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Chapter 1

Introduction

By looking at somebody else’s face, one can infer a lot of mi@tion about that person,
such as his or her age, gender or ethnicity, as well as infil@mabout that person’s
mental state. This includes both low-level attributes sashfor instance, the precise
localization of mouth or eye corners, as well as a persorrseat emotional state (is
he/she happy? angry? or does he/she look surprised?),/bethisvel of depression or
engagement in an interaction.

With the rise of machine learning-based prediction systeme can wonder to what
extent -or if at all- it is possible to design a system foriezing these cues from a person’s
face automatically, in an unobtrusive fashion. Such systeyuld theoretically bring
valuable information for a broad range of applications. &mmmple, it would allow to
map face deformations on an avatdy for markerless facial motion capture or gaming
purposes. Also, it would enable richer interactions betwaeperson and a robot, as well
as the monitoring of the facial expressions associatedptytsical pain in the context of
healthcare systems. Last but not least, face analysis atsagplications in the context of

serious games for educative purposes, as it will be disdusslew.

1.1 The JEMImE project

This thesis takes place in the frame of the JEMIME projegpdsuted by the French
National Agency - ANR). JEMImE is a French acronym that stafods'Jeu Educatif



Multimodal d’Imitation Emotionelle”. Specifically, it aismat designing a new automatic
emotion prediction system to assess the quality of the em®tproduced by children,
and more specifically children suffering from Autism SpaotrDisorder (ASD). Those
emotions are measured through integrating multiple modsl{facial expressions from
RGB and depth streams as well as voice intonation).

It is well known that children suffering from ASD have troehinderstanding socio-
emotional signals. As a consequence, many of them canrmindsadequately to other
people’s behavior. This limits their ability to socializetivother people. The JEMImE
project was thus geared towards using recent advances iputenvision and pattern
recognition to teach children with ASD how to better undemst and respond to socio-
emotional signals in order to behave more adequately inc&s¢ scenarios. This shall be
done in the context of a serious game, through multiple ghdseest, children are asked
to mimic an expression performed by an avatar. In the negtaitéhe training, they have
to produce a requested emotion without having access to almeidally, the last step is
to produce the adequate expression given the social caef@dsented in the video game
(e.g. another character steals the child’s toy: he thuschagpear as either angry or sad),
possibly with the help of a therapist.

The applicative context of the JEMIME project led us to deped complete facial

expression recognition system that must fulfil the follogvoonstraints:

e The proposed expression recognition module must be abkctmnize the facial
expressions in spite of intrinsic variations (e.g. morplgyland expressiveness) as
well as extrinsic ones (e.g. head pose variation, enviroah&ghting changes and

self-occlusions).

e Specifically, in terms of designing predictive models, weehep propose solutions
for both classification of the facial expression and regoessf the expression qual-

ity value.

e It has to run in real-time on a standard computer and can bly @stegrated into

the serious game environment.
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For those reasons, in this thesis we focused to a certaintextehe adaptation to face
analysis of machine learning models based on ensemble dbmaired trees as well as
neural networks. Chapt@rdraws an overview of the facial expression recognition (FER)
problem, with an emphasis on the different models for affeptesentation, as well as a
review of the available datasets that will be used to as$espredictive capacity of the
algorithms. We also provide a non-exhaustive survey of thetrauccessful methods of
the literature for face analysis in general, and FER in paldr. Furthermore, in Chapter
3 we provide an overview of the computer vision representasiod machine learning
tools that we use to tackle the issue of automatic face aisal@hapterst, 5 and6 thus
depict the three main contributions of this PhD. Those doutions are introduced in the

following section.

1.2 Main contributions

Throughout this thesis, we propose a number of innovativeribmtions that aim at
addressing several challenges in face analysis and elgmaggognition in particular.
Those contributions are summarized in Tablg as well as a non-exhaustive list of ap-
plications of those methods for face analysis.

As it will be discussed in Sectio®y most approaches for face analysis involve (a) fea-
ture point alignment, (b) feature extraction and (c) attigoprediction, such as expression
recognition. The three main contributions of this theses geared towards addressing
those three problems, and led to multiple publications iarmational conferencels2.1
as well as a source code framework for end-to-end facialesgion recognition.2.2 In
Chapter4 we propose to train pairwise conditional random forestseidgym FER from
video sequences as well as head pose variation handlingfn FEChapters we pro-
pose to train spatially-constrained local trees to leacalloepresentation related to facial
expressions. These representations can be used for archadiust FER as well as for
AU activation detection. Last but not least, in Chapiave propose improvements over
the recent neural decision forests machine learning dlgorias well as its adaptation

for face analysis. Thus, we propose solutions to performsamed regression for facial

11



Method

Application

Pairwise

tional RF

Condi-

Local Subspace RF

- Greedy evaluation

of NDF

Feature point

alignment

Learning
for FER

representations

Dynamic
FER

Pose-robust
FER

Occlusion
FER

handling

in

AU activation

prediction

Online learning
for FER

Subject-specific

tion

calibra

Real-time
FER

Table 1.1: Summary of the proposed contributions
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feature point alignment, learning deep representationsidR, as well as the possibility
of online learning and subject-specific calibratiaa classifiers fine-tuning. Eventually,
throughout this thesis, we focus on providing face analyygs$ems that operate upon live

video stream with a standard webcam device in real-time avdbcent framerate.

1.2.1 Publications

First, the present work led to some publications under the fof journal papers, pa-
pers in international conferences as well as presentatidhge frame of French-speaking
seminars, which are listed below.

Submitted papers

A. Dapogny, K. Bailly, and S. Dubuisson. Face Alignment withsGaded Semi-
Parametric Deep Greedy Neural ForeSsbmitted to IEEE International Conference on
Computer Vision and Patter Recognition, 2017

A. Dapogny, K. Bailly, and S. Dubuisson. Multi-Output Randoorésts for Facial
Action Unit Detection.Submitted to IEEE International Conference on AutomaticeFac
and Gesture Recognition, 2017

A. Dapogny, K. Bailly, and S. Dubuisson. Dynamic pose-rolfastal expression
recognition by multi-view pairwise conditional random dsts. arxiv preprint, 2016.
Submitted to IEEE Transactions on Affective Computing

A. Dapogny, K. Bailly, and S. Dubuisson. Confidence-Weighteddl Expression
Predictions for Occlusion Handling in Expression Recogniind Action Unit detection.
arxiv preprint, 2016. Submitted to Springer Internatiodalirnal of Computer Visian

Conference papers

J. Aigrain, A. Dapogny, K. Bailly, M. Detyniecki, S. Dubuissand M.Chetouani. On
leveraging crowdsourced data for automatic perceivegstletection. Innternational
Conference on Multimodal Interactipp. 1-8, 2016.

A. Dapogny, K. Bailly, and S. Dubuisson. Pairwise ConditioRahdom Forests for
Facial Expression Recognition. IEEE International Conference on Computer Vision
p. 1-9, 2015.

A. Dapogny, K. Bailly, and S. Dubuisson. Dynamic facial exgsien recognition by

13



static and multi-time gap transition joint classificatiémIEEE International Conference
on Automatic Face and Gesture Recognitipnl1-6, 2015.

Seminars and others

A. Dapogny, K. Bailly, and S. Dubuisson. Pairwise ConditioRahdom Forests for
Facial Expression Recognition. IEEE Conference on Computer Vision and Pattern
Recognitiondemo sessions, 2016.

A. Dapogny, K. Bailly, and S. Dubuisson. Random Forest pouetdmnnaissance
robuste des expressions facialeéstelier scientifigue du GDR ISIS sur les interactions
Homme/Maching2015.

A. Dapogny, K. Bailly, and S. Dubuisson. Reconnaissance desessions faciales
par combinaison de classifieurs statique et dynamidaelier scientifique du GDR ISIS

sur les interactions Homme/Machin&)15.

1.2.2 Source code

Another important aspect of this PhD is the development adgedramework that im-
plements all the methods summarized in Tabl2above. In order to perform real-time
face analysis from live video stream, the proposed code waslaped in C++, although
some functions are written MATLAB, notably for generating the images used in Chapter
4 from the3 D models for expression recognition from arbitrary viewpgsinThe source
code is also further described in Appendix and directly within theh and.cppfiles,
through the comments. Note that the proposed frameworkagmthe data structures
and methods to train and test all the algorithms introdune8iection3 for general pur-

poses, which are not limited to face analysis.
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Chapter 2

Facial expression recognition: an

overview

In this Chapter, we focus on introducing the issue of facigregsion recognition. First,
in Section2.1we discuss the main models used in the literature for affgmesentation.
In Section2.2 we introduce a classic pipeline for FER and highlight, frdma view of
both a human observer and an automated system, the maieraed!| for an accurate
expression recognition. Finally, in Secti@r8, we describe the available data that we will

use to train and evaluate our face analysis systems.

2.1 Modelisation of affect

In his bookThe Expression of the Emotions in Man and Anin§a&72), Charles Darwin
theorized that showing and recognizing emotions was arvegdirait universal to the
whole mankind. However, an important current among anthicapsts of the XX" cen-
tury supported that the ability to produce and decipheafaoipressions was determined
through a behavioural learning process. This belief was fatit into perspective by the
works of Ekman on universally recognized expressions (@eet1.1), as well as more

recent models (Sectior®s1.2and2.1.3.
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2.1.1 Categorical representation

Through cross-cultural studies, Paul Ekman discoveretthiege existed a high agree-
ment across people from diverse literate cultures acrassvtrld when it came to as-
signing a label to pictures representing expressive fdoethis work [27], Ekman came
with a list of six universally recognized basic expressi@msppinessanger, sadness
fear, disgustandsurprisg. He also mentioned eomtempexpression class, though the
agreement appeared to be less clear. Furthermore, Ekmamdeated that this finding
extended to preliterate tribesmen in Papua, New Guineasevhmembers could not have
learned the meaning of facial expressions from exposuresttiardepictions of emotion.
Along with aneutral state, this so-called categorical expression model has bssd as
an underlying model for most attempts at developing a pyptoal expression recogni-
tion system §9)], [103. However, it faces limitations for dealing with spontansdacial
expressionsl0d], as many of our daily affective behaviors may not be tramslan terms
of prototypical emotions. Nevertheless, the annotatiacess is rather intuitive, thus
there exists a large corpus of labelled data (see seci@n3 2.3.4 2.3.5and2.3.7).

In a later work, Ekman proposed an expanded list of univigrsatognized basic
emotions, which are not all encoded by facial musci&g.[ The newly included emo-
tions are:amusementontemptcontentmentembarrassmenexcitementguilt, pridein
achievementelief, satisfaction sensorypleasure andshame However the data labelled
with those expressions is currently very scarce, althowghesrecent database begin to

integrate these labels (see Sectiod.q.

2.1.2 Dimensional representation

Another popular approach is the continuous affect reptasien [35] that consists in
projecting expressions onto a restricted number of latenedsions. Hence, a specific
expression (e.g. a categorical expression sudtappinesscan be described by its posi-
tion in a low-dimensional space. A popular example of sucdehss the valence/arousal
(relaxedvs. aroused)/power (feeling of control)/expectancy (an&tign) model. It is

often simplified as a two-dimensional valence-arousalesgmtation. Figur@.1 shows

16



the projection of the six categorical expressions dethillbove on a two-dimensional
valence/arousal space. Following this diagrawemppyis represented gsositive valence
high arousal On the contrarysadis defined amegative valengdow arousal One can
see that using such a low-dimensional embedding of facialessions can cause the loss
of information. Indeed, some expressions can not be sephvell fear vs. angey, as
both are defined asegative valengenhigh arousal Last but not least, the annotation pro-
cess is less intuitive than with the categorical represiemaThus, the labellers have to

be trained prior to an annotation task, which in turn limite tlata availability.

‘arousal
surprise
O @ happy

fear

valence
-

. disgust

. sad

Figure 2.1: Projecting categorical facial expressions ortwa-dimensional va-

lence/arousal space.

2.1.3 Facial action coding system

Last but not least, an alternative facial expression madile Facial Action Coding Sys-
tem (FACS) also proposed by Paul Ekmag][ It consists in describing facial expressions
as a combination of4 facial muscle activations that are referred to as Action$JiUs).
Figure 2.2 illustrates the most common AUs from the upper and lower faas. AUs

Is a face representation that may be less subject to intatfne. It can theoretically be
used in accordance with the so-called Emotional FACS (EMFAQEE in order to de-

scribe a broader range of spontaneous expressions. Howe®anain drawback of the

17



FACS-coding approach is that the annotation tends to be adansuming process. Fur-
thermore, FACS coders have to be highly trained, hence hmitie quantity of available
data. However, thanks to an effort from the research comiyithere exist a number of
FACS-annotated databases depicting both prototypicalif®e?.3.3 and spontaneous

(Section2.3.9 expressive behaviors.

AU1 AU2 AU5
Inner brow Outer brow Brow Upper lid
raiser raiser lowerer raiser
AUG6 AU7 AU9 AU10
e = | . | - 1
L\ & =
S i <
Cheek raiser Lid tightener Nose wrinkler Upper lip
raiser
AU12 AU15 AU17 AU20
= 4 - S ' _
Lip corner Lip corner . . .
puller depressor Chin raiser Lip stretcher
AU23 AU24 AU25 AU26
S~ et E |
5 —= - /
-~ /‘ =t _
Lip tightener Lip pressor Lips part Jaw drop

Figure 2.2: Definition and illustration of some of the mostreoonly observed AUSs.

Images extracted from CK+ database (See Sectidry).

2.2 Challenges in automatic facial expression recognition

Figure 2.3 illustrates a classic pipeline for automatic face analyaisl for expression
recognition in particular. First, given a grayscale imgges6ibly a frame of a video clip),

a subject’s face rectangle is provided by a face detectigorihm. Then, a set of facial

18



feature points are aligned on the face, which correspongeoific locations of the face,
e.g. lip corners, eye corners or nose tips. A set of repraBens are then extracted
using the aligned feature points only (geometric featuréspse features generally need
to be normalized w.r.t. the location of one particular featpoint (e.g. the nose tip)
to ensure translation invariance, and w.r.t. the intetarcdistance for scale invariance.
Then, some machine learning algorithm is used to predicassilcation of the facial
expression, or to provide a regression of the value of thensity of the activation of a
set of AUs. Popular examples of machine learning methodSapeort Vector Machines
(SVM [1€]), Random Forest (RFL[]) or Neural Networks (NN §9]).

In order to increase the prediction accuracy, many stateefrt approaches employ
a combination of geometrid.é. extracted from a set of facial feature points aligned
on the face beforehand) and appearance featugessampling the texture of the face
directly), that often need to be indexed w.r.t. the posibbihe facial feature points. For
example, Senechal al. [77] use a multi-kernel SVM to integrate those heterogeneous
cues. Example of popular appearance features include Bicaty Pattern (LBP [€]),

and Histogram of Oriented Gradients (HOG)).
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Figure 2.3: A classic pipeline for face analysis

Generally speaking, it is not easy for a human eye to distéfiglbetween the expres-
sions in the general case. Reasons for this are multiple; thieste are a number of factors
of variations that are intrinsic to the person that produbtesexpressions, namely the
morphology of this person’s face as well as, when talkingualvadeo records, the way
his or her facial geometry changes over time to produce tpeession (Sectio.2.]).

There are also a lot of extrinsic factors of variation, sustchanges in environmental
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lighting conditions 2.2.2.)), head pose variations relatively to the camera devicdipasi
(2.2.2.9, or the presence of partial occlusions of the faz&.¢.3. In the following sub-
sections, we illustrate those factors of variations, ad agla number of solutions that

have been proposed in the literature for addressing theddaons.

2.2.1 Intrinsic factors of variation

As it is illustrated on Figure.4, it can be difficult for a human eye to discriminate facial
expressions when looking at a single picture. If we only labkhe bottom row faces
on Figure2.4, we can hardly tell which expressions are being portrayethbysubjects.
Reasons for this are multiple: we don’t know how these pertmislike when not dis-
playing a specific expressiond. we don’t have access toeeutralface), nor do we have
any information about how they behave to display a specifizession. Hence, gener-
ally speaking, designing a static expression predictiatesy (.e. one that works on still
images) is a challenging task. In order to focus specificallgesigning a FER system in-
dependent of a subject’s morphology, most recent appreamhering static FER work in
controlled conditions, on a frontal view and lab-recordedi®mnments 59, 105. Zhong
et al. [117] proposed to learn active facial patches that are relevarffER. Zhacet al.

[110 designed a unified multitask framework for simultaneoymyforming facial align-
ment, head pose estimation and FER. etwal. [56] introduced a deep neural network
that learns local features relevant for Action Unit preidict and use it as an intermedi-
ate representation for categorical FER. The authors alsieestthe use of unlabelled data
[55] to regularize the network training, further enhancingitsdictive capacities for FER
in the wild.

However, as it is illustrated on Figuée4, the morphology problem can be partially
alleviated by looking at a neutral representation of the fdop-row images on Figure
2.4 - from left to right we haveanger, sadnesshappinessfear, disgustandsurprise.
This way, it becomes easier to identify the expressions bkitgy more closely at which
areas of the face are subject to appearance changes. Frpersipective of an automatic
recognition system, this means that the performances d&f system shall be better if

we have access telative information using aneutralface representation. Examples of
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Figure 2.4: Examples of corner-cases expressions fromthdBFE database. Without
looking at a neutral face (top row), it may be difficult for achan observer to analyse the

facial expressions adequately. Can you guess which onegiag fortrayed?

this paradigm are the works of Khadestial. [45] that respectively learn transition AU
detectors, as well as the work of Chual. [15] which propose a new selective transfer
machine framework that includes the possibility of subgmetcific calibration.
Furthermore, as we generally do not have access to a neateatépresentation, it is
a good idea to use dynamic informatiom, performing recognition on videos rather than
on separate images. Dynamic information of facial expogsscan be used in several
ways: (a) at the feature-level, by using spatio-temporalgendescriptors, and/or (b) at
the semantic level, by modelling relationships betweemesgions or between successive
phasesdnsef apexandoffse) of facial events. Generally speaking, effectively extiragy
suitable representations from spatio-temporal videcepadtis a challenging problem as
expressions may occur with various offsets and at diffepacies. There is no consen-
sus either on how to combine those representations fleximygh so as to generalize
on unseen data and possibly unseen temporal variations. Gorapproaches employ
spatio-temporal descriptors defined on fixed-size windeptpnally at multiple resolu-
tions. Examples of such features include the so-called LBIP-TLOS, 37] and HOG3D

[47] descriptors, which are spatio-temporal extensions of LB&®OG features respec-
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tively. Authors in [/9] use histograms of local phase and orientations. Howelieget
kinds of representations may lack the capacity to generatiZacial events that differ
from training data on the temporal axis. More recently, Jahgl. [44] integrate both
features in a deep temporal geometric/appearance neuainke

Approaches trying to address (b) aim at establishing weiahips between high-level
features and a sequence of latent states. Vearad. [95] train hidden Markov models
to perform early recognition of low-intensity facial expsgons from videos. Wangt al.
[96] integrate temporal interval algebra into a Bayesian nétworcapture complex re-
lationships among facial muscles. Such approaches ggnerqlire explicit dimension-
ality reduction technigues such as PCA4emeans clustering for training. In addition,
training at the sequence level reduces the quantity ofaaitraining and testing data as

compared to frame-based approaches, as there is only oressxm label per video.

2.2.2 Extrinsic factors of variation

The visibility of the face plays an important role in discnating the facial expressions.
We can divide the corresponding factors of variation in éhgeoups: the lighting con-
ditions (Section2.2.2.]), the position of the camera w.r.t. the subject’s head {&ect
2.2.2.2, and wether or not the face is occluded (Secfich2.3.

2.2.2.1 Lighting conditions changes

Figure 2.5: Examples of an expressive face under illumdmatariations. The images are

generated using the high-resoluti®p face scans from the BU-4DFE database.

The way a one’s face is illuminated is crucial in decipheitadacial expressions. For
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example, how shall one label the faces portrayed on Figisén terms of Ekman’s facial
expressions? Such observer could, for instance, labeh(hjed asanger, while (b) and
(c) would be depicted adisgustand (d) asadnessHowever, all five images were gener-
ated from a single video frame of the BU-4DFE database, withigd truth labetiisgust
This illustrates that the way the face is illuminated gneatfluences the human percep-
tion of facial expressions. Furthermore, from the perspeaif an automated system,
drastic illumination conditions, such as those on Figlite can cause loss of information
(for aligning the feature points or exploiting the textunéormation), as well as creating
local gradients that may result in false detections. Inde®xbt systems perform a global
normalization or use gradient information to ensure irarace w.r.t. global luminosity
variations. Many descriptors such as SIFEE][or HOG [2]] also perform some sort of

local normalization for that purpose.

2.2.2.2 Head pose variation

I |
50 ¥s 230 Y4 10 Y3 410 Y2 +30 ¥Yi +50
yaw

Figure 2.6: Examples of a neutral face under head pose igariathe images are gener-

ated using the high-resoluti®D face scans from the BU-4DFE database.
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Head pose variations can also cause drastic changes ingpearance or geometry,
as can be seen on Figuzes, that represents a subject’s face under yawi degrees) and
pitch (+45 degrees) variations. For example, for positive pitchestfes are less visible
and the eyebrow look closer to the eyes (as it is the case wisplaying prototypical
anger with a frontal viewpoint), whereas for negative pgtthe mouth becomes less
visible. Furthermore, the feature points are more likelyp¢obadly aligned for extreme
poses in either pitch or yaw.

Many approaches for multi-view FER consist in training ayirclassifier to describe
every viewpoint. Zhenegt al. [111] introduce a regional covariance matrix representation
of face images to infer static facial expressions on a cogmnstructed from the BU-
3DFE databaselD4] with 35 different head poses up tb45 yaw and+30 pitch. Tariq
et al. [87] address the same problem by using a translation invararse coding of
dense SIFT feature$§]. Eleftheriadiset al. [29] employ discriminative shared Gaus-
sian processes to implicitly exploit the redundancy betwaeiltiple views of the same
expressive images. However, such approach can struggéptare the variability of the
facial expressions when the number of training samplesrbesamportant.

Alternatively, it is possible to learn a projection of a nivontal views of a face image
on a frontal one. Recently, Vieriat al. [90] proposed to projecsD data of the face
onto a head pose-invaria?D representation. The visible fraction of the projected iace
then used within a voting scheme to decipher the expresBieR. can thus be performed
using an off-the-shelf algorithm. In addition, the authaere able to perform FER un-
der a broader range of poses, up#60 yaw and+60 pitch. However, the proposed
method requires high-resolutiadD face data that may not necessarily be available in
multiple human-computer interaction scenarios, for inséawhen using images acquired
with commercial lower-resolution depth sensors.

Eventually, some other works choose to learn one specifgsifiar per face view.
During testing, the head pose is first estimated, then thegumese-specific expression
classifier is applied. For instance, Moatal. [64] learn multi-class SVMs upon LBP
features for multiple viewpoints. Such approaches offeessd advantages over the pre-

vious ones: first, learning classifiers upon separate ane momogeneous face view
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data allows to considerably reduce the variability. As aseguence the classifiers can,
in theory, more efficiently capture the subtle facial defations between the expressions.
Secondly, the runtime is the same as in the case of a singlafraew classifier, which
may be a critical point for systems that try to project a giveew on a frontal one. Fi-
nally, splitting the training data offers the advantagedgduce the memory usage, which
can be important for learning on large databases. Thoseogetiso face some impedi-
ments, such as the fact that (a) they require a reliablelfaridmark alignment and head
pose estimation, and (b) it implies dividing the data inteesal subsets. Nevertheless,
(a) is barely a problem given that recent advanéesq9, 99 for face alignment provide
excellent results for head poses up-td5 yaw and+30 pitch, which is sufficient for
most human-computer applications. Furthermore, (b) carirbemvented by the use of
3D face scansl03 from which we can generate a large corpus of videos for ingin

multi-view dynamic classifiers.

2.2.2.3 Partial occlusions

Figure 2.7: Examples of expressive faces under partiaezmh. 3 images on the left:
synthetic occlusions overlaid on images from the CK+ databasmages on the right:

realtistic occlusions from the SFEW database.

Another major challenge for the design of an automatic esgpom recognition system
is the presence of partial occlusions of the face. Jimaages on the right of Figur2.7
illustrate examples of occlusion that can happen in reakstenarios. Partial occlusions
include self-occlusions (e.g. with a body part such as a hamdcclusions that are due
to random accessories (e.g. a scarf or sunglasses). CauotleBgurations of partial

occlusions cause a large variability of face appearances i$hall the more problematic
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when designing an automatic FER system, as there is cyrreoe to no labelled data
for realistically occluded face, let alone expressive femages. For this reason, most
of the literature focus on synthetic occlusions, that atgalig generated by overlaying
random or uniform patterns on some area of the face, as cazebeos Figure.7.

Kotsiaet al. [49] studied the impact of human perception of facial expressimnder
partial occlusions, and the predictive capacities of aatiech systems thereof. In partic-
ular, they concluded that in the case of prototypical exgpoes, mouth occlusions seem
to drastically hinder the recognition performance of botiuanan observer and an auto-
mated system. Cottet al. [19] used sparse decomposition to perform FER on corrupted
images. Ghiaset al. [33] use a discriminative approach for facial feature poirgraent
under partial occlusions. Those approaches rely on eflplincorporating synthetic oc-
cluded data in the training process, and thus struggle tbvdéarealistic, unpredicted
occluding patterns. Zhargt al. [107] trained classifiers upon random Gabor-based tem-
plates. They evaluated their algorithms on syntheticatisiuded face images, showing
that their approach leads to a better recognition rate whersame occluded examples
are used for training and testing. Should this not be the, ecagwedicted mouth/eye oc-
clusions still lead to a significant loss of performance. ituat al. [40] proposed to
automatically detect the occluded regions using sparsendeasition residuals. How-
ever, the proposed approach may not be flexible enough, axthgsion detection only
outputs binary decisions, and as the face is explicitlyddidi into only three subparts
(eyes, nose and mouth). This limits the capacities of théatkto deal with unpredicted
forms of occlusion. Finally, another approach consistearning generative models of
non-occluded faces, as it was done by Raneatd. [65]. When testing on a partially oc-
cluded face image, the occluded parts can be generated bdaxpression recognition
can be performed. The pitfall of this approach is that tragrean be computationally ex-
pensive and does not allow the use of heterogeneous fegtugegeometric/appearance

descriptors).
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Table 2.1: Summary of the available databases.
Database 300- | CK+ | BU- FEED| BP4D | SFEW DISFA JEM-

w 4DFE ImE
# subjects 3740 | 123 | 101 | 19 41 700 | 27 151

Landmarks

Video

Spontaneous

Categorical

AU

Non-frontal poses

Occlusions

2.3 Available data

2.3.1 Overview and taxonomy

Table 2.1 presents an outline of the available databases for facegsasalFor each of
these datasets, we indicate the number of subjects thattaios, as well as the nature
of the data (e.g. does it consist of separate images or velmwds? Are the expressive
behaviors spontaneous or acted?). We also indicate whatinet the data contains non-
frontal head poses and partial occlusions, in order to deoan idea of the difficulty of
the different benchmarks. Finally, we also describe theneadf the provided ground
truth annotations for each datasee( does the annotation consists in facial landmarks,

categorical expressions or the activation of a set of AUs?).

2.3.2 The 300-W databases

The 300-W databases consist in multiple datasets for laridaralysis. They embrace
a number of benchmarks with various degrees of difficultghsas the LFPW or La-
belled Faces Parts in the Wild databa8g4(images for trainingf24 images for test),

HELEN (2000/334 images), and the more challenging ibug databa8sé {mages). In

27



addition, there are also a number of images from2thie3 face alignment challeng&0
indoorB00 outdoor images) as well d44 videos from the training partition of thzH15

video alignment challenge. Each image comes along with aatated;8-points markup.

2.3.3 The extended Cohn-Kanade database

Figure 2.8: Examples of expressive face images from the CKabdae. From left to

right: images labelled aseutral happy angry, sad fear, disgust contemptndsurprise

The CK+ or Extended Cohn-Kanade datab&sd fontains 123 subjects, each one
associated with various numbers of expression records.sel hecords display a very
gradual evolution from &eutral class towards one of the 6 universal facial expressions
described by Ekmar?[/] (anger, happinesssadnessfear, digustandsurprisg plus the
non-basic expressiocontempt Expressions are acted and very prototypical. The se-
guences contains 20 grayscale images on average and tleetsubjhibit practically no
head pose variation as well as no self-occlusion. Thereare sllumination and face
scaling changes between the records, but overall the rémogrates reported by state-
of-the-art methods on this dataset are very high (ar®ofe).

As it is done in other approaches, we extract the fimsura) and three apex frames
for each of the 327 sequences for training classifiers toparB-class categorical FER.
Figure2.8illustrates some expressive face images excerpted froiGkiedatabase. As
some approaches discard the frames labelledasemptfor the sake of comparison, we
also report 7-class accuracy using only 309 sequences. dMenethe CK+ database is
also FACS-annotated, therefore we report results for thegrdtion of 14 of the most

common AUs (AU1,2,4,5,6,7,9,10,12,15,17,20,25,26) esdhtaset.
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Figure 2.9: Examples of face images from the BU-4DFE damb&som left to right:

images labelled aseutral happy angry, sad fear, disgustandsurprise

2.3.4 BU-4DFE database

The BU-4DFE of Binghamton University-D Facial Expressions databas@{] contains

101 subjects, each one displaying the 6 acted facial expressf Ekman with moderate
head pose variations. Expressions are still prototypioathey are generally exhibited
with much lower intensity and greater variability than in CKience a lower baseline
accuracy of about0%. Sequence duration is about 100 frames. As the database does
not contain frame-wise expression annotations, we manselécted neutral and apex of
expression frames for all the subjects for training, malarigtal of8218 images. Figure
2.9shows some of these apex frames. Each frame is associatedightresolutior8 D

model data recorded using a Di3D device, that we use in owgreérgnts on non-frontal

head poses to generate expression videos from multiplgoieds (see Sectiof.4.2).

2.3.5 FG-NET FEED database

Figure 2.10: Examples of face images from the FEED datalbasen left to right: images

labelled aseutral happy angry, sad fear, disgustandsurprise

The FG-NET FEED or Facial Expressions and Emotions datalta$eontains 19
subjects, each one recorded three times while performimgpiitaneous expressions (the

six universal expressions, plus theutralone). The data contain low-intensity emotions,
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very short expression displays, as well as moderate heagl y@ogtions. We use the
provided peak and neutral annotation metadatas for eacteseg to generate7d 6 im-
ages subset on which the predictive models can be trainedwahagiated for frame-based

classification.

2.3.6 BP4D database

The BP4D or Binghamton-PittsburglD databasell0] contains 41 subjects. Each sub-
ject was asked to perform 8 tasks, each one supposed to gpvi® 18 spontaneous expres-
sions @nger, happinesssadnesgear, digust surprise embarrassmerdr pain). In [10g
the authors extracted subsequences of about 20 secondaforah=ACS annotations,
arguing that these subsets contain the most expressiveibehas done in the literature

[10 we report results for recognition of 12 AUs (1,2,4,6,711014,15,17,23,24). We
randomly extract 0000 images for training and evaluate the AU classifiers on thelevho

dataset.

2.3.7 SFEW database

Figure 2.11: Examples of face images from the SFEW datab&sem left to right:

images labelled aseutral happy angry, sad fear, disgustandsurprise

The SFEW or Static Facial Expression in the Wild databagkdontains700 images
from 95 subjects displaying facial expressions (includingeutra) in a real-world envi-
ronment. Data was gathered from video clips using a senoiraatic labelling process.
The strictly person-independent evaluation (SPI) benckhisacomposed of two folds of
(roughly) same size. As done in other approaches, we repmss-walidation results av-
eraged over the two folds. As it can be witnessed on Figutréthe data embraces a lot

of variations, including uncommon morphological traitgldighting patterns, head pose

30



variations, self-occlusions as well as low-resolutionges Furthermore, the quantity of

training data is very limited as each fold contains apprataty 350 images.

2.3.8 DISFA database

Figure 2.12: Examples of expressive face images from thé&Batabase.

The DISFA or Denver Intensity of Spontaneous Facial Actian$ contains videos of
27 subjects with different ethnicities and genders thaewecorded watching a 4-minute
emotive video stimulus. As shown on Figtel 2, the face images are lab-recorded with
mostly frontal head poses. However the induced behavie@spontaneous, thus some
AU activations are very subtle, hence a relatively low basehccuracy. Data have been
manually labelled frame by frame for 12 AUs (1,2,4,5,6,915217,20, 25,26) on a 6-
level scale by a human expert, and verified by a second FACS.cBdethe purpose of
predicting AU occurrence, we consider AUs which intensitpelow 1 as non-activated.

We randomly extract292 images for training and test on th25832 images.

2.3.9 JEMImE database

The JEMImME database currently contains video record$@thilds. Each one of these
subjects was asked to watch and respond to videos displayatgrs performing 3 cate-
gorical facial expressionhiéppinessangerandsadnesk plus theneutralone. For each
video, the child was asked to respond by imitating the preg@xpression, through both
visual andaudio-visualmodalities. In addition to that, childs were also asked tmii
the4 expressions, without seeing the videos. Moreover, therandghich the tasks were

presented to the subjects was randomized. Thus, the databatins a total 02400
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videos. For each of these videastaters were asked to answer, for each expression, if
that expression was displayed on the video, in which cagedise had to give a note to
the quality of the displayed expression. In addition to thia¢ database will also con-
tain data from children with ASD to study their capacity t@guce facial expressions
with and without a model, as well as to study the differencetsvben them and typical

children.

2.4 Discussion and conclusion

As we discussed, there exists a number of challenges in&siprerecognition, which can
be divided in extrinsic (environmental, e.g. background Eghting) and intrinsic factors
variations (subject morphology, head pose variation;eettfusions). Furthermore, the
available data is relatively scarce and do not quite covdhate factors of variations.
Particularly in the case of pose or occlusion-robust FER @tas FER in the wild, we
are limited with data quantities of the order of magnitude @f0 images, which is very
low, as compared to some other fields, e.g. face recognitiabject recognition. As it
was pointed out, this is mainly due to the fact that the artrartdabels come from highly
trained experts (e.g. for FACS coding) and are thus difficugett.

For those reasons, in what follows, we mainly focus on adgptiachine learning and
pattern recognition tools presented in Chagtésr “making the most” of available data.
Particularly, in Chapte#, we highlight how we can train decision forests using dyrami
information from video sequences with only a few labelledipframes. Moreover, we
explain how we can usgD face scans from available data to allow pose-robust FER.
In Chapter5, we show how we can learn features from data labelled witbgoatcal
expressions to perform AU detection, as well as how we ssbaisperform occlusion-
robust FER without any data related to partial occlusiorastlbut not least, in Chapter
6 we discuss solutions for online learning in FER and featwiat@lignment, which can

be applied for domain adaptation, e.g. in the frame of sudgpecific calibration
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Chapter 3

Pattern recognition tools

3.1 Overview

In this chapter, we describe the framework that we use toigréatial expressions, with
an emphasis on the low-level image descriptors and maokameihg methods to perform
classification or regression. First, we employ the widelgdu¥iola and Jones detector
[97] to retrieve a rectangular face bounding bBxce(Z) from imageZ. Then, a set of
facial feature pointsf(Z) are aligned on the face. In order to ensure reproducibifity o
the results, we use a state-of-the-art method (Intrafagg. [As it is somewhat classical
in the FER literature, we use a combination of geometrict{8e8.2.1) and appearance

features (Sectio.2.4).

3.2 Image representations

Generally speaking, it is not possible to use the raw gragl levRGB values from a given
face imageZ for a subsequent prediction task. Reasons for this are raaltypart from
the very high dimensionality of the input((00000 for a1000 x 1000 image!), those pixel
values are generally noisy. Furthermore, as we do not hasgsado unlimited amounts
of training data for learning the prediction models, we gatg have to design feature
descriptors that exhibit some built-in invariance to thedo-level factors of variations,

e.g. translation, planar rotation, scaling of the face ealduminosity intensity varia-
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tions. To do so, we introduce a set of parameteric featureleesy® with i = 1,...,3
that include both geometric (Secti@r2.1) (i.e. computed from previously aligned facial
feature points) and appearance features (Seétidd). Figure3.1 provides an example
of feature point alignment and extracted geometric and ajapee features. Those fea-
tures are thus used as the input of a classification or regresschine learning system
(Section3.3) to either predict a categorical expression, a set of AWvatitins or intensity
values or, to a larger extent, a number of attributes thabeanferred from the face (e.g.

gender, age or ethnicity).

Figure 3.1: Feature points aligned on the face and featwteacéed for FER. Green:
point distances (V). Blue: point angles®. Orange: HOG)®).

3.2.1 Geometric features

Given the set of facial feature poinf$Z) aligned on a face imadg, a simple and robust
way of extracting information that is relevant for face s# is to use (a function of) the
positions of these feature points as a feature for the sules¢grediction step. Below are

described two simple, yet robust features that efficientiy sip the face geometry.
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3.2.2 Distances between pairs of feature points

The first geometric feature templaﬁéf; takes as its parameters the index of two facial
feature points andb. ¢§j}, is thus defined as the Euclidean distance between featurespoi
fo(Z) and f,(Z), that is normalized w.r.t. the inter-ocular distarioé(f(Z)) (Equation
3.1). Note thatiod(f(Z)) can be computed once and for all for a specific image by
knowing the indexes of feature points (inner and outer corners for the left andtrigh

eyes).

g oD~ DIl
1 63)

It is easy to see that) is invariant w.r.t. translations and rotations of the fadtin

(3.1)

the camera plane. Also, thanks to the normalization, itvariant to the scaling of the
face. However, this feature template only takes into actthendistances between the
feature points. Hence, we have to use a second geometritatentipat takes into account

the orientation of those points.

3.2.3 Angles between triplets of feature points

The second geometric featu;isggvcv , takes as parameters the indexes of three facial feature

pointsf,(Z), f,(Z) andf.(Z), as well as a boolean paramekeand is defined as follows:

O (L) = eos(Fufufe) + (1= N sin(Fufufe) (3.2)
Thus, depending oA, ¢>g?gm can be defined either as the sine or cosine of the angle
between the three feature points. We use this formulatistead of the raw angle value
so as to preserve the continuity of the function for anglesiad0. Also note that)® is
also invariant to in-plane rotations, translations ane fecaling. As a geometric feature,

it is also invariant to intensity variations.

3.2.4 Appearance features

Geometric features are generally used along with appeafaaturesi.e. descriptors that

represent the texture of the face image directly. Those &t® af features are compli-
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mentary to each other and it is somehow classical to use amoign of both to increase
the recognition accuracy'[, 44]. Appearance features can be divided into handcrafted,

engineered descriptors and learned representations.

3.2.4.1 Hand-crafted representations

Perhaps the most popular engineered image descriptorfguuater vision is Scale Invari-
ant Feature Transform (SIF5§]). The descriptor consists in dividing a window around a
specific keypoint into (usually x 4) cells from which 8-bin quantizations of gradient ori-
entations are computed. Those are thus weighted by theegtadagnitude, concatenated
and/L,-normalized to form d28-dimensional local descriptor. Speeded-Up Robust Fea-
tures (SURF}]) was later introduced as an alternative descriptor, thseetially benefits
from the integral image computational trick that allowdéaprocessing. SIFT and SURF
descriptors offer a good compromise between extractioadspmensionality and com-
putation runtime for a variety of computer vision tasks sasimage retrieval] or object
segmentationd3]. However, for face analysis, the high-dimensionalityludte features
may slow down the extraction and (optional) dimensionailigtuction step, which may
be critical as the real-time constraint is prominent. Plosal patterns are generally suf-
ficient to sample the texture of the fadee( we do not need to use a grid composed of
multiple cells).

For those reasons, we use Histogram of Oriented Gradie@&(FH1]) as our appear-
ance features for their descriptive power and robustneg#otzal illumination changes.
In order to ensure fast feature extraction, we use integatufe channels as introduced
in [25]. First, face images are extracted based on the positidmediicial feature points.
More specifically, a bounding box is determined by the minmaadx —y coordinates and
extended by0% in all directions, then the corresponding region of interesescaled to
a constant size af50 x 250 pixels. Then, horizontal and vertical gradients are comgbut
on the image and used to generaitieature maps, the first one containing the gradient
magnitude, and th8 remaining correspond to a 8-bin quantization of the gradien
entation. Then, integral images are computed from thederteanaps to output the

3)

feature channels. Thus, we define the appearance featupdiatergbﬁvc,w7067577 as an in-
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tegral histogram computed over channklwithin a window of sizes multiplicated by
the inter-ocular distance. Such histogram is evaluategaird defined by its barycentric
coordinatesy, $ and~ w.r.t. vertices of a triangle defined over feature point§(Z).
Also, we store the gradient magnitude in the first channelotonalize the histograms.
Thus, HOG features can be computed with ohlgiccess to the integral channels (plus

normalization).

3.2.4.2 Learned representations

An alternative approach to hand-crafted representat®is learn the image descriptors
directly from the data. For that matter, one generally ndedsse deep architectures
that are composed of several differentiable layers. Nenetorks (Sectior3.3.3, neu-
ral decision forests (Sectigh 3.5 and convolutional neural networks (Sectidrs.3.3
are examples of deep architectures that allows the exdraofihierarchically abstracted

texture representations.

3.3 Machine learning for classification and regression

3.3.1 Which is the best model?

The No Free Lunch theoren?]] for machine learning states that there is no universal
model that provides the best fit for every problem. Considerahalogy with the one-
dimensional interpolation problem, where we want to find @itable” function f such
that f(0) = f(0.25) = f(0.5) = f(0.75) = f(1) = 1. Of course, the concept of a “suit-
able” function is unclear and, without additional knowledan the problem, there exists
an infinity of very diverse functions that satisfy this crita, such as every polynomial
of the formf(x) = ax(xz —0.25)(z — 0.5)(z — 0.75)(z — 1) + 1, with @ € R (Figure3.2).

We now suppose we wayfitto be close from “test” point®).125, 1.006), (0.375,0.994),
(0.625,1.006), (0.875,0.994). However, those points remain unknown during the “train-
ing” step and cannot be used as control points for the intatipo. In such a case, to select

a good polynomial function we need to introduce additiomadwledge on the problem
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Figure 3.2: Analogy of learning a predictive model with afiezensional polynomial
interpolation. Red crosses indicate training samples,ngeeeles indicate test samples.
In this order, the dashed, dotted and dash-dotted linesat®licurves corresponding to

polynomials with ascending value for theparameter. Best viewed in color.

such as, for instance, the maximal/minimal valuefain the interval0, 1], or a bound-
ary on the derivatives of. The analogy with machine learning is pretty straightfaxya
except that (a) we have to deal with very high-dimensionaliia (L0 up to uncountable
infinite numbers of dimensions) and (b) constraints on thetiems generally cannot be
analytically defined.

Consequently, there is no such thing as a silver bullet modekichine learning and it
is therefore common -particularly when applied to compwisibn tasks- to try multiple
predicting models with various hyperparameter settingé §eem reasonable given an
applicative context, selecting the ones that offer an @séng trade-off between speed
(training/testing), complexity and accuracy. Furtherepane important aspect that we
shall keep in mind when fitting a model is the overfitting issubich is illustrated in the

following paragraph.
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3.3.2 The overfitting issue

Figure3.3illustrates the overfitting issue on a simple example thasists in a polyno-
mial approximation of the cosine function on the interfral, 27|, given a restricted
set of13 control points. On the left, one can see that approximatiegiinction with a
polynomial of degred does not provide satisfying results, as the error betweeibltie
curve (the function to approximate) and the red one is stiportant. Consequently, the
4-degree polynomial model is not complex enough to approterttee function (it is also
said to underfit the problem). The curves in the middle shavrésult of polynomial
fitting using a8-degree polynomial. In that case, the error on the contrwitpas nearly
non-existent and the approximation is qualitatively gdddwever, using a more complex
model, e.g. a polynomial of degreé (on the right) produces a very different result. The
error around the training datad. the control points) is still very low, but the overall er-
ror function skyrockets completely. In machine learning,n&fer to that phenomenon as

overfitting,i.e. when a model is too complex to effectively capture the sofutiariations.

degree =4 degree =8 degree = 16

VAT Y\ / Fas

0

p AV RV VIV

- -4 -2 0 2 4 6 6 -4 -2 T

Figure 3.3: Approximation of the cosine using polynomiaisdtions. Green stars: train-
ing samples. The blue line indicates the target (cosinegjtfom. The red one indicates

the polynomial approximation.

The balance between underfitting and overfitting can sonestipe tricky to find, as
both issues may severely hinder the ability of a learningesygo generalize on unseen
data. In what follows, we will focus more specifically on twaahine learning frame-
works that are neural networks9] and randomized decision treesl] to predict facial
expressions. Below we provide a description of those methedgell as an ensemble of

properties that make them well suited for face analysis gaep regarding the issues that
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are at stake.

3.3.3 Neural Networks

Neural networks (NNs) are among the oldest and most popwahime learning frame-
work. Basic feed-forward neural networks allow non-linearbedding as well as effi-
cient training using stochastic gradient descent and brapggation. Also, recent devel-
opments involve dropout regularizationZ] to prevent overfitting issues, unsupervised
learningvia a reconstruction criteriort] as well as the possibility of a unified, top-down

feature and prediction stages training using deep conweolaitnetwork architecturesS[].

3.3.3.1 Feed-forward neural networks

An individual neuron cell for &-dimensional inpux = {z,};-;. , has two kinds of
parametersw = {w,};-1.; the neuron weight vector aricthe bias term. It realizes two
operations: computinget(x) as a scalar product of the input by the neuron weights (plus

bias), and a non-linear mapping of the output using an dadivéunctionos (Figure3.4).

w

T
net(x)=='w.x +b S y=0(net(x))

Figure 3.4: A single neuron

The activation functiom is usually defined either as an affine function:
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o(net(x)) = net(x) (3.3)

or, more commonly, as a non-linear activation such as theimgtic tangent function:

1— €—2net(x)

a(net(x)) = m (34)
the sigmoid function:
t = ! 3.5
o(ne (X))—m (3.5)
or the Rectified Linear Unit (ReLU) function:
o(net(x)) = maz(0, net(x)) (3.6)

In the case where multiple units indexed®y 1, ..., m are stacked to form a neuron
layer, the output can be defined as a normalized sum oveeallitput net units to provide
values in the[0, 1] interval, so that the sum of these values is equdl. tdhis so-called
softmax activation function is defined as:

eneti(x)

a(neti(X)) = W (3.7)
i'=1

Furthermore, multiple layers can be stacked, each onegingva non-linear encoding
of the output of the previous layer. Figuges represents an example of a multi-layered
neural net architecture.

In such a case, by abusing the notation, the output vectoadf Eyerl € {1,2,3}
can be written in matrix form ag) = o(w®x® + bW), with x) the input of layer
I (with x© = x), w® andb® respectively the weight matrix and bias vector for layer
[ andy the output of that layer. As shown on Figuse5, the output of each layer
feeds the input of the following onége. x) = y(~1). The network activation is thus
computed in a feed-forward fashion, from the bottom levekt {nput) to the top ones.
This kind of architecture is often refered to as a Multi-Laferceptron (MLP) and its

layers as fully-connected (FC) layers. Generally speakiing,input and output layer
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(2)
Figure 3.5: An example of multi-layered network architeetu

sizes are determined by the problem (the (either raw or somebduced) number of
input dimensions and output classes, respectively). Hewekiere is no consensus on
how to set the network hyperparameters that are the numbayerfs, the size of each
layers, how the layer is initialized and the nature of thevatibn functions. Below are

the most common approaches that are used to train such arketwo

3.3.3.1.1 Training with stochastic gradient descent and lekpropagation. Train-
ing a feed-forward neural network supposes finding a setrafpetersw® b®},_;
(with L the number of layers) that minimizes a cost functiofi?’) (whereW = {w
;bW wP) b} s the set of parameters of the whole network) that corredptman
error criterionE (W) = €(y, y*) between the ground truth labet and the network out-
put predictiony = y(&), for every labelled examplex, y*). This error is usually defined

as either the squaret, loss for classification and regression

~

ey.y) =1y —y'll3 (3.8)

or the cross-entropy loss

42



k./
¥,y =Y uiin(y}) + (1 —g)in(l - y}) (3.9)
j=1

for classification, when the output activation functionhs softmax function. How-
ever, minimizing this error criterion w.r.t. the networkrpmeters is a non-convex opti-
mization problem in the general case, and the high-dimeasity of the problem makes
exhaustive search impossible. For these reasons, netwadrike are generally trained by
backpropagatings:] the error gradient from the top layers down to the bottomsoby
applying Stochastic Gradient Descent (SGDJ]. In practice, this consists in iteratively
minimizing the loss function in Equatio®.8 by applying a sequence of updates to the
model’s parameters. Each of these updates only consider@mini-batch of examples
that are randomly sampled from the training set. GenerdBpSolvers need a certain
amounts of epochs through the whole training set to convefgemally, given a mini-

I

batch ofB examples (x1,y7), ..., (x5, ¥5) }, the update for a paramet@ﬁ?,j € [|1, &

i € [|1, k|] of a neuron layet can be written:

W _ « 0d(y,y") (3.10)
Bl owl)

The same holds true for the bias terms, witthe learning rate hyperparameter. If we

)
w;; W

consider a parameter of the top layewe can write, using the chain rule:

* * (L) * (L) (L)
Oe(y™), y*) _ de(y D) y*) Oy, B de(yD) y*) Oy;” Onet;
L - L Ly L L L
ow'Y ay](» Y e 8y](- ) (9net§» ) 8w§i)

Ji Ji

(3.11)

The first term is relative to the loss functiofyor cross-entropy). The second one
depends on the activation function (e.g. softmax for cfasgion or affine for regression

tasks). Finally, for the last term we have:

8net§»L)
8w](-f)

Notice that the equations are the same if we now consideraneer of the second

=zl =yt (3.12)

layer from the topl. — 1:
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* kl *

De(y D), y*) <= 0e(yD,y*) 9" onet)”) 3.13
9 (L-1) _Z P) (L) (L-1) ( : )
w; pr Yp 8netp owy;

Once again, using the chain rule (remempér ) = x(%)), we get:

K’ L—1 L—1
YLy g ) oy omety? 0y oy 0y

Ow Jz p=1 ayp 8netz()L) 8x§.L) aw](,iL*U J (9w]('z‘L*1)

(3.14)

We defines(“~1) as the error backpropagated to tie— 1) layer. Starting from the

top level we have:

NG de(y™), y*)

== 2 (3.15)
J ayj(L)
and, for any layet of sizek” in the network,
k,ll (l)
i =30 0 (3.16)

P 8net,(f) >
Thus, for each layet, we can compute the derivative and the SGD or mini-batch
update w.r.t. its parameters an compute the effor) backpropagated to the layers

below this one (if any).

3.3.3.1.2 Afewtricks for training neural networks. Generally speaking, the weights
and bias terms for each layer are randomly initialized (aggdere is no consensus on
what is an optimal value for the range of this random initi@ion, though uniform sam-
pling in the intervall—0.01, 0.01] is a good rule of thumb). Then, examples are selected
at random and a forward pass through the whole network pesuite network output.
The error can be computed and backpropagated in a top-dakiofaand the network
parameters are updated using Equati®ri@. This process is usually repeated until a
specified number of epochsz(100 is a good order of magnitude for our applications)
through the whole training set are completed, with eithesrestant or a slightly decreas-
ing learning rate hyperparameter.

Moreover, itis also generally a good idea to introduce a Gaangrior with zero mean

on the weights of the network. This assumption is equivaier@dding a weight decay
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term to the cost function, that can be rewrittBiV) = €(y,y*) + 1/2AW?. Thus, for

any parameter of the network the update equation becomes:

0,0 _ @ 0F.y) ad g
R N T WU

In practice, this prevents the weights to reach extremaleglwhich can cause in-

(3.17)

stability of the network. Usually is set to a constant, very small value. Other methods
for preventing overfitting while training neural nets invelearly stopping and dropout.
On the one hand, the former simply consists in reducing tmebau of training epochs
while the training error is still decreasing. While it is easyqualitatively see why early
stopping can prevent the networks from overfitting on thming data, there are a num-
ber of papers in the literature] that shows that it can be seen as some sort of Tikhonov
regularization 107]. Dropout [32] or dropConnect$4], on the other hand, consists in ran-
domly setting a fraction (usually one half) of the neuronsights during the forward and
backward pass for each SGD or mini-batch update. It has bemmnsby the authors in
[87] to behave as an extreme form of Baggirig]| effectively preventing co-adaptations

in the network, which in turn limits overfitting issues.

3.3.3.2 Autoencoders

Autoencoders are a special kind of neural network whereukgub vector is a reconstruc-
tion of the input, as illustrated on FiguBet. Thus, the output of the network has the same
size as the input. The hidden layer can be smaller than the,impwhich case the au-
toencoder essentially performs a non-linear dimensitynadduction. This is sometimes
refered to as an under-complete representation of the.inputhat case, as compared
to PCA [£3], autoencoders benefit from a more efficient training pracedhat involves
SGD and error backpropagation (Secti®i3.3.2.). Manifold forests P(] are another
method for non-linear encoding and manifold learning. Heevethe construction of a
manifold forest assume that the data distribution of eadem®unimodal with a Gaussian
prior. It require the computation of the determinant of tbgariance matrix to estimate
the volume of the hyper-ellipsoid. This causes low-rankaieficy problems when deal-

ing with high-dimensional inputs. Last but not least, antmelers can be used to learn
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(1)

Figure 3.6: Architecture of an autoencoder

over-complete reprensentatiare( if the hidden layer is larger than the input), that can be
made more robust thanks to the introduction of a specifiargtcoction criterion (Section
3.3.3.2.2.

3.3.3.2.1 Unsupervised training via a reconstruction cregrion. As with standard
NNs, autoencoders are trained by applying a sequence of $Gmifi-batch) updates
using backpropagation of an error criterion. However, asdiitput representatiat of
an examplex does not depend on a ground truth labelling, the error carobguated in

an unsupervised way by using theg-loss between the input and its reconstruction:

E(W) = ||x — x|} (3.18)

In this equation, recall that is the cleaninput version andk is a reconstruction
provided by the autoencoder frormaisyinput. In order to provide a non-linear encoding
of the input, we generally use a non-linear hidden layermpateazed by weight matrixv

and bias vectob:

y =o(w.x +b) (3.19)
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Another trick to restrain the number of parameters of theeutoder is to usetied
weights,i.e. the decoding weight matrix is the transpose of the encodiatyixa With

that regularization, an affine decoder is given by:

With ¢ being the decoder weight vector. The parameter updates eaorbputed
easily using Equation8.10 3.11and 3.16 (or 3.17). Furthermore, the cost function
E(W) can be enhanced to impose a particular structure on theriatiate representation

provided by the hidden layer.

3.3.3.2.2 Regularization schemes.There exists a wide number of regularization schemes
for autoencoders. In this section we briefly review some eftiost popular ones, with an
emphasis on the denoising critericil] that we will use in Chapteb for face analysis.

It consists in generating a randomly corrupted versiarf each training example, by

adding either masking noised. a randomly chosen fraction of the input dimensions is set

to 0), salt-and-pepper noised. a randomly chosen fraction of the input dimensions is set

to 0 or 1) or gaussian additive noise with mean zero and spre@é. x ~ x+ AN (0, 0%)).

The cost function thus becomes:

E(W) = ||x — x|} (3.21)

This means that the network is trained to reconstructtéanversion of the inpuk
knowing only a randomly corrupted versian From a manifold learning perspective, this
allows to learn more robust intermediate representatigmsdjecting back examples that
lie further from the manifold. It can also be seen as a way ¢évgmt co-adaptation of the
units, similarly to dropout (see SectiGr3.3.1.3.

Others popular regularization schemes involvesitisparse autoencodei(]], which
consists in selecting thee larger values (at train and test time) among the hidden layer
activations, zeroing out the others. This is generally udedg with large numbers of
hidden units to generate sparse, over-complete représerstaAn alternative approach

is the contractive autoencodet], which consists in penalizing the Frobenius norm of
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the Jacobian of the non-linear mapping. This encourages/édued (lat) derivatives
which implies robustness to small variations of the inpumilarly to what is done with

denoising autoencoders though in a more explicit way.

3.3.3.3 Convolutional neural networks

Convolutional Neural Networks (CNN$§¥]) are NNs whose structure is adapted for sig-
nal processing in general, and image processing in paaticit illustrated on Figura.7,
the major difference with regular NNs introduced in SectioB.3is that the weights of

CNN layer are shared across one or more dimensions of the signal.

Xy

X, U T
%3 e >V
Yt . -V
X, -

Figure 3.7: Shared weights across the input dimensionewsrwith similar colors (blue,

green and red) are associated with the same shared weigktszi@ged in color.

If the inputx® of a CNN layer! is an image, its outpug” can also be seen as a
collection of images (often refered to as feature maps) lare obtained by “scanning”
the pixels ofx() with the units’ weights (symbolized by red, green and bluews on

Figure3.7). Hence, those weights act as filter kerneLQ we can write:

g =03V xwl) + b)) (3.22)
j
Everything is thus similar to the equations of generic fé@u+ard neural networks
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introduced in Sectiors.3.3.1 except that the net output of the layer is computed as a
(valid) convolution product between kerneléfj? and input channelsg.l), instead of a
scalar product. Also, the bias temﬁ) is propagated to the whole feature mapFigure
3.8provides an example of a CNN architecture for image classificaTypically, a CNN
architecture is composed of alternated convolutional aag-pooling layers that operate
on small non-overlapping regions (generaly 2, 3 x 3 or4 x 4 for very large images).
Alternatively, one can use other forms of pooling such asmoling, £, or stochastic
pooling [LO5. This pooling step is used to create position invarianar tacal regions as
well as to reduce subsequent computation time by progelgglownsample image size
throughout the network layers. The last layers of the nekveme generally basic feed-
forward prediction layers that are also called fully-cocted (FC) layers - see Section

3.3.3

‘A
'l
- I dog
'f / . cat
. —p» Il truck
M frog
B dishwasher
o
‘W
Conv1 + Conv2 + Conv3 + FC Prediction

Input image

maxpool maxpool maxpool

Figure 3.8: An example of CNN architecture for image clasaiiom. Credits to the

Stanford “Convolutional Neural Networks for Visual Recogmit’ course for the pictures.

Similarly to regular feed-forward neural networks, thegmeter update for kernel

w](é) of layer! is given by:

ey y* oy
—e(y ;y ) = upsample(d(-l)) * Y
aw( ) J 3w(l)

Ji Jt

(3.23)

With * the valid convolution operator angpsample the “inverse” of the pooling op-
erator (in the case of max pooling, we need to keep track gbdiséions of the maxima).

The error backpropagated from laydp layerl — 1 becomes:
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k/l

1)
6 =" upsample(s) aayp ) * @l (3.24)

=1 netl()l) P

Where * is, this time, the full convolution operator (validsolution with zero
padding of the borders). The goal is thus to create a pyrafrgdanlually abstracted rep-
resentations of the input image (as can be seen on Figjfréhe bottom layers usually
learn Gabor wavelet-like edge detectors while the top CNNdayearn more sophisti-
cated object detectors), by learning the prediction ancesgmtation stages in a unified,
top-down fashion. Ideally, learning deep image represems using CNNs allows to
avoid the use old hoc¢ hand-crafted representations such as SIFT or HOG. However
it also involves a lot of hyperparameter tuning, from theamek architecture (e.g. the
number of CNN/FC layers, the number and size of each layereketire maxpool type
and window size, or the weights’ initialization) to the trig hyperparameter (learning
rate, weight decay, batch size). Furthermore, other madeiarning algorithms can be
used for the prediction stages, such as Support Vector Meslfit] or the recent Neural

Decision Forests/[).

3.3.4 Randomized Decision Trees

Randomized Decision Trees, also refered to as Random FoR¥s$$ &re a popular ma-
chine learning framework introduced in the seminal work afiBran [L1]. In this section,
we draw a non-exhaustive overview of the method, startirilg thie basic idea of growing
a single decision tree to predict new data (Sec8#dh4.]), and highlighting the interest
of learning collections of multiple randomized tree prealis, regarding some nice prop-
erties of RF w.r.t. overfitting on the training data as welltaggeneralization capacities
on new data. We also show how the RF framework can be strarglatfdly adapted for
multiclass classification problems as well as regressiskstavith an emphasis on class

balance issues.
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3.3.4.1 Asingle decision tree

Without loss of genericity, a generic binary decision traa be recursively described by
a noden, which is either called a terminal node, or a split node, asvshon Figure3.9.

If node n is terminal (depicted with green arrows on Fig@é), then it is associated a
terminal distribution, which consists in either an assigntrprobabilityp(c|x) for each
classc € {1,...,C} in case of a classification task, or to a prediction vajue case of
a regression task. On the flip side, if nodés not terminal, it is called a split node (flat
gray nodes on Figurg.9) and contains a parametric split functiph associated with a

threshold™, and the address of left and right subtrees w.r.t. nade

Figure 3.9: A single decision tree

Given an inputx = (zy, ..., 7)), the split function associated to nodeontrols ifx
will be routed to the left or to the right subtree w.r.t. nodd~ormally, the split is defined

as a binary function:
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1 if o™ (x) > 0"
57 (x) = ?"(x) (3.25)
0 otherwise.
With the conventiorx goes to the left ih”(x) = 0, and to the right iff"(x) = 1.
Thus, generally speaking we can write the output probglitiat a decision tree outputs

classc as:

plex) =Y p'(x)p'(e) (3.26)

l

With p'(c) the prediction outputted by leaf nod@nd ! (x) the probability to reach

leaf nodel. For a regression task, we have:

7= 1) (3.27)
l

In the case of a classical decision tree (Equatiig)), there is exactly only one non-
zerou'(x) coefficient, depending on a hard path that inpuékes in the tree. Formally,
for each leafl a path to the trees can be defined as two 6t¢" and V" of nodes
n for which [ respectively belongs to the left and right subtrees defimefunoden. A
hard path through the tree down to Iéafan thus be defined as a product of Kronecker

deltass” (x) for each noder € ", and1 — §"(x) for each noder € N;“'",

W= I o0 J] (1-0"x) (3.28)

nEA/-lright nEMleft
The split functiong™ can be of two kinds: first, it can look at only one dimension of

the input vector:

" (x) = x5 (3.29)

In that case, we refer to it as axis-aligned splits. Altexedy, it can consistin a linear
combination of a number of input dimensions:

k
0"(x) = D_ s (3.30)
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In such a case, the splits are called oblique splits. Mongadrecertain cases, the
input dimensions cannot be explicitly represented in mgmas the potential number of
combinations may be two important (consider, for example,dase where we want to
take as features a number of triplets of pixels in an image}hbose cases, as it will be
shown in what follows, axis-aligned split candidates cagé&eerated on-the-fly from the
source data itself (e.g. the image in this case). Thus, gipwidecision tree amounts
to find successive “good” hyperplanes( split functions) that separate the training data
from the different classes.

We now aim at growing a decision tree updhexamplesX = {z; ;}i=1. ~Nj=1.. .k
and corresponding class label vector, ..., cy)" with ¢; € {1,....,C}Vi € {1,...,N}.
There exists a number of variants for the induction of deacisgrees. Perhaps the most
popular one is the ID3 algorithm proposed by Quinlar]] In the case of a classifica-
tion task, for each node starting from the root node (nodeon Figure3.9), it consists in
evaluating, for each possible split candidét&, 6™}, an impurity criterionH (¢™, 0™) rel-
atively to the induced partition of the data. More specificdbr each split candidate, the
input data at node either goes to the left or to the right subtree and the clgssrtiéon
{rt,..,rL} and{ry, ..., r.} for those respective subtrees can be computed accordingly.

For classification, the impurity criterioA is thus computed either as Shannon entropy:

C

H(o™,0") = Z —rllog(rl) + Z rilog(rs (3.31)

c=1
or as Gini impurity measurement:

H(¢",0") Zr (1—7h) +Zr (1—77) (3.32)

In the case of a regression task, we seek to minimize thenaiaf the subtrees in
term of the ground truth predicted valyg of elements that belong to either left or right

subtrees:

Zﬁ (i —7')° % (i —9")?
n agny __ t€EL" IER™
H(g" 0" = =5 + S (3.33)

Where £ andR" are the set of examples that goes to the left and right subtree
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induced by split candidatgy”, 0"}, respectively. Recall that those are definedCas=
{i € |1, N|]/o"(x;) = 0} andR"™ = {i € [|1, N|]/6"(x;) = 1}. Finally,3' andjy" are the
mean predicted value from examples that belongs to thossiss.

In order to avoid overfitting, in the case of a single decidiee, it is generally nec-
essary to use some form of early stopping, for example bypgstgpthe node splitting
process either when the number of examples falling into aiip@&ode becomes lower
than a specific value, or when the information gain (the diffiee between the purity of a
node and the average purity of its children) is below a thokekHn that case, a leaf node
is set, which contains the class distribution of exampléméninto this node. Similarly
to neural networks (see SectirB8.3, decision trees offer the advantage to potentially be
able to model complex functions by setting non-linear subdins of the input space un-
der the form of successive hyperplanes. Furthermore, thi@&ion runtime is very low
as a low numberife. logarithmic on the number of nodes) of nodes are actualliueted
for a given test example, especially when one considersadixjsed splits. However, as
Is, they suffer from a number of drawbacks. First, contraryéural nets, the training
is essentially performed offline. Secondly, they tend torgity overfit on the training
data which is particularly relevant for computer visiork®sas the data is generally high-
dimensional with a lot of noisy, irrelevant features. Thsturn, limits the capabilities of

decision trees to generalize on unseen data to a signifigtarite

3.3.4.2 Ensemble of randomized trees

In order to highlight the limitations of using a single dearstree for classification, we
propose a small benchmark on thgiral dataset. It consists in approximating two non-
overlapping spirals in a two-dimensional space, by havinly @access to a restricted
number of data points. Thus, we aim at generating classditatodels that encapsulate
the spiral structure by providing only a restricted set ofoy labelled coordinates. Those
results are illustrated on FigurdslQ 3.11, 3.12and3.13 On the one’s hand, we can see
on Figure3.12that with 10000 points the spiral is globally well “understood” by a single
decision tree, even though some details are missing. Fortre, it has a very coarse

aspect with square borders, which is due to the limitatidnssimg a single axis-aligned
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split decision tree for classification. Moreover, lookingrigure 3.10, one can see that
the spiral aspect is not satisfying when the tree is grownguss training data (e.qg.
2000 points). This illustrates the limited generalization azipaof a single decision tree
trained on restricted amount of data.

On the other hand, Figur&slland3.13are obtained by using an ensembléofan-
domized decision trees, up@f00 and10000-points datasets, respectively. The procedure
for generating such tree collections will be detailed morelépth within the following
sections. Note that the spiral aspect is globally betteetstdod by the models, especially
when the number of points is low. This illustrates the faett #Binsemble of randomized
trees are in general more robust to label noise and less poooerfitting than single

decision trees.

30

Figure 3.10: Spiral approximation usingFRgure 3.11: Spiral approximation using 50

single decision tree (2000 data points)  randomized trees (2000 data points)

3.3.4.2.1 Enhancing prediction accuracy with perturb and cmbine approaches
In order to obtain a more accurate model, it is common in thehme learning litera-
ture to gather a set of individually weak, but somehow comethtary, predictive models.
Notorious examples of this paradigm are Boostinag,|Bagging [L0] and Random Sub-
space £g]. RF associates two of the aforementioned methods to significincrease the
prediction accuracy of decision trees. Those methodslasgrdted on Figur&.14

It has been proven by Breiman in1] that an upper bound of the generalization error
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Figure 3.12: Spiral approximation usingFégure 3.13: Spiral approximation using a

single decision tree (10000 data points) 50 randomized trees (10000 data points)

J feature dimension

idata

Figure 3.14: Ensemble of Randomized decision trees. Blackedquares indicate un-
used data, as opposed to white ones. Top row: Bagging: eashstigrown upon a
restricted bootstrap of the training data. Middle row: rmdsubspace (RS): each tree is
grown using only a subset of the input features. Bottom row:dRanForest (RF) each

tree is grown using only a subset of the training data andtifgaiures.

for RFs is given by the ratip/s?, wheres denotes the average strength of the individual
trees, ang denotes the correlation between these. Thus, the smakerd the highes,

the higher the accuracy of the forest becomes. GeneralBkspg adding randomness
allows to decrease the correlation between the trees, vitnittirn increases the predic-

tion accuracy. As explained on FiguBel4, the most common frameworks to generate

56



ensemble of randomized trees involve Bagging (top row), wkimnsists in growing the
trees upon bootstraps that are randomly sampled with reyplet from the whole train-
ing corpus. Another approach is Random Subspace (RS - midd)e irowhich only a
subset of dimensions from the feature vector that corredptm each example is used.
Ultimately, Random Forests (RF) consists in using both baggmd random subspace
methodsj.e. training each tree with a reduced subset of examples andndiores. The

prediction for the whole forest is thus given by:

T
1
p(c]x) = T t_zlpt(c]x) (3.34)
in case of a classification forest, or
1 T
Yy = T t_zl Y (3-35)

for a regression task. In these equationé;|x) andy, respectively denote the pre-
dicted probability for class and regressed value outputted by a treéthe forest. As a
result, RFs are generally more robust to noisy and irrelefeitires, as well as outliers
within the training corpus, as compared to using a singlesd®ct tree trained using a
deterministic method. They are also less prone to ovedittim the training data, as the
recombination of multiple, independently weaker modeleved to generate a smoother
partition of the input space. It is stated if] fhat ensembles of randomized trees can be
seen as one layer deeper as single decision trees, hence &xpoessive and powerful
prediction framework. It is illustrated on Figurgsl1and3.13 that were generated using
RFs with50 trees, each one grown on an uniformly-sampléth bootstrap of the input

data, and using only among the coordinates for splitting.

3.3.4.2.2 Popularvariants. There exists a number of RF variants that may differ from
each other w.r.t. when to set a leaf or a split node, how thie catdidates are selected
or how the leaf predictions are computed. In Breiman’s odagRF [L1], trees are grown
upon bootstraps that each contains approximai@ly of the examples. It also uses axis-
aligned splits and, although there is no value for the nunabelimensionst’ that can

be examined at each node, usudlly= vk is a good rule of thumb. Threshold
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are optimally chosen for each dimension. In Extremely RandedTrees $7] (ERT-£’
with £’ being the number of dimensions that are looked up for seti@ip split node) the
difference with RF is that the threshol@sare randomly selected. Thus for ERTwhich

Is sometimes referred to dstally Randomized Trepthe splits are set independently of
the labels. Moreover, in order to bring the decorrelatiotwleen the trees to another
level, as in B(], one may choose to generate different random subspaceslatsplit
node rather than for each separate tree.

Breiman [.1] also suggests not to use early stopping. The rationalendethat is
that even though individual trees may overfit on the trairdata (.e. the corresponding
bootstraps), this phenomenon is compensated by the posteinabination of predictions.
Moreover, an interesting feature of RFs is that its accuragsadhot rely to much on the
hyperparameter setting, making it relatively easy (e.gnmared to neural networks) to
find a suitable parametrization. Indeed, a setting thatesaas decrease of the individual
tree predictive strength (e.g. decreasing the number of featukésor setting the split
nodes, or decreasing the bootstrap sizes) may have theitgpfisct on the correlation

between the trees compensating the accuracy loss.

3.3.4.2.3 Dealing with imbalanced data. There are multiple ways to adapt the RF
framework to train on imbalanced data. This section aimsratiging a very coarse
overview of what can be used for that purpose. For more tlgtrdaenchmarks and
comparisons between the different approaches, the rehd#mrefer to [L4]. The first
possibility to overcome class imbalance is to assign to ekds a weight that is used (a)
to weight the contribution of each class during the companadf the impurity criterion
and (b) to weight the probability distribution that is stneithin the leaf nodes. How-
ever, there is no consensus on how those weights can be digaligaset in the general
case, thus this method may involve an additional hyperpat@nsetting. An alternative
approach is to either apply upsampling of the minority @das®r downsampling of the
majority classes, in order to enforce class balance witterbbotstraps. As stated in/],
downsampling has a slight edge in the general case compatgsampling and explicit

class weighting when in comes to prediction accuracy. [euntlore, as the bootstraps are
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essentially smaller, it is also significantly faster. Thuswhat follow, we will stick to

downsampling for the purpose of ensuring class balance.

3.3.4.2.4 Out-of-bag error estimate. The Out-of-bag (OOB) error is an error esti-
mate that is specific to ensemble methods. For RFs, it consigtgaluating each tree
only on data that was not used to grow that tree. (that does not belong to the corre-
sponding bootstrap). As stated by Bylanaéeral. [13], the OOB estimate is generally
more pessimistic than traditional cross-validation (&.gr 10 fold) error estimates. It is

also, for instancel 0 times faster to evaluate than implementintpafold evaluation. For

FER, in order to evaluate the RFs in a subject-independenbfashie associate an ID to
each subject. During training, we then generate bootstafie ID level and test each
tree on the subjects that were not included in the correspgrimbotstrap, hence a valid

subject-independent error estimate.

3.3.5 Neural Decision Forests

3.3.5.1 Soft trees with probabilistic routing

Figure 3.15: A single neural tree. Contrary to hard decisiead, an exampte reaches
each node of the tree with probability € [0, 1]. Those probabilities are computed as

product of successive probabilistic splitsthat correspond to a neuron activation.
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As illustrated on Figure3.15 Neural Decision Forests (NDFs) are a recent NN/RF
hybrid introduced in{¢]. In the case of a NDF, the probability* associated to each leaf
node is defined as a product of continuous split probalsldssociated to each probabilis-
tic split noden (Equation 8.36), that are parametrised by a Bernoulli random variable
d" € [0,1]. Taking the expected value for each node (which corresptmds infinite
number of samplings from treg, an examplex goes to the right subtree associated to
noden with a probability given by the activation functiaft(x), and to left subtree with

probability 1 — d"(x).

pea)= ] = J] 0-d'x) (3.36)
nE/\/'['igm ne'/\/—lleft

The activationd™(x) for noden is defined as a sigmoid function of the difference

between a combination of the dimensiangparametrised by vectgt” and bias—6":

k
d"(x) = U(Z Bz, — 0" (3.37)

Thus, the calculus af*(x) can be seen as the activation of a neuron layer with weights
{87} and bias—¢". From a decision tree perspective, the successive actgdl'(x)

define a soft routing through the trees, where each leaf himdeached with probability

w'.

3.3.5.2 Online learning with recursive backpropagation

The prediction erroel for a given clasg and a leaf € £ of treet can be computed as the
Euclidean distance between the leaf predictipfz) and ground truth label probability
p*(c|x) = 1if ¢ = ¢;, 0 otherwise. The prediction error for the whole tree is thusatq

to:

e(x) =Y p(x)el (3.38)

Hence, for any parameter” (i.e. a feature weights? or the threshold valug”), the
(non-regularized) parameter update is given by EquaBd®d) with o, the learning rate

hyperparameter for trefe
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aGt(X>
t don
As in a standard neural network, the learning rate can beosgtconstant valuey

O B — (3.39)

(or a decreasing function of the number of training epocidjernatively, as proposed
in [4€], trees from the NDF can be randomly selected and updateidhwian be seen as
some way to add diversity, similarly to dropout regulari@at[S2], but at the tree level.
Formally,o, = o if t = t, (0 otherwise) witht, ~ U, ;. Moreover, the derivatives of

¢; can be calculated recursively, as it is illustrated on Fegut 6

Figure 3.16: Error backpropagation on a single node of a NDE.parameter update can
be computed by applying a recursive call to find the valueseferrors for the left and
right subtrees, respectively denoteddlyande’l. Those quantities also give rise to the

error for noden €".

Specifically, for a split nodex we can split the sum in Equatich38in three, by
grouping the leaves that belong to the [&ftz) and right subtree® (n), and those who

do not belong to those subtrees:

a(x)= > pEd+ D pdxd+ D px)d (3.40)

1L (n) IER(n) 1¢L(n),I1¢R(n)
While the first and second term respectively depend end”(x) andd"(x), the last

term does not depend at all on parameferWe can thus write the summation as:
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() = p () (1 — d"()€™ (x) + " (0)d" (X)L (x) + ix) (3.4)
IgL(n),lgR(n)

With €” (x) ande’} (x) the errors respectively for the left and right subtrees.sT e

have:
ey od"
) o0 2 e ) — e () (3.42)
With:
M = —d"(x)(1 - d"(x)) .43
P = ad"(x)(1— d"(x))
Moreover, the error up to nodeis computed as:
€' =d"(x)e} (x) + (1 — d"(x))e" (x) (3.44)

Once the trees are initialized, training samples are se@ligrchosen from the data
(SGD or mini-batch) and a forward pass through the treesigesvthe values of the
probabilities” (x) and activationg" (x) for each node. Parameters can thus be updated
using Equations$.39 3.42and3.43 Those steps are summarized in AlgoritimFor
each noden, NDF_backpr op provides an update to the error that can optionally be
backpropagated up to the feature lewgl; by recursively callingNDF_backpr op on
the left and right subtrees, which respectively return thiers ¢ (x) and €’} (x). The
prediction error is thus recursively backpropagated fromleaves up to the root of the
trees.

The authors of 48] suggest using a two-step iterative optimization schemiest,F
a forward pass through the trees provides the activatitns) and probabilitieg™ (x)
for each node for one (SGD) or a batch of examples. Then, afsgrecific number of
epochs, the leaf probabilities are updated following a egroptimization scheme while

the parameters for all the split nodes of the forests are fixed
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Algorithm 1 NDF_backpr op
Input: examplex with label probabilityp*, noden with probability ;. (x) and activation

d"(x), learning ratex

Output: backpropagated erref(x), error backpropagated to the feature lexgl; (x)

if n is a leaf nodghen " (x) « ||p"(x) — p*(x)||?

else
€t (x) <= NDF_backpr op(x,right(n),x) > recursive call on right subtree
€" (x) + NDF_backpr op(x,left(n),a) > recursive call on left subtree

e"(x) = p™(x)d"(x)(1 — d*(x)).(€}(x) — €*(x)) © split node parameter update
B = B" — axe”(x)

0" < 0" + ae™(x)

Ereat (X) 4 €reat(X) — af7e"(x)

€ d"(x)e} (x) + (1 — d"(x))€e” (x)

end if

3.3.6 Evaluation protocols

In machine learning in general, it is common that the trajrerror estimate reaches very
low values while the test error converges to a strictly posivalue or, worse, increases
(see Sectior8.3.). Thus, measuring the training error is not a good indicafothe
performance of an automatic recognition system. From a &aedysis point of view,
imagine we train an algorithm for aligning feature pointg@rognizing the expressions
using only training instances that come from one specifigestibThe learned models will
exhibit very low error on images that correspond to that ectbjout will be completely
useless when applied to other subjects.

A more significant test would be to evaluate our algorithm&xamples that are not
used to train the algorithms. However, from the point of vieixdesigning an auto-
mated face analysis framework, the goal is to design a patezrognition system that
can generalize well on the facial morphology of new subjeldesnce, we have to ensure
that the subjects that we evaluate our predictive modelg®mat used at training time.

Traditional cross-validation estimates can be generat#iteasubject level by assigning
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each subject a specific ID and generating the train/testipag at the level of those IDs,
as it was detailled in Sectio®3.4.2.4in the case of the OOB error estimate for bagged
classifiers. In what follows, we mainly evaluate RFs and NDdtsgisubject-independant
OOB andb/10-fold cross validation error estimates, and NIN®Id cross-validation. Last
but not least, it is often interesting to evaluate the priagianodels in a cross-database
fashion (.e. training on one database and testing on another one) in trésaluate the
capabilities of the algorithms to generalize on new envirtental conditionsi(e. studying

on how an expression recognition system trained on labrdecodata with near-frontal

head poses can perform in less controlled conditions).
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Chapter 4

Pairwise Conditional Random Forests

4.1 Overview

As stated in Sectio.2.], it is generally easier for a human observer to distinguesh b
tween the different expressions if one has access to thetewolof the face over time.
However, effectively extracting suitable representaitnom spatio-temporal video pat-
terns is a challenging problem as expressions may occunsaiibus offsets and at dif-
ferent paces. There is no consensus either on how to confimee tepresentations flex-
ibly enough so as to generalize on unseen data and possignriemporal variations.
Towards this end, we introduce Pairwise Conditional RandoredtdPCRF) algorithm,
which is a new formulation for training trees using low-lelreterogeneous static (spatial)
and dynamic (spatio-temporal derivative) features withenRandom Forest (RF) frame-
work. Conditional Random Forests have recently been used byobeet al. [27] as
well as Suret al. [34] in the field of facial alignment and human pose estimatiespec-
tively. The authors of these papers generated collectibtrees for specific, quantized
values of a global variable (such as head pas# énd body torso orientatiorfl]) and
used prediction on this global variable to draw dedicateddy resulting in more accurate
predictions.

The basic idea developped in this chapter is to integrateosfamporal information
under the form of transition classification in order to perid-ER from video sequences.

As shown on Figurel.1, on the one hand, a static classifier (blue arrow) only uss cue
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relative to the current frame for which we want to predict theial expression. On the
other hand, the prediction outputted by our PCRF method isdahmation of multiple
transition classifications (green arrows). Those tramsstiare evaluated on pairs of im-
ages drawn from multiple time gaps in the sequemnce (3 andn, n — ny, andn as well
asn — n; andn on Figure4.1). We will explain, in what follows, that, from a Random
Forest perspective, it can be seen as extending the settofdsdhat is used to grow the
trees, effectively increasing individual tree strengthwaedl as increasing decorrelation
between the trees. The upside of the proposed approaclt is ithtairly flexible, e.g. it
is independent of the pace at which the expression is disgléys compared to the use
of descriptors designed on spatio-temporal volumes), andad require temporal con-
sistency of the sequences for training and testing (as ctmdpa e.g. Hidden Markov

Models).
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n-n2

. pairwise transition ' E
ication :

+ classification

@)

. + combination

Figure 4.1: Transition (green) vs static (blue) classifarat

Moreover, we propose to condition pairwise trees on speeKression labels to
reduce the variability of ongoing expression transitiasf the first frame of the pair to
the other oneln Extensga head pose estimate can be used to draw trees from Multi-Vie
PCRF (MVPCREF) collections to perform pose-robust FER.

This chapter is organized as follows: in Sectibf we describe our adaptation of the

RF framework to learn expression patterns on still images figgh-dimensional, hetero-
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geneous (geometric/appearance) features. In Settiame present the PCRF framework
for capturing spatio-temporal patterns that represermlifagpressions. In particular, Sec-
tion 4.3.1illustrates how we can generate a pairwise dataset usiniglaleadata. Section
4.3.2highlights how we extend the pool of static features to aapfpairwise) dynamic
information. In Sectiorl.3.3we present the extension of traditional tree combination fo
averaging over time pairwise trees. In SectibAwe present an extension of PCRF for
multi-view FER, with an emphasis on the preparation of a muéw dynamic database
for training and testing the models (Sectiénl.2 and on the evaluation of a sequence
using MVPCRF models (Sectich4.]). Finally, In Section4.5we show how our PCRF
algorithm improves the accuracy on several FER datasetpa@t to a static approach
as well as to state-of-the-art approaches. In Sectiér2we report results from frontal
view FER and in Sectiod.5.3we report accuracy for non frontal head poses, showing
that our MVPCREF formulation substantially increases the stiiess to pose variations.
In Section4.5.4we report the ability of our framework to run in real-time.né&ily, in
Section4.5.5we discuss the interest of the proposed approach for maaltnulti-view

dynamic FER.

4.2 A static RF approach for FER

In order to perform static FER from still images, we adapt filaenework presented in
Section3.3.4.2in two main aspects: the bootstrap generation and the catedidature

selection process.

4.2.1 Bootstrap generation

We use a subject-wise bootstrap generation procedure fon@Rktion, as discussed in
Section3.3.4.2.4 More specifically, we assign each subject from a set of sifje
a specific ID. Then, for each tree, we start with an empty hagsand sample with
replacement on the vector of subject IDs until a specifictivacof elements (usually
66%) is added to the current bootstrap. From that point, we coacisthe index of OOB
IDs simply by looking at the subjects’ IDs that were not ird#d in the bootstrap. Then,
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we downsample the bootstrap iteratively, by removing aheaep an element uniformly
sampled from the majority class until all expression classe represented by the same
amount of elements.é. the lowest among all the classes). The rationale behindlgzgnp
at the ID level is that we want each subject morphology to erfte the prediction on
a equal foot regarding the number of annotated data for tigest (e.g. for certain
datasets, one ID can correspond to only one frame wheredisearome may give rise to
ten times more samples). The downsampling step also alloJight class imbalance
at the tree level. Finally, it also allows to use OOB erroireate as a valid subject-
independent error metric, which is more convenient for @athg our algorithms than

more traditional cross-validation or leave-one-subjadtestimates.

4.2.2 Heterogeneous feature templates

As stated in Sectiofi.2, the information contained in geometric and appearandares
is somewhat complementary. Moreover, as described in @e8tB.4.2 collections of
randomized trees benefit from using diverse informatiorherdata, that in turns produces
more decorrelated predictions from the individual treeslldwing this idea, we grow
trees using a combination of geometric and appearanceréetsmmplates)’) (Section
3.2.9, ¥ (Section3.2.3, ¢ (Section3.2.4.).

During the RF induction step, for each node a number of spiidiclates are generated
on-the-fly using one of the proposed feature templates vathrpeters sampled from a
uniform distribution over their respective variation rangNamely, if we have a set @
feature points aligned on the face image (which corresptmdsmesh of79 triangles),
and we generatefl feature channels3(orientations plus gradient magnitude), we have
for templates() a, b ~ U[|1,49|]. For templates\’) . ,: a, b, c ~ U[[1,49]], A ~ U[|0, 1.
Finally, for tempIategbf’gh,5’%8,7 we user ~ U[|1,79]], ch ~ U][1,9]|], s ~ U[0.1,0.4]
(recall s is multiplicated by the inter-ocular distance),5, v ~ /[0, 1]. Note that for the
outer trianglesi(e. on the edge of the mesh) we instead sample the barycentnidieoo
natesa, 3,y ~ Uj_1 ) in order to allow the sampling of the texture from outer regio
(e.g. forehead, cheeks and chin). Each of these candiddteds is associated to a set of

thresholds(0'},_; e to produce a binary split candidate. More precisely, théatian

.....
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range of each feature template is estimated beforehandhanthhdidate thresholds are

uniformly sampled within that interval.

4.3 Pairwise Conditional Random Forests

4.3.1 Pairwise conditional tree collections

In this section we now consider pairs of imagés 7) to train treeg that aim at outputting
probabilitiesp,(c|Z’, ¢, I') of observing labek(Z) = ¢ given imageZ’ and subject to
c(Z") = ¢, as shown in Figurd.2. More specifically, for each treeamong thel” trees
of a RF dedicated to transitions starting from expressioellah we randomly draw a
fraction of subjectsS ¢ S. Then, for each subjest € S we randomly draw imageg,
that specifically have label. We also draw images, of every labek and create the pairs
(Z., Z,) with label c. Note that the individual trees do not encode any sort of teaip
evolution of the expressions, but rather differential mfation between pairs of images.
In fact, two images of a pair need to belong to the same syltjethot necessarily to the
same video. Indeed, we create pairs from images sampledsadifterent sequences for
each subject to cover all sorts of ongoing transitions. Aewgained in Sectiod.2.],
we then balance the pairwise bootstrap by downsampling terity class w.r.t. the
pairwise labels. Eventually, we grow trésimilarly to what we did in Sectiod.2. The

PCREF training algorithm is summarized in Algorithin

4.3.2 Heterogeneous derivative feature templates

As shown on Figuré.3, candidates for splitting the nodes are generated from tame&d
in Section4.2, that are applied to the second imagef the pair ', Z), for which we
want to predict facial expressions. The three remainintufeaemplates are dynamic
features defined as the derivatives of static templates®, ¢ with the exact same

parameters. Namely, we have:
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Algorithm 2 Training a PCRF

77777

forall ¢ € Cdo
for t =1toT do
randomly draw a fractios C S of subjects
pairs < {}
forall s € S do
draw sampleg with labeld
draw sampleq; for each labet
create pairwise dat&{, Z,) with labelc
add elementZ’, Z,) to pairs
end for
balance bootstrapuirs with downsampling
create new root node
end for

end for
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¢'= neutral —W

Collections of
conditional pairwise
trees (one per
expression class c')

Figure 4.2: Exemple of pairwise tree collections $dbasic expression classes. Expres-
sion probability predictions of previous images are usesample trees from dedicated
pairwise tree collections (one per expression class) tteatrained using subsets of the
(pairwise) training dataset, with only examples of ongdnagpsitions from a specific ex-
pression towards all classes. The resulting forest thusubaian expression probability

for a specific pair of images.
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As in Section4.2, thresholds corresponding to the derivative featurés ¢, ¢©
are drawn from uniform distributions with new dynamic teatptspecific ranges esti-
mated from the pairwise dataset beforehand. Also note éisatpmpared to a static RF,
a PCRF model is extended with new derivative features thatstirm&ed from a pair of
images. When applied on a video, predictions for severat gae averaged over time in

order to produce robust estimates of the probability ptexis.
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Figure 4.3: Static (left) and pairwise (right) feature téates.

4.3.3 Model averaging over time

We denote by"(c) the prediction probability of labet for a video frameZ™ . For a
purely static RF classifier this probability is given by Eqoat(4.2):

T
1
"(c) = = A 4.2
p"(c) T;pt(d ) (4.2)
In order to use spatio-temporal information, we apply p@esRF models to pairs of
predictions are averaged over time to provide a new prababgtimatep” that takes into
account past observations up to frameThus, if we do not have prior information for

those frames the probabiligy* becomes:

p"(c) = % Z Zpt(cﬂm,In) (4.3)

m=n—N t=1

In what follows, Equation4.2) and Equation4.3) will be referred to as thstaticand
full models respectively. Trees from the full model are likely to beosger that those
of the static one since they are grown upon an extended seiatbires. Likewise, the
correlation between the individual trees is also lower Ksao the new features as well as
the averaging over time. However, spatio-temporal infaromecan theoretically not add
much to the accuracy if the variability of the ongoing trdiosis is too large.

In order to decrease this variability, we assume that thdstsea probability distribu-
tion pj*(¢’) to observe the expression laloeht framem. Note that those probabilities can
be set to purely static estimates (which is necessarily déise tor the first video frames)

or dynamic predictions estimated from previous frames. Agarison between those
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approaches can be found in Sectiob.2.1 In such a case, for frame, pairwise trees
are drawn from the tree collections (each one being comdiido one expression label
for the first frame of the pair) by sampling the distributigfi, as shown in Figuré.4.
More specifically, for each previous frame and expression label, we randomly se-
lect V™ (¢') trees over a PCRF model dedicated to transitions that stant ésgression
label ¢/, trained with the procedure described in Sectiod.1. We denotep,;(c|c’) the
probabilities outputted by a pairwise treeonditioned on labet’. Equation ¢£.3) thus

becomes:

Expression
prediction for
previous frames

p
[ |
iConditional tree i

Sampling
N™(ne) N™(an) N"™(ha) N™(ne
( ) ( ) ( ) /( ) Conditional tree
' Sampling and
classification

G SR S

Averaging Over Time

Figure 4.4: Averaging over time pairwise tree collectiofst each previous frame in the
sequence, trees are sampled from PCRF collections based oprasson probability

prediction for those frames. the prediction probabilibegputted by those pairwise mod-
els are averaged over time to provide an estimate for cuinamie that takes into account

the (pairwise) dynamics of the expression.

n—1 N™()

:% S Y wlezm ) (4.4)

m=n—N c'€ t=1
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Where N (¢) = Tpg(d) andT = >, N™(¢) are the number of trees dedi-
cated to the classification of each transition, which candiensaccordance with CPU
availability. In our experiments, we will refer to Equati¢h4) as theconditional model
This conditional formulation helps to reduce the variapibf the derivative features for
each specialized pairwise RF. When predicting expressioa fame of a video, we can
effectively use robust sequence-level expression estsriat averaging over time predic-
tions conditioned on multiple, independent previous frang&ectiont.5shows that using

PCRF models for FER leads to significant improvements overdtatit and full models.

4.4 Multi-view extension for Pose-Robust Facial Expres-

sion Recognition

4.4.1 Averaging over time multi-view classifiers

In order to design a pose-robust recognition framework, ee@se to condition the mod-
els described in Sectioh3.3w.r.t a head pose estimatéZ") for framen. For that matter

we quantize the pose spaQen k£ = I' x B pose bins(€); = ., 5, },—1.._x, that are de-

.....

fined around yaw and pitch anglesandj;, respectively. We can thus rewrite Equation

(4.2) as a static multi-view model (MVRF):

1 N(Q:)
Pe) =D, D plelT" ) (4.5)

Q,eQ t=1
At framen, the head pose(Z") is estimated first using an off-the-shelf posit algo-
rithm [23]. Then, for each pose bift;, a numbetV (Q;) of trees are selected based on
a pose sampling probability distributig,, (w™) that we construct from the training data
repartition, as it will be explained in Sectidi4.2 This is illustrated on Figuré.5.
For that matter, we adapt Equatiofi4) by conditioning the expression-conditional

model on pose estimatian(Z") (Equation §.6)):
1 n—1 Nm(cl,ﬂi)
p"(c) = 7 Z Z Z Z p(c|Z, T, Q;, ) (4.6)

m=n—N Q;eQ /eC t=1
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Figure 4.5: Flowchart of the MVPCRF method for FER. When evahggai video frame
indexed byn, pairs are created between this current frame and previaoeg:, —m, n—
ma, .... Randomized trees trained upon a pairwise dataset are them donditionally to
head pose estimation as well as expression probabilitratégorevious frames. Finally,
predictions outputted for each pair are averaged over targavie rise to an expression
probabilityp™ for the current frame. This prediction is used as a tree sagngistribution

for classifying the following frames. Best viewed in color.

In what follows, we refer to this model as thaulti-view PCRFMVPCRF) model.
In this formulation, for computing the pairwise probalyilietween frames andm, we
first estimate the head pose for frameThen, for each pose bia; and expression label

¢, we select a number of trees equal\&*(¢/, ;) (Equation ¢.7)):

NI, ) = TPo, (w(Z"))pg' (¢) (4.7)

Wherep('(¢') is the probability of expression labél for framem. The number of

trees allocated to classify each transition is thus:

T=> > N"(, ) (4.8)

QieQceC

Note that the tree sampling distribution proposed in Equiaid.?7) supposes that the
head pose estimate do not vary that much between framesV andn. Should that
be the case, MVPCRF can be trained from pairs of images frorardiit viewpoints. It
also assumes the independence of head pose and expressipwipich is not problem-

atic for training on posed expression data. However, sushmgtion may not hold for

75



spontaneous datasets for which expressiorssigsiseor fear may involve specific head
motion (e.g. recoil). In such case, prior conditionals mayebtimated from the training
corpus beforehand. Also, as statedin,[34] using conditional models usually involves
one major pitfall, which lies in the reduction of the numbétraining examples used to
train each separate classifier. This is barely a problemhtraining of a PCRF model,
as naturally many examples of each ongoing transition casabgled from the datasets.
Furthermore, for the MVRF and MVPCRF models we can generate ala&atase that
contains a large number of training examples for each pasading the high-resolution

3D-models from the BU-4DFE database){, as highlighted in Section.4.2

4.4.2 Multi-view dataset generation

Each texture frame of the BU-4DFE database is associatddanitigh-resolutior8 D
VRML model containing approximateB5000 vertices, that we use to train our MVPCRF
classifier as well as to design a new dataset for multi-viele®iFER. Many approaches
[87, 90] present results for static multi-view FER using the BU-IDdratabasel[04]. To

do that, for each static image, the authors typically redemeshes from a viewpoint
with fixed yaw and pitch rotation angles. However, for viddeR; head pose does not
necessarily remain constant throughout a video. Furthexnfilom the perspective of a
fully automatic multi-view FER system, we typically aim atvering a specific head pose
range rather than a discrete, arbitrary set of viewpointsndd, we propose to generate
rotated versions of the videos by assigning each sequenae-piych variation from the
frontal video. More specifically, our goal is to cover the sdimseful” range as inf7, 9]

(i.e £45 yaw, +30 pitch). We thus generate = 5 x 3 bins {; = Q,, g, }i=1,...
{7} = {0,£17.5,£35} and{p;} = {0,£25} the mean rotation angles respectively in

yaw and pitch. Each sequencés thus associated with rotation angles:

v="v+7
B =8+

Where+' and ' are random variations uniformly drawn from the ranges.,, o, |

4.9

and[—og, 03], respectively.o, andog respectively denote the expected yaw and pitch
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width of the pose bins. In order to set those values, we meakerstandard deviation
of the head pose angles on the frontal viés6 (@nd5.9 in yaw and pitch respectively).
We then set, = o5 = 5 to allow a small overlap, thus a smoother interpolation leewv
adjacent pose bins. The data distribution among the getkpatse bins can be seen in
Figure4.4.2 For each frame of each sequencave generaté5 frames by rotating the
camera (position, direction and up vector). We also turthefcamera headlight and add

an ambient light node to the VRML virtual environment.

40+
30
20t

101

Figure 4.6: Data repartition across thiegenerated pose bins. Blue circles: angles asso-

ciated with the sequenceg;(3;), red: individual frames

The next step is to align facial feature points on the rotaegliences. However, the
standard pipeline of applying a frontal or full profile faceteiction before aligning the
feature points from the output face rectangle is bound taviaen the yaw/pitch becomes
important and only a few images can correctly be alignedrdieioto circumvent those is-
sues, we generate “boot” sequences using the first imagebfsdeo. Those sequences
contain20 frames and show a very progressive rotation of the first frataging from a
frontal view and ending on the expected viewpoint. We appé/®penCV Viola-Jones

face detector”] on the first frame of the boot sequence (frontal view). Thenalgn

77



facial feature points with the SDM tracke®d] on the retrieved face rectangle. Feature
points are then tracked throughout the boot sequence. @edmotis completed, fea-
ture points are tracked on all the frames of the rotated espe videos (Figuré.4.2).
Finally, we crop the facial images to a constant size basetth@ffeature point location

and generate a total 606030 images.

-

feature point alignment

|
] “boot” n )
(frontal view) boot” sequence ] expression sequence

Figure 4.7: Boot process for multi-view data generation \aithned feature points

Lastly, we construct our multi-view training set by manyaélecting the neutral and
apical frames using the same subsets as in the frontal cdse, iA order to filter out
the incorrectly aligned frames, we automatically discéel frames for which more than
5 feature points do not lie on the facial mesh. Our final tragnget thus consists of
122623 face images. Note however that we did not apply any manualkcteeremove
the misaligned frames, or the ones for which 812 models contain some distortions.
The image generation process took aboutays to complete on alr-4770CPU on a
Mat | ab environment. For each of the retrieved frames, we use thié gdgsrithm [23]
to estimate head pose from the feature points. Such settowsato use the same head
pose estimation for training and testing, as compared ¢o,a@nstructing the pose sam-
pling distribution from the ground truth generated posiioThen, we compute the pose
sampling probability distribution for each pose B, (w(Z™)) by applying a Gaussian
smoothing on the training data repartition in the yaw/psgplace (Figuré.4.2. Thanks
to the booting procedure discussed above, the number ofrtigasamples between the
different pose bins is roughly equivalent. However, thigiminot be the case for other
datasets, where constructing a sampling probability froendata offers the advantage
to implicitly downweight the sampling of pose-specific saelatively to the amount of

training data.
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Figure 4.8: Pose sampling probability distributigRs, (w™) constructed by smoothing

the data repartition for each pose bin
4.5 Experiments

In this section, we report accuracies obtained on two diffeFER scenarios. In Section
4.5.2.1we report comparisons between different classificationetsooh two well-known
frontal FER databases, CK+ (see Secttod 3 and BU-4DFE (Sectiod.3.4) databases.
Furthermore, in order to evaluate the capabilities of tlaerled models to generalize on
spontaneous FER scenarios, in Sectddh2.2we report classification results for cross-
database evaluation on two spontaneous databases, nae&GENET FEED (Section
2.3.5 and BP4D (Sectiofi.3.6 databases. We highlight that our conditional formulation
of dynamic integration substantially increases the rettmgmnaccuracy on such difficult
tasks. Furthermore, in Sectign5.3we also evaluate our approach on multi-view video

FER scenarios.
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45.1 Evaluation framework

7-class RF (static) and PCRF (full and conditional) models ia@i@e¢d on the CK+ and
BU-4DFE datasets using the set of hyperparameters dedaenffable4.1. Note however
that extensive testing showed that the values of these pgpeneters had a very subtle
influence on the performances. This is due to the complexithe RF framework, in
which individually weak trees (e.g. that are grown by onhaexning a few features
per node) are generally less correlated, still outputtiecedt predictions when combined
altogether (as also stated in Sectivf.4.2.3. Also, for a fair comparison between static
and pairwise models, we use the same total number of feataheations for generating

the split nodes.

Table 4.1: Hyperparameter settings

Hyperparameters | value(RF)| value(PCRF)
Nb. of (V) features 40 20
Nb. of ¢(® features 40 20
Nb. of ¢ features 160 80
Nb. of (¥ features - 20
Nb. of ) features - 20
Nb. of ¢ features - 80
Data ratio per tree 2/3 2/3
Nb. of thresholds 25 25
Total nb. of features 6000 6000
Nb. of trees 500 500

During the evaluation, the prediction is initialized in dlyutautomatic way from the
first frame using the static classifier. Then, for the full @odditional models, probabili-
ties are estimated for each frame using transitions fromigue frames only, bringing us
closer to a real-time scenario. However, although it usassttional features, our system
is essentially a frame-based classifier that outputs areegjam probability for each sep-
arate video frame. This is different from, for example, a Hvilat aims at predicting

a probability related to all the video frames. Thus, in ordeevaluate our classifier on
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video FER tasks, we acknowledge correct classificationeifntaximum probability out-
putted for all frames corresponds to the ground truth labkls evaluates the capability
of our system to retrieve the most important expression nio@evideo, as well as the
match between the retrieved mode and the ground truth Idkaklly, both static and

transition classifiers are evaluated using the Out-Of-Bag&Derror estimatell1].

4.5.2 Experiments on frontal data
4.5.2.1 Experiments on prototypical data

In order to validate our approach on frontal view videos, wepared our conditional
model to a purely static model and a full model, for a varietydgnamic integration
parameters (the number of frames in temporal windévand the step between those
framesStep on the BU-4DFE database. We also evaluated the interestraf adynamic
probability prediction for previous framesd. the output of the pairwise classifier for
those frames) versussdaticone. Average results are provided in Figdré. For CK+
database, sequences are generally too short to show sigififferences when varying
the temporal window size or the step size. Thus we only repoctiracy for full and
conditional models with a window size of 30 and a step of 1-dXg@ression accuracies
and F1-scores for both Cohn-Kanade and BU-4DFE databasseh@sm in Figuret.10
Figure4.10reveals that facial expressions involving large deforovei(e.g.surprise
and happiness) are recognized with very high accuracieB:sgust is also recognized
quite well for both databases and for all the models. Howeawere subtle expressions
such asinger andsadness rank among the lowest. For those expressions, the addition o
spatio-temporal information allows to increase the re@agmnaccuracy as compared to a
static RF model. As in many other works on facial expressiansyracies forfear are
lower than for the other expressions, as it can be quitesubome cases where the eyes
are open a little bit wider. Moreover, this expression alspladys a larger variability than
the others on these databases. Overall, modelling trangétterns through PCRF allows
to significantly increase the recognition accuracy as veetha balanced'1-score, for all
expressions on both CK+ and BU-4DFE databases. We believthitiés due to the extra
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Figure 4.9: Average accuracy rates obtained for varioupteal integration parameters

on the BU-4DFE database

dynamic features that provide both robustness and deatoelof the individual decision
trees.

Figure4.10also shows that the conditional model outperforms the folled on both
databases, which is probably due to the fact that using omgstiicted set of ongoing
expression transitions for training allows to better captine variability of the spatio-
temporal features for the dedicated pairwise forests. iBpsirticularly true on the CK+
database, where the number of pairwise data points is naggrfor the full model to cap-
ture the variability of all possible ongoing transitiongnlge justifying the lower accuracy.
Table4.9also shows that it is better to look backward for more framehke sequence\
= 60) with less correlation between the fram8gefp= 3 or 6). Again, such setting allows
to take more decorrelated paths in the individual treesngia better recombination after
averaging over time.

A compilation of comparisons to other state-of-the-artrapphes for FER can be
found in Tablest.2 and4.3. On the CK+ dataset, we compare our algorithms with re-
cent works reporting results on the same subset of sequéneesot includingcon-
temp). Such comparisons are to be put into perspective as thaatiai protocols dif-
fer between the methods. Nevertheless, PCRF provides gligétier results than those

reported in 3] (+3.2%) as well as in [9 (+1.9%) and [36] (+2.3%). Furthermore,
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Figure 4.10: Per-class recognition accuracy rates anccérkes on CK+ and BU-4DFE

databases

those approaches explicitly perform normalization wa.teutral face and consider the
last (apex) frame whereas our approach automaticallyeketsithe apex as the maximum
probability throughout a sequence.

Moreover, to the best of our knowledge, our approach givesb#dst results on the
BU-4DFE database for automatic FER from videos ugihginformation only. It pro-
vides better results than the dynardie approach§5] (+9.1%), as well as the LBP-TOP
approach presented i ] (+4.5%). Recently, Meguicet al. [1] obtained satisfying
results using an original hybrid RF/SVM system. They trainedhe static BU-3DFE
databasel[04] and employed a post-classification temporal integraticireme. How-
ever our PCRF method achieved a significantly higher accurad¥o§ which shows the

benefits of using dynamic information at the feature level.

Table 4.2: CK+ database Table 4.3: BU-4DFE database
method Accuracy Method Accuracy
Mohammadeet al. [63] 93.2 Sunet al. [85] 67.0
Happyet al. [36] 94.1 Hayatet al. [37] 71.6
Shojaeilangaret al. [79] 94.5 Meguidet al. [1] 73.1
This work, RF 93.2 This work, RF 70.0
This work, PCRF 96.4 This work, PCRF 76.1
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4.5.2.2 Generalization on spontaneous data

Tables4.4 and4.5respectively report results for cross-database evaluétigh training
on the BU-4DFE database) on the FEED and BP4D databases. én torghrovide a
fair comparison between our approach and the one presan{é§i we used the same
labelling protocol. One can see that the performances of Hystem are better than
those of our static RF model, which can be attributed to thetfaat they use a more
complex classification and posterior temporal integrafiowchart. Nevertheless, our
PCRF model provides a substantially higher accurae¥.4%), which, again, is likely
to be due to the use of spatio-temporal features as well as &ffecient conditional
integration scheme. Furthermore, modelling spatio-teaigmatterns foreverypossible
transition (.e. across the videos) allows to gather more training data tlsargspatio-
temporal descriptors P9, 47] learnt on separate videos.

Regarding the experiments on the BP4D database, for the sakiawfcomparison,
we used the same protocol as irbf], with training on the BU-4DFE database and using
only a subset of the tasked. tasks 1 and 8 corresponding to expression labelspy
anddisgustrespectively). However, we do not retrain a classifier wigubset of 3 ex-
pressions as it is done in(d, but instead use our 7-class static and PCRF models with a
forced choice betwedmappinesgprobability of clas$appinessanddisgust(probability
sum of classeangeranddisgus). Such setting could theoretically increase the confu-
sion in our conditional model, resulting in a lower accuradpwever, as can be seen in
Table4.5, using dynamic information within the PCRF framework alloestibstantially
increase the recognition rate as compared to a static RF farkd+8.2%). We also
overcome the results reported inOf] by a significant margin{5.8%), further show-
ing the capability of our approach to deal with complex sparbus FER tasks. Also
note that in [0d], the authors used the so-calldébulae3 D polynomial volume features
which are by far more computationally expensive than ounggdc and integral HOG
2D features. All in all, we believe our results show that the PCR#r@ach provides sig-
nificant improvements over a traditional static classifaapipeline that translates very
well to more complicated spontaneous FER scenarios, wherggke video may contain

samples of several expressions.
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Table 4.4: FEED database Table 4.5: BP4D database
method Accuracy Method Accuracy
Meguidet al. [1] 53.7 Zhanget al.[109 71.0
This work, RF 51.9 This work, RF 68.6
This work, PCRF 57.1 This work, PCRF 76.8

4.5.3 Experiments on non-frontal data

We also evaluate our approach on multi-view dynamic FER ateron the database
generated in Sectiofi4.2 During evaluation, for each frameof a sequence, head pose
w(Z™) is thus estimated from the set of aligned feature pointsi@as from the MVPCRF
collections are sampled according to the val@gs(w(Z™")) for each pose bif2;. We
compare the average accuracies outputted by RF, PCRF, MVRF aiCR¥. RF and
PCRF were trained on the central (frontal view) bin only. For P@R#MVPCRF, we set
the temporal integration parameté¥s= 60 andStep = 6 as it provided satisfying results
in the frontal case (Figuré.9). As in Section4.5.2 a video is considered as correctly
classified if the dominant expression mode.( the maximum probability expression
throughout the sequence) corresponds to the ground tioghfiar that video.

Table 4.6 displays per-expression accuracies averaged overitipose bins for the
three models. For all expressions, MVPCRF outperforms RF and R§REsignifi-
cant margin. MVPCRF also outperforms the static multi-view RFYon all expressions
but sadnessandfear. However, Tablel.7 reveals that the F1-score is a little higher for
MVPCRF on those expressions, indicating that the static MVRiRase biased toward
those expression classes. This seems particularly relevére positive pitch case, where
using spatio-temporal information helps to disambiguatger from sadnesswhich in
some case differ only by a very subtle eyebrow frown or ligeai Also,fear appears
as the most subtle expression as already reported in othé&sWq. This is due to the
fact that subjects often smile during the sequence, thugde®s may be misclassified as
happinessFor this reason, many other approaches such as the ofieusd a restricted
number of subjects. However, we use tlid subjects to ensure reproducibility of the

results.
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The overall classification accuracyii®.2% against’6.1% for the benchmarks of Sec-
tion4.5.2.1on frontal view video. This performance drop comes from atgpevariability
in face appearance as well as the feature point misalignfoenbn-frontal poses, as dis-
cussed in41]. Classification rates are also a little lower than the stai& baseline ones
[87, 90] on the BU-3DFE database. However, fully automatic FER fredeo is a much
more difficult setup, as it involves the retrieval of the afr@nes and expression classi-
fication on those frames. Furthermore, many approachesiepen high-resolutiofD
data and require expensive projections on a frontal vieug ttan not be applied easily to
real-time FER from consumer camera.

Figure4.11shows the per-pose bin accuracy rates averaged over themessions.
On the one’s hand, RF performances seems to drop dramaticaéipy we move away
from the central bin (fron¥0.4% to 44.7%). Interestingly, PCRF performs significantly
better than RF on every pose bin, which proves that the captlyramics generalize
well on unseen data, as already shown on the cross-dataditings PCRF performance
also drops significantly on off-center pose bins. On therotlaed, MVPCRF performs
significantly better on those bins: accuracy is nearly syicatfor negative and positive
yaws, as already reported by /] for static multi-view FER. Furthermore, as stated in
[87, 90] we observe lower classification rates on negative pitcb&8% as compared to
74.1% on average for positive pitch). Our take is that the moutla anay be the most
informative one for FER tasks: as such, the classifiers caggie to disambiguate certain
expressions (e.cqangerfrom sadnesgwhen the mouth features become more subtle and
difficult to capture.

Figure 4.12 shows per-expression, per-pose bin accuracies obtaimed\{&@ CRF.
Indeed, expressions suchseinessindfear are better recognized for positive pitches, as
they specifically involve subtle mouth movements as welyabeow raising. Conversely,
anger anddisgustare characterized by eyebrow frowning that is better reizeghon
negative pitch views. Finallyhappinessand surpriseare expressions with the highest
overall classification rates. They are typically betteroggized on frontal views or for
negative pitches, where the corresponding mouth motianeas frequently misclassified

asfear.
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Table 4.6: Per-expression accuracy rates averaged oyersalbins
Expression RF (%) | PCRF (%)| MVRF (%) | MVPCREF (%)

Happy
Angry
Sad

Fear 29.6

Disgust
Surprise
Average 55.4

Table 4.7: Per-expression F1-scores averaged over allqpase
RF (%) | PCRF (%)| MVRF (%) MVPCRF (%)

Expression
Happy
Angry

Sad 46.2

Fear

Disgust
Surprise

Average

4.5.4 Complexity analysis

An advantage of using conditional models is that with an\eajant parallelization they
are faster to train than a full model learnt on the whole ddtagccording to $7] the
average complexity of training a RF classifier with trees isO(M K N log, N), with
K being the number of features to examine for each nodeNatite size of (2/3 of) the
dataset. Thus if the dataset is equally divided iRtbins of sizeN upon which condi-
tional forests are trained (and such that= PN), the average complexity of learning a
conditional model now become(M K N log, N).

Same considerations can be made concerning the evaluatidnees from the full

model are bound to be deeper than those from the conditioodéls. Tablet.8 shows
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Figure 4.11: Per-pose bin accuracy rates averaged oveqpaidgsions

an example of profiling a MVPCRF on one video frame with an avatagver 60 frames
and a step of 6 frames. We experiment with various total nushigrees\/ to show that

the proposed framework can perform real-time FER.

Table 4.8: Profiling of total processing time for one franrer(is)
Step Time (ms)

Facial alignment 10.0

Integral HOG channels computation 2.0

MVPCREF evaluation {/ = 500) 2.6
MVPCREF evaluation {/ = 1000) 4.8
MVPCREF evaluation {/ = 2000) 7.8
MVPCREF evaluation {/ = 6000) 19.0

This benchmark was conducted on7a4770 CPU within a C++/OpenCV environ-
ment, without any code parallelization. As such, the athamialready runs in real-time.
Furthermore, evaluations of pairwise classification oe sabsets can be parallelized to
fit real-time processing requirements on low-power engaues as mobile phones. In ad-

dition, the facial alignment step can be performed at maae 800 fps on a smartphone

with similar performances using the algorithms frond][
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455 Discussion

In this chapter, we presented an adaptation of the RF frankefwoautomatic dynamic

pose-robust FER from videos. We also introduced a novel wapegrating the temporal

information of expressions by considering pairwise RF digss. This formulation ap-

pears as a somewhat natural way to extend RFs for dealing wlitlo $equences, and al-

lows the efficient integration of high-dimensional, low«¢ spatio-temporal information

through averaging over time pairwise trees. These treesa@itioned on predictions

outputted for the previous frames to help reducing the fdity of the ongoing transi-

tion patterns. In addition, we proposed an extension of @ePframework to efficiently

handle head pose variation in an FER system. We showed thatamels can be trained

and evaluated efficiently given appropriate data, and leadsignificant increase of per-

formances compared to a static RF. We also introduced a nevtirview video corpus

generated using the BU-4DFE database to assess the pastreds of the proposed sys-

tem. Finally, we showed that our method works on real-tintait specific optimization

schemes, and could be run on low-power architectures sutiobise phones by using an

89



appropriate paralellization scheme.

Nevertheless, the proposed algorithms are still not peded suffer from a number
of limitations. First, in order to train a PCRF, one need to eih} consider frame-
level annotations. In our work, we manually highlighted & alepeak frames for the
database, which were used to train the classifiers. Thisaswanment drawback of frame-
based classifiers as compared to sequence-level ones (@MsHCRFs) and thus could
not be solved easily. However, using only a subset of peakdsafrom the videos for
training also allows to limit the memory usage, which is aifarly relevant in our case,
as we need to store the feature maps for each image. Morewsatemonstrated that,
during evaluation, our algorithm was successful at reimiggthe correct expression modes
and thus could be applied in a fully automatic fashion. Femtiore, an advantage of
integrating the temporal information under the form of &iéinn modelling is that it does
not require continuity of the sequence. Hence, it has nolpnolnandling failure from
the detection or feature point alignment pipelines, as sp@do other spatio-temporal
descriptors 109, 47]. Secondly, in order to build transition classifiers we negdmples
for each possible transition. This can be a hindrance wiaemnitig on highly unbalanced
datasets (as in CK+ withontemptexpression class). Thirdly, multi-view classification
requires loads of training data from multiple head posess, Fiowever, can be alleviated
by the use of high-dimensionaD models to generate training examples. Finally, we felt
that, particularly for the experiments on multi-view daie were at times limited by the
robustness of the feature point alignment for non-frontdchpose, as well as from the
guality of the pose estimation from the set of feature poiftech problem could in theory
be alleviated by the use of recent robust algorithms sucheasrte proposed if]. The
proposed system is also not robust to partial occlusionkeface, which are likely to

happen in real-case scenarios, and will be discussed imllog/ing chapter.
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Chapter 5

Local Subspace Random Forests

5.1 Overview

In the traditional RF framework (Sectidh3.4.9, each tree in the forest is grown using
a subset of training examples (bagging) and a subspace afgbedimension (random
subspace). As stated ifn]], the rationale behind training each tree on a random swespa
of the input dimension is that the prediction accuracy of whele forest depends on
both the strength of individual trees and on the indepenglehthe predictions. Thus, by
growing individually weaker (e.g. as compared to C4.5) buterdecorrelated trees, we
can combine these into a more accurate tree collectionowinlg this idea, we propose an
adaptation of the RF framework that uses spatially-definethL Subspaces (LS) instead
of the traditional Random Subspaces (RS), as described inefgl Each tree is trained
using a restricted subspace corresponding to a specifioptr face, that is generated
under the form of a random facial mask (Fig&ré-a) for each tree on a possibly refined
facial mesh. Binary candidate features can be selected frosetocal subspaces (b). The
aggregation of local models gives rise to representatibaswe call Local Expression
Predictions (LEPs (c)).

When applied on a potentially occluded face image (e), thenstcuction error out-
putted by an autoencoder network provides a confidence merasut of how close a
face region lies from the training data manifold, with higiddow confidences depicted

in green and red respectively. This local confidence measemecan be used to weight
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LEPs (g) in order to provide an occlusion-robust expresgidiction (WLS-RF). Fi-
nally, LEPs can be used to predict AU occurrence (h). Oncenatiee autoencoder net-

work can be used to provide AU-specific confidence measuren(ign

Local Expression
Predictions (LEPSs) (c) Y

@ D
Categorical expressions (occluded) WLS-RF

ﬁLocaI Confidence (f) eighted LEPs (g)

Occluded face (e)

N AR
1 1 3 i
) : : | LEPs Concatenation | [) SN r

- i
- . z |
: Hierarchical Auto- ' ]
i encoder Network (d) : Confidence-aware AU detection N

50 tre: 50 trees =

Random Mask (a) §:RF classification (b)

Figure 5.1: LEPs and applications to categorical expresgoognition, occlusion han-
dling in FER and AU detection. Randomized trees are train@ah lgpcal subspaces gen-
erated under the form of random facial magks on which binary feature candidates are
generated and select@a). The local predictions outputted by the trees can be agtgdga
into categorical expression-driven high-level LEP reprgationdc). Given an occluded
face imagde), an occlusion-robust categorical expression predictéonke outputted by
weighting LEPs with confidence scor@$ given by a hierarchical autoencoder network
(d). Furthermore, LEP features can be used to predict AU oceoerd). For instance,
AU 12 (lip corner raiser) can be described by a high value d?&Bssociated to triangles
around the lips with categorical expresstwppinessFinally, for each AU, a confidence

measurement can also be providgd Best viewed in color.

This chapter is organized as follows: Sectiof describes how we train Randomized
trees upon spatially-defined local subspaces of the faatath generated under the form
of random facial masks5(2.1). Then, Sectiorb.2.2shows how we combine the output
prediction of those trees into LEP features. Finally, Sech.2.3highlights how we can
tessellate the facial mesh to arbitrary set the spatialusn of LEP features.

Section5.3 explains how we can weight the local predictions with a canfk mea-

surement defined on triangles of the face mesh to producesicatrobust predictions. In
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Section5.3.2we discuss the proposed autoencoder network archite@ei¢n5.3.2.7)
and how it is trained to capture the local manifold aroundafaieature points (Section
5.3.2.9. Eventually, in Sectiorb.3.2.3we explain how we can use the autoencoder net-
work to provide a confidence measurement to weight LEPs fdusmn-robust FER. In
Section5.4 we describe how LEPs can be used for AU detection, with a focusow
we can merge multiple expression datasets (Seétiéri), with AU-specific confidence
assessment (Sectiént.2. We also present a number of approaches for multi-output RFs
classification upon LEP features (Sectmd.3.

Finally, in Section.5we show that our approach significantly improves the stéte-o
the-art for categorical FER on multiple datasets, both emttn-occluded (Sectidn5.2
and occluded cases (Sectibrb.3. We also demonstrate in Sectiérb.4the interest of
our LEP representation for AU activation prediction andrlevance of the AU-specific
confidence measurement. Finally, Sectob.6discusses a few perspectives raised by the

proposed work.

5.2 Training randomized decision trees on spatially de-

fined local subspaces

5.2.1 Random mask generation

Local trees are trained using Algorithéa For each tree in the forest, we generate a
face mask)M; defined over triangles on facial feature points of a precomputed mean
shapef. The mask is initialized with a single triangle randomlyestéd from the mesh.
Then, neighbouring triangles are added until the totalasgrfcovered by the selected
triangles w.r.t.f becomes superior to hyperparametethat represents the (approximate)
surface that should be covered by the mask. Finally,#tisgrown on the subspace that

corresponds to the facial mask,.
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Algorithm 3 Training Local Subspace Random Forest

input: imagesZ with labels! and feature pointg(Z)

computef, the mean shape
pre-computes((f)), surfaces of triangles on mean shape
fort=1toT do
randomly select a triangle
r < s(1)
initialize maskM,; < {7;}
while » < R do
draw a list of candidate neighbouring triangles
randomly select a triangtg from that list
r <=1+ 5(75)
M, <+ M, U {7;}
end while
randomly select a fractiof, C S of subjects
balance bootstrag, with downsampling
grow treet on bootstrags, and input subspack/,
end for

output: tree predictor,(c|Z) with associated mask¥,
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5.2.2 Local expression prediction features

The output expression prediction of spatially-constrditiees can be used as features for
face analysis. Note that this is not the first time that RF ptexhs are used as features
for a subsequent task. For instance, [Real. [69] used local binary features to construct
a cascaded feature point alignment method. However, agrtogc9], we construct our
LEP representation by locally averaging predictions artdogalirectly using the output
prediction of the trees. Furthermore, LEPs offer severabathges over using a set of

trees defined on the whole face:

e LEPs can be aggregated to provide categorical FER. Thoskenmdels (LS-RF)
can theoretically capture more diverse information coragao a global one by
“forcing” the trees to use less informative features, tleat still hold some predic-

tive power.

e We can use the confidence outputted by the autoencoder katwdection5.3.2.3
to weight the LEPs for which the pattern lies further fromtitaéning data manifold
(WLS-RF). For example, in case of occlusion or drastic illuation changes, we

can still use the information from the other face subparfzéalict the expression.

e LEPs can be used as an intermediate representation forskeftalescribing Ac-
tion Units (AUs). Noteworthy, AU classification could bendfom LEPs trained
on larger corpus labelled with categorical expressiongra®tation is less time-

consuming than FACS coding.

More specifically, when testing, a face imdges successively rooted left or right for
each treg¢ depending of the outputs of the binary tests stored in treeriogles, until it
reaches a leaf. The treehus outputs a probability vectpy(c|Z) for classe € C, whose
components are eithérfor the represented class, @otherwise. Prediction probabilities

are then averaged among therees of the forest (Equatiob.()).

T
p(elT) = 7 3 pelT) 5.1)
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Those prediction probabilities are computed similarlytfog global RF and the LS-
RF. However, for LS-RF the output probabilities of the treegtsome degrees of locality
and we can write the above formula as a sum over local prabebitiefined for each

triangle (Equation.2)).

p(e|T) = ZZTp c|Z,7) (5.2)

Wherep(c|Z, 7) is the Local Expression Prediction (LEP) probability veassoci-

ated with triangler on the facial mesh:

T
3T € My)p(c|T)
p(c|Z,T) 7 Z; WA (5.3)

With 6(7 € M,) being a function that returns if triangle 7 belongs to mask//;,
and0 otherwise.|M,| is the number of times trefeis used in Equationy(2), andZ, is
the sum of prediction values for all expression clagsasd triangler. Thus, a global
expression probability is defined by a (normalized) sum oP&E Note that those LEP
vectorsp(c|Z, T) are not strictly limited to triangle but defined within its neighbourhood,
with a radius that depends on hyperparaméter The setting ofR thus controls the

locality of the trees, as it will be discussed below.

5.2.3 Facial mesh refinement

A downside of the proposed local expression-driven featare constrained by the defini-
tion of a facial mesh, that we obtain by aligning a number afidiee points using Intraface
[9€]. However, the coarseness of this facial mesh may be a modr@ perform AU de-
tection from said features, as the locality of the modelsusial to avoid using unrelated
local information (e.g. a wide open mouth describing AU2 {@®Brow Raiser)). In order
to circumvent this issue, it is possible to arbitrary refime facial mesh using an adaptive
refinement strategy, as illustrated on Figara

In order to do that, we first expand the mesh slightly abovesylebrows and below
the mouth so that the appearance features can capture dre&or and jaw areas. Fur-

thermore, we apply mesh tessellation on the resulting lfacgsh. Note that, as shown
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Figure 5.2: Facial mesh refinement. Left: original poins@and triangle-wise mesh (49

points, 79 triangles). Right: refined mesh (500 points, Sihgles)

on Figure5.2, some triangles may have a long side without necessarilgroay a wide
portion of the face. This is something we want to avoid givein @appearance feature
extraction framework, which will be discussed later. Heremntrary to {/7], we do not
use they/3-subdivision based on triangle surfaces for tessellatiegnesh. Instead, we
select the triangle with the longest side, which we splitwo triangles on that side. We
then iteratively apply this adaptive subdivision until anther of pointsy, is reached
(e.g. N, = 500 points, N, = 545 triangles on Figuré.2). The result is that triangles
from the mesh are more or less homogeneous in terms of itsmaxiside length, but

not necessarily in terms of surface.

5.3 Confidence weighting of local expression predictions

for occlusion-robust expression prediction

5.3.1 Weighted Local Subspace Random Forests

LEPs can also be weighted by local confidence measuremegitetase to the Weighted

Local Subspace Random Forest model (WLS-RF):

> aMZp(cZ, 7)
T) = T
p(C‘ ) Z Oc(T)ZT

(5.4)

Wherea!™) denotes a triangle-wise confidence measurement that isittedpby the
autoencoder network described in Sectiod.2.3 for triangler. This weighting scheme

allows to better handle partial occlusions, by downweigintine local RFs associated

97



with the most unreliable appearance patterns. In the faligwwubsections, we highlight
how we can obtain such a confidence measurement by modedingdil manifold of the

texture around the feature points.

5.3.2 Local manifold learning for confidence measurement

We design a hierarchical autoencoder network for the perpdsmodelling the local
texture manifolds. In particular, Secti@n3.2.1provides more details about the network
architecture. Sectiof.3.2.2provides information on how we train the network by stage-
wise reconstruction optimization and Sect®f.2.3explains how we can use the trained
network to provide a confidence measurement that can be asezight the LEP features

(See Equation.4).

5.3.2.1 Hierarchical autoencoder network architecture

As shown in Figurés.3, we use a 2-layer architecture. First, we extract HOG detus
within the neighbourhood of each feature point. The choickeaning a manifold of
HOG patterns rather than gray levels comes from the factHd® are used for both fa-
cial alignment and the LEP generation pipeline (see Sexich4.1and4.2.2. Thus, the
reconstruction error of these patterns provides a confelemasurement that is relevant
for both tasks. The local descript@{*) for a specific feature poirit consists in the con-
catenation of gradient magnitudes and quantized oriemtatlues irb x 5 cells around
this feature point, with a total window size equal to a thifdhe inter-ocular distance.
This descriptor of dimensio225 then feeds théV, autoencoders (one per feature point)
of the first layer (1) which are trained to reconstruct non-occluded patternsaBse
occlusion of local patterns extracted at the feature pewellare not independeritd. a
feature point close to an occluded area is more likely to lmbuded itself), we employ a
second layer () of autoencoders, that are trained to reconstruct noruded patterns
of groups of encoded feature point descriptors. Those grogresent five face subparts
(left and right eyes, nose, left and right parts of the moutkide of which the local pat-

terns are closely related. Specifically, is composed of 125 units for each landmark.
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L, layer for a feature point group contaiiS x N units (% compression), wheré/ is

12,12,8,11 and 11 respectively for left/right eye, noselafittight mouth areas.

4 L2 Face subpart-level encoding

Righteye ; 7V Left mouth ;7
subpart
’ “(EY ; : £

......................

V- N B Va Y < y \ Y
wit) pVe
L . Feature point-level encoding

Confidence
scores

Figure 5.3: Architecture of our hierarchical autoencodatmork. The network is com-
posed of 2 layers: the first ond.) captures the texture variations (HOG descriptors)
around the separate aligned feature points. The second/ghés(defined over 5 face
subparts, each of which embraces multiple points whosesaigpee variations are closely

related. The network outputs a confidence sedféfor each of theV, feature points.

5.3.2.2 Training the network

As highlighted in Sectio®.3.3.2.1 the hierarchical network is trained in an unsupervised
way, one layer at a time, by optimizing a reconstructioneciiin. The input descriptor
¥ (*) at feature point: is first encoded via thé, encoding layer into an intermediate

representatiog® = o1 (@ *)):

y* =0 (w® e 4 b)) (5.5)

Whereo is a sigmoid functiomu®) andb(®) are respectively the neuron weight matrix
and bias vector of thé; neuron layer for feature poirit. The output is then typically
computed as the input reconstructi@®®) = ¢'(y®) using an affine decoder with tied

input weights to reduce the number of parameters:

W) = 0T k) 4 k) (5.6)
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Wherec®) is the decoder bias vector. Then the sekaéncoded descriptoks )} .—1 x
associated to feature points= 1...K that belong to the face subpantare concatenated
to form the input¢(™ of the layerL, for that subpart. Once again, the input of the
layer is successively encoded into an intermediate reptaenz™ = h?(¢0™) and

decoded in the same way into a reconstructed vei&ivh= ¢2(z(™):

2™ =g (w’(m)f(m) + b'(m)> (5.7)

M) — !MIT Zm) 4 /™ (5.8)

Thus, each layer is trained separately using stochastittegredescent and backprop-
agation. More specifically, the input descriptors for eaglel are presented sequentially.
For example, a forward pass through thelayer provides a reconstructed versin®)
of %), The squared,-loss is then computed and weighted by a learning rate paeame
to provide the parameter updai&w™®, §b*) c¥)). We tried various combinations of
training parameters and the best reconstruction results algained by applying5000
stochastic gradient updates with alternating sampling/®&en the expression classes in
the databases. Indeed, we want the network to be able tosteaonlocal variations of
all possible expressive patterns on an equal foot. We als@uwenstant learning rate of
0.01 as well as a weight decay 0f001, which seem to provide good results in testing.
Finally, we found that addings% randomly generated masking noise provided satisfying
results (see Sectiob3.3.2.2for an overview of regularization schemes for autoencoder
training). From a manifold learning perspective, the gdalising such denoising cri-
terion is to learn to project corrupted examples (e.g. plytoccluded ones, which lie
further from the manifold) back on the training data mamifolSuch example will be

reconstructed closer to the training data and its confideshat be smaller.

5.3.2.3 Confidence measurement

Given a face imag€, we define the point-wise confideneé”) (Z) for point k as the

Lo-loss {.e. the reconstruction error) between the HOG descrift@f) extracted from

100



this feature point, and its reconstructi@noutputted by the network, after successively
encoding by layerd,; thenL,, and decoding in the opposite order. By abuse of notation,

we have:

2™ —g' 0 g* 0 h? o K (TW)|P?
I2®IElgT 0 g 0 12 o AT (T2
The choice of using an Euclidean distance as a confidence seems natural as it is

() =1~ (5.9)

optimized during training. We also introduce a confidencasneement(”) (7) defined

over triangles = {k;, ko, k3} of the facial mesh as:

o (Z) = min(a*)(T), a*2)(T), a*)(T)) (5.10)

As highlighted in the following experiments, this trianglése confidence measure-
ment can thus be used to weight LEPs to enhance the robustnessial occlusions to a

significant extent.

5.4 Using local predictions for Action Unit detection

LEPs are local responses related to categorical faciakegmns. Thus, it makes sense
to assume that LEPs can somehow be related to AUs and coastityood high-level

representation for AU activation prediction.

5.4.1 Using available categorical expression-related data for Action

Unit detection

More specifically, Figur&.4 describes a basic AU recognition framework, in which LEP
vectors corresponding to each triangle are extracted bgtddyer of local trees, trained
on a categorical expression dataset. The concatenatiolh ldER vectorsp(c|Z, ) for
every expression € C (6 universal expressions plus the neutral one) and triangie

the facial mesh gives rise to7ax N, feature vector used by a second layer of trees de-
fined for each AU (with/V, the number of triangles of the facial mesh). Thus, the AU

recognition layer is trained on a FACS-labelled datasetgusimy one feature template
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o0 = p(c|Z, ), with associated thresholdsandomly generated from a uniform distri-

bution in the[0; 1] interval.
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Figure 5.4: AU recognition using LEP features.

As illustrated on Figur&.4, we also study the importance of using multiple available
expression datasets for learning the first layer of trees (LEP representation). We
can either train the models on a specific categorical exieskatabase, or merge the
datasets to learn LEP representation from all the availednpus (\/1). Finally, we can
also learn LEPs separately from the different categorigptession datasets and use a
concatenation of the LEP feature vectors as an input forehersd (AU prediction) tree
layer (M 2). Section5.5.4shows that those two approaches enhance the predictive powe
of the AU detection framework. Furthermore, those two sges can complement each
other well. Indeed)/ 1 requires to simultaneously load multiple datasets atitigitime,
M?2 involves computing multiple LEP features for evaluatiorhu§, a combination of
those two strategies can be used to fulfil the target menmmgftequirements.

Also note that we voluntarily keep the AU recognition layengle so as to showcase

the usefulness of LEP representation for the AU predictigi tas compared to low-level
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engineered descriptors and other state-of-the-art methBldwever, as shown in other
works on expression recognitiof], recent approaches such as multi-task formulations
(e.g. training a single system for predicting multiple Alds)n significantly improve

performances.

5.4.2 Confidence measurement in Action Unit activation

Because AUs are defined locally, chances are that AU activagiatively to an occluded
area can not be predicted at all. Thus, we use the weightsitbexdpby the autoencoder
network to automatically derive a confidence score relbtit@each AU indexed byn.
To this end, we define azsgf’f) the number of times that the LEP feathﬁfg%) was selected
for splitting at the root of the trees, among all trees in tbee$t. This is highlighted
on Figure5.5. The reason for exclusively considering features at thé abthe trees is
that those features are selected from large numbers ofrigag@xamples, as opposed to

features from nodes deeper in the trees, that are essgntiale noisy.

AU1 | AU2 | AU4

Figure 5.5: LEPs heat map for each of the 14 AUs (CK+ datab#&ely top-level LEP

features are displayed for each AU. Best viewed in color.

Note that, while most approaches focus on describing egjones as a combination

of AUs, we can decompose each AU as a set of local expressaalichons. For exam-
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ple, for AU1 (inner brow raiser) and AU2 (outer brow raisé¢hg most relevant LEPs are
triangles corresponding to the inner and outer brows, ssalcwith expressiosurprise
respectively. AU4 (brow lowerer) mainly uses trianglesnmn the eyes associated with
expressioranger. AU9 (nose wrinkler) mainly uses triangles from the nose eneek
regions, associated wittisgust AU12 (lip corner puller) and AU20 (lip stretcher) re-
spectively use triangles corresponding to lip corners eibressionsappinessandfear.
We then define the AU-specific confidence measuremgntor AU m as the sum
of confidencesy("”) of trianglesr of the facial mesh, weighted by the proportion of LEP
features from that triangle, that are used to describe ttieation of AU m:
M (5.11)
> N
Thus, the AU-specific confidence measurement is propoltiondoe confidence of

Ay =

the face regions that are the most useful for describingdtieedion of a specific AU. We
show in the following section that such simple setting afide highlight the cases were

the AU predictions are deemed unreliable.

5.4.3 Multi-output prediction of Action Unit activation

In Section5.4.1we trained independent detectors for each specific AU. Hewéy doing

so, we essentially ignore the possible correlations beatwiee AU activation prediction
tasks. For that matter, we use the multi-output (MO) panadig train multiple trees that
can each predict several AUs. From a RF induction perspeeaeh training strategy is

defined by two aspects:

e Which AUs are defined to split the tree nodes during training.

e Which trees are used to predict which AUs.

In order to do that, we assign task weights" for a noden of a treet and an AU
detection task € {1, ..., N,,} to compute the successive splitting objective functions.
Thus, given a binary featurgp, ¢} the multi-output splitting criterion for node shall

become:
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Nau
Hyy ™o =N " wp"Hy , (5.12)
=1
Where H' is a single-output objective function defined, in our caser @ two-class
problem regarding the activation of AU The tasks weights);™ can be generated at the
tree level, in which case they can be used to weight the AUssatime. They can also
be generated independently for each nads treet. We investigate multiple strategies

for setting the tasks weights, which are depicted on Figuse

Tree 1| Tree 2|Tree 3| Tree 4 | Tree 5\Tree 6|Tree 7|Tree 8 Tree 9 h’ree 1d

Depth1 ‘Dep(h?‘Depﬁhf& Depth1|Depth2|Depth3|Depth1|Depth2{Depth3 Depth1|Depth2| Depth3 Depth1|Depth2| Depth3|Depth1| Depth2{Depth3 Depth | Depth2Depth3{Depth1|Depth2Depth3 Dey

Single-
Output

Full
Multi-
Output

MO- Random
task weights
(tree)

MO- Binary
Random
task weights
(tree)

MO- Random
task weights
(split)

MO- Binary
Random
task weights
(split)

MO- One AU
per split

Figure 5.6: Illustration of different task weights assigmstrategies. Grey level inten-

sity bars represent task weight values in fthd ] interval.

e Single-Output (SO): we only predict one AU per tree by setting only one weight

to 1 (only one white bar per tree on Figused) for each tree and the others(io

e Full Multi-Output (MO): each tree uses an unweighted combination of all AUs
(i.e. all tasks weightsv, ™ are set tal) for splitting. Also, each tree predicts all the

AUs simultaneously.
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e MO-random weights (tree): we set the weights to uniformly sampled random
values for each treev,™ = w! ~ U[0, 1]. At test time the prediction of this tree for

AU i is weighted byw?.

e MO-Binary random weights (tree): we randomly set each weight to eitheor 1
for each treew! are sampled as a Bernoulli random variable with expectedevalu

1/2,i.e.w! ~ B(0.5).

e MO-random weights (split): we set the weights to uniformly sampled random

values for each split nodeo)™ ~ [0, 1].

e MO-Binary random weights (split): we randomly set each weight to eitteor 1

for each split nodew,” ~ B(0.5).

e MO-One AU per split: we randomly select only one AU for splitting each node

(as suggested irbf]).

A comparison between those approaches can be found in 8&ciid

5.5 Experiments

5.5.1 Experimental setup
5.5.1.1 Evaluation metrics

For both occluded and non-occluded scenarios of cateddflER we use the overall
accuracy as a performance metric. We also report confusatriaes to show the discrep-
ancies between recognition of the expression classes. Batefection we use the area
under the ROC curve (AUC) as a performance metric, as it islwigged in the literature
because it is independent of a decision threshold. For aledperiments, RF classifiers
are evaluated with the Out-Of-Bag (OOB) error estimate. Feretkperiments involving
a first layer of LEP features, these are generated for OuBdgf-examples for each tree.

Moreover, AUs are evaluated with OOB error.
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5.5.1.2 Hyperparameter setting

In order to decrease the variance of the error we train lastheations of trees{1 = 1000
for LEP generation]” = 50 for AU detection). For training the local models, we set the
locality parameterR? to 0.1 (which means that each local model usés) of the total face
surface) which provides good robustness to occlusionsalliirwe use40 ¢!, 40 ¢
and160 ¢® features for learning LEPs, as well 25 threshold evaluations per feature,
as these seem to provide satisfing results (Seetibri). For AU detection, we examine
100 ¢ features at each node, each associated itthreshold values. Note however
that the values of these hyperparameters (excepkjdnad very little influence on the
performances. This is due to the complexity of the RF fram&wiarwhich individually
weak trees (e.g. that are grown by only examining a few featper node) are generally
less correlated, still outputting decent predictions wbembined altogether.

For the occluded scenarios on CK+ and BU4DFE, the autoenawoet®rorks are
trained in a cross-database fashiae.(training on CK+ and testing on BU4DFE and
vice versa). Lastly, on SFEW database, we use the autoencetteork trained on CK+,

as SFEW embraces multiple examples of occluded faces.

5.5.2 Experiments on non-occluded scenarios

In Tables5.1, 5.3 5.5we report the average accuracy obtained by our local subd$paic-
dom Forest (LS-RF) and the confidence-weighted version (WLE-WRE also compare
with standard RF (RS-RF).

Generally speaking, classification results of LS-RF ardtle litetter than those of the
RS-RF. Indeed, forcing the trees to be local allows to captweerdiverse information.
RS-RF relies quite heavily on the mouth region, but other afeas around the eyes,
eyebrows and nose regions) may also convey informationctirate captured by local
models. Figuré.7 displays the proportion of top-level features over allngkes of the
face area.

While more thar90% of the features extracted by RS-RF are concentrated around

the mouth, the repartition for LS-RF is more homogeneous.celeibS-RF is less prone

107



Table 5.1: CK+ databasé. CK database

CK+ Protocol| 7em | 8em  Table 5.2: Confusion matrix (CK+-8em)

LBP [79] 10-fold | 88.9f - ne ha an sa fe di co su

nel 924 03 09 06 12 06 3.97
CSPL[L17] 10-fold | 89.9f - ha O 200 0 0O O 0 O

iIMORF [11(] | 10-fold | - |90.0 @ 44 B 0 O SRS

sa 22.6

RS-RF OOB | 926|915  di 34

co 11.1

LS-RF OOB | 941|934 | ,,

0

0

0 0

0 0

AUDN [56] 10-fold | 93.7 1920 & 13 4 o o B o o a4
0 0

0 0

0 6

WLS-RF OOB | 943|934

Table 5.3: BU4DFE database

BU4DFE Protocol| % Acc Table 5.4: Confusion matrix (BU4DFE)

BoMW [10Q 10-fold 63.8 ne ha an sa fe di su
nel 895 0 18 44 09 09 26

haj 2 [899 o0 0 5 2 1

Geometric §5] | 10-fold 68.3

LBP-TOP [37] | 10-fold 71.6 an| 101 0 707 71 2 91 1
2DFFDs[4] | 10-fold | 73.4 sal 1 0 15 74 3 0 0
fe| 98 176 29 59 383 11.8 13.7
RS-RF OOB 73.1 ¢
di| 3 4 69 1 79733 a4
LS-RF 0]0]=] 74.3 su/ 0 1 0 1 62 0 918
WLS-RF 0]0]=] 75.0

Table 5.5: SFEW database

SFEW % Acc Table 5.6: Confusion matrix (SFEW)
PHOG-LPQ P4] 19.0 ne ha an sa fe di su
DS-GPLVM [2] 47 ne| 502 88 9.0 100 2.0 169 3.1

ha| 106 675 62 69 26 35 26
AUDN [56] 30.1 an| 254 161 31.3 101 3.7 09 125
Semi-Supervised] 34.9 sa| 21.2 212 81 222 7.1 91 111

fe| 142 162 130 50 231 7.1 213
RS-RF 35.7 _

di | 313 237 104 7.1 37 156 82
LS-RF 35.6 su| 154 110 121 33 7.7 6.6 440
WLS-RF 37.1
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Figure 5.7: Proportion of top-level (tree root) featurestp@ngle. Best viewed in color.

to a misalignment of the mouth feature points, or to occlusiof the mouth region.
Furthermore, weighting the local predictions (WLS-RF) ugimg confidence score from
the autoencoder network allows to enhance the results oiB84nd SFEW. The reason
is that subjects from those datasets exhibit uncommon netwgltal traits, occlusion or
lighting patterns. As such, more emphasis is put on reliddal patterns, resulting in
a better overall accuracy. It also explains why the accuraeguivalent for LS-RF and
WLS-RF on CK+ database, where there is less variability. Ontiheetdatabases, LS-
RF and WLS-RF models provide better results compared to stateeart approaches,
even though some of these use complex FFD or spatio-temigatakres (LBP-TOP), or
use additional unlabelled data for regularizatiéh][ Note however that the evaluation
protocols are different for some of these approaches. Fample, authors in49] use
only the texture information and not the provided landmarks

Tables5.2, 5.4, 5.6 show the confusion matrices of WLS-RF on CK+, BU4DFE and
SFEW respectively. Generally speaking, expressioagtral happy and surprise are
mostly correctly recognized, as they involve the most recaple patterns (smile or eye-
brow raise).Angeranddisgustare also accurately recognized on CK+ and BU4DFE but
not so much on SFEVsadnesandfear seem to be the most subtle ones, particularly on
BU4DFE and SFEW where those expressions can be misclass#fsentpriseor happy

respectively.
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5.5.3 Experiments on occluded scenarios
5.5.3.1 Targeted occlusions

In order to assess the robustness of our system to partebfastusion, we first measured
the average accuracy outputted by RS-RF, LS-RF and WLS-RF on CKx¢p(8ssions)
and BU4DFE (7 expressions) databases with synthetic doolsisf targeted areas of the
face, namely the mouth and eyes regions. More preciselyedoh image we use the
feature points tracked on non-occluded images to hightiglateyes and mouth regions.
We then overlay a noisy pattern (see Figtré), which is a more challenging setup than
black boxes used inp7, 40]. We add margins a20 pixels to the bounding boxes to make
sure we cover the whole eyes (with eyebrows, as they regrédsemost valuable source
of information from the eye region) and mouth region. Fipadte align the feature points

on the occluded sequences.

Figure 5.8: Examples of occluded faces from BU4DFE withredidj feature points. Left:
non-occluded, middle: eyes occluded, right: mouth ocauddso notice how the pres-
ence of an occlusion may have a critical effect on the qualitthe feature point align-

ment.

Graphs of Figuré.9 show the variation of average accuracy hyperparameterR
that controls the locality of the trees, respectively uneggs and mouth occlusion on
CK+ database. Performances of RS-RF fall heavily when the meuibcluded (from
91.5% to 25.4%), as observed in1[D7. This further proves that the global model relies
essentially on mouth features to decipher facial exprassiBorcing the trees to be more
local (e.g. setting? to 0.1 or 0.2) allows to capture more diverse cues from multiple

facial areas, ensuring more robustness to mouth occlusiaiso explains why LS-RF
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Figure 5.9: Accuracy outputted on occluded CK+ and BU4DFRAlktes

models withR = 0.8 — 0.5 can already be quite robust to eye occlusions, as the majorit
of the information used on such models likely comes from rarea. Nevertheless,
on those two occlusion scenarios, WLS-RF achieves a sulataietter accuracy than
the unweighted local models. Figused also shows the accuracy comparison for both
eyes and mouth occlusion scenarios on CK+ and BU4D, witk= 0.1. On the two
databases, LS-RF is more robust to partial occlusions thaRR$urthermore, WLS-
RF also provides better accuracy than both LS-RF and RS-RF.

5.5.3.2 Random occlusions

In order to quantify the capability of our method to deal withpredicted occlusions as
well as to compare our result to state-of-the-art methodBEdR under partial occlusion,
we evaluated our method on various occlusion scenariog uk&nsame protocol as in
[107]. Specifically, we evaluate the average prediction acqui@c7-classes expression
recognition on the CK+ database, where, for each image, armregithe face is being

overlaid by white occluding patterns. These patterns afimekk by the feature points
locations for eye and mouth occlusions, and by white patoheze8 x 8 (R8),16 x 16

(R16) and24 x 24 (R24) for face crops of siz€8 x 48). Similarly to what was done above,
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Figure 5.10: Examples of randomly occluded faces from CKHaidigned feature points.
Top row: R8 benchmarlk(x 8 overlaying patches). Middle row: R16 benchmar&x 16
overlaying patches). Bottom row: R24 benchmak k 24 overlaying patches).

the facial feature points are aligned after the white pateine overlaid on the face, hence
occlusions are likely to cause feature point misalignmeatidition to texture corruption.
Examples of randomly occluded faces can be observed oneéFigiia Table5.7 shows
the comparison of WLS-RF withLD7] on several partial occlusion scenarios.

As one can see, WLS-RF provides similar accuracy as the ragydsampled Gabor
templates introduced in.D /] on the R8 anayes occludedases. However, on the most
difficult benchmarks (R16, R24 and mouth occluded), WLS-RF piewisignificantly
better results. This further shows that performing FER bpgia confidence-weighted

combination of spatially-constrained trees allows to fixihandle partial occlusions
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Table 5.7: Comparison with.D7] on multiple scenarios

Protocol WLS-RF | [107]
R8 92.2 92
R16 86.4 82
R24 74.8 62.5
Eyes occluded 87.9 88
Mouth occluded  72.7 30.3

without requiring any occluded data for training the classs.

5.5.3.3 Realistic occlusions

Our occlusion model is however quite “boring”, in the serts# the occluding noisy pat-
terns are not realistic. For that matter, and because thergriently no FER database that
includes annotated partial occlusion ground truth, we ptesent on Figuré.11 quali-
tative results on more realistic occlusions. Notice howah&encoder network (learnt
on CK+) assign high confidences (green) to non-occluded regtaints, whereas ex-
amples that lie further from the captured manifold (e.g. aose of lighting conditions,
self-occlusion with a hand or with an accessory) are giverefovalues (red). The cor-
responding triangles are thus downweighted for FER andapgp&nsparent on the last
row. Also note that different facial regions can vote forf@liént expressions, as shown

on the second columméppyrangrydisgusj.

5.5.4 Experiments on AU detection
5.5.4.1 Merging multiple datasets

In this section we present results for AU detection using f&#Rures. Tabl&.8 shows
comparison of AUC for the prediction of AU activations on CKatabase obtained with
LEPs trained on CK+, BU4DFE and SFEW databases, as well aslsnaatainedvia the
M1 andM?2 strategies.

For nearly every AU on CK+, the best AUC score is provided by ihe strategy.
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Figure 5.11: Examples of local FER under realistic occlasioTop rows: point-wise
confidence scores (red: low confidence, green: high confejemiddle rows: triangle-
wise scores. Bottom rows: weighted local classificatiom@parent for low confidences,
gray for neutral, red fohappy yellow for angry, blue forsad cyan forfear, green for

disgustand magenta fosurprisg. Best viewed in color.

However LEPs trained on CK+ only as well as the strategy also provide good predic-
tion results. LEPs trained solely on BU4DFE and SFEW seenhladkluster, but using
the additional categorical expression data in additioratia drom CK+ can be beneficial
for prediction accuracy. Interestingly, on BP4D, LEPs teaiion CK+ only seem to have
a slight edge over the two LEP models trained using all thdada data. However, the
M?2 strategy and, to a lesser extemt,l and training on BU4DFE only, provide close per-
formances. Furthermore, on the DISFA dataset Mthieand the)M 2 LEP models provide
the highest AUC. Overall, thé/2 and M1 models seem to perform better, followed by

the models trained on CK+. This proves that AU detection carefiefrom additional
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Table 5.8: AUC scores on CK+, BP4D and DISFA databases. Reseltprasented
for LEPS trained with multiple settingge. Merge (M1 and M2) and training on CK+,

BU4DFE and SFEW categorical expression databases.

CK+ BP4D DISFA

AU M1 | M2 | CK+ | BU4DFE | SFEW| M1 | M2 | CK+ | BUADFE | SFEW || M1 | M2 | CK+ | BUADFE | SFEW
AUl | 97.9|98.4| 98.4 94.7 93.3 || 59.6| 62.7| 63.6 60.9 52.0 || 66.1|68.4| 71.3 57.6 66.6
AU2 98 | 98.2| 97.7 97.5 97.2 || 65.4| 64.8| 62.3 66.0 53.0 || 53.8|55.2| 67.3 59.3 59.4
AU4 | 93.3|95.4| 94.8 83.1 85.6 || 68.7| 63.8| 64.4 64.4 55.3 || 66.7| 66.7 | 67.3 64.0 67.6
AU5 94 | 97.5| 955 93.2 95 - - - - - 84.2|85.6| 73.3 88.6 73.7
AU6 | 95.4| 95.7| 95.5 94.3 949 | 83.1| 81.8| 82.6 78.5 77.1 | 89.1| 86.0| 89.2 86.8 85.1
AU7 | 89.1| 90.2| 89.6 88.1 83 76.8| 75.0| 73.6 72.6 65.0
AU9 | 97.9|99.3| 98.7 98.5 94.8 - - - - - 79.0| 77.0| 75.4 74.0 53.4
AU10 | 83.7| 85.6| 86.5 78.4 81.7 || 83.7| 83.8| 83.3 81.0 78.6
AU12 | 97.6| 96 | 96.2 96 96.5 || 89.9| 90.0| 89.8 88.0 87.2 | 95.5|92.9| 93.6 92.8 91.8
AU14 | - - - - - 65.2| 66.4| 63.7 66.5 64.9
AU15| 91 | 88.9| 88.3 79 79.5 || 56.8| 58.4| 58.5 57.7 56.0 || 69.5| 64.5| 63.6 68.8 61.7
AU17 | 93.9| 95.1| 93.4 81.5 86.4 || 55.8| 65.7| 68.9 65.1 60.6 || 67.8| 61.2| 53.5 59.1 58.8

AU20 | 91.9| 93.8| 94.5 88.5 85.8 - - - - - 65.0| 58.5| 50.2 55.5 61.9
AU23 | - - - - - 50.1| 57.2| 60.2 57.5 54.2
AU24 | - - - - - 69.6|77.4| 78.2 7.7 68.4
AU25 | 99 | 99.1| 98.8 87.1 97.4 - - - - - 94.8| 95.0| 94.0 95.6 80.0
AU26 | 75.7| 81.2| 79.7 74.9 73.4 - - - - - 79.3|81.4| 75.6 78.5 715

Avg 92.7|93.7| 93.4 88.2 88.9 || 68.8| 70.6| 70.8 69.6 64.3 || 75.9|74.4| 72.9 73.4 69.3

training data labelled with categorical expressions. IRINREPs trained on SFEW did
not perform very well, probably due to the fact that the dassbembraces too much vari-
ability for too few training data. Thus, the categorical egsions can not be captured

adequately, as can be seen from the low accuracies showedtioi$.5.2

5.5.4.2 Multi-output strategies

Table5.9 shows the relative interest of the different multi-outpediining strategies de-
tailed in Section5.4.3on CK+. Overall, the SO strategy seems to output the lowest
AUC score, as it essentially ignores the co-dependencydstthe multiple AU detec-
tion tasks. It is however closely followed by the full MO mdd&he MO-RW-tree and
MO-RW-split provide slightly better results. Neverthedeghe latter are overshadowed
by the MO-Binary-tree and MO-Binary-split which not only prdes better overall accu-

racy, but also allows a significant decrease of the compunaltiioad during training, as
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Table 5.9: AUC scores on CK+ database

training strategy| AU1 | AU2 | AU4 | AU5 | AU6 | AU7 | AU9 | AU10 | AU12 | AU15 | AU17 | AU20 | AU25 | AU26 | Avg.
SO 98.4| 97.7| 94.8| 95.5| 955| 89.6| 98.7| 86,5 | 96.2 | 883 | 934 | 945 | 98.8 | 79.7 | 934
Full MO 97.8198.1| 94.6| 96.4| 96.1| 91.8| 99.2| 84.9 | 97.7 89 949 | 93.1 | 99.2 | 76.7 | 93.5
MO-RW-tree 97.8]98.2| 94.8| 96.4| 96.2| 91.4| 99.2| 83.3 | 97.7 | 89.6 | 951 | 93.2 | 99.3 | 81.7 | 93.8
MO-Binary-tree | 98.1 | 98.2| 94.9| 96.8 | 96.2 | 91.3| 98.8| 87 97.2 | 88.7 | 948 | 93.8 | 99.2 | 79.4 | 93.9
MO-RW-split 97.9]98.1|94.8|96.4|959|91.6|99.3| 83.2 | 974 | 89.8 | 951 | 93.1 | 99.2 | 80.3 | 93.7
MO-Binary-split| 97.9| 98.1| 94.8| 96.5| 96.1| 91.6| 99.3| 83.3 | 97.7 | 89.7 | 949 | 93.1 | 99.2 | 80.3 | 93.7
MO-1task-split | 98.1| 98.2| 94.9| 96.4| 96.1| 91.6 | 99.5| 86.8 98 88.6 | 95.1 | 93.7 | 99.2 | 824 | 94.2

only half the tasks are used to compute the splits. The besathstrategy is the recently
proposed (seesf]) MO-1task-split, which is significantly faster and morecarate, as it
further increases the decorrelation of the trees. More@seillustrated on Figurg.12,
as all the AU prediction tasks are used for training each theeaccuracy grows faster
than the and the MO-RW-tree and MO-Binary-tree models, arie @s fast as the MO-
RW-split and MO-Binary-split models. Thus, high accuradas be obtained by using a

restricted number of trees (efj.= 125).

0.95
0.94
0.93 — Full MO
— MO-RW-split
0.92 MO-RW-tree
— MO-Binary-split
0.91 — MO-Binary-tree
MO-oneAU-split
0.9
1 125 250 375 500

Figure 5.12: Influence of T (number of trees) on average AUC

5.5.4.3 Impact of mesh refinement

Table5.10shows the accuracy obtained on CK+ and DISFA for both theralgb-point
mesh and &00-point refined mesh, using Multi-output AU prediction perfeed upon
LEP features trained using the M2 merge strategy. As one@aytise interest is limited

on CK+ because a coarse mesh is sufficient to describe sudtymictl facial behaviors.
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On the DISFA database though, the refined facial mesh gigeehAUC for nearly every

AU. Indeed, using a more fine-grained mesh allows to produme mliverse LEP features

by subdividing large areas such as triangles correspondititge cheeks.

Table 5.10: AUC scores on CK+ and DISFA databases

CK+ DISFA
AU | M2,MO(49) | M2,MO(500) | M2,MO(49) | M2,MO(500)
1 97.9 98.3 67.4 72.8
2 98.4 98.8 52.6 61.9
4 93.7 94.1 75.2 77.8
5 96.8 96.3 88.3 86.9
6 96.2 95.8 89.7 90.5
7 89.6 91.6 - -
9 99.5 99.6 82.5 84.9
10 86.5 86.8 - -
12 98.1 97.3 96.2 96.2
15 88.2 88.2 74.5 72.5
17 94.5 94.1 64.2 62
20 95 93.3 62.1 63.1
25 99.5 99.4 95.7 95.8
26 80.1 85.1 77 79.3
mean|  94.0 94.1 77.1 78.6

5.5.4.4 Relevance of AU confidence assessment

In order to assess the relevance of the AU-specific confidem®esurement, we evaluated

its average value on the occluded versions of the CK+ and Blddtabases generated

in Section5.5.3for occlusion handling in categorical FER. From a generadjpective, as

can be seen on Figutel3 low confidence measurements can be observed for AUs from

the upper face region on the two scenarios involving eyeusamh. The same holds for

AUs from the lower face region and the “mouth occluded” scenavhereas the confi-
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dence scores are significantly higher in the non-occluded.cimterestingly, confidence
scores for AU6 (cheek raiser) and, to a lesser extent, AUSgnarinkle), are quite low
even in the “mouth occluded” case. Indeed, as can be witdess€igure5.5, the confi-

dence measurement for these AUs also use LEP features feonode and mouth area.

0.9

08 EAU2 WAU4 mAUS5 AU10  BAU12 _~AU15 BAU17 ©~AU20 BAU25 = AU26
o 0.7
2
8 0.6
'~c§> 0.5
© 0.4
go3
0.2
0.1 I I
0 . s
none mouth eyes none mouth eyes
CK+ BU4DFE

Figure 5.13: AU confidence scores outputted on occluded CkHBAUMDFE database

5.5.4.5 Comparison with state-of-the-art approaches

Table5.11reports the overall best AUC obtained on the three datasetdso draws a
comparison between the AUC scores obtained using our methaddesults reported in
recent publications involving similar protocols (sameath@ses and sets of AUs, same
intensity threshold for AU occurrence on DISFA). Our apmfo@rovides better results
than SHTL [/Z] on CK+, as well as accuracy similar to the multi-label CNN agluced

in [34] on DISFA. Ruizet al. [77] obtain an excellent AUC score 6fl.5 on DISFA.
However, they do not provide information to ensure that #@es protocol is used for
evaluation (e.g. the threshold that is applied on the AUnsity values). Last but not
least, our method also provides better performance thaiibas LBP-TOP features used
in [104 on BP4D. This demonstrates that LEPs learned on large amoficategorical

expression data yield high discriminative power for AU ad#te tasks.
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Table 5.11: Comparison with other works

Database AUC(ours)

AUC(Other works)

CK+(14AU) 94.2

91.7 (SHTL [/7])

BP4D(12AU) 70.8

68.9 (LBP-TOP 09

DISFA(12AU) |  78.6 | 75.7 (Multi-label CNN B4])

Table 5.12: Measured evaluation time per processing stapi(liseconds)

Processing step time (ms)
Feature point alignment 10
Integral channels computation 2
Confidence weights computation 11
LEP computation (1000 trees) 7
12 AU detection - Single output(50 trees per AU) 1
12 AU detection - Multi output(50 trees total) 0.1
Total 31

5.5.5 Runtime evaluation

The proposed framework for occlusion-robust FER (WLS-RF)Addietection operates

in real-time on video streams, even with large tree colbesti Table5.12 displays the

elapsed time for each step of the evaluation pipeline. Tétentas performed on an Intel

Core I7-4770 CPU on a single-thread C++/OpenCV implementation.

It appears that the feature point alignment and confidenaghivgeneration steps are

the bottleneck of the system in term of computational loadweler the runtime for the

former can be reduced by the use of more efficient alignmearighms such as the one

proposed in Sectiof.3.2 As for the confidence weights, the computation time can be

significantly reduced by a proper multithreading (e.g. catimg the confidence for each

feature point in parallel). As it is, the framework alreadyns at more than 30 fps even

with large collections of trees. As for training, learning®Rs with 1000 trees on a big

database (BU4D containing more than 8000 face images) fgaogimately three hours

without parallelization. Training the hierarchical autoceder network took half a day
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and learning the 12 AU detectors on DISFA database with Etrequired one hour on
the same 17-4770 CPU using a loose C++ implementation. Thusamproach scales
well both in terms of training and testing times, especialhen compared to recent deep

learning algorithms34] for feature representation and learning.

5.5.6 Discussion

Thoughout this chapter, we proposed a new high-level exesiriven LEP representa-
tion. LEPs are obtained from training RFs upon spatiallyraafilocal subspaces of the
face. Extensive experiments on multiple datasets hightlghfact that the proposed rep-
resentation improves the state-of-the-art for categbRE®R and yields useful descriptive
power for AU occurrence prediction. Furthermore, we introed a hierarchical autoen-
coder network to model the manifold around specific facialdee points. We showed that
the provided reconstruction error could effectively beduas a confidence measurement
to weight the prediction outputted by the local trees. Thappsed WLS-RF framework
significantly adds robustness to partial face occlusiohg. idleas introduced in this chap-
ter also open a lot of interesting directions for future vgodh face analysis. First, note
that the confidence weights are representative of the figatiefined local manifold of
the training data. Thus, these confidence values can be aiskdermine which parts of
the face are the most reliable in a general way (e.g. to asldmgsredicted illumination
patterns or head pose variations), and are not limited tlusion handling. Furthermore,
we could inject confidence weights into the feature poirgratient framework in order
to enhance the robustness of the feature point alignmemt @cclusions. Compared to a
discriminative approach using synthetic daia][ our manifold learning approach could
in theory more efficiently deal with realistic occlusions.oiover, the applications of
LEPs for AU detection and intensity estimation are multigtést, it would be interest-
ing to learn LEPs using more expression data such as thestitagoduced in{6, 93],

possibly with a more complex integration strategy.
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Chapter 6

Greedy Evaluation of Neural Decision

Forests

In this chapter, we provide adaptations of the very recentraleDecision Forest (NDF
[4€]) machine learning algorithm to allow a more efficient, judinline training procedure
(see Sectior6.2) as well as an evaluation procedure (Sectiof) that is an order of
magnitude faster than the one proposed’ii].[We highlight on several applications that
GNDF is particularly suitable for face analysis, for whi¢hs crucial to work with a
very high framerate upon high-dimensional feature vectblsreover, we show that the
proposed GNDF framework can be adapted to tackle differactine learning problems,
I.e. classification and regression. In order to do so, we bendhmaralgorithms on facial
expression classificatiof.3.1and feature point alignment within a cascaded regression

framework6.3.2

6.1 Greedy evaluation procedure

As highlighted in Sectior3.3.4.1 in the case of a classical decision tree, the probability
©'(x;) to reach each node given an exampiés given by a product of Kronecker deltas

that successively indicatexf; is routed left or right:
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pea)= ] o) J] (1—-0"(x) (6.1)

ne'/\/’lright ne/\/-lleft

In the case of a NDF (See Sectigr8.5.), this probability is given by:

o) =TI @ea) T (00— ae) (6.2)

RN oM neNieS"

In the case wher€"(x;) — 0"(x;), @ neural decision tree becomes a hard decision
tree with oblique splits. Intuitively, from a NDF evaluatiperspective, we successively
choose the best path through the tree in a greedy fashior,aftet node. Thus, we refer
to this model as a Greedy Neural Decision Forest (GNDF).

On the one hand, in order to evaluate a NDF that is composéttiifes, we have to
evaluate the probability to reach each leaf node of each Aga consequence, each split
node has to be evaluated, thus the complexity of evaluatigigem input of dimension
k with NDF is T'k.(2P*1 — 1), i.e. exponential in the tree depth. By doing so, we
essentially lose the runtime advantage of using ensemlae@s$ion trees for prediction.

In case of a GNDF, on the other hand, only a single, locallystbpath through theg”

trees has to be evaluated. Hence, its complexity is equaki®, i.e. linear inD.

6.2 An efficient Neural Decision Forest training algorithm

The auhors in4&] suggest using a two-step iterative optimization schemeertza train-
ing examplex;, a forward pass through the trees provides the activatiofg) and prob-
abilities " (x;). The error is then backpropagated from the leaves up to thteofahe
trees. Then, after a number of epochs, the leaf probabiktie updated following a con-
vex optimization scheme. This leaf prediction update maydwer be quite costly in
terms of training time. It also involves additional hypegraeters and requires the use of
all the data, thus it can not be performed online.

To circumvent those issues, we propose an alternativarigaprocedure for NDF that
involves fixed prediction nodes. First, we randomly inizala number of trees (e.g. with

a fixed depttD, randomly generated feature weightsand thresholdg" for each node).
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In order to maximize the information gain w.r.t. class lahssignment, leaf nodes of
each individual tree should contain pure distributiondldvang this idea, we assign ran-
dom predictions to the tree leaves, that will be left uncteahduring the whole training
process. Thus, in case of a classification task, a classd®naly selected and assigned
to each leaf node. For regression, the predictions arahziid with randomly sampled
values in the range of the training ground truth values. Nwié depending on the distri-
bution of these values, the prediction can be randomly sedrfpbm specific distributions
(e.g. uniform or gaussian).

Hence, only the split node parameters are updated at eachit8@bon. Note that
such setting is not only intuitive, but it allows to perforhettraining faster and in a fully
online fashion. It also offer the advantage to reduce thebasmof hyperparameters. How-
ever, in case of a classification task, the depth of the trag$dibe set accordingly to the
number of classes, so that each class is represented at least once amongfthedes.

It is possible to show that settir according to Equation6(3) provides a probability
higher than 0.99 for this condition to be realized (See ApipeA). Furthermore, we also

prove that this lower bound depth grows as the logarithm @hilmber of classes

L In(1 — (1 —0.99)Y/¢)
e " o1

SGD or mini-batch updates are then applied until a specificlrar of epochs through

D >Dy=

(6.3)

the whole training set are completed. SGD updates can bedgpleach tree in paral-
lel. After training is completed we convert the soft treeskbto hard decision trees by
applyingd™ — ¢ for every noder to “convert” the NDF to a GNDF. As it will be shown
in the experiments, this allows a faster evaluation at neege in terms of prediction
accuracy. Moreover, it also provides a deterministic prigali, as opposed to iteratively
sampling the probabilistic split nodes a number of timese Whole training procedure is

summarized in Algorithnl.
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Algorithm 4 Ef fi ci ent _GNDF_t r ai ni ng
Input: data matrixX = {z;;}i=1..~j=1,. .k tree numbef, tree depthD, number of

-----

epochsFE, learning ratex
fort=1,...,Tdo
initialize tree t with root node r;, and depthD random split parameters
{B"}i=1.. x, 0™ for each split node: and a random class prediction assigned to each
leaf node
end for
forep=1...F do
for ex =1...N do
pick an example at random from the training set
ereat(Xi) = 0 > Recall thakg, is the backpropagation delta to the feature level
fort=1,...,Tdo

Apply forward pass through tre¢o compute probabilitiegs™ and activation

dr
Efeat (Xi) = €feat (Xi) + NDF_backpr op(x;, s, )
end for
Optionally backpropagate erreg..;(x;) and update CNN weights
end for
end for

fort=1,...,7do
for all noden in treet do
dr— 0"
end for

end for

6.3 Applications

Below we present some applications of the proposed simpMNig#& training procedure
and greedy evaluation of NDF for real-time processing. Myecifically, we present an

application of GNDF for categorical FER (Secti6ér8.1), with a focus on hyperparame-
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ter setting (Section.3.1.]), learning (deep) texture representations with GNDF (8ect
6.3.1.9 and real-time capabilities (Sectiér3.1.3. We also show that GNDF can be used

in a cascaded regression framework to perform feature pbgriment (Sectio%.3.2).

6.3.1 GNDF for FER

In this section, we present an application of GNDF for catiegd FER. For that matter,
we use geometric features (point distang€s- see Sectiol.2.2) along with texture rep-
resentations (Sectioh2.4.9 learned through a CNN architecture (Sectif.3.3. For
the benchmarks of Sectidh3.1.1we use geometric representations only, principally for
evaluation speed reasons. For the deep learned modelsiaese Sectior5.3.1.2 we
use the deep architecture illustrated on Figiire which involves a 2-layers CNN. The
first CNN layer (CNN-1) is applied o#8 x 48 face crops and is composed4if 5 x 5
filters. The output feature maps are max-pooled and fed tegbend layer that is com-
posed ofl0 3 x 3 filters. The output feature map#)10 x 10 feature maps for the second
layer (CNN-2)) are concatenated and serve as input for the dN&¥sifier. Alternatively,
both layers are used as the input for the prediction stagevdik connexions thus form
a directed acyclic graph, hence we refer to that model as @ABY). For each dataset,
we augment the training data to learn CNN features by genegréifpped and rotated ver-
sions (with angles randomly sampled within the interival5°, 15°]) of the images and

of the feature points.

6.3.1.1 Varying tree depth and number of trees

First and foremost, we report accuracies obtained by trgi@NDFs with 10 trees of
varying depth, with the same number of updates, slope andihggrate values as above.
We run the experiment 10 times and report the accuracy (@eenad standard deviation)
on Figure6.2. As one can see, the dehof the trees is not a critical hyperparameter to
set. However, classification accuracy is lower for very lslmatrees (e.gD < D, ~ 5),

as a number of expression classes may not be covered by sdwiduial trees. For these

benchmarksD = 6 seems to be a good compromise.
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Geometric features extraction
(Distances)

Convolution Maxpool Convolution Maxpool

@40 5 x 5 filters 2x2 @40 3 x 3 filters 2x2 NDF/GNDF predictor

Figure 6.1: Deep architecture involving geometric and CNatdees with GNDF/NDF
predictor for FER. For each nodeof the trees, NDF successive split nodes “dispatch”
the data through the tree according to the activattorfright subtree) and — d” (left
subtree) of a neuron layer. Its corresponding GNDF taked decisions{” or 1 — ™)
upon oblique hyperplanes, which significantly decreasest#aluation runtime. The red
arrows indicate (some of) the gradient backpropagatiotesotinrough the deep network,
for multiple architectures: CNN-1 (the output of the first ¢olutional layer feeds the
prediction pipeline), CNN-2 (same for the second layer) aAGECNN (both layers are

used for prediction). Best viewed in color.

We then report accuracies obtained by training GNDFs witimggdric features only
and a fixed depth oD = 6. We compare our results directly with the most common RF
variations that are described in Secti®i.4.2.2 RF and ERTk (with £ = 50). We also
compare with NDF as well as with results obtained by sampiiom the probabilistic
trees (NDF-sample, mean and standard deviation over 5 sajnptigures.3 shows the
accuracy evolution as a function of the number of SGD updates

First, one can see that NDF, NDF-Sample and GNDF yield etpnvaif not better—
results than the classical batch RF induction (RF and ERT#60), = 5, 20, 100 trees.
This is a promising result as other methods for online RF ingirsuch as the ones in
[50, 73] are generally less efficient than the batch training pracedMoreover, we also

observe that the accuracies of GNDF and NDF-Sample lie autiiidr than that of NDF
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Figure 6.2: Accuracy as a function of tree depth

with small amounts of trees (e.dgI’ = 5,20, not necessarily favouring NDF-see the
graph withT = 5 on FEED database). Overall, the accuracies of GNDF and NDF-
Sample are equivalent or better than that of NDF (except on Gk T" = 5 trees)

with a much lower runtime. This is due to the fact that the dedtation induced by

increasing the randomness of the evaluation may compefwatse loss caused by the
greedy approximation/sampling procedure. Furthermdre,variance in accuracy that
results from the random node sampling is quite importanh e&feer a number of SGD
updates. Thus, GNDF appears as a more reliable predictorNid-sample, as the
evaluation is a deterministic process. This proves thaesteof GNDF as a standalone

classifier, let alone its use for learning deep represemisti

6.3.1.2 Learning deep representations

Table 6.1 displays the accuracy of NDF and GNDF on different datasétsrnused as

shallow predictors upon geometric features, as well ag e inside a deep learn-
ing framework for learning texture representations. Nbogd for BU-4DFE and FEED

databases, state-of-the-art methods usually reporttsefsulvideo classification on a re-
stricted number of subjects or using an easier evaluatiotopol [1], whereas we use all

the subjects in our experiments. Thus, for comparison ma&powe provide a baseline
for RF using geometric features alongside HOG (geo+HOG) ditiaxh to a comparison

with prior works that still give an insight of the relativeffitulties of the classification

task on those databases.

We observe that, as stated it¥], using a combination of geometric and deep learned
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Figure 6.3: Accuracy comparison with standard RF variam$ftiop row) 20 (middle
row) and 100 trees (bottom row). The blue dashed lines itelitee meant std of the

NDF-Sample accuracy. Best viewed in color.

texture representations provides the best results by afisggmt margin. Results for
geo+CNN-2 are better than the geometric features alone. ¥awbe number of training
examples may not be sufficient to learn the high number ofrpaters that a multi-layer
CNN is composed of, even with data augmentation. Neverthelles use of DAG-CNN
allows to slightly increase the accuracy by providing ast¢eshe outputs of the two CNN
layers. Also, here again GNDF provides performances vagecto those of NDF. Fi-
nally, when used inside a deep learning framework, resattdilDF and GNDF are also

above the RF baseline as well as state-of-the-art methods.
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Table 6.1: Accuracies obtained with shallow/deep NDF/GNIDEdictors.: a correct classifi-

cation is acknowledged if the ground truth label matches drieectwo top proposals

CK+ database BU-4DFE database FEED database
features NDF | GNDF | NDF GNDF NDF | GNDF
geo 87.3| 873 | 71.6 71.8 46.6 47.9
geo+CNN-2 89.9| 90.0 | 73.1 72.9 50.1 50.1
geo+DAG-CNN| 92.2 | 92.2 | 74.0 74.0 51.8 52.0

LBP/SVM [7]] 88.9 - -
RF/SVM [1] - 73.1 53.7
MRF/DBN [65] 90.1 - -
geo+HOG/RF 91.1 72.8 50.3

6.3.1.3 Runtime evaluation

As stated in Sectiof®.1, the complexity of evaluating a GNDF is a linear function of
the tree depth vs. exponential for NDF. Tabl@ shows the runtime of NDF and GNDF
for evaluating one expression frame with one tree of deptBEDF is about 30 times
faster than NDF and, as such, allows a real-time evaluatiomoae than 30 fps without
parallelization with 100 trees, even when using high-disi@mal DAG-CNN features.
This, however, does not take into account the forward passigih the CNN that can be

subject to a parallel implementation or dedicated GPU acatbn.

Table 6.2: Runtime evaluation (ms) for one example with oee tr

features #dimensions NDF | GNDF
geo 1176 0.17 | < 0.01
CNN-1 19360 3.05 0.11
CNN-2 4000 0.65 0.03
DAG-CNN 23360 3.76 0.13
geo+CNN-1 20536 3.97 0.12
geo+CNN-2 5176 0.90 0.03
geo+DAG-CNN 24536 3.99 0.16
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As for training time, it took about0 minutes to learn 100 trees of a shallow NDF on
a Intel Core 17-4770 using a loosely-parallelized C++/Open@virenment. Learning
deep NDF with 100 trees and geometric features plus the pegpDAG-CNN architec-

ture took about half a day to complete with 40 epochs on CK+.

6.3.2 Feature point alignment with a cascaded semi-parametric deep

greedy neural decision forest

As stated in Sectio.1, face alignment is a crucial step for face analysis in gdnera
and expression recognition in particular. To tackle thesies Sectior.3.2.1focuses on
learning and evaluating a face alignment system on stilgesa It consists in aligning
a set of facial feature points (e.g. eyes or mouth corner tip$, which usually form
either a68-points markup (inner+cheeks points), 0¥lg49-points markup with only the
inner points. To this end, modern methods first rely on fateafi®n to provide an initial
bounding box, then apply a cascaded regression framewankeiothe displacements of
the points of a mean shape centered inside the face boundinglhe authors in1071]
provide a comprehensive, yet compact survey of the mosesstd recent methods for
face alignment. In this section, we propose to adapt theqzeg GNDF framework to
the problem of face alignmenDe factqg GNDF is a well-suited predictor for that task,
since the evaluation is as fast as a RF and since it benefitdifterential training (hence
allowing the learning of deep representations) with basgpgation and SGD (allowing
efficient data augmentation schemes).

We also demonstrate in Sectiéri3.2.2that our method provides state-of-the-art ac-
curacy on multiple benchmarks for face alignment on stilhgres. Finally, in Section
6.3.2.3we propose a few practical tricks to robustly perform featpoint alignment on

video sequences, as well as an evaluation of the propostirsys

6.3.2.1 Face alignment on still images

In this section, we present the proposed CSP-dGNDF methdddealignment, which is

outlined on Figurés.4. The proposed system mainly consists in two cascaded signss
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pipelines. The first one consists in a regression in the splagarametric shape model
6.3.2.1.1 The subsequent one is an explicit cascaded regreSsidh 1.2 In particular, at
each stage of those two cascades a displacement (eithergiaiceor explicit) is regressed
via a deep GNDF, which consists in a predictor (dGN®B.2.1.3 that is associated to a
single neuron layer for dimensionality reducti®rs.2.1.4 In particular, we discuss a few
implementation choices for reducing the overfitting at estelge of the cascade (Section
6.3.2.1.5. Last but not least, we detail how we put all the pieces togreinside the

cascaded regression framework (Sectiah2.1.6).

6.3.2.1.1 Parametric shape model. Two constraints that may arise when training a
NDF for the purpose of multi-output regression is (a) cavgthe output regression space
by filling the leaf node predictions in a somewhat exhaustiaaner and (b) limiting the
number of nodes, which is a function of (the exponential ln€)tree depth by the number
of trees. Given those requirements, it is easy to see thagtty directly predict the shape
displacement is a bad idea, as the output space is high-dioren (dim. 51 x 2) and
the displacement value ranges can be important. For thaemate employ an explicit
shape parametrization in the first stages of the cascadehwa classical setup for face

alignment [L7, 16, 3]. More specifically, shapeis defined as:

s(p) = aR(y)(so + ¢g) +1 (6.4)

Wherea = (a,,a,) is a scaling parameteR, is a2D rotation matrix parametrized
by angley, andt = (t,,t,) is a translation parameter. Those are the rigid parameters o
the transformations, is the mean shape and vecgpdescribes the non-rigid deformation
of the shape in the space of the Point Distribution Model (B\Vas it was introduced
in the seminal work of Cootest al [16]. The vector of parameters is thus defined as
P = (g, vy, Y, tey by, g1, oy gm) € R™2. In our experiments, we set = 15, making a
20-dimensional parametrization of the shape.

Prior to constructing the PDM, we thus have to first detectdbe, e.g. using OpenCV
Viola and Jones algorithmoP]. The retrieved region of interest is thus resized to a

200 x 200 window. For each shape, we then perform Procrustes anatysesnove the
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Figure 6.4: Flowchart of the Cascaded Semi-Parametric dé¢pFG(CSP-dGNDF)
alignment method. In the first stages of the cascade, a parambape is regressed
using deep GNDF predictors. The alignment is performed iallg bnline fashion, by
presenting the augmented examples sequentially. The vgotor for each stage of the
cascade is a reduced concatenation of local SIFT des@iptonputed around the cur-
rent landmark estimates. In the later stages, more fineeplagxplicit deformations of

the shape are regressed.
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rigid component. Thus, we generate the PDM matrixsing PCA on the rigidly-aligned
shapes. After that, we apply 100 Gauss-Newton iterationsttieve the parameter vector
p; corresponding to each imagevith ground truth shape'. Each iteration is defined as

pi < pi + (J(p:) (i)t T (pi)' (st — s(ps)), with J(p;) being the Jacobian afp;).

6.3.2.1.2 Explicitshape model. Contrary to parametric layers (see Parag@agh2.1.),
an explicit layer aims at directly predicting the displaesns of the facial feature points.

The output of such layer is thus defined as:

§s = (6] ...,5321,5511/, .., 081) € R9*2 (6.5)

x) Yy
However, as stated above, the output of an explicit layergb-dimensional. Thus,
in order to cover the range of those values with the leave s\ofl@ GNDF predictor
that contains a moderate number of trees (to keep the ruhdir)eone shall restrict the
ranges of the prediction values. Fortunately, the rangdletieltas between a current
predicted value and the ground truth feature point locatlmecomes smaller and smaller
as cascade layers are stacked, allowing the use of ex@aiession layers for the latter

stages of the cascade.

6.3.2.1.3 Regression with NDF predictors. As illustrated on Figuré.4, we propose
a framework for multi-output regression upon an input featwectorz; of either the
parameter update vectdp or, in the case of an explicit layer, the displacement vedor
In the case of a parametric layer, we first estimate the mgand standard variation
oy, of the delta between the initial position in parameter spacék) (that corresponds to
the mean shape in the shape space, for the first level of tbad&sand the ground truth
objectivedp™ (k), for each parametér. We then generatg single-objective trees for each
parameter: by assigning each leaf node single predictiomﬁol ~ N (0, 01). During
training, all theT" x (m + 5) parameters are optimized jointly by updating each tree node
with Equations3.39 3.42 3.43using a parameter-dependant learning rate= g‘—z in
order to take into account the discrepancies in the dynaofite different dimensions in

the parameter space. The same holds true for an explicit bgyeplacing the parameter
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updates by the feature point displacements.
As in the classification case (Secti6r?) the tree depth has to be chosen carefully in
order to ensure a minimal “resolution” in term of leaf prdatins. For that matter, we
provide in AppendixA.2 a proof that, in the regression case with constant leaf ptiedi
initialized from a gaussian distribution, we have a suffitieondition to have each value
y € [0p — oy, 0r + 0] close to at least one leaf node predictign(in the sense that
ly — ui| < €, with a probability superior té — €¢’). We essentially show that this condition
is satisfied ifD > D,, with
1
Dy — 1 In In(1—(1—¢€)%n)

In(2) _ (ogte)?

ln(l—\/;;ake 207, )

In our case, using trees of de@tensure that this condition is satisfied with= 0.99

(6.6)

ande;, = 0;/10 for all the ranges ;. of the model parameters (which experimentally vary
from 1010 0.1).

6.3.2.1.4 Feature extraction and dimensionality reductin. We use baseline SIFT
features (SectioB.2.4.7) for their robustness and fast extraction speed. 9Fienensional
orientation bins and magnitude maps are generated and @l€Textracted from those
feature maps withdh x 4 non-overlapping cells in a fixed size window)(x 40, 36 x 36,
32 x 32 and28 x 28 for the first, second, third and fourth cascade layers, rtisady)
and concatenated to forfi%28-dimensional descriptors; in the case of &1-landmark
shape §704 for a68-landmark one).

Learning NDFs with such high-dimensional descriptors widag quite slow in terms
of memory and training time, let alone overfitting issuesr thomse reasons, as i d]
we perform dimensionality reduction. However, as statem/apas NDF are differential
classifiers, we can use a single neuron layer to perform diraeality reduction and learn
the weights of that layers in a single, top-down, supervisaiding pass (as opposed to,
e.g., applying PCA beforehanéd]). We thus plug the descriptoss into a single neuron
layer with 500 output units with an hyperbolic tangent activation funotid hose units’

weights are initialized in the range p£0.01, 0.01] and, during training, their weights are
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updated by applying Equatiof 7 for all nodes of all trees. The backpropagated error

corresponding to th¢" component corresponding to an exam‘p&éj‘” is thus:

Tx(m+5)
= m+5 Z ; 22) 30" (z)(1 = d" () (€1 () — € () (6.7)

Additionally, during training the weights of the neuron® aegularized using’;-
penalty. We use the truncated gradient algorithm introduodg51] to enforce sparsity
among the neurons’ weights. In practice, this reduces timebeu of non-zero coeffi-
cients down tol0%, thus allowing fast dimensionality reduction while fullygserving

the prediction accuracy.

6.3.2.1.5 Avoiding overfitting. Within the frame of a cascaded landmark alignment
[9€], it is crucial that each stage of the cascade.,(in our case, each NDF predictor)
does not overfit on the training data so that the residuahsigit;, — 5i)i (for a parametric
layer) do not shrink too much after one or two stages. Eveanghdhe NDF predictors
embraces a whole lot of paramete28 25 x 255 x 500 = 63750000 parameters for a
20 parameters model arid = 25 trees of deptls!), three mechanisms limit overfitting in

practice:

e We use dimensionality reduction to limit the number of pastars (see Section
6.3.2.1.5.

e We use early stopping by training each NDF predictor withsdrieted number of
SGD updates. Moreover, as the proposed NDF training frameisdully online,
for each example, we generate random perturbations thaaad®mly sampled

within the variation range for that parameter (for scaling &anslation parameters

only).

e The switching from a NDF model to a GNDF may possibly introgilgome noise
in the predictions, which will be compensated in the furtstages of the cascade,
while significantly reducing the evaluation runtime (expotial to linear function

of the tree depth).
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6.3.2.1.6 Cascaded alignment. As itis somewhat classical in the landmark alignment
literature, we propose a cascaded alignment procedure.e¥&win our work, we use
a semi-parametric shape model, in which a shape predici@novided as the sum of
multiple displacements in parameter space, starting fromitial guess (usually defined
as the mean shape parameterization). Then, in the latggsstthe displacement is fine-

tuned using explicit layers. The final prediction can thusvbigen as:

~ (v
S = S(f)) + Zlv’ 55( :

. ~ (1)
P=po+>, P

This allows (a) a constrained shape regression that isyatieally speaking, more

(6.8)

stable than a fully explicit method, and (b) a flexible aliggmhprocedure that captures
the fine-grained feature point displacements. After eagp, $he shape is updated using
Equation 6.8) and the SIFT descriptors can be computed using the cumatire point
location. Those descriptors are then used to feed the nesltdéthe cascade. As stated
before, each cascade layerconsists in (a) a feature extraction step, (b) a separate NN
for dimensionality reduction and (c) a NDF predictor thagvaluated in a greedy fashion
for faster processing. The steps for training a CSP-dGNDEatksare summarized in
Algorithm 5.

Note that, as the parameters for all the training examplegarge towards the ground
truth values, the parameter ranges standard deviatjoecreases accordingly. Re-
call that, in the case of a parametric layer, the leaf preshstare generated é%)l ~
N (6, 01). Thus, as the number of stages increases, the trees areatigtiy con-
strained to cast more precise predictions in a much sma#lgation range, hence a

coarse-to-fine alignment.

6.3.2.2 Evaluation

For evaluating the proposed CSP-dGNDF cascade, we train odelsion a concatena-
tion on the training partition of the LFPW and HELEN datalsses well as images from
the AFW database. The total training corpus contdin& training images. For each

of these training images, we use the provided ground trutinthmg boxes, as it is com-
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Algorithm 5 Lear ni ng a CSP- dG\DF

Input: ImagesZ; with ground truth shapes’, tree numbefl” for each parameter, tree deh number of

updatesV,,, base learning rate, number of PDM dimensions:,, number of parametric cascade stages

and explicit cascade stagés

Perform Procrustes analysis shand GN iterations to find ground trughf
Initialize parameters to mean valugs< p
forlv=1,...,L; do
Compute parameter rangeg’, o+’), initialize NN and NDF™®
forup=1,..., N, do
Draw an examplé and augment scaling and translation parameters
for v =1,...,lv —1do
pi < pi + GNDF"" (z))
Update shape(p;), descriptor; and reduced vectar; == NN '’ (x;)
end for
Forward pass through D" (z;) to compute node probabilities
Backpropagate error througiiD F'* and N N
end for
end for
for v/ =1,...,Lydo
Compute displacement rang@d’’, o1*"), initialize N N*" and N DF'"’
forup=1,..., N, do
Draw an example and augment scaling and translation parameters
for v =1,...,L; do
pi < Pi + GNDF"" (z,)
Update shape(p; ), descriptorx; and reduced vector;, == NN (x;)
end for
for v/ =1,...,lv — 1" do
§i «— 8;+ GNDF"™" (z;)
Update descriptax; and reduced vectar; == NN™" (x;)
end for
Forward pass throughl D' (z;) to compute node probabilities
Backpropagate error througi DF™" and N N’
end for

end for

137



monly done in the literature. However, in practice the bangdhoxes can be generated
using OpenCYV Viola and Jones face detectai

We crop each face image according to the corresponding lraybdx, add horizontal
and vertical margins equal to a third of the bounding box watd height, respectively.
Then we resize the crops ta280 x 200 scale, and proceed to initialize the mean shape
from the mean model parameters. Then we perturb the meae guettion (,, ¢, ~
N(0,10)) and scale {,, s, ~ N (0,0.1)). We then train al-level cascade, where each
layer contains a single neuron layer with28-dimensional input§704 for a68-landmark
shape) and00-dimensional output, and a CSP-dGNDF witthtrees per parameter, hence
a total of500 trees of deptls.

We report results on the test partition of LFPW (224 imagE&)l.EN (330 images)
as well as the challenging IBUG database (135 images). Thatpwe align the feature
points from the mean shape initialized using the exact saetteng, and measure, for
each test example, the average point-to-point Euclidestarie. As it is done in the
literature, this distance is normalized by the inter-pujistance. Figuré.5 shows the
cumulative error distribution curves, far 2 and3 parametric stages cascade, as well as
a semi-parametric one, with the last layer being an expicé (withn, normalization)
on the three databases and with béthand 68-landmarks markups. As one can see,
on both LFPW and HELEN databases, the error is belgof the inter-pupil distance,
which is very close to the human performance on that taskiadsdsin [LO1]. Also, the
error is higher for the&8-landmarks markup, as th& landmarks located on the cheeks
are subject to a greater appearance variability. The akgrns also subject to higher
errors on IBUG, as the database contains extreme posetaasias well as a number of
self-occlusions. Finally, one can see that each cascade stdbstantially increases the
alignment accuracy. In particular, for every benchmark, gghecision “deltas” between
the gains provided by the third and forth layers are rouglgyialents. Thus, using
explicit layers for the latter stages of the cascade allewsduce the diminishing returns
effect of stacking regression layers for alignment.

Table 6.3 shows a comparison of our results with results reported anliterature.

As one can see, the accuracies reported fordavels CSP-dGNDF are among the best
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Figure 6.5: Cumulative error distribution curves on the LFBWd HELEN test partitions.

results in the literature (including recent approache siscL21-Cascade (2016;1]),
PO-CR (2015, §€]) and GN-DPM (2014, §9])) on the three databases, for bathand

68-landmark markups. In addition to that, thanks to the grem@uation procedure that

was introduced in Sectiof.1, our method largely runs in real-time on an single Iritel

core.

Table 6.3: Comparison of normalized mean error

LFPW HELEN IBUG
method 51 pts| 68 pts| 51 pts| 68 pts | 51 pts | 68 pts
SDM [9€] 447 | 5.67 | 425 | 5.50 - 15.40
RCPR [L7] 548 | 656 | 464 | 593 | - |17.26
IFA [3] 6.12 | - 5.86 | - - -
DRMF [7] 440 | 580 | 460 | 580 | - |19.79
CFAN [10€] - 544 | - 553 | - -
L21-Cascadedl] | 3.80 - 4.1 - 16.3 -
GN-DPM [39] 443 | 592 | 406 | 5.69 - -
PO-CR B4 4.08 | - 390 | - - -
CSP-dGNDF 3.76 | 484 | 3.87 | 5.16 | 10.45| 12.74

139




Figure 6.6 shows qualitative alignment results respectively obthibg applyingl,
2, 3-levels parametric cascade, as wellldsvels semi-parametric cascade (witpara-
metric layers and explicit layer), on a subset of images for the LFPW test parti
The column on the right shows the ground truth landmark fmosfor those images. The
alignment quality is noticeably better for the semi-paraineascade, which allows to
more correctly fit fine-grained details such as the positaitfie outer lip and eye cor-
ners. Moreover, the eyebrow landmarks seem to be closeetgrtiund truth labelling,
illustrating how using a semi-parametric cascade allowsviercome one limitation of
parametric cascadese. the rigidity of the model which sometimes prevent from cor-

rectly fitting the landmarks in the case of specific facialresgions.

6.3.2.3 Feature point alignment on video

In order to perform feature point alignment on video, we s®pa simple, yet efficient
framework that is illustrated on Figufe?. It uses the proposed CSP-dGNDF framework,
in conjunction with two “tricks” to respectively update tfeece bounding box and control

the alignment quality throughout the sequence.

6.3.2.3.1 Bounding box regeneration. The problem of feature point alignment on
video is analogue to that of aligning on stillimages, exdbat is is inefficient to perform
re-detection of the face at each separate frame. Instedthfwhat we do is that we
use the predicted parameter and shape updates to predigtmoading box that will be
used as an initialization for the next frame. Formally, wérgethe bounding box for a
video frameZ" as a rectangleect(Z") = (28, vy, w", h™)T parametrized byz,, yo) the
coordinates of its top-left corner, andandh respectively the width and height of the

face bounding box. The face bounding box generated for framd is thus defined as:

1
rect(Z"t) = 5((958 + 6t Y5 + 0ty w" + dal, " + S + f(s™)) (6.9)

Whereday, day, oty and ity are the regressed rigid parameter updates for frame
n respectively for scaling and translation &ndy coordinates).f is a function that is

estimated directly from the aligned shape for framesing linear regression:
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1 layer 2 layers 3 layers Ground truth
(parametric) (parametric) (parametric)

Figure 6.6: Examples of face alignment on still images framltFPW database, with

2, 3 levels parametric cascade, ahtbvels semi-parametric cascade.
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Feature point alignment

Bounding box detection Feature point alignment v Mean shape initialization

v Mean shape initialization

| Bounding box update
‘.. (parameter+points)

Figure 6.7: Outline of feature point tracking from videorsgj the face is detected and
a bounding box is generated accordingly. The mean shapernsititialized within the
bounding box and the alignment is performed using the CSPRIGNMethod from that
mean shape. A confidence score is thus evaluated. From tim faghat score is su-
perior to some threshold the bounding box is updated usimgr@mation of two tech-
nigues. Conversely, if the threshold is not reached we parfedetection to retrieve the
face bounding box. The shape is then aligned from the megrestentered within that

bounding box.
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f(s") = As" +b (6.10)

Where A andb are respectively theé x 102 and4 x 1 regression matrix and bias.
These values are obtained by using least-squares regressibe whole dataset. Thus,
the generated bounding box is obtained by averaging twmasds. The first of this terms
is obtained by applying the rigid parameters to “follow” tm®tion of the face, and the
second one is obtained by explicitly regressing the faceangte from the shape using
least square regression coefficients learned on the tgagan In practice, we found this
generation process to provide a bounding box estimate shatich more stable, which

allows to more efficiently follow the deformation of the sleap

6.3.2.3.2 Error case detection. Another important concern for face alignment on video
Is to know exactly when the mesh is degenerating so that wepednrm re-detection
quickly. In order to do that, we define an alignment score @effias the average score

over all the levels of the cascade.

v ~ (lv)
score; =1/ Z Z Z ((5p§,lj’)t —0p; )2 (6.11)
v 7 t
The score is defined as the average standard deviation chlireswregressed by each
tree for all rigid and non-rigid model parameters (averag@oss all the landmarks). The
rationale behind this is that the amount of agreement betweetrees of each collection
(each one corresponding to a shape model parameter) psoaideformation of how

easily it is for the GNDF models at each layer to retrieve@ctrvalues for the parameters

or displacements.

6.3.2.4 Evaluation on the 300-W video challenge

We use the data from th#)0-W video challenge data to evaluate our video alignment
procedure for feature point detection and tracking on veluences. More specifically,
we use the framework outlined on Figue’ to track the points for each video. Namely,

in order to perform fully-automatic feature point alignnmefor each frame, we generate a
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new bounding box using the algorithm proposed in Paragéapl.3.1 Moreover, we set
a threshold ob.05 on the score function proposed in Paragré&ph?2.3.2to detect mis-
alignment. In case the score falls below that thresholdpthending box is regenerated
using OpenCV Viola and Jones algorithm, then feature porgsbgned from the gen-
erated bounding box. We then measure the average poirgitogdignment error (PPE),
normalized by the inter-occular distance between thessetd points and the ground truth
labels. In order to assess the validity of the proposed dooxion, we also measure the
correlation coefficient (CC) between the score function aed®RE. In order to remove
outlier data (that can be due to false detections from Viald ones face detector), we
do not consider the frames for which the (normalized) PPbdve 1.

Using those settings, our system was able to correctly aigf44 out of the218595
frames from the video corpus, making a recall rat®@f%. Out of those frames, the
median PPE wa.049 which is similar to the above discussed case of the aligreagufe
points on still images. The little drop in performance ilikto be due to the difficulty of
the benchmark, with one third of the videos containing ateotam-frontal head poses and
partial occlusions. Furthermore, the techniques we usedonding box regeneration are
geared towards mimicking the method used to preprocessiages during the training
step,i.e. aligning the feature points starting from an initial meaaysh centered on Vi-
ola and Jones bounding box. Likewise, the methods usedsrréspect (bounding box
regression from the feature points and update from modanpeters) seem to perform
quite well but can lead to some errors.

Last but not least, the CC between the score and distance tgrdlad truth is
—0.48, which indicates a significant correlation between theratignt error and the score.
Hence, this measure can be used to assess the alignmeiy thualighout the sequences,
as well as to perform redetection of the face when the alighegbe drifts too much from
the face. Figuré.8 shows an example of plot containing both the (scaled) agePRE
and thel — score function observed on one sequence from3ihé-W video challenge.
One can see qualitatively how low score values indicate ligdraent cases. Also no-
tice that we chose a somewhat “pessimistic” setting, wharhetimes causes correctly

aligned frames to have relatively low scores. Such settiag adopted in order to mini-
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Figure 6.8: Example of an aligned sequence and correlaBbmden the scaled average

PPE and score function.

mize the false positive number -in our case, the number d/tzdidned frames with high
scores. The reason is that bad alignments can cause the tooki# from the face to the
background, and take some time to recover, which may resaltat of frames being lost.
On the contrary, if the feature points are correctly aligrtbé face detection algorithm
should provide a satisfying bounding box location.

Overall, those results show that the framework illustratedrigures.7, which mainly
consists in two adaptations (bounding box regenerationadigdment quality control)

provides satisfying results for feature point alignmentiaeo sequences.

6.4 Discussion

In this Section, we introduced improvements over the redéral Decision Forest
framework, which mainly consist in a simplified training pealure as well as a faster
greedy evaluation procedure. Furthermore, we study twa mpplications for the pro-
posed algorithms: First, we use the proposed GNDF for FEBWmg hyperparameter
setting, learning deep representations using CNN feataresyuntime comparison be-

tween GNDF and a classical NDF. Secondly, we show that GNDFbeasuccessfully
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applied to feature point alignment within a cascaded regpadramework. By doing so,
we obtain very satisfying results for feature point aligminen still images and propose
a few methods to perform alignment on video.

Nevertheless, the proposed contributions leads to a nuoflateresting questions
for future research. The first of them would be to know if we Iddurther reduce the
evaluation runtime of a NDF by forcing the splits to be aXigraed instead of oblique.
For that matter, an interesting take on that problem wouldobese £, regularization
on the oblique split weights (as well as the neural netwoniégghts) during training to
reduce the numbers of non-zero coefficients. Furthermoréntaresting option would
be to fine-tune the NDF trees in an online fashion using a feeciip examples for
case-specific calibration. Examples of this would be pesgmetific categorical FER, or

pose-specific feature point alignment.
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Chapter 7

Discussion and Conclusions

7.1 Conclusion

Throughout this thesis, we propose solutions to addrestipleusub-problems of face
analysis, and facial expression recognition in particulBine algorithms we developed
find a broad range of applications, including classifyinghbcategorical facial expres-
sions and action units, as well as regressing facial fegtoirgs.

In the second chapter of this thesis, we drew an outline ahlf@xpression recogni-
tion. We first focused on describing how facial expressi@rslze modelled and present a
generic pipeline of an automatic framework. We then intomtba number of challenges
for successful automatic expression recognition, namelgphmological factors, environ-
mental changes, as well as head pose variation and occhiaraiing.

In the third chapter, we described a number of pattern ratiogriools that were later
adapted for the purpose of facial expression recognitior. sWrted by describing the
representations that can be extracted from the raw facedsnaigd fed to the subsequent
machine learning layer. We then explained the generic prolaf learning a predictive
model for classification and regression, and introduce safrttee most widely used mod-
els that were used in our experiments. Namely, we empathizescribing (deep) neural
networks and random forests, as well as recent in-betweeeisioalled neural decision
forests.

The fourth chapter focuses on describing our pairwise d¢mmdil random forests
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method, which is an adaptation of the random forest framkewmlearn trees using pair-

wise differential cues. Those pairwise trees can then beaged over time to flexibly per-

form facial expression recognition from videos. Moreowee, also extend our approach
to multi-view scenarios to significantly increase robusg® head pose variations.

In the fifth chapter, we describe another adaptation of thédam forest framework to
learn local expression prediction by spatially restrigtthe subspaces upon which each
tree is learned. Those representations can be weightedalydonfidence measurements
outputted by an autoencoder network for occlusion-robattgorical expression recog-
nition. Furthermore, it can successfully be used to predal action units activation,
as the latter are intrinsically local and are closely reldtecategorical expressions.

Last but not least, the sixth chapter introduces adapttdrhe recent neural deci-
sion forest algorithm. More specifically, we show that oupraach can be used for on-
line learning of categorical expression predictors inugvdeep feature representations.
Moreover, it is also suitable for locating facial featurerts in the frame of a cascaded
regression framework.

Those contributions led to a number of publications in iméional venues (see Sec-
tion 1.2.1) as well as a C++ code framework, that will be released operceptor per-
forming end-to-end face analysis, from feature point atignt and feature extraction
to expression recognition and AU activation prediction.téorthy, the algorithms for
training and testing the predictive models can be used fuerapplicative tasks as well

as to address other problems relative to face analysis.

7.2 Future works

7.2.1 Using all the labelled data

As pointed out in Chaptet, labelled data available to train algorithms for face asialy
Is relatively scarce, as compared to e.g. image classditali semantic segmentation.
Thus, it is important to use all the available data to traim dfigorithms. The local ex-
pression prediction features introduced in Chaptare an example of how categorical

expression data can be used to predict a closely relateddagkaction unit occurence).
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In addition to that, a number of solutions were considergtienframe of this thesis, such
as semi-supervised training in the context of training fadmased classifiers upon video
sequences, with the idea of “extending” the neutral and &pexe annotations to others
images in the sequence. We also considered learning repaésas with convolutional
autoencoders using privileged information (by trying toaestruct a neutral face from
an expressive one, hence capturing features that somesyitasent a difference between
those two). Unfortunately, mostly due to time requiremewes were not able to pull up
interesting results using those approaches. Howevere thiosctions might still lead to

interesting conclusions.

7.2.2 Exploiting JEMImE database

As the annotation data for the JEMImE database is currewntiavailable, in this thesis
we focused on evaluating our algorithms on state-of-thel@@abases for FER. However,
it is non-trivial to infer from those results the generatiaa capabilities of the presented
approaches on the JEMIME database, as both the domainyradstts for state-of-the-
art datasets vs. children for JEMImE) and the tasksategorical expressions or action
units vs. quality measurements for a subset ekpressions). For that matter, it can be
interesting to consider domain adaptation and knowledgester techniques. A good
survey of those approaches can be foundiii].[ A basic example of this would be to
pre-train a deep GNDF classifier on state-of-the-art dégasel to fine-tune the model on
the JEMImE database.

7.2.3 Tuning the algorithms for more efficiency

Besides the raw accuracy measurement, runtime evaluatianoiher important factor

for the evaluation of a predictive model. Throughout thissis, we stressed out that
our algorithms could run in real-time on a standard computavertheless, there are a
number of approaches that should be considered to furtheleaating the processing.
For instance, in Chaptes we applied,-regularization on the weights of the neuron

layers to reduce the number of hon-zero connexions. The aigoethm could in theory
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be applied to regularize the weights of the NDF split nodbesugh additional testing
would be necessary to ensure that the greedy evaluatioeguoe could hold in such a
case.

Another aspect that may be crucial when running the algoston low-power devices
is the memory usage reduction. For this we are currentlyideriag tuning the neural
decision forest framework to train decision jungl&s][ Decision Jungles are similar to
decision forests, except the prediction (or leaf) nodedatrized, greatly diminishing

the memory usage.

7.2.4 Adapting the proposed methods to other problems

Most of the ideas presented in this thesis are not specifiedalfexpression recognition
and could be adapted to other problems in the field of compigem and pattern recog-
nition. As such, the LS-RF method introduced in Chapteould be used to design an
occlusion-robust face alignment system. FurthermorePt®BF framework (Chaptet)
could be applied to other problems that involve classificatf time series, such as ges-
ture recognition, interpersonal synchrony or role predictin an interactive context. Last
but not least, GNDIE could be used as a predictive model for any classificatioegness-
sion task. Noteworthy, as it enables both deep learningtefnmediate representations
(e.g. CNN) as well as fast evaluation, it could theoretichlyused as a replacement to

fully-connected layers to speed up semantic segmentatidolaject recognition systems.
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Appendix A

A lower bound for the depth of
randomly initialized trees with constant

prediction nodes

A.1 Random uniform initialization for classification

proof: Let A denote the following proposition: “For every classe [|1,C|] treet
contains at least one leaf that predicts cldss

For one specific class we denoteA. the following event “tree contains at least one
leaf that predicts class. The opposite eventl. then reads “no leaf of treepredicts

classc’. We thus have:

p(A) = (p(A))" = (1 = p(A))° (A1)

Furthermore, for one specific prediction (leaf) nddes the prediction values are
randomly sampled from a uniform distribution, the probi#&pihot to predict class is
1— % Thus, for a balanced tree of deg#h i.e. that contain? prediction nodes we

have:
p(A) = (1—=)" (A2)

163



By using equationg.1 andA.2 we obtain:

pA) = (1 - (1— 1)) (A3)

c

We then want to set the tree deffthso thatp(A4) > 1 — ¢ (i.e. to have all classes
covered by at least one leaf of trewvith a probability superior ta — ¢). UsingA.2 this

IS equivalent to:

With
1 In(1—(1—¢€)'/°)

=" o1
This setting is of tremendous importance if we choose notdtpathe prediction

Dy (A.5)

nodes during training. For instance, if one tree do not aordassc, it will always make
erroneous prediction w.r.t. this class, which will resutrmore noise in the predicted

values after averaging the multiple tree predictors. Faurttore, we can write:

= 1 1
(1 — /€ _ = _ il
1—(1—¢ o o Cln(l €) + O(C) (A.6)
Hence
— (1 — o\1/C ~ _
In(l1—(1—¢) )C e In(C) (A7)
Moreover,
1 ~ 1
Thus:
~ In(C) (A9)

°C = 00 In(2)

i.e. The lower bound deptt®, for trees of a NDF with constant leaf nodes that are
randomly sampled from uniform distribution across the s#ssyrows as the logarithm of

the number of class&s
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A.2 Gaussian initialization for regression

In the case of regression, we aim at showing that, providedrée is deep enough, for
each value in the range that shall be covered by the tree, améird at least one leaf
prediction that is close to that value. Ldtdenote the following proposition: “For every
valuey € [6, — o, 6 + 0] treet contains at least one leaf such that the predicgidior
that leaf satisfieg), — y| < €.

We also define4, the following proposition “For valug there is at least one leabf

treet, such thaty, — y| < ¢’. We have:

5;C+Uk
p(A) = ] p(A)" (A.10)
8 —0k
Which can also be written
Sk+ok
pA) = conl [ (A (A.11)

Let's then denoted, the proposition: “for every leaf of treg |y, — y| > . Clearly

we have

p(A,) =1~ p(fly) (A.12)

Moreover, as a tree of depi shall contaire”, we have:

2D

p(Ay) = p(lyi—yl > ¢) (A.13)

Furthermore, as the leaf predictiogsare randomly initialized, for one specific leaf

nodel we can write:

y+e 1 7<27512€)2
e ¥k dz (A.14)

MM—M>@=1—/

_ 2wo}
Yy—€
We can use a lower bound of the gaussian function on the adt@yv— o) — €, 6 +

ok + €] to provide an upper bound on this probability:

y+e 1 _(Uk+26)2
-yl >e)<1— e %% dz A.15
> <1 [ (A.15)
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thus

% —lmto?

e (A.16)

pllyr—yl >€) <1—
2oy,

Moreover, using Equations.11, A.12 andA.13 we have:

57k+O'k

p(A) = exp( / In(L - p(ly — yl > ©*°)dy) (A17)

Op—0k

Thus, as botlin, exzp and | are increasing functions, using Equatighd 7 andA.16

provides a lower bound gf(.A):

(57k+0'k 26 _ (ak+2€)2 D
p(A) > exp(/é In(l—(1- N e % )?)dy) (A.18)
r—Ok k
Which we can write
2€ —(Uk+2€>2 D
p(-’4) > (1 o (1 o \/%0_ e )2 )2% (Alg)
k

Thus, a sufficient condition to ensup@A) > 1 — ¢ (with €' close to0) is to have

1 In(1— (1 —¢))
n 2

In(2) L

In(1— To€ )

The lower bound, is somewhat similar to the one in the classification casehEt

(A.20)

more, we show that;

~  In(e)
e 0 In(2)
As in the classification case, given the regression rangée lower bound deptt®,

(A.21)

grows as the logarithm of the desired “resolution” (whickhis inverse ot).
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Appendix B

Implementation details

One of the focus of the PhD was to produce a reusable, openes@d+ implementation
to perform real-time expression recognition on video strgaas well as to provide a
framework for learning architectures for face analysisthis aim, this section describes

the main features of the proposed source code.

B.1 Dependencies

The proposed C++ solution have been developped on a Windarsement with a few
dependencies that are listed below. Note that for the pi®jede compiled properly you

will need to set the environment variables to the valuescaied in italics.

e Boostv. 1.54 or higherBOOST) - librariessystemfilesystem

OpenCVv. 2.4.6 or higherQPENCY)) - librariescore, highgui imgprog objdetect

OMQ v. 4.0.4 or higherZMQ)

Intraface (INTRAFACH

pThread (PTHREAD
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B.2 Data structures

The basic data structures are declared in helddenpr oc. h. The most useful ones are
described below.

imgdesc: as suggested by its name, this class implements an imagepdesthat is
composed of animage fmge_cur r ), a set of aligned facial feature poinfssat ur ePoi nt s _-
curr), the corresponding head pose estimateadPose_cur r), and a set of integral
feature channelpgl nt egr al Channel s_cur r) with the correspondingly scaled fea-
ture points pcFeat ur ePoi nt s_cur r). Eachi ngdesc also contains a class label (or
a set of labels for multi-output training) that is used ordy fraining/evaluating the en-
sembles of randomized trees. Also, for PCRF and MVPCREF trainiigeaaluation, a
pairwise version of the descriptor contains pairs of imggesge_past ) with the cor-
responding feature points, head pose, integral channdlsaated feature points thereof.

I ngdesc objects are most of the time initialized through constrigto

imgdesc(sharedtr<Mat> & img, const vectokPoint2f> & fpts

, const unsigned int Ibl)
or

imgdesc(sharedtr<Mat> & img, const vectokPoint2f> & fpts

, const HeadPose & hp, const unsigned int Ibl)

Those constructors are generally called through overlb&dections such asoad-
| mmgeDesc from the dat abase. h header, in order to load all the images/feature
points/class labels from a specific folder and generateemagcriptors accordingly. Note
that integral feature channels have to be generated selyaraging overloaded function
gener at el nt egr al Channel s. Then, for pairwise RF training and testing, pair-
wisei ngdesc have to be generated using tpener at eTr ansi ti onDescri pt or
function.

BagOfFeatures: Thei ngdesc class is mainly used for training/evaluating ensem-

bles of trees with on-the-fly candidate feature generatidowever it is also useful in
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many case to allow RF induction with a more generic pipelieewith feature descriptors
represented as raw vectofs@t ur es ) of theBagOr Feat ur es class. This class also
contains fields for class labelsgbel _) or multi-output training labelsMO.l abel s).

In either caseBagF Feat ur es objects have to be initialized using constructors

BagOfFeatures(const vectefloat> & features , unsigned int
Ibl)

or

BagOfFeatures(const vectefloat> & features , const vecto«

unsigned int- & Ibls)

Note that the feature vector has to be generated beforebaedd¢h object.

HMSQMat: This class is used as a basic square matrix class. It impksnaemm-
ber of basic operations for image processing, such as addsubtraction, scalar and
element-wise multiplication. As it is used for storing CNNputs and feature maps, it

also has high-level operations such as convolutiol ¢r valid, flip or upsampl

B.3 Low-level operations

Most of the low-level image processing and machine learfiingtions are implemented

in headerddM npr oc. h andHM f un. h. The most useful ones are described below.

¢ | oadl mageDesc: load image descriptor from the provided database path.diam
it generates a vector oingdesc objects from the providedr ai ni ngl magePat h _-
folder by recursively searching using thecLoadl nages, r ecLoadPoi nt s

andr ecLoadl mageLabel s functions
e extract RO : extract face ROI using the provided facial feature points
e gener at el nt egr al Channel s: generate integral HOG channels with an 8-bit

gradient quantization, with a specified output size

169



e generateTransi ti onDescri pt or: generate pairwisengdesc descriptor

from two separate descriptors

B.4 Solution architecture
The proposed solution consistsindependant projects:

e Deci si on Forests: project for RF induction, including a number of contri-
butions from this PHD thesis: PCRF training and testing, ad aslstatic and
dynamic multi-view extentions (MVRF/MVPCREF). It also featsiithe LS-RF for
occlusion handling, multi-output multi-class predictiand regression, and ND-

F/GNDF training and evaluation.

e Neur al Net s: project for generic neural network training/testing. d\keatures

unsupervised learning of autoencoder nets and convohltregural networks.

e SDM project for real-time automated facial expression redognfrom live or pre-

recorded video stream.

B.4.1 TheDeci si on For est s project
B.4.1.1 Project overview

Class diagram for thBeci si on For est s project can be seen on Figugel, summa-
rizing its architecture as well as its most relevant feature

Specifically, the entry point of the project lies in tdenoentl assi fi er. cpp
file, which creates a RFTrainer/RFTester object from dloaf i g. t xt configuration
file that shall be placed in the project folder. Sectitd.1.2explains the syntax of the
configuration file. SectioB.4.1.3explains how a classic RF predictor is generated from
the proposed code. Finally, SectiBrii.1.4describes a number of methods that have been

implemented for RF induction and testing for face analysis.
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Forest

Tree 1

! ! riglht subtres

left subtree

Node

+isTerminal: bool
+ termbistribubion: weckor <. 1

RFTrainer

- oobidFilePath_: string
- oobsqFilePath_: string
- modelFilePath_: string

RFTester

+ RFTrainer{configFileRath: string)

+ learnForestStructure() : woid

+ MClearnForestStruckured) : vaoid

+ RMSlearnFarestStructured) © vaid

+ lzarnTimeConditionalFarestStruckured) : vaid
+ train_skatic_raultiviewPaink() : woid

+ train_dynamic_multiviewPaink) « wvaid

+ MDFTraini) : waid

+ NDFPaintTraind) : woid

+ Mounittest) : void
+test_CRF_video() : int
+test_MCRF_videal) : ink
+unittest() @ woid
+MOREGURittest() @ vaid

genericSplitFunction

genericSplitCandidate

splitFunction

splitCandidate

+ threshold_: Float
+ alphas_: vector<float>
+ bins_: veckor <uink =

+ threshold_: wector <Float=
+ alphas_: veckor<float>
+ bins_: weckor <uink =

+ dynamicFeature: bool
+threshold_: float

+ dynamicFeature: bool
+ threshold_: weckor<float =

1 ¢D..1

0.1

Feature

=

+ featureType() : uchar

+ saveFeaturelnformationd) ..
+ lnadFeatureInformationd) ...
+ featureresponsel) : float

R

IntensityDifferenceFe...

PointPositionDifferen...

PointAngleRatioFeat..

FMResponseFeature

+brildxl _: uint

+brildx2 _: uint

+harcoordla_: float
+barcoordib_; Float
+barcoordic_; float
+barcoordza_; float
+barcoordzb_: float
+barcoordzc_; float

+ phid:1_: wint + phid1_: uint
+ phid=Z2_: uint + phid=Z_: uint
+ phid=3_: vint

+ reCrIm_: uink

+ FeatureMapldy_: uint
+ briid_ uink

+ipsz_: float

+ barcoorda_: Floak

+ barcoordb_: Float

+ barcoordc_: float

DynamicintensityDiff...

DynamicP ointPositio...

DynamicPointAngleR. ..

DynamicFMRespons...

+ barcoordia_: Float
+ barcoordib_: float
+ barcoordic_; float
+ briidx_: uink

+ phidz1_: uink
+ pridz2_: uint

+ pid:1 _: uint
+ plidx2_: uink
+ phidx3_: wint
+ reCrIm_; uink

+ featureMapldx:_: uinkt
+ triid_: wink
+ipsz_: float
+ barcoorda
+ barcoordb_: float

: float

+ barcoarde_: float

Figure B.1: Class diagram for thaeci si on For est s project
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B.4.1.2 Configuration options and class constructors

The confi g. t xt file is parsed through the functions written in thar ser. cpp
file within the constructor of RFTrainer/RFTester. Be careftilevtweaking thecon-
fig.txt file, as verifications may not be implemented in all the mesharhusing
the program to crash (for example, avoid specifying featirem the dynamic tem-
plates while training a static RF, or using on-the-fly cantid@atures in addition of
pre-recorded ones).

You can specify the following main options through thenf i g. t xt file:

e nodeVer bose_: (boolean) activating/deactivating console feedbacknduRF

training.

e nbXXXFeat ur es_: (integer) specifying the number of on-the-fly featuresdor

specific static template (3 static templatBsi nt Di f f , Angl eRat i o, FM.

e nbDynanm cXXXFeat ur es_: (integer) specifying the number of on-the-fly fea-
tures for a specific dynamic template (3 dynamic templaRs:nt Di f f, An-
gl eRati o, FM.

e nbPreRecor dedFeat ur es_: (integer) specifying the number of pre-recorded

features.
e nbCandi dat eThr eshol dsPer Feat ur e_: self-explanatory!

e nunteat ur ePoi nt s_: number of aligned feature pointdX provided by the

SDM tracker).

e nunteat ur eTri _: number of aligned feature trianglé®(provided by the SDM
tracker). the description of the facial mesh is loaded intthesunmm t s49. t xt
file. If you wish to use a different number of facial featurerse or a different mesh

you will need to manually re-enter a facial mesh.
e t r eeNum.: self-explanatory!

e nunTl asses_: self-explanatory!
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t r eeMaxDept h_: maximum depth of the trees, above which no more split is

calculated and a leaf node is set.

e dat asi zeRat i oPer Tr ee_: size of the bootstraps for each tree (relatively to the

total data size).

e | abel | nbal ancyTol er ance_: accepted absolute ratio of unbalance for each

bootstrap.

e trai ni ngl magePat h_: path of the training database that will be loaded by the

RFTr ai ner class constructor

e t esti ngl magePat h_: path of the training database that will be loaded by the

RFTest er class constructor
e nodel Fi | ePat h_: path to the saved RF model file
e oobi dFi | ePat h_: path to the saved OOB elements indexes record file

e 00bsqFi | ePat h_: path to the saved OOB sequence indexes record file

B.4.1.3 Delving into the code: an example of RF induction

After the configuration file is loaded, the functibnai n() fromtheRFTr ai ner class
loads the database from the providedai ni ngl magePat h_ folder using thd oad-
| mageDesc function. The database folder shall contain a number of plaitat, each of

which consisting in three files:

¢ a .ann file containing the labelling information. The basegkating is<subject id
(unsigned int) <expression label (unsigned intkrecording session id (unsigned
int)>. By default, the available expression labels d@réor neutral 1 for happy 2
for angry, 3 for sad 4 for fear, 5 for disgustand6 for surprise Alternatively, 8-
class FER can be performed using alsodbrtemptabel from the CK+ database.
Also, the .ann file may contain additional information, swshthe frame index
and total number of frame in the recording session, or thé lpeae information

(pitch/yawl/roll).
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e a .pts file containing information on the 49 feature pointy @oordinates) previ-

ously aligned on the face using a feature point tracker.
e a .png face image

Once the database is loaded in the form of a vectarmdesc pointers (shared
pointers from thest d library are used within the whole solution to prevent anydkai
memory leaks), the integral HOG feature channels are caedptithe FMFeatures are
used (that is, if thexbFMFeat ur es_ parameter in theonfi g. t xt file is non-zero).
Finally, thel ear nFor est St r uct ur e function is called to generate a RF prediction
model.

Thel ear nFor est St r uct ur e function first computes the bounds for each feature
template (point distance and angle ratio, and HOG featuesjriay callingf i ndFea-

t ur eBounds on the provided data. After that, the model and OOB files aretia-
ized. Then, for each new tree a data bootstrap is generatiw atubject level using
ther andonanpl e2 function using the providedeqr ef anddat asi zeRat i oP-
er Tr ee_ parameter. Optionally, the bootstrap is balanced by dompag the major-
ity classes using thbal ancedat aset function. Thenl ear nTr eeSt r uct ur e is
called on the generated bootstrap. Note that the accurathyedfee collection can be
tested at any time using OOB estimate by pressing the “a” Kalewhe program has the
focus (which toggles the global booleSROWACCURACY).

Thel ear nTreeSt r uct ur e is the main function for to grow a randomized deci-
sion tree on a provided data collection. It works in a remar$ashion starting from a
root node, by first checking is the termination criterion istrf.e. current tree depth
cur r Dept h has reached the maximum allowed deptreeMaxDept h_, or the pro-
vided data is homogeneous in term of class labels). If ngpliarsode is set, increasing
the mean purity in left and right subtrees (functiepl i t At Cur r ent Node). Then
| ear nTr eeSt ruct ur e is recursively called on the left and right subtrees. Nogg th
the nodes are stored in the model fil®(el Fi | ePat h argument) as and when the split
and leaf nodes are set with corresponding parameters ansh&ddistributions. Thus, the

proposed implementation is memory efficient as exactly muens stored in memory at
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any time. Thespl i t At Cur r ent Node method works by (a) randomly generating a list
of split candidates (functiogener at eRandontCandi dat es), (b) concurrently evalu-
ating the Shannon entropy for those candidates usinig opyCf Parti ti on_MrI and
(c) returning the data partition at current node that is aealiby the candidate for which

the entropy is the lowest.

B.4.1.4 Main methods for face analysis

In this Section, we present a number of methods that cornesfmimplementations of
variants of the above described classical RF induction piaeethat provided interesting

results for face analysis and affect recognition.

e MJ ear nFor est St ruct ur e: method for learning RF for multi output classifi-
cation MULTI _OUTPUT_MODE=t r ue, USE_REGRESSI ON=f al se) and regres-
sion (USE_REGRESSI ON=t r ue). For using this function, th&O.| abel s field

of thei ngdesc objects have to be pre-emptively filled.

e RMVBl ear nFor est St ruct ur e: method for learning RF using spatially-defined
local face subspaces, that are generated usinfMsgener at eRandomvask
method. The mask informations are saved within the provideshraskFi | ePat h

file.

e | earnTi meCondi ti onal Forest Struct ure: method to train a PCRF. It
outputsnunCl asses_) pairwise RF models that are saved within the provided
r oot SavePat h folder. Optionally, those models can be defined on local sub-
spacesUSE_LOCAL _SUBSPACE=t r ue), in which case the masks are also saved

within the folders.

e trainstatic_multi Vi ewPoi nt: method to train a MVRF from the multi-
view database root folderoot Dat abasePat h. The pose-conditional models
are saved in subfolders of the provided root save paiht SavePat h. For each
pose bin the models are saved along with the local subspasiesni@ptional) and

the pose distribution file.
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e trai n.dynam c_nul ti Vi ewPoi nt: method to train a MVPCRF from the
multi-view database root folderoot Dat abasePat h. The pose-conditional pair-
wise models are saved in subfolders of the provided rootate oot SavePat h.
For each pose bin the models are saved along with the locapaab masks (op-

tional) and the pose distribution file.

e NDFTr ai n: method for learning a NDF for facial expression classitarat(or
any provided categorical data) using pre-computed feat(irethe sample code

provided, distances between feature points and/or CNN ar@-BAN features).

e NDFPoi nt sTr ai n: method for learning a CSP-dGNDF for facial feature point

alignment.

B.4.2 TheNeur al Net s project
B.4.2.1 Project overview

This project is mainly used to train the autoencoder neta/prioposed in Sectiob.3.2
However, the network training procedure and architectpeei$ication is also used in the
Deci si on Forests andReal Ti ne projects respectively when training NDFs and
using these for real-time face alignment. The class diagrathe Neur al Net s can
be seen in Figur®.2. The main class of the project is tiNeur al Net class. In the
following paragraph, we explain the architecture of thassl as well as its most relevant

features.

B.4.2.1.1 TheNeur al Net class. This class is mainly composed of a vector of point-
ers towards elements of clasisur onLayer . TheNeur onLayer class is virtual, so
elements must be specified as eitBegnoi dLayer (tag0), Aut oencoder (tagl),
Sof t MaxLayer (tag2), TanhLayer (tag3) or Spar seLayer (tag4), depending on
which activation function is used (Secti@3.3.). The connexions between the neuron
layer are stored into theonnexi ons_ matrix. This matrix row and columns numbers
are equal to the number of neuron layéfs a1 value at thgi, j) position indicates that

thei'” layer has a forward connexion to tlié layer. For instance,
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NeuralNet

- newField: ink

+ FeedForwardactivation() ;...
+ backPropagationOneLayve. ..
+ backPropagationCneLaye. ..
+ updatetteights(learningr ..
+ FeedForwardactivationla. ..

+ FeedForwardactivation) | ..

Neuronl ayer

+ writePin) : woid

+ readPout() @ vaoid

+ ackivation]) : void
+savel) : bool

+load() : bool
+inikializeteights() « wvoid

By

GenericNeuronl ayer CHHN

- imagesize_: uink

- downSampleFactar_: uint

- kermelsize_; uint

- nbInpukChannels_: uint

- ik_: wector <vetor <HMSG. .

A A % - FeatureMaps_: vetor <HM. ..

- W vector <vector <Floak...
- bi_i vector<float =

- downsampledfeaturetap ..

+ computeFeatureiaps() @

SigmoidL ayer
SoftMaxLayer GenericAutoencoder

- bz_: vector <float >

+ activation{) : woid

+ activation() : wvoid

+ encode) | woid
+ decode) : woid

TanhL ayer Sparselayer 1%

Autoencoder

+ activation() : woid + ackivation() : wvoid

+ corrupt) ; waid
+ stochaskicaradientUpdate. .

Figure B.2: Class diagram for tiddeur al Net s project

00 1 (B.1)
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represents a network with layers, the first being connected to the second, and the
second being connected with the third. With this in mind kvard connexions (for per-
forming backpropagation) can be found very quickly by siyrpbking at the transpose

of the connexion matrix.

B.4.2.1.2 TheNeuronLayer class. This class implements the individual neuron
layers that compose the networks. As shown on Fidtig all the different neuron
classes inherit from the virtudeur onLayer class. Generally speaking, all neurons

have to implement the following methods:

wri t ePi n: copy the argument input to the neuron layer input.

r eadPout : returns the output of the neuron.

e acti vati on: computes the activation of the neuron, depending on theoneu
type (all the activation functions presented in SectiB.3.1have been imple-
mented, except the ReLU function. It can however be impleatestaightfor-

wardly if necessary).

e save/l oad: self-explanatory.

I nitializeWi ghts: initialize the weights of the neurons by random uniform
sampling in thg—0.01, 0.01] interval. It is also called by the default constructor.
B.4.2.2 How to train a NeuralNet

A neural net has first to be initialized through the functiead N etwork. This function
takes as input the absolute adress of a root path as well agldieve address of the
network architecture file (.txt file) in that folder. The imfoation that shall be specified

in that file are:

e neur onnunber : self-explanatory.

e connexi ons: the connexion matrix (specified by square brackets and Bepa-

rated by vertical bars).
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e nunber of bott om ayer s: self-explanatory (usually).

e bottonl ayeri ds: a vector containing the indexed of the bottom layers (speci

fied by square brackets).
e i nput di mensi on: the total input dimension of the network.
e out put di mensi on: the total output dimension of the network.

e neur ont ags: a vector of sizeneur onnunber indicating the nature of the neu-
ron layers &i gnoi dLayer (tag0), Aut oencoder (tag 1), Sof t MaxLayer
(tag2), TanhLayer (tag3), Spar seLayer (tag4) or CNN (tagb)).

e | oadneur onsfronfi |l e: aboolean vector of sizeeur onnunber indicating
if the neurons shall be initialized from file (in which casaal file with correct syn-
tax (see below) and input/output dimensions shall be peavid the same folder).

Otherwise, the neurons shall be randomly initialized.

e neur oni nput di mensi ons: an integer vector containing the neurons input di-

mensions.

e neur onout put di mensi ons: an integer vector containing the neurons input

dimensions.

After the network is initialized, training is performed bp@ying a number of up-
dates to the network (See Secti®3.3.). This is implemented in the body of the ai n
function. This function is overloaded, as different inpate required depending on if
the first layers are convolutional (in which case the input ttabe of typeHVSQVAt )
or not | oat). For each of these updates (to which randomly sampled dranape
drawn), thet r ai n function successively callsr i t ePi n, f eedFor war dAct i va-
tion, backPropagati on andupdat eWei ght s. Then, once a number of updates
(usually a number of epochs through the whole training setaaplied, the network is
saved usingaveNet wor k. Note that there is an automatic checking, at each layer, of
the correspondence of the provided input and expected tantasize for that layer. for

example, it is theoretically possible to feed a CNN layer d@ateaf floating point values,
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or to feed al00-dimensional layer 4000-dimensional input vector. The layer simply
won't process the data (if readPout is used on release mbdeutput vector will be

filled with zeros).

B.4.3 TheReal Ti ne project
B.4.3.1 Project overview

Class diagram for th€DMproject can be seen on Figue3. The main elements com-

posing this project are tHEr acker ,emAnal yzer, Di spl ayer andG\DFCascade

classes.
Displayer
+ drawFacialMask) : bool
+ averlay) ¢ void
1 1| +plotvalues) @ void
emAnalyzer + renderBuffer() ; void
+ drawPoseDistr) ¢ void
+ drawEmationalStakel) @ w..
+ emiClassify_oneFramefyst. . + drawFullwind() © void
+emanalyzer() !
+ generateHierarchicalPerP...

Tracker

1 1 VideoStreamHandler

—

- pFaceCascade_: Cascads..

L+ Tracker()
+ track_oneFramedvstrean...
0.* +track_sequencelvstream: ...

+ getCurrentFramel : Mat GHDFCascade
Autoencoder + getCurrentRawFramed) @
+ getCurrentFilteredPaints .. 1 0.1
+ getCurrentFaceRect(): R + GNDFCascaded) © vaid
+ track2() : woid
1L - generateBoundingBox) ;...
- +deteck() : void
Forest 0.
TanhLayer
DI |*

Figure B.3: Class diagram for thieeal Ti me project
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TheTr acker class contains methods for detecting the faces within tlagés using
OpenCVCascaded assfi ers. It also encapsulates an instance of clasbFCas-
cade, whosedet ect andt r ack2 methods essentially performs face alignment using
the CSP-dGNDF method introduced in SectiA.2 respectively using a provided face
bounding box and previous feature point estimationack 2 also returns the score func-
tion that is used to control the alignment quality to re-perf face detection, if necessary.
Also note that all low-level operation (camera driver hamglland image retrieval from
video stream) are encapsulated within YheleoSt r eanHandl er class.

Another important class is treAnal yzer class, which stores the Random Forests
models for categorical expression recognition (using P@RIAd WLS-RF5 - the per
point confidence measurements can be obtained from the iaradjdeature point lo-
cation by calling functiorgener at eHi er ar chi cal Per Poi nt Conf i dence). AU
occurence prediction and confidence measurements caneatdtdoned using the method
described in Sectioh.4. All the rendering functions are encapsulated in clBss-

pl ayer.
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