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Abstract

The motion and deformation of a liquid-filled elastic microcapsule flow-
ing in microchannels is investigated both experimentally and numerically.
The flow of capsules into a straight microfluidic channel with a square
cross-section is firstly studied. The objective is to develop a method to
determine the mechanical properties of the capsule membrane from its
hydrodynamic deformation. A method of identification has been devised
to compare the particle deformed shape measured experimentally in the
microchannels to the ones predicted by a three-dimensional numerical
model for the same configuration. The precision and robustness of the
inverse analysis algorithm have been tested when the microfluidic chan-
nels slightly depart from pure squareness. We have finally applied the
method on microcapsules with a membrane made of reticulated albumin
and determined their mechanical properties.

A Proper Orthogonal Decomposition (POD) has then been applied to the
shapes assumed by the capsules while flowing in either a straight or bi-
furcated channel. Using numerical data in a straight channel, we have
determined the dimension of the capsule shape variety. We have then in-
terpolated the coefficients resulting from the POD analysis to compute the
capsule deformed shape at any time for any flow parameter. Capsules have
finally been investigated flowing in a bifurcated microchannel. Qualitative
results of the motion and deformation of capsules in such channel have
been obtained. A semi-automatic contour detection program has been
developed to improve the image analysis. The POD method has been ap-
plied to the experimental results, thus proving the feasibility of building
a reduced-order model of the phenomenon by using a POD reduced basis.

keywords: microcapsule, fluid-structure interaction, microfluidics, in-
verse analysis, mechanical characterization, Proper Orthogonal Decom-
position.



Résumé

Nous étudions la déformation d’une capsule dans un canal microfluidique
expérimentalement et numériquement. L’écoulement des microcapsules
est d’abord étudié numériquement dans un canal droit a section carrée.
L’objectif est de développer une méthode de caractérisation des propriétés
mécaniques de la membrane des capsules, a partir de leur déformation
dans le canal. Nous avons mis en place une méthode d’identification
afin de comparer la déformation des capsules observée expérimentalement
et celle prédite par un modele numérique tridimensionnel correspondant.
La précision et la robustesse de l'algorithme d’analyse inverse ont été
étudiés en faisant varier légerement la géométrie des canaux. Finalement,
la méthode a été utilisée afin de déterminer les propriétés mécaniques de
microcapsules dont la membrane est faite d’albumine réticulée.

Nous avons ensuite appliqué une méthode de décomposition orthogonale
aux valeurs propres (POD) aux formes prises par les capsules lors de
leur passage dans un canal droit ou bifurqué. Des données numériques
ont d’abord été utilisées afin de déterminer la dimension de la variété
des formes prises par une capsule dans un canal droit. La base POD ainsi
construite a été utilisée pour interpoler les formes et obtenir la déformation
d’une capsule a tous les temps, et pour tout parametre d’écoulement. Nous
avons également étudié expérimentalement les microcapsules lors de leur
déformation dans un canal bifurqué. Nous avons ainsi obtenu les premiers
résultats qualitatifs pour cette configuration. Nous avons développé un
programme de détection de contour semi-automatique afin de faciliter le
traitement d’image. Enfin, nous avons appliqué la méthode POD sur
ces contours 2D réalistes et ainsi démontré la faisabilité d’utiliser une
base réduite POD pour décrire la déformation de capsules dans un canal
bifurqué.

mots-clés: microcapsule, interaction fluide-structure, microfluidique, anal-
yse inverse, caractérisation mécanique, décomposition orthogonale aux
valeurs propres.
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Chapter 1

Introduction

1.1 Capsules

1.1.1 Definition and applications

Microcapsules are micrometer particles with size ranging from 1 pm to 1000 pm. They
are composed of an inner core contained within a distinct, thin, elastic membrane
made of a solid material (cf Figure 1.1). Even if the core may in general be either
solid or liquid (Singh et al., 2010), we will restrict the present study to the case of a
liquid one. We will then exclude from the study the spherical microparticles made of
a single homogeneous solid medium, which are not capsules.

Liquid-core capsules have to be differentiated from vesicles, which have a lipid
bilayer membrane with mechanical properties similar to those of a cell membrane:
area-incompressibility and no resistance to shear forces (Abreu et al., 2014). Vesicles
deform under constant volume and surface, the deformation being made possible at a
low energy cost by the excess area of the membrane. Capsules, however, deform under
constant volume with their surface varying as a function of the membrane resistance
to shear and area dilation. Red blood cells are nucleus-free cells with a lipid bilayer
membrane supported by an actin cytoskeleton. The latter provides elastic properties
to the membrane. Red blood cells thus have properties in common both with vesicles
and capsules. Each of them can hence be considered as a simple model for red blood
cells.

Liquid-filled microcapsules can be found in nature (eggs, cells). As seen before,
red blood cells can be considered as natural microcapsules. They are biconcave disks,
of diameter 6 pm to 8 pm and thickness 2 pm. Their main role is to carry and deliver
oxygen in the capillaries, as small as 4pm to 5pm. The motion and deformation
of highly confined red blood cells into the microcapillary system has therefore been
a fundamental problem of growing interest in physiology (Popel & Johnson, 2005).
Liquid-filled microcapsules can also be produced artificially. The scientific community
has shown a growing interest in bioartificial capsules over the last decades, as the
range of applications throughout industry has extended tremendously. They are
now for instance commonly used to protect and slowly deliver active molecules in
cosmetic and textile industries (Nelson, 2002), mask odours and flavours (Laokuldilok



solid core liquid core solid particle

Figure 1.1: Schematic representation of a microcapsule with a solid core (a), a liquid
core (b), and of a solid microparticle made of a homogeneous medium (c).

et al., 2015) or protect aroma in food (Madene et al., 2006). In pharmaceutics,
encapsulation is used to protect cells from the immune system in tissue engineering
and cell therapy applications (Kang et al., 2014; Visted et al., 2001), or to control
a sustained release of therapeutic molecules. Their use as a vector for local drug
delivery has also raised much interest for years (Singh et al., 2010). The concept
is to locally deliver therapeutic concentrations of anticancerous drugs for instance,
thus limiting the risks and adverse side effects related to systemic injection (Vergaro
et al., 2011). For this application, polyelectrolyte microcapsules have shown great
potential. The molecule delivery may either be sustained, if based on the diffusion
across the membrane, or sudden, if triggered by the burst of the capsules under an
external simulation (chemical or physical). The objective is then to tune the capsule
membrane properties during the fabrication process.

1.1.2 Techniques of fabrication

The fabrication is usually made in two steps (Dubey et al., 2009): firstly a two-phase
emulsion is formed, then a membrane is polymerized around the droplets. Several
techniques exist to perform an emulsification, including mechanical stirring and cross-
flow membrane emulsification (Wagdare et al., 2010). The first process consists in
mixing two non-miscible fluid with a mechanical rotor, the rotation speed determining
the size of the droplets formed. The second method consists in flowing the phase to
be dispersed through a membrane under controlled pressure. A continuous phase
is flowing across the membrane to detach the droplets. The size of the droplets is
determined by the pressure and shear rate imposed on the two fluids. Both methods
produce a poly-disperse emulsion.

The chemical process involved in the making of the liquid-filled capsule mem-
branes is usually either interfacial polymerisation (Perignon et al., 2014), or inter-
facial polycondensation, also called cross-linking (Lévy & Andry, 1990). Interfacial
polymerisation is achieved by using two monomers which are soluble in one or the
other phase. The reaction of polymerisation takes place when the two monomers get
in contact with one another, which only occurs at the interface of the droplets, since



the two phases are not miscible. Interfacial polycondensation consists in emulsifying
an aqueous dispersed phase containing a polymer into an organic continuous phase.
A cross-linking agent is then added so that membranes form around the droplets. The
reaction is stopped by dilution. The stiffness of the resulting membrane is dependent
on the pH of the solution and the polymerization time.

Polyelectrolyte microcapsules are usually produced by the layer-by-layer deposi-
tion technique. Polyelectrolyte layers with a positive or negative charge are alter-
natively deposited onto a template (Caruso et al., 2000). The solid template may
then be dissolved by, for example, changing the pH, thus creating hollow microcap-
sules ranging from 0.1 pm to 20 pm. For some applications, the template is a protein
crystal, the slow dissolution of which leads to sustained release across the membrane.
Recently, with the emergence of microfluidics, new emulsion-making methods have
appeared and will be discussed in the next section.

1.1.3 Emergence of microfluidics
1.1.3.1 Microfluidics, a novel technology

Both a science and a technology, microfluidics has been of tremendous interest since
the early 1990s, as a potential revolution in several fields including chemistry and
biology (Whitesides, 2006). It consists in the design and use of systems able to
manipulate very small volumes of fluid (of the order of nanoliters), in channels with
dimensions ranging from micrometers to a few hundreds of micrometers. Microfluidic-
based techniques demonstrate numerous advantages over classical methods, in biology
analysis for example, among which one can cite largely reduced sample volumes,
reduced costs of reagents, easily controlled laminar flow, and the possibility to be
integrated as lab-on-a-chip technologies.

In the biomedical field, lab-on-a-chip microsystems are currently developed to be
used for the diagnostics of infectious diseases (Chin et al., 2011), the formation of
droplets for bioanalysis (Koster et al., 2008), the production of monodisperse emul-
sions (Anna et al., 2003) and the controlled synthesis of non-spherical microparticles
(Dendukuri et al., 2005). In chemistry, these microsystems are used for the screening
of chemical reactions (Tice et al., 2003; Song et al., 2006) or protein crystallization
(Li & Ismagilov, 2010). Even though multiple applications emerge from microfluidics,
the experts seem to agree that the “killer-app”, the application that will promote mi-
crofluidics to a most-used technology, is still missing.

The success of microfluidics in academic laboratories only revealed itself with
the apparition of polydimethylsiloxane (PDMS), an elastomer which can be used to
perform soft lithography, coupled with a rapid prototyping method (Sackmann et al.,
2014; Dufty et al., 1998). Indeed, soft lithography is a technique that allows the
accurate replication of a structure by using molds or elastomeric stamps. The molds
are usually made by photolithography which allows to obtain custom designs easily
and rapidly. The whole technique has the advantage of being easy to use, and enables
the production of disposable microsystems thanks to its relatively low cost.

PDMS is an elastomer which has the particularity of being transparent (suitable to



optical microscopy), soft (suitable to make pneumatic valves, easily removable from a
mould), permeable to gas and biocompatible (suitable to cell culture). Furthermore,
PDMS-based soft lithography allows easy and cheap production of a limited number
of chips, which are key features for academic laboratories. The elastomer can also
be subjected to surface treatments and permanently bonded to glass with relatively
high pressure resistance. All these advantages explain its ubiquitous use in academic
laboratories for the making of microfluidic chips.

In a few studies that considered very simple geometries, the authors used cylin-
drical glass capillaries. However, the development of PDMS microchips through soft
lithography has made possible to study complex geometries such as channel expan-
sion/constriction, bifurcation or T-junction, without the constraint of using a stan-
dard size.

1.1.3.2 Application to capsule fabrication

Several methods have been developed during the last decade to produce capsules from
emulsions made with microfluidic systems. The microfluidic techniques of emulsion
making are based on the pinching of an internal fluid by an external, non-miscible
one. Either a T-junction (Garstecki et al., 2006) (Figure 1.2a) or a flow-focusing
geometry (Anna et al., 2003) (Figure 1.2b) allow a continuous phase to pinch a lateral
flow (the dispersed phase), thus forming droplets with very regular size. Once the
emulsion is done, the encapsulation of the droplets can be performed by injecting
either a gelation agent to obtain gel microcapsules with an aqueous core (Shah et al.,
2008; Ren et al., 2010), or a cross-linking agent to obtain reticulated, thin-walled
microcapsules (He et al., 2009; Chu et al., 2013). In the latter studies, the length
of the channel controlled the reticulation time, i.e. the reticulation degree which is
directly related to the stiffness of the membrane (Chu et al., 2011).

Figure 1.2: Photographs illustrating the T-junction (a) and flow-focusing (b) tech-
niques. Adapted from Engl et al. (2008).

The use of microfluidic techniques for the production of capsules allows the precise
control of their size with a very narrow dispersion. The size depends on the channel
dimensions and the fluid flow rates. This is a great advantage over classical methods,
since capsule size monodispersion is a key property in biomedical applications such
as drug delivery and its related fundamental studies (e.g. kinetics of release) (Shiga



et al., 1996). However, its applicability in the industry is mitigated because of the
relatively low throughput achievable by the technique.

Depending on the application, other methods are able to achieve a fair monodis-
persion, such as Silica Porous Glass membrane emulsion (Muramatsu et al., 1994;
Vladisavljevié, 2015), with a higher throughput more suitable to industrial applica-
tions. However, in chemistry or biology laboratories, the microfluidic method presents
the advantage of providing a narrower distribution of size. In addition, it can be
combined in different ways so that complex emulsions like multiple emulsions can be
achieved (Engl et al., 2008). Finally, the in-line fabrication process allows the mi-
crocapsules to be directly used in a microchip, or to be regularly stored for analysis
purposes for example. In particular, microcapsules could directly be subjected to the
in-situ mechanical characterization of their membrane (Chu et al., 2013). Indeed,
as the membrane mechanics strongly depends on the mechanical properties of the
membrane, it is crucial to measure these properties in order to control or prevent the
break-up and tune the deformability of the capsules.

1.1.4 Characterization of membrane mechanical properties

The mechanical characterization of capsules consists in finding the elastic moduli that
govern the deformation of their elastic membrane, the physics of which is detailed
in Section 1.2.1.2. Two elastic moduli are generally considered: the surface elastic
shear modulus GG, which represents the membrane resistance to shear forces, and the
area-dilation modulus K, which corresponds to the membrane resistance to surface
stretching. Identifying the mechanical properties of the membrane of microcapsules
remains challenging today, because of the small size of the particles. It is achieved
by comparing experimental studies, in which capsules are deformed under a given
force, with the deformation predicted by a corresponding numerical model. The
mechanical properties are inferred by fitting the experimental deformation with the
numerical one. This process is called inverse analysis. We list here the most common
methods used to characterize capsules with an emphasis on the ones used for the case
of micron-sized capsules.

1.1.4.1 Compression method

The first technique used to determine the mechanical characteristics of a single particle
is the compression test, pioneered by Cole (1932). By using this technique, the
author proved the presence of a solid membrane around an urchin egg and estimated
its mechanical properties. The method can be used to characterize a bioartificial
microcapsule. It consists in squeezing a capsule between two parallel plates while
monitoring the force exerted on it, and measuring the displacement of the plates, as
illustrated in Figure 1.3a.

Carin et al. (2003) performed this technique successfully on biocompatible cap-
sules of diameter 1.5 mm. Taking into account a constitutive law for the membrane
material, they found that the membrane was slightly strain-hardening, and deter-
mined its elastic moduli. However, the authors concluded on the need of a different



approach involving higher shear deformations to determine the elastic shear modulus
Gs more accurately. Furthermore, this technique is not well suited to micron-size cap-
sules due to the difficulty related to the manipulation of microscopic objects, and the
limit in the experimental setup sensitivity. It is often used for rather large capsules
(Carin et al., 2003; Rachik et al., 2006). To exceed this limit, an alternative method
is the indentation technique by using the Atomic Force Microscopy (AFM).
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Figure 1.3: (a) Photographs of the compression experiment at successive times, from
Carin et al. (2003); (b) Schematic representation of the AFM indentation experi-
ment, from Ladjal et al. (2009); (c¢,d) Photograph and schematic representation of
the micropipette aspiration experiment, from Heinrich & Rawicz (2005).

1.1.4.2 AFM indentation

The Atomic Force Microscope (AFM) is a high-resolution scanning-probe microscope
invented in 1986. It is designed to measure or apply very low forces, which makes
it suitable to mechanical characterization of thin biological samples such as tissues,
cells, or microcapsules. Radmacher et al. (1996) successfully used this technique to
study the viscoelastic properties of human platelets. A tip at the end of a cantilever is
put in contact with the sample, a controlled force being exerted on the cantilever (cf
Figure 1.3b). The indentation depth is measured and compared to either a theoretical
or numerical model (Ladjal et al., 2009; Ricci Maccarini et al., 2001). The Young
modulus is then derived.

Recently, De Loubens et al. (2014) used this technique to determine the Young
modulus E of cross-linked human serum albumin microcapsules and study the effect
of capsule size and HSA concentration on F. This method possesses the advantage of
being local. Consequently, it does not require the initial sphericity of the capsule for
the model to be valid. Geometry variations induced by the fabrication process do not
affect the accuracy of the method. However, the needed material is very expensive
and requires very skillful manipulations. Furthermore, the range of study is limited,
and the measurements can be long in order to achieve a statistical average over a



sample. The method is mainly used to characterize the membrane of living cells by
locally indenting the cell.

1.1.4.3 Micropipette aspiration

A very popular technique used to determine the mechanical properties of a living cell
or a bioartificial microcapsule is the micropipette aspiration method. It has been
used for decades to determine the Young modulus of various material such as the
membrane of vesicles (Kwok & Evans, 1981), capsules (Kleinberger et al., 2013) and
living cells (Hochmuth, 2000), or multilayer sheets of biological material (Zhao et al.,
2011). A micropipette of inner diameter of a few microns is used to partly suck up a
capsule at a controlled pressure. The deformation is measured as the hemispherical
projection formed into the pipette (Figure 1.3c,d): the more the capsule enters the
pipette at a given pressure, the less stiff the membrane is. Recently, an adaptation of
this method has been developed taking advantage of the microfluidic technology (Guo
et al., 2012). Hsu et al. (2004) also developed “microcanals”, an interface between
microfluidic chips and the micropipette experiment.

The micropipette technique still requires skillful micromanipulations, and is only
used to perform single-cell experiments, although Heinrich & Rawicz (2005) at-
tempted to automatize the technique to circumvent these limits. Other methods
based on shear flow have otherwise been developed to perform the mechanical char-
acterization of membranes by taking advantage of the microfluidic technology.

1.1.4.4 Microfluidic techniques

The development of microfluidics has led to several new methods for characterizing
the membrane properties of a capsule. Recently, De Loubens et al. (2014) used
an elongational flow to characterize cross-linked serum albumin microcapsules. The
flow was created with a cross-like geometry microchannel (Figure 1.4), with two
connected inlets and two outlets. It was characterized by particle tracking velocimetry
using polystyrene particles, so that a circular central zone in which the elongational
rate was less than 5% was defined (Figure 1.4b). The goal was to achieve small
deformation of the microcapsules to remain in the small deformation regime, so that
the constitutive law choice had no impact on the characterization. The technique led
to accurate results, although the microcapsules were quite large (100 pm to 300 pm,
for two channel cross-sections of 1 mm? and 4 mm?). One limit of this technique may
be the initial placement of the capsule at the center region, which becomes harder
when the size decreases. The geometry and flow control when lowering the dimensions
appear as additional difficulties. The initially spherical microcapsules can be trapped
in the center region for almost 1s, where they deform in the form of an ellipsoid. The
elastic shear modulus Gy was derived from direct measurement of the deformation
in function of size and albumin concentration. However, due to the limitation of the
method to small deformations, it was not possible to conclude on the mechanical
behavior of the membrane.



Figure 1.4: Photograph of the cross-like microchannel with the particle tracking ve-
locimetry measurement in the central zone corresponding to an elongationnal rate of
less than 5%. From De Loubens et al. (2014).

Lefebvre et al. (2008) earlier developed a different method based on a fluid flow into
a microchannel. Indeed, the confinement of deformable microcapsules leads to larger
deformations with a reasonable flow strength. A dilute suspension of ovalbumin cross-
linked microcapsules of average diameter of a few tens of micrometer was injected
into a cylindrical glass capillary of similar size. Under these flow conditions, capsules
deformed and reached either a slug or parachute steady-state shape (Figure 1.5a).
Each capsule deformed shape was then acquired using an inverted optical microscope
coupled with a fast camera. A database of capsule profiles was built for varying
capsule size and velocity. The authors assumed that the deformation is axisymmetric,
due to the cylindrical cross-section of the channel, and built a corresponding numerical
database by using an axisymmetric model of the flow of a capsule in a cylindrical pore.
The inverse analysis procedure was then performed on several characteristic lengths
extracted from the profiles, finally leading to the evaluation of a population average
elastic shear modulus of G4 = (0.07 £ 0.01) N/m. Moreover, they deduced from this
experiment the strain-softening character of ovalbumin cross-linked membranes.
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Figure 1.5: (a) Microphotographs of two capsules flowing in a cylindrical tube, for
a different capillary number; (b) Experimental and numerical profiles superposition.
From (Chu et al., 2011).

The capillary method has been further used to determine the cross-linking degree
of ovalbumin microcapsule membranes by Chu et al. (2011). The parametric study
led to several conclusions: the cross-linking degree, which is assumed directly related
to Gy, is insensitive to the capsule size within a short capsule size range or to the



reaction pH (when pH < 7), but increases with the reticulation time towards a plateau
that indicates a saturation process. It provides an average (G5 computed over a
full batch of capsules. Furthermore, microfluidic techniques have been shown to
have the great advantage of allowing the in-situ fabrication and characterization of
microcapsules, as proven by Chu et al. (2013). This is of significant interest for lab-
on-a-chip applications. The chip designed by Chu et al. still possesses limits, since it
requires to insert a cylindrical tube within a square PDMS channel. A more effective
way to perform this task would be to achieve the inverse analysis in a square channel,
but it requires a 3D model of the capsule flow in a square channel.

1.2 Modeling the capsule dynamics in fluid flow

Over the past decades, the motion and deformation of thin-walled, liquid-filled mi-
crocapsules in flow have been extensively studied. Both 2D and 3D simulations of a
capsule either suspended in unbounded viscous flows or flowing in a straight channel
have been run. We review the state-of-the-art of numerical simulation, starting by
a description of the physics governing the fluid-structure interaction of a capsule in
flow and then detailing the various numerical methods classically used to solve it, as
well as their results and limitations.

1.2.1 Mechanics of a capsule in flow
1.2.1.1 General

Let us consider an initially spherical microcapsule of radius a, freely suspended in
a viscous fluid flow. In absence of a capsule, the fluid has a characteristic velocity
of magnitude V™/ and the velocity field tends to v™ at far distance (Figure 1.6).
The membrane is supposed infinitely thin, compared to the capsule radius. This
assumption is often satisfied experimentally. The membrane can then be represented
as a 2D sheet of 3D isotropic elastic material. Its shape is noted S(0) in the initial
reference state, and S(¢) in the deformed state at time t. At any time, the position
x corresponding to the initial material point X is given by

2(X,t) = u(X,t) + X, (1.1)

where u is the displacement field. In Figure 1.6, we denote IN and n, respectively
the membrane outer unit normal vector of the reference and deformed states.

Both internal and external liquids are supposed incompressible, Newtonian, of
viscosity p and p™ = Au® and equal density p. The capsule volume is constant

and denoted V so that 3
3V

Under these conditions, the capsule motion in an unbounded flow (Figure 1.6) is
governed by two non-dimensional numbers. One is the ratio between the viscous



Figure 1.6: Schematic illustration of an isolated capsule freely suspended in a viscous
flow. The reference and deformed states are illustrated. Adapted from Barthes-Biesel
(2016).

forces of the fluid and the elastic resistance of the membrane,

exy/inf
uerv
Ca=———, 1.3
- (13)
which we call the capillary number by analogy with liquid-liquid interfaces. The other
is the internal to external viscosity ratio A\. When the flow of a capsule through a
tube is considered, the confinement ratio needs to be considered too, and is defined

as the ratio between the capsule radius and the tube characteristic size £.

1.2.1.2 Membrane mechanics

Under the thin membrane assumption, the capsule membrane can be treated as a
homogeneous elastic surface with surface shear elastic modulus G5 and area-dilation
modulus K. The elastic stresses within the membrane then reduce to elastic tensions
T, which are forces per unit arclength in the surface plane (T"-n = 0). In this study,
both bending resistance and shear transverse forces across the wall are ignored.

At any time, the membrane is at mechanical equilibrium, which reads

V.T — f =0, (1.4)

where V is the surface gradient along S(t), and —f the viscous load on the mem-
brane. Another way to express this equation is to use the virtual work principle in
order to derive a weak formulation,

/ a-qu+/ é(a) : 7dS = 0, (1.5)
S(t) S(t)
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where é(4) = $(V,a + V@) is the virtual deformation tensor, @ a virtual defor-
mation, 7 the Cauchy stress tensor, and T the transposition operator. The first term
corresponds to the virtual work of the external fluid forces, while the second term
corresponds to the virtual work of the membrane elastic forces.

To fully describe the membrane mechanics problem, a relation between strain
and stress for the material considered is required. Several constitutive laws have
been proposed over the years depending on the material properties. Their effects
on membrane deformation have been detailed by Barthes-Biesel et al. (2002), who
compared the mechanical behavior of three of them.

The constitutive laws can be defined by the relation between the two principal
tensions 7T} and T, and the two principal extension ratios in the membrane plane A;
and As. In the limit of small deformations, the constitutive law is referred to as the
Hooke law (H), which reads

Gs

TH =
! 11—,

A —14v,(05—1)] (likewise for T5), (1.6)

where v is the surface Poisson ratio, which varies between —1 and +1. The Poisson
ratio relates G to the area-dilation modulus K, by Ky = G4(1 +v,)/(1 — vg). Thus,
when vy, — 1, Ky — 0o, which corresponds to an area-incompressible membrane.

One possible strain-softening law is the Neo-Hookean law (NH). It is often used
to model the behavior of an infinitely thin sheet of 3D isotropic material that is
volume-incompressible. It is expressed as

G 1 0
TNH — ou [)\f — W} (likewise for T). (1.7)

Such a model allows for area-dilation which is theoretically balanced by membrane
thinning. The NH law is a particular case of the general Mooney-Rivlin law with
K, = 3G, (Green & Adkins, 1970).

Another law that is widely used to model 2D material is the Skalak law (SK)
(Skalak et al., 1973), which is strain-hardening. It was initially derived to describe

the area-incompressible membranes of biological cells such as red blood cells. The
elastic tensions read

TS _ % (A2 = 1) + CORA)(ARA2 — 1)]  (likewise for 7). (1.8)
112

The area-dilation modulus of the SK law is given by Ky = G4(1 + 2C), so that the
membrane area-incompressibility can be modeled by taking C' > 1.

1.2.1.3 Fluid mechanics

Due to the capsule micrometric size, we assume that both internal and external fluids
are subjected to a very small Reynolds number, so that inertia can be neglected. In
the following, we use the superscript (in) to refer to the inner fluid, and (ex) for the
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external fluid. Both fluid flows are governed by the Stokes equation along with the
continuity equation:

Vi@ — vp@ =0, V.o =0, o =1in,ex, (1.9)

where v is the fluid velocity and p the pressure field.
The boundary conditions are the following:

e the perturbation induced by the presence of the capsule vanishes at infinity:

v (x) - v>®  when |x| — oo; (1.10)

e there is no slip on the capsule membrane:
v (x,t) = 0 (x,t) = 0x(X,t)/0t, when  x € S(1), (1.11)
where Oz (X, t)/0t is the membrane velocity at position & at time ¢.

Finally, fluid and solid are coupled by expressing the dynamic equilibrium between
the viscous forces exerted by the two fluids on the membrane and the elastic forces
involved by the membrane deformation:

[cC)(z) — o™ (z)] - n=—f when xeS(@). (1.12)

1.2.2 Numerical methods
1.2.2.1 Context

The dynamics of soft microcapsules in flow constitutes a very complex problem due to
the coupling of fluid mechanics with the membrane solid mechanics under large defor-
mations. A few analytical studies were led by Barthes-Biesel et al. in the early 1980s,
but they can only be derived in the small-deformation limit (Barthes-Biesel & Ralli-
son, 1981; Barthes-Biesel & Sgaier, 1985). The authors only considered the deforma-
tion of an initially spherical capsule under simple shear flow. More recently, another
analytical model has been derived for slightly ellipsoidal microcapsules (Vlahovska
et al., 2011). However, accounting for large deformations, effects of confinement or
multiple capsule interactions requires the use of numerical models.

The first numerical models were axisymmetric due to computer-related limitations
(Li et al., 1988). The first 3D model of a droplet enclosed by an elastic membrane was
developed by Ramanujan & Pozrikidis (1998) thanks to the extension of computation
capacity. Computational power has since exploded, allowing the development of new
techniques to tackle this issue.

The problem is usually addressed in two separated phases: solving the fluid me-
chanics with an Eulerian representation, and solving the solid mechanics with a La-
grangian representation. A numerical coupling of the two problems is needed. The
Lagrangian representation consists in the tracking of the capsule motion by means
of a surface mesh that deforms and moves into the fluid. The principal extensions
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ratios are computed from the deformed shape of the capsule, and the tensions are
deduced through the constitutive law. The load exerted by the capsule on the fluids
is computed and used to modify the fluid flows. The fluid velocity is computed on
the membrane mesh nodes and integrated in time to deduce the displacement of the
mesh. The positions of the nodes are updated and the process is repeated. This
is thus an iterative process in which fluid and solid mechanics are highly coupled.
Several methods have been developed to achieve the coupling, as well as solving the
fluid and solid equations, as described thereafter.

1.2.2.2 Fluid mechanics

One efficient way of solving the Stokes equations is to derive a weak formulation
of the velocity on all the boundaries of the problem, as originally proposed by the
mathematician Ladyzhenskaya (1969). It allows to lower the problem dimension and
compute the fluid velocity on an interface in a creeping flow with only 2D integrals.
The number of degrees of freedom is then very low compared to a volume computation
of the fluid velocity. This integral formalism has been detailed by Pozrikidis (1992)
in the case of a capsule, and used to perform 3D simulations of a capsule deformation
suspended in a simple shear flow (Pozrikidis, 1995; Ramanujan & Pozrikidis, 1998).
Another advantage of this technique is that the solid mechanics problem can be
solved on the same grid used for the tracking of the membrane nodes. The so-called
Boundary Integral (BI) method has been largely used to study the deformation and
motion of capsules in multiple fluid flow configurations such as pure straining flow
(Li et al., 1988; Diaz et al., 2000), simple shear flow (Pozrikidis, 1995; Ramanujan
& Pozrikidis, 1998; Lac et al., 2004; Walter et al., 2010; Omori et al., 2011) or plane
hyperbolic flow (Lac et al., 2004; Dodson & Dimitrakopoulos, 2009; Walter et al.,
2010). These studies have shown that the method is very precise.

An alternative method consists in expanding the hydrodynamic flow field into
smooth basis functions. Kessler et al. (2007) used this technique with spherical har-
monics that satisfy the Stokes equations and have the advantage of being analytically
differentiable. The coefficients of the modes are computed by solving a linear system
formed by the boundary and force balance conditions.

When the Reynolds number is of order 1 or higher, the Stokes equations are no
longer valid. Another method is then particularly adapted to model the fluid-structure
interactions when the fluid flows are governed by the Navier-Stokes equations: the
Immersed Boundary Method (IBM). It has originally been developed by Peskin (1977)
to study the flow of blood in the heart. Briefly, the fluid equations are solved on a
regular Eulerian grid, and the membrane presence is introduced as a body force, van-
ishing everywhere except at the interface. The membrane is composed of a 2D grid
with a Lagrangian tracking. The forces induced by the membrane on the fluid and the
convection of the membrane by the fluid flows are coupled by interpolation between
the two grids. The main drawback of the immersed boundary method lies in the
implementation of the body forces that represent the membrane as Dirac functions.
The width of the Dirac functions indeed implies a blurring of the membrane position.
As a consequence, interactions with a wall or another capsule could show inconsis-
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tencies in the results, or even lead to the breakdown of the computation. Doddi &
Bagchi (2008a) used this method to simulate the motion of two capsules interacting
in a simple shear flow. The fluid equations were then solved by finite differences.

The Lattice-Boltzmann method is more and more used to compute the fluid mo-
tion, coupled to the immersed boundary method (Sui et al., 2008a,b, 2010). It consists
in a discretization of the fluid flow, as a motion of a particle ensemble, each particle
having a finite set of possible velocity vector at each time step. A discrete equation is
then derived and solved. Despite its simplicity, the method considers the fluid as an
ensemble of particles, leading to the use of a statistical equation instead of the fluid
motion being governed by the classical Navier-Stokes equation. Moreover, it involves
larger numerical errors than the BI method or a spectral method. It also requires a
3D mesh of the whole domain, which can involve a rather large number of operations
when the fluid domain becomes vast.

1.2.2.3 Membrane mechanics

The membrane mechanics are usually solved with two different methods in the litera-
ture. The strong formulation of the force equilibrium (Equation (1.4)) can be enforced
at every mesh point and every time step. It has been coupled with spectral elements
by Kessler et al. (2007), with the BI method by Dodson & Dimitrakopoulos (2008,
2009), Kwak & Pozrikidis (2001), Lac et al. (2004), Pozrikidis (2001), Ramanujan &
Pozrikidis (1998), and with IBM by Li & Sarkar (2008). This local method requires
the membrane to be represented by a function that can be differentiated at least
twice to solve the deformation of the membrane when it is assumed to have negligible
bending rigidity. Cubic B-spline functions are a good candidate and have been used
by Diaz & Barthes-Biesel (2002) and Lac et al. (2004) who demonstrated the good
accuracy of the scheme. However, their use requires a structured mesh using spheri-
cal coordinates, which implies the presence of two singular points that must be taken
care of.

The use of spectral elements is also possible with a strong form of the equilibrium
equation, provided an appropriate membrane interfacial smoothing is applied. Spec-
tral elements have been shown to be very precise for the computation of a capsule in
a simple shear flow (Dodson & Dimitrakopoulos, 2009). In fact, the accuracy of the
method can even be raised by increasing the number of collocation points. However,
the authors underlined the large computational cost of doing so.

Alternatively, the weak form of equilibrium balance can be used (Equation (1.5)).
It is derived using the virtual work principle and classically solved with a finite element
method (FEM). For example, Doddi & Bagchi (2008a,b) used a FEM model adapted
from Charrier et al. (1989), coupled with the immersed boundary method to solve for
the fluid velocity. Walter et al. (2010) and Barthes-Biesel et al. (2010) then proposed
a new formulation that requires the reprogramming of the FEM, in a non-classical
way. Indeed, they considered that the fluid imposes a displacement to the membrane,
so that the finite element model computes the reaction forces of the membrane on the
fluid. The advantage of this new formulation is that higher-order interpolation can
be used over the elements (Walter et al. (2010) used quadratic interpolation), which
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is required to take bending effects into account.

1.2.2.4 Application to capsule dynamics in flow

The various numerical methods previously described have been used to study the
dynamics of capsules, vesicles and red blood cells in flow. We summarize here the
main results coming from these studies, focusing on the results of 3D simulations of
elastic capsules.

Initially spherical capsule suspended in an unbounded flow. Studying the
deformation and dynamics of a single capsule suspended in a shear flow presents
several benefits. Firstly, a capsule flowing in a large artery is subjected to shear
forces with boundaries far enough to be negligible. Although in this case the capsule
is usually in a dense suspension, modeling its dynamics when isolated represents a
first step towards modeling the behavior of a whole suspension. Secondly, a numerical
model is useful to analyze the experimental data. Finally, the stress levels in the
membrane are not accessible experimentally, and require a precise 3D model to be
computed, for example to predict the burst of capsules.

Several authors have studied what has become now a test case for capsule mod-
eling: a single initially-spherical capsule devoid of bending resistance suspended in a
simple shear flow (Eggleton & Popel, 1998; Ramanujan & Pozrikidis, 1998; Lac et al.,
2004; Doddi & Bagchi, 2008b; Walter et al., 2010). When no viscosity contrast is con-
sidered between the inner and outer fluid, the behavior of the capsule only depends
on the capillary number. In particular, a critical value C'aj, exists, under which the
membrane equilibrium is unstable due to compressive forces in the equatorial area.
These negative tensions lead to membrane buckling. The buckling can disappear ei-
ther when the capsule is subjected to a positive osmotic pressure difference, which
leads to an additional tension in the membrane, or by increasing the flow strength.

When Ca > Cayp, the capsule reaches a steady deformed state that resembles
an ellipsoid whose axis is more or less angled depending on the flow strength. The
membrane also rotates around the capsule like a tank tread. The whole dynamics has
been called tank-treading by analogy.

When the capillary number increases above a critical value Cay, the absence
of bending resistance causes very high curvatures and the apparition of pinched
edges. The effect of the constitutive law is mainly visible on the relation between
flow strength and deformation. The same deformation is reached at a lower flow
strength when the law is strain-softening. As a consequence, the upper limit Cay
is much lower for strain-softening laws than for strain-hardening ones. Walter et al.
(2010) estimated Cay to be 0.63 and 2.4 respectively for the NH and SK laws. The
lower limit is less sensitive to the type of law, due to the fact that it is in the small
deformation regime.

The effect of the viscosity contrast A on the capsule dynamics has been studied by
several authors (Ramanujan & Pozrikidis, 1998; Doddi & Bagchi, 2008b; Foessel et al.,
2011), who reported that at a constant flow strength Ca, increasing the viscosity
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ratio lowers the deformation of the capsule. Furthermore, increasing A makes the
deformation less dependent on the flow strength or membrane behavior.

The addition of a bending resistance to the model can allow for the modeling of
thick-membrane capsules or vesicles and RBC’s. It is also needed to solve the buckling
instability issues expressed above. However, such models often require even smaller
time steps to be stable, so that the computational cost becomes very high (Pozrikidis,
2001).

Spherical capsule flowing into a straight channel. The motion and deforma-
tion of a spherical capsule has also been studied in the context of pore flow. Doddi
& Bagchi (2008b) studied for example the lateral migration of a small capsule into a
parabolic pore flow, and concluded that the deformable particle tends to migrate to-
wards the flow axis. Other authors studied the flow and deformation of large capsules
highy confined in cylindrical and square section tubes (Diaz & Barthes-Biesel, 2002;
Lefebvre & Barthes-Biesel, 2007; Kuriakose & Dimitrakopoulos, 2011; Chu et al.,
2011; Hu et al., 2011). Thus, the entrance and flow of spherical capsule in an ax-
isymmetric pore has been studied with either a NH or a SK constitutive law (Diaz &
Barthes-Biesel, 2002; Lefebvre & Barthes-Biesel, 2007; Chu et al., 2011). The results
were compared to a fully 3D model of a capsule flowing in either a cylindrical or
square channel (Kuriakose & Dimitrakopoulos, 2011; Hu et al., 2011). In these stud-
ies, the capsule-dynamics driving parameters have been found to be the flow strength
and the size ratio between the capsule and the channel.

It has been found that the high confinement involves a large deformation of the
capsule, which, under sufficiently high flow strength, undergoes an inversion of the
back curvature, usually called parachute shape. For a small flow strength, the inver-
sion does not happen, and the capsule is squeezed in the channel into a slug shape.
It has been shown both experimentally and numerically that the compression forces
arising from the walls involve the buckling of the membrane (Kuriakose & Dimi-
trakopoulos, 2011; Chu et al., 2011; Hu et al., 2011). As found for a capsule in an
unbounded flow, it is easier for a NH capsule to deform than for a SK capsule, so
that a lower flow strength is required to obtain the same parachute shape with a NH
capsule than with a SK capsule. A consequence of these two behaviors is that a SK
capsule will always reach a steady-state while a limiting Ca is found for NH capsules,
above which the capsule deforms continuously until it breaks up.

Bifurcated and network flow. Modeling the deformation and trajectory of a
capsule flowing into a complex geometry, such as a bifurcated channel or a network,
remains an open question to this day. A few studies were conducted but they ei-
ther made strong simplifications (Obrist et al., 2010) or consisted in 2D studies.
Woolfenden & Blyth (2011) studied the passage of a bifurcation by a 2D elastic cap-
sule. They used the boundary integral method and circumvented the difficulty related
to the two outputs by using a notional boundary method. Despite the approximation
of 2D, they obtained qualitative results showing that the path selection at the junc-
tion highly depends on the capsule deformability. They derived the trajectory and
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deformation of the capsule in function of several parameters such as the flow strength,
the angle of the bifurcation, the flow strength ratio between the two outputs and the
centerline fluid velocity ratio between the two branches. If they found qualitative
correlation with experimental results, no quantitative comparison was performed to
corroborate the results. The authors acknowledged that quantitative results require
a 3D model, which may become computationally costly. They also pointed out that
the interaction between several capsules in this flow configuration would involve very
large computation times.

Perspectives. In a recent review, Barthes-Biesel (2016) provided the future issues
to be addressed in this field, including complex geometries (experimental and numer-
ical studies), complex capsules (non-spherical resting shape) and collective effects. Of
course, this additional complexity will involve even larger computation times. One
way of overcoming these difficulties could be the use of graphic processing unit (GPU)
computing, as done by Matsunaga et al. (2014). In their study, they especially claimed
to perform 10,000 time steps of the method proposed by Walter et al. (2010), within
2min for a single unbounded capsule, and 9.1 min for two capsules interacting. As
an illustration of the efficiency of the method, they performed a simulation involving
256 capsules in strong interaction on 16 GPUs in about 3.8 days. If the gain seems
impressive, the computation time seems still a limiting factor when considering the
simulation of a suspension of capsules in a network. Thus, the need for more effi-
cient methods remains urging. Reduced-order modeling has proven itself very efficient
when it comes to reducing computation times, and seems a natural path to follow.

1.3 Reduced Order Modeling

When the complexity of a problem increases and no classical method is able to solve it
in reasonable computation times, resorting to a reduced-order model is an interesting
approach.

1.3.1 Definition

We call a reduced-order model (ROM) any low-dimensional approximation of a high-
dimensional mathematical system. Building a reduced-order model has usually an
initial cost, which is often the cost of computing a different basis in which the system
is better described. The hope is that this cost is outweighed by the potential gain
of further solving of the reduced system instead of the high-dimensional one. The
difficulty is usually to find and compute the new basis, in order to obtain a reduced
model which provides a solution as close as possible to the high-dimensional model
solution. By building a low-dimensional model, the solving times are usually dras-
tically reduced, which is the main interest of the method. Reduced-order models
can arise from mathematical developments or the application of data compression to
mechanical problems.
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Let us suppose that one is looking for a field u(x,t) lying in an infinite space F,
and verifying
A(u) =R, (1.13)

where A is a differential operator describing the physical phenomenon considered.
The classical way of solving the problem is to project the system on a finite basis
(defined by the mesh) so that

Ad(u?) = R?, (1.14)

where the superscript d stands for the discrete version of Equation (1.13). The field
u?(x,t) now lives in a finite dimension space E¢ of dimension N. When the problem
is complex and requires a fine grid to be solved on, N can become rather large, which
involves large computation times. Building a reduced-order model then consists in
finding a low-dimensional basis on which Equation (1.14) is projected. Then, the
following system is solved

A(a) = R, (1.15)

where @ € E, which is of dimension M < N. The reduced-order model should
also follow several conditions such as a small approximation error, computational
efficiency, and the conservation of passivity and stability.

The purpose of model reduction is generally either active control, fast simulation
or simulation of large systems (Antoulas & Sorensen, 2001). Several methods exist
to perform model reduction. They find applications in many fields such as electron-
ics, mechanical engineering, low-energy control, inverse analysis and multi-parameter
analysis.

Biomechanical applications include the development of tactile-feedback tools for
robotic surgery (Mena et al., 2015). In fluid mechanics and fluid structure interaction
problems, the Proper Orthogonal Decomposition (POD) is one of the most used
methods to build reduced-order models (Liberge, 2008). In the following, we focus
on this particular method and its application to FSI problems.

1.3.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a statistical data analysis tool that allows
to approximate a high-dimensional system with a low-dimensional system. It is also
known as the Karhunen-Loeve decomposition or the Principal Component Analysis.
For a few decades now, POD has become ubiquitous. It was firstly introduced in
fluid mechanics by Lumley (1967), who used it to extract the coherent structures
in turbulent flows. An adaptation of this method has been introduced by Sirovich
(1987) and is called snapshot-POD.

The principle of snapshot-POD is to build an orthogonal basis by extracting rele-
vant information from a set of snapshots, which are numerical or experimental obser-
vations of the phenomenon to be modeled. The POD basis is built so that the first
modes contain a large part of the information provided by the snapshot database. The
redundant information contained in the snapshots is removed by imposing orthogo-
nality, and high-order modes of the POD basis may contain very little information, so
that a truncation of the basis remains a good approximation of the high-order basis.
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The POD basis is obtained by solving an eigenvalue problem involving the snap-
shots, or equivalently, by performing a singular value decomposition (SVD). Building
the POD basis can be computationally costly depending on the size of the problem,
but the gain of solving the resulting reduced problem instead of the high-dimensional
one is generally much larger. Snapshot-POD is usually preferred to the classical POD
when the spatial resolution is high while the temporal resolution is low. Indeed, if a
temperature field 7'( X, t) is well described by N, spatial vertices and IV, observations
in time, with N, > Ny, then the snapshot-POD is performed by solving an eigenvalue
problem of lower dimension (V;) than the classical POD would (N,).

In fluid mechanics, POD is often performed on the velocity field in order to build
a reduced basis, which is then used to build the reduced-order model (POD-ROM).
A classical way of building a POD-ROM is to project the Navier-Stokes equations
on the POD basis, by using the Galerkin projection. It provides a linear system of
low dimension that has to be solved. This method is considered as “a posteriori”,
as it requires to build the POD basis before building the ROM. It then requires to
compute a set of observations with a high-dimensional model as a starter. Another
approach is called “a priori”, and consists in enriching the POD basis iteratively
without requiring the computation of high-dimensional observations.

The POD can be applied to any field, such as velocity, pressure, or temperature.
However, as POD is a purely mathematical transformation, one should be careful
of the physical interpretation of the modes and eigenvalues obtained. Due to its
applicability to both fluid mechanics and solid mechanics, POD seems well adapted
to FSI problems. One difficulty of applying POD to FSI problems, though, is that
the domain of definition can change with time (Liberge, 2008). We found very few
examples of the application of POD to moving objects suspended into a fluid.

1.4 Objective of the PhD thesis

The objective of the thesis is to study the dynamics of a capsule flowing in a mi-
crochannel, whether it is straight or bifurcated. We are especially interested in de-
termining the capsule shape variety in these two geometries and get some insight of
the complexity of capsule dynamics.

Knowing the mechanical properties of the capsule membrane is necessary for most
applications, so that we are interested in developing a method to perform the mechani-
cal characterization of the capsule membrane directly in-situ, in microfluidic channels.
We are also particularly interested in investigating whether Proper Orthogonal De-
composition (POD) would offer the possibility to determine the capsule deformation
with a much reduced computational time. We will then consider whether POD would
help us determine an optimal shape description and overcome the computation-time
issue encountered by classical numerical models. It would be a first step towards the
development of a reduced-order model of the capsule deformation.

The PhD thesis thus serves several purposes:

1. We aim at adapting the inverse analysis method developed by Chu et al.
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(2011) to square-section channels in order to provide an in-situ method
when working with classical microfluidic chips.

2. Since no experimental results have ever been reported on the dynamics of elastic
capsules in a bifurcated channel (previous studies only considered solid spheres
(Roberts & Olbricht, 2006)), we aim at providing the first qualitative study
regarding the motion and deformation of an elastic capsule flowing in a
branching channel.

3. In the absence of a numerical model for the capsule motion in a bifurcation, we
aim at applying POD to experimental data in order to analyze the motion
and deformation of the capsules in such a geometry.

4. We finally aim at applying POD to the 3D numerical shapes of a capsule
flowing in a straight tube in order to analyze the capsule deformation in this
configuration, provide a proof of concept when working with numerical data,
and improve the characterization method.

1.5 Outline

We first present the material and methods used in this work in Chapter 2. The
chapter is divided into two main sections, which deal with the experiments and the
POD.

In Chapter 3, we focus on the validation and results of the inverse analysis algo-
rithm in a square-section channel. We especially study the influence of experimental
imprecisions (i.e. the lack of squareness of the microchannel cross-section) on the accu-
racy of the method. We also perform the IA on several populations of microcapsules,
that are then used for the experimental study in a bifurcation.

In Chapter 4, we present the results obtained when applying POD on the capsule
deformation in a tube. In the first section, we focus on the application of POD
to the 3D numerical shapes of a capsule flowing in a straight tube. We especially
try to determine the dimension of the capsule shape variety. We also show how
it may allow us to improve the inverse analysis method presented in Chapter 3.
Then, we present qualitative experimental results showing the various behaviors of
microcapsules flowing in a bifurcated microchannel. We especially show the effect of
the size and capillary number on the shapes assumed by the capsules. Finally, we
apply the POD method to these 2D experimental results. We try to obtain an insight
on the dimension of the capsule shape variety when the channel is bifurcated, in order
to determine whether or not a reduced-order model can be applied in this case.
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Chapter 2

Material and methods

2.1 Experiments

2.1.1 Capsules

We used several samples of microcapsules in this study, the membranes of which were
made either of ovalbumin or Human Serum Albumin (HSA), both biocompatible
proteins. Regardless of their nature, the microcapsules were prepared with an inter-
facial cross-linking method (Edwards-Lévy et al., 1993) and provided by Dr Florence
Edwards-Lévy!.

For a given concentration of protein, a solution is prepared using a phosphate
buffer at a given pH. The solution is emulsified in cyclohexane (SDF) containing 2%
(w/v) sorbitan trioleate (Sigma) at a given stirring speed, which determines the final
diameter of the capsules. A 2.5% (w/v) solution of terephthaloyl chloride (Acros)
in chloroform:cyclohexane (1:4 v/v) is then added to the emulsion and the cross-
linking reaction is allowed to develop for 5 min. The reaction is stopped by diluting
the reaction medium with cyclohexane. The microcapsules are separated from the
organic phase by centrifugation and washed successively with cyclohexane, with water
containing 2% (w/v) polysorbate (Sigma) and finally washed three times with pure
water in which the samples are kept. The resulting capsule samples used in this study
are listed in Table 2.1.

Table 2.1: Properties of the capsule samples used in the study.

Sample Membrane Protein Fabrication pH Average
protein concentration diameter
ECH1 ovalbumin 10% 5 60 pm
ECH2 ovalbumin 10% 5 60 pm
ECH3 ovalbumin 10% 5.9 100 pm
ECH4 HSA 25% 8 100 pm

"nstitut de Chimie Moléculaire de Reims (UMR CNRS 7312), Université de Reims Champagne-
Ardenne, Reims, France
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Capsules of ECH1 and ECH2 were used in order to validate the characteriza-
tion method, respectively in Section 3.3 and Section 3.2.2. Capsules of ECH3 and
ECH4 were used to observe the capsule dynamics in a bifurcation, respectively in
Section 4.3.2 and Section 4.3.1. The mechanical characterization of these samples are
also provided in Section 3.4.

2.1.2 Microfluidic systems

Several microfluidic systems were used in this project. We list in Table 2.2 the dif-
ferent systems used depending on the application. Straight tubes were firstly used to
perform the mechanical characterization of the capsules. Symmetric bifurcated chan-
nels were then designed in order to study the capsule dynamics when encountering a
bifurcation. The mechanical characterization of the capsules used in the bifurcated
channels are performed at the entrance, before the bifurcation tip, where the channel
is still straight. The chips were made with the method introduced in Section 1.1.3.1.
In the following, we will use the chip designation to refer to both the microfluidic
chip (PDMS-made channel bonded to a glass lamella) or the channel only.

Table 2.2: Properties of the microfluidic chips used in the study.

Chip Geometry Purpose Capsules
C1 Straight characterization ECH1
C2 Straight by steps characterization ECH2
C3 Bifurcation analysis ECH3
C4 Bifurcation analysis ECH4

Photolithography process. Silicon masters were ordered from external providers.
They were made by photolithography, the principle of which is briefly described in the
following. A transparent sheet is imprinted with the desired design, usually designed
with a CAD software, at a very high resolution (typically 5000 dots per inch). This
transparency is then used as a photomask. A silicon wafer is covered with a thin
sheet of SU-8 photoresist (a UV sensitive resin) by spin-coating, the rotation speed
controlling the thickness of the film, i.e. the height of the channels. The photomask
is precisely approached close to the wafer, and UV exposition is performed. The
exposition time is a critical parameter, since over- or under-exposition would lead
to angled walls. The unhardened resin is then removed by means of a solvent, thus
revealing the design pattern.

Chip making. We used the silicon molds to replicate the chips by means of PDMS.
The method is detailed thereafter. Firstly, liquid PDMS is stirred with a reticulating
agent (9:1, weight) for about 5 min. It is then degassed so that no air bubbles
remain, poured onto the silicon/resin mold, and baked for two hours at 75°C. The
PDMS layer is then carefully cut and peeled off the mold, without damaging the SU-8
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design or breaking the silicon wafer. At this point, the PDMS channels are formed.
Inlet/outlet holes are made with a punch, the size of which is chosen according to
the tubing used for the connection to the external microfluidic circuit. The PDMS
chip is then bonded to a glass lamella by performing the oxidation of both surfaces
by air plasma (Plasma cleaner, Harrick) and putting them in contact, which leads to
a very resistant bonding. Finally, tubing is inserted into the holes and may be fixed
by either PDMS or any other way if necessary.

Channel measurements. The channel cross-section dimensions were measured by
cutting thin slices of a PDMS replica orthogonally to the channel axis. The slices
were placed under an optical microscope, and the resulting images were manually
processed with ImageJ? to measure the average width and height of the channels.

Straight channels. The chip C1 consists of a 5 mm-long straight channel, of width
w = 57.5pm and height h = 52.1pum. The channel is meant to be used in the
characterization technique, and was originally designed to be squared. However, due
to the making-process uncertainties, it is actually rectangular, so that we define a
characteristic length 2¢ which corresponds to the side of the ideal square cross section
channel having the same cross-area:
vVwh
=Y (2.1)
2
We also define the geometrical deviation from squareness of the channel cross-section
by:

For C1, we have ¢ = 27.4pm, and 6 = 5%.

The chip C2 is composed of 7 sections, each one being a rectangular straight
channel, as presented in Figure 2.1. The resulting measurements and corresponding
geometrical deviations are listed in Table 2.3. Since the height is subjected to very
small variations, we consider it constant, with an average value h = 58.2 ym. The
length of the sections has also been measured: it is about 1.5 mm in average.

Table 2.3: Dimensions and geometrical deviations from a square section of the C2
channel sections.

section 1 2 3 4 5) 6 7

width (pm) 475 H3.0 d7.8 622 66.6 725 793
geometrical deviation 0 (%)  -10 -5 0 +3 47 +11  +15

Zwww.imagej.nih.gov /ij/
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section 1 section 2 section 3  section 4 section 5 section 6 section 7

Figure 2.1: Schematic representation of the chip C2. To improve clarity, it is not to
scale. Dimensions are listed in Table 2.3.

Bifurcated channels. The channels C3 and C4 are Y-shaped symmetric bifur-
cations, as shown in Figure 2.2a. The parent channel separates into two daughter
channels with an angle of a = 90°. The flow distribution in the daughter branches is
a function of the flow split defined by:

_ Q@

Q1
In our experiments, we set 5 = 0.5 so that the flow is balanced between the two
output channels.

The cross-section of the parent and daughter channels are identical, with the un-
certainties generated during the fabrication process. They are supposed square, but
are actually slightly trapezoidal, as shown in Figure 2.2b and Figure 2.2c. Their
squareness depends on the care taken to the silicon-master making process. To char-
acterize the cross-section geometry, we measured the height of the channel and the
lengths of the longest (Ljy,g) and shortest (Lgpore) sides of the trapezoid. We also mea-
sured the width of the approximate trapezoid at half height (Lj/2). The dimensions
are summarized in Table 2.4.

B (2:3)

Figure 2.2: (a) Microphotograph showing the bifurcation geometry. (b,c) Micropho-
tographs illustrating the cross-section geometries of respectively C3 and CA4.

One can see in Figure 2.2a that the channel C3 is very far from being square. It
presents a clear trapezoidal shape, of which the difference between the two bases is
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Table 2.4: Channel cross-section measurements.

h (Mm) Lshort (,UIIl) Lh/2 (,U/m> Llong (Mm)
C3 S1 95.2 105.0 108.8 118.1
S2 88.8 104.1 108.0 117.8
S3 102.0 99.9 104.6 111.8
C4 S1 99.4 106.6 109.1 112.0
S2 100.8 107.7 110.2 112.9
S3 101.2 104.3 104.6 106.7

about 12% for the 3 cross-sections. Moreover, a recess of the walls is visible at the
junction of the side walls and the upper wall of the channel. Looking at the dimensions
in Table 2.4, one can see that the height varies between the 3 outlets. All these
inconsistencies in the dimensions and shape are likely to influence the deformation of
a capsule in the channel. It may especially impact the results of the inverse analysis
directly, when characterizing the mechanical properties of the capsule in the parent
channel. We computed the average geometrical deviation and found § = 6%. We
computed the characteristic length ¢ with average values for w and h, and found
¢ =(49.1 £0.7) pm.

In comparison, the C4 channel has been made with a much higher precision. The
height is very consistent over the geometry, with a spatial variation less than 2%.
Figure 2.2b shows that the cross-section is much closer to being square than that of
C3. The channel is still 5 to 10% wider than high, so that it is not perfectly square.
Considering an average value for the width, we find an average geometrical deviation
of about ¢ = 4%. We also computed the characteristic length ¢ = (51.5 £+ 1.0) pm.

2.1.3 Experimental setup and procedure.

Two different procedures were used to perform the experiments, the only difference
being the method used to induce the flow of the capsule suspension within the channel.
The fluid flow is either controlled by flow-rate or by pressure. We present here the
general experimental procedure.

Preparation of the samples. The capsule samples were prepared by suspending
a small volume of capsule sediment (typically between 40pL and 60pL) into pure
glycerin (typically between 1.5 mL and 3 mL, depending on the capsule density that is
required). After mixing by successive pumping in and out of a syringe, the suspensions
were let to rest at room temperature of 23 °C, so that the inner and outer fluids were
identical, and at room temperature.

Experimental procedure. The flow-rate control system consists of a glass syringe
(Fortuna Optima, ) 4.73mm) of 1mL, which was filled with the suspension and

connected to the microfluidic chip by using silicon tubing. A first manual injection

25



was performed in order to fill the channel and silicon tubing. The syringe was then
disconnected, refilled, and reconnected, taking care that no air bubble was included
during the process. Finally, the syringe was placed on a syringe pump (KDS100, KD
Scientific) which enabled the fluid injection at a given flow rate.

This experimental procedure presents several bottlenecks, including non-steady
flows due to the use of syringe pumps and soft silicon tubing. A better way to
control the flow is to use pressure controllers specifically designed for microfluidics
experiments. We used a three-channel pressure controller (MFCS-EZ, Fluigent), with
a software that allows to precisely control the pressures at the three inlet/outlets
(Maesflo, Fluigent). Here is the general summary of how this system works: an air
compressor (Jun-Air) provides about 7 bars of air pressure as input in the device,
which regulates the output pressures through 3 exits by means of a software. The
three exit channels of the MFCS-EZ can then be independently controlled.

We connected each channel to a sample container with stiff Peek tubing (inner
diameter: 250 pm, Valco Instruments Co. Inc.) to transmit the pressure command.
Figure 2.3 shows the different elements of the setup. The microcapsule suspensions
were then subjected to the command pressure and injected into the microfluidic chip.
The connection was made by direct implantation of Peek tubing into the PDMS
replica in which holes were previously made with a PDMS puncher of adapted diam-
eter. In our experience, the insertion of Peek tubing into a PDMS hole of slightly
smaller diameter was sufficient to resist quite high pressures. An alternative solution
consists in using fittings designed to resist high pressures (Nanofittings Tight), which
are, however, quite expensive.

camera

microfluidic chip

optical microscope

pressure controller

Figure 2.3: Photograph of the experimental setup, with a close-up on the microfluidic
chip. The pressure source is not shown.

Typical difficulties related to our microfluidic experiments, which involved the
motion of microcapsules in a bifurcated channel, consisted of the clotting of the
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channel by a pile of damaged capsules or external fibers. When it happened, we
usually reversed the flow for a few seconds to unblock the channel, then restarted it
to make the wastes pass through. This technique was, however, not always effective,
and sometimes we just had to use a new PDMS chip.

While the suspension was flowing through the channel, we observed the passage
of the microcapsules at the bifurcation tip with an optical microscope (Leica DM IL
LED). Magnification at either x20 or x40 was used depending on the characteristic
size of the channel. A high-resolution high-speed camera (Photron FASTCAM SA3)
was linked to the microscope through a x1 C-mount and used to record image se-
quences showing one or more capsules flowing through the channel. The resolution
was up to 1024 x 1024, depending on the required field-of-view. These parameters
leaded to a calibration scale of either 0.425pm/pixel or 0.850 pm/pixel. The images
were recorded at a frequency ranging from 500 to 2000 frames per second, with an
exposure time ranging from 0.2 to 0.05 ms to avoid fuzziness of the capsule membrane.

2.1.4 Image processing

Analyzing the shape of a capsule when it deforms in a channel requires the detection
of the capsule contour from the graylevel images. However, detecting the capsule
contour with image processing techniques is not easy for the capsules we considered.
The contrast provided by the capsule membrane was indeed very poor, probably due
to its thinness.

The issue of the contrast is illustrated in Figure 2.4, where the value of the image
graylevel is plotted along the horizontal line shown on the upper images. Large
variations of the graylevels occur where the channel wall lies: these are not associated
with the presence of the capsule but to the wall. Indeed, it is very difficult to locate
the membrane on the opposite side (y = 160 on (a), y = 120 on (b)), as its signature
is hidden in the noise. This is particularly true for the HSA membrane (Figure 2.4a).
Ovalbumin membranes show a slightly better contrast, but the magnitude is smaller,
and a considerable noise is present inside the capsule, which renders isolating the
membrane difficult. Furthermore, one can also notice a large gap in the graylevel
profile, that is caused by the presence of the wall. The walls have a much larger
contrast than the membrane, which is a real difficulty when it comes to automatic
contour detection. Consequently to these difficulties, we have developed a semi-
automatic algorithm to perform the detection when possible, and otherwise resorted
to manual detection.

Manual detection The manual detection procedure consists in manually placing
30 to 50 vertices along the capsule contour with an image processing software (Im-
ageJ). The vertices were placed in the center of the black line that represents the
membrane, which was typically two to three pixels large. The vertex density was
higher at high curvature zones. The Eulerian coordinates of the vertices were then
saved in a data file. When it comes to POD analysis, more conditions on the vertex
placement are required, and detailed in Section 2.2.3.
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Figure 2.4: Evolution of the image graylevel along the horizontal line that intersects
the tip of the bifurcation and the capsule membrane (thick black line) for a HSA
capsule (a), and an ovalbumin capsule (b).

Automatic detection Because there were many images to be processed, it was
interesting to develop an automatic program that would perform this task accurately.
We have developed an automatic method to detect a capsule contour from a grayscale
image. It is based on a simple background subtraction algorithm.

A background image is computed as an average image of an image sequence that
needs to be processed. Since the capsule flows rapidly, the average image is not
affected by its presence. If the capsule stays too long at the same place in the
bifurcation, the average image is then affected. In that case, one simply needs to
choose a part of the image sequence where the capsule does not appear in order to
compute the average image. The average image is then processed with a median filter
to remove the noise, and subtracted to every image in order to obtain the foreground
images that should represent the capsule. A threshold value is finally applied to the
resulting images as a segmentation process. The result is a binary image, in which
white pixels represent the foreground (membrane and remaining noise), as illustrated
in Figure 2.5. A median filter is used in order to lower the salt & pepper noise,
naturally present in the images. The segmentation threshold must be set carefully
in order to remove a maximum of noise without damaging the membrane detection.
This step is rendered difficult by the average graylevel of the membrane which is of
similar magnitude to that of the noise.

Once the detection has been performed, a tunable post-processing algorithm is
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Figure 2.5: Segmentation results of successive images showing an HSA capsule by
using the background subtraction algorithm.

applied. It consists in processing the binary images to finally obtain a list of coordi-
nates representing the capsule contour. Morphological operations are applied in order
to remove the noise, connect close parts, and make thin edges. The edgelink package
created by Peter Kovesi is then used to create lists of connected components (Kovesi,
2000). A recursive algorithm is used to build the capsule contour from the list of
edges, with a criterion based on the distance of one edge to the main edge (supposed
to be the capsule contour). The resulting contour is finally smoothed. We illustrate
the results of this algorithm in Figure 2.6. The criterion deciding whether or not the
detection is correct remains subjective and qualitative.

2.2 Proper Orthogonal Decomposition

2.2.1 Theory

Definition The technique of Proper Orthogonal Decomposition consists in approx-
imating a function f(z,t) over a spatio-temporal domain of interest as a finite sum
of two variable-separated functions «(t) and ¢ (x)

fla,t) ) ap(t)dn(z) (2.4)

which is reasonably assumed to become exact when n — oo. Classically, space
and time variables are separated. In the following section, we focus on the finite-
dimensional expression of the snapshot POD. The mathematical developments of
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Figure 2.6: Illustration of the efficiency of the semi-automatic method. Original
images are superimposed with the corresponding detection.

the infinite-dimensional version of POD are well documented in the literature, and
we advise the reader to refer to Chatterjee (2000), Bergmann & Cordier (2006), or
Liberge (2008) for more details.

Finite-dimensional POD Let us consider a vector w(X,t) € RY. Generally, w
is a temperature, pressure or velocity field, X the grid nodes on which w is defined,
and t the time. In our application we consider w(X,t) being the shape of a capsule
at time t. With X being a Lagrangian grid on the membrane, and X; one particular
node of this grid, w(Xj;,t) is the position of the material point X; in a local frame
at time ¢. Each material point is defined by two (X; € R?) or three (X; € R?)
coordinates in the Eulerian frame, depending on its dimension. We consider here that
the time average w(X) of w is null. If not, one should simply compute and subtract
the mean value of w before performing POD. The proper orthogonal decomposition
consists in looking for an orthogonal basis (1y)r—1.27, ¥r € R, with which we can
approximate w(X,t) by

S

W(X 1) =Y an(t)r(X), (2.5)

k=1
where ay(t) are the temporal coefficients, and M the dimension of the POD basis
(i.e. the number of modes). Equation (2.5) is the discrete version of Equation (2.4).
Snapshot-POD One method to compute the orthogonal basis () )r=1.as is called

snapshot-POD, and consists in using a representative set of solutions of the system

A=[w(X,t) w(X.t) ... wX,ty), (2.6)
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which is stored in the so-called snapshot matrix A, of dimension N, x N;. In our case,
each column of A is composed of the positions w(t;) of the capsule mesh points at time
t;, with ¢ = 1..Vy, and thus corresponds to the shape of a capsule at this particular
time. Conversely, each line corresponds to the time-evolution of the position of a
particular material point of the membrane.

The POD of A under a matrix form reads

M
A=UQ" = Zuk ar, (2.7)
k=1

where the superscript T stands for matrix transposition, and wy, g are the k" column
of the matrices U and @ respectively. The columns of U correspond to (X ), and
the rows of @) correspond to the temporal coefficients ay(t).

Now, according to the Singular Value Decomposition (SVD) theorem, A can be
decomposed as

A=UxVT, (2.8)

where X is a N, x N, rectangular diagonal matrix composed of the singular values o; of
A, Uis a N, x N, orthogonal matrix and V' a N; x N, orthogonal matrix, respectively
representing the left and right singular vectors of A. Moreover, the singular values
are arranged in decreasing order so that the first column of U is the mode associated
with the highest coefficient.

Assuming Q = VX', the POD modes of A can be computed by performing the
SVD of A. The temporal coefficients are then given directly by computing ) from
the SVD, or equivalently by projecting the snapshots on the basis U

Q=A"U. (2.9)

Performing the SVD can however turn out to be uneasy and time-consuming. When

N, is too high, one should instead find the eigenvalues ); of AT A, which is of dimension
N; x N;. Indeed, we have

ATA = (UZVvHTUSVT = VvETUTUSVT = VAVT, (2.10)

with
A=3"%, (2.11)

a diagonal matrix. The eigenvalues of AT A are then related to the singular values o;
of A by
i =07, (2.12)

while the eigenvectors of AT A correspond to the right singular vector of A.

One consequence of building an orthogonal basis is that the redundant information
initially hidden in the snapshots (w;);=1.n, is removed. Thus, high-order modes may
be of very small amplitude so that one can use a low-rank approximation of A by
simply truncating U without loosing much information. The rank-M approximation
of A reads

Ay = U XV = UnQly, (2.13)
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where M < N; < N,, and Uy, Viy, Qu are composed of the M first columns of U,
V and Q). X, is the restriction of ¥ to the M first rows and columns. A, is thus of
dimension N, x N;, Uy of dimension N, x M, Vj; and Q) of dimension N; x M.

If the POD is performed by computing the eigenvectors of ATA as shown in
Equation (2.10), then Uy, can be obtained by

Uy = AyVarZy) (2.14)

The average POD projection error at rank M is related to the eigenvalues by

Ny N
S llwi —wMP= YN, (2.15)
i=1

i=M+1

w; being a column of A and w} a column of Ay;. The POD basis provides the best
rank-M approximation of A when considering the L? norm.

Finally, the Relative Information Content (RIC) is defined as the relative amount
of information contained in the first M modes, compared to the total amount of
information contained in the snapshots

RIC(M) = i1 (2.16)

What is called information here is the membrane vertices positions. A loss of infor-
mation means a loss of detail in the membrane shape. It is a good indicator to choose
where to truncate the POD basis, in order to optimize the ratio between the number
of modes to keep and the information retrieved.

Definition of errors To quantify the error involved by the use of a rank-M POD
basis, we use a relative error defined by:

Ny 2
Zi:M-{-l 0;

AM = (2.17)
N,
> i llwill?
as well as the corresponding relative error related to the i’ snapshot:
s _ llwi = wl (2.18)
’ [Jwi

These definitions are mathematically relevant in order to estimate the precision of
the POD approximation. However, they hardly allow the physical visualization of the
global shape error. Therefore, we also defined an error with more physical meaning
in order to estimate the shape deviation between the POD approximation and the
high-dimensional model:

w_ maxg [[wi(X) — w (X

(2.19)
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It corresponds to the maximum distance between one material point on the original
capsule shape and its corresponding vertex in the POD description, normalized by
the characteristic length of the channel. We can thus directly compare this error to a
typical value of the error in the membrane position. Consequently, it is another great
indicator to determine the POD basis dimension.

2.2.2 POD on 3D numerical data

We detail here the method used to perform the proper orthogonal decomposition on
3D numerical capsule shapes.

Data. We performed POD on the transient state of an initially spherical capsule
flowing in a straight square-section tube until it reaches a steady-state shape. To
build the snapshot matrix, we used the full 3D FSI model developed by Hu et al.
(2011) (see Chapter 3), which provides the capsule shape evolution from the initial
reference spherical shape to the steady-state shape. Each snapshot is composed of
2562 mesh nodes, the position vector at each node having three components: the
three coordinates in the Eulerian frame. The translation along the flow axis is not
taken into account: the coordinates are centered around the mass center of each 3D
shape.

We extracted 800 snapshots from the numerical model. They represent the shapes
of the capsule over a normalized time duration of 8, for various values of the parame-
ters (the capillary number and size ratio). The number of snapshots actually used to
build the POD basis is specified for each case. The snapshots that were not initially
used in the building of the POD basis were used to study the behavior of the POD
basis for unknown capsule shapes by interpolation (see Section 2.2.2). For one snap-
shot, the three components x, y and 2z of one mesh node X; were stored successively in
a column of the snapshot matrix A. The process was repeated until no node remains,
for all snapshots, in order to build the snapshot matrix. The time-average shape was
then computed and subtracted from the snapshot matrix to ensure that the snapshot-
matrix time-average is null before applying the SVD (consistently with the hypothesis
we made on w in Section 2.2.1). We thus obtained the singular values through the
matrix ¥ and the principal modes through the matrix U (cf Equation (2.8)), which
were used to build rank-M approximations of the capsule shapes, and compute the
various errors.

We firstly considered a reference case corresponding to Ca = 0.040, a/¢ = 0.90
and 400 snapshots, the snapshot matrix dimension thus being 7686 x 400. The results
are presented in Section 4.2.1.

We then varied the number and distribution of the snapshots used to build the
POD basis, in order to study the effect of the choice of snapshots on the efficiency
of the method. We used 800, 200 and 20 equally distributed snapshots to compare
the results with the reference case. We also used two configurations of 65 and 20
snapshots that were chosen to be representative of the capsule deformation. The
results are presented in Section 4.2.2.
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Finally, we considered a sample of snapshots corresponding to three different val-
ues of capillary number (Ca = 0.040, C'a = 0.050 and C'a = 0.060), for a unique size
ratio a/¢ = 0.95. We used 100 snapshots for each case and stored them into a single
snapshot matrix of size 7868 x 300. We thus built a single POD basis that should
be used to describe the capsule shape for the three different cases. The results are
presented in Section 4.2.3.

Shape approximation. The accuracy of the POD approximation was studied both
quantitatively by looking at the errors defined in Section 2.2.1, and qualitatively by
looking at the superposition of the POD-approximated and original shapes. The 3D
POD-approximated shapes were built after truncation at rank M by following Equa-
tion (2.13). The results are shown as 2D center-plane profiles, which correspond to
what would be observed experimentally. It would be unclear to show the superposi-
tion of 3D shapes.

Interpolation. Once the POD basis has been built, the temporal coefficients of
every snapshot are available. We studied the possibility to interpolate the temporal
coefficients in order to build interpolated approximations of the capsule shapes for
different values of the capillary number from those used to build the POD basis. We
linearly interpolated the temporal coefficients resulting from the POD on 3 different
flow conditions (C'a = 0.040, Ca = 0.050 and Ca = 0.060), and predicted the shapes
for an intermediate value (Ca = 0.045). The shapes were then compared to the high-
dimensional shape from the 3D model, to check the accuracy of the method. The
results are presented in Section 4.2.3.

2.2.3 POD on experimental data

We detail here the method used to perform the proper orthogonal decomposition on
2D experimental capsule profiles.

Data. We performed POD on the shapes assumed by an ovalbumin capsule while
flowing within a bifurcated channel (ECH3). Images showing the capsule deformation
were acquired experimentally, and the capsule contours were extracted by manual de-
tection for a subset of the image sequence. These shapes were then used as snapshots
in the POD. Images that were not processed can be used to validate the interpolation
method presented further. This process was conducted for 3 different capsules, listed
in Table 2.5. The snapshots are regularly distributed over each sample.

As seen in Section 2.2.1, the data should represent the motion of material points,
and not simply the global shape of the capsule. Numerically, this aspect is auto-
matically provided by the Lagrangian mesh. It is however more difficult to ensure it
experimentally.

Manual detection. The manual detection was firstly performed by placing 30 to
50 vertices along the contour of the capsule to detect the general shape of the capsule

34



Table 2.5: Capsules used in the study of POD applied to experimental data in a
bifurcation .

capsule Ca a/l number of snapshots
A 0.021 0.92 24
B 0.042 0.92 32
C 0.061 0.93 23

at every time. We then performed the manual tracking of one material point which is
used as a reference: one vertex was placed at the back of the capsule and the physical
motion of the membrane was estimated to obtain the next position of the vertex, as
shown in Figure 2.7.

Figure 2.7: Manual detection of the profiles of capsule C when it passes the bifurcation
tip. The colored dots correspond to the mass center of the 2D profiles. The black
dots correspond to the relative positions of one material point on each profile.

The membrane extension, compression and off-plane motion that can occur are
neglected. As there is no marker on the membrane, it is therefore unclear how pre-
cisely we can estimate the rotation of the membrane when the capsule passes the
bifurcation tip. We assume here that the reference vertex does represent the physical
motion of a material point on the membrane. We then processed the data to ensure
that each line of the snapshot matrix is indeed a time-tracking of a material point.

Pre-processing. We used the reference vertex on the membrane as the first line in
the snapshot matrix. Each capsule contour was then normalized by its perimeter P,
and the vertex positions were expressed as a function of the curvilinear coordinate
s € [0,1]. Every snapshot was also centered around its mass center. Finally, each of
the vertex coordinates x and y were interpolated on the curvilinear grid (100 nodes),
so that each vertex corresponds to the same relative position on the membrane, i.e.

35



each line of the snapshot matrix is approximately the physical tracking of a material
point.

POD. Following the method presented in Section 2.2.2; the vertex coordinates x and
y of each snapshot were successively stored in a single snapshot matrix on which SVD
was performed. We processed the three capsules separately. The RIC and approxi-
mations errors were used to determine the number of modes required to describe the
shapes of a capsule flowing in a bifurcated channel. The POD-approximated shapes
were also qualitatively compared to the original shapes.

Interpolation. A smoothing spline method was used to fit the time evolution of
the temporal coefficients resulting from POD. We predicted the capsule shapes at
intermediate times, when they are a priori unknown, by computing their rank-M
approximations with Equation (2.13). To do so, interpolated values of the temporal
coefficients were used. The perimeter and mass center position were also interpolated
with the same method. Since the actual shapes are available experimentally, we were
able to qualitatively study the efficiency of the method.
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Chapter 3

Characterizing the mechanical
properties of a deformable capsule
flowing in a microfluidic channel

3.1 Introduction

The behavior of deformable microcapsules flowing in narrow tubes strongly depends
on their membrane mechanical properties, additionally to the hydrodynamics of the
flow. Consequently, predicting the motion and deformation of capsules distributing in
a capillary network requires knowledge of their mechanical properties. There is thus
a need of being able to characterize the mechanical properties of deformable capsules
directly wn-situ: either to check that the mechanical properties fit the intended fab-
rication design (quality control), or simply to characterize capsules which are to be
used. Apart from the practical interest to determine the mechanical properties of
artificial microcapsules, it can also be of use to validate numerical simulation by con-
fronting experimental and numerical results (e.g. in the prediction of the deformation,
travel time, etc.).

Chu et al. (2011) developed a microfluidic technique to characterize the mechani-
cal properties of capsules flowing in a cylindrical glass capillary of similar dimension.
It is based on the measurement of characteristic lengths on the capsule deformed
profiles, that are representative of the deformation such as the total length and the
axial length. The goal is then to find in the numerical database which mechanical
properties would provide such deformation and characteristic deformed profile under
the prescribed flow conditions. The use of glass capillaries is, however, not conve-
nient. Since microfluidic experiments are classically done in microchannels that have
a square or rectangular cross-section, it is of interest to see whether the method of
Chu et al. (2011) can be adapted to square-section channels.

In this chapter, we focus on the mechanical characterization of cross-linked oval-
bumin microcapsules flowing in a straight microfluidic channel of similar size, with a
square cross-section. In the first section, we propose a validation study of the inverse
analysis method. The accuracy of the method is studied by processing numerical
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profiles, of which the flow parameters are known. The sensitivity of the method to
small variations in the channel geometry, which often occur experimentally, is also
studied. This study has been published in the Procedia IUTAM journal (Sévénié
et al., 2015), following a poster presentation at the Dynacaps2014 international con-
ference. Finally, we performed an experimental study to check the results obtained
with numerical data.

In Section 3.3, we present the results that we published in the Physics Review
E journal (Hu et al., 2013). They correspond to the mechanical characterization of
ovalbumin microcapsules with two different behaviors for the membrane. In this work,
the numerical model was developed by Xu-Qu Hu, and I personally performed the
experiments, developed the inverse-analysis program, and processed the experimental
data to obtain the characterization results.

In Section 3.4, we provide the mechanical characterization of two populations of
microcapsules used in the experimental study involving a bifurcated microchannel.
The characterization was performed at the entrance of the bifurcation, before the
capsule reached the bifurcation tip and its shape was affected.

3.2 Validation study

In this section, we provide the method and results we used to validate the inverse
analysis procedure. A numerical study of the effect of channel geometrical uncer-
tainties on the inverse analysis is performed to study to what extent the procedure
remains valid (Section 3.2.1). An experimental study is then conducted to confirm
the results (Section 3.2.2).

3.2.1 Numerical validation
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Abstract

An inverse analysis of the flow of capsules in a square section microfluidic channel has been proposed to evaluate the elastic mod-
ulus of the membrane of microcapsules. It is based on the comparison of the capsule deformed profiles measured experimentally
with the ones computed numerically in the same flow situation. Experimentally, the microchannel is never exactly square. The
objective of this paper is to evaluate the intrinsic error, which is made by analyzing the flow of a capsule in a slightly rectangular
channel by means of the numerical results obtained in a perfectly square channel. This is done by computing exactly the flow of a
capsule in slightly rectangular channels and comparing the results with those obtained in square channels. It is found that, within
a rectangular channel with an appropriately defined deviation from squareness of 5%, the capsule deformed profiles are close to
those in a square channel, and that the inverse analysis procedure can be used.
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1. Introduction

Microcapsules consist of liquid drops surrounded by a thin elastic membrane that separates the inner fluid from the
outside medium. In addition to being a simple model of red blood cells, such particles can be artificially produced for
diverse applications in pharmaceutics, cosmetics or the food industry. The mechanical properties of the membrane
play an essential role in the control of deformation and breakup. However, capsules are usually fragile and small with
diameters of order of a few micrometers, so that specific measurement techniques must be devised to evaluate the
membrane mechanical properties.

Recently, a new microfluidic method has been proposed to measure the mechanical properties of a population
of initially spherical artificial microcapsules. A dilute suspension of such microcapsules is flowed into a cylindrical
capillary tube with inner diameter of the same order as the capsule one. Under the combined effect of confinement and
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Fig. 1. Microphotograph of a channel cross-section with design specification 100 x 100 um? square section.

viscous stresses, the capsules deform. A high-speed camera mounted on a microscope is used to measure the velocity
and deformation of the initially spherical capsules. A numerical model of a flowing capsule has been designed' and
a database has been created which gives the capsule deformation as a function of the flow strength, the membrane
mechanical properties and the confinement ratio. An inverse analysis technique then allows one to find the membrane
elastic modulus from the capsule deformation under flow. This technique has been successfully applied to characterize
capsules with a polymerized ovalbumin membrane>.

With the growing amount of microfluidic applications, such as in-line fabrication of microcapsules-*-, it is con-
venient to be able to perform in-line characterization. The measurement technique has thus been extended to square-
section microfluidic channels. To analyze the data and proceed with the inverse analysis technique, a database was
created® using the model of the flow of a capsule in a square-section channel”.

The most common method used to make microfluidic channels is PDMS (polydimethylsiloxane) replica molding®.
It consists of pouring and curing PDMS onto a silicon wafer with channel network etched on a resin layer. The PDMS
is peeled off and the resulting inprint is bound to a glass plate to create a microfluidic channel, the geometry of which
depends on that of the mold. The depth 2/ of the channel is controlled by the thickness of the resin deposit, which is
achieved by spin coating. The width 2w is determined by the precision of the photolithography mask used to make
the resin mold. Altogether, the channel size specifications are often fulfilled within a few micrometers. For small
channels (e.g. a square channel with a specified 100 x 100 um? section) the fabrication errors can lead to significant
distortions of the section geometry as shown in Fig. 1. In the pioneering work of Hu et al.®, the channel section was
assumed to be a square with the same surface area as the actual section. The side of this square was then used as the
reference length scale to normalize the experimental data and search the square channel database.

The question which arises then pertains to the precision of the inverse analysis in a slightly rectangular channel,
knowing that the database corresponds to a perfectly square channel. In order to answer this question, we perform a
numerical study of the flow of a capsule in slightly rectangular channels and compare the results to the ones that are
obtained in a square channel with the same surface area. Finally, we perform an inverse analysis on the rectangular
channel results and show how the channel geometry affects the precision of the parameter values that are thus obtained.

345

2. Problem statement and numerical method
2.1. Problem description

An initially spherical capsule (radius a) flows along the z-axis of a microfluidic channel of rectangular cross-section
2h x 2w in the perpendicular xy-plane (Fig. 2). The deviation from squareness of the channel cross-section is defined
as
_w-—h

= .
w+h

&)

In this study we consider channels, which are either wider than deep (7 < w, ¢ > 0) or deeper than wide (h > w, 5 < 0)
with § = +5, +10 and +15%.

The interior and exterior of the capsule are incompressible Newtonian fluids with the same density p and viscosity
w. The thin membrane of the capsule is an impermeable hyperelastic isotropic material with surface shear modulus G
and area dilatation modulus K. As the membrane thickness is negligibly small compared to the capsule dimensions,
the membrane is treated as a hyperelastic surface devoid of bending stiffness. The in-plane deformation is then mea-
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Fig. 2. Prismatic channel with axis Oz. The cross-section is rectangular with dimensions 2/ X 2w.

sured by the principal extension ratios 4; and 1,. Owing to the combined effects of hydrodynamic forces, boundary
confinement and membrane deformability, the capsule can be highly deformed as shown in Fig. 3. Consequently the
choice of the membrane constitutive law is important. In this study, we consider the widely used neo-Hookean law,
which models the membrane as an infinitely thin sheet of a three-dimensional isotropic and incompressible material.
The principal Cauchy in-plane tensions (forces per unit arc length of deformed surface curves) are expressed as’

G 1 .
T = m [/1% TR ] (likewise for 7). )

The membrane dilatation modulus Kj is then given by K = 3G;. The flow Reynolds number is assumed to be very
small, so that the internal and external liquid motions satisfy the Stokes equations. Far from the capsule, the flow field
is undisturbed by the presence of the capsule. For each channel geometry, we implement the corresponding analytical
solution '* of the velocity profile with mean velocity V. Apart from the capsule membrane mechanical properties, the
other main parameters of the problem are the size ratio a/h between the radius of the initially spherical capsule and
the channel depth, the channel aspect ratio ¢ and the capillary number

Ca = uV/Gy, (3)

which measures the ratio between viscous and elastic forces.
2.2. Numerical model

The motion and deformation of a capsule flowing in a rectangular channel under Stokes conditions is solved by
means of the method developed by Hu et al.”. The numerical model has already been well documented and is just
briefly explained here. The problem is solved by coupling a boundary integral method to compute the fluid flow and
a finite element method to compute the membrane mechanics. The equations are solved in a reference frame moving
with the capsule center of mass, so that the capsule remains centered in the tube domain. The advantage of the
procedure is that only the boundaries of the flow domain are discretized. The capsule mesh is composed of 1280 P,
elements and 2562 nodes. The mesh of the external tube walls is generated using P; elements with Modulef (INRIA
Rocquencourt, France) and is refined in the central portion of the channel, where the capsule is located’. Three
different channel geometries are considered corresponding to 6 = 5% (3020 nodes and 5998 elements), 6 = 10 and
15% (3340 nodes and 6634 elements). The results are obtained with a non-dimensional time step At x V/h = 1 x 1074,

All the following results pertain to the equilibrium state. At steady-state, the membrane and the internal fluid
translate as a rigid body. This means that assuming the same value of viscosity for the internal and external liquids
does not limit the validity of the results, as the viscosity ratio only influences the time the capsule needs to reach a
steady state. For a given channel aspect ratio §, the model inputs are the capillary number Ca, the size ratio a/h and
the membrane law. The model outputs are the capsule centroid velocity v, and the steady deformed capsule shape.
In the experimental set-up, all we can observe is the projection of the deformed profile onto the xz-plane (Fig. 3a).
Correspondingly, we plot the deformed capsule profile in the plane y = 0, as shown in Fig. 3b, where the overall
capsule deformation is quantified by the maximum length L/h in the z-direction and the parachute depth L,/h. An
apparent capsule volume is defined as the volume of the cylinder with height 2/ and basis the surface area S of the xz
capsule profile. The apparent capsule radius is then a,,, = 3V2hS /(4n). The relation between the apparent and actual
radius of the capsule can be computed numerically and used to infer a from the measurement of ), °.
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(a) (b)
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Fig. 3. (a) Experimental capsule profile in a specified 50 x 50 um? channel. (b) Numerical deformed profile in the plane y = 0, Ly,=L-1L,Sis
the contour surface area.

2.3. Comparison between the rectangular and square channel results

The results obtained in the slightly rectangular channels are compared to the corresponding ones in a square channel
following the method proposed by Hu et al.®. We first define the side 2 of the equivalent square channel by

1+6
2¢ = V4wh = 2h =% ()
which corresponds to the side of a square with the same area as the rectangular section. We then compare capsules
with corresponding confinement ratios a/¢ in the square channel and a/h in the rectangular one. The two ratios are
related by

1-0
a/{’:a/h m (5)

3. Results
3.1. Effect of 6 on capsule profiles for a/€ = 1

We first investigate the effect of Ca and ¢ on the deformation of a capsule with confinement ratio a/¢ = 1. We focus
on the profiles in the y = 0 plane, which are the ones that can be observed experimentally. In Fig. 4, the dotted lines
correspond to a square channel and the full lines to the slightly rectangular channel with a given value of §. We first
consider a rectangular channel with ¢ > 0 that is therefore wider and shallower than the square one (Fig. 4a,b,c). Fora
slight distortion of the channel (6 = 0.05), the boundaries of the two channels are very close, and not surprisingly, the
deformed profiles of the capsules are almost superimposed (Fig. 4a). For more distorted channels (§ = 0.1 or 0.15),
the profiles in the equivalent square channel and in the rectangular one are quite distinct (Fig. 4b,c). The capsule is
less deformed in the rectangular channel than in the square one, because it is less constrained by the lateral walls. For
6 = 0.15, the parachute depth L,, which is an important criterion in the inverse analysis, is greatly underestimated
even for the fairly large value Ca = 0.08.

In Fig. 4d,e,f, we consider the complementary case, when the channels are narrower and deeper than the equivalent
square channel (6 < 0). For the slight distortion of the channel (6 = —0.05), the square and rectangular profiles are
again very close. For larger distortions (6 = —0.1 or —0.15), the capsule is more deformed in the rectangular than in
the square channel. For 6 = —0.15 and Ca = 0.02, the back of the capsule is undergoing the transition from a convex
to concave (parachute) shape; it experiences buckling because it is under compression.

The relative difference in profile geometry between the square and rectangular channels may be measured by

AL/Z = IL.s'quare - Lrectangle|/€ (6)

with a similar expression for AL, /{. These relative length differences are plotted as a function of ¢ for different values
of Ca in Fig. 5. We note that, for |5] < 5%, the differences in total length AL/ and in parachute depth AL,/{ remain
less than 0.04, which is the typical experimental tolerance. For larger deviations from squareness (|6| > 10%), the
differences in characteristic lengths increase sharply.
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Fig. 4. Deformed profiles of a capsule in the plane y = 0 for a square (dotted line) or slightly rectangular channel (full line) with a/¢ = 1. The
horizontal lines correspond to the channel walls. (a) 6 = 0.05, a/h = 1.05; (b) 6 = 0.1,a/h = 1.1; (¢) § = 0.15,a/h = 1.16; (d) § = —0.05,
alh =0.95;(e) 6 = -0.1,a/h = 0.9; (f) 6 = -0.15,a/h = 0.86.

3.2. Effect of confinement ratio for 6 = 5%

We now focus on 6 = 5% for which we study the effect of confinement ratios a/¢ varying from 0.95 to 1.1 (Fig.
6). For the smallest capsule (a/¢ = 0.95), the superposition of the two profiles is almost perfect and the section
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Fig. 5. Characteristic lengths differences as a function of ¢, for different Ca and a/¢ = 1. Open symbols: § > 0, filled symbols: ¢ < 0.
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Fig. 6. Effect of a/¢ on the deformed profile in the plane y = 0 for a capsule in a square (dotted line) or slightly rectangular channel (full line) with
¢ =0.05 and Ca = 0.05.

deviation from squareness has a negligible effect. The relative difference on the parachute depth is only 11%, which
is considered as negligible experimentally. As the confinement increases, the capsule is getting closer to the walls, so
that the profiles become more distinct. Still, the relative difference AL remains below 2%, while AL, is below 20%.

3.3. Inverse analysis results

We have previously shown that it is possible to infer the membrane elastic shear modulus of capsules flowing in
a square microchannel®. The principle of the inverse analysis is briefly outlined. A capsule profile is extracted from
an experimental image such as Fig. 3a. The two characteristic lengths L, L, = L — L, and the profile area S are
measured (Fig. 3b) and the apparent radius a,,, is computed. From the solution of the numerical model of a capsule
flowing in a square-section channel of side 2¢, a numerical database has been created’, which relates the values of
L/C, L,/, aqpp/t and v./V to Ca and a/C on an interpolated regular grid (1073 and 5 x 1073 intervals for Ca and
a/t, respectively). The algorithm then determines the ensemble of geometric and dynamic parameters {a/{, Ca} on
the database grid, for which the experimental and numerical values of {ag,/¢, L/{, L,/{} correspond to one another
within tolerances linked to the experimental uncertainties. For each value of Ca € {a/(, Ca}, we calculate the mean
fluid velocity V from the capsule velocity v. and the velocity ratio v./V of the database. We then calculate the shear
modulus that corresponds to each Ca € {a/¢,Ca} by means of the relation Gy = uV/Ca. The mean value of the
possible shear modulus ensemble is finally computed.

The present objective is not to characterize the surface shear modulus G, of a capsule population, but to evaluate
the intrinsic error that is made by analyzing the flow of a capsule in a slightly rectangular channel by means of the
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numerical results obtained in a perfectly square channel. We thus apply the inverse analysis to the numerical profiles
calculated in a slightly rectangular channel as if they were experimental results. We consider the same tolerances that
have been used to study experimental profiles: £0.04 on L/ and L, /¢, £0.02 for a,,,/¢. If L,/t < 0.04, we consider
that L, € [0,0.04]. We denote W and Ca the mean ensemble values of all possible inverse analysis fits {a/(, Ca}. We
then compare the couple of parameters {a/{, Ca} provided by the inverse analysis technique in the case of a perfectly
square channel to the cases of slightly rectangular ones.

The results are gathered in Table 1 for a/¢ = 1 and different values of 6 and Ca. The ¢ = O results, which correspond
to the application of the inverse analysis to the exactly square channel results, give an estimate of the precision of the
method. We find that, for 6 = 0, the value of Ca differs from the actual value by 15% for Ca = 0.02 and is as low as
1% for Ca = 0.08. This is due to the fact that the inverse analysis method is based on the relation between the capsule
deformation (measured by L/¢ and L, /{) and the flow strength (measured by Ca). At low Ca, the capsule is not much
deformed so that the tolerance on the deformed lengths is relatively large, particularly so for the parachute depth L,,.

Table 1. Results of the inverse analysis for various ¢ and Ca values for a confinement ratio a/¢ = 1.

5 (%) Ca alt Ca (Ca - Ca)/Ca (%)
0 0.02 1.00 0.023 15
0.05 1.00 0.051 2
0.08 1.00 0.081 1
5 0.02 0.99 0.020 0
0.05 1.00 0.042 -16
0.08 1.00 0.073 9
5 0.02 1.00 0.024 20
0.05 1.00 0.057 14
0.08 0.99 0.087 9
10 0.02 0.98 0.016 20
0.05 1.01 0.032 36
0.08 1.00 0.066 -18
-10 0.02 1.00 0.025 25
0.05 0.99 0.064 28
0.08 0.98 0.091 14
15 0.02 1.00 0.007 65
0.05 1.01 0.025 -50
0.08 1.00 0.060 25
-15 0.02 1.01 0.006 70
0.05 1.00 0.067 34
0.08 0.98 0.095 19

Table 2. Results of the inverse analysis for Ca = 0.05 and different size ratios.

alt 5 (%) alt Ca (Ca - Ca)/Ca (%)
0.95 0 0.95 0.049 2
5 0.95 0.041 -18
5 0.94 0.058 16
1.00 0 1.00 0.051 2
5 1.00 0.042 -16
5 1.00 0.057 14
1.10 0 1.10 0.050 0
5 1.10 0.046 8

-5 1.09 0.053 6
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From Table 1, one first notes that the size ratio a/¢ is well calculated with the inverse analysis algorithm whatever
the value of ¢ or of Ca. This means that the estimation of the confinement ratio based on the apparent capsule radius
aqpp 1s quite insensitive to 6. We also note that the capsule deformation increases as Ca increases. For § > 0, the
channel is slightly wider than the square one: the capsule has more space to expand and is thus less deformed (Fig.
4a,b,c). This leads to a value of Ca that is underestimated as compared to the true value Ca. For § < 0, the channel is
narrower than the square one, so that the capsule is more constrained and has to deform more. It then follows that Ca
is systematically overestimated compared to the true value Ca. For § = 5%, the estimated capillary number Ca falls
within 20% of the true value Ca at most. This is within what is considered an acceptable margin in actual experiments,
where there are slight variations between the capsules of a population?. For § > 10%, the deviation between Ca and
Ca is too large to be acceptable except maybe for high flow strengths (Ca > 0.08), which are not always easy to attain.

We finally consider the effect of the confinement ratio for the small channel distortion (6 = 5%) and a mid-range
value of flow strength Ca = 0.05 (Table 2). For the square channel, the error on the estimation 5(0) decreases with
the confinement ratio a/¢, since a larger confinement leads to a larger capsule deformation. We find excellent results
for a/¢ = 1.1 with little error. The square tube results can thus be used to analyze the data obtained on channels with
a small distortion from squareness, provided we can satisfy ourselves with a 20% precision for the method.

4. Discussion and conclusion

The present study was focused on the flow of capsules in slightly rectangular channels and on the possibility to
deduce the capsule elastic resistance from its deformed shape. The objective was to find the effect that the channel
distortion from squareness may have on the precision of an inverse analysis, if one analyzes the results using a
numerical database computed in a perfectly square channel. The goal was also to assess the validity of the method
used by Hu ez al.®, i.e. to approximate slightly rectangular channels with square channels and neglect the experimental
uncertainty due to mould fabrication.

By comparing profiles of a capsule flowing into a square channel and a rectangular channel with 6 = 5%, we show
that this approximation can be made with a fair accuracy. The profile differences are of the order of the precision in
the detection of the membrane contour on experimental images. The resulting uncertainty on the characteristic lengths
is small, and within the tolerances admitted by the inverse analysis procedure. The latter then provides reliable results
that are very close to results that would be obtained in a square channel. This means that we can validate the study of
Hu et al., in which § ~ 5%.

Larger ¢ values were also studied to determine when the square approximation can no longer be made with good
precision. For § = 10%, the profile difference is larger than the contour detection precision. It is only for high
flow strengths (Ca > 0.08) that the inverse analysis becomes about 18% accurate. Another approach to render the
measurement more accurate is to use a channel that is smaller than the capsule size to ensure a confinement ratio larger
than at least 1.1. But, for 6 > 15%, the deviated channel can no longer be treated as a square channel to perform the
inverse analysis method whatever the values of capillary number and size ratio. One either needs to resort to using the
numerical database corresponding to the rectangular channel at stake, or, preferably, make more accurate channels.

In conclusion, the squareness of the channel appears as a limit to the microfluidic method to determine the mechan-
ical property of microcapsules, but it is a satisfying result that the method remains accurate in the case of rectangular
channels that have up to a 5% deviation from squareness. We have shown that the capsule resistance can still be
inferred by analyzing the capsule deformed shape by means of the numerical results obtained in a perfectly square
channel.
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3.2.2 Comparison with experimental results

The inverse analysis results are summarized in Figure 3.1. The surface elastic shear
modulus Gy is plotted as a function of the capsule deformation A, for every section
of the channel. When the channel width increases (the deviation ¢ increases from
negative to positive), one can see a tendency for Gy to decrease. It means that the
inverse analysis is overestimating G5 when ¢ is negative, and underestimating it when
0 is positive. This effect increases with the absolute value of §.

section 1
section 2
section 3
section 41 -
section 5
section 6

¢ X m + p o

Figure 3.1: Distribution of elastic shear moduli as a function of the capsule deforma-
tion, for each section. Dashed lines represent the average value in each section of the
tube.

To observe this effect on a single capsule, we monitor the shape of a capsule
through all the sections, and perform inverse analysis on this very capsule in each
section. The evolving shape of one capsule is represented in Figure 3.2. One can
see that the deformation decreases when the width increases, i.e. the confinement
decreases. The corresponding inverse analysis results are plotted as a function of the
geometrical deviation ¢ in Figure 3.3.

A slight decrease tendency can be observed from 6 = —10% to 6 = +3%. However,
given the error bars representing the maximum and minimum shear moduli found
by the analysis, most results lie within the uncertainty of the method. If we limit
our results to the range § = —5% to § = +7%, we find a small dispersion among
shear modulus values. This result is consistent with our numerical study where we
concluded that the inverse analysis was providing correct results for an absolute value
of § of 5%.

Numerically, we also concluded that when 6 < 0, i.e. when the width of the
channel is smaller than its height, the capillary number found by inverse analysis was
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Figure 3.2: Evolution of the shape of a capsule through the 7 sections of the channel,
for a constant flow rate.

35

10— | | | |
-10 -5 0 5 10

J

Figure 3.3: Successive values of the elastic shear modulus of one particular capsule
computed by inverse analysis when flowing in different tube sections. The vertical
error bars correspond to the range of G found by the IA procedure.

overestimated. The opposite effect was found for 6 > 0. Extrapolating this effect to
the shear modulus value, it is expected that the shear modulus is underestimated when
0 < 0, and overestimated when 0 > 0. Physically, it means that the shape assumed
by the capsule flowing at a given capillary number in a smaller-width channel (6 < 0)
is more deformed than it should be if the channel cross-section were squared: it is
as if the capsule membrane is less resistant to shear forces, i.e. the shear modulus
G is underestimated. The numerical results are thus consistent with the physical
reasoning. However, the experimental results we found present the opposite trend:
G seems to be overestimated when 6 < 0 (cf Figures 3.1 and 3.3). We think that
the effect observed numerically is counterbalanced experimentally by another effect
that we have not identified yet with certainty.

One possible explanation is that the size ratio varies in the experimental study,
while it is constant in the numerical study. Moreover, in the experiment, the height
of the channel is constant while the width increases by increments. It implies that
each channel portion has a larger cross-section area than the previous one, and thus a
smaller average fluid velocity. Consequently, for a given capsule, the capillary number
decreases as the capsule flows through the different sections. It would be interesting
to perform this study on more experimental data, especially by trying to obtain data
that fit the numerical study. It is likely that the experimental study would then
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be consistent with the numerical study. Nevertheless, the main conclusion of the
numerical study still stands here: a small geometrical deviation does not greatly
impact the inverse analysis results (|0] < 5%).

3.3 Characterization of ovalbumin microcapsules
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Characterizing the membrane properties of capsules flowing in a square-section microfluidic
channel: Effects of the membrane constitutive law
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A microfluidic method is presented to measure the elastic membrane properties of a population of microcapsules
with diameter of order 60 um. The technique consists of flowing a suspension of capsules enclosed by
a polymerized ovalbumin membrane through a square-section microfluidic channel with cross dimension
comparable with the capsule mean diameter. The deformed profile and the velocity of a given capsule are
recorded. A full mechanical model of the motion and deformation of an initially spherical capsule flowing inside
a square-section channel is designed for different flow strengths, confinement ratios, and membrane constitutive
laws. The experimental deformed profiles are analyzed with the numerical model. This allows us to find the ratio
between the viscous and elastic forces and thus the shear elastic modulus of the membrane. We show that the
ovalbumin membrane tends to have a strain-softening behavior under the conditions studied here.

DOI: 10.1103/PhysRevE.87.063008

I. INTRODUCTION

Capsules, which are liquid droplets enclosed by a thin
elastic membrane, are widely found in nature (red blood cells,
eggs) and in cosmetic, food, or pharmaceutical industry [1].
The deformable membrane that separates the internal and
external liquids prevents the diffusion and degradation of the
internal substance and controls its release. The motion and
deformation of flowing capsules depend on the mechanical
properties of the membrane. The characterization of these
properties is thus essential for the design of artificial capsules,
but it is a challenging task when the capsules have a small
size of order a few tens of micrometers. Artificial capsules are
usually obtained through interfacial polymerization of a liquid
droplet and are thus spherical. In the following, we consider
only initially spherical artificial capsules with radius a.

A method that is widely used for relatively large millimeter-
size capsules is to compress them between two rigid parallel
plates and measure simultaneously the plate separation and
compression force. Using an appropriate mechanical model of
the setup, the membrane constitutive law can be deduced [2].
Subjecting capsules to simple shear flow [3] or to centrifugal
flow fields [4] are two other possible ways to measure the
membrane properties. However, it is difficult to reach large
mechanical stresses in such devices.

For micrometer-size capsules, poking the membrane with
an atomic force microscope [5] or sucking part of it in
a micropipette [6,7] are classical techniques to measure
the membrane mechanical properties. Both require skillful
micromanipulations and are not suitable for screening large
populations of microcapsules quickly. Recently a new method
has been proposed to measure the membrane properties
of a capsule population. It consists of flowing a capsule
suspension into a cylindrical glass capillary tube with radius
comparable to that of the capsules [8,9]. Hydrodynamic forces
and boundary confinement lead to a large deformation of the
capsules, which can take either a parachute or a slug shape.

*a.salsac@utc.fr
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The membrane mechanical properties are then determined by
analyzing the experimental results with a numerical model
of the setup. This method, applied to 62 um mean diameter
capsules with a cross-linked ovalbumin membrane, allows
one to correlate the membrane mechanical properties to the
cross-linking degree and to the physicochemical conditions of
the capsule fabrication [9]. It is, however, not easy to connect
the syringe pump to the 50 um diameter capillary tube, where
the measurement is performed. A double tube was designed,
but it leads to fairly large pressure drops.

The rapidly growing microfluidic technologies allow one
to design simpler devices, in which the capillary tubes are
easily connected to the feeding system. Owing to fabrication
constraints, the tubes usually have a square or rectangular
cross section. We thus investigate the feasibility of using a
microfluidic channel with a square cross section to measure the
membrane properties of a population of capsules suspended
in a viscous fluid. The channel has a side length 2¢ of the
same order of magnitude as the capsule mean diameter 2a. We
will see that the initially spherical capsule can be subjected
to significant deformations depending on the flow velocity
and size ratio a/¢ between the capsule and the channel. This
means that it will be possible to discriminate which type of
constitutive law the membrane follows.

The analysis of the experiments requires a specific numeri-
cal model of the flow of a capsule in a square pore. Kuriakose
and Dimitrakopoulos [10] recently designed such a model,
based on the use of spectral elements, for capsules composed
of a strain-hardening membrane described by a Skalak et al.
law [11]. However, the capsules had to be pre-inflated and
thus prestressed in order to prevent buckling instabilities.
If the prestress has a negligible influence when the capsule
is highly deformed, it changes the results significantly at
small and moderate deformation [12]. We use instead the
three-dimensional fluid-structure interaction scheme initially
proposed for capsules freely suspended in unbounded flows
[13] and recently adapted for capsules flowing in circular
and square-section channels [14]. This numerical technique
consists of coupling the boundary integral method for the

©2013 American Physical Society
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fluid flows with a finite element method for the membrane
deformation. The advantages of this model are twofold: the
capsules do not need to be prestressed, and large confinement
ratios can be considered. In Hu et al. [14], we have studied
in detail the case of capsules with a strain-softening neo-
Hookean membrane. We now extend the results to the case
of capsules with a strain-hardening law in order to analyze the
experimental results with either law.

We first present the experimental method used to measure
the deformation of artificial capsules flowing in a square-
section capillary tube. We then explain briefly the mechanical
model that represents the experiments, and we give global
results on the capsule deformation and kinematics as functions
of the suspending flow strength and confinement. Finally we
show how the method can be used to estimate the shear elastic
modulus of the membrane of a capsule population and discuss
the limits of the method.

II. MATERIALS AND METHODS

A. Capsule fabrication

Microcapsules are prepared using an interfacial cross-
linking method [15]. Briefly, a 10% (w/v) ovalbumin (Sigma)
solution is prepared using a phosphate buffer with pH = 5.
The solution is emulsified in cyclohexane (SDF) containing
2% (w/v) sorbitan trioleate (Sigma) at a stirring speed of
1550 rpm. A 2.5% (w/v) solution of terephthaloyl chloride
(Acros) in chloroform:cyclohexane (1:4 v/v) is then added
to the emulsion, and the cross-linking reaction is allowed
to develop for 5 min. The reaction is stopped by diluting
the reaction medium with cyclohexane. The microcapsules
are separated from the organic phase by centrifugation and
washed successively with cyclohexane, with water containing
2% (w/v) polysorbate (Sigma) and finally washed three times
with pure water in which the samples are kept. The resulting
capsules have a mean diameter of 62 + 14 um.

B. Microfluidic system fabrication

Straight 5-mm-long square-section channels are fabricated
by molding liquid polydimethylsiloxane onto a silicon master
and baking and peeling it off [16,17]. The channels are then
closed bonding them onto a glass lamella by air plasma
(Plasma cleaner, Harrick). The width of the channel is
estimated to be W = 57.5 £ 1.5 um using a line graduated
rule to estimate the pixel to um conversion factor. The depth of
the channel, measured on the silicon mold, is h = 52 £ 1 um.
As the channel cross section is not perfectly square, we define
the length 2¢ as the side of the ideal square cross section
channel having the same cross-area:

VWh

2

= =27.44+0.5um. 1)

C. Capsule suspension preparation

A volume of 40 ul of ovalbumin microcapsule sediment is
suspended in 1.8 ml of glycerin (100%, VWR BDH Prolabo),
which leads to a 2.2% (w/v) capsule suspension. After mixing
by successive pumping in and out of a syringe, the suspension
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is left to rest for 10 min at a room temperature of 23 °C to
allow the inner water to be replaced by the outer glycerin
by osmotic exchange. This process does not seem to damage
the capsules, which recover a spherical shape within minutes.
As a consequence, we consider that there is no osmotic
difference between the internal and external liquids and that
the membrane is thus not prestressed. The viscosity w of the
suspending fluid strongly depends on temperature and water
content [18]. Former measurements of the suspension [9]
provided a viscosity of © = 0.7 Pa s at 23 °C. We assume this
value to be the viscosity of the fluid carrier and thus neglect
the influence of the small amount of capsules present in the
suspension.

D. Experimental setup

We fill a 1 ml glass syringe (Fortuna Optima) with the
suspension and take care that no air bubble remains in either the
syringe or the silicon connection tube to minimize throughput
variations. The suspension is injected into the microfluidic
system by means of a syringe pump (KDS100, KD Scientific)
at different flow rates. The deformation and velocity of a
capsule is observed with a x40 magnification transmission
microscope (Leica DM IL LED), which is connected to a
high-resolution high-speed camera (FASTCAM SA3 Photron)
through a x 1 C-mount (Leica). The microscope is focused on
the channel center plane. The capsule profile is observed along
the channel axis and width W. The images are recorded at 1000
frames per second, with an exposure time of 0.2 ms and an
observation field 1024 x 256 pixels. The calibration scale is
0.425 pum/pixel. The observation field is far enough from the
entrance (about 3 mm, i.e., 100¢) to consider that the capsule
has reached a steady state. From two successive images, we
measure the capsule velocity v,, which varies between 1 and
10 mm/s, depending on the size of the capsule and the flow
rate.

E. Capsule profile extraction and experimental measurements

Figure 1(a) shows an experimental image of a capsule
flowing in a 2¢ square channel. Because automatic image
extraction is difficult with this low contrast level, we use
ImageJ to detect manually the capsule contour. The channel
and membrane contours are determined at the center of the
dark line. We then calculate the surface S of the profile, its total
length L, and its axial length L, as shown in Fig. 1(b). The
parachute depth is given by L, = L — L,. The experimental
error on the lengths 2¢, L, L, is of order 1 um. The wall
corrugations, which appear in Fig. 1(a), are also of order
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FIG. 1. Capsule profile extraction from an experimental image:
(a) initial image; (b) contour extracted with ImageJ; (c) approximate
capsule volume based on the contour area and channel depth.
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1 um. They lead to small oscillations of the capsule profile,
which are of the same order as the measurement error.

The initial capsule radius a cannot be inferred directly from
the experimental images, which are only projections of the
deformed profile. We thus estimate an approximate capsule
volume as the volume of a cylinder with section S and height
2¢ [Fig. 1(c)]. This allows us to calculate an approximate
capsule radius a,p, given by

3es\'?
%W:(EJ) . @)

The relationship between a,p, and the exact radius a is given
by the numerical model of the capsule flow problem.

III. MODEL OF THE FLOW OF A CAPSULE IN A PORE

In order to analyze the experiments, a mechanical model of
the set-up is needed. The flow of a capsule in circular [12,19] or
square [10,14] cross-sectional channels has been studied. We
briefly outline the numerical model and provide new results
for the flow of capsules in square-section channels for a wide
range of size ratios and flow strengths, for strain-hardening or
strain-softening capsule membranes. Details on the problem
equations and their solution by means of the coupled boundary
integral and finite element methods can be found in Hu et al.
[14].

A. Problem statement

An initially spherical capsule (radius a) flows along the
z axis of a microfluidic channel with a square cross section
(side 2¢) in the perpendicular xy plane. The interior and
exterior of the capsule are incompressible Newtonian fluids
with the same density p and viscosity ©. The thin membrane of
the capsule is an impermeable hyperelastic isotropic material
with surface shear modulus G, and area dilatation modulus
K. Apart from the capsule membrane mechanical properties,
the two other main parameters of the problem are the size ratio
a /¢ between the capsule initial radius and the channel cross
dimension, and the capillary number

Ca=uV/Gy, 3)

which measures the ratio between viscous and elastic forces,
where V is the mean external undisturbed flow velocity along
the z axis of the channel.

We denote v, ¢®, and p® the velocity, stress, and
pressure fields in the suspending (8 = 1) and internal (8 = 2)
liquids. The flow Reynolds number is assumed to be very
small, so that the internal and external liquid motions satisfy
the Stokes equations:

Vp# =puvi®, v.o® =0, g=12. )
They are solved in a domain bounded by the cross sections
S at the tube entrance and S, at the exit, both located far
from the capsule center of mass (Fig. 2). The other domain
boundaries are the channel wall W and the capsule surface C.
The unit normal vector n to all the boundaries points towards
the suspending liquid. The problem boundary conditions are:
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FIG. 2. Prismatic channel with axis Oz. The cross section is
square with side 2¢.

(1) No flow disturbance on S} and S, as they are far from

the capsule:
vP(x,r) > vP°x), xeSUS,, 3)

where v*° is the flow velocity in a square channel in the absence

of capsule.
(2) Uniform pressure on S and S,:
PP =0 xes, ©6)
pV(x,t) = AP(t)+ AP® x €S, (7

where A P*° is the undisturbed pressure drop between S; and
S, in the absence of capsule and A P is the additional pressure
drop due to the capsule.

(3) No slip on the channel wall W:

vWx,n=0, xeW. 8)

(4) No slip on the capsule-deformed surface C:
a
vx, 1) = vP(x,1) = XX, xeC, ©)

where X denotes the initial position of a membrane material
point located at position x at time ¢.

(5) The load per unit area ¢ on the membrane is due to the
viscous traction jump:

(a(l)—a(z))-n=q, x eC. (10)

B. Membrane laws

As the membrane thickness is negligibly small compared
to the capsule dimensions, the membrane can be treated as a
hyperelastic surface devoid of bending stiffness. The in-plane
deformation is then measured by the principal extension ratios
A1 and A,. Owing to the combined effects of hydrodynamic
forces, boundary confinement, and membrane deformability,
the capsule can be highly deformed as shown in Fig. 1.
Consequently the choice of the membrane constitutive law
is important. We consider two simple laws with constant
material coefficients. One such law (NH) is the widely used
neo-Hookean law, which models the membrane as an infinitely
thin sheet of a three-dimensional isotropic and incompressible
material. The principal Cauchy in-plane tensions (forces per
unit arc length of deformed surface curves) can be expressed
as [20]

Gy 1
T |:)\2

T T ke
The membrane dilatation modulus Kj is then given by K; =
3G;.

i| (likewise for 17). (11)
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Another law was originally proposed by Skalak et al. [11]
to describe the membrane deformations of red blood cells. The
principal tensions are

Gy
o= S [0 - 1) + OO (353 - 1)
(likewise for 17), (12)

where the dimensionless parameter C mainly measures the
resistance to area dilatation. The membrane dilatation modulus
is given by K; = (1 + 2C)G,. This law has strain-hardening
properties that increase with C for C > 0 [20]. When C =
1, the Skalak et al. law (SK) and the NH law lead to the
same small deformation behavior with the same values of
G, and K. Contrary to the SK law, the NH law is strain-
softening under large deformation [20]. We thus study the
effect of the membrane strain-hardening or -softening property
on the capsule deformation by considering the flow of capsules
enclosed by either an NH membrane or an SK membrane.

To close the problem, we must relate the load on the
membrane given by Eq. (10) to the elastic Cauchy tension
tensor T. In absence of inertia, the membrane equilibrium
leads to

Vi-t+q=0. (13)

C. Numerical procedure

The problem is solved coupling a boundary integral method
to solve for the fluid flow and a finite element method to solve
for the membrane mechanics [13,14]. The advantage of the
procedure is that only the boundaries of the flow domain S|,
S>, W, C are discretized.

The capsule mesh is generated by first inscribing an
icosahedron (regular polyhedron with 20 triangular faces) in
the sphere and subdividing the elements sequentially until the
required number of elements is reached [13,14]. The capsule
mesh is composed of 1280 P, elements and 2562 nodes. The
mesh of the external boundaries (S, and W) is generated using
P, elements with Modulef (INRIA Rocquencourt, France)
[14] and is refined in the central portion of the channel,
where the capsule is located. The boundary mesh has 1905
nodes and 3768 elements. All the results are obtained with a
nondimensional time step AtV /¢ =5 x 1073,

The equations are solved in a reference frame moving
with the capsule center of mass. Thus for each time step,
we compute the velocity v, of the capsule center of mass and
move back the whole capsule by v,At /¢, so that the capsule
remains centered in the tube domain.

The model inputs are the capillary number Ca, the size ratio
a /¢ and the membrane law. The model outputs are the capsule
centroid velocity v, and the steady deformed capsule shape.
From the latter, it is possible to compute the evolution of the
total length L, of the parachute depth L, and of the apparent
capsule radius a,,, with size ratio a/¢ and Ca. The model also
yields the elastic tension distribution in the membrane. If a
failure criterion is known for the membrane, it is then possible
to infer whether there is a risk of breakup.

Since the bending modulus of the membrane has been
neglected, the capsule wall buckles locally in the regions
where the elastic tensions are compressive [14]. In order
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to study the postbuckling behavior of the capsule, bending
moments and transverse shear forces should be added to
Eq. (13) and a constitutive equation should be postulated to
relate bending moments and local deformations. It follows that
the bending behavior of a capsule is a complicated problem
of shell mechanics that is not completely resolved yet. The
simplified membrane model that we use here is appropriate to
model capsules with a very low bending resistance. It detects
zones where tensions are compressive and where the capsule
wall may buckle. The use of triangular finite elements allows
for some profile oscillations in compression areas without
creating any numerical instability. Such numerical “folds”
have a wavelength that depends on the grid point spacing.
Hence they do not model the physical postbuckling behavior
of the capsule [14].

D. Effect of membrane law on capsule deformation

We consider the flow of capsules with an NH or an SK
membrane in a microfluidic pore for different size ratios a /¢
at various flow strengths Ca. It is assumed that the steady-state
configuration is reached, when the area of the capsule varies
by less than 5 x 107% (4wa?) over a nondimensional time
Vit/¢ = 1. All the following results pertain to this equilibrium
state. At steady state, the membrane and thus the internal fluid
are motionless. This means that assuming the same value of
viscosity for the internal and external liquids does not limit
the validity of the results; the viscosity ratio influences only
the time the capsule needs to reach a steady state (this time
increases as the internal viscosity increases). Furthermore, as
the pressure inside the capsule is uniform, the curvature at the
capsule upstream tip must be larger than at the rear to account
for the viscous pressure drop in the lubrication film around
the capsule. This explains why parachute or slug shapes are
obtained.

We first show the deformed profiles of a large capsule
(a/¢ = 1.1) in Fig. 3(a) for increasing flow strengths Ca =
0.01, 0.05, 0.07. The axial profile in the zy plane is what is
observed experimentally. At low flow strength (Ca=0.01), the
profiles of the NH and SK capsules are almost superimposed,
since the two membrane laws are equivalent at small deforma-
tions. For Ca = 0.05, a parachute shape is found for the NH
capsule, while the SK capsule still has a slug shape. This indi-
cates that the flow strength level Ca,, for which the parachute
shape appears, depends on the membrane constitutive law. The
cross-profiles in the xy plane show that the capsule shape is not
axisymmetric as the membrane tends to fill the corners of the
channel.

Figure 3(b) shows the capsule profile at a high flow strength
Ca = 0.1 for various size ratios. The parachute shape appears
for all the capsules. The NH capsule is more deformed than
the SK one, even though the difference is quite small for
small capsules (a/¢ < 0.9). For a/¢ = 1.10, we can get a
steady-state solution for the SK membrane only. Indeed, a
strain-softening NH capsule undergoes continuous elongation,
when a maximum flow strength Cap,x is exceeded. This
phenomenon was already observed in a cylindrical tube where
the situation is axisymmetric [9]. It is due to the fact that a
strain-softening membrane has a deformation, which increases
faster than linearly with the imposed load [1]. The values of
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FIG. 3. Comparison of steady profiles (solid line: SK law, dashed line: NH law): (a) effect of Ca for constant a/¢ = 1.1; (b) effect of a/¢

for constant Ca =0.1.

Cangx for a square-section tube are shown in Fig. 4, where
they are compared with the values obtained for a cylindrical
tube with radius £. We note that Cap,y is slightly larger for a
square than for a circular pore because, for the same flow rate,
the viscous shear on the capsule is less in a square pore than in
a circular one due to the presence of corners. This continuous
elongation phenomenon does not occur with an SK membrane,
as it is strain-hardening [1].

The overall capsule deformation is quantified by the
maximum length L /¢ and the parachute depth L, /¢, as shown
in Fig. 5. The parachute forms at the capsule rear, when the
capillary number exceeds the critical value Ca.. The value of
Ca, is less for an NH capsule than for an SK one. Below Ca,,
the capsule elongation is small and there is little influence
of the membrane law. When Ca > Ca,, both L/¢ and L,/¢
increase much faster with Ca for an NH capsule than for an
SK one. This is due again to the strain-softening property of
the NH membrane, which allows larger deformation for the
same stress level than a strain-hardening SK membrane. The
overall effect of the size ratio is to increase the deformation
for a given flow strength. Finally, we note that the capsule
velocity decreases, when the confinement increases or when
the deformation decreases.

0.2 — ‘
circular o
square e
0.16
o] (]
.
£ 012}
:: o e
L]
0.08 o e
.
(o]
L d
0.04

07 08 09 1 1.1 1.2
a/t

FIG. 4. Maximum values of Ca, for which a steady profile is
obtained for a capsule enclosed by an NH membrane. The comparison
between a square or circular pore with radius £ shows the effect of
the corners.

E. Size, deformation, and velocity charts for a capsule with NH
or SK law

The results of the numerical model are gathered in charts,
where the main output parameters, i.e., total length L/¢,
parachute depth L , /£, approximate radius a,pp /£, and centroid
velocity v,/V, are plotted as functions of Ca and a/¢ for
capsules with an NH membrane (Fig. 6) or with an SK
membrane with C = 1 (Fig. 7). For the NH capsules, the range
of Ca is limited by the continuous elongation phenomenon.
For the SK capsules, the range of Ca is a priori unlimited.
However, we give results for Ca up to 0.5, because the variation
of the different geometrical quantities is almost linear with Ca
when Ca > 0.2, while the velocity is almost constant. For very
large capsules (a/¢ > 1.2) and high flow strength (Ca > 0.5)
the deformation at the rear and the concomitant curvature of the
tip become too large to be modeled correctly by a membrane
law where bending rigidity is neglected. This is why we do not
give results for Ca > 0.3 when a/¢ = 1.2.

Note that a,p,/¢ does not vary much with Ca, except for
very low values of Ca. This point will be important for the
determination of the actual size ratio of a capsule from the
measurement of a,p,/¢. The relative difference between aqpp
and a is of order 17% for small capsules and decreases to less
than 10% for the largest capsules. Finally, we have refrained
from giving results for small capsules witha /¢ < 0.85 because
they require high values of Ca to be significantly deformed.
Experimentally, such high values of Ca imply high values of
the flow velocity V, for which it is difficult to obtain capsules
images with good enough contrast and sharpness.

F. Inverse analysis of the experimental results

We have developed a new MatLab program, inspired from
the algorithm of Chu et al. [9], to automatically perform the
inverse analysis of capsule profiles in square channels. The
numerical data shown in Figs. 6 and 7 are linearly interpolated
on a regular grid. A membrane law is first assumed and the
algorithm then determines the size ratio a/£ and the capillary
number Ca, for which the experimental and numerical values
of L/¢ and L, /¢ fit best.

Tolerances have been defined to account for the uncer-
tainty on experimental measurements. Depending on the flow
conditions, the membrane can appear more or less fuzzy.
Considering an error of 2% on £ and L, we assume a tolerance
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FIG. 5. Effect of Ca, a/¢ and membrane law on the capsule total length L /¢, parachute depth L ,/¢, and center of mass velocity v,/ V.

of 4% on L /€. The parachute depth is more difficult to measure
with precision. For L, /¢ < 0.05 we consider that there is no
parachute and that we are close to the critical value Ca,.
For 0.05 < L,/¢ < 0.1, we take a tolerance of 50%. For
0.1 < L,/€ < 0.2, we take a tolerance of 25% and for higher
values the tolerance is 15%.

The size ratio is first calculated from a,,p/¢, Ca and the
corresponding database. For the first iteration, Ca is initialized
with the mean value of the total range (which depends
on the membrane constitutive law). The size ratio is then
used to calculate two ranges of possible capillary numbers

(a) 85

L/t
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from the experimental values of L/¢ and L,/¢ with their
tolerances. If these two ranges intersect, we calculate and use
the intersection mean value to process the next iteration of
the algorithm until the mean value of Ca remains constant
within 10~ over two successive iterations. For each value of
Ca in the intersection interval, we calculate the mean fluid
velocity V from the capsule velocity v, and the velocity ratio
v,/ V of the database. Finally, we calculate the shear moduli
that correspond to each Ca in the intersection interval by
means of Eq. (3). This procedure is executed for 5 values
of aapp/l (Qapp/l, Gapp/l £ 1%, and agpp /€ £ 2%) to take

(b) os
.'- *
04 r o
02 r
o
/
s 7
0 2 g . . 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12
Ca
(d) 14 '
o o o ¢ *
e X
B 3
-
e
m
a/l =0.85- e
a/l =0.90-x-
a/l =0.95-«-
a/l =1.00 a
a/l =1.05 e
a/l =1.10--m--
a/l =1.20 =

0 002 004 0.06 008 0.1 0.12
Ca

FIG. 6. Plots of the capsule total length L /¢, parachute depth L, /¢, approximate radius a.p,/¢, and velocity of mass center v,/ V obtained

with the NH law.
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FIG. 7. Plots of the capsule total length L /¢, parachute depth L, /¢, approximate radius ap,/¢, and velocity of mass center v,/ V obtained

with the SK law (C = 1).

into account a relative uncertainty of about 2%. Then, we
calculate the mean value of the shear modulus and the standard
deviation.

IV. RESULTS AND DISCUSSION

A. Capsule deformation in a square-section channel

Typical profiles of capsules mildly to highly deformed in a
square-section channel are shown in Fig. 8. Capsules (a) and
(c) have almost the same apparent size, which corresponds
to an actual size ratio of order a/¢ = 0.9 (Fig. 6 or 7).
However capsule (c) has a higher velocity than capsule (a).
As a consequence capsule (c¢) is more deformed than capsule
(a) and has a deeper parachute. The same phenomenon is
observed for capsules (e) and (g), which have the same
apparent size corresponding to an actual size ratio of order
a/f =1.05 ~ 1.1. Being the fastest one, capsule (g) is the
most deformed with the deepest parachute.

B. Determination of membrane properties

As an example, we first apply the inverse analysis algorithm
with either the NH or the SK law, to a typical capsule which
is smaller than the pore [profile (d) of Fig. 8]. We find

a/f = 0.9 in both cases, Ca = 0.08 for the NH law capsule
and Ca = 0.17 for the SK law one. We then compute exactly
the equilibrium-deformed profiles corresponding to these two
cases and compare them with the experimental profiles in
Fig. 9(a). We note that the deformed profile of a small capsule
can be well fitted with either the NH or the SK law. However,
the capillary number for the SK capsule is about twice that
for the NH capsule, due to the strain-hardening property of
the SK membrane, which requires higher loads to reach the
same deformation as the NH one. The process is repeated for
a capsule that is larger than the pore [profile (f) of Fig. 8].
We find two slightly different values of the initial radius
a/¢ = 1.1 for the NH law and a /¢ = 1.09 for the SK law. The
values of Ca are both small and of the same order, as should
be expected, since for small deformation the two laws are
equivalent. Computing the deformed profiles corresponding
to the couples of values of a/¢ and Ca with either the NH or
the SK law, we can again fit them well to the experimental
ones as shown in Fig. 9(b).

We then proceed to analyze a population of 18 capsules
of different initial sizes, flowing through the square-section
capillary tube at different flow rates. We use the inverse
analysis algorithm to deduce, for each capsule, the mean value
of the shear elastic modulus of the membrane G,. We define
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FIG. 8. Experimental images and corresponding extracted deformed profiles. The top row images are the original experimental images,
while the bottom row figures are the corresponding extracted profiles. (a-b) au,p/¢ = 1.08,v, = 3.0 mm/s; (c—d) aup/f = 1.05,v, = 7.3
mm/s; (e—f) dapp/f = 1.2,v, = 1.4 mm/s; (g-h) aapp/¢ = 1.16,v, = 3.4 mm/s.

the mean capsule elongation A

A= P/2ma (14)
where P is the perimeter of the deformed capsule profile.
It is then convenient to plot the values of G in terms of
A rather than the size ratio. As shown in Fig. 10, when we
assume a NH law for the membrane, we find a constant value
of the shear modulus G; = 0.036 £ 0.006 N/m for a mean
elongation ranging from 1 to 1.25 (which corresponds to a
fairly large deformation!).

If we assume an SK law for the membrane, the value
of G, for small deformation (A < 1.03) is of the same
order as the one obtained for the NH law. However, as the
profile deformation increases, the corresponding values of
G, decrease by a factor three. This is a consequence of the
strain-hardening property of the SK law. The fact that we
cannot find a constant value for the shear modulus of the SK
law for all deformation levels indicates that the membrane
of ovalbumin capsules is not strain-hardening, but rather
strain-softening as modeled by the NH law.

FIG. 9. Superposition of experimental and numerical capsule pro-
files in square-section microfluidic channel. The numerical profiles
are obtained with the NH law or with the SK (C = 1.0) law. (a) NH law
(Ca=0.08,a/¢ = 0.90) and SKlaw (Ca=0.17,a /£ = 0.90); (b) NH
law (Ca = 0.03, a/¢ = 1.10), and SK law (Ca = 0.05, a/¢ = 1.09).

V. DISCUSSION

The objective of this work was to determine plausible elastic
properties for the membrane of capsules. We have chosen
two simple constitutive laws with the same small deformation
behavior, but with either strain-softening or strain-hardening
properties under large strain. The use of the neo-Hookean law
as the strain-softening one means that we have arbitrarily fixed
the area dilation to shear modulus ratio to K,/ G = 3. For the
strain-hardening law, we could have used values of C smaller
than unity, which would have lowered the strain-hardening
feature of the law (without eliminating it) and might have led
to values of G, less dependent on the deformation. However,
using C < 1 would have made the comparison with NH law
less meaningful as the small deformation parameters would
have been different.

We note that there is some dispersion of the results in Fig 10.
The dispersion is larger for the NH law than for the SK one.
This is due to the fact that, when we use the NH law, the

0.08 : . : :
NH law o
SK law ©
0.06
. e G's =0.036 + 0.006 N/ul
g .
Z ooal 8, ° I *
= o e @ l
O U] ®
g . .
0.02 0g °
000 0 ©
0

1 105 11 115 12 1.25
A

FIG. 10. Membrane shear modulus G, as a function of capsule
mean deformation A. Dashed line: average value of G, determined
with the NH law.
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capillary number is small and the geometrical parameters L
and L, vary nonlinearly with Ca. When we use the SK law,
the values of Ca are larger and the variation of L and L, with
Ca is almost linear.

Another question is linked to the fact that the channel
we used is not perfectly square (as is usually the case with
PDMS channels). Of course, we could have run the model
with the exact dimensions of the channel, but we decided
instead to provide general charts for the flow in square
channels and use them to analyze our results. As a check, we
compare the surface shear modulus value presently determined
(Gy =0.036 £ 0.006 N/m) with the one obtained by Chu
etal. [9] (G4 = 0.042 £+ 0.016 N/m). The ovalbumin capsules
were prepared under the same conditions but they were flowed
in a 50 um glass capillary tube. The two mean values of G,
fall in the same range within experimental errors.

The reason why the ovalbumin membrane seems to be
strain-softening is probably due to the conformation of the
albumin molecule at the interface. For a small reticula-
tion time of 5 min, the density of covalent links between
the protein molecules is low and the protein chains are
loosely linked. This may explain why the membrane is
easily deformable, as described by an NH law. It has not
been possible to obtain deformations larger than 25%, so
that we do not know for what deformation the membrane
breaks.

VI. CONCLUSION

We show here that it is possible to infer plausible me-
chanical properties of an artificial capsule membrane from
experiments, where the capsule has to deform to flow inside
a small square-section pore with cross dimensions of the
same order as those of the capsule. The method is based on
the coupling of experimental observations with a rigorous

PHYSICAL REVIEW E 87, 063008 (2013)

mechanical model of the system. It also implies a strong
hypothesis on the value of the area dilation to shear modulus
ratio, which is assumed to be K;/G; = 3. The method works
well if the deformation of the capsule is large enough. Indeed,
for a small deformation, it is not possible to distinguish
between different laws and there is some dispersion in the
results. Thus, it is best to use a pore, such that the size ratio
of the capsules is of order unity. Small capsules (a/¢ < 0.8)
have to be flowed quickly to be deformed with concomitant
difficulties of observation leading to profile fuzziness. In order
to reach large deformation, while keeping the capsule velocity
moderate, a high-viscosity suspending liquid is necessary. But
the price to pay is that the high-viscous-pressure drop inside the
microchannel may lead to the destruction of the connections.
The advantage of using a square-section channel rather than a
cylindrical one is linked to the easy fabrication of microfluidic
tubes of any size and to the easy connection with the propulsion
device. Furthermore, this system can be built in a microfluidic
fabrication device to monitor the properties of the capsules
in situ [21]. We note that it is even possible to infer the large
deformation behavior of the membrane, at least decide whether
it is strain-softening or -hardening.
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3.4 Supplementary results

The study was performed on 16 HSA capsules and 29 ovalbumin capsules, respec-
tively in channels C3 and C4. We present the surface elastic shear modulus obtained
by inverse analysis for the two populations in Figure 3.4. We removed the results
corresponding to deformations smaller than A = 1.06 because of the discrepancy in
the results due to the inaccuracy of the method at small deformation. The number of
capsules providing a result under these conditions are then 6 for the HSA capsules and
23 for the ovalbumin ones. We considered an external fluid viscosity of g = 0.7 N/m?,
consistently with previous studies (Chu et al., 2011).
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Figure 3.4: Distribution of elastic shear moduli as a function of the capsule deforma-
tion, for the (a) HSA and (b) ovalbumin capsules. The vertical error bars correspond
to the range of G4 found by the TA procedure.

Even with only 6 capsules processed, the results of HSA capsules look well dis-
tributed around an average value of G5 = 135 mN/m. The value is consistent with
other results obtained on similar capsules (Gubspun et al., 2016).

The results on ovalbumin capsules are more dense, and still well distributed around
an average value of Gy = 31mN/m. The value is consistent with previous results
obtained on similar capsules both by Hu et al. (2013) and Chu et al. (2011), although
the capsule diameter was smaller (around 50 pm).

3.5 Discussion and conclusion

In this chapter, we presented an efficient way of characterizing the capsule membrane
properties in-situ. In the context of developing a predicting tool for the distribution
of deformable microcapsules across a capillary network, it can be used to properly
perform an experimental validation of the numerical results.

It is difficult (and/or expensive) to achieve high accuracy channels, with dimen-
sions varying by less than 5%. However, we have shown in this study that such
a small geometrical deviation only has a weak impact on the membrane mechanical
characterization. When increasing the deviation though, the effect becomes no longer
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negligible. If the experimental results are not in total agreement with the numerical
study, the main result still stands: a deviation 0 < 5% provides trustful results and
its impact on the estimated capillary number or elastic shear modulus is no more
than the uncertainty of the method itself.

The algorithm presents possible ways of improvements. For example, one will
notice that only two characteristic lengths are mainly used in the process. Sometimes,
when the database of numerical results allowed it, we were able to compare complete
experimental and numerical profiles. It showed the limits of the method in the case
when the characteristic lengths agreed between the two profiles, but the profiles were
far from superposing onto one another. This phenomenon appeared rarely, and at a
smaller extent, for the ovalbumin capsules, but more often with HSA capsules. Thus,
an interesting way of improvement would be to base the inverse analysis process on
whole profiles. The limit, here, would become the sampling of the numerical database
of profiles. Each steady-state profile indeed requires a full numerical solving of the 3D
fluid-structure interaction (FSI) problem, which is currently very costly, numerically
speaking.

To overcome this issue, optimization methods exist. Building a reduced-order
model of the FSI is a possible way of providing fast yet precise profiles for any set of
flow parameters, thus rendering achievable the inverse analysis on full profiles.
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Chapter 4

Deformation analysis of a capsule
flowing into a microfluidic channel

4.1 Introduction

As highlighted in Chapter 1, 3D numerical models of FSI problems are computation-
ally very costly. This is especially true for a capsule flowing in a microfluidic channel,
either straight or bifurcated. At least one 3D model exists to predict the motion
and deformation of a single capsule flowing into a straight channel (Hu et al., 2011).
However, the numerical cost is very high, and one simulation typically lasts several
days. This is the main reason why the capsule shape database built by Hu et al.
(2011) is only sparse, and why the inverse analysis procedure presented previously is
only based on characteristic lengths instead of full profiles.

When it comes to a bifurcated channel, no full 3D model predicting the motion
and deformation of a capsule has so far been developed. One reason is that modeling
the strong coupling of the Eulerian motion of the inner and outer fluids with the
Lagrangian motion of the capsule membrane is very challenging in such a geometry.
The capsule is indeed subjected to particularly large deformations as it approaches the
bifurcation, the non-linear effects being thus of major importance. The computation
times involved are consequently extremely high with classical methods, as advertised
by 2D-model developers to justify their approximation. Two-dimensional models,
however, can not capture the whole complexity of the capsule deformation and predict
its shapes as it flows in the tube. No realistic quantitative results can thus be derived
from them. This is why they have not been applied in complex geometries like
patient-specific geometries for example, and why a 3D model is necessary.

The current techniques used to perform the 3D simulation of a capsule flowing
in a tube are limited by the increasing size and complexity of the problem (capsule
mesh, large 3D domain, ... ), and it seems very unlikely that they will allow to solve
such problems in short computation times. Even GPU computing, which grants much
more computation power, still requires rather long computational times when several
capsules interact, or when boundaries are involved. As increasing the computation
power does not seem sufficient to address the increasing dimension of the problem,
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we propose to tackle the problem differently.

In this chapter, we aim at applying POD to the shapes assumed by a capsule as
it flows and deforms within a tube. In Section 4.2, we study the application of POD
to 3D numerical shapes of a capsule flowing in a straight tube, with several goals:

e determine the capsule shape variety in such a geometry,

e study the possibility to use a reduced description to obtain a continuous shape
database and improve the inverse analysis method,

e study the possibility to apply POD on capsule shapes for a simple case before
moving forward to the dynamics of a capsule flowing in a bifurcated channel.

In Section 4.3, we provide a qualitative study of the capsule dynamics when ap-
proaching and passing a bifurcation, which is also necessary to further apply POD on
capsule shapes in a bifurcation.

Finally, in the absence of a 3D numerical model, we study the application of POD
to 2D experimental capsule shapes when flowing through a bifurcated channel in
Section 4.4. Our goal is double: to determine the capsule shape variety in a more
complex geometry and to inquire the possibility of resorting to a reduced-order model
for the general case of a capsule flowing in a complex channel.

4.2 POD analysis of a capsule in a straight channel

We present here the results obtained by applying the POD on numerical data con-
sisting of the transient state of an initially spherical capsule which deforms towards
its steady-state shape in a straight square-section tube.

4.2.1 Reference case

We recall that the reference case corresponds to the time-evolution of a NH capsule
of size ratio a/¢ = 0.90, subjected to a capillary number Ca = 0.040, and sampled
in time by using 400 equally distributed snapshots. The resulting singular values are
shown in Figure 4.1a, while the evolution of the RIC is shown in Figure 4.1b. The
magnitude of the singular values decreases rapidly until a plateau is reached around
80 modes at a value of approximately 107'*. Additional modes after 80 then bring
no new information. Looking at the zoom in Figure 4.1a, one can see that the 10"
singular value is already a hundred times smaller than the first one. This is verified
when looking at the RIC evolution as a function of the mode number. More than 95%
of the total information is contained within the first 4 modes, and 20 modes contain
almost all the information originally contained in the snapshots.

Quantitative results are summarized in Table 4.1 for an increasing number of
modes. One can see that the first mode already contains about 72% of the total
information. An approximation of the shapes with one mode leads to an average
projection error of 23%, for a maximum profile difference of only 4.6%. A rank-1 ap-
proximation thus already leads to a very small error on the profiles, as it can be seen
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Figure 4.1: (a) Evolution of the singular values as a function of the mode number.
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(b) Relative information content as a function of the number of modes.

in Figure 4.2, in which we have superimposed the rank-1 approximation center-plane
profile with the original shape. The second mode contains about 15% of the total
information, so that the two first modes contain up to 87% of the information. The
projection error is down to less than 10%, and the corresponding profile difference
down to only 3%. In order to decrease the maximum profile difference under 2%, only
4 modes are required. The corresponding RIC is then about 95%, which corresponds
to an average projection error of only 2.7%. The remaining 5% of information would
require 15 additional modes to be captured. With 8 modes, almost 99% of the to-
tal information is included, so that higher-order modes carry negligible information.

Consequently, 4 to 8 modes seem a fair range to describe the dynamics of this case.

Table 4.1: Results of the POD analysis for a varying number of modes.

Mode number RIC (%) AM (%) €z (%)
1 71.5 23.0 4.6
2 87.2 8.6 3.1
3 92.5 4.6 2.6
4 95.3 2.7 1.7
5! 96.6 2.0 1.6
6 97.7 1.3 1.1
7 98.3 0.9 0.5
8 98.7 0.7 0.4
10 99.3 0.4 0.3
15 99.8 0.1 <0.1
20 > 99.9 <0.1 <0.1

Looking at Figure 4.2, one will notice that the most significant error is localized on
the shapes which are close to a circle. A single mode is unable to accurately represent
the spherical shape of an undeformed capsule, although the error remains very low.
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Figure 4.2: Superimposition of the high-dimensional model profile in the plane y = 0
(full blue line) and its rank-1 POD approximation (dashed red line) for 6 successive
times. The difference is slightly visible on the less deformed profiles.

When the capsule takes the shape of a slug, the rank-1 approximation becomes better.
One will notice that the numerical folds at the back of the capsule are smoothed by
the POD approximation. Finally, the rank-1 approximation of the steady-state shape
seems well superimposed with the high-dimensional shape. An explanation of this
phenomenon is that the time-average shape is close to the steady-state shape. The
shape variations (from the time-average shape), which are actually represented by the
POD, are then very small, so that a single mode already provides a small error. The
undeformed capsule shape, however, presents a large difference with the time-average
shape, which must be described by the POD modes. In this case, a single mode is
unable to accurately describe these variations.

Since 4 modes provide a profile difference lower than 2%, we have superimposed
the rank-4 approximations of several shapes with the corresponding high-dimensional
ones in Figure 4.3. A difference is hardly visible between the two profiles at any time.
Slightly higher errors might occur in the corners for example, where higher curvatures
may be found. Nevertheless, the maximum profile difference is less than 2%, so that
no large difference should be found anywhere on the 3D shape. We can conclude that
the rank-4 approximation is enough to represent the phenomenon accurately.

We present the 6 first temporal coefficients in Figure 4.4. Looking at Figure 4.4a,
one can see that the first temporal coefficient does not vary after 7" = 2, and is
very small. It is consistent with our previous analysis, which claimed that the first
mode represents the shape variations from the steady-state shape to the spherical
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Figure 4.3: Superimposition of the high-dimensional model profile in the plane y = 0
(full blue line) and its rank-4 POD approximation (dashed red line) for 6 successive
times. The difference is hardly visible.

undeformed shape. The time-average shape being very close to the steady-state shape,
the first mode is not needed to represent the capsule shape after T' = 2. In fact, for
T > 2, all the shape information is contained within the time-average shape, so
that every temporal coefficients are negligible. Adding more modes only affects the
representation of the sphere-like shapes.

It is interesting to understand that the POD results are thus dependent on the
time-average shape, which means directly dependent on the snapshots used. In this
case, too many snapshots are used to represent the steady state shape (uniform dis-
tribution), which has a great influence on the POD results. In the next section, we
then try to study the effect of the number and distribution of snapshots on the POD
approximation.

4.2.2 Effect of the snapshot distribution

We analyze the POD results for the 5 different distributions of snapshots described
in Section 2.2.2, and compare them to the reference case of 400 uniformly distributed
snapshots. We are especially interested in the distribution of the projection error over
the whole database of shapes when varying the number and distribution of snapshots.
The error is computed by projecting the whole set of 800 shapes onto the POD basis
obtained with a varying number of snapshots, and is plotted in Figure 4.5.

Looking at Figure 4.5a, one can observe the profile difference between the rank-4
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Figure 4.4: (a-f) Time evolution of the temporal coefficients «;(t) to ag(t).

approximation and the high-dimensional model, as a function of time, and for the six
different snapshot distributions used in the snapshot matrix, i.e. to build the POD
basis. One will first notice that the errors are localized at short times. The error
difference from a distribution to another at long times are therefore negligible. The
highest profile difference corresponds to a uniform distribution of 20 snapshots, and is
up to about 2.3%. Zooming on the early times (Figure 4.5b), one can see that the error
difference is quite insignificant between all the distributions, except for the uniform
distribution of 20 snapshots. When using a non-uniform distribution of 20 snapshots,
the profile difference € is closer to the other distributions, and is globally decreased
compared to the uniform distribution. In fact, the non-uniform distribution of 20
snapshots is even showing the lowest peak value, just above 1.5%. The cost seems
to be a higher profile difference at long times, which is negligible, as well as for a
normalized time between 0.8 and 2 (Figure 4.5a). However, the error is less than
0.5% in this range. When using a non-uniform distribution, it seems that using more
snapshots (65) does not significantly modify the profile difference in time. Finally, it
is interesting to see that the profile differences for a uniform distribution of 200 to
800 snapshots are almost superimposed, which means that there is no advantage in
taking more than 200 snapshots to build the POD basis regarding this phenomenon.

4.2.3 Interpolation

Following the previous analysis, we have kept only 4 modes in the POD approximation
of the capsule shapes. We have already seen that by doing so, the profile difference
€ between the POD approximated shapes and the high-dimensional shapes is below
2%. We present the temporal coefficients associated to the 4 modes when varying the
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Figure 4.5: (a) Profile difference € between the rank-4 approximation and the high-
dimensional shape as a function of normalized time. The errors are shown for 6
different distributions of snapshots used in the POD-basis building. (b) Zoom on the
early deformations.

flow conditions from C'a = 0.040 to C'a = 0.060 in Figure 4.6.

Looking at Figure 4.6(a,b,c), one will observe that the temporal coefficients o (%),
as(t), and as(t) associated with the first 3 modes show a very smooth evolution when
the capillary number varies. The values are quite identical at short times, because
the starting shapes are indeed identical for the three capillary numbers. A difference
between the three curves starts to appear between snapshot 5 and 10, and seems quite
linear from snapshot 10 to the end, regarding to the capillary number evolution. For
the medium value of Ca = 0.050, the temporal coefficients a;(t) and as(t) tend
towards zero at long times. Their counterparts for C'a = 0.040 and Ca = 0.060 are
distributed above and under quite equally. The second temporal coefficient shows
even less difference between the three capillary numbers, especially after the 50"
snapshot. Finally, the absolute value of the fourth temporal coefficient decreases very
quickly towards zero, and the difference for the three values of capillary number seems
negligible compared to the absolute value of the first temporal coefficient. Clearly,
interpolating the fourth coefficient will have no significant negative impact on the
shape approximation.

The temporal coefficients were linearly interpolated in order to obtain the values
corresponding to C'a = 0.045. By using the same POD basis and interpolating the
temporal coefficients, one is able to build the a priori unknown shapes corresponding
to this capillary number, and compare them with the high-dimensional ones computed
with the 3D numerical model. We show the superimposition of these interpolated
approximations with the high-dimensional model profiles in Figure 4.7.

In the y = 0 plane, any difference in the profiles is barely visible. The global profile
difference €*  also remains below 2%, so that the interpolation has not brought a

max
significant error to the POD approximation.
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Figure 4.6: (a-d) Time evolution of the temporal coefficients v (t) to au(t) for 3 values
of the capillary number. The time is represented here as the snapshot number.

4.2.4 Discussion and conclusion

In this study, we have used the 3D numerical shapes of a capsule flowing in a straight
channel, obtained by means of a high-dimensional numerical model, and have applied
Proper Orthogonal Decomposition in order to analyze the capsule shape variety. We
have thus shown that the deformation of a capsule flowing in a straight tube can be
accurately described in a 4-dimensional space. Although the study is not thorough, it
indicates that the dimension of the capsule shape variety in such a geometry is then
quite small. One direct consequence is that a mesh-based basis for the computation
of the capsule deformation is not efficient due to the excessive number of degree of
freedom involved in such models. A more efficient way to predict the deformation
would be to use a well-adapted small-dimension basis. Typically, we have shown that
a rank-4 POD basis could be used to replace the Lagrangian mesh (usually made
of several thousands of degrees of freedom), thus drastically reducing the order of
the model, and consequently, the computation time. Although the method used to
compute the POD basis in the first place has the drawback of requiring snapshots,
the gain involved for future computations would greatly overcome this limitation.
We have found in the literature that no optimal way of choosing the snapshot
distribution exists. Although we have shown that the choice of the distribution has
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Figure 4.7: Superimposition of the high-dimensional model profiles in the plane y = 0
(full blue line) and their rank-4 POD approximation (dashed red line) for 6 successive
times. The capillary number is C'a = 0.45, so that the approximations were built by
interpolating the temporal coefficients. The difference in the profiles is hardly visible.

only a small impact on the profile difference after approximation, it does have an
impact on the POD modes and time-average shape. Moreover, the POD modes can
not have more information than that contained within the snapshots, so that the
choice of snapshots remains a crucial aspect. It is indeed very easy to find a snapshot
distribution which would provide very poor results. It is also easy to choose an
excessive amount of snapshots, which can affect the time-average shape too much,
and thus provide correct, but non-optimal results. We have found that manually
choosing snapshots that are representative of the capsule deformation over time is
quite efficient. Only 20 well-chosen snapshots seem to provide the same amount of
information contained within a uniform distribution of 200 snapshots. The profile
difference is comparable too. In order to minimize the number of snapshots and
avoid negative effects, a better approach than choosing the snapshots a priori might
be to build the POD basis iteratively, based on the error distribution. Basically, a
snapshot would be added to bring the missing information where the error is maximal
in the POD approximation, until an error criterion is verified.

Finally, we have build a reduced POD basis corresponding to a limited coarse
sampling of the flow parameter space (Ca = 0.040, Ca = 0.050, and C'a = 0.060). By
doing so, we have shown that the rank-4 approximation remains accurate when the
capillary number varies. We have also shown that the interpolation of the temporal
coefficients can be efficiently used to predict the capsule deformation for intermediate

70



values of the capillary number. This is a great advantage over the high-dimensional
model, which requires to solve the entire dynamics to determine the capsule shape
for a new set of parameters at any time. A classical way to achieve that with the
POD basis would be to build a reduced-order model, which can solve the capsule
dynamics over the whole range of parameters costlessly. When one is aiming at
predicting the capsule deformation for any time and any flow parameter, though, it
appears that our interpolation method is a simpler yet efficient alternative to building
a reduced-order model. One direct application consists in the improvement of the
membrane characterization method presented in Chapter 3. Considering that the
high-dimensional shape database is already at hand, we have developed a method to
obtain the steady-state shape of a capsule for any set of parameters. It especially
means that entire profiles could be used in the inverse analysis method, instead of
only two characteristic lengths, which would make the characterization method at
least more robust, and probably more accurate.

4.3 Experimental results of elastic capsules flow-
ing in a bifurcated channel

In this chapter, we present a qualitative study of the motion and deformation of a
microcapsule within a bifurcated channel. We present the results obtained for two
different kinds of microcapsules. The capsule samples are presented in Section 2.1.1
and characterized in Section 3.4. The capillary number and size ratio obtained with
the inverse analysis program are specified for each capsule, when possible.

4.3.1 HSA capsules

We present here the results obtained for the deformation of HSA capsules. The
capsule profiles were detected with the semi-automatic algorithm.

Effect of capillary number and size ratio. We firstly show in Figure 4.8 a
representative sample of the shapes assumed by the capsule for three different flow
strengths, and a size ratio of approximately 0.92. The entrance steady-state shape of
the capsule is plotted in blue.

Figure 4.8: Comparison of the successive profiles for three capsules: (a) a/¢ = 0.92,
Ca =0.038, (b) a/t =0.92, Ca = 0.063, (c) a/l = 0.92, Ca = 0.096.
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One will first notice that increasing the capillary number has a general effect of
increasing the capsule deformation and parachute depth, similarly to the case of a
capsule in a straight tube. For a capillary of Ca = 0.038 (Figure 4.8a), one can see
that the capsule expands laterally when the walls no longer confine it (green profile),
at the entrance of the bifurcation. It is then pressed against the bifurcation tip, taking
a crescent shape (yellow profile). The capsule then chooses one daughter branch and
flows along it. Assuming no obstacle is to be found immediately downstream, the
capsule tends to recover its steady-state shape in a few channel diameters (see orange
profile towards red profile). The distance needed for this to happen strongly depends
on the capillary number. Thus, the phenomenon is not visible in Figure 4.8, as the
field-of-view is too small and the capillary numbers too high. The tendency is quite
clear however. The phenomenon can otherwise be observed in Figure 4.15a.

When the capillary number increases (Figure 4.8b,c), the lateral expansion seems
more pronounced inside the bifurcation. The capsule hits the tip of the bifurcation
at a higher speed, leading to its compression around the point of stagnation of the
background flow. This effect is particularly visible when comparing the yellow profiles
on Figure 4.8a for Ca = 0.038 and Figure 4.8¢ for Ca = 0.096. The higher the
capillary number, the more flattened the crescent shape. When moving forwards in
the daughter branch entrance, the capsule therefore has a flatter shape (orange profile
in Figure 4.8a and c): it will take more time and a longer distance to recover its full
steady-state shape further downstream (see last profile in each image).

The same effect happens for a size ratio of 1.05, as shown in Figure 4.9, although
the phenomena seem even more pronounced. One can easily see the effect of the
capillary number by comparing the blue profiles in each image, corresponding to the
steady-state shape of the capsule at the entrance of the bifurcation. For each capsule
state, the profile looks more deformed for a higher capillary number. The capsule
is more flattened against the bifurcation tip for a higher Ca. We also see that the
larger the capillary number, the more elongated the capsule is when it enters the
daughter branch (see orange profiles). The inverse analysis did not find a value of
Ca for the capsule in Figure 4.9¢, as it is too much deformed. We deduced that
Ca > 0.1. The capsule is also not symmetrical, which is probably due to the very
high flow strength, but it does not seem damaged since it recovers its shape normally
after the bifurcation, and presents a normal elastic behavior.

Figure 4.9: Comparison of the successive profiles for three capsules: (a) a/¢ = 1.035,
Ca =0.034, (b) a/t = 1.05, Ca = 0.060, (c) a/¢ = 1.045, Ca > 0.100.
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Other observations. In absence of a capsule, the flow rate in the two daughter
branches is almost identical: the capsules can thus pass in one or the other daughter
branch. As an example, we show the tracking of two capsules of similar size and
capillary number flowing in both outputs in Figure 4.10. For both size ratios, the
shapes of the two capsules really look alike, no matter what daughter branch they flow
in. The shapes are not taken at identical times, but are showing 5 to 6 characteristic
shapes. The similarity of the shapes can be explained by the symmetry of the channel,
and the similar flow rates in the two branches.

Figure 4.10: Comparison of the trajectories and deformation of two capsules passing
in the high and low daughter branch, for two sets of parameters.

Although we used a very dilute suspension, we have sometimes witnessed capsule
interaction at the bifurcation tip, as illustrated in Figure 4.11. It can happen when
two capsules are very close to one another in the inlet channel. It is due to the
time spent by a capsule at the bifurcation tip. Indeed, when the output flow rates
are similar, the capsule usually goes straight into the bifurcation tip, thus forming
a crescent shape. It takes time for it to choose a daughter branch and start flowing
again, so that it can be caught up by the following one. As an example, the first
capsule in Figure 4.11 spends about 100 ms blocked against the tip, which is close to
one fourth of the time taken by the capsule to entirely flow through the bifurcation.

If the capsules are far enough from each other, a contact-less interaction can occur.
The first capsule induces a local drop of the flow rate in the first output branch, so that
the conditions are modified for the following one, which goes into the other branch
which now presents a much higher flow rate. When the capsules are close enough from
each other, as in Figure 4.11, the capsules might have a much stronger effect on the
shape and direction of each other. In that case, the first capsule presents a crescent
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Figure 4.11: Successive profiles showing the interaction of two large capsules at the
entrance of the bifurcation. The first capsule stays approximatively 100 ms at the
bifurcation tip without moving (between ¢ = 100 ms and ¢ = 200 ms). The inlet flow

L which leads to rather slow capsules.

rate is 1 pLs™
shape at the bifurcation tip. However, its presence implies such a disturbance in the
flow conditions that the second capsule acts almost as if there was only one output
branch, thus presenting no crescent shape.

Finally, we have witnessed a greater number of large capsules than small ones in
this experimental study. However, the small capsules can be off-plane, or arrive faster
than the large ones, so that their are harder to observe and capture. The membrane
contrast also often appear weaker, so that they are harder to analyze.

We show in Figure 4.12 the time evolution of a very large capsule passing the
bifurcation. It shows that even very large capsules are resistant and elastic enough
to flow through the bifurcation without breaking. The flow strength is already rather
high in Figure 4.12. However, when increasing it even more, we have witnessed very
large capsules which did not resist to the forces induced by the incoming flow when
they were blocked onto the bifurcation tip, and finally broke apart.

4.3.2 Ovalbumin capsules

We present here the results obtained for the deformation of ovalbumin capsules. The
capsule profiles were detected manually.
We first compare the deformation of three capsules presenting a similar size ratio
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Figure 4.12: Successive profiles of a very large capsule deforming through the bi-

furcated channel without breaking. The inlet flow rate is 8 pLs™!, and the capsule

velocity is 13.8 mms™!.

a/l = 0.92, subjected to an increasing capillary number (Ca = 0.021, Ca = 0.042
and Ca = 0.061). Several deformation states along the channel are presented in
Figure 4.13. The same effects already observed for the HSA capsules seem to occur
for the ovalbumin capsules too. The blue profile at the entrance of the bifurcation
corresponds to the steady-state profile of the capsule in a straight square-section
channel, as previously observed. An increasing capillary number involves a larger
deformation of the capsule, and a deeper parachute. The green profiles show that
the capsule has a tendency to enlarge when the confinement is briefly removed. This
effect is also increased with the flow strength. When the flow strength increases from
Ca = 0.021 (Figure 4.13a) to C'a = 0.061 (Figure 4.13c), one can see that the capsule
is more deformed and more flattened against the tip of the bifurcation (yellow profile).
Consequently, it enters the daughter branch with a more deformed profile (red profile)
and tends to require a longer distance to recover its steady-state shape (out of the
field-of-view here).

Figure 4.13: Comparison of the successive profiles for three capsules: (a) a/¢ = 0.92,
Ca = 0.021, (b) a/¢ = 0.92, Ca = 0.042, (c) a/¢ = 0.93, Ca = 0.061.

We then present the successive profiles of two capsules with a unitary size ratio but
either a small (Ca = 0.019) or large (Ca = 0.073) capillary number in Figure 4.14.
We observe that the same effects happen to a larger extent. At small capillary, the
capsule deforms only slightly. At large capillary, however, the flow split involves an
extension of the capsule laterally (Figure 4.14b, green profile), which is then flattened
onto the bifurcation tip. When we compare the shapes with the corresponding ones for
a smaller size ratio (Figure 4.13c, green and yellow profiles), we observe an increased
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effect of the capillary number for a larger size ratio, although the capillary numbers
are not identical.

Vi)

Figure 4.14: Comparison of the successive profiles for two capsules: (a) a/¢ = 1.01,
Ca = 0.019, (b) a/¢ = 1.00, Ca = 0.073.

We present the shapes assumed by slightly larger capsules while passing the bi-
furcation in Figure 4.15. One can see that the shape variety is not different from
what has already been observed for smaller capsules. The behavior of the capsules
is the same, as well as the impact of increasing the capillary number. The capillary
numbers computed in Figure 4.15b and Figure 4.13c are very close (Ca = 0.058 and
Ca = 0.061 respectively), so that looking at the effect of the size ratio (a/¢ = 0.93
and a/¢ = 1.06 respectively) is meaningful. One can notice that the yellow profile
is slightly more flattened for the larger capsule, which means the capsule is more
deformed. However, the phenomenon is clearer for the red profile: the large capsule
is much more elongated just after the bifurcation tip than the small one, for the same
capillary number.

Figure 4.15: Comparison of the successive profiles for two capsules: (a) a/¢ = 1.05,
Ca =0.027, (b) a/¢ = 1.06, Ca = 0.058.

4.3.3 Discussion and conclusion

We have performed a qualitative experimental study of the deformation of confined
elastic capsules when flowing through a bifurcated microchannel. Several identical
behaviors have thus been observed for capsules made of HSA or ovalbumin. The
typical deformation of such capsules through the bifurcation unfolds as follows:
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e assuming the entrance tube is long enough, the capsule arrives with a steady-
state shape. It especially allows one to characterize the membrane by means of
the inverse analysis method presented in Chapter 3.

e close to the bifurcation tip, the capsule is less confined. It is affected by the
flow split and is dragged equally into the daughter branches, which leads to its
lateral extension.

e the capsule arrives centered at the bifurcation tip, on which it is pushed onto
by the incoming fluid flow, so that the capsule takes a crescent shape, which is
emphasized when the capillary number is high.

e the capsule chooses one branch and slowly slips towards it: it rotates and is
elongated by the shear flow induced by the fluid-velocity transverse gradient.

e finally, the capsule is subjected to a new straight square-section channel flow,
and deforms back towards its steady-state shape.

We have observed that this typical behavior is quite independent of the capsule
nature or the flow parameters. However, we have noticed that the capsule deformation
is increased at every stage of its path when the capillary number is increased, or, to
a lesser extent, when the capsule size is increased. Moreover, we have focused on
a balanced flow rate ratio between the two outputs in this study. We have indeed
observed that this case provided the richest capsule shape variety. It has motivated
our choice to present these results exclusively. When the flow split is not equal, i.e.
when the flow rate in one of the daughter branch is higher than in the other, similar
phenomena can be observed. The transition stage close to the bifurcation tip is simply
less significant: the capsule is dragged towards the high flow-rate branch before hitting
the bifurcation tip, which involves the slow disappearance of the crescent shape as the
flow rate ratio increases. When the flow rate ratio becomes high enough, the capsule
almost ignores the low flow-rate branch and just behaves as if there was a 45° angled
tube.

A further step in this experimental study should be to derive quantitative results.
We would especially recommend to measure the smallest thickness of the crescent
shape when the capsule is against the bifurcation tip, and the deformation A = ?Pa

at every stage of the capsule path. It is however not the original purpose of this study,
which mainly aims at providing a shape database to be used in the POD analysis.

4.4 POD analysis of a capsule in a bifurcated chan-
nel

We present here the results obtained by applying POD to several experimental profiles
obtained in the previous study. As explained in Section 2.2.3, we have applied POD
separately to three capsules, shown in Figure 4.13. The contour detection has been
performed manually, as well as the tracking of one material point at the back of the
capsule.
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4.4.1 POD basis and error quantification

We firstly show the evolution of the resulting singular values for the three capsules in
Figure 4.16a, as a function of the mode number. First of all, one should note that the
three capsules present an analogous behavior. Then, similarly to the previous study
in a straight channel, the singular values decrease rapidly with the mode number,
from about 6 for the first mode to less than 0.01 for the 20" mode. Unlike the
numerical study, no plateau is really reached, as there is not enough snapshots to see
it. However, the 20" singular value is about 500 times lesser than the first one, so
that singular values above 20 are considered negligible. If we compare these results
to those shown in Figure 4.1, we can notice that despite the richer dynamics of the
capsule in a bifurcation, the results are not that different, although the singular values
decrease slightly more rapidly for the straight channel case.
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Figure 4.16: (a) Singular values resulting from POD as a function of the mode number,
in log scale, for the three capsules considered. The singular values over 20 are smaller
than 1072, and not shown; (b) Relative Information Content as a function of the
mode number.

Looking at the relative information content (Figure 4.16b), the differences among
the three capsules are more visible, although not very significant. The RIC quickly
increases, so that 5 modes already contain between 90% to 95% of the total infor-
mation. We have summarized quantitative results in Table 4.2. Looking at the RIC
for the three capsules, one can see no correlation between the capillary number and
the number of modes required to represent the capsule shapes. Indeed, if capsule A
always requires the least number of modes to obtain a given RIC, the RIC for capsule
B is higher than that of capsule C at first, and increases slower. After 8 modes,
capsule B has a RIC which is always about 1.5% lower than the others.

The average projection error A and the maximum profile difference ¢,,,, have also
been reported in Table 4.2, for the three capsules. For a given number of modes,
capsule A shows the least average projection error. Overall, the projection error
follows the same decreasing trend for the three capsules, with very close values.

The profile difference however remains the most significant error to look at. For
each capsule, the profile difference generally decreases with an increasing number
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Table 4.2: Results of the POD analysis for an increasing number of modes, for three
ovalbumin capsules.

RIC (%) A (%) €maz (%)
Modes \ Capsule A B C A B C A B C
1 64.4 60.0 58.6 28.6 29.3 348 26.3 179 29.2
2 82.3 75.0 78.6 11.1 16.9 13.8 12.7 13.0 15.2
3 88.6 84.2 85.1 6.1 85 9.1 115 81 10.0
4 91.6 88.0 89.4 40 59 59 70 54 7.3
D 93.4 90.5 91.8 3.1 43 45 5.3 4.0 7.5
6 94.7 922 93.7 25 35 32 5.8 3.2 54
8 96.4 944 959 1.7 23 21 3.2 31 34
10 97.5 957 97.2 1.1 1.7 14 3.0 1.8 24
15 99.0 97.6 98.9 05 1.0 0.7 14 11 1.3
20 99.8 98.7 99.8 02 06 0.3 04 06 0.7

of modes, although some exceptions occur. Since we look at the maximum profile
difference, it is indeed possible that adding a mode decreases the average error while
raising the maximum error at a specific position in the contour. Consequently, one
can notice that the profile difference decrease is not regular, compared to the average
projection error decrease. The three capsules also provide quite different results. For
example, a maximal profile difference of 4.0% can be achieved with only 5 modes
for capsule B, whereas it requires 7 to 8 modes for the two other capsules. If we
consider that 5% is a fair accuracy for the capsule profiles, we can then conclude from
these results that 6 to 8 modes are required and sufficient to describe the capsule
deformation under these conditions. To obtain a profile difference below 2%, one
would have to take 10 to 15 modes in the POD basis. Additional modes are then
superfluous.

4.4.2 Shape approximation

We have built the rank-4 and rank-8 approximations of the shapes of capsule A,
and superimposed them onto the original shapes in order to qualitatively observe the
results of POD. We plot in Figure 4.17 the superimposition of 6 characteristic profiles
for both cases. The corresponding maximal profile differences are respectively 7.0%
and 3.2%. Despite these profile differences, one can see that the capsule shape is
globally well reproduced at every stage of the deformation, even with only 4 modes.
It seems especially true for the blue and purple profiles, for which it is hard to see a
difference between the rank-4 and rank-8 approximations. Small differences appear
at high curvatures on the yellow, orange and red profiles.

In order to observe the precision of the POD approximations more accurately, as
a function of time and number of modes, we have isolated 4 profiles in Figure 4.18,
and plotted their superimposition with the original shapes for 4, 6 and 8 modes in
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Figure 4.17: Superimposition of (a) rank-4 and (b) rank-8 approximations (black
dashed line) with their original shape (full color line), for 6 characteristic deformations
of capsule A. The black dot corresponds to the tracking of the material point.

the POD basis. Looking at the top row of Figure 4.18, one will firstly notice that
the rank-8 approximation is very accurate. The blue profile and its approximation
are fully superposed. It is possible to discern a small difference between the green
profile and its approximation. However, it remains largely negligible, as it is almost
within the line thickness. A larger difference occur at high curvature zones in the
yellow profile. The POD approximation basically cuts the curves, due to the lack
of modes representing these particular details. The difference is still of very weak
magnitude and can be neglected, and the approximation remains valid. Finally, the
rank-8 approximation fits the red profile very well, with an exception at the back tip
of the capsule. This tip does however not occur naturally, and is just an artifact due
to the manual contour detection. Every characteristic shape of capsule A is thus well
reproduced with only 8 modes.

To go further, we now look at the rank-6 and rank-4 approximations. The rank-6
approximation of the blue profile seems as accurate as the rank-8 one. The rank-
4 shape, however, presents a slight difference all along the contour, although it is
quite small and seems within an acceptable experimental error. The same remarks
are valid on the green profile, for which both rank-6 and rank-4 show a very small
profile difference. The largest difference among the three approximations is visible
on the yellow profile. The effect on the high curvatures, already visible for the rank-
8 approximation, is increased when the number of modes is decreased. Thus, the
curves in the profile area, located near the bifurcation tip, are smoothed. Contrarily
to the rank-8 approximation, the curve inversion is not reproduced anymore, and
the error does not lie within an acceptable experimental error. Finally, the rank-
6 approximation of the red profile is very similar to the rank-8 one. The rank-4
approximation shows larger differences, especially at the capsule apex. This area is
however prone to high experimental uncertainties, since it is very hard to determine
exactly where the membrane lies.
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Figure 4.18: Superimposition of 4 characteristic profiles of capsule A (full color line),
with their rank-8 (top row), rank-6 (middle row) and rank-4 (bottom row) POD
approximations (black dashed line). The black dot corresponds to the tracking of the
material point, the color dots correspond to the capsule mass center.

4.4.3 Shape interpolation

Following the previous analysis, we have kept only 6 modes in the POD basis, which
leads to a maximum profile difference around 5%. We present in Figure 4.19 the
corresponding temporal coefficients as a function of time. The coefficients that are
directly computed by means of the POD are represented as black dots (POD data).
They provide a sparse sampling of the time, defined by the snapshots that were
initially chosen. These data have been interpolated to obtain continuous values for
the temporal coefficients (full line in Figure 4.19).

One will first see that the first four temporal coefficients present a very smooth
evolution, so that the smoothing spline fit provides a very accurate approximation.
The interpolation errors for as between 0 ms and 200 ms are about 5% of the total
amplitude of ap, and about 1.5% of the total amplitude of a;y. The two last co-
efficients, as and «g, present more variations so that the fit becomes less efficient,
although it remains quite fair. Actually, the amplitude of the temporal coefficients
decrease rapidly with the mode order, so that the errors induced by the interpolation
of a5 and ag4 are negligible.
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Figure 4.19: Interpolation of the temporal coefficients a4 (t) to ag(t), resulting from
the POD analysis of the deformation of capsule A.

In order to interpolate capsule shapes with the POD method, one also requires to
interpolate the perimeter and mass-center evolution in time. We present these data
in Figure 4.20. One can see that the perimeter is subjected to relative variations of
about 4%, with a peak value that corresponds to the stretching of the capsule when it
is blocked at the bifurcation tip. The errors induced by the interpolation are inferior
to 1%, which is considered negligible. Finally, the mass-center position is continuous,
by essence, so that the spline fit is logically a valid approximation.
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Figure 4.20: Interpolation of the perimeter and mass-center position time-evolution
for capsule A.

As a result, the interpolated temporal coefficients can be used with the constant
POD basis to compute interpolated shapes. Combining them with the interpolated
perimeter and mass-center position, by inversely following the procedure presented
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in Section 2.2.3, we finally obtain the capsule shapes in the original Eulerian frame.
We can superimpose them onto the experimental images for a corresponding time to
qualitatively study the method efficiency. The results are shown in Figure 4.21.

Figure 4.21: Superimposition of the POD-approximated interpolated shapes (black
dashed line) onto the original images for 6 successive positions of capsule A in the
bifurcation.

Looking at Figure 4.21a, one can see that the method is very accurate to ap-
proximate the steady-state shape. The uncertainty on the profile is very similar to
what is obtained when one manually detects the capsule contour. The precision of
the rank-6 approximation with interpolation seems identical to that without inter-
polation (cf Figure 4.18). The shape at the outlet (Figure 4.21f), which is not yet
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