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“Physics is like sex: sure, it may give some practical results, but that’s not why

we do it.”

Richard P. Feynman
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aging, caloric restriction and longevity

by Yifan Yang

The evolutionary theories of aging and the disposable soma theory in particular, have

been the theoretical basis for a recent surge of animal aging research. Yet their central

assumption about the physiology of cellular maintenance and repair has not been em-

pirically tested. In this thesis, I analysed the physiology of E.coli aging under carbon

starvation, as a model system to empirically validate evolutionary theories of aging. Mi-

crofluidic tools are used to isolate large populations of isogenic single E.coli cells, and to

achieve homogenous carbon starvation. Despite sharing the same genetical background

and environmental conditions, individual cells in the population exhibit significant vari-

ations in lifespans and causes of death. Distributions of lifespans exhibit typical features

of the aging process, often seen in animal and human demographic studies. The rate of

aging can be altered by mutations of the general stress response pathway. Resembling

caloric restriction induced longevity, the general stress response pathway extends star-

vation lifespans of E.coli by attenuating the e↵ect of aging at the expense of immediate

needs of the cells. A quantitative model of this physiological trade-o↵ is constructed and

correctly predicted experimental observations. As a conclusion, I substantiate the dis-

posable soma theory of aging with the physiological details ofE.coli aging in starvation

.
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Chapter 1

Introduction

Aging research, although attracting far more than its fair share of public attention

for obvious reasons, has been considered for decades as scientifically intractable, even

suspicious as a field. Yet in recent years, this somewhat marginal status has changed

dramatically, in large parts due to a convergence of three forces: genetic discoveries of

lifespan regulations in model organisms, expansions of the biochemical and molecular

biology toolboxes, and validation of some longstanding predictions from the evolutionary

theories of aging. Despite making substantial empirical progress, the molecular biology

agenda of aging research has rarely clarified the conceptual pictures underlying this

inherently interdisciplinary field. Considering the complexity of biology, this is to be

expected, just as Shermer (2012) wrote in reviewing Stuart Firestein’s book on ignorance

and science “... as the sphere of scientific knowledge increases, so does the surface area

of the unknown ...”. This ever expanding shroud of unknown is further compounded by

the rush to apply whatever knowledge gained in a millennium-old hunt for the fountain

of youth, causing much confusion not only for the public but also for researchers.

It might be illuminating to examine how an equally fundamental and mysterious bio-

logical phenomenon, inheritance, was tackled by the founders of the molecular biology

revolution. The works of Delbrück, Luria and Hershey on the nature of mutations,

and the work of the Jacob and Monod on gene regulation, share some striking features.

There were the uses of quantitative experiments and modelling to address conceptual

questions (Luria & Delbrück, 1943; Monod, 1958) and the convictions of the usefulness

1



Chapter 1. Introduction 2

of simple model organisms such as phages and bacteria, as in Jacques Monod’s famous

quote “anything found to be true of E. coli must also be true of elephants”.

This thesis describes my attempt to apply this approach to the study of aging. By

using a quantitative physiological approach to study E.coli aging in carbon starvation,

my aim is not to advance the frontier of human longevity, but to empirically explore

the fundamental concepts in aging research. In this chapter, I will first describe as

background, the brief history of the theories and concepts in aging research; and then,

how these concepts fit into the particular lifestyle and physiology of E.coli. At the end

of the chapter, I will introduce my conceptual framework, raise the central question of

my thesis and outline the contents of the remain chapters.

1.1 Background

Biological aging, defined as the decline of physiological functions with age, is a multi-

facetted phenomenon. Genetics, environments, physiology, natural selection and even

the way age is defined (i.e. age structure) all play important roles. Here, I outline the

theories and concepts of aging relevant to this work, while presenting their limits and

their possible over-interpretations. In doing so, I hope to make a case for an integrated,

interdisciplinary approach to understand aging.

1.1.1 Evolutionary theory of aging

The evolutionary theory of aging has many versions. They all start from the same ba-

sic insights of Medawar and Hamilton, that selective pressure decrease with age. But

they di↵er in the assumptions that they make about mutations’ e↵ect on aging. The

mutation accumulation theory presumes mutations have additive, age-specific e↵ects,

while the antagonistic pleiotropy theory (Williams, 1957) presumes trade-o↵s between

traits at earlier and later ages. Baudisch (2005) has shown theoretically that the de-

clining selective force with age is not enough to explain aging patterns. Aging patterns

are also shaped by the e↵ects of mutations. In favour of the antagonistic pleiotropy

theory, various empirical works have shown that trade-o↵s between older and younger

ages are indeed true (Bouwhuis et al., 2010; Bryant & Reznick, 2004; Gustafsson &

Part, 1990; Hayward et al., 2014). Many have argued for the validity of the antagonistic
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pleiotropy theory (Le Bourg, 2001). As an evolutionary theory, the subject matter is

not the direct causes of aging, but how aging phenotypes could be possible in the face

of fitness-optimising natural selection.

In order to develop a more useful theory, proponents of the antagonistic pleiotropy theory

need to understand the quantitative relationship between young and old age fitness

components. This requires knowledge about the physiological processes of mortality,

aging and reproduction. One famous such attempt was by Kirkwood (1977), where he

argued for translation “error catastrophe” being the physiological cause of cellular aging,

and proposed the disposable soma theory presuming that trade-o↵s between young and

old ages are the energetic cost of error repair in the soma. Reassessing the di↵erent parts

in that original paper, the physiological cause of cellular aging are not believed to be

translation “error catastrophe” (Gavrilov & Gavrilova, 2002); but whatever the cause of

aging was, the idea that energetic cost of damage repair mediates trade-o↵s could still

be valid. It has to be pointed out here that the disposable soma theory is in essence a

particular version of the antagonistic pleiotropy theory, where the physiological nature of

the young and old age trade-o↵s is assumed to be the competition for resources between

cellular maintenance and more immediate needs.

Any evolutionary life-history theories could be potentially empirically tested by exam-

ining the plasticity and reaction norms of the life-history traits in question, i.e. how

environmental factors modulate them (Stearns, 1989). The central assumption that

organisms should adopt the optimal life-history strategy to maximise lifetime reproduc-

tive success should predict quantitatively the way organisms change their life-history

strategies when environmental conditions fluctuate. For the disposable soma theory,

one obvious environmental variable is the caloric intake since it is assumed to be the

limiting resource. This is where the theory has found the most empirical support and po-

tential applications. The phenomenon of caloric-restriction (CR) induced longevity are

found in many model organisms, and the genetics of corresponding regulatory pathways

have been the subjects of intense research e↵orts. However, to discern the quantitative

e↵ects of such pathways especially at older ages require longitudinal studies of large

populations. Such studies face practical di�culties associated with the long timescales,

and in controlling genetics backgrounds and environments of large populations (Nussey

et al., 2008). This makes laboratory studies of model organisms with short lifespans and

controllable environments the ideal setting for testing the evolutionary theories of aging.
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1.1.2 Laboratory studies of aging and their interpretations

Since the discovery of insulin/IGF-I pathway mutants that extend lifespans in nematodes

(Kenyon et al., 1993), similar mutants and pathways have been identified for multiple

model organisms (Gems & Partridge, 2013). These nutrient-sensing pathways modu-

late aging in the way predicted by the disposable soma theory, and attract widespread

attentions as potential targets of pharmaceutical intervention to slow aging.

However, there are some pitfalls in this genetics research agenda. Nutrients-sensing

pathway mutants with prolonged lifespans in lab environments do not guarantee to

slow the aging process through increased maintenance investments as the disposable

soma theory predicts. First, the lifespan extensions could be due to the prevention of

particular pathologies associated with lab conditions. This issue has been central to

a lot of the recent controversies, ranging from microbiology (Burtner et al., 2009) and

primates research (Mattison et al., 2012). In the former case, observed aging in budding

yeasts were actually explained by the PH changes in the cell culture media. In the latter

case of Rhesus macaque caloric restriction studies, di↵erent conclusions were reached

because of di↵erences in food availabilities in the control group.

The second unrelated but perhaps more central issue is that lifespans can be extended

by a proportional reduction in mortality risks in all ages, without a↵ecting the aging

process. While the former is still good news as far as longevity is concerned, this type of

pathways can not be argued to be modulating the aging process, even if it involves molec-

ular repair or damage resistance. Thus if a certain nutrient-sensing, lifespan extending

pathway only a↵ect mortality in age-independent manners, it can not be considered to

be evidence for the disposable soma theory of aging. In fact, the life-history trade-o↵

assumed in disposable soma theory is between immediate needs for resources, and main-

tenance investments whose e↵ects only manifest in older ages (Shanley & Kirkwood,

2000). This type of maintenance e↵ects that have an age-dependent component is often

presumed in models, but rarely observed or established empirically. Unfortunately, this

central assumption is often misunderstood to mean trade-o↵s between reproduction and

immediate stress resistance.

The di↵erence between age-independent and age-dependent modes of lifespan extension

not only have theoretical implications but gets at the heart of the physiological concept

of aging. Aging is often understood to be due to the ‘wear and tear’ damages of molecular
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and cellular machinery, a process at the end of which is death. In this view, aging is

simply the inescapable ‘second law of thermodynamics’ that eventual leads to death, and

the intervention of aging is simply protection against damages (Gems & Partridge, 2013).

However, if there are indeed pathways whose e↵ects on mortality risks only manifest

at older ages, and can be di↵erentiated with age-independent protective mechanisms,

then the aging process can be distinct from the di↵erent pathologies and physiological

failures that lead to death. If validated for human, this view would provide the scientific

basis for targeting aging itself for pharmaceutical interventions. In fact, a current e↵ort

is underway to gain governmental regulatory approval for clinical trials based on this

point of view (Hayden, 2015).

1.1.3 Bacteria as models for aging

Our lab has shown previously that aging exists in even binary-fission bacteria such as

E.coli (Stewart et al., 2005). In this case, the age structure is that of the age of cell

poles, since the two poles of one cell are synthesised at di↵erent cell divisions. It has

been shown that accumulated molecular damages at old poles (Lindner et al., 2008)

contribute the aging process. Another possible age structure can be defined in growth

arrested populations, and age is simply the time spent in these conditions (Nyström,

2003). It has been shown that individual E.coli cells can live as long as 150 hours (Wang

et al., 2010a). Although I do not expect the physiological aging processes associated with

these two age structures to be the same as the aging process in multicellular organisms,

the evolutionary theories of aging should still apply.

One of the main regulators of maintenance in E.coli is the general stress response path-

way mediated by rpoS. The rpoS pathway respond to multiple environmental signals

and especially starvations of various nutrients (Bougdour et al., 2008; Peterson et al.,

2012). When activated, rpoS increases maintenance investments and stress responses.

It is named the general stress response because once induced by one particular signal,

it o↵ers protection and prolonged survival under multiple conditions, i.e. cross pro-

tection. Being an alternative sigma factor for the RNA polymerase, the RpoS protein

regulates maintenance investment through competition with the vegetative sigma factor

RpoD for RNA polymerase holoenzymes (Nyström, 2004). Thus the general stress re-

sponse coincide with many features of caloric-restriction induced longevity. Yet without
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quantitative characterisations, it is unclear whether the pathway o↵ers protections to

the cells in age-independent manners such as enhancing stress resistances or through

slowing down the aging process as predicted by the disposable soma theory.

The rpoS pathway is also highly variable both across various environmental isolates of

E.coli (Ferenci et al., 2011) and also in laboratory evolution (Spira et al., 2011). A

genetic screen in our lab (Fontaine et al., 2008) has identified a mutant of rpoS pathway,

�rssB, with prolonged lifespan. These observations show that rpoS pathway is highly

evolvable and is subject to natural selection based on its e↵ects on life-history traits.

Yet in almost all cases, despite lower stress resistance, loss-of-function mutants of rpoS

pathway are selected in almost every conditions including stationary phase batch cultures

and chemostats in extremely low dilution rates. This is understood to be due to Growth-

At-Stationary-Phase (GASP) phenotypes (Finkel, 2006). It raises the technical issue of

controlling environments in batch culture and elimination of social interactions between

individual cells in a cohort. More curiously, it begs the question: what is the selective

pressure that maintains a functional rpoS gene in the wildtype strain in the first place?

The short lifespan of E.coli (Wang et al., 2010a), combined with a mature genetic toolkit

and well-understood physiology, o↵ers us a great opportunity to test the evolutionary

theories of aging. In particular, assessing the way in which the general stress response

pathway impacts lifespans regarding age will be a direct empirical test of the basic

life-history assumptions and predictions of the disposable soma theory.

1.2 Questions, approaches and objectives

1.2.1 General questions

I decided to study with a quantitative approach E.coli conditional aging in growth ar-

rests induced by carbon starvation. I focused on the role of general stress response in

modulating lifespan and aging, both as an attempt to provide physiological and systems

biology basis for life-history traits such as aging and longevity, and as a special case to

test the evolutionary theory of aging.

The general questions I ask in this study are:
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• In growth-arrested E.coli populations, are there trade-o↵s between growth and

maintenance, between immediate energetic expenditure and future survival?

• How is the E.coli lifespan distributed under carbon starvation conditions? How

is the distribution a↵ected by the general stress response? Is the e↵ect of general

stress response age independent? Or it actually decreases the rate of aging?

• What is the life-history strategy associated with the observed lifespan patterns?

Is such a strategy adaptive? If yes, to what environment?

1.2.2 Conceptual approach

Growth rate is possibly the most dominant trait for bacterial fitness, not only in terms

of general physiology but also for the trade-o↵ between maintenance and growth as well.

On one hand, both growth and survival are major components of long-term population

fitness. Divestment of resources into maintenance versus growth will directly impact

the balance between the two. On the other hand, growth and division will dilute and

segregate cellular damages thus change the probability of cellular death and survival.

Thus the long-term optimal strategy in maintenance investment is dependent on growth

rate. It is important to understand to understand general stress response’s e↵ect on

growth to understand both its impact on overall fitness and cellular survival.

Maintenance investment impact growth through a mechanism known as ‘sigma competi-

tion’. This is well understood in the literature, both mechanistically and quantitatively

(Scott et al., 2010). Whereas the relationship between mortality rates and maintenance

investment is much less well known. Given both published data (Wang et al., 2010a) and

our own experimental results, mortality rate is assumed to be exponentially dependent

on damage accumulation and maintenance investment.

Comparison between maintenance investment strategy derived from optimal fitness as-

sumptions, and the actual behaviour of general stress response in E.coli MG1655 yields

some interesting insights. The observation that the rpoS regulon is not highly induced

under even modest growth conditions (doubling time < 20h) suggest that maintenance

investment is only beneficial when cellular damage could not be e↵ectively diluted by

growth. The fact that specific stress response pathways such as oxyR or rpoH repress
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rpoS suggests that the general stress response of induced by rpoS is an insurance policy

when growth is not possible, rather than dealing with specific stresses.

1.2.3 Experimental approach

Aiming to go beyond the stage of qualitative insights towards quantitative testing of

the optimal fitness assumptions, I used microfluidic devices to measure lifespan distri-

butions on a single-cell basis. There are several issues that these systems are designed

to overcome.

First, we need a way to follow large populations of cells through their lifespans, to find

correlations between life-history traits across di↵erent ages. Secondly, crosstalk and

interactions through the media have to be prevented between the cells, since rpoS loss-

of-function mutants are selected in growth competition in low nutrition environments

due to the ability to utilise the nutrients released from the lysis of other cells (Vulic &

Kolter, 2001). Both of these factors make a cell-array approach necessary, where large

populations of individual cells are trapped in micro-fabricated arrays while exposed to

fast flow of media.

The second issue, as discussed in the previous section, is that for the energetic cost

of general stress response to be significant for the cells, they should be exposed to

such low level of carbon source that they barely grow. Unfortunately for us, the fast

flow of media designed to eliminate cell debris also provide carbon sources in the form

of trace contaminants leached from lab plasticware. We need to reduce carbon source

levels supplied by contaminants before carbon starvation can be studied in a controllable

manner.

Both of these issues are resolved during my thesis work by making improvements on a

pre-existing microfluidic device called the mother machine (Wang et al., 2010a), docu-

mented in Chapter 2. I also provide detailed experimental protocols in Appendix A and

Appendix B. With my experiment system, I measured the life-history traits of individual

cells including growth, lifespans and transcriptional reporters of general stress response

through time-lapse microscopy. With these data, we found that the Gompertz distri-

bution, which is commonly used to model human and animal lifespan data, can also be

used to model bacterial lifespans. We can also observe correlations among life-history
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traits across di↵erent ages. I measured the lifespan distributions of several mutants of

the general stress response pathway to assess the quantitative e↵ects of this pathway

on lifespan distribution. Both these types of data provided consistent conclusions about

the mode of action of the general stress response and supported the disposable soma

theory of aging.

1.2.4 Outlining the remaining chapters

The following chapters described the experimental methods and implementation details,

analysed E.coli carbon-starvation life-history traits on both the population and the

individual level. These experimental results showed that the general stress response

is indeed evolved to protect the cell through slowing the aging process. And finally I

articulated the life-history strategy implemented by the general stress response through

a toy model.

I documented the following achieved objectives in the remaining chapters:

• Developed microfluidic platforms that enable environmentally-stable, nutrition-

controlled culture of individually-isolated large E.coli populations monitored by

single-cell time-lapse microscopy, Chapter 2, Appendix A and Appendix B;

• Measured the lifespan distributions of aging E.coli cells under carbon-starvation

conditions, Chapter 3;

• Assessed the origins of such distributions and the mode of action that maintenance

investment have on the aging process, Chapter 4;

• Quantitatively re-constructed of the disposable soma theory with an experimen-

tally validated physiological model of growth and maintenance in the context of

E.coli starvation, Chapter 5.



Chapter 2

Carbon starvation in microfluidics

Before the discovery of E.coli aging associated with pole age in our laboratory (Stewart

et al., 2005), the only kind of bacterial aging assumed to exist are those found in growth

arrested populations. When bacterial populations run out of nutrients, they enter into

a physiological state usually called ‘stationary phase’. This name indicates a stationary

population density in culture, but it has been shown that cell physiology does deteriorate

with time due to accumulation of damages on the molecular level (Nyström, 2003). While

it is unclear whether the aging process associated with pole age is subjected to natural

selection (Wang et al., 2010a), the aging process associated with starvation and growth

arrests is clearly a strong target for natural selection due to the ‘feast-or-famine’ lifestyle

of gut bacteria. In fact, even in the day-to-day microbiology operations such as storage

and transfer of bacterial strains, where e↵orts are taken to avoid evolution as much as

possible, traits and genes associated with starvation still evolve (Spira et al., 2011). For

these reasons, I decided that the conditional aging in bacterial starvation presents the

best opportunity for me to test the evolutionary theory of aging.

Previous investigations of single cell conditional aging under starvation are done in batch

cultures with extremely high cell densities. In these conditions, media conditions as well

as cell physiology can change with starvation time (Burtner et al., 2009). Furthermore,

deaths of a sub-population of cells in the batch culture could release debris and chemicals

that either alter the media or directly interact with the remaining cells (Vulic & Kolter,

2001). In fact, stationary phase batch cultures are dynamic systems of interacting cells

and their environment (Finkel, 2006). To overcome these drawbacks, we decided to use

10
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micro-fabrication and microfluidic techniques to isolate individual bacteria cells in sep-

arate micro-fabricated wells, while exposing them to a constant flow of fresh media. As

far as single cells are concerned, this is the equivalent of an extremely diluted station-

ary phase culture. In addition, this setting allows time-lapse microscopy to track large

numbers of individual cells. It is a longitudinal cohort study with large sample sizes.

In this chapter, I present the basic experimental setup with which most of the exper-

imental results in later chapters are obtained. This includes both the basic dynamics

of cell growth and starvation without carbon sources; and the microfluidic technology

used to achieve such conditions. I show that starvation in our microfluidic devices are

idealised conditions unachievable by traditional batch cultures. The main the technical

challenge that I overcome in order to achieve such conditions experimentally is docu-

mented in Appendix B, while the detailed experimental protocols are documented in

Appendix A.

2.1 Microfluidic devices

Our lab have developed several microfluidic platforms based on a common general prin-

ciple described in (Wang et al., 2010a). The shared general principle is to trap bacteria

cells in µm scale dead-end channels that can only hold one cell each, with a main chan-

nel maintaining a constant flow removing dead cells and feeding fresh medium. The

dead-end channels are micro-fabricated to fit the exact dimensions of cells used and

shallow enough to contain as few cells as possible to limit cell-cell interactions. This is

demonstrated in Figure 2.1. This device, named the mother machine, has since spread

widely in the systems biology and microbiology community.

We have several variants of the mother machine, designed for di↵erent experimental

objectives and physiological conditions of E.coli. I mainly used two versions of this

systems to achieve long-term, carbon-limited E.coli culture, monitored by time-lapse

microscopy. They share the same design principle in Figure 2.1, but the arrays of dead-

end channels are aligned either vertically or horizontally to the imaging plane. The

left panels of Figure 2.2 demonstrate the operation of the two devices, named a) “trap

array” and b) “mother machine”. The devices loaded with cells can be monitored by

time-lapse microscopy. The right panels of Figure 2.2 are fluorescent images of cells in
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our devices. While “trap array” allows us to measure the mortality rate of 104 � 105

single cells over time during starvation, “mother machine” allows us to measure gene

expression and cell morphology more accurately, of a smaller population, around 103.

Medium

Cell1

Cell2

PDMS PDMS PDMS

Figure 2.1: General principle of our microfluidic devices. Bacteria cells are trapped
in µm scale dead-end channels as wide as single cells, with a main channel maintaining
a constant flow removing dead cells and feeding fresh medium. The dead-end channels
are micro-fabricated to fit the exact dimensions of cells used and shallow enough to
contain as few cells as possible.

In Chapter 3, I mainly present the detailed single-cell life-history traits obtained in

“mother machines”. They are presented as both single-cell level description of the aging

process, and a validation for the larger sample size studies obtained with “trap arrays”.

In Chapter 4, “trap arrays” are used to obtain lifespan statistics of large populations

of di↵erent mutant strains. Both devices are operated with essentially the same exper-

imental protocol. This protocol allows me to restrict carbon/energy supplies of cells

while isolating them from each other to a degree unachievable by batch cultures. But

in order to understand the purpose and limits of this protocol, we first have to examine

carbon starvation in batch cultures, and compared them to microfluidic experiments.

2.2 Lower limits of carbon starvation in batch cultures

The obvious way to reduce cellular cross-feeding and social interactions through the

media is to obtain extremely diluted cultures. In an ideal thought experiment, the most

diluted batch culture would contain only one cell per container. Each cell would be

isolated in their own test tubes and we would have enough test tubes to have a large
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Figure 2.2: 3D demonstrations and fluorescent images of our microfluidic devices.
(A1,B1) are the 3D cartoons of two variants of the mother machine. Cells are trapped
inside dead end channels, and are growing as 1D colonies. Extra cells are pushed outside
the dead end channels and removed by the flow in the main channel. The arrays of dead
end channels are aligned either horizontally (A1,2) or vertically (B1,2) to the imaging
plain. (A2,B2) are actual fluorescent images of these devices containing cells of E.coli
constitutively expressing a variant of mVenus (shown in green). They are also exposed
to propidium iodide in the medium, whose fluorescence (shown in red) is an indicator
of cell death.

enough population to draw conclusions. The micro-wells in our microfluidic experiments

can be thought of as extremely small test tubes. Although in reality, without the

microfluidic devices, this extreme dilution is impractical, we could try to approach the

ideally diluted experiment by simply washing and diluting harvested cells. I decided to

test the limits of this approach in batch culture, as a way to test the potential benefits

of the microfluidic systems and to calibrate them.

In order to carry out batch culture starvation experiments with low cell densities, instead

of growing cells to stationary phase density of at least 109 cells per ml, I harvested,

washed and diluted exponential phase cells into bu↵ered minimum media (M9) without

any carbon sources. These diluted cultures are then incubated and kept in physiological

temperatures (37 �C) for up to two weeks while monitored by plating. The estimated

cell densities are shown in Figure 2.3.

Despite the fact that the M9 bu↵er has no added carbon source, and the rigorous washing

the initial populations of the cells went through, the low density starvation culture could

still support a remarkable stable cell density of around 106 cells per ml. Di↵erent initial
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Figure 2.3: Carbon starvation of wildtype and �rpoS cells in diluted batch cultures.
Cells are cultured in M9-glucose minimal media overnight from glycerol stock and
then subcultured by at least 1000 fold dilution into fresh M9-glucose minimal media.
Exponential phase cells are harvested at OD600˜0.2. Harvested cells are washed with
M9 bu↵er without carbon source 3 times and then diluted into 100ml of the same bu↵er
media to initial densities of 5⇥102, 5⇥104, 5⇥106 cells per ml. These starvation cultures
are kept in 250ml Erlenmeyer flashs at 37 �C in the dark for up to two weeks. The
cultures are monitored at regular interval by serial dilutions and platings, and estimated
cell densities are plotted for 3 di↵erent starvation experiments. Cells used are MG1655
wildtype and �rpoS mutants, which has reduced stress resistance in stationary phase.
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densities seem to have no e↵ects on the steady state cell densities. The initially most

diluted cultures grew around 1000 fold, from below 103 cells per ml to the same 106

cells per ml the other cultures have reached. This ‘carrying capacity’ suggests that

the starvation media must have some kind of carbon sources at low concentrations.

Further investigations indicate that the low concentration carbon sources are leached

plasticisers from common plasticware used to prepare the media. This issue and its

solution is detailed in Appendix B.

Compared to common stationary phase batch cultures that usually reach 1010 cells per

ml, the dynamics of cell populations under starvation in these low density cultures are

very similar (Finkel, 2006). After reaching the ‘carrying capacity’ of the media, the cell

densities of the wildtype strain remain steady over the course of the experiments, while

the cell densities of the �rpoS strain experience a light drop. These decreases are as-

sumed due to increased cell deaths and ine�cient use of resources (Vulic & Kolter, 2001).

More interestingly, mutants with heterogeneous colony morphology start to appear in

the culture after a week. This suggests that even in this relatively low density of 106

cell per ml, the GASP (Growth-At-Stationary-Phase) phenotypes previously described

are still selected (Finkel, 2006; Vulic & Kolter, 2001).

Both the existence of low concentrations of carbon sources and the fact that GASP

mutants are selected under these conditions, present significant challenges to the study

of evolutionary trade-o↵s in both batch and microfluidic experiments. In order to isolate

the e↵ects of general stress response on maintenance from its e↵ects on growth, starvation

experiments must be done in conditions where growth is not possible even for �rpoS

strains. The impacts of this constraint on microfluidic experiments and the resolution

of this problem are discussed next.

2.3 Media infusion rate in microfluidic experiments con-

trols the physiological regimes of trapped cells

If one compares the cells trapped in micro-wells in our microfluidic devices to the cells in

batch culture starvation experiments in Figure 2.3, media refreshment rates controlled

by the flow rates in the main channel determined essentially the initial cell dilutions. If

the flow rate was infinitely fast, trapped cells would be essentially exposed to infinite
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volumes of fresh media. This situation corresponds to the condition at T0 if the initial

cell density approached zero in Figure 2.3. As we can see, if the media has a low

concentration of carbon sources, as is the case in Figure 2.3, cells have non-zero growth

rates. Since in microfluidic devices, extra cells are removed from the population, the

population never reaches steady states and the trapped cells keep growing at a constant

growth rate. This is easily experimentally observable using the same contaminated

media and mother machine, as in Figure B.1. In fact, it can be shown that this growth

rate is the maximal growth rate as defined in the exponential phase batch culture using

the contaminant as carbon sources.

If we gradually decrease the flow rate from the very fast regime described in the previous

paragraph, depending on the the concentration of the carbon source, at some point the

cells near the inlets of the microfluidic devices will consume enough carbon sources to

decrease the amount available for cells farther from the inlet. At this point, one can

observe heterogeneity of growth rates between cells inside the device. When flow rate

has decreased enough, the cells closes to the outlet will have stopped growing. The more

one reduces the flow rate, the more cells enter growth arrests. Eventually, even the cells

near the inlet stop growing. We call this range of flow rates under which heterogeneity

of growth rate is observed transition flow rates. The transition flow rates is proportional

to the concentrations of carbon source in the infusion media. However, there is a lower

limit for flow rate reduction as well, since a fast enough flow is still needed to remove

cell debris and counteract evaporation. The lower limit is usually 2µl per hour for our

devices.

The main technical challenge that I have overcome in my thesis work, is essentially that

I have reduced the level of carbon supplying contaminant in the media to such a low

level that the lower bound of transition flow rate is significantly larger than 2µl per hour.

To put it another way, a lot of technical work have went into cleaning up the media so

that growth arrests can be induced in the mother machine while maintaining a flow rate

larger than 2µl per hour. I have developed the experimental protocol that eliminated

the majority of leached carbon sources from lab plasticware. In fact, the same problem

has been repeatedly encountered by researchers who study bacteria in nutrient-poor

conditions over the decades. In this protocol, the media is usually prepared with grade-I

milliQ water, and only comes into contact with glass, stainless steel and PTFE surfaces.

M9 media prepared with this protocol called carbon-free M9 hereafter. In Appendix B,
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I have documented in much more detail the sources of carbon-supplying contaminants,

the method we identify them and the non-leaching equipments that replaced the leaching

ones.

2.4 Typical experimental procedures of carbon starvation

in microfluidic devices

Here I o↵er a minimalist description of our experimental protocols. For more details

on media preparation, see Appendix B. For mother machine experimental setups, see

Appendix A and Section A.3 in particular. For the image analysis methods after the

experiments, see Section A.4.

Carbon-free M9 media is usually prepared before the experiments, filter-sterilised with

PTFE filters and stored in glass bottles with PTFE caps. E.coli strains used for starva-

tion experiments are usually are cultured in M9 minimal media overnight from glycerol

stock and then subcultured by at least 1000 fold dilution into fresh M9 minimal media.

Exponential phase cells are harvested at OD600˜0.2. Cells harvested from 50ml expo-

nential phase culture are washed with carbon-free M9 3 times and then concentrated into

50 µl. These concentrated cells are injected into the microfluidic devices and loaded into

the micro-wells by centrifugation. Microfluidic devices are then washed with carbon-

free M9 and micro-bubbles to eliminate all extra cells not inside the micro-wells. Then

the devices are connected to microfluidic infusion pumps and placed onto the stage of

our temperature-controlled automated fluorescent microscopes. The experimental flow

rate is determined beforehand to situate well below the transition flow rates that in-

duce growth arrests, and is usually 10 µl per hour. The infusion bump maintain this

constant infusion flow rate by injecting carbon-free M9 throughout the experiment, and

cells are tracked by the automated fluorescent microscopes. Phase contrast and fluo-

rescent images from the time-lapse microscopy are then analysed by a suite of in-house

semi-automatic software to extract the life-history traits and gene expression profiles of

the cells under starvation.
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Life-history traits of E.coli under

carbon starvation

In this chapter, I will describe some basic observations of E.coli life-history under car-

bon starvation, in particular their lifespan distributions. Experiments in this chapter are

done using the horizontal version of the mother machine, with the carbon starvation mi-

crofluidic platform and protocol established in Chapter 2, Appendix A and Appendix B.

This enables us to monitor in detail the physiological changes of starving E.coli cells.

I established a quantitative method to monitor changes in cell membrane potentials, and

use it as a proxy to infer cell viability. This method allows me to determine both the

timing of cell death and the timescale of the dying process. Despite the clonal genetic

backgrounds and homogenous environments, E.coli cells exhibit significant variations

in both timing and timescale of deaths. Knockout mutation to the general response

pathways significantly shortens the starvation lifespan. I then discuss the possible origins

of lifespan variations and show that elongating cells in starvation tends to have shorter

lifespans.

18
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3.1 Time-series of a DNA-staining fluorescent dye as indi-

cators of cell viability and membrane integrity

Propidium iodide (PI) staining has been established as a reliable way to assess the

viability of E.coli cells (Ericsson et al., 2000). For living cells, PI can not permeate

through intact cell membranes. Upon cell death, PI stains DNA with a strong far-red

fluorescence. To assess the impacts of chronic exposure to cell physiology, I incubated

my strains in batch media with both PI and polyethylene glycol (PEG, used for surface

treatment in microfluidic experiments), and used plating to measure population density.

As in Fig 3.1, the addition of these additives do not change population dynamics in

significant ways.

Figure 3.1: The survival of E. coli in bulk M9 medium with (green bars) and without
PI and PEG (blue bars). E. coli were prepared in the same way as chip-based experi-
ments and cultivated in Falcon® tubes at 37 �C without shaking. Samples were plated
on LB agar plates to score viability by counting colony-forming units (CFUs) at the
indicated time. Results shown are the average of three independent measurements.

We added PI into our infusion media in order to monitor the viability of cells in carbon

starvation in real time. Fluorescent timelapse microscopy and semi-automatic image

analysis allow us to track each cell individually and measure their viability via PI fluo-

rescence, as described in Appendix A. Figure 3.2 presents the PI fluorescence time-series
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of all cells in a single experiment, in which a mix of two genotypes are subjected to car-

bon starvation for 120 hours. Each row is the time-series of one cell. See Appendix B

for the equipments that allowed for such microfluidic carbon starvation possible.

These PI time-series have several features. First of all, for each time-series there are a

low and a high phase, with the transition between the two defining the transition from

life to death. We thus use the mid-point of the transition to define the moment of death.

Cells in Fig 3.2 are sorted according to this measure of lifespan. Secondly, cells have

di↵erent maximum PI intensities, presumably associated with the amount and state of

DNA in each cell. It is not the absolute level of PI staining, but the relative to this

maximum that defines the transition from life to death. Last but not the least, cells

transit from being alive to being dead not only at di↵erent moments, but take di↵erent

durations to do so.

PI fluorescence increases reflect losses of membrane integrity or at least membrane poten-

tials. Based on the PI fluorescence data, I estimated for each cell the loss of membrane

potential using a simple model of PI dynamics comprising of slow entry into cells and

fast binding to DNA. Because most of the fluorescent signal is emitted by PI molecular

bound to DNA, maximal fluorescent intensity gives an nice estimate of total DNA in the

cell, while the di↵erence between current and maximal fluorescence estimate the amount

of DNA unbound to PI.
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dt
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Figure 3.2: Propidium iodide (PI) fluorescent signals of wildtype and �rpoS cells
in a single experiment. Each row correspond to the PI time-series of one cell. Cells
are sorted according to their estimated time of death. As discussed in Section 3.1 and
shown in Figure 3.3, PI only enter a cell, binds to DNA and fluorescence when cell
membrane integrity is comprised. The transition from dark regions to bright regions
indicate transition from living to death. Boundaries of such transitions describe the
survival function of the populations. The dark parts at the ends of some time-series
are the results of dead cells washed away from the chip.
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Figure 3.3 demonstrates the estimated dynamics of membrane potential of a few cells

given their PI fluorescence time-series. Numerical di↵erentiation are done with Total

Variation Regularised Numerical Di↵erentiation (TVDi↵) (Chartrand, 2011). Moments

of death are marked by sudden drops of membrane potentials, while di↵erent cell deaths

share similar magnitude of membrane potential changes. This suggest that normalising

the PI fluorescence with the maximum rather than using the absolute fluorescence is the

correct way of determining cell death.

Figure 3.3: Estimating membrane potential from PI fluorescence. The upper panel
shows the observed PI fluorescence of a few cells as examples. The lower panel shows
the estimated membrane potential for these cells. The zip-zags of estimated potential
around 0 are due to experimental and image analysis noise when fluorescence is low.
The numerical di↵erentiation (TVDi↵) algorithm we used made it possible to extract
genuine shifts among the noise in PI signal, but nonetheless allows some noise to pass
through (Chartrand, 2011).
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3.2 PI dynamics reveal both qualitative and quantitative

individual di↵erences in cell mortality

Despite sharing the same genetic background, being exposed to the same starvation

media, and isolated from each other, cells die at di↵erent times. Figure 3.4 shows the

survival curves of wildtype and �rpoS cells, while Figure 3.5 shows the corresponding

lifespan distributions and hazard functions. Judging from the hazard functions of the

two strains (log scale, right panel of Figure 3.5), the probability of death increases

exponentially with starvation time. We are reminded of what is commonly known as

the Gompertz law in demography and aging research, where the probability of death

for humans increases exponentially with age. I used the Gompertz model to fit these

distributions and obtained maximum likelihood estimates (MLE) of the parameters.

Red and blue dashed lines in Figure 3.5 are the estimates for the probability density

functions and hazard functions of the best fitted models to �rpoS and wildtype data

respectively.

Figure 3.4: Survival curves of wildtype and �rpoS strains in the same carbon star-
vation experiment. Data are the same as those in Figure 3.2. Exact time of death is
determined with the thresholding method, by taking the first time that PI signal are
above half of the maximal strength reached in each time-series.

Not only do cells die at di↵erent times, but also in di↵erent manners. In order to

quantify the di↵erent timescales that PI fluorescence transit from low to high, I used
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Figure 3.5: Estimated lifespan probability density functions and hazard functions of
wildtype and �rpoS cells. Data are the same as those in Figure 3.4 and Figure 3.2.
Number of deaths are counted for each 2-hour bins, and then are used to estimate
the probability density and hazard functions. The hazard functions are estimated by
dt/

Pt
0 dt, where dt is the number of deaths at time t. Red and blue dashed lines in the

left panel correspond to fitted Gompertz models using maximum likelihood method.
Green dashes in the right panel describe the confidence interval according to Poisson
sampling.

Continuous Wavelet Transformation (CWT) to locate the timing and timescale of PI

fluorescence increases in the time-series. CWT essentially decompose a time-series into

linear combinations of a family of orthogonal wavelets generated by translations and

dilations of the same mother wavelet. Thus the wavelet with the biggest amplitude

after CWT represents the most important feature of the time-series. This process is

demonstrated in Figure 3.6. PI fluorescence data are first log transformed, and then

transformed by CWT with a Ricker mother wavelet into a matrix of coe�cients in

the time-frequency domain, visualised in the lower panels of Figure 3.6. The largest

coe�cient (marked by white dots) correspond to the biggest increase in PI fluorescence.

The scales (y-coordinates) and locations (x-coordinates) of the coe�cients indicate the

timing and timescale of the PI increases. What we are ultimately interested in from the

CWT analysis are the timescales of PI increases, i.e. the y-coordinates of the largest

CWT coe�cients. The larger it is, the lower the PI fluorescence increases. Hereafter,

this is defined as the timescale of morality events.

In Figure 3.7 I plotted the timescales of all mortality events in one experiment versus

their lifespans. We can visually cluster two types of mortality events. One cluster is

close to the x-axis, including those mortality events that have small timescales. They
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Figure 3.6: Examples of PI time-series (Upper row) and their continuous wavelet
transformation (CWT) coe�cients (Lower row). The upper row shows the PI time-
series of 2 example cells, one with a sharp PI increase and one with a graduate PI
increase. The CWT is aimed to extract both the time ‘location’ and ‘scale’ of those
PI increases. Standard CWT algorithms are used with Ricker mother wavelet, because
the signal we are interested in is a simple increase. The lower row are heat maps of
the CWT coe�cients. Red and blue correspond to positive and negative coe�cients
respectively, i.e. peaks and valleys. The most intense peak is labeled with the white
circle, whose coordinates represent the time and timescale of the most prominent PI
increase.

correspond to quick cell deaths and sharp PI increases where the cell membranes are per-

meated quickly. These cells are hereby named ‘bursters’. The other cluster is around the

diagonal line, which suggest a near equal relationship between lifespan and the timescale

of mortality. Because we used log-transformed PI time-series in our CWT analysis, this

suggest a slow but near exponential increase of PI fluorescence throughout the lifespan of

the cell. Instead of abrupt membrane potential loss seen with the ’bursters’, these cells

lose small fractions of membrane potential throughout their lifespan, even before they

lose most of their membrane potential. This pre-mortality losses of membrane potential

in fact can be seen in Figure 3.2. These cells I call ‘leakers’.
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Figure 3.7: Two types of mortality events are di↵erentiated by the timescale of PI
peaks. These are the same cells as those in Figure 3.2. The x-axis is the lifespan of
cells, determined as the time that PI signal has crossed half of the peak intensity, as in
Figure 3.4. The y-axis is the timescale of cell PI peaks, determined by the continuous
wavelet transformations analysis shown in Figure 3.6. Colors and shapes of the markers
indicate the genotypes of the cells. The two type of mortality events are those closer to
the diagonal line, indicating slow deaths, i.e. ‘leakers’; and those closer to the x-axis,
indicating quick deaths, i.e. ‘bursters’.

3.3 Correlates and possible sources of lifespan variations

As discussed in Chapter 1, one main assumption of the evolutionary theory of aging is

the growth-maintenance trade-o↵. Such a trade-o↵ suggests that trying to grow despite

starvation conditions is maladaptive because they shortened lifespans when growth is

impossible. Yet this is hardly observed in bacteria in high-density batch culture ex-

periments due to cross-feeding and bacterial cannibalism in those conditions (Vulic &

Kolter, 2001). A original motivation for our microfluidic experiments is to test the

growth-maintenance trade-o↵ in true starvation conditions. We expect to do so by ex-

amining the longitudinal life-history traits obtained from time-lapse microscopy that

tracks the same cells over their entire lifespans.

Despite the true carbon starvation condition achieved by our microfluidic setup (See



Chapter 3. Life-history traits of E.coli under carbon starvation 27

Appendix B) and the inabilities to grow over the entire course of experiments, cells do

attempt to grow by elongation at the beginning of the experiments. I suspect that they

do so with some reserve energy carried over from growing phases. Figure 3.8 shows the

mean and variations of cellular elongation rates of the cell populations over the course

of the experiments. Elongation rates are calculated for each cell based on cell length

determined by image segmentation according to the definition of instantaneous growth

rate: µ(t) = 1
ln2 · dL(t)

L(t)dt . Computationally, with the help of the TVDi↵ algorithm, we

numerically di↵erentiated the log transform of cell length to estimate µ(t) for each cell.

Figure 3.8: Instantaneous cell elongation rate and its variations in starvation experi-
ments conducted in mother machines. The solid lines and shades plotted on the left axis
are the mean and quartiles of elongation rates of wildtype and �rpoS cells, while the
dotted line plotted on the right axis are the survival curves as a reference. Elongation
rates are plotted for all time points with more than 15 surviving cells from the same
genotype. Individual cell elongation rates are measured in units of doublings per hour,
and are calculated for each cell based on cell length determined by image segmentation
according to the definition of instantaneous growth rate: µ(t) = dL(t)

ln2L(t)dt .

Elongation rates of cells quickly fall to near zero during the transition from growth

to starvation. Consistent with the phenotypes described in the literature, �rpoS cells

elongate more than wildtype earlier in starvation; but later elongate at negative rates,

which is to say that on average they shrink.



Chapter 3. Life-history traits of E.coli under carbon starvation 28

In Figure 3.9, I plotted lifespans of the cells in starvation against their elongation rates.

Elongation rates are averaged from instantaneous rates over the entire lineage consisting

of each terminal cell and all her ancestral cells. Here the inverse of elongation rates

measured in doubling time (T
dbl

= ln2/µ(t)) is plotted in the x-axis in log scale. Cells

closer to the right and left extreme of the figure are barely growing or barely shrinking,

while those to the middle are either growing or shrinking quickly, depending on the sign

of the average elongation rate. Lifespan is negatively correlated with the absolute value

of elongation rate. The fast growing and fast shrinking cells tend to die early, while

those cells who live long tend to not change much in cell size throughout the starvation

experiment.

This observed negative correlation between growth and lifespan is consistent with the

growth-maintenance trade-o↵ hypothesis in the evolutionary theory of aging. Under

this theory, the optimal strategy for cells in true starvation is to invest in maintenance

to counteract molecular damages and maintain homeostasis. Interpreting our results

with this theory suggests that those fast elongating cells in Figure 3.9 are misallocating

resources when growth is impossible, thus reducing their lifespan; while fast shrinking

cells su↵er from molecular damages without counteracting them.

If this interpretation is true, then individual di↵erences in cell elongation rate and lifes-

pan should be attributed to cell physiology, not external environment. The main source

of environmental variations in our experiments is the depth that cells sit in the dead-end

channels. A cell could be either protected or blocked by another cell sitting in between

her and the main channel.

To see whether individual di↵erences in elongation and lifespan could come from envi-

ronmental di↵erences, I redraw the data in Figure 3.9 while classifying cells according

to their depths. Wildtype and �rpoS cells populations are separated into Figure 3.10

and Figure 3.11. Although I did not applied any statistical tests, these figures clearly

indicate that depth is not a major determinant of either elongation rate or lifespan.

Although we can not completely rule out some mysterious unaccounted for environmen-

tal sources, it is far more likely that this variation in life-history trade-o↵ comes from

physiological and epigenetic di↵erences internal to the cells.
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Figure 3.9: Correlations between cell elongation and starvation lifespan. Plotted are
individual cell elongation rates and starvation lifespans as those in Figure 3.8. On the
y-axis are starvation lifespans in hours as measured in Figure 3.4. On the x-axis in log
scale are the inverse of average elongation rates, i.e. the doubling time (Tdbl = ln2/µ(t))
in hours as well. For each cell, average elongation rate is calculated from instantaneous
rates over the entire lineage, consisted of each terminal cell and all her ancestral cells.
Lifespans are calculated the same way as those in Figure 3.4. Although cell elongation
can be measured this way in doubling time, most cell have never actually doubled in size
(see Figure 3.8). Negative doubling time indicate shrinking cells. Very large doubling
time or very small doubling time are those cells that have barely changed in size. Colors
and shapes of the markers indicate the genotypes of the cells.

3.4 Discussions and conclusions

In contrast to high density batch culture experiments (Vulic & Kolter, 2001), our carbon

starvation experiments showed that the general stress response is beneficial in carbon

starvation. This di↵erence can be attributed to the high nutrient environments typically
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Figure 3.10: Wildtype cell elongation rates and lifespans, grouped by depth in dead-
end channels. The data and axises are the same as the blue dots in Figure 3.9, while
di↵erent markers represent cells at di↵erent depths in their respective dead-end chan-
nels in the mother machine, with depth = 0 being the cell closest to the main channel.
Notwithstanding statistical testing, cell depth is not major source of variation in lifes-
pans and elongation rates.

seen in batch cultures. These environments tilt the fitness trade-o↵ between growth and

maintenance towards the growth side, thus always select for strains with higher growth

potential, even at the expense of maintenance. My work described in Chapter 2 and

Appendix B in reducing carbon-supplying contaminants in the media has made it possi-

ble to experimentally examine the fitness benefits of the general stress response. When

the nutrient capacity in the environment measured in lowest possible doubling time is

brought closer to the timescale of starvation lifespan, the advantage of maintenance in-

vestment becomes observable. Our microfluidic devices are essentially mimicking the



Chapter 3. Life-history traits of E.coli under carbon starvation 31

Figure 3.11: �rpoS cell elongation rates and lifespans, grouped by depth in dead-end
channels. The data and axises are the same as the blue dots in Figure 3.9, while di↵erent
markers represent cells at di↵erent depths in their respective dead-end channels in the
mother machine, with depth = 0 being the cell closest to the main channel. Notwith-
standing statistical testing, cell depth is not major source of variation in lifespans and
elongation rates.

highly diluted environments where bacterial dispersal and starvation usually happen.

Quantitative individual di↵erences in lifespan and qualitative di↵erences in mortality

are common in animal aging research, even in environmentally controlled cohorts of

clonal populations. It has been speculated that unobserved heterogeneity in initial

frailty, however defined, might determine such di↵erences. Our results show that even

environmentally-controlled clonal populations of simple organisms such as E.coli, still

exhibit variations in lifespan, and even reproduce the similar statistical distribution

seen in higher organisms. The origins of these distributions, may lie not in the details of
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molecular biology of specific organisms, nor in the particularities experimental environ-

ments, but in the statistics of system failures. Yet, individual di↵erences in lifespan are

biologically non-trivial, in the sense that at least they are partially correlated with other

important life-history traits such as growth, and might have adaptive consequences.

In this chapter, I have established a reliable method of monitoring cell viability in

carbon starvation in mother machines, and observed a few features of starving E.coli

populations. Detailed measurements of E.coli lifespan reproduced lifespan distributions

typical in the demographics of human and animals. I also confirmed the validity of

a fundamental assumption of the evolutionary theory of aging, at least in the context

of E.coli starvation. These results established E.coli carbon starvation as a model of

chronological aging, and showed its value in understanding quantitative and evolutionary

features of aging in general.



Chapter 4

The general stress response

decreases the rate of aging

In Chapter 3, I have shown that a rpoS null mutant without general stress response

has significantly shorter lifespan in carbon starvation than the wildtype. It is well

known in the literature that rpoS null mutants have increased capability to grow on

poor carbon substrates, which in turn might a↵ect lifespans in those conditions through

increased growth. To understand the combined e↵ects of less maintenance investment

and increased growth on both lifespan and overall fitness, the qualitative correlations

described in Chapter 3 is not enough. We need a quantitative model for the general

stress response’s e↵ects on life-history traits. To this end, we designed a vertical version

of the mother machine, as described in Chapter 2. In this chapter, I will first described

carbon starvation experiments in vertical mother machines, and then introduce a non-

parametric estimator of mortality rates and rate of aging. Using these tools, I will show

that the general stress response pathway controlled by rpoS indeed decreases the rate

of aging.

4.1 Measuring carbon starvation lifespans of large popu-

lations of E.coli with vertical mother machines

Vertical mother machines trap and isolate individual cells in similar fashions to that of

the mother machine used in the previous chapter, except that a much larger population

33
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can be tracked in a single experiment. Practically, we usually can obtain populations

from 5⇥103 to 2⇥104; While 105 is easily reachable without changing our experimental

setup if such a population is required. Multiplexed microfluidic chips allow for several

strains to be imaged independently in parallel experiments. Experimental protocols are

very similar to those used before, including the carbon starvation media preparation,

and the use of PI to track cell deaths.

One disadvantage of the vertical chip is that we can not morphologically segment cells by

the phase-contrast images. To ensure that we can locate all cells that are loaded into the

array of dead-end channels, we inject the chip with ethanol at the end of experiments.

Figure 4.1 demonstrates that despite di↵erent causes of death, cells that died during

starvation and killed by ethanol have similar maximal PI fluorescences. This result

suggests to us that we can reliably use PI fluorescence not only to determine lifespan as

described in chapter 3, but also to locate those cells that have survived till the end of

the experiments but are killed by the ethanol injection.

To analyse the time-lapse movies generated from this type of experiments, we first

spatially aligned all the time-lapse images, and then project the fluorescence images

at all times to a single 2D image. PI fluorescent dots on this t-projection image are

identified as regions of interest (ROIs), and time-series of total fluorescence within these

ROIs are extracted. These PI fluorescence time-series are analysed in similar fashion as

in Chapter 3, and lifespans of individual cells are determined in similar ways.

4.2 Non-parametric mortality estimators and rate of aging

We used several di↵erent non-parametric estimators to analyse the lifespan distributions

we obtained from carbon starvation experiments. For one experiment of wildtype in

vertical mother machines, these estimators are shown in Figure 4.2. Intuitively, the

survival curve (figure 4.2, upper left) similar to those in Figure 3.4 are estimators of

survival functions of lifespan distributions. These are known as the Kaplan-Meier (K-

M) estimators:

Ŝ

km
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i
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Figure 4.1: Histograms of maximal PI fluorescence in vertical mother machines. ”Nor-
mal deaths” are mortality events whose peak fluorescence are reached during the star-
vation experiment, whereas ”end deaths” are survivors of the starvation experiment,
whose peak fluorescence are reached after the chip is injected with ethanol. The two
types of death events give rises to similar PI fluorescence peaks, and could not be
di↵erentiated on the sole basis of maximal fluorescence.

where d

i

are the numbers of deaths at time t

i

, and N

i

is the numbers of individuals at

risk at time t

i

. The Kaplan-Meier estimator has several advantages: it represents the

overall experiment intuitively; the overall shape and trend are insensitive to irregular

events within limited time intervals; and it does not require binning (i.e. uses exact

time of death). However, the drawbacks are that it does not articulate events at specific

time very well because of the relative insensitivity to in-continuities in d

i

, and also do

not reflect rate of aging very well, since the survival function is not linearly a↵ected by

the rate of aging. It a↵ects the survival function at older ages much more than that at

younger ages.

Because we have relatively large sample sizes in our experiments, we could estimate the

probability density function (Figure 4.2, lower left) and hazard function (Figure 4.2,

lower right) of starvation lifespan distributions, by binning the mortality events into
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fixed time intervals. In fact, the same binning procedure is done in Figure 3.5. If we

suppose regular binning T
b

= b⇥T

int

, where b = 1, 2, 3 . . . , and T

int

should be larger than

the experimental time resolutions. We have the estimators for the probability density

function f̂(T
b

) and hazard function ĥ(T
b

):
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We can easily identify mortality events and specific times of interests in the starvation

process from these figures because as long as appropriate T

int

is chosen, they are both

sensitive to in-continuities in d

i

. The hazard function estimator is particularly intu-

itive in understanding the aging process because the hazard function is essentially the

conditional probability of death at specific time if cells have survives before that time.

But these estimators depend on time binning, thus become artificially noisy because the

timescale of the dying process is usually higher than the binning interval (see Chapter 3,

Figure 3.6 and Figure 3.7), esp. for time intervals with small number of deaths.

To be able to intuitively visualise the rate of aging, while remain insensitive to binning

and measurement noise, we introduce a cumulative hazard function estimator, known

as the Nelson-Aalen (N-A) estimator:

⇤̂
na

(t
i

) =
iX

j=1

d

j

N

j

(4.4)

The cumulative hazard function ⇤(t) is defined as the time integral of the hazard func-

tion ⇤(t) =
R
t

t0
h(t)dt. It also relate to the survival function by a simple exponential

transformation: S(t) = e

�⇤(t). Survival function estimator derived this way is called

Breslow estimator and is asymptotically equivalent to Kaplan-Meier.

Ŝ

Breslow

(t) = e

�⇤̂na(t)
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Figure 4.2: Four non-parametric statistical estimators of lifespan distributions. Upper
left: Kaplan-Meier, Equation 4.1; Upper right: Nelson-Aalen, Equation 4.4; Lower left:
Histogram with time binning estimating the shape of the probability density function,
Equation 4.2; Lower right: hazard function with binning, Equation 4.3. The data is
from a vertical mother machine carbon starvation experiment with wildtype MG1655
E.coli strain. Times of death are determined by thresholding PI fluorescence time-series
as described in Chapter 3. Dashed line denote 99.9% confidence intervals. The upper
panels (K-M and N-A estimators) do not require time binning and are thus much less
noisier than the lower panels.

Except Breslow survival estimator, all four estimators introduced here are plotted in

Figure 4.2. We use the K-M estimator and the density estimator (upper left, lower

left) mainly to monitor experiments and to spot irregular perturbations in the data.

As shown in Figure 3.5, our lifespan distributions can be modelled by the Gompertz

law, i.e. exponential increase of hazard rate with time. The Gompertz slope parameter,

which is understood as the rate of aging, can easily visualised as the linear slope of both

the hazard function and the cumulative hazard function when they are plotted on log

scale. Since the N-A estimator is much less noisier than the hazard function estimated

by binning, as the lower left panel of Figure 4.2, the linear slope of the Nelson-Aalen

estimator on log scale give the best estimate of the rate of aging.

Figure 4.3 shows the N-A estimators of the lifespan distributions of wildtype and �rpoS

strains (same data as Figure 3.4 and Figure 3.5). Here, we can clearly identify the impact

on rate of aging by the �rpoS mutation. This will be the focus of the next section.
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Figure 4.3: Cumulative hazard rates (Nelson-Aalen estimator) of wildtype and �rpoS
populations in carbon starvation in mother machines. The y-axis is in log scale. Data
shown are the same as those in Figure 3.4 and Figure 3.5, where populations of wildtype
of �rpoS cells are in carbon starvation in the same mother machine. The increase in
the Gompertz slope on indicate that the �rpoS mutation increases the rate of aging.

4.3 General stress response mutants have altered rates of

aging in carbon starvation

In the previous section, Figure 4.3 demonstrated that mutants in the the general stress

response pathway have altered rates of aging. To further explore this hypothesis, we

systematically used the vertical mother machine to measure lifespan distributions of

mutants from the Keio collection (Baba et al., 2006). The Keio collection is a single

gene knockout library based on the E.coli K-12 strain BW25113. The two most relevant

mutants to the general stress response, are �rpoS and �rssB. �rssB is the anti-sigma

factor that deliver �

S

for degradation by ClpPX protease. By knocking out �rssB, a

larger proportion of cellular resources is devoted to the general stress response during

starvation. Histograms of carbon starvation lifespans of the Keio collection wildtype,

and these two mutants are shown in Figure 4.4.

In Figure 4.5, I plotted the Nelson-Aalen estimators of �rpoS and �rssB strains, com-

pared to the wildtype strain of the Keio collection. While expectedly, �rpoS and �rssB

have shorter and longer lifespans respectively, the rate of aging is also increased by

�rpoS and decreased by �rssB. This is a qualitatively non-trivial observation since that
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lifespans could conceivably be shortened or prolonged without changing the rate of ag-

ing, by raising or lowering proportionally the hazard rate across all ages. In fact, the

proportional hazard model is the default assumption in many survival analysis studies

with small sample sizes. Yet in our case of the general stress response pathway, the

proportional hazard model is clearly rejected in favour of the accelerated life model.

Figure 4.4: Lifespan distribution of Keio collection strains in carbon starvation: wild-
type, �rpoS,�rssB. The colour bars are semi-transparent to allow side-by-side compar-
ison of 3 di↵erent strains. When the di↵erent color bars overlap, they show composite
colour. Data shown are from carbon starvation experiments in vertical mother ma-
chines. Number of cells to construct the histograms: 6012 for �rpos = 6012; 6831 for
wildtype; 1605 for �rssB.

Figure 4.5: Cumulative hazard rates (Nelson-Aalen estimator) of general stress re-
sponse mutants from the Keio collection. �rpoS abolish the general stress response,
while �rssB have enhanced general stress response. Data shown are from carbon star-
vation experiments in vertical mother machines, same as those in Figure 4.4. N-A
estimators are calculated according to Equation 4.4.
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To put the clearly shifted aging rates in Figure 4.5 in context and to assess the impacts

of changing genetic backgrounds, in Figure 4.6, I also plotted the cumulative hazard rate

of wildtype MG1655, compared to the wildtype and �rssB strains of Keio collection.

BW25113 is a lab K-12 strain with a slightly di↵erent culturing history and genetic

background compared to MG1655, which is used in the previous chapters. Interestingly,

the two wildtype strains share similar rates of aging, and clearly di↵erent from that of

the �rssB strain. This suggests that the rate of aging is inherent to the genotype of

the general stress response, further confirming the titular hypothesis of this chapter.

Whether the di↵erent intercepts of the two wildtype strains, i.e. proportional hazard

di↵erences, can be attributable to the few background mutations between the two strains,

requires further studies.

Figure 4.6: Cumulative hazard rates (Nelson-Aalen estimator) of MG1655 wildtype
strain compared to two Keio collection strains. The Keio collection is based on strain
BW25113, which is a strain of E.coli K-12, as is MG1655. The two wildtype strains
follow similar Gompertz slopes. �rssB is shown for comparison. The di↵erent initial
cumulative hazards does not indicate true biological di↵erences, but are results from
the di↵erent number of deaths in the first 15h, which came from the initial shock of cell
loading. Data shown are from vertical mother machine carbon starvation experiments,
and for the two Keio collection strains are the same as those strains in Figure 4.5.

4.4 Conclusion

Here, I have shown that by using the vertical version of the mother machine, we can

measure the rate of aging with high quality lifespan data. The lifespan distributions of

general stress response pathway mutants have shown that the general stress response

prolong cellular lifespan by decreasing the rate of aging. Because the benefit of decreased

rate of aging is mostly seen at older ages, i.e. further into starvation, the general
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stress response should be considered not just a protection mechanism against immediate

stresses, but also as a hedge against time spent in starvation. This observation have

important implications for understanding the physiological and evolutionary role of the

general stress response.



Chapter 5

Physiological and evolutionary

trade-o↵s of the general stress

response

In the previous two chapters, I have presented experimental results on both the individ-

ual and population level, indicating that the general stress response in E.coli decreases

the rate of aging at the expense of growth potentials. The main qualitative conclusions

from these experiments are:

• In carbon starvation, E.coli cells have significant individual variations in the man-

ner and timing of death;

• The lifespans of E.coli cells in carbon starvation exhibit distributions typical of

aging processes;

• At the expense of growth potentials, the general stress response promotes long-

term survival in starvation through decreasing the rate of aging;

• The trade-o↵s between long-term maintenance and short-term growth persist on

both the population and individual level.

In this chapter, in order to quantify the overall fitness impacts of the general stress

response and understand the selective forces driving the evolution of this pathway, I

42
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present a physiological model integrating some of these empirical observations with the

well understood bacterial physiology of growth. In the model, I represent the phenotypes

of the cells with two proteome sectors, one in charge of growth and the other in charge

of maintenance. While the environment controls the overall energy budget of the cells,

through adjusting the synthesis rates of the two proteome sectors, the genome could

strategically adjust the ratio between growth and maintenance investments. Given en-

vironmental histories typically consisted of both feast and famine phases, the fitness of

a particular genotype is defined and calculated as the long-term population growth rate.

I will attempt to use this model to explain some of my experimental observations and

those reported the the literature regarding the evolution of the general stress response

pathway.

5.1 Distinction between aging and death suggests vitality-

based mortality models

The qualitative observations of the PI dynamics described in Chapter 3 suggest that the

physiological processes underlie aging and cell death are on di↵erent timescales. The

aging process is characterised by the Gompertz slope, i.e. the exponential exponent

of the mortality risk increase; while the dying process is characterised by the variable

timescales of PI dynamics indicated by the CWT analysis, reflecting the di↵erent ways

cells lose their membrane potentials. Although we do not know definitively the bio-

chemical natures of aging and death under starvation, the di↵erent timescales suggest

that they might be distinct processes. Genetic results in Chapter 4, where the rate of

aging can be altered by mutations, are consistent with the distinction between aging

and death.

The distinction between aging and death has significant implications for modelling the

aging process. A large class of aging models sometimes called ‘redundancy theory

of aging’ assumes that aging is a stochastic damage accumulation process ending in

death (Gavrilov & Gavrilova, 2001; Weitz & Fraser, 2001). They tend to have only one

timescale, i.e. the timescale of damage accumulation or redundancy reduction. In the

case of my results on E.coli carbon starvation, aging might still be due to ‘redundancy

reduction’, but there are at least two timescales associated with a slower cumulative
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aging process and faster mortality processes. While the mortality process is clearly

stochastic, the aging process could very well be deterministic.

Strehler & Mildvan (1960), in trying to explain the Gompertz law for human populations,

proposed an aging model with exactly these features. They proposed both a linearly

declining ‘vitality’ as the driving dynamic variable behind aging, and a memory-less

mortality model. The mortality model simply compares ‘vitality’ with stochastic chal-

lenges characterised by Maxwell-Boltzmann distributions: the likelihood of death at a

given age equals to the proportion of challenges bigger than the current ‘vitality’. While

the assumptions of Maxwell-Boltzmann distribution and linearity of ‘vitality’ decline

of Strehler & Mildvan (1960) do not have to be true for E.coli carbon starvation, the

general framework seems to fit my empirical observations.

While it is hard to directly identify physiological basis or biomarkers for ‘vitality’ in

humans and most model organisms, it is not far fetched to presume that vitality is as-

sociated with depletion of energy reserves in the case of E.coli carbon starvation. While

more experimental evidences are needed to confirm this hypothesis, it leads to a relatively

complete picture connecting the physiology of starving E.coli cells to the exponential in-

crease in mortality risks characterised by the Gompertz distribution. It has already been

shown experimentally that starving E.coli cells continuously synthesise proteins (Gefen

et al., 2014) from energy and nutrients reserves. The energy and nutrients reserves are

in the forms of recycled amino acids from degraded proteins (Kuroda et al., 2001), thus

relate to the overall biomass of cells. The eventual depletion of resources will lead to a

reduction of the number of functional proteins inside the cell. Zhang et al. (2012) proves

that in certain simple stochastic models, mortality risks defined as the inverse of mean

first passage time scale exponentially with system size. If this model applies to E.coli,

the overall mortality risks scale exponentially with the biomass of starving cells, while

di↵erent pathways of cell death could still exist. The general stress response decreases

the rate of aging by decreasing the rate of biomass and resource depletion. We could

test this hypothesis experimentally by examining the rate of aging when the cells are

exposed to weak decouplers, which decrease the oxidative-phosphorylation e�ciency and

increase the respiratory rate.

The connection between resource depletions and mortality increases is an interesting
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subject worth further experimental investigations, but it is not necessary for the pur-

pose of building a toy model to understand the overall fitness trade-o↵s. After all,

phenomenologically we already have the lifespan distributions and the accelerated life

model through which the general stress response modulate these distributions. They

already allow me to calculate long-term fitness in the next section. But still, the concep-

tual link between energy reserve depletions and mortality rate increases lends itself very

well to the resource trade-o↵ hypothesis. In the model described in the next section, we

could easily translate the accelerated life model of general stress response to the speed

of energy consumption.

5.2 Modelling E.coli life-history trade-o↵s by two proteome

sectors

The basic trade-o↵ that starving E.coli cells face is where to invest the limited ener-

gy/nutrients reserves. On one hand, the general stress response decreases the rate of

aging thus the chance of long-term survival; On the other hand, investing in the general

stress response does not help the cells in immediate terms and decreases the availability

of resources for other purposes such as metabolising alternative nutrients available in

the environment. The strategies that E.coli cells could theoretically adopt are on the

conservative end a ‘sit-and-preserve’ strategy of high general stress response, or a risky

exploratory growth strategy of low general stress response. The latter strategy is one

adopted by the GASP strains. The fitness and optimality of the di↵erent strategies

depend on environmental parameters, such as the length of starvation or availabilities

of alternative resources. In this section I present a toy model following this outline.

The model considers the energy budget of the cell, consisted of J+, the energy income

flow, and J

�, the energy out flow or the energetic cost of living. When J

+ is bigger than

J

�, i.e. the conditions are favourable for growth, the energy surplus is consumed by

protein synthesis; when J

+ is smaller than J

�, the energy deficit is paid by autophagy,

i.e. amino acids catabolism supplied by protein degradation. We consider two types

of proteins: vegetative proteins D, and maintenance proteins S. The total amount of

protein in the cell is P , while the amount of D and S are P

D

and P

S

.
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The connection between vegetative protein synthesis and bacterial growth rate is well un-

derstood quantitatively in the literature (Scott et al., 2010). In this model, the function

of vegetative proteins, Ds, are to generate energy income through catabolising nutrients

in the environment. We have:

J

+ = �prod

E/P

· P
D

· q(env), (5.1)

where �prod

E/P

is the rate constant of energy production due to enzymatic activities of D,

and q(env) is the quality of energy production substrate controlled by the environment,

with q(env) = 0 indicating complete energy starvation and q(env) = 1 indicating the

availability of the best energy source (usually glucose).

On the other hand, resource depletion in starvation is represented by J

�. As I mentioned

at the end of last section, vitality-based mortality models connect J

� with the aging

process described by the increasing likelihood of cell death, i.e. the Gompertz slope. And

since we know from Chapter 4 that the general stress response decreases the Gompertz

slope, I assume that the function of S protein in the model is to decrease J

�. We can

also infer that J

� scale with P . Since we do not know the exact functional form of

J

�(P
S

), let us make the simplest assumption for now. Therefore, we have:

J

� = f(P � P

S

) = �maint

E/P

· P
D

, (5.2)

where �maint

E/P

is the rate constant of maintenance energy needed for protein D.

Now, at steady states, the specific growth rate of the bacterial population is:

µ ⌘ Ṗ

P

=
(J+ � J

�)Y
P/E

P

(5.3)

=
(P

D

�prod

E/P

q(env)� P

D

�maint

E/P

)Y
P/E

P

(5.4)

= p

D

(�prod

E/P

q(env)� �maint

E/P

)Y
P/E

, (5.5)

where Y

P/E

is the protein synthesis yield per unit of energy, and p

D

is defined as the

proportion of D proteins: p

D

⌘ PD
P

. p

D

is controlled by the sigma factor competition

between RpoS and RpoD (Nyström, 2004).
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Interestingly, p
D

scale linearly with the absolute value of specific growth rate under these

assumptions. In a cyclic environment with feast (�prod

E/P

q(env)� �maint

E/P

> 0) and famine

(�prod

E/P

q(env)��maint

E/P

< 0 ) phases, p
D

essentially plays the role of time accelerator. This

reminds us the results in Chapter 4: p

S

⌘ 1 � p

D

decrease the rate of aging through

accelerated life model, in which p

S

plays the role of time decelerator.

5.3 General stress response evolution is shaped by the

trade-o↵ represented by the model

Wildtype E.coli cells employ a complex signal transduction network to determine the

outcome of this competition between RpoS and RpoD. Through adjusting p

D

, the sig-

nalling network controls both the phenotype of the cells and their current strategy in

the maintenance-growth trade-o↵.

If the signalling network controlling sigma competition is understood, we could define

p

D

as either constants or functions of some environmental or physiological states. Abso-

lute fitness could be calculated as the long-term population growth rate given a certain

environmental regime such as constant growth, constant starvation or alternative cycles

of growth and starvation. Relative fitness could be calculated by comparing the popula-

tions of di↵erent genotypes. These fitness measures could be either analytically derived

if environments are simple enough, or determined by numerical simulations under any

given environmental histories.

The simulation of evolutionary dynamics is outside of the scope of this thesis. Here I

list the following non-trivial empirical observations from this study and the literature

that can be directly tested by simulating the evolutionary dynamics:

• When external resources are unavailable, cells that elongate more tend to die

earlier, unless they are able to reach cell division (see Chapter 3);

• Long-term population increases select for aggressive growth strategies charac-

terised by higher p
D

while long-term population decline selects for the conservative

strategies characterised by low p

D

(Maharjan et al., 2006; Vulic & Kolter, 2001);

• Growths in lower quality nutrients generate higher selective pressures for high p

D

,

i.e. stronger selection for GASP phenotypes (King et al., 2004);
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• Higher external stresses in long-term growth select for higher p

D

. (Zhang et al.,

1998).

5.4 Conclusions

Through quantifying the e↵ects on life-history traits, I showed that the general stress

response is a microbial example of caloric-restriction induced longevity. The basic as-

sumptions of the disposable soma theory of aging are shown to be true, in the case

of E.coli carbon starvation. I integrated the physiologies of E.coli starvation with the

evolutionary theories of aging into a simple model, and provided some testable predic-

tions from my experimental results and the literature. Through this model, the selective

forces associated with the evolution of aging rates can be thoroughly understood. Al-

though the physiological causes of aging might not be the same in other model organisms

and human, this study have provided an example of how a course-grained physiological

model could provide the basis for understanding the origins of evolutionary trade-o↵s

and their roles in shaping the evolution of aging and longevity..
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Abstract

High-throughput longitudinally measurements of single cells by automated time-lapse

microscopy, combined with dynamic system modelling, have in recent decades advanced

our understanding of microbial physiology, such as cell size control, gene expression and

regulation, sub-cellular organisation and organelle dynamics, development and cell fate

decision. However, the sheer large numbers of cells resulting from exponential growth

often limits both the experimental duration and numbers of single cells quantified. To

address these issues, microfluidic devices are specifically designed to spatially track and

align single cells or lineages of cells. In this chapter, we use the example of tracking

Escherichia coli (E.coli) cells in mother machines to introduce methods and potential

issues in the design, execution and image analysis of such experiments. For experimental

design, we highlight microfluidic and time-lapse microscopy considerations important for

the successful interfacing between the two technologies and for obtaining easily quantifi-

able images. Then we provided typical protocols in executing such experiments. Finally,

we devote a large portion of this chapter to introduce image analysis methods automat-

ing the segmentation, tracking and quantification of cell images obtained from mother

machine experiments.

Keywords: Time-lapse microscopy, microfluidic cell culture, single cell life-history, mother

machine, image analysis automation
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A.1 Introduction

Quantitative longitudinal measurements of single cells by time-lapse microscopy have

been a popular technique in systems biology and microbial physiology in recent decades.

Studies employing these types of experiments have advanced our understanding of cell

size control (Campos et al., 2014; Taheri-Araghi et al., 2015), gene expression and regu-

lation (Cai et al., 2008; Golding et al., 2005; Locke et al., 2011), sub-cellular organisation

and organelle dynamics (Babic et al., 2008; Parry et al., 2014), cell fate determination

(Suel et al., 2006).

However, the exponential nature of microbial growth often limits the number of gen-

erations cells can be followed through microscopy. For instance, in experiments where

micro-colonies are followed, as the single layers of cells are expanding exponentially over

time, tension and friction between cells inevitably push them into multiple layers. Fur-

thermore, the post-experimental image analysis process limits the number of cells whose

relevant traits can be quantified. In each image frame, cells have to be segmented from

each other. The same cells and their progenies have to be tracked through consecu-

tive frames to form lineages. Consequently, the data generated from a single overnight

experiment could take weeks to analyse.

These experimental constraints could be overcome by the applications of microfluidic

devices specifically designed to spatially isolate and align single cells or lineages of cells.

Examples of such devices are the mother machine, designed to track old pole cells and

their immediate progenies of coliform bacteria (Wang et al., 2010b), and U-shaped traps

(Nagarajan et al., 2014; Rowat et al., 2009) designed to isolate mother cells of budding

yeasts. These devices contain geometrically fitting microstructures to restrict cells to

spatially regular patterns. These geometrical restrictions greatly facilitate the tasks of

image analysis. In addition, constant microfluidic flows remove most of the newborn cells

and focus the analyses on constant numbers of cells within ever-expanding populations.

This chapter aims to use the example of tracking E.coli cells in a device known as the

mother machine to demonstrate the general principles of such spatially structured micro-

bial time-lapse microscopy experiments. We introduce common methods and potential

issues in the design, execution and image analysis of such experiments. Since such exper-

iments involve micro-fabrication, microscopic, microfluidic and image analysis methods,
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each of which could be covered in their own chapters, we chose to focus this chapter on

the interplay between them.

A.2 Experimental designs

A.2.1 General principles of the mother machine

The mother machine is a good example of microfluidic devices used to isolate and align

single bacterial cells in microscopic studies. It was originally designed to track the

old pole cells of elongating and dividing lineages of E.coli, hence the name. Due to its

simplicity of design, ease of use and the ability to track single cells for up to one hundred

and fifty generations, its use spreads quickly and has been successfully used to culture

and study coliform bacteria such as Escherichia coli and Bacillus subtilis (Norman et al.,

2013; Wang et al., 2010b).

The general principle of the mother machine is very simple: an array of single-cell-

wide channels with dead ends on one side, and a much larger main flow channel on

the other supplying fresh medium and removing newborn cells. After cells are loaded

into the dead-end channels and fed with fresh medium, they grow into one-dimensional

‘colonies’. Once the dead-end channels are completely filled, cells on the open side of

the colony will be pushed into the main flow channel and washed away, as shown in

Figure A.1a. By constantly supplying fresh medium through the main channel, the

growth conditions reach steady states quickly and can be kept in the exponential regime

for hundreds of generations (Wang et al., 2010b). In these conditions, the dead end

channels contain the inner most cells of the whole lineage, i.e. the mother cells and their

immediate progenies.
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Figure A.1: The general principle and design variations of the mother machine.
Shown are the 3D cartoons (a,c) of two variants of the mother machine. Cells are
trapped inside dead end channels, and are growing as 1D colonies. Extra cells are
pushed outside the dead end channels and removed by the flow in the main channel.
The arrays of dead end channels are aligned either horizontally (a) or vertically (c) to
the imaging plain. (b,d) are actual fluorescent images of these devices containing cells
of E.coli constitutively expressing a variant of mVenus (shown in green). They are also
exposed to propidium iodide in the medium, whose fluorescence (shown in red) is an
indicator of cell death.

The obvious benefit of using the mother machine is that cells could be followed for

days in exponential growth, without either change in media conditions or obscuration

due to over-crowding. This type of long term longitudinal data could very useful if

the phenomena of interests are rare or takes more than 10 generations to develop, such

as ageing (Wang et al., 2010b) and stochastic developmental decisions (Norman et al.,

2013). Another feature of the mother machine and similar microfluidic systems is the

ability to easily and quickly shift culturing conditions. Coupled with time-lapse mi-

croscopy, single-cell level dynamic behaviour in physiology and gene expression can be

easily observed (Izard et al., 2015).

One advantage of the mother machine we find especially relevant for this chapter is the

fixed locations and geometry of cells and colonies within the mother machine. Instead

of having to segment and track hundreds of individual cells from crowded and moving

2D colonies (Ni et al., 2012), one only need to identify cell divisions and boundaries

between cells in one dimension. This made image processing much simpler by reducing

manual intervention and error correction, and improving the quantification throughput

from time-lapse movies.

The rest of this section discusses in turn the design considerations of both the mother

machine itself, and time-lapse imaging process. The next section will demonstrate the
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operational procedure of mother machine time-lapse experiment using our experimental

protocol. The last section is dedicated to the image analysis methods of these experi-

ments.

A.2.2 Device design considerations

With a number of reasons for applying the mother machine to time-lapse experiments,

the specific objectives of the study determine the exact designs and dimensions of the

mother machine itself. The first design question to ask is that, in an exponentially

expanding lineage of cells, which population does the experimentalist want to observe?

Since the original mother machines will only trap the old pole cells and their immediate

progenies, one has to consider whether tracking this sub-population will either serve

the objectives or bias the conclusions. If the objective calls for tracking di↵erent sub-

populations, the basic design of the mother machine has to be altered, for example by

opening up the dead ends by connecting them to another channel.

Once the question of which cells within the exponential lineages settled, the second

design decision involves the question of how many cells to follow and the length of the

dead end channels. Dynamic physiological and developmental events often span multiple

generations (Izard et al., 2015; Norman et al., 2013), and sometimes correlations between

the cousins rather than immediate progeny have to be examined (Hilfinger & Paulsson,

2015). For time-lapse experiments designed to measure these phenomena, the tracked

sub-population has to include every individual within several generations. This requires

the dead end channels to be longer than L⇥ 2N , where L is the average length of cells,

and N is the number of generations needed to be followed.

The length of dead end channels is limited by two factors. The first is the heterogeneity

of the growth conditions along the length of dead end channels. The small cross-sectional

area within the channel may limit the di↵usion of the media, and waste resulting from

metabolic activity may accumulate. A variation of the original mother machine designed

to relieve the di↵usion problems (Norman et al., 2013), involves the enlargement of the

upper halves of the dead end channels. The other limiting factor is the surface friction

between cells and the device itself, caused by growth and cell displacement. Since one

end of the one-dimensional colony is spatially fixed, the other end has to be displaced

at a velocity proportional to the total length of the colony and average growth rate.
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This friction may cause the misalignment of colonies in a way that is counter-productive

to the image analysis process. Thus the dead end channels should not be longer than

necessary. Depending on the requirements of the experiments, growth homogeneity and

the correct colony alignment needs to be confirmed experimentally (Wang et al., 2010b).

The width of dead end channels is also important in aligning the cells in ways that are

convenient for image analysis and quantification. Specifically, if the dead end channels

are significantly wider than the cells in the intended culture conditions, the friction men-

tioned above may push neighbouring cells into overlapping configurations. Irrespective

of whether the overlap is perpendicular to the imaging plain or along the imaging plane,

as is the case in Figure A.2, it would significantly complicate the segmentation step in

image analysis. Obviously, the dead end channels should not be too small such as to pre-

vent the cells from entering them. The best approach for determining the correct width

of the dead end channels would be to first measure accurately the cell width under the

intended culture conditions, micro-fabricate a series of mother machines with a range of

dead end channel widths at or around that the measured cell width, and then determine

experimentally those with the most suitable width, as described in Section A.3.
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Figure A.2: Phase-contrast image of the dead end channels of a mother machine filled
with narrower E.coli cells. Due to the disparities between the widths of the cell and
the dead end channels, the bacterial cells are misaligned and might cause segmentation
problems in image analysis.

Last but not the least, di↵erent layouts of the main flow channels and dead end channels

allows for either multiplexing of independent experiments, or increasing of population

size in a single device, depending of course on the requirements of the experiment. For

multiplexing, the standard approach of having identical units of main channels lying

parallel to each other is su�ce. This allows independent microfluidic experiments and

culture populations be recorded in the same device and time-lapse microscopy session.

For increased population size, Figures A.1c and A.1d demonstrate a variant of the

mother machine, where dead end channels are aligned vertically to the imaging plane

and the main flow channel lies on top. This configuration increases the number of cells

that can be monitored in a single field of view at the cost of lineage information, and is

used in our laboratory to study E.coli mother cell lifespan distributions.

A.2.3 Time-lapse considerations

In general, time-lapse microscopy can be conducted on mother machines or similar mi-

crofluidic devices without major alterations or additional equipment. We conducted all

of our mother machine experiments on conventional inverted epifluorescence microscopes

from major commercial brands. Besides the microscopes and illumination sources, our

platforms are fitted with temperature control chambers, motorised and automatically

controlled stage and focusing, fluorescent filter wheels and shutters, and CCDs. The

systems are managed by commercial microscope automation software such as Meta-

Morph® installed on dedicated PCs. Yet, when the mother machine is employed, the

time-lapse experiments are usually designed to last over very long durations. To achieve
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the best results, certain aspects of time-lapse microscopy need to be specially considered

during the design process.

An inherent trade-o↵ for multi-positional time-lapse microscopy is between sample size

and time resolution. This trade-o↵ can be expressed as:

k

pos

=
N

sample

hni 6 Tint

ht
img

i ,

Where Tint is the imaging interval, ht
img

i is average time of moving to, focusing and

imaging one position, hni is average number of cells or lineages per position, N
sample

is

the total sample size, and k

pos

is the number of imaging positions.

For quantitative experiments aiming to measure dynamic variables such as growth rate

and promoter activity, Tint should be much shorter than the mean generation time. Even

if these measurements are not required, it is necessary to have a minimum of 4 frames per

division time in order to correctly track and segment cells. This poses an upper boundary

for Tint. And since N

sample

is determined by the feature layout in a microfluidic device

and cell loading e�ciency, the maximum Tint also set upper boundaries for k

pos

and

N

sample

. Before recording the imaging positions and starting the time-lapse loop, the

experimentalist should estimate ht
img

i and hni experimentally and set an appropriate

k

pos

and Tint regime to achieve appropriate sample size. If appropriate N

sample

values

cannot be met, aspects of the experiment need to be changed, for example by increasing

loading e�ciency or shortening the focusing and imaging procedure at each position. In

order to maximise overall sample size, it is important to minimise imaging time at each

position and only use complex focusing procedures when required, as we will discuss

next.

Microfluidic devices, including the mother machine often complicate the focusing pro-

cedures of automatic time-lapse microscopy. This is because the system has to auto-

matically identify the cells within the device among multiple material interfaces and

micro-fabricated structures. Software-based auto-focusing methods such as those max-

imising image contrasts may fail because they choose larger and more salient device

structures rather than the cells. This problem can be avoided by using hardware-based

methods such as PFS from Nikon or Definite Focus from Zeiss, which use LEDs to track

the bottom of the device. However, these systems often require manual resetting when
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the stage travels large distances and outside their narrow operational z-ranges. In our

experience, the most robust and e�cient approach is to use software-based auto-focusing

as a complement to LED-based systems: when they report out-of-range errors, we use

contrast maximisation to locate the narrow z-range in which both the micro-fabricated

structures and cells are positioned, thus automatically moving the focus to within the

operational range of the hardware systems. This approach can be automated with scripts

in MetaMorph® or other microscope automation software packages.

A.3 Experimental procedures

In this section, we present our experimental procedures for setting up E.coli mother

machine experiments for inverted fluorescence microscopy. This protocol is one that is

used routinely by non-specialists in our laboratory. The protocols for these types of

experiments are necessarily complex, consisting of several phases, including the prepa-

ration of the mother machine, cell cultures, fluidic systems and time-lapse microscopy.

Instead of detailing every possible alternative method for each phase of the protocol, we

leave the detailed discussions of each phase to specialists. We hope to demonstrate the

general process of the experiments with an emphasis on their successful integration.

A.3.1 Making polydimethylsiloxane (PDMS) mother machine devices

We use a soft-lithography approach to fabricate our devices, by casting PDMS structures

out of pre-fabricated master negatives on silicon wafers. The lithography methods used

to fabricate these master negatives are outside the scope of this chapter. We only want

to emphasise that the choice among di↵erent lithography methods depends on the degree

of precision required to manufacture the dead end channels, which in turn depends on

natural variations of cell morphologies.

To cast PDMS layers out of the master negatives, we pour uncured PDMS mixes onto

the wafers, de-gas, spread out with either gravity (in case of mm-level design thickness)

or spin-coating (in case of µm-level design thickness), partially cure with heat. We cut

out the PDMS slabs with the micro-fabricated area from this partially cured PDMS,

and separate it from the wafer. To provide fluidic inlets and outlets for the main fluidic

channels we punch holes in the PDMS slabs with 22-gauge Luer Stubs, entering from
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the front side where the ends of the main channels are located, and exiting through the

backside of slabs. 25 gauge Luer Stubs are used to remove any PDMS dust particles

from the inlets and outlets. Then PDMS layers are bounded with each other or onto

cover glasses after both surfaces are treated by room air plasma for 90s. The bounded

device is then immediately fully cured at 80 � overnight. These soft-lithography steps

should be done in a clean room or at least in an equivalent compartment in which the

air has been cleaned by HEPA filters.

Before mother machines can be used in cell culturing experiments, two types of surface

treatment may be necessary. First, due to the small dimensions of the dead end channels,

the naturally hydrophobic PDMS surfaces need to be made temporarily hydrophilic to

enable the channels to be wetted. Secondly, the main channel surfaces need to be

modified to prevent bacterial adhesion and biofilm growth. To achieve both ends, we

treat the devices with room air plasma for 90s and then immediately inject a wetting

solution consisting of the cell culture bu↵er (in our case M9 base medium) and 1.5%

polyethylene glycol 400 (PEG 400). Depending on the applications, surfactants such as

polysorbate 20 (Tween® 20) can also be added to the wetting solution. As a general

rule, before injecting any solutions into the device, including the wetting solution, they

need to be pre-filtered to prevent blockage by dust particles or crystal sediments. Before

it can be loaded with cells, the device needs to be treated by the wetting solution for at

least 30min by maintaining a flow rate of at least 0.2ml per hour.

A.3.2 Setting up the fluidic system

We use pulseless syringe pumps with high-precision stepper motors to drive our fluidic

systems. Since most of the mother machine applications only require infusions at con-

stant flow rates, pulseless syringe pumps are chosen for their simplicity over alternative

solutions such as pressure-based flow control systems. Peristaltic pumps should not be

used due to their lack of precision and tendency to generate flow pulses.

To prepare the flow system, we first fill several syringes with the required culture media.

If non-covalent surface modifying molecules such as PEG 400 or Tween® 20 are used

in the wetting solution, they should also be added to the culture media to the same

concentrations. The media should be filter-sterilised before being loaded into sterile

syringes. After the syringes are filled, we also cap them with sterile 0.2 µm syringe filters
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to prevent cross contamination before adding 23-gauge blunt end needles for insertion

into tubing. We then load all syringes onto syringe pumps, and set the pump to the

correct syringe diameters.

We use a semi-flexible thin-walled polytetrafluoroethylene (PTFE) tubing (I.D. X O.D.

= 0,56mm x 1,07 mm) to connect the syringes and the microfluidic devices. Traditional

rigid PTFE tubing is too inflexible to allow the range of motions needed for multi-

positional time-lapse microscopy. Yet, the super-flexible PVC tubing traditionally used

for flexible infusion applications should also be avoided because they have been found

to leach phthalate plasticisers into the media (McDonald et al., 2008), that, in our

laboratory, was found to have physiological e↵ects on the bacteria. Similar semi-flexible

plasticiser-free tubing can also be used, such as TYGON® formulation 2001, can also

be used. 23 gauge metal couplers are used to connect tubing segments to each other and

to the PDMS device.

A.3.3 Cell culture and loading

Cell cultures can be conducted with conventional methods. Because of their physiolog-

ical and morphological homogeneity, we usually load harvested exponential phase cells

into the mother machine. Successful cell loading requires highly dense cell suspensions,

concentrated at least 1000-fold from exponential phase cultures. We usually start with

50-ml culture volumes per main channel. Since the final cultures will be injected into

the microfluidic device, we usually filter sterilise culture media to remove dust particles.

Once the cultures reach the desired optical densities, cells are harvested by centrifuga-

tion at physiological temperatures. If the medium in the mother machine is di↵erent

from those in exponential cultures, cells should be washed by repeated re-suspension

and centrifugation.

After the last centrifugation step, minimal volumes of filtered media, usually less than 50

µl, should be used to gently re-suspend the cell pellets. Then these dense but homogenous

cell suspension should be injected into the microfluidic device. The main channels are

considered to be completely filled when the cell suspensions are visible in both the inlet

and outlet tubing. After the removal of the inlet and outlet tubing and couplers, the

device is ready for cell loading by centrifugation. The device should be secured to

the centrifuge rotors with the dead end channels pointing towards the direction of the
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centrifugal force. In the original mother machine design, cell loading can be done with

15min centrifugation at 200 x g.

Successful cell loading should be confirmed by microscopy. In the ideal case, more than

80% of the dead end channels should be each filled with at least one cell. If loading is

unsuccessful, a mother machine with wider dead ends may be required. If loading is

successful, cell suspensions left in the main channel should be washed away immediately

to avoid cell adhesion and biofilm formation. In our experience, this is done most

e�ciently by manually injecting and passing 4–6 small air packets quickly through each

of the main channels. The water-to-air surfaces of the air packets are mostly responsible

for removing the cells from the surfaces of the main channels. Passing each air packet

should be done in seconds to avoid cells inside the dead end channels from drying.

A.3.4 Microfluidic and time-lapse setup

The last steps of the protocol involve immobilising the microfluidic device on to the

microscope stage while connecting to the fluidic system. We use scotch tape to fix both

the microfluidic device and inlet/outlet tubing onto the microscopy stage adapters, either

supplied by the microscope manufactures or custom made. Then we connect the inlet

tubing with the syringe pumps, and outlet tubing to waste collection. Immediately after,

we start media infusion at a high flow rate, usually 2ml per hour but depending on the

resistance of the device, to eliminate air packets that formed at the tubing connection

sites. Once all media inside the device and the tubing are refreshed, flow rate is set to

that required by the in-device cell culture.

Having stabilised the flow system stabilised, the time-lapse microscopy automation cycles

can be started. We use the Multi Dimensional Acquisition module of MetaMorph® to

manage the automation process. Besides the imaging positions where cells of interests

are located, we also add a few positions along the main flow channel to the imaging

queue to monitor the overall condition inside the device.

At this stage, the experiments should be left to run on its own. Both temperature and

flow rate monitoring can be installed and data logged along with the time-lapse images.

The 16-bit images recorded by our CCDs can take up large amount of digital storage
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space. We therefore have written custom scripts to compress them for uploading onto a

centralised data storage facility.

A.4 Image analyses for lineage construction and single-cell

traits

A.4.1 Pre-processing

The goal of image preprocessing is to enhance the visual appearance and improve the

manipulations of the datasets. Microfluidic microscopy images often su↵er from various

di�culties:

• Images may be noisy as a result of limited light intensity;

• Images may su↵er from uneven illumination;

• The cell channels may not be aligned vertically;

• The distance between two channels is unknown

To remove the noise and equalise illumination, we use a Fourier transformation based

band-pass filter on the spectral space to eliminate the unwanted high frequency signals

and flatten the background by filtering out the low frequency signals. Instead of keeping

time frames within ImageJ stacks, dead end channels are cut out of each frame. And

then for each individual dead end channel, frames are displayed chronologically from left

to right on a single image, see Figure A.3. This greatly simplifies the tracking process

and save space for restoring the images. For example, a 500–1000 frame time-lapse movie

of a mother machine with 4 µm between dead end channels can be transformed into 16–

19 images that include only cells within dead-end channels. In order to achieve this, the

exact distance between channels in terms of pixels and the rotation of the channel should

be known. By transforming the edge images obtained by Canny filter (Canny, 1986)

into parameter Hough space (Hough, 1962), the localisations of these lines are defined

parametrically within a distribution of points. The average rotation and distance of

these lines can be easily computed based on the most frequently represented points in

the transformed parameter space. As a result, rotating, cutting and connecting of the

channels can easily be automated.
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Figure A.3: Time-lapse microscopy images automatically rotated and cut into a time
series image.

A.4.2 Segmentation approaches

It is clear that segmentation accuracy directly a↵ects cell tracking. It therefore makes

sense to approach the design of the segmentation method from the point of view of one-

dimensional cell sequences inside dead-end channels: The microfluidic device is simpler

than the 2D micro-colonies, with key information already provided because the cells are

restricted to grow in a vertical channel. This type of structure can help to determine

what methods of segmentation are truly useful compared to those used to segment 2D

microcolonies. With the exemption of simple techniques such as thresholding, segmen-

tation algorithms require the examination of intensity profiles along the centre of the

channel. Based on the type of images that the experiments generate, we will discuss two

di↵erent segmentation approaches for fluorescent or phase-contrast images. Our results

show that the segmentation of fluorescent images can be realised by dilatation-like re-

gion growing process (Primet et al., 2008) and the segmentation of phase-contrast image

can be implemented on an estimated intensity profile. We introduce these very di↵erent

approaches and compare results using experimental data.

A.4.2.1 Phase contrast image

The benefit of segmenting one-dimensional cell sequences is that the segmentation can

be realised by peak detection on the intensity profile. In this way segmentation can act
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to prevent undesirable results. Instead of detecting the peak on the original image’s

intensity profile, it is more useful to apply this peak detector to a more textured image,

defined by structure tensor (Bigün & Granlund, 1987). Its purpose is to replace each

pixel of the image with their eigenvalues within a predefined scale. Thus, the intensity

profile will be extracted from the so-called Eigen image. Figure A.4 clearly shows that

the resulting structures are more remarkable and smooth than the original image. The

original image’s intensity profile caused it to keep a noisy peak and jettison a real

peak, simply because the non-uniformed intensity inside the cell. The robustness of this

method in decreasing false positive peak positions and the e↵ect of noise by Eigen image

has been confirmed experimentally, see Section A.4.4.
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Figure A.4: (a) Original image and (b) structure tensor transformed image. (c)
Representation of the intensity profiles through the original image (blue) and Eigen
image (green).

A.4.2.2 Fluorescent image

The use of fluorescent microscopy provides us additional tools to record the time-lapse

microscopy images. To capture images of cells in microfluidic devices, fluorescent pro-

teins are often expressed so that cells can be detected with much less noise. As a result

it is important to find segmentation method based on such images. One of the most

powerful tools for doing this is to non-uniformly dilate from predefined seed points in

the image and then to recursively add the most similar point as determined by its inten-

sity and geometric distance to the seeds to form labelled regions (Primet et al., 2008).

Our challenge is to discover ways to precisely detect the seed points and support region

growing to each seed points, including using automatic local thresholding methods. Al-

though the simple thresholding method is widely used in defining seeds, it makes no use

of the geometric information present in the image and consequently the results are lim-

ited. Therefore, we need to carefully reconstruct the seed points’ detector from observed

cell intensity distribution. In the method developed by Aguet and colleagues (Aguet

et al., 2013), the point-spread function model is used to configure the statistical p-value

of the estimated intensity and the background noise and, as a result, the significance

of each candidate signal, detection sensitivity and selectivity are improved over existing

single-molecule detection methods. In the fluorescent image shown in Figure A.5, the

cell intensity distribution function is an approximate Gaussian function and the cell
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intensity profile follows a Gaussian distribution. As a result, cell intensity can be ap-

proximated by the sum of estimated Gaussian amplitude, the background intensity and

the noise, as described in (Aguet et al., 2013).
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Figure A.5: An example of the intensity profile through a selected cell. The fitted
curve is performed by an approximation of Gaussian function. The most statistically
significant pixels (seed points) are selected by performing a one-sided, two-sample t-test
of the fitted amplitude and the noise, estimated by the residual sum of squares (RSS).
The right image presents the mask of the seed points that are defined as m [k] := p [k] <
↵, as described in (Aguet et al., 2013).

A.4.3 Lineage approaches

For time-lapse microscopy images, the most important biological information is the life-

histories of individual cells, e.g. cell lineages captured through either manual observation

or image analysis. After each imaging interval, a cell in the previous frame normally

ends up in two states, cell continuation C ! and cell division C%, each of which needs to

be defined as an assignment mapping of a cell at time t and t+1 (Figure A.6). Because

of the design of the mother machine, a third cell state C #, is marked to indicate that

either a cell is pushed o↵ due to the growth of other cells or a cell without any ancestor

or descendant. In addition, it is also possible for a cell to explode and disappear; in this

case a virtual cell C
v

is used to replace the invisible cell to avoid tracking errors. In this

section, we will discuss the three main steps for building cell lineage, (1) cell tracking,

(2) tracking error detection and (3) semi-automatic error correction.
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Figure A.6: Cell lineage expressed by linked arrows assigned to cell segmentation
calls. The protocol for tracking cells is the same for the phase-contrast and fluorescent
images, and therefore no additional segmentation information is needed.

A.4.3.1 Cell tracking

To determine the life-history of a cell from the first generation until its ultimate fate,

cell tracking is required to quantify cell behaviour. Tracking considered as an assign-

ment model (Jiang et al., 2007), has been studied widely and transformed as a problem

of global optimisation. Instead of giving a definite segmentation of a cell, Jug and

colleagues consider all possible combinations of over-segmentations (Jug et al., 2014).

Based on certain physical and geometrical penalties, the most plausible segmentation

was chosen via linear programming optimisation, with several constraints related to the

simple biology of the system. However, the definition of the penalty, which is at a low

level, is incomplete and has developed rather arbitrarily. Moreover, since the intensity

profile is often determined on the basis of noisy un-delineaged noisy images (Figure A.4),

there is a high risk that the hypothesis of the combined segmentations at the first stage

is incomplete. In our work, we are primarily concerned with expressing the tracking

observations in a concise assignment hypothesis due to the high accuracy of the seg-

mentation process. 1, C
a(t) ! C

b(t+1) (continuation): If cell C
a(t) has an ancestor and

has not assigned a descendant, meanwhile, if C
b(t+1) has not yet an ancestor and if size

of C
a(t) < �1C

b(t+1) , then C

b(t+1) is assigned as C
a(t)’s descendant, and similarly C

a(t)

is assigned as C

b(t+1)’s ancestor. In our experience, �1 is a fixed value that is slightly

bigger than 1 (�1 = 1.055), since some cells gradually shrink, especially when starved.
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In cases where the size of C
b(t+1) is beyond the size of �2C

a(t) (�2 = 1.6), then C

b(t+1)

will be assigned also as the descendant of the bottom cell (named C

a bottom(t) if existed)

if and only if the size of C
a(t)+ C

a bottom(t) < 1.2 C

b(t+1). By mapping C

b(t+1) as descen-

dants twice, this assignment reflects an error in segmentation. We use Random Forest

discussed in the next section to detect this kind of error. 2, C
a(t) % C

b(t+1) (division): If

cell C
a(t) has an ancestor and has not been assigned a descendant , meanwhile, if C

b(t+1)

has not yet an ancestor and if size of C
a(t) > �1C

b(t+1), then C

b(t+1) is assigned as C
a(t)’s

daughter cell, C
a(t) is assigned as C

b(t+1)’s ancestor. In the case where C

b(t+1)’s bottom

cell existed (named C

b bottom(t+1)) and its size is 1.55C
a(t) < C

b(t+1)+ C

b bottom(t+1), then

C

b bottom(t+1) is assigned as C
a(t)’s younger daughter. Ca(t) is assigned as C

b bottom(t+1)’s

ancestor as well. 3, C #: If from step 1 to 2 the cell is not assigned an ancestor nor a

descendant. C
v

is assigned to the descendant of the cell if the actual cell has no overlap

with the previous cell.

These are e↵ective assignment definitions, not only because the parameters are easy to

set up, but more importantly because they provide more visual and easy-to-comprehend

feedback to users. Because these assignment definitions remain largely independent of

the cell’s image content (either phase-contrast or fluorescence) it connects, the segmen-

tation and tracking error detection processes can be performed without requiring the

presence of the original images. We will discuss the error detection and correction in

the next sections.

A.4.3.2 Error detection

The graphics with which cells are connected, in some respects, can influence the iden-

tification of segmentation errors: cell-tracking with visible linkages such as arrows in-

tuitively reveals the segmentation errors more than the unmarked cells. Nevertheless,

to help discriminate between the correct and wrong segmentations based on these link-

ages, far more e↵orts needs to be taken. In our work, we make use of a Random Forest

classification method of (Ho, 1995) to train a classifier of segmentations with respect to

its high accuracy and e�ciency. By learning the relevant segmentation and tracking in-

formation from manually curated training images, Random Forest repeatedly generates

decision trees, from bagging to Random Forests, to categorise segmentations based on

the weighted trees. It then uses the “majority vote” to predict the categories of tracking
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errors. The results showed that the e↵ect of feature selection by the Random Forest was

markedly inferior to traditional classification methods. Despite this, it is more appropri-

ate to only give the algorithm the necessary features, rather than expecting it to learn

to ignore the irrelevant ones. In our work, we have chosen the following measurements

as the key features for the Random Forest. For segmentation: mean, standard devia-

tion, minimum value, maximum value, median, mode. For tracking: estimated growth

rate, presumed growth rate, di↵erence of cell lengths and cell centre coordinates, Fourier

open curve descriptor. For the descriptor, each cell is considered as a training data point

composed of a vector of segmentation and tracking features. For the tracking features,

the coe�cients of Fourier series were used to describe a lineage around a cell that, in

our case, corresponds to an open curve. We adapt the type-P Fourier descriptors using

the slope information (Uesaka, 1984) to achieve the invariance of translation, rotation,

scale and the start point.

The accuracy of this classification on the test data set was assessed in the context of

segmentation classification in Section A.4.4. We show that, in most cases, using only

tracking descriptors provides very good results compared to segmentation features. Once

again, results show that the tracking process helps to detect segmentation errors.

A.4.3.3 Error correction

Our studies have demonstrated a strong connection between the segmentation and track-

ing. Incorrect segmentation always leads to the wrong assignment of cell lineages. Visibly

connecting cells by arrows has greatly increased the detection of segmentation error. In

our work, one solution to automatically correcting of segmentation errors, the voting

mechanism, is discussed below.

Because of the e↵orts we have put into the segmentation step, around 99.5% of the

segmentation calls we make are correct. Incorrect segmentation calls often occur when

the cells have exploded, are out of focus, have low light intensity, or have aggregates

inside. Fortunately, we can use the consensus among the correct segmentation calls

to help correct the wrong segmentation calls by what we call the “voting mechanism”.

The ancestors and descendants of a segmented cell will all be considered as voting

parties. The majority vote taken by this mechanism will decide if the cell is over or

under segmented and this process is illustrated in Figure A.7. The voting mechanism
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benefits from high initial segmentation accuracy so that the participation of correction

segmentation calls in the voting procedure greatly increases the judgement of wrong

segmentation calls.
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Figure A.7: An illustration of the voting mechanism. There are two states of wrong
segmentation calls: oversegmentation and undersegmentation. The voting mechanism
is used to determine which type of segmentation error is more likely to be the case
considering all the evidence present in the time lapse frames, and then correct the
errors accordingly. The voting score is determined by the di↵erence in the number
of descendants and the number of ancestors within the same generation. If the score
equals 0, no action is taken until intervention from the operator. From left to right, the
di↵erence in the voting score is: (3–1) > 0, (1–4-n) < 0 and (1–1) = 0. Therefore the
ancestor of the red segmentation is merged with its bottom cell. The green segmentation
is split into two cells. For the blue segmentation, no correction is taken. The voting
score is computed iteratively because the value will be changed after every correction
process.

A.4.4 Image analysis performances and results

We propose to assess segmentation power and tracking accuracy though two types of

image, phase-contrast and fluorescent. To this end we performed five datasets for each

type of image to evaluate the performance of segmentation and tracking. Each dataset

contains 101–280 images, each image contains 17–19 channels, and each channel contains

4–6 cells. Hence, one position contains at least 101x17x4 (8k) cells. The accuracy of

the segmentation and tracking is computed on these datasets. We will also discuss the

segmentation error detection rate by Random Forest and their correction ability by the

voting mechanism. The software is written as a plugin of ImageJ.

Figure A.8 represents the Recall-Precision curve for di↵erent imaging conditions across

increasing variations of the original image. Each plot corresponds to a Recall-Precision

curve of our segmentation algorithm performed on the image transformed from the

original image. For evaluating the robustness of our algorithms, we manually change

the imaging condition by adding Gaussian noise and Gaussian blur. The segmentation

process labels example cells as either positive or negative. The result can be represented

in a structure as a confusion matrix that has four categories: True positives (TP) are

cell segmentations correctly labelled as positive. True negatives (TN) refer to the wrong

segmentations correctly labelled as negative. False positives (FP) correspond to the
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wrong cell segmentations incorrectly labelled as positive. Finally, the false negatives

(FN) are the good cell segmentations labelled as negative.

Positive Negative

True TP TN
False FP FN

The recall and precision are obtained from the formula Recall = TP

TP+FN

, Precision =

TP

TP+FP

. In our work, we notice that a very high recall rate was obtained even through

very di�cult imaging conditions. This means that the average missed cell segmentations

rate is 0.07%. In addition, the resulting precision rate confirms the high accuracy rate of

cell segmentation recognition. Compared with conventional methods, the results show

that the proposed method has advantages of a high and robust ability to segment cells

correctly, and can be used for the various imaging conditions. For the fluorescence image,

the mean segmentation accuracy is 99.97% tested on five datasets with 361 images. The

background illumination is often non-uniform, so we do not alter the imaging conditions

manually.

Despite the fact that the segmentation process gives a highly correct accuracy rate of

cell recognition, we still get some erroneous segmentation calls due to the noise, uneven

illumination and cell aggregation, and therefore error identification is still necessary.

This step is performed by Random Forest which is extracted from the Application Pro-

gramming Interface (API) of a java machine learning package WEKA (Smith & Frank,

2016). The training feature vector is composed of four tracking descriptor and eight

Fourier coe�cients, as described in the section on error detection. In our work, we use

10% correct segmentations and 30% error segmentations as positive and negative ex-

amples to train Random Forest. We obtained a recall rate of 99.97% and a precision

rate of 99.85%. This means our detection algorithm is able to determine the category

of the extracted features in predicting the segmentation error. Cell segmentation error

correction is implemented by the voting mechanism that allows the neighbouring seg-

mentation to vote for the forthcoming action. In our work, we successfully corrected

71.5% of the segmentation errors.
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Figure A.8: In the graph above, the four Recall-Precision curves represent the per-
formance of our segmentation algorithms. For evaluating algorithm robustness, the
original image was transformed into images with a white Gaussian noise (standard de-
viation from 50 to 70) and into a blurred image with a Gaussian smoothing by scale
2.8. The used dataset contains 101 images with 17 channels. Therefore around 8k
(101x17x5) cells were tested.

A.4.5 Image analysis summary

We have developed an approach for microfluidic bacterial automatic analysis of mi-

croscopy image sequences. This approach starts from preprocessing to the cell recogni-

tion. We use Hough Transform to detect the channel rotation and the internal distance

between two channels. Based on the structure of microfluidic devices, a robust tensor

structure-based segmentation method is used for the segmentation of phase-contrast im-

ages. We also introduce a statistical analysis, based on point spread function (PSF)

to detect the seeds for cell segmentation of fluorescence images. Lineage information

is then put into the learning system. Although a high precision rate of segmentation

was obtained from the proposed method, there is still a need to detect the erroneous

segmentation calls. Using the features of Fourier open curve coe�cients, we successfully

detected cell segmentation errors that were subsequently corrected using a new voting

mechanism algorithm.
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Preventing leachable

contaminants in E. coli carbon

starvation experiments

B.1 Introduction to the problem

B.1.1 Background

Bacteria is mostly well-known among the general audience for their small size, and abil-

ities to metabolise and grow on common nutrients. However, exponential growth is

hardly the mode of existence for bacteria. No matter culturable or not, pathogenic or

commensal, most bacteria’s life-histories are dominated by long periods of starvation

and dispersal. Both the genomes and phenotypic traits of bacteria could not be under-

stood purely in the context of growth. For an organism as well studied as E. coli, a

large percentage of genes in its genome are not well characterised functionally and are

only activated in non-growing conditions. In experimental evolution studies, E. coli mu-

tants with dramatically di↵erent physiology arose in adaptation to continuous growth

in chemostats (Maharjan et al., 2006). These observations suggest that the wildtype

E. coli genome and physiology are shaped by selective forces associated with starvation

and dispersal. If one wishes to learn not only the basic biochemistry and molecular

biology of bacterial growth, but also the subtlety of bacterial physiology, behaviour and

75
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evolution on its own terms, it is crucial to study the starvation an as important part of

bacterial life-history.

Most of our contemporary knowledge of bacterial genetics and physiology came from

exponential growth on high concentrations of nutrients. This bias, in my opinion, does

not originate from intentional agenda on the part of the pioneers of microbiology, but

reside in the practicalities and technologies of experimental investigations of microbial

life. It is the adoption of agar plates and the invention of the chemostat that dominated

the history of microbiology. Indeed, most bacterial species known to human are isolated

because they can be grown on select media in the first place. With exponential growth,

the researchers could control macroscopically the behaviour of the bacterial populations

by changing the most abundant chemical species in the medium, and the steady state

reached during the exponential phase related directly to the traits of the bacteria strain

in question and the media composition. No such convenience is a↵orded to the studies

of bacterial starvation. Most studies of bacteria starvation are done in either stationary

phase batch cultures, or continuous cultures with very low dilution rates. In the case

of stationary phase, no steady states are reached: both the medium and the population

are shifting throughout the process (Zinser & Kolter, 2004). In both batch and continu-

ous cultures, bacterial populations quickly become heterogenous (Maharjan et al., 2006;

Vulic & Kolter, 2001), further complicating any macroscopic analysis that only concern

population averages.

The adoption of microfluidic technology in microbial laboratories o↵er us the tools to

potentially overcome these problems. In particular, the mother machine (Wang et al.,

2010a) present us with an existing tool that can in principle avoid both issues mentioned

above. The continuous flow of fresh medium through the microfluidic chip essentially

maintains steady state environment for the cells inside the chip. In addition, since each

cells are spatially restricted in their own individual compartments, individual cell physi-

ology can be easily tracked and analysed by automated time-lapse microscopy and image

analysis.

Despite these advantages, the application of microfluidic devices to the study of bac-

terial starvation presents its own problems. In the cases of batch cultures, no matter

the chemical integrity and exact compositions of the media, growth arrests are natural

occurring consequences of exponential growth, due to exhaustion of nutrients and accu-

mulation of metabolic wastes. In mother machines, there are no such guaranteed growth
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arrests. By continuously refreshing the media, we subject a small number of cells to a

large volume of media, thus making their metabolism and physiology much more sensi-

tive to trace amounts of chemical in the media. It is thus imperative to maintain the

chemical integrity of media when using mother machines to study bacterial physiology

during starvation.

B.1.2 Leachable contaminants can be used by E. coli as carbon sources

The first indication that the chemical integrity of the culture media might be comprised,

is that even carbon-source-free M9 minimal media can sustain a population of around

106 cells per ml, described in and Figure 2.3 and Section 2.2. In batch cultures, this

background carrying capacity of the media may be overlooked because in most cases

when carbon sources are added, cell density are hundreds to thousands times much

higher.

In typical mother machine experiments, there are at maximum, 2⇥ 104 cells per chan-

nel. If we inject the input media at 2ml per hour, which is the usual rate for growth

experiments, we estimated the e↵ective population density to be much smaller than 106

per ml. This suggests that even without adding carbon sources, if we use the same M9

media used in Figure 2.3 as input media in mother machine experiments, we expect it

to be able to achieve carbon-limited growth using whatever carbon sources present in

the media. This is indeed the case after some testing in mother machine experiments,

shown in the upper panels of Figure B.1, from (A1) to (A6).

B.1.3 Potential sources of carbon-supplying contaminants

Because M9 is a medium bu↵ered by phosphate and is only consisted of inorganic salt,

E. coli can only derive its carbon and energy sources from trace amounts of organics

leached in the media during the media preparation process in our laboratory. It is a well

reported yet often ignored fact that disposable plasticware leach a variety of contam-

inants into the solution that comes into contact with them. (McDonald et al., 2008).

Thus we suspected that it is these leachables that are metabolised by E. coli cells and

used as carbon sources in experiments such as the in the upper panels (A1-A6) in Fig-

ure B.1.

One of the most well-known example of leaching plasticware is plasticiser leaching from
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Figure B.1: Time-lapse phase-contrast images of E. coli cells in mother machines.
(A1-A6) In M9 media without added carbon source prepared with common lab plas-
ticware. (B1-B6) In M9 media without added carbon source prepared with improved
protocol described in this appendix.

flexible disposable PVC (Polyvinyl chloride) tubings, which were used in as the media

inlets and outlets to our microfluidic chip. Relatively large quantities of phthalate plas-

ticisers such as those shown in Figure B.2 are used as additives in order to increase the

flexibility of PVC polymers. Notice the non-polar part the phthalate molecules are con-

sisted of relatively long alkoxy groups, which could serve as energy rich carbon sources

when hydrolysed.

In fact, in order to conveniently prepare and store large volumes of sterile media, a

variety of disposable plasticware are used in contemporary microbiology labs. Additives

similar to phthalate plasticisers could leach from almost every disposable plastic com-

ponents in the media processors. In fact, fatty acids and fatty alcohols esters are chosen

as plasticisers for the physical properties that their long hydrocarbon chains bring to

the composite material. Anything from the polypropylene disposable syringes used to

infuse media, to the polystyrene disposable filter casings that are used to sterilised the

media, even to polypropylene bottle caps that are used to store solutions, could leach

contaminants that can potentially serve as carbon sources for our bacteria. Our goal

is to identify the sources of contamination that serve as carbon sources in our bacte-

ria starvation experiments, find chemically-inert substitutes and eliminate the leaching

material from our protocols.
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Diisodecyl phthalate

Diisononyl phthalate

Di(2-ethylhexyl) phthalate

Figure B.2: Chemical structures of common phthalate plasticisers

B.2 Problem solving strategy

This section of the appendix aims to document my solution of maintaining chemical

integrity in preparation and storage of sterile media and in microfluidic experiments.

The hope is that it is generally applicable to other physiological experiments of bacterial

starvation, not just to the particular work of bacterial aging in this thesis.

Our strategy of solving the leaching problem is essentially one by trial and error. One-

by-one we replaced the components we suspected of leaching carbon-supplying con-

taminants, such as the PVC tubing mentioned in the previous section, with functionally

equivalent alternatives made of chemically inert materials. Finding such alternatives are

not as straight forward as it seems, because chemically inert material usually possess

quite di↵erent mechanical, geometrical, thermal properties than the original leaching

material, and are usually much more expensive and not disposable. The experimental

protocols of media preparation, storage and microfluidic time-lapse experimental setup

very often have to be modified in order to accommodate the new component.

After each component substitution, we tested the new protocol in mother machine star-

vation experiments similar to the one shown in Figure B.1. The main goal of such
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testings is to see whether by substituting the component is question, whether we have

hopefully completely eliminated sources of carbon-supplying contaminants, or at least

the extent to which the contaminants has been reduced.

Protocols for setting up such experiments are documented in appendix A. After the cells

are loaded and both the imaging and fluidic systems have stabilised, we first adjusted the

infusion flow rate to the lower bound of flow rate, just enough counteract evaporation

inside the chip, usually at 2µl per hour. We stay at this flow rate for 1 day and use the

time-lapse images to estimate cellular growth rates. Then we raise the flow rate by 5-fold

each day, until either the flow rate reach the maximum allowed by the fluidic system

(usually 2 ml per hour for our system), or the estimate growth rates stop increasing with

flow rates.

The estimated growth rates at di↵erent flow rates can inform the next step in multiple

ways. Most importantly, the leaching problem could be considered operationally solved,

if there is a reasonable large range of flow rates (4-fold) at which the cells could not grow.

Secondly, the maximum growth rate reached at the maximum growth rate, i.e. the µ
max

,

could be used to estimate the quality of the best carbon-supplying contaminant left in

the media, thus giving us clues about its source.

B.3 Identified leaching plasticware & replacements

We carried out the experimental strategy outlined above, and identified at least 6 plastic

components that leach carbon-supplying contaminants. Figure B.3 illustrated some of

these components and their replacements.

The PVC tubing is by far the worst o↵ender: even at the lowest flow rate, the contami-

nant is enough to sustain continued growth at doubling time of about 2 hours. We know

that a large portion of the tubing mass is consisted of phthalate plasticisers. In fact, we

incubated PVC tubings filled with M9 bu↵er without added carbon sources for 3 days,

and then inoculated it with bacteria. The concentration of plasticiser is so high such

that the culture could reach visual turbidity. After continuously infusing M9 bu↵er for

more than 1 week, the PVC tubings have leached so much plasticisers that the tubings

have become more rigid and fragile.
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Figure B.3: Leaching plasticware and their replacements.

The fact that phthalates leaching from PVC plasticware is well known in the medical

community, where PVC tubings were commonly used (Sathyanarayana, 2008). It was

used for a reason in hospitals and our microfluidic systems: in these applications, tubing

flexibilities are really desirable. In our case, whatever tubing that substituted PVC,

besides needs to be chemically stable, has to 1) securely connect to the microfluidic

chip through 23 gauge metal couplers; 2) be flexible enough to connect to the chip

on the automatised microscope stage and inside the temperature-controlled chamber.

Traditional Perfluoroalkoxy alkane (PFA) and Polytetrafluoroethylene (PTFE) tubings

are too rigid for either requirements.

We tested serveral alternatives tubings, including those made of silicone, Polyethylene

(PE), a non-leaching PVC formulation named Tygon® 2001 and semi-rigid thin-walled

(0.56mm x 1.07mm) PTFE tubings. Silicone tubings tend to evaporate too much and

limit the lower boundary of flow rates that can be used. We can not be sure whether

plasticisers are used in the PE tubings we have. We found the best solution to be the

thin-walled PTFE tubing. It is both more flexible and less expensive than Tygon®

2001.
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After the PVC tubings are removed from the system, there are still contaminants in the

media that can support carbon-limited growth, although at a much longer doubling time

of about 4 hours. Furthermore, the flow rates at which cells are able to growth vary

from experiments to experiments, indicating varying concentrations of contaminants.

We found that the contaminant concentrations tend to be lower for newly prepared

media. This leads us to suspect the bottles and syringes that are in contact with the

media, which are mostly made of Polypropylene (PP) hard plastics are also leaching

carbon sources into the media, although at much slower rates and lower concentrations

than PVC tubings.

Glass solution bottles are used instead of disposable Falcon® centrifuge tubes made of

PP. We also replaced the disposable syringes made of PP barrels and rubber plungers

used to infuse media into the microfluidic system, with chromatography-grade syringes

with glass barrelled and PTFE-coated plungers. The connections between syringes and

tubings are switched to either metal needles with metal or fluoropolymer hubs, or PTFE

couplers in case of rigid tubings. Even the usual PP bottle caps for glass solution bottles,

while not disposable and are in contact with the media through repeated vaporisation

and condensation, are experimentally confirmed to leach carbon sources. We replaced

them as well with a premium bottle cap made of fluoropolymer.

Table B.1 lists all these components that are confirmed by mother machine experiments

to be leaching carbon-supplying contaminants, and their replacements we settled on.

There may be less expensive non-leaching plastic components such as those made of

high density Polyethylene (HDPE), but we decided to opt for the safety options to save

time.

Another experimentally confirmed source of contaminants is from autoclaving solutions.

In autoclaves, volatile organic compounds might migrate between the water tank and

the autoclaved solutions through steam. Since the water reservoirs in autoclaves are

often changed after sterilising complex media rich in nutrients, they are a major source

of carbon-supplying contaminants. We made sure to sterilise all our solutions with filter

sterilisation using glass vessels and hydrophilic PTFE membrane filters. We do use dry

autoclaving to sterilise our equipments. We also clean and refresh the water tank of our

autoclave before we use it.
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Table B.1: List of plasticware that leach carbon-supplying contaminants and their
non-leaching replacements.

Leaching
component

Mate-
rial

Func-
tion

Replacement Additional notes

Flexible tubing PVC Fluidic
system

PTFE tubing, I.D. X
O.D. = 0.56 x 1.07mm

Tubings have to
thin-walled and seal well
with metal
couplers/needles

Disposable sterile
syringes

PP
barrel

Fluidic
system

chromatography grade
glass/PTFE syringes

Non-disposable, have to
be properly
cleaned/sterilised

Disposable sterile
syringes

PP
barrel

Cell
loading

Manual glass syringes Non-disposable, have to
be properly
cleaned/sterilised

Disposable Luer
Stubs

PP hub Fluidic
system

Kel-F® or metal hub
needles, 23 gauge

Non-disposable, have to
be properly
cleaned/sterilised

Disposable
Falcon® centrifuge
tubes

PP Cell
loading

Pyrex® glass
centrifuge tubes

Disposable
Falcon® centrifuge
tubes

PP Media
storage

Glass solution bottles

Media storage
bottle caps

PP Media
storage

Duran® TpCh260
bottle caps and pouring
ring with PTFE coated
silicone seal

Sterile vacuum
filter units

PS flask Media
prep.

All-Glass filter holder
assembly with fritted
base

Non-disposable, have to
be properly
cleaned/sterilised

Sterile vacuum
filter units

PES
mem-
brane

Media
prep.

0.2µm hydrophilic
PTFE disc membrane
filter

Needs to be sterilised
before use

If the component is consisted of parts made of di↵erent materials, the material column describe
the material most likely to be the culprit in leaching. PVC = Polyvinyl chloride, PTFE =
Polytetrafluoroethylene, PP = Polypropylene, TpCh260 TZ is a material similar to
Perfluoroalkoxy alkane (PFA), Kel-F® is the trade name for Polychlorotrifluoroethylene
(PCTFE), PS = Polystyrene, PES = Polyethersulfone
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In addition to those documented in table B.1, we also made other deliberate equipment

choices to avoid leachable contaminants in media preparation, storage and cell culture.

They are not listed in table B.1 because we have not experimentally confirmed that they

are necessary, but we made them out of precautions. In general, we chose equipments

whose wetted surfaces are made of glass, metal or fluoropolymer whenever possible. If

not, we chose HDPE options, and decreased the time media is in contact with the plastic

as much as possible.
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thèse de 1942. Paris V: Hermann, 6, Rue de la Sorbonne

Nagarajan S, Kruckeberg AL, Schmidt KH, Kroll E, Hamilton M, McInnerney K, Sum-

mers R, Taylor T, Rosenzweig F (2014) Uncoupling reproduction from metabolism

extends chronological lifespan in yeast. Proc Natl Acad Sci U S A 111: E1538–47

Ni M, Decrulle AL, Fontaine F, Demarez A, Taddei F, Lindner AB (2012) Pre-disposition

and epigenetics govern variation in bacterial survival upon stress. PLoS Genet 8:

e1003148



Bibliography 89

Norman TM, Lord ND, Paulsson J, Losick R (2013) Memory and modularity in cell-fate

decision making. Nature 503: 481–6

Nussey DH, Coulson T, Festa-Bianchet M, Gaillard JM (2008) Measuring senescence in

wild animal populations: towards a longitudinal approach. Functional Ecology 22:

393–406

Nyström T (2003) Conditional senescence in bacteria: death of the immortals. Molecular

microbiology 48: 17–23

Nyström T (2004) Growth versus maintenance: a trade-o↵ dictated by RNA polymerase

availability and sigma factor competition? Molecular Microbiology 54: 855–862

Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014)

The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity.

Cell 156: 183–94

Peterson CN, Levchenko I, Rabinowitz JD, Baker TA, Silhavy TJ (2012) RpoS prote-

olysis is controlled directly by ATP levels in Escherichia coli. Genes & development

26: 548–553

Primet M, Demarez A, Taddei F, Lindner AB, Moisan L (2008) Tracking of cells in a

sequence of images using a low-dimension image representation. In 2008 5th IEEE

International Symposium on Biomedical Imaging: From Nano to Macro. pp. 995–998

Rowat AC, Bird JC, Agresti JJ, Rando OJ, Weitz DA (2009) Tracking lineages of single

cells in lines using a microfluidic device. Proc Natl Acad Sci U S A 106: 18149–54

Sathyanarayana S (2008) Phthalates and Children’s Health. Current Problems in Pedi-

atric and Adolescent Health Care 38: 34–49

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of

cell growth and gene expression: origins and consequences. Science (New York, NY)

330: 1099–1102

Shanley DP, Kirkwood TB (2000) Calorie restriction and aging: a life-history analysis.

Evolution; international journal of organic evolution 54: 740–750

Shermer M (2012) Philosophy: What we don’t know. Nature 484: 446–447



Bibliography 90

Smith TC, Frank E (2016) Introducing Machine Learning Concepts with WEKA. New

York, NY: Springer New York, pp. 353–378

Spira B, de Almeida Toledo R, Maharjan R, Ferenci T (2011) The uncertain conse-

quences of transferring bacterial strains between laboratories - rpoS instability as an

example. BMC Microbiology 11: 248+

Stearns SC (1989) The Evolutionary Significance of Phenotypic Plasticity. BioScience

39: 436–445

Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that

reproduces by morphologically symmetric division. PLoS biology 3: e45+

Strehler BL, Mildvan AS (1960) General Theory of Mortality and Aging. Science 132:

14–21

Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regu-

latory circuit induces transient cellular di↵erentiation. Nature 440: 545–50

Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun

S (2015) Cell-size control and homeostasis in bacteria. Curr Biol 25: 385–91

Uesaka Y (1984) A new fourier descriptor applicable to open curves. Electronics and

Communications in Japan (Part I: Communications) 67: 1–10

Vulic M, Kolter R (2001) Evolutionary cheating in Escherichia coli stationary phase

cultures. Genetics 158: 519–526

Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010a) Robust

growth of Escherichia coli. Current Biology 20: 1099–1103

Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (2010b) Robust

growth of Escherichia coli. Curr Biol 20: 1099–103

Weitz JS, Fraser HB (2001) Explaining mortality rate plateaus. Proceedings of the

National Academy of Sciences of the United States of America 98: 15383–15386

Williams GC (1957) Pleiotropy, Natural Selection, and the Evolution of Senescence.

Evolution 11: 398–411



Bibliography 91

Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R, Storz G (1998) The OxyS

regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. The

EMBO journal 17: 6061–6068

Zhang Y, Ge H, Qian H (2012) One-dimensional birth-death process and Delbrück-

Gillespie theory of mesoscopic nonlinear chemical reactions. Studies in Applied Math-

ematics 129: 328–345

Zinser ER, Kolter R (2004) Escherichia coli evolution during stationary phase. Research

in microbiology 155: 328–336


