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Chapter 1

Introduction

By looking at somebody else’s face, one can infer a lot of information about that person,

such as his or her age, gender or ethnicity, as well as information about that person’s

mental state. This includes both low-level attributes suchas, for instance, the precise

localization of mouth or eye corners, as well as a person’s current emotional state (is

he/she happy? angry? or does he/she look surprised?), or his/her level of depression or

engagement in an interaction.

With the rise of machine learning-based prediction systems, one can wonder to what

extent -or if at all- it is possible to design a system for retrieving these cues from a person’s

face automatically, in an unobtrusive fashion. Such systemwould theoretically bring

valuable information for a broad range of applications. Forexample, it would allow to

map face deformations on an avatar [9] for markerless facial motion capture or gaming

purposes. Also, it would enable richer interactions between a person and a robot, as well

as the monitoring of the facial expressions associated withphysical pain in the context of

healthcare systems. Last but not least, face analysis also has applications in the context of

serious games for educative purposes, as it will be discussed below.

1.1 The JEMImE project

This thesis takes place in the frame of the JEMImE project (supported by the French

National Agency - ANR). JEMImE is a French acronym that standsfor “Jeu Educatif
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Multimodal d’Imitation Emotionelle”. Specifically, it aims at designing a new automatic

emotion prediction system to assess the quality of the emotions produced by children,

and more specifically children suffering from Autism Spectrum Disorder (ASD). Those

emotions are measured through integrating multiple modalities (facial expressions from

RGB and depth streams as well as voice intonation).

It is well known that children suffering from ASD have trouble understanding socio-

emotional signals. As a consequence, many of them cannot respond adequately to other

people’s behavior. This limits their ability to socialize with other people. The JEMImE

project was thus geared towards using recent advances in computer vision and pattern

recognition to teach children with ASD how to better understand and respond to socio-

emotional signals in order to behave more adequately in real-case scenarios. This shall be

done in the context of a serious game, through multiple phases. First, children are asked

to mimic an expression performed by an avatar. In the next step of the training, they have

to produce a requested emotion without having access to a model. Finally, the last step is

to produce the adequate expression given the social contextrepresented in the video game

(e.g. another character steals the child’s toy: he thus has to appear as either angry or sad),

possibly with the help of a therapist.

The applicative context of the JEMImE project led us to develop a complete facial

expression recognition system that must fulfil the following constraints:

• The proposed expression recognition module must be able to recognize the facial

expressions in spite of intrinsic variations (e.g. morphology and expressiveness) as

well as extrinsic ones (e.g. head pose variation, environmental lighting changes and

self-occlusions).

• Specifically, in terms of designing predictive models, we have to propose solutions

for both classification of the facial expression and regression of the expression qual-

ity value.

• It has to run in real-time on a standard computer and can be easily integrated into

the serious game environment.

10



For those reasons, in this thesis we focused to a certain extent on the adaptation to face

analysis of machine learning models based on ensemble of randomized trees as well as

neural networks. Chapter2 draws an overview of the facial expression recognition (FER)

problem, with an emphasis on the different models for affectrepresentation, as well as a

review of the available datasets that will be used to assess the predictive capacity of the

algorithms. We also provide a non-exhaustive survey of the most successful methods of

the literature for face analysis in general, and FER in particular. Furthermore, in Chapter

3 we provide an overview of the computer vision representation and machine learning

tools that we use to tackle the issue of automatic face analysis. Chapters4, 5 and6 thus

depict the three main contributions of this PhD. Those contributions are introduced in the

following section.

1.2 Main contributions

Throughout this thesis, we propose a number of innovative contributions that aim at

addressing several challenges in face analysis and expression recognition in particular.

Those contributions are summarized in Table1.2, as well as a non-exhaustive list of ap-

plications of those methods for face analysis.

As it will be discussed in Section3, most approaches for face analysis involve (a) fea-

ture point alignment, (b) feature extraction and (c) attribute prediction, such as expression

recognition. The three main contributions of this thesis are geared towards addressing

those three problems, and led to multiple publications in international conferences1.2.1

as well as a source code framework for end-to-end facial expression recognition1.2.2. In

Chapter4 we propose to train pairwise conditional random forests to perform FER from

video sequences as well as head pose variation handling in FER. In Chapter5 we pro-

pose to train spatially-constrained local trees to learn local representation related to facial

expressions. These representations can be used for occlusion-robust FER as well as for

AU activation detection. Last but not least, in Chapter6 we propose improvements over

the recent neural decision forests machine learning algorithm, as well as its adaptation

for face analysis. Thus, we propose solutions to perform cascaded regression for facial

11



Application

Method
Pairwise Condi-

tional RF

Local Subspace RF Greedy evaluation

of NDF

Feature point

alignment

Learning representations

for FER

Dynamic

FER

Pose-robust

FER

Occlusion handling in

FER

AU activation

prediction

Online learning

for FER

Subject-specific calibra-

tion

Real-time

FER

Table 1.1: Summary of the proposed contributions
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feature point alignment, learning deep representations for FER, as well as the possibility

of online learning and subject-specific calibrationvia classifiers fine-tuning. Eventually,

throughout this thesis, we focus on providing face analysissystems that operate upon live

video stream with a standard webcam device in real-time witha decent framerate.

1.2.1 Publications

First, the present work led to some publications under the form of journal papers, pa-

pers in international conferences as well as presentationsin the frame of French-speaking

seminars, which are listed below.

Submitted papers

A. Dapogny, K. Bailly, and S. Dubuisson. Face Alignment with Cascaded Semi-

Parametric Deep Greedy Neural Forests.Submitted to IEEE International Conference on

Computer Vision and Patter Recognition, 2017.

A. Dapogny, K. Bailly, and S. Dubuisson. Multi-Output Random Forests for Facial

Action Unit Detection.Submitted to IEEE International Conference on Automatic Face

and Gesture Recognition, 2017.

A. Dapogny, K. Bailly, and S. Dubuisson. Dynamic pose-robustfacial expression

recognition by multi-view pairwise conditional random forests. arxiv preprint, 2016.

Submitted to IEEE Transactions on Affective Computing.

A. Dapogny, K. Bailly, and S. Dubuisson. Confidence-Weighted Local Expression

Predictions for Occlusion Handling in Expression Recognition and Action Unit detection.

arxiv preprint, 2016. Submitted to Springer InternationalJournal of Computer Vision.

Conference papers

J. Aigrain, A. Dapogny, K. Bailly, M. Detyniecki, S. Dubuisson and M.Chetouani. On

leveraging crowdsourced data for automatic perceived stress detection. InInternational

Conference on Multimodal Interaction, p. 1-8, 2016.

A. Dapogny, K. Bailly, and S. Dubuisson. Pairwise ConditionalRandom Forests for

Facial Expression Recognition. InIEEE International Conference on Computer Vision,

p. 1-9, 2015.

A. Dapogny, K. Bailly, and S. Dubuisson. Dynamic facial expression recognition by
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static and multi-time gap transition joint classification.In IEEE International Conference

on Automatic Face and Gesture Recognition, p. 1-6, 2015.

Seminars and others

A. Dapogny, K. Bailly, and S. Dubuisson. Pairwise ConditionalRandom Forests for

Facial Expression Recognition. InIEEE Conference on Computer Vision and Pattern

Recognition, demo sessions, 2016.

A. Dapogny, K. Bailly, and S. Dubuisson. Random Forest pour la reconnaissance

robuste des expressions faciales.Atelier scientifique du GDR ISIS sur les interactions

Homme/Machine, 2015.

A. Dapogny, K. Bailly, and S. Dubuisson. Reconnaissance des expressions faciales

par combinaison de classifieurs statique et dynamique.Atelier scientifique du GDR ISIS

sur les interactions Homme/Machine, 2015.

1.2.2 Source code

Another important aspect of this PhD is the development of a code framework that im-

plements all the methods summarized in Table1.2 above. In order to perform real-time

face analysis from live video stream, the proposed code was developed in C++, although

some functions are written inMATLAB, notably for generating the images used in Chapter

4 from the3D models for expression recognition from arbitrary viewpoints. The source

code is also further described in AppendixB, and directly within the.h and .cpp files,

through the comments. Note that the proposed framework contains the data structures

and methods to train and test all the algorithms introduced in Section3 for general pur-

poses, which are not limited to face analysis.
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Chapter 2

Facial expression recognition: an

overview

In this Chapter, we focus on introducing the issue of facial expression recognition. First,

in Section2.1we discuss the main models used in the literature for affect representation.

In Section2.2 we introduce a classic pipeline for FER and highlight, from the view of

both a human observer and an automated system, the main challenges for an accurate

expression recognition. Finally, in Section2.3, we describe the available data that we will

use to train and evaluate our face analysis systems.

2.1 Modelisation of affect

In his bookThe Expression of the Emotions in Man and Animals(1872), Charles Darwin

theorized that showing and recognizing emotions was an evolved trait universal to the

whole mankind. However, an important current among anthropologists of the XXth cen-

tury supported that the ability to produce and decipher facial expressions was determined

through a behavioural learning process. This belief was later put into perspective by the

works of Ekman on universally recognized expressions (Section 2.1.1), as well as more

recent models (Sections2.1.2and2.1.3).
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2.1.1 Categorical representation

Through cross-cultural studies, Paul Ekman discovered that there existed a high agree-

ment across people from diverse literate cultures across the world when it came to as-

signing a label to pictures representing expressive faces.In this work [27], Ekman came

with a list of six universally recognized basic expressions(happiness, anger, sadness,

fear, disgustandsurprise). He also mentioned acomtemptexpression class, though the

agreement appeared to be less clear. Furthermore, Ekman demonstrated that this finding

extended to preliterate tribesmen in Papua, New Guinea, whose members could not have

learned the meaning of facial expressions from exposure to media depictions of emotion.

Along with aneutralstate, this so-called categorical expression model has been used as

an underlying model for most attempts at developing a prototypical expression recogni-

tion system [59], [103]. However, it faces limitations for dealing with spontaneous facial

expressions [108], as many of our daily affective behaviors may not be translated in terms

of prototypical emotions. Nevertheless, the annotation process is rather intuitive, thus

there exists a large corpus of labelled data (see sections2.3.3, 2.3.4, 2.3.5and2.3.7).

In a later work, Ekman proposed an expanded list of universally recognized basic

emotions, which are not all encoded by facial muscles [26]. The newly included emo-

tions are:amusement, contempt, contentment, embarrassment, excitement, guilt, pride in

achievement,relief, satisfaction, sensorypleasure, andshame. However the data labelled

with those expressions is currently very scarce, although some recent database begin to

integrate these labels (see Section2.3.6).

2.1.2 Dimensional representation

Another popular approach is the continuous affect representation [35] that consists in

projecting expressions onto a restricted number of latent dimensions. Hence, a specific

expression (e.g. a categorical expression such ashappiness) can be described by its posi-

tion in a low-dimensional space. A popular example of such model is the valence/arousal

(relaxedvs. aroused)/power (feeling of control)/expectancy (anticipation) model. It is

often simplified as a two-dimensional valence-arousal representation. Figure2.1 shows
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the projection of the six categorical expressions detailled above on a two-dimensional

valence/arousal space. Following this diagram,happyis represented aspositive valence,

high arousal. On the contrary,sad is defined asnegative valence, low arousal. One can

see that using such a low-dimensional embedding of facial expressions can cause the loss

of information. Indeed, some expressions can not be separated well (fear vs. anger), as

both are defined asnegative valence, high arousal. Last but not least, the annotation pro-

cess is less intuitive than with the categorical representation. Thus, the labellers have to

be trained prior to an annotation task, which in turn limits the data availability.

Figure 2.1: Projecting categorical facial expressions on atwo-dimensional va-

lence/arousal space.

2.1.3 Facial action coding system

Last but not least, an alternative facial expression model is the Facial Action Coding Sys-

tem (FACS) also proposed by Paul Ekman [28]. It consists in describing facial expressions

as a combination of44 facial muscle activations that are referred to as Action Units (AUs).

Figure2.2 illustrates the most common AUs from the upper and lower faceparts. AUs

is a face representation that may be less subject to interpretation. It can theoretically be

used in accordance with the so-called Emotional FACS (EMFACS)rules in order to de-

scribe a broader range of spontaneous expressions. However, the main drawback of the
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FACS-coding approach is that the annotation tends to be a time-consuming process. Fur-

thermore, FACS coders have to be highly trained, hence limiting the quantity of available

data. However, thanks to an effort from the research community, there exist a number of

FACS-annotated databases depicting both prototypical (Section 2.3.3) and spontaneous

(Section2.3.8) expressive behaviors.

Figure 2.2: Definition and illustration of some of the most commonly observed AUs.

Images extracted from CK+ database (See Section2.3.3).

2.2 Challenges in automatic facial expression recognition

Figure2.3 illustrates a classic pipeline for automatic face analysis, and for expression

recognition in particular. First, given a grayscale image (possibly a frame of a video clip),

a subject’s face rectangle is provided by a face detection algorithm. Then, a set of facial
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feature points are aligned on the face, which correspond to specific locations of the face,

e.g. lip corners, eye corners or nose tips. A set of representations are then extracted

using the aligned feature points only (geometric features). Those features generally need

to be normalized w.r.t. the location of one particular feature point (e.g. the nose tip)

to ensure translation invariance, and w.r.t. the inter-ocular distance for scale invariance.

Then, some machine learning algorithm is used to predict a classification of the facial

expression, or to provide a regression of the value of the intensity of the activation of a

set of AUs. Popular examples of machine learning methods areSupport Vector Machines

(SVM [18]), Random Forest (RF [11]) or Neural Networks (NN [39]).

In order to increase the prediction accuracy, many state-of-the art approaches employ

a combination of geometric (i.e. extracted from a set of facial feature points aligned

on the face beforehand) and appearance features (i.e. sampling the texture of the face

directly), that often need to be indexed w.r.t. the positionof the facial feature points. For

example, Senechalet al. [77] use a multi-kernel SVM to integrate those heterogeneous

cues. Example of popular appearance features include LocalBinary Pattern (LBP [78]),

and Histogram of Oriented Gradients (HOG [46]).

Figure 2.3: A classic pipeline for face analysis

Generally speaking, it is not easy for a human eye to distinguish between the expres-

sions in the general case. Reasons for this are multiple: first, there are a number of factors

of variations that are intrinsic to the person that producesthe expressions, namely the

morphology of this person’s face as well as, when talking about video records, the way

his or her facial geometry changes over time to produce the expression (Section2.2.1).

There are also a lot of extrinsic factors of variation, such as changes in environmental
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lighting conditions (2.2.2.1), head pose variations relatively to the camera device position

(2.2.2.2), or the presence of partial occlusions of the face (2.2.2.3). In the following sub-

sections, we illustrate those factors of variations, as well as a number of solutions that

have been proposed in the literature for addressing these problems.

2.2.1 Intrinsic factors of variation

As it is illustrated on Figure2.4, it can be difficult for a human eye to discriminate facial

expressions when looking at a single picture. If we only lookat the bottom row faces

on Figure2.4, we can hardly tell which expressions are being portrayed bythe subjects.

Reasons for this are multiple: we don’t know how these personslook like when not dis-

playing a specific expression (i.e. we don’t have access to aneutralface), nor do we have

any information about how they behave to display a specific expression. Hence, gener-

ally speaking, designing a static expression prediction system (i.e. one that works on still

images) is a challenging task. In order to focus specificallyon designing a FER system in-

dependent of a subject’s morphology, most recent approaches covering static FER work in

controlled conditions, on a frontal view and lab-recorded environments [59, 103]. Zhong

et al. [112] proposed to learn active facial patches that are relevant for FER. Zhaoet al.

[110] designed a unified multitask framework for simultaneouslyperforming facial align-

ment, head pose estimation and FER. Liuet al. [56] introduced a deep neural network

that learns local features relevant for Action Unit prediction, and use it as an intermedi-

ate representation for categorical FER. The authors also studied the use of unlabelled data

[55] to regularize the network training, further enhancing itspredictive capacities for FER

in the wild.

However, as it is illustrated on Figure2.4, the morphology problem can be partially

alleviated by looking at a neutral representation of the face (top-row images on Figure

2.4 - from left to right we haveanger, sadness, happiness, fear, disgustandsurprise).

This way, it becomes easier to identify the expressions by looking more closely at which

areas of the face are subject to appearance changes. From theperspective of an automatic

recognition system, this means that the performances of such system shall be better if

we have access torelative information using aneutral face representation. Examples of
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Figure 2.4: Examples of corner-cases expressions from the BU-4DFE database. Without

looking at a neutral face (top row), it may be difficult for a human observer to analyse the

facial expressions adequately. Can you guess which ones are being portrayed?

this paradigm are the works of Khademiet al. [45] that respectively learn transition AU

detectors, as well as the work of Chuet al. [15] which propose a new selective transfer

machine framework that includes the possibility of subject-specific calibration.

Furthermore, as we generally do not have access to a neutral face representation, it is

a good idea to use dynamic information,i.e. performing recognition on videos rather than

on separate images. Dynamic information of facial expressions can be used in several

ways: (a) at the feature-level, by using spatio-temporal image descriptors, and/or (b) at

the semantic level, by modelling relationships between expressions or between successive

phases (onset, apexandoffset) of facial events. Generally speaking, effectively extracting

suitable representations from spatio-temporal video patterns is a challenging problem as

expressions may occur with various offsets and at differentpaces. There is no consen-

sus either on how to combine those representations flexibly enough so as to generalize

on unseen data and possibly unseen temporal variations. Common approaches employ

spatio-temporal descriptors defined on fixed-size windows,optionally at multiple resolu-

tions. Examples of such features include the so-called LBP-TOP [109, 37] and HOG3D

[47] descriptors, which are spatio-temporal extensions of LBP and HOG features respec-
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tively. Authors in [79] use histograms of local phase and orientations. However, those

kinds of representations may lack the capacity to generalize to facial events that differ

from training data on the temporal axis. More recently, Junget al. [44] integrate both

features in a deep temporal geometric/appearance neural network.

Approaches trying to address (b) aim at establishing relationships between high-level

features and a sequence of latent states. Wanget al. [95] train hidden Markov models

to perform early recognition of low-intensity facial expressions from videos. Wanget al.

[96] integrate temporal interval algebra into a Bayesian network to capture complex re-

lationships among facial muscles. Such approaches generally require explicit dimension-

ality reduction techniques such as PCA ork-means clustering for training. In addition,

training at the sequence level reduces the quantity of available training and testing data as

compared to frame-based approaches, as there is only one expression label per video.

2.2.2 Extrinsic factors of variation

The visibility of the face plays an important role in discriminating the facial expressions.

We can divide the corresponding factors of variation in three groups: the lighting con-

ditions (Section2.2.2.1), the position of the camera w.r.t. the subject’s head (Section

2.2.2.2), and wether or not the face is occluded (Section2.2.2.3).

2.2.2.1 Lighting conditions changes

Figure 2.5: Examples of an expressive face under illumination variations. The images are

generated using the high-resolution3D face scans from the BU-4DFE database.

The way a one’s face is illuminated is crucial in decipheringits facial expressions. For
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example, how shall one label the faces portrayed on Figure2.5, in terms of Ekman’s facial

expressions? Such observer could, for instance, label (a) and (e) asanger, while (b) and

(c) would be depicted asdisgustand (d) assadness. However, all five images were gener-

ated from a single video frame of the BU-4DFE database, with ground truth labeldisgust.

This illustrates that the way the face is illuminated greatly influences the human percep-

tion of facial expressions. Furthermore, from the perspective of an automated system,

drastic illumination conditions, such as those on Figure2.5, can cause loss of information

(for aligning the feature points or exploiting the texture information), as well as creating

local gradients that may result in false detections. Indeed, most systems perform a global

normalization or use gradient information to ensure invariance w.r.t. global luminosity

variations. Many descriptors such as SIFT [58] or HOG [21] also perform some sort of

local normalization for that purpose.

2.2.2.2 Head pose variation

Figure 2.6: Examples of a neutral face under head pose variation. The images are gener-

ated using the high-resolution3D face scans from the BU-4DFE database.
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Head pose variations can also cause drastic changes in face appearance or geometry,

as can be seen on Figure2.6, that represents a subject’s face under yaw (±45 degrees) and

pitch (±45 degrees) variations. For example, for positive pitches theeyes are less visible

and the eyebrow look closer to the eyes (as it is the case when displaying prototypical

anger with a frontal viewpoint), whereas for negative pitches the mouth becomes less

visible. Furthermore, the feature points are more likely tobe badly aligned for extreme

poses in either pitch or yaw.

Many approaches for multi-view FER consist in training a single classifier to describe

every viewpoint. Zhenget al. [111] introduce a regional covariance matrix representation

of face images to infer static facial expressions on a corpusconstructed from the BU-

3DFE database [104] with 35 different head poses up to±45 yaw and±30 pitch. Tariq

et al. [87] address the same problem by using a translation invariant sparse coding of

dense SIFT features [58]. Eleftheriadiset al. [29] employ discriminative shared Gaus-

sian processes to implicitly exploit the redundancy between multiple views of the same

expressive images. However, such approach can struggle to capture the variability of the

facial expressions when the number of training samples becomes important.

Alternatively, it is possible to learn a projection of a non-frontal views of a face image

on a frontal one. Recently, Vieriuet al. [90] proposed to project3D data of the face

onto a head pose-invariant2D representation. The visible fraction of the projected faceis

then used within a voting scheme to decipher the expression.FER can thus be performed

using an off-the-shelf algorithm. In addition, the authorswere able to perform FER un-

der a broader range of poses, up to±90 yaw and±60 pitch. However, the proposed

method requires high-resolution3D face data that may not necessarily be available in

multiple human-computer interaction scenarios, for instance when using images acquired

with commercial lower-resolution depth sensors.

Eventually, some other works choose to learn one specific classifier per face view.

During testing, the head pose is first estimated, then the best pose-specific expression

classifier is applied. For instance, Mooreet al. [64] learn multi-class SVMs upon LBP

features for multiple viewpoints. Such approaches offer several advantages over the pre-

vious ones: first, learning classifiers upon separate and more homogeneous face view
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data allows to considerably reduce the variability. As a consequence the classifiers can,

in theory, more efficiently capture the subtle facial deformations between the expressions.

Secondly, the runtime is the same as in the case of a single frontal view classifier, which

may be a critical point for systems that try to project a givenview on a frontal one. Fi-

nally, splitting the training data offers the advantage to reduce the memory usage, which

can be important for learning on large databases. Those methods also face some impedi-

ments, such as the fact that (a) they require a reliable facial landmark alignment and head

pose estimation, and (b) it implies dividing the data into several subsets. Nevertheless,

(a) is barely a problem given that recent advances [98, 69, 99] for face alignment provide

excellent results for head poses up to±45 yaw and±30 pitch, which is sufficient for

most human-computer applications. Furthermore, (b) can becircumvented by the use of

3D face scans [103] from which we can generate a large corpus of videos for training

multi-view dynamic classifiers.

2.2.2.3 Partial occlusions

Figure 2.7: Examples of expressive faces under partial occlusion. 3 images on the left:

synthetic occlusions overlaid on images from the CK+ database. 3 images on the right:

realtistic occlusions from the SFEW database.

Another major challenge for the design of an automatic expression recognition system

is the presence of partial occlusions of the face. The3 images on the right of Figure2.7

illustrate examples of occlusion that can happen in realistic scenarios. Partial occlusions

include self-occlusions (e.g. with a body part such as a hand), or occlusions that are due

to random accessories (e.g. a scarf or sunglasses). Countless configurations of partial

occlusions cause a large variability of face appearance. This is all the more problematic
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when designing an automatic FER system, as there is currently close to no labelled data

for realistically occluded face, let alone expressive faceimages. For this reason, most

of the literature focus on synthetic occlusions, that are usually generated by overlaying

random or uniform patterns on some area of the face, as can be seen on Figure2.7.

Kotsiaet al. [49] studied the impact of human perception of facial expressions under

partial occlusions, and the predictive capacities of automated systems thereof. In partic-

ular, they concluded that in the case of prototypical expressions, mouth occlusions seem

to drastically hinder the recognition performance of both ahuman observer and an auto-

mated system. Cotteret al. [19] used sparse decomposition to perform FER on corrupted

images. Ghiasiet al. [33] use a discriminative approach for facial feature point alignment

under partial occlusions. Those approaches rely on explicitly incorporating synthetic oc-

cluded data in the training process, and thus struggle to deal with realistic, unpredicted

occluding patterns. Zhanget al. [107] trained classifiers upon random Gabor-based tem-

plates. They evaluated their algorithms on synthetically occluded face images, showing

that their approach leads to a better recognition rate when the same occluded examples

are used for training and testing. Should this not be the case, unpredicted mouth/eye oc-

clusions still lead to a significant loss of performance. Huang et al. [40] proposed to

automatically detect the occluded regions using sparse decomposition residuals. How-

ever, the proposed approach may not be flexible enough, as theocclusion detection only

outputs binary decisions, and as the face is explicitly divided into only three subparts

(eyes, nose and mouth). This limits the capacities of the method to deal with unpredicted

forms of occlusion. Finally, another approach consists in learning generative models of

non-occluded faces, as it was done by Ranzatoet al. [68]. When testing on a partially oc-

cluded face image, the occluded parts can be generated back and expression recognition

can be performed. The pitfall of this approach is that training can be computationally ex-

pensive and does not allow the use of heterogeneous features(e.g. geometric/appearance

descriptors).
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Table 2.1: Summary of the available databases.

Database 300-

W

CK+ BU-

4DFE

FEED BP4D SFEW DISFA JEM-

ImE

# subjects 3740 123 101 19 41 700 27 151

Landmarks

Video

Spontaneous

Categorical

AU

Non-frontal poses

Occlusions

2.3 Available data

2.3.1 Overview and taxonomy

Table2.1 presents an outline of the available databases for face analysis. For each of

these datasets, we indicate the number of subjects that it contains, as well as the nature

of the data (e.g. does it consist of separate images or video records? Are the expressive

behaviors spontaneous or acted?). We also indicate whetheror not the data contains non-

frontal head poses and partial occlusions, in order to provide an idea of the difficulty of

the different benchmarks. Finally, we also describe the nature of the provided ground

truth annotations for each dataset (i.e. does the annotation consists in facial landmarks,

categorical expressions or the activation of a set of AUs?).

2.3.2 The 300-W databases

The 300-W databases consist in multiple datasets for landmark analysis. They embrace

a number of benchmarks with various degrees of difficulty, such as the LFPW or La-

belled Faces Parts in the Wild database (834 images for training/224 images for test),

HELEN (2000/334 images), and the more challenging ibug database (135 images). In
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addition, there are also a number of images from the2013 face alignment challenge (300

indoor/300 outdoor images) as well as114 videos from the training partition of the2015

video alignment challenge. Each image comes along with an annotated68-points markup.

2.3.3 The extended Cohn-Kanade database

Figure 2.8: Examples of expressive face images from the CK+ database. From left to

right: images labelled asneutral, happy, angry, sad, fear, disgust, contemptandsurprise.

The CK+ or Extended Cohn-Kanade database [59] contains 123 subjects, each one

associated with various numbers of expression records. Those records display a very

gradual evolution from aneutral class towards one of the 6 universal facial expressions

described by Ekman [27] (anger, happiness, sadness, fear, digustandsurprise) plus the

non-basic expressioncontempt. Expressions are acted and very prototypical. The se-

quences contains 20 grayscale images on average and the subjects exhibit practically no

head pose variation as well as no self-occlusion. There are some illumination and face

scaling changes between the records, but overall the recognition rates reported by state-

of-the-art methods on this dataset are very high (around90%).

As it is done in other approaches, we extract the first (neutral) and three apex frames

for each of the 327 sequences for training classifiers to perform 8-class categorical FER.

Figure2.8 illustrates some expressive face images excerpted from theCK+ database. As

some approaches discard the frames labelled ascontempt, for the sake of comparison, we

also report 7-class accuracy using only 309 sequences. Moreover, the CK+ database is

also FACS-annotated, therefore we report results for the recognition of 14 of the most

common AUs (AU1,2,4,5,6,7,9,10,12,15,17,20,25,26) on this dataset.
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Figure 2.9: Examples of face images from the BU-4DFE database. From left to right:

images labelled asneutral, happy, angry, sad, fear, disgustandsurprise.

2.3.4 BU-4DFE database

The BU-4DFE of Binghamton University-4D Facial Expressions database [103] contains

101 subjects, each one displaying the 6 acted facial expressions of Ekman with moderate

head pose variations. Expressions are still prototypical but they are generally exhibited

with much lower intensity and greater variability than in CK+, hence a lower baseline

accuracy of about70%. Sequence duration is about 100 frames. As the database does

not contain frame-wise expression annotations, we manually selected neutral and apex of

expression frames for all the subjects for training, makinga total of8218 images. Figure

2.9shows some of these apex frames. Each frame is associated with high-resolution3D

model data recorded using a Di3D device, that we use in our experiments on non-frontal

head poses to generate expression videos from multiple viewpoints (see Section4.4.2).

2.3.5 FG-NET FEED database

Figure 2.10: Examples of face images from the FEED database.From left to right: images

labelled asneutral, happy, angry, sad, fear, disgustandsurprise.

The FG-NET FEED or Facial Expressions and Emotions database[93] contains 19

subjects, each one recorded three times while performing 7 spontaneous expressions (the

six universal expressions, plus theneutralone). The data contain low-intensity emotions,
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very short expression displays, as well as moderate head pose variations. We use the

provided peak and neutral annotation metadatas for each sequence to generate a716 im-

ages subset on which the predictive models can be trained andevaluated for frame-based

classification.

2.3.6 BP4D database

The BP4D or Binghamton-Pittsburgh4D database [108] contains 41 subjects. Each sub-

ject was asked to perform 8 tasks, each one supposed to give rise to 8 spontaneous expres-

sions (anger, happiness, sadness, fear, digust, surprise, embarrassmentor pain). In [108]

the authors extracted subsequences of about 20 seconds for manual FACS annotations,

arguing that these subsets contain the most expressive behaviors. As done in the literature

[108] we report results for recognition of 12 AUs (1,2,4,6,7,10,12,14,15,17,23,24). We

randomly extract10000 images for training and evaluate the AU classifiers on the whole

dataset.

2.3.7 SFEW database

Figure 2.11: Examples of face images from the SFEW database.From left to right:

images labelled asneutral, happy, angry, sad, fear, disgustandsurprise.

The SFEW or Static Facial Expression in the Wild database [24] contains700 images

from 95 subjects displaying7 facial expressions (includingneutral) in a real-world envi-

ronment. Data was gathered from video clips using a semi-automatic labelling process.

The strictly person-independent evaluation (SPI) benchmark is composed of two folds of

(roughly) same size. As done in other approaches, we report cross-validation results av-

eraged over the two folds. As it can be witnessed on Figure2.11the data embraces a lot

of variations, including uncommon morphological traits and lighting patterns, head pose
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variations, self-occlusions as well as low-resolution images. Furthermore, the quantity of

training data is very limited as each fold contains approximately350 images.

2.3.8 DISFA database

Figure 2.12: Examples of expressive face images from the DISFA database.

The DISFA or Denver Intensity of Spontaneous Facial Actions[62] contains videos of

27 subjects with different ethnicities and genders that were recorded watching a 4-minute

emotive video stimulus. As shown on Figure2.12, the face images are lab-recorded with

mostly frontal head poses. However the induced behaviors are spontaneous, thus some

AU activations are very subtle, hence a relatively low baseline accuracy. Data have been

manually labelled frame by frame for 12 AUs (1,2,4,5,6,9,12,15,17,20, 25,26) on a 6-

level scale by a human expert, and verified by a second FACS coder. For the purpose of

predicting AU occurrence, we consider AUs which intensity is below 1 as non-activated.

We randomly extract6292 images for training and test on the125832 images.

2.3.9 JEMImE database

The JEMImE database currently contains video records of150 childs. Each one of these

subjects was asked to watch and respond to videos displayingavatars performing 3 cate-

gorical facial expressions (happiness, angerandsadness), plus theneutralone. For each

video, the child was asked to respond by imitating the proposed expression, through both

visualandaudio-visualmodalities. In addition to that, childs were also asked to mimic

the4 expressions, without seeing the videos. Moreover, the order in which the tasks were

presented to the subjects was randomized. Thus, the database contains a total of2400
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videos. For each of these videos,2 raters were asked to answer, for each expression, if

that expression was displayed on the video, in which case they also had to give a note to

the quality of the displayed expression. In addition to that, the database will also con-

tain data from children with ASD to study their capacity to produce facial expressions

with and without a model, as well as to study the differences between them and typical

children.

2.4 Discussion and conclusion

As we discussed, there exists a number of challenges in expression recognition, which can

be divided in extrinsic (environmental, e.g. background and lighting) and intrinsic factors

variations (subject morphology, head pose variation, self-occlusions). Furthermore, the

available data is relatively scarce and do not quite cover all those factors of variations.

Particularly in the case of pose or occlusion-robust FER as well as FER in the wild, we

are limited with data quantities of the order of magnitude of1000 images, which is very

low, as compared to some other fields, e.g. face recognition or object recognition. As it

was pointed out, this is mainly due to the fact that the annotation labels come from highly

trained experts (e.g. for FACS coding) and are thus difficult to get.

For those reasons, in what follows, we mainly focus on adapting machine learning and

pattern recognition tools presented in Chapter3 for “making the most” of available data.

Particularly, in Chapter4, we highlight how we can train decision forests using dynamic

information from video sequences with only a few labelled peak frames. Moreover, we

explain how we can use3D face scans from available data to allow pose-robust FER.

In Chapter5, we show how we can learn features from data labelled with categorical

expressions to perform AU detection, as well as how we successfully perform occlusion-

robust FER without any data related to partial occlusions. Last but not least, in Chapter

6 we discuss solutions for online learning in FER and feature point alignment, which can

be applied for domain adaptation, e.g. in the frame of subject-specific calibration
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Chapter 3

Pattern recognition tools

3.1 Overview

In this chapter, we describe the framework that we use to predict facial expressions, with

an emphasis on the low-level image descriptors and machine learning methods to perform

classification or regression. First, we employ the widely used Viola and Jones detector

[92] to retrieve a rectangular face bounding boxFace(I) from imageI. Then, a set of

facial feature pointsf(I) are aligned on the face. In order to ensure reproducibility of

the results, we use a state-of-the-art method (Intraface [98]). As it is somewhat classical

in the FER literature, we use a combination of geometric (Section 3.2.1) and appearance

features (Section3.2.4).

3.2 Image representations

Generally speaking, it is not possible to use the raw gray level or RGB values from a given

face imageI for a subsequent prediction task. Reasons for this are multiple: apart from

the very high dimensionality of the input (1000000 for a1000×1000 image!), those pixel

values are generally noisy. Furthermore, as we do not have access to unlimited amounts

of training data for learning the prediction models, we generally have to design feature

descriptors that exhibit some built-in invariance to the lower-level factors of variations,

e.g. translation, planar rotation, scaling of the face or local luminosity intensity varia-
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tions. To do so, we introduce a set of parameteric feature templatesφ(i) with i = 1, ..., 3

that include both geometric (Section3.2.1) (i.e. computed from previously aligned facial

feature points) and appearance features (Section3.2.4). Figure3.1 provides an example

of feature point alignment and extracted geometric and appearance features. Those fea-

tures are thus used as the input of a classification or regression machine learning system

(Section3.3) to either predict a categorical expression, a set of AU activations or intensity

values or, to a larger extent, a number of attributes that canbe inferred from the face (e.g.

gender, age or ethnicity).

Figure 3.1: Feature points aligned on the face and features extracted for FER. Green:

point distancesφ(1). Blue: point anglesφ(2). Orange: HOGφ(3).

3.2.1 Geometric features

Given the set of facial feature pointsf(I) aligned on a face imageI, a simple and robust

way of extracting information that is relevant for face analysis is to use (a function of) the

positions of these feature points as a feature for the subsequent prediction step. Below are

described two simple, yet robust features that efficiently sum up the face geometry.
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3.2.2 Distances between pairs of feature points

The first geometric feature templateφ(1)
a,b takes as its parameters the index of two facial

feature pointsa andb. φ(1)
a,b is thus defined as the Euclidean distance between feature points

fa(I) andfb(I), that is normalized w.r.t. the inter-ocular distanceiod(f(I)) (Equation

3.1). Note thatiod(f(I)) can be computed once and for all for a specific image by

knowing the indexes of4 feature points (inner and outer corners for the left and right

eyes).

φ
(1)
a,b(I) =

||fa(I)− fb(I)||2
iod(f(I)) (3.1)

It is easy to see thatφ(1) is invariant w.r.t. translations and rotations of the face within

the camera plane. Also, thanks to the normalization, it is invariant to the scaling of the

face. However, this feature template only takes into account the distances between the

feature points. Hence, we have to use a second geometric template that takes into account

the orientation of those points.

3.2.3 Angles between triplets of feature points

The second geometric featureφ(2)
a,b,c,λ takes as parameters the indexes of three facial feature

pointsfa(I), fb(I) andfc(I), as well as a boolean parameterλ, and is defined as follows:

φ
(2)
a,b,c,λ(I) = λ cos(f̂afbfc) + (1− λ) sin(f̂afbfc) (3.2)

Thus, depending onλ, φ(2)
a,b,c,λ can be defined either as the sine or cosine of the angle

between the three feature points. We use this formulation instead of the raw angle value

so as to preserve the continuity of the function for angles around0. Also note thatφ(2) is

also invariant to in-plane rotations, translations and face scaling. As a geometric feature,

it is also invariant to intensity variations.

3.2.4 Appearance features

Geometric features are generally used along with appearance features,i.e. descriptors that

represent the texture of the face image directly. Those two sets of features are compli-
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mentary to each other and it is somehow classical to use a conjunction of both to increase

the recognition accuracy [77, 44]. Appearance features can be divided into handcrafted,

engineered descriptors and learned representations.

3.2.4.1 Hand-crafted representations

Perhaps the most popular engineered image descriptor for computer vision is Scale Invari-

ant Feature Transform (SIFT [58]). The descriptor consists in dividing a window around a

specific keypoint into (usually4×4) cells from which 8-bin quantizations of gradient ori-

entations are computed. Those are thus weighted by the gradient magnitude, concatenated

andL2-normalized to form a128-dimensional local descriptor. Speeded-Up Robust Fea-

tures (SURF [5]) was later introduced as an alternative descriptor, that essentially benefits

from the integral image computational trick that allows faster processing. SIFT and SURF

descriptors offer a good compromise between extraction speed, dimensionality and com-

putation runtime for a variety of computer vision tasks suchas image retrieval [4] or object

segmentation [83]. However, for face analysis, the high-dimensionality of those features

may slow down the extraction and (optional) dimensionalityreduction step, which may

be critical as the real-time constraint is prominent. Plus,local patterns are generally suf-

ficient to sample the texture of the face (i.e. we do not need to use a grid composed of

multiple cells).

For those reasons, we use Histogram of Oriented Gradients (HOG [21]) as our appear-

ance features for their descriptive power and robustness toglobal illumination changes.

In order to ensure fast feature extraction, we use integral feature channels as introduced

in [25]. First, face images are extracted based on the position of the facial feature points.

More specifically, a bounding box is determined by the min andmaxx−y coordinates and

extended by20% in all directions, then the corresponding region of interest is rescaled to

a constant size of250× 250 pixels. Then, horizontal and vertical gradients are computed

on the image and used to generate9 feature maps, the first one containing the gradient

magnitude, and the8 remaining correspond to a 8-bin quantization of the gradient ori-

entation. Then, integral images are computed from these feature maps to output the9

feature channels. Thus, we define the appearance feature templateφ(3)
τ,ch,s,α,β,γ as an in-
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tegral histogram computed over channelch within a window of sizes multiplicated by

the inter-ocular distance. Such histogram is evaluated at apoint defined by its barycentric

coordinatesα, β andγ w.r.t. vertices of a triangleτ defined over feature pointsf(I).
Also, we store the gradient magnitude in the first channel to normalize the histograms.

Thus, HOG features can be computed with only4 access to the integral channels (plus

normalization).

3.2.4.2 Learned representations

An alternative approach to hand-crafted representations is to learn the image descriptors

directly from the data. For that matter, one generally needsto use deep architectures

that are composed of several differentiable layers. Neuralnetworks (Section3.3.3), neu-

ral decision forests (Section3.3.5) and convolutional neural networks (Section3.3.3.3)

are examples of deep architectures that allows the extraction of hierarchically abstracted

texture representations.

3.3 Machine learning for classification and regression

3.3.1 Which is the best model?

The No Free Lunch theorem [97] for machine learning states that there is no universal

model that provides the best fit for every problem. Consider the analogy with the one-

dimensional interpolation problem, where we want to find a “suitable” functionf such

thatf(0) = f(0.25) = f(0.5) = f(0.75) = f(1) = 1. Of course, the concept of a “suit-

able” function is unclear and, without additional knowledge on the problem, there exists

an infinity of very diverse functions that satisfy this criterion, such as every polynomial

of the formf(x) = ax(x− 0.25)(x− 0.5)(x− 0.75)(x− 1)+1, with a ∈ R (Figure3.2).

We now suppose we wantf to be close from “test” points(0.125, 1.006), (0.375, 0.994),

(0.625, 1.006), (0.875, 0.994). However, those points remain unknown during the “train-

ing” step and cannot be used as control points for the interpolation. In such a case, to select

a good polynomial function we need to introduce additional knowledge on the problem
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Figure 3.2: Analogy of learning a predictive model with one-dimensional polynomial

interpolation. Red crosses indicate training samples, green circles indicate test samples.

In this order, the dashed, dotted and dash-dotted lines indicate curves corresponding to

polynomials with ascending value for thea parameter. Best viewed in color.

such as, for instance, the maximal/minimal value off on the interval[0, 1], or a bound-

ary on the derivatives off . The analogy with machine learning is pretty straightforward,

except that (a) we have to deal with very high-dimensional inputs (10 up to uncountable

infinite numbers of dimensions) and (b) constraints on the solutions generally cannot be

analytically defined.

Consequently, there is no such thing as a silver bullet model in machine learning and it

is therefore common -particularly when applied to computedvision tasks- to try multiple

predicting models with various hyperparameter settings that seem reasonable given an

applicative context, selecting the ones that offer an interesting trade-off between speed

(training/testing), complexity and accuracy. Furthermore, one important aspect that we

shall keep in mind when fitting a model is the overfitting issue, which is illustrated in the

following paragraph.
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3.3.2 The overfitting issue

Figure3.3 illustrates the overfitting issue on a simple example that consists in a polyno-

mial approximation of the cosine function on the interval[−2π, 2π], given a restricted

set of13 control points. On the left, one can see that approximating the function with a

polynomial of degree4 does not provide satisfying results, as the error between the blue

curve (the function to approximate) and the red one is still important. Consequently, the

4-degree polynomial model is not complex enough to approximate the function (it is also

said to underfit the problem). The curves in the middle show the result of polynomial

fitting using a8-degree polynomial. In that case, the error on the control points is nearly

non-existent and the approximation is qualitatively good.However, using a more complex

model, e.g. a polynomial of degree16 (on the right) produces a very different result. The

error around the training data (i.e. the control points) is still very low, but the overall er-

ror function skyrockets completely. In machine learning, we refer to that phenomenon as

overfitting,i.e. when a model is too complex to effectively capture the solution variations.
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Figure 3.3: Approximation of the cosine using polynomials functions. Green stars: train-

ing samples. The blue line indicates the target (cosine) function. The red one indicates

the polynomial approximation.

The balance between underfitting and overfitting can sometimes be tricky to find, as

both issues may severely hinder the ability of a learning system to generalize on unseen

data. In what follows, we will focus more specifically on two machine learning frame-

works that are neural networks [39] and randomized decision trees [11] to predict facial

expressions. Below we provide a description of those methodsas well as an ensemble of

properties that make them well suited for face analysis purposes regarding the issues that
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are at stake.

3.3.3 Neural Networks

Neural networks (NNs) are among the oldest and most popular machine learning frame-

work. Basic feed-forward neural networks allow non-linear embedding as well as effi-

cient training using stochastic gradient descent and backpropagation. Also, recent devel-

opments involve dropout regularization [82] to prevent overfitting issues, unsupervised

learningvia a reconstruction criterion [8] as well as the possibility of a unified, top-down

feature and prediction stages training using deep convolutional network architectures [31].

3.3.3.1 Feed-forward neural networks

An individual neuron cell for ak-dimensional inputx = {xj}j=1...k has two kinds of

parameters:w = {wj}j=1...k the neuron weight vector andb the bias term. It realizes two

operations: computingnet(x) as a scalar product of the input by the neuron weights (plus

bias), and a non-linear mapping of the output using an activation functionσ (Figure3.4).

Figure 3.4: A single neuron

The activation functionσ is usually defined either as an affine function:
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σ(net(x)) = net(x) (3.3)

or, more commonly, as a non-linear activation such as the hyperbolic tangent function:

σ(net(x)) =
1− e−2net(x)

1 + e−2net(x)
(3.4)

the sigmoid function:

σ(net(x)) =
1

1 + e−net(x)
(3.5)

or the Rectified Linear Unit (ReLU) function:

σ(net(x)) = max(0, net(x)) (3.6)

In the case where multiple units indexed byi = 1, ...,m are stacked to form a neuron

layer, the output can be defined as a normalized sum over all the output net units to provide

values in the[0, 1] interval, so that the sum of these values is equal to1. This so-called

softmax activation function is defined as:

σ(neti(x)) =
eneti(x)

∑m
i′=1 e

neti′ (x)
(3.7)

.

Furthermore, multiple layers can be stacked, each one providing a non-linear encoding

of the output of the previous layer. Figure3.5 represents an example of a multi-layered

neural net architecture.

In such a case, by abusing the notation, the output vector of each layerl ∈ {1, 2, 3}
can be written in matrix form asy(l) = σ(w(l)x(l) + b(l)), with x(l) the input of layer

l (with x(0) = x), w(l) andb(l) respectively the weight matrix and bias vector for layer

l andy(l) the output of that layer. As shown on Figure3.5, the output of each layer

feeds the input of the following one,i.e. x(l) = y(l−1). The network activation is thus

computed in a feed-forward fashion, from the bottom levels (net input) to the top ones.

This kind of architecture is often refered to as a Multi-Layer Perceptron (MLP) and its

layers as fully-connected (FC) layers. Generally speaking,the input and output layer
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Figure 3.5: An example of multi-layered network architecture

sizes are determined by the problem (the (either raw or somehow reduced) number of

input dimensions and output classes, respectively). However, there is no consensus on

how to set the network hyperparameters that are the number oflayers, the size of each

layers, how the layer is initialized and the nature of the activation functions. Below are

the most common approaches that are used to train such a network.

3.3.3.1.1 Training with stochastic gradient descent and backpropagation. Train-

ing a feed-forward neural network supposes finding a set of parameters{w(l),b(l)}l=1,...,L

(with L the number of layers) that minimizes a cost functionE(W ) (whereW = {w(1)

,b(1), ...,w(L),b(L)} is the set of parameters of the whole network) that corresponds to an

error criterionE(W ) = ǫ(ŷ,y∗) between the ground truth labely∗ and the network out-

put predictionŷ = y(L), for every labelled example(x,y∗). This error is usually defined

as either the squaredL2 loss for classification and regression

ǫ(ŷ,y∗) = ||ŷ − y∗||22 (3.8)

or the cross-entropy loss
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ǫ(ŷ,y∗) =
k′
∑

j=1

ŷjln(y
∗
j ) + (1− ŷj)ln(1− y∗j ) (3.9)

for classification, when the output activation function is the softmax function. How-

ever, minimizing this error criterion w.r.t. the network parameters is a non-convex opti-

mization problem in the general case, and the high-dimensionality of the problem makes

exhaustive search impossible. For these reasons, neural networks are generally trained by

backpropagating [53] the error gradient from the top layers down to the bottom ones, by

applying Stochastic Gradient Descent (SGD [71]). In practice, this consists in iteratively

minimizing the loss function in Equation3.8 by applying a sequence of updates to the

model’s parameters. Each of these updates only consider oneor a mini-batch of examples

that are randomly sampled from the training set. Generally SGD solvers need a certain

amounts of epochs through the whole training set to converge. Formally, given a mini-

batch ofB examples{(x1,y
∗
1), ..., (xB,y∗

B)}, the update for a parameterw
(l)
ji , j ∈ [|1, k′|],

i ∈ [|1, k|] of a neuron layerl can be written:

w
(l)
ji ← w

(l)
ji −

α

|B|
∂ǫ(ŷ,y∗)

∂w
(l)
ji

(3.10)

The same holds true for the bias terms, withα the learning rate hyperparameter. If we

consider a parameter of the top layerL we can write, using the chain rule:

∂ǫ(y(L),y∗)

∂w
(L)
ji

=
∂ǫ(y(L),y∗)

∂y
(L)
j

∂y
(L)
j

∂w
(L)
ji

=
∂ǫ(y(L),y∗)

∂y
(L)
j

∂y
(L)
j

∂net
(L)
j

∂net
(L)
j

∂w
(L)
ji

(3.11)

The first term is relative to the loss function (L2 or cross-entropy). The second one

depends on the activation function (e.g. softmax for classification or affine for regression

tasks). Finally, for the last term we have:

∂net
(L)
j

∂w
(L)
ji

= x
(L)
i = y

(L−1)
i (3.12)

Notice that the equations are the same if we now consider a parameter of the second

layer from the topL− 1:
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∂ǫ(y(L),y∗)

∂w
(L−1)
ji

=
k′
∑

p=1

∂ǫ(y(L),y∗)

∂y
(L)
p

∂y
(L)
p

∂net
(L)
p

∂net
(L)
p

∂w
(L−1)
ji

(3.13)

Once again, using the chain rule (remembery(L−1) = x(L)), we get:

∂ǫ(y(L),y∗)

∂w
(L−1)
ji

=
k′
∑

p=1

∂ǫ(y(L),y∗)

∂y
(L)
p

∂y
(L)
p

∂net
(L)
p

∂net
(L)
p

∂x
(L)
j

∂y
(L−1)
j

∂w
(L−1)
ji

= δ
(L−1)
j

∂y
(L−1)
j

∂w
(L−1)
ji

(3.14)

We defineδ(L−1) as the error backpropagated to the(L− 1)th layer. Starting from the

top level we have:

δ
(L)
j =

∂ǫ(y(L),y∗)

∂y
(L)
j

(3.15)

and, for any layerl of sizek′′ in the network,

δ
(l−1)
j =

k′′
∑

p=1

δ(l)p

∂y
(l)
p

∂net
(l)
p

w
(l)
pj (3.16)

Thus, for each layerl, we can compute the derivative and the SGD or mini-batch

update w.r.t. its parameters an compute the errorδ(l−1) backpropagated to the layers

below this one (if any).

3.3.3.1.2 A few tricks for training neural networks. Generally speaking, the weights

and bias terms for each layer are randomly initialized (again, there is no consensus on

what is an optimal value for the range of this random initialization, though uniform sam-

pling in the interval[−0.01, 0.01] is a good rule of thumb). Then, examples are selected

at random and a forward pass through the whole network provides the network output̂y.

The error can be computed and backpropagated in a top-down fashion and the network

parameters are updated using Equation (3.10). This process is usually repeated until a

specified number of epochs (≈ 100 is a good order of magnitude for our applications)

through the whole training set are completed, with either a constant or a slightly decreas-

ing learning rate hyperparameter.

Moreover, it is also generally a good idea to introduce a Gaussian prior with zero mean

on the weights of the network. This assumption is equivalentto adding a weight decay
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term to the cost function, that can be rewrittenE(W ) = ǫ(ŷ,y∗) + 1/2λW 2. Thus, for

any parameter of the network the update equation becomes:

w
(l)
ji ← w

(l)
ji −

α

|B|
∂ǫ(ŷ,y∗)

∂w
(l)
ji

− αλ

|B|w
(l)
ji (3.17)

In practice, this prevents the weights to reach extremal values, which can cause in-

stability of the network. Usuallyλ is set to a constant, very small value. Other methods

for preventing overfitting while training neural nets involve early stopping and dropout.

On the one hand, the former simply consists in reducing the number of training epochs

while the training error is still decreasing. While it is easyto qualitatively see why early

stopping can prevent the networks from overfitting on the training data, there are a num-

ber of papers in the literature [75] that shows that it can be seen as some sort of Tikhonov

regularization [102]. Dropout [82] or dropConnect [94], on the other hand, consists in ran-

domly setting a fraction (usually one half) of the neurons’ weights during the forward and

backward pass for each SGD or mini-batch update. It has been shown by the authors in

[82] to behave as an extreme form of Bagging [10], effectively preventing co-adaptations

in the network, which in turn limits overfitting issues.

3.3.3.2 Autoencoders

Autoencoders are a special kind of neural network where the output vector is a reconstruc-

tion of the input, as illustrated on Figure3.6. Thus, the output of the network has the same

size as the input. The hidden layer can be smaller than the input, in which case the au-

toencoder essentially performs a non-linear dimensionality reduction. This is sometimes

refered to as an under-complete representation of the input. In that case, as compared

to PCA [43], autoencoders benefit from a more efficient training procedure that involves

SGD and error backpropagation (Section3.3.3.2.1). Manifold forests [20] are another

method for non-linear encoding and manifold learning. However, the construction of a

manifold forest assume that the data distribution of each node is unimodal with a Gaussian

prior. It require the computation of the determinant of the covariance matrix to estimate

the volume of the hyper-ellipsoid. This causes low-rank deficiency problems when deal-

ing with high-dimensional inputs. Last but not least, autoencoders can be used to learn
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Figure 3.6: Architecture of an autoencoder

over-complete reprensentation (i.e. if the hidden layer is larger than the input), that can be

made more robust thanks to the introduction of a specific reconstruction criterion (Section

3.3.3.2.2).

3.3.3.2.1 Unsupervised training via a reconstruction criterion. As with standard

NNs, autoencoders are trained by applying a sequence of SGD (or mini-batch) updates

using backpropagation of an error criterion. However, as the output representation̂x of

an examplex does not depend on a ground truth labelling, the error can be computed in

an unsupervised way by using theL2-loss between the input and its reconstruction:

E(W ) = ||x̂− x||22 (3.18)

In this equation, recall thatx is the clean input version and̂x is a reconstruction

provided by the autoencoder from anoisyinput. In order to provide a non-linear encoding

of the input, we generally use a non-linear hidden layer parametrized by weight matrixw

and bias vectorb:

y = σ(w.x+ b) (3.19)
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Another trick to restrain the number of parameters of the autoencoder is to usedtied

weights,i.e. the decoding weight matrix is the transpose of the encoding matrix. With

that regularization, an affine decoder is given by:

x̂ = w
T .y + c (3.20)

With c being the decoder weight vector. The parameter updates can be computed

easily using Equations3.10, 3.11 and 3.16 (or 3.17). Furthermore, the cost function

E(W ) can be enhanced to impose a particular structure on the intermediate representation

provided by the hidden layer.

3.3.3.2.2 Regularization schemes.There exists a wide number of regularization schemes

for autoencoders. In this section we briefly review some of the most popular ones, with an

emphasis on the denoising criterion [91] that we will use in Chapter5 for face analysis.

It consists in generating a randomly corrupted versionx̃ of each training examplex, by

adding either masking noise (i.e. a randomly chosen fraction of the input dimensions is set

to 0), salt-and-pepper noise (i.e. a randomly chosen fraction of the input dimensions is set

to 0 or 1) or gaussian additive noise with mean zero and spreadσ (i.e. x̃ ∼ x+N (0, σ2)).

The cost function thus becomes:

E(W ) = ||x̂− x||22 (3.21)

This means that the network is trained to reconstruct thecleanversion of the inputx

knowing only a randomly corrupted versionx̃. From a manifold learning perspective, this

allows to learn more robust intermediate representations by projecting back examples that

lie further from the manifold. It can also be seen as a way to prevent co-adaptation of the

units, similarly to dropout (see Section3.3.3.1.2).

Others popular regularization schemes involves thek-sparse autoencoder [60], which

consists in selecting thek larger values (at train and test time) among the hidden layer

activations, zeroing out the others. This is generally usedalong with large numbers of

hidden units to generate sparse, over-complete representations. An alternative approach

is the contractive autoencoder [70], which consists in penalizing the Frobenius norm of
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the Jacobian of the non-linear mapping. This encourages low-valued (flat) derivatives

which implies robustness to small variations of the input, similarly to what is done with

denoising autoencoders though in a more explicit way.

3.3.3.3 Convolutional neural networks

Convolutional Neural Networks (CNNs [52]) are NNs whose structure is adapted for sig-

nal processing in general, and image processing in particular. As illustrated on Figure3.7,

the major difference with regular NNs introduced in Section3.3.3is that the weights of

CNN layer are shared across one or more dimensions of the inputsignal.

Figure 3.7: Shared weights across the input dimensions. Arrows with similar colors (blue,

green and red) are associated with the same shared weights. Best viewed in color.

If the inputx(l) of a CNN layerl is an image, its outputy(l) can also be seen as a

collection of images (often refered to as feature maps) which are obtained by “scanning”

the pixels ofx(l) with the units’ weights (symbolized by red, green and blue arrows on

Figure3.7). Hence, those weights act as filter kernelsw
(l)
k we can write:

y
(l)
k = σ(

∑

j

x
(l)
j ∗ w(l)

kj + b
(l)
k ) (3.22)

Everything is thus similar to the equations of generic feed-forward neural networks
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introduced in Section3.3.3.1, except that the net output of the layer is computed as a

(valid) convolution product between kernelsw(l)
kj and input channelsx(l)

j , instead of a

scalar product. Also, the bias termb(l)k is propagated to the whole feature mapk. Figure

3.8provides an example of a CNN architecture for image classification. Typically, a CNN

architecture is composed of alternated convolutional and max-pooling layers that operate

on small non-overlapping regions (generally2× 2, 3× 3 or 4× 4 for very large images).

Alternatively, one can use other forms of pooling such as mean-pooling,L2 or stochastic

pooling [105]. This pooling step is used to create position invariance over local regions as

well as to reduce subsequent computation time by progressively downsample image size

throughout the network layers. The last layers of the network are generally basic feed-

forward prediction layers that are also called fully-connected (FC) layers - see Section

3.3.3.

Figure 3.8: An example of CNN architecture for image classification. Credits to the

Stanford “Convolutional Neural Networks for Visual Recognition” course for the pictures.

Similarly to regular feed-forward neural networks, the parameter update for kernel

w
(l)
ji of layerl is given by:

∂ǫ(y(l),y∗)

∂w
(l)
ji

= upsample(δ
(l)
j ) ∗

∂y
(l)
j

∂w
(l)
ji

(3.23)

With * the valid convolution operator andupsample the “inverse” of the pooling op-

erator (in the case of max pooling, we need to keep track of thepositions of the maxima).

The error backpropagated from layerl to layerl − 1 becomes:
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δ
(l−1)
i =

k′′
∑

p=1

upsample(δ(l)p

∂y
(l)
p

∂net
(l)
p

) ∗ w̃(l)
pi (3.24)

Where * is, this time, the full convolution operator (valid convolution with zero

padding of the borders). The goal is thus to create a pyramid of gradually abstracted rep-

resentations of the input image (as can be seen on Figure3.8, the bottom layers usually

learn Gabor wavelet-like edge detectors while the top CNN layers learn more sophisti-

cated object detectors), by learning the prediction and representation stages in a unified,

top-down fashion. Ideally, learning deep image representations using CNNs allows to

avoid the use ofad hoc, hand-crafted representations such as SIFT or HOG. However,

it also involves a lot of hyperparameter tuning, from the network architecture (e.g. the

number of CNN/FC layers, the number and size of each layer kernel, the maxpool type

and window size, or the weights’ initialization) to the training hyperparameter (learning

rate, weight decay, batch size). Furthermore, other machine learning algorithms can be

used for the prediction stages, such as Support Vector Machines [86] or the recent Neural

Decision Forests [48].

3.3.4 Randomized Decision Trees

Randomized Decision Trees, also refered to as Random Forests (RFs) are a popular ma-

chine learning framework introduced in the seminal work of Breiman [11]. In this section,

we draw a non-exhaustive overview of the method, starting with the basic idea of growing

a single decision tree to predict new data (Section3.3.4.1), and highlighting the interest

of learning collections of multiple randomized tree predictors, regarding some nice prop-

erties of RF w.r.t. overfitting on the training data as well as its generalization capacities

on new data. We also show how the RF framework can be straightforwardly adapted for

multiclass classification problems as well as regression tasks, with an emphasis on class

balance issues.
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3.3.4.1 A single decision tree

Without loss of genericity, a generic binary decision tree can be recursively described by

a noden, which is either called a terminal node, or a split node, as shown on Figure3.9.

If noden is terminal (depicted with green arrows on Figure3.9), then it is associated a

terminal distribution, which consists in either an assignment probabilityp(c|x) for each

classc ∈ {1, ..., C} in case of a classification task, or to a prediction valueŷ in case of

a regression task. On the flip side, if noden is not terminal, it is called a split node (flat

gray nodes on Figure3.9) and contains a parametric split functionφn associated with a

thresholdθn, and the address of left and right subtrees w.r.t. noden.

Figure 3.9: A single decision tree

Given an inputx = (x1, ..., xk)
T , the split function associated to noden controls ifx

will be routed to the left or to the right subtree w.r.t. noden. Formally, the split is defined

as a binary function:
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δn(x) =







1 if φn(x) > θn

0 otherwise.
(3.25)

With the conventionx goes to the left ifδn(x) = 0, and to the right ifδn(x) = 1.

Thus, generally speaking we can write the output probability that a decision tree outputs

classc as:

p(c|x) =
∑

l

µl(x)pl(c) (3.26)

With pl(c) the prediction outputted by leaf nodel andµl(x) the probability to reach

leaf nodel. For a regression task, we have:

ŷ =
∑

l

µl(x)ŷl (3.27)

In the case of a classical decision tree (Equation (3.28)), there is exactly only one non-

zeroµl(x) coefficient, depending on a hard path that inputx takes in the tree. Formally,

for each leafl a path to the trees can be defined as two setsN left
l andN right

l of nodes

n for which l respectively belongs to the left and right subtrees defined under noden. A

hard path through the tree down to leafl can thus be defined as a product of Kronecker

deltasδn(x) for each noden ∈ N right
l , and1− δn(x) for each noden ∈ N left

l .

µl(x) =
∏

n∈N right
l

δn(x)
∏

n∈N left
l

(1− δn(x)) (3.28)

The split functionφn can be of two kinds: first, it can look at only one dimension of

the input vector:

φn(x) = xj (3.29)

In that case, we refer to it as axis-aligned splits. Alternatively, it can consist in a linear

combination of a number of input dimensions:

φn(x) =
k

∑

j=1

βjxj (3.30)
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In such a case, the splits are called oblique splits. Moreover, in certain cases, the

input dimensions cannot be explicitly represented in memory, as the potential number of

combinations may be two important (consider, for example, the case where we want to

take as features a number of triplets of pixels in an image). In those cases, as it will be

shown in what follows, axis-aligned split candidates can begenerated on-the-fly from the

source data itself (e.g. the image in this case). Thus, growing a decision tree amounts

to find successive “good” hyperplanes (i.e. split functions) that separate the training data

from the different classes.

We now aim at growing a decision tree uponN examplesX = {xi,j}i=1,...,N,j=1,...,k

and corresponding class label vector(c1, ..., cN )
t with ci ∈ {1, ..., C}∀i ∈ {1, ..., N}.

There exists a number of variants for the induction of decision trees. Perhaps the most

popular one is the ID3 algorithm proposed by Quinlan [67]. In the case of a classifica-

tion task, for each noden starting from the root node (node1 on Figure3.9), it consists in

evaluating, for each possible split candidate{φn, θn}, an impurity criterionH(φn, θn) rel-

atively to the induced partition of the data. More specifically, for each split candidate, the

input data at noden either goes to the left or to the right subtree and the class repartition

{rl1, ..., rlC} and{rr1, ..., rrC} for those respective subtrees can be computed accordingly.

For classification, the impurity criterionH is thus computed either as Shannon entropy:

H(φn, θn) =
C

∑

c=1

−rlclog(rlc) +
C

∑

c=1

−rrc log(rrc) (3.31)

or as Gini impurity measurement:

H(φn, θn) =
C

∑

c=1

rlc(1− rlc) +
C

∑

c=1

rrc(1− rrc) (3.32)

In the case of a regression task, we seek to minimize the variance of the subtrees in

term of the ground truth predicted valuey∗i of elements that belong to either left or right

subtrees:

H(φn, θn) =

∑

i∈Ln

(y∗i − ȳl)2

2|Ln| +

∑

i∈Rn

(y∗i − ȳr)2

2|Rn| (3.33)

WhereLn andRn are the set of examples that goes to the left and right subtrees
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induced by split candidate{φn, θn}, respectively. Recall that those are defined asLn =

{i ∈ [|1, N |]/δn(xi) = 0} andRn = {i ∈ [|1, N |]/δn(xi) = 1}. Finally, ȳl andȳr are the

mean predicted value from examples that belongs to those ensembles.

In order to avoid overfitting, in the case of a single decisiontree, it is generally nec-

essary to use some form of early stopping, for example by stopping the node splitting

process either when the number of examples falling into a specific node becomes lower

than a specific value, or when the information gain (the difference between the purity of a

node and the average purity of its children) is below a threshold. In that case, a leaf node

is set, which contains the class distribution of examples falling into this node. Similarly

to neural networks (see Section3.3.3), decision trees offer the advantage to potentially be

able to model complex functions by setting non-linear subdivisions of the input space un-

der the form of successive hyperplanes. Furthermore, the evaluation runtime is very low

as a low number (i.e. logarithmic on the number of nodes) of nodes are actually evaluated

for a given test example, especially when one considers axis-aligned splits. However, as

is, they suffer from a number of drawbacks. First, contrary to neural nets, the training

is essentially performed offline. Secondly, they tend to strongly overfit on the training

data which is particularly relevant for computer vision tasks, as the data is generally high-

dimensional with a lot of noisy, irrelevant features. This,in turn, limits the capabilities of

decision trees to generalize on unseen data to a significant extent.

3.3.4.2 Ensemble of randomized trees

In order to highlight the limitations of using a single decision tree for classification, we

propose a small benchmark on thespiral dataset. It consists in approximating two non-

overlapping spirals in a two-dimensional space, by having only access to a restricted

number of data points. Thus, we aim at generating classification models that encapsulate

the spiral structure by providing only a restricted set of binary labelled coordinates. Those

results are illustrated on Figures3.10, 3.11, 3.12and3.13. On the one’s hand, we can see

on Figure3.12that with10000 points the spiral is globally well “understood” by a single

decision tree, even though some details are missing. Furthermore, it has a very coarse

aspect with square borders, which is due to the limitations of using a single axis-aligned
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split decision tree for classification. Moreover, looking at Figure3.10, one can see that

the spiral aspect is not satisfying when the tree is grown using less training data (e.g.

2000 points). This illustrates the limited generalization capacity of a single decision tree

trained on restricted amount of data.

On the other hand, Figures3.11and3.13are obtained by using an ensemble of50 ran-

domized decision trees, upon2000 and10000-points datasets, respectively. The procedure

for generating such tree collections will be detailed more in-depth within the following

sections. Note that the spiral aspect is globally better understood by the models, especially

when the number of points is low. This illustrates the fact that ensemble of randomized

trees are in general more robust to label noise and less proneto overfitting than single

decision trees.
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Figure 3.10: Spiral approximation using a

single decision tree (2000 data points)
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Figure 3.11: Spiral approximation using 50

randomized trees (2000 data points)

3.3.4.2.1 Enhancing prediction accuracy with perturb and combine approaches

In order to obtain a more accurate model, it is common in the machine learning litera-

ture to gather a set of individually weak, but somehow complimentary, predictive models.

Notorious examples of this paradigm are Boosting [30], Bagging [10] and Random Sub-

space [38]. RF associates two of the aforementioned methods to significantly increase the

prediction accuracy of decision trees. Those methods are illustrated on Figure3.14.

It has been proven by Breiman in [11] that an upper bound of the generalization error

55



−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Figure 3.12: Spiral approximation using a

single decision tree (10000 data points)
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Figure 3.13: Spiral approximation using a

50 randomized trees (10000 data points)

Figure 3.14: Ensemble of Randomized decision trees. Blacked out squares indicate un-

used data, as opposed to white ones. Top row: Bagging: each tree is grown upon a

restricted bootstrap of the training data. Middle row: random subspace (RS): each tree is

grown using only a subset of the input features. Bottom row: Random Forest (RF) each

tree is grown using only a subset of the training data and input features.

for RFs is given by the ratioρ/s2, wheres denotes the average strength of the individual

trees, andρ denotes the correlation between these. Thus, the smallerρ, and the highers,

the higher the accuracy of the forest becomes. Generally speaking, adding randomness

allows to decrease the correlation between the trees, whichin turn increases the predic-

tion accuracy. As explained on Figure3.14, the most common frameworks to generate
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ensemble of randomized trees involve Bagging (top row), which consists in growing the

trees upon bootstraps that are randomly sampled with replacement from the whole train-

ing corpus. Another approach is Random Subspace (RS - middle row), in which only a

subset of dimensions from the feature vector that corresponds to each example is used.

Ultimately, Random Forests (RF) consists in using both bagging and random subspace

methods,i.e. training each tree with a reduced subset of examples and dimensions. The

prediction for the whole forest is thus given by:

p(c|x) = 1

T

T
∑

t=1

pt(c|x) (3.34)

in case of a classification forest, or

ŷ =
1

T

T
∑

t=1

ŷt (3.35)

for a regression task. In these equations,pt(c|x) and ŷt respectively denote the pre-

dicted probability for classc and regressed value outputted by a treet of the forest. As a

result, RFs are generally more robust to noisy and irrelevantfeatures, as well as outliers

within the training corpus, as compared to using a single decision tree trained using a

deterministic method. They are also less prone to overfitting on the training data, as the

recombination of multiple, independently weaker models allows to generate a smoother

partition of the input space. It is stated in [7] that ensembles of randomized trees can be

seen as one layer deeper as single decision trees, hence a more expressive and powerful

prediction framework. It is illustrated on Figures3.11and3.13, that were generated using

RFs with50 trees, each one grown on an uniformly-sampled66% bootstrap of the input

data, and using only1 among the2 coordinates for splitting.

3.3.4.2.2 Popular variants. There exists a number of RF variants that may differ from

each other w.r.t. when to set a leaf or a split node, how the split candidates are selected

or how the leaf predictions are computed. In Breiman’s original RF [11], trees are grown

upon bootstraps that each contains approximately66% of the examples. It also uses axis-

aligned splits and, although there is no value for the numberof dimensionsk′ that can

be examined at each node, usuallyk′ =
√
k is a good rule of thumb. Thresholdsθn
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are optimally chosen for each dimension. In Extremely Randomized Trees [32] (ERT-k′

with k′ being the number of dimensions that are looked up for settingeach split node) the

difference with RF is that the thresholdsθn are randomly selected. Thus for ERT-1 (which

is sometimes referred to asTotally Randomized Trees) the splits are set independently of

the labels. Moreover, in order to bring the decorrelation between the trees to another

level, as in [80], one may choose to generate different random subspaces at each split

node rather than for each separate tree.

Breiman [11] also suggests not to use early stopping. The rationale behind that is

that even though individual trees may overfit on the trainingdata (i.e. the corresponding

bootstraps), this phenomenon is compensated by the post-hoc combination of predictions.

Moreover, an interesting feature of RFs is that its accuracy does not rely to much on the

hyperparameter setting, making it relatively easy (e.g. compared to neural networks) to

find a suitable parametrization. Indeed, a setting that causes an decrease of the individual

tree predictive strengths (e.g. decreasing the number of featuresk′ for setting the split

nodes, or decreasing the bootstrap sizes) may have the opposite effect on the correlation

between the treesρ, compensating the accuracy loss.

3.3.4.2.3 Dealing with imbalanced data. There are multiple ways to adapt the RF

framework to train on imbalanced data. This section aims at providing a very coarse

overview of what can be used for that purpose. For more thorough benchmarks and

comparisons between the different approaches, the reader shall refer to [14]. The first

possibility to overcome class imbalance is to assign to eachclass a weight that is used (a)

to weight the contribution of each class during the computation of the impurity criterion

and (b) to weight the probability distribution that is stored within the leaf nodes. How-

ever, there is no consensus on how those weights can be automatically set in the general

case, thus this method may involve an additional hyperparameter setting. An alternative

approach is to either apply upsampling of the minority classes, or downsampling of the

majority classes, in order to enforce class balance within the bootstraps. As stated in [14],

downsampling has a slight edge in the general case compared to upsampling and explicit

class weighting when in comes to prediction accuracy. Furthermore, as the bootstraps are
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essentially smaller, it is also significantly faster. Thus,in what follow, we will stick to

downsampling for the purpose of ensuring class balance.

3.3.4.2.4 Out-of-bag error estimate. The Out-of-bag (OOB) error is an error esti-

mate that is specific to ensemble methods. For RFs, it consistsin evaluating each tree

only on data that was not used to grow that tree (i.e. that does not belong to the corre-

sponding bootstrap). As stated by Bylanderet al. [13], the OOB estimate is generally

more pessimistic than traditional cross-validation (e.g.5 or 10 fold) error estimates. It is

also, for instance,10 times faster to evaluate than implementing a10-fold evaluation. For

FER, in order to evaluate the RFs in a subject-independent fashion, we associate an ID to

each subject. During training, we then generate bootstrapsat the ID level and test each

tree on the subjects that were not included in the corresponding bootstrap, hence a valid

subject-independent error estimate.

3.3.5 Neural Decision Forests

3.3.5.1 Soft trees with probabilistic routing

Figure 3.15: A single neural tree. Contrary to hard decision trees, an examplex reaches

each node of the tree with probabilityµn ∈ [0, 1]. Those probabilities are computed as

product of successive probabilistic splitsdn that correspond to a neuron activation.
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As illustrated on Figure3.15, Neural Decision Forests (NDFs) are a recent NN/RF

hybrid introduced in [48]. In the case of a NDF, the probabilityµn associated to each leaf

node is defined as a product of continuous split probabilities associated to each probabilis-

tic split noden (Equation (3.36)), that are parametrised by a Bernoulli random variable

dn ∈ [0, 1]. Taking the expected value for each node (which correspondsto an infinite

number of samplings from treet), an examplex goes to the right subtree associated to

noden with a probability given by the activation functiondn(x), and to left subtree with

probability1− dn(x).

µl(xi) =
∏

n∈N right
l

dn(x)
∏

n∈N left
l

(1− dn(x)) (3.36)

The activationdn(x) for noden is defined as a sigmoid function of the difference

between a combination of the dimensionsxj parametrised by vectorβn and bias−θn:

dn(x) = σ(
k

∑

j=1

βn
j xj − θn) (3.37)

Thus, the calculus ofdn(x) can be seen as the activation of a neuron layer with weights

{βn
j } and bias−θn. From a decision tree perspective, the successive activationsdn(x)

define a soft routing through the trees, where each leaf nodel is reached with probability

µl.

3.3.5.2 Online learning with recursive backpropagation

The prediction errorǫlt for a given classc and a leafl ∈ L of treet can be computed as the

Euclidean distance between the leaf predictionplt(c) and ground truth label probability

p⋆(c|x) = 1 if c = ci, 0 otherwise. The prediction error for the whole tree is thus equal

to:

ǫt(x) =
∑

l

µl(x)ǫlt (3.38)

Hence, for any parameterφn (i.e. a feature weightβn
j or the threshold valueθn), the

(non-regularized) parameter update is given by Equation (3.39) with αt the learning rate

hyperparameter for treet.
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φn ← φn − αt
∂ǫt(x)

∂φn
(3.39)

As in a standard neural network, the learning rate can be set to a constant valueα0

(or a decreasing function of the number of training epochs).Alternatively, as proposed

in [48], trees from the NDF can be randomly selected and updated, which can be seen as

some way to add diversity, similarly to dropout regularization [82], but at the tree level.

Formally,αt = α0 if t = t0 (0 otherwise) witht0 ∼ U[|1,T |]. Moreover, the derivatives of

ǫt can be calculated recursively, as it is illustrated on Figure3.16.

Figure 3.16: Error backpropagation on a single node of a NDF.The parameter update can

be computed by applying a recursive call to find the values of the errors for the left and

right subtrees, respectively denoted byǫn− andǫn+. Those quantities also give rise to the

error for noden ǫn.

Specifically, for a split noden we can split the sum in Equation3.38 in three, by

grouping the leaves that belong to the leftL(n) and right subtreesR(n), and those who

do not belong to those subtrees:

ǫt(x) =
∑

l∈L(n)
µl(x)ǫl +

∑

l∈R(n)

µl(x)ǫl +
∑

l /∈L(n),l /∈R(n)

µl(x)ǫl (3.40)

While the first and second term respectively depend on1− dn(x) anddn(x), the last

term does not depend at all on parameterφn. We can thus write the summation as:
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ǫt(x) = µn(x)(1− dn(x))ǫn−(x) + µn(x)dn(x)ǫn+(x) +
∑

l /∈L(n),l /∈R(n)

µl(x)ǫl (3.41)

With ǫn−(x) andǫn+(x) the errors respectively for the left and right subtrees. Thus, we

have:

∂ǫt(x)

∂φn
= µn(x)

∂dn(x)

∂φn
(ǫn+(x)− ǫn−(x)) (3.42)

With:











∂dn(x)
∂θn

= −dn(x)(1− dn(x))

∂dn(x)
∂βn

j
= xjd

n(x)(1− dn(x))

(3.43)

Moreover, the error up to noden is computed as:

ǫn = dn(x)ǫn+(x) + (1− dn(x))ǫn−(x) (3.44)

Once the trees are initialized, training samples are sequentially chosen from the data

(SGD or mini-batch) and a forward pass through the trees provides the values of the

probabilitiesµn(x) and activationsdn(x) for each noden. Parameters can thus be updated

using Equations3.39, 3.42and3.43. Those steps are summarized in Algorithm1. For

each noden, NDF backprop provides an update to the error that can optionally be

backpropagated up to the feature levelǫfeat by recursively callingNDF backprop on

the left and right subtrees, which respectively return the errors ǫn−(x) and ǫn+(x). The

prediction error is thus recursively backpropagated from the leaves up to the root of the

trees.

The authors of [48] suggest using a two-step iterative optimization scheme. First,

a forward pass through the trees provides the activationsdn(x) and probabilitiesµn(x)

for each node for one (SGD) or a batch of examples. Then, aftera specific number of

epochs, the leaf probabilities are updated following a convex optimization scheme while

the parameters for all the split nodes of the forests are fixed.
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Algorithm 1 NDF backprop

Input: examplex with label probabilityp⋆, noden with probabilityµn(x) and activation

dn(x), learning rateα

Output: backpropagated errorǫn(x), error backpropagated to the feature levelǫfeat(x)

if n is a leaf nodethen ǫn(x)← ||pn(x)− p⋆(x)||2

else

ǫn+(x)← NDF backprop(x,right(n),α) ⊲ recursive call on right subtree

ǫn−(x)← NDF backprop(x,left(n),α) ⊲ recursive call on left subtree

en(x) = µn(x)dn(x)(1− dn(x)).(ǫn+(x)− ǫn−(x)) ⊲ split node parameter update

βn ← βn − αxen(x)

θn ← θn + αen(x)

ǫfeat(x)← ǫfeat(x)− αβnen(x)

ǫn ← dn(x)ǫn+(x) + (1− dn(x))ǫn−(x)

end if

3.3.6 Evaluation protocols

In machine learning in general, it is common that the training error estimate reaches very

low values while the test error converges to a strictly positive value or, worse, increases

(see Section3.3.2). Thus, measuring the training error is not a good indicatorof the

performance of an automatic recognition system. From a faceanalysis point of view,

imagine we train an algorithm for aligning feature points orrecognizing the expressions

using only training instances that come from one specific subject. The learned models will

exhibit very low error on images that correspond to that subject, but will be completely

useless when applied to other subjects.

A more significant test would be to evaluate our algorithms onexamples that are not

used to train the algorithms. However, from the point of viewof designing an auto-

mated face analysis framework, the goal is to design a pattern recognition system that

can generalize well on the facial morphology of new subjects. Hence, we have to ensure

that the subjects that we evaluate our predictive models on are not used at training time.

Traditional cross-validation estimates can be generated at the subject level by assigning
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each subject a specific ID and generating the train/test partitions at the level of those IDs,

as it was detailled in Section3.3.4.2.4in the case of the OOB error estimate for bagged

classifiers. In what follows, we mainly evaluate RFs and NDFs using subject-independant

OOB and5/10-fold cross validation error estimates, and NNs5-fold cross-validation. Last

but not least, it is often interesting to evaluate the predictive models in a cross-database

fashion (i.e. training on one database and testing on another one) in orderto evaluate the

capabilities of the algorithms to generalize on new environmental conditions (i.e. studying

on how an expression recognition system trained on lab-recorded data with near-frontal

head poses can perform in less controlled conditions).
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Chapter 4

Pairwise Conditional Random Forests

4.1 Overview

As stated in Section2.2.1, it is generally easier for a human observer to distinguish be-

tween the different expressions if one has access to the evolution of the face over time.

However, effectively extracting suitable representations from spatio-temporal video pat-

terns is a challenging problem as expressions may occur withvarious offsets and at dif-

ferent paces. There is no consensus either on how to combine those representations flex-

ibly enough so as to generalize on unseen data and possibly unseen temporal variations.

Towards this end, we introduce Pairwise Conditional Random Forest (PCRF) algorithm,

which is a new formulation for training trees using low-level heterogeneous static (spatial)

and dynamic (spatio-temporal derivative) features withinthe Random Forest (RF) frame-

work. Conditional Random Forests have recently been used by Dantoneet al. [22] as

well as Sunet al. [84] in the field of facial alignment and human pose estimation, respec-

tively. The authors of these papers generated collections of trees for specific, quantized

values of a global variable (such as head pose [22] and body torso orientation [84]) and

used prediction on this global variable to draw dedicated trees, resulting in more accurate

predictions.

The basic idea developped in this chapter is to integrate spatio-temporal information

under the form of transition classification in order to perform FER from video sequences.

As shown on Figure4.1, on the one hand, a static classifier (blue arrow) only use cues
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relative to the current frame for which we want to predict thefacial expression. On the

other hand, the prediction outputted by our PCRF method is the combination of multiple

transition classifications (green arrows). Those transitions are evaluated on pairs of im-

ages drawn from multiple time gaps in the sequence (n− n3 andn, n− n2 andn as well

asn − n1 andn on Figure4.1). We will explain, in what follows, that, from a Random

Forest perspective, it can be seen as extending the set of features that is used to grow the

trees, effectively increasing individual tree strength aswell as increasing decorrelation

between the trees. The upside of the proposed approach is that it is fairly flexible, e.g. it

is independent of the pace at which the expression is displayed (as compared to the use

of descriptors designed on spatio-temporal volumes), and do not require temporal con-

sistency of the sequences for training and testing (as compated to e.g. Hidden Markov

Models).

Figure 4.1: Transition (green) vs static (blue) classification.

Moreover, we propose to condition pairwise trees on specificexpression labels to

reduce the variability of ongoing expression transitions from the first frame of the pair to

the other one.In Extenso, a head pose estimate can be used to draw trees from Multi-View

PCRF (MVPCRF) collections to perform pose-robust FER.

This chapter is organized as follows: in Section4.2we describe our adaptation of the

RF framework to learn expression patterns on still images from high-dimensional, hetero-
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geneous (geometric/appearance) features. In Section4.3we present the PCRF framework

for capturing spatio-temporal patterns that represent facial expressions. In particular, Sec-

tion 4.3.1illustrates how we can generate a pairwise dataset using available data. Section

4.3.2highlights how we extend the pool of static features to capture (pairwise) dynamic

information. In Section4.3.3we present the extension of traditional tree combination for

averaging over time pairwise trees. In Section4.4 we present an extension of PCRF for

multi-view FER, with an emphasis on the preparation of a multi-view dynamic database

for training and testing the models (Section4.4.2) and on the evaluation of a sequence

using MVPCRF models (Section4.4.1). Finally, In Section4.5we show how our PCRF

algorithm improves the accuracy on several FER datasets compared to a static approach

as well as to state-of-the-art approaches. In Section4.5.2we report results from frontal

view FER and in Section4.5.3we report accuracy for non frontal head poses, showing

that our MVPCRF formulation substantially increases the robustness to pose variations.

In Section4.5.4we report the ability of our framework to run in real-time. Finally, in

Section4.5.5we discuss the interest of the proposed approach for real-time multi-view

dynamic FER.

4.2 A static RF approach for FER

In order to perform static FER from still images, we adapt theframework presented in

Section3.3.4.2in two main aspects: the bootstrap generation and the candidate feature

selection process.

4.2.1 Bootstrap generation

We use a subject-wise bootstrap generation procedure for RF induction, as discussed in

Section3.3.4.2.4. More specifically, we assign each subject from a set of subjects S
a specific ID. Then, for each tree, we start with an empty bootstrap and sample with

replacement on the vector of subject IDs until a specific fraction of elements (usually

66%) is added to the current bootstrap. From that point, we construct the index of OOB

IDs simply by looking at the subjects’ IDs that were not included in the bootstrap. Then,
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we downsample the bootstrap iteratively, by removing at each step an element uniformly

sampled from the majority class until all expression classes are represented by the same

amount of elements (i.e. the lowest among all the classes). The rationale behind sampling

at the ID level is that we want each subject morphology to influence the prediction on

a equal foot regarding the number of annotated data for that subject (e.g. for certain

datasets, one ID can correspond to only one frame whereas another one may give rise to

ten times more samples). The downsampling step also allows to fight class imbalance

at the tree level. Finally, it also allows to use OOB error estimate as a valid subject-

independent error metric, which is more convenient for evaluating our algorithms than

more traditional cross-validation or leave-one-subject-out estimates.

4.2.2 Heterogeneous feature templates

As stated in Section3.2, the information contained in geometric and appearance features

is somewhat complementary. Moreover, as described in Section 3.3.4.2, collections of

randomized trees benefit from using diverse information on the data, that in turns produces

more decorrelated predictions from the individual trees. Following this idea, we grow

trees using a combination of geometric and appearance feature templatesφ(1) (Section

3.2.2), φ(2) (Section3.2.3), φ(3) (Section3.2.4.1).

During the RF induction step, for each node a number of split candidates are generated

on-the-fly using one of the proposed feature templates with parameters sampled from a

uniform distribution over their respective variation range. Namely, if we have a set of49

feature points aligned on the face image (which correspondsto a mesh of79 triangles),

and we generated9 feature channels (8 orientations plus gradient magnitude), we have

for templateφ(1)
a,b a, b ∼ U [|1, 49|]. For templateφ(2)

a,b,c,λ: a, b, c ∼ U [|1, 49|], λ ∼ U [|0, 1|].
Finally, for templateφ(3)

τ,ch,s,α,β,γ we useτ ∼ U [|1, 79|], ch ∼ U [|1, 9|], s ∼ U [0.1, 0.4]
(recalls is multiplicated by the inter-ocular distance),α, β, γ ∼ U [0, 1]. Note that for the

outer triangles (i.e. on the edge of the mesh) we instead sample the barycentric coordi-

natesα, β, γ ∼ U[−1,1] in order to allow the sampling of the texture from outer regions

(e.g. forehead, cheeks and chin). Each of these candidate features is associated to a set of

thresholds{θi}i=1,...,|Θ| to produce a binary split candidate. More precisely, the variation

68



range of each feature template is estimated beforehand and the candidate thresholds are

uniformly sampled within that interval.

4.3 Pairwise Conditional Random Forests

4.3.1 Pairwise conditional tree collections

In this section we now consider pairs of images (I ′, I) to train treest that aim at outputting

probabilitiespt(c|I ′, c′, l′) of observing labelc(I) = c given imageI ′ and subject to

c(I ′) = c′, as shown in Figure4.2. More specifically, for each treet among theT trees

of a RF dedicated to transitions starting from expression label c′, we randomly draw a

fraction of subjects̃S ⊂ S. Then, for each subjects ∈ S̃ we randomly draw imagesI ′s
that specifically have labelc′. We also draw imagesIs of every labelc and create the pairs

(I ′s, Is) with label c. Note that the individual trees do not encode any sort of temporal

evolution of the expressions, but rather differential information between pairs of images.

In fact, two images of a pair need to belong to the same subject, but not necessarily to the

same video. Indeed, we create pairs from images sampled across different sequences for

each subject to cover all sorts of ongoing transitions. As weexplained in Section4.2.1,

we then balance the pairwise bootstrap by downsampling the majority class w.r.t. the

pairwise labels. Eventually, we grow treet similarly to what we did in Section4.2. The

PCRF training algorithm is summarized in Algorithm2.

4.3.2 Heterogeneous derivative feature templates

As shown on Figure4.3, candidates for splitting the nodes are generated from an extended

set of6 feature templates{φ(i)}i=1,...,6, three of which being the static features described

in Section4.2, that are applied to the second imageI of the pair (I ′, I), for which we

want to predict facial expressions. The three remaining feature templates are dynamic

features defined as the derivatives of static templatesφ(1), φ(2), φ(3) with the exact same

parameters. Namely, we have:
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Algorithm 2 Training a PCRF

input: imagesI with labelsc, number of candidate features{k(i)}i=1,...,6 for templates

{φ(i)}i=1,...,6

for all c′ ∈ C do

for t = 1 to T do

randomly draw a fractioñS ⊂ S of subjects

pairs← {}
for all s ∈ S̃ do

draw samplesI ′s with labelc′

draw samplesIs for each labelc

create pairwise data (I ′s, Is) with labelc

add element (I ′s, Is) to pairs

end for

balance bootstrappairs with downsampling

create new root noden

call treeGrowing(pairs,n,{k(i)}i=1,...,6)

end for

end for
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Figure 4.2: Exemple of pairwise tree collections for3 basic expression classes. Expres-

sion probability predictions of previous images are used tosample trees from dedicated

pairwise tree collections (one per expression class) that are trained using subsets of the

(pairwise) training dataset, with only examples of ongoingtransitions from a specific ex-

pression towards all classes. The resulting forest thus outputs an expression probability

for a specific pair of images.







































































φ
(1)
a,b(I ′, I) = φ

(1)
a,b(I)

φ
(2)
a,b,c,λ(I ′, I) = φ

(2)
a,b,c,λ(I)

φ
(3)
τ,ch,s,α,β,γ(I ′, I) = φ

(3)
τ,ch,s,α,β,γ(I)

φ
(4)
a,b(I ′, I) = φ

(1)
a,b(I)− φ

(1)
a,b(I ′)

φ
(5)
a,b,c,λ(I ′, I) = φ

(2)
a,b,c,λ(I)− φ

(2)
a,b,c,λ(I ′)

φ
(6)
τ,ch,s,α,β,γ(I ′, I) = φ

(3)
τ,ch,s,α,β,γ(I)− φ

(3)
τ,ch,s,α,β,γ(I ′)

(4.1)

As in Section4.2, thresholds corresponding to the derivative featuresφ(4), φ(5), φ(6)

are drawn from uniform distributions with new dynamic template-specific ranges esti-

mated from the pairwise dataset beforehand. Also note that,as compared to a static RF,

a PCRF model is extended with new derivative features that are estimated from a pair of

images. When applied on a video, predictions for several pairs are averaged over time in

order to produce robust estimates of the probability predictions.
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Figure 4.3: Static (left) and pairwise (right) feature templates.

4.3.3 Model averaging over time

We denote bypn(c) the prediction probability of labelc for a video frameIn . For a

purely static RF classifier this probability is given by Equation (4.2):

pn(c) =
1

T

T
∑

t=1

pt(c|In) (4.2)

In order to use spatio-temporal information, we apply pairwise RF models to pairs of

images (Im, In) with {Im}m=n−N,...,n−1 the previous frames in the video. Those pairwise

predictions are averaged over time to provide a new probability estimatepn that takes into

account past observations up to framen. Thus, if we do not have prior information for

those frames the probabilitypn becomes:

pn(c) =
1

NT

n−1
∑

m=n−N

T
∑

t=1

pt(c|Im, In) (4.3)

In what follows, Equation (4.2) and Equation (4.3) will be referred to as thestaticand

full models, respectively. Trees from the full model are likely to be stronger that those

of the static one since they are grown upon an extended set of features. Likewise, the

correlation between the individual trees is also lower thanks to the new features as well as

the averaging over time. However, spatio-temporal information can theoretically not add

much to the accuracy if the variability of the ongoing transitions is too large.

In order to decrease this variability, we assume that there exists a probability distribu-

tion pm0 (c
′) to observe the expression labelc′ at framem. Note that those probabilities can

be set to purely static estimates (which is necessarily the case for the first video frames)

or dynamic predictions estimated from previous frames. A comparison between those
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approaches can be found in Section4.5.2.1. In such a case, for framem, pairwise trees

are drawn from the tree collections (each one being conditioned to one expression label

for the first frame of the pair) by sampling the distributionpm0 , as shown in Figure4.4.

More specifically, for each previous framem and expression labelc′, we randomly se-

lectNm(c′) trees over a PCRF model dedicated to transitions that start from expression

label c′, trained with the procedure described in Section4.3.1. We denotept(c|c′) the

probabilities outputted by a pairwise treet conditioned on labelc′. Equation (4.3) thus

becomes:

Figure 4.4: Averaging over time pairwise tree collections.For each previous frame in the

sequence, trees are sampled from PCRF collections based on an expression probability

prediction for those frames. the prediction probabilitiesoutputted by those pairwise mod-

els are averaged over time to provide an estimate for currentframe that takes into account

the (pairwise) dynamics of the expression.

pn(c) =
1

NT

n−1
∑

m=n−N

∑

c′∈C

Nm(c′)
∑

t=1

pt(c|Im, In, c′) (4.4)
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WhereNm(c′) ≈ Tpm0 (c
′) andT =

∑

c′∈CNm(c′) are the number of trees dedi-

cated to the classification of each transition, which can be set in accordance with CPU

availability. In our experiments, we will refer to Equation(4.4) as theconditional model.

This conditional formulation helps to reduce the variability of the derivative features for

each specialized pairwise RF. When predicting expression fora frame of a video, we can

effectively use robust sequence-level expression estimates by averaging over time predic-

tions conditioned on multiple, independent previous frames. Section4.5shows that using

PCRF models for FER leads to significant improvements over bothstatic and full models.

4.4 Multi-view extension for Pose-Robust Facial Expres-

sion Recognition

4.4.1 Averaging over time multi-view classifiers

In order to design a pose-robust recognition framework, we propose to condition the mod-

els described in Section4.3.3w.r.t a head pose estimateω(In) for framen. For that matter

we quantize the pose spaceΩ in k = Γ × B pose bins{Ωi = Ωγi,βi
}i=1,...,k, that are de-

fined around yaw and pitch anglesγi andβi, respectively. We can thus rewrite Equation

(4.2) as a static multi-view model (MVRF):

pn(c) =
1

T

∑

Ωi∈Ω

N (Ωi)
∑

t=1

pt(c|In,Ωi) (4.5)

At framen, the head poseω(In) is estimated first using an off-the-shelf posit algo-

rithm [23]. Then, for each pose binΩi, a numberN (Ωi) of trees are selected based on

a pose sampling probability distributionPΩi
(ωn) that we construct from the training data

repartition, as it will be explained in Section4.4.2. This is illustrated on Figure4.5.

For that matter, we adapt Equation (4.4) by conditioning the expression-conditional

model on pose estimationω(In) (Equation (4.6)):

pn(c) =
1

T

n−1
∑

m=n−N

∑

Ωi∈Ω

∑

c′∈C

Nm(c′,Ωi)
∑

t=1

pt(c|In, Im,Ωi, c
′) (4.6)
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Figure 4.5: Flowchart of the MVPCRF method for FER. When evaluating a video frame

indexed byn, pairs are created between this current frame and previous framesn−m1, n−
m2, .... Randomized trees trained upon a pairwise dataset are then drawn conditionally to

head pose estimation as well as expression probabilities for the previous frames. Finally,

predictions outputted for each pair are averaged over time to give rise to an expression

probabilitypn for the current frame. This prediction is used as a tree sampling distribution

for classifying the following frames. Best viewed in color.

In what follows, we refer to this model as themulti-view PCRF(MVPCRF) model.

In this formulation, for computing the pairwise probability between framesn andm, we

first estimate the head pose for framen. Then, for each pose binΩi and expression label

c′, we select a number of trees equal toNm(c′,Ωi) (Equation (4.7)):

Nm(l′,Ωi) ≈ TPΩi
(ω(In))pm0 (c′) (4.7)

Wherepm0 (c
′) is the probability of expression labelc′ for framem. The number of

trees allocated to classify each transition is thus:

T =
∑

Ωi∈Ω

∑

c′∈C
Nm(c′,Ωi) (4.8)

Note that the tree sampling distribution proposed in Equation (4.7) supposes that the

head pose estimate do not vary that much between framesn − N andn. Should that

be the case, MVPCRF can be trained from pairs of images from different viewpoints. It

also assumes the independence of head pose and expression prior, which is not problem-

atic for training on posed expression data. However, such assumption may not hold for
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spontaneous datasets for which expressions assurpriseor fear may involve specific head

motion (e.g. recoil). In such case, prior conditionals may be estimated from the training

corpus beforehand. Also, as stated in [22, 84] using conditional models usually involves

one major pitfall, which lies in the reduction of the number of training examples used to

train each separate classifier. This is barely a problem for the training of a PCRF model,

as naturally many examples of each ongoing transition can besampled from the datasets.

Furthermore, for the MVRF and MVPCRF models we can generate a newdatabase that

contains a large number of training examples for each pose bin using the high-resolution

3D-models from the BU-4DFE database [103], as highlighted in Section4.4.2.

4.4.2 Multi-view dataset generation

Each texture frame of the BU-4DFE database is associated with a high-resolution3D

VRML model containing approximately35000 vertices, that we use to train our MVPCRF

classifier as well as to design a new dataset for multi-view video FER. Many approaches

[87, 90] present results for static multi-view FER using the BU-3DFE database [104]. To

do that, for each static image, the authors typically render3D meshes from a viewpoint

with fixed yaw and pitch rotation angles. However, for video FER, head pose does not

necessarily remain constant throughout a video. Furthermore, from the perspective of a

fully automatic multi-view FER system, we typically aim at covering a specific head pose

range rather than a discrete, arbitrary set of viewpoints. Hence, we propose to generate

rotated versions of the videos by assigning each sequence a yaw-pitch variation from the

frontal video. More specifically, our goal is to cover the same “useful” range as in [87, 90]

(i.e ±45 yaw,±30 pitch). We thus generatek = 5 × 3 bins {Ωi = Ωγi,βi
}i=1,...,k with

{γi} = {0,±17.5,±35} and{βi} = {0,±25} the mean rotation angles respectively in

yaw and pitch. Each sequences is thus associated with rotation angles:











γs
i = γi + γ′

βs
j = βj + β′

(4.9)

Whereγ′ andβ′ are random variations uniformly drawn from the ranges[−σγ , σγ ]

and [−σβ, σβ], respectively.σγ andσβ respectively denote the expected yaw and pitch
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width of the pose bins. In order to set those values, we measure the standard deviation

of the head pose angles on the frontal view (3.6 and5.9 in yaw and pitch respectively).

We then setσγ = σβ = 5 to allow a small overlap, thus a smoother interpolation between

adjacent pose bins. The data distribution among the generated pose bins can be seen in

Figure4.4.2. For each frame of each sequences, we generate15 frames by rotating the

camera (position, direction and up vector). We also turn offthe camera headlight and add

an ambient light node to the VRML virtual environment.
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Figure 4.6: Data repartition across the15 generated pose bins. Blue circles: angles asso-

ciated with the sequences (γs
i ,β

s
j ), red: individual frames

The next step is to align facial feature points on the rotatedsequences. However, the

standard pipeline of applying a frontal or full profile face detection before aligning the

feature points from the output face rectangle is bound to fail when the yaw/pitch becomes

important and only a few images can correctly be aligned. In order to circumvent those is-

sues, we generate “boot” sequences using the first image of each video. Those sequences

contain20 frames and show a very progressive rotation of the first framestarting from a

frontal view and ending on the expected viewpoint. We apply the OpenCV Viola-Jones

face detector [92] on the first frame of the boot sequence (frontal view). Then we align
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facial feature points with the SDM tracker [98] on the retrieved face rectangle. Feature

points are then tracked throughout the boot sequence. Once the boot is completed, fea-

ture points are tracked on all the frames of the rotated expression videos (Figure4.4.2).

Finally, we crop the facial images to a constant size based onthe feature point location

and generate a total of906030 images.

Figure 4.7: Boot process for multi-view data generation withaligned feature points

Lastly, we construct our multi-view training set by manually selecting the neutral and

apical frames using the same subsets as in the frontal case. Also, in order to filter out

the incorrectly aligned frames, we automatically discard the frames for which more than

5 feature points do not lie on the facial mesh. Our final training set thus consists of

122623 face images. Note however that we did not apply any manual check to remove

the misaligned frames, or the ones for which the3D models contain some distortions.

The image generation process took about5 days to complete on anI7-4770CPU on a

Matlab environment. For each of the retrieved frames, we use the posit algorithm [23]

to estimate head pose from the feature points. Such setting allows to use the same head

pose estimation for training and testing, as compared to, e.g. constructing the pose sam-

pling distribution from the ground truth generated positions. Then, we compute the pose

sampling probability distribution for each pose binPΩi
(ω(In)) by applying a Gaussian

smoothing on the training data repartition in the yaw/pitchspace (Figure4.4.2). Thanks

to the booting procedure discussed above, the number of training samples between the

different pose bins is roughly equivalent. However, this might not be the case for other

datasets, where constructing a sampling probability from the data offers the advantage

to implicitly downweight the sampling of pose-specific trees relatively to the amount of

training data.
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Figure 4.8: Pose sampling probability distributionsPΩi
(ωn) constructed by smoothing

the data repartition for each pose bin

4.5 Experiments

In this section, we report accuracies obtained on two different FER scenarios. In Section

4.5.2.1we report comparisons between different classification models on two well-known

frontal FER databases, CK+ (see Section2.3.3) and BU-4DFE (Section2.3.4) databases.

Furthermore, in order to evaluate the capabilities of the learned models to generalize on

spontaneous FER scenarios, in Section4.5.2.2we report classification results for cross-

database evaluation on two spontaneous databases, namely the FG-NET FEED (Section

2.3.5) and BP4D (Section2.3.6) databases. We highlight that our conditional formulation

of dynamic integration substantially increases the recognition accuracy on such difficult

tasks. Furthermore, in Section4.5.3we also evaluate our approach on multi-view video

FER scenarios.
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4.5.1 Evaluation framework

7-class RF (static) and PCRF (full and conditional) models are trained on the CK+ and

BU-4DFE datasets using the set of hyperparameters described in Table4.1. Note however

that extensive testing showed that the values of these hyperparameters had a very subtle

influence on the performances. This is due to the complexity of the RF framework, in

which individually weak trees (e.g. that are grown by only examining a few features

per node) are generally less correlated, still outputting decent predictions when combined

altogether (as also stated in Section3.3.4.2.2). Also, for a fair comparison between static

and pairwise models, we use the same total number of feature evaluations for generating

the split nodes.

Table 4.1: Hyperparameter settings

Hyperparameters value(RF) value(PCRF)

Nb. ofφ(1) features 40 20

Nb. ofφ(2) features 40 20

Nb. ofφ(3) features 160 80

Nb. ofφ(4) features - 20

Nb. ofφ(5) features - 20

Nb. ofφ(6) features - 80

Data ratio per tree 2/3 2/3

Nb. of thresholds 25 25

Total nb. of features 6000 6000

Nb. of trees 500 500

During the evaluation, the prediction is initialized in a fully automatic way from the

first frame using the static classifier. Then, for the full andconditional models, probabili-

ties are estimated for each frame using transitions from previous frames only, bringing us

closer to a real-time scenario. However, although it uses transitional features, our system

is essentially a frame-based classifier that outputs an expression probability for each sep-

arate video frame. This is different from, for example, a HMM, that aims at predicting

a probability related to all the video frames. Thus, in orderto evaluate our classifier on
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video FER tasks, we acknowledge correct classification if the maximum probability out-

putted for all frames corresponds to the ground truth label.This evaluates the capability

of our system to retrieve the most important expression modein a video, as well as the

match between the retrieved mode and the ground truth label.Finally, both static and

transition classifiers are evaluated using the Out-Of-Bag (OOB) error estimate [11].

4.5.2 Experiments on frontal data

4.5.2.1 Experiments on prototypical data

In order to validate our approach on frontal view videos, we compared our conditional

model to a purely static model and a full model, for a variety of dynamic integration

parameters (the number of frames in temporal windowN and the step between those

framesStep) on the BU-4DFE database. We also evaluated the interest of using adynamic

probability prediction for previous frames (i.e. the output of the pairwise classifier for

those frames) versus astatic one. Average results are provided in Figure4.9. For CK+

database, sequences are generally too short to show significant differences when varying

the temporal window size or the step size. Thus we only reportaccuracy for full and

conditional models with a window size of 30 and a step of 1. Per-expression accuracies

and F1-scores for both Cohn-Kanade and BU-4DFE databases areshown in Figure4.10.

Figure4.10reveals that facial expressions involving large deformations (e.g.surprise

andhappiness) are recognized with very high accuracies.Disgust is also recognized

quite well for both databases and for all the models. However, more subtle expressions

such asanger andsadness rank among the lowest. For those expressions, the addition of

spatio-temporal information allows to increase the recognition accuracy as compared to a

static RF model. As in many other works on facial expressions,accuracies forfear are

lower than for the other expressions, as it can be quite subtle in some cases where the eyes

are open a little bit wider. Moreover, this expression also displays a larger variability than

the others on these databases. Overall, modelling transition patterns through PCRF allows

to significantly increase the recognition accuracy as well as the balancedF1-score, for all

expressions on both CK+ and BU-4DFE databases. We believe that this is due to the extra
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Figure 4.9: Average accuracy rates obtained for various temporal integration parameters

on the BU-4DFE database

dynamic features that provide both robustness and decorrelation of the individual decision

trees.

Figure4.10also shows that the conditional model outperforms the full model on both

databases, which is probably due to the fact that using only arestricted set of ongoing

expression transitions for training allows to better capture the variability of the spatio-

temporal features for the dedicated pairwise forests. Thisis particularly true on the CK+

database, where the number of pairwise data points is not enough for the full model to cap-

ture the variability of all possible ongoing transitions, hence justifying the lower accuracy.

Table4.9also shows that it is better to look backward for more frames in the sequence (N

= 60) with less correlation between the frames (Step= 3 or 6). Again, such setting allows

to take more decorrelated paths in the individual trees, giving a better recombination after

averaging over time.

A compilation of comparisons to other state-of-the-art approaches for FER can be

found in Tables4.2 and4.3. On the CK+ dataset, we compare our algorithms with re-

cent works reporting results on the same subset of sequences(i.e. not includingcon-

tempt). Such comparisons are to be put into perspective as the evaluation protocols dif-

fer between the methods. Nevertheless, PCRF provides slightly better results than those

reported in [63] (+3.2%) as well as in [79] (+1.9%) and [36] (+2.3%). Furthermore,
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Figure 4.10: Per-class recognition accuracy rates and F1-scores on CK+ and BU-4DFE

databases

those approaches explicitly perform normalization w.r.t.a neutral face and consider the

last (apex) frame whereas our approach automatically retrieves the apex as the maximum

probability throughout a sequence.

Moreover, to the best of our knowledge, our approach gives the best results on the

BU-4DFE database for automatic FER from videos using2D information only. It pro-

vides better results than the dynamic2D approach [85] (+9.1%), as well as the LBP-TOP

approach presented in [37] (+4.5%). Recently, Meguidet al. [1] obtained satisfying

results using an original hybrid RF/SVM system. They trainedon the static BU-3DFE

database [104] and employed a post-classification temporal integration scheme. How-

ever our PCRF method achieved a significantly higher accuracy (+3%) which shows the

benefits of using dynamic information at the feature level.

Table 4.2: CK+ database
method Accuracy

Mohammadiet al. [63] 93.2

Happyet al. [36] 94.1

Shojaeilangariet al. [79] 94.5

This work, RF 93.2

This work, PCRF 96.4

Table 4.3: BU-4DFE database
Method Accuracy

Sunet al. [85] 67.0

Hayatet al. [37] 71.6

Meguidet al. [1] 73.1

This work, RF 70.0

This work, PCRF 76.1
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4.5.2.2 Generalization on spontaneous data

Tables4.4and4.5 respectively report results for cross-database evaluation (with training

on the BU-4DFE database) on the FEED and BP4D databases. In order to provide a

fair comparison between our approach and the one presented in [1], we used the same

labelling protocol. One can see that the performances of their system are better than

those of our static RF model, which can be attributed to the fact that they use a more

complex classification and posterior temporal integrationflowchart. Nevertheless, our

PCRF model provides a substantially higher accuracy (+3.4%), which, again, is likely

to be due to the use of spatio-temporal features as well as to an efficient conditional

integration scheme. Furthermore, modelling spatio-temporal patterns foreverypossible

transition (i.e. across the videos) allows to gather more training data than using spatio-

temporal descriptors [109, 47] learnt on separate videos.

Regarding the experiments on the BP4D database, for the sake ofa fair comparison,

we used the same protocol as in [108], with training on the BU-4DFE database and using

only a subset of the tasks (i.e. tasks 1 and 8 corresponding to expression labelshappy

anddisgustrespectively). However, we do not retrain a classifier with asubset of 3 ex-

pressions as it is done in [108], but instead use our 7-class static and PCRF models with a

forced choice betweenhappiness(probability of classhappiness) anddisgust(probability

sum of classesangeranddisgust). Such setting could theoretically increase the confu-

sion in our conditional model, resulting in a lower accuracy. However, as can be seen in

Table4.5, using dynamic information within the PCRF framework allows to substantially

increase the recognition rate as compared to a static RF framework (+8.2%). We also

overcome the results reported in [108] by a significant margin (+5.8%), further show-

ing the capability of our approach to deal with complex spontaneous FER tasks. Also

note that in [108], the authors used the so-calledNebulae3D polynomial volume features

which are by far more computationally expensive than our geometric and integral HOG

2D features. All in all, we believe our results show that the PCRF approach provides sig-

nificant improvements over a traditional static classification pipeline that translates very

well to more complicated spontaneous FER scenarios, where asingle video may contain

samples of several expressions.
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Table 4.4: FEED database
method Accuracy

Meguidet al. [1] 53.7

This work, RF 51.9

This work, PCRF 57.1

Table 4.5: BP4D database
Method Accuracy

Zhanget al. [108] 71.0

This work, RF 68.6

This work, PCRF 76.8

4.5.3 Experiments on non-frontal data

We also evaluate our approach on multi-view dynamic FER scenario on the database

generated in Section4.4.2. During evaluation, for each framen of a sequence, head pose

ω(In) is thus estimated from the set of aligned feature points and trees from the MVPCRF

collections are sampled according to the valuesPΩi
(ω(In)) for each pose binΩi. We

compare the average accuracies outputted by RF, PCRF, MVRF and MVPCRF. RF and

PCRF were trained on the central (frontal view) bin only. For PCRFand MVPCRF, we set

the temporal integration parametersN = 60 andStep = 6 as it provided satisfying results

in the frontal case (Figure4.9). As in Section4.5.2, a video is considered as correctly

classified if the dominant expression mode (i.e. the maximum probability expression

throughout the sequence) corresponds to the ground truth label for that video.

Table4.6 displays per-expression accuracies averaged over the15 pose bins for the

three models. For all expressions, MVPCRF outperforms RF and PCRFby a signifi-

cant margin. MVPCRF also outperforms the static multi-view MVRF on all expressions

but sadnessand fear. However, Table4.7 reveals that the F1-score is a little higher for

MVPCRF on those expressions, indicating that the static MVRF ismore biased toward

those expression classes. This seems particularly relevant in the positive pitch case, where

using spatio-temporal information helps to disambiguateanger from sadness, which in

some case differ only by a very subtle eyebrow frown or lip raiser. Also,fear appears

as the most subtle expression as already reported in other works [1]. This is due to the

fact that subjects often smile during the sequence, thus thevideos may be misclassified as

happiness. For this reason, many other approaches such as the one in [6] use a restricted

number of subjects. However, we use the101 subjects to ensure reproducibility of the

results.
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The overall classification accuracy is72.2% against76.1% for the benchmarks of Sec-

tion 4.5.2.1on frontal view video. This performance drop comes from a greater variability

in face appearance as well as the feature point misalignmentfor non-frontal poses, as dis-

cussed in [41]. Classification rates are also a little lower than the staticFER baseline ones

[87, 90] on the BU-3DFE database. However, fully automatic FER fromvideo is a much

more difficult setup, as it involves the retrieval of the apexframes and expression classi-

fication on those frames. Furthermore, many approaches operate on high-resolution3D

data and require expensive projections on a frontal view, thus can not be applied easily to

real-time FER from consumer camera.

Figure4.11shows the per-pose bin accuracy rates averaged over the six expressions.

On the one’s hand, RF performances seems to drop dramaticallywhen we move away

from the central bin (from70.4% to 44.7%). Interestingly, PCRF performs significantly

better than RF on every pose bin, which proves that the captured dynamics generalize

well on unseen data, as already shown on the cross-database settings. PCRF performance

also drops significantly on off-center pose bins. On the other hand, MVPCRF performs

significantly better on those bins: accuracy is nearly symetrical for negative and positive

yaws, as already reported by [87] for static multi-view FER. Furthermore, as stated in

[87, 90] we observe lower classification rates on negative pitches (68.3% as compared to

74.1% on average for positive pitch). Our take is that the mouth area may be the most

informative one for FER tasks: as such, the classifiers can struggle to disambiguate certain

expressions (e.g.angerfrom sadness) when the mouth features become more subtle and

difficult to capture.

Figure 4.12 shows per-expression, per-pose bin accuracies obtained for MVPCRF.

Indeed, expressions such assadnessandfear are better recognized for positive pitches, as

they specifically involve subtle mouth movements as well as eyebrow raising. Conversely,

anger and disgustare characterized by eyebrow frowning that is better recognized on

negative pitch views. Finally,happinessandsurpriseare expressions with the highest

overall classification rates. They are typically better recognized on frontal views or for

negative pitches, where the corresponding mouth motions are less frequently misclassified

asfear.
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Table 4.6: Per-expression accuracy rates averaged over allpose bins

Expression RF (%) PCRF (%) MVRF (%) MVPCRF (%)

Happy 57.8 73.4 83.3 87.8

Angry 59.2 73.3 71.9 80.4

Sad 56.0 52.2 70.8 64.4

Fear 29.6 25.7 34.8 33.0

Disgust 48.4 63.9 63.5 74.3

Surprise 81.6 88.3 85.3 92.4

Average 55.4 62.8 68.3 72.1

Table 4.7: Per-expression F1-scores averaged over all posebins

Expression RF (%) PCRF (%) MVRF (%) MVPCRF (%)

Happy 62.6 74.4 80.7 84.2

Angry 48.6 61.5 62.9 68.0

Sad 46.2 48.8 65.4 66.1

Fear 34.7 34.7 43.8 44.8

Disgust 56.3 66.2 67.9 73.1

Surprise 71.4 77.6 83.6 87.3

Average 53.3 60.6 67.4 70.6

4.5.4 Complexity analysis

An advantage of using conditional models is that with an equivalent parallelization they

are faster to train than a full model learnt on the whole dataset. According to [57] the

average complexity of training a RF classifier withM trees isO(MKN log2 N), with

K being the number of features to examine for each node andN the size of (2/3 of) the

dataset. Thus if the dataset is equally divided intoP bins of sizeÑ upon which condi-

tional forests are trained (and such thatN = PÑ ), the average complexity of learning a

conditional model now becomesO(MKN log2 Ñ).

Same considerations can be made concerning the evaluation,as trees from the full

model are bound to be deeper than those from the conditional models. Table4.8 shows
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Figure 4.11: Per-pose bin accuracy rates averaged over all expressions

an example of profiling a MVPCRF on one video frame with an averaging over 60 frames

and a step of 6 frames. We experiment with various total numbers of treesM to show that

the proposed framework can perform real-time FER.

Table 4.8: Profiling of total processing time for one frame (in ms)

Step Time (ms)

Facial alignment 10.0

Integral HOG channels computation 2.0

MVPCRF evaluation (M = 500) 2.6

MVPCRF evaluation (M = 1000) 4.8

MVPCRF evaluation (M = 2000) 7.8

MVPCRF evaluation (M = 6000) 19.0

This benchmark was conducted on aI7-4770CPU within a C++/OpenCV environ-

ment, without any code parallelization. As such, the algorithm already runs in real-time.

Furthermore, evaluations of pairwise classification or tree subsets can be parallelized to

fit real-time processing requirements on low-power enginessuch as mobile phones. In ad-

dition, the facial alignment step can be performed at more than 300 fps on a smartphone

with similar performances using the algorithms from [69].
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Figure 4.12: Per-expression, per-pose bin classification accuracy rates

4.5.5 Discussion

In this chapter, we presented an adaptation of the RF framework for automatic dynamic

pose-robust FER from videos. We also introduced a novel way of integrating the temporal

information of expressions by considering pairwise RF classifiers. This formulation ap-

pears as a somewhat natural way to extend RFs for dealing with video sequences, and al-

lows the efficient integration of high-dimensional, low-level spatio-temporal information

through averaging over time pairwise trees. These trees areconditioned on predictions

outputted for the previous frames to help reducing the variability of the ongoing transi-

tion patterns. In addition, we proposed an extension of the PCRF framework to efficiently

handle head pose variation in an FER system. We showed that our models can be trained

and evaluated efficiently given appropriate data, and lead to a significant increase of per-

formances compared to a static RF. We also introduced a new multi-view video corpus

generated using the BU-4DFE database to assess the pose-robustness of the proposed sys-

tem. Finally, we showed that our method works on real-time without specific optimization

schemes, and could be run on low-power architectures such asmobile phones by using an
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appropriate paralellization scheme.

Nevertheless, the proposed algorithms are still not perfect and suffer from a number

of limitations. First, in order to train a PCRF, one need to explicitly consider frame-

level annotations. In our work, we manually highlighted a set of peak frames for the

database, which were used to train the classifiers. This is a recurrent drawback of frame-

based classifiers as compared to sequence-level ones (e.g. HMMs, CRFs) and thus could

not be solved easily. However, using only a subset of peak frames from the videos for

training also allows to limit the memory usage, which is particularly relevant in our case,

as we need to store the feature maps for each image. Moreover,we demonstrated that,

during evaluation, our algorithm was successful at retrieving the correct expression modes

and thus could be applied in a fully automatic fashion. Furthermore, an advantage of

integrating the temporal information under the form of transition modelling is that it does

not require continuity of the sequence. Hence, it has no problem handling failure from

the detection or feature point alignment pipelines, as opposed to other spatio-temporal

descriptors [109, 47]. Secondly, in order to build transition classifiers we needexamples

for each possible transition. This can be a hindrance when training on highly unbalanced

datasets (as in CK+ withcontemptexpression class). Thirdly, multi-view classification

requires loads of training data from multiple head poses. This, however, can be alleviated

by the use of high-dimensional3D models to generate training examples. Finally, we felt

that, particularly for the experiments on multi-view data,we were at times limited by the

robustness of the feature point alignment for non-frontal head pose, as well as from the

quality of the pose estimation from the set of feature points. Such problem could in theory

be alleviated by the use of recent robust algorithms such as the one proposed in [99]. The

proposed system is also not robust to partial occlusions of the face, which are likely to

happen in real-case scenarios, and will be discussed in the following chapter.
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Chapter 5

Local Subspace Random Forests

5.1 Overview

In the traditional RF framework (Section3.3.4.2), each tree in the forest is grown using

a subset of training examples (bagging) and a subspace of theinput dimension (random

subspace). As stated in [11], the rationale behind training each tree on a random subspace

of the input dimension is that the prediction accuracy of thewhole forest depends on

both the strength of individual trees and on the independence of the predictions. Thus, by

growing individually weaker (e.g. as compared to C4.5) but more decorrelated trees, we

can combine these into a more accurate tree collection. Following this idea, we propose an

adaptation of the RF framework that uses spatially-defined Local Subspaces (LS) instead

of the traditional Random Subspaces (RS), as described in Figure5.1. Each tree is trained

using a restricted subspace corresponding to a specific partof the face, that is generated

under the form of a random facial mask (Figure5.1-a) for each tree on a possibly refined

facial mesh. Binary candidate features can be selected from those local subspaces (b). The

aggregation of local models gives rise to representations that we call Local Expression

Predictions (LEPs (c)).

When applied on a potentially occluded face image (e), the reconstruction error out-

putted by an autoencoder network provides a confidence measurement of how close a

face region lies from the training data manifold, with high and low confidences depicted

in green and red respectively. This local confidence measurement can be used to weight
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LEPs (g) in order to provide an occlusion-robust expressionprediction (WLS-RF). Fi-

nally, LEPs can be used to predict AU occurrence (h). Once again, the autoencoder net-

work can be used to provide AU-specific confidence measurements (i).

Figure 5.1: LEPs and applications to categorical expression recognition, occlusion han-

dling in FER and AU detection. Randomized trees are trained upon local subspaces gen-

erated under the form of random facial masks(a), on which binary feature candidates are

generated and selected(b). The local predictions outputted by the trees can be aggregated

into categorical expression-driven high-level LEP representations(c). Given an occluded

face image(e), an occlusion-robust categorical expression prediction can be outputted by

weighting LEPs with confidence scores(f) given by a hierarchical autoencoder network

(d). Furthermore, LEP features can be used to predict AU occurrence(h). For instance,

AU 12 (lip corner raiser) can be described by a high value of LEPs associated to triangles

around the lips with categorical expressionhappiness. Finally, for each AU, a confidence

measurement can also be provided(i). Best viewed in color.

This chapter is organized as follows: Section5.2describes how we train Randomized

trees upon spatially-defined local subspaces of the face, that are generated under the form

of random facial masks (5.2.1). Then, Section5.2.2shows how we combine the output

prediction of those trees into LEP features. Finally, Section 5.2.3highlights how we can

tessellate the facial mesh to arbitrary set the spatial resolution of LEP features.

Section5.3explains how we can weight the local predictions with a confidence mea-

surement defined on triangles of the face mesh to produce occlusion-robust predictions. In
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Section5.3.2we discuss the proposed autoencoder network architecture (Section5.3.2.1)

and how it is trained to capture the local manifold around facial feature points (Section

5.3.2.2). Eventually, in Section5.3.2.3we explain how we can use the autoencoder net-

work to provide a confidence measurement to weight LEPs for occlusion-robust FER. In

Section5.4 we describe how LEPs can be used for AU detection, with a focuson how

we can merge multiple expression datasets (Section5.4.1), with AU-specific confidence

assessment (Section5.4.2). We also present a number of approaches for multi-output RFs

classification upon LEP features (Section5.4.3).

Finally, in Section5.5we show that our approach significantly improves the state-of-

the-art for categorical FER on multiple datasets, both on the non-occluded (Section5.5.2)

and occluded cases (Section5.5.3). We also demonstrate in Section5.5.4the interest of

our LEP representation for AU activation prediction and therelevance of the AU-specific

confidence measurement. Finally, Section5.5.6discusses a few perspectives raised by the

proposed work.

5.2 Training randomized decision trees on spatially de-

fined local subspaces

5.2.1 Random mask generation

Local trees are trained using Algorithm3. For each treet in the forest, we generate a

face maskMt defined over trianglesτ on facial feature points of a precomputed mean

shapef̄ . The mask is initialized with a single triangle randomly selected from the mesh.

Then, neighbouring triangles are added until the total surface covered by the selected

triangles w.r.t.f̄ becomes superior to hyperparameterR, that represents the (approximate)

surface that should be covered by the mask. Finally, treet is grown on the subspace that

corresponds to the facial maskMt.
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Algorithm 3 Training Local Subspace Random Forest
input: imagesI with labelsl and feature pointsf(I)

computef̄ , the mean shape

pre-computes(τ(f̄)), surfaces of trianglesτ on mean shape

for t = 1 to T do

randomly select a triangleτi

r ← s(τi)

initialize maskMt ← {τi}
while r < R do

draw a list of candidate neighbouring triangles

randomly select a triangleτj from that list

r ← r + s(τj)

Mt ←Mt ∪ {τj}
end while

randomly select a fractioñSt ⊂ S of subjects

balance bootstrap̃St with downsampling

grow treet on bootstrap̃St and input subspaceMt

end for

output: tree predictorspt(c|I) with associated masksMt
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5.2.2 Local expression prediction features

The output expression prediction of spatially-constrained trees can be used as features for

face analysis. Note that this is not the first time that RF predictions are used as features

for a subsequent task. For instance, Renet al. [69] used local binary features to construct

a cascaded feature point alignment method. However, contrary to [69], we construct our

LEP representation by locally averaging predictions and not by directly using the output

prediction of the trees. Furthermore, LEPs offer several advantages over using a set of

trees defined on the whole face:

• LEPs can be aggregated to provide categorical FER. Those local models (LS-RF)

can theoretically capture more diverse information compared to a global one by

“forcing” the trees to use less informative features, that can still hold some predic-

tive power.

• We can use the confidence outputted by the autoencoder network in Section5.3.2.3

to weight the LEPs for which the pattern lies further from thetraining data manifold

(WLS-RF). For example, in case of occlusion or drastic illumination changes, we

can still use the information from the other face subparts topredict the expression.

• LEPs can be used as an intermediate representation for the task of describing Ac-

tion Units (AUs). Noteworthy, AU classification could benefit from LEPs trained

on larger corpus labelled with categorical expressions, asannotation is less time-

consuming than FACS coding.

More specifically, when testing, a face imageI is successively rooted left or right for

each treet depending of the outputs of the binary tests stored in the tree nodes, until it

reaches a leaf. The treet thus outputs a probability vectorpt(c|I) for classc ∈ C, whose

components are either1 for the represented class, or0 otherwise. Prediction probabilities

are then averaged among theT trees of the forest (Equation (5.1)).

p(c|I) = 1

T

T
∑

t=1

pt(c|I) (5.1)
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Those prediction probabilities are computed similarly forthe global RF and the LS-

RF. However, for LS-RF the output probabilities of the trees have some degrees of locality

and we can write the above formula as a sum over local probabilities defined for each

triangle (Equation (5.2)).

p(c|I) = 1

T

∑

τ

Zτp(c|I, τ) (5.2)

Wherep(c|I, τ) is the Local Expression Prediction (LEP) probability vector associ-

ated with triangleτ on the facial mesh:

p(c|I, τ) = 1

Zτ

T
∑

t=1

δ(τ ∈Mt)pt(c|I)
|Mt|

(5.3)

With δ(τ ∈ Mt) being a function that returns1 if triangle τ belongs to maskMt,

and0 otherwise.|Mt| is the number of times treet is used in Equation (5.2), andZτ is

the sum of prediction values for all expression classesl and triangleτ . Thus, a global

expression probability is defined by a (normalized) sum of LEPs. Note that those LEP

vectorsp(c|I, τ) are not strictly limited to triangleτ but defined within its neighbourhood,

with a radius that depends on hyperparameterR. The setting ofR thus controls the

locality of the trees, as it will be discussed below.

5.2.3 Facial mesh refinement

A downside of the proposed local expression-driven features are constrained by the defini-

tion of a facial mesh, that we obtain by aligning a number of feature points using Intraface

[98]. However, the coarseness of this facial mesh may be a hindrance to perform AU de-

tection from said features, as the locality of the models is crucial to avoid using unrelated

local information (e.g. a wide open mouth describing AU2 (Outer Brow Raiser)). In order

to circumvent this issue, it is possible to arbitrary refine the facial mesh using an adaptive

refinement strategy, as illustrated on Figure5.2.

In order to do that, we first expand the mesh slightly above theeyebrows and below

the mouth so that the appearance features can capture the forehead and jaw areas. Fur-

thermore, we apply mesh tessellation on the resulting facial mesh. Note that, as shown
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Figure 5.2: Facial mesh refinement. Left: original point-wise and triangle-wise mesh (49

points, 79 triangles). Right: refined mesh (500 points, 545 triangles)

on Figure5.2, some triangles may have a long side without necessarily covering a wide

portion of the face. This is something we want to avoid given our appearance feature

extraction framework, which will be discussed later. Hence, contrary to [42], we do not

use the
√
3-subdivision based on triangle surfaces for tessellating the mesh. Instead, we

select the triangle with the longest side, which we split in two triangles on that side. We

then iteratively apply this adaptive subdivision until a number of pointsNp is reached

(e.g. Np = 500 points,Nτ = 545 triangles on Figure5.2). The result is that triangles

from the mesh are more or less homogeneous in terms of its maximum side length, but

not necessarily in terms of surface.

5.3 Confidence weighting of local expression predictions

for occlusion-robust expression prediction

5.3.1 Weighted Local Subspace Random Forests

LEPs can also be weighted by local confidence measurements togive rise to the Weighted

Local Subspace Random Forest model (WLS-RF):

p(c|I) =

∑

τ

α(τ)Zτp(c|I, τ)
∑

τ

α(τ)Zτ

(5.4)

Whereα(τ) denotes a triangle-wise confidence measurement that is outputted by the

autoencoder network described in Section5.3.2.3, for triangleτ . This weighting scheme

allows to better handle partial occlusions, by downweighting the local RFs associated
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with the most unreliable appearance patterns. In the following subsections, we highlight

how we can obtain such a confidence measurement by modeling the local manifold of the

texture around the feature points.

5.3.2 Local manifold learning for confidence measurement

We design a hierarchical autoencoder network for the purpose of modelling the local

texture manifolds. In particular, Section5.3.2.1provides more details about the network

architecture. Section5.3.2.2provides information on how we train the network by stage-

wise reconstruction optimization and Section5.3.2.3explains how we can use the trained

network to provide a confidence measurement that can be used to weight the LEP features

(See Equation5.4).

5.3.2.1 Hierarchical autoencoder network architecture

As shown in Figure5.3, we use a 2-layer architecture. First, we extract HOG descriptors

within the neighbourhood of each feature point. The choice of learning a manifold of

HOG patterns rather than gray levels comes from the fact thatHOG are used for both fa-

cial alignment and the LEP generation pipeline (see Sections3.2.4.1and4.2.2). Thus, the

reconstruction error of these patterns provides a confidence measurement that is relevant

for both tasks. The local descriptorΨ(k) for a specific feature pointk consists in the con-

catenation of gradient magnitudes and quantized orientation values in5 × 5 cells around

this feature point, with a total window size equal to a third of the inter-ocular distance.

This descriptor of dimension225 then feeds theNp autoencoders (one per feature point)

of the first layer (L1) which are trained to reconstruct non-occluded patterns. Because

occlusion of local patterns extracted at the feature point level are not independent (i.e. a

feature point close to an occluded area is more likely to be occluded itself), we employ a

second layer (L2) of autoencoders, that are trained to reconstruct non-occluded patterns

of groups of encoded feature point descriptors. Those groups represent five face subparts

(left and right eyes, nose, left and right parts of the mouth)inside of which the local pat-

terns are closely related. Specifically,L1 is composed of 125 units for each landmark.

98



L2 layer for a feature point group contains65 × N units (1
2

compression), whereN is

12,12,8,11 and 11 respectively for left/right eye, nose andleft/right mouth areas.

Figure 5.3: Architecture of our hierarchical autoencoder network. The network is com-

posed of 2 layers: the first one (L1) captures the texture variations (HOG descriptors)

around the separate aligned feature points. The second one (L2) is defined over 5 face

subparts, each of which embraces multiple points whose appearance variations are closely

related. The network outputs a confidence scoreα(k) for each of theNp feature points.

5.3.2.2 Training the network

As highlighted in Section3.3.3.2.1, the hierarchical network is trained in an unsupervised

way, one layer at a time, by optimizing a reconstruction criterion. The input descriptor

Ψ(k) at feature pointk is first encoded via theL1 encoding layer into an intermediate

representationy(k) = h1(Ψ(k)):

y(k) = σ
(

w
(k).Ψ(k) + b(k)

)

(5.5)

Whereσ is a sigmoid function,w(k) andb(k) are respectively the neuron weight matrix

and bias vector of theL1 neuron layer for feature pointk. The output is then typically

computed as the input reconstructionΨ̃(k) = g1(y(k)) using an affine decoder with tied

input weights to reduce the number of parameters:

Ψ̃(k) = w
(k)T .y(k) + c(k) (5.6)
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Wherec(k) is the decoder bias vector. Then the set ofK encoded descriptors{y(k)}k=1...K

associated to feature pointsk = 1...K that belong to the face subpartm are concatenated

to form the inputξ(m) of the layerL2 for that subpart. Once again, the input of theL2

layer is successively encoded into an intermediate representationz(m) = h2(ξ(m)) and

decoded in the same way into a reconstructed versionξ̃(m) = g2(z(m)):

z(m) = σ
(

w
′(m).ξ(m) + b′(m)

)

(5.7)

ξ̃(m) = w
′(m)T .z(m) + c′

(m) (5.8)

Thus, each layer is trained separately using stochastic gradient descent and backprop-

agation. More specifically, the input descriptors for each layer are presented sequentially.

For example, a forward pass through theL1 layer provides a reconstructed versionΨ̃(k)

of Ψ(k). The squaredL2-loss is then computed and weighted by a learning rate parameter

to provide the parameter update(δw(k), δb(k), δc(k)). We tried various combinations of

training parameters and the best reconstruction results were obtained by applying15000

stochastic gradient updates with alternating sampling between the expression classes in

the databases. Indeed, we want the network to be able to reconstruct local variations of

all possible expressive patterns on an equal foot. We also use a constant learning rate of

0.01 as well as a weight decay of0.001, which seem to provide good results in testing.

Finally, we found that adding25% randomly generated masking noise provided satisfying

results (see Section3.3.3.2.2for an overview of regularization schemes for autoencoder

training). From a manifold learning perspective, the goal of using such denoising cri-

terion is to learn to project corrupted examples (e.g. partially occluded ones, which lie

further from the manifold) back on the training data manifold. Such example will be

reconstructed closer to the training data and its confidenceshall be smaller.

5.3.2.3 Confidence measurement

Given a face imageI, we define the point-wise confidenceα(k)(I) for point k as the

L2-loss (i.e. the reconstruction error) between the HOG descriptorΨ(I) extracted from
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this feature point, and its reconstructioñΨ outputted by the network, after successively

encoding by layersL1 thenL2, and decoding in the opposite order. By abuse of notation,

we have:

α(k)(I) = 1− ||Ψ
(k) − g1 ◦ g2 ◦ h2 ◦ h1(Ψ(k))||2

||Ψ(k)||2||g1 ◦ g2 ◦ h2 ◦ h1(Ψ(k))||2 (5.9)

The choice of using an Euclidean distance as a confidence score seems natural as it is

optimized during training. We also introduce a confidence measurementα(τ)(I) defined

over trianglesτ = {k1, k2, k3} of the facial mesh as:

α(τ)(I) = min(α(k1)(I), α(k2)(I), α(k3)(I)) (5.10)

As highlighted in the following experiments, this triangle-wise confidence measure-

ment can thus be used to weight LEPs to enhance the robustnessto partial occlusions to a

significant extent.

5.4 Using local predictions for Action Unit detection

LEPs are local responses related to categorical facial expressions. Thus, it makes sense

to assume that LEPs can somehow be related to AUs and constitute a good high-level

representation for AU activation prediction.

5.4.1 Using available categorical expression-related data for Action

Unit detection

More specifically, Figure5.4describes a basic AU recognition framework, in which LEP

vectors corresponding to each triangle are extracted by a first layer of local trees, trained

on a categorical expression dataset. The concatenation of all LEP vectorsp(c|I, τ) for

every expressionc ∈ C (6 universal expressions plus the neutral one) and triangleτ of

the facial mesh gives rise to a7 × Nτ feature vector used by a second layer of trees de-

fined for each AU (withNτ the number of triangles of the facial mesh). Thus, the AU

recognition layer is trained on a FACS-labelled dataset using only one feature template
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φ
(0)
c,τ = p(c|I, τ), with associated thresholdsθ randomly generated from a uniform distri-

bution in the[0; 1] interval.

Figure 5.4: AU recognition using LEP features.

As illustrated on Figure5.4, we also study the importance of using multiple available

expression datasets for learning the first layer of trees (i.e. LEP representation). We

can either train the models on a specific categorical expression database, or merge the

datasets to learn LEP representation from all the availablecorpus (M1). Finally, we can

also learn LEPs separately from the different categorical expression datasets and use a

concatenation of the LEP feature vectors as an input for the second (AU prediction) tree

layer (M2). Section5.5.4shows that those two approaches enhance the predictive power

of the AU detection framework. Furthermore, those two strategies can complement each

other well. Indeed,M1 requires to simultaneously load multiple datasets at training time,

M2 involves computing multiple LEP features for evaluation. Thus, a combination of

those two strategies can be used to fulfil the target memory/time requirements.

Also note that we voluntarily keep the AU recognition layer simple so as to showcase

the usefulness of LEP representation for the AU prediction task, as compared to low-level
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engineered descriptors and other state-of-the-art methods. However, as shown in other

works on expression recognition [65], recent approaches such as multi-task formulations

(e.g. training a single system for predicting multiple AUs)can significantly improve

performances.

5.4.2 Confidence measurement in Action Unit activation

Because AUs are defined locally, chances are that AU activation relatively to an occluded

area can not be predicted at all. Thus, we use the weights outputted by the autoencoder

network to automatically derive a confidence score relatively to each AU indexed bym.

To this end, we define asN (m)
l,τ the number of times that the LEP featureφ

(0)
l,τ was selected

for splitting at the root of the trees, among all trees in the forest. This is highlighted

on Figure5.5. The reason for exclusively considering features at the root of the trees is

that those features are selected from large numbers of training examples, as opposed to

features from nodes deeper in the trees, that are essentially more noisy.

Figure 5.5: LEPs heat map for each of the 14 AUs (CK+ database).Only top-level LEP

features are displayed for each AU. Best viewed in color.

Note that, while most approaches focus on describing expressions as a combination

of AUs, we can decompose each AU as a set of local expression predictions. For exam-
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ple, for AU1 (inner brow raiser) and AU2 (outer brow raiser),the most relevant LEPs are

triangles corresponding to the inner and outer brows, associated with expressionsurprise,

respectively. AU4 (brow lowerer) mainly uses triangles between the eyes associated with

expressionanger. AU9 (nose wrinkler) mainly uses triangles from the nose andcheek

regions, associated withdisgust. AU12 (lip corner puller) and AU20 (lip stretcher) re-

spectively use triangles corresponding to lip corners withexpressionshappinessandfear.

We then define the AU-specific confidence measurementαm for AU m as the sum

of confidencesα(τ) of trianglesτ of the facial mesh, weighted by the proportion of LEP

features from that triangle, that are used to describe the activation of AUm:

αm =

∑

τ α
(τ)N

(m)
l,τ

∑

τ N
(m)
l,τ

(5.11)

Thus, the AU-specific confidence measurement is proportional to the confidence of

the face regions that are the most useful for describing the activation of a specific AU. We

show in the following section that such simple setting allows to highlight the cases were

the AU predictions are deemed unreliable.

5.4.3 Multi-output prediction of Action Unit activation

In Section5.4.1we trained independent detectors for each specific AU. However, by doing

so, we essentially ignore the possible correlations between the AU activation prediction

tasks. For that matter, we use the multi-output (MO) paradigm to train multiple trees that

can each predict several AUs. From a RF induction perspective, each training strategy is

defined by two aspects:

• Which AUs are defined to split the tree nodes during training.

• Which trees are used to predict which AUs.

In order to do that, we assign task weightswt,n
i for a noden of a treet and an AU

detection taski ∈ {1, ..., Nau} to compute the successive splitting objective functions.

Thus, given a binary feature{φ, θ} the multi-output splitting criterion for noden shall

become:

104



H1,...,Nau

φ,θ =
Nau
∑

i=1

wt,n
i H i

φ,θ (5.12)

WhereH i is a single-output objective function defined, in our case, over a two-class

problem regarding the activation of AUi. The tasks weightswt,n
i can be generated at the

tree level, in which case they can be used to weight the AUs at test time. They can also

be generated independently for each noden of treet. We investigate multiple strategies

for setting the tasks weights, which are depicted on Figure5.6.

Figure 5.6: Illustration of different task weights assignment strategies. Grey level inten-

sity bars represent task weight values in the[0, 1] interval.

• Single-Output (SO): we only predict one AU per tree by setting only one weight

to 1 (only one white bar per tree on Figure5.6) for each tree and the others to0.

• Full Multi-Output (MO): each tree uses an unweighted combination of all AUs

(i.e. all tasks weightswt,n
i are set to1) for splitting. Also, each tree predicts all the

AUs simultaneously.
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• MO-random weights (tree): we set the weights to uniformly sampled random

values for each tree:wt,n
i = wt

i ∼ U [0, 1]. At test time the prediction of this tree for

AU i is weighted bywt
i.

• MO-Binary random weights (tree): we randomly set each weight to either0 or 1

for each tree:wt
i are sampled as a Bernoulli random variable with expected value

1/2, i.e. wt
i ∼ B(0.5).

• MO-random weights (split): we set the weights to uniformly sampled random

values for each split node:wt,n
i ∼ U [0, 1].

• MO-Binary random weights (split): we randomly set each weight to either0 or 1

for each split node:wt,n
i ∼ B(0.5).

• MO-One AU per split: we randomly select only one AU for splitting each node

(as suggested in [54]).

A comparison between those approaches can be found in Section 5.5.4.

5.5 Experiments

5.5.1 Experimental setup

5.5.1.1 Evaluation metrics

For both occluded and non-occluded scenarios of categorical FER we use the overall

accuracy as a performance metric. We also report confusion matrices to show the discrep-

ancies between recognition of the expression classes. For AU detection we use the area

under the ROC curve (AUC) as a performance metric, as it is widely used in the literature

because it is independent of a decision threshold. For all the experiments, RF classifiers

are evaluated with the Out-Of-Bag (OOB) error estimate. For the experiments involving

a first layer of LEP features, these are generated for Out-Of-Bag examples for each tree.

Moreover, AUs are evaluated with OOB error.
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5.5.1.2 Hyperparameter setting

In order to decrease the variance of the error we train large collections of trees (T1 = 1000

for LEP generation,T = 50 for AU detection). For training the local models, we set the

locality parameterR to 0.1 (which means that each local model uses1/10 of the total face

surface) which provides good robustness to occlusions. Finally, we use40 φ(1), 40 φ(2)

and160 φ(3) features for learning LEPs, as well as25 threshold evaluations per feature,

as these seem to provide satisfing results (Section4.5.1). For AU detection, we examine

100φ(0) features at each node, each associated with25 threshold values. Note however

that the values of these hyperparameters (except forR) had very little influence on the

performances. This is due to the complexity of the RF framework, in which individually

weak trees (e.g. that are grown by only examining a few features per node) are generally

less correlated, still outputting decent predictions whencombined altogether.

For the occluded scenarios on CK+ and BU4DFE, the autoencodernetworks are

trained in a cross-database fashion (i.e. training on CK+ and testing on BU4DFE and

vice versa). Lastly, on SFEW database, we use the autoencoder network trained on CK+,

as SFEW embraces multiple examples of occluded faces.

5.5.2 Experiments on non-occluded scenarios

In Tables5.1, 5.3, 5.5we report the average accuracy obtained by our local subspace Ran-

dom Forest (LS-RF) and the confidence-weighted version (WLS-RF). We also compare

with standard RF (RS-RF).

Generally speaking, classification results of LS-RF are a little better than those of the

RS-RF. Indeed, forcing the trees to be local allows to capture more diverse information.

RS-RF relies quite heavily on the mouth region, but other areas(e.g. around the eyes,

eyebrows and nose regions) may also convey information thatcan be captured by local

models. Figure5.7 displays the proportion of top-level features over all triangles of the

face area.

While more than90% of the features extracted by RS-RF are concentrated around

the mouth, the repartition for LS-RF is more homogeneous. Hence, LS-RF is less prone
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Table 5.1: CK+ database.†: CK database
CK+ Protocol 7em 8em

LBP [78] 10-fold 88.9† -

CSPL [112] 10-fold 89.9† -

iMORF [110] 10-fold - 90.0

AUDN [56] 10-fold 93.7 92.0

RS-RF OOB 92.6 91.5

LS-RF OOB 94.1 93.4

WLS-RF OOB 94.3 93.4

Table 5.2: Confusion matrix (CK+-8em)
ne ha an sa fe di co su

ne 92.4 0.3 0.9 0.6 1.2 0.6 3.97 0

ha 0 100 0 0 0 0 0 0

an 4.4 0 91.1 0 0 2.3 2.3 0

sa 22.6 0 0 77.4 0 0 0 0

fe 1.3 4 0 0 90.7 0 0 4

di 3.4 0 0.6 0 0 96.1 0 0

co 11.1 0 0 3.7 0 0 85.2 0

su 1.6 0 0 0 0.4 0 1.2 96.8

Table 5.3: BU4DFE database
BU4DFE Protocol % Acc

BoMW [100] 10-fold 63.8

Geometric [85] 10-fold 68.3

LBP-TOP [37] 10-fold 71.6

2D FFDs [74] 10-fold 73.4

RS-RF OOB 73.1

LS-RF OOB 74.3

WLS-RF OOB 75.0

Table 5.4: Confusion matrix (BU4DFE)
ne ha an sa fe di su

ne 89.5 0 1.8 4.4 0.9 0.9 2.6

ha 2 89.9 0 0 5 2 1

an 10.1 0 70.7 7.1 2 9.1 1

sa 11 0 15 71 3 0 0

fe 9.8 17.6 2.9 5.9 38.3 11.8 13.7

di 3 4 6.9 1 7.9 73.3 4

su 0 1 0 1 6.2 0 91.8

Table 5.5: SFEW database
SFEW % Acc

PHOG-LPQ [24] 19.0

DS-GPLVM [29] 24.7

AUDN [56] 30.1

Semi-Supervised [55] 34.9

RS-RF 35.7

LS-RF 35.6

WLS-RF 37.1

Table 5.6: Confusion matrix (SFEW)
ne ha an sa fe di su

ne 50.2 8.8 9.0 10.0 2.0 16.9 3.1

ha 10.6 67.5 6.2 6.9 2.6 3.5 2.6

an 25.4 16.1 31.3 10.1 3.7 0.9 12.5

sa 21.2 21.2 8.1 22.2 7.1 9.1 11.1

fe 14.2 16.2 13.0 5.0 23.1 7.1 21.3

di 31.3 23.7 10.4 7.1 3.7 15.6 8.2

su 15.4 11.0 12.1 3.3 7.7 6.6 44.0
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Figure 5.7: Proportion of top-level (tree root) features per triangle. Best viewed in color.

to a misalignment of the mouth feature points, or to occlusions of the mouth region.

Furthermore, weighting the local predictions (WLS-RF) usingthe confidence score from

the autoencoder network allows to enhance the results on BU4DFE and SFEW. The reason

is that subjects from those datasets exhibit uncommon morphological traits, occlusion or

lighting patterns. As such, more emphasis is put on reliablelocal patterns, resulting in

a better overall accuracy. It also explains why the accuracyis equivalent for LS-RF and

WLS-RF on CK+ database, where there is less variability. On the three databases, LS-

RF and WLS-RF models provide better results compared to state-of-the-art approaches,

even though some of these use complex FFD or spatio-temporalfeatures (LBP-TOP), or

use additional unlabelled data for regularization [55]. Note however that the evaluation

protocols are different for some of these approaches. For example, authors in [29] use

only the texture information and not the provided landmarks.

Tables5.2, 5.4, 5.6 show the confusion matrices of WLS-RF on CK+, BU4DFE and

SFEW respectively. Generally speaking, expressionsneutral, happyand surpriseare

mostly correctly recognized, as they involve the most recognizable patterns (smile or eye-

brow raise).Angeranddisgustare also accurately recognized on CK+ and BU4DFE but

not so much on SFEW.Sadnessandfear seem to be the most subtle ones, particularly on

BU4DFE and SFEW where those expressions can be misclassifiedassurpriseor happy,

respectively.
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5.5.3 Experiments on occluded scenarios

5.5.3.1 Targeted occlusions

In order to assess the robustness of our system to partial face occlusion, we first measured

the average accuracy outputted by RS-RF, LS-RF and WLS-RF on CK+ (8 expressions)

and BU4DFE (7 expressions) databases with synthetic occlusions of targeted areas of the

face, namely the mouth and eyes regions. More precisely, foreach image we use the

feature points tracked on non-occluded images to highlightthe eyes and mouth regions.

We then overlay a noisy pattern (see Figure5.8), which is a more challenging setup than

black boxes used in [107, 40]. We add margins of20 pixels to the bounding boxes to make

sure we cover the whole eyes (with eyebrows, as they represent the most valuable source

of information from the eye region) and mouth region. Finally, we align the feature points

on the occluded sequences.

Figure 5.8: Examples of occluded faces from BU4DFE with aligned feature points. Left:

non-occluded, middle: eyes occluded, right: mouth occluded. Also notice how the pres-

ence of an occlusion may have a critical effect on the qualityof the feature point align-

ment.

Graphs of Figure5.9 show the variation of average accuracyvs. hyperparameterR

that controls the locality of the trees, respectively undereyes and mouth occlusion on

CK+ database. Performances of RS-RF fall heavily when the mouthis occluded (from

91.5% to 25.4%), as observed in [107]. This further proves that the global model relies

essentially on mouth features to decipher facial expressions. Forcing the trees to be more

local (e.g. settingR to 0.1 or 0.2) allows to capture more diverse cues from multiple

facial areas, ensuring more robustness to mouth occlusion.It also explains why LS-RF
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Figure 5.9: Accuracy outputted on occluded CK+ and BU4DFE databases

models withR = 0.8− 0.5 can already be quite robust to eye occlusions, as the majority

of the information used on such models likely comes from mouth area. Nevertheless,

on those two occlusion scenarios, WLS-RF achieves a substantially better accuracy than

the unweighted local models. Figure5.9 also shows the accuracy comparison for both

eyes and mouth occlusion scenarios on CK+ and BU4D, withR = 0.1. On the two

databases, LS-RF is more robust to partial occlusions than RS-RF. Furthermore, WLS-

RF also provides better accuracy than both LS-RF and RS-RF.

5.5.3.2 Random occlusions

In order to quantify the capability of our method to deal withunpredicted occlusions as

well as to compare our result to state-of-the-art methods for FER under partial occlusion,

we evaluated our method on various occlusion scenarios using the same protocol as in

[107]. Specifically, we evaluate the average prediction accuracy for 7-classes expression

recognition on the CK+ database, where, for each image, a region of the face is being

overlaid by white occluding patterns. These patterns are defined by the feature points

locations for eye and mouth occlusions, and by white patchesof size8× 8 (R8),16× 16

(R16) and24×24 (R24) for face crops of size48×48). Similarly to what was done above,
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Figure 5.10: Examples of randomly occluded faces from CK+ with aligned feature points.

Top row: R8 benchmark (8×8 overlaying patches). Middle row: R16 benchmark (16×16
overlaying patches). Bottom row: R24 benchmark (24× 24 overlaying patches).

the facial feature points are aligned after the white patches are overlaid on the face, hence

occlusions are likely to cause feature point misalignment in addition to texture corruption.

Examples of randomly occluded faces can be observed on Figure 5.10. Table5.7 shows

the comparison of WLS-RF with [107] on several partial occlusion scenarios.

As one can see, WLS-RF provides similar accuracy as the randomly sampled Gabor

templates introduced in [107] on the R8 andeyes occludedcases. However, on the most

difficult benchmarks (R16, R24 and mouth occluded), WLS-RF provides significantly

better results. This further shows that performing FER by using a confidence-weighted

combination of spatially-constrained trees allows to flexibly handle partial occlusions
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Table 5.7: Comparison with [107] on multiple scenarios

Protocol WLS-RF [107]

R8 92.2 92

R16 86.4 82

R24 74.8 62.5

Eyes occluded 87.9 88

Mouth occluded 72.7 30.3

without requiring any occluded data for training the classifiers.

5.5.3.3 Realistic occlusions

Our occlusion model is however quite “boring”, in the sense that the occluding noisy pat-

terns are not realistic. For that matter, and because there is currently no FER database that

includes annotated partial occlusion ground truth, we alsopresent on Figure5.11quali-

tative results on more realistic occlusions. Notice how theautoencoder network (learnt

on CK+) assign high confidences (green) to non-occluded feature points, whereas ex-

amples that lie further from the captured manifold (e.g. because of lighting conditions,

self-occlusion with a hand or with an accessory) are given lower values (red). The cor-

responding triangles are thus downweighted for FER and appear transparent on the last

row. Also note that different facial regions can vote for different expressions, as shown

on the second column (happy+angry/disgust).

5.5.4 Experiments on AU detection

5.5.4.1 Merging multiple datasets

In this section we present results for AU detection using LEPfeatures. Table5.8 shows

comparison of AUC for the prediction of AU activations on CK+ database obtained with

LEPs trained on CK+, BU4DFE and SFEW databases, as well as models obtainedvia the

M1 andM2 strategies.

For nearly every AU on CK+, the best AUC score is provided by theM2 strategy.
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Figure 5.11: Examples of local FER under realistic occlusions. Top rows: point-wise

confidence scores (red: low confidence, green: high confidence). Middle rows: triangle-

wise scores. Bottom rows: weighted local classification (transparent for low confidences,

gray for neutral, red forhappy, yellow for angry, blue forsad, cyan forfear, green for

disgustand magenta forsurprise). Best viewed in color.

However LEPs trained on CK+ only as well as theM1 strategy also provide good predic-

tion results. LEPs trained solely on BU4DFE and SFEW seem a bit lackluster, but using

the additional categorical expression data in addition to data from CK+ can be beneficial

for prediction accuracy. Interestingly, on BP4D, LEPs trained on CK+ only seem to have

a slight edge over the two LEP models trained using all the available data. However, the

M2 strategy and, to a lesser extent,M1 and training on BU4DFE only, provide close per-

formances. Furthermore, on the DISFA dataset, theM1 and theM2 LEP models provide

the highest AUC. Overall, theM2 andM1 models seem to perform better, followed by

the models trained on CK+. This proves that AU detection can benefit from additional

114



Table 5.8: AUC scores on CK+, BP4D and DISFA databases. Results are presented

for LEPS trained with multiple settings,i.e. Merge (M1 and M2) and training on CK+,

BU4DFE and SFEW categorical expression databases.
CK+ BP4D DISFA

AU M1 M2 CK+ BU4DFE SFEW M1 M2 CK+ BU4DFE SFEW M1 M2 CK+ BU4DFE SFEW

AU1 97.9 98.4 98.4 94.7 93.3 59.6 62.7 63.6 60.9 52.0 66.1 68.4 71.3 57.6 66.6

AU2 98 98.2 97.7 97.5 97.2 65.4 64.8 62.3 66.0 53.0 53.8 55.2 67.3 59.3 59.4

AU4 93.3 95.4 94.8 83.1 85.6 68.7 63.8 64.4 64.4 55.3 66.7 66.7 67.3 64.0 67.6

AU5 94 97.5 95.5 93.2 95 - - - - - 84.2 85.6 73.3 88.6 73.7

AU6 95.4 95.7 95.5 94.3 94.9 83.1 81.8 82.6 78.5 77.1 89.1 86.0 89.2 86.8 85.1

AU7 89.1 90.2 89.6 88.1 83 76.8 75.0 73.6 72.6 65.0 - - - - -

AU9 97.9 99.3 98.7 98.5 94.8 - - - - - 79.0 77.0 75.4 74.0 53.4

AU10 83.7 85.6 86.5 78.4 81.7 83.7 83.8 83.3 81.0 78.6 - - - - -

AU12 97.6 96 96.2 96 96.5 89.9 90.0 89.8 88.0 87.2 95.5 92.9 93.6 92.8 91.8

AU14 - - - - - 65.2 66.4 63.7 66.5 64.9 - - - - -

AU15 91 88.9 88.3 79 79.5 56.8 58.4 58.5 57.7 56.0 69.5 64.5 63.6 68.8 61.7

AU17 93.9 95.1 93.4 81.5 86.4 55.8 65.7 68.9 65.1 60.6 67.8 61.2 53.5 59.1 58.8

AU20 91.9 93.8 94.5 88.5 85.8 - - - - - 65.0 58.5 50.2 55.5 61.9

AU23 - - - - - 50.1 57.2 60.2 57.5 54.2 - - - - -

AU24 - - - - - 69.6 77.4 78.2 77.7 68.4 - - - - -

AU25 99 99.1 98.8 87.1 97.4 - - - - - 94.8 95.0 94.0 95.6 80.0

AU26 75.7 81.2 79.7 74.9 73.4 - - - - - 79.3 81.4 75.6 78.5 71.5

Avg 92.7 93.7 93.4 88.2 88.9 68.8 70.6 70.8 69.6 64.3 75.9 74.4 72.9 73.4 69.3

training data labelled with categorical expressions. Finally, LEPs trained on SFEW did

not perform very well, probably due to the fact that the database embraces too much vari-

ability for too few training data. Thus, the categorical expressions can not be captured

adequately, as can be seen from the low accuracies showed in Section5.5.2.

5.5.4.2 Multi-output strategies

Table5.9 shows the relative interest of the different multi-output learning strategies de-

tailed in Section5.4.3 on CK+. Overall, the SO strategy seems to output the lowest

AUC score, as it essentially ignores the co-dependency between the multiple AU detec-

tion tasks. It is however closely followed by the full MO model. The MO-RW-tree and

MO-RW-split provide slightly better results. Nevertheless, the latter are overshadowed

by the MO-Binary-tree and MO-Binary-split which not only provides better overall accu-

racy, but also allows a significant decrease of the computational load during training, as

115



Table 5.9: AUC scores on CK+ database
training strategy AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU10 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

SO 98.4 97.7 94.8 95.5 95.5 89.6 98.7 86.5 96.2 88.3 93.4 94.5 98.8 79.7 93.4

Full MO 97.8 98.1 94.6 96.4 96.1 91.8 99.2 84.9 97.7 89 94.9 93.1 99.2 76.7 93.5

MO-RW-tree 97.8 98.2 94.8 96.4 96.2 91.4 99.2 83.3 97.7 89.6 95.1 93.2 99.3 81.7 93.8

MO-Binary-tree 98.1 98.2 94.9 96.8 96.2 91.3 98.8 87 97.2 88.7 94.8 93.8 99.2 79.4 93.9

MO-RW-split 97.9 98.1 94.8 96.4 95.9 91.6 99.3 83.2 97.4 89.8 95.1 93.1 99.2 80.3 93.7

MO-Binary-split 97.9 98.1 94.8 96.5 96.1 91.6 99.3 83.3 97.7 89.7 94.9 93.1 99.2 80.3 93.7

MO-1task-split 98.1 98.2 94.9 96.4 96.1 91.6 99.5 86.8 98 88.6 95.1 93.7 99.2 82.4 94.2

only half the tasks are used to compute the splits. The best overall strategy is the recently

proposed (see [54]) MO-1task-split, which is significantly faster and more accurate, as it

further increases the decorrelation of the trees. Moreover, as illustrated on Figure5.12,

as all the AU prediction tasks are used for training each tree, the accuracy grows faster

than the and the MO-RW-tree and MO-Binary-tree models, and quite as fast as the MO-

RW-split and MO-Binary-split models. Thus, high accuraciescan be obtained by using a

restricted number of trees (e.g.T = 125).

Figure 5.12: Influence of T (number of trees) on average AUC

5.5.4.3 Impact of mesh refinement

Table5.10shows the accuracy obtained on CK+ and DISFA for both the original49-point

mesh and a500-point refined mesh, using Multi-output AU prediction performed upon

LEP features trained using the M2 merge strategy. As one can see, the interest is limited

on CK+ because a coarse mesh is sufficient to describe such prototypical facial behaviors.
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On the DISFA database though, the refined facial mesh gives higher AUC for nearly every

AU. Indeed, using a more fine-grained mesh allows to produce more diverse LEP features

by subdividing large areas such as triangles correspondingto the cheeks.

Table 5.10: AUC scores on CK+ and DISFA databases
CK+ DISFA

AU M2,MO(49) M2,MO(500) M2,MO(49) M2,MO(500)

1 97.9 98.3 67.4 72.8

2 98.4 98.8 52.6 61.9

4 93.7 94.1 75.2 77.8

5 96.8 96.3 88.3 86.9

6 96.2 95.8 89.7 90.5

7 89.6 91.6 - -

9 99.5 99.6 82.5 84.9

10 86.5 86.8 - -

12 98.1 97.3 96.2 96.2

15 88.2 88.2 74.5 72.5

17 94.5 94.1 64.2 62

20 95 93.3 62.1 63.1

25 99.5 99.4 95.7 95.8

26 80.1 85.1 77 79.3

mean 94.0 94.1 77.1 78.6

5.5.4.4 Relevance of AU confidence assessment

In order to assess the relevance of the AU-specific confidencemeasurement, we evaluated

its average value on the occluded versions of the CK+ and BU4DFE databases generated

in Section5.5.3for occlusion handling in categorical FER. From a general perspective, as

can be seen on Figure5.13, low confidence measurements can be observed for AUs from

the upper face region on the two scenarios involving eye occlusion. The same holds for

AUs from the lower face region and the “mouth occluded” scenario, whereas the confi-

117



dence scores are significantly higher in the non-occluded case. Interestingly, confidence

scores for AU6 (cheek raiser) and, to a lesser extent, AU9 (nose wrinkle), are quite low

even in the “mouth occluded” case. Indeed, as can be witnessed on Figure5.5, the confi-

dence measurement for these AUs also use LEP features from the nose and mouth area.

Figure 5.13: AU confidence scores outputted on occluded CK+ and BU4DFE database

5.5.4.5 Comparison with state-of-the-art approaches

Table5.11 reports the overall best AUC obtained on the three datasets.It also draws a

comparison between the AUC scores obtained using our methodand results reported in

recent publications involving similar protocols (same databases and sets of AUs, same

intensity threshold for AU occurrence on DISFA). Our approach provides better results

than SHTL [72] on CK+, as well as accuracy similar to the multi-label CNN introduced

in [34] on DISFA. Ruizet al. [72] obtain an excellent AUC score of81.5 on DISFA.

However, they do not provide information to ensure that the same protocol is used for

evaluation (e.g. the threshold that is applied on the AU intensity values). Last but not

least, our method also provides better performance than baselines LBP-TOP features used

in [108] on BP4D. This demonstrates that LEPs learned on large amounts of categorical

expression data yield high discriminative power for AU detection tasks.
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Table 5.11: Comparison with other works

Database AUC(ours) AUC(Other works)

CK+(14AU) 94.2 91.7 (SHTL [72])

BP4D(12AU) 70.8 68.9 (LBP-TOP [108])

DISFA(12AU) 78.6 75.7 (Multi-label CNN [34])

Table 5.12: Measured evaluation time per processing step (in milliseconds)

Processing step time (ms)

Feature point alignment 10

Integral channels computation 2

Confidence weights computation 11

LEP computation (1000 trees) 7

12 AU detection - Single output(50 trees per AU) 1

12 AU detection - Multi output(50 trees total) 0.1

Total 31

5.5.5 Runtime evaluation

The proposed framework for occlusion-robust FER (WLS-RF) andAU detection operates

in real-time on video streams, even with large tree collections. Table5.12displays the

elapsed time for each step of the evaluation pipeline. The test was performed on an Intel

Core I7-4770 CPU on a single-thread C++/OpenCV implementation.

It appears that the feature point alignment and confidence weight generation steps are

the bottleneck of the system in term of computational load. However the runtime for the

former can be reduced by the use of more efficient alignment algorithms such as the one

proposed in Section6.3.2. As for the confidence weights, the computation time can be

significantly reduced by a proper multithreading (e.g. computing the confidence for each

feature point in parallel). As it is, the framework already runs at more than 30 fps even

with large collections of trees. As for training, learning LEPs with 1000 trees on a big

database (BU4D containing more than 8000 face images) took approximately three hours

without parallelization. Training the hierarchical autoencoder network took half a day
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and learning the 12 AU detectors on DISFA database with 50 trees required one hour on

the same I7-4770 CPU using a loose C++ implementation. Thus, our approach scales

well both in terms of training and testing times, especiallywhen compared to recent deep

learning algorithms [34] for feature representation and learning.

5.5.6 Discussion

Thoughout this chapter, we proposed a new high-level expression-driven LEP representa-

tion. LEPs are obtained from training RFs upon spatially-defined local subspaces of the

face. Extensive experiments on multiple datasets highlight the fact that the proposed rep-

resentation improves the state-of-the-art for categorical FER and yields useful descriptive

power for AU occurrence prediction. Furthermore, we introduced a hierarchical autoen-

coder network to model the manifold around specific facial feature points. We showed that

the provided reconstruction error could effectively be used as a confidence measurement

to weight the prediction outputted by the local trees. The proposed WLS-RF framework

significantly adds robustness to partial face occlusions. The ideas introduced in this chap-

ter also open a lot of interesting directions for future works on face analysis. First, note

that the confidence weights are representative of the spatially defined local manifold of

the training data. Thus, these confidence values can be used to determine which parts of

the face are the most reliable in a general way (e.g. to address unpredicted illumination

patterns or head pose variations), and are not limited to occlusion handling. Furthermore,

we could inject confidence weights into the feature point alignment framework in order

to enhance the robustness of the feature point alignment w.r.t. occlusions. Compared to a

discriminative approach using synthetic data [33], our manifold learning approach could

in theory more efficiently deal with realistic occlusions. Moreover, the applications of

LEPs for AU detection and intensity estimation are multiple. First, it would be interest-

ing to learn LEPs using more expression data such as the datasets introduced in [76, 93],

possibly with a more complex integration strategy.
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Chapter 6

Greedy Evaluation of Neural Decision

Forests

In this chapter, we provide adaptations of the very recent Neural Decision Forest (NDF

[48]) machine learning algorithm to allow a more efficient, fully online training procedure

(see Section6.2) as well as an evaluation procedure (Section6.1) that is an order of

magnitude faster than the one proposed in [48]. We highlight on several applications that

GNDF is particularly suitable for face analysis, for which it is crucial to work with a

very high framerate upon high-dimensional feature vectors. Moreover, we show that the

proposed GNDF framework can be adapted to tackle different machine learning problems,

i.e. classification and regression. In order to do so, we benchmark our algorithms on facial

expression classification6.3.1and feature point alignment within a cascaded regression

framework6.3.2.

6.1 Greedy evaluation procedure

As highlighted in Section3.3.4.1, in the case of a classical decision tree, the probability

µl(xi) to reach each node given an examplexi is given by a product of Kronecker deltas

that successively indicate ifxi is routed left or right:
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µl(xi) =
∏

n∈N right
l

δn(xi)
∏

n∈N left
l

(1− δn(xi)) (6.1)

In the case of a NDF (See Section3.3.5.1), this probability is given by:

µl(xi) =
∏

n∈N right
l

dn(xi)
∏

n∈N left
l

(1− dn(xi)) (6.2)

In the case wheredn(xi) → δn(xi), a neural decision tree becomes a hard decision

tree with oblique splits. Intuitively, from a NDF evaluation perspective, we successively

choose the best path through the tree in a greedy fashion, node after node. Thus, we refer

to this model as a Greedy Neural Decision Forest (GNDF).

On the one hand, in order to evaluate a NDF that is composed ofT trees, we have to

evaluate the probability to reach each leaf node of each tree. As a consequence, each split

node has to be evaluated, thus the complexity of evaluating agiven input of dimension

k with NDF is T.k.(2D+1 − 1), i.e. exponential in the tree depthD. By doing so, we

essentially lose the runtime advantage of using ensemble ofdecision trees for prediction.

In case of a GNDF, on the other hand, only a single, locally “best” path through theT

trees has to be evaluated. Hence, its complexity is equal toT.k.D, i.e. linear inD.

6.2 An efficient Neural Decision Forest training algorithm

The auhors in [48] suggest using a two-step iterative optimization scheme. Given a train-

ing examplexi, a forward pass through the trees provides the activationsdn(xi) and prob-

abilitiesµn(xi). The error is then backpropagated from the leaves up to the root of the

trees. Then, after a number of epochs, the leaf probabilities are updated following a con-

vex optimization scheme. This leaf prediction update may however be quite costly in

terms of training time. It also involves additional hyperparameters and requires the use of

all the data, thus it can not be performed online.

To circumvent those issues, we propose an alternative training procedure for NDF that

involves fixed prediction nodes. First, we randomly initialize a number of trees (e.g. with

a fixed depthD, randomly generated feature weightsβn
j and thresholdsθn for each node).
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In order to maximize the information gain w.r.t. class labelassignment, leaf nodes of

each individual tree should contain pure distributions. Following this idea, we assign ran-

dom predictions to the tree leaves, that will be left unchanged during the whole training

process. Thus, in case of a classification task, a class is randomly selected and assigned

to each leaf node. For regression, the predictions are initialized with randomly sampled

values in the range of the training ground truth values. Notethat, depending on the distri-

bution of these values, the prediction can be randomly sampled from specific distributions

(e.g. uniform or gaussian).

Hence, only the split node parameters are updated at each SGDiteration. Note that

such setting is not only intuitive, but it allows to perform the training faster and in a fully

online fashion. It also offer the advantage to reduce the number of hyperparameters. How-

ever, in case of a classification task, the depth of the trees has to be set accordingly to the

number of classesC, so that each class is represented at least once among the leaf nodes.

It is possible to show that settingD according to Equation (6.3) provides a probability

higher than 0.99 for this condition to be realized (See Appendix A). Furthermore, we also

prove that this lower bound depth grows as the logarithm of the number of classesC.

D > D0 =
1

ln(2)
ln(

ln(1− (1− 0.99)1/C)

ln(1− 1/C) ) (6.3)

SGD or mini-batch updates are then applied until a specific number of epochs through

the whole training set are completed. SGD updates can be applied to each tree in paral-

lel. After training is completed we convert the soft trees back to hard decision trees by

applyingdn → δn for every noden to “convert” the NDF to a GNDF. As it will be shown

in the experiments, this allows a faster evaluation at no expense in terms of prediction

accuracy. Moreover, it also provides a deterministic prediction, as opposed to iteratively

sampling the probabilistic split nodes a number of times. The whole training procedure is

summarized in Algorithm4.
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Algorithm 4 Efficient GNDF training

Input: data matrixX = {xi,j}i=1,...,N,j=1,...,k, tree numberT , tree depthD, number of

epochsE, learning rateα

for t = 1, ..., T do

initialize tree t with root node rt and depthD random split parameters

{βn
i }i=1,...,k, θ

n for each split noden and a random class prediction assigned to each

leaf node

end for

for ep = 1...E do

for ex = 1...N do

pick an examplei at random from the training set

ǫfeat(xi) = 0 ⊲ Recall thatǫfeat is the backpropagation delta to the feature level

for t = 1, ..., T do

Apply forward pass through treet to compute probabilitiesµn and activation

dn

ǫfeat(xi) = ǫfeat(xi) + NDF backprop(xi, rt, α)

end for

Optionally backpropagate errorǫfeat(xi) and update CNN weights

end for

end for

for t = 1, ..., T do

for all noden in treet do

dn → δn

end for

end for

6.3 Applications

Below we present some applications of the proposed simplifiedNDF training procedure

and greedy evaluation of NDF for real-time processing. Morespecifically, we present an

application of GNDF for categorical FER (Section6.3.1), with a focus on hyperparame-
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ter setting (Section6.3.1.1), learning (deep) texture representations with GNDF (Section

6.3.1.2) and real-time capabilities (Section6.3.1.3). We also show that GNDF can be used

in a cascaded regression framework to perform feature pointalignment (Section6.3.2).

6.3.1 GNDF for FER

In this section, we present an application of GNDF for categorical FER. For that matter,

we use geometric features (point distancesφ(1) - see Section3.2.2) along with texture rep-

resentations (Section3.2.4.2) learned through a CNN architecture (Section3.3.3.3). For

the benchmarks of Section6.3.1.1we use geometric representations only, principally for

evaluation speed reasons. For the deep learned models presented in Section6.3.1.2, we

use the deep architecture illustrated on Figure6.1, which involves a 2-layers CNN. The

first CNN layer (CNN-1) is applied on48 × 48 face crops and is composed of40 5 × 5

filters. The output feature maps are max-pooled and fed to thesecond layer that is com-

posed of40 3×3 filters. The output feature maps (40 10×10 feature maps for the second

layer (CNN-2)) are concatenated and serve as input for the NDFclassifier. Alternatively,

both layers are used as the input for the prediction stage (Network connexions thus form

a directed acyclic graph, hence we refer to that model as DAG-CNN). For each dataset,

we augment the training data to learn CNN features by generating flipped and rotated ver-

sions (with angles randomly sampled within the interval[−15◦, 15◦]) of the images and

of the feature points.

6.3.1.1 Varying tree depth and number of trees

First and foremost, we report accuracies obtained by training GNDFs with 10 trees of

varying depth, with the same number of updates, slope and learning rate values as above.

We run the experiment 10 times and report the accuracy (average and standard deviation)

on Figure6.2. As one can see, the depthD of the trees is not a critical hyperparameter to

set. However, classification accuracy is lower for very shallow trees (e.g.D ≤ D0 ≈ 5),

as a number of expression classes may not be covered by some individual trees. For these

benchmarks,D = 6 seems to be a good compromise.
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Figure 6.1: Deep architecture involving geometric and CNN features with GNDF/NDF

predictor for FER. For each noden of the trees, NDF successive split nodes “dispatch”

the data through the tree according to the activationdn (right subtree) and1 − dn (left

subtree) of a neuron layer. Its corresponding GNDF takes hard decisions (δn or 1 − δn)

upon oblique hyperplanes, which significantly decreases the evaluation runtime. The red

arrows indicate (some of) the gradient backpropagation routes through the deep network,

for multiple architectures: CNN-1 (the output of the first convolutional layer feeds the

prediction pipeline), CNN-2 (same for the second layer) and DAG-CNN (both layers are

used for prediction). Best viewed in color.

We then report accuracies obtained by training GNDFs with geometric features only

and a fixed depth ofD = 6. We compare our results directly with the most common RF

variations that are described in Section3.3.4.2.2: RF and ERT-k (with k = 50). We also

compare with NDF as well as with results obtained by samplingfrom the probabilistic

trees (NDF-sample, mean and standard deviation over 5 samples). Figure6.3 shows the

accuracy evolution as a function of the number of SGD updates.

First, one can see that NDF, NDF-Sample and GNDF yield equivalent –if not better–

results than the classical batch RF induction (RF and ERT-50),for T = 5, 20, 100 trees.

This is a promising result as other methods for online RF training such as the ones in

[50, 73] are generally less efficient than the batch training procedure. Moreover, we also

observe that the accuracies of GNDF and NDF-Sample lie a bit further than that of NDF
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Figure 6.2: Accuracy as a function of tree depth

with small amounts of trees (e.g.T = 5, 20, not necessarily favouring NDF-see the

graph withT = 5 on FEED database). Overall, the accuracies of GNDF and NDF-

Sample are equivalent or better than that of NDF (except on CK+with T = 5 trees)

with a much lower runtime. This is due to the fact that the decorrelation induced by

increasing the randomness of the evaluation may compensatefor the loss caused by the

greedy approximation/sampling procedure. Furthermore, the variance in accuracy that

results from the random node sampling is quite important even after a number of SGD

updates. Thus, GNDF appears as a more reliable predictor than NDF-sample, as the

evaluation is a deterministic process. This proves the interest of GNDF as a standalone

classifier, let alone its use for learning deep representations.

6.3.1.2 Learning deep representations

Table6.1 displays the accuracy of NDF and GNDF on different datasets when used as

shallow predictors upon geometric features, as well as their use inside a deep learn-

ing framework for learning texture representations. Note that for BU-4DFE and FEED

databases, state-of-the-art methods usually report results for video classification on a re-

stricted number of subjects or using an easier evaluation protocol [1], whereas we use all

the subjects in our experiments. Thus, for comparison purposes, we provide a baseline

for RF using geometric features alongside HOG (geo+HOG) in addition to a comparison

with prior works that still give an insight of the relative difficulties of the classification

task on those databases.

We observe that, as stated in [44], using a combination of geometric and deep learned
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Figure 6.3: Accuracy comparison with standard RF variants for 5 (top row) 20 (middle

row) and 100 trees (bottom row). The blue dashed lines indicate the mean± std of the

NDF-Sample accuracy. Best viewed in color.

texture representations provides the best results by a significant margin. Results for

geo+CNN-2 are better than the geometric features alone. However, the number of training

examples may not be sufficient to learn the high number of parameters that a multi-layer

CNN is composed of, even with data augmentation. Nevertheless, the use of DAG-CNN

allows to slightly increase the accuracy by providing access to the outputs of the two CNN

layers. Also, here again GNDF provides performances very close to those of NDF. Fi-

nally, when used inside a deep learning framework, results for NDF and GNDF are also

above the RF baseline as well as state-of-the-art methods.
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Table 6.1: Accuracies obtained with shallow/deep NDF/GNDFpredictors.†: a correct classifi-

cation is acknowledged if the ground truth label matches one of the two top proposals

CK+ database BU-4DFE database FEED database

features NDF GNDF NDF GNDF NDF GNDF

geo 87.3 87.3 71.6 71.8 46.6 47.9

geo+CNN-2 89.9 90.0 73.1 72.9 50.1 50.1

geo+DAG-CNN 92.2 92.2 74.0 74.0 51.8 52.0

LBP/SVM [78] 88.9 - -

RF/SVM [1] - 73.1† 53.7†

MRF/DBN [68] 90.1 - -

geo+HOG/RF 91.1 72.8 50.3

6.3.1.3 Runtime evaluation

As stated in Section6.1, the complexity of evaluating a GNDF is a linear function of

the tree depth vs. exponential for NDF. Table6.2shows the runtime of NDF and GNDF

for evaluating one expression frame with one tree of depth 6.GNDF is about 30 times

faster than NDF and, as such, allows a real-time evaluation at more than 30 fps without

parallelization with 100 trees, even when using high-dimensional DAG-CNN features.

This, however, does not take into account the forward pass through the CNN that can be

subject to a parallel implementation or dedicated GPU acceleration.

Table 6.2: Runtime evaluation (ms) for one example with one tree

features #dimensions NDF GNDF

geo 1176 0.17 < 0.01

CNN-1 19360 3.05 0.11

CNN-2 4000 0.65 0.03

DAG-CNN 23360 3.76 0.13

geo+CNN-1 20536 3.97 0.12

geo+CNN-2 5176 0.90 0.03

geo+DAG-CNN 24536 3.99 0.16
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As for training time, it took about30 minutes to learn 100 trees of a shallow NDF on

a Intel Core I7-4770 using a loosely-parallelized C++/OpenCV environment. Learning

deep NDF with 100 trees and geometric features plus the proposed DAG-CNN architec-

ture took about half a day to complete with 40 epochs on CK+.

6.3.2 Feature point alignment with a cascaded semi-parametric deep

greedy neural decision forest

As stated in Section3.1, face alignment is a crucial step for face analysis in general,

and expression recognition in particular. To tackle this issue, Section6.3.2.1focuses on

learning and evaluating a face alignment system on still images. It consists in aligning

a set of facial feature points (e.g. eyes or mouth corner, nose tip), which usually form

either a68-points markup (inner+cheeks points), or a51/49-points markup with only the

inner points. To this end, modern methods first rely on face detection to provide an initial

bounding box, then apply a cascaded regression framework toinfer the displacements of

the points of a mean shape centered inside the face bounding box. The authors in [101]

provide a comprehensive, yet compact survey of the most successful recent methods for

face alignment. In this section, we propose to adapt the proposed GNDF framework to

the problem of face alignment.De facto, GNDF is a well-suited predictor for that task,

since the evaluation is as fast as a RF and since it benefits fromdifferential training (hence

allowing the learning of deep representations) with backpropagation and SGD (allowing

efficient data augmentation schemes).

We also demonstrate in Section6.3.2.2that our method provides state-of-the-art ac-

curacy on multiple benchmarks for face alignment on still images. Finally, in Section

6.3.2.3we propose a few practical tricks to robustly perform feature point alignment on

video sequences, as well as an evaluation of the proposed system.

6.3.2.1 Face alignment on still images

In this section, we present the proposed CSP-dGNDF method forface alignment, which is

outlined on Figure6.4. The proposed system mainly consists in two cascaded regressions
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pipelines. The first one consists in a regression in the spaceof a parametric shape model

6.3.2.1.1. The subsequent one is an explicit cascaded regression6.3.2.1.2. In particular, at

each stage of those two cascades a displacement (either parametric or explicit) is regressed

via a deep GNDF, which consists in a predictor (dGNDF6.3.2.1.3) that is associated to a

single neuron layer for dimensionality reduction6.3.2.1.4. In particular, we discuss a few

implementation choices for reducing the overfitting at eachstage of the cascade (Section

6.3.2.1.5). Last but not least, we detail how we put all the pieces together inside the

cascaded regression framework (Section6.3.2.1.6).

6.3.2.1.1 Parametric shape model. Two constraints that may arise when training a

NDF for the purpose of multi-output regression is (a) covering the output regression space

by filling the leaf node predictions in a somewhat exhaustivemanner and (b) limiting the

number of nodes, which is a function of (the exponential of) the tree depth by the number

of trees. Given those requirements, it is easy to see that trying to directly predict the shape

displacement is a bad idea, as the output space is high-dimensional (dim. 51 × 2) and

the displacement value ranges can be important. For that matter, we employ an explicit

shape parametrization in the first stages of the cascade, which is a classical setup for face

alignment [17, 16, 3]. More specifically, shapes is defined as:

s(p) = αR(γ)(s0 + φg) + t (6.4)

Whereα = (αx, αy) is a scaling parameter,R is a2D rotation matrix parametrized

by angleγ, andt = (tx, ty) is a translation parameter. Those are the rigid parameters of

the transformation.s0 is the mean shape and vectorg describes the non-rigid deformation

of the shape in the space of the Point Distribution Model (PDM) φ, as it was introduced

in the seminal work of Cooteset al [16]. The vector of parameters is thus defined as

p = (αx, αy, γ, tx, ty, g1, ..., gm) ∈ Rm+5. In our experiments, we setm = 15, making a

20-dimensional parametrization of the shape.

Prior to constructing the PDM, we thus have to first detect theface, e.g. using OpenCV

Viola and Jones algorithm [92]. The retrieved region of interest is thus resized to a

200 × 200 window. For each shape, we then perform Procrustes analysisto remove the
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Figure 6.4: Flowchart of the Cascaded Semi-Parametric deep GNDF (CSP-dGNDF)

alignment method. In the first stages of the cascade, a parametric shape is regressed

using deep GNDF predictors. The alignment is performed in a fully online fashion, by

presenting the augmented examples sequentially. The inputvector for each stage of the

cascade is a reduced concatenation of local SIFT descriptors computed around the cur-

rent landmark estimates. In the later stages, more fine-grained explicit deformations of

the shape are regressed.
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rigid component. Thus, we generate the PDM matrixφ using PCA on the rigidly-aligned

shapes. After that, we apply 100 Gauss-Newton iterations toretrieve the parameter vector

p∗
i corresponding to each imagei with ground truth shapes∗i . Each iteration is defined as

pi ← pi + (J(pi)
tJ(pi))

−1J(pi)
t(s∗i − s(pi)), with J(pi) being the Jacobian ofs(pi).

6.3.2.1.2 Explicit shape model. Contrary to parametric layers (see Paragraph6.3.2.1.1),

an explicit layer aims at directly predicting the displacements of the facial feature points.

The output of such layer is thus defined as:

δs = (δs1x, ..., δs
51
x , δs1y, ..., δs

51
y ) ∈ R

51×2 (6.5)

However, as stated above, the output of an explicit layer is high-dimensional. Thus,

in order to cover the range of those values with the leave nodes of a GNDF predictor

that contains a moderate number of trees (to keep the runtimelow), one shall restrict the

ranges of the prediction values. Fortunately, the ranges ofthe deltas between a current

predicted value and the ground truth feature point locations becomes smaller and smaller

as cascade layers are stacked, allowing the use of explicit regression layers for the latter

stages of the cascade.

6.3.2.1.3 Regression with NDF predictors. As illustrated on Figure6.4, we propose

a framework for multi-output regression upon an input feature vectorzi of either the

parameter update vectorδp or, in the case of an explicit layer, the displacement vectorδs.

In the case of a parametric layer, we first estimate the meanδ̄k and standard variation

σk of the delta between the initial position in parameter spaceδp0(k) (that corresponds to

the mean shape in the shape space, for the first level of the cascade) and the ground truth

objectiveδp∗(k), for each parameterk. We then generateT single-objective trees for each

parameterk by assigning each leaf nodel a single predictionδ̂p
l ∼ N (δ̄k, σk). During

training, all theT × (m+5) parameters are optimized jointly by updating each tree node

with Equations3.39, 3.42, 3.43 using a parameter-dependant learning rateαk = α0

σk
in

order to take into account the discrepancies in the dynamicsof the different dimensions in

the parameter space. The same holds true for an explicit layer by replacing the parameter
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updates by the feature point displacements.

As in the classification case (Section6.2) the tree depth has to be chosen carefully in

order to ensure a minimal “resolution” in term of leaf predictions. For that matter, we

provide in AppendixA.2 a proof that, in the regression case with constant leaf prediction

initialized from a gaussian distribution, we have a sufficient condition to have each value

y ∈ [δ̄k − σk, δ̄k + σk] close to at least one leaf node predictionyl (in the sense that

|y− yl| < ǫ, with a probability superior to1− ǫ′). We essentially show that this condition

is satisfied ifD > D0, with

D0 =
1

ln(2)
ln

ln(1− (1− ǫ′)
1

2σk )

ln(1− 2ǫ√
2πσk

e
− (σk+ǫ)2

2σ2
k )

(6.6)

In our case, using trees of depth8 ensure that this condition is satisfied withǫ′ = 0.99

andǫk = σk/10 for all the rangesσk of the model parameters (which experimentally vary

from 10 to 0.1).

6.3.2.1.4 Feature extraction and dimensionality reduction. We use baseline SIFT

features (Section3.2.4.1) for their robustness and fast extraction speed. The9-dimensional

orientation bins and magnitude maps are generated and SIFTsare extracted from those

feature maps with4× 4 non-overlapping cells in a fixed size window (40× 40, 36× 36,

32 × 32 and28 × 28 for the first, second, third and fourth cascade layers, respectively)

and concatenated to form6528-dimensional descriptorsxi in the case of a51-landmark

shape (8704 for a68-landmark one).

Learning NDFs with such high-dimensional descriptors would be quite slow in terms

of memory and training time, let alone overfitting issues. For those reasons, as in [98]

we perform dimensionality reduction. However, as stated above, as NDF are differential

classifiers, we can use a single neuron layer to perform dimensionality reduction and learn

the weights of that layers in a single, top-down, supervisedtraining pass (as opposed to,

e.g., applying PCA beforehand [98]). We thus plug the descriptorsxi into a single neuron

layer with500 output units with an hyperbolic tangent activation function. Those units’

weights are initialized in the range of[−0.01, 0.01] and, during training, their weights are

134



updated by applying Equation6.7 for all nodes of all trees. The backpropagated error

corresponding to thejth component corresponding to an examplei ǫfeati,j is thus:

ǫfeati,j =
1

T × (m+ 5)

T×(m+5)
∑

t=1

∑

n∈N (t)

µn(zi)βjd
n(zi)(1− dn(zi))(ǫ

n
+(zi)− ǫn−(zi) (6.7)

Additionally, during training the weights of the neurons are regularized usingL1-

penalty. We use the truncated gradient algorithm introduced in [51] to enforce sparsity

among the neurons’ weights. In practice, this reduces the number of non-zero coeffi-

cients down to10%, thus allowing fast dimensionality reduction while fully preserving

the prediction accuracy.

6.3.2.1.5 Avoiding overfitting. Within the frame of a cascaded landmark alignment

[98], it is crucial that each stage of the cascade (i.e., in our case, each NDF predictor)

does not overfit on the training data so that the residual deltasδp∗
i − δ̂pi (for a parametric

layer) do not shrink too much after one or two stages. Even though the NDF predictors

embraces a whole lot of parameters (20 × 25 × 255 × 500 = 63750000 parameters for a

20 parameters model andT = 25 trees of depth8!), three mechanisms limit overfitting in

practice:

• We use dimensionality reduction to limit the number of parameters (see Section

6.3.2.1.4).

• We use early stopping by training each NDF predictor with a restricted number of

SGD updates. Moreover, as the proposed NDF training framework is fully online,

for each example, we generate random perturbations that arerandomly sampled

within the variation range for that parameter (for scaling and translation parameters

only).

• The switching from a NDF model to a GNDF may possibly introduce some noise

in the predictions, which will be compensated in the furtherstages of the cascade,

while significantly reducing the evaluation runtime (exponential to linear function

of the tree depth).
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6.3.2.1.6 Cascaded alignment.As it is somewhat classical in the landmark alignment

literature, we propose a cascaded alignment procedure. However, in our work, we use

a semi-parametric shape model, in which a shape prediction is provided as the sum of

multiple displacements in parameter space, starting from an initial guess (usually defined

as the mean shape parameterization). Then, in the latter stages, the displacement is fine-

tuned using explicit layers. The final prediction can thus bewritten as:











ŝ = s(p̂) +
∑

lv′ δ̂s
(lv′)

p̂ = p0 +
∑

lv δ̂p
(lv)

(6.8)

This allows (a) a constrained shape regression that is, theoretically speaking, more

stable than a fully explicit method, and (b) a flexible alignment procedure that captures

the fine-grained feature point displacements. After each step, the shape is updated using

Equation (6.8) and the SIFT descriptors can be computed using the current feature point

location. Those descriptors are then used to feed the next level of the cascade. As stated

before, each cascade layerlv consists in (a) a feature extraction step, (b) a separate NN

for dimensionality reduction and (c) a NDF predictor that isevaluated in a greedy fashion

for faster processing. The steps for training a CSP-dGNDF cascade are summarized in

Algorithm 5.

Note that, as the parameters for all the training examples converge towards the ground

truth values, the parameter ranges standard deviationσlv
k decreases accordingly. Re-

call that, in the case of a parametric layer, the leaf predictions are generated aŝδp
l ∼

N (δ̄k, σk). Thus, as the number of stages increases, the trees are automatically con-

strained to cast more precise predictions in a much smaller variation range, hence a

coarse-to-fine alignment.

6.3.2.2 Evaluation

For evaluating the proposed CSP-dGNDF cascade, we train our models on a concatena-

tion on the training partition of the LFPW and HELEN databases, as well as images from

the AFW database. The total training corpus contains3148 training images. For each

of these training images, we use the provided ground truth bounding boxes, as it is com-
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Algorithm 5 Learning a CSP-dGNDF
Input: ImagesIi with ground truth shapess∗

i
, tree numberT for each parameter, tree depthD, number of

updatesNu, base learning rateα, number of PDM dimensionsm, number of parametric cascade stagesL1

and explicit cascade stagesL2

Perform Procrustes analysis ons∗
i

and GN iterations to find ground truthp∗

i

Initialize parameters to mean valuesp̂i ← p̄

for lv = 1, ..., L1 do

Compute parameter ranges(δ̄lv
k
, σlv

k
), initializeNN lv andNDF lv

for up = 1, ..., Nu do

Draw an examplei and augment scaling and translation parameters

for lv′′ = 1, ..., lv − 1 do

p̂i ← p̂i +GNDF lv
′′

(zi)

Update shapes(p̂i), descriptorsxi and reduced vectorzi == NN lv
′′

(xi)

end for

Forward pass throughNDF lv(zi) to compute node probabilities

Backpropagate error throughNDF lv andNN lv

end for

end for

for lv′ = 1, ..., L2 do

Compute displacement ranges(δ̄lv
′

k
, σlv

′

k
), initializeNN lv

′

andNDF lv
′

for up = 1, ..., Nu do

Draw an examplei and augment scaling and translation parameters

for lv′′ = 1, ..., L1 do

p̂i ← p̂i +GNDF lv
′′

(zi)

Update shapes(p̂i), descriptorxi and reduced vectorzi == NN lv(xi)

end for

for lv′′ = 1, ..., lv − 1′ do

ŝi ← ŝi +GNDF lv
′′

(zi)

Update descriptorxi and reduced vectorzi == NN lv
′′

(xi)

end for

Forward pass throughNDF lv(zi) to compute node probabilities

Backpropagate error throughNDF lv
′

andNN lv
′

end for

end for
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monly done in the literature. However, in practice the bounding boxes can be generated

using OpenCV Viola and Jones face detector [92].

We crop each face image according to the corresponding bounding box, add horizontal

and vertical margins equal to a third of the bounding box width and height, respectively.

Then we resize the crops to a200 × 200 scale, and proceed to initialize the mean shape

from the mean model parameters. Then we perturb the mean shape position (tx, ty ∼
N (0, 10)) and scale (sx, sy ∼ N (0, 0.1)). We then train a4-level cascade, where each

layer contains a single neuron layer with6528-dimensional input (8704 for a68-landmark

shape) and500-dimensional output, and a CSP-dGNDF with25 trees per parameter, hence

a total of500 trees of depth8.

We report results on the test partition of LFPW (224 images),HELEN (330 images)

as well as the challenging IBUG database (135 images). To do that, we align the feature

points from the mean shape initialized using the exact same setting, and measure, for

each test example, the average point-to-point Euclidean distance. As it is done in the

literature, this distance is normalized by the inter-pupildistance. Figure6.5 shows the

cumulative error distribution curves, for1, 2 and3 parametric stages cascade, as well as

a semi-parametric one, with the last layer being an explicitone (withn2 normalization)

on the three databases and with both51 and68-landmarks markups. As one can see,

on both LFPW and HELEN databases, the error is below5% of the inter-pupil distance,

which is very close to the human performance on that task, as stated in [101]. Also, the

error is higher for the68-landmarks markup, as the17 landmarks located on the cheeks

are subject to a greater appearance variability. The alignment is also subject to higher

errors on IBUG, as the database contains extreme poses variations as well as a number of

self-occlusions. Finally, one can see that each cascade stage substantially increases the

alignment accuracy. In particular, for every benchmark, the precision “deltas” between

the gains provided by the third and forth layers are roughly equivalents. Thus, using

explicit layers for the latter stages of the cascade allows to reduce the diminishing returns

effect of stacking regression layers for alignment.

Table6.3 shows a comparison of our results with results reported in the literature.

As one can see, the accuracies reported for our4-levels CSP-dGNDF are among the best

138



Figure 6.5: Cumulative error distribution curves on the LFPWand HELEN test partitions.

results in the literature (including recent approaches such as L21-Cascade (2016, [61]),

PO-CR (2015, [88]) and GN-DPM (2014, [89])) on the three databases, for both51 and

68-landmark markups. In addition to that, thanks to the greedyevaluation procedure that

was introduced in Section6.1, our method largely runs in real-time on an single IntelI5

core.

Table 6.3: Comparison of normalized mean error

LFPW HELEN IBUG

method 51 pts 68 pts 51 pts 68 pts 51 pts 68 pts

SDM [98] 4.47 5.67 4.25 5.50 - 15.40

RCPR [12] 5.48 6.56 4.64 5.93 - 17.26

IFA [3] 6.12 - 5.86 - - -

DRMF [2] 4.40 5.80 4.60 5.80 - 19.79

CFAN [106] - 5.44 - 5.53 - -

L21-Cascade [61] 3.80 - 4.1 - 16.3 -

GN-DPM [89] 4.43 5.92 4.06 5.69 - -

PO-CR [88] 4.08 - 3.90 - - -

CSP-dGNDF 3.76 4.84 3.87 5.16 10.45 12.74
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Figure6.6 shows qualitative alignment results respectively obtained by applying1,

2, 3-levels parametric cascade, as well as4-levels semi-parametric cascade (with3 para-

metric layers and1 explicit layer), on a subset of images for the LFPW test partition.

The column on the right shows the ground truth landmark position for those images. The

alignment quality is noticeably better for the semi-parametric cascade, which allows to

more correctly fit fine-grained details such as the positionsof the outer lip and eye cor-

ners. Moreover, the eyebrow landmarks seem to be closer to the ground truth labelling,

illustrating how using a semi-parametric cascade allows toovercome one limitation of

parametric cascades,i.e. the rigidity of the model which sometimes prevent from cor-

rectly fitting the landmarks in the case of specific facial expressions.

6.3.2.3 Feature point alignment on video

In order to perform feature point alignment on video, we propose a simple, yet efficient

framework that is illustrated on Figure6.7. It uses the proposed CSP-dGNDF framework,

in conjunction with two “tricks” to respectively update theface bounding box and control

the alignment quality throughout the sequence.

6.3.2.3.1 Bounding box regeneration. The problem of feature point alignment on

video is analogue to that of aligning on still images, exceptthat is is inefficient to perform

re-detection of the face at each separate frame. Instead of that, what we do is that we

use the predicted parameter and shape updates to predict a new bounding box that will be

used as an initialization for the next frame. Formally, we define the bounding box for a

video frameIn as a rectanglerect(In) = (xn
0 , y

n
0 , w

n, hn)T parametrized by(x0, y0) the

coordinates of its top-left corner, andw andh respectively the width and height of the

face bounding box. The face bounding box generated for framen+ 1 is thus defined as:

rect(In+1) =
1

2
((xn

0 + δtnx, y
n
0 + δtny , w

n + δαn
x, h

n + δαn
y )

T + f(sn)) (6.9)

Whereδαn
x, δαn

y , δtnx and δtny are the regressed rigid parameter updates for frame

n respectively for scaling and translation (x andy coordinates).f is a function that is

estimated directly from the aligned shape for framen using linear regression:
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Figure 6.6: Examples of face alignment on still images from the LFPW database, with1,

2, 3 levels parametric cascade, and4 levels semi-parametric cascade.
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Figure 6.7: Outline of feature point tracking from video. First, the face is detected and

a bounding box is generated accordingly. The mean shape is then initialized within the

bounding box and the alignment is performed using the CSP-dGNDF method from that

mean shape. A confidence score is thus evaluated. From this point, if that score is su-

perior to some threshold the bounding box is updated using a combination of two tech-

niques. Conversely, if the threshold is not reached we perform redetection to retrieve the

face bounding box. The shape is then aligned from the mean shape centered within that

bounding box.
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f(sn) = Asn + b (6.10)

WhereA andb are respectively the4 × 102 and4 × 1 regression matrix and bias.

These values are obtained by using least-squares regression on the whole dataset. Thus,

the generated bounding box is obtained by averaging two estimates. The first of this terms

is obtained by applying the rigid parameters to “follow” themotion of the face, and the

second one is obtained by explicitly regressing the face rectangle from the shape using

least square regression coefficients learned on the training set. In practice, we found this

generation process to provide a bounding box estimate that is much more stable, which

allows to more efficiently follow the deformation of the shape.

6.3.2.3.2 Error case detection. Another important concern for face alignment on video

is to know exactly when the mesh is degenerating so that we canperform re-detection

quickly. In order to do that, we define an alignment score defined as the average score

over all the levels of the cascade.

scorei = 1/
∑

lv

∑

j

∑

t

(δp
(lv)
i,j,t − δ̂p

(lv)

i,j )2 (6.11)

The score is defined as the average standard deviation of the values regressed by each

tree for all rigid and non-rigid model parameters (averagedacross all the landmarks). The

rationale behind this is that the amount of agreement between the trees of each collection

(each one corresponding to a shape model parameter) provides an information of how

easily it is for the GNDF models at each layer to retrieve correct values for the parameters

or displacements.

6.3.2.4 Evaluation on the 300-W video challenge

We use the data from the300-W video challenge data to evaluate our video alignment

procedure for feature point detection and tracking on videosequences. More specifically,

we use the framework outlined on Figure6.7 to track the points for each video. Namely,

in order to perform fully-automatic feature point alignment, for each frame, we generate a
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new bounding box using the algorithm proposed in Paragraph6.3.2.3.1. Moreover, we set

a threshold of0.05 on the score function proposed in Paragraph6.3.2.3.2to detect mis-

alignment. In case the score falls below that threshold, thebounding box is regenerated

using OpenCV Viola and Jones algorithm, then feature points are aligned from the gen-

erated bounding box. We then measure the average point-to-point alignment error (PPE),

normalized by the inter-occular distance between the retrieved points and the ground truth

labels. In order to assess the validity of the proposed scorefunction, we also measure the

correlation coefficient (CC) between the score function and the PPE. In order to remove

outlier data (that can be due to false detections from Viola and Jones face detector), we

do not consider the frames for which the (normalized) PPE is above 1.

Using those settings, our system was able to correctly align197844 out of the218595

frames from the video corpus, making a recall rate of90.5%. Out of those frames, the

median PPE was0.049 which is similar to the above discussed case of the aligning feature

points on still images. The little drop in performance is likely to be due to the difficulty of

the benchmark, with one third of the videos containing a lot of non-frontal head poses and

partial occlusions. Furthermore, the techniques we use forbounding box regeneration are

geared towards mimicking the method used to preprocess the images during the training

step,i.e. aligning the feature points starting from an initial mean shape centered on Vi-

ola and Jones bounding box. Likewise, the methods used in this respect (bounding box

regression from the feature points and update from model parameters) seem to perform

quite well but can lead to some errors.

Last but not least, the CC between the score and distance to theground truth is

−0.48, which indicates a significant correlation between the alignment error and the score.

Hence, this measure can be used to assess the alignment quality throughout the sequences,

as well as to perform redetection of the face when the alignedshape drifts too much from

the face. Figure6.8 shows an example of plot containing both the (scaled) average PPE

and the1 − score function observed on one sequence from the300-W video challenge.

One can see qualitatively how low score values indicate bad alignment cases. Also no-

tice that we chose a somewhat “pessimistic” setting, which sometimes causes correctly

aligned frames to have relatively low scores. Such setting was adopted in order to mini-
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Figure 6.8: Example of an aligned sequence and correlation between the scaled average

PPE and score function.

mize the false positive number -in our case, the number of badly aligned frames with high

scores. The reason is that bad alignments can cause the modelto drift from the face to the

background, and take some time to recover, which may result in a lot of frames being lost.

On the contrary, if the feature points are correctly aligned, the face detection algorithm

should provide a satisfying bounding box location.

Overall, those results show that the framework illustratedon Figure6.7, which mainly

consists in two adaptations (bounding box regeneration andalignment quality control)

provides satisfying results for feature point alignment onvideo sequences.

6.4 Discussion

In this Section, we introduced improvements over the recentNeural Decision Forest

framework, which mainly consist in a simplified training procedure as well as a faster

greedy evaluation procedure. Furthermore, we study two main applications for the pro-

posed algorithms: First, we use the proposed GNDF for FER involving hyperparameter

setting, learning deep representations using CNN features,and runtime comparison be-

tween GNDF and a classical NDF. Secondly, we show that GNDF can be successfully
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applied to feature point alignment within a cascaded regression framework. By doing so,

we obtain very satisfying results for feature point alignment on still images and propose

a few methods to perform alignment on video.

Nevertheless, the proposed contributions leads to a numberof interesting questions

for future research. The first of them would be to know if we could further reduce the

evaluation runtime of a NDF by forcing the splits to be axis-aligned instead of oblique.

For that matter, an interesting take on that problem would beto useL1 regularization

on the oblique split weights (as well as the neural network’sweights) during training to

reduce the numbers of non-zero coefficients. Furthermore, an interesting option would

be to fine-tune the NDF trees in an online fashion using a few specific examples for

case-specific calibration. Examples of this would be person-specific categorical FER, or

pose-specific feature point alignment.
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Chapter 7

Discussion and Conclusions

7.1 Conclusion

Throughout this thesis, we propose solutions to address multiple sub-problems of face

analysis, and facial expression recognition in particular. The algorithms we developed

find a broad range of applications, including classifying both categorical facial expres-

sions and action units, as well as regressing facial featurepoints.

In the second chapter of this thesis, we drew an outline of facial expression recogni-

tion. We first focused on describing how facial expressions can be modelled and present a

generic pipeline of an automatic framework. We then introduced a number of challenges

for successful automatic expression recognition, namely morphological factors, environ-

mental changes, as well as head pose variation and occlusionhandling.

In the third chapter, we described a number of pattern recognition tools that were later

adapted for the purpose of facial expression recognition. We started by describing the

representations that can be extracted from the raw face images and fed to the subsequent

machine learning layer. We then explained the generic problem of learning a predictive

model for classification and regression, and introduce someof the most widely used mod-

els that were used in our experiments. Namely, we empathize on describing (deep) neural

networks and random forests, as well as recent in-between models called neural decision

forests.

The fourth chapter focuses on describing our pairwise conditional random forests
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method, which is an adaptation of the random forest framework to learn trees using pair-

wise differential cues. Those pairwise trees can then be averaged over time to flexibly per-

form facial expression recognition from videos. Moreover,we also extend our approach

to multi-view scenarios to significantly increase robustness to head pose variations.

In the fifth chapter, we describe another adaptation of the random forest framework to

learn local expression prediction by spatially restricting the subspaces upon which each

tree is learned. Those representations can be weighted by local confidence measurements

outputted by an autoencoder network for occlusion-robust categorical expression recog-

nition. Furthermore, it can successfully be used to predictfacial action units activation,

as the latter are intrinsically local and are closely related to categorical expressions.

Last but not least, the sixth chapter introduces adaptations of the recent neural deci-

sion forest algorithm. More specifically, we show that our approach can be used for on-

line learning of categorical expression predictors involving deep feature representations.

Moreover, it is also suitable for locating facial feature points in the frame of a cascaded

regression framework.

Those contributions led to a number of publications in international venues (see Sec-

tion 1.2.1) as well as a C++ code framework, that will be released open source, for per-

forming end-to-end face analysis, from feature point alignment and feature extraction

to expression recognition and AU activation prediction. Noteworthy, the algorithms for

training and testing the predictive models can be used for other applicative tasks as well

as to address other problems relative to face analysis.

7.2 Future works

7.2.1 Using all the labelled data

As pointed out in Chapter2, labelled data available to train algorithms for face analysis

is relatively scarce, as compared to e.g. image classification or semantic segmentation.

Thus, it is important to use all the available data to train the algorithms. The local ex-

pression prediction features introduced in Chapter5 are an example of how categorical

expression data can be used to predict a closely related task(e.g. action unit occurence).
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In addition to that, a number of solutions were considered inthe frame of this thesis, such

as semi-supervised training in the context of training frame-based classifiers upon video

sequences, with the idea of “extending” the neutral and apexframe annotations to others

images in the sequence. We also considered learning representations with convolutional

autoencoders using privileged information (by trying to reconstruct a neutral face from

an expressive one, hence capturing features that somewhat represent a difference between

those two). Unfortunately, mostly due to time requirements, we were not able to pull up

interesting results using those approaches. However, those directions might still lead to

interesting conclusions.

7.2.2 Exploiting JEMImE database

As the annotation data for the JEMImE database is currently not available, in this thesis

we focused on evaluating our algorithms on state-of-the-art databases for FER. However,

it is non-trivial to infer from those results the generalization capabilities of the presented

approaches on the JEMImE database, as both the domain (mostly adults for state-of-the-

art datasets vs. children for JEMImE) and the tasks (7 categorical expressions or action

units vs. quality measurements for a subset of4 expressions). For that matter, it can be

interesting to consider domain adaptation and knowledge transfer techniques. A good

survey of those approaches can be found in [66]. A basic example of this would be to

pre-train a deep GNDF classifier on state-of-the-art datasets and to fine-tune the model on

the JEMImE database.

7.2.3 Tuning the algorithms for more efficiency

Besides the raw accuracy measurement, runtime evaluation isanother important factor

for the evaluation of a predictive model. Throughout this thesis, we stressed out that

our algorithms could run in real-time on a standard computer. Nevertheless, there are a

number of approaches that should be considered to further accelerating the processing.

For instance, in Chapter6 we appliedL1-regularization on the weights of the neuron

layers to reduce the number of non-zero connexions. The samealgorithm could in theory
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be applied to regularize the weights of the NDF split nodes, though additional testing

would be necessary to ensure that the greedy evaluation procedure could hold in such a

case.

Another aspect that may be crucial when running the algorithms on low-power devices

is the memory usage reduction. For this we are currently considering tuning the neural

decision forest framework to train decision jungles [81]. Decision Jungles are similar to

decision forests, except the prediction (or leaf) nodes arefactorized, greatly diminishing

the memory usage.

7.2.4 Adapting the proposed methods to other problems

Most of the ideas presented in this thesis are not specific to facial expression recognition

and could be adapted to other problems in the field of computervision and pattern recog-

nition. As such, the LS-RF method introduced in Chapter5 could be used to design an

occlusion-robust face alignment system. Furthermore, thePCRF framework (Chapter4)

could be applied to other problems that involve classification of time series, such as ges-

ture recognition, interpersonal synchrony or role prediction in an interactive context. Last

but not least, GNDF6 could be used as a predictive model for any classification or regres-

sion task. Noteworthy, as it enables both deep learning of intermediate representations

(e.g. CNN) as well as fast evaluation, it could theoreticallybe used as a replacement to

fully-connected layers to speed up semantic segmentation and object recognition systems.
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Appendix A

A lower bound for the depth of

randomly initialized trees with constant

prediction nodes

A.1 Random uniform initialization for classification

proof: Let A denote the following proposition: “For every classc ∈ [|1, C|] tree t

contains at least one leaf that predicts classc”.

For one specific classc, we denoteAc the following event “treet contains at least one

leaf that predicts classc”. The opposite event̄Ac then reads “no leaf of treet predicts

classc”. We thus have:

p(A) = (p(Ac))
C = (1− p(Āc))

C (A.1)

Furthermore, for one specific prediction (leaf) nodel, as the prediction values are

randomly sampled from a uniform distribution, the probability not to predict classc is

1 − 1
c
. Thus, for a balanced tree of depthD, i.e. that contains2D prediction nodes we

have:

p(Āc) = (1− 1

c
)2

D

(A.2)
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By using equationsA.1 andA.2 we obtain:

p(A) = (1− (1− 1

c
)2

D

)c (A.3)

We then want to set the tree depthD so thatp(A) > 1 − ǫ (i.e. to have all classes

covered by at least one leaf of treet with a probability superior to1− ǫ). UsingA.2 this

is equivalent to:

D > D0 (A.4)

With

D0 =
1

ln(2)
ln(

ln(1− (1− ǫ)1/C)

ln(1− 1/C) ) (A.5)

This setting is of tremendous importance if we choose not to adapt the prediction

nodes during training. For instance, if one tree do not contain classc, it will always make

erroneous prediction w.r.t. this class, which will result in more noise in the predicted

values after averaging the multiple tree predictors. Furthermore, we can write:

1− (1− ǫ)1/C
=

c→∞ −
1

C ln(1− ǫ) + o(
1

C ) (A.6)

Hence

ln(1− (1− ǫ)1/C)
∼

C → ∞ − ln(C) (A.7)

Moreover,

ln(1− 1

C )
∼

C → ∞ −
1

C (A.8)

Thus:

D0
∼

C → ∞
ln(C)
ln(2)

(A.9)

i.e. The lower bound depthD0 for trees of a NDF with constant leaf nodes that are

randomly sampled from uniform distribution across the classes grows as the logarithm of

the number of classesC.
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A.2 Gaussian initialization for regression

In the case of regression, we aim at showing that, provided the tree is deep enough, for

each value in the range that shall be covered by the tree, one can find at least one leaf

prediction that is close to that value. LetA denote the following proposition: “For every

valuey ∈ [δ̄k − σk, δ̄k + σk] treet contains at least one leaf such that the predictionyl for

that leaf satisfies|yl − y| < ǫ”.

We also defineAy the following proposition “For valuey there is at least one leafl of

treet, such that|yl − y| < ǫ”. We have:

p(A) =
δ̄k+σk
∏

δ̄k−σk

p(Ay)
dy (A.10)

Which can also be written

p(A) = exp(

∫ δ̄k+σk

δ̄k−σk

ln(p(Ay))dy) (A.11)

Let’s then denoteĀy the proposition: “for every leaf of treet, |yl − y| > ǫ. Clearly

we have

p(Ay) = 1− p(Āy) (A.12)

Moreover, as a tree of depthD shall contain2D, we have:

p(Āy) = p(|yl − y| > ǫ)2
D

(A.13)

Furthermore, as the leaf predictionsyl are randomly initialized, for one specific leaf

nodel we can write:

p(|yl − y| > ǫ) = 1−
∫ y+ǫ

y−ǫ

1√
2πσk

e
− (z−δk)2

2σ2
k dz (A.14)

We can use a lower bound of the gaussian function on the interval [δk − σk − ǫ, δk +

σk + ǫ] to provide an upper bound on this probability:

p(|yl − y| > ǫ) < 1−
∫ y+ǫ

y−ǫ

1√
2πσk

e
− (σk+ǫ)2

2σ2
k dz (A.15)
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thus

p(|yl − y| > ǫ) < 1− 2ǫ√
2πσk

e
− (σk+ǫ)2

2σ2
k (A.16)

Moreover, using EquationsA.11, A.12 andA.13 we have:

p(A) = exp(

∫ δ̄k+σk

δ̄k−σk

ln(1− p(|yl − y| > ǫ)2
D

)dy) (A.17)

Thus, as bothln, exp and
∫

are increasing functions, using EquationsA.17 andA.16

provides a lower bound ofp(A):

p(A) > exp(

∫ δ̄k+σk

δ̄k−σk

ln(1− (1− 2ǫ√
2πσk

e
− (σk+ǫ)2

2σ2
k )2

D

)dy) (A.18)

Which we can write

p(A) > (1− (1− 2ǫ√
2πσk

e
− (σk+ǫ)2

2σ2
k )2

D

)2σk (A.19)

Thus, a sufficient condition to ensurep(A) > 1 − ǫ′ (with ǫ′ close to0) is to have

D > D0 with

D0 =
1

ln(2)
ln

ln(1− (1− ǫ′)
1

2σk )

ln(1− 2ǫ√
2πσk

e
− (σk+ǫ)2

2σ2
k )

(A.20)

The lower boundD0 is somewhat similar to the one in the classification case. Further-

more, we show that:

D0
∼

ǫ→ 0
− ln(ǫ)

ln(2)
(A.21)

As in the classification case, given the regression rangeσk the lower bound depthD0

grows as the logarithm of the desired “resolution” (which isthe inverse ofǫ).
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Appendix B

implementation details

One of the focus of the PhD was to produce a reusable, open-source C++ implementation

to perform real-time expression recognition on video streams, as well as to provide a

framework for learning architectures for face analysis. Tothis aim, this section describes

the main features of the proposed source code.

B.1 Dependencies

The proposed C++ solution have been developped on a Windows environment with a few

dependencies that are listed below. Note that for the projects to be compiled properly you

will need to set the environment variables to the values indicated in italics.

• Boostv. 1.54 or higher (BOOST) - librariessystem, filesystem

• OpenCV v. 2.4.6 or higher (OPENCV) - librariescore, highgui, imgproc, objdetect

• 0MQ v. 4.0.4 or higher (ZMQ)

• Intraface (INTRAFACE)

• pThread (PTHREAD)
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B.2 Data structures

The basic data structures are declared in headerHMimproc.h. The most useful ones are

described below.

imgdesc:as suggested by its name, this class implements an image descriptor that is

composed of an image (image curr), a set of aligned facial feature points (featurePoints -

curr), the corresponding head pose estimate (headPose curr), and a set of integral

feature channels (pcIntegralChannels curr) with the correspondingly scaled fea-

ture points (pcFeaturePoints curr). Eachimgdesc also contains a class label (or

a set of labels for multi-output training) that is used only for training/evaluating the en-

sembles of randomized trees. Also, for PCRF and MVPCRF training and evaluation, a

pairwise version of the descriptor contains pairs of images(image past) with the cor-

responding feature points, head pose, integral channels and scaled feature points thereof.

imgdesc objects are most of the time initialized through constructors

imgdesc ( s h a r e dp t r<Mat> & img , c o n s t vec to r<P o i n t 2 f> & f p t s

, c o n s t uns igned i n t l b l )

or

imgdesc ( s h a r e dp t r<Mat> & img , c o n s t vec to r<P o i n t 2 f> & f p t s

, c o n s t HeadPose & hp , c o n s t uns igned i n t l b l )

Those constructors are generally called through overloaded functions such asload-

ImageDesc from the database.h header, in order to load all the images/feature

points/class labels from a specific folder and generate image descriptors accordingly. Note

that integral feature channels have to be generated separately, using overloaded function

generateIntegralChannels. Then, for pairwise RF training and testing, pair-

wiseimgdesc have to be generated using thegenerateTransitionDescriptor

function.

BagOfFeatures: Theimgdesc class is mainly used for training/evaluating ensem-

bles of trees with on-the-fly candidate feature generation.However it is also useful in
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many case to allow RF induction with a more generic pipeline,i.e. with feature descriptors

represented as raw vectors (features ) of theBagOfFeatures class. This class also

contains fields for class labels (label ) or multi-output training labels (MO labels).

In either cases,BagOfFeatures objects have to be initialized using constructors

BagOfFea tu res ( c o n s t vec to r< f l o a t > & f e a t u r e s , uns igned i n t

l b l )

or

BagOfFea tu res ( c o n s t vec to r< f l o a t > & f e a t u r e s , c o n s t vec to r<

uns igned i n t> & l b l s )

Note that the feature vector has to be generated beforehand for each object.

HMSQMat: This class is used as a basic square matrix class. It implements a num-

ber of basic operations for image processing, such as addition, subtraction, scalar and

element-wise multiplication. As it is used for storing CNN inputs and feature maps, it

also has high-level operations such as convolution (full or valid, flip or upsample).

B.3 Low-level operations

Most of the low-level image processing and machine learningfunctions are implemented

in headersHMimproc.h andHMmlfun.h. The most useful ones are described below.

• loadImageDesc: load image descriptor from the provided database path. Namely,

it generates a vector ofimgdesc objects from the providedtrainingImagePath -

folder by recursively searching using therecLoadImages, recLoadPoints

andrecLoadImageLabels functions

• extractROI: extract face ROI using the provided facial feature points

• generateIntegralChannels: generate integral HOG channels with an 8-bit

gradient quantization, with a specified output size
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• generateTransitionDescriptor: generate pairwiseimgdesc descriptor

from two separate descriptors

B.4 Solution architecture

The proposed solution consists of3 independant projects:

• Decision Forests: project for RF induction, including a number of contri-

butions from this PHD thesis: PCRF training and testing, as well as static and

dynamic multi-view extentions (MVRF/MVPCRF). It also features the LS-RF for

occlusion handling, multi-output multi-class predictionand regression, and ND-

F/GNDF training and evaluation.

• NeuralNets: project for generic neural network training/testing. Also features

unsupervised learning of autoencoder nets and convolutional neural networks.

• SDM: project for real-time automated facial expression recognition from live or pre-

recorded video stream.

B.4.1 TheDecision Forests project

B.4.1.1 Project overview

Class diagram for theDecision Forests project can be seen on FigureB.1, summa-

rizing its architecture as well as its most relevant features.

Specifically, the entry point of the project lies in thedemoemclassifier.cpp

file, which creates a RFTrainer/RFTester object from theconfig.txt configuration

file that shall be placed in the project folder. SectionB.4.1.2explains the syntax of the

configuration file. SectionB.4.1.3explains how a classic RF predictor is generated from

the proposed code. Finally, SectionB.4.1.4describes a number of methods that have been

implemented for RF induction and testing for face analysis.
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Figure B.1: Class diagram for theDecision Forests project
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B.4.1.2 Configuration options and class constructors

The config.txt file is parsed through the functions written in theparser.cpp

file within the constructor of RFTrainer/RFTester. Be careful while tweaking thecon-

fig.txt file, as verifications may not be implemented in all the methods, causing

the program to crash (for example, avoid specifying features from the dynamic tem-

plates while training a static RF, or using on-the-fly candidate features in addition of

pre-recorded ones).

You can specify the following main options through theconfig.txt file:

• modeVerbose : (boolean) activating/deactivating console feedback during RF

training.

• nbXXXFeatures : (integer) specifying the number of on-the-fly features fora

specific static template (3 static templates:PointDiff, AngleRatio, FM).

• nbDynamicXXXFeatures : (integer) specifying the number of on-the-fly fea-

tures for a specific dynamic template (3 dynamic templates:PointDiff, An-

gleRatio, FM).

• nbPreRecordedFeatures : (integer) specifying the number of pre-recorded

features.

• nbCandidateThresholdsPerFeature : self-explanatory!

• numFeaturePoints : number of aligned feature points (49 provided by the

SDM tracker).

• numFeatureTri : number of aligned feature triangles (79 provided by the SDM

tracker). the description of the facial mesh is loaded in thetrisummits49.txt

file. If you wish to use a different number of facial feature points or a different mesh

you will need to manually re-enter a facial mesh.

• treeNum : self-explanatory!

• numClasses : self-explanatory!
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• treeMaxDepth : maximum depth of the trees, above which no more split is

calculated and a leaf node is set.

• datasizeRatioPerTree : size of the bootstraps for each tree (relatively to the

total data size).

• labelImbalancyTolerance : accepted absolute ratio of unbalance for each

bootstrap.

• trainingImagePath : path of the training database that will be loaded by the

RFTrainer class constructor

• testingImagePath : path of the training database that will be loaded by the

RFTester class constructor

• modelFilePath : path to the saved RF model file

• oobidFilePath : path to the saved OOB elements indexes record file

• oobsqFilePath : path to the saved OOB sequence indexes record file

B.4.1.3 Delving into the code: an example of RF induction

After the configuration file is loaded, the functiontrain() from theRFTrainer class

loads the database from the providedtrainingImagePath folder using theload-

ImageDesc function. The database folder shall contain a number of datapoint, each of

which consisting in three files:

• a .ann file containing the labelling information. The base templating is<subject id

(unsigned int)><expression label (unsigned int)><recording session id (unsigned

int)>. By default, the available expression labels are:0 for neutral, 1 for happy, 2

for angry, 3 for sad, 4 for fear, 5 for disgustand6 for surprise. Alternatively, 8-

class FER can be performed using also thecontemptlabel from the CK+ database.

Also, the .ann file may contain additional information, suchas the frame index

and total number of frame in the recording session, or the head pose information

(pitch/yaw/roll).
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• a .pts file containing information on the 49 feature points (x-y coordinates) previ-

ously aligned on the face using a feature point tracker.

• a .png face image

Once the database is loaded in the form of a vector ofimgdesc pointers (shared

pointers from thestd library are used within the whole solution to prevent any kind of

memory leaks), the integral HOG feature channels are computed if the FMFeatures are

used (that is, if thenbFMFeatures parameter in theconfig.txt file is non-zero).

Finally, thelearnForestStructure function is called to generate a RF prediction

model.

ThelearnForestStructure function first computes the bounds for each feature

template (point distance and angle ratio, and HOG feature maps) by callingfindFea-

tureBounds on the provided data. After that, the model and OOB files are reinitial-

ized. Then, for each new tree a data bootstrap is generated atthe subject level using

therandomSample2 function using the providedseqref anddatasizeRatioP-

erTree parameter. Optionally, the bootstrap is balanced by downsampling the major-

ity classes using thebalancedataset function. ThenlearnTreeStructure is

called on the generated bootstrap. Note that the accuracy ofthe tree collection can be

tested at any time using OOB estimate by pressing the “a” key while the program has the

focus (which toggles the global booleanSHOW ACCURACY).

ThelearnTreeStructure is the main function for to grow a randomized deci-

sion tree on a provided data collection. It works in a recursive fashion starting from a

root node, by first checking is the termination criterion is met (i.e. current tree depth

currDepth has reached the maximum allowed depthtreeMaxDepth , or the pro-

vided data is homogeneous in term of class labels). If not, a split node is set, increasing

the mean purity in left and right subtrees (functionsplitAtCurrentNode). Then

learnTreeStructure is recursively called on the left and right subtrees. Note that

the nodes are stored in the model file (modelFilePath argument) as and when the split

and leaf nodes are set with corresponding parameters and terminal distributions. Thus, the

proposed implementation is memory efficient as exactly one node is stored in memory at
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any time. ThesplitAtCurrentNodemethod works by (a) randomly generating a list

of split candidates (functiongenerateRandomCandidates), (b) concurrently evalu-

ating the Shannon entropy for those candidates usingentropyOfPartition MT and

(c) returning the data partition at current node that is induced by the candidate for which

the entropy is the lowest.

B.4.1.4 Main methods for face analysis

In this Section, we present a number of methods that correspond to implementations of

variants of the above described classical RF induction procedure that provided interesting

results for face analysis and affect recognition.

• MOlearnForestStructure: method for learning RF for multi output classifi-

cation (MULTI OUTPUT MODE=true, USE REGRESSION=false) and regres-

sion (USE REGRESSION=true). For using this function, theMO labels field

of theimgdesc objects have to be pre-emptively filled.

• RMSlearnForestStructure: method for learning RF using spatially-defined

local face subspaces, that are generated using theRMSgenerateRandomMask

method. The mask informations are saved within the providedrmsmaskFilePath

file.

• learnTimeConditionalForestStructure: method to train a PCRF. It

outputsnumClasses ) pairwise RF models that are saved within the provided

rootSavePath folder. Optionally, those models can be defined on local sub-

spaces (USE LOCAL SUBSPACE=true), in which case the masks are also saved

within the folders.

• train static multiViewPoint: method to train a MVRF from the multi-

view database root folderrootDatabasePath. The pose-conditional models

are saved in subfolders of the provided root save pathrootSavePath. For each

pose bin the models are saved along with the local subspace masks (optional) and

the pose distribution file.
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• train dynamic multiViewPoint: method to train a MVPCRF from the

multi-view database root folderrootDatabasePath. The pose-conditional pair-

wise models are saved in subfolders of the provided root savepathrootSavePath.

For each pose bin the models are saved along with the local subspace masks (op-

tional) and the pose distribution file.

• NDFTrain: method for learning a NDF for facial expression classification (or

any provided categorical data) using pre-computed features (in the sample code

provided, distances between feature points and/or CNN and DAG-CNN features).

• NDFPointsTrain: method for learning a CSP-dGNDF for facial feature point

alignment.

B.4.2 TheNeuralNets project

B.4.2.1 Project overview

This project is mainly used to train the autoencoder networks proposed in Section5.3.2.

However, the network training procedure and architecture specification is also used in the

Decision Forests andReal Time projects respectively when training NDFs and

using these for real-time face alignment. The class diagramof the NeuralNets can

be seen in FigureB.2. The main class of the project is theNeuralNet class. In the

following paragraph, we explain the architecture of this class, as well as its most relevant

features.

B.4.2.1.1 TheNeuralNet class. This class is mainly composed of a vector of point-

ers towards elements of classNeuronLayer. TheNeuronLayer class is virtual, so

elements must be specified as eitherSigmoidLayer (tag0), Autoencoder (tag1),

SoftMaxLayer (tag2), TanhLayer (tag3) or SparseLayer (tag4), depending on

which activation function is used (Section3.3.3.1). The connexions between the neuron

layer are stored into theconnexions matrix. This matrix row and columns numbers

are equal to the number of neuron layersM : a 1 value at the(i, j) position indicates that

theith layer has a forward connexion to thejth layer. For instance,
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Figure B.2: Class diagram for theNeuralNets project
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represents a network with3 layers, the first being connected to the second, and the

second being connected with the third. With this in mind, backward connexions (for per-

forming backpropagation) can be found very quickly by simply looking at the transpose

of the connexion matrix.

B.4.2.1.2 TheNeuronLayer class. This class implements the individual neuron

layers that compose the networks. As shown on FigureB.2, all the different neuron

classes inherit from the virtualNeuronLayer class. Generally speaking, all neurons

have to implement the following methods:

• writePin: copy the argument input to the neuron layer input.

• readPout: returns the output of the neuron.

• activation: computes the activation of the neuron, depending on the neuron

type (all the activation functions presented in Section3.3.3.1have been imple-

mented, except the ReLU function. It can however be implemented sraightfor-

wardly if necessary).

• save/load: self-explanatory.

• initializeWeights: initialize the weights of the neurons by random uniform

sampling in the[−0.01, 0.01] interval. It is also called by the default constructor.

B.4.2.2 How to train a NeuralNet

A neural net has first to be initialized through the functionloadNetwork. This function

takes as input the absolute adress of a root path as well as therelative address of the

network architecture file (.txt file) in that folder. The information that shall be specified

in that file are:

• neuronnumber: self-explanatory.

• connexions: the connexion matrix (specified by square brackets and lines sepa-

rated by vertical bars).
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• numberofbottomlayers: self-explanatory (usually1).

• bottomlayerids: a vector containing the indexed of the bottom layers (speci-

fied by square brackets).

• inputdimension: the total input dimension of the network.

• outputdimension: the total output dimension of the network.

• neurontags: a vector of sizeneuronnumber indicating the nature of the neu-

ron layers (SigmoidLayer (tag 0), Autoencoder (tag 1), SoftMaxLayer

(tag2), TanhLayer (tag3), SparseLayer (tag4) or CNN (tag5)).

• loadneuronsfromfile: a boolean vector of sizeneuronnumber indicating

if the neurons shall be initialized from file (in which case a .nnl file with correct syn-

tax (see below) and input/output dimensions shall be provided in the same folder).

Otherwise, the neurons shall be randomly initialized.

• neuroninputdimensions: an integer vector containing the neurons input di-

mensions.

• neuronoutputdimensions: an integer vector containing the neurons input

dimensions.

After the network is initialized, training is performed by applying a number of up-

dates to the network (See Section3.3.3.1). This is implemented in the body of thetrain

function. This function is overloaded, as different inputsare required depending on if

the first layers are convolutional (in which case the input has to be of typeHMSQMat)

or not (float). For each of these updates (to which randomly sampled examples are

drawn), thetrain function successively callswritePin, feedForwardActiva-

tion, backPropagation andupdateWeights. Then, once a number of updates

(usually a number of epochs through the whole training set) are applied, the network is

saved usingsaveNetwork. Note that there is an automatic checking, at each layer, of

the correspondence of the provided input and expected format and size for that layer. for

example, it is theoretically possible to feed a CNN layer a vector of floating point values,
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or to feed a100-dimensional layer a1000-dimensional input vector. The layer simply

won’t process the data (if readPout is used on release mode, the output vector will be

filled with zeros).

B.4.3 TheReal Time project

B.4.3.1 Project overview

Class diagram for theSDM project can be seen on FigureB.3. The main elements com-

posing this project are theTracker, emAnalyzer, Displayer andGNDFCascade

classes.

Figure B.3: Class diagram for theReal Time project
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TheTracker class contains methods for detecting the faces within the images using

OpenCVCascadeClassfiers. It also encapsulates an instance of classGNDFCas-

cade, whosedetect andtrack2 methods essentially performs face alignment using

the CSP-dGNDF method introduced in Section6.3.2, respectively using a provided face

bounding box and previous feature point estimation.track2 also returns the score func-

tion that is used to control the alignment quality to re-perform face detection, if necessary.

Also note that all low-level operation (camera driver handling and image retrieval from

video stream) are encapsulated within theVideoStreamHandler class.

Another important class is theemAnalyzer class, which stores the Random Forests

models for categorical expression recognition (using PCRF4 and WLS-RF5 - the per

point confidence measurements can be obtained from the imageand feature point lo-

cation by calling functiongenerateHierarchicalPerPointConfidence). AU

occurence prediction and confidence measurements can also be obtained using the method

described in Section5.4. All the rendering functions are encapsulated in classDis-

player.
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