinations).

� Step 5. Selection Evaluate F-Measure of the provisional population. Compare F-
Measure of the initial population with the F-Measure of the provisional population
to generate new population (new thresholds combinations).

� Step 6. Repeat from step 2.
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Figure 6.4 – Flow Chart of Differential Evolution used in ATSU

Main Control Parameters of Different Evolution There are three main control
parameters of DE-PSSS: Population Size (NP), Mutation Scale Factor (F) and Crossover
Rate (CR). NP may play a crucial role in the efficiency and effectiveness: large popula-
tion size potentially increases the population diversity and computational complexity. F
controls the amplification of the differential variation. CR controls the number of compo-
nents inherited from the mutant vector which can be interpreted as a mutation probability.
Details of each control parameter is described as follows:

1. Population Size (NP) : NP may play a crucial role in the efficiency and effec-
tiveness of DE. Large population size potentially increases the population diversity.
However, when computational budget is limited, increasing the population size will
decrease the number of iterations(generations) but also increase the number of op-
erations in each iteration.

2. Mutation Scale Factor (F) : F controls the amplification of the differential vari-
ation. Too small F values increase the risk of premature convergence (i.e. converge
to an undesirable point), while too large F values decrease the convergence speed
that degrades DE efficiency and may result in early termination [36].

3. Crossover Rate (CR) : CR controls the number of components inherited from
the mutant vector it can be interpreted as a mutation probability. Small CR values
can boost convergence speed when a few decision variables are interacting with each
other. In turn, large CR values are more effective when lots of decision variables are
interacting.
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The selection of appropriate parameters can affect the efficiency of ATSU directly.
Due to the variability of the underlying mathematical properties of different problems, a
fixed set of control parameters that suits well for one problem, or a class of problems does
not guarantee that it will work well for another class, or range of problems [61]. That is,
the selection of control parameters is problem dependent. To ensure the performance of
ATSU, selection of control parameters is extremely important.

To select the appropriate control parameters, trial-and-error approach, is widely used.
Several sets of control parameters are tested, then appropriate control parameters can be
selected based on the average performance of the problem.

Main Control Parameters of DE Range

Population Size(NP) [5D, 10D] 1

Mutation Scale Factor(F) [0, 2]

Crossover Rate(CR) [0, 1]

Table 6.1 – Main Control Parameters of Differential Evolution

Three different population sizes (NP=5D, 10D and 500; where D is the numbers
of thresholds which differs for different stage), three different values of mutation fac-
tor (F=0.5, 1 and 1.5), three different values of crossover factor (CR=0.1, 0.5 and 0.9) are
analyzed to select optimal control parameters for DE-PSSS with analysis results shown
in Chapter 6.

6.1.0.4 Cross Entropy

Cross Entropy was initially proposed to estimate probabilities of rare events for com-
plex stochastic networks by Rubinstein [59] in 1997. It has been extended to solve combi-
natorial optimization problems in 1999 [58], which turned out to be an effective method.

CE is briefly introduced as follows. In solving the combinatorial optimization problem,
a maximization problem can be described as shown in Equation 6.11.

γ∗ = max
x∈χ

[S (x)] (6.11)

γ∗ represents the maximal value of S on the domain space χ. To proceed with CE,
f(·; v) is defined as a family of Probability Density Functions (PDFs) on χ, with respect
to some base measure v. Then γ∗ can be estimated by `(γ) defined in Equation 6.12.

` (γ) = Pu (S (X) ≥ γ) = EuI{S(X)≥γ} (6.12)

where X is a random vector generated by PDFs with parameter v in f(x, v). Pu is the
probability of the state {S(X) ≥ γ}, Eu is the corresponding expectation operator and
I(·) is the indicator function, i.e., I{S(X)≥γ} = 1 only if S(X) ≥ γ, otherwise, it equals to
zero.

Based on the important sampling: take N random samples X = (X1, X2, ..., XN) from

an important sampling density g on χ, the unbiased estimator ̂̀(γ) of `(γ) can be defined
as shown in Equation 6.13.

̂̀(γ) =
1

N

N∑
i=1

I{S(Xi)≥γ}
f(Xi; v)

g(Xi)
= `(γ) (6.13)

From Equation 6.13, only one sample suffices to estimate `(γ) since it is true for all
i. While it is difficult to directly compute g because this g depends on the unknown
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parameter `. Moreover, it is convenient to choose a g in the family of densities f(·; v) .
The CE method solves this efficiently by finding the minimal Kullback-Leibler distance
as shown in Equation 6.14 which defines the distance between g and f(·; v).

D(g, f) =

∫
g(x)lng(x)dx−

∫
g(x)lnf(x; v)dx (6.14)

In solving combinatorial optimization problems, CE creates a sequence of f(·; v1), f(·; v2), ...
of PDFs that are driven in the direction of the theoretically optimal density f(·; v∗).
f(·; v∗) corresponds to the degenerate density of the optimal solution. In each iteration,
it generates a set of samples and the elite samples (in terms of solution quality) would be
selected to update the parameters of the PDF f(x; v) parameterized by v. Since the elite
samples are selected in each iteration, γ would be improved and can converge quickly to
the optimal solution γ∗.

Procedure of Cross Entropy The procedure of Cross Entropy in ATSU is described
as follows and the flow chart is shown in Figure 6.5.

� Step 1. Initialization: Define a specified mechanism to generate PDFs. Defined
the sample size N, elite sampling rate ρ.

To search for the optimal thresholds combinations for the SF-SSS, normal distri-
bution mechanism is performed to generate PDFs for each threshold which can be
presented as N (µ, σ2). µ is the mean of the distribution and σ is the standard devi-
ation. According to normal distribution density function N (µ, σ2), a set of samples
(thresholds combinations) are generated.

� Step 2. Assessment: F-Measure is used to evaluate the impact of different thresh-
olds on the sleep staging system. F-Measures used in assessment are provided by
A-SF-SSS part of ATSU.

� Step 3. Check terminate conditions: If one of the terminate conditions like,
F-Measure (FM=0.98) reaches to a desired value or iteration reaches to the pre-
defined value (G=200) or the standard deviation σ is close to zero, is satisfied, then
the procedure stops.

� Step 4. Selection: Rank the values of F-Measure and select elite samples in term
of F-Measure. In this step, a number of ρN samples with higher F-Measure are
selected as elite samples.

� Step 5. Updating: Update the PDFs parameters µ and σ. According to the elite
samples, new µ̂ and σ̂ are calculated.

� Step 6. Repeat: Repeat from Step 2 to Step 6 until one of the terminate conditions
is satisfied.
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Figure 6.5 – Flow Chart of Cross Entropy used in ATSU

Main Control Parameters of Cross Entropy There are two main control param-
eters of CE: Sample Size (N) and Elite Sampling Rate (ρ). N controls the diversity of the
samples. ρ controls the number of elite samples that will be selected to generate a new
PDF. Details of these two main control parameters are described as below.

1. Sample Size (N) : Large sample size potentially increases the sample diversity.
However, large sample size also increases computational time.

2. Elite Sampling Rate (ρ) : ρ controls the number of elite samples which belongs to
(0,1). It should ensure the elite samples to be larger enough for obtaining a reliable
parameter update for PDFs. In practice, ρ is suggested to select from [0.1, 0.5] in
[8, 6].

In order to select appropriate control parameters of CE-PSSS, different sample sizes
(N=100, 500, 1000 and 10000) and different values of elite sampling rate (ρ=0.1, 0.3,
0.5 and 0.7) are analyzed with results shown in Chapter 7.

6.2 Personalized Sleep Staging System

In this section, Personalized Sleep System (PSSS) conception is presented followed by
the details of two different PSSS we proposed: Differntial Evoluation-based Personlized
Sleep Staging System (DE-PSSS) and Cross Entropy-based Personlized Sleep Staging
System (CE-PSSS).
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6.2.1 Toward to a Hybrid Expert System for Sleep Staging

As shown in Figure 6.6, a new work flow for Hybrid Sleep Staging System is presented.
In this work flow, several epochs will be selected and analyzed by a physician. Based on
the selected epochs and partial Hypnogram that analyzed by the physician, thresholds
are set up based on ATSU we proposed in the previous section. Then, these thresholds
are used in scoring the full epochs by using SF-SSS model and full Hypnogram can be
generated at the end. Proposed hybrid sleep staging system combines symbolic fusion and
FSC. Symbolic fusion is dedicated to the mimic decision-making process of clinical sleep
staging. It starts from the extraction of digital parameters from raw polysomnography
(PSG) signals and goes up to high-level symbolic interpretation of feature parameters.
At last, decision is generated using rules inspired by international guidelines in sleep
medicine and applied to feature parameters. Meanwhile, Feedback System Control (FSC)
is designed to provide thresholds automatically for Symbolic Fusion in transforming digital
parameters into symbolic interpretation of feature parameters

Figure 6.6 – Work Flow of Hybrid Sleep Staging System

Based on proposed work flow, two different types of thresholds can be set up: Person-
alized Thresholds and Generalized Thresholds. These two different types are explained
in the next section.

6.2.1.1 Personalized Thresholds and Generalized Thresholds

By applying ATSU method to different training set (which described as selected epoch
in Epochs Selection of Figure 6.6), two different kinds of thresholds can be set up: per-
sonalized thresholds and generalized thresholds.

� Personalized Thresholds

Personalized Thresholds are thresholds that are specific to each person. Personalized
thresholds would be more precise for each person by taking individual variability
into consideration. However, it would also increase the complexity in setting up
thresholds because different thresholds are needed to be set up for the different
person. To set up personalized thresholds, epochs selected from each person are
required as the training set to provide personalized thresholds which are specific to
each person.

� Generalized Thresholds

Generalized Thresholds are thresholds that are generic to all the person. Generalized
thresholds may result in less precise of the classification. While it would also be less
complexity in setting up thresholds.

6.2.2 Personalized Sleep Staging System

In this thesis, a Personalized Sleep Staging System which is able to take individual
variability into consideration is proposed. The Details of the PSSS is shown in Figure
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6.7. It mainly consists of two parts: Personalized Thresholds Setting-Up part and Per-
sonalized Automated Sleep Staging part. For Personalized Thresholds Setting-Up part,
it dedicates to provide Personalized Thresholds. Personal Epoch Selection is performed
for selecting epochs of each person. Then Personalized Thresholds Setting-Up based on
ATSU method is applied to set up personalized thresholds for a different person. After
obtaining these personalized thresholds, the scoring of whole PSG signal can be performed
in an automated way.

Figure 6.7 – Personalized Sleep Staging System

Based on the conception of PSSS, two different PSSS are proposed: Differential
Evolution-based Personalized Sleep Staging System (DE-PSSS) and Cross Entropy-based
Personalized Sleep Staging System (CE-PSSS) by adopting Differential Evolution and
Cross Entropy respectively in ATSU of Personalized Thresholds Setting-Up part of PSSS.
Details of DE-PSSS and CE-PSSS are described in next section.

6.2.3 Differential Evolution-based Personalized Sleep Staging System

In this section, DE-PSSS is introduced. It adopts the conception of PSSS we proposed
in Figure 6.7, details of ATSU is shown in Figure 6.8.

In DE-PSSS, five ATSU modules are used to provide optimal thresholds combina-
tion for five classifiers. ATSU for stage W is dedicated to search for optimal thresholds
combination which can reach high F-Measure in classifying stage W and non-W. While
ATSU for stage N1, N2, N3 and R are specific to find optimal thresholds combination for
stage N1, N2 N3 and R respectively. At last, personalized thresholds composed of five
thresholds combinations are provided by PTSU and passed to evaluation set.

In chapter 5, it presents how many thresholds need to be set in each ATSU. E.g. to
classifying stage W, five digital parameters are extracted and 5 thresholds are required in
transforming these digital parameters into different features. For stage N1, N2, N3 and
R, the numbers of thresholds need to be set are 6, 8, 7 and 8 respectively.
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Figure 6.8 – Differential Evolution-based Personalized Sleep Staging System

6.2.3.1 Epoch Selection of DE-PSSS

In DE-PSSS, personalized thresholds are set based on the selected epochs and then
passed to all epochs to realize the automatic classification.

In the evaluation of DE-PSSS, the selected personal epochs are considered as the
training set. Remaining epochs are considered as evaluation set.

A small size of training set consumes less time for physician to analyze, while it may
result in finding sub-optimal thresholds combination which may not suitable for the large
size of evaluation set. Large size of training set may provide better thresholds combination
for evaluation set, while it consumes much more time for expert to analyze.

Select the optimal size of the training set for DE-PSSS which can not only consumes
less time for a physician to analyze but also can achieve high classification results for
evaluation set is required. Different size of the training set is analyzed in chapter 7 to
select the optimal size of the training set.

6.2.4 Cross Entropy-based Personalized Sleep Staging System

In this section, CE-PSSS is presented. Instead of using Differential Evolution as the
search algorithm in finding optimal thresholds combination for each classifier, CE-PSSS
applies Cross Entropy in ATSU as shown in Figure 6.9.
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Figure 6.9 – Cross Entropy-based Personalized Sleep Staging System

6.2.4.1 Epoch Selection of CE-PSSS

In CE-PSSS, same as DE-PSSS, personalized thresholds are set based on the selected
set and then passed to all epochs to realize automated sleep staging.

In the evaluation of CE-PSSS, the selected personal epochs are considered as the
training set. Remaining epochs are considered as evaluation set.

The small size of training set consumes less time for physicians to analyze, while it may
result in finding sub-optimal thresholds combination which may not suitable for the large
size of evaluation set. Large size of training set may provide better thresholds combination
for evaluation set, while it consumes much more time for expert to analyze.

Select the optimal size of the training set for DE-PSSS which can not only consumes
less time for physicians to analyze but also can achieve high classification results for
evaluation set is required. For selecting optimal training set for CE-PSSS, different size
of training set is analyzed in chapter 7.

6.3 Conclusion

In this chapter, personalized sleep staging system conception is proposed by combin-
ing Feedback System Control (FSC) technique with Symbolic Fusion. Meanwhile, two
PSSSs: Differential Evolution-based Personalized Sleep Staging System (DE-PSSS) and
Cross Entropy-based Personalized Sleep Staging System (CE-PSSS) are also presented by
using Differential Evolution and Cross Entropy respectively. With the feasibility of FSC
technique and the flexibility of symbolic intelligence, proposed system can be a reliable
computer-assisted tool for assisting clinical sleep analysis and can be integrated with any
PSG medical recording device.



Chapter 7

Evaluation of Sleep Staging System

In this chapter, evaluation of modified Symbolic Fusion-based Sleep Staging System
(SF-SSS) is analyzed at the beginning, followed by comparison with existing SF-SSS.
Then, evaluation of DE-PSSS and CE-PSSS is analyzed involving the selection of optimal
control parameters and training set. At last, comparison among two different search algo-
rithm methods based PSSS and SF-SSS using manual setting up thresholds are evaluated.

7.1 Database

To evaluate SF-SSS model with proposed modifications, the same database (Database
1) which has been used in existing SF-SSS analysis is adopted in order to make the
comparisons. However, this database was recorded before 2006 and it was visually scored
by physicians according to the old gold standard of sleep study (R & K manual). However,
the evaluation of ATSU method and PSSSs are based on a new database (Database 2)
which was recorded in 2016.

7.1.1 Database 1

This database was recorded before 2006 which mainly records PSG signals like, three
EEG channels, two EOG channels and one chin EMG channel of 16 subjects. PSG
recordings are acquired using Embla System and visually scored by ten physicians using
Somnologica software according to the old gold standard of sleep study (R & K manual).
Subjects in Database 1 are those people that suspected to suffer from Sleep Apnea Syn-
drome (SAS) by physicians. In existing SF-SSS analysis, stage awake, S1, S2 and REM
scored by R&K are considered as stage W, N1, N2 and R of AASM respectively; stage S3
and S4 scored by R&K are considered as stage N3 of AASM. Details of this database are
introduced as follows.

7.1.1.1 PSG Recordings

Three EEG channels (C3-A2, C4-A1, O1-A2), two EOG channels (EOG-L, EOG-R)
and one chin EMG channel were recorded. The sampling frequency for EEG and EOG is
100 Hz. For EMG, the sampling frequency is 200 Hz.

7.1.1.2 Subjects Description

Overnight PSG signals were recorded from 16 subjects (4 males and 12 females) ranging
from 26 to 67 years old (µ = 54.8, σ = 12.5) in Hôptial-Tenon (AP-HP) before 2006. AHI
(average number of apneas and hypopneas per hour of sleep) ranges from 3.8 to 70.5 (µ
= 25.5, σ = 22.7). Details of patient information was shown in Table 7.1. In ID column,

75
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the identification number of each subject is listed. In G column, it represents Gender of
subjects: M is Male and F is Female. TE is the Total Epoch number of the subject during
sleep. EASE is Expert Analysis Start Epoch which represents the start epoch analyzed by
experts for each subject. EAEE is Expert Analysis End Epoch which represents the last
epoch analyzed by expert for each subject. EATE is Expert Analysis Total Epoch which
represents the total epoch number that analyzed by expert for each subject. In W, N1,
N2, N3, and R column, it lists the epoch number of stage W, N1, N2,N3 and R for each
subject.

AHI1 ID2 G3 Age TE4 EASE5 EAEE6 EATE7 W N1 N2 N3 R

3.8 627 F 41 1800 724 1798 1075 326 54 383 214 98

4.9 3774 F 26 1830 1 1830 1830 983 165 447 138 97

5.8 4062 M 62 1860 691 1841 1151 314 153 353 115 216

7.6 50897 F 57 1773 479 1713 1235 456 46 364 225 144

8.2 3875 F 29 1830 1 1830 1830 1093 8 445 155 129

9.8 3870 F 65 1800 481 1624 1144 88 192 331 278 255

16.2 50062 M 64 1800 585 1721 1137 144 93 274 473 153

16.3 4064 M 57 1860 628 1731 1104 154 198 306 259 187

16.3 1818 F 67 1800 583 1800 1218 112 49 610 321 126

19.6 45813 F 54 1680 542 1549 1008 253 146 476 94 39

26.3 46618 F 58 1800 751 1731 981 115 272 220 247 127

33.8 3928 F 64 1797 569 1474 906 216 136 329 162 63

42.8 56508 F 60 1560 302 1560 1259 126 39 549 194 351

59 55341 F 51 1740 431 1593 1163 270 133 397 242 121

67.5 48814 F 56 1560 461 1560 1100 73 78 621 178 150

70.5 639 M 66 1740 394 1720 1327 24 229 421 321 332

Table 7.1 – Subject Information of Database 1

Only epochs that analyzed by experted are considered to evaluate the modified SF-
SSS. For example, only epochs from 724 to 1798 for subject 627 are used to analyze the
modified SF-SSS. Total number of each stage that used to evaluate the modified SF-SSS
for all 16 subjects is listed in Table 7.2.

W N1 N2 N3 R Total

Expert Analysis
(Epoch Number) 4747 1991 6526 3616 2588 19468

Table 7.2 – Information of Database 1

7.1.2 Database 2

To our knowledge, all the database used in existing sleep analysis are visually scored
by using R&K. There is no public database that is scored by using AASM. Thus, a new

1average number of apneas and hypopneas per hour of sleep
2Identification
3Gender
4Total Epoch
5Expert Analysis Start Epoch
6Expert Analysis End Epoch
7Expert Analysis Total Epoch
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database was recorded in La Pitié-Salpêtrière hôspital (AP-HP). This new database was
visually scored by physicians using AASM. Instead of only providing the final classification
results of each stage, it also provides occurrence and location of sleep events that observed
by physicians. Details of this new database is introduced as follows.

7.1.2.1 PSG Recording Device

PSG recordings were performed using the Compumedics Grael HD-PSG device which
produced by a medical device company called Compumedics Limited from Australia. It
recorded the following signals: Fp1-A2, C3-A2, O1-A2 electroencephalogram; bilateral
electrooculograms, submental electromyogram, electrocardiogram, oximetry, ribcage and
abdominal movement, body position, sound intensity, and bilateral tibial electromyogram.

7.1.2.2 PSG Recordings

All PSG recordings were stored in European Data Format (EDF) format. EDF for-
mat allows storing multichannel signal with the different sampling frequency. It includes a
header and data records. The header contains general information (e.g. patient identifica-
tion, start time, end time, etc.) and technical specifications of each signal (e.g. sampling
frequency, transducer type, etc.) and the data records contain samples. The sampling
frequency for EEG, EOG and EMG is 256 Hz.

7.1.2.3 Expert Analysis

Based on PSG recordings, expert analysis was performed. PSG recordings were seg-
mented into 30s epoch and manually scored by experts into five different stages : W,
N1, N2, and N3 and R according to AASM manual. All the expert analysis results were
stored in Extensible Markup Language (XML) file. XML is a markup language which
was designed to store and transport data, it defines a set of rules for encoding documents
in a format that is both human-readable and machine-readable.

7.1.2.4 Subjects Description

Overnight PSG signals were recorded from 16 subjects (9 males and 7 females) ranging
from 22 to 82 years old (µ = 45.6, σ = 18.1) in La Pitié-Salpêtrière hôspital (AP-HP)
which located in Paris. AHI (average number of apneas and hypopneas per hour of sleep)
ranges from 0 to 40.2 (µ = 22.0, σ = 16.1). Details of patient information are shown in
Table 7.3. In G column, M represents Male and F represents Female. In Total Epoch
column, it lists the number of total epochs which was analyzed by experts for each subject.
In W, N1, N2, N3, and R column, it lists the number of epochs of Stage W, N1, N2,N3
and R for each subject. Total number of each stage for all 16 subjects is listed in Table
7.4.
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AHI1 ID2 G3 Age Total Epoch W N1 N2 N3 R

0 10 F 30 1083 105 80 448 250 200

0 12 F 44 1079 112 50 477 186 254

0 13 M 33 1237 173 31 530 262 241

0.5 11 F 23 1018 100 38 420 250 210

0.7 8 F 28 1004 180 27 488 137 172

1.1 4 M 22 1214 182 82 520 205 225

1.6 3 F 61 1071 102 18 539 209 203

2.4 9 F 40 1247 212 54 417 196 368

3.3 18 M 61 1184 116 154 527 175 212

3.9 29 M 29 845 48 24 407 167 199

4.8 1 M 52 1001 180 45 301 263 212

5.7 7 M 64 1331 151 104 627 237 212

22.7 63 M 36 1195 141 111 544 153 246

28.2 41 F 82 1317 811 80 331 74 21

35.3 5 M 65 1105 126 158 315 329 177

40.2 49 M 59 1203 453 266 437 16 31

Table 7.3 – Subject Information of Database 2

W N1 N2 N3 R Total

Expert Analysis
(Epoch Number) 3192 1322 7328 3109 3183 18134

Table 7.4 – Information of Database 2

7.2 Evaluation of SF-SSS with Modifications

To evaluate SF-SSS with proposed modifications, F-Measure, Agreement Rate and
Cohen’s Kappa are used. As shown in Figure 7.1, classification result of each stage is ob-
tained after Symbolic Fusion. F-Measure is used evaluate the classification performance
of each stage. Based on the classification result of each stage, Hypnogram can be gen-
erated. Agreement Rate and Cohen’s Kappa are calculated according to Hypnogram for
evaluating the classification result of whole sleep stage.
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Figure 7.1 – Evaluation of SF-SSS

7.2.0.1 F-Measure of Existing SF-SSS VS SF-SSS with Modifications

F-Measure is widely used in binary classification, it considers both precision and recall.
The traditional F-Measure also called balanced F-score (F1) is used evaluate for each stage
of modified SF-SSS as shown Equation 7.1. It balances the precision and recall.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(7.1)

In F-Measure, Precision and Recall are used which as shown in Equation 7.2 and Equation
7.3, respectively. Precision (also called positive predictive value) is the ratio of all positive
predictions among the predictions. Recall (also known as sensitivity or true positive rate)
is the ratio of positive predictions among true events.

Precision =
TP

TP + FP
(7.2)

Recall =
TP

TP + FN
(7.3)

TP, FN, FP and FN are used to evaluate how good the observations (predictions) reflect
the actual events for a classification. True Positives and True Negatives are the obser-
vations which were correctly predicted. False Negatives are observations are negative
where the actual events are positive. False Positive are observations are positive where
the actual events are negative.

To evaluate SF-SSS, F-Measure is calculated for each stage: W, N1, N2, N3 and R.
Table 7.5 list the confusion matrix of the classification result of stage W as an example.
In column 3, W represent the classification result which classified by modified SF-SSS as
stage W. In column 4, NW represent the classification result which classified by SF-SSS
as not stage W.
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SF-SSS
W NW

Expert Analysis W True Positive False Negative
NW False Positive True Negative

Table 7.5 – Confusion Matrix of Stage W

F-Measure of each stage using existing SF-SSS and SF-SSS with modifications are
listed in Table 7.6. The last column is the mean value of F-Measure for 16 subjects of
each stage. By adding modifications we proposed, F-Measure for stage W, N1 and N3
are improved. For stage W, mean F-Measure is improved from 0.6768 to 0.6802; for stage
N1, mean F-Measure is improved from 0 to 0.1424 and for stage N2, mean F-measure is
improved from 0.3787 to 0.4762.

F-Measure of Existing SF-SSS F-Measure of Modified SF-SSS

ID W N1 N2 N3 R W N1 N2 N3 R

627 0.8089 0 0.6512 0.8327 0.2694 0.8146 0.1467 0.7913 0.8327 0.2694

639 0.5806 0 0.0635 0.8425 0.5336 0.5806 0.3575 0.2496 0.8425 0.5336

1818 0.7813 0 0.1047 0.6027 0.2772 0.7732 0.0000 0.6803 0.6027 0.2772

3774 0.8819 0 0.6780 0.7298 0.3771 0.8831 0.3200 0.6366 0.7298 0.3771

3870 0.7322 0 0.2750 0.7873 0.5049 0.7322 0.2982 0.3878 0.7873 0.5049

3875 0.9447 0 0.2432 0.7653 0.2891 0.9447 0.0352 0.4846 0.7653 0.2891

3928 0.5503 0 0.5331 0.7967 0.3017 0.5503 0.1897 0.5263 0.7967 0.3017

4062 0.6117 0 0.0887 0.7424 0.6667 0.6117 0.0846 0.1218 0.7424 0.6667

4064 0.7051 0 0.4043 0.7514 0.2783 0.7051 0.0591 0.4652 0.7514 0.2783

45813 0.4701 0 0.3192 0.3958 0.0000 0.4888 0.0000 0.3212 0.3958 0.0000

46618 0.4686 0 0.1835 0.8077 0.6031 0.4686 0.1425 0.2755 0.8077 0.6031

48814 0.2626 0 0.3904 0.8375 0.4171 0.2913 0.1156 0.4939 0.8375 0.4171

50062 0.7184 0 0.3710 0.7918 0.6897 0.7184 0.1271 0.3702 0.7918 0.6897

50897 0.8434 0 0.5914 0.7004 0.5485 0.8434 0.1176 0.5914 0.7004 0.5485

55341 0.8235 0 0.4370 0.7279 0.5637 0.8235 0.2080 0.4868 0.7279 0.5637

56508 0.6462 0 0.7246 0.7143 0.6849 0.6531 0.0769 0.7360 0.7143 0.6849

Mean 0.6768 0 0.3787 0.7391 0.4378 0.6802 0.1424 0.4762 0.7391 0.4378

Table 7.6 – F-Measure on Database 1

F-Measure for stage N2 of each subject is shown in Figure 7.2. 12 out of 16 subjects,
F-Measures are improved by using modified SF-SSS. Three of the subjects like subject
3774 and 3928, F-Measures are slightly decreased by using modified SF-SSS. However,
by combining Recall Appendix (8.3) and Precision Appendix (8.3), Recall for subject
3774 and 3928 are improved from 0.8949 to 0.9150, 0.5137 to 0.5167 respectively while
Precision are decreased. It is because of the precision of detection K-Complex which may
also depend on the thresholds used to transforming K-Complex digital parameter into the
symbolic interpretation of feature parameter.

After adding modifications of existing SF-SSS, F-Measure is improved. However, for
stage N1, N2 and R, F-Measure is still low. Here, we don’t evaluate the accuracy of
Symbolic Fusion itself, because it also depends on the thresholds that were set up in
transforming digital parameters into the symbolic interpretation of feature parameters;
moreover, more sleep events can be involved to improve the performance and completion
of SF-SSS.
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Figure 7.2 – F-Measure of Existing SF-SSS VS SF-SSS with Modifications for stage N2

7.2.0.2 Agreement Rate of Existing SF-SSS VS SF-SSS with Modifications

After obtaining the classification results of each stage, a Hypnogram Generation mod-
ule was applied in existing SF-SSS which simply generates the Hypnogram according to
the writing order of stage N1, R, N3, N2 and W. In details, the classification result of
stage N1 will write firstly, followed by R, N3, N2, and W will write lastly. The previously
written results can be overwritten by the later results it writes. The method applied
in existing SF-SSS to generate Hypnogram is simple, while it needs to be improved in
further work. Once Hypnogram generates, Agreement Rate (AR) is used to evaluate the
overall performance. AR is the proportion of same results classified by modified SF-SSS
and physicians in comparative to results classified by physicians. AR for each stage is
shown as follows:

AR{W,N1, N2, N3, R} =
TP{W,N1, N2, N3, R}

TP{W,N1, N2, N3, R}+ FN{W,N1, N2, N3, R}
; (7.4)

In Equation 7.4, TP{W,N1, N2, N3, R} is True Positive of stage W,N1,N2,N3,R. FN{W,
N1, N2, N3, R} is False Positive of stage W,N1,N2,N3,R.

AR for all stages is defined in Equation 7.5, which equals to the proportion of the sum
of same results classified by SF-SSS and physicians for all stages in comparative to results
classified by physicians.

AR{Total} =
TP

TP + FN
; (7.5)

AR for each stage and Total AR using SF-SSS with proposed modifications are listed
in Appendix (8.6) in comparison to the results obtained using existing SF-SSS as shown
in Appendix (8.5). ARs for stage N1 are still very low, it mainly because of the method
we adopted in generating Hypnogram which needs to be improved in our further work.

Total AR of each subject in order to compare modified SF-SSS and existing SF-SSS is
shown in Figure 7.3. ARs for 15 out of 16 subjects are increased using modified SF-SSS.
Only AR for subject 639 is slightly decreased. However, F-Measure of subject 639 for
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stage N1 and N2 are improved from 0 to 0.3575, and 0.0635 to 0.2496 respectively using
SF-SSS with modifications as shown in Table Appendix (8.3). For other stages like W, N3
and R, F-Measure keeps the same. AR for subject 639 decreases because the Smoothing
part adding for SF-SSS model. In Smoothing, a smoothing rule for three consecutive
epochs of R, N2, R are replaced with the R, R, R is performed. Figure 7.4 presents the
Hypnogram for subject 639 before and after smoothing. After smoothing, AR for stage
N2 decreases slightly due to some N2 epochs are labeled as stage R. The main reason why
the Smoothing part in modified SF-SSS lower the AR for subject 637 is due to the low
precision and recall which obtained in classification for stage N2.

Figure 7.3 – Total Agreement Rate of Existing SF-SSS VS SF-SSS with Modifications

Figure 7.4 – Agreement Rate of Existing SF-SSS VS SF-SSS with Modifications for Subject
639
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7.2.0.3 Confusion Matrix of Existing SF-SSS VS SF-SSS with Modifications

Besides using AR to evaluate the agreement percentage between SF-SSS and experts
analysis, confusion matrix is also adopted to provide more details of SF-SSS classification
results. The confusion matrix is a square matrix showing the relation between experts
analysis and the results obtained using SF-SSS. The values in the diagonal elements
represent the number of correctly identified stages and the off-diagonal values are the
number of misclassified. An element of row i and column j indicates the number of
epochs sleep stage i is misclassified into stage j.

Confusion matrix for the Database 1 using modified SF-SSS is listed in Table 7.8, while
the confusion matrix which obtained using existing SF-SSS is shown in Table 7.7. In the
last column, AR for each stage and AR for the whole database are presented. Meanwhile,
in the last row, Cohen’s Kappa value is calculated.

Cohen’s Kappa coefficient κ is also estimated because it provides a more robust esti-
mate of the sleep staging performance as compared to the simple agreement percentage.
As suggested by Landis and Koch [42], Kappa values of 0.21-0.4 indicate fair agreement,
0.41-0.6 moderate agreement, 0.61-0.8 substantial agreement, and 0.81-0.99 almost perfect
agreement.

The equation for κ is:

κ =
po − pe
1− pe

; (7.6)

where po is the relative observed agreement among SF-SSS and experts analysis, and
pe is the hypothetical probability of chance agreement. If results from SF-SSS are in
complete agreement with expert analysis then κ = 1. If there is no agreement among
SF-SSS classification results and experts analysis other than what would be expected by
chance, then κ ≤ 0.

Existing SF-SSS
W N1 N2 N3 R Total AR

Expert Analysis

W 3614 0 779 44 310 4747 0.7613
N1 530 0 815 98 548 1991 0.0000
N2 377 0 3499 734 1916 6526 0.5362
N3 18 0 1210 2177 211 3616 0.6020
R 67 0 562 124 1835 2588 0.7090

Total 4606 0 6865 3177 4820 19468 0.5715
Kappa 0.4368

Table 7.7 – Confusion Matrix of Database 1 using Existing SF-SSS

Modified SF-SSS
W N1 N2 N3 R Total AR

Expert Analysis

W 4054 13 339 36 305 4747 0.8540
N1 771 39 519 103 559 1991 0.0196
N2 555 12 4246 660 1053 6526 0.6506
N3 22 0 1321 2205 68 3616 0.6098
R 61 14 488 67 1958 2588 0.7566

Total 5463 78 6913 3071 3943 19468 0.6422
Kappa 0.5266

Table 7.8 – Confusion Matrix of Database 1 using Modified SF-SSS
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In comparison between confusion matrix using modified SF-SSS and existing SF-SSS,
the number of correctly identified stages in diagonal elements is increased using modified
SF-SSS. AR for stage W, N1, N2, N3 and R is increased from 0.7613 to 0.8540, 0 to
0.0196, 0.5362 to 0.6506, 0.6020 to 0.6098 and 0.7090 to 0.7566 respectively. Total AR is
increased from 0.5715 to 0.6422. Cohen’s Kappa coefficient is also increased.

To evaluate the performance of modified SF-SSS, F-Measure, Agreement Rate and
Cohen’s Kappa are used. F-Measure is used to assess the performance of each stage;
Agreement Rate and Cohen’s Kappa are used to evaluate the performance of overall
classification. With the modifications proposed in modified SF-SSS, it reaches higher
values of F-Measure, Agreement Rate and Cohen’s Kappa in comparison to existing SF-
SSS.

7.3 Evaluation of Automatic Thresholds Setting-Up Method

To evaluate the Automatic Thresholds Setting-Up method, a new database (Database
2) which was recorded in 2015 is used. We start with the evaluation of Differntial Evolua-
tion (DE) and Cross Entropy (CE) algorithms to select the appropriate control parameter
for the sleep staging application. Then, PSSS is evaluated from the selection of training
set to the performance of evaluation set. At last, comparison between DE-PSSS and
CE-PSSS are made.

7.3.1 Evaluation of Automatic Thresholds Setting-Up Method

Evaluation of ATSU mainly involving the selection of control parameters of DE and
CE. In this section, the control parameters selection of DE and CE are analyzed.

7.3.1.1 Parameters Selection of Differential Evolution

There are three main control parameters of Differential Evolution: Population Size
(NP), Mutation Scale Factor (F) and Crossover Rate (CR) as shown in Table 7.9. NP
plays a crucial role in the efficiency and effectiveness of DE. Large population size po-
tentially increases the population diversity and computational complexity. F controls
the amplification of the differential variation. CR controls the number of components
inherited from the mutant vector which can be interpreted as a mutation probability.

� Population Size (NP)
Population size is probably the most problem-dependent control parameter. It plays
a crucial role in the efficiency and effectiveness of DE. Large population size poten-
tially increases the population diversity. In [70], NP is suggested from 5*D up to
10*D, where D is the dimension. In ATSU method, D is the number of thresholds.

� Mutation Scale Factor (F)
F controls the amplification of the differential variation. Too small F values increase
the risk of premature convergence (i.e. converge to an undesirable point), while too
large F values decrease the convergence speed that degrades DE efficiency and may
result in early termination.

� Crossover Rate (CR)
CR controls the number of components inherited from the mutant vector or current
vector. It influences the probability for a component to be selected from the mutant
vector. CR also heavily depends on the problem, where small CR values are sug-
gested for separable problems and high CR values are suggested for non-separable
problems [54].
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The selection of appropriate parameters can affect the efficiency of ATSU directly.
Due to the variability of the underlying mathematical properties of different problems, a
fixed set of control parameters that suits well for one problem, or a class of problems does
not guarantee that it will work well for another class, or range of problems [61]. That is,
the selection of control parameters is problem dependent. To ensure the performance of
ATSU, selection of control parameters is extremely important.

To select the appropriate control parameters, trial-and-error approach, is widely used.
Several sets of control parameters are tested, then appropriate control parameters can be
selected based on the average performance of the problem.

Main Control Parameters of DE Range

Population Size(NP) [5D, 10D] 8

Mutation Scale Factor(F) [0, 2]

Crossover Rate(CR) [0, 1]

Table 7.9 – Main Control Parameters of Differential Evolution

To evaluate the impact of different control parameters and strategies of DE, population
size 5*D, 10*D and 500; Mutation Scale Factor of 0.5, 1 and 1.5; Crossover Rate of 0.1,
0.5 and 0.9 are used, as shown in Table 7.10. Initially the maximum iteration of DE-PSSS
was set to 200, however, the simulation results show after 100 iterations, F-Measure tend
to be stable. Thus, the maximum iteration was changed from 200 to 100.

Parameters and Strategy for Simulation

Population Size (NP) [5D, 10D, 500]

Mutation Scale Factor (F) [0.5, 1, 1.5]

Crossover Rate (CR) [0.1, 0.5, 0.9]

Table 7.10 – Parameters used for DE Control Parameters Selection Simulation

Figure 7.5, Figure 7.6 and Figure 7.7 shows F-Measure dependence on generation
number using Strategy DE/rand/1/bin for Subject 1 in classification of stage W with
population size 5*D, 10*D and 500 respectively. Due to the stochastic ability of Differ-
ential Evolution, F-Measure in Figure 7.5, Figure 7.6 and Figure 7.7 are mean values of
20 independent runs.
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Figure 7.5 – DE Control Parameters Selection: DE/rand/1/bin, NP=5D

Figure 7.6 – DE Control Parameters Selection: DE/rand/1/bin, NP=10D
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Figure 7.7 – DE Control Parameters Selection: DE/rand/1/bin, NP=500

With increasing of F, the convergence speed decreases. Among F =0.5, F =1 and
F =1.5, 0.5 provides the best convergence speed as shown in Figure 7.5, Figure 7.6 and
Figure 7.7. For the same NP and F =0.5, CR=0.9 is relative better than CR=0.1/0.5.

Figure 7.8 – DE Control Parameters Selection: DE/rand/1/bin

In order to evaluate the impact of different population size, Figure 7.8 shows compari-
son among different NP and CR when F =0.5. Large population size potentially increases
the population diversity and may provide fast convergence speed. However, it also in-
creases the computational time. NP=500, F =0.5, CR=0.5/0.9 have fast convergence
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speed than others. For NP=500, F =0.5, CR=0.1 almost have same convergence speed
as NP=5D/10D, F =0.5, CR=0.9.

According to the simulation results, in order to balance F-Measure and computational
complexity, NP=5D, F =0.5, CR=0.9 can be suggested as optimal parameters for Strategy
1 which have less computational complexity compared to NP=500 and have slightly better
convergence speed than NP=5D, F =0.5, CR=0.1/0.5.

7.3.1.2 Parameters Selection of Cross Entropy

There are two main control parameters of Cross Entropy: Sample Size (N) and Elite
Sampling Rate (ρ).

1. Sample Size(N) : Large sample size potentially increases the population diversity.
However, large sample size also increases computational time.

2. Elite Sampling Rate(ρ) : ρ controls the number of elite samples which belongs to
(0,1). It should ensure the elite samples to be lager enough for obtaining a reliable
parameter update for PDFs.

To evaluate impact of different control parameters of CE, Sample Size 100, 500, 1000
and 10000; Elite Sampling Rate 0.1, 0.3, 0.5 and 0.7 are used for different strategies as
shown in Table 7.11.

Parameters and Strategy for Simulation

Sample Size (N) [100, 500, 1000, 10000]

Elite Sampling Rate(ρ) [0.1, 0.3, 0.5, 0.7]

Table 7.11 – Parameters used for CE Control Parameters Selection Simulation

Figure 7.9 shows F-Measure dependence on iteration number for different sample sizes
of stage W classification for subject 1. Due to the stochastic ability of Cross Entropy,
F-Measure in Figure 7.9 are mean values of 20 independent runs. Initially, the maximum
iteration number was set to 200. However, the simulation shows that after 50 iterations,
F-Measures stay in the stable. So the maximum iteration number changed from 200 to
50.

Figure 7.10 shows F-Measure dependence on the first 50 iterations. Large sample
size potentially increases the sample diversity and may provide fast convergence speed.
However, it also increases the computational time. For the same sample size, the increase
of elite sampling rate slows down the convergence speed. According to the simulation
results, sample size of 500 with elite sampling rate of 0.1 provides optimum between
F-Measure and computational complexity.
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Figure 7.9 – CE Control Parameters Selection (Iteration=200)

Figure 7.10 – DE Control Parameters Selection (Iteration=50)

7.3.2 Evaluation of Personalized Sleep Staging System

In this section, DE-PSSS and CE-PSSS are evaluated involving the selection of training
set and the performance of evaluation set.

To fully understand how many epochs are required to be scored by physicians in order
to set up personalized thresholds, different training set size are selected.
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7.3.2.1 Training Set Selection of DE-PSSS

Four different set of values have been used as the size of training set & evaluation set
for DE-PSSS: 5% & 95%, 10% & 90%, 15% & 85% and 20% & 80%. DE-PSSS selects the
optimal thresholds according to different training sets and passes these thresholds to the
corresponding evaluation sets. The selection of 5%, 10%, 15% and 20% of the training
set are randomly selected 5%, 10%, 15% and 20% of each stage (W, N1, N2, N3 and R)
for each subject.

Subject ID: 1 W N1 N2 N3 R Total

Total Number 180 45 301 263 212 1001

Training Set 9 3 16 14 11 53

Evaluation Set 171 42 285 249 201 948

Table 7.12 – Training Set & Evaluation Set: 5% & 95 % for Subject ID=1

Table 7.12 gives an example of training set and evaluation set for subject 1 using
5% as training set and remaining 95% as evaluation set. Total number of 53 epochs are
randomly selected from the over-night training set and the remaining 948 epochs are used
as evaluation set.

Thresholds which can provide highest F-Measure using NP=5D, F=0.5, CR=0.9 con-
trol parameters for training set are adopted as the optimal thresholds for evaluation set.
F-Measure for each stage of evaluation set is calculated as shown in Appendix (8.7). In
order to verify the robustness of DE-PSSS, F-Measures in Appendix (8.7) are the mean
value of 20 independently runs. Meanwhile, standard deviation of these 20 runs is also
provided Appendix (8.7).

The mean value of F-Measure for 16 subjects is presented in the last column of Ap-
pendix (8.7). For stage W, N2 and N3, F-Measure can reach over 0.71. For stage R, the
mean value is relative lower than stage W, N2 and N3. This is because for subject 41 and
49, F-Measure is very low which only reaches 0.3138 and 0.1874 respectively. For subject
41, only 2 epochs of stage R are selected among 68 epochs (total epoch number of stage
R) as the training set. Thresholds can easily reach high F-Measure for only 2 epochs,
while it may not obtain high F-Measure for evaluation set. For subject 49, only 2 epochs
of stage R are selected as training set among 62 epochs (total epoch number of stage R).

F-Measure of evaluation set using 10% randomly selected epochs of each stage as
training set is shown in Appendix (8.8). F-Measure can reach over 0.73 for stage W, N2
and N3. For stage R, F-Measure can reach 0.6818. F-Measures of evaluation set using
15% and 20% of training are listed in Appendix (8.9) and Appendix (8.10).

In order to select the optimal training set for DE-PSSS, comparison among four dif-
ferent training set & evaluation set is shown in Table 7.13.

DE-PSSS(Training Set & Evaluation Set) W N1 N2 N3 R

5% & 95% 0.7137 0.2209 0.7229 0.7363 0.6565

10% & 90% 0.7335 0.2299 0.7354 0.7487 0.6818

15% & 85% 0.7411 0.2410 0.7380 0.7568 0.6932

20% & 80% 0.7452 0.2453 0.7419 0.7623 0.6955

Table 7.13 – F-Measure Comparison among training set & evaluation set of DE-PSSS

With the increment of the training set, F-Measures for evaluation set are increased.
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For the consideration of consuming less time for physicians in scoring training set, 5% can
be considered as the optimal value for the training set. However, for the consideration
of reaching higher F-Measure for evaluation set, 15% can be considered as the optimal
value for the training set. In comparison to 20%, 5% more epochs should be scored, while
F-Measure for each stage only increases less than 0.01.

7.3.2.2 Training Set Selection of CE-PSSS

To evaluate impact of training set selection on CE-PSSS, four different set of values
have been used to balance the size of training set & evaluation set: 5% & 95%, 10% &
90%, 15% & 85% and 20% & 80%. DE-PSSS selects the optimal thresholds according to
different training sets and passes these thresholds to the corresponding evaluation sets.

Details of F-Measure of evaluation set using 5%, 10%, 15% and 20% are shown in
Appendix (8.11), Appendix (8.12), Appendix (8.13) and Appendix (8.14) respectively.
F-Measure in Appendix (8.11), Appendix (8.12), Appendix (8.13) and Appendix (8.14)
for each subject is the mean value of 20 independently runs.

Comparison among F-Measures of evaluation set using different training set is shown
in Table 7.14.

CE-PSSS(Training Set & Evaluation Set) W N1 N2 N3 R

5% & 95% 0.6652 0.1566 0.7194 0.7385 0.6326

10% & 90% 0.6884 0.1683 0.7309 0.7464 0.6632

15% & 85% 0.6989 0.1804 0.7367 0.7521 0.6756

20% & 80% 0.7051 0.1835 0.7402 0.7573 0.6824

Table 7.14 – F-Measure Comparison among training set & evaluation set of CE-PSSS

As training set increases, F-Measures for evaluation set also increases slowly. For
the consideration of consuming less time for physicians in scoring training set, 5% can
considered as the optimal value for training set. For the consideration of reaching higher
F-Measure for evaluation set, 15% can be considered as the optimal value for training set.
In comparison to 20%, 5% more epochs should be scored, while F-Measure for each stage
only increases approximately 0.01 for stage W and R.

7.3.3 Comparison between DE-PSSS and CE-PSSS

In this thesis, we proposed two personalized sleep staging systems based on ATSU. Two
different stochastic search algorithms: Different Evolution and Cross Entropy are used in
ATSU. To compare DE-PSSS and CE-PSSS, we start from analyzing the algorithms.

7.3.3.1 Algorithm Comparison

Table 7.15 lists the comparisons between DE and CE. For DE, three control param-
eters: Population Size (NP), Mutation Scale Factor (F) and Crossover Rate (CR) are
required to be set; for CE, two control parameters: Sample Size (N) and Elite Sampling
Rate ρ are required to be set.

In consideration of the maximum iteration number of DE and CE, 200 is set as initially
maximum iteration number. Hoverer, for DE, it tends to be stable after 100 iterations
and for CE, it tends to be stable after 50 iterations. Thus the maximum iteration number
for DE and CE are set to 100 and 50 respectively.

For CE with control parameters (N=500, ρ=0.1), within 10 iterations F-Measure can
reach approximate to 0.81 as shown in Figure 7.10 and then F-Measure stays as same.
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While for DE with control parameter(NP=5D, F=0.5, CR=0.9),it require approximate
30 iterations to reach 0.81 as shown in Figure 7.8 but F-Measure still increases after 30
iterations.

DE CE

Control Parameters NP, F, CR N, ρ

Iterations 100 50

Convergence slow but stable fast but may trap into local optimal

Table 7.15 – Comparisons between DE and CE

7.3.3.2 Computational Time

In consideration of targeting DE-PSSS and CE-PSSS into embedded systems, the
performances of Differential Evolution and Cross Entropy algorithms in terms of latencies
are evaluated. Table 7.16 and Table 7.17 gives detailed information on computational
time (in seconds) of DE-PSSS and CE-PSSS for one iteration respectively.

For different control parameters of DE-PSSS, only Population Size (NP) affects the
computational time. For CE-PSSS, only Sample Size (N) affects the computational time.

DE-PSSS NP=5D NP=10D NP=500

folk9 0.20 0.35 1.65

trot10 0.27 0.51 2.31

Table 7.16 – Computational Time (s) of DE for one iteration

CE-PSSS N=100 N=500 N=1000 N=10000

folk9 0.38 1.67 3.34 31.41

trot10 0.53 2.31 5.01 41.78

Table 7.17 – Computational Time (s) of CE for one iteration

Compare the computational time of DE and CE, the time CE (SS=500) consumes is
more 8 times than DE (NP=5D) for one iteration.

7.3.3.3 F-Measure Comparison

F-Measure of evaluation set using DE-PSSS and CE-PSSS is also compared by adopt-
ing the optimal thresholds which are searched from different size of training set as shown
in Table 7.18.

9 folk sever: CPU 2xXeon E5-2640; 12 coeurs; 128Go RAM
10 trot sever: CPU 2xXeon E5-2637; 8 coeurs; 128Go RAM
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W N1 N2 N3 R

DE-PSSS

5% & 95% 0.7137 0.2209 0.7229 0.7363 0.6565
10% & 90% 0.7335 0.2299 0.7354 0.7487 0.6818
15% & 85% 0.7411 0.2410 0.7380 0.7568 0.6932
20% & 80% 0.7452 0.2453 0.7419 0.7623 0.6955

CE-PSSS

5% & 95% 0.6652 0.1566 0.7194 0.7385 0.6326
10% & 90% 0.6884 0.1683 0.7309 0.7464 0.6632
15% & 85% 0.6989 0.1804 0.7367 0.7521 0.6756
20% & 80% 0.7051 0.1835 0.7402 0.7573 0.6824

Table 7.18 – F-Measure

With the increment of the training set, F-Measures for evaluation set are also increased.
For the consideration of consuming less time for physicians in scoring training set, 5% can
be considered as the optimal value for the training set. While if we want to ensure the
high performance of evaluation set, 15% can be considered as the optimal value for the
training set. In comparison to 20%, 5% more epochs should be scored, while F-Measure
for each stage only increases less than 0.01.

Compare DE-PSSS and CE-PSSS, DE-PSSS is much better which can reach higher
F-Measure for all stage using the same size of the training set and consume less time.

Proposed DE-PSSS and CE-PSSS are evaluated on the whole night PSG recordings
of subjects. While, if a short-time PSG recordings are required to be analyzed (e.g. if we
only need to analyze 1 hour PSG recordings), an increment of training set should be taken
into consideration to ensure there is enough epochs number for the training set instead of
only selecting 5%.

7.4 F-Measure Comparison between SF-SSS and DE-PSSS/CE-
PSSS

To compare SF-SSS and personalized sleep staging system, F-Measure is used to assess
the classification results of each stage.

7.4.1 F-Measure of SF-SSS using MTSU

In SF-SSS model, Manual Thresholds Set Up (MTSU) is used to set up thresholds.
Table 7.19 provides F-Measure of each stage using MSUT of SF-SSS model for Database
2. More details of F-Measure for each patient is shown in Appendix (8.15).

W N1 N2 N3 R

0.5397 0.0494 0.3859 0.5768 0.0624

Table 7.19 – Average F-Measures of SF-SSS (with modifications) using MTSU on Database 2

F-Measures for stage W and N3 can reach over 0.5, while F-Measures for stage N1 and
R is below 0.1.

7.4.2 Comparison among SF-SSS, CE-PSSS and DE-PSSS

Table 7.20 and Figure 7.11 provide F-Measure using modified SF-SSS, DE-PSSS and
CE-PSSS. In SF-SSS model, thresholds are setting by MTSU method. While in DE-
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PSSS and CE-PSSS, thresholds are setting by ATSU using Differential Evolution and
Cross Entropy respectively.

W N1 N2 N3 R

SF-SSS using MTSU 0.5397 0.0494 0.3859 0.5768 0.0624

DE-PSSS

5% & 95% 0.7137 0.2209 0.7229 0.7363 0.6565
10% & 90% 0.7335 0.2299 0.7354 0.7487 0.6818

15% & 85% 0.7411 0.2410 0.7380 0.7568 0.6932
20% & 80% 0.7452 0.2453 0.7419 0.7623 0.6955

CE-PSSS

5% & 95% 0.6652 0.1566 0.7194 0.7385 0.6326
10% & 90% 0.6884 0.1683 0.7309 0.7464 0.6632

15% & 85% 0.6989 0.1804 0.7367 0.7521 0.6756
20% & 80% 0.7051 0.1835 0.7402 0.7573 0.6824

Table 7.20 – F-Measure of SF-SSS and PSSS

Compare SF-SSS using MTSU to PSSS using ATSU, F-Measure increased sharply for
each stage by using PSSS.

In comparison to SF-SSS, F-Measures increase 0.17, 0.17, 0.34, 0.16 and 0.59 for stage
W, N1, N2, N3 and R respectively, by using 5% as the training set for DE-PSSS. By using
5% as the training set for CE-PSSS, F-Measures increased 0.13, 0.11, 0.33, 0.16 and 0.57
for stage W, N1, N2, N3 and R respectively.

Figure 7.11 presents the comparison of F-Measure using SF-SSS, DE-PSSS and CE-
PSSS. 5% is used as the training set for DE-PSSS and CE-PSSS. The results present that
PSSS can reach higher performance than SF-SSS for every stage. For stage N2 and N3,
DE-PSSS and CE-PSSS can approximately reach the same F-Measure. While for stage
W, N1, and R, DE-PSSS can reach higher F-Measure.

Figure 7.11 – Comparison between SF-SSS and PSSS
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7.5 Agreement Rate Comparison between PSSSs and Existing
Works

After obtaining the classification results of each stage by using PSSS, Hypnogram is
generated according to the writing order of stage N1, R, N3, N2 and W as explained in
Section 7.2.0.2. Then Smoothing is applied to detect and correct false sleep transitions for
obtaining the final Hypnogram. To evaluate the overall performance of PSSSs, Agreement
Rate is adopted.

7.6 Agreement Rate of PSSSs

Figure 7.12 shows comparison between the PSSS and the visual analysis by the physi-
cian using one patient as an example. Sleep staging results of Subject 9 using DE-PSSS
are presented: the above sub-figure is the binary classification of each stage; the middle
sub-figure is the Hypnogram after combining and smoothing all the five binary classifi-
cations; the bottom sub-figure is the Hypnogram analyzed by the physician. In order to
evaluate the overall performance of PSSSs, Agreement Rate is adopted by comparing the
Hypnogram generated using PSSS to the Hypnogram analyzed by the physician.

Figure 7.12 – Hypnogram of Subject 9 using DE-PSSS

Appendix (8.16) shows the Agreement Rate and Cohen’s Kappa Coefficient for each
subject using DE-PSSS and CE-PSSS. For each subject, 5% of the whole epochs are
randomly selected as the training set to provide personalized thresholds for scoring all the
epochs.

Confusion matrix for the Database 2 using DE-PSSS is presented in Table 7.21 and
a heatmap of the same information is shown in Figure 7.13. The ARs for all the stages,
except stage N1, are higher than 0.8. The overall AR for five stages also can reaches 0.8.
Cohen’s Kappa shows a substantial agreement (0.7).
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DE-PSSS
W N1 N2 N3 R Total AR

Analysis of the Physician

W 2593 58 410 39 92 3192 0.8123
N1 138 161 806 13 204 1322 0.1218
N2 151 34 6541 344 258 7328 0.8926
N3 19 0 493 2595 2 3109 0.8347
R 80 12 426 31 2634 3183 0.8275

Total 2981 265 8676 3022 3190 18134 0.8009
Kappa 0.7224

Table 7.21 – Confusion Matrix of Database 2 using DE-PSSS

Figure 7.13 shows a simple and clear way to present the confusion matrix of Database 2
using DE-PSSS. The gradient indicates percentage agreement, with red indicating a 100%
agreement rate and white at 0%. The gradient legend to the right of the figure shows
the percentages that correspond to each gray-scale level. X-axis represents classification
results of DE-PSSS and Y-axis shows the analyzed results of the physician.

Figure 7.13 – Heatmap of Confusion Matrix of Database 2 using DE-PSSS

Confusion matrix for the Database 2 using CE-PSSS is also presented, as shown in
Table 7.22. Overall AR for Database 2 reaches 0.75. In addition, ARs for stage W and N2
can reach over 0.8. Cohen’s Kappa Coefficient for Database 2 is 0.65, which also shows a
substantial agreement between CE-PSSS and the analysis from the physician.
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CE-PSSS
W N1 N2 N3 R Total AR

Analysis of the Physician

W 2691 48 378 29 46 3192 0.8430
N1 207 163 809 17 126 1322 0.1233
N2 387 74 6041 435 391 7328 0.8244
N3 63 0 555 2482 9 3109 0.7983
R 193 37 693 38 2222 3183 0.6981

Total 3541 322 8476 3001 2794 18134 0.7499
Kappa 0.6527

Table 7.22 – Confusion Matrix of Database 2 using CE-PSSS

Heatmap of confusion matrix of Database 2 using CE-PSSS is shown in Figure 7.14.
The gradient indicates percentage agreement, with red indicating a 100% agreement rate
and white at 0%. The gradient legend to the right of the figure shows the percentages that
correspond to each gray-scale level. X-axis represents classification results of DE-PSSS
and Y-axis shows the analyzed results of the physician.

Figure 7.14 – Heatmap of Confusion Matrix of Database 2 using CE-PSSS

7.7 Agreement Rate Comparison between PSSSs and Inter-raters

In clinical sleep analysis, inter-raters variability is a major issues for manually sleep
staging. Inter-raters agreement for different stages is reported in [66]. Agreement for stage
W is among 68%-89%; for stage N1 is among 23%-74%; for stage N2 is among 79%-90%;
for stage N3 is around 69%. for stage R is among 78%-94%. Comparisons of PSSSs and
inter-rater agreement are presented in Table 7.23.



Page 98 CHAPTER 7. EVALUATION OF SLEEP STAGING SYSTEM

Sleep Stages DE-PSSS CE-PSSS Inter-raters

W 81.23 % 84.30% 68-89%

N1 12.18% 12.33% 23-74%

N2 89.26% 82.44% 79-90%

N3 83.47% 79.83% 69%

R 82.75 % 69.81% 78-94%

Table 7.23 – Agreement Rate Comparison between PSSSs and Inter-raters

By using DE-PSSS, ARs for stage W, N2 and R are within the inter-raters agreement
reported in [66]. For stage N3, AR is higher than inter-raters agreement. However, for
stage N1, AR is lower than inter-raters agreement.

For CE-PSSS, ARs for stage W and N2 are within the in-raters agreement. For stage
N3, AR is higher than inter-raters agreement. While, for stage N1 and R, AR is relative
lower than inter-raters agreement.

7.8 Agreement Rate Comparison between PSSSs and Other Works

Methods Authors Database Classification AR

Decision Tree Masaaki et al. 1 male SWS(S3,S4),SREM,
[25] training: 80% & testing: 20% S1,S2,S3,S4,MT6 82%

Decision Tree Khai et al. 5 subjects W,N1,N2,
[44] training: NM 7 & testing: NM7 N3,R,MT6 79%

ANN Nicolas et al. 12-night recordings W, MT6, S1,
[62] training: 51% & testing: 49% S2, S3, S4, R 81%

ANN Nizar et al. 1 male W,N1,N2,
[37] training: NM7 & testing: NM7 N3,R 76%

SVM Steinn et al. 4-night recordings W, LS(S1,S2),
[23] training: 75% & testing: 25% SWS(S3,S4),R 76%

SVM Antonio et al. 9-night recordings W,S1,S2
[50] training: 33% & testing: 33% SWS(S3,S4),R 70%

Rule-based Sheng-Fu et al. 16 subjects W,S1,S2,
Method [45] training: 20% & testing: 80% SWS(S3,S4),R 87%

Rule-based Diego et al. 33 subjects W,N1,N2,
Method [18] training: NM7 & testing: 100% N3,R 84%

Hybrid Tarek et al. 15 subjects W,S1,S2,
Method [40] training: 67% & testing: 33% SWS(S3,S4),R 74%

DE-PSSS Proposed Method 16 subjects W,N1,N2,
training: 5% & testing: 100% N3,R 80%

CE-PSSS Proposed Method 16 subjects W,N1,N2,
training: 5% & testing: 100% N3,R 75%

Table 7.24 – Agreement Rate Comparison between PSSSs and Other Works

Table 7.24 lists comparisons among different methods for sleep staging. For DE-PSSS
we proposed, it can reach higher AR than most of the existing works while using less
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training set. In comparison to rule-based method, [45] and [18] reaches higher AR.
In [45], only young healthy subjects are included. It also used a relative larger training

set (20% of the database). Most importantly, in order to reduce the feature variability,
for each feature, the mean of maximal 10% data was calculated as the maximum value
of the feature, values larger than this maximum value are set to this maximum value.
Meanwhile, the mean of minimal 10% data was calculated as the minimum value of the
feature, values smaller than this minimum value are set to this minimum value. This
process may prevent extremely high or low values for the features, while it may also lose
some significant information of the features.

In [18], AR can reach approximate 84 % without mentioning the size of training set
they used. It implemented 111 fuzzy rules which are derived from available medical
knowledge and author’s experience. However, in our work, 13 rules inspired from the
AASM manual are implemented. With the increment of rules, it may potentially improve
the performance and it also increased the complexity. In further work, more rules will be
involved to complete our model.

7.9 Conclusion

In this Chapter, evaluation of SF-SSS with modifications is analyzed. F-Measure,
Agreement Rate and Cohen’s Kappa are used to assess the performance of SF-SSS with
modifications. F-Measure, Agreement Rate and Cohen’s Kappa are improved by adding
modifications for SF-SSS. Meanwhile, evaluations on ATSU by analyzing the selection
of control parameters for Differential Evolution and Cross Entropy are also presented.
Followed by evaluations on two PSSSs (DE-PSSS and CE-PSSS). Compare SF-SSS with
PSSS, PSSS can reach higher performance by using ATSU to set-up thresholds automat-
ically.



Chapter 8

Conclusions and Perspectives

8.1 Conclusions

In this thesis, a personalized automatic sleep staging system was proposed by com-
bining symbolic intelligence and feedback system control technique. Symbolic fusion is
dedicated to mimic decision-making process of clinical sleep staging. It starts from the
extraction of digital parameters from raw polysomnography signals and goes up to high-
level the symbolic interpretation of feature parameters. At last, decision is generated
using rules inspired by international guidelines in sleep medicine. Meanwhile, Feedback
System Control technique is designed to provide optimal thresholds for symbolic fusion
in transforming digital parameters into symbols while taking individual variability into
consideration.

In this thesis, it composed of eight main chapters. The overall description of the first
seven chapters is shown below.

In Chapter 1, a brief introduction on sleep staging is presented and the major issues of
existing automatic sleep staging systems for the real clinical practical use are discussed.
From the physician’s perceptive, the major issues can be described as

� A system without taking any medical knowledge into consideration cannot win fully
trust from physicians;

� Most of systems are not yet accepted and validated by physicians.

Only by addressing these issues, a system can really be used in clinical practice for help
physicians in diagnosis and treatment of sleep disorders.

In Chapter 2, Issues on existing automatic sleep stagings systems were discussed.
In consideration of real clinical practical use for physicians, a Symbolic Fusion-based
Sleep Staging System (SF-SSS) was proposed by Ugon, Isabelle, et al. It is dedicated
to mimic clinical sleep staging process by translating AASM and medical knowledge into
computer logic. SF-SSS model attempts to realize sleep staging by using symbolic fusion.
However, it is only a proof from conception to validation of symbolic fusion for sleep
staging application. This model still can be improved. Thus, several issues need further
research for this SF-SSS model:

� How to realize automatic sleep staging by taking individual variability into consid-
eration, from the conception to implementation, validation and final practical use?

� How to assess the effectiveness of personalized sleep staging system?

� Is it necessary to propose a personalized sleep staging system which can take in-
dividual variability into consideration? Or a generalized sleep staging system is
sufficient?
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In Chapter 3, information and terminology for understanding the field of sleep analy-
sis are presented at the beginning. It mainly introduces polysomnography (PSG) signals,
different sleep stages, manuals of clinical sleep staging. Meanwhile, existing sleep staging
methods are analyzed involving machine learning methods, hybrid methods and symbolic
fusion method. In the comparison of existing methods, symbolic fusion method owns sev-
eral advantages like, it is efficient to fuse information from different sources by considering
own limitations and uncertain perceptions from every single source and it can mimic clin-
ical sleep staging process under the guidance of AASM manual. However, either symbolic
fusion method or most of the existing methods, there exist two problems:

� To our knowledge, there is no personalized sleep staging system which can take
individual variability into consideration.

� Among existing sleep staging systems, thresholds are widely applied in transforming
digital parameters into linguistic or symbolic features to model inference process
under the guidance of medical knowledge.

As far as we know, there is no fully satisfying automatic method to set up these
thresholds instead of manual setting up.

In order to build a threshold function or model to set up thresholds directly, search an
appropriate threshold combination among possible combinations space method is inspired
by FSC which is proposed as a personalized medicine platform in searching optimal drug
combinations for a different patient. Different stochastic search algorithms which can
be applied within FSC are analyzed in this chapter. Differential Evolution and Cross
Entropy are more suitable to sleep staging in comparison of different properties among
all researched search algorithms.

In Chapter 4, an existing Symbolic Fusion-based Sleep Staging System (SF-SSS) is
introduced at the beginning. However, there exist several limitations in existing SF-
SSS like, pre-processing of PSG signals was not included, smoothing of sleep stages was
not included, not all the parameters described by AASM manual were implemented and
classification of stage N1 was not performed. To overcome limitations of existing SF-SSS,
modifications are proposed in this chapter:

� Band-pass filters recommended by AASM and band-stop filter designed to reject
power line impact are applied to raw PSG signals for eliminating noise and artifacts.

� In order to consider temporal effects and sleep transitions of sleep staging, smoothing
is proposed. In smoothing, not only temporal contextual information but also sleep
transitions detection and correction are performed.

� A significant indicator of stage N2, K-Complex is extracted and fuse to existing
SF-SSS in order to improve the classification of stage N2.

� Rules to classify stage N1 by using existing digital parameters is proposed.

In Chapter 5, thresholds used in SF-SSS to transform digital parameters into a sym-
bolic interpretation of feature parameters are introduced. Manual Thresholds Setting-Up
(MTSU) method used in existing SF-SSS are described by the analysis of its limitations.
Then, major issues on thresholds are discussed and thresholds dependencies(thresholds &
sleep stage, thresholds & patients) are discussed for SF-SSS model. Details of thresholds
that need to be set-up for SF-SSS model are presented by taking thresholds dependencies
among sleep stages into consideration.

In Chapter 6, an Automatic Thresholds Setting-Up (ATSU) method based on Feedback
System Control technique is proposed to overcome the limitations of MTSU. Instead of
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building a threshold function or model, ATSU provides an idea of finding optimal thresh-
olds combination within possible thresholds combination space. By combining symbolic
fusion and feedback system control, a hybrid expert system conception for sleep staging
is proposed. Based on this conception, personalized sleep staging system is presented.
In personalized sleep staging system, several epochs will be selected and analyzed by
physicians. With partial Hypnogram that analyzed by the physicians of selected epochs,
personalized thresholds are set up using ATSU. Then, these thresholds are used in scoring
all epochs and full Hypnogram can be generated at the end. In this chapter, Differential
Evolution-based Personalized Sleep Staging System (DE-PSSS) and Cross Entropy-based
Personalized Sleep Staging System (CE-PSSS) are presented by using two different search
algorithms Differential Evolution and Cross Entropy respectively.

In Chapter 7, SF-SSS with modifications, ATSU, DE-PSSS and CE-PSSS are evalu-
ated. In comparison existing SF-SSS and SF-SSS with modifications, overall agreement
rate is improved from 57.15% to 64.22%, especially for stage N2 which is improved from
53.62% to 65.06%. SF-SSS with proposed modifications can reach higher accuracy than
existing SF-SSS. In the analysis of ATSU, impacts of control parameters for Differential
Evolution and Cross Entropy are evaluated firstly, NP=5D(D is the number of thresh-
olds), F=0.5, CR=0.9 and N=500, Elite Sampling Rate=0.1 are the optimal controls
parameters for DE and CE respectively. To evaluate the DE-PSSS and CE-PSSS, the
selection of training set are studied. From the physician’s perspective, 5 % can be consid-
ered as the optimal training set for DE-PSSS and CE-PSSS which consumes less time for
physicians to score and still can ensure the performance of the classification. However, in
consideration of reaching high performance, 15 % can be considered as the optimal train-
ing set for DE-PSSS and CE-PSSS. In the comparison of modified SF-SSS which using
MTSU method with DE-PSSS and CE-PSSS, DE-PSSS and CE-PSSS can reach higher
F-Measure and can take individual variability into consideration. Compare DE-PSSS and
CE-PSSS, DE-PSSS is much better which can reach higher F-Measure for all stage using
the same size of the training set and consume less time.

Overall, the main contributions of this thesis are described as below:

� Improved the existing SF-SSS.

Existing SF-SSS model is the first attempt to realize sleep staging by using symbolic
fusion. In this thesis, with the analysis of existing SF-SSS model, modifications
are proposed in order to enrich the existing SF-SSS. With proposed modifications,
SF-SSS can reach higher performance in sleep staging.

� Proposed an automatic thresholds setting-up method.

In SF-SSS model, thresholds are used to transform low-level digital parameter into
a high-level symbolic interpretation of feature parameters. Details of thresholds de-
pendencies are analyzed and thresholds configuration are studied in this thesis. Then
an automatic thresholds setting-up method is proposed to overcome the limitations
of manual thresholds setting-up method.

� Proposed a hybrid expert system conception for sleep staging application.

A hybrid expert system conception is proposed by combining symbolic fusion and
feedback system control technique. Only several epochs are needed to be selected
and analyzed by a physician. Then thresholds can be set up based on the selected
epochs and partial Hypnogram that analyzed by the physician using feedback system
control technique. Finally, these thresholds are used in scoring the full epochs by
symbolic fusion and full Hypnogram can be generated at the end.
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� Proposed a personalized automatic sleep staging system.

In consideration of individual variability, personalized sleep staging system based on
the hybrid expert system conception is proposed. By selecting several epochs from
different person and set up personalized thresholds, personalized automatic sleep
staging can be realized by combining symbolic fusion and the personalized thresh-
olds. The performance of the proposed personalized sleep staging system has also
been evaluated: in comparison with SF-SSS model using manual thresholds setting-
up methods, personalized sleep staging system can reach much better performance
in terms of F-Measure.

8.2 Perspectives

In this thesis, a hybrid expert system conception to realize automatic sleep staging
by combining symbolic fusion and feedback system control is proposed. Based on this
conception, personalized sleep staging system is implemented and evaluated. While, in
further work, the following points can be also researched:

� Based on the proposed hybrid expert system conception, generalized sleep staging
system can be also researched to fully understand whether a generalized classification
is sufficient, or whether a personalized classification is required to take individual
variability into consideration.

� After obtaining the binary classification results of each stage, an effective method
to generate Hypnogram can also be researched.

� To complete the existing SF-SSS, more sleep events and rules described by AASM
can be involved.
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Appendix

8.3 Appendix 1

Recall of Existing SF-SSS Recall of SF-SSS (with modifications)

ID W N1 N2 N3 R W N1 N2 N3 R

627 0.8374 0.0000 0.5483 0.9766 0.7245 0.8558 0.2037 0.8512 0.9766 0.7245

639 0.7500 0.0000 0.0380 0.9751 0.8133 0.7500 0.3013 0.1876 0.9751 0.8133

1818 0.6696 0.0000 0.0590 0.6854 0.8889 0.6696 0.0000 0.8984 0.6854 0.8889

3774 0.8087 0.0000 0.8949 0.9493 0.9175 0.8108 0.3636 0.9150 0.9493 0.9175

3870 0.7614 0.0000 0.1994 0.8058 0.9020 0.7614 0.4271 0.3263 0.8058 0.9020

3875 0.9058 0.0000 0.1416 0.7677 0.9380 0.9058 0.6250 0.6022 0.7677 0.9380

3928 0.4306 0.0000 0.5137 0.9074 0.4286 0.4306 0.1765 0.5167 0.9074 0.4286

4062 0.6019 0.0000 0.0510 0.8522 0.7269 0.6019 0.0915 0.0737 0.8522 0.7269

4064 0.7143 0.0000 0.5588 0.7992 0.1711 0.7143 0.0354 0.7974 0.7992 0.1711

45813 0.6680 0.0000 0.2290 0.6064 0.0000 0.7747 0.0000 0.2311 0.6064 0.0000

46618 0.9739 0.0000 0.1318 0.9352 0.7717 0.9739 0.1140 0.2273 0.9352 0.7717

48814 0.1781 0.0000 0.2625 0.8539 0.5867 0.2055 0.1667 0.3607 0.8539 0.5867

50062 0.6111 0.0000 0.3175 0.8203 0.7190 0.6111 0.1613 0.3175 0.8203 0.7190

50897 0.7500 0.0000 0.6621 0.8000 0.8056 0.7500 0.3043 0.6621 0.8000 0.8056

55341 0.8037 0.0000 0.3929 0.9339 0.9504 0.8037 0.2556 0.4660 0.9339 0.9504

56508 0.5000 0.0000 0.7286 0.8247 0.7835 0.5079 0.4103 0.7668 0.8247 0.7835

Table 8.1 – Recall Comparison between SF-SSS (with modifications) and existing SF-SSS on
Database 1
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8.4 Appendix 2

Precision of Existing SF-SSS Precision of SF-SSS (with modifications)

ID W N1 N2 N3 R W N1 N2 N3 R

627 0.7822 0.0000 0.8015 0.7257 0.1655 0.7772 0.1146 0.7392 0.7257 0.1655

639 0.4737 0.0000 0.1928 0.7417 0.3971 0.4737 0.4395 0.3726 0.7417 0.3971

1818 0.9375 0.0000 0.4615 0.5379 0.1642 0.9146 0.0000 0.5475 0.5379 0.1642

3774 0.9695 0.0000 0.5457 0.5928 0.2373 0.9696 0.2857 0.4881 0.5928 0.2373

3870 0.7053 0.0000 0.4430 0.7698 0.3506 0.7053 0.2291 0.4779 0.7698 0.3506

3875 0.9870 0.0000 0.8630 0.7628 0.1709 0.9870 0.0181 0.4054 0.7628 0.1709

3928 0.7623 0.0000 0.5541 0.7101 0.2328 0.7623 0.2051 0.5363 0.7101 0.2328

4062 0.6217 0.0000 0.3396 0.6577 0.6157 0.6217 0.0787 0.3514 0.6577 0.6157

4064 0.6962 0.0000 0.3167 0.7089 0.7442 0.6962 0.1795 0.3284 0.7089 0.7442

45813 0.3627 0.0000 0.5266 0.2938 0.0000 0.3570 0.0000 0.5263 0.2938 0.0000

46618 0.3085 0.0000 0.3021 0.7108 0.4949 0.3085 0.1902 0.3497 0.7108 0.4949

48814 0.5000 0.0000 0.7617 0.8216 0.3235 0.5000 0.0884 0.7832 0.8216 0.3235

50062 0.8713 0.0000 0.4462 0.7653 0.6627 0.8713 0.1049 0.4439 0.7653 0.6627

50897 0.9634 0.0000 0.5344 0.6228 0.4158 0.9634 0.0729 0.5344 0.6228 0.4158

55341 0.8444 0.0000 0.4921 0.5963 0.4007 0.8444 0.1753 0.5096 0.5963 0.4007

56508 0.9130 0.0000 0.7207 0.6299 0.6084 0.9143 0.0424 0.7076 0.6299 0.6084

Table 8.2 – Precision Comparison between SF-SSS (with modifications) and existing SF-SSS
on Database 1

8.5 Appendix 3

ID AR W AR N1 AR N2 AR N3 AR R Total AR

627 0.8374 0 0.5692 0.8505 0.5816 0.6791

639 0.7500 0 0.2660 0.9626 0.7892 0.5283

1818 0.6696 0 0.0885 0.6262 0.8889 0.3629

3774 0.8087 0 0.9306 0.0000 0.8969 0.7093

3870 0.7614 0 0.2024 0.7698 0.9020 0.5052

3875 0.9058 0 0.1483 0.7613 0.9302 0.7071

3928 0.4306 0 0.7264 0.6296 0.3810 0.5055

4062 0.6019 0 0.6487 0.8348 0.6574 0.5699

4064 0.7143 0 0.9575 0.1120 0.1123 0.4103

45813 0.6680 0 0.4034 0.2553 0.0000 0.3819

46618 0.9739 0 0.3045 0.6883 0.7323 0.4506

48814 0.1781 0 0.7230 0.8371 0.5733 0.6336

50062 0.6111 0 0.6679 0.6702 0.6863 0.6095

50897 0.7500 0 0.6923 0.3911 0.7708 0.6421

55341 0.8037 0 0.6121 0.5248 0.9256 0.6010

56508 0.5000 0 0.7632 0.2629 0.7778 0.6402

Table 8.3 – Agreement Rate of existing SF-SSS on Database 1
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8.6 Appendix 4

ID AR W AR N1 AR N2 AR N3 AR R Total AR

627 0.9540 0.0000 0.8799 0.9252 0.5306 0.8353

639 0.7500 0.0000 0.1971 0.9875 0.8223 0.5207

1818 0.6071 0.0000 0.9721 0.3302 0.0000 0.6297

3774 0.8586 0.0000 0.9687 0.0000 0.9691 0.7492

3870 0.7727 0.0000 0.3414 0.7914 0.9608 0.5647

3875 0.9323 0.0000 0.6787 0.7355 0.9612 0.8519

3928 0.6296 0.0000 0.6991 0.7037 0.4286 0.5596

4062 0.9140 0.0000 0.2833 0.9304 0.8704 0.5934

4064 0.8571 0.0000 0.9804 0.0000 0.0481 0.4203

45813 0.9842 0.0000 0.2500 0.2660 0.0000 0.3899

46618 0.9739 0.0331 0.2864 0.7328 0.9213 0.4913

48814 0.2466 0.0000 0.6667 0.8989 0.7667 0.6427

50062 0.7847 0.0000 0.4818 0.8309 1.0000 0.6957

50897 0.8333 0.0000 0.7967 0.3511 0.8681 0.7077

55341 0.8185 0.0376 0.6398 0.6198 0.9504 0.6406

56508 0.6190 0.0256 0.8798 0.2113 0.9145 0.7339

Table 8.4 – Agreement Rates of SF-SSS (with modifications) on Database 1

8.7 Appendix 5

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7490 0.1973 0.6038 0.8007 0.8056 0.0338 0.0344 0.0194 0.0221 0.0313

3 0.7402 0.1052 0.7616 0.7277 0.8155 0.0191 0.0189 0.0104 0.0173 0.0262

4 0.5701 0.2972 0.8318 0.8149 0.6865 0.0391 0.0402 0.0219 0.0191 0.0255

5 0.4320 0.4581 0.5767 0.7795 0.6667 0.0478 0.0368 0.0281 0.0154 0.0434

7 0.7692 0.3123 0.7486 0.6813 0.8044 0.0262 0.0405 0.0078 0.0221 0.0237

8 0.7024 0.1121 0.7980 0.6905 0.6100 0.0318 0.0204 0.0183 0.0294 0.0381

9 0.8924 0.0946 0.6856 0.8327 0.8104 0.0205 0.0221 0.0199 0.0219 0.0172

10 0.5957 0.2560 0.6829 0.7979 0.7493 0.0346 0.0594 0.0189 0.0168 0.0227

11 0.7794 0.1984 0.7932 0.8673 0.6556 0.0496 0.0400 0.0204 0.0130 0.0357

12 0.8628 0.2032 0.7628 0.7569 0.7584 0.0292 0.0387 0.0165 0.0245 0.0196

13 0.7296 0.1684 0.7630 0.7821 0.7034 0.0234 0.0277 0.0136 0.0140 0.0262

18 0.5804 0.3370 0.7102 0.6932 0.4401 0.0223 0.0446 0.0108 0.0208 0.0347

29 0.7179 0.1154 0.7984 0.8488 0.8362 0.0254 0.0229 0.0175 0.0227 0.0225

41 0.8782 0.0691 0.6643 0.6376 0.3138 0.0051 0.0240 0.0200 0.0296 0.0514

49 0.8538 0.4418 0.6596 0.4281 0.1874 0.0129 0.0343 0.0155 0.0896 0.0475

63 0.5662 0.1684 0.7254 0.6419 0.6599 0.0120 0.0312 0.0077 0.0222 0.0469

Mean 0.7137 0.2209 0.7229 0.7363 0.6565 0.0271 0.0335 0.0167 0.0250 0.0320

Table 8.5 – F-Measures of Evaluation Set using 5% Training Set (DE-PSSS) on Database 2
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8.8 Appendix 6

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7691 0.1924 0.6129 0.8127 0.8395 0.0116 0.0297 0.0124 0.0198 0.0204

3 0.7600 0.1099 0.7688 0.7435 0.8514 0.0153 0.0163 0.0054 0.0133 0.0126

4 0.6017 0.3226 0.8509 0.8159 0.7155 0.0136 0.0239 0.0112 0.0148 0.0176

5 0.4663 0.4787 0.6066 0.7949 0.7146 0.0296 0.0213 0.0199 0.0147 0.0214

7 0.7718 0.3232 0.7499 0.6973 0.8179 0.0239 0.0350 0.0059 0.0107 0.0215

8 0.7270 0.1050 0.8113 0.7044 0.6379 0.0213 0.0193 0.0147 0.0237 0.0186

9 0.9213 0.1150 0.7084 0.8464 0.8292 0.0122 0.0297 0.0054 0.0089 0.0114

10 0.6388 0.2884 0.6901 0.8134 0.7627 0.0566 0.0321 0.0204 0.0134 0.0173

11 0.8162 0.1984 0.8036 0.8802 0.7027 0.0209 0.0606 0.0124 0.0113 0.0245

12 0.8743 0.1971 0.7690 0.7633 0.7736 0.0271 0.0482 0.0191 0.0186 0.0214

13 0.7537 0.1280 0.7842 0.7924 0.7206 0.0133 0.0300 0.0100 0.0153 0.0286

18 0.5856 0.3507 0.7139 0.7168 0.4702 0.0199 0.0241 0.0060 0.0212 0.0305

29 0.7296 0.1428 0.8061 0.8775 0.8582 0.0319 0.0323 0.0141 0.0204 0.0146

41 0.8828 0.0804 0.6819 0.6228 0.3146 0.0030 0.0269 0.0136 0.0300 0.0576

49 0.8655 0.4673 0.6747 0.4363 0.2063 0.0074 0.0166 0.0143 0.0843 0.0556

63 0.5730 0.1790 0.7345 0.6614 0.6936 0.0155 0.0235 0.0034 0.0156 0.0169

Mean 0.7335 0.2299 0.7354 0.7487 0.6818 0.0202 0.0293 0.0118 0.0210 0.0244

Table 8.6 – F-Measures of Evaluation Set using 10% Training Set (DE-PSSS) on Database 2

8.9 Appendix 7

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7697 0.1954 0.6143 0.8147 0.8566 0.0120 0.0329 0.0105 0.0193 0.0078

3 0.7707 0.1258 0.7696 0.7515 0.8526 0.0161 0.0570 0.0043 0.0120 0.0155

4 0.6078 0.3250 0.8529 0.8225 0.7131 0.0176 0.0303 0.0129 0.0122 0.0145

5 0.4867 0.4959 0.6031 0.8044 0.7213 0.0247 0.0184 0.0186 0.0132 0.0217

7 0.7774 0.3402 0.7538 0.6969 0.8234 0.0209 0.0441 0.0039 0.0103 0.0176

8 0.7436 0.1171 0.8120 0.7102 0.6328 0.0148 0.0245 0.0172 0.0204 0.0245

9 0.9273 0.1096 0.7056 0.8489 0.8235 0.0112 0.0265 0.0082 0.0089 0.0142

10 0.6456 0.3046 0.6965 0.8171 0.7719 0.0518 0.0347 0.0184 0.0113 0.0186

11 0.8343 0.2227 0.8078 0.8764 0.7092 0.0198 0.0586 0.0114 0.0093 0.0224

12 0.8861 0.2248 0.7789 0.7746 0.7825 0.0183 0.0508 0.0088 0.0151 0.0097

13 0.7518 0.1304 0.7853 0.7964 0.7312 0.0141 0.0329 0.0122 0.0126 0.0267

18 0.5859 0.3775 0.7164 0.7130 0.4900 0.0151 0.0259 0.0072 0.0230 0.0239

29 0.7568 0.1373 0.8088 0.8828 0.8647 0.0298 0.0369 0.0158 0.0130 0.0107

41 0.8835 0.0957 0.6895 0.6451 0.3629 0.0039 0.0274 0.0110 0.0337 0.0589

49 0.8670 0.4651 0.6820 0.4810 0.2536 0.0053 0.0126 0.0121 0.0548 0.0700

63 0.5628 0.1895 0.7321 0.6737 0.7016 0.0188 0.0265 0.0057 0.0105 0.0149

Mean 0.7411 0.2410 0.7380 0.7568 0.6932 0.0184 0.0337 0.0111 0.0175 0.0232

Table 8.7 – F-Measures of Evaluation Set using 15% Training Set (DE-PSSS) on Database 2
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8.10 Appendix 8

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7679 0.1996 0.6219 0.8206 0.8535 0.0132 0.0498 0.0132 0.0149 0.0150

3 0.7772 0.1494 0.7722 0.7490 0.8503 0.0139 0.0280 0.0036 0.0139 0.0122

4 0.6196 0.3023 0.8565 0.8222 0.7224 0.0112 0.0308 0.0083 0.0111 0.0159

5 0.4785 0.4901 0.6069 0.8041 0.7321 0.0166 0.0177 0.0223 0.0056 0.0222

7 0.7936 0.3453 0.7553 0.7066 0.8392 0.0207 0.0344 0.0049 0.0122 0.0205

8 0.7528 0.1248 0.8163 0.7171 0.6418 0.0133 0.0231 0.0145 0.0177 0.0141

9 0.9368 0.1095 0.7076 0.8496 0.8342 0.0086 0.0252 0.0079 0.0082 0.0080

10 0.6418 0.2949 0.7001 0.8167 0.7736 0.0488 0.0340 0.0147 0.0101 0.0150

11 0.8379 0.2376 0.8120 0.8818 0.7228 0.0114 0.0404 0.0120 0.0055 0.0193

12 0.8822 0.2258 0.7779 0.7910 0.7813 0.0124 0.0263 0.0113 0.0199 0.0155

13 0.7541 0.1306 0.7946 0.8019 0.7477 0.0153 0.0333 0.0086 0.0117 0.0143

18 0.5978 0.3834 0.7195 0.7342 0.4853 0.0149 0.0247 0.0060 0.0188 0.0284

29 0.7641 0.1502 0.8198 0.8888 0.8665 0.0225 0.0411 0.0130 0.0101 0.0087

41 0.8833 0.0877 0.6963 0.6591 0.3385 0.0035 0.0263 0.0074 0.0240 0.0504

49 0.8666 0.4790 0.6794 0.4827 0.2435 0.0079 0.0138 0.0102 0.0429 0.0569

63 0.5689 0.2140 0.7346 0.6718 0.6950 0.0151 0.0234 0.0047 0.0133 0.0145

Mean 0.7452 0.2453 0.7419 0.7623 0.6955 0.0156 0.0295 0.0102 0.0150 0.0207

Table 8.8 – F-Measures of Evaluation Set using 20% Training Set (DE-PSSS) on Database 2

8.11 Appendix 9

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7479 0.0795 0.6065 0.7942 0.8192 0.0105 0.0381 0.0219 0.0093 0.0278

3 0.6724 0.0547 0.7535 0.7389 0.8023 0.0496 0.0388 0.0090 0.0151 0.0314

4 0.5281 0.2398 0.8516 0.8076 0.6807 0.0218 0.0571 0.0107 0.0123 0.0184

5 0.3511 0.4123 0.5990 0.8046 0.5942 0.0215 0.0458 0.0253 0.0077 0.0426

7 0.7345 0.2055 0.7536 0.6816 0.7589 0.0095 0.0601 0.0066 0.0162 0.0247

8 0.6608 0.0404 0.7841 0.7052 0.5965 0.0180 0.0365 0.0135 0.0179 0.0508

9 0.8646 0.0645 0.6907 0.8304 0.8104 0.0288 0.0257 0.0135 0.0180 0.0155

10 0.5373 0.1555 0.6885 0.8014 0.7375 0.0354 0.0452 0.0161 0.0138 0.0217

11 0.6698 0.1582 0.7816 0.8701 0.6673 0.0497 0.0588 0.0109 0.0115 0.0279

12 0.7619 0.1135 0.7708 0.7547 0.7576 0.0344 0.0456 0.0106 0.0139 0.0220

13 0.6693 0.1038 0.7659 0.7923 0.6692 0.0281 0.0320 0.0123 0.0143 0.0410

18 0.5573 0.2224 0.6953 0.6959 0.4043 0.0153 0.0480 0.0114 0.0217 0.0491

29 0.6043 0.0375 0.7966 0.8497 0.7244 0.0562 0.0242 0.0119 0.0233 0.0584

41 0.8759 0.0337 0.6064 0.6045 0.2159 0.0047 0.0310 0.0383 0.0314 0.0730

49 0.8542 0.4479 0.6479 0.4238 0.2292 0.0073 0.0240 0.0223 0.0799 0.0605

63 0.5532 0.1364 0.7183 0.6609 0.6540 0.0275 0.0417 0.0107 0.0142 0.0292

Mean 0.6652 0.1566 0.7194 0.7385 0.6326 0.0261 0.0408 0.0153 0.0200 0.0371

Table 8.9 – F-Measures of Evaluation Set using 5% Training Set (CE-PSSS) on Database 2
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8.12 Appendix 10

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7642 0.1229 0.6159 0.7942 0.8454 0.0173 0.0551 0.0158 0.0091 0.0121

3 0.7133 0.0368 0.7661 0.7430 0.8414 0.0287 0.0423 0.0055 0.0107 0.0114

4 0.5391 0.2753 0.8539 0.8083 0.7037 0.0194 0.0218 0.0061 0.0152 0.0274

5 0.3655 0.4385 0.6058 0.8062 0.6313 0.0279 0.0284 0.0189 0.0096 0.0316

7 0.7391 0.2567 0.7567 0.6889 0.7931 0.0120 0.0392 0.0045 0.0148 0.0185

8 0.6781 0.0146 0.7984 0.7163 0.6247 0.0223 0.0209 0.0131 0.0175 0.0177

9 0.8996 0.0450 0.6995 0.8487 0.8162 0.0201 0.0246 0.0085 0.0123 0.0142

10 0.5779 0.1414 0.6933 0.7967 0.7597 0.0342 0.0442 0.0150 0.0147 0.0225

11 0.7140 0.1550 0.7808 0.8748 0.7027 0.0207 0.0347 0.0085 0.0101 0.0258

12 0.8077 0.1228 0.7727 0.7606 0.7718 0.0262 0.0613 0.0078 0.0136 0.0128

13 0.7023 0.1116 0.7878 0.7958 0.7168 0.0236 0.0442 0.0113 0.0094 0.0287

18 0.5760 0.2569 0.7004 0.7077 0.4483 0.0228 0.0305 0.0109 0.0142 0.0267

29 0.6398 0.0365 0.8085 0.8685 0.7805 0.0345 0.0343 0.0116 0.0195 0.0413

41 0.8789 0.0687 0.6567 0.6129 0.2442 0.0033 0.0254 0.0179 0.0284 0.0678

49 0.8608 0.4574 0.6688 0.4511 0.2572 0.0076 0.0219 0.0114 0.0546 0.0650

63 0.5581 0.1529 0.7300 0.6685 0.6734 0.0123 0.0292 0.0070 0.0120 0.0215

Mean 0.6884 0.1683 0.7309 0.7464 0.6632 0.0208 0.0349 0.0109 0.0166 0.0278

Table 8.10 – F-Measures of Evaluation Set using 10% Training Set (CE-PSSS) on Database 2

8.13 Appendix 11

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7714 0.1223 0.6225 0.7963 0.8536 0.0086 0.0529 0.0137 0.0082 0.0121

3 0.7293 0.0605 0.7665 0.7541 0.8461 0.0142 0.0424 0.0061 0.0126 0.0178

4 0.5698 0.2698 0.8553 0.8239 0.7090 0.0144 0.0319 0.0078 0.0132 0.0214

5 0.3759 0.4497 0.6234 0.8089 0.6366 0.0260 0.0243 0.0162 0.0084 0.0384

7 0.7493 0.2612 0.7576 0.6924 0.8065 0.0104 0.0381 0.0036 0.0094 0.0224

8 0.6884 0.0281 0.7965 0.7191 0.6431 0.0210 0.0262 0.0127 0.0138 0.0153

9 0.9147 0.0700 0.7074 0.8503 0.8166 0.0110 0.0217 0.0063 0.0109 0.0125

10 0.5884 0.1440 0.7040 0.8081 0.7649 0.0349 0.0460 0.0125 0.0108 0.0137

11 0.7424 0.1527 0.7903 0.8806 0.7100 0.0190 0.0802 0.0110 0.0103 0.0233

12 0.8111 0.2109 0.7765 0.7592 0.7781 0.0272 0.0380 0.0078 0.0156 0.0144

13 0.7130 0.0968 0.7955 0.7929 0.7308 0.0242 0.0489 0.0091 0.0088 0.0233

18 0.5889 0.2899 0.7057 0.7113 0.4710 0.0194 0.0336 0.0071 0.0142 0.0282

29 0.6377 0.0341 0.8133 0.8801 0.8141 0.0380 0.0439 0.0090 0.0142 0.0361

41 0.8769 0.0773 0.6662 0.6290 0.3059 0.0045 0.0245 0.0202 0.0316 0.0478

49 0.8658 0.4578 0.6745 0.4568 0.2367 0.0056 0.0131 0.0089 0.0418 0.0538

63 0.5599 0.1618 0.7319 0.6708 0.6860 0.0175 0.0239 0.0056 0.0103 0.0139

Mean 0.6989 0.1804 0.7367 0.7521 0.6756 0.0185 0.0369 0.0098 0.0146 0.0246

Table 8.11 – F-Measures of Evaluation Set using 15% Training Set (CE-PSSS) on Database 2
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8.14 Appendix 12

Mean of F-Measure Std of F-Measure

ID W N1 N2 N3 R W N1 N2 N3 R

1 0.7698 0.0913 0.6216 0.7963 0.8509 0.0139 0.0522 0.0159 0.0124 0.0052

3 0.7436 0.0559 0.7721 0.7490 0.8508 0.0194 0.0421 0.0036 0.0118 0.0149

4 0.5739 0.2736 0.8607 0.8246 0.7267 0.0165 0.0214 0.0051 0.0155 0.0153

5 0.3754 0.4537 0.6338 0.8053 0.6564 0.0217 0.0247 0.0142 0.0096 0.0233

7 0.7458 0.2958 0.7590 0.6993 0.8104 0.0118 0.0340 0.0046 0.0115 0.0190

8 0.6938 0.0331 0.8001 0.7173 0.6391 0.0228 0.0313 0.0110 0.0182 0.0119

9 0.9179 0.0460 0.7087 0.8508 0.8325 0.0116 0.0332 0.0058 0.0076 0.0100

10 0.5890 0.1759 0.7080 0.8101 0.7767 0.0278 0.0421 0.0102 0.0113 0.0145

11 0.7298 0.1519 0.7974 0.8815 0.7089 0.0185 0.0685 0.0080 0.0071 0.0271

12 0.8432 0.2029 0.7750 0.7677 0.7825 0.0283 0.0463 0.0062 0.0151 0.0115

13 0.7308 0.1088 0.7968 0.8031 0.7459 0.0138 0.0429 0.0092 0.0075 0.0105

18 0.5896 0.3020 0.7072 0.7143 0.4708 0.0154 0.0405 0.0045 0.0146 0.0242

29 0.6728 0.0195 0.8097 0.8863 0.8282 0.0316 0.0334 0.0082 0.0128 0.0318

41 0.8834 0.0754 0.6811 0.6461 0.2944 0.0041 0.0197 0.0139 0.0267 0.0579

49 0.8662 0.4682 0.6794 0.4959 0.2510 0.0060 0.0117 0.0059 0.0355 0.0794

63 0.5559 0.1816 0.7320 0.6692 0.6932 0.0120 0.0150 0.0050 0.0166 0.0121

Mean 0.7051 0.1835 0.7402 0.7573 0.6824 0.0172 0.0349 0.0082 0.0146 0.0230

Table 8.12 – F-Measures of Evaluation Set using 20% Training Set (CE-PSSS) on Database 2

8.15 Appendix 13

ID W N1 N2 N3 R

1 0.5897 0.0909 0.2510 0.5670 0.1538

3 0.6403 0.0000 0.5181 0.5749 0.0000

4 0.4108 0.3457 0.5274 0.6079 0.4179

5 0.2356 0.0000 0.4587 0.6603 0.0222

7 0.6983 0.0000 0.4067 0.6335 0.0279

8 0.5063 0.0000 0.6233 0.5532 0.0116

9 0.6984 0.0000 0.4018 0.6248 0.0000

10 0.3516 0.0000 0.4299 0.7583 0.0000

11 0.4561 0.0000 0.1658 0.6848 0.0000

12 0.5976 0.0000 0.4855 0.6639 0.0233

13 0.6811 0.0000 0.1659 0.6681 0.0486

18 0.5856 0.2276 0.2769 0.5444 0.1404

29 0.3345 0.0000 0.6780 0.7444 0.0000

41 0.5374 0.0000 0.2089 0.3429 0.0000

49 0.7710 0.0291 0.1896 0.1647 0.0000

63 0.5416 0.0972 0.3872 0.4352 0.1533

Mean 0.5397 0.0494 0.3859 0.5768 0.0624

Table 8.13 – F-Measures of SF-SSS (with modifications) using MTSU on Database 2
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8.16 Appendix 14

ID Agreement Rate Cohen’s Kappa Agreement Rate Cohen’s Kappa
(DE-PSSS) (DE-PSSS) (CE-PSSS) (CE-PSSS)

1 0.8152 0.7527 0.7892 0.7189

2 0.8637 0.7956 0.8086 0.7149

3 0.8147 0.7395 0.7570 0.6602

4 0.7258 0.6367 0.6362 0.5115

5 0.7919 0.6906 0.7603 0.6541

6 0.8496 0.7668 0.7490 0.6130

7 0.8861 0.8444 0.8075 0.7398

8 0.8006 0.7162 0.7396 0.6297

9 0.8546 0.7902 0.7996 0.7087

10 0.8258 0.7458 0.7878 0.6842

11 0.8310 0.7534 0.7898 0.6954

12 0.6883 0.5549 0.6470 0.4968

13 0.8840 0.8233 0.7893 0.6730

14 0.8314 0.6848 0.8033 0.6259

15 0.6642 0.4834 0.6924 0.5306

16 0.7264 0.5884 0.6561 0.4899

Table 8.14 – Agreement Rate and Cohen’s Kappa of PSSSs
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