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Résumé

Introduction (English)

As the fourth most abundant element in the universe, Carbon plays an important role

in the emerging of life in earth as we know it today. The industrial era has seen this ele-

ment at the heart of technological applications due to the different ways in which carbon

forms chemical bonds, giving rise to a series of allotropes each with extraordinary phys-

ical properties. For instance, the most thermodynamically stable allotrope of carbon,

graphite crystal, is known to be a very good electrical conductor, while diamond very

appreciated for its hardness and thermal conductivity is nevertheless considered as an

electrical insulator due to different crystallographic structure compared to graphite. The

advances in scientific research have shown that crystallographic considerations are not

the only determining factor for such a variety in the physical properties of carbon based

structures. Recent years have seen the emergence of new allotropes of carbon struc-

tures that are stable at ambient conditions but with reduced dimensionality, resulting

in largely different properties compared to the three dimensional structures. These new

classes of carbon allotropes are namely: carbon nanotubes (one dimensional), fullerene

(zero dimensional), and the last discovered allotrope of carbon, also known as the first

two-dimensional material: graphene.

The successful isolation of monolayers of graphene challenged a long established belief in

the scientific community: the fact that purely 2D materials cannot exist at ambient con-

ditions. The Landau-Peierls instability theorem states that purely 2D materials are very

unstable due to increasing thermal fluctuations when the material in question extends

in both dimensions. To minimize its energy, the material will break into coagulated

islands, an effect known as island growth. Graphene happens to overcome such barrier

by forming continuous ripples on the surface of its substrate and thus is stable even at

room temperature and atmospheric pressure.

A great intention from the scientific community has been given to graphene, after the

first published results on the electronic properties of this material. Both fundamental

and mechanical properties of graphene are fascinating. Thanks to its carbon atoms

that are packed in a sp2 hybridized fashion, thus forming a hexagonal lattice structure,

graphene has the largest young modulus and stretching power, yet it is hundreds of

times stronger than steel. It conducts heat and electricity very efficiently, achieving an

electron mobility as high as 107 cm−2V−1 s−1 when suspended over the substrate.

The most fascinating aspect about graphene is the nature of its low energy charge car-

riers. Indeed, graphene has a linear energy dispersion at the charge neutrality, giving

the charge carriers in graphene a relativistic nature. Many phenomena observed in this
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material are consequences of this relativistic nature of its carriers. Ballistic transport,

universal optical conductivity, absence of back-scattering, and a new class of room tem-

perature quantum Hall effect are good examples of newly discovered phenomena in this

material.

Graphene has become an active research area in condensed matter physics since 2004.

It is however still early to state that all the physical properties of this material are

well understood. In this thesis we conducted magneto-Raman spectroscopy experiments

to address some of the open questions in the physics of graphene, such as the effect

of electron-electron coupling on the energy spectrum of monolayer graphene, and the

change in the physical properties of multilayer graphene as a function of the crystallo-

graphic stacking order. In all our experiments, the graphene-based systems have been

subject to strong continuous magnetic fields, applied normal to the graphene layers. We

study the evolution of its energy excitation spectra in the presence of the magnetic field,

and also the coupling between these excitations and specific vibrational modes that are

already in the system. This experimental approach allows us to deduce the band struc-

ture of the studied system in the absence of magnetic fields, as well as many other low

energy properties.

This work is organized as the following:

Chapter 1:

In the first chapter of the doctoral thesis, a general introduction to the physics of

graphene is established. We introduce its crystal structure, which is the constituent

base for other allotropes of carbon, including graphite and carbon nanotubes. Then its

electronic band structure at low energy is derived based on the tight binding model.

The case of multilayer graphene, with stacks of several layers one upon the other, is

discussed from a stacking geometry point of view: Bernal or rhombohedral. The band

structure which corresponds to each type of multilayer is then derived using a model

similar to the tight binding approach of monolayer graphene.

The application of a uniform magnetic field perpendicular to the surface of graphene

induces a quantization of its energy levels. This effect is also discussed for the case

of multi-layer graphene in both types of stacks Bernal or rhombohedral, and for bulk

graphite.

Chapter 2:

In chapter 2 the experimental technique, called Raman spectroscopy and used along the

thesis, is discussed. Firstly, we introduce the Raman scattering effect which is the basis

of this spectroscopic technique. We will discuss the selection rules for Raman scattering

and the most prominent vibrational modes in the Raman spectra of graphene and mul-

tilayer graphene.
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We will trace the work that has been done so far on graphene and multilayer graphene

using Raman spectroscopy. How this experimental technique allows to extract a large

number of information on the studied system: such as the number of layers, the crys-

tallographic order, and the presence of charge doping or mechanical strain.

The effect of magnetic field on the excitation spectra is then discussed. Two major ef-

fects will be highlighted: (i) The inter-band electron-hole excitations between Landau

levels, which are observed in the Raman spectra of graphene in a magnetic field. (Ii) The

coupling between the Raman modes in graphene and the inter-Landau level transitions.

Chapter 3:

In chapter 3, we introduce the experimental tools that were necessary to achieve this

thesis. Firstly, we discuss the micro-Raman spectroscopy tool at room temperature,

necessary for the characterization of samples. Then, we introduce the apparatus for

magneto-Raman spectroscopy at low temperatures. It comprises a micro-Raman probe

that is operational at liquid helium temperature, placed into the cryostat. The cryostat

is coupled to an electromagnet which delivers a continuous magnetic field up to 30 Tesla.

For Raman spectroscopy at low frequencies, the free beam Raman probe is presented

along the triple stages spectrometer which allows a maximum filtering of the scattered

light.

Chapter 4:

In chapter 4, we discuss results in our magneto-Raman study of graphene and graphene

bilayer structures on top of hexagonal boron nitride layers. In magnetic fields up to 30

Tesla, we trace the evolution of inter-Landau levels electronic excitations. We also study

the coupling of Raman modes at the Gamma point with the electronic excitations in

these systems.

This study highlights the effects of Coulomb interactions for charge carriers in graphene.

The Coulomb interactions are manifested by a band velocity changing logarithmically as

a function of the magnetic field, and as a function of the Landau level index. This band

velocity re-normalization is in clear contrast to the single particle picture, usually used

to describe the electronic properties of graphene. However, our results confirm recent

studies on the effect of the Coulomb interactions on the dispersion of the energy bands

at the charge neutrality point.

The experimental results are reproduced by a theoretical model based on first order

perturbation theory and the random phase approximation.

Chapter 5:

Chapter 5 is devoted to the results obtained in the magneto-Raman study of multilayer

graphene with rhombohedral stacking of its atomic layers. This work was motivated by

the lack of consistent study of the band structure of rhombohedral multilayer graphene
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with a number of layers greater than four. Especially that some theoretical work sug-

gested that this stacking hosts strongly correlated electrons, in which new effects can be

observed, such as ferromagnetism and superconductivity.

Using magneto-Raman spectroscopy, we trace the changes in magnetic field of the elec-

tronic excitations in a graphene flake partially suspended over the substrate. The anal-

ysis of this dispersion by a theoretical model, based on the tight binding approach,

allowed to deduce a pure rhombohedral stacking of graphene layers up to 15.

Another region in the flake shows signatures of the two types of stacking: Bernal and

rhombohedral. The magneto-Raman study of this mixed stacking has a very rich elec-

tronic excitation spectrum, but that can be reproduced theoretically by a simple model

with only two free parameters.

Annex:

In the appendix we discuss the methods of manufacturing that were followed to produce

the structures studied in this thesis and presented in chapters 4 and 5: (i) graphene

encapsulated within boron nitride. (ii) multilayer rhombohedral graphene.

The calculations of the Raman contrast in chapter 5 are also explained in details.
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Introduction (Français)

Comme le quatrième élément le plus abondant dans l’univers, le carbone joue un rôle

important dans l’émergence de la vie sur la terre comme nous la connaissons aujourd’hui.

L’ère industrielle a vu cet élément au cœur des applications technologiques en raison des

différentes façons dont les atomes forment les liaisons chimiques, ce qui donne lieu à une

série d’allotropies chacun ayant des propriétés physiques extraordinaires. Par exemple,

l’allotrope le plus thermodynamiquement stable du carbone, le cristal de graphite, est

connu pour être un très bon conducteur électrique, tandis que le diamant, très appré-

cié pour sa dureté et sa conductivité thermique, est néanmoins considéré comme un

isolant électrique en raison de sa structure cristallographique différente par rapport au

graphite. Les progrès de la recherche scientifique ont montré que les considérations

cristallographiques ne sont pas le seul facteur déterminant pour une telle variété dans

les propriétés physiques des structures à base de carbone. Ces dernières années ont vu

l’émergence de nouvelles formes allotropiques de structures de carbone qui sont stables

dans les conditions ambiantes, mais avec dimensionnalité réduite, ce qui entraîne des

propriétés largement différentes par rapport aux structures en trois dimensions. Ces

nouvelles classes d’allotropes de carbone sont notamment : les nanotubes de carbone (à

une dimension), fullerène (zéro dimension), et le dernier allotrope découvert du carbone,

également connu comme étant le premier matériau à deux dimensions : le graphène.

L’isolation réussi de monocouches de graphène a contesté une croyance établie depuis

longtemps dans la communauté scientifique : le fait que les matériaux purement 2D

ne peuvent pas exister dans les conditions ambiantes. Le théorème d’instabilité de

Landau-Peierls atteste que les matériaux purement 2D sont très instables en raison de

l’augmentation des fluctuations thermiques lorsque le matériau en question se prolonge

dans les deux dimensions. Afin de minimiser son énergie, le matériau se brisera en îlots

coagulées, un effet connu comme la croissance des îlots. Le graphène arrive cependant à

surmonter cette barrière en formant des ondulations continues sur la surface du substrat

et est stable même à température ambiante et pression atmosphérique.

Une grande intention de la part de la communauté scientifique a été donnée au graphène,

après les premiers résultats publiés sur les propriétés électroniques de ce matériau. Les

propriétés fondamentales et mécaniques du graphène sont fascinants. Grace aux atomes

de carbone qui sont emballés dans un mode sp 2 hybridé, formant ainsi une structure

de réseau hexagonal, le graphène possède le plus grand module de Young et la plus

grande capacité d’étirement, en même temps des centaines de fois plus dur que l’acier.

Il conduit la chaleur et l’électricité de manière très efficace, réalisant ainsi une mobilité

électrique aussi élevé que 10 7 cm −2 V −1 s −1 lorsque suspendu au-dessus du substrat.

L’aspect le plus fascinant à propos du graphène est surement la nature de ses porteurs de

charge à basse énergie. En effet, le graphène présente une dispersion d’énergie linéaire
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au point de neutralité de charge, donnant aux porteurs de charge dans le graphène

une nature relativiste. De nombreux phénomènes observés dans ce matériau sont des

conséquences de cette nature relativiste de ses porteurs. Le transport balistique, la con-

ductivité optique universelle, absence de rétrodiffusion, et une nouvelle classe d’effet Hall

quantique à température ambiante sont de bons exemples de phénomènes nouvellement

découverts dans ce matériau.

Le graphène est devenu un domaine de recherche actif en physique de la matière con-

densée depuis 2004. Il est cependant encore trop tôt pour affirmer que toutes les pro-

priétés physiques de ce matériau sont bien comprises. Dans cette thèse, nous avons

mené des expériences de spectroscopie magnéto-Raman pour répondre à certaines des

questions ouvertes dans la physique du graphène, notamment l’effet de couplage électron-

électron sur le spectre d’énergie du graphène monocouche, et le changement dans les pro-

priétés physiques du graphène multicouche en fonction de l’ordre d’empilement cristallo-

graphique. Dans toutes nos expériences, les systèmes à base de graphène ont été soumis

à de forts champs magnétiques continus, appliqués perpendiculairement aux couches de

graphène. On étudie l’évolution de son spectre d’excitation d’énergie en présence du

champ magnétique, ainsi que le couplage entre ces excitations et des modes vibratoires

spécifiques. Cette approche expérimentale permet de déduire la structure de bande du

système étudié, en l’absence de champs magnétiques, ainsi que de nombreuses autres

propriétés à faible énergie.

Ce travail de thèse est organisé comme suit :

Chapitre1 :

Dans le premier chapitre de ce manuscrit de thèse, une introduction générale à la

physique du graphene est établie. On introduira sa structure cristalline qui est la base

constituante de plusieurs autres allotropes du carbone, notamment le graphite et les

nanotubes de carbone. Ensuite sa structure de bande électronique a basse énergie est

dérivée en se basant sur le model des liaisons fortes. Le cas du graphene multicouche,

avec des empilements de plusieurs couches l’une sur l’autre, est discuté dans une per-

spective de géométrie d’empilement : Bernal ou rhomboédrique. La structure de bande

qui correspond à chaque type d’empilement est ensuite dérivée à l’aide d’un model sim-

ilaire à celui de la monocouche.

L’application d’un champ magnétique uniforme perpendiculaire à la surface du graphene

induit une quantification des niveaux d’énergies électroniques. Cet effet est aussi dis-

cuté pour les cas du graphene multicouches dans les deux types d’empilements Bernal

et rhomboédrique, et le graphite.

Chapitre2 :

Dans le chapitre 2 la technique expérimentale, appelé spectroscopie Raman et utilise le
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long de cette thèse, est discutée. On introduit tout d’abord l’effet de diffusion Raman qui

est à la base de cette technique de spectroscopie. On discutera les règles de sélections de

la diffusion Raman et les modes vibrationnels les plus observes dans les spectres Raman

du graphene et graphene multicouche.

On retracera les travaux de spectroscopie Raman qui ont été fait jusqu’à présent sur le

graphene et le graphene multicouches. Comment cette méthode expérimentale permet

d’avoir un nombre important d’informations sur le system étudie, tel que le nombre de

couches, le type d’empilent, mais aussi la présence de dopage ou de tension mécanique.

L’effet du champ magnétique sur les spectres d’excitations est ensuite discuté. Deux

effets majeurs seront mis en évidence : (i) Les excitations inter-bande de type électron-

trou entre niveaux de Landau, qui sont observé dans les spectres Raman du graphene

sous champ magnétique. (ii) Le couplage entre les modes Raman dans le graphene est

les excitations électroniques inter-bande dans sa structure de niveaux de Landau sous

champ magnétique.

Chapitre3 :

Dans le chapitre 3 on introduit les outils expérimentaux nécessaires à la réalisation de ce

travail de thèse. Tout d’abord en discute l’outil de spectroscopie micro-Raman à tem-

pérature ambiante, nécessaire à la caractérisation des échantillons. Ensuite on introduit

l’appareillage pour la spectroscopie magnéto-Raman a basse température. Il comprend

la sonde micro-Raman qui est opérationnelle a température de l’Hélium liquide, et qui

peut être introduite dans le cryostat. Ce cryostat est couplé à un électro-aimant qui

délivre un champ magnétique continue jusqu’à 30 Tesla.

Pour la spectroscopie Raman a basse fréquence, on discute la sonde Raman à espace

libre, et le spectromètre à trois étages qui permet un filtrage maximal de la lumière

diffusée.

Chapitre4 :

Dans le chapitre 4 nous discuteront les résultats obtenus dans notre étude magnéto-

Raman sur des structures de graphene et graphene bicouche sur des couches de nitrure

de bore hexagonal. Dans des champs magnétiques allant jusqu’à 30 Tesla, on trace

l’évolution des excitations électroniques inter-niveaux de Landau. En étudie aussi le

couplage des modes Raman au point Γ avec les excitations électroniques dans ces sys-

tèmes.

Cette étude permet de mettre en évidence les effets de l’interaction Coulombienne pour

les porteurs de charges dans le graphene. Ces interactions Coulombienne se manifestent

par une vitesse de bande qui évolue de manière logarithmique en fonction du champ mag-

nétique, ainsi qu’en fonction de l’indice du niveau de Landau. Cette re-normalisation

de la vitesse de bande va à l‘encontre du modèle de la particule libre, longuement utilisé

pour décrire les propriétés électroniques du graphene. Cependant, nos résultats viennent
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confirmer de récentes études sur l’effet de l’interaction Coulombienne sur la dispersion

des bandes d’énergie au niveau de Fermi.

Les résultats expérimentaux sont reproduits par un modèle théorique se basant sur la

théorie des perturbations ainsi que l’approximation de phase aléatoire.

Chapitre5 :

Le chapitre 5 est consacré aux résultats obtenues dans l’étude magnéto-Raman du

graphene multicouche avec empilement rhomboédrique de ces couches atomiques. Ce tra-

vail a été motivé par l’absence d’étude consistante de la structure de bande du graphene

multicouche rhomboédrique avec un nombre de couche supérieur à quatre. Surtout que

certains travaux théoriques proposent cet empilement comme un système électronique

fortement corrélés, dans lequel de nouveaux effets peuvent être observés, tel que le fer-

romagnétisme et la supraconductivité.

En utilisant la spectroscopie magnéto-Raman, on a tracé l’évolution en champ magné-

tique des excitations électroniques dans un flocon de graphene partiellement suspendu

sur le substrat. L’analyse de cette dispersion par un modèle théorique, basé sur la méth-

ode des liaisons fortes, a permis de déduire un empilement rhomboédrique d’un nombre

de couches allant jusqu’à 15.

Une autre région dans le flocon présente les deux types d’empilement : Bernal et

rhomboédrique. L’étude magnéto-Raman de cet empilement mixte présente un spec-

tre d’excitation électroniques très riche, mais qui peut être reproduit théoriquement par

un simple model a deux paramètres libres.

Annexe :

Dans l’annexe en discute les méthodes de fabrications qui ont été suivies pour produire

les structures étudié dans ce travail de thèse et présenté dans les chapitres 4 et 5 : (i)

graphene encapsule dans du nitrure de bore. (ii) graphene multicouche rhomboédrique.

Les calculs du contraste Raman dans le chapitre 5 y sont aussi detaillés.
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Chapter 1

Introduction to graphene

multilayers

1.1 Graphene monolayer

1.1.1 Crystal structure

Carbon atom, which is the basic constituent of graphene, graphene multilayers, and

graphite crystals, is a chemical element from the periodic table (symbol: C) with an

atomic number Z = 6. Although carbon atoms usually contain 6 protons and 6 elec-

trons with a varying number of neutrons, the two most stable isotopes on earth are C12

(6 protons, 6 neutrons) and C13 (6 protons, 7 neutrons) [1]. In order to understand the

crystallographic structure of graphene and graphene-based structures in general, it is

useful to review the basic chemical bonding properties of carbon atoms. Since C12 is by

far the most stable configuration of the carbon atom [1], all our studies will be focused

on this isotope.

In the ground state, the electronic configuration of the carbon atom is 1s2 2s2 2p2

[2]. Thus, the inner shell 1s, which is close to the nucleus and is irrelevant for chemical

reactions, is filled with two electrons. Another four electrons occupy the outer shell of

the 2s and the 2p orbitals. Because the 2p orbitals (2px, 2py, and 2pz) are roughly 4

eV higher in energy than the 2s orbital, it is energetically favorable to put two electrons

in the 2s orbital and only two of them in the 2p orbitals (see Figure 1.1). It turns out,

however, that in the process of chemical bonding with other atoms, such as hydrogen

or oxygen, it is favorable for the carbon atom to excite one electron from the 2s to

the 2pz orbital, in order to form covalent bonds with the other atoms. In the excited

state, we therefore have four equivalent quantum-mechanical states |2s〉, |2px〉, |2py〉,

1
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Figure 1.1: Electronic configurations for carbon in the ground state (left panel) and
in the excited state (right panel). The 2s and the (px, py) will hybridize to form the

sp2 orbital (region boxed in red), leaving one electron in the pz orbital.

and |2pz〉. A quantum-mechanical superposition of the state |2s〉 with n |2pi〉 states is

called spn hybridization. The sp1 hybridization, for example, plays an important role

in the context of organic chemistry (such as the formation of acetylene) and the sp3

hybridization gives rise to the formation of diamond. However, our focus will be on

the sp2 hybridization, which is the basic ingredient for the covalent bonds in graphene,

graphene multilayers, and bulk graphite. Figure 1.2a shows the crystal structure of

monolayer graphene, where the carbon atoms are arranged in a so-called honeycomb or

hexagonal lattice [2]. The crystallography of graphene is a consequence of the sp2 hy-

bridization, the three sp2-hybridized orbitals are oriented in the atomic plane and have

mutual 120◦ angles, while the remaining non hybridized 2pz orbital is perpendicular to

the atomic plane [3]. As a consequence, the in plane sp2 orbitals for the carbon atoms

overlap, giving rise to the so-called σ bonding. The associated wave function with the σ

bonding is highly localized in the space between the atoms, which makes it responsible

of the amazing mechanical properties of graphene. On the other hand, the remaining

non hybridized 2pz orbital will weakly overlap with the 2pz of the adjacent atoms, thus

forming the so-called π bonding. In graphene, it is the π bonding that will contribute

to the electronic properties of this material.

As we discussed above, the carbon atoms in graphene are arranged in a honeycomb

lattice due to their sp2 hybridization. The honeycomb lattice of graphene does not sat-

isfy the symmetry conditions to be a Bravais lattice, and this is easily understood by

the following observation: any translation by a vector that is connecting two nearest

neighboring atoms cannot conserve the symmetry of the lattice. Taken alone, the trian-

gular atomic sublattices A or B (indicated by black and blue colored dots in Figure 1.2a

respectively) are Bravais lattices. Graphene hexagonal lattice can thus be considered as

a hexagonal Bravais lattice with a basis of two atoms, labeled A and B [4].
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Figure 1.2: (a) Graphene honeycomb lattice. The vectors a1 and a2 are basis vectors
of the triangular Bravais lattice. The unit cell is indicated by the blue shaded region.
(b) Atomic orbitals of the hexagonal lattice. The hybridized sp2 orbitals are located
in the atomic plane between adjacent carbon atoms, forming σ bonds. The remaining
pz orbital for each atom is out of plane, forming π bonding with adjacent atoms. (c)
Reciprocal lattice of the triangular lattice. Its primitive lattice vectors are b1 and b2.

The shaded grey region represents the first Brillouin zone (BZ).

In the following, we will use a Cartesian coordinate system with x and y axes in the

atomic plane, and a z axis perpendicular to the graphene plane. The in-plane vectors

will thus be expressed in terms of x and y coordinates, so that the primitive vectors for

the A or B sublattices can be expressed as following:

a1 =

(√
3a

2
,
a

2

)

, a2 =

(

−
√

3a

2
,
a

2

)

, (1.1)

where a = |a1| = |a2| = 2.46 A◦ is the lattice parameter (i.e., the distance between

unit cells). The lattice parameter is related to the carbon-carbon bond length by:

aCC = a/
√

3 = 1.42 A◦ [2].

From the triangular Bravais lattice, we define the associated reciprocal lattice. The vec-

tors of the reciprocal lattice b1 and b2 are defined as to satisfy the relation ai.bj = 2πδij
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(δij = 1 if i = j and δij = 0 otherwise), thus taking the form:

b1 =

(

2π√
3a

,
2π

a

)

, b2 =

(

− 2π√
3a

,
2π

a

)

. (1.2)

The resulting reciprocal lattice of graphene (as shown in Figure 1.2c) is a hexagonal

Bravais lattice. We can now define the unit cell of the reciprocal lattice, or the first

Brillouin zone (BZ) as the set of nonequivalent points that cover all the reciprocal space

by translational symmetry [5].

For the reciprocal lattice of graphene, the first Brillouin zone is hexagonal (shaded grey

region in Figure 1.2c). A set of high symmetry points are defined in the BZ of graphene,

as seen in Figure 1.2c. The Γ point lies at the center of the BZ, while K and K′ points

are located at its corners, intersected by the points M and M′. As we will show in the

next section about the energy dispersion in monolayer graphene, it is at the corners of

the BZ (i.e., K and K′) that the valence and the conduction bands are touching each

other. Their coordinates in the reciprocal space are [4]:

K =

(

2π√
3a

,
2π

3a

)

, K′ =

(

2π√
3a

, −2π

3a

)

. (1.3)

Therefore, most of the low energy electronic properties of graphene and multilayer

graphene are described by the band dispersion around the K and K′ points.

1.1.2 Band structure

Figure 1.3: Energy dispersion in conventional semi-conductors (left panel) compared
to the energy dispersion in graphene (right panel). Graphene is seen as a zero gap semi

conductor.

So far, conventional two dimensional electron gas in condensed matter systems always

exhibit a parabolic-like dispersion (see Figure 1.3), characteristic of their massive par-

ticles. The non-relativistic Schrödinger equation dominates the behavior of particles

in these systems. However, the energy dispersion, observed in monolayer graphene, is
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(a) (b) (c)

(e)

(d)

Figure 1.4: (a) A four terminal bar is used to perform transport studies in graphene
[6]. (b) Graphene’s conductivity as a function of the gate voltage. (c) Ambipolar
electric field effect in monolayer graphene. The insets show the low energy Dirac cone
dispersion, indicating changes in the position of the Fermi energy EF with changing
gate voltage Vg. Positive (negative) Vg induce electrons (holes) doping [7]. (d) Hall
conductivity (red) and longitudinal resistivity (blue) for monolayer graphene at T =
300 K and B = 29 T [8]. (e) Schematic diagram of the Landau level density of states
(DOS) and the corresponding quantum Hall conductance (σxy) as a function of the

energy [9].

linear at low energy [6] and thus, resembles the conical dispersion of light in the theory

of relativity. This has considerable consequences in the study of low energy carriers in

graphene. Since the Schrödinger equation fails to describe the electronic properties of

such particles, charge carriers in monolayer graphene are governed by the Dirac equa-

tion [7]. Consequently, graphene is seen as a system that offers the possibility to study

quantum electrodynamics phenomena using simple experimental set ups.

In the following we will give a few examples on how the peculiar band structure of

monolayer graphene allowed important discoveries on this material, that are of major

interest both for fundamental science and technological applications. We will also give

a derivation of its low energy band dispersion.

In the course of 2005, two papers appeared simultaneously in the journal Nature re-

porting the first experimental studies on monolayer graphene by means of transport

measurements [6, 9]. In these studies, Novoselov et al. [6] observed a linear dependence

of the resistivity as a function of the gate voltage in an exfoliated graphene flake (Figure

1.4a,b), which is a behavior characteristic of particles with zero rest mass. Both studies
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reported the observation of an unusual quantum Hall effect (QHE), different from the

integer QHE observed in standard two dimensional electron gas systems, with quantized

plateaus that are shifted by half an integer [6, 9]. These magneto-transport measure-

ments show that graphene is characterized by a zeroth Landau level for both electrons

and holes, located at the Fermi level (see the Landau levels density of states in Figure

1.4e). The QHE in graphene can be observed even at room temperature (Figure 1.4d),

as was reported shortly after the discovery of graphene [8].

Two of the most remarkable findings in graphene are the absence of back-scattering

[10, 11] and the universal optical conductivity [12, 13]. The absence of back-scattering,

also known as Klein tunneling [14], is characteristic of particles that obey the Dirac

equation. It pushes the charge carriers to tunnel through long potential barriers with no

probability of being back-scattered. This makes the charge carriers in graphene travel

ballistically thousands of inter-atomic distances without scattering [6, 7, 9, 15, 16]. The

absorbance of light by graphene is found to be independent of the frequency of incident

light and has a magnitude given by πα ∼ 2.9%, where α is the fine structure constant

of quantum electrodynamics. Hence, in monolayer graphene, the absorbance of light is

universal, and is given by α which describes the strength of interaction between light

and matter.

These findings triggered a rapid interest in graphene, which is seen as a suitable system

to study the rich physics of relativistic quantum effects in a simple bench-top experiment.

Low energy dispersion of the honeycomb lattice:

The band structure calculations for graphene go back to the first work by Wallace in 1947

[17]. Since then, many theoretical works that describe the band dispersion of electrons

in graphene and graphene based-systems have been published [17–19]. The amount of

scientific research on the physical properties of this material increased significantly after

its first experimental isolation, the observation of an ambipolar electric field effect as

well as a half integer QHE [6, 9, 15, 20].

To calculate the low energy band structure of graphene, the tight binding (TB) method

is the easiest approach. Within this method, only the energy bands of the π orbitals are

taken into account, since the σ orbitals have energies far from the Fermi level, they do

not play any significant role in describing the electronic properties of this material.

Our unit cell has two atoms, thus we may introduce a total wave function for the system

as the following [2]

ψk(r) = akψA
k (r) + bkψB

k (r), (1.4)
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where (ak,bk) are complex coefficients, and (ψA
k ,ψB

k ) are the so-called Bloch’s wave

functions for the sublattices A and B respectively, defined as:

ψ
(j)
k (r) =

∑

Rl

ei(k.Rl)ϕ(j)(r + δj − Rl), (1.5)

where j = α or β labels the atoms of the two sublattices A and B. The vectors δj

connects sites of the Bravais lattice with the site of the j atom inside the unit cell. The

ϕ(j)(r+δj −Rl) are atomic orbitals for electrons in the vicinity of the j atom at position

Rl − δj at the lattice site Rl.

Now let us seek solutions to the Schrodinger equation Hψk = ǫkψk. We rewrite the

equation in a matrix form:

ψ∗
kHψk = ǫkψ∗

kψk ⇒ (a∗
k, b∗

k) Hk





ak

bk



 = ǫk (a∗
k, b∗

k) Sk





ak

bk



 (1.6)

Where:

Hk =





ψ
(A)∗
k Hψ

(A)
k ψ

(A)∗
k Hψ

(B)
k

ψ
(B)∗
k Hψ

(A)
k ψ

(B)∗
k Hψ

(B)
k



 = H†
k, (1.7)

is the Hamiltonian matrix, and:

Sk =





ψ
(A)∗
k ψ

(A)
k ψ

(A)∗
k ψ

(B)
k

ψ
(B)∗
k ψ

(A)
k ψ

(B)∗
k ψ

(B)
k



 = S†
k, (1.8)

is the overlap matrix that accounts for the non orthogonality of the wave functions. The

energy band dispersion is obtained from the eigenvalues of ǫk of the secular equation [2]:

A

B2

a
1

a
2

a
3

B1

B3

y

x

 3

 1  2

Figure 1.5: Tight binding
model for graphene honeycomb

lattice.

det[Hk − ǫλ
kSk] = 0, (1.9)

where λ accounts for the number of energy bands.

As shown in Figure 1.5a by red arrows, we introduce

the vectors that connect the sites on sublattice A with

a next neighbor (nn) on the sublattice B as:

δ1 =
a

2

(

−
√

3ex + ey

)

, δ2 =
a

2

(√
3ex − ey

)

, δ3 = aey,

(1.10)

where (ex, ey) are unitary vectors along the {x, y} axes.

In the following, we choose the Bravais lattice to be

the A sublattice, i.e., δA = 0 and δB = δAB = δ3 (see

Figure 1.5).

To go further in the resolution of the secular equation, we rewrite the Hamiltonian as:

H = Ha + ∆V , with: Ha = −(~2/2m)∆ + V (r + δj − Rl) being the Hamiltonian of
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an atomic orbital, and ∆V is a perturbation part that accounts for other interactions

that are not included in Ha. By injecting (1.5) in the secular equation, the following

quantities appear:

tnnn =

∫

d2rϕA∗(r)∆V ϕB(r + a1), (1.11)

t =

∫

d2rϕA∗(r)∆V ϕB(r + δ3), (1.12)

s =

∫

d2rϕA∗(r)ϕB(r + δ3), (1.13)

these quantities are called: next nearest-neighbors (nnn) hopping amplitude, nearest-

neighbors (nn) hopping amplitude, and the overlap correction, respectively. By intro-

ducing the sum of the nn phase factors [2] γk ≡ 1 + eik.a2 + eik.a3 , one can define the

following matrix elements:

tAA
k = tBB

k = 2tnnn

3
∑

i=1

cos(k.ai) = tnnn(|γ∗
k|2 − 3), (1.14)

tAB
k = tγ∗

k = (tBA
k )∗, (1.15)

sAB
k = sγ∗

k = (sBA
k )∗, (1.16)

the secular equation (1.9) will transform as the following:

det





tAA
k − ǫk (t − sǫk)γ∗

k

(t − sǫk)γk tAA
k − ǫk



 = 0, (1.17)

which yield for λ = ±1 the following energy dispersion [2]:

ǫλ
k =

tAA
k + λt|γk|
1 + λs|γk| . (1.18)

Based on the fact that (s, tnnn) << 1, our dispersion relation will take the form:

ǫλ
k = 2t

′

nnn

3
∑

i=1

cos(k.ai) + λt

√

√

√

√3 + 2
3

∑

i=1

cos(k.ai), (1.19)

where we have introduced the effective next nn hopping amplitude t
′

nnn = tnnn − st.

Since each carbon atom contributes one π electron with either a spin up or a spin down

state, the lower band with λ = −1, also called the valence band, will be completely filled

and the one with λ = 1 will be completely empty. The Fermi level is, therefore, located

at the points where the valence and conduction bands touch each other. Knowing that

the Dirac points are located where the energy dispersion is zero, the coordinates of the
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Dirac points are easily obtained by solving: ǫλ
k,D = 0 . This yields:

kD = ±
(

2π√
3a

,
2π

3a

)

. (1.20)

The Dirac points are thus exactly located at the corners of the BZ: kD = ±K.

The Dirac Hamiltonian:

We will now focus on the energy dispersion around the ±K, where most of the electronic

properties are located. We introduce the following Hamiltonian [2, 4]:

Hk = tnnn|γk|2I + t





0 γ∗
k

γk 0



 . (1.21)

Here, I is the (2 × 2) identity matrix I =





1 0

0 1



. The eigenstates of such a Hamil-

tonian are spinors:

Ψλ
k =

1√
2





1

λeiϕk



 , (1.22)

where ϕk = arctan(Imγk/Reγk).

Around the ±K points, the wave vector is given by: q = ±K + k, where |k| << |K| ∼
1/a ⇒ |k|a << 1.

By multiplying the sum of the phase factors by eik.δ3 and expanding to the first order

in ka, we will have:

γ±
k = ∓3a

2
(kx ± iky), (1.23)

this yields the so-called Dirac Hamiltonian:

Hk = ±~υF (kxσx ± kyσy), (1.24)

where we have defined the Fermi velocity for graphene:

υF ≡ 3|t|aCC

2~
, (1.25)

and (σx, σy) are Pauli matrices defined by:

σx =





0 1

1 0



 , σy =





0 −i

i 0



 . (1.26)
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(a) (b)

Figure 1.6: (a) Energy dispersion in monolayer graphene as a function of the wavevec-
tor components kx and ky, obtained from the tight-binding calculations. We set
tnnn = 0.1t. The Fermi level is situated at the points where the valence band touches
the conduction band. (b) Zoom on the low linear energy dispersion at the corners of

the BZ, where the Dirac cone is located [21].

By setting σ ≡ (σx, σy), p = ~|k|, and introducing the unit vector n1, the Dirac Hamil-

tonian will have the final form [2, 4]:

Hk = υF pσ.n1, (1.27)

the energy dispersion will therfore reads [2, 4, 6]:

ǫq,λ = λ~υF |k|. (1.28)

The low energy dispersion in monolayer graphene (at the corners of the BZ) is then

linear with the wave-vector k, as seen in Figure 1.6b. This linear dispersion became a

fingerprint of monolayer graphene. The particles described by (1.28) are called massless

Dirac Fermions [6], and their low energy dispersion in monolayer graphene (in the single

particle approximation) at the corners of the BZ are since known as the Dirac cone.

1.2 Multilayer graphene and graphite

The discovery of massless Dirac fermions in graphene, and the rich physics that is offered

in this system, re-surfaced an increasing interest on its parent crystal, bulk graphite.

Experiments have shown that the band structure of graphene is strongly altered when
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Figure 1.7: Band structure of multilayer graphene changes when changing the number
of graphene layers on the system [22].

adding single layers of graphene on top of each other [22]. The band structure of graphene

can be engineered by tuning the number of layers and their stacking configuration (see

Figure 1.7), which offers a high degree of freedom to tune its electronic properties. In

the following section we will introduce many layer graphene systems, and present their

properties that are intimately related to the symmetry of the crystal and the number of

graphene sheets coupled to each other.

1.2.1 Bernal vs rhombohedral stacking

Graphite, the parent crystal from which graphene is produced by mechanical cleavage

or exfoliation, has a layered, planar structure (Figure 1.8a). Each layer is a sheet of

graphene, weakly bonded to other layers via the Van der Waals (VdW) interactions [23].

!"

!#

!$
!%

Figure 1.8: Crystal structure of bilayer
graphene with the corresponding hopping pa-

rameters.

Two different forms of crystallographic

stacking configurations are known in

graphite crystals; the most thermodynam-

ically stable configuration is the Bernal

or ABA stacking [23], while the other

is known as the rhombohedral or ABC

stacked multilayer graphene [24].

Soon after the discovery of graphene, it

has been shown that the low energy linear

dispersion changes drastically when stack-

ing graphene layers on top of each other

to make multilayer graphene (N-LG, N is

the number of monolayers) [25, 26]. Since
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Figure 1.9: (a) Schematics of the layered structure found in graphite crystals, where
each atomic plane represents a monolayer graphene sheet. (b) Schematics of the crystal
structure of ABA and ABC N-LG. Open circles and black dots are carbon atoms of the
A and B sublattices, respectively. (c) Side views of the unit cells of ABA and of ABC

N-LG.

Bernal-stacked graphite occurs much more in graphite crystals than the rhombohedral

stacking [27], the physical properties of Bernal stacked N-LG have been much more in-

vestigated since the past decade than the rhombohedral stacked N-LG.

Bilayer graphene, which represents the basic unit cell of N-LG, has been shown to hold a

very interesting physics after the discovery of an anomalous quantum Hall effect (QHE)

by Novoselov et al. in this system [28]. Consequently, despite the parabolic energy

dispersion in bilayer graphene, charge carriers in this material do not behave exactly

like typical massive particles, which led to naming these carriers as chiral massive Dirac

fermions.

The observation of an electrically tunable band gap in bilayer graphene [29], relevant

for transistor based electronics, made this system a serious candidate for technological

applications, since such an effect cannot exist in monolayer graphene. Moreover, bilayer

graphene electronic structure has been very useful in the study of N-LG (N≥3) physical

properties, where the theoretical and experimental investigation of the band structure

evolution of ABA N-LG is shown to be accounted for by a so-called effective bilayer

model [30, 31]. In this model, the band structure of Bernal stacked N-LG is seen as a

series of graphene bilayers coupled to one another. A 4×4 Hamiltonian, as for bilayer

graphene, is used to obtain the low energy dispersion, but with an effective inter-layer

coupling that changes its value as a function of the number of ABA stacked layers in

the system.

The ABC stacking is less common in natural graphite crystals; the exfoliated thin

graphite flakes usually display an ABA stacking configuration, while the ABC sequence,
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if it exists, is very thin. About 3 to 5 ABC-stacked layers have been reported in litera-

ture so far [27, 32–38]. Due to this, most of the optical and transport studies on N-LG

(N ≫ 3) were centered around the ABA stacking. Nevertheless, theoretical studies of

the band structure of ABC stacked N-LG, from 3-LG to the bulk limit have shown a

promising rich physics in this material. Due to the existence of nearly flat bands at the

charge neutrality point, that extend over a larger region in k-space when the ABC se-

quence gets longer, high correlation effects are expected in this system as a consequence

of the highly degenerate density of states, such as magnetic order or superconductivity

[39–41].

Recent experimental investigations of ABC 3-LG and 4-LG have shown the existence of

a large electrically tunable band gap [37, 38], and an anomalous QHE [34] with massive

chiral particles. These studies point to the important role of high correlations in this

system, even for the thinnest 3 to 4 ABC-stacked layers.

Throughout the following sections, we will adopt a similar approach as for monolayer

graphene, by using a tight binding model with several hopping parameters. Either by

considering an ABA or an ABC stacking, the starting point for the band structure cal-

culation for N-LG is the bilayer graphene, where one graphene monolayer is on top of

another graphene layer. From a historical point of view, this approach was used by

Slonczewski, Weiss and McClure [18, 19], in which they used the bilayer graphene as the

unit cell to model the band structure of bulk graphite. Their model became known in

the literature as the SWM model.

In the SWM model, the band structure calculations are based on a tight binding ap-

proach for the π electrons, similar to monolayer graphene. Several hopping integrals are

introduced to describe interactions with different neighboring atoms, both in the same

layer and the adjacent layers. Figure 1.8 is a schematic presentation of these hopping

parameters, where we have used the same symbolic as in the original papers. The to-

tal number of these parameters is seven [18, 19], and computing the eigenvalues of the

Hamiltonian with all these parameters happens to be a tedious approach. On the other

hand, for the sake of low energy physics in graphene multilayers, it is sufficient in some

cases to keep only the two parameters describing interactions with the nearest neigh-

boring atoms in the same layer γ0, and across adjacent layers γ1. These two hopping

parameters are enough for describing the low energy properties of graphene and N-LG

systems.

1.2.2 Band dispersion in Bernal stacked multilayer graphene

Using the full SWM model, B. Partoens and F.M. Peeters [42] studied the evolution of

the band structure from monolayer graphene to bulk graphite. In order to calculate the
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Figure 1.10: (a) Schematic presentation of the 2D electronic structure of 1-LG and
the corresponding zone-folding scheme that generates states satisfying the periodic
boundary conditions for nanotubes. The resulting states are either metallic (b) or

semiconducting nanotubes (c).

low energy band dispersion for the ABA-stacked N-LG, we use a much simpler approach

than the SWM model, called the effective bilayer model. This model is based on a

technique used many years ago in the band structure calculations of several condensed

matter systems, called the zone folding method (ZF). A similar approach was recently

used by Koshino and Ando to calculate the band structure of ABA N-LG [43]. Soon

after their theoretical work, the effective bilayer model [43] was intensively used to fit

experimental data obtained from the optical and magneto-optical studies of N-LG with

a Bernal stacking [25, 31, 44]. In the following, we should give a quick derivation of the

effective bilayer model and illustrate its application to calculate the band structure of

ABA-stacked N-LG.

Basically, the band structure for carbon nanotubes is obtained starting from the tight

binding electronic dispersion relation of the π-orbitals in graphene. The graphene elec-

tronic band structure is then sectioned along the directions given by the nanotube 1D

Brillouin zones or cutting lines [26, 45], with spacing and lengths that satisfy the periodic

boundary conditions for nanotubes, so that one finally gets the nanotube electronic band

structure. When a cutting line crosses the graphene BZ special points K and K′, the

nanotube is metallic, otherwise the nanotube is semiconducting with a nonzero energy

gap at the Fermi level as seen in Figure 1.10. Based on a similar approach, we will show

in more details how to use the ZF method to produce the low energy band dispersion of
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Figure 1.11: (a) Atomic structure of Bernal stacked N-LG.(b) Top view of the Bernal
stracked N-LG. Atoms from group I are indicated by black circles while those in group

II are in red circles.

N-LG, from monolayer to bulk graphite.

In order to proceed with the calculations, we divide the atoms in the ABA N-LG system

into two separate groups, as shown in Figure 1.11. Group I is composed of the atoms

that are arranged along vertical columns normal to the layer plane (i.e., B1, A2, B3, . . . ),

while group II are the atoms that are at the center of hexagons in the neighboring layers

(i.e., A1, B2, A3, . . . ). The Hamiltonian of N-LG around the K point is written in the

basis {|A1〉 , |B1〉 ; |A2〉 , |B2〉 ; ... |AN 〉 , |BN 〉} as [45]

HABA =

















H0 V

V † H0 V †

V H0 V
. . .

. . .
. . .

















2N×2N

(1.29)

with

V =





0 γ′k+

γ1 0



 and H0 =





0 γk−

γk+ 0



 , (1.30)

we have set: γ =
√

3
2 aγ0, γ′ =

√
3

2 γ3, k± = kx ± iky. Notice that the Hamiltonian for K′

is obtained by exchanging k+ and k− and replacing γ1 by −γ1.

We now rearrange the basis in the order of group I and group II so we can block

diagonalize the Hamiltonian. As we will see in the following, this procedure allow

us to get rid of the dependence on the wave vector k. The new basis is given by:
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{|B1〉 , |A2〉 , |B3〉 , ...; |A1〉 , |B2〉 , |A3〉 , ...}. Equation 1.29 becomes:

HABA =





H11 H12

H†
12 H22



 , (1.31)

with Hij being N × N matrices defined as:

H11 = γ1























0 1

1 0 1
. . .

. . .
. . .

1 0 1

1 0























N×N

, (1.32)

H22 = γ′





























0 k+

k− 0 k−

k+ 0 k+

. . .
. . .

. . .

k∓ 0 k∓

k± 0





























N×N

, H12 = γ























k+

k−

k+

. . .

k±























N×N

.

(1.33)

At the K point (k = 0) only H11 remains, which is equivalent to the Hamiltonian of a

1D tight-binding chain with the nearest neighbor coupling γ1. The eigenvalues for H11

are thus given as:

εm = γ1λN,m, and λN,m = 2 sin

(

mπ

2(N + 1)

)

, (1.34)

with: m = −(N − 1), −(N − 3), ..., N − 1. Since m and N have opposite parities (i.e.,

m odd/N even, m even/N odd), m is equal to zero only for odd N . The wave function

of H11, at the jth atomic site, is given by:

ψm(j) =

√

2

N + 1
sin

[

(−m + N + 1)π

2(N + 1)
j

]

, (1.35)

this allows the construction of a new basis from the atoms of group I and group II:







|φ(I)
m 〉 = ψm(1) |B1〉 + ψm(2) |A2〉 + ψm(3) |B3〉 + ...,

|φ(II)
m 〉 = ψm(1) |A1〉 + ψm(2) |B2〉 + ψm(3) |A3〉 + ...

(1.36)
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Figure 1.12: (a) 3D Brillouin zone of bulk graphite [46]. (b) Band structure of 4-
LG along the H-K line and the zone-folding scheme that generates planes cutting at
specific values of kz. (c) Generation of massless and massive Dirac fermions in the band

structure of N-LG from the zone folding method for N = 1, 2, 3 and 4 LG.

It is shown in reference [45] that the total Hamiltonian is closed in the subspace
{

|φ(I)
m 〉 , |φ(I)

−m〉 , |φ(II)
m 〉 , |φ(II)

−m〉
}

for any value of m. We finally obtain:

Hm=0 =





0 γk−

γk+ 0



 , Hm>0 =















0 γk− 0 λγ′k+

γk+ 0 λγ1 0

0 λγ1 0 γk−

λγ′k− 0 γk+ 0















, (1.37)

were we have set λ = λN,m.

2 3!"2!"

Figure 1.13: Low energy band
structure of ABA-stacked 5-LG
using the effective bilayer model

described in the text.

The 2 × 2 matrix (m = 0) is equivalent to the Hamil-

tonian of monolayer graphene, while the 4 × 4 matrix

(m > 0) is equivalent to the Hamiltonian of bilayer

graphene [46] except that the hopping parameters γ1

and γ′ are replaced by the effective hopping parame-

ters: γ̃1 = λγ1 and γ̃′ = λγ′.

Thus, when the number of layers N is odd, the Hamilto-

nian of ABA N-LG is composed of one monolayer type

and (N-1)/2 bilayer type subbands, while for even N,

it is composed of even number of bilayer like subbands

and no monolayer.

Figure 1.12 shows how the energy dispersion of ABA
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(b)(a)

(c)

Figure 1.14: (a) Magneto-Raman spectra on Bernal 3, 4, and 5-LG (left panel) and
the fitting of the experimental data using the effective bilayer model (right panel) [31].
(b) Infrared transmission spectra of FLG samples (left panel), and a contour plot of
the infrared conductivity as a function of photon energy and N (right panel). The dots
identify experimental data, while the solid curves are the theoretical predictions based
on the effective bilayer model [25]. (c) Magneto-infrared spectroscopy of bulk graphite.
Landau level transitions from the H point (left panel)and the K point (right panel) in
the 3D Brillouin zone of graphite [44]. The dots are calculated dispersions using the

effective bilayer model.

N-LG is obtained using the effective bilayer model. The planes normal to the H-K line

are cutting at values kzc/2. As an example, we apply the effective bilayer model to com-

pute the band structure of 5-LG. To do so, we need to calculate the effective hopping

parameter γ̃1:

γ̃1 = λγ1 = 2 sin

(

mπ

2(N + 1)

)

γ1 = 2 cos

(

π

2
− mπ

2(N + 1)

)

γ1 = 2 cos

(

pπ

N + 1

)

γ1 = 2 cos(θ)γ1,

(1.38)

where θ = kzc/2 = pπ/(N + 1). Since m : −(N − 1), ..., N − 1, p will vary as:

±1, ±2, ..., ±⌈N + 1/2⌉ [31], where ⌈⌉ denotes the integer part.

For ABA 5-LG, we have: p = {±1, ±2, ±3} ⇒ θ =
{

π
6 , π

3 , π
2

}

.
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The band structure of ABA 5-LG is then made of a monolayer graphene bands, and two

effective bilayers with the coupling parameters: γ̃1 = 2γ1 and γ̃1 = 2
√

3γ1 respectively

(Figure 1.13).

Numerous experimental studies of the band structure evolution in ABA-stacked multi-

layer graphene came as a solid proof to the robustness of the effective bilayer model.

Various experimental techniques are used to probe the band structure of graphene, such

as angular resolved photo-emission and scanning tunneling spectroscopy. However, op-

tical spectroscopy techniques, such as infra-red absorption and Raman spectroscopy, are

our method of predilection due to the possibility to combine these techniques with strong

magnetic fields. The evolution of the band structure for a given material is revealed in

optical spectroscopy through the study of its excitation spectrum. This latter is a direct

probe of the material’s joint density of states (JDOS), which provides a measure of the

number of allowed optical transitions between the occupied valence band and the unoc-

cupied conduction band electronic states separated by the photon energy ~ω.

Figure 1.14 shows a series of optical spectroscopy experiments on multilayer graphene,

with a varying thickness. In Figure 1.14a, a multilayer graphene flake is placed under

strong magnetic fields [31]. The magnetic field, as we will show in the next section,

induces a Landau quantization. The change in the band structure of the material is

revealed through its inter-Landau level excitations spectrum. The data obtained are

fitted by the two parameters effective bilayer model, for a number of layers from 1 to 5

monolayers. The same approach has been used to fit experimental data on multilayer

graphene, studied by far infrared conductivity [25] (Figure 1.14b).

The effective bilayer model also accounts for the band structure of ABA-stacked bulk

graphite, with an infinite number of graphene layers. This is seen in Figure 1.14c from

an infra-red spectroscopy study of its excitation spectrum that reveals the existence of

massless Dirac fermions at the H point, and massive Dirac fermions at the K point in

its 3D BZ, but with an effective mass of carriers that is twice enhanced with respect to

that of bilayer graphene [44]. All these studies confirm the robustness of the effective

bilayer model in studying the electronic properties of ABA-stacked N-LG.

1.2.3 Band dispersion in rhombohedral multilayer graphene

Most of the theoretical and experimental studies on graphite and N-LG have been fo-

cused on the Bernal stacking of the atomic layers. However, the Bernal stacking is not

the only stable crystallographic order found within graphite crystals. Both electron [47]

and X-ray diffraction experiments [48] have shown the presence of extra lines that cannot

be attributed to the Bernal stacking structure [23]. Lipson and Stokes [49] suggested a
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new crystallographic structure (refer to Figure 1.9c) to explain the anomalous lines ob-

served in diffraction experiments. Their structure consists of each three graphene layers,

shifted with respect to each other, that repeat successively to form bulk graphite.

Their study suggested that graphite crystals, either natural or kish (i.e., graphite ob-

tained from the casting of carbon-rich steel), exhibit a Bernal stacking of 80% , 6%

disorder, while the rhombohedral stacking presents 14%. Following these experimental

observations, R. R. Haering used a tight binding approach, similar to the SWM model,

to calculate the band structure of bulk rhombohedral graphite [24]. We should give here

a derivation of such band structure.

As in the case of graphene monolayer and ABA stacked N-LG, we consider only the

wave function of the π orbital electrons in N-LG around the corners of the BZ, i.e., the

K and K
′

points.

The total Hamiltonian for N-LG is given by [50]

H =
∑

p

ψ†
pH(p)ψp, (1.39)

where

ψp = [C1,α,p, C1,β,p, .., CN,α,pCN,β,p]T, (1.40)

is the total wavefunction of the system and Cl,µ,p is the wave function of an electron in

layer l = 1 → N , sublattice µ = α, β and a momentum p = (px, py) measured from K

or K
′

point.

In the ABC stacking configuration, the atoms of the A sublattice in each layer (labeled

α as shown in Figure 1.15a) are exactly under the atoms of the B sublattice (labeled β)

in the upper layer (see Figure 1.15b). Consequently, the interlayer coupling will link the

wave function of the α atom from one layer to the wave function of the β atom in the

upper layer as seen in Figure 1.15c.

We use the Dirac notation for the quantum states of the atoms in the A or B sublattices:

Cl,µ,p = 〈p|µ〉 , µ = α, β. Thus, for a given number of layers N, we will have 2N quantum

states that correspond to A or B sublattices.

In order to build the matrix elements of the ABC Hamiltonian, we consider for simplicity

the case for ABC tri-layer (N = 3) graphene. The total quantum state is given by:

|ψ〉 = {|α1〉 , |β1〉 , |α2〉 , |β2〉 , |α3〉 , |β3〉} , (1.41)

for each graphene layer, indexed by the symbol i, we defined the states for the α atoms

and the β atoms, respectively. Knowing that γ0 connects states in the same layer, while

γ1 connects an |αi〉 state with a |βi+1〉 state from the next layer, the Hamiltonian for
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Figure 1.15: (a) The atoms in the two triangular sublattices are labeled α and β.
(b) Schematics of the ABC stacking configuration. (c) Side view of the ABC stacking,
showing how the interlayer coupling γ1 connects the atoms α and β in adjacent layers.

ABC trilayer graphene is represented by the following 6 × 6 matrix [50–52]:

HABC =



























0 ε∗
p 0 0 0 0

εp 0 γ1 0 0 0

0 γ1 0 ε∗
p 0 0

0 0 εp 0 γ1 0

0 0 0 γ1 0 ε∗
p

0 0 0 0 εp 0



























, (1.42)

where the matrix elements (following the logic discussed above) are given by

〈βi|H|αi〉 = εp, 〈βi|H|αi〉 = ε∗
p, 〈βi|H|αi+1〉 = 〈βi+1|H|αi〉 = γ1, (1.43)

and the onset energies are expressed as a function of the intralayer coupling as

εp = υF p+ = υF (px + ipy), ε∗
p = υF p− = υF (px − ipy). (1.44)

The low energy Hamiltonian for the K
′

point is obtained by exchanging p+ and p−.

This approach can be easily generalized to an arbitrary number of ABC stacked layers.

The eigenstates are then given by the basis:

|ψN 〉 = {|α1〉 , |β1〉 , |α2〉 , |β2〉 , |α3〉 , |β3〉 , ..., |αN 〉 , |βN 〉} , (1.45)
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Figure 1.16: Tight binding model of the low energy band structure of rhombohedral
multilayer graphene (number of layers N= 3, 5, 8, 11, 14, 17).

the Hamiltonian for ABC stacked N-LG is then given by:

HABC =





























0 vF p−

vF p+ 0 γ1

γ1 0 vF p−

vF p+ 0 γ1

γ1
. . .

. . .
. . .

. . .





























2N×2N

(1.46)

Figure 1.16 shows the band structure obtained from the numerical diagonalization of

Hamiltonian 1.46 (for: N=3, 5, 8, 11, 14, 17).

The band structure of ABC-stacked N-LG is composed of 2N branches. In the case of

an ABC trilayer, it is composed of 3 valence bands and 3 electronic bands. Two of these

bands are touching at the charge neutrality. The four remaining bands have a crossing

point which is located at an energy equal to γ1, the interlayer coupling. This crossing
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point is related only to the interlayer coupling, and is independent of the number of

layers.

E/ 1 E/ 1

D
o

s(
!

, 
N

)

Figure 1.17: Density of states for the gapped bands as
a function of the number of layers [52].

When the number of ABC-

stacked layers increases, two

main changes are observed in

the band structure. The bands

touching at the charge neutral-

ity (red colored bands in Fig-

ure 1.16) are flattened over a

larger k-space region, resulting in

a singular electronic density of

states. At the same time, the

energy separation between the

gaped bands, plotted in green

colors in Figure 1.16, is de-

creasing with increasing number

of layers, and ultimately closes

for ABC graphite. Figure 1.17

plots the density of states (DOS)

for the gapped bands in ABC-

stacked N-LG as a function of

N. At the bulk limit the DOS

resembles the one in monolayer

graphene. Thus, the low energy

carriers in ABC graphite are predicted to behave as three dimensional massless Dirac

fermions [52].

These changes in the band structure of ABC N-LG as function of N can be probed

experimentally, as we will show in Chapter 5. The band structure of ABC N-LG is

currently the subject of intensive research, motivated by the existence of the flat bands

at the Fermi level. The induced high electronic density of states associated with these

flat bands promises the observation of strongly correlated states in multilayer graphene.

On the other hand, isolating thick rhombohedral multilayer graphene flakes (i.e., with

a large ABC sequence) is a challenging task, since graphene layers relax into a Bernal

stacking (more thermodynamically stable configuration) to form bulk graphite crystals.

It has been shown that by epitaxial growth of graphene on the cubic phase of silicon car-

bide (3C-SiC), we can easily obtain a rhombohedral coverage up to 70%. These domains

are about 40-50 nm large, with sequences of 4 to 5 monolayers [53]. By performing scan-

ning tunneling spectroscopy (STS), and angular resolved photoemission spectroscopy
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(a) (b)

Figure 1.18: (a) Effect of an electric field on the band structure of trilayer graphene.
A band gap opens in the ABC-stacked flake, while no significant changes are observed
in Bernal trilayer [32]. (b) Comparison of the density of states by STS between ABC-
stacked and ABA-stacked multilayer graphene. The upper panels are experimental

results, while the lower panels are theoretical simulations [53].

(ARPES), the existence of the flat bands at the charge neutrality has been confirmed

in these systems (see Figure 1.18b). The experimental observation are in line with the

theoretical predictions based on density functional theory (DFT), as shown in the lower

panels of Figure 1.18b.

Transport experiments on ABC tri-layers showed that electron-electron interactions are

responsible for a band gap opening, when applying an electrical field normal to the

atomic planes [32, 38]. On the other hand, no band gap opening has been observed on

its ABA counterpart (see Figure 1.18a). Evidence of an intrinsic bang gap has been

reported for suspended ABC trilayer graphene, thus not suffering from interaction with

substrate. The observation of this band gap, of the order of 42 meV, has been reported

even without the application of an electric field [54].

Owing to its singular density of states at the Fermi level, magnetic order might be ex-

pected for rhombohedral N-LG. Olsen et al. [41] used at tight binding model in the

presence of long-range Coulomb interactions, to show that the total energy for ABC-

trilayer graphene is minimized for a ferromagnetic state. This ferromagnetism is one

order of magnitude more robust compared to un-screened bilayer graphene. This results

are in contrast to the well-known diamagnetic behavior usually observed in Bernal-

stacked natural graphite.

The ABC stacking belongs to the family of topological nodal semi-metals [55, 56]. In

this sense, the electronic states present a non-trivial topology, as evidenced from band

structure calculations based on a tight binding approach [57], and ab initio methods

[58]. This topological order of the electronic states is protected by means of symmetry

transformations, such as time reversal and inversion symmetries. As a consequence of

this classification, the flat bands at the Fermi level are predicted as electronic surface

states, localized in the outermost layers, while the gapped bands are bulk states, which
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means they are confined inside the bulk [52, 56–58].

In addition to these promising phenomena in rhombohedral N-LG, the topologically

protected flat bands are predicted to induce high temperature surface superconductivity

[40, 59]. This superconducting state prevails even when the topological protection of the

surface flat band is lifted. These theoretical works were motivated by the observation

of high temperature superconductivity, that has been reported by several groups, on

the surface of highly oriented pyrolytic graphite crystals (HOPG) [60, 61], and graphite

powders [62, 63], with no solid explanation concerning its origin.

These experimental observations, along with the theoretical predictions, renders the

study of rhombohedral N-LG properties very appealing.

1.3 Multilayer graphene under magnetic fields

The role of magnetic fields in studying the band structure of crystals is of major impor-

tance. The Lorentz force acting on the electronic charge bends the trajectories of the

electrons, which affects the transport properties of metals and semi-conductors. The

electronic kinetic energy in the direction transverse to the magnetic field becomes quan-

tized into discrete levels. Thus, the presence of a magnetic field transforms the energy

dispersion of solids in the momentum space, which is made of continuous bands, into

discrete quantized energy levels. These energy levels can be accessed in experiments

through their excitation spectra. To illustrate the major role played by magnetic field

in condensed matter physics, we give in the following few examples of its effect on well-

known quantum systems.

For example, the energy level structure in quantum dots (QDs are zero dimensional

systems of highly confined electrons), as it is well known, is composed of discrete levels.

However, the presence of a magnetic field, introduces another electronic confinement

which superposes with the geometrical one, leading to interesting physical phenomena.

This allows to access individual electronic states that are not observed in the absence of

magnetic fields [64]. The application of magnetic fields to quantum dots offers interesting

possibilities to study few-electron systems. Since the cyclotron energy ~ωc can be made

much larger than the binding energy of the confining electric potential, one can examine

the transition from electrically bound states to Landau levels in this system [65]. The

effect of magnetic field causes rearrangement of energy levels leading to formation of

surface states and bulk-like Landau states [66]. A recent study has shown the role of

magnetic field in demonstrating coherent manipulation of coupled electron spins in QDs

devices, relevant to the advance in the field of quantum computation [67].

The application of magnetic field to quantum systems is not limited to probing already

existing states. Magnetic fields can also be used to create new states of matter, that do
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not exist in the absence of magnetic fields. The fractional quantum Hall effects (FQHE),

in which the quasi-particles are composite fermions, as well as the suppression of super-

conductivity in metallic systems by a critical magnetic field (Hc), are good examples of

magnetic field-induced quantum states [68, 69]. Superconductivity and the FQHE are

quantum states created through a process called symmetry breaking. Superconductivity

is generated through gauge and time reversal symmetry breaking [70], and the applica-

tion of a magnetic field stronger than Hc will destroy the superconducting state, leading

to a magnetic induced phase transition.

As we will show in Chapter 2, the application of a magnetic field along the c-axis of

a crystal allows the observation of discrete excitations in the optical spectra of a given

material such as graphene. By extracting the energies of the magnetic induced features

and their line-widths, one can obtain considerable information about the behavior of

particles in the studied system.

All these magnetic field-induced phenomena render the application of magnetic fields

to graphene based systems, and 2D materials in general, a very important factor in the

study of the fundamental properties of these systems.

1.3.1 Electronic states in monolayer graphene

2DES under a uniform magnetic field:

Before we derive the energy dispersion of monolayer graphene in the presence of magnetic

field, let us first discuss the general case of a 2 dimensional electron system (2DES)

under the influence of a constant uniform magnetic field B. For simplicity, the intrinsic

magnetic field moment, the electron spin, will be ignored. These terms can be included

later on after the derivation of the eigen-states and eigenvalues of a 2DES system under

magnetic field. The Hamiltonian of a charged particle in a magnetic field is [71]

HB =
1

2m
[p − eA]2, (1.47)

where p = ~/i∇ is the quantum momentum operator at zero magnetic field. When

the magnetic field is switched on, the momentum operator change as: Π = p − eA.

Π is called the substitute momentum operator for a particle in a magnetic field. This

substitution is known as the Peierls substitution [72], with A being the vector potential

of the magnetic field. The time independent Schrödinger equation reads:

HBψ = ψE, (1.48)

The vector potential is related to the field by: B = ∇ × A. Thus, the choice of the

vector potential is not unique, since any gauge transformation as: A → A + ∇φ will
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Figure 1.19: (a) Cyclotron motion of electrons in a plane normal to the uniform mag-
netic field. (b-c) Parabolic dispersion of 2DES electrons and the corresponding Landau
levels in the presence of a magnetic field. The Landau levels energy gap corresponds to

the cyclotron energy ~ωc.

not induce any change in the solutions of the Schrödinger equation [73]. In order to fix

the vector potential, we follow the approach of Landau [71] for a particle in a constant

uniform B, applied along the z-direction:

B = ∇ × A = (0, 0, B), Ax = −By, Ay = Az = 0. (1.49)

This condition is called the Landau gauge, and even though other gauges might be used

to uniquely fix A, the Landau gauge is usually applied to condensed matter systems and

to study the properties of crystals under magnetic fields.

In the Landau gauge, the Hamiltonian becomes:

1

2m

[

(px +
eB

~
y)2 + p2

y + p2
z

]

ψ = Eψ. (1.50)
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If the eigenstates of such an equation are assumed to take the form [71]: ψ = ψ̃(x)e−ikyy,

we obtain the following equation for ψ̃(x):

∂2ψ̃

∂x2
+

2m

~2

[(

E − p2
z

2m

)

− 1

2
mω2

c (x − x0)2

]

ψ̃ = 0, (1.51)

where: x0 = pyeB = ~kyeB and ωc = eB/m is called the cyclotron frequency. The above

equation is identical to the Schrödinger equation for a quantum harmonic oscillator

(QHO) with a frequency ωc. The eigenvalues of such a system are:

En = ~ωc

(

n +
1

2

)

, (1.52)

These eigenvalues give the discrete energy levels corresponding to the circular motion of

charged particles in a plane perpendicular to the magnetic field direction (Figure 1.19a);

they are called Landau levels, with n = 0, 1, 2 . . . being the Landau level index.

Thus, the energy of electrons in a 2DES with parabolic dispersion (i.e., E = ~
2k2/2m)

will split, under the effect of the magnetic field, into discrete Landau levels (LLs) with

energies: En = ~ωc(n+1/2) as shown in Figure 1.19b,c. The LLs, in the case of a 2DES,

are equally separated by gaps of value: ∆ = ~ωc.

Finally, we would like to stress on the fact that the energy evolution of the LLs is

expected to be linear with the field, since E ∼ B as seen in 1.52. Experiments in which

we probe the energy of the LLs a function of the magnetic field represent a powerful

probe of the band structure in crystals. Consequently, LLs with a linear dispersion as

a function of the magnetic field are regarded as a signature of systems with parabolic

dispersion of their energy in momentum space.

Monolayer graphene under a uniform magnetic field:

Let us now come back to the case of monolayer graphene, and see how the magnetic

field affects the energy dispersion of the carriers on this material.

We showed above that the band structure of graphene is considered to be composed of

Dirac cones located around the K and K′ points at Brillouin zone corners. In the vicinity

of these points the electron energy depends linearly on its momentum: E(p) = υF |p|,
described by the Dirac equation for zero rest mass particles, with an effective velocity

υF , which replaces the speed of light. Due to this linear dispersion, the LLs structure

in graphene is expected to be completely different from the case of conventional 2DES.

This has been confirmed by numerous experimental studies that probe the Landau level

energy diagram of graphene under magnetic fields.

To obtain the energy dispersion of LLs, we apply the Peierls substitution to the Hamil-

tonian of monolayer graphene:

H(p) → H(Π) = H (p − eA) = HB(p, r). (1.53)
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The momentum operator satisfies the following commutations relations:

[Πx, Πy] = −ie~

(

∂Ay

∂x
− ∂Ax

∂y

)

= −i
~

2

l2B
, (1.54)

where we introduced a fundamental length known as the magnetic length:

lB =

√

~

eB
≈ 26nm/

√

B(T ). (1.55)

Since electrons are moving in circles when under a perpendicular magnetic field, lB is

seen as the smallest size of a circular orbit in a magnetic field that is allowed for a

charged particle by the uncertainty principle.

In the derivation of the energy spectrum of crystals under the effect of a magnetic field,

a conventional approach is to introduce the ladder operators similarly to the case of the

quantum harmonic oscillator [2, 51]

a =
lB√
2~

(Πx − iΠy) =
lB√
2~

Π− and a† =
lB√
2~

(Πx + iΠy) =
lB√
2~

Π+, (1.56)

the Hamiltonian of monolayer graphene becomes:

HB =
√

2
~υF

lB





0 a

a† 0



 . (1.57)

By solving the eigen equation: HBψn = Enψn, we obtain the energy spectrum for

monolayer graphene under magnetic field [2]

Eλ,n = λ
~υF

lB

√
2n. (1.58)

λ = ±1 labels the states of positive and negative energy, respectively. This quantum

number plays the same role as the band index in the zero-B field case discussed earlier.

Thus, λ = +1 for the conduction band and λ = −1 for the valence band.

In stark contrast to conventional 2DES, equation (1.55) describes relativistic LLs that

disperse as
√

B in a varying magnetic field. The
√

B dependence has since become a

fingerprint of graphene monolayer under magnetic fields, and of related materials with

a Dirac cone dispersion in their low energy band structure.
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Figure 1.20: Relativistic Landau levels as a function of the magnetic field in monolayer
graphene (b). Their dispersion is a direct consequence of the linear energy dispersion

at zero field(a) [ref:goerbig].

1.3.2 Case of Bernal-stacked multilayer graphene

Using the effective bilayer model, the band structure of ABA stacked N-LG along the

H-K-H line is given by [45, 46]:

HABA =















0 γk− 0 0

γk+ 0 γ̃1 0

0 γ̃1 0 γk−

0 0 γk+ 0















, (1.59)

where γ̃1 = λγ1 = 2γ1 cos(πkz). This Hamiltonian is similar to the Hamiltonian of a

bilayer graphene [74], but with an effective coupling parameter tuned by the momentum

kz [45, 46].

Under the effect of a magnetic field normal to the atomic planes, the Hamiltonian will

transform as [4]

HABA(B) =















0 ǫ0a 0 0

ǫ0a† 0 γ̃1 0

0 γ̃1 0 ǫ0a

0 0 ǫ0a† 0















, (1.60)

where we kept the same definitions for the ladder operators as in monolayer graphene.

In the frame of the effective bilayer model, the energy Lθ
n (Lθ

−n = −Lθ
n) of the nth

electron (hole) Landau level arising from the lowest energy bands is given by [45]:

Lθ
|n| =

√

√

√

√

γ̃1
2

2
+

(

|n| +
1

2

)

E2
1 −

√

γ̃1
4

4
+

(

|n| +
1

2

)

E2
1 γ̃1

2 +
E4

1

4
. (1.61)
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Figure 1.21: (a-d) Low energy Landau levels of Bernal stacked N-LG for N=1, 2, 3,
4, respectively. The effective bilayer model is used for the calculated dispersion.

Where we introduced: E1 = υF

√
2e~B. For an effective interlayer coupling γ̃1 at θ =

kzc/2 = π/2 (see effective bilayer coupling), we recover the
√

B-dependence of LLs in

monolayer graphene, while θ = π/3 gives us the nearly linear in B LLs dispersion for

bilayer graphene [74]. Based on the effective bilayer model, the LLs dispersion for N=1,

2, 3, 4 are presented in Figure 1.21, respectively.

1.3.3 Case of rhombohedral-stacked multilayer graphene

Let us now discuss the effect of a transverse uniform magnetic field on the band structure

of ABC stacked N-LG. As in the case of monolayer graphene, and ABA N-LG, the Peierls
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substitution: Π = p − eA is applied to the ABC Hamiltonian which will take the form:

HABC =





























0 ǫ0a

ǫ0a† 0 γ1

γ1 0 ǫ0a

ǫ0a† 0 γ1

γ1
. . .

. . .
. . .

. . .





























2N×2N

(1.62)

where ǫ0 =
√

2~vF /lB ≃ 36
√

B [T ] meV is the cyclotron energy in monolayer graphene.

The 2N-components eigenstates corresponding to Hamiltonian (1.62) have the following

structure [50, 51]

|ψα
n〉 =

[

cα
A1

ϕn−1, cα
B1

ϕn, cα
A2

ϕn, cα
B2

ϕn+1, cα
A3

ϕn+1, cα
B3

ϕn+2, . . .
]T (1.63)

where ϕn ≡ ϕn,k (x, y, z) ∼ eikye−z2/2Hn (z) is the wave function of a harmonic oscillator

with z =
(

x − kl2B
)

/lB and Hn (z) is the Hermite polynomial. As in the usual one-

dimensional harmonic oscillator, the ladder operators will act on the wave functions in

the following way:

aϕn =
√

nϕn−1 (1.64)

a†ϕn =
√

n + 1ϕn+1. (1.65)

Then, for each value of n, one needs to diagonalize the following matrix





























0 ǫ0
√

n

ǫ0
√

n 0 γ1

γ1 0 ǫ0

√
n + 1

ǫ0

√
n + 1 0 γ1

γ1
. . .

. . .
. . .

. . .





























2N×2N

. (1.66)

in order to obtain the set of 2N Landau levels (LLs) and the corresponding coefficients

{cα
Ai

, cα
Bi

} that determine the eigenstates |ψα
n〉 with α = 1, . . . , 2N . In Eq. (1.66), the

index n is required to be positive. However, we note that Eq. (1.62) supports eigenstates
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Figure 1.22: (a) Low energy band dispersion of ABC stacked 15-LG. (b) The cor-
responding Landau levels dispersion for the flat bands (red colors) and the lowest in
energy gapped bands (green colors). The Landau levels are plotted for a varying Landau

level index from n = 0 to 20.

with the following structure:

|ψ0〉 =















































0

cB1ϕ0

cA2ϕ0

cB2ϕ1

cA3ϕ1

cB3ϕ2

cA4ϕ2

cB4ϕ3

...















































, |ψ−1〉 =















































0

0

0

cB2ϕ0

cA3ϕ0

cB3ϕ1

cA4ϕ1

cB4ϕ2

...















































, |ψ−2〉 =















































0

0

0

0

0

cB3ϕ0

cA4ϕ0

cB4ϕ1

...















































, . . . |ψ−N+1〉 =











































0

0

0

0
...
...
...

ϕ0











































.

(1.67)

These eigenstates can be obtained from (1.63) by extending the range of possible values

of n to n ≥ −N + 1 and using the rule that harmonic oscillator wavefunction with

negative subindices must be replaced by zero. The corresponding eigenvalues can be

obtained by applying HABC to these states and solving for the nontrivial part of the

eigenvalue equation. For each one of the different form of the eigenstates in Eq. (1.67)

there is always one eigenstate with zero energy while the remaining possible states appear

around ∼ ±γ1 for small magnetic field. Hence, there are N nontrivial eigenstates with

zero energy for ABC-stacked N-LG [50].

Figure 1.22b shows the magnetic evolution of the first n = 20 LLs for the four lowest in

energy bands (indicated by red and green colors in Figure 1.22a). Since the red bands

are flatten over a large k-space region, their Landau quantization gives a Landau level
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dispersion with a finite magnetic onset, which seems to be dependent on the number of

layers N [52, 75].



Chapter 2

Experimental technique: Raman

spectroscopy

2.1 Principle of the Raman scattering effect

In condensed matter physics, experimental techniques based on the interaction of light

with solids (i.e., semi-conductors, metals...etc.) are powerful tools to probe the fun-

damental properties of materials. The dominant light-matter interaction processes in

materials are: absorption, reflection, and photo-luminescence. However, due to inhomo-

geneities in the medium, light can also undergo a scattering process. Depending if the

inhomogeneities are static (as crystal defects) or dynamic, such as atomic vibrations in

the crystal lattice, the incident light can be scattered either elastically (i.e., no change in

frequency) or inelastically (the frequencies of incident and scattered light are no longer

the same).

The inelastic scattering of light was theoretically predicted and experimentally discov-

ered by several independent groups of physicists: L. Brillouin and A. Smekal have pre-

dicted the inelastic scattering theoretically in 1923, while C.V. Raman and K. Krishnan

have made the first measurements to probe this effect in liquids in 1928 [76]. Shortly

after, L. Mandelstam and G. Landsberg proved the effect in solids [77]. For discover-

ing the inelastic light scattering, C. V. Raman was awarded the Physics Nobel prize in

1930. The inelastic scattering of light is mostly referred to nowadays in literature as the

Raman scattering effect.

Today, Raman spectroscopy is a powerful tool in optical spectroscopy. It is widely used

to study crystals and chemical compounds, classify and identify different constituents in

complex materials, and has been demonstrated in recent years to be a technique of choice

in the study of two dimensional materials such as graphene and multilayer graphene.

35
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In the Raman scattering process, the incident photon, with an energy Ei and a momen-

tum ki, is in-elastically scattered so its final energy Es and momentum ks are given by

[78]:

Es = Ei ± Eq, ks = ki ± q. (2.1)

The couple (Eq, q) can be associated with many forms of excitations in the target

medium. However, the Raman scattering process is generally associated with the vi-

brational modes of molecules in matter (solid or fluid), also called phonons [78]. The

couple (Eq, q) is then associated with the energy and momentum of a phonon. Since

each material possess a unique set of vibrational modes, Raman spectroscopy can be

used as a very accurate characterization tool.

2.1.1 Classical description of the Raman effect

The photon, from a classical point of view, is seen as an electromagnetic radiation with a

periodic oscillation that propagates in space. When an electric dipole (see the schematic

presentation in Figure 2.1a), expressed as P = QL, is subject to an electric field E, a

torque M = P × E acts on the dipole to align it with the electric field as seen in Figure

2.1b. Raman scattering is then pictured as the ability of an electric field to polarize the

charged system. Figure 2.1c shows a schematic of the CO2 molecule, with the oxygen

atoms stretching far or near the carbon atom. The bigger the charge separation of the

molecule (i.e., oxygen atoms far away from the carbon atom), the easier for the electric

field to polarize the electron cloud.

When light is shined on a sample, the electromagnetic radiation will redistribute the

charges of the molecules in the sample. The negatively charged electrons will go toward

the positive pole, while the positively charged ions go to the negative pole as depicted

in Figure 2.1b. This charge separation will induce an electric dipole moment expressed

as:

P(r, t) = χ(ki, ωi)Ei(ki, ωi), (2.2)

where χ is the electrical susceptibility or the so-called polarizability. In solids, χ is usually

a second rank tensor [78], hence the following matrix form for the dipole moment:











Px

Py

Pz











=











χxx χxy χxz

χyx χyy χyz

χzx χzy χzz





















Ex

Ey

Ez











, (2.3)

For optical spectroscopy on crystals, the electric field of an incident light and the lattice

vibrational mode have an oscillatory behavior. The incident electrical field E(r, t), as
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Figure 2.1: (a) Electric dipole moment induced by the spatiale separation of two
charged particles. (b) Effect of light in charged particles. Charged molecules align
their poles with the electric field of light. (c) Change in the polarizability χ (red curve)
for the CO2 molecule as a function of the distance between the oxygen atoms and the

carbon atom.

well as the atomic displacement associated with a phonon Q(r, t), are given by:

E(r, t) = Ei(k, ω) cos(ki.r − ωit), Q(r, t) = Q(q, ωq) cos(q.r − ω0t), (2.4)

where q and ωq are the phonon wave vector and frequency, respectively. The lattice

vibration will modulate the susceptibility and hence the polarizability χ of the atoms,

so χ will change as a function of the displacement. For small amplitudes of the atomic

displacement Q = |Q|, the polarizability χ is linear with Q, we can then expand it as a

Taylor series of Q(r, t):

χ(ki, ωi, Q) = χ0(ki, ωi) +

(

∂χ

∂Q

)

Q=Q0

Q(r, t) + · · · . (2.5)

Usually the expansion is limited to the first order, it is then referred to as the dipole

approximation. The first term at the right hand of equation 2.5 represents the polar-

izability of the medium at equilibrium (i.e., in the absence of fluctuations), while the

second term is an induced polarization by the lattice vibrations in the medium [79]. The

polarization of the medium, in the presence of atomic vibrations, can be written as:

P(r, t, Q) = P0(r, t)+Pind(r, t, Q) =

(

χ0 +

(

∂χ

∂Q

)

Q

)

(E0 cos ωit) = E0χ0 cos(ki.r−ωit)+

1

2

(

∂χ

∂Q

)

Q0E0 (cos [(ki + q).r − (ωi + ωq) t] + cos [(ki + q).r − (ωi − ωq) t]) (2.6)
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From equation 2.6, we see that P0(r, t) will induce an elastic scattering of light, this

means there will be no change in the frequency ωi of the scattered light with respect to

the incident light. On the other hand, Pind(r, t, Q) induces an inelastic scattering, with

the frequency ωi being downshifted by an amount (ωi − ωq) or upshifted by (ωi + ωq),

resulting in a Raman scattering process.

In the literature, the elastic scattering of light is referred to as the Rayleigh scattering,

while the downshift and the upshift are called Stokes and anti-Stokes scattering, respec-

tively. Even though it is well known that only a tiny amount of the incident light is

Raman scattered, there are no qualitative ways to estimate the amount of the Raman

scattered light with respect to the elastically scattered one using the classical approach

above. Thus, Raman scattering is fully described by considering the quantum nature of

light-matter interaction, as we will show in the following.

2.1.2 Quantum description of the Raman effect

From a quantum mechanical point of view, the Raman scattering is a process in which

excitation is either created or destroyed. The excitation we are referring to is a phonon.

During a Raman scattering process, phonons are either created or destroyed, making a

change in the frequency of the photons interacting with the system. The relative fre-

quency shift of the outgoing photon with respect to the frequency of the incident photon,

equals to the phonon frequency, is called the Raman shift and is usually expressed in

Raman spectroscopy in the units of wave numbers (cm−1).

As we discussed earlier, it is hard from a classical point of view to estimate the amount

of light which will be Raman scattered with respect to the amount of light which is

Rayleigh scattered. However, this can be done using a quantum description of the Ra-

man process. A standard approach to estimate the intensity of the Raman process will

be to calculate the transition probability per unit time, also called the transition rate,

for such a process to occur. This is usually done using the so-called Fermi golden rule

[78, 80]:

Wf =

(

2π

~

)

| 〈f | H |i〉 |2ρ(Ef ), (2.7)

where Wif is the transition rate from the initial state |i〉 to the final state |f〉. H is the

Hamiltonian of the system, and ρ(Ef ) is the density of the final states.

To obtain the intensity of a first order Raman process I(ωq, EL) (i.e., only one phonon

is either created or destroyed), one needs to evaluate the transition rate using the Fermi

golden rule:

I(ωq, EL) =
∑

f

|
∑

n,n′

Mop(k − q, in′)M ep(q, n′, n)Mop(k, ni)

(EL − ∆Eni)(EL − ~ωq − ∆En′i)
|2, (2.8)
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Figure 2.2: Feynman diagram depicting a
first order Raman scattering process [80]. The
black dots indicate an electron-photon interac-
tion, while the square inidicates an electron-

phonon interaction.

where ELaser = EL = ~ωi is the energy

of an incident photon, while q and ~ωq

are the momentum and energy of a scat-

tered phonon. As we will show in the fol-

lowing, M ij are physical quantities that

depict matrix elements for the different

quantum states. The initial state |i〉 has

an energy Ei, the intermediate states |n〉
and |n′〉, describing the scattered electron

by the photon and the phonon, have ener-

gies Eni and En′i, respectively. Figure 2.2

summarizes the first order Raman pro-

cess using a Feynman diagram, which is executed in three steps:

(~ωi − e) −−−−→ (e − ~ωq) −−−−→ (e − ~ωs)

electron-photon interaction electron-phonon interaction electron-photon interaction
(2.9)

The Fermi golden rule for a first order Raman process is thus obtained by using third

order time-dependent perturbation theory [78, 80]. The quantities to be evaluated have

the from:
〈n| HeR |i〉

[EL − (En − Ei)]
. (2.10)

The total transition rate for the first order Raman process is given by [78, 80]:

I(ωs, EL) =

(

2π

~

)

|
∑

n,n′

〈i| HeR(ωs) |n′〉 〈n′| He−ion |n〉 〈n| HeR(ωi) |i〉
[EL − (En − Ei)][EL − ~ωq − (En′ − Ei)]

|2

× δ (EL − ~ωq − ~ωs) . (2.11)

Equation 2.11 implies a Raman efficiency around 10−6 − 10−7 in semiconductor physics

[80]. This means that the amount of light scattered due to the Raman effect is only a

tiny part of the light going through the sample. One needs to use coherent light sources

such as lasers in order to make the observation of the Raman effect more practical.

2.1.3 General discussion

Stokes and anti-Stokes:

As we discussed in the first two parts, the Raman scattering results from the interaction

of light with the electric dipole of the molecule (classical picture), or it can also be seen

as the result of the interaction between the photons of the electromagnetic radiation with

the phonons in the target crystal. Figure 2.3(a,b) shows the first order Raman process
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Figure 2.3: Schematics of the Stokes and anti-Stokes Raman processes (a,b). (c)
Energy diagram comparing the Rayleigh process (elastic scattering) and the Raman
process (inelastic scattering). (d) Intensity vs energy specrum showing the Stokes and
anti-Stokes peaks. Their relative intensities with respect to the Rayleigh peak are

exagerated to show them in the same energy scale.

discussed earlier. The Stokes scattering represents the emission (creation) of a phonon,

while the anti-Stokes results from the absorption (destruction) of a phonon. Such process

depends on the phonon statistics, which is expressed, at a given temperature T, by the

Bose-Einstein statistics:

n =
1

eEq/kBT − 1
, (2.12)

where kB is the Boltzmann constant, and Eq the phonon energy. One can estimate

the ratio of the Stokes/anti-Stokes scattering from the Bose-Einstein statistics, where

the Stokes process will cause the phonon statistics to change as n → n + 1, and the

anti-stokes process will change as n + 1 → n:

n + 1

n
= eEq/kBT , (2.13)

Thus, from an experimental point of view, the Stokes/anti-Stoke ratio can give us key

information about the local temperature of the sample, or how much heat is induced by

shining a laser on the sample.

The concept of virtual states, and n-order Raman scattering:

The excited state caused by the electron-photon and electron-phonon interactions in

light scattering (Rayleigh, Raman) processes are called virtual states. This means they
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are not eigen-states for the system [78, 80]. In another word, there is no real absorp-

tion of the photon by the electron, unlike other light-matter processes such as photo-

luminescence or absorption. An exception occurs for resonant Raman scattering, in

which the incident photon’s energy exactly matches the energy of an electronic transi-

tion between real states.

Figure 2.3 sketches the scattering of light from a real ground state or an excited vibra-

tional state (shown by solid lines) to the virtual states, shown by dashed lines. While

Rayleigh scattering brings back the photon to a final state which is the same as the

initial state, the final state in the Stokes and anti-Stokes scattering is different from the

initial state by an amount that equals the phonon energy (Figure 2.3d).

During a Raman process, the total momentum must be conserved:

∑

i

qi ≈ 0. (2.14)

For the one phonon Raman process, the momentum is conserved only if the phonon wave

vector is zero (q ≈ 0). On the other hand, it is possible to have higher order Raman

processes that occur for inelastic scattering by more than one phonon. For instance, a

second order Raman process will require two phonons with opposite momenta (+q, -q)

to satisfy momentum conservation. As we will see in the following, this condition will

restrict the phonon branches that participate in a Raman scattering process from the

Brillouin zone of a given crystal, such as graphene and graphite.

For a n-order Raman process, the transition probability is given by:

PRaman(ωs)

=

(

2π

~

)

|
∑

n0,...,nf

〈i| HeR(ωs) |n0〉 〈n0| He−ion |n1〉 ... 〈nf−1| HeR(ωi) |nf 〉 〈nf | HeR(ωi) |i〉
[EL − (En0 − Ei)][EL − (En1 − En0)]...[EL − ~ωq − (Enf

− Ei)]
|2

× δ (EL − ~ωq − ~ωs) , (2.15)

where the sum goes over all the intermediate states {|n0〉 , |n1〉 , ..., |nf 〉} between the

initial and final states {|i〉 , |f〉}, respectively.

2.1.4 Raman selection rules

General discussion

We have seen that the interaction of an incident radiation with atoms in the crystal

induces a polarizability χ. The vibrational modes in a crystal can induce a change of

the polarizability inducing a Raman shift in the scattered radiation, as seen in Eq. 2.6.

However, not all vibrational modes can induce a change in the polarizability, thus causing

a Raman scattering. The determination of the vibrational modes that can change the
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polarizability in the system, usually referred to as Raman-active modes, is a relevant

task in studying the Raman response of a condensed matter system.

From a classical point, a vibrational mode is Raman-active if the following quantity is

non zero:

R =

(

∂χ

∂Q

)

Q=Q0

Q

|Q| Ó= 0. (2.16)

The above quantity is a second rank tensor called the Raman tensor [79, 81]. In Raman

scattering, this tensor is symmetric: ∂χxy/∂Q = ∂χyx/∂Q, ∂χxz/∂Q = ∂χzx/∂Q, and

∂χyz/∂Q = ∂χzy/∂Q.

The Raman tensor expresses a change in the polarizability tensor χ induced by a given

vibrational mode. Condition 2.16 is satisfied when at least one of the six Raman tensor

components, expressed as (∂χij/∂Q), is different from zero.

However, to determine if the Raman tensor of a physical system is not equal to zero,

especially for complex molecules and crystals, is not an easy task. It happens though

that this condition is intimately related to its symmetry. Thus, knowing the symmetry

of the Raman tensor, and corresponding it with the symmetry of the vibrational modes

of the system enable us to identify which vibrational modes are Raman-active. The

identification of the Raman-active modes for molecules and crystals is possible using

group theory.

Case of the hexagonal lattice of graphene

A crystal with a given structure, hexagonal for graphene, has a series of transforma-

tions that preserve its symmetry. For the honeycomb lattice of graphene, the following

transformations have no change on its structure: Rotation about the normal axis by

2π/n (denoted Cn), inversion with respect to the center of the hexagon (denoted by i),

reflection in a plane normal to the atomic layer (denoted by σ), and a combination of ro-

tations by 2π/n and a reflection in a plane perpendicular to the atomic layer. By adding

the identity transformation (denoted by E), these transformations form, from the point

of view of mathematics, a symmetry group. In graphene, both electrons and phonons at

the Γ are represented by the same symmetry group. This symmetry group is denoted,

following the notation rules by Schoenflies, as: D6h [82]. Each type of transformation

(i.e., Cn, Sj , σ, i, and E) is called a class of the symmetry group. Each class contains

all possible realizations of a given transformation type that can preserve the symmetry

of the group. Thus, all the elements of a symmetry group are distributed among its

classes.

The symmetric transformations for a given group are represented in the form of matrices.

A set of matrices that represent all the transformations that preserve the symmetry of

a group is called a group representation. Group representations can be decomposed into

smaller sub-matrices that hold the symmetry of the group. When a representation can
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Figure 2.4: Character table of the D6h symmetry group of the hexagonal lattice for
graphene. The red marked lines represent the Raman-active vibrational modes. Data

copied from [webqc.org. D6h - point group symmetry character tables].

no longer be further decomposed, it is then called an irreducible representation (IR).

In group theory, IRs can have different types of matrix representation, but with the

same symmetry properties. To label IRs we use the trace, also called character, of their

corresponding matrices (i.e., the number of diagonal elements in a matrix). We note

that the number of IRs for a symmetry group corresponds to the number of its classes.

The IRs for the vibrational modes, and their classes, are grouped in a so-called charac-

ter table. Knowing, the symmetry group of a crystal, it is then possible to find, using

group theory, the IRs and their classes, thus deducing the crystal’s character table [78].

Each vibrational mode happens to be invariant under the classes of a given IRs. Con-

sequently, there is a correspondence between the normal vibrational modes of a crystal

or a molecule, and the set of IRs of its character table.

Table 2.4 represents the character table for the D6h symmetry group of graphene. The

numbers indicate the trace of a IR under a given class. The symbols A1,2, B1,2 indi-

cate IRs that are symmetric or anti-symmetric with respect to rotational symmetries,

and E1,2 represent twofold degenerate vibrational modes that are symmetric or anti-

symmetric with respect to the rotational symmetries (see Table 2.4). The subscript

symbols g and u in the IRs are German symbolic for gerade (even) and ungerade (odd)
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for vibrational modes that transform symmetrically or anti-symmetrically with respect

to the inversion center of the hexagon.

Following the above introductions from group theory, the condition for a vibrational

mode to be Raman-active is satisfied ” if the components of the polarizability tensor

belong to the same IRs as for the vibrational mode ” [81]. For D6h symmetry group,

this condition is fulfilled for the combinations (χxx + χyy) and χzz belonging to the IR

A1g. And the combination (χxx − χyy, χxy) that belongs to the IR E2g, respectively.

This immediately designate A1g and E2g as Raman-active modes in graphene.

In table 2.4, the red marked regions indicate the Raman active-modes in graphene. The

A1g mode is a second order process, which needs defects for its activation (as will be

discussed in the next section). The E2g mode is a doubly degenerate, Γ point optical

phonon, and is always active in the Raman spectrum of sp2 carbon allotropes, such as

carbon nanotubes, multilayer graphene, and bulk graphite.

Finally, it is important to note that even if a set of vibrational modes are Raman-active,

their observation in Raman scattering spectroscopy can depend on the polarization of

the incident and scattered light [78].

2.2 Raman spectroscopy of graphene, multilayer graphene,

and graphite

2.2.1 Prominent Raman peaks

Raman spectroscopy is a powerful tool in the study of graphene, graphene multilayers,

and bulk graphite. The most prominent features in the Raman spectra of these systems

are the so-called G, D, and 2D bands. While the G and 2D bands are always present in

the Raman spectra of graphene, N-LG, and bulk graphite, the D band needs defects to

be activated [83, 84]. These defects, such as vacancies or charge impurities, allow for an

elastic scattering of the electrons, with no change in the energy. The elastic scattering

contributes to the Raman scattering process to produce the D band (see Figure 2.7b).

Two typical Raman spectra for monolayer graphene, in the absence of defects and with

defects are shown in Figure 2.5. While in the absence of disorder, the most prominent

features are the G and 2D bands, the D peak along similar defect activated modes ap-

pear in the Raman scattering spectrum of disordered graphene [84].

Figure 2.6a shows the phonon dispersion in monolayer graphene along the high symme-

try axis Γ M K in the BZ of graphene [83, 85–87]. This dispersion displays six phonon

branches, all of them originates from the Γ point, which is the highest symmetry point

in the BZ and is taken as the origin of the phonon momentum (q = 0).

The three branches that have zero energies at the Γ point (see Figure 2.6 a) are called
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Figure 2.5: (a) Two Raman spectra of monolayer graphene. The upper spectrum
is taken from a graphene flake with no defects, while the lower spectrum is of highly
disordered graphene [84].(b,c) Phonon dipsersions as function of the laser excitation
energy for the D,2D and D peaks. The red symbols in (b) are for graphene monolayer,

while the lozanges are data from graphite [83, 84].

acoustic phonons. They correspond to symmetric displacement of the carbon atoms in

the honeycomb lattice. On the other hand, the three branches that have finite energies

at the Γ point correspond to anti-symmetric displacement of the carbon atoms, they are

known as optical phonons.

Both optical and acoustic phonons, denoted by capital letters O or A, have either longi-

tudinal (LO, LA) or transverse (TO, TA) character. These vibrational modes correspond

to in-plane (i) or out of plane (o) displacement of carbon atoms. In the Raman scat-

tering process, only phonons at the Γ point (q = 0) will participate to the first order

scattering.

The Raman selection rules, discussed in the previous section, imply that the E2g is

Raman active in sp2 carbon systems. In graphene this mode is doubly degenerate at the

Γ point, because it corresponds to in-plane longitudinal and transverse optical phonon

modes (iLO, iTO), with an energy at ∼ 1580 cm−1 [78, 83](see Figure 2.6b). It gives

rise to the G band in the Raman spectra of graphene, N-LG, and bulk graphite.

Second order Raman modes are also observed in graphene. The A1g mode (Figure 2.6c)

at the K point, located at an energy ∼ 1300 cm−1, is activated due to the presence of

defects in the sample, it is known in the Raman spectra of defected graphene as the D

band.

One of the intriguing results about Raman spectroscopy of graphene and graphite is

that the defect peaks, such as the D band, but also the overtone of the D band (i.e., the

2D band) are found to disperse with the excitation energy (Figure 2.5(b,c)). The origin

of these two peaks has not been clear, and it was the subject of intense debate within

the scientific community [83, 88–91]. However, it is now accepted that the D and 2D

bands originate from a double resonant Raman scattering process [91–94].

Figure 2.7 (a-c) summarizes the scattering mechanisms responsible for the observation
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Figure 2.6: (a) Phonon dispersion in graphene along a high symmetry axis in its
BZ [87]. The E2g phonons at the Γ point contribute to the G band, while the A1g

phonons at the K point are related to the disorder induced D band. (b,c) Raman active
vibrational modes that are responsible of the observation of the G and D bands in the

Raman spectrum of graphene.

of the G, D, and 2D bands in graphene, respectively. The G band is a first order Raman

process. For momentum conservation, the phonons involved in its activation have zero

momenta, and are located at the center of the BZ at the Γ point. The D and 2D bands

require a so-called double resonance (DR) mechanism [92]. This DR condition is shown

to occur in two different ways for the D and 2D bands. In the case of the D band (Fig-

ure 2.7b), the incoming photon will scatter the electron (with a quasi-zero momentum)

from the valence to the conduction band resonantly (indicated by the blue arrow). This

means that the energy of the incident photon matches exactly the energy difference be-

tween the valence and conduction bands at a given k point. Then a phonon with wave

vector q = K+k, (k << K) will scatter the electron to the second valley K′, from which

the electron will be scattered back elastically to the K valley by a defect. Finally, the

electron-hole pair recombines and the total momentum is conserved [92]. The defects

that activate the D band might be lattice vacancies, crystal edges, or impurities [83].

The activation mechanism of the 2D band is different. Instead of defects that scatter

elastically the electron from one valley to the other, this second order process is due to

a DR scattering mechanism that includes two phonons with opposite momenta +q and

-q (q = K + k, (k << K)). This inter-valley process is shown in Figure 2.7c, where no

defects are necessary to the observation of the 2D band [84, 91–93].

The 2D feature arises from both inner DR process, which selects wave vectors that
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Figure 2.7: Schematic diagrams for the phonon processes in the graphene electronic
dispersion [84]. (a) Intravalley first order Raman process responsible of the G band.
(b,c) Intervalley second order Raman processes for the D and 2D modes, respectively.

connects the inner inter-valley region between the K and K′ points, or from an outer

inter-valley process, that connects the outer inter-valley from the K to the K′ points.

The fact that most of the graphene flakes are deposited on substrates, such as silicon,

the doping induces a broadening of the 2D band feature which is bigger than the en-

ergy separation between the inner and outer DR processes, hence a more symmetric line

shape of the 2D band in monolayer graphene [95, 96].

One should note that for strongly defected graphene, the D band is not the only ad-

ditional feature in the Raman spectroscopy of graphene. This is seen in Figure 2.5,

where many overtones and bands arise. Nevertheless, the DR model accounts for all

the observed features [84]. For instance, the D′ band originates from a double resonant

intravalley process (i.e., in the same valley, around the same Dirac cone), involving a

scattering by a defect. The D′′ is linked with the D band phonons and is originating

from the longitudinal acoustic (LA) phonon branch [84].
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Figure 2.8: (a) Raman spectrum showing the Stokes and anti-Stokes of the C mode
in bulk graphite, around 44 cm−1. (b) Two degenerate vibrational modes that are
responsible of the observation of the Raman active C mode [97]. (c) Raman spectra
of LBMs in bilayer graphene and bulk graphite [35], denoted as P1, P2 and P3. (d)
Schematics of a LBM for bilayer graphene when the two atomic planes are moving out

of phase. The red and blue atoms indicate the two different sublattices.

Two other Raman-active vibrational modes are of major interest in the study of multi-

layer graphene and graphite. These modes correspond to adjacent layers moving out of

phase in the direction parallel to the atomic planes or perpendicular to the atomic planes,

as schematically depicted in Figure 2.8b,d, respectively. The first type are referred to

in literature as shear mode (or the C mode), seen in the spectrum of Figure2.8a. The

second type of these modes are called layer breathing mode (LBM), denoted by P1, P2

and P3 in Figure 2.8c. These two modes are related to the inter-layer coupling between

atomic planes and can be used as a probe of the number of layers [35, 97, 98]. The shear

mode, for instance, can be viewed as a bulk E2g vibrational mode.

The LBMs, indicated in Figure 2.8c have Raman shifts in the range 1615 to 1850 cm−1

[35], but also at lower energies starting from 80 up to 300 cm−1 [98]. The shear modes

are even at lower energies, their Raman shift increases with the number of layers until

reaching ∼ 44 cm−1 in bulk graphite [97]. Thus, their observation in Raman scattering

experiments requires maximum rejection of elastically scattered light.
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Figure 2.9: (a) Two Raman spectra of monolayer graphene and Bernal stacked bulk
graphite, taken with 514 nm excitation wavelength [91]. (b) Zoom on the 2D band
lineshape from monolayer to few layer graphene up to bulk graphite [83]. (c) The DR
model accounts for the lineshape dependence of the 2D band on the number of layers.

As it is evidenced for bilayer graphene. [83].
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2.2.2 Dependence on the number of graphene layers

When graphene layers are stacked on top of each other in a Bernal fashion (AB stacking),

the 2D band lineshape changes as a function of the number of layers. This effect was

first evidenced by Ferrari et al. [91], who investigated the Raman scattering response

of graphene, from monolayer to few layers, up to the bulk limit (i.e., Bernal stacked

graphite). Figure 2.9a shows two Raman spectra, one is from monolayer graphene and

the other is from bulk graphite, with the 2D band boxed in red. For different N (num-

ber of layers) the 2D band has different features. This is shown in Figure 2.9b. For

monolayer graphene, the 2D band is a single symmetric peak, but its line-shape changes

drastically starting from AB stacked bilayer graphene, and it continues to evolve for few

layer graphene until reaching a characteristic two components feature for Bernal bulk

graphite [83, 91].

To explain this line-shape dependence on the number of layers, one should consider the

phonon and electronic dispersions for graphene as a function of N. When increasing the

number of layers, both the electronic and phonon bands split into several components.

The phonon branches split due to the vibrations of the carbon atoms in the upper and

lower layers. In bilayer graphene, for instance, the atoms in one sublattice move in phase

with respect to each other in the two layers, and out of phase in the other sublattice

in the two layers [83]. At the same time, the electronic bands split due to interlayer

coupling between the atomic planes. The splitting in the phonon branches in the case

of bilayer graphene, however, has been shown to be less than 1.5 cm−1 [91]. This tiny

split cannot account for the 2D band splitting in the Raman scattering of Bernal stacked

N-LG.

For bilayer graphene, the interlayer coupling will split the (π, π∗) electronic bands into

four branches. Using the DR model introduced in the previous subsection, we find that

there are four different electron-phonon scattering processes, labeled (1, 2, 3, 4) in Fig-

ure 2.9c, that involve four different phonons with different momenta {P11, P12, P22, P21}
across the K-K′ line. These four different processes are at the origin of the four compo-

nents line-shape of the 2D band in AB stacked bilayer graphene [83, 91]. The number of

sub-peaks in the 2D band feature increases with the number of layers in Bernal-stacked

graphene. At the bulk limit, the 2D band line-shape has a double peak structure [83].

Bulk graphite has a hexagonal 3D BZ that extends in a third kz direction along the K-H

line. The DR process giving rise to the 2D band in graphite not only involves inelastic

scattering of electrons by phonons connecting the K and K′ points, but also involves in-

elastic scattering of electrons by phonons of wave-vector k connecting all possible points

belonging to the electronic bands along the K-H line to points with wave vectors k′ along

the K ′ − H ′ line [99, 100].

Another important point is the C mode energy and its line-shape. It has been shown
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Figure 2.10: (a) The left panel shows the C mode energy as a function of the number
of layers. The right panel of (a) shows the corresponding G band. (b) Plot of the G
band and the C band Raman shifts as a function of the inverse of the number of layers.
The fitting is done using 2.17. (c) Schematics of the different shear modes in multilayer
graphene and their Raman shift for different number of layers. The figures are taken

from [97].
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(a) (b)
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Figure 2.11: (a) Raman scattering spectra of the LBMs in N-LG from 2 to 20 stacked
monolayers. (b) Different atomic layer displacements for the LBMs in 11-LG. (c) The
frequencies of the LBMs as a function of the number of layers. The dots are experimental
results while the lines derive from the theoretical model used for the fits. Figures are

taken from [98].

that its energy, from bilayer to bulk graphite, is related to the number of ABA stacked

layers [97]. Figure 2.10a shows a Raman spectroscopic study of the shear modes per-

formed on a N-LG flake with a thickness ranging from bilayer to bulk graphite. The

frequency of the G and C peaks are plotted as as function of N in Figure 2.10b. While

the overall G band position (right panel) seems to be layer independent, the C mode

energy reflects the number of layers in AB stacked N-LG. The thicker the flake the big-

ger is the relative Raman shift, which increases from 31 cm−1 in bilayer graphene to

44 cm−1 for bulk graphite [97]. The position of the C mode, for a given N, follows the

formula:

Pos(C)N =
1√
2πc

√

α

µ

√

1 + cos

(

π

N

)

, (2.17)

where: α is the interlayer force constant per unit area, N the number of layers, µ the

monolayer graphene mass per unit area, and c the speed of light in vacuum. The only

free parameter in this formula is α. For a fixed value of 12.8 × 1018N/m3, we can fit

all the experimental data (red curve in Figure 2.10b). This implies that, in AB stacked

N-LG, the hardening of the C mode is not due to a variation of interlayer coupling, but
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rather to an increase of the overall restoring force (surface layers are less bound than in

the bulk) going from bilayer to bulk graphite [97]. When the number of layers increases,

the line-shape of the C mode become more and more asymmetric. Tan et al. [97] showed

that the C mode feature can be well fitted using a Breit-Wagner-Fano (BWF) function.

The BWF line-shape is more pronounced at the bulk limit and arises from coupling of

Raman allowed phonon with a continuum of Raman-active electronic transitions.

Lui et al. studied the LBMs in N-LG using Raman scattering techniques [35, 98].

Their results show that the LBMs can also be used as an accurate probe for layer

thickness in N-LG flakes. The Raman bands associated with these modes are unique

for graphene samples of each layer thickness (see Figure 2.11a) as their energies change

with increasing number of layers. When increasing the layer thickness, the number of

Raman peaks associated with LBMs grows systematically, highlighting the remarkable

sensitivity of the LBMs to interlayer interactions. For a given number of layer N, there

are N-1 atomic displacement modes (see Figure 2.11b for the case of 11-LG). Similar

to the shear modes, the frequency dependence of the LBMs on the number of layers

follows a model equivalent to the normal vibration modes of a linear chain of N masses

connected by springs [98]. The solution to this problem yields:

ωN(n) = ω0 sin

[

(N − n)π

2N

]

, (2.18)

where ω0 = 132.2 cm−1 denotes the frequency of the shear mode in bulk graphite. The

results of Eq 2.18 provides an excellent overall fit to the experimental data for all layer

thicknesses, as seen in Figure 2.11c.

2.2.3 Dependence on the polarization of light

Even though the G, 2D, and 2D′ bands are Raman-active modes, their observation can

be dependent on the polarization of the incident and scattered light [84, 101–103]. Based

on the symmetry of the IRs of the Raman tensor in the character table of graphene, the

E2g mode responsible of the G band is not sensitive to the polarization of light. This

non sensitivity of the G band to light polarization can be understood by considering

its matrix element MG, described by the lattice displacement u. For incident ein and

scattered eout light, the intensity of the G band is given by [84]

I(G) ∝ |MG|2, (2.19)

where [84]

MG ∝ (ein
x eout

y + ein
y eout

x )ux + (ein
x eout

x + ein
y eout

y )uy. (2.20)
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The z direction is chosen to be normal to the graphene layers. In Eq 2.19, the intensity

does not depend on ein and eout. For the 2D and 2D′ modes, however, the intensity is

given as:

I(2D, 2D′) ∝ |ein|2|eout|2 + 2(ein.eout)2, (2.21)

which gives an intensity that depends on the relative orientation of the electric field

components. Eq 2.21 gives a maximum intensity when (ein, eout) are parallel, while it

is minimum when (ein, eout) are perpendicular [84, 102, 103].

2.2.4 Dependence on the crystallographic stacking order

2.2.4.1 Rhombohedral stacking

The DR model happens to be a powerful tool to account for the 2D band line-shape de-

pendence on the number of layers in N-LG. It allows for an easy and accurate estimation

of the number of layers in few layer graphene flakes. However, much of the studies have

been focused on the Bernal-stacked N-LG and little has been done to correlate the 2D

band line-shape with the number of layers for ABC-stacked N-LG. A natural question to

ask is how the Raman response of ABC stacked N-LG, and its phonon peaks including

the 2D band, will be different from the Bernal-stacked N-LG and how does it correlate

to the number of layers.

Systematic comparison studies of the Raman response in ABA and ABC trilayer

graphene [32, 104] have been reported. For different excitation photon energies, the 2D

band line shape in ABC trilayer displays more asymmetric and broader lines than ABA

trilayer. In Figure 2.12(a-d), we observed a sharp peak and an enhanced shoulder in the

ABC spectra for all excitation photon energies.

Since the G band involves in-plane phonon modes, similar G band line-shape has been

observed in ABA and ABC tri-layers (Figure 2.13a,b), in contrast to the 2D band. Fol-

lowing these observations, one can construct false color maps of the Raman scattered

intensity that display the change in the width of the 2D band with respect to the stack-

ing order [32]. Figure 2.13(c,d) shows the result of such a procedure, where both the

stacking orders coexist in the same flake. Even if the optical microscope image shows

no apparent difference, the corresponding Raman color map of the same flake shows a

clear contrast between the two domains.

2.2.4.2 Twisted multilayer graphene and graphene superlattice

Another stacking configuration for multilayer graphene is when the atomic layers have

a rotational angle with respect to each other. These stacking faults are often found on
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Figure 2.12: (a-d) Raman spectra of the 2D band for ABA (green line) and ABC
(red line) trilayer graphene. The spectra are recorded at four different laser excitation

wavelengths [32].

(c) (d)

(a) (b)

Figure 2.13: (a) G band from ABA and ABC trilayer graphene [104]. (b) 2D band
from ABA and ABC stacked tetralayer graphene. (c) Optical microscope image of a
multilayer graphene flake. (d) Raman imaging of the ABA and ABC stacking domains

based on the 2D band lineshape [32].



Chapter 2. Experimental technique: Raman spectroscopy 56

the surface of bulk graphite, as evidence from scanning tunneling spectroscopy (STS)

[105]. The mechanical exfoliation of multilayer graphene [15], as well as the ability to

grow multilayer epitaxial graphene on different substrates [106, 107], allowed the investi-

gation of these stacking faults electronic properties. This enabled the discovery of novel

phenomena in 2D materials.

Multilayer graphene with a twist

Multilayer graphene with twisted angles can be obtained by thermal decomposition of

SiC [20]. The number of graphene layers obtained from this technique depends on the

experimental conditions.

( )

Figure 2.14: Bilayer graphene with a
twisting angle between atomic layers [108].

It was predicted that a single layer graphene-

like band structure should be observed in this

configuration [109, 110]. However, the Fermi

velocity is significantly reduced as compared to

monolayer graphene, especially for small rota-

tional angles [111].

Several magneto-optical studies have been

performed on multilayer epitaxial graphene,

grown on silicon carbide substrate (SiC) [112–

116]. The
√

B-dependence of Landau lev-

els, fingerprint of massless Dirac fermions,

has been observed for epitaxial multilayer

graphene, thus resembling the behavior of car-

riers in monolayer graphene.

Luican et al. [117] showed that for twist an-

gles exceeding 3◦, the low energy band struc-

ture exhibits similarities with massless Dirac

fermions, and when exceeding 20◦, the layers effectively decouple and the electronic

properties are indistinguishable from those in single layer graphene.

Raman characterization studies of twisted bilayer graphene (Figure 2.14) have been re-

ported [108, 118, 119]. In bilayer graphene grown by chemical vapor deposition technique

(CVD), two new low frequency Raman peaks (below 100 cm−1) that originate from a

layer breathing mode are observed for small range of twist angle [119]. Moreover, strong

dependence of the energy, the intensity and of the line-width of the G and 2D bands are

observed as a function of the twist angle in exfoliated tBLG samples [108, 118], as seen

in Figure 2.15a,b. The modeling of data for tBLG shows the emergence of rotational-

angle dependent Van Hove singularities (i.e., divergence in the joint electronic density
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Figure 2.15: (a,b) Raman active G and 2D bands recorded for different angles between
the graphene planes, respectively. (c) Brillouin zone of twisted bilayer graphene. (d)
Electronic band structure around the K points of each layer. (e) The joint density of

states for monolayer graphene (blue) and twisted bilayer graphene (red).

of states), that are responsible for the observed spectral features. The energy of these

Van Hove singularities can be tuned by changing the twist angle, and for a critical value

of the twist angle θc, where the energy difference between the valence and conduction

Van Hove singularities matches the excitation laser energy used to excite the sample,

we observe the enhancement in the intensity of the G and 2D modes [108, 118, 119].

When the twist angle is larger than θc, the Raman spectra will resemble those of a single

layer graphene since all the optical excitations occur in an isolated simple Dirac cone

structure [118].

Graphene superlattice

Another important aspect that emerges from the study of twisted layers in N-LG systems

is the concept of superlattice. Superlattices in general are hetero-structures that have,

besides the periodicity of their intrinsic structure, an additional periodicity [121].

In two dimensional materials, such as graphene or boron nitride, superlattices are formed

when two monolayers are superimposed on top of each other. The superlattice is seen as a

so-called Moiré pattern, which is a periodic structure that appears whenever two regular
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(a) (b)

Figure 2.16: (a) The two lattices are overlaid at an angle of about 27.8◦. The resulting
atomic arrangement is precisely periodic. (b) Lattices rotated by 9◦. Although the
atomic arrangement never precisely repeats, there is a periodic pattern of points in
space at which atoms from the two layers are nearly on top of each other, making the

structure appear more open in this top view [120].

templates are overlaid with an angle[120]. In 2D systems, superlattices also emerge from

a lattice mismatch between two monolayers with different lattice constants brought into

contact, such as graphene and hexagonal boron nitride (hBN). The periodicity of the

superlattice is related to the twist angle between the atomic layers, as seen in Figure

2.16 [120, 122].

Rich physical phenomena have been predicted and experimentally observed for graphene

superlattices. Park et al. [123, 124] predicted the generation of new Dirac points in the

electronic band structure due to the presence of a periodic potential induced by the

Moiré. The first experimental studies on graphene superlattices have been on systems

that consist of graphene placed on top of hBN. Both transport and infra-red studies

on these hetero-structures have been performed, leading to the observation of the Dirac

cone replica and a bang gap opening [125, 126].

The application of magnetic fields to a graphene superlattices has led to the observation

of the Hofstadter’s butterfly [127–130], which consists of self-similar spectrum of Landau

levels replica in the energy spectrum of graphene. Even though the concepts of self-

similarity and fractal geometry have been used in the study of the critical properties

of phase transitions and are active research areas in mathematics [131], this study has

introduced these concepts for the first time in condensed matter physics (see Figure

2.17c,d). Many body effects also play an important role in these systems, in which

transport and infrared nano-imaging spectroscopy measurements led to the observation

of a quantum Hall ferromagnetism [132], collective electron oscillations or plasmons
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Figure 2.17: (a) Schematic of the graphene/hBN superlattice structure used to un-
ravel the emergence of the Hofstadter’s butterfly spectrum [127]. (b) Reconstruction of
the graphene spectrum induced by the Moiré potential [128]. (c) Longitudinal conduc-
tivity as a function of n and B. (d) Graphical explanation of (c) using the Hofstadter

butterfly spectrum.

(a) (b) (c)

Figure 2.18: (a) AFM tip is used to flip a graphene layer to produce a superlattice. (b)
AFM image of the folded graphene. The inset shows a high-resolution AFM image which
determines the crystallographic orientation of the bottom layer.(c) For four different
excitation lasers, the R′ band is present in the spectra of the graphene superlattice.

The figures are taken from [122].
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[133], and a magnetic field dependent Fermi velocity for the carriers [130].

Raman spectroscopy has been applied to the study of graphene superlattices [122, 134].

By using an AFM tip to flip an exfoliated graphene monolayer on top of another graphene

layer, one can produce a tBLG with an angle that allows the observation of a short range

Moiré pattern (see Figure 2.18(a,b)).

The electronic structure depends on the rotational angle, and this can be probed by

Raman scattering experiments, as was first proposed by Gupta et al. [135].

In the Raman spectra of graphene superlattices, the G and 2D band features depend on

the rotational angle. Moreover, new phonon modes are observed, called the R and R′

bands [122]. These pics have properties that depend on the twist angle and can be used

as an optical signature for graphene superlattices [119, 122, 136].

2.2.5 Effects of strain, doping

Graphene is seen as a promising material for future applications, so it is natural to ask

how external factors such as strain and doping can influence the properties of graphene

based systems. Numerous studies in the past few years has focused on these matters.

Here, we will try to go through the most important results concerning the effect of strain

and doping with charge carriers in the properties of graphene and graphene multilayers,

seen through Raman spectroscopy.

2.2.5.1 Strain

One of the important question was to investigate a band gap opening, since gaped

graphene is strongly sought for electronic applications. Pereira et al. [137] found that

only huge mechanical strain, that exceeds 20 % and applied along preferred directions,

can open a small band gap, which is not practical for applications. On the other hand,

sine-like in-homogeneous strain, applied along any direction but the armchair, can in

theory open a gap as large as 1 eV [138].

Strain has been found to induce interesting phenomena in graphene, such as the creation

of a pseudo magnetic field [139–145]. The pseudo magnetic field generated by strain can

reach 300 Tesla [142], which offers a playground to study condensed matter systems

under extreme magnetic fields that cannot be reached in nowadays laboratories.

Strains induce significant changes in the Raman spectrum of graphene. Splitting and

energy shifts of the Raman G and 2D bands has been reported [146–150]. Figure 2.19

shows a study by Mohiuddin et al. in which they probed the Raman spectroscopy of

graphene under uniaxial strain [146]. They found that the double degeneracy of the

E2g mode at the Γ point is lifted as the G band splits in two components, labeled G−



Chapter 2. Experimental technique: Raman spectroscopy 61

(a) (c)

Raman shift (cm- 1) Raman shift (cm- 1)

In
te

n
si

ty
 (

a
.u

.)

(b)

Figure 2.19: (a) Graphene flake placed on polymer substrate under uniaxial strain
[146]. (b) Schematics of the doubly degenerate E2g vibrational mode responsible of the
G band. The strain induces a splitting of the G band in two components, one parallel
to the direction of strain and the other one perpendicular to the direction of strain.

This splitting is seen in the Raman spectrum of graphene (c).

and G+. Strain induces a change in the lattice parameter of graphene. This splitting

of the G band is due to a bigger change in the lattice parameter of graphene along the

direction of the strain compared to the direction perpendicular to the strain (see Figure

2.19b), in analogy to the effect of curvature in nanotubes [151]. The two sub bands G−

and G+ redshift with increasing strain, while their splitting increases, and their relative

intensities vary with the polarization, allowing to probe the sample crystallographic

orientation with respect to the strain.

Strain applied along specific directions can also induce a splitting of the 2D band [147,

148, 150]. For stress along zigzag and armchair directions, the 2D mode splits into

two distinct sub modes (2D+, 2D−). The splitting of the 2D band directly reflects a

strain-induced modifications of phonon and electronic dispersion. Indeed, first-principles

calculations shows that anisotropic modifications of the phonon dispersion together with

changes in the electronic structure, such as Dirac cones shifting, are at the origin of the

observed modifications [148]. The intensities of the sub modes show strong dependence

on both incident and scattered light polarization and the sample orientation, which

suggests that the sub modes originate from different scattering paths [147]. Moreover, a

strong dependence of the strained 2D mode line shape on the excitation energy is shown

[150], which makes Raman measurements using various excitation wavelengths, under

well-defined strain conditions, a very important approach for a complete picture of the

2D mode scattering process in strained graphene.
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2.2.5.2 Doping

(a)

(b)

Figure 2.20: (a) Raman spectra of graphene as a function of gate voltage [152]. The
G peak is on the left and the 2D peak is on the right. The red line corresponds to the
Dirac point. (b) Data obtained for gated bilayer graphene [153]. The Blue squares are

the G band Raman shift, while the red circles represent G band line-width.

A standard approach to study the electronic properties of graphene is to transfer it on

top of a Si substrate covered with a thin layer of SiO2 (with the oxide thickness ranging

from 90 to 300 nm) to render the identification of graphene flakes possible under an

optical microscope. However, unlike the surface of graphene, SiO2 is known to have a

rough surface which is usually electrically charged (doped) due to the presence of im-

purity atoms and dangling bonds. Such a factor cannot be neglected in the study of

the intrinsic properties of graphene. It is then legitimate to understand how electrical

doping change the electronic properties of graphene.

Doping graphene has been done either unintentionally [154], or by studying graphene

that is doped intentionally through the application of a gate voltage [152, 153, 155–157].

Raman scattering spectroscopy is a method of choice to investigate the properties of

doped graphene. Indeed, in their seminal works, Yoon et al. and Das et al. studied

graphene flakes-gated structures. They showed that phonons in graphene are sensitive to

the applied electrical field. Both the Raman-active G and 2D bands undergo an energy

shift and broadening of their line-widths as a function of the applied gate voltage.
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Figure 2.20a shows the Raman spectra dependence of gated-graphene on the doping

level [152]. While the shift of the 2D is very small, the G band shifts as far as 25 cm−1

toward high energy from its equilibrium position (red curve), which reflects a stiffening

of the phonon E2g mode. These results show clearly that it is possible to monitor the

coupling between the vibrational modes in graphene and Dirac fermions.

The effect of doping on the Raman active modes in gated bilayer graphene has been also

reported[153]. Figure 2.20b shows the evolution of the energy and line-width of the G

band as a function of the carriers concentration and gate voltage. However, the effect

of doping is less pronounced compared to monolayer, where the density of states is zero

at the Fermi level, allowing a much pronounced broadening of the Fermi level by charge

in-homogeneities [153].

2.3 Electronic Raman scattering

2.3.1 Principle of electronic Raman scattering

E

E
F

Figure 2.21: Zero field
electron-hole pair excitations
in the Dirac cone structure of
monolayer graphene. Excita-
tions with energy lower than
2EF are are Pauli blocked.

In graphene, the band structure is a direct consequence of

its honeycomb lattice, described by the hexagonal symmetry

C6ν . The Raman-active modes are thus naturally related

to the irreducible representations of the point group C6ν

[78]. Inelastic light scattering in graphene is dominated by

the generation of zero-momentum inter-band electron-hole

modes [158, 159]. When applying magnetic fields, the en-

ergy bands are quantized into Landau levels. The electron-

hole pair excitations can be observed as inter-Landau level

transitions. These inter-Landau level transitions can be

observed using magneto-Raman or magneto-infrared spec-

troscopy, each technique probes transitions with different

selection rules [44, 160].

At zero magnetic fields, electronic Raman scattering has

been observed in carbon nanotubes [161], bulk graphite

[162], and recently in gated graphene monolayer structures

[163]. Moreover, the observation of inter-Landau level tran-

sitions in the presence of a transverse magnetic field has

been reported in suspended graphene and N-LG [31], bulk

natural graphite [160], graphene domains on the surface of bulk graphite [164, 165], and

high quality graphene encapsulated on hBN [166].
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Still, the observation of electronic excitations in graphene-based systems is a challenging

task. This is mainly due to the interaction with the substrate (in this case SiO2) that in-

duces a shift of Fermi level from the charge neutrality, and the emergence of microscopic

perturbations such as topographic corrugations and electron-density including charge

puddles [167, 168]. Thus, high mobility graphene samples are needed for the observa-

tion of low energy inter-Landau level transitions. This is either achieved by partially

suspending the graphene flakes, or by the appropriate choice of substrate, such as the

surface of graphite or hexagonal boron nitride.

In the following we will present an overview of the electronic Raman scattering as pre-

sented in the pioneering work by O. Kashuba and V. Fal′ko [158, 159], were they classified

all possible Raman active excitations according to their symmetries and the polarization

configurations needed to their observation. We present the electronic Raman scattering

in the absence of magnetic fields, and then show how magnetic fields allow for the ex-

perimental observation of such excitations in monolayer graphene, multilayer graphene,

and bulk graphite.

2.3.2 Electronic Raman scattering at zero magnetic field

The model introduced by O. Kashuba and V. Fal′ko is based on the tight binding

parameters that we introduced in Chapter 1. However, it is not limited to only γ0

and γ1. Including γ3 (also known as the trigonal warping term) is relevant to account

for all the observed excitations using this model. Following this approach, the Dirac-

type Hamiltonian of π electrons in graphene interacting with an electro-magnetic wave

is then given by:

Hm = H0 + H′ = ξυσ.p − υ2

6γ0

(

σx
(

p2
x − p2

y

)

− 2σypxpy

)

, (2.22)

where we introduced the Pauli matrices σ = (σx, σy) for the two components wave

function. The first term in 2.22 gives the linear spectrum αυp of monolayer graphene,

while the second term accounts for the trigonal warping that breaks the rotational

symmetry around the K and K′ points of the graphene BZ. The vector potential of light

is included in the momentum (measured from the K point) as p → p − eA, where

A =
∑

I,q,qz

~c√
2Ω

(

Iei(qr−Ωt)/~bq,qz ,I + h.c.
)

, (2.23)

describes an incoming photon with polarization I, in-plane momentum q, energy Ω, and

out-of plane momentum qz =
√

Ω2/c2 − q2. The electron-photon interaction part is
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given as:

Hint = −eυ

c
J.A +

e2

2c2

∑

i,j

(

∂2
pipj

H
)

AiAj . (2.24)

The two terms in 2.24 give the total Raman scattering amplitude for a photon inelasti-

Figure 2.22: Feynman diagram of the total Raman scattering amplitude of the photon
by the creation of an electron-hole pair [159].

cally scattered by electrons, thus changing its energy, momentum, and polarization from

Ω, q, and I to Ω̃ = Ω − ω (ω being the Raman shift), q̃, and Ĩ. These two terms lead

to the Raman scattering amplitude, given by: R = RD + Rω, where Rω is called the

contact interaction, while RD is called the diamagnetic term (see Figure 2.22c).

Rω describes a one-step scattering process which is mediated by a contact interaction

between an electron and two photons, as seen in the last term of the Feynman diagram

depicted in Figure 2.22c. The contact interaction appears for Dirac Fermions due to

rotational symmetry breaking in Hamiltonian 2.22 through the trigonal warping term.

This mechanism leads to the generation of electronic excitations with E2 symmetry of

the C6ν point group [158].

The diamagnetic interaction (RD), with the representation A2 of C6ν , is a two steps pro-

cess. It consists of an absorption (emission) of a photon with energy Ω(Ω̃) transferring

an electron from an occupied state in the valence band into a virtual intermediate state,

followed by another emission (absorption) of the second photon with energy Ω̃(Ω), which

moves the electron to the final state. These two quantities have the following forms for

monolayer graphene:

RD =
(e~υ)2

Ω2

(

−iσz(I × Ĩ
∗
)z +

M.d

Ω

)

(2.25)

Rω =
e2υ2

~
2

6Ωγ0
(ez × σ).d, (2.26)

where: M = ξυ(σxpy + σypx, σxpx − σypy), and d = (IxĨ∗
y + Iy Ĩ∗

x, IxĨ∗
x − Iy Ĩ∗

y ).

Generally, the components of the scattering amplitude realize a representation of the

lattice symmetry group C6ν . I and Ĩ
∗

are polarization operators for the incoming and
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scattered photons that belong to E1 representation. However, E1 can be expanded into

irreducible representations as:

E1 ⊗ E1 = A1 ⊕ A2 ⊕ E2, (2.27)

which leads to a series of combinations for the polarization vectors as functions of the

irreducible presentation A1, A2, and E2:

ΞA1 = |I × Ĩ
∗|2, ΞA2 = |I · Ĩ

∗|2, ΞE2 = |d|2 = 1 + (I × I∗)(Ĩ × Ĩ
∗
). (2.28)

The scattering probability for a photon from a state (q, qz) with energy Ω to a state

(q̃, q̃z) with energy Ω̃, by exciting and electron-hole pair is then given by [159]:

w = wA1ΞA1 + wA2ΞA2 + wE2ΞE2 . (2.29)

Ξi are seen as weight functions for the scattering probability that is presented as a sum

of partial scattering probabilities wi in a process where polarization vectors transform

accordingly to a given representation.

The total contribution from the electronic Raman scattering will be:

I =

∫

g(ω)dω, (2.30)

where g(ω) is the total spectral density for the scattering process.

2.3.3 Electronic excitations due to inter-Landau level transitions

2.3.3.1 Monolayer graphene

When applying magnetic field perpendicular to the graphene atomic plane, Landau

quantization will take place. The electronic dispersion will split into quantized Landau

levels. As a result of this quantization, inelastic scattering of photons is caused by inter-

Landau level excitations (see Figure 2.21). These electronic excitations manifest in the

magneto-Raman and magneto-infrared spectra of graphene, N-LG, and bulk graphite as

a series of pronounced structures moving with the magnetic field. These inter-Landau

level transitions, denoted Ln,m (n, m, are Landau level indexes), can be classified as

Raman active or infra-red active according to their point group symmetry [78]. Some of

these modes are referred to as silent modes, since they are neither Raman nor infra-red

active.
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Figure 2.23: Effect of trigonal
warping on the band structure of
graphene. (a) Top view of the
conical dispersion in the absence
of trigonal warping. (b) Top view
of the deformation induced by the
trigonal warping. The scale is ex-

aggerated for illustration.

The electronic dispersion around the K point is

isotropic with respect to continuous rotations of elec-

tronic momentum around the energy axis, as seen in

the top view dispersion of graphene in Figure 2.23a.

However, this isotropy is broken when including the

trigonal warping parameter (labeled γ3) of the SWM

model in the band structure calculation of graphene.

As a consequence, the rotational symmetry is restricted

to momenta with rotations of 120◦ (±2π/3), as seen in

Figure 2.23b. As a result, the quantum number mz,

associated with the rotational symmetry, which could

assume all integer values from −∞ to +∞ in the case

of the continuous rotational symmetry, has only three

distinct values for the threefold symmetry: all the mz

differing by a multiple of 3 become equivalent [160].

Following these observations, the Raman-active inter-

Landau level transitions can be further classified into

two groups: (i) Transitions that are allowed even when

the trigonal warping is ignored (γ3 = 0), thus surviving

the continuous rotational symmetry. We will refer to

these excitations as strongly allowed. (ii) The second

type of transitions need a non zero value of the trigonal

warping to be activated. We refer to these excitations

as weakly allowed. These two types of transitions can

be probed using circularly polarized magneto-Raman scattering experiments.

The reason is that circularly polarized photons carry angular momentum mz = ±1.

In the co-circular polarization configuration, the incident and emitted photons have the

same angular momentum, this results in angular momentum change equals to ∆mz = 0.

However, in cross-circular polarization configuration, the incident and emitted pho-

tons have opposite polarization, which results in angular momentum change equals to

∆mz = ±2. An inter-Landau level transition n− → (n + mz)+ carries angular momen-

tum mz. This immediately designates the transitions with ∆|n| = 0 and ∆|n| = ±2,

with the corresponding transition energies L∆|n|=0 = 2ǫ|n|, L∆|n|=±2 = (ǫ|n|−1 + ǫ|n|+1),

as the strongly allowed processes in the co-circular and cross-circular polarization con-

figurations, respectively [158–160].

Figure 2.24b shows non-polarized magneto-Raman spectra measured from a graphene

monolayer flake on top of the surface of bulk graphite [169]. In these spectra, all Raman-

active excitations are expected to be observed. However, it is clear from Figure 2.24

that the strongest contribution to the magneto-Raman spectrum originates from the
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(a) (b)

Figure 2.24: (a) Schematics of the Landau levels dispersion in graphene and the
electronic excitations that are probed in magneto-Raman spectroscopy. The Fermi level
is pinned near the zeroth Landau level. Red arrows indicate ∆|n| = 0 inter-Landau level
transitions, blue arrows ∆|n| = ±2, and green arrow the intra-band transition L0,1. (b)
Micro-magneto Raman experiment revealing the observation of the inter-Landau level

transitions in monolayer graphene on top of bulk graphite [169].

∆|n| = 0 transitions (red arrows in Figure 2.24a), which is in line with the theoretical

predictions [158].

The optical-like excitations (∆|n| = ±1) are not expected to be Raman-active without

trigonal warping [170]. Indeed, when γ3 is included then these excitations are expected

to be weakly allowed. To illustrate this, let us consider the excitation Ln−,(n+1)+ with

∆|n| = +1. The trigonal warping induces mixing of the levels n−, (n + 3)−, through the

excitation L(n+3)−,(n+1)+ which is strongly allowed in Raman scattering. Consequently,

∆|n| = ±1 are expected to be observed in the same crossed-circular polarization as

∆|n| = ∓2 excitations. This effect has been confirmed experimentally by P. Kossacki

et al. [160]. Their amplitude, however, is small compared to ∆|n| = 0 excitations (see

Figure 2.25a).

The ∆|n| = ±1 transitions resemble the ∆|n| = ±1 excitations observed in far infra-red

magneto absorption experiments, but it is found that they belong to the E2 symmetry

class while the infra-red transitions belong to E1 symmetry class [159]. The magnetic

oscillations of the E2g phonons (G band) are due to the coupling with the ∆|n| = ±1

that have the same symmetry as the Γ point phonons (see Figure 2.25b). The detailed

analysis of this resonant effect will be presented in the next section.

The polarization dependent selection rules in graphene have been confirmed by po-

larization resolved magneto-Raman scattering experiments, performed on high mobility

graphene flakes on top of bulk natural graphite [164]. These results are shown in Figure

2.25. In the co-circular polarization configuration, strong features evolving like
√

B were

observed, and they correspond to L−n→n excitations. While their intensities are much

lower compared to ∆|n| = 0, weak traces of ∆|n| = ±1 inter-Landau level transitions
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(a) (b)

Figure 2.25: (a) Magneto-Raman scattering response of graphene on natural graphite
measured in co-circular polarization configuration that selects ∆|n| = 0 inter-Landau
level transitions. (b) Cross-circular polarization configuration blocks the ∆|n| = 0
transitions and allows the ∆|n| = ±1 that are seen through their coupling to the E2g

phonon mode. Black (white) corresponds to high (low) intensity. From [164]

(a) (b)

Figure 2.26: (a) Spectral density g(ω) of light inelastically scatterred from electronic
excitations in graphene at under magnetic fields (solid line) and at zero magnetic field
(dashed line). Here ω ≪ Ω is the Raman shift. (b) Sketch illustrates intermediate and
final states of the electronic Raman process in monolayer graphene. Figures are taken

from [158].

are also visible in the co-circular configuration. In the cross-circular polarization con-

figuration, the intra-band transitions L0→1 and L−1→0 are clearly observed, while the

inter-band transitions L−n→n+1(L−(n+1)→n) with E2 symmetry are visible through their

coupling to the E2g optical phonons.

In magnetic fields, the Raman amplitude of the ∆|n| = 0 excitations is given by [159]:

Rn−→n+ =
1

4

(eυ~)2

c2Ω
∑

α=±

[

(Ie+)(Ĩ
∗
e−)

Ω − εn − αεn+1
− (Ie+)(Ĩ

∗
e−)

εn − Ω − αεn−1
− (Ie−)(Ĩ

∗
e+)

Ω − εn − αεn+1
+

(Ie−)(Ĩ
∗
e+)

εn − Ω − αεn−1

]

,

(2.31)
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where the (Ie±) and (Ĩe
∗
±) describe the circular polarization of the incident/scattered

photon, respectively. The spectral density of the angle-integrated Raman scattering sig-

nal, plotted in Figure 2.26a, can be obtained from 2.31 by integrating over all directions

of propagation of the scattered photons:

gn−→n+(ω) = ΞA1

(

υ2

c2

e2/λB

πΩ

)2
∑

n≥1

γn(ω − 2εn). (2.32)

Were, π−1Γn/[x2 + Γ2
n] is a normalized Lorentzian function, and Γn accounts for the

Landau level broadening which increases with the Landau level index n.

It is important to note that from 2.32, the intensity of the Raman active inter-Landau

level transitions decreases as (1/Ω)2, where Ω is the excitation energy. From the exper-

imental point of view, the best configuration to observe these excitations will be to use

long wavelengths laser sources [165].

2.3.3.2 Multilayer graphene and bulk graphite

Figure 2.27: Micro-magneto-
Raman scattering on suspended
ABA-stacked multilayer graphene
flakes with varying thickness [31].

Magneto-Raman scattering experiments have been con-

ducted to search for inter-Landau level excitations in

multilayer graphene with either Bernal stacking [31] or

rhombohedral stacking [75]. Figure 2.27 shows non-

polarized magneto-Raman spectra obtained from prob-

ing inter-Landau level transitions under strong mag-

netic fields. The effective bilayer model introduced in

Chapter 1 is used to confront the experimental data to

theory. Since monolayer and bilayer graphene are the

building blocks for every stacking configuration of mul-

tilayer graphene, their magneto-Raman selection rules

can be used for every number of layers [171]. The most

pronounced features are those originating from the

∆|n| = 0 electron-hole excitations, while ∆|n| = ±1,

∆|n| = ±2 are hardly seen in Raman spectroscopy.

As we will show in the Chapter 5, both theory and

experimental results confirm similar selection rules for

inter-Landau transitions in ABC-stacked N-LG as in

ABA-stacked N-LG [75].

Dirac fermions have been observed experimentally in

graphene parent crystal, bulk graphite [172, 173]. Sev-

eral experimental techniques have been used to probe
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(c) (d)

(a) (b)

Figure 2.28: (a) Representative Raman scattering spectra with subtracted B = 0
T spectrum in the co-circular configuration showing many asymmetric magnetic field
dependent features. (b) Zoom on the asymmetric features of the inter-band Landau level
transitions for three different values of B. Solid lines are calculated dispersions using two
parameters model as in [160]. (c,d) False color map of the polarized magneto-Raman
intensity, both positive and negative fields are used to invert the polarization [160].
Co-circular configuration probes the ∆|n| = 0 transitions (c), while the cross-circular

configuration selects ∆|n| = ±1 in (d).

the corresponding electronic excitations when graphite

is under magnetic fields, using mainly magneto-Raman

and infra-red spectroscopy techniques.

In contrast to discrete Landau levels in purely 2D systems such as graphene, graphite

under the effect of magnetic fields will split into Landau bands. The joint density of

states diverges at the K and H points, and the optical response of graphite is dominated

by contributions from excitations at these two high symmetry points [174]. Observation

of inter-Landau band transitions in bulk graphite has been reported in magneto- spec-

troscopy studies for massive Dirac fermions in the vicinity of the K point [44, 160, 175],

but also for massless Dirac fermions at the H point [114]. In-line with the effective

bilayer model introduced in Chapter 1, electrons in the vicinity of the K point behave

as massive Dirac fermions with mass twice enhanced in comparison to a true graphene

bilayer, while the holes around the H point have nearly linear dispersion and behave as

massless Dirac fermions in graphene, but with an additional double degeneracy [46].
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Figure 2.28 depicts a magneto Raman study of these Landau band transitions in Bernal-

stacked bulk natural graphite [160], using co-circular and cross-circular polarization

configurations. Similar to selection rules in bilayer graphene [171], the co-circular polar-

ization configuration selects symmetric transitions with ∆|n| = 0, while cross-circular

polarization selects ∆|n| = ±1.

2.4 Magneto-phonon resonance

2.4.1 Electron-phonon coupling

Electron-phonon coupling (EPC) plays a major role in understanding many physical

phenomena in condensed matter physics. The microscopic theory of the Raman scatter-

ing effect, as we discussed in the beginning of this Chapter 2, depends entirely on the

concept of EPC. For conventional superconductors (in which superconductivity occurs

at relatively low critical temperatures), the EPC is responsible for the formation of the

so-called Cooper pairs, as was proposed by Bardeen–Cooper–Schrieffer (BCS theory) in

their microscopic theory of superconductivity [176].

In sp2 carbon allotrope, the EPC determines both the phonons dispersion and their life-

time [177, 178]. For both metallic and semi-conducting single-walled carbon nanotubes

(SWCNTs), numerous studies have shown that their transport properties are intimately

related to the EPC involving acoustical and optical phonons [179–183], which can set

the critical limit for the observation of ballistic transport on these systems. Plenty

of other physical phenomena are related to the EPC: the dynamics of excited states,

heat capacity of metals, formation of polarons (i.e., bounded states for the charge carri-

ers that interacts with electromagnetic radiations) in quantum dots and quantum wells

[184, 185].

As we will show in the following, theoretical and experimental studies of the physical

properties of graphene have shown that the coupling between electrons and the vibra-

tional modes in this material presents a concept of prime interest in understanding many

experimentally observed phenomena.

2.4.2 The electron-phonon coupling in graphene

2.4.2.1 The Kohn anomaly

Lattice vibrations in metals are partly screened by conduction electrons. For certain

phonon frequencies q, this screening can change rapidly which leads to an abrupt change

in the phonon energy ~ωq. Such effect is called a Kohn anomaly, as was first evidenced
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theoretically by W. Kohn in 1959 [186]. In metals, the points at which Kohn anomalies

occur are directly determined from the shape of their Fermi surface.

The Fermi surface is a concept that represents the energy boundaries of charge carriers

in k-space for metals, semi-metals, and doped semi-conductors [187]. The determination

of the Fermi surface is very useful in predicting the electronic properties of many ma-

terials, probed by transport and optical spectroscopy techniques. In condensed matter

experiments, the Fermi surface of metals and related materials is determined by mea-

suring the quantum oscillations of a given observable under strong magnetic fields, such

as the de Haas–van Alphen effect for magnetization, and the Shubnikov–de Haas effect

for resistivity. The cross-section A⊥ of the Fermi surface that is perpendicular to the

applied magnetic field is then given by the Onsager relation [187]:

A⊥ =
2πe∆B

~c
. (2.33)

Kohn anomaly connects two electronic states k1 and k2, from the Fermi surface of the

studied material, by a phonon with wave vector q such as [187]:

k2 = k1 ± q. (2.34)

The Kohn anomaly has been predicted and observed for graphite and metallic carbon

nanotubes [177, 178, 183, 188]. In graphene, there are two points in its BZ where the

valence and conduction bands touch at the Dirac point (i.e., K and K′). The Fermi

surface of neutral graphene can be viewed as a set of points distributed on the K and

K′ valleys of its BZ. Thus, the Kohn anomaly in graphene occurs either at the Γ point,

where two electronic states can be connected by a phonon with a wave vector q ∼ 0,

or at the K and K′ points, where two electronic states are connected with a phonon

with a wave vector q ∼ ±K through an inter-valley electron-phonon scattering process

[177, 189].

However, it is important to note that not all phonons at the Γ and K points will expe-

rience a Kohn anomaly. For symmetry reasons, the Kohn anomaly in graphene occurs

only for the doubly degenerate E2g optical phonons and only the phonons with the A1g

symmetry at the K point, while the other vibrational modes have no Kohn anomalies

[189].

Figure 2.29 shows the phonon dispersion in graphene along the high symmetry axis Γ-

M-K line. The red lines indicate where the Kohn anomaly occurs, in the form of two

sharp kinks, at the Γ for the highest branches of the LO phonons, and at K point in the

TO phonon branches. At these points, two effects are observed: (i) the phonon’s energy

becomes quasi-linear with momentum, (ii) the phonon’s energy is lowered by an amount

of 5% with respect to the unperturbed phonon energy (lower panel of Figure 2.29) and
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Figure 2.29: Phonon dispersion in graphene along the Γ-M-K line (upper panel).
Dashed lines are calculated dispersions using a theoretical value of the lattice param-
eter, while solid lines are calculated dispersions using the experimental value of the
lattice parameter. Energies of the highest optical branches at the Γ and K points
are renormalized due to the Kohn anomaly, shown as cusps (lower panel) [177, 188].
The experimental points are the phonons dispersion determined using neutron or X-ray

scattering techniques [86].

is representative of the EPC contribution to the phonon’s energy.

In their study, Piscanec et al. [177] showed that the slope of these kinks is proportional

to the square of the EPC. Thus, based on a mean field single particle formalism, such as

DFT or Hartree-Fock, an analytical expression of the EPC can be derived for graphene

at the points where the Kohn anomaly occurs. The linear dispersion of the phonon’s

energy in the vicinity of the Γ(K) points is given by:

Eph
Γ(K)(q) = ~ωΓ(K) + S

E2g(A1g)
Γ(K) |q|, (2.35)

where SE2g(A1g) refers to the slope of the E2g(A1g) phonon’s energy near the Γ(K) points,

which is directly related to the EPC [178]:

S
E2g(A1g)
Γ(K) =

√
3~a0〈D2

Γ(K)〉F

8M~ω
Γ(K)
E2g(A1g)υF

, (2.36)
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where M is the carbon atom rest mass, a0 is the graphene lattice parameter, υF is the

Fermi velocity, and 〈D2
Γ(K)〉F is the EPC averaged over the square of the Fermi surface.

The above formula shows that it is possible to calculate the value of the EPC in graphene

by measuring the phonon dispersion around the Γ and K points.

Following these observations, a large EPC is expected for the E2g mode at the Γ point,

and the A1g mode at the K point. As we will show in the following, by tuning the

electronic excitation spectrum we can tune the EPC in graphene. This is done in ex-

periments by changing the electronic density (i.e., shifting the Fermi level ǫF ) or under

the effect of magnetic fields.

2.4.2.2 Tuning the EPC with an applied electrical field

Tuning the EPC in graphene-based systems using a gate voltage to shift the Fermi level

away from the charge neutrality point by electrons or holes doping, was first studied

theoretically by T. Ando, A. H. Castro Neto, and F. Guinea [190–192] for the case of

monolayer and bilayer graphene. It was evidenced shortly after by Raman scattering

experiments for both monolayer and bilayer graphene systems [152, 153, 155, 156] (see

also the previous section about doping).

Figure 2.30 shows the results of such a study in the case of gated monolayer graphene

by Yan et al. [156]. The G band (represented by Feynman diagrams in the insets of

Figure 2.30a,d) interacts with virtual electron-hole pairs that cause a re-normalization

of the phonon energy (Figure 2.30e), while a broadening of its linewidth shows that

shorter phonon lifetimes are linked to higher particle or hole density (Figure 2.30b).

This resonant coupling is Pauli-blocked when the Fermi level is far away from the charge

neutrality, as seen in Figure 2.30c,f.

In his theoretical paper [190], T.Ando studied the dependence of the optical phonon

energy and broadening as a function of the Fermi level. The energy shift and broadening

of the E2g phonon are given by the real and imaginary parts of the phonon’s self energy.

When the Fermi level is at ǫF = ~ωG/2 (i.e. half the phonon energy), the energy shift

diverges logarithmically to −∞. However, when the Fermi energy is ǫF > ~ωG/2, the

phonon’s energy increases in proportion to ǫF . In experiment, graphene samples are

usually not ultra-clean, disorder and charged impurities trapped in the substrate will in-

duce a departure from this ideal behavior, and the logarithmic divergence is not reached

due to scattering of electrons by disorder (see Figure 2.30d). The shift in the E2g energy

as a function of the Fermi level is due to reduction in the screening of the phonon by

inter-band electron-hole pair transitions. Indeed, when the Fermi level increases, Pauli

blocking will not allow transitions below the Fermi level (see Figure 2.30e-f), so the

screening of the phonon reduces leading to an increase in the phonon energy [156, 190].
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Figure 2.30: Graphene G band damping (a)-(c), and graphene G band re-
normalization (d)-(f) due to EPC. The dots are experimental results obtained from
a Lorentzien fitting of the G band, while the lines are theoretical calculations based on

time-dependent perturbation theory. Figure is taken from [156].

At high doping, the slope of the increase in the G band energy is directly proportional

to the EPC.

For the phonon line-width, changes are predicted to occur when −~ωG < ǫF < +~ωG

(see Figure 2.30a). Theoretically speaking [190], the change in the FWHM with ǫF

should follow a step function with steps at ±~ωG/2 (blue dashed step function in Figure

2.30a), however disorder in the sample will induce a departure from this ideal picture.

Pauli blocking of the electron-hole pairs induces a large phonon’s life-time, and since the

line-width and the life-time of an excitation are inversely proportional due to Heisen-

berg uncertainty principle, this will lead to a decrease in the phonon’s linewidth at high

electronic concentration [156].

It is important to note that the EPC in graphene as a function of the Fermi energy

cannot be understood in the frame of the adiabatic Born-Oppenheimer approximation

(ABO). This approximation has been intensively used to study the band structures of

crystals. The ABO assumes that the lighter electrons adjust adiabatically to the motion

of the heavier nuclei, remaining at any time in their instantaneous ground state. In this

situation, the use of time-dependent perturbation theory is needed to fully understand

the EPC in graphene and related systems when tuning the Fermi level [155, 156].
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2.4.3 Magneto-phonon resonance in graphene, multilayer graphene,

and bulk graphite

The application of magnetic fields to graphene, multilayer graphene, and bulk graphite

will form discrete Landau levels on these materials. Consequently, instead of a con-

tinuous energy excitation spectrum, inter-Landau level excitations have a well-defined

features that detach from the background in optical spectroscopy experiments. As we

will be discussing in this section, the Landau quantization will have a strong effect on

the EPC in graphene based systems. The energy of the nth Landau level in graphene is

given as [2, 193]:

En = sign(n)υF

√

2e~B|n| (2.37)

where υF is the Fermi velocity, and the energy of an inter-Landau level transition is given

as Em→n = |En|−|Em|. Indeed, the effect of EPC in graphene under magnetic fields hap-

pens to be observable in magneto-Raman
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Figure 2.31: Landau level dispersion with
magnetic field for monolayer graphene. The
inter-Landau level transitions (blue arrows) and
intra-band transitions (green arrows) with selec-
tion rules ∆|n| = ±1 participate in the MPR for
the E2g optical phonons at the Γ point. The
Fermi energy is pinned to the zeroth Landau

level.

scattering experiments, where it couples

inter-Landau level transitions, that obey

selection rules ∆|n| = ±1 (n is the LL

index), with the E2g optical phonon at

the Γ point. This series of resonant cou-

pling between optical phonons and inter-

Landau level excitations is known as a

magneto-phonon resonance (MPR). Not

only inter-band transitions participate in

the electron-phonon coupling (blue ar-

rows in Figure 2.31), but also intra-band

transitions (green arrows in Figure 2.31),

also known in literature as cyclotron res-

onance, that obey selection rules ∆|n| =

±1 participate in the MPR coupling [194,

195].

The MPR in monolayer graphene has been

studied theoretically by T. Ando and by

M. O. Goerbig et al. [194, 196], and

also for bilayer graphene [192]. It has

been extensively investigated experimen-

tally in different graphene-based systems

that were subjected to strong magnetic

fields. Indeed, the MPR has been observed in multilayer epitaxial graphene on the
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(a) (b)

Figure 2.32: (a) Color map of the magneto-Raman scattered intensity for graphene
on SiC. The MPR is conspicuous for the G band, seen as a series of avoided-crossing
when it couples to ∆|n| = ±1 inter-Landau level transition. (b) Data simulation (red
lines) of the magnetic oscillations of the G band energy and linewidth, extracted from
a Lorentzien fit (blue dots), based on the model from [194, 196]. Figures taken from

[193].

surface of SiC [193], in graphene-like domains on the surface of bulk graphite [164, 169],

in bulk natural graphite [118, 160] , in monolayer to penta-layer graphene suspended

over the Si substrate [31], and also in graphene encapsulated on hBN [166, 197]. As we

will discuss in Chapters 4 and 5, this effect is also observed for bilayer graphene on hBN,

and for rhombohedral multilayer graphene.

Figure 2.32 shows the MPR in multilayer epitaxial graphene on SiC [193]. When varying

the magnetic field, the G band exhibits a series of anti-crossing oscillations, shifts and

broadening of its line-width each time the energy of a ∆|n| = ±1 inter-Landau level

transition is tuned with the G band energy. In order to reproduce the behavior of the G

band under the effect of magnetic field, we follow the approach described in [194, 196].

Within an effective mass approximation, the Hamiltonian of monolayer graphene under

a transverse magnetic field is written as:

H0 =

√
3a

2
γ0





0 kx − iky

kx + iky 0



 =

√
3a

2
γ0(σ.k), (2.38)

γ0 is the intra-layer coupling in graphene, σ = (σx, σy) are Pauli matrices, and k =

(kx, ky) = −i∆+eA/~c is the canonical momentum in the presence of a vector potential
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A = (Bx, 0). Since we focus our study on the coupling of E2g optical phonons with

electron-hole pairs in graphene, only the limit of long wave-lengths (i.e., |q| ∼ 0) is

considered. The anti-symmetric longitudinal or transverse displacements of the two in-

equivalent sublattices A and B of the graphene honeycomb lattice, that are represented

by the E2g optical phonons, are given by [190, 194, 196]:

u(r) =
∑

q,µ

√

~

2NMω0

(

bq,µ + b†
−q,µ

)

eµ(q)eiq.r, (2.39)

where N is the number of unit cells, M is the carbon atom rest mass, ω0 is the unper-

turbed optical phonon frequency at the Γ point, q = (qx, qy) is the phonon wave vector,

µ denotes the vibrational modes (µ =’t’ for transverse and ’l’ for longitudinal), and b†
q,µ

and bq,µ are the creation and destruction operators, respectively. The corresponding

phonon Hamiltonian is written as:

Hph =
∑

q,µ

~ω0

(

b†
q,µbq,µ +

1

2

)

, (2.40)

where ω0 is the unperturbed optical phonon’s frequency at the Γ point. The E2g optical

phonon mode change the distance between neighboring carbon atoms, which modifies

the band structure through a change in the overlap integral between the carbon atoms.

The resulting change in Hamiltonian 2.38 describes the electron-phonon interaction in

graphene. At the K point, the Hamiltonian of the electron-phonon coupling is given by:

Hint = −
√

2
βγ

b2
σ × u(r), (2.41)

where b = a/
√

3 is the equilibrium bond length. The change in the wave-function overlap

integral between electrons localized on the two nearest neighboring atoms, with respect

to the change in inter-atomic distance is given by the dimensionless parameter β:

β = −d ln γ0

d ln b
. (2.42)

The magnetic oscillations of the optical phonon’s energy and linewidth can be calculated

from the poles of its Green’s function [194, 196], which describes the interaction of the

phonon with electron-hole pairs, and is given by:

Dµ(q, ω) =
2~ω0

(~ω)2 − (~ω0)2 − 2~ω0Πµ(q, ω)
, (2.43)

where ω denotes the re-normalized phonon’s frequency due to interactions with ∆|n| =

±1 excitations, and Πµ(q, ω) is the phonon’s self energy, which is given for the optical
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phonons at the Γ point by:

Π(q, ω) = −1

4
λ

(

υF

√
2~eB

)2

∑

s,s′

∞
∑

n=0

(

[f(sǫn) − f(s′ǫn+1)] × 2(sǫn − s′ǫn+1)

(~ω + iδ)2 − (sǫn − s′ǫn+1)2
− 1 − ss′

ǫn+1 + ǫn

)

, (2.44)

where λ is a dimensionless parameter that characterizes the electron-phonon coupling,

~ω is the phonon energy re-normalized due to the MPR, and δ is a phenomenological

broadening parameter due to scattering of electrons by other mechanisms, such as dis-

order or acoustic phonons. The (sǫn − s′ǫn+1) terms in Eq. 2.44 correspond to the

∆|n| = ±1 inter-Landau level transitions that couples to the E2g phonon. The Fermi-

Dirac distribution f(sǫn) represents the occupation factor of the nth Landau level, with

an energy ǫn, in the conduction band (s=+1) or the valence band (s=-1). The mode

index µ has been omitted since the matrix elements squared do not depend on it. In

order to avoid divergence of the series, the summation over the Landau level index n has

a cutoff nc that corresponds to an energy ǫc of the order of the graphene band width.

Knowing the optical phonon self-energy, the poles of the phonon Green’s function are

given by [194]:
(

ω

ω0

)2

− 1 =
2

~ω0
Re Πµ(q, ω). (2.45)

Thus, the shift and broadening of the E2g optical phonon (the G band) can be calculated

self-consistently from the real and imaginary parts of its self-energy [194]:

∆ω =
1

~
Re Π(q, ω), (2.46)

Γ = −1

~
Im Π(q, ω). (2.47)

This model for the MPR was used to fit the magneto-Raman data in Figure 2.32b (red

lines). Since the shift and broadening of the G band are extracted from experimental

data, the only free parameter, which is the EPC parameter λ, can be tuned to best fit

the experimental results. Thus, magneto-Raman spectroscopy is a method of choice to

characterize the electron-phonon interaction in graphene, multilayer graphene, and other

graphene-based structures. The value of the EPC is in the range λ = 4 − 4.5 × 10−3.

These values have been extracted from different graphene-based systems that exhibit

the MPR effect [160, 164, 193, 197].
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General description of

experimental setups

3.1 Room temperature micro-Raman setup

Figure 3.1 is a schematic presentation for the micro-Raman setup used to characterize

the graphene based samples, and to perform mapping at room temperature.

The excitation source is provided by a helium-neon (HeNe) gas laser, operating at a

wavelength of 632.8 nm. The laser beam is coupled through a set of mirrors to an opti-

cal microscope equipped with a halogen lamp. A beam splitter inside the microscope is

used to focalize either the laser or the light from the lamp, or both, depending on the

work configuration desired. This configuration allows for high resolution imaging of the

studied flakes, and to locate a specific region for Raman measurements.

The scattered light is then coupled to a single stage spectrometer equipped with a ni-

trogen cooled charge coupled device (CCD) camera for data analysis. The spectrometer

is composed of different diffraction gratings. To get a clean Raman signal, we place in

front of the spectrometer a steep long pass filter, optimized for 632.8 nm, in order to

block the scattered light from entering the spectrometer.

The microscope is equipped with four different objective lenses (5X, 10X, 20X, 50X) to

focalize the light and the laser beam on the sample. To adjust the focus on the sample,

the microscope has been equipped with a knob that moves the sample holder up or

down. For Raman measurements, the 50X is used. The laser spot is then focused on

∼ 1µm diameter.

The sample is placed under the microscope objective, on top of X-Y piezoelectric stages.

This system allows for the displacement of the sample relative to the laser spot with

sub-micrometer accuracy. One can access a specific region of the sample, or perform
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Figure 3.1: Schematics of the micro-Raman set up. This set up is used for sample
characterization prior to magnetic field measurements.

high resolution mapping for a given flake by recording its Raman scattering response at

the same time.

3.2 Fiber optics micro-magneto Raman setup

For Raman measurements under strong magnetic fields, we used the experimental set

up depicted in Figure 3.2. The magneto-Raman set up is composed of three main

components: the excitation set up (Laser + optical table + excitation fiber), the micro

magneto-Raman probe (miniaturized optical table, Raman probe, cryostat+magnet),

the detection set up (spectrometer with CCD camera, collection fiber, notch filter), and

finally the low temperature magneto-system (magnet + cryostat). In the following, we
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Figure 3.2: Schematic presentation of the micro-magneto Raman set up. The probe
shown in this figure is equipped with optical fibers to bring the excitation wavelength

to the sample, and to collect the scattered light for data analysis.
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should give a detailed description of the different components that are making each part

of the magneto-Raman setup. This experimental set up was used to study the structures

that will be presented in Chapter 4 and Chapter 5.

3.2.1 The excitation setup

In general Raman scattering experiments are conducted by using coherent source of light,

that are strong enough to allow for the observation of the Raman scattering in the studied

systems (which is six orders of magnitude smaller than the Rayleigh scattering). This

is done by using lasers as a source for the excitation. Our experiments were performed

using two different laser sources. One excitation source was provided by an argon-ion

(Ar+) gas laser, operating at 514.5 nm wavelength (energy 2.43 eV). The other excitation

source is provided by a solid state titanium doped sapphire (Ti:Al2O3 or Ti:sapph) laser.

Ti:sapph is composed of two parts: one is presented as a pumping semi-conductor diode

laser, operating at 532 nm, the second part contains a crystal of sapphire (Al2O3) doped

with titanium ions. Ti:sapph can be tuned at excitation energies ranging from 690 to

1100 nm.

In order to get a spectrally clean laser beam, we used for the argon laser a dielectric

filter that transmits in a very narrow range around the excitation wavelength. For the

Ti:sapph laser, we used a prism-based monochromator table. The laser power is then

stabilized using a liquid crystal based modulator, which acts as a laser power stabilizer.

After the power stabilizer we placed a photo-elastic modulator. The purpose of the

photo-elastic modulator is to depolarize the laser light. It contains a quartz crystal that

vibrates at high frequency, resulting in a time shift in one component of the linearly

polarized light, this will change the polarization of the laser light. The timescale of the

polarization change is very short compared to the timescale used for spectra acquisition,

resulting in a complete depolarized light for Raman measurements. This component

plays an important role in magneto-Raman measurements, since a Faraday effect occurs

in the filters and optical elements for linearly polarized light when changing the magnetic

field. The Faraday effect causes a modulation in the excitation power and thus a change

in the intensity of the scattered light.

The last element on the optical table is the fiber coupler. It consists of a threaded

ceramic-based ferule connector (FC/PC). The fiber coupler is equipped with screws to

displace the connector in X and Y directions, change the angle relative to the incident

laser beam, and also to adjust the focal length of the fiber.
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3.2.2 The micro magneto-Raman probe

The micro Raman probe is used to perform low temperature Raman spectroscopy on the

sample under magnetic fields. The end of the probe hosts a miniaturized optical table

(red encircled region in Figure 3.2) that comprises a set of filters and lenses to clean and

focalize the laser spot on the sample, and to collect a clean Raman scattering response.

The working configuration is the back-scattered geometry, this means that after hitting

the sample the light will be scattered at an angle of 180◦.

The excitation wavelength is brought to the miniaturized table by a single mode optical

fiber with a core diameter of 5µm. After passing through a lens that collimates the

beam, the laser passes a dielectric filter called laser line. This filter will be transparent

only to wavelengths λ close to λexc of the excitation laser. This step is important since

the electromagnetic wave will interact with the fiber’s medium, resulting in a strong

parasitic luminescence signal. A dichroic mirror, mounted at 45◦ (see the miniaturized

table in Figure 3.1), acts as a mirror for λexc and is transparent for other λ. This allows

the excitation light to be reflected while the back-scattered light is transmitted. The

excitation light is then focused on a ∼ 1µm spot on the sample by a high NA aspherical

lens.

The sample is mounted on X-Y-Z piezoelectric stages, that operates at low and room

temperatures. This system allows for moving the sample relative to the laser spot with

an accuracy of 0.5 µm. X-Y directions are relevant for moving from a spot to the other,

and performing Raman mapping of different regions on the sample, while the Z is used

to move the sample in the direction parallel to the laser beam, thus tuning the focus on

the sample.

After hitting the sample, the light is back scattered, passes the dichroic mirror, and goes

through a sharp edge high-pass filter. The high-pass filter allows transmission of wave-

lengths above the laser wavelength, thus blocking the very intense elastically scattered

laser light. The scattered light is then injected in a multi-mode optical fiber (also called

collection fiber), with a core diameter of 50 µm, and passed to the spectrometer set up

in order to be analyzed.

In order to perform low temperature measurements, the probe is air pumped, and then

a helium exchange gas is injected inside the probe, with an inner pressure tuned to 100-

200 mbar. The Raman probe is then inserted into the cryostat that is equipped with a

reservoir of liquid helium at 4.2 Kelvin.

The cryostat is coupled to an electromagnet (see Figure 3.2) that delivers a static mag-

netic field from 0 to 30 Tesla. The sample is placed in the probe at the center of the

magnetic field, where the magnetic lines are parallel to the light propagation direction.

This configuration is called Faraday geometry.



Chapter 3. General description of the experimental setups 86

The micro-Raman probe is made of non-magnetic elements. This will insure a stability

of the set-up since our measurements are performed in high magnetic field conditions.

3.2.3 The detection setup

In the detecting part of our setup, the scattered light is brought to the spectrometer

by the multi-mode fiber. In front of the spectrometer a set of two lenses are used to

collimate the beam exiting the fiber holder and to focus it on the slit of the spectrometer.

An additional notch filter may be added before the focusing lens if necessary, to block

more of the elastically scattered light.

The spectrometer (from Princeton Instruments Inc.) has a focal length of 500 mm. It is

equipped with a stage that contains three different gratings, each of them has a specific

resolution. The use of a specific grating depends on the needs of the experiment. The

light is then sent to a charged coupled device silicon array. The induces charges can be

read by the electronics and turned into a digital copy of the light patterns falling on the

device. The camera is constantly cooled with liquid nitrogen to improve its sensitivity.

Silicon based CCD cameras are suitable for Raman spectroscopy in the visible range,

since their quantum efficiency is high.

3.3 Free beam micro magneto Raman setup

In this section we will give a brief description of the experimental set up used for low

frequency Raman spectroscopy measurements. The fiber optics micro-Raman set-up has

a filtering system based on optical filters with high cut-off frequencies. This approach

will not allow access to the low energy part of the spectrum.

The free beam Raman probe has no optical fibers, so rejection of light is based on the

triple spectrometer, and the Bragg filters if needed. This allows to get rid of the lumi-

nescence caused by the interaction of light with the medium inside the fiber. Moreover,

a very narrow line optical filter, called Bragg notch filter, is added in the optical table

on top of the micro-Raman probe. The Bragg filter allows a very narrow transmission

of the excitation light, and has a very narrow bandwidth (4 nm). This will allow the

observation of Raman modes as close as 5 cm−1 to the laser line. Two types of Bragg

filters are commercially available: The Bragg filters in reflection, where the incoming

light is filtered and then reflected by the surface of the filter. The second type of Bragg

filters is in transmission, where light is filtered and transmitted through the volume of

the filter.
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3.4 The magneto-Raman probe

The free beam magneto-Raman probe is depicted in Figure 3.3a. It has an optical table

on its top, that comprises a set of lenses and mirrors, but also the 3D volume Bragg filter,

used in reflection to clean the laser. The end of the probe is where the sample is placed,

on top of X-Y-Z piezoelectric stages (see inset Figure 3.3a). A glass window separates

the interior of the probe from the optical table, and acts as an isolating interface from

the outer environment.

The excitation light is brought from the laser source to the optical table by a set of

mirrors. It is then reflected by the Bragg filter at a given angle and reflected again

by the beam splitter which is at an angle 45◦. The light is then collimated to the end

of the probe until the focusing lens in front of the sample. The back-scattered light

goes through the beam splitter and is directed by a mirror to the detection set-up, and

finally goes in the triple stage spectrometer (detailed description in the next section) to

be analyzed.

All the elements of the probe are non-magnetic to insure a high stability of the magnetic

field experiments.

3.5 Triple stage spectrometer

For the low frequency Raman experiments, the detection set-up is made of a triple stage

spectrometer (TriVista: Acton/Princeton instruments). It is equipped with two CCD

detectors : a CCD camera (Acton/Princeton Instruments) that is cooled with nitrogen

and another CCD camera (PiXis/Princeton Instruments) Peltier cooled.

The TriVista spectrometer can be used in single, double and triple configurations. The

light beam is passed sequentially through 2 or 3 stages and the gratings coherently

move together with very high precision. The TriVista can operates in two different

modes: Additive mode, which gives high spectral resolution and high linear dispersion.

Subtractive mode, which gives high stray light rejection. The triple configuration (in the

subtractive mode) is shown in Figure 3.3b. In the following we give a more detailed

description of how these two modes operate.

3.5.1 Additive mode

In this mode (left panel of Figure 3.4), the gratings on all 3 stages contribute to the light

dispersion. Polychromatic light enters the first stage of the instrument through the first

slit. The first grating disperses the light. The second slit acts as a bandpass filter, as
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Figure 3.3: (a) Free beam probe used for low frequency magneto-Raman measure-
ments. (b) Schematics of the triple stage spectrometer. The triple stagers are in the

subtractive mode.
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Figure 3.4: Schematics of the two working modes for the TriVista spectrometer.

it passes through only a narrow portion of the spectrum which is further dispersed on

the second grating. Light passing through the third slit is dispersed for a third time on

the third grating and is projected on the silicon detector. The dispersion of the TriVista

in additive mode is defined by adding dispersions of each stage. If all three stages have

the same gratings and focal lengths, the total dispersion simply equals the dispersion of

any single stage. Let us consider as an example a TriVista where the focal length for all

three stages equal 500 mm and 1200 g/mm gratings are used on each stage. A single 500

mm stage with 1200 g/mm grating has a nominal linear dispersion of 1.7 nm/mm. In

the triple configuration, additive mode linear dispersion of the TriVista is approximately

equal to 0.5 nm/mm for the center of the visible spectral range.
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3.5.2 Subtractive mode

Excellent stray light rejection with a CCD detector can be achieved when subtractive

mode is used. In this mode, the first and the second stages of spectrometer work as a

tunable bandpass filter, cutting out a desirable portion of spectrum and projecting it

onto the CCD (right panel of Figure 3.4). Poly-chromatic light enters the first stage

through the entrance slit and is dispersed by the first grating. The second slit, as in the

additive mode, acts as a bandpass filter passing only light with wavelengths between λ1

and λ2. However, this time, the second grating recombines all the dispersed light and

focuses it into the middle of the third slit, reproducing the polychromatic light limited to

the spectral range between wavelengths λ1 and λ2. The third grating disperses this light

and projects it onto the silicon detector. The second slit in subtractive mode is usually

relatively wide opened to allow a desirable spectral range λ1 − λ2 to pass through. But

the third slit is normally very narrow to insure high spectral resolution. The first and

second gratings in subtractive mode must match in groove density and therefore their

dispersion actions totally cancel each other. They act as a very sharp bandpass filter

allowing for Raman measurements very close to the laser line. In this sense, spectral

resolution of the TriVista is entirely defined by the spectral resolution of the third stage

depending on the third slit width, the third grating groove density and the third stage

focal length.
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Experimental results:

Graphene-hBN hetero-structures

4.1 Introduction

One of the recurring ideas in condensed matter physics is to investigate the role of

electron-electron interactions, where the single particle picture breaks down, leading to

the re-normalization of the electronic ground states. In condensed matter systems, most

of the ground states are described in terms of collective excitations, and the single par-

ticle picture happens to be a good approximation to describe the electronic properties

of some systems. However, this approximation usually fails to account for phenomena

such as superconductivity and ferromagnetism.

Monolayer graphene is characterized by its Dirac cone with a vanishing density of states

(DOS) when approaching the Dirac point [6]. This linear dispersion causes a breakdown

of the insensitivity of the collective excitations to the electron-electron interactions, that

holds for conventional semi-conductors with a parabolic dispersion according to Kohn’s

theorem [198–203]. Moreover, the effects of long range Coulomb interactions are most

prominent at the charge neutrality, where the DOS tends to be zero, allowing for a very

low screening of charged particles.

The observation of the FQHE in high correlated fermions in two dimensional electron gas

systems [68, 204], such as conventional semiconductor hetero-junctions, became a finger-

print of highly correlated electronic states in condensed matter systems [205]. Recently,

two groups reported on the experimental observation of the FQHE in high mobility,

low doped, suspended graphene [206, 207] and bilayer graphene flakes [208, 209]. Other

studies have reported the observation of broken symmetry interaction-induced states in
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(a)

(b)

Figure 4.1: (a) Schematic illustration of the low energy band dispersion in monolayer
graphene, renormalizated by the effect of electron-electron interactions. (b) Experi-
mental data from transport measurements showing a Fermi velocity that peaks at the

charge neutrality. Figures are taken from [215].

bilayer, trilayer, and quadri-layer [210–212]. These observations show that high correla-

tion effects are prominent in graphene and multilayer graphene.

Our focus here will be on studying the effects of Coulomb interactions. A qualitative

measure of the Coulomb strength in the low energy spectrum of graphene is given by

an effective coupling constant that represents the ratio between the Coulomb and the

kinetic energies. This latter is related to the dimensionless fine structure constant of

quantum electrodynamics (QED), which characterizes the strength of the electromag-

netic interaction between elementary charged particles in vacuum. While in QED the

fine-structure constant has a negligible value α ∼ 1/137, the coupling strength related to

pristine monolayer graphene is re-scaled to (c/υ)α ∼ 2. Hence, in the absence of doping

and substrate induced interaction, pristine monolayer graphene cannot be considered as

a weakly interacting system [201, 202, 213, 214]. Thus, studying the effects of Coulomb

interactions on the band structure of this material is of prime importance.

When graphene is placed on a dielectric medium, for instance on top of a substrate such

as SiO2 or hBN, the corresponding coupling strength is affected by the dielectric tensor

of the medium ǫ. For high symmetry crystals, the dielectric tensor can be approximated

by a scalar value, and the coupling strength of graphene is given by [201]:

αǫ =

(

c

υ

) (

α

ǫ

)

. (4.1)
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The experimental evidence for the Coulomb interactions has been challenging to observe.

This is due to two main factors: (i) the dielectric screening by the substrate on top of

which graphene is placed, (ii) and charge doping that shifts the Fermi level away from

the charge neutrality, where the effects due to Coulomb interactions are the most pro-

nounced. Suspended graphene, and graphene encapsulated on hBN offer the possibility

to roll out these issues. Experiments performed on these structures show high crystal

quality and high carrier mobility in the graphene flakes. The effect of electron-electron

interactions in the band structure of graphene has been first evidenced in the absence of

magnetic fields [215, 216], and later on in the presence of magnetic fields [126, 166, 217].

One way of estimating the carriers effective mass is to measure the temperature de-

pendence of the quantum oscillations that are usually probed in transport experiments.

Recent transport measurements, performed on a gated suspended graphene structure

with extremely high mobility [215], show an effective mass for the charge carriers that

evolves in a non-linear fashion with respect to kF =
√

πn. This non-linear dependence of

the effective mass on kF can be translated to a dependence of the Fermi velocity on the

carriers concentration n. Figure 4.1b, shows a plot of the Fermi velocity as a function

of the carriers density n, where a diverging Fermi velocity around the charge neutrality

point is observed, thus contradicting the linear dispersion that is usually assumed for

graphene flakes on the substrate.

Gonzalez et al. studied theoretically the effects of Coulomb interactions in single layer

graphene long before its experimental isolation [203]. Following their work, Elias et al.

[215] considered a re-normalized band structure at low energies, such as the one plotted

in Figure 4.1a, when the effects of electron-electron interactions are to be taken into

account. The re-normalized bands have a logarithmic divergence of the band velocity at

the Dirac point, consistent with the experimental data.

Transport measurements probe the physics of condensed matter systems at the Fermi

level, so the re-normalization of the band structure is observable only at very low en-

ergies (of the order of EF ∼ meV). However, as we will show in the following, the

effects of electron-electron interactions are seen for a larger energy scale when probing

the inter-Landau level transitions under strong magnetic fields using Raman scattering

spectroscopy.

Suspended graphene structures present a disadvantage for practical applications. For

the observation of high correlation effects, a proper choice of a substrate with low dop-

ing and high quality surface is of prime importance to study the intrinsic properties

of graphene and multilayer graphene. Owing to similar crystal structure as graphene,

hexagonal boron nitride (hBN) is a substrate of choice in the study of low energy excita-

tions in graphene. High charge carriers mobility and the experimental observation of the

FQHE on graphene deposited on hBN substrate [218, 219] are strong proofs to the su-

perior quality of graphene-hBN hetero-structures with respect to conventional graphene
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flakes on SiO2/Si substrate. As we will show in the following, all studied samples in our

experiments present very low doping ( their Fermi energies correspond to ∼ 60 meV)

which allows the observation of the band velocity re-normalization on the band structure

of graphene (see Figure 4.1).

The investigation of many body effects in graphene based structures should not be lim-

ited to transport techniques. Notably, ARPES measurements, a well-adapted surface

probe allowing to trace electronic bands in solids, is a method of choice to probe correla-

tion effects such as electron-electron and to electron-phonon interactions [220–222]. On

the other hand, this technique cannot be implemented with an applied magnetic field

which makes it impossible to study graphene based systems in the QHE regime, and

reveal interaction effects among highly degenerated Landau levels. To overcome this

difficulty, we use magneto-Raman scattering techniques to study the effects of electron-

electron interactions in graphene in the QHE regime.

4.2 Monolayer graphene/hexagonal boron nitride

First we will discuss the experimental results obtained from the magneto-Raman study

of G-hBN hetero-structures. Two G-hBN samples have been investigated with magneto-

Raman spectroscopy: One sample was provided by the group of Prof. Andre Geim

from Manchester University (we will refer to this sample as A), while the second sample

(labeled B) was provided by the group of Prof. Philip Kim from Columbia University.

Magneto-Raman measurements were performed by using a superconducting coil up to

14 T (in the case of sample B), or a resistive magnet that delivers a continuous magnetic

field up to 29 T (case of sample A).

4.2.1 Raman characterization in the absence of magnetic field

Figure 4.2(a,b) shows optical microscope images of samples A and B, respectively. A

schematic presentation of sample A is shown in Figure 4.2c, where we have three different

structures on: graphene directly on SiO2, graphene on hBN (G-hBN), and graphene

encapsulated in hBN (hBN-G-hBN).

We first characterize the two samples at low temperature in the absence of magnetic

fields. Figure 4.2d shows a falsed color map of the Raman scattered intensity at the 2D

band energy from sample A, where the 2D band is the most pronounced at the G-SiO2

locations, is less intense at G-hBN locations, and very weak at hBN-G-hBN locations.

This contrast in the intensity allows a Raman imaging of the three different structures

on the sample. Three corresponding Raman scattering spectra from these locations are

shown in Figure 4.3a, while Figure 4.3b shows a Raman spectrum from sample B. For
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Figure 4.2: (a,b) Optical microscope image of sample A and B, respectively. (c)
Schematics of sample A showing different locations with graphene on SiO2, graphene
on hBN and graphene encapsulated in hBN. (d) Falsed color spatial map of the scattered

intensity at the 2D band energy from sample A.

both samples, a single Lorentzian peak is observed at 1370 cm−1, which corresponds

to the Raman-active E2g mode in BN with a hexagonal symmetry [223]. The G band

of graphene is observed at 1584 cm−1 with a full width at half maximum (FWHM) as

large as 16 cm−1 in G-hBN locations. Such a FWHM for the G band is an indication

of moderate doping for the graphene on hBN [152], hence the two samples are close to

charge neutrality.

Figure 4.3c is a zoom on the 2D band of G-SiO2 and G-hBN from sample A. On G-hBN

location, the 2D band is observed at ∼ 2690 cm−1 with a FWHM of ∼ 20 cm−1. As

we discussed in Chapter 2, the 2D band has a FWHM which depends on the rotational

angle of the graphene sheet with respect to the hBN substrate, or when on top of another

graphene layer with a twist angle. The value of the FWHM, observed on our samples is

representative of non-aligned G-hBN structures [134].

The comparison of the Raman spectra shows a clear background formation where the

graphene layer lays are encapsulated on hBN. This fluctuating background is moderate

on the G-hBN structure, but became 5 times higher in the encapsulated graphene regions

on sample A (see Figure 4.3a). The origin of this background might be related to the wet

transfer fabrication technique that gives such encapsulated hetero-structures (see Annex

7). Indeed, the polymer compound that is used to transfer each flake on top of the other

is shown to contaminate the interfaces between the flakes. These contaminations have
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Figure 4.3: Representative Raman scattering spectra from sample A, measured on
graphene on SiO2 (black), on graphene on hBN (red spectrum) and on graphene en-
capsulated in hBN (blue). (b) Representative Raman scattering spectrum of graphene
encapsulated in hBN from sample B. (c) 2D band from sample A on a G-SiO2 location

(black curve), and on G-hBN location (red curve)

tendency to group together to form bubbles, most of which have a sub-micron size

(see dark spots in Figure 4.2a). Such background makes it very difficult to perform

Raman scattering measurements on the encapsulated locations. In the following we will

focus our studies on the graphene on top of hBN regions where the background is very

moderate.

4.2.2 Experimental results: magneto-phonon resonance

The inter-Landau level transitions are hard to observe in graphene-based systems. Their

observation in Raman scattering experiments strongly depends on the quality of the

samples, the background in the Raman signal, and the mobility of the charge carriers.

On the other hand, the chances to observe the magneto-phonon resonance (MPR) in

graphene-based samples is higher. The study of the MPR in graphene is used as a tool to

probe the Landau levels spectroscopy of the electronic excitations at the optical phonon

energy. This approach allows the determination of the low energy band structure in the

system and the number of graphene stacked layers [224]. In the following we start by

presenting the experimental results of the MPR in our G-hBN samples, and then move

to discuss the experimental results on the observed electronic excitations in the next

section.

Figure 4.4a,b shows magneto-Raman scattering spectra from both samples. The en-

ergy scale is in the range of the G band, and spectra are shown for different values of
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Figure 4.4: (a,b) Magneto-Raman scattering spectra in the G band energy range from
sample A and B, respectively. In both samples, the G band exhibits strong MPR. The

red dots indicate Lorentzian fits of the G band.

the magnetic field from 0 to 30 T. Notice how the G band undergoes strong shifts and

broadening when the magnetic field changes.

In order to get a better visual of the observed behavior, the magnetic field evolution of

the G band from the two samples A and B is presented in Figure 4.5(a,b) respectively,

in the form of false color maps of the Raman scattered intensity in the optical phonon

range of energy as a function of
√

B. In these two plots, one can appreciate the oscil-

lations of the G band feature at particular values of the magnetic field (indicated by

white arrows), which are characteristic of the MPR. As has been discussed in Chapter

2, the MPR is due to the resonant coupling between the E2g phonon and the discrete

∆|n| = ±1 inter-Landau level transitions in monolayer and N-LG [192, 194, 196], or the

inter-Landau bands in bulk graphite [160].

In the single particle approximation, the energy dispersion of the Landau levels in mono-

layer graphene is given by (see Chapter 1 for further details)

En = ±υ
√

2e~B|n|, (4.2)

where +(-) labels the electron (hole) levels, and υ is the band velocity, which repre-

sent the fitting parameter for the coupling of inter-Landau level transitions with the

optical phonon. A transition from a filled m level to an empty n level has an energy:

Lm,n = En − Em. The ∆|n| = ±1 transitions have the same symmetry as the E2g
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Figure 4.5: (a,b) False color maps of the Raman scattered intensity as a function of
the square root of the magnetic field in the G band range of energy for the G-hBN

locations from samples A and B, respectively.

optical phonon at the Γ point, they are known to be responsible of the observed MPR

in graphene based systems [158].

Figure 4.6(a,b) shows the results of the MPR observed in our measurements. Single

Lorentzian fits are used to extract the evolution of the G band position and its FWHM.

These values are plotted as a function of the
√

B for samples A and B, respectively.

Starting from their unperturbed values (∼ 1584 cm−1 for its energy and ∼ 18 cm−1

for its linewidth), the energy and line-width of the G band show clear oscillations when

changing the magnetic field. These oscillations are observed for both samples, and their

magnitude increases with increasing magnetic field. The most pronounced oscillation is

observed for sample A around ∼ 22 T.

In a series of previous MPR studies on multilayer epitaxial graphene [193], and graphene

locations on the surface of bulk graphite [164, 169, 225, 226], a single value of the band

velocity has been used for ∆|n| = ±1 inter-Landau level transitions at the phonon en-

ergy. In our study, this approach is no longer valid.

Figure 4.7 plots the Fermi velocity values for resonant transitions, that are well ob-

served in both samples, as a function of the logarithm of the magnetic field normal-

ized to B0= 1 T. The choice of the logarithmic scale will become clearer afterwards.

Indeed, our data for both G-hBN samples show resonant magnetic fields, with most

pronounced resonances at: B0 ∼ 22T, B1 (observed only in sample A), ∼ 3.3T and

B3 ∼ 1.8T . In order to identify the inter-Landau level transitions that are responsi-

ble for the oscillations at these resonant magnetic fields, we use Eq. 4.2. At the G
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Figure 4.6: (a,b) Energy position (upper panels) and FWHM (lower panels) for sam-
ples A and B respectively, as a function of the square root of the magnetic field, obtained
from a single Lorentzian fit of the G band feature. The vertical red dashed lines mark
the observed resonant magnetic fields for the ∆|n| = ±1 transitions, while the green
dashed lines indicate the weak coupling of the ∆|n| = 0 transitions with the G band.

band energy, these values of the magnetic field correspond to the resonance of the G

band with L0(−1),1(0), L−1(−2),2(1) and L−2(−3),3(2), characterized by υ ∼ 1.15 × 106m/s,

υ ∼ 1.24 × 106m/s, and υ ∼ 1.28 × 106m/s, respectively.

A key information is deduced from Figure 4.7: different band velocities are attributed

to the ∆|n| = ±1 transitions when tuned to the G band energy. This observation is in

clear contrast with the Landau level dispersion in Eq.4.2, derived in the frame of the

single particle picture. As we will show in the theoretical modeling section, such an

effect stems from the strong electron-electron interactions in graphene.

The oscillations of the G band line-width are more pronounced compared to the oscil-

lations of its energy. In Figure 4.6, a series of oscillations in the G band line-width in

sample B and another oscillation in sample A do not correspond to the coupling with

∆|n| = ±1 transitions. These oscillations have relatively weak magnitudes compared

to the resonant coupling with ∆|n| = ±1 transitions (green lines in Figure 4.6a,b). By

matching their energies with the E2g optical phonon, we attribute these oscillations

to the G band coupling with inter-Landau level transitions that obey selection rules

∆|n| = 0. In both samples, we identify the coupling of the G band with L−1,1 transition

at B ∼ 5.3T (
√

B ∼ 2.31T 1/2), which correspond to a Fermi velocity υ ∼ 1.18×106m/s.

Three additional couplings are observed in sample B at B ∼ 2.46T , B ∼ 1.47T , and
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B ∼ 1T . They correspond to transitions L−2,2, L−3,3, and L−4,4, with Fermi velocities

υ ∼ 1.22 × 106m/s, υ ∼ 1.29 × 106m/s, and υ ∼ 1.35 × 106m/s, respectively.
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Figure 4.7: Values of the band veloc-
ity deduced from the analysis of MPR
on G-hBN (red squares). The cor-
responding inter-Landau level transi-
tions are indicated. We plot these val-
ues as a function of the magnetic field

in logarithmic scale.

Thus, we reveal another surprising result in our

studies, since this coupling is forbidden for sym-

metry reasons [159, 194], as has been discussed

in Chapter 2. However, we note that previous

magneto-Raman studies performed on graphene-

like locations on the surface of bulk graphite

[164, 169, 226], and low fields magneto-Raman

study of high mobility graphene flake encapsulated

on hBN [197] reported the observation of an unex-

pected coupling of the G band with the ∆|n| = 0

inter-landau level transitions.

Magneto-Raman experiments on graphene do-

mains on the surface of bulk graphite show a clear

coupling of the E2g phonon with the symmetric

transitions L−3,3, L−2,2, and L−1,1 [164]. Notably,

unlike the MPR involving the ∆|n| = ±1 tran-

sitions, this resonant coupling is less pronounced

when the magnetic field is increased. Since the ob-

servation of this forbidden coupling is not limited

to graphene flakes on the surface of graphite [197],

we assume that this effect is an intrinsic behavior

of electronic excitations in graphene. As long as the studied samples are of good quality,

one might observe this forbidden resonance of the G band with the ∆|n| = 0 inter-landau

level transitions.

It is not clear why such a coupling is observed in graphene. However, the decrease in the

coupling of the G band with the ∆|n| = 0 transitions as a function of the strength of the

magnetic field makes us speculate that the mechanism behind this resonance originates

from the mixing of wave functions of neighboring Landau levels. Such mixing of Landau

levels is lifted by strong applied magnetic fields [169, 197, 227].

4.2.3 Experimental results: inter-Landau level transitions in G-hBN

In order to favor the observation of the symmetric inter-Landau level transitions (∆|n| =

0) in the Raman scattering spectra of graphene, we performed co-circular polarized

magneto-Raman scattering measurements on G-hBN (sample B) up to 14 Tesla, using
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Figure 4.8: (a) Magneto-Raman spectra showing electronic excitations at different
values of B. (b) Grey scale map showing the L−1,1, L−2,2, and L−3,3 inter-Landau level

transitions in the G-hBN sample B.

the superconducting coil. In this configuration, the G band is not active since it is

cross-circularly polarized [160], as has been discussed in Chapter 2.

Figure 4.8a shows three different Raman spectra at 0T, 5T, and 10 T. Magnetic-

dependent features, that we attribute to L−1,1 and L−2,2, are observed. The associated

grey-scale map of the magneto-Raman scattered intensity (Figure 4.8b) shows the
√

B

dispersion of at least three excitations with the magnetic field, characteristic of massless

Dirac Fermions. In our G-hBN sample and the two other comparative samples, the L−1,1

transition starts to be visible at B ∼ 2.5 T, corresponding to an onset energy Eons ∼ 1000

cm−1. The upper limit for the Fermi energy is then pinned at EF = Eons/2 ∼ 60meV,

which confirms a relatively low charge doping in all these graphene-based systems, rel-

evant to the observation of the band velocity re-normalization around the charge neu-

trality point [215].

Figure 4.9a shows the Landau level dispersion of monolayer graphene, plotted with a

single value of the band velocity. The corresponding ∆|n| = 0 transitions are plotted

in Figure 4.9b. There is no chance to fit the observed transitions with a single value of

the band velocity. This approach fails for two main reasons: first of all, and similar to

the analysis of the MPR, the higher the value of the Landau level index, the higher the

corresponding value of the band velocity associated with each transition. Then, for a

fixed Landau level index, there is a clear deviation from the experimental points when

changing the magnetic field for the associated band velocity of each transition. This is

especially seen for the L−1,1 transition, where a clear departure from the experimental
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model.

curve is seen when the magnetic field increases (blue boxed region in Figure 4.9b). Two

main conclusions are deduced from this analysis: (i) the band velocity is a function of

the Landau level index. (ii) The band velocity associated with each Landau level index

changes as a function of the magnetic field. These observations represent a clear devi-

ation from the single particle picture, in which the band velocity is independent of the

Landau level index and of the value of the magnetic field.

The coupling strength associated with the Coulomb interaction in graphene depends

strongly on the dielectric function ǫ of the surrounding medium, as we discussed in the

beginning of this section. The deviation from the single particle picture is expected to be

more pronounced in the absence of screening, leading to enhanced Coulomb interactions.

This has been evidenced from magneto-Raman scattering measurements on suspended

monolayer graphene [31]. On the other hand, a strong screening from the surrounding

medium (such as metallic substrates) where the dielectric constant is large, leads to

weak Coulomb interactions (i.e., graphene locations on the surface of bulk graphite).

In order to show the effects of the substrate on the strength of the electron-electron

interactions in graphene, and thus on the Landau level dispersion with magnetic fields,

we compare our G-hBN results with two different sets of magneto-Raman scattering

data. The first set of data are obtained from a suspended graphene flake (G-S) [31],

while the second set of data is from graphene locations on the surface of bulk graphite
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(G-Gr) [164, 165].

Figure 4.10: Landau levels spectroscopy of three different graphene
based systems. Graphene suspended (upper panel), graphene on hBN

(middle panel), and graphene on graphite (lower panel).

Figure 4.10 com-

pares the inter-Landau

level transitions ob-

served on each graphene

specimen. The L−1,1,

L−2,2 are well ob-

served in all sys-

tems. We note that

G-Gr sample shows

much richer spec-

tra, a large num-

ber of symmetric

∆|n| = 0 transi-

tions (at least up to

n = 5) are observed.

The weakly allowed

∆|n| = ±1 transi-

tions [158, 159] are

also well seen in G-

Gr in a wide range

of magnetic fields

[164, 165]. How-

ever, since L−1,1

and L−2,2 are present

in all studied sys-

tems, we will fo-

cus our analysis on

these two transi-

tions.

Keeping in mind that the band velocity possibly depends on both the magnetic field

value and on the Landau level index, as was evidenced by our data analysis from the

G-hBN sample, we proceed by assigning a mean value of the band velocity that best fits

the L−1,1 excitation in each graphene system. Surprisingly, in order to fit the same L−1,1

transition for each graphene specimen, we were obliged to use completely different values

of the band velocity. We used υ = 1.3×106m/s for G-S (upper panel), υ = 1.15×106m/s

for G-hBN (middle panel), and υ = 1.03 × 106m/s for G-Gr (lower panel). Different

mean values of the band velocities for each graphene specimen are directly visualized in
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the inset of Figure 4.10, where at a fixed value of the magnetic field, the L−1,1 transition

appears at clearly different energies.

To summarize our results, we can say that the band velocity in monolayer graphene is

strongly dependent on three major factors:

1 - The dielectric environment, characterized by its dielectric constant ǫ

2 - The strength of the magnetic field

3 - The Landau level index

4.2.4 Theoretical modeling: including electron-electron interactions in

graphene

The theoretical calculations shown in this Chapter 4 have been done by Dr. Denis

Basko. He calculated the corrections to the band velocity in monolayer graphene in the

presence of magnetic fields [166]. In the single particle model, the band velocity should

not depend on the parameters that we mentioned above. So in order to account for the

observed discrepancies with the single particle model, one should consider the effects of

many body interactions (i.e., electron-electron interactions).

To do so, we will adopt the approach of Gonzalez et al. [203], in which Coulomb

interactions among electrons should cause a logarithmic divergent re-normalization of

the band velocity in un-doped single layer graphene. We start with the case of zero

magnetic field by considering a simple correction to the band velocity using perturbation

theory. In this approach, we expand the band velocity at the first order in the effective

fine-structure constant αǫ =
(

c
υ

) (

α
ǫ

)

. The corrections to the band velocity are then:

υ

υ0
= 1 − αǫ

4
ln

|E|
W

, υ = υ0 − αc

4ǫ
ln

|E|
W

, (4.3)

where E is the electron energy that is counted from the Dirac point. υ0 is the bare

velocity for the non-interacting system, and W is the high energy cut-off that is of

the order of the electronic bandwidth (i.e., few eV). The dielectric constant ǫ is that

of the surrounding medium for the suspended and encapsulated graphene, while α is

the fine-structure constant. Consequently, formula 4.3 tells us that the band velocity is

decreasing logarithmically when the band energy increases.

Let us now consider the effect of magnetic field on the above formula. In the presence

of a uniform magnetic field, the band structure of graphene is quantized into Landau

levels, and this effect needs to be taken into account in computing the band velocity

re-normalization by replacing the energy bands with the corresponding inter-Landau

level transition ~ω−n,m [200]. Following this procedure, it is legitimate to predict a band
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velocity that decreases with higher energy inter-Landau level transitions (i.e., higher

n). However, as we will show from our experimental observations, the opposite trend is

observed. Transitions with higher Landau level index are associated with higher band

velocities.

To account for this discrepancy between the results of Gonzalez et al. and our experi-

mental results, we used first order perturbation theory (FOPT) to derive an expression

for the band velocity re-normalization in the presence of magnetic fields [166].

If the energy of the nth symmetric inter-Landau level transition is given as ~ω−n,n, we

give the corrections to the band velocity by:

υn =
ω−n,nlB√

8n
= υ0 +

αc

4ǫ

(

L − ln
lB0

lB

)

+
αc

4ǫ
Cn. (4.4)

Formula 4.4 shows clearly that, in the presence of magnetic fields, the band velocity

evolves as: ln lB
lB0

= ln
√

B0
B . Here, lB is the magnetic length. The quantity L = ln

W lB0
~υ0

,

together with the logarithmic term, represent the corrections to the self-energy due to

interactions with states deep in the valence band, that are not sensitive to the Landau

quantization (n independent). However, the Cn = {C1 = −0.398, C2 = −0.197} are

numerical coefficients that depends on the Landau level index. These coefficients origi-

nate from two contributions: (i) residual corrections to the self energy from interaction

with states near the Fermi level, where the Landau quantization is relevant. (ii) Vertex

corrections or the so-called excitonic effects between the excited electrons and the holes

left in the initial Landau level.

In his seminal paper [198], W. Kohn studied the many body effects in conventional semi-

conductors with parabolic dispersion of their electronic bands. He derived a theorem in

which he stated that the cyclotron resonance, which characterizes the optical transitions

(∆k ∼ 0) of quasi-particles in magnetic fields, has a frequency independent on the many

body effects such as electron-electron interactions. In the corresponding Hamiltonian,

the excitonic effects and the exchange interaction terms are shown to cancel each other.

The Kohn’s theorem, however, is violated in graphene, which has low energy linear dis-

persion of its electronic bands. The cyclotron resonance has a
√

B-dependence, this

means that departure from the single particle picture is seen even for optical-like tran-

sitions with ∆k ∼ 0. Hence many body effects do contribute to its magneto-optical

response [217].

The Cn in Eq. 4.4 are negative terms such as: |C1| > |C2|. They will invert the trend of

Eq 4.3 which suggests that higher transition energies are associated with smaller band

velocities. Consequently, L−2,2 transition has bigger band velocity compared to L−1,1

transition.

The formula in 4.4 shows a linear dependence of the band velocity on the quantity ln lB
lB0

.

In a non-interacting system, the band velocity displays a horizontal line as a function of
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the magnetic field with a zero slope. In our case, the slopes of the re-normalized band

velocities are given by the parameter αc/4ǫ. These slope vary according to the value of

the dielectric constant of each surrounding medium ǫ.

Consequently, from equation 4.4 we are able to account, qualitatively, for the follow-

ing: (i) When ǫ is large, the slope (∝ 1/ǫ) is small. This means that the effects of

Coulomb interactions are small for media with a large dielectric constant, and strong

for media with small dielectric constant. This gives a large slope for band velocity for

the G-S (ǫ = 1), and a smaller slope for G-hBN (ǫ ≈ 5), G-Gr systems, respectively.

Figure 4.11: Band velocities evolution associated with L−1,1

and L−2,2. The experimental data (theoretical modeling) are
shown for L−1,1 as open circles (solid lines) and for L−2,2 as
open stars (dashed lines) for G-S, G-hBN, and G-Gr samples.
The dielectric constants are ǫ=3.9, 7, 12 for G-S, G-hBN, and

G-Gr, respectively. The figure is taken from [166]

Graphite on the other hand

is a metallic substrate, thus

can be viewed as medium

with a large effective di-

electric constant (slope close

to zero), which gives an

even smaller effect of the

Coulomb interactions. (ii)

For the same dielectric con-

stant ǫ (graphene on top

of a given substrate) and

the same value of the mag-

netic field, the band veloc-

ity associated with the tran-

sition L−2,2 (υ2) is bigger

than the band velocity as-

sociated with the transition

L−1,1 (υ1) due to C2 > C1 in

Eq. 4.4. (iii) According to

equation 4.4, the difference

in the values of the band ve-

locities at a fixed magnetic

field value is given as:

δυ21 = υ2−υ1 =
αc

4ǫ
(C2−C1).

(4.5)

This means the bigger the

dielectric constant ǫ, the

smaller the dependence of the band velocity on the Landau level index n.

Figure 4.11 summarizes the theoretical model, that is described by Eq. 4.4, along with
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the experimental values of the band velocity, extracted from fitting the observed tran-

sitions using Lorentzian fits. For each graphene-based system, the evolution of the

extracted band velocities υexp
n is plotted as a function of ln

√

B0
B . Our model follows the

experimental observations, since the slopes of the band velocities, and the dependence

on the Landau level index, increase for smaller values of the dielectric constant.

Unfortunately, Eq. 4.3 and subsequently Eq. 4.4 fail to reproduce qualitatively the

value of the slopes in Figure 4.11, and do not give the values of δυ21 that are seen in

our experiments. This is explained by the fact that FOPT works good for small values

of the coupling strength, which is legitimate when considering charged particles inter-

acting in vacuum (where the coupling strength is given by the fine structure constant

α = 1/137 << 1). However, FOPT is not a good approximation technique for a large

effective coupling strength αǫ, as we discussed in the beginning of this section, its value

is larger than 2 for suspended graphene.

In order to have a good estimation of the values of the slopes and the difference in

velocities in the same graphene specimen, one should introduce an effective dielectric

constant ǫ∗ instead of ǫ that can be adjusted to match theory with experiment. A good

match is found for:

ǫ∗
G−S = 3.9, ǫ∗

G−hBN = 7, ǫ∗
G−Gr = 12, (4.6)

which are quite different from the values of the dielectric constants for G-S (ǫ = 1) and

G-hBN (ǫ = 5).

In order to obtain more realistic values for the dielectric constants, we will proceed dif-

ferently. Graphene offers another expansion parameter that can control the perturbation

theory even when αǫ is big. This parameter is identified as 1/O, where O is the number

of electronic species, which is equal to 4 for monolayer graphene (the spin and the valley

degeneracy) [166, 202]. Hofmann et al. used the random phase approximation (RPA)

to expand the band velocity in the power of 1/O, resulting in an infinite number of

terms for all the orders in αǫ, but with only the leading terms in 1/O that are relevant

[201]. In the absence of magnetic fields (B=0T), this new approach will induce a slight

modification in equation 4.3, where the term in front of the logarithm became [166]:

αc

4ǫ
→ αc

4(ǫ + 1.28αc/υ0)
=

αc

4ǫ1/O
, (4.7)

where ǫ1/O = ǫ + 1.28(αc/υ0) is seen as an added screening capacity by the Dirac

electrons themselves. By assuming that υ0 = 0.88 × 106m/s the RPA give the following

values of the dielectric constants:

ǫ
1/O
G−S = 4.16, for ǫ = 1, ǫ

1/O
G−hBN = 8.16, for ǫ = 5, (4.8)
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which are quite close to the measured values of ǫ∗ = 3.9 for G-S, and ǫ∗ = 7 for G-hBN.

For the results with B > 0T , the RPA can be used to apprehend the observed slopes

on Figure 4.11. However, this approach fails to account for the values of δυ21 observed

for each graphene-based sample. Indeed, this replacement is valid only for the leading

logarithmic term, while the sub-logarithmic terms should be calculated explicitly, and

the simple combination Cn/ǫ is replaced by some more complicated one. The only way

to give a full explanation for the whole experimental data is to adopt an empirical

approach, by assuming the following band velocity re-normalization equation [166]:

υn = υ0 +
αc

4ǫ∗

(

L − ln
lB0

lB

)

+
αc

4ǫδυ
Cn. (4.9)

The above formula is similar to equation 4.4, but with slight changes. We kept the same

values of the effective dielectric constants that we obtained from FOPT, and that are in

close agreement with the 1/O. Cn is the same coefficient as in equation 4.4, and ǫδυ is

chosen to reproduce the experimental values of δυ21. By setting ǫδυ = 1.3, 3.7, 12, only

two adjustable parameters remain: the bare velocity υ0, and L. All experimental lines

in Figure 4.11 are fitted by setting υ0 = 0.88 × 106m/s, and L = 4.9, which gives a

cut-off energy of the order W = (~υ0/lB0)eL=3.1 eV. These values of the bare velocity

and the bandwidth are in good agreement with what is expected in monolayer graphene

[228].

4.3 Bilayer graphene/ hexagonal boron nitride

SiO2 /Si

hBN (top layer)

hBN (bottom layer)

Bilayer graphene
(a) (b)

Figure 4.12: (a) Optical microscope image, where the sample of interest is boxed in
blue. (b) Schematics of the sample showing different locations with bilayer graphene

on SiO2, graphene on hBN and graphene encapsulated in hBN.

The bilayer graphene sample was provided by the group of Prof. A. Geim from Manch-

ester University. This bilayer graphene-hBN hetero-structure was produced following the

same approach as the G-hBN samples (see Annex 7). Figure 4.12a presents an optical

microscope image of the sample. To get a better idea about the structure, Figure 4.12b

presents a schematic presentation of the sample’s structure. There exist three different

configurations, similar to the G-hBN samples: BG-SiO2, BG-hBN, and hBN-BG-hBN.
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These locations are large enough to be probed specifically by micro-Raman scattering

spectroscopy.

4.3.1 Raman characterization in the absence of magnetic field

Raman scattering spectra taken in the absence of the magnetic field are shown in Figure

4.13a. The red and black curves are taken from BG-hBN and BG-SiO2 respectively.

One can also recognize the four components 2D band of AB-stacked bilayer graphene

[91] as compared with the 2D band few layer graphene (blue curve in Figure 4.13a).

There is no observable changes in the 2D band feature from BG-SiO2 and BG-hBN, as

can be appreciated from Figure 4.13b. The G band has a FWHM of about 13 cm−1

when measured on the location BG-hBN. This excludes any significant doping from

the hBN [152]. Prior to magnetic field measurements, we performed Raman scattering
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Figure 4.13: (a) Representative Raman scattering spectra measured on bilayer
graphene on hBN (black), bilayer graphene on SiO2 (red), and bulk graphite on SiO2

(blue). (b) 2D band from bilayer graphene on SiO2 (black curve) and from bilayer
graphene on hBN (red curve).

investigation of the flake by mapping its surface using X-Y-Z piezoelectric stages. Figure

4.14a shows Raman scattered intensity at the Si peak energy. The features of the flake

are seen, where the Si peak is screened by the layers of the graphene and hBN. The

dark regions show the graphene that is enclosed in hBN. To localize the regions where

the graphene flake is, we plot in Figure 4.14b the Raman scattered intensity from the G
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(a) (b)

Figure 4.14: (a,b) False color maps of the Raman scattered intensity at the Si band
energy and the G band energy, respectively. These maps reveal the locations of the

graphene encapsulated on hBN or on top of SiO2.

band, and reveal the features of the graphene encapsulated on hBN (light blue) or the

graphene on SiO2/Si (warmer colors).

4.3.2 Magneto-Raman scattering measurements

Similar to the case of G-hBN, magneto-Raman scattering experiments on the BG-hBN

location reveal the presence of the MPR for the optical phonons (however is less pro-

nounced than the case of monolayer graphene). Figure 4.15a shows the G band feature

for different values of the magnetic field. Its energy undergoes a shift and we see a

broadening of its line-width when changing the magnetic field. The MPR is presented

as a false color map of the magneto-Raman scattered intensity in Figure 4.15b, in the G

band energy range. The white arrows indicate magnetic field regions where the resonant

effect is very pronounced.

At low energies, bilayer graphene presents two parabolic bands, touching at K and K′

points of the Brillouin zone (see Figure 4.16a). As shown in Figure 4.16b, the parabolic

bands touching at zero energy split into Landau Levels with a quasi-linear evolution

with magnetic fields. Their dispersion, as seen in Chapter 1, is given by [74]:

EBG
n = ±





γ2
1

2
+ (|n| +

1

2
)E2

1 −
√

γ4
1

4
+ (|n| +

1

2
)E2

1γ2
1 +

E4
1

4





1/2

, (4.10)

where γ1 is the nearest neighbor inter-layer coupling parameter and +(-) holds for elec-

tron (hole) Landau levels. The transition from the filled m level to the empty n level is
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Figure 4.15: (a) Raman spectra of the G band for different values of the magnetic
field. The G band is fitted with a single Lorentzian as indicated by red open circles in
the first spectrum. (b) False color map of the magneto-Raman scattered intensity as a

function of the magnetic field for the BG-hBN.
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Figure 4.16: (a) Low energy parabolic dispersion in AB-stacked bilayer graphene. The
gapped bands are separated by twice the value of the inter-layer coupling (γ1 = 0.39
eV). (b) Landau levels dispersion in magnetic field for the touching bands in (a). The
energy scale is shown in cm−1. The black arrow is a ∆|n| = 0 transition, while the red

arrow is a ∆|n| = ±1 transition.
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given by:

Lm,n = En − Em. (4.11)

In order to reproduce the behavior of the G band under the effect of magnetic fields,

we follow the same approach as T. Ando [192] in his theoretical model of the MPR in

bilayer graphene. This model consists on calculating the shift and broadening of the

E2g phonon from the real and imaginary parts of the corresponding phonon’s self energy

Π(q, ω) [192], also known as the polarization operator :











∆ω = 1
~
Re[Π(q, ω)],

Γ = −1
~
Im[Π(q, ω)].

(4.12)

To calculate the energy and broadening of the G band as a function of the magnetic

field, we need the values of four parameters: the Fermi velocity, the phonon energy at

zero magnetic field, the value of the dimensionless electron-phonon coupling strength

[194], and finally the phenomenological broadening of the inter-Landau level transitions

δ.

Figure 4.17 shows the magnetic-oscillations of the G band energy and its FWHM (blue

dots), obtained from Lorentzian fits of the G band feature. These results are confronted

to our calculations (red curves) following the model discussed above. There is a very

good match between the experimental results and theory for a value of the dimensionless

electron-phonon coupling strength of λ = 4 × 10−3, in agreement with other studies of

the MPR in graphene based systems [160, 193], and a phenomenological broadening of

150 cm−1 to account for the broadening of the inter-Landau level transitions and the

E2g phonon.

In contrast to G-hBN, we used a single value of the band velocity (υ = 1.05 × 106m/s)

in Figure 4.17. We calculated, using this single value, the ∆|n| = ±1 Landau level

transitions that couple to the E2g phonon (red dashed lines in Figure 4.17). The MPR

is clearly observed for three resonant magnetic fields: the L−1,2 transition couples at

B = 17.8T , the L−2,3 transition couples at B = 11.6T , and for L−3,4 the coupling

occurs at B = 8.4T . This single particle approximation for bilayer graphene is consistent

with other magneto-Raman measurements performed on suspended graphene and N-LG

structures [31], where a single value of the band velocity is used to fit the observed

transitions for bilayer graphene and thicker flakes. While similar to our results on G-hBN

samples, a clear deviation from the single value of the Fermi velocity has been observed in

the case of suspended monolayer graphene [31, 166]. These two different behaviors could

be related to the vanishing density of states at low energy for monolayer graphene with

linear electronic dispersion, while bilayer graphene with a parabolic dispersion shows a

constant density of states. This leads to rather different screening possibilities. Under
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Figure 4.17: (a,b) Energy position and FWHM respectively obtained from a single
Lorentzian fit of the G band feature as a function of the magnetic field for BG-hBN. The
vertical red dashed lines mark the observed resonant magnetic fields for the ∆|n| = ±1
excitations while the green dashed line indicates the L−1,1 excitation. The red solid
lines are the result of the calculation of the MPR in BG, without considering the L−1,1

excitation.

the effect of magnetic fields, this difference somehow persists with the existence of a

4-fold and of a 8-fold degenerate n = 0 Landau level in monolayer and bilayer graphene,

respectively. For low doped graphene monolayer or N-LG systems, the Fermi level is

pinned on the n = 0 Landau level and the screening efficiency will be directly related to

its degeneracy.

Unexpectedly, we also observe an increase of the FWHM together with a change of

the phonon energy close to the value B = 24.2 T. These changes in the FWHM and

phonon energy are small compared to the expected resonant values of the magnetic

field for ∆|n| = ±1 transitions. For the same value of the band velocity, this value

corresponds to the resonant magnetic field for the L−1,1 transition (green dashed line in

Figure 4.17), which confirms the observation of the coupling of the E2g phonon with the

symmetric ∆|n| = 0 inter-Landau level transitions for bilayer graphene, as was evidenced

for previous studies on monolayer graphene systems [164, 169, 197], and in our MPR

results on G-hBN samples.
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4.4 Conclusions

Using magneto-Raman spectroscopy, we investigated the electronic properties of graphene

and bilayer graphene deposited on top of hBN. This substrate presents a clear advan-

tage with respect to SiO2/Si. This is evidenced by the observation of inter-Landau level

excitations in some G-hBN samples, as well as the magneto-phonon resonance in both

monolayer and bilayer systems (G-hBN, BG-hBN). These observations attest the high

quality of the substrate that prevents high doping on graphene.

The MPR for both G-hBN and BG-hBN shows coupling of the ∆|n| = ±1 inter-Landau

level transitions with the E2g optical phonon at the Γ point. However, a series of anti-

crossing of the G band energy and an increase on its FWHM indicate a coupling of the

E2g optical phonon with the symmetric ∆|n| = 0 inter-Landau level transitions. The

band velocity associated with each symmetric transitions is different, and has a value

that increases with the Landau level index.

We attribute this band velocity re-normalization to the effects of electron-electron in-

teractions inducing a mixing in the electronic wave functions of the Landau levels. The

Coulomb interactions are to be less pronounced in the case of bilayer graphene, due to

its finite density of states around the charge neutrality point that allows a more efficient

screening of electron-electron interactions. This is evidenced by its MPR where all the

values of the resonant fields can be well described by a single value for the band velocity.

Afterwards, we moved to the the analysis of the Raman-active inter-Landau level exci-

tations, observed in our Raman scattering experiments on G-hBN samples. We compare

these results to previous studies on graphene placed on different dielectric environments:

graphene suspended, and graphene on the surface of bulk graphite.

Signatures of electron-electron interactions are seen through three main observations :

(i) The band velocity strongly depends on the dielectric constant ǫ of the surround-

ing medium. We confirm that the electronic properties of graphene on insulating sub-

strates (weak dielectric screening) are strongly affected by electron-electron interactions

(graphene suspended, and G-hBN), whereas conducting substrates favor the single- par-

ticle behavior, such as graphene on graphite, and graphene on metals. (ii) At a given

magnetic field value, the band velocity associated with each transition is different. Tran-

sitions with higher Landau level index are associated with higher band velocity. (iii) The

band velocity associated with each transition decreases significantly when increasing the

magnetic field.

The experimental results we obtain in this Chapter 4, and the concluding remarks, sug-

gest that low energy carriers in graphene and bilayer graphene are sensitive to Coulomb

interactions. The simple
√

Bn scaling expected for strictly linear electronic bands in
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monolayer graphene, characterized by a single band velocity, is not sufficient to account

for our observations. Thus, Kohn’s theorem for optical-like transitions in graphene

(∆k ∼ 0) is violated, and a full understanding of the excitation spectra falls beyond the

frame of the single particle picture.



Chapter 5

Experimental results:

Rhombohedral multilayer

graphene

5.1 Introduction

Motivation and content:

We have shown in Chapter 1 that the electronic properties of multilayer graphene are

intimately related to the way the graphene layers are stacked on top of each other.

This possibility that is offered by the physics of 2D materials has encouraged a strong

interest in studying the evolution and changes in N-LG band structure for different

stacking configurations.

In this Chapter 5, we will present the results obtained in studying the magneto-Raman

response of rhombohedral ABC multilayer graphene. Many years ago it has been shown

theoretically that the electronic properties of this stacking order are quite different with

respect to Bernal N-LG [229].

A series of recent experiments performed on exfoliated ABC tri-layer graphene have

shown the possibility of opening a band gap in the structure of this stacking [32, 38], as

well as the observation of an unconventional quantum Hall effect of chiral quasiparticles

[37]. Nevertheless, little has been done to experimentally investigate the electronic

properties of N-LG with large ABC stacking sequences. This is mainly due to naturally

small amount of ABC sequence found within exfoliated N-LG flakes.

We present the first magneto optical study of large ABC domains in thin graphite flakes,

with ABC sequences exceeding 17 monolayers. We show that the number of the ABC-

stacked layers can be estimated from a unique electronic Raman scattering (ERS) feature

116
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Figure 5.1: (a) Optical microscope image of the flake, the colored arrows indicate the
sections where AFM measurements were performed. (b), Plot of the edges profile (a)
obtained from the AFM scans. The thickness varies from 15 to 17 graphene monolayers.

at zero magnetic field, observed even at room temperature. At low temperatures, we

trace the magnetic field evolution of the Raman-active inter-Landau level transitions

from the ABC-stacked domain of the flake.

The tight binding model for ABC N-LG, presented in Chapter 1, is used to fit the

excitation spectra observed in our experiment. The importance of our results point

toward the investigation of high correlation effects on rhombohedral N-LG, such as

ferromagnetism or superconductivity, that is offered by the highly degenerate flat bands.

Experimental details:

In order to investigate the Raman response of our flake, we used three different excitation

wavelengths. For the room temperature Raman measurements, we used the micro-

Raman set up with the excitation wavelength at 632.8 nm. For the low temperature

magneto-Raman measurements, we used the fiber optics micro-Raman probe with either

the argon-ion laser at 514.5 nm, or the Ti:sapph at 785 nm (see Chapter 3 for a detailed

description of the experimental set up).

Atomic force microscopy measurements:

For the sake of completeness ,the thickness of the flake is investigated using atomic force

microscopy (AFM). By scanning three different edges of the N-LG flake as seen in Figure

5.1a. The number of layers was estimated from the edges by assuming a thickness of

the first monolayer sheet on top of SiO2 equal to 0.529 ± 0.1 nm (as measured under

nominally the same conditions for a reference graphene flake). The atomic interlayer

distance in graphite is taken to be 0.335 nm [18], which gives a thickness that varies

from 15 to 17 monolayers.
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5.2 Raman characterization at room temperature
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(a) (b)

Figure 5.2: (a) Optical microscope image of the flake on interest. The flake, larger
than 30 µm is suspended over five different holes labeled from h0 to h4. (b) Schematics
of the suspended parts over the substrate, where magnetic field measurements have

been performed.
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Figure 5.3: (a) Raman spectra from h0 (ABA N-LG) and h4 (ABC N-LG) respec-
tively. (b) Zoom on the blue strip regions in (a), where the broad feature is observed

on h4 and not seen on h0.

An optical photograph of the investigated flake, obtained by mechanical exfoliation and

transferred on Si/SiO2 with holes pattern as described in the Annex 7, is presented in

Figure 5.2a. The holes of interest, covered by our N-LG flake, are labeled h0 to h4. As

seen in the schematic (Figure 5.2b), the flake suspended over the holes do not suffer

interaction with the substrate.

We start by investigating the room temperature response of our sample in the absence of

magnetic fields. Characteristic room temperature Raman scattering spectra, measured

on suspended parts at h0 and h4 using 632,8 nm excitation, are presented in Figure

5.3. In all spectra, one can recognize the Raman active G band around 1580 cm−1,

characteristic of sp2 bonded carbon atoms, and the 2D band that is observed around

2700 cm−1 when measured with 632.8 nm excitation. Besides these well-known Raman

scattering features, an additional puzzling broad feature is observed on h3 and h4 around
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Figure 5.4: (a,b) Zoom on the G and the 2D modes lineshape from h0 and h4 (black
and orange lines, respectively). (c) Raman spectra taken from two different locations
within the same ABC domain but with different number of ABC stacked layers as
evidenced by the change in energy of the corresponding ERS. (d,e) False color maps of
the micro-Raman scattering intensity from: the ABC N-LG 2D mode subcomponent
indicated by and arrow in (b), and an ERS corresponding to a thickness of 15 layers.

1904 cm−1 and 1805 cm−1 respectively, with a full width at half maximum (FWHM) of

∼ 180 cm−1. This broad feature seems to be absent on the Raman scattering spectra

of h0, h1 and h2. At the same locations where the broad feature is observed, the line

shape of the 2D band feature does not correspond to Bernal AB-stacked thin graphite

layers [83, 91] (see fits in Figure 5.5). To better illustrate these differences, we show

in Figure 5.4a-b a comparison between the Raman spectra of h1 and h4 with a zoom

on the phonon G and 2D modes. The G mode blue shifts, while we observe a drastic

change in the 2D band feature. As we will discuss in more details in the following,

these three changes (blue shift of the G band, shape of 2D band, and the presence of the

broad feature) present the main Raman scattering signatures of ABC-stacked multilayer

graphene.

In order to investigate these changes more properly, we have performed spatial mapping

of the Raman scattering intensity of the whole N-LG flake, by moving the flake relative

to the laser spot with 2µm steps using X-Y piezo electric stages. When comparing

different locations, it appears that the broad Raman scattering feature presented on

h4 is also observed at different locations on the flake, but that its central position is

changing from one location to another (see Figure 5.4c). As will be clarified in the next
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Figure 5.5: Single Lorentzian fit of the G band (a) and four Lorentzian fit of the
2D band (b) from the suspended part on h4. (c) Evolution of the G band frequency
extracted from scanning the surface of the flake from h1 to h4. The symbols size indicate
the uncertainty of the fits. (d) False color map of the Raman scattered intensity of the

G band at 1586 cm−1. The suspended parts are shown in dashed red circles.

section by the evolution with magnetic field, we interpret this feature as arising from

an electronic Raman scattering (ERS) at zero magnetic field between the lowest gapped

bands in the band structure of ABC N-LG. Similar to metallic carbon nanotubes [161],

graphene [163], and bulk graphite [160, 162], electronic excitations do contribute to

the room temperature Raman scattering response of ABC stacked N-LG. The different

locations on the flake where this ERS signal is observed are presented in a false color

spatial map in Figure 5.4e. The modified line shape of the 2D mode is also observed

at different locations on our flake, shown in Figure 5.4d. The correlation between these

two false color maps is a strong indication that the observation of the broad ERS feature

and of the modified 2D mode line-shape are signatures of the same, ABC stacking. Our

flake is hence composed of two distinct regions: an ABA-stacked domain extending over

h0, h1 and h2, and an ABC-stacked domain extending over h3 and h4.

A comparison between the Raman G and 2D bands of the two domains is done by fitting

these two bands with Lorentzian functions. The Lorentzian function is defined such as:

L(x) =
A

2π

Γ

(x − x0)2 + (Γ/2)2
+ C, (5.1)
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where A is the integrated amplitude, Γ is the FWHM of the feature, and x0 is the po-

sition of the maximum. We account for the homogeneous background in the signal by

adding a constant C. The G band is fitted using a single Lorentzian (see Figure 5.5a),

while the best fit of the 2D band feature is achieved using four Lorentzian functions

(Figure 5.5b), similar to the 2D band in bilayer graphene but in clear contrast to the

two Lorentzian feature of the 2D band of Bernal-stacked N-LG (see the black curve in

Figure 5.4b). Previous studies have shown less pronounced differences in the 2D band

features of ABC and ABA tri-layers, with the 2D band in ABC tri-layer presenting a

slightly asymmetric feature with an enhanced peak and shoulder compared to the 2D

band feature seen in ABA tri-layer [32, 104]. However, these studies have been limited

to the case of thin flakes (3 or 4 monolayers) and these differences are less pronounced

compared to our observations.
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Figure 5.6: False color map of the G band
Raman shift from the flake. The energy of the

G band is plotted from 1581 to 1583 cm−1

In order to present the energy shift of the

G band in the different stacking domains

from the flake, we proceed in two differ-

ent approaches. First, we plotted in Fig-

ure 5.5c the Raman scattered intensity at

a given energy (1586 cm−1). Regardless of

the stacking configuration, the G band en-

ergy red shifts (i.e., decrease in energy) on

the suspended parts compared to its energy

on the SiO2. We attribute this change on

the G band energy to interactions with the

substrate that induces charge doping of the

graphene layers [152].

While suspended parts do not suffer from

interactions with the SiO2, differences in the

G band energy are conspicuous between the two stacking domains. In h1 and h2 (i.e.,

Bernal stacked domain) the G band energy peaks around ∼ 1581 cm−1, while it blue

shifts by ∼ 3 cm−1 on h3 and h4, where the ABC domain is located (see Figure 5.5c).

Figure 5.6 is different from Figure 5.5c, in the sense that it plots the G band energy in

the range 1581 cm−1 to 1583 cm−1. This procedure yields similar results and we reveal

again the two domains with different stacking configurations.

The red shift observed in our study is higher compared to the Raman scattering study

of ABC and ABA tri-layers by Lui et al. [32], where they reported a red shift in the

G band energy of ∼ 1 cm−1 between the two stacking configurations. Based on the

theoretical work by Yan et al. [230], in which they used DFT calculations to compute

the phonon dispersion of ABA and ABC tri-layers, they ascribe the red shift of the G
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ABA domain (black circles), ABC domain (orange circles), and where both stacking
configurations co-exist (blue circles). The symbols size indicate the uncertainty of the

fits. (b-d) The corresponding 2D band features of each stacking configuration.

band energy to the slight difference in the ABA and ABC phonon band structures. The

shift in the G band energy is summarized in Figure 5.5d which displays a false color

map of the Raman scattered intensity of the G band energy at 1586 cm−1. The color

bar goes from red (small shift) to blue (big shift). The shift in the G band energy is

bigger in the upper part of the flake (green and yellow colors) where the ABA stacking

dominates, while the lower ABC part (red color) presents a smaller shift.

We also investigate the FWHM of the G band, extracted from our fits and presented

in Figure 5.7a, with their corresponding 2D band features in Figure 5.7b-d. The values

of the G band FWHM in ABA and ABC-stacked N-LG oscillate between 13 and 16

cm−1, similar to the values reported in literature for bulk graphite [160], and multilayer

graphene [104]. However, some locations on the flake present a significantly increased

value of the FWHM (blue circles in Figure 5.7a) ranging from 17 to 24 cm−1. The

2D band feature at these locations is also different from the Bernal and rhombohedral

2D band features (see Figure 5.7b), with one sub-component that increases in intensity

compared to the 2D feature of ABC N-LG. This increase in the G band FWHM, as well

as the change in the 2D band feature, can be explained by considering regions on the

flake with mixed ABA/ABC-stacking configurations. Each stacking configuration will

contribute a G band with slightly different energies, resulting in a G band that is a sum

of the two peaks hence the increased FWHM.
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Figure 5.8: Raman characterization at low temperature: (a) Optical image of the
flake with the suspended regions labeled h0 to h4. (b-f) Raman scattering spectra,
measured with each 15 seconds with the same laser power, from the suspended parts
h0 to h4 respectively, as well as from supported regions in the vicinity of the suspended
parts in red (red boxes in a). The colors of spectra in (b-f) follow the color code in (a).

5.3 Magneto-Raman scattering study at low temperatures

When a transverse magnetic field is applied to the crystal plane, Landau levels are

formed and their evolution with increasing magnetic field directly reflects the zero field

electronic band structure of the crystal. Here, we use Raman spectroscopy to probe

the evolution of the inter-Landau level transitions in our N-LG flake. The difference

in the band structure between ABA and ABC-stacked domains is observed in their

corresponding inter-Landau levels dispersion with magnetic field.

5.3.1 Raman characterization at zero magnetic field

The sample is now inside the end of the micro-Raman probe, which is submerged in

the cryostat at liquid helium temperature (4.2 K). The excitation wavelength has been

changed to 785 nm, to get the best configuration for observing the Raman-active inter-

Landau level transitions [158]. In order to avoid heating the sample that could signifi-

cantly shift the observed Raman scattering features [231–233], the excitation laser power
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Figure 5.9: (a,b) Integrated amplitude of the Raman G band as function of the
position on the flake, obtained from the Lorentzian fits. The suspended parts on h1 →
h4 (inside the grey rectangles) present a significantly enhanced intensity with respect

to the supported region.

has been limited to ∼ 1 mW, and focused onto ∼ 1µm diameter spot, similar to previous

Raman scattering studies of N-LG systems [31].

Figure 5.8b-f shows Raman spectra measured at different suspended regions on the flake

(boxed in colored squares in Figure 5.8a) as well as at the supported regions in the

immediate vicinity of the holes (indicated by smaller red squares in Figure 5.8a).

At this excitation wavelength, the Raman scattered intensity of the G, the ERS, and

2D bands increases significantly on the suspended regions of the flake, where the SiO2

thickness has been removed during the etching process (see the details in the Annex 7

describing the fabrication process).

As will be discussed in the Annex 7, this effect is due to multiple reflection interference

of the Raman scattered light that occurs in our (N-LG/air/Si) system [36, 234, 235].

The enhancement of the Raman signal on the suspended regions is also reflected on the

broad ERS feature, as can be seen on the Raman spectra of h3 and h4 in Figure 5.8e-f,

respectively.

In order to quantitatively estimate this enhancement of the Raman modes on the sus-

pended parts, we extract the intensity of the G band from Lorentzian fits of its feature

using Eq.5.1. Figure 5.9a,b plots the results of the extracted values of the integrated

intensity of the G band. The enhancement of the Raman intensity is not homogeneous

from one suspended location to the other, which might indicate a residual thin layer of

SiO2 that has been left after the etching process on some of these holes. By taking the

ratio between the G band intensity on each suspended part (where SiO2 is etched) and
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Figure 5.10: False colored maps of the micro-Raman scattering intensity at low tem-
peratures: the scattered intensities are shown with respect to the: G Raman mode
(a), 2D Raman mode (b), and the silicon Raman mode (c). The contrast in intensity
between the suspended and supported regions makes it easy to identify the suspended

parts.

the supported regions (SiO2 not etched) and computing the mean value of this enhance-

ment, we estimate the enhancement to be around ∼ 6 for the excitation wavelength 785

nm. In order to visualize the contrast in the Raman scattered intensity, we performed a

spatial mapping of our N-LG flake using the X-Y-Z piezoelectric stages and moving with

1.5 µm steps. The flake has been scanned using the same laser power (∼ 1 mW) and

acquisition time of 15 seconds for each spectrum. The obtained maps are presented in

Figure 5.10a-c in the form of false color maps of the Raman scattered intensity at the G,

2D, and Si bands energies, respectively. Since our experimental set up does not comprise

an optical microscope that allows a direct visualization of the flake, the identification of

the suspended parts is made easier due to the strong contrast in the Raman scattered

intensity between the suspended and supported parts for the G and 2D bands.

5.3.2 Electronic inter-Landau level excitations

We now focus our magneto-Raman studies on three different suspended locations: h2,

h3, and h4. To perform the micro-magneto-Raman scattering (MMRS) measurements,

we fix a position of interest and make a slow sweep of the magnetic field from 0 up to
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Figure 5.11: (a-c) Raw magneto-Raman spectra from h3, h4, and h2 for different
values of B, showing inter-band electronic excitations (red dashed lines are guide to the
eye). Notice the magnetic evolution of the ERS (the blurred green zones in a,b). The
grey vertical bars in (a-c) mask the phonon contributions from the silicon, G and 2D
mode features. (d-f) Raman spectra from h2, h3, and h4 respectively, after subtraction
of the B = 0 corresponding spectra. Notice the highly symmetric features in h3 and

h4 where the ABC stacked domain is located.

29 T. The change in magnetic field for each recorded spectrum should be small enough

to avoid any significant broadening of the magnetic field-dependent features.

Raw MMRS spectra measured at h3, h4 and h2 are presented in Figure 5.11a-c respec-

tively, for different values of the magnetic field, and after subtraction of the background.

Above B > 5 T a series of sharp features, dispersing with the magnetic field, appears in

the Raman scattering response. The central position of the broad ERS (highlighted by

the green zones in Figure 5.11a-b) feature, observed in h3 and h4, seems to increase with

increasing magnetic field and then it disappears for B > 15 T. The fact that magnetic

fields can influence so much the energy and amplitude of this feature is in line with an

electronic origin for this excitation.

A standard procedure is to subtract the B = 0 spectrum from the different magneto-

Raman color maps obtained in our experiment. Such a procedure will ensure a better

visualization of the magnetic field-dependent features. Figure 5.11d-f shows the result

of B =0 subtraction on the spectra of h2, h3 and h4, respectively. The shape of the

electronic excitations observed at h2 are characteristic of Bernal stacked graphene mul-

tilayers [31], which acquire an asymmetric line-shape at the bulk limit for AB-stacked

natural graphite [160]. On the other hand, the electronic excitations observed at h3 and
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Figure 5.12: (a,b) Falsed color maps of the micro-Raman scattering intensity spectra
from h4 and h3 that shows electronic excitations from the flat bands and the lowest in
energy bulk subbands in the band structure of ABC N-LG. (c) False color map obtained
from the B-differentiation of the color map in (a). A dense MPR of the G mode is seen
in (c), due to its coupling with the non-Raman active ∆|n| = ±1 optical-like transitions.
(d) False color map of the micro-Raman scattering intensity from h2, where the ABA
stacking dominates. The red arrows indicate the presence of three electronic excitations

that disperse in similar way as in h3 and h4.

h4 have symmetric line-shape, and their magnetic field evolution are different. False

color maps of the magnetic field evolution measured at h3 and h4 are presented in

Figure 5.12a-b respectively, and a false color map of the differentiated with respect to

B evolution at h4 is presented in Figure 5.12c. At these two locations, the observed

electronic excitation spectrum as a function of magnetic field is composed of a series of

features, well separated in energy and seems to have an almost linear dispersion with

increasing magnetic field. Surprisingly, a linear extrapolation of these excitations shows

that they differ from the usually observed electronic excitations in AB-stacked N-LG by

a negative energy onset at B = 0. Of much weaker intensity, Raman scattering features

with a negative energy dispersion when increasing the magnetic field are also observed

on h4 and h3 (red marked regions in Figure 5.12a-b). These features are better seen in

the differentiated false color map in Figure 5.12c.

The electronic excitation spectrum at h2 is shown in Figure 5.12d as a false color map

of the Raman scattering intensity as a function of the magnetic field. Different elec-

tronic excitations are observed, with a quasi-linear evolution with increasing magnetic

field. The large majority of these excitations converge to B = 0 when their energy tends

to zero, characteristic of AB-stacked N-LG. However, three of them (indicated by red
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Figure 5.13: (a) Raman spectra recorded at B = 17 T from h2 (red curve) and
h4 (black curve) showing two electronic excitations at 1136 cm−1 and 1192 cm−1,
respectively. The contrast in the scattering intensity between the two domains is shown
in (b) in the form of a false color map of the micro-Raman scattering intensity from
the N-LG flake at B = 17 T, obtained from the subtraction of the two spectra in (a).

arrows in Figure 5.12d), extrapolate to a finite B in a similar way to the excitations

observed in h3 and h4.

While symmetric (∆|n| = 0) inter-Landau level excitations are directly observable in the

spectra (see Section theoretical modeling of electronic excitations), optical-like excita-

tions with ∆|n| = ±1 are not directly seen but effectively couple to the G mode to give

rise to the magneto-phonon resonance and the associated anti-crossings when they are

tuned in resonance with the G mode energy [192, 194]. Such anti-crossings are indicated

by red arrows in the differentiated magnetic field evolution presented in Figure 5.12d.

In order to observe the difference in the electronic excitation spectra from one stacking

domain to the other, we performed a spatial mapping of the magneto-Raman response

at a constant value of the magnetic field (B = 17 T). Figure 5.13a shows two spectra

from this map at h2 (red curve) and h4 (black curve) showing two electronic excitations

at different energies: 1136 cm−1 (red spectrum) and 1192 cm−1 (black spectrum).

To reveal the energy difference between the electronic excitations in the suspended parts,

we proceed as the following: we construct two false color maps of the magneto-Raman

scattered intensity at B = 17 T. The first color map corresponds to the scattered in-

tensity at the electronic excitation energy at h2 (1136 cm−1), while the second color

map plots the Raman scattered intensity at the electronic excitation energy at h4 (1192

cm−1). After that, we subtract the two previous color maps from each other (h4-h2, in

that order) and plot another color map of the magneto-Raman scattered intensity at

the energy 1192 cm−1 of the electronic excitation at h4. The result of this procedure

is shown in Figure 5.13b. Red colors show maxima of the scattered intensity that rep-

resent electronic excitations at energies 1192 cm−1, located at the suspended parts h3

and h4, while blue colors represent minima of the scattered intensity that corresponds

to electronic excitations at 1136 cm−1, present at h0, h1, and h2.
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Hence, we reveal again, using magneto-Raman spectroscopy, two distinct domains cor-

responding to locations with different excitations spectra (boxed in dashed lines squares

in Figure 5.13b).

5.4 Theoretical modeling of the magneto-Raman scatter-

ing spectra

In this section, we use the tight binding model for the band structure of N-LG, introduced

in Chapter 1. By including the effect of magnetic fields on the ABC Hamiltonian, we can

reproduce the evolution of the electronic excitations observed on our magneto-Raman

experiment. The magneto-Raman spectra of h3 and h4 are the ∆|n| = 0 inter-Landau

level transitions within the flat bands at the zero energy, and the lowest in energy

gapped bands in the band structure of ABC N-LG. The case of the electronic excitation

spectrum for h2 is also discussed, where the rich magneto-Raman spectra, observed for

this suspended part, are modeled by considering a Hamiltonian that contains both ABC

and ABA stacking configurations. For the high intensity electronic excitations observed
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Figure 5.14: Lorentzian fits are favored in order to extract the frequencies and
linewidths of the electronic excitations observed in our magneto-Raman scattering ex-

periment.

in our magneto-Raman spectra, we extract the central positions and line-widths using

Lorentzian fittings, as seen in Figure 5.14a-b. Concerning the low intensity electronic

excitations observed in h3 and h4 that have negative dispersion with magnetic field, no

fitting is possible. Thus, the frequencies of these excitations are taken directly from the

false color maps of the magneto-Raman scattering intensity.

Here, I should clarify that the following sections in which I discuss the inelastic scattering

of light at zero magnetic field, as well as the Landau levels spectrum with the selection
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rules, have been done by the help of our collaborators: H.P. Ojeda Collado, G. Usaj,

and C. Balseiro.

5.4.1 Case of the ABC stacked graphene layers in h3 and h4

The electronic band structure:

As we discussed in details in Chapter 1, by taking into account only the nearest neighbor

intra-layer (γ0 = 3.08eV) and inter-layer (γ1 = 0.39eV) hopping terms, the low energy

Hamiltonian for ABC-stacked N-LG graphene (around the K point) is given by:

HABC =





























0 vF p−

vF p+ 0 γ1

γ1 0 vF p−

vF p+ 0 γ1

γ1
. . .

. . .
. . .

. . .





























2N×2N

, (5.2)

where we used the basis [φA1 , φB1 , φA2 , φB2 , . . . , φBN
]T . Here, p± = px ± ipy with

p = (px, py) is the two-dimensional momentum operator, and v = 3aγ0/2~ is the band

velocity, a = 0.142 nm being the carbon-carbon distance.

Inelastic light scattering at zero magnetic field

In order to derive the Landau level spectrum of ABC stacked N-LG, we follow a similar

approach as in [159] to briefly present the theoretical description of the electronic Raman

process. The interaction of the electrons with photons is included in the Hamiltonian

(5.2) by replacing p by the canonical momentum Π = p+ e
cA(r) where A is the vector

potential associated with the light field and it is given by:

A =
∑

l,q,qz

~c√
2Ω

(

lei(qr−Ωt)/~blqqz
+ h.c.

)

. (5.3)

The latter includes the annihilation operator blqqz
for a photon with in-plane mo-

mentum q, energy Ω (which determines its out-of-plane momentum component qz =
√

Ω2/c2 − q2) and polarization l. Expanding the Hamiltonian up to the second order

in the vector potential, we obtain the interaction part:

Hint =
evF

c
J · A +

e2

2c2

∑

i,j

(

∂2
pipj

H
)

AiAj , (5.4)

where vFJ = ∇pH is the current vertex and e2

2c2

(

∂2
pipj

H
)

, with i = {x, y, z}, is the

two photon contact interaction tensor [159]. Thus, there are two contributions to the
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inelastic light scattering amplitude: a one-step process Rω (contact interaction) and

a two-step process RD involving an intermediate virtual state. The latter consists of

an absorption (emission) of a photon with energy Ω(Ω̃) transferring an electron with

momentum p from an occupied state in the valence band into a virtual intermediate

state, followed by another electron emission (absorption) of the second photon with

energy Ω̃(Ω), which moves the electron to the final state with momentum p+q− q̃ and

given by [158, 159, 236]:

RD =
(e~vF )2

2
√

ΩΩ̃

[

(Jq · l) GA
Ω+ǫi

(

J
−q̃ · l̃

⋆
)

+
(

J
−q̃ · l̃

⋆
)

GA
−Ω+ǫf

(Jq · l)
]

. (5.5)

Here Jq denotes J(q) and GA
Ω+ǫi(f)

is the advanced Green function for electrons with

energy Ω + ǫi(f) where ǫi(f) correspond to the energy of initial (final) electronic state.

The energy difference ω = Ω − Ω̃ = εf − εi is the Raman shift.

The contact interaction process, due to the terms quadratic in the electron momentum

p, is

Rω =
(e~)2

2
√

ΩΩ̃

(

∂2
pipj

H
)

li l̃
⋆
j δp,p+q−q̃. (5.6)

In our case, J = (σx ⊗ I, σy ⊗ I, σz ⊗ I) with I the N × N identity matrix and σi the

2 × 2 Pauli matrices. Considering vF p ≪ Ω (GA
Ω+ǫi

= 1/Ω and GA
−Ω+ǫf

= −1/Ω) the

dominant contributions to the Raman scattering amplitude is:

RD =
(e~v)2

Ω2

(

−i
(

l× l̃⋆
)

z
Jz

)

(5.7)

whereas the contact interaction takes the form:

Rω =
(e~v)2

6Ωγ0
(êz × J) · d (5.8)

with d = (lx l̃⋆y + ly l̃⋆x, lx l̃⋆x − ly l̃⋆y). The transition amplitude R = RD + Rω is analogous

to what was obtained for monolayer graphene [158].

The Landau level spectrum and Raman active electronic excitations

In the presence of an external magnetic field B the Hamiltonian takes the form (see

Chapter 1 for a detailed derivation of this Hamiltonian):





























0 ǫ0
√

n

ǫ0
√

n 0 γ1

γ1 0 ǫ0

√
n + 1

ǫ0

√
n + 1 0 γ1

γ1
. . .

. . .
. . .

. . .





























2N×2N

. (5.9)
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Figure 5.15: (a) Low energy band dispersion for ABC stacked graphene multilayers
(total number of layers 15) in the absence of magnetic field. (b) The corresponding
Landau level dispersions for (a) up to n = 20 Landau level index for the flat bands (red)
and the lowest in energy gapped bands (green). The blue arrows indicate symmetric
inter-band Landau level transitions (i.e., ∆|n| = 0), known to be active in Raman
spectroscopy. The grey arrows are electronic excitations that obeys ∆|n| = ±1, seen

through their coupling to the G band.

We use a computer program to numerically solve the eigenvalue equation and obtain the

electronic dispersion with the corresponding Landau level as a function of the magnetic

field. Figure 5.15a shows a plot of the low energy electronic band structure for ABC

stacked 15-LG, obtained by diagonalizing the corresponding 30 × 30 Hamiltonian. The

spectrum consists of a set of 2N bands, two of them touching each other at the Dirac

point K with a flat dispersion, while the other branches are touching at an energy

±γ1 at k = 0. The corresponding Landau level spectrum is shown in Figure 5.15b,

for the flat bands (red bands in Figure 5.15a) and the lowest in energy gapped bands

(green bands in Figure 5.15b). To find the electronic Raman spectrum in the presence

of an external magnetic field, we calculate the transition amplitude probability (matrix

elements of the operator R = RD + Rω) between the initial |ψα
n〉 and final |ψβ

m〉 states.

This procedure leads to the selection rules |n| = |m| and α = β for the RD process as in

monolayer graphene where the ones allowed by RD correspond to symmetric optically

active inter-LL excitations (transitions with ∆|n| = 0 indicated by blue arrows in Figure

5.15b). Transitions with |m| Ó= |n| are also possible, due to processes represented by

Rω, but in this case with intensities considerably lower. From this modeling, we can

extract N = 14 and N = 15 for h3 and h4, respectively (Figure 5.16a-b), while we

set γ0 = 3.08eV and γ1 = 0.39eV, as observed in bulk graphite [159, 160, 236]. The

fitting of the experimentally observed electronic excitations with our model reveals only

transitions with ∆|n| = 0.

In order to compare our theoretical calculations with the experimental magneto-Raman
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Figure 5.17: Considering the amplitude of the Raman scattering intensity of the
electronic excitations for the ABC N-LG, a comparison between the experimental results

and the theoretical calculations for h4 is shown in (a,b).

scattered spectra for ABC N-LG, we assign a Gaussian function to each possible tran-

sition line with height equal to
∣

∣

∣〈ψβ
m|R|ψα

n〉
∣

∣

∣

2
and standard deviation ∼ 32 cm−1 to

simulate a possible Landau level broadening in the real sample. Such comparison is

presented in Figure 5.17a-b for h4. The model reproduces the main observed features,

in particular, the broad ERS observed at B = 0 is reproduced and arises from inter band

electronic excitation that loses its spectral weight when the magnetic field is increased,

transforming into inter-Landau level transitions with their characteristic negative en-

ergy onset dispersion. However, our theoretical model is simplified since the oscillator

strength (i.e., the transition rate between Landau levels) of
∣

∣

∣〈ψβ
m|R|ψα

n〉
∣

∣

∣

2
depends on

the magnetic field, which is assumed to be constant in our simulations.

Analysis of the line-widths of the inter-Landau level transitions
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Figure 5.18: (a,b) FWHM of the ∆|n| = 0 inter-Landau level transitions, obtained
from Lorentzian fits of the magneto-Raman excitations on h3 and h4, respectively. The
uncertainty of the fits is higher at values of the magnetic field where the transition lines

cross the Si and G bands.

We analyze the line-widths of the inter-Landau level transitions from our magneto-

Raman scattering results obtained from the ABC-stacked suspended parts on h3 and

h4. This analysis is limited to the transition lines from the flat bands, since no fitting

of the inter-Landau level transitions for the gaped bands is possible. Figure 5.18a,b

plots the the evolution of FWHM for different inter-Landau level transitions L−n,n as a

function of the magnetic field for the transition lines on h3 and h4, respectively. While

Figure 5.19 presents the evolution of the FWHM for the inter-Landau level transitions

as a function of the Landau level index n at fixed values of the magnetic field.

In the range B = 10 − 25 T, we considered the B-dependence of the FWHM for the

transitions L−1,1 → L−8,8. For both suspended parts, the values of the line-widths

when increasing the magnetic field are in the range 45-85 cm−1, while no increase in

the FWHM is observed as a function of the Landau level index (see Figure 5.19c,d).

These transition lines are much narrower compared to values reported for high mobility

suspended graphene [217, 237], and suspended Bernal-stacked N-LG [31]. Therefore, by

a linear interpolation of the set of data we can extract a mean value of the line-width

for the transition lines ∼ 55 cm−1 as well as a mean value of the quasi-particles lifetime

∼ 100 fs.
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Figure 5.19: FWHM from the suspended parts h3 and h4 (c,d) for different inter-
Landau transitions at fixed values of the magnetic field, indicated by dashed red lines

in the false color maps of the magneto-Raman scattered intensity (a,b).

5.4.2 Case of the mixed stacking of graphene layers in h2

Three excitations observed at h2, that extrapolate at finite negative energy when B

goes to zero, are shown in green open circles in Figure 5.20b. The remaining complex

electronic excitation spectrum observed in the magneto-Raman at h2 are shown by open

blue triangles in Figure 5.20c.

The evolution with magnetic field of the electronic excitations in h2 can be understood

by considering a tight binding model for N-LG system, but this time with a mixed

stacking of its graphene layers. In order to fit the magneto-Raman spectrum, we consid-

ered a Hamiltonian that contains an ABA-stacked 8-LG coupled to 7-LG with an ABC

sequence. The low energy electronic band structure corresponding to the ABABABAB-

ABCABCA stacked 15-LG is shown in Figure 5.20a. Under the effect of magnetic fields,

the band structure in Figure 5.20a is Landau quantized. By considering the symmetric

∆|n| = 0, the best fit for h2 yields N = 15, γ0 = 3.15 eV and γ1 = 0.4 eV (see black

curves in Figure 5.20b-c).

The main conclusion is that while the suspended parts h3 and h4 have a pure ABC

stacking, h2 on the other hand is interpreted as being inhomogeneous and exhibits both

ABA and ABC stacking configurations. It is interesting to emphasize the striking dif-

ference in complexity that both cases present. While the mixed stacking in h2 presents
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Figure 5.20: Modeling of the data from the magneto-Raman experiments correspond-
ing to h2: By considering a single tight-binding Hamiltonian that contains the stacking
configuration ABABABAB-ABCABCA, we plot its low energy band structure in (a).
The fitting of the electronic excitations in the case of h2 is then obtained by consider-
ing ABA stacked 8-layer graphene (data indicated by blue triangles in b) coupled with
ABC stacked 7-layer graphene (data indicated by green dots in b). The corresponding
Landau level transitions reproduce well the observed electronic excitations from h2 (b).

a rather complicated magneto-Raman spectrum, the pure ABC stacking situations in

h3 and h4 show a clean and simple one.

5.5 Conclusions

In this Chapter 5 of the thesis work, we have reported on the observation of electronic

excitations in N-LG system, which comprises a pure rhombohedral ABC-stacking of its

graphene sheets up to 15 layers. The analysis of its low energy electronic excitations

and of their evolution for increasing magnetic fields can be understood in the frame of a

tight-binding model with three parameters, the number of ABC stacked layers and the

intra and inter-layer nearest neighbors hopping integrals γ0 and γ1. Such stacking has

a unique signature in the B = 0 Raman spectra, in the form of low energy electronic

excitations across the band gap. Surprisingly, the B = 0 ERS response is observed even

at room temperature, and its central position can be related to the number of ABC-

stacked layers within N-LG flakes. Thus, it can be used as a tool to estimate the length
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of the ABC sequence using simple Raman spectroscopy. Our findings underscore the

rich physics hidden in this stacking order, namely the existence of an electronic band

with a flat dispersion (diverging density of states), theoretically predicted to be localized

on the surface, and of electronic gaped bands, seen as bulk states, with a number of layer

dependent energy gap. These results represent an impetus for other studies targeting

the predicted highly correlated surface states, observed for a large number of ABC-

stacked layers, which may lead to emergent exotic electronic ground states in multilayer

graphene and similar 2D materials with ABC stacking.



Chapter 6

Summary

6.1 Summary (English)

Since its first experimental isolation, graphene offered the possibility to observe many

novel physical phenomena. It has been twelve years since the first published papers

about the properties of this material, and yet it continuous to be the subject of intense

scientific research, with more studies nowadays that are oriented toward its potential

applications in engineering future electronic devices.

Throughout this doctoral thesis, we addressed two fundamental issues on the physics of

graphene:

(i) The effects of interaction with its surrounding medium on the physical properties of

graphene.

(ii) The difference in the electronic properties of many layer graphene as a function of

their crystallographic stacking configuration.

These issues have been addressed by measuring all the studied samples under strong

continuous magnetic fields, available at the ” Laboratoire National des Champs Mag-

netiques Intenses, LNCMI-CNRS ”, at Grenoble. We used exclusively micro-Raman

scattering spectroscopy to probe the response of the studied systems under the effect of

magnetic fields.

The original results obtained in this doctoral thesis have been presented in full details

in Chapter 4 and Chapter 5.

138



Chapter 6. Summary 139

The effective coupling strength of charged particles, given by the fine structure constant

of quantum electrodynamics, is re-scaled to a value around 2 in graphene. Knowing

this, the strength of the Coulomb interactions cannot be ignored when treating charge

carriers in graphene. Moreover, the optical-like transitions in conventional 2DES with

parabolic bands are insensitive to many body effects, as stated by Kohn’s theorem [198].

Graphene, however, has a linear dispersion around the charge neutrality. Consequently,

its relativistic charge carriers escape Kohn’s theorem and many body effects do con-

tribute to its magneto-optical response [227]. Moreover, the effective coupling strength

can be modulated by the dielectric function of the medium in which graphene is placed,

allowing to different magnitudes of the Coulomb interactions between its charge carriers.

To address these issues, we demonstrated the effects of Coulomb interactions on the

band structure of graphene in Chapter 4 throughout the investigation of its magneto-

Raman scattering response in three different systems: suspended graphene, graphene

on the surface of bulk graphite, and graphene encapsulated in hBN. We note that in

the course of this work, our contribution has been the magneto-Raman measurements

of graphene encapsulated in hBN samples, while the results obtained on suspended

graphene, and graphene on the surface of graphite have been used as comparative results

to our experimental data.

Our work was motivated by some experimental results reporting signatures of many

body effects in graphene samples. In their Infrared spectroscopy study of Landau levels

in high quality graphene samples [217], Jiang et al. showed that the band velocities

associated with the observed transitions are different. A transport measurements study

conducted by Elias et al. [215] demonstrated the effect of Coulomb interactions in re-

shaping the low energy band dispersion in graphene through a re-normalization of its

band velocity with a logarithmic divergence around the charge neutrality point.

Thus, it is interesting to investigate the role of many body effects in the presence of

magnetic fields, where the excitation spectra are dominated by inter-band transitions

between Landau level states. We had the possibility to understand how the dielectric

function of the medium surrounding graphene will affect the strength of the Coulomb

interactions, and thus the energy dispersion in graphene. We combined two different

analyses. First, we studied the magneto-phonon resonance, which is the coupling of the

E2g optical phonon at the Γ point with the inter-Landau level transitions that obeys

selection rules ∆|n| = ±1. The Coulomb interactions induce a mixing of the electronic

wave functions of the Landau levels. This Landau levels mixing is seen as the coupling

of the E2g optical phonon with the symmetric inter-Landau level transitions ∆|n| = 0,

supposed to be forbidden for symmetry reasons. Secondly, the Raman-active inter-

Landau level transitions have been studied. The analysis of their dispersion in magnetic
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fields reveals an associated band velocity that depends on the dielectric function of the

surrounding medium, decreases in a logarithmic fashion with the magnetic field value,

and increases with the Landau level index.

A straightforward conclusion follows the experimental results of Chapter 4, that is

optical-like transitions (i.e., ∆k ∼ 0) are a probe to electron-electron interactions in

graphene. Such results show a breakdown of the single particle picture that has been

used so far to understand the electronic properties of graphene on SiO2/Si substrates

and strengthen the evidence for boron nitride to replace silicon as a substrate of choice

to study graphene properties.

Shortly after the discovery of graphene, its peculiar band structure has been shown to

change continuously when adding more layers of graphene on top of each other. Not

only the number of layers, but also the way the graphene sheets are stacked implies

changes in its band structure and thus its electronic properties. This degree of freedom

not only present an interesting case to address many questions in fundamental physics,

but it also points toward serious technological applications upon tailoring the electronic

properties in the 2D materials.

The role that plays the stacking order in changing the electronic properties of multilayer

graphene has been addressed in Chapter 5. We reported the first experimental observa-

tion of inter-Landau level excitations in multilayer graphene sample with a rhombohedral

stacking of its graphene layers. This stacking is found in significant amount in flakes

obtained from the mechanical exfoliation of kish graphite. However, this stacking order

usually escapes characterization due to its lower abundance compared to the more stable

Bernal stacking.

Several theoretical papers have stressed on the topological nature of the electronic states

in N-LG with a rhombohedral stacking of its graphene sheets [55, 56, 59]. The nearly

flat bands at the charge neutrality have a diverging density of states that can favor the

observation of ferromagnetism or surface superconductivity in this material [39–41]. All

these predictions made rhombohedral multilayer graphene an appealing system to study.

On the other hand, the abundance of large ABC sequences in exfoliated flakes is limited,

and it has been hard to present, until now, a comprehensive experimental study of the

band structure of rhombohedral N-LG for N > 5.

Prior to this work, few experimental studies have been conducted on ABC tri-layers,

and up to 5-layers. A tunable band gap [32, 38], a spontaneous band gap [54], and an

anomalous QHE [34, 37] have been reported in this system.

In our magneto-Raman experiments, we reveal the nature of the rhombohedral stacking

order in our N-LG sample from the observed electronic excitations. Two families of

inter-Landau level transitions are observed. The first family consists of well-resolved
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excitations that have an almost linear dependence with the magnetic field, however their

slopes are strangely inclined toward negative energies onset. This unusual dispersion is

in clear contrast to the Landau level dispersion of Bernal-stacked multilayer graphene.

The second family of transitions are even more surprising. They have a dispersion that

decreases with magnetic fields and then inverts tendency to grow almost linearly. At

zero magnetic field, they condense at a finite energy to form a broad feature that is seen

in Raman scattering. The location of this zero-field feature is found to be very sensitive

to the thickness of the rhombohedral sequence. The analysis of these transitions with

magnetic fields reveal the existence of rhombohedral sequences as long as 17 monolayers.

Despite the rich excitation spectra observed in our experiment, we can account for all the

transitions with our tight binding model. Only the inter-layer and intra-layer coupling

constants are needed to fully understand the observed features. Under the effect of

magnetic fields, the nearly flat bands at zero energy contribute the first family of inter-

Landau level transitions, while the second family of transitions is associated with the

lowest in energy gaped bands in the band structure of rhombohedral N-LG. The results of

Chapter 5 open the route to a simple Raman characterization of rhombohedral multilayer

graphene flakes.

Still, more studies are needed to fully understand the physical properties of rhombo-

hedral graphite. It is still unknown if such a material can host superconductivity or

ferromagnetism, especially that several papers have reported measuring these properties

on different graphite specimens without giving a convincing explanation to the origin of

their results [60, 62, 63]. Another point is the presence or not of an intrinsic band gap in

this stacking order and what are the experimental conditions that allow its observation.

Finally, part of the work presented on Chapter 4 resulted in the publication of a peer re-

view article in the journal Physical Review Letters, of the American Physical society.

While another part of the work presented in Chapter 4 is in preparation for submission

to publication. The results obtained in Chapter 5 resulted in the publication of another

peer review article in the journal Nano Letters, of the American Chemical Society.

The links to these publications are given below.

(a) Landau Level Spectroscopy of Electron-Electron Interactions in Graphene:

PRL 114, 126804 (2015)

DOI: 10.1103/PhysRevLett.114.126804

(b) Rhombohedral Multilayer Graphene: A Magneto-Raman Scattering Study:

Nano Lett. 2016, 16, 3710-3716.

DOI: 10.1021/acs.nanolett.6b01041.
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6.2 Conclusions (Français)

Depuis son premier isolement expérimental, le graphène a offert la possibilité à l’observation

de nombreux effets inhabituels. Douze ans se sont écoulés depuis les premiers articles

publiés sur les propriétés de ce matériau, et pourtant il continue à faire l’objet d’intenses

recherches scientifiques, avec plus d’études de nos jours qui sont orientées vers ses ap-

plications potentielles dans l’ingénierie futurs et dispositifs électroniques.

Tout au long de cette thèse de doctorat, nous avons abordé deux questions fondamen-

tales sur la physique du graphène:

(i) Les effets de l’interaction avec son milieu environnant sur les propriétés physiques du

graphène.

(ii) La différence dans les propriétés électroniques de plusieurs couches de graphène en

fonction de leur configuration d’empilement cristallographique.

Ces questions ont été abordées par la mesure de tous les échantillons étudiés sous champs

magnétiques intenses et continus, disponibles au ” Laboratoire National des Champs

Magnétiques Intenses, LNCMI-CNRS ”, à Grenoble. Nous avons utilisé exclusivement

la spectroscopie micro-Raman pour sonder la réaction des systèmes étudiés sous l’effet

des champs magnétiques. Les résultats originaux obtenus dans cette thèse de doctorat

ont été présentés dans tous leurs détails dans le Chapitre 4 et le Chapitre 5.

La force du couplage effective des particules chargées, donné par la constante de structure

fine de l’électrodynamique quantique, est redimensionné à une valeur d’environ 2 dans

le graphène. Sachant cela, la force de l’interaction de Coulomb ne peut être ignorée

lorsqu’on étudie la dynamique des porteurs de charge dans le graphène. De plus, les

transitions optiques comme dans les systems de gaz bidimensionnel classiques avec des

bandes paraboliques sont insensibles aux effets à N corps, comme indiqué par le théorème

de Kohn [198]. Le graphène, cependant, a une dispersion linéaire autour de la neutralité

de charge. Par conséquent, ses porteurs de charge relativistes échappent à ce théorème

et les effets à N corps contribuent donc à sa réponse magnéto-optique [227]. En plus,

la force du couplage effective peut être modulée en fonction de l’environnement dans

lequel le graphène est immergé, donnant lieu à des forces d’interactions Coulombiennes

différentes.

Pour adresser ces problématiques, nous avons démontré les effets des interactions de

Coulomb sur la structure de la bande du graphène dans le Chapitre 4. Nous avons étudié

la réponse magnéto-Raman du graphène dans trois systèmes différents : le graphène

suspendu, le graphène sur la surface de graphite en vrac et graphène encapsulé dans

hBN. Nous notons que dans le cadre de ce travail, notre contribution a été les mesures

magnéto-Raman du graphène encapsulé dans des couches de hBN ou deposé sur leurs

surfaces, tandis que les résultats obtenus sur le graphène suspendu, et le graphène sur
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la surface de graphite ont été utilisés comme des résultats comparatifs à nos données

expérimentales. Notre travail a été motivé par des résultats expérimentaux rapportant

les signatures des effets à N corps dans des échantillons de graphène. Dans leur étude

de la spectroscopie infrarouge des niveaux de Landau dans des échantillons de graphène

de haute qualité [217], Jiang et al. ont montré que les vitesses de bande associées aux

transitions observées sont différentes. Une étude des mesures de transport menée par

Elias et al. [215] a démontré l’effet des interactions de Coulomb dans le remodelage de

la dispersion de bande à faible énergie dans le graphène par une re-normalisation de sa

vitesse de bande avec une divergence logarithmique autour du point de neutralité de

charge.

Ainsi, il est intéressant d’étudier le rôle des interactions à N corps en présence d’un champ

magnétique, où les spectres d’excitation sont dominés par des transitions inter-bandes

entre niveaux de Landau. Pour ce faire, la réponse magnéto-Raman du graphène dans

des environnements différents a été sondé. Nous avons eu la possibilité de comprendre

comment la fonction diélectrique du milieu environnant le graphène a une incidence

sur la force des interactions de Coulomb, et donc la dispersion de l’énergie dans le

graphène. Nous avons combiné deux analyses différentes. Tout d’abord, nous avons

étudié la résonance magnéto-phonon, qui est le couplage du E2g phonon optique au

point Γ avec les transitions inter-Landau niveau qui obéit à des règles de sélection

∆|n| = ±1. Les interactions de Coulomb induisent un mélange des fonctions d’onde

électroniques des niveaux de Landau. Ce mélange des niveaux de Landau est considéré

comme le couplage du E2g phonon optique avec les transitions symétrique inter-niveau de

Landau ∆|n| = 0, censés être interdites pour des raisons de symétrie. Deuxièmement, les

transitions symétriques inter-niveau de Landau qui sont actives dans les spectres Raman

ont été étudiés. L’analyse de leur dispersion dans des champs magnétiques révèle une

vitesse de bande associée qui dépend de la fonction diélectrique du milieu environnant,

diminue de façon logarithmique avec la valeur du champ magnétique, et augmente avec

l’indice de niveau de Landau.

Une conclusion simple suit les résultats expérimentaux du Chapitre 4, les transitions op-

tiques (∆k ∼ 0) sont une sonde à l’interaction électrons-électrons dans le graphène. Ces

résultats montrent une brisure du model de la particule unique qui a été utilisé jusqu’à

présent pour comprendre les propriétés électroniques du graphène sur les substrats SiO2

/Si et de renforcer les preuves selon lesquels le nitrure de bore peut remplacer le silicium

comme un substrat de choix pour étudier les propriétés du graphène.

Peu de temps après la découverte du graphène, sa structure de bande particulière a

été démontré comme modulable par l’ajout de plusieurs couches de graphène au-dessus

de l’autre. Non seulement le nombre de couches, mais aussi la façon dont les feuilles
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du graphène sont empilées implique des changements dans sa structure de bande et

donc ses propriétés électroniques. Ce degré de liberté ne présente pas seulement un cas

intéressant à aborder en physique fondamentale, mais il pointe aussi vers des applications

technologiques intéressantes autour des propriétés électroniques des matériaux 2D.

Le rôle que joue l’ordre d’empilement dans la modification des propriétés électroniques du

graphène multicouche a été abordée dans le chapitre 5. Nous avons signalé la première

observation expérimentale des excitations électronique dans l’échantillon de graphène

multicouche avec un empilement rhomboédrique de ses couches de graphène. Cet empile-

ment se trouve dans une quantité significative de flocons obtenus à partir de l’exfoliation

mécanique du kish graphite. Cependant, cet ordre d’empilement échappe habituellement

à la caractérisation en raison de sa faible abondance par rapport à l’empilement Bernal

qui est plus stable.

Plusieurs articles théoriques ont souligné la nature topologique des états électroniques

dans le graphène multicouche avec un empilement rhomboédrique de ses feuilles de

graphène [55, 56, 59]. Les bandes presque plates au point de la neutralité de charge

ont une densité électronique divergente qui peuvent favoriser l’observation de ferromag-

nétisme ou de la supraconductivité de surface dans ce matériau [39–41]. Toutes ces

prédictions font du graphène multicouche rhomboédrique un système attrayant pour

étudier. D’autre part, l’abondance de grandes séquences ABC en flocons exfoliées est

limité, et il a été difficile de présenter, jusqu’à présent, une étude expérimentale appro-

fondie de la structure de bande de ce matériau pour un nombre de couches N > 5.

Avant ces travaux, quelques études expérimentales ont été menées sur le ABC tri-couches,

et jusqu’à 5 couches. Un gap de bande modulable [32, 38], un gap de bande spontanée

[54], et une anomalie dans l’effet Hall quantique [34, 37] ont été rapportés dans ce sys-

tème.

Dans nos expériences de magnéto-Raman, nous révélons la nature de l’ordre d’empilement

rhomboédrique dans notre échantillon N-LG à partir des excitations électroniques ob-

servées. Deux familles de transitions entre niveaux de Landau sont observées. La pre-

mière famille est constituée des excitations bien résolus qui ont une dépendance quasi

linéaire avec le champ magnétique, mais leurs pentes sont étrangement inclinées vers les

énergies négatives à champ nul. Cette dispersion inhabituelle est en net contraste avec

la dispersion des niveaux de Landau du Bernal empilés dans le graphène multicouche.

La deuxième famille de transitions est encore plus surprenante. Ils ont une dispersion

qui est au debut négative avec le champ magnétique, mais qui inverse de tendence pour

augmenter avec le champ. A champ nul, il se condensent à énergie finie sous forme

du bande large qui est observable dans les spectres Raman. La localisation de leur

forme en champ nul se trouve être très sensible à la longueur de la séquence rhomboé-

drique. L’analyse de ces transitions avec des champs magnétiques révèlent l’existence
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de séquences rhomboédriques aussi longue que 17 monocouches.

Malgré les riches spectres d’excitation observée dans notre expérience, nous pouvons

tenir compte de toutes les transitions avec notre modèle de liaison étanche. Seules

les constantes inter-couche et de couplage intra-couche sont nécessaires pour bien com-

prendre les caractéristiques observées. Sous l’effet des champs magnétiques, les bandes

presque plates à zéro énergie contribuent la première famille de transitions inter- niveau

de Landau, tandis que la deuxième famille de transitions est associée à la plus faible

dans l’énergie des bandes séparées dans la structure de bande du graphène multicouche

rhomboédrique. Les résultats du Chapitre 5 ouvrent la voie à une caractérisation Raman

simple des flocons de graphène multicouches rhomboédriques.

Pourtant, d’autres études sont nécessaires pour mieux comprendre les propriétés physiques

du graphite rhomboédrique. On ignore encore si un tel matériau est un hôte pour la

supraconductivité ou le ferromagnétisme, surtout que plusieurs travaux ont rapporté la

mesure de ces propriétés sur différents échantillons de graphite sans donner une explica-

tion convaincante quant à l’origine de leurs résultats [60, 62, 63]. Un autre point est la

présence ou non d’un gap de bande intrinsèque dans cet ordre d’empilement et quelles

sont les conditions expérimentales qui permettent son observation. Enfin, une partie

des travaux présentés sur le Chapitre 4 ont abouti à la publication d’un papier dans la

revue Physical Review Letters, de The American Physical Society. Tandis qu’une

autre partie du travail présenté dans le chapitre 4 est en préparation pour la soumission

à la publication. Les résultats obtenus dans le Chapitre 5 ont abouti à la publication

d’un autre article de revue dans le journal Nano Letters, de The American Chemical

Society. Les liens vers ces publications sont donnés ci-dessous.

(a) Landau Level Spectroscopy of Electron-Electron Interactions in Graphene:

PRL 114, 126804 (2015)

DOI: 10.1103/PhysRevLett.114.126804

(b) Rhombohedral Multilayer Graphene: A Magneto-Raman Scattering Study:

Nano Lett. 2016, 16, 3710-3716.

DOI: 10.1021/acs.nanolett.6b01041.



Chapter 7

Annex

7.1 Graphene and bilayer graphene encapsulated on hBN

7.1.1 Advantage of using hBN as a substitute substrate to silicon

In this section we should give a brief description of the investigated samples in Chapter

4, as well as the process that allows the fabrication of these hetero-structures. The

samples investigated are exfoliated flakes of graphene and bilayer graphene transferred

on a thin layer of hBN with a thickness of 30 nm. The orientation of the graphene layer

with respect to the hBN is random. Another thin hBN layer is then transferred on top

of the structure to encapsulate the graphene or bilayer graphene layers. We preformed

magneto-Raman experiments on a G-hBN sample that was provided by the group of

Prof. Philip Kim from Columbia University, and BG-hBN sample that was provided by

the group of Prof. Andre Geim from Manchester University. The details of the fabrica-

tion process has been explained in details in the literature [218, 219, 238].

Such graphene based hetero-structures significantly increase the quality of graphene

flakes compared to those deposited on Si/SiO2 substrate. Indeed, hBN is relatively inert

and is expected to be free of dangling bonds or surface charge traps. The hBN crystal

is an insulating isomorph of graphite (i.e., hexagonal lattice) with boron and nitrogen

atoms occupying the in-equivalent A and B sub-lattices in a Bernal stacking configura-

tion, but with a small lattice mismatch (1.7%) compared to graphite. Furthermore, the

atomically planar surface should suppress rippling in graphene, which has been shown to

mechanically conform to both corrugated and flat substrates [239, 240]. The dielectric

146
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properties of h-BN (ǫ ∼ 3 − 4 and Vbreakdown ∼ 0.7 V nm−1) compare favorably with

those of SiO2, allowing the use of hBN as an alternative gate dielectric with no loss of

functionality [218, 241].

While on SiO2 and similar oxide-based substrates, graphene carriers mobility is limited

by scattering from charged surface states and impurities [242–246], hBN seems to present

an ideal substrate for high quality graphene electronics due to the qualities mentioned

above. This was first demonstrated by Dean et al. [218] in their transport experiments

on G-hBN gated structures, where the field effect mobility can reach µF E ∼ 140, 000

cm −1 V −1 s −1 near the charge neutrality. When deterministically aligning graphene

on hBN, novel quantum phenomena emerge thanks to the interplay potential between

graphene and hBN layers. Most notable effects are the observation of an intrinsic band

gap in aligned graphene-hBN structures [126] by means of magneto-infrared spectroscopy

measurements, as well as the FQHM [219]. These observations lead to an increasing in-

terest on graphene-hBN hetero-structures. The detailed magneto-Raman spectroscopy

study performed on such structures will be presented in Chapter ??.

7.1.2 Fabrication process

Figure 7.1: Four steps process that has been used to fabricate graphene-hBN hetero-
structures. Figure taken from [219].

Graphene-hBN devices were fabricated according to the procedure illustrated in Figure

7.1. First of all, the fabrication began with the mechanical exfoliation of hBN single

crystals and transferring them onto a silicon substrate with a SiO2 layer of 285 nm.
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Graphene was exfoliated separately onto a polymer stack consisting of: a water-soluble

layer (PMGI), and hydrophobic polymethyl-methacrylate layer (PMMA), and the sub-

strate was floated on the surface of a de-ionized (DI) water bath (Figure 7.1(i)). The

PMMA thickness was precisely tuned to allow identification of monolayer graphene by

optical means. Once the water soluble polymer had dissolved, the Si substrate sank

to the bottom of the bath (Figure 7.1(ii)), leaving the extremely hydrophobic PMMA

floating on top.

The PMMA membrane (with the graphene flake on top) was adhered to a glass transfer

slide (Figure 7.1(iii)), which was clamped onto the arm of a micro-manipulator mounted

on an optical microscope. Using the microscope to optically locate the position of the

graphene flake on the suspended polymer film, the graphene was precisely aligned to

the target hBN and the two brought into contact. With this technique, the graphene

could be positioned to within a few micrometers of the target position. During transfer,

the target substrate was heated to 110 C◦ in order to drive off any water adsorbed on

the surface of the graphene or h-BN flakes, as well as to promote good adhesion of the

PMMA to the target substrate. Once transferred, the PMMA was dissolved in acetone

(Figure 7.1(iv)) leaving graphene on top of the hBN.

7.2 Rhombohedral multilayer graphene

7.2.1 Optical contrast as an approach to identify graphene flakes

Here, we will discuss the fabrication process to obtain N-LG flakes as the one stud-

ied in Chapter5. Graphite crystal is the most stable allotrope of carbon atoms. To

make graphene flakes, we exfoliate graphite crystals using the scotch-tape technique as

pioneered by K. Novoselov and A. K. Geim. By performing AFM scanning measure-

ments, a technique which is sensitive down to monolayer graphene (i.e., 0.34 nm), one

can measure the thickness of the exfoliated flakes. In the case of Bernal-stacked N-LG,

performing Raman characterization of the 2D band feature allow us to estimate the

thickness of the flakes up to ∼ 4 − 5 layers [91].

The first studied graphene flakes were transferred on top of SiO2/Si substrate in order to

perform transport measurements [6, 9, 15]. The advantage of placing thin graphite flakes

on top of SiO2/Si substrates stems from the fact that multiple reflections of light from

thin metallic films on top of a dielectric substrate will induce a contrast in the reflected

light from the metallic film with respect to the oxide layer [247]. This contrast, which

strongly depends on the wave-length of the light illuminating the sample and on the

thickness of the SiO2 layer, enables the observation of monolayer graphene by the naked

eye using simple optical microscope set-up [248–252]. The optical contrast of graphene
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(d)

(a) (b) (c)

Figure 7.2: Optical microscope imaging of graphene flakes. The flakes contain areas
of different thickness so that one can see changes in a flake’s visibility with increasing
numbers of layers. White light illumination on a 300 nm SiO2 layer in (a), and green
light (560 nm) illumination on a 300 nm SiO2 layer in (b). (c) White light illumination
on a 200 nm thick SiO2 layer. Top and bottom panels in (a-c) show the same flakes
but illuminated through various narrow band-pass filters. (d) False color map of the
contrast from monolayer graphene as a function of the oxide thickness and the excitation

wave-length. Figures were taken from [248].

on top of SiO2/Si substrate also depends on the thickness of the flakes. Consequently,

not only graphene can be visualized using simple optical microscope set-up, but one can

also estimate the thickness of these exfoliated flakes from their apparent contrast using

the classical laws of optics.

Figure 7.2 shows optical microscope images of the contrast from different graphene

flakes as a function of the wave-length of the illuminating light, as well as the thickness

of the SiO2 layer [248]. While graphene flakes, when illuminated with white light, are

clearly visible on top of SiO2/Si wafer with an oxide thickness of 300 nm (Figure 7.2a),

the transferred flakes on top of Si/ SiO2 with an oxide thickness of 200 nm (Figure 7.2c)

are completely invisible under white light illumination, and their invisibility holds until

they reach a thickness of more than 10 layers. Figure 7.2b shows a maximum visibility

of the flakes under green light illumination, and the traces are step-like changes in the

contrast for 1, 2, and 3 layers. This proves that the contrast can also be used as a

quantitative tool for defining the number of graphene layers on the silicon substrate.

The result of these observations in the case of monolayer graphene are summarized in

Figure 7.2d, that shows a false color map of the contrast between the graphene flake

and the SiO2 layer for different excitation wave-lengths and different oxide thickness.

Consequently, optical microscope imaging became a standard procedure to visualize ex-

foliated graphene flakes and other 2D materials when placed on Si/SiO2 substrate, and

to estimate their thickness in the limit of few layers (< 20 layers).
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7.2.2 Mechanical exfoliation

(a) (b)

(c) (d)

Kish graphite crystal

Figure 7.3: (a) GF placed on the table using blue adhesive scotch-tape. (b) A piece
of kish graphite crystal is placed on the corner of a blue adhesive tape (F08xx). (c)
Results of sticking and unfolding the kish graphite on the surface of the blue tape. An
area which is uniformly covered with thick flakes is selected to be transferred on the
GF (red circle).(d) The region of interest is transferred to the GF (encircled in red).

Most of the exfoliated N-LG flakes exhibit the Bernal (ABA) stacking, which is the

most thermodynamically stable crystallographic order of graphite [23]. However, as we

will discuss in Chapter 5, kish graphite allows to obtain a large amount of multilayer

graphene flakes with rhombohedral (ABC) stacking compared to natural graphite [75].

The fact that rhombohedral N-LG flakes are easily found from the exfoliation of kish

graphite seems to be related to the way kish graphite is produced. Indeed, kish graphite

is a byproduct of steel-making. It is obtained when carbon crystallizes from molten steel

during the steel manufacturing process. Thus, we might expect that during the process

of steel-making many areas from the graphite crystals did not relax to the Bernal stack-

ing during the cooling process, and instead exhibit less stable configurations, such as

the rhombohedral stacking or a mixture of Bernal and rhombohedral.

In the following, we should present a standard approach to obtain multilayer graphene

flakes from the mechanical exfoliation of bulk graphite using polymer-based adhesive

tapes. The process of exfoliation can be divided in two major steps: (i) Producing thin

graphite crystals on the surface of a polymer substrate, referred to as ’poly-dimethyl-

siloxane’, or ’PDMS gel film’. (ii) Transferring the graphene flakes from the gel film to
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(a)

(b)

(c)

Figure 7.4: (a) The red circle shows the region of interest we will transfer in the
silicon substrate. It is chosen based on the uniformity of thickness of the flakes and the
density of coverage. (b) The GF is brought in contact with the silicon substrate. (c)
The GF is slowly removed from its contact with the substrate starting from a corner
(small red circle). This slow removal allows to transfer maximum of matter from the

GF to the silicon substrate.

the top of a silicon substrate.

The blue adhesive tape, that we use to exfoliate graphite, came with different adhesive

strengths that are specified by the manufacturer: F07xx (high,used to stuck the GF on

the table), F08xx (medium, will be used for exfoliation), and F09xx (low, is not used in

this process).

The GF is a material of choice in producing graphene flakes on top of silicon substrate.

Indeed, its top and bottom surfaces are covered with two protective foils, one of them

is of high transparency and strong adhesion strength, while the other is of reduced

transparency and weak adhesion strength. Both of these foils can be used for different

purposes, but more importantly the GF placed in between present an ultra clean surface,

relevant to obtain graphene flakes on silicon substrate with no significant contamination.

This is not the case when using standard adhesive tapes to transfer graphite flakes on top

of the silicon substrate, where the acrylic glue residues, a substance usually present in

commercial adhesive tapes, can induce a highly contaminated samples. The acrylic glue

interacts strongly with coherent lights (i.e., lasers) which induces a strong luminescence

that renders optical measurements complicated. Hence the choice of the GF seems to

be an ideal approach to produce very clean graphene samples.

The gel film (GF) is first placed on a clean table, it is then stuck to the table using

several stripes cut from a very adhesive blue tape (Figure 7.3a). Meanwhile, another

strip of the F08xx blue tape is prepared, on top of which a small piece of kish graphite

crystal is placed at the corner as seen in Figure 7.3b. The exfoliation is performed by

folding and sticking two parts of the tape together in a way that avoids overlaps and

maximizes the coverage with flakes on all the tape’s surface. Figure 7.3c shows the
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(a)

(c)

(b)

(d)

10X50X

Figure 7.5: Optical microscope images of the flakes transferred on the silicon sub-
strate. Right panels show 10X magnification images of two regions that contain multi-
layer graphene flakes (a,c). (b,d) 50X magnification of the multilayer graphene flakes.

resulting coverage from the exfoliation process, which should be dense and with rela-

tively thick flakes. The next step consists of transferring the flakes from the tape to the

GF placed on the table, after selecting a promising area covered with flakes of similar

thickness (i.e., without big and thick crystallites), we stick the part of interest to the

exposed surface of the GF in order to transfer maximum of flakes on the surface of the

GF (Figure 7.3d).

The second part consists of transferring the flakes from the GF to the SiO2/Si substrate.

The target substrate is first placed on the table, and then we bring an area of interest

from the GF (uniform coverage and thickness, as seen in Figure 7.4a in contact with the

substrate by applying a delicate pressure using a thumb (see Figure 7.4b). The last step

consists of stabilizing the substrate by holding it with tweezers on one of its corners, and

using another pair of tweezers we start to peel off the GF. The detachment should be

very slow to completely remove the GF, in order to transfer maximum of matter from

the GF to the silicon substrate. For an ideal approach, the peel-off angle should be

larger than 120; a good idea is to move along the substrate’s diagonal when peeling-off

the GF as illustrated in Figure 7.4c.

Figure 7.5 shows the results of the exfoliation process, after the kish graphite flakes
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Figure 7.6: Schematic presentation of the 8 steps process to obtain suspended flakes
of graphene over the silicon substrate.

has been transferred on the silicon substrate. Experiments using magneto-Raman spec-

troscopy (refer to Chapter5) show that these flakes exhibit rhombohedral stacking do-

mains, with large sequence. Their signature is conspicuous in Raman spectroscopy even

at room temperature.

7.2.3 Suspended flakes by means of optical lithography

In this section we will present the approach we used to make a suspended multilayer

graphene flakes for magneto-Raman spectroscopy measurements.

Indeed, suspended flakes do not suffer interaction with the substrate. Such interac-

tion causes changes in the properties of graphene, such as charge doping, impurities

scattering, dangling of graphene surface due to the rough SiO2 surface. From Raman

spectroscopy point of view, placing graphene on silicon substrate makes the observation

of electronic Raman scattering, with or without magnetic fields, highly un-likely. The

main reasons are the non-neutrality of the system, the presence of disorder, and charge

trapping. Thus, making suspended graphene flakes over the substrate is crucial to get

the best Raman response from the suspended regions, and to probe the intrinsic prop-

erties of this material.

The process of making suspended graphene flakes over the substrate is performed in

a clean-room facility. The whole process can be summarized as the following: the Si

substrate needs to get pre-patterned with equidistant circular holes on its oxide layer,
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so then we can transfer an exfoliated flake on its surface, where parts of the flake will

be suspended on top of the holes. The holes diameter needs to be bigger than the laser

spot diameter in order to investigate the suspended regions individually. But not that

big in order to suspended graphene flakes on its surface.

This process is performed following an 8 steps procedure, as seen in Figure 7.6. The

first three steps are performed using the so-called optical lithography technique. This

technique, which used intensively for fabricating micro-structures, consists of printing

a pattern of a polymer-based substance, called photo-resist (PR), on top of the Si sub-

strate by exposing it to electromagnetic radiation. The PR, as its name suggests, is

either weakened or strengthened by exposure to specific ranges of wave-lengths from the

electromagnetic spectrum.

N-layer graphene

Figure 7.7: N-LG on top of the
Si substrate, with holes pattern
obtained from the procedure de-

scribed in the main text.

After cleaning the Si substrate with acetone and DI wa-

ter, we proceed to deposit the PR by placing a drop of

it on top of the substrate and spin-coating it at high

speed. The centrifugal force will cause the PR to ex-

pand on the whole surface of the Si substrate. After

baking the (PR+Si) at high temperatures (80 to 100

C◦, depending on the nature of the PR), the PR will

solidify on the Si substrate. The next step consist of

printing the pattern on the PR. This is done by placing

a quartz-chromium mask, with well-defined patterns,

on top of the (Si+PR) sample (see Figure 7.6, step 2).

The exposition of the (mask+PR+Si) system to ultra-

violet (UV) light will strengthen the exposed PR that

is not masked by the quartz-chromium mask, while the

rest of the PR is screened from the UV radiation. Con-

sequently, after placing the sample on a chemical developer, the unexposed PR will

dissolve leaving only the exposed PR on the Si substrate (Figure 7.6, step 3).

Now that we produced a Si/SiO2 substrate with patterns of PR on its top, we proceed to

etch patterned holes on the oxide layer. To do so, we deposit a hard layer of aluminum

(Al) using an evaporation set-up (MEB EVAP Plassys 550S) available in the clean room.

The results of Al deposition, with a thickness 100-120 nm, are shown in the step 4 of

Figure 7.6 where the Al layer tops the Si substrate and also the PR. The sample is then

placed on an acetone solution that dissolves the PR. Consequently, only the Al in direct

contact with the Si substrate will remain (Figure 7.6, step 5). We end up having a

pre-patterned substrate with parts of SiO2 exposed to air, while the remaining surface is

under a hard Al layer. Afterwards, the exposed regions of SiO2 are removed by placing

the sample on a vacuum chamber and using a fluorocarbon plasma (CHF3). The set-up
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is called reactive ion etching (RIE), and is available at the clean room. The RIE plasma

will etch the surface of the sample, leaving a thin layer of Al and a highly reduced or

in-existent SiO2 layer on the regions that were not primary covered with the Al layer

(Figure 7.6, step 6). A chemical developer is used to completely remove the Al layer

from the surface of the substrate, leaving a clean Si/SiO2 substrate with holes pattern

on the surface of the oxide layer, as seen in step 7 of Figure 7.6. This substrate will be

used in the process of exfoliation to produce partially suspended flakes of N-LG.

The results of such a procedure are shown in Figure 7.7, where an N-LG flake has been

exfoliated non-deterministically on top of the pre-patterned Si substrate. The flake is

suspended over five different holes of 6 µm diameter each, which allows to perform Raman

scattering measurements selectively on these regions. The results of the magneto-Raman

scattering measurements performed on this suspended N-LG flake will be discussed in

details in Chapter 5.

7.3 Interference effect on the Raman spectrum of multi-

layer graphene

In this section, we will explain how the Raman signal, measured on the N-LG flake from

Chapter 5, is greatly enhanced on the suspended parts. The enhancement of the Raman

intensity for the G and 2D modes can be modeled using the multiple interference effect

of the Raman scattered light on the graphene layer and the layer of air between graphene

and the Si substrate. To do so, we start by computing the enhancement factor for the

configuration graphene/SiO2/Si, as was done in the literature [36, 234, 235], using the

Fresnel equations for transmission and reflection of electromagnetic radiation by the thin

layers of graphene and SiO2, deposited on the Si substrate. The Fresnel transmittance

and reflection coefficients for the interfaces involving air (0), graphene (1), SiO2 (2), and

Si (3) are given by:

t1 =

(

2n0

ñ1 + n0

)

, r1 =

(

n0 − ñ1

n0 + ñ1

)

, r2 =

(

ñ1 − ñ2

ñ1 + ñ2

)

, r3 =

(

ñ2 − ñ3

ñ2 + ñ3

)

, (7.1)

n0 = 1 is the refractive index of air, and ñ1, ñ2, and ñ3 are the refractive indexes for

graphene, SiO2, and Si, respectively.

Figure 7.8 shows a schematic presentations of the multiple interference effect on layers

of graphene and SiO2 over the Si substrate. The color of the SiO2 layer is caused by the

interference of light reflected off the Si (below the oxide) and the light reflected off the

top of the oxide layer. As the SiO2 thickness changes, so does the interference and the

SiO2 seen color, hence the rainbow color chart in Figure 7.8.

In the multiple interference effect model, the absorption and scattering terms are treated
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Figure 7.8: Schematic diagrams of multiple reflection interference in the (a) absorp-
tion and (b) scattering processes. n0, ñ1, ñ2, and ñ3 are the refractive indexes of air,
graphene, SiO2, and Si, respectively. d1 and d2 are the thickness of graphene and SiO2
layer, respectively, and x is the depth in the graphene layer. The dots are the points of

interaction between the laser beam and the π electrons of graphene.

separately, since the differences between the wavelengths of the excitation laser, the G

band and the 2D band are quite large. As shown in Figure 7.8a, the laser beam is

absorbed by the π electrons of graphene while passing through the graphene layer.

However, the laser beam goes through multiple reflections inside the graphene layer as

well as in the SiO2 layer. Due to these multiple reflections, there are multiple chances for

the beam to be absorbed by the π electrons. Upon this, we can define the net absorption

term (Fab) as the sum of the dots in Figure 7.8a:

Fab = t1
[1 + r2r3e−2iβ2 ]e−iβx + [r2 + r3e−2iβ2 ]e−i(2β1−βx)

1 + r2r3e−2iβ2 + (r2 + r3e−2iβ2)r1e−2iβ1
. (7.2)

Similarly, the net scattering term (Fsc) could be represented by the sum of the red arrow

lines in Figure 7.8b:

Fsc = t′
1

[1 + r2r3e−2iγ2 ]e−iγx + [r2 + r3e−2iγ2 ]e−i(2γ1−γx)

1 + r2r3e−2iγ2 + (r2 + r3e−2iγ2)r1e−2iγ1
. (7.3)

Here: t′
1 =

(

ñ1
ñ1+n0

)

, and the following abbreviations for the absorption term has been

used:

βx = 2π

(

xñ1

λex

)

, β1 = 2π

(

d1ñ1

λex

)

, β2 = 2π

(

d2ñ2

λex

)

, (7.4)

where x is the depth of the point where the interaction occurs in the graphene layer,

d1 and d2 are respectively the thickness of the graphene and SiO2 layers, and λex is

the wavelength of excitation. For the net scattering term, the excitation wavelength is

replaced by either the scattered wavelength of the G band or the 2D band such as:

γx = 2π

(

xñ1

λsc

)

, γ1 = 2π

(

d1ñ1

λsc

)

, γ2 = 2π

(

d2ñ2

λsc

)

. (7.5)
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The scattered wavelength (in meters) is given by:

λG(2D) =
λex

1 − 10−7(ωG(2D)λex109)
, (7.6)

where ωG ≈ 1581 cm−1 is the frequency of the G band in graphene. While for the 2D

band, its energy disperses as a function of the excitation wavelength [84]. This dispersion

can be given as a linear function [253]: ω2D = 2444.24 + 99.06Elasercm−1, where Elaser

is the excitation laser energy given in eV.

The total enhancement factor of the Raman intensity is then calculated with respect

to the total enhancement factor of the Raman intensity of a free standing multilayer

graphene sheet. It is given by:

F = N

∫ d1

0
|FabFsc|2dx, (7.7)

where N is the constant that represents the total enhancement factor for the free-

standing multilayer graphene without the substrate:

Ffree =

∫ d1

0
|F free

ab F free
sc |2dx, (7.8)

which is obtained by replacing the Si and SiO2 layers by air.

The integral in 7.7 is calculated numerically. The enhancement in the Raman intensity

is then given as:

I = Ii.F, (7.9)

where Ii is the intrinsic Raman intensity playing the role of a single fitting parameter

in the subsequent calculations.

In our analysis, we assumed a normal incidence of the wavelength of the excitation

laser because our micro-Raman scattering measurements are performed in quasi back-

scattering geometry.

In our experiments, the suspended N-LG over the Si substrate has no layer of SiO2 below

its surface, instead the etched hole on the oxide layer is assumed to be filled with air.

The total enhancement factor for the G band, in this case of suspended N-LG over the

substrate, is then calculated by replacing the refractive index of the SiO2 layer by the

refractive index of air (i.e., n0=1) and making the same calculations for the net scattering

and absorption terms for a thickness of N-LG that corresponds to 15 monolayers (∼ 5.1

nm). Figure 7.9a,b shows false color maps of the calculated enhancement factor for

graphene on SiO2 and suspended N-LG over the Si substrate respectively. By assuming

a hole depth that varies from 0 to 300 nm (i.e., when all the SiO2 layer has been

removed), we plotted the enhancement factor for the excitation wavelength 785 nm (see

Figure 7.9c). For a depth of 300 nm (i.e., SiO2 completely etched) the total enhancement
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Figure 7.9: (a) False color map of the calculated Raman enhancement factor of
the G band for graphene on SiO2 as functions of the thickness of SiO2 layer and the
wavelength of the laser, and of the calculated Raman enhancement factor of the G band
for suspended graphene over the Si substrate (b) as functions of the thickness of the
hole depth filled with air and the wavelength of the laser. (c) The total enhancement
factor for 785 nm excitation as a function of the depth of the hole in the oxide layer.

factor is ∼ 6, which is in good agreement with the assumed mean value obtained from

our Raman measurements.
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