
HAL Id: tel-01589001
https://theses.hal.science/tel-01589001

Submitted on 18 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the reuse of past search results in information
retrieval

Claudio Gutiérrez-Soto

To cite this version:
Claudio Gutiérrez-Soto. Exploring the reuse of past search results in information retrieval. Information
Retrieval [cs.IR]. Université Paul Sabatier - Toulouse III, 2016. English. �NNT : 2016TOU30034�. �tel-
01589001�

https://theses.hal.science/tel-01589001
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 17/05/2016 par :
Claudio GUTIÉRREZ SOTO

Exploring the Reuse of Past Search Results in Information Retrieval

JURY
Mohand Boughanem Professeur, IRIT, Université Paul Sabatier, Toulouse Examinateur
Jean-Pierre Chevallet Maître de conférences - HDR, LIG, Université

Grenoble Alpes
Rapporteur

Brigitte Grau Professeure, LIMSI - ENSIIE, Évry Rapporteur
Gilles Hubert Maître de conférences - HDR, IRIT - Université

Paul Sabatier, Toulouse,
Directeur

Christian Sallaberry Maître de conférences - HDR, LIUPPA - Université
de Pau et des Pays de l’Adour

Invité

École doctorale et spécialité :
MITT : Image, Information, Hypermedia

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur de Thèse :
Gilles HUBERT

Rapporteurs :
Brigitte GRAU et Jean-Pierre CHEVALLET

2

Exploring the Reuse of Past Search Results in
Information Retrieval

Claudio GUTIÉRREZ SOTO

ii

Acknowledgement

Firstly, I would like to express my sincere gratitude to my advisor Gilles Hubert
for the continuous support of my Ph.D study and related research, for his pa-
tience and motivation. His guidance helped me in all the time of research and
writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee : Bri-
gitte Grau, and Jean-Pierre Chevallet, whose remarks during the review process
were also very helpful and detailed. For writing the thesis, I also received data,
comments and advice from Josiane Mothe.

I want to particularly thank my good friend Arturo Curiel, with who shared the
challenges of PhD program, also for your help when I was with health problems.

In addition, I would like to thank my friend Rémi Dubot, and Chantal Morand
for their help and support.

I should also like to thank UBB (Universidad del Bío-Bío), in particular to my
friend Manuel Crisosto and the dean Benito Umaña for their support.

Last but not least, I thank my parents, Marcia and Willy, my sisters Ingrid
and Marcia, and my daughters Bárbara and Cynthia, for their constant support
before and during my years at IRIT.

iii

iv

Résumé

La recherche d’informations (RI) concerne l’obtention d’éléments (habituelle-
ment documents) de nature non structurée (habituellement du texte) qui sa-
tisfait un besoin d’information, dans de grandes collections de documents. Un
système de recherche d’information (SRI) a pour objectif de représenter et de
stocker de grandes quantités d’informations, pour faciliter et accélérer l’identi-
fication des informations pertinentes estimées pour une requête de l’utilisateur.
Les deux processus principaux mis d’un SRI sont l’indexation et l’appariement.
Le processus d’indexation vise à représenter les représentations des documents,
de manière efficace non seulement pour le stockage, mais aussi pour l’accès. Le
processus d’appariement vise à estimer si un document est pertinent pour une
requête exprimée par un utilisateur. Cette mise en correspondance est générale-
ment représentée par un score. Lorsque le processus est appliqué, un ensemble
de documents est retourné à l’utilisateur sous forme de liste classée par score
décroissant. Bien que les systèmes de RI aient émergé dans les années 1940, des
améliorations sont vraiment apparues dès la fin des années 1950. Les amélio-
rations en RI les plus importantes sont liées à l’évaluation des SRI. La com-
munauté RI a bénéficié notamment de collections d’évaluation, notamment au
travers de l’initiative TREC, qui organise chaque année un atelier. Ces ateliers
ont offert aux chercheurs la possibilité de mesurer l’efficacité de leur système et
de comparer les approches.

De nombreuses approches en RI traitant de l’indexation, de fonctions d’ap-
pariement, de modèles formels, et de retour de pertinence ont été proposées.
Cependant, peu d’approches tirent avantage des recherches effectuées précédem-
ment par d’autres utilisateurs. Les recherches passées constituent pourtant une
source d’information utile pour les nouveaux utilisateurs (nouvelles requêtes).
Par exemple, un utilisateur intéressé par un nouveau sujet pourrait bénéficier
des recherches antérieures menées par les utilisateurs précédents intéressés par
le même sujet. En raison de l’absence de collections ad-hoc de RI, à ce jour il
y a un faible intérêt de la communauté RI autour de l’utilisation des recherches
passées. En effet, la plupart des collections de RI existantes sont composées de
requêtes indépendantes. Ces collections ne sont pas appropriées pour évaluer les
approches fondées sur les requêtes passées parce qu’elles ne comportent pas de
requêtes similaires ou qu’elles ne fournissent pas de jugements de pertinence.

v

Par conséquent, il n’est pas facile d’évaluer ce type d’approches. En outre, l’éla-
boration de ces collections est difficile en raison du coût et du temps élevés
nécessaires. Une alternative consiste à simuler les collections. Par ailleurs, les
documents pertinents de requêtes passées similaires peuvent être utilisées pour
répondre à une nouvelle requête. De nombreuses contributions ont été proposées
portant sur l’utilisation de techniques probabilistes pour améliorer les résultats
de recherche. Des solutions simples à mettre en œuvre pour la réutilisation de
résultats de recherches peuvent être proposées au travers d’algorithmes pro-
babilistes. De plus, ce principe peut également bénéficier d’un clustering des
recherches antérieures selon leurs similarités. Ainsi, dans cette thèse un cadre
pour simuler des collections pour des approches basées sur les résultats de re-
cherche passées est mis en œuvre et évalué. Quatre algorithmes probabilistes
pour la réutilisation des résultats de recherches passées sont ensuite proposés et
évalués. Enfin, une nouvelle mesure dans un contexte de clustering est proposée.

vi

Abstract

Information retrieval (IR) is obtaining material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from large
collections (usually stored on computers). Aiming to facilitate and accelerate
the determination of the estimated relevant information for a user query, an
information retrieval system (IRS) has as purpose to represent and stores large
amounts of information. Two main processes can be found in a common IRS :
indexing and matching. Indexing process corresponds to the representation and
storing of documents, which should be efficient not only for storage but also
for access. Matching intends to estimate whether a document is relevant ac-
cording to a query issued by a user. This matching is usually represented via
a score. When matching process is applied, a set of documents is returned to
the user as a ranked list by decreasing score. Although IR systems emerged in
the late 1940s, improvements really appeared from the late 1950s. The most
important IR improvements are related to evaluation of IRS, which dates back
from the late 1950s. The IR community have notably benefited from evaluation
collections. A particular example is provided by the TREC community, which
annually organize a conference and proposes tracks to support IR researches.
The TREC evaluation campigns have offered to the researchers the opportunity
to measure system effectiveness and compare approaches.

A wide range of approaches in IR exist dealing with indexing, matching func-
tions, formal models and relevance feedback. Nevertheless, few approaches take
advantage from searches performed previously by users. Past searches provide
a useful source of information for new users (new queries). For example, a user
searching about a new subject could benefit from past searches led by previous
users about the same subject.

Due to the lack of ad-hoc IR collections, to this date there is a weak inter-
est of the IR community on the use of past search results. Indeed, most of the
existing IR collections are composed of independent queries. These collections
are not appropriate to evaluate approaches rooted in past queries because they
do not gather similar queries due to the lack of relevance judgments. Therefore,
there is no easy way to evaluate the convenience of these approaches. In addi-
tion, elaborating such collections is difficult due to the cost and time needed.

vii

Thus a feasible alternative is to simulate such collections.

Besides, relevant documents from similar past queries could be used to ans-
wer the new query. This principle could benefit from clustering of past searches
according to their similarities. Two major categories of clustering can be easily
identified : static clustering and post-retrieval clustering. On one hand, static
clustering is the traditional application of the cluster method on a document col-
lection. On the other hand, post-retrieval clustering includes information from
the query into document clustering. Typically, similarity functions such as co-
sine distance, are used in static clustering. Nevertheless, these functions do not
consider the specific context under which the similarity of two objects is judged.

On the other hand, a large assortment of contributions exist dealing with the
use of techniques and probabilistic algorithms with the aim to improve results
of retrieval process. Two major types of research can be easily categorized, lear-
ning techniques and optimization. Such approaches can imply high resources
in computational time and human resources. By contrast, simple solutions to
implement and represent can be proposed through randomized algorithms.

Thus, in this thesis a framework to simulate ad-hoc approaches based on past
search results is implemented and evaluated. Four randomized algorithms to
improve precision are proposed and evaluated, finally a new measure in the
clustering context is proposed.

viii

Table of contents

1 Introduction 11
1.1 Thesis Statement . 16

1.1.1 Simulation of Document Collections, Queries and Judg-
ments of Users . 16

1.1.2 Randomized Algorithms 16
1.1.3 Query-Document Clustering 17

1.2 Thesis outline . 18

2 Information Retrieval 19
2.1 Representing documents and queries 21
2.2 Query operations . 23
2.3 Matching between documents and queries 23
2.4 Evaluation of IR systems . 25
2.5 Past Search Results . 27

3 Related work on the use of past searches 29
3.1 Approaches taking advantage of past queries through user sessions 34
3.2 Approaches taking advantage of past queries without user sessions 36
3.3 Conclusions . 38

4 Simulation framework for evaluation of IR approaches reusing
past searches 41
4.1 Introduction . 43
4.2 Related Work on simulation in IR 44
4.3 Simulation Framework . 47

4.3.1 Definitions and notations 48
4.3.2 Creation of documents and queries 49
4.3.3 Simulating relevant judgments 50

4.4 Retrieval using past queries . 51
4.5 Experiments . 52

4.5.1 Design of Information Retrieval Benchmark 52
4.5.2 Experimental Environment 52

4.6 Empirical Results . 53
4.7 Conclusions . 61

1

5 Probabilistic Approaches in IR for reusing past results 63
5.1 Introduction . 66
5.2 Related Work . 67
5.3 Randomized Algorithms . 70
5.4 Contribution to the reuse of past searches 72

5.4.1 Description of the algorithms 72
5.4.2 Definitions and notations 72

5.5 Empirical Results . 108
5.5.1 Experimental Environment 108
5.5.2 Experimental Results . 108

5.6 Conclusions . 114

6 Clustering in IR 117
6.1 Introduction . 119
6.2 Document Clustering for IR . 120
6.3 Related Work . 121
6.4 Our Contribution . 126

6.4.1 Hierarchic Clustering Methods 126
6.5 Group average link . 128

6.5.1 Query-document similarity measure 128
6.6 Experimental Environment . 129
6.7 Experimental Results . 131
6.8 Conclusions . 132

7 Conclusion 133
7.1 Directions for Future Research 139

2

List of Figures

2.1 Document and query representations in the vector model 24
2.2 A recall-precision graph . 26

4.1 Obtaining judgments from users 51
4.2 Simulation with Exponential Distribution 1.0 (for D) and Zeta

Distribution 2 (for judgments) . 55
4.3 Simulation with Exponential Distribution 1.0 (for D) and Zeta

Distribution 3 (for judgments) . 55
4.4 Simulation with Exponential Distribution 1.0 (for D) and Zeta

Distribution 4 (for judgments) . 56
4.5 Simulation with Exponential Distribution 1.5 (for D) and Zeta

Distribution 2 (for judgments) . 57
4.6 Simulation with Exponential Distribution 1.5 (for D) and Zeta

Distribution 3 (for judgments) . 57
4.7 Simulation with Exponential Distribution 1.5 (for D) and Zeta

Distribution 4 (for judgments) . 58
4.8 Simulation with Zipf Distribution 1.6 (for D) and Zeta Distribu-

tion 2 (for judgments) . 59
4.9 Simulation with Zipf Distribution 1.6 (for D) and Zeta Distribu-

tion 3 (for judgments) . 59
4.10 Simulation with Zipf Distribution 1.6 (for D) and Zeta Distribu-

tion 4 (for judgments) . 60

5.1 List of retrieved documents, which is split by the Algorithm 1 . . 74
5.2 Evaluation of the two approaches (i.e., The first algorithm using

Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 2 (for judgments) . 77

5.3 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 3 (for judgments) . 77

3

5.4 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 4 (for judgments) . 78

5.5 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 2 (for judgments) . 79

5.6 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 3 (for judgments) . 79

5.7 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 4 (for judgments) . 80

5.8 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
2 (for judgments) . 81

5.9 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
3 (for judgments) . 81

5.10 Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
4 (for judgments) . 82

5.11 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Exponential Distribution 1.0 (for D) and Zeta
Distribution 2 (for judgments) . 85

5.12 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Exponential Distribution 1.0 (for D) and Zeta
Distribution 3 (for judgments) . 85

5.13 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Exponential Distribution 1.0 (for D) and Zeta
Distribution 4 (for judgments) . 86

5.14 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Exponential Distribution 1.5 (for D) and Zeta
Distribution 2 (for judgments) . 87

4

5.15 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Exponential Distribution 1.5 (for D) and Zeta
Distribution 3 (for judgments) . 87

5.16 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Exponential Distribution 1.5 (for D) and Zeta
Distribution 4 (for judgments) . 88

5.17 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Zipf Distribution 1.6 (for D) and Zeta Distri-
bution 2 (for judgments) . 89

5.18 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Zipf Distribution 1.6 (for D) and Zeta Distri-
bution 3 (for judgments) . 89

5.19 Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with
a collection using Zipf Distribution 1.6 (for D) and Zeta Distri-
bution 4 (for judgments) . 90

5.20 List of retrieved documents, which is split by the Algorithm 3 . . 91
5.21 Evaluation of the two approaches (i.e., The third algorithm using

Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 2 (for judgments) . 94

5.22 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 3 (for judgments) . 94

5.23 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 4 (for judgments) . 95

5.24 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 2 (for judgments) . 96

5.25 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 3 (for judgments) . 96

5.26 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 4 (for judgments) . 97

5

5.27 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
2 (for judgments) . 98

5.28 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
3 (for judgments) . 98

5.29 Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
4 (for judgments) . 99

5.30 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 2 (for judgments) . 102

5.31 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 3 (for judgments) . 102

5.32 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.0 (for D) and Zeta Dis-
tribution 4 (for judgments) . 103

5.33 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 2 (for judgments) . 104

5.34 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 3 (for judgments) . 104

5.35 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Exponential Distribution 1.5 (for D) and Zeta Dis-
tribution 4 (for judgments) . 105

5.36 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
2 (for judgments) . 106

5.37 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
3 (for judgments) . 106

6

5.38 Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a col-
lection using Zipf Distribution 1.6 (for D) and Zeta Distribution
4 (for judgments) . 107

6.1 A similarity dendrogram . 128
6.2 the distance used to build the cluster 130

7

8

List of Tables

4.1 Simulation with a collection D based on exponential distribution
using θ = 1.0 – Comparison of the two approaches (i.e., Past
Results and Cosine) according to average P@10 (over 30 queries) 56

4.2 Simulation with a collection D based on exponential distribution
using θ = 1.5 – Comparison of the two approaches (i.e., Past
Results and Cosine) according to average P@10 (over 30 queries) 58

4.3 Simulation with a collection D based on Zipf distribution using
λ = 1.6 – Comparison of the two approaches (i.e., Past Results
and Cosine) according to average P@10 (over 30 queries) 60

5.1 Evaluation results of the two approaches (i.e., The first algorithm
using Past Results and Cosine) according to average P@10 (over
30 queries) with a collection D based on exponential distribution
using θ = 1.0 . 78

5.2 Evaluation results of the two approaches (i.e., The first algorithm
using Past Results and Cosine) according to average P@10 (over
30 queries) with a collection D based on exponential distribution
using θ = 1.5 . 80

5.3 Evaluation results of the two approaches (i.e., The first algorithm
using Past Results and Cosine) according to average P@10 (over
30 queries) with a collection D based on Zipf distribution using
λ = 1.6 . 82

5.4 Evaluation results of the two approaches (i.e., The second algo-
rithm using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on exponential distri-
bution using θ = 1.0 . 86

5.5 Evaluation results of the two approaches (i.e., The second Algo-
rithm Using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on exponential distri-
bution using θ = 1.5 . 88

5.6 Evaluation results of the two approaches (i.e., The second Algo-
rithm Using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on Zipf distribution
using λ = 1.6 . 90

9

5.7 Evaluation results of the two approaches (i.e., The third Algo-
rithm using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on exponential distri-
bution using θ = 1.0 . 95

5.8 Evaluation results of the two approaches (i.e., The third Algo-
rithm using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on exponential distri-
bution using θ = 1.5 . 97

5.9 Evaluation results of the two approaches (i.e., The third algorithm
using Past Results and Cosine) according to average P@10 (over
30 queries) with a collection D based on Zipf distribution using
λ = 1.6 . 99

5.10 Evaluation results of the two approaches (i.e., The fourth algo-
rithm using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on exponential distri-
bution using θ = 1.0 . 103

5.11 Evaluation results of the two approaches (i.e., The fourth Algo-
rithm using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on exponential distri-
bution using θ = 1.5 . 105

5.12 Evaluation results of the two approaches (i.e., The fourth algo-
rithm using Past Results and Cosine) according to average P@10
(over 30 queries) with a collection D based on Zipf distribution
using λ = 1.6 . 107

5.13 Evaluation results of the two approaches (i.e., the 4 algorithms
reusing past results and Cosine) according to average P@10 (over
30 queries) with a collection D based on exponential distribution
using θ = 1.0 . 110

5.14 Evaluation results of the two approaches (i.e., the 4 algorithms
reusing past results and Cosine) according to average P@10 (over
30 queries) with a collection D based on exponential distribution
using θ = 1.5 . 112

5.15 Evaluation results of the two approaches (i.e., the 4 algorithms
reusing past results and Cosine) according to average P@10 (over
30 queries) with a collection D based on Zipf distribution using
λ = 1.6 . 114

6.1 The seven closest clusters (the similarities Cosine and QDSM)
are compared. Overlap- relevant documents correspond to the
same relevant documents for both queries, LCS(V (q), V (q′)) is
the quantity of relevant documents for both queries taking into
consideration the first ten documents and max(|A(q)|, |A(q′)|) is
the list that contains most relevant documents. 132

10

Chapter 1

Introduction

Résumé : Chapitre 1

La littérature en recherche d’information (RI) rassemble une grande va-
riété de contributions qui traitent de différents aspects comme l’indexation,les
modèles formels ou encore les retours de pertinence. Cependant, peu de contri-
butions cherchent à tirer avantage des recherches effectuées précédemment.
Les recherches effectuées précédemment par d’autres utilisateurs peuvent être
une source d’information utile pour de nouvelles recherches. En outre, les
documents pertinents de recherches passées peuvent être intéressants pour de
nouvelles recherches. Dans la littérature RI, diverses approches sont liées au
Web et s’appuient sur l’utilisation d’historiques de requêtes. La plupart des
approches se concentre sur les requêtes répétitives. Cependant, les collections
issues du Web ne sont pas utilisables pour évaluer les approches fondées sur les
requêtes passées car elles ne rassemblent pas de recherches similaires effectuées
par différents utilisateurs et pour lesquelles des jugements de pertinence (vérité
terrain) sont fournis.

La simulation constitue donc une alternative pour construire des environne-
ments appropriés pour analyser les avantages des approches s’appuyant sur les
résultats de recherche passés. Les contributions de cette thèse sont basées sur
l’utilisation de documents issus des résultats fournis par un système de recherche
d’information (SRI) en réponse aux requêtes passées les plus proches. Le but est
de capitaliser sur les résultats obtenus par d’autres utilisateurs pour répondre
à une nouvelle recherche.

La réutilisation des recherches passées suppose le stockage des requêtes soumises
par les utilisateurs ainsi que les résultats retournés pour celles-ci. Pour une
nouvelle requête soumise au SRI, une première approche de réutilisation se base
sur la recherche d’une requête stockée similaire et la sélection de documents

11

issus du résultat retourné pour celle-ci. Typiquement, des fonctions de similarité
telles que Jaccard ou Cosinus sont utilisables pour mesurer la similitude entre les
requêtes (Salton and McGill, 1983). Une seconde approche consiste à se baser sur
des groupes (clusters) de requêtes similaires. Pour une nouvelle requête soumise
au SRI, il s’agit dans ce cas de trouver un groupe de requêtes similaires et de
sélectionner des documents issus des résultats retournés pour les requêtes de ce
groupe.

La motivation principale de cette thèse a été d’étudier l’intérêt d’utiliser les ré-
sultats de recherche passées effectuées par d’autres utilisateurs pour construire et
améliorer les résultats de nouvelles recherches d’informations. À cette fin, et en
tenant compte des questions mentionnées précédemment, les principales contri-
butions de cette thèse sont les suivantes : 1) Un cadre de simulation qui permet
de construire un environnement ad hoc pour évaluer les approches fondées sur
la réutilisation de résultats passés de requêtes similaires. 2) Un ensemble d’al-
gorithmes probabilistes pour sélectionner des documents issus du résultat de
la requête la plus proche pour répondre à une nouvelle requête. 3) Une ap-
proche utilisant un clustering des requêtes passées et leurs résultats, basée sur
une nouvelle mesure de similarité (baptisée Query-Document Similarity Mea-
sure (QDSM)). Le résultat d’une nouvelle requête est alors construit à l’aide des
documents des résultats passés issus du cluster le plus proche.

Cette thèse est organisée en sept chapitres (y compris le présent chapitre). Un
aperçu du contenu des chapitres suit. Dans le chapitre 2, les principaux concepts
de recherche d’information sont introduits, en se concentrant sur les questions
qui sont pertinentes pour les travaux rapportés dans cette thèse. Le but est
d’établir une terminologie de base et la couverture des questions qui sont uti-
lisés dans les chapitres suivants. Dans le chapitre 3, une présentation détaillée
des travaux liés à l’utilisation des résultats de recherche passés en RI existants
dans la littérature est réalisée, et notamment sur le Web. Le chapitre 4 décrit
une approche pour la simulation de collections de documents, de requêtes et
de jugements des utilisateurs. Un ensemble de résultats expérimentaux, desti-
nés à montrer la possibilité de simuler des collections variées, sont présentés et
analysés. Dans le chapitre 5, après une revue bibliographique sur l’utilisation
d’approches probabilistes en RI, une étude de différents algorithmes probabi-
listes pour la sélection de documents dans les résultats de recherche passés est
présentée. Le chapitre 6 s’intéresse ensuite à une approche de clustering pour
la réutilisation des résultats de recherche passés. Il examine préalablement les
travaux existants liés au clustering en RI. Enfin, le chapitre 7 fait le bilan des
principales contributions présentées dans cette thèse introduit les perspectives
de travaux futurs envisagées.

12

Introduction

Information Retrieval (IR) involves tasks such as organization, storage
and search of information. These tasks are carried out with the purpose to pro-
vide relevant information for users. User requirements are capitalized through
queries, where it is desirable to find information that fill their expectation. It
is feasible to find different sources of information such as other sources (i.e.,
video and audio), XML files to mention a few. Usually, information is spread
out in a document or a set of documents (document collection). On the other
hand, the relevance about a document or a set of documents according to is
provided by users. The latter is well-known as judgments from users, thus
given a query and a set of documents related to the query, each document can
be classified by users as relevant or non-relevant according to the relevance
of this document with respect his/her information need. The document set,
a set of queries and their judgments of users is called by IR community a
test collection. Nowadays, information is embodied in thousands and million
of documents, by which the automation of the tasks previously mentioned is
needed. Thus, an Information Retrieval System (IRS) provides support to the
user in information searching in a document collection. An IRS provides a
set of ranked documents which are related to the query submitted by a user.
Commonly, the list of documents provided by IRS is ranked by decreasing
score. This score represents the similarity between documents and the query
computed by the IRS (similarity can be applied between queries as well as
between documents). Nevertheless, all the retrieved documents do not satisfy
the user needs. In simple words, not all documents which appear in the list are
relevant for the user. Furthermore, the position of relevant documents in the
list is very important for the user. Therefore, a good situation is when relevant
documents appear together and at the top of the list (i.e., relevant documents
should not be widely dispersed). This property is related to precision in IR. In
order to illustrate this, we can suppose the following scenario : for a query q,
there is a subset of relevant documents srd for a document collection. An IRS
S1 supplies a list of documents where srd appears at the top of the list. In a
similar way, another IRS S2 yields a list of documents where srd appears at
the bottom of the list. When we compare both systems, S1 provides a better
precision than S2 because the same srd appears at the top. An important and
difficult challenge for an IRS is to provide the best precision. Nowadays, the
IRSs most widely used are Web Search Engines (WSEs). WSEs respond to
millions of queries per day on collections which involve billions of documents.
Moreover, with the sustained growth in the number of documents, the task
to find relevant documents for a query submitted by a user can becomes
unprofitable. In summary, the most relevant challenge for an IRS is to supply
the best precision possible.

A large assortment of contributions in IR, which address different pers-

13

pectives such as matching functions, indexing, formal models and relevance
feedback can be found in the literature. Nevertheless, few of these contributions
take advantage from previously performed searches. Past searches can be a
useful source of information for new searches. Furthermore, relevant documents
from past searches can be profitable, because these documents can be used
new searches. Most of the approaches In the IR literature rely on the use
of historical queries on the Web, most of which are supported on repetitive
queries (Gutiérrez-Soto and Hubert, 2013, 2014). The low level of interest on
the use of past queries may be understandable because of the lack of suitable
IR collections. Indeed, most of the existing IR collections are composed of
repetitive queries. These collections are not usable to evaluate approaches
based on past queries since they do not gather similar queries for which
ground truth relevance judgments are provided. Thus, an alternative is to build
suitable environments to analyse the advantages of approaches relying on past
search results using simulation (Gutiérrez-Soto and Hubert, 2013). Therefore, a
contribution of this thesis is the use of simulation to give an ideal environment
based on past queries. It is essential to highlight that all contributions of this
thesis are based on the use of relevant documents obtained from the most
similar past query with the aim to improve precision for some IRS, and one
way is using clustering of past queries.

Clustering and the inverted file are data structures mainly used to build
the indexes and access to documents. Inverted files support efficient answering
to keyword queries meanwhile clustering allows to build groups of similar
documents. Clustering in IR have been used to improve efficiency and effec-
tiveness of IR systems (IRSs). In general, two major categories of clustering
are easily identifiable : static clustering and post-retrieval clustering. On one
hand, static clustering is the traditional application of the cluster method on
a document collection. On the other hand, post-retrieval clustering includes
information from the query into the clustering of documents. Query clustering
is a type of post-retrieval clustering, which is devoted to find similar queries
in a cluster. Similarity between queries is related to the overlapping among
query terms. Typically, similarity functions such as Jaccard or cosines are
used to measure the similarity between queries (Salton and McGill, 1983).
Nevertheless, these functions do not consider the specific domain (i.e., specific
domain is additional information used to calculate the similarity) under
which the similarity of two objects is judged. Thereby, the queries with their
documents can be stored in a query-document clustering in order to provide
a context. Thus, another contribution of this thesis is a clustering of past
queries along with their relevant documents, where relevant documents from
a similar past query are used to answer a new query. Besides, it is important
to consider approaches that promote answers to the queries in reasonable
times not only in the design or searching of efficient mechanism to improve
precision of IRSs, (i.e., involved time in a task of data mining to assign the
best IRS, which improve precision for a specific type of query) but also in
involved execution time for IRS in order to provide documents for a given query.

14

A wide range of approaches in IR are devoted to improving the list of
retrieval documents for particular queries. Among these approaches we can find
solutions that involve efficient assignments of IRSs to respond to certain types
of queries, by applying data mining techniques (Bigot et al., 2011). Nonetheless,
some tasks of data mining can imply not only long periods of time, but also
a high cost in money (Gray and Watson, 1998). On the other hand, solutions
that involve an exhaustive analysis of all possible alternatives to find the best
answer to a query (i.e., the best precision for each type of query), can be found
in the IR domain. Prior solutions correspond to approaches based on learning
techniques (e.g., neural networks, genetic algorithms and machine support
vectors). However, these approaches should imply a high cost in learning time
as well as diverse convergence times when the used datasets are heterogeneous
(Nopiah et al., 2010). Additionally, characteristics such as the scopes where
these types of algorithms are applied and the performance achieved in different
environments, are complex to address (Kearns, 1989). An interesting solution
should be finding a function called “oracle”, which will be able to guess that
documents are relevant for a specific query submitted to an IRS (i.e., “oracle"
supplies srd). This means that “oracle” provides the judgments of users on the
document collection for a query q. Thus, if “oracle” could be used in S1 and
S2, both IRSs should provide the same precision using srd (this is, “oracle”
provides srd at the top of the lists for both systems S1 and S2). Nevertheless,
finding this function is a hard task. The most important assumption used in
this thesis, is that the relevant documents tend to appear at the top of the
result list. Therefore, it is possible to suppose that for the “oracle1” function
(for the system S1) and the “oracle2” function (for the system S2), there is
a high probability that the most relevant documents appear at the top of
the list (i.e., the first document that appear at the top of the list has higher
probability to be relevant than the last document in the list). Finally, the
last contribution of this thesis is a set of randomized algorithms, which select
relevant documents according to their position in the result list from the most
similar past query. These algorithms do not require learning time and provide
an acceptable precision.

To sum up, three problems can be easily identified :

1. Approaches which take advantage from past search results are based on repe-
titive queries rather than similar queries. In addition, exiting IR collections
are not suitable to evaluate approaches based on past search results. The
construction of such collections implies high cost not only in time but also in
effort (Sanderson, 2010; Alonso and Mizzaro, 2012).

2. The relationship between associated documents with similar past queries has
not been extensively exploited (Gutiérrez-Soto and Hubert, 2013). Traditio-
nally, query clustering has been applied by using similarity functions such as
Jaccard or cosines among queries. Nonetheless, the specific context in which
these function are applied is not considered.

15

3. Usually, approaches that provide the best answer to a query, involve an ex-
haustive analysis of all possible IRSs (i.e., it is given when the approach
considers several queries and several IRSs that respond to these queries).
Typically, these approaches are based on machine learning or data mining,
which can imply a high cost in computation and human resources.

The main motivation of this thesis has been to research different treads to
improve precision using past search results. To that end, and taking into account
the issues previously mentioned, the major contributions of this thesis are :

1. A framework for simulation that built an ad-hoc environment to evaluate
approaches under the domain of similar past results.

2. A set of randomized algorithms, which are easy to implement and improve
precision using similar past search results.

3. A new similarity measure (query-sensitive similarity measures (QSSM)) on
query-document clustering, which allows to store past queries in clusters, and
responds to new queries using relevant documents from the most similar past
query.

1.1 Thesis Statement

The goal of this work is to improve precision for new queries, taking advantage
from relevant documents associated to similar past queries.

To achieve this goal, this work designs and implements experimental ad-
hoc environments and algorithms to exploit the use of past queries. Thus,
the objectives of this research can be divided in three major areas : a)
simulation of collections, b) Monte Carlo algorithms to improve precision, and
c) query-document clustering (Gutiérrez-Soto, 2014a).

1.1.1 Simulation of Document Collections, Queries and
Judgments of Users

It is difficult to find suitable collections to evaluate approaches based on past
queries. Moreover, internal processes of some IRSs such as stemming, stopping,
tuning among others, do not provide clear perception about the performance of
algorithms in the same experimental condition. Thus, an objective of this work
is to provide ad-hoc environments to evaluate approaches based on past queries.

1.1.2 Randomized Algorithms

Several approaches are devoted to improve precision. Nevertheless, some involve
high cost in resources such as execution time, and human resource time. This

16

research aims to design, implement and evaluate algorithms based on previous
search results, which do not require learning time.

1.1.3 Query-Document Clustering

Commonly, clusters in the IR context are used to store documents (Tombros
and van Rijsbergen (2004)). Nonetheless, storage of queries with their relevant
documents can provide a search context using query-sensitive similarity
measures (QSSM). To that end, this research studies, provides, and evaluates
a new measure of similarity taking into account the context to exploit the use
of past search results and enhance precision for new queries.

This work has produced the following results :

International Journal
— On The Reuse of Past Searches in Information Retrieval :Study of Two Pro-

babilistic Algorithms. International Journal of Information System Modeling
and Design, 6(2), 71-90, April-June 2015 (Gutiérrez-Soto and Hubert, 2015).

International Conferences
— Evaluating the Interest of Revamping Past Search Results. International

Conference on Database and Expert Systems Applications (DEXA 2013),
Prague, Czech Republic, August 2013 (Gutiérrez-Soto and Hubert, 2013).

— Randomized Algorithm for Information Retrieval Using Past Search Results.
In Research Challenges in Information Science (RCIS 2014), Marrakesh, Mo-
rocco, May 2014 (Gutiérrez-Soto and Hubert, 2014).

— Probabilistic Reuse of Past Search Results, International Conference on Da-
tabase and Expert Systems Applications (DEXA 2014), Munich, Germany,
September 2014 (Gutiérrez-Soto and Hubert, 2014)

— Simulation, Randomized and Clustering Algorithms for Information Retrie-
val. In Proceedings of the Doctoral Consortium (RR 2014), The 8th Inter-
national Conference On Web Reasoning And Rule Systems, Athens, Greece,
September 2014 (Gutiérrez-Soto, 2014a).

National Conferences
— Taking Advantage from Past Search Results Through a Probabilistic Algo-

rithm, Spanish Conference on Information Retrieval (CERI 2014), A Coruña,
Spain, June 2014 (Gutiérrez-Soto, 2014b).

Others
— Randomized Algorithms to Improve Precision in Information Retrieval, Doc-

toral Seminar (DocToMe), IRIT Université Paul Sabatier, Toulouse, France,
March 2014.

17

1.2 Thesis outline

This thesis is organised into 7 chapters (including the present chapter). An
outline of the contents of the remaining chapters follows.

Chapter 2 : In this chapter, I discuss some of the main concepts of in-
formation retrieval, focusing on issues that are relevant to the experimental
works reported in this thesis. The purpose is to establish a basic terminology
and coverage of issues that are used in the following chapters.

Chapter 3 : This chapter provides a detailed review of past works. The
first part is about the use of past search results in IR. The second part is how
similar past queries are used on the Web.

Chapter 4 : I define the domain about the simulation of document col-
lection, query collection and judgements of users. A set of experimental results
are presented and analyzed.

Chapter 5 : In this chapter, a bibliographical review about probabilistic
approaches in IR is presented. Besides, I give the mathematical support for all
randomized algorithms analyzed in this thesis.

Chapter 6 : In this chapter, a review of previous works related with
clustering in IR is presented, in special post-retrieval clustering in the similar
past search results.

Chapter 7 : In chapter 7, I report the main contributions that this
work made, and I also point some issues for future work that will follow this
thesis.

18

Chapter 2

Information Retrieval

Résumé : Chapitre 2
Plusieurs modèles de RI ont été développés, qui définissent la manière dont les
documents et les requêtes sont représentés, mais aussi la façon dont le processus
d’appariement document requête est effectué. Les modèles les plus répandus en
RI sont le modèle booléen, le modèle vectoriel (Vector Space Model) (Salton,
1971; Salton et al., 1975), le modèle probabiliste (Robertson et al., 1981), et le
modèle logique (Van Rijsbergen, 1986).

Le modèle vectoriel, très largement utilisé dans la littérature, permet de repré-
senter des documents et des requêtes selon des vecteurs pondérés de termes,
sur la base des fréquences de termes dans les documents. Plusieurs mesures de
similarité entre représentations des requêtes et des documents ont été proposées
comme le très utilisé cosinus entre les vecteurs de termes de la requête et du do-
cument. Ce modèle a été choisi comme base pour le travail expérimental réalisé
dans cette thèse.

De plus, il est important de mentionner que la recherche abordée dans cette
thèse est basée sur l’information textuelle dans des documents non structurés.
Dans ce chapitre, tous les concepts utiles pour fournir le contexte nécessaire pour
comprendre cette recherche sont fournis progressivement. La section 2.2 présente
les principes de représentations des documents et des requêtes dans un SRI. La
section 2.3 décrit le processus d’appariement entre requêtes et documents, et la
section 2.4 introduit l’évaluation des SRI. Enfin, la section 2.5 fournit un résumé
introductif sur l’utilisation des résultats de recherches passées.

19

Information Retrieval

Information Retrieval (IR) is the branch of computer science, which is
concerned with the organisation, structuring, analysis, storage, and searching
of information. Several definitions of IR can be found in the literature. Baeza-
Yates and Ribeiro-Neto (1999) supply the following :

“... the IR system must somehow interpret the contents of the informa-
tion items (documents) in a collection and rank them according to a degree of
relevance to the user query. This interpretation of a document content involves
extracting syntactic and semantic information from the document text ... ”

From the previous paragraph, three important aspects should be conside-
red in that definition. First of all, there is a user with an information need,
a document collection with which this requirement is compared, and finally
the list of documents provided by an IRS in response to the query. Thus,
an IRS aims to supply a set of documents which satisfies the information
need of a user. A user who wants to look for information, expresses his
requirement through a query, which is submitted to the system. Aiming to
process this query, the IRS runs an internal representation of it. Once formed,
this query representation, is matched with the document collection. As a
result, a ranked list of documents is provided to the user. Therefore, the user
can check the final list of documents and if documents are not enough rele-
vant for him/her, he/she can submit a new query or reformulated his/her query.

Several IR models have been developed, where it is possible to find not
only a description of how documents and queries are represented but also the
way in which the document-query matching process is carried out. The most
widespread models in IR are the Boolean, The Vector Space (Salton, 1971;
Salton et al., 1975), The Probabilistic (Robertson et al., 1981), and The Logical
(Van Rijsbergen, 1986).

The vector space model represents documents and queries according to
vectors, based on the frequencies of terms in documents. The similarity
measure between a query and a document corresponds to the cosine between
the query terms and the document terms. This model has been the baseline
for experimental work on document clustering and corresponds to the model,
which was used to carry out the experimental phase in this thesis.

The first IRSs appear with the purpose to support the automated sear-
ching of library material by users. As a response to the exponential growth
of the information available in an electronic format, the IRSs broadened
their spectrum in other scopes. Thus, a wide range of researches relying on
heterogeneous types of information can be found in the literature.

20

Some researches concern passage-based information retrieval (Salton et al., 1993;
Liu and Croft, 2002). Other researches based on XML, study techniques which
allow the retrieval of information segments from structured data (Fuhr et al.,
2005; Fuhr and Lalmas, 2007). Thus the World Wide Web has become the most
popular media used by people to look for information. IRSs have been developed
on the internet as Web Search Engines (WSEs), which index a big amount
of information and promote a simple way to provide information access to users.

Nowadays, a great deal of work have been carried out with the aim to
exploit features that characterise web pages such as HTML structure, Web
page popularity, and hyperlinked structures among others (Bharat and Henzin-
ger, 1998; Kleinberg, 1999). In Broder (2002), a taxonomy which classifies web
queries in three major categories, navigational, informational, and transactional
is presented. Roughly speaking, navigational queries concerns how users can
reach a particular web-page or document. In the second category, information
queries supply a user with information related to a particular topic. In this
domain the user can be interested in more than a single document. Lastly,
transactional queries tackle at locating services with which the user should
interact.

On the other hand, it is important to mention that the research addres-
sed in this thesis is based on textual information, which is simulated or stored
in a document format. Indeed, all objects used in this thesis do not have a
hyperlinked structure. Besides, it is relevant to point out that the purpose
of this chapter is not to provide a general overview about the basic concepts
involved in IR research. Basic concepts related to IR can be found in the
books, widely used and cited by the research community (Baeza-Yates and
Ribeiro-Neto, 1999; Rijsbergen, 1979; Sparck Jones and Willett, 1997a).

In this chapter, all concepts that are relevant to provide the necessary
background to understand this research are provided gradually. Section 2.2
presents the representations of documents and queries in an IRS. Section
2.3 describes the matching process among the query and documents, and
Section 2.4 exposes the evaluation of an IRS. Finally, Section 2.5 provides an
introductory summary about the use of past search results.

2.1 Representing documents and queries

Generally, documents are transformed by an IRS from the original form to
an internal representation, this process is called indexing. The purpose of
this process is to provide a representation of the information as accurate as
possible. To achieve this goal, a set of indexing features are assigned for each
document. The most relevant features for a document correspond to a list of

21

words, which allow to discriminate between them. These are well-known as
terms. Indeed, a document is not only represented by this list of terms, but also
accessed by terms which belong to its list. In order to obtain a higher level of
representation, which allows to retrieve phrasal units, or the use of linguistic,
semantic and knowledge-based methods ; complex characteristics should be
involved in the indexation process (Lewis and Jones, 1996). In the domain of
this thesis, representations of documents are provided by lists of terms, which
are extracted from documents.

A normalization process takes place before indexing. The goal of this
process is to provide only relevant terms. For example, words with high
frequencies in the document (stop-words) will not be considered in the indexing
(Rijsbergen, 1979). Stop-words are well-known words such as articles (e.g.,
the) and prepositions (e.g., in, at). The main advantage of this process is to
reduce the text volume up to 50 percent. Another process before indexing
consists in removing the suffixes from the remaining words of the input text.
To that end, a stemming algorithm is applied to reduce words to a common
root form (known as stem). For example, the stemming algorithm reduces the
words ’cardiovascular’, ’cardiology’ to the word cardio, which will be in the
vocabulary of indexed terms.

Aiming to obtain terms which are representative of a document against
other documents that belong to the collection (at the vocabulary of indexed
terms), it is necessary to strive in the presence of non-frequent terms in contrast
to terms which appear in all documents. For achieving this goal, the concept of
inverse document frequency weighting (IDF) was introduced in (Jones, 1972).
Thus, the weight of a term in a document is increased if it appears more often
in that document. By contrast, the weight of a term in a document decreases if
it appears frequently in other documents. Therefore, for a document collection
which contains N documents (we can suppose a collection with N documents),
if the term i occurs in ni documents, then the idf weight of a term is given by
log(Nni). A term weighting function corresponds to the combination of the tf
and idf weights, which is commonly known as tf-idf weight (Salton (1971)) :

wij = log(freqij+1)
log(lengthj) log(Nni)

wij = tf-idf weight of term i in document j
freqij = frequency of term i in document j
lengthj = length (in terms) of document j
N = number of documents in the collection

ni = number of documents that term i is assigned to

An overview of various weighting schemes as well as evaluation measures in the
IR domain are given by Salton and Buckley (1987). It is important to highlight
that in the experiments related to simulation the stemming process have been
omitted. I made this choice because in every experiment an ideal environment
is built. Thus, the stemming process is not necessary because every term is

22

unique, therefore there is not a common root among the terms. In the same
way, stopping (i.e., removing stop-words) is discarded because the terms used
are assumed to be representative terms. In summary, it can be seen as the ge-
neral application of the same stemming process and stopping in all experiments.

Three major categories of data structures are used by IRSs to store terms,
lexicographic indices (indices that are sorted), clustered file structures, and
indices based on hashing. Nevertheless, data structures most used by WSEs
correspond to the inverted file (Ouksel, 2002). This structure corresponds to
a list, which contains representative terms from document collection, thus
the terms which belong to the query are matched with keyword (terms) that
are in the list. Hence, it is feasible to immediately locate all documents in
the collection that contain this keyword (Rijsbergen, 1979). Clustered file
structures will be exposed in detail in chapter 6.

2.2 Query operations

An IRS has as main objective to support the user in the searching of those
documents that can satisfy his information need. Information requirements of
a user are expressed in a manner that can be understood by the IRS. This
manner to express the user requirements is denominated “query”.

The formulation of a query can be carried out for some IRSs through
the use of boolean operators. An example of this kind of query could be : ((
Simulation AND Algorithms) NOT Randomized). The main disadvantage for
boolean IRSs is that their results are few intuitive for non-experienced users,
hence the formulation of an ad-hoc query can be ineffective (Sparck Jones
and Willett, 1997a)). As a consequence, these systems have been replaced
by systems which provide the query formulation through of natural language
without the use of specific operators. These systems rely on best-match or
similarity searching, which is calculated for each document as well as for each
query. The matching between documents and queries is presented in Section 2.3.

In the same way that documents, the queries are processed prior to be
indexed, that means, the lexical processing and term-weighting are executed
by IRSs.

2.3 Matching between documents and queries

Through the boolean model, an IRS finds the subset of documents from the
whole collection, in which every document that belongs to the subset has at
least one term from the query submitted to the IRS, which are presented to

23

the user in an unranked way. On the other hand, it is feasible to find systems
which have better methods of comparison and provide the outcome according
to a relevance score about the pertinence of the document regarding the query.
Thus an IRS supplies ranked list of documents, sorted in decreasing way to the
user.

In the vector space model (Salton and McGill, 1986), both documents
and queries are represented as vectors in a multidimensional space. The spatial
representation corresponds to the indexed terms of the document collection.

Figure 2.1: Document and query representations in the vector model

An example of vector model is presented in Figure 2.1. In this model a docu-
ment and query are represented. In this example, the vector space is displayed
in two dimensions. Thus, the dimension corresponds to the terms t1 and t2.
Documents D1 and D2 are represented in the space using each document
term weights as coordinates. Weights correspond to term frequency weights :
D1 = t1, t1 and D2 = t2. On the other hand, the query Q is represented as
Q = t1, t1, t2. Besides, the angles between the vectors of D1 −Q and D2 −Q
are presented in the Figure 2.1.

In this space, measures to quantify the similarity among queries and do-
cuments can be defined. The best match between a particular query and
set of documents corresponds to the closest document regarding the query
according to the similarity measure. A wide range of formulas dealing
with distance measures can be found in the IR literature. A detail of most of
them can be found in books such as (Rijsbergen, 1979; Salton and McGill, 1986).

A simple way to compare a document regarding a query is by counting
the number of common terms between them. In this way, we can assume that
both are represented as vectors of length n (where n is the number of terms in
the collection). Thus, we have the following measure :

sim(D,Q) =
n∑
i=1

DiQi (2.1)

This measure is known as the coordination level matching function. By contrast,

24

other measures of similarity can be normalized according to the length of the
document and the query.

The most widely used measure by the IRSs corresponds to the cosine.
The reason of its popularity is due to the geometric interpretation of the vector
model.

sim(D,Q) =
∑n
i=1 DiQi√∑n

i=1(Di)2∑n
i=1(Qi)2

(2.2)

The cosine measure is the function that provides the angles between the vectors
of the document and the query (see equation 2.2), and whose value ranges are
comprised between 0 (the vectors of the documents and the query form an angle
of 90◦, i.e., they are dissimilar) and 1 (the vectors of the document and the
query form an angle of 0◦, i.e., they are equal). In Figure 2.1, the similarity
between documents D1 and D2 is 0, because the angle between the two vectors
is 90◦. It means that they do not have terms in common.

2.4 Evaluation of IR systems

A large assortment of methodologies deals with the evaluation of IRSs. The
evaluation task involves an intrinsic complexity because it implies issues from
different research areas such as cognition, statistics, experimental design,
system design, human computer interaction, among others. In this section, an
outline of evaluation issues with emphasis on central aspects which comprise
the core of this thesis are reported.

Several aspects on the IR process can be evaluated. Such aspects should
be related, among others, with the speed of an IRS, the interfaces and the
level of end-user interaction, the format of information presented to the users.
Nonetheless, the most relevant focus of this thesis corresponds to the evaluation
of the number of relevant documents provided by an IRS in response to a user
query. The most often used measures of effectiveness correspond to precision
and recall. Precision represents the fraction of documents retrieved that are
relevant, meanwhile that recall is the proportion of relevant documents that
have been retrieved. According to Figure 2.2, precision and recall can be defined
as :

Precision = (number of relevant documents) AND (retrieved documents)
(number of retrieved documents)

Recall = (number of relevant documents) AND (retrieved documents)
(number of relevant documents)

Commonly, these measures are expressed in a range between 0 and 1, although
they also can be expressed in percentages as in (Chowdhury, 2010).

25

From the previous definitions, it is necessary to know the total number
of relevant documents in a collection to compute the recall. Nevertheless, it
is not always possible to calculate this measure, because it involves not only
a considerable amount of effort but also time. On the other hand, collections
which allow to calculate these measures can be commercial as well as freely
available. This type of document collection can be found together with a set
of queries and judgments from users (about the relevance of a document with
respect to a query). Through the use of these collections, the IR researchers
have the opportunity to evaluate their approaches with empirical results and
compare their results with other systems and approaches.

In Figure 2.2, a trade-off between recall-precision (R-P) graph is shown.
That means, precision and recall are related in an inverse way. Every time that
precision is increased, recall is decreased and vice-versa. This is represented in
almost all IR textbooks and handbooks.

Figure 2.2: A recall-precision graph

With the constant increases of large collections, specially with the appearing
of the Text Retrieval Conferences (TREC) (Harman, 1993), which contain
thousands and millions of documents (it involves the use of many gigabytes of
disk space), it has become impossible to provide exhaustive judgments about
the pertinence of documents (Tombros et al., 2002).

Aiming to tackle this problem, a technique extensively used and well-
known in these cases is denominated pooling (Harman, 1993). The core of
this technique is rooted in the combination of the top-ranked documents from
several IRSs, where a particular query is submitted in each of them. Thereby,
the judgments of users correspond to a combined set from IRSs. We can
deduce that this technique is effective, when retrieved relevant documents are
representative of all relevant documents available in the IRSs (Harman, 1993).

The type of evaluation stated previously relies on judgments provided by
some expert judges, based on topical (or algorithmic) relevance. In (Schamber
et al., 1990; Barry, 1994), the relevance corresponds to a multidimensional
concept, which involves just one dimension. Inspired by this work, other di-

26

mensions about the concept of relevance through the evaluation methodologies
with respect to the utility provided by IRSs, have been presented in (Borlund
and Ingwersen, 1997; Reid, 2000).

It is important to highlight that the conclusions drawn from empirical
results of IR researches are an issue that involves a large number of factors such
as the choice of suitable measures of performance, the statistical validation
of empirical results, among others. To address these issues, a methodology to
obtain scientific inference from IR experiments have been proposed (Keen,
1992).

2.5 Past Search Results

The use of past search results to respond to a new search is not recent. Several
approaches dealing with the use of historical queries to enhance the results of
search, can be found in the IR literature (Fitzpatrick and Dent (1997) ; Hust
(2004) ; Cetintas et al. (2011)). Repetition (i.e., repetition or repeated query, is
a query which has been submitted previously in IRS) and query reformulation
(i.e., reformulation or modified query, is a query which add or delete terms from
a query submitted previously in IRS) have achieved considerable success with
the exploitation of available information inside web files. Log files have been
studied extensively by considering repeated queries and query reformulation
(i.e., by adding terms or by deleting terms). Furthermore, historical queries
(i.e., historical queries are queries that have been submitted previously in IRS)
have been used in similar communities in the domain of recommender systems.
On the other hand, approaches in IR, which are not based on log files, also
have studied the use of similar queries with the aim to improve new search.
Nevertheless, both approaches are mainly devoted to exploit repeated queries
than similar queries.

In the following chapter, I provide the domain of using the past search
results to improve information retrieval.

27

28

Chapter 3

Related work on the use of
past searches

Résumé : Chapitre 3

Une grande variété d’approches visait à par tirer avantage de requêtes
préalablement soumises existe dans la littérature. Plusieurs études ont révélé
qu’une partie non négligeable des requêtes soumises aux moteurs de recherche
sont des requêtes similaires (par exemple, deux requêtes q et q′ sont similaires
si elles ont plusieurs termes en commun) et même des requêtes répétées
(par exemple, une requête q répétée est une requête qui a été préalablement
soumise au SRI). Par exemple, Jansen et al. (2000), lors de l’analyse de
logs de requêtes du moteur Excite 97, ont constaté que, pour un utilisateur
donné, 35% des requêtes étaient des requêtes uniques, 22% étaient de requêtes
modifiées, et 43% correspondaient à des questions identiques. En ce qui
concerne la façon dont les utilisateurs redéfinissent leurs requêtes, 34,7%
des modifications correspondaient à des substitutions de mots. De plus, 19%
des modifications étaient des ajouts d’un seul mot et 9,5%, des ajouts de
deux mots. Les résultats ont montré que les utilisateurs préfèrent redéfinir les
requêtes en ajoutant des termes. Par ailleurs, les propriétés temporelles des
requêtes ont été analysées par Beitzel et al. (2004). La principale conclusion
de cette étude souligne que « les requêtes reçues pendant les heures de pointe
sont plus semblables les unes aux autres que leurs homologues soumises en
dehors des heures de pointe ». Teevan et al. (2007) ont exploré les questions
de répétition de recherche à l’aide de logs de requêtes Yahoo. Leurs analyses
ont révélé de très fréquentes recherches répétées et clics répétés. Elles ont
révélé également que 7% des requêtes répétées ont été soumises par différents
utilisateurs. Une conclusion est qu’il est possible de prédire les requêtes de

29

navigation et les résultats susceptibles d’être cliqués. Ces études soutiennent
l’idée que les requêtes préalablement soumises pourraient être utilisées dans le
traitement de requêtes similaires nouvellement soumises. Un premier type de
travail exploite les requêtes passées pour améliorer l’efficacité (par exemple,
le temps de traitement d’une requête) du traitement des nouvelles requêtes.
La plupart de ces travaux concernent les requêtes répétées, traitant de la mise
en cache pour des moteurs de recherche (Xie and O’Hallaron, 2002; Brown
et al., 1994; Jónsson et al., 1998; Markatos, 2001; Luo et al., 2000; Saraiva
et al., 2001; Baeza-Yates and Saint-Jean, 2003; Lempel and Moran, 2003;
Fagni et al., 2004, 2006). Cependant, ce type d’approche ne traite pas le même
problème que l’approche proposée dans cette thèse, car l’objectif est d’accélérer
l’accès à des résultats tandis que cette thèse traite de l’amélioration de la
précision des résultats en réutilisant les requêtes passées. En revanche, peu de
recherches ont été menées visant à bénéficier de la réutilisation des requêtes
passées similaires pour améliorer la qualité des résultats de nouvelles requêtes.
Plusieurs raisons peuvent expliquer le manque de recherche sur les requêtes
passées similaires, parmi lesquelles le manque de collections de RI appropriées.
Typiquement, une collection appropriée pour l’évaluation des systèmes de
RI est composée d’un ensemble de documents, un ensemble de requêtes, et
un ensemble de documents pertinents pour chaque requête (par exemple, les
documents pertinents fournis reposent sur les jugements des utilisateurs).
Cependant, la plupart des collections disponibles, qui ont été construites pour
les campagnes d’évaluation de RI telles que TREC, CLEF et NTCIR, n’offre
que des ensembles de requêtes très différentes. Par conséquent, ce type de
collections n’est pas utilisable pour évaluer des approches dans le contexte de la
réutilisation des requêtes passées pour améliorer la recherche pour de nouvelles
requêtes. D’autres collections, basées sur les fichiers de logs des moteurs de
recherche, comprennent les requêtes similaires, mais en général correspondant
à des reformulations soumises par le même utilisateur au cours d’une session
de recherche, et sans fournir de jugements de pertinence. Ces collections sont
destinées à l’étude de la détection de session ou la recherche d’information au
cours de sessions utilisateur plutôt que des requêtes ponctuelles. En outre, la
construction de ces collections implique d’importants coûts mais aussi du temps
(Sanderson, 2010; Gutiérrez-Soto and Hubert, 2013). Cependant, plusieurs
approches utilisant des requêtes antérieures existent dans la littérature. Elles
peuvent être séparées en deux types :

— les approches reposant sur les sessions utilisateur, où les utilisateurs sont
enregistrés dans le système. Dans une session utilisateur, l’identification de
données est possible, cette information implique l’identification de l’utilisa-
teur, l’historique des requêtes et des documents récupérés, la date, la durée
de la session (dans le temps), entre autres. Les approches de personnalisation
sont généralement basées sur les sessions utilisateur.

— les approches pour les utilisateurs non connectés, ce qui implique l’utilisa-
tion d’un système anonyme. Sans l’aide de sessions utilisateur, l’information
disponible est plus limitée. L’approche présentée dans cette thèse est de ce

30

type.
Ce chapitre est organisé comme suit. La section 3.1 présente les approches re-
posant sur les requêtes passées au sein d’une session utilisateur. La section 3.2
expose les approches exploitant les requêtes passées sans session utilisateur et
enfin la section 3.3 conclut le chapitre.

31

Introduction

A large assortment of approaches interested in taking advantage from queries
previously submitted exists in the literature.

Several studies revealed that a non-negligible part of the queries submitted to
search engines are similar queries (i.e., two queries q and q’ are similar if they
have several terms in common) and even repeated queries (i.e., a repeated query
q is a query, which has previously been submitted to the IRS). For instance,
Jansen et al. (2000), analyzing Excite97 query log, found that, for a given user,
35% of queries were unique queries, 22% were modified queries, and 43% corres-
ponded to repeated queries. Regarding how users redefine their queries, 34.7%
of modifications corresponded to word substitutions ; meantime 19% of modifi-
cations were single word additions and 9.5% double word additions. The results
showed that users prefer to redefine queries by adding terms. Continuing the
trend, temporal properties of queries were analyzed by Beitzel et al. (2004). The
main conclusion of this study points out that “The queries received during peak
hours are more similar to each other than their non-peak hour counterparts”.
Teevan et al. (2007) explored issues of re-finding using Yahoo query log. Their
analyses revealed that repeated searches and repeated clicks were very common.
They revealed also that 7% of repeated queries were issued by different users.
A conclusion was that it is possible to predict which queries are navigational
and what results are likely to be clicked. Such studies support the idea that
queries previously submitted could be used in processing similar queries newly
submitted.

A first type of work takes advantage of past queries to improve efficiency (i.e.,
time to process a query) when processing new queries. Most of these works
concern repeated queries, dealing with caching approaches for search engines
(Xie and O’Hallaron, 2002; Brown et al., 1994; Jónsson et al., 1998; Marka-
tos, 2001; Luo et al., 2000; Saraiva et al., 2001; Baeza-Yates and Saint-Jean,
2003; Lempel and Moran, 2003; Fagni et al., 2004, 2006). However, this type
of approaches does not address the same problem as the approach proposed in
this thesis since it intends to accelerate access to results while this thesis deals
with improving effectiveness (i.e., result accuracy) by reusing past queries. For
example, Xie and O’Hallaron (2002) analyzed several engine query logs, where
mostly the repetition and locality of queries take place. Although an experi-
mental approach of caching is not provided, this work suggests that any caching
technique for search engines should take into account the popularity of queries
as well as the locality of repetitions. Other approaches propose two-level caches
for search engines. The first level corresponds to the caching of result sets, which
avoids disk accesses. The second level based on caching inverted lists decreases
the I/O costs (Saraiva et al., 2001; Baeza-Yates and Saint-Jean, 2003).

32

By contrast, little research has been carried out aiming at dealing with advan-
tages of reusing similar past queries to improve retrieval effectiveness for new
queries. Several reasons can explain the lack of research on similar past queries,
among them the shortage of suitable IR collections. Typically, a collection sui-
table for evaluation of IR systems is composed of a set of documents, a set of
queries, and a set of relevant documents for each query (i.e., relevant documents
are provided based on users’ judgments). However, most of the available collec-
tions, which were built for IR evaluation campaigns such as TREC, CLEF and
NTCIR, provide sets of dissimilar queries only. Consequently, this type of collec-
tions is not usable to evaluate approaches in the domain of reusing past queries
to improve retrieval effectiveness for new queries. Other collections, based on
log files of search engines, comprise similar queries, but usually corresponding
to query reformulations submitted by the same user during a search session,
and without providing user relevance judgments. Such collections are intended
for studying session detection or information retrieval over user sessions rather
than one-time queries.

However, several approaches using past queries can be found in the literature.
They can be divided in two types :

— Approaches rooted in user sessions, where users are logged in some system. In
a user session, the data identification is possible, this information involve the
user identification, the historical record of queries and retrieved documents,
the date, the session duration (in the time) among others. Approaches related
to personalization and customization are usually based on user sessions.

— Approaches for which users are not logged, which implies the use of a system
anonymously. Without using user sessions, the available information is more
limited than approaches based on user sessions. The approach presented in
this thesis is of this type.

The remaining of this chapter is organized as follows. Section 3.1 presents the
approaches taking advantage of past queries through user sessions. Section 3.2
exposes the approaches taking advantage of past queries without user sessions
and finally section 3.3 concludes the chapter.

33

Related Work

3.1 Approaches taking advantage of past queries
through user sessions

In the last decades, two trends of personalization research have appeared. One
has its origin in the document space in the area of Personalized Information Re-
trieval (PIR) meanwhile the other has emerged from the hypertext space in the
branch of Adaptive Hypermedia (AH). PIR is based on the search results and
focuses mainly on personalization of relevant information by varying traditional
document ranking algorithms. Personalization techniques involved in PIR, tend
to typify users with simplified characters (usually rooted in historic interests),
by which it is feasible to calculate an efficient way personalized ranked lists.
Otherwise, Adaptive Hypermedia (AH) tackles the challenge of distortion for
content retrieval and presentation by considering several characteristics. Such
challenges are denominated “dimensions”, which consider either user objectives
or prior knowledge. The dimensions previously mentioned make possible per-
sonalized result compositions and adaptive navigations. Steichen et al. (2012)
present a survey whose aim is to investigate the main techniques and their
impacts on the use of PIR and AH technologies. To analyze these techniques
several activities in the retrieval process are examined : query adaptation, adap-
tive retrieval, adaptive result composition and presentation. The conclusions in
line with this thesis, and related to past queries, concern query adaptation and
adaptive retrieval. For query adaptation, systems either require user involve-
ment such as ad-hoc relevance judgments or they create user models involving
keyword and category classifications. Finally, in adaptive retrieval, user past
searches are used to disambiguate a query, where the terms can be matched to
several categories. However, the approach presented in this thesis differs from
those described in this survey because this thesis reuses the relevant documents
obtained from the most similar past query aiming to respond a new query (i.e.,
a new query is a query that has not been submitted in an IRS).

Other approaches focus on the query level. Fonseca et al. (2003) proposed an
automatic method to produce suggestions of related queries (i.e., related queries
are similar queries with respect to the queries submitted previously in an IRS)
based on previously submitted queries. To achieve this goal, an algorithm of
association rules was applied on log files. In addition, a simple method of query
expansion using related queries was experimented. Experiments carried out on
popular search engine in Brazil showed accuracy of suggestions produced and
superior results for the expanded queries compared with the initial ones. Howe-
ver, Baeza-Yates et al. (2004) claimed that there is no easy way to calculate the

34

real effect of approaches founded on association rules. It is mainly due to the
complexity to determine the successive queries that belong to the same session
(i.e., for the same user). Despite this work is related to the approach presented
in this thesis, it differs since it uses related query definitions only and not their
associated results. However, it could be used to suggest related queries of which
retrieved results could be used in this thesis approach.

More recently, Bedi and Chawla (2010) followed the same idea by proposing
a framework of personalized web search founded on agents and clustering. To
provide a personalized search on the web, agents based on information retrie-
val systems accomplish their purpose by clustering the query sessions of users
applying information scent. Query disambiguation is addressed through hub
and authority recommendations by using user profiles, information scent, and
clusters of query sessions on the web. Disambiguation is performed by tightly
coupled multi-agent systems. Among some agents used in this framework, the
interface agent provides related queries in the same domain. The historical query
selected by the user is used to find the cluster corresponding to the most similar
information need. Coordination agent mines the query session database, where
the information is gathered from user agents. Aiming to group similar query
sessions in cluster/subclusters, a clustering algorithm is applied. Three domains
are addressed in the experimental environment - Academics, Entertainment and
Sport. The dataset is built by deploying the clicks of anonymous users. The num-
ber of URLs in the dataset was 2995. The dataset was preprocessed obtaining
595 query sessions. The similarity between two query sessions was calculated
using the cosine measure. The final results show a better precision for trained
queries than untrained queries. Nevertheless, it is important to point out that no
explanations are given on how the judgments of users were obtained, and which
precision was exactly calculated. This work is in line with our approach variant
based on clustering but differs in using clustering based on query definitions
only.

Still at the query level, Cui et al. (2003) proposed a method to improve retrieval
effectiveness for new queries through automatic query expansion. The method
expansion bases on log files to extract correlations between query terms and
terms of relevant documents. The central idea of the method is that the terms
of documents often selected for the same queries are strongly related to the
terms of these queries. Implicit relevance judgments are extracted from user
logs assuming that a document chosen by a user is “relevant”. Consequently,
relationships between query terms and document terms are used to expand
new queries. A set of experiments, which take into consideration both long and
short queries, enables to appreciate that the log-based query expansion method
provides important improvements regarding effectiveness. Final results show
that query expansion is more effective for short queries than for long queries. As
this work, this thesis reuses past relevant results to improve effectiveness of new
queries (i.e., new queries are queries that have not been submitted in an IRS).
However, this work uses terms from past relevant documents to expand a new
submitted query while our approach proposes to reuse past relevant documents

35

to respond to a new query.

When it comes to retrieval results, Shen et al. (2005) proposed models based
on implicit feedback information to enhance precision during a search session
performed by a user. Implicit feedback information is given by queries and click-
through history in an active session (i.e., the set of queries is provided by the
same user, in the same domain). Bayesian interpolation has been applied to
rerank some documents, which have not been seen by a user. The TREC AP
data have been used to create a test collection with the aim to evaluate quan-
titatively the model. Empirical results showed that the use of implicit feedback
can improve the final results. Differing from this work, this thesis proposes an
approach (not considering user sessions) that reuses the past queries submitted
by all the users and not only by the user who submits a new query.

Eventually, Dou et al. (2007) promoted a framework in which it is possible to
evaluate large-scale personalized search. In this framework, click-through data
recorded in query logs are used to simulate user experience in web search. Fur-
thermore, clicking decisions are employed as relevance judgments to evaluate
precision. A new measure denominated click entropy of query is defined. Lower
click entropy implies that most of the users agree on a small number of web
pages. Therefore, personalization is not necessary in these cases. By contrast,
large click entropy implies that many web pages were clicked for the query. This
corresponds to two cases : First, a user selects several pages because his/her
query has not been satisfied and therefore the query corresponds to an informa-
tional query. In this case, personalization can help the user filtering the most
relevant pages by making use of historical selections. Second, different users
made different selections for this query, which implies that the query is am-
biguous. In such cases, personalization can be used to provide different web
pages to each individual. Experimental scenarios were based on 12 days of MSN
query logs with the aim to evaluate five personalized search strategies. Empirical
results showed that click-based personalization strategies provide good results.
Although this work seems to be more far from this thesis than the previous ones,
it could be interesting to complete our approach by estimating the interest of
reusing some past queries.

3.2 Approaches taking advantage of past queries
without user sessions

The approach proposed in this thesis is in line with the approaches presented
in this section, as it does not exploit the notion of search sessions and their
possible additional data about users.

For instance, Raghavan and Sever (1995) proposed to use a set of persistent
past optimal queries (and their retrieved results) (i.e., persistent past optimal
queries, are stored queries in an IRS which split relevant documents and non-

36

relevant document using a linear classifier). They identified to possible uses : to
answer a new query with the retrieval result associated to a similar persistent
query when it exists, or to reformulate a new query replacing it by an optimal
persistent one. Not addressing these issues, Raghavan and Sever (1995) focused
on a preliminary common issue, which concerns the choice of similarity measures
between queries. The authors claim that the queries can be seen as elements of
the function space according to retrieval functions, which are defined on the
document space. In other words, the comparison between two queries should be
based on the relationship of their retrieval outputs. As a result, a new measure
of similarity between two queries is proposed, based on result rankings of two
queries and experimented for the second aforementioned issue. The experimental
study on the Cranfield collection was not conclusive, however the result showed
that the hypothesis held when the query base has a small number of persistent
queries. Although this work does not address the same issue as this thesis, it is
important since it sheds light on the issue tackled in thesis, related to reusing
directly past results to answer a new query.

Fitzpatrick and Dent (1997) described experiments grounded on past queries
as source of evidence for automatic query expansion. The main assumption
is that the top documents recovered from result lists of similar past queries
are a good source to improve automatic query expansion. In addition, a new
query similarity metric is proposed, which compares overlap between result lists
of two queries. Weights used for a position in the result lists are determined
by the likelihood to find a relevant document in that position. Experimental
scenarios on TREC collections compared performance of automatic feedback
based on similar past queries with standard top-document feedback, and without
feedback. Empirical results showed superior performance of the approach based
on past queries. As in this work, this thesis is based on the assumption that
result lists of similar past queries are a good source to improve effectiveness
for new queries. However, it proposes to use directly past results to build new
results rather than performing query expansion and then a full retrieval process.

In a different manner, Hust (2004) proposed a work close to the approach pre-
sented in this thesis in terms of motivation, goal, and reused past elements.
He proposed a collaborative approach of query expansion based on past queries
(and their associated results) submitted by different users. He developed and
experimented various expansion methods (e.g., sum of selected relevant docu-
ments, linear combination of past queries, and query term reweighting) based
on the relevant documents of the most similar queries for query expansion of
a new query. Experiments did not enable to establish strong conclusion about
effectiveness of new expansion methods. An explanation claimed by Hust is a
possible inappropriateness of the collections used, not existing more appropriate
ones, which is still the case. Despite being close to our approach, a main diffe-
rence is that this work uses terms from past relevant documents at the query
formulation level while our approach intends to study the interest of reuse past
relevant documents to respond directly to a new query.

37

Another similar approach with respect to this thesis was presented by Cetintas
et al. (2011) in the domain of distributed information retrieval. In distributed
IR a unified search interface is used for multiple search engines of distributed
text information sources. In this domain, resource selection is an important
component. Cetintas et al. (2011) proposed an approach of resource selection
based on similar queries and their associated past results. The approach esti-
mates the utilities of available information sources by combining results of past
queries with respect to similarities between a particular query and all past que-
ries. Pointing out the lack of available collections comprising similar queries to
evaluate their approach, Cetintas et al. (2011) proposed to generate simulated
similar past queries from traditional TREC sets of queries, by extracting titles
of some top-ranked documents or removing some terms of the queries. This work
is close to this thesis as it is based on similar past queries (using cosine as in our
approach) and the ranking of their associated results. In addition, evaluation
used generated similar queries by simulation. However, this work takes place in
a different domain, which is distributed IR. The approach aims at improving
distributed IR through resource selection. Query generation by simulation only
concerns query formulation since the approach proposed for resource selection
does not exploit relevance judgements. A contribution of this thesis concerns
simulation of relevance judgements on results associated to similar queries.

More recently, Song and Myaeng (2012) proposed a method that relies on a
novel term weighting. Their main assumption was that the term role in accu-
mulated retrieval sessions in the past has an importance in the retrieval process,
which cannot be ignored. It takes into account the availability of past retrieval
results, by exploiting the queries, their retrieved documents, and their relevance
judgments. More specifically, the method considers the rankings and similarity
values of the relevant and non-relevant documents to compute a term eviden-
tial weight. In addition, a measure of discrimination called discrimination power
(DP) is proposed to apply a new term weighting scheme for new queries, based
on past queries and their retrieved results. Experimental results show that the
proposed term weighting scheme improves traditional tf− idf . This work differs
from other ones previously presented by applying a new term weighting scheme
to process a new query instead of reformulating or expanding the initial query.
However, as them it applies a full retrieval process for the new query while the
approach presented in this thesis intends to build the result for a new query
directly from past results.

3.3 Conclusions

In this chapter, a review of the state-of-the-art about approaches that take
advantages on the use of past searches have been analyzed. Several studies
revealed that a non-negligible part of the queries submitted to search engines
are similar queries, mainly repeated or reformulated queries (i.e., reformulated

38

queries are modify queries)during search sessions performed by the same user,
but also similar queries submitted by different users.

An important research part is dedicated to repeated queries. In particular, va-
rious approaches deal with caching. However, this type of approaches has been
shortly presented since not closely related to the issues tackled in this thesis.
Thus, approaches of caching focus on repeated queries with the aim to improve
efficiency while this thesis deals with similar queries submitted by different users
and is effectiveness oriented.

However, the literature comprises several approaches using past queries, which
are related to this thesis and which were presented in this section. They can be
separated in two types : approaches taking advantage of past queries through
user sessions and approaches taking advantage of past queries without user
sessions. The main differences between these two types of approaches are :

— Approaches that exploit user sessions intend to improve new queries sub-
mitted by a user by using historical queries and/or results and/or interaction
information (e.g., clicks) about the same user ;

— Approaches that do not use user sessions intend to improve new queries sub-
mitted by any user by using all past queries and/or past results, including
those performed by other users. A perceptible problem for this type of ap-
proaches is the lack of suitable collections to truly evaluate their effectiveness.
This thesis takes place in this category.

The issues tackled by these two types of approaches by using elements of past
searches concern :

— Measure query similarities. These approaches propose new similarity mea-
sures to find queries similar to a given one based not only on query definition
as usual by also based on query results. However, these measures require
processing an initial retrieval for a new query to find similar past queries.

— Automatically expand or reformulate new queries. These approaches propose
to use past searches to modify the new submitted query before performing a
full retrieval process.

— Change matching function or ranking for new queries. These approaches use
past searches to rerank an initial result returned for a new query or modify
term weightings to process the new query.

This thesis follows the same motivation and goals of such approaches, but differs
from the way to reuse past searches. However, it studies the interest of proposing
a different approach that use similar past queries, and more particularly past
results, to build results of new queries. The approach rather acts at the result
level than at the query level. In fact, in chapter 5, several algorithms which use
this scheme are presented. In addition, a problem noticed in related approaches
of the literature is the difficulty to evaluate such approaches, due to the lack

39

of suitable collections. To tackle this issue, this thesis proposes a method ap-
proach to build such collections through simulation. This method is presented
in Chapter 4.

40

Chapter 4

Simulation framework for
evaluation of IR approaches
reusing past searches

Résumé : Chapitre 4

Comme évoqué dans le chapitre 3, plusieurs approches visent à bénéficier
de requêtes précédemment soumises, la plupart d’entre elles utilisant les
requêtes répétées pour améliorer les temps de réponse. Ces approches sont
principalement liées à la mise en cache. Un deuxième type d’approches vise
à étendre ou modifier les requêtes pour améliorer les résultats de recherche,
en particulier pour les utilisateurs connectés à un serveur, à savoir, au travers
des sessions utilisateur. Avec les sessions utilisateur davantage d’informations
concernant l’utilisateur, telles que ses préférences, et son comportement, sont
stockées et peuvent donc être exploitées pour de nouvelles requêtes soumises
par le même utilisateur. D’autres approches proposent de nouvelles fonctions
d’appariement (basées principalement sur les clics) ou de nouvelles pondérations
des termes. Néanmoins, quelques approches (Hust, 2004; Cetintas et al., 2011)
ont étudié directement la réutilisation des documents pertinents retournés pour
les requêtes passées similaires. Une raison peut être un manque de collections
de RI appropriées pour évaluer ces systèmes. La plupart des travaux connexes
(présentés dans le chapitre 3) sont basés sur des collections de logs, qui ne
fournissent pas les jugements de pertinence associés aux documents retournés
pour une requête spécifique. De telles approches visent à proposer une liste
de documents susceptibles d’être cliqués par l’utilisateur. Contrairement aux
collections de logs, les collections de RI traditionnelles sont composées d’un
ensemble de documents, un ensemble de requêtes, et un ensemble de jugements

41

de pertinence des utilisateurs sur les documents retournés pour les requêtes. La
création d’une collection de RI appropriée est très coûteuse en temps et efforts,
bien que des solutions pour réduire le coût ont été proposées (Sanderson,
2010; Alonso and Mizzaro, 2012). Une solution envisagée pour l’évaluation des
approches de RI est la simulation (Azzopardi et al., 2011). Cependant, peu de
travaux traitent de simulation en RI, principalement en RI interactive. Deux
catégories d’approches peuvent être distinguées :
— les approches qui simulent les utilisateurs, dans le but d’explorer des straté-

gies de recherche, actions ou étapes fournies par les utilisateurs, ou d’analyser
comment les requêtes sont soumises par les utilisateurs.

— les approches utilisées pour évaluer ou concevoir des systèmes de RI.
En outre, à notre connaissance, aucune simulation de collection complète de RI
n’a été proposée pour des approches de réutilisation de requêtes et résultats
passés. Un travail proche vis-à-vis de cette thèse, est proposé par Cetintas et al.
(2011), utilisant une simulation de requêtes à partir d’une collection TREC
dans le cadre de la RI distribuée. Cependant, une limite de ce travail est que les
jugements de pertinence ne sont pas considérés.

Ainsi, l’un des principaux objectifs de cette thèse, est d’évaluer l’impact des
approches basées sur les requêtes passées similaires, ce qui n’a été que très
peu étudié. Sans collection ad hoc, une alternative possible pour étudier les ap-
proches qui réutilisent les requêtes passées est la simulation (Gutiérrez-Soto and
Hubert, 2013), incluant non seulement les requêtes ou les documents, mais éga-
lement les jugements de pertinence, sans interaction avec l’utilisateur (Huurnink
et al., 2010).

La principale contribution de ce chapitre est un cadre qui simule des collec-
tions, offrant des environnements ad-hoc pour évaluer les approches reposant
sur l’utilisation de requêtes passées similaires. Une première série d’expériences
a été réalisée pour évaluer la possibilité de créer différents types de collections.

Le chapitre est organisé comme suit. Dans la section 4.2, les travaux connexes sur
les approches qui traitent de la simulation en RI sont présentés. Dans la section
4.3, notre cadre de simulation est décrit et la section 4.4 introduit l’utilisation
des résultats de recherche passées. Dans la section 4.5, des expériences analysant
la faisabilité de simuler différents types de collections sont présentés. Enfin, la
section 4.6 rapporte les conclusions finales.

42

4.1 Introduction

As stated in chapter 3, several approaches aims at taking advantages from pre-
viously submitted queries, most of them benefiting from repeated queries to im-
prove response times. These approaches are mainly related to caching. A second
type of approaches aims at expanding or modifying queries to improve retrieval
results, in particular for users logged to a server, i.e., through user sessions. With
user sessions more information about the user, his/her preferences, and his/her
behavior are stored and thus can be exploited for new queries submitted by the
same user than without user sessions. Other approaches apply modifications on
ranking functions (i.e., which are based primarily on clickthrough) and/or on
internal weighting schemes of terms. Nevertheless, few approaches (Hust, 2004;
Cetintas et al., 2011) studied directly the reuse of relevant documents returned
for similar past queries. A reason may be a lack of suitable IR collections to eva-
luate such systems. Most of related work (presented in Chapter 3) are based on
log collections, which do not provide relevance judgments of users associated to
the documents returned for a specific query. Such approaches aims at proposing
a list of documents susceptible to be clicked by the user. Unlike log collections,
classical IR collections are composed of a set of documents (D), a set of queries
(Q), and a set of relevance judgments of users (RD) on documents (i.e., a group
of expert users determines if a document is relevant or non-relevant for a given
query) for the queries that belong to Q. The usual creation of an appropriate IR
collection is very costly in time and efforts, though solutions to reduce the cost
have been proposed (Sanderson, 2010; Alonso and Mizzaro, 2012). An alterna-
tive considered for evaluation of IR approaches is simulation (Azzopardi et al.,
2011). However, few works deal with simulation in IR, mostly in interactive IR
(IIR). Two categories of approaches can be distinguished :

— Approaches that simulate users, with the aim to explore search strategies,
actions or step provided by users, or how queries are submitted by users.

— Approaches used to evaluate or design IR systems.

Furthermore, as far as we know, none proposed simulation of complete IR collec-
tion for approaches reusing past retrieval queries and results. Indeed, the most
similar work with respect to this thesis, is proposed by Cetintas et al. (2011),
which uses a traditional TREC collection in the domain of distributed IR. Ho-
wever, a drawback of this work is that no relevance judgments are considered.

Thus, one of the main objectives in this thesis, is to evaluate the impact of
approaches in the domain of similar past queries, which has not been deeply
studied. Without ad-hoc collections, a feasible alternative to study approaches
that reuse similar past queries is simulation (Gutiérrez-Soto and Hubert, 2013),
including not only queries or documents but also relevance judgments, without
user interaction (Huurnink et al., 2010).

The main contribution of this chapter is a framework, which simulates collec-
tions, providing ad-hoc environments to evaluate approaches relying on the use

43

of similar past queries. A first series of experiments were carried out to evaluate
the feasibility of creating different kinds of collections.

The chapter is organized as follows. In section 4.2, related work about ap-
proaches which deal with simulation in IR is presented. In section 4.3, our
simulation framework is described and section 4.4 introduces retrieval using
past search results. In section 4.5, experiments analyzing the feasibility to simu-
late different kinds of collections are reported. Finally, section 4.6 reports final
conclusions.

4.2 Related Work on simulation in IR

A wide range of approaches which deal with interactive information retrieval
(IIR) can be found in the IR literature, where several of these approaches si-
mulate users with the purpose to explore search strategies and how queries are
submitted by users.

In the domain of IIR and evaluations, White et al. (2005) presented an evalua-
tion of relevance feedback (RF) algorithms by using searcher simulations that
emulate the interaction of searchers. Six different models (e.g., Binary Voting
model, WPQ-based models) applying query modifications were evaluated. The
authors point out that there is not a standard way to evaluate term selection
models that require complex or copious searcher interaction with result inter-
faces. The simulation-based approach did not model factors such as types of
users, search experience, or types of information needs. Various strategies were
used to model simulated searchers, such as only viewing relevant/non relevant
documents, or viewing all relevant or non relevant information. To operate ef-
fectively, implicit feedback models should handle different retrieval situations.
To achieve this goal, models were tested in extreme and pre-modelled situa-
tions. In extreme situations only relevant or non-relevant paths are traversed.
Pre-modelled situations assume that searchers try to interact with relevant infor-
mation, but they also accept inevitably to view non-relevant information. This
assumption was based on the intuition about how searchers generally interact
with search systems. As this thesis, this work proposed to use simulation for
evaluating different RF systems to avoid soliciting human subjects to interact
with these systems. However, differing from this thesis, this work has different
objectives requiring to simulate various scenarios of user interactions.

Still in the domain of IIR, Kelly (2009) presented an overview about Wizard of
Oz studies. Wizard of Oz studies are inspired by the well-known film/book with
the same title. In such studies, researchers project the characteristic of “grand”
systems that they wish to study. On one hand, users have the perception that
they are interacting with a real system, meanwhile one or more researchers
provide the functionality. The objectives about Wizard of Oz studies are serving
as proof-of-concept and providing an idea about how things should happen in

44

ideal circumstances. Wizard of Oz studies correspond to system simulations, but
users can also be simulated with the aim to exercise systems. The idea behind
simulated users is that they can also represent different actions or steps, which
should be considered for real users when interacting with an IR system. An
advantage of simulated users is that IIR evaluations can be conducted quickly
and with less cost. As in this work, we claim that preliminary evaluations of
IRSs can be carried out more early and inexpensively through simulation. It is
important to highlight that this thesis does not fit into the same domain. In this
thesis, users are not directly simulated and therefore their actions or steps are
not studied.

Continuing the trend, Yue and Joachims (2009) proposed an approach for on-
line optimization of IRSs. They presented an on-line learning framework relying
on pairwise comparisons, which can learn in real-time from observed user be-
haviour in search engines and other information retrieval systems. They used
simulation for experiments based on a real Web Search dataset. The idea was
to simulate users issuing queries for training, by sampling from queries in the
dataset. For each query, the competing retrieval functions produce rankings,
where subsequently the “user” randomly prefers one ranking over the other.
This dataset was used in the first step to simulate the user behaviour over on-
line learning setting. Although this work does not tackle the same challenges
as this thesis, this work is related with regard to simulation of users preferring
a result ranking to another. However this thesis intends to propose a method
to simulate relevance judgments on documents constituting a result list rather
than preference between result lists.

More recently, Azzopardi et al. (2011) proposed to consider the search process in
IR as an economic issue. The interaction process between a user and a system
can be modelled as a series of inputs (queries, assessments, among others),
which produces an output (utility/gain from finding relevant items). Although
the production process is not exactly the same as the search process, the relevant
documents found provide users some utility or gain. This work use simulation
to explore a set of possible search strategies, which could be used by users.
Specifically, search sessions are simulated considering a number of queries per
topic. Aiming to obtain a desired level of Cumulative Gain utility, a sequence of
interactions is provided for a greedy best-first approach to select the subset of
required queries. In order to evaluate this approach, a set of simulations on three
TREC collections were carried out taking into account several combinations
of inputs in the production of relevance. Results were analysed to determine
the relationship between the total Cumulative Gain obtained during a search
session and the number of queries issued as well as the number of documents
assessed per query. A conclusion was that this relationship can be represented
mathematically by the Cobbs-Douglas production function. Such as in this work,
in this thesis queries are simulated. However, this thesis differs from this work by
not considering the notion of user session, as well as sequences of interactions
in order to provide required queries. Furthermore, the exploration of various
search strategies is not considered as an objective in this thesis. An objective

45

of this thesis and presented in this chapter is to simulate different kinds of IR
collection suitable for evaluation of system reusing past searches.

Apart from IIR, few work on simulation in IR can be found in the literature. A
work close to the approach presented in this chapter was proposed by Cooper
(1973) who proposed a simulation model for designing and evaluating IRSs. The
simulator enabled building specified collections of documents and analysing the
effect of changes in query characteristics on the quantity of output produced by
IRSs. The simulator is composed of five parts : a thesaurus generator, a pseudo-
document generator, a pseudo-query generator, search routines, and evaluation
routines. Several parameters can vary for thesaurus generation (e.g., vocabulary
size, word frequency distribution), document generation (e.g., number of docu-
ments to be generated), query generation (e.g., mean and standard deviation of
the length of a query). The search and evaluation routines used in the simulation
study were quite simple. The search routine measured the extent to which the
queries matched the documents, and the evaluation routine tested how many
documents were retrieved for a given threshold. A conclusion of this work was
that the proposed simulation model provides a limited but useful framework for
the evaluation of information retrieval systems. However, a limit of this model
is that relevance judgements are not considered, and thus usual IR evaluation
is not feasible. Following the same idea, this thesis proposes a framework for
IR collection situation, in which it is feasible to build words (i.e., vocabularies),
documents, and then queries. Our framework extends functionalities enabling
to build documents and queries under different probability distributions (i.e.,
words can be chosen under different probability distributions). Furthermore, the
proposed framework enables generating relevance judgments of users. So, several
retrieval scenarios can be adequately evaluated.

In addition, extending a previous work, Tague and Nelson (1981) proposed a
general model and simulation algorithms for bibliographic retrieval systems. Bi-
bliographic retrieval systems are characterized by random behaviour in the sense
that the relationship between queries and documents to answer must be descri-
bed probabilistically rather than deterministically. The proposed model relies
on various parameters such as probability functions for the distribution of terms
over queries and documents, and the distribution of relevance, given a query,
over documents. The model aims at being used to evaluate both the effectiveness
(utility) and efficiency (complexity) of bibliographic retrieval systems. Replica-
tive validity (i.e., produced data match already acquired data) were tested using
two bibliographic retrieval test collections, Cranfield and Medlars. Although the
experiments showed that simulated data appeared to fit to the real data in a
reasonable way, the results led to significant differences w.r.t recall-precision
evaluation. However, this model must be regarded as an interesting prelimi-
nary work. Similar to this work, the proposed framework in this chapter of this
thesis relies on different parameters to build documents and queries under dif-
ferent probability distributions. Nevertheless, the set of terms, the number of
documents and number of queries are instantiated at the beginning of each si-
mulation. Our framework relies on well-known laws of information science used

46

in various research fields such as Digital Libraries and Information Retrieval
(Chen and Leimkuhler, 1986; Sparck Jones and Willett, 1997b; Schaer, 2013).
For example, in our framework the judgments of users are simulated using the
Bradford’s law.

Finally, as presented in Chapter 3, a work close to this thesis in the sense that it
is based on the reuse of past results but differing in the objectives, was proposed
by Cetintas et al. (2011). Pointing out the lack of available collections comprising
similar queries to evaluate their approach, they proposed to generate simulated
similar past queries from traditional TREC sets of queries, by extracting titles
of some top-ranked documents for an initial query or removing some terms
of the queries. However, an important drawback of this work is that relevant
judgments were not considered in the proposed approach.

4.3 Simulation Framework

As previously introduced in both Chapter 3 and the previous section, few work
aims at reusing past queries and past results to improve new queries. Maybe it
is due to the lack of suitable collection for evaluation with respect to this the-
sis. Maybe it also contributes to the absence of new collection creation for the
evaluation of such systems. Although simulation is seen as an interesting alter-
native for evaluation of IR approaches (Azzopardi et al., 2011), rare approaches
were proposed for full IR collections. Furthermore, none could respond to our
needs with regard to evaluation of the reuse approach proposed in this thesis.

From our point of view, the same relevant documents are usually answers to
similar queries. However, all relevant documents are not necessarily relevant for
two similar queries. Our assumption is that most of relevant documents for a
past query could be relevant for a new similar query, and the judgments of users
on past results should be exploited.

This section presents a framework that allows simulating traditional IR col-
lections, which are formed by a set of documents, a set of queries, and the
judgments of users on the documents. Therefore, one of the main objectives of
this framework is to provide an ideal environment to evaluate approaches ba-
sed on similar past queries, where both sets of queries (i.e., which are similar
between them) having their own judgments of users. It is important to mention
that this framework is used in Chapter 5 to evaluate randomized algorithms
in the domain of similar past queries, because it supplies a clean experimental
environment (i.e., stemming, stop-word removal are omitted) and robust (i.e,
final results do not depend on particular characteristics of a system). The buil-
ding of this framework comprises three steps : the creation of documents and
queries, the simulation of users’ judgments, and the retrieval using past queries.
This framework relies on well-known laws of information science, such as Zipf’s
and Bradfor’s laws, used in various research fields such as Digital Libraries and

47

Information Retrieval (Chen and Leimkuhler, 1986; Sparck Jones and Willett,
1997a; Schaer, 2013).

Typically, in traditional collections a document has a title and a body (i.e.,
which contains some kinds of information that can be useful for a user). Both
title and document body are formed by a set of terms (i.e., words which form the
document). Usually, document terms provide semantics about some particular
subject. For example, a document about the 2010 Chile earthquake can contain
terms such as plate, Nazca, disaster, geology, and Chile, but geology and Chile
can belong to other documents with different information such as geology of
Chile. Thus, the sets plate, Nazca, disaster, earthquake and geology, Chile are
denominated topics, where each topic expresses a particular subject. In the last
example, the first document has terms from the second topic. However, it is
not rare in the real world to have documents containing terms from different
topics. Furthermore, using specific terms in a document (i.e., terms related to
a particular topic) it is possible to determine the topic it deals with and thus
decide if a document is relevant or non-relevant for a specific query (i.e., the
judgments of users are applied to the documents according to the relevance
for a query). Therefore, in this framework various topics are considered and a
document can have terms from different topics such as it happens in the real
world.

Like the documents, also queries are formed by terms. The judgments of users
determine if a document is or non-relevant for a specific query. The simulation
of documents, queries and judgments of users are specified in sections 4.3.2 and
4.3.3. In the following section, some definitions and notations are provided.

4.3.1 Definitions and notations

Broadly speaking, each document is composed of terms, which are obtained from
English alphabet. A set of terms that has a semantic relation between them is
denominated topic. In a topic there are not repeated terms and the intersection
between topics is empty. Similar to the documents, the past and new queries
are composed of terms, however for each type of query, terms are chosen in a
different way (see section 4.3.2).

Definition 1. Let To be a topic composed by terms, where a term is a finite set
of letters that belongs to the English alphabet. In other words, To is composed
of words, for example car, wheel, brake among others.

a) ∀ti ∈ To, ti is unique.

Definition 2. Let d be a document conformed by a set finite terms that
belongs to different topics.

Definition 3. Let D be a finite set of documents.

48

Definition 4. Let q be a query with a finite number of terms, which is
built using terms from a particular document.

Definition 5. Let DB = D ∪ Q be an IR dataset, composed of a set of
documents D and a finite set of past queries Q.

a) ∀d ∈ D ∧ ∀q ∈ Q, both d and q are unique.

By this definition, we have a collection of documents D, and a finite collection
of past queries Q.
The point a) indicates that there are either equal documents nor equal queries.

Definition 6. Let Q′ be a finite set of new queries, such as every query is
unique..

Definition 7. Let VN (q) be a set of N retrieved documents given q.

Definition 8. Let A(q) be the set of all the relevant documents retrieved for
the query q, such as A(q) ⊆ VN (q).

Definition 9. Let A′(q) be the set of all the non-relevant documents retrieved
for the query q, such as A′(q) ⊆ VN (q).

Definition 10. Given a query q, such as q ∈ Q, p(q) = (q, VN (q)) is defined as
the profile of the query q, which is a pair composed of the query and its retrieved
documents.

Definition 11. Let P =
⋃
p(q) be the finite set of all the query profiles stored

in an IRS.

Definition 12. Given a query q′, such as q′ ∈ Q′. Rp(q′, P) corresponds to the
set of retrieved documents from the most similar past query in P according to
a similarity measure (e.g., cosine).

Definition 13. ∂ : Rp(q′, P) → A(q′) is a function, which assigns the most
relevant documents to a new query q′, such as q′ ∈ Q′ (see Definition 10 and
Definition 12).

In the framework, the simulation is carried out as follows. First of all, the terms
are built and each term is unique. Subsequently, the terms are split in topics,
whereby there are not common terms between topics. From the terms, the do-
cuments are built. The past queries are obtained from the documents and new
similar queries are obtained from past queries. The judgments of users are si-
mulated using the Bradford’s law. The creation of documents, queries and the
judgments are explained in detail in the following section.

4.3.2 Creation of documents and queries

In this first step, the English alphabet to build a set of terms is used. Each term
is composed of letters of this alphabet. This set of terms can be split in subsets

49

called topics in order to represent different subjects (i.e., a topic is a set of terms,
which belong to a specific area such as biology, chemistry, physic to mention a
few). Each letter is chosen using uniform distribution with the purpose to build a
term. Thus, each term is unique. In addition, each document is defined according
to all the topics. In order to build a document, topics are selected using either the
exponential or Zipf distribution and then terms constituting the document are
chosen using uniform distribution. Thus, a document is constructed with terms
from one topic mainly but not exclusively. Past queries are built from documents.
To built a past query, a document is chosen under uniform distribution. The
terms that constitute the query are chosen from the document under uniform
distribution. It is important to emphasize that the intersection among past
queries is empty, that is, they do not have terms in common. New queries are
then built from past queries. For each past query a new query is built, either
by changing or adding another term. Thus, the most similar query for the new
query is its corresponding past query.

4.3.3 Simulating relevant judgments

In order to simulate the decision given by a user about if a document is
either relevant or not relevant for a given query, Zeta distribution have been
implemented. Zeta distribution gives a discrete approach of Bradford’s law.
Bradford’s law says, among the production of journal papers, there is an hete-
rogeneous number of papers where the most relevant papers are in few journals,
while a few number of relevant papers are spread on a high quantity of journals.
In our case, for a given query, it means that the most relevant documents
should be at the top of the list because they are the most similar with respect
to the query (this is, the most relevant papers are in few journal), while a few
relevant documents should be spread at down of the list document given a query.

On the other hand, the hypothesis is that for two very similar queries a
and b, when a document is relevant for a query, it could be also relevant for
the other query. In an intuitive way, there is a subset of common relevant
documents for both queries. It does not implies that all relevant documents
for query a, are relevant documents for query b. Therefore, when measuring
effectiveness, for instance with precision at ten retrieved documents (P@10),
precision for query a is not necessarily the same as for query b. With the
objective to simulate this scenario, Zeta distribution is used to determine
relevant documents over a subset of common documents between similar
queries. Afterwards, and with the purpose to have all relevant documents for
each query, Zeta distribution is applied again on list of documents conserving
the relevant documents from the subset of common documents. For example in
Figure 4.1, relevant documents for each query have 1, non-relevant documents
have 0. First, both list of documents are retrieved, from the intersection (d3, d5,
and d6), relevant documents common to both queries are computed by using
Zeta distribution. Afterwards, relevant documents are calculated again for each

50

query by preserving the relevant documents of the intersection (d3 and d5).
Finally, P@10 for query q is not necessarily the same that for query q′.

Figure 4.1: Obtaining judgments from users

4.4 Retrieval using past queries

In simple words, the basic idea behind our approach is to incorporate to the
IRS every query with its set of associated documents (query along with its list
of documents, which are part of the answer of this query). The system has
not only the set of documents but also the queries submitted by users (past
queries) with the set of associated documents. At the beginning there are just
documents without the queries, but every time a query is given in the system, it
is aggregated with its documents to the system. When a new query is submitted,
first, it is checked and compared with the past queries, which are in the system.
From the most similar past query, the most relevant documents can be obtained.
Our method consists of two parts. First, the query executed is stored with its
documents. Second, each new query is checked and compared with the past
queries in the system, thus if there is a similar past query in the system, the
relevant documents of this past query are retrieved. Relevant documents are
used to respond the new query.

Method in detail

In a more precise way, originally there is a set of documents D. The set
of queries Q is empty. At the beginning the first query q1 is given by user,
it is checked only with all documents in D. Then N documents are re-
trieved for q1. Now, this set of documents is associated with the query q1 in
a new set, and this set is added to the system. From that Q set is no more empty.

When a new query is submitted to the system, first, it is checked and
compared with past queries from the system. If it exists a query enough

51

similar in the system, then a set of documents are obtained. At the same time,
every query must be checked and compared in the traditional way with the
documents of the system. From both, it is possible to compare our approach
with traditional retrieval.

4.5 Experiments

4.5.1 Design of Information Retrieval Benchmark

A typical IR collection is composed of three sets : documents, queries and re-
levance judgments per query (i.e., documents considered as relevant or non-
relevant) (Voorhees and Harman, 2005). Aiming to build a test collection, two
steps are carried out (Gutiérrez-Soto and Hubert, 2013). The first step aims at
creating terms, documents, and queries. Both Heap’s law and Zipf’s law have
been considered to build document collections. Heaps’ law indicates that a do-
cument with size O(n) (where n is the number of terms) has a vocabulary with
size (Oβ), where 0 < β < 1. Therefore, a simulated document can represent
a document written in English of O(n2) terms (Navarro et al., 2000; Silva de
Moura et al., 2000). We assume that both processes, elimination of stop words
and stemming were carried out. Furthermore, according to the terms that com-
pose each document, documents belong to several subjects (i.e., several topics).
Zipf’s law (Poosala, 1997; Zipf, 1949) is applied to simulate the distribution of
the frequencies of words in the vocabulary (to select the terms from topics). Like
Zipf’s law, exponential distribution also have been used as an alternative for se-
lecting terms from topics. Otherwise, past queries are created from documents
and new queries are built from past queries. Finally, the Bradford’s law is used
to simulate relevant judgments provided by users about document relevance for
a specific query (Garfield, 1980).

4.5.2 Experimental Environment

The experimental environment was set as follows : the length of a term | t |,
was between 3 and 7. Uniform distribution is used to establish the length. The
number of terms | T | was 700 in each experiment. The number of terms for
each document can be between 15 and 30. According to Heaps’ law (Heaps,
1978), it was possible to represent documents between 300 to 900 words in
this case. The number of topics used in each experiment was 7. Each topic is
formed by 100 terms. When a document was built, terms of other topics were
chosen using either Exponential distribution or Zipf distribution. Whereby,
most words, which composed a document were chosen from a specific topic.
The numbers of documents in each experiment were 700, 1400, 2100, 2800 and
3500.

52

On the other hand, terms for a query were between 3 and 8. Query terms were
chosen from a particular document. Both terms and documents were chosen
using uniform distribution to build the past queries. We built 15 past queries.
From the set of past queries, 15 new queries were built. Finally, the number of
queries in each experiment was 30.

In order to simulate user judgments, when documents were retrieved gi-
ven a query q, Zeta distribution have been applied with the purpose to
represent the Bradford’s law (Garfield, 1980; Zerchaninova, 2008). Zeta dis-
tribution was applied, on the 30 most similar documents with respect to the
query q, with parameters 2, 3 and 4, for each experiment. Zeta distribution
was applied as follows : After the new query q′ was obtained from past query
q, the most similar documents for q′ was obtained. Afterwards, the common
documents for both queries were obtained, and Zeta distribution was used
over the set of common documents. It means, there was a subset of relevant
documents not only for q′ but also q. Eventually, Zeta distribution was applied
over q′ (other relevant documents could be added to q′), and the relevant
documents from the set of common documents were preserved.

4.6 Empirical Results

In this section, three experiments are reported. In, first and second experiments,
exponential distribution have been used to build the collection of documents
D. In the third experiment, Zipf distribution has been applied to build D.
Additionally, we used the Student’s Paired t-Test (paired samples) over each
average P@10 (our approach with respect to traditional retrieval (using cosine))
for each set of documents (700, 1400, 2100, 2800 and 3500). Preliminary results
report the average P@10 over all the queries.

Experiment 1. Exponential distribution with parameter equal to 1.5 was
used to build the dataset D. When using zeta distribution with parameter s
= 2 for relevance, our approach improved for 26 over 30 queries (see figures
4.2, 4.3, 4.4 and Table 4.1). Statistical significance was reached in all cases,
the highest p-value for the Student’s t-test being 0.00128 for the set of 700
documents. When using zeta distribution with parameter s = 3, the approach
improved for 24.4 over 30 queries on average over the five sets of documents.
The highest p-value for the Student’s t-test being 0.00056 for 3500 documents.
When using zeta distribution with parameter s = 4, the approach improved
for 21.4 over 30 queries. Statistical significance was reached in all cases, the
highest p-value for the Student’s t-test being 0.00732 for 1400 documents.

Experiment 2. Exponential distribution with parameter equal to 1.0 was
used to build the dataset D. Zeta distribution with parameter s = 2 for
relevance, our approach improved for 26.2 over 30 queries. The average P@10

53

was improved (see figures 4.5, 4.6, 4.7 and Table 4.2). Statistical significance
was reached in all cases, the highest p-value for the Student’s t-test being
0.00002 for 1400 documents. Using zeta distribution with s = 3, the approach
was improved for 21.6 over 30 queries. Statistical significance was reached
in all cases, the highest p-value for the Student’s t-test being 0.01306 for
3500 documents. For zeta distribution with parameter s = 4, the approach
was improved for 21.6 over 30 queries. Statistical significance was reached in
all cases, the highest p-value for the Student’s t-test being 0.00122 for 2800
documents.

Experiment 3. Zipf distribution with parameter equal to 1.6 was used to
build the dataset D. Zeta distribution with parameter s = 2 for relevance,
our approach was improved for 24.8 over 30 queries. The average P@10
improvement was +25.50. Statistical significance was reached in all cases, the
highest p-value for the Student’s t-test being 0.00005 for 700 documents. Zeta
distribution with parameter s = 3, the approach was improved for 22.6 over 30
queries. The average P@10 was improved (see figures 4.8, 4.9, 4.10 and Table
4.3). Statistical significance was reached in all cases, the highest p-value for
the Student’s t-test being 0.00034 for 1400 documents. For zeta distribution
with parameter s = 4, the approach was improved for 24.8 over 30 queries.
Statistical significance was reached in all cases, the highest p-value for the
Student’s t-test being 0.00031 for 2100 documents.

54

Figure 4.2: Simulation with Exponential Distribution 1.0 (for D) and Zeta
Distribution 2 (for judgments)

Figure 4.3: Simulation with Exponential Distribution 1.0 (for D) and Zeta
Distribution 3 (for judgments)

55

Figure 4.4: Simulation with Exponential Distribution 1.0 (for D) and Zeta
Distribution 4 (for judgments)

Table 4.1: Simulation with a collection D based on exponential distribution
using θ = 1.0 – Comparison of the two approaches (i.e., Past Results and Cosine)
according to average P@10 (over 30 queries)

Approaches
Zeta Distribution D Size Past Results Cosine

700 0.761 0.589
1400 0.745 0.615

S = 2 2100 0.757 0.607
2800 0.770 0.672
3500 0.763 0.639

700 0.649 0.499
1400 0.657 0.547

S = 3 2100 0.610 0.529
2800 0.655 0.581
3500 0.613 0.559

700 0.555 0.429
1400 0.526 0.429

S = 4 2100 0.537 0.428
2800 0.526 0.486
3500 0.552 0.468

56

Figure 4.5: Simulation with Exponential Distribution 1.5 (for D) and Zeta
Distribution 2 (for judgments)

Figure 4.6: Simulation with Exponential Distribution 1.5 (for D) and Zeta
Distribution 3 (for judgments)

57

Figure 4.7: Simulation with Exponential Distribution 1.5 (for D) and Zeta
Distribution 4 (for judgments)

Table 4.2: Simulation with a collection D based on exponential distribution
using θ = 1.5 – Comparison of the two approaches (i.e., Past Results and Cosine)
according to average P@10 (over 30 queries)

Approaches
Zeta Distribution D Size Past Results Cosine

700 0.776 0.638
1400 0.787 0.675

S = 2 2100 0.737 0.595
2800 0.789 0.683
3500 0.789 0.634

700 0.642 0.556
1400 0.680 0.597

S = 3 2100 0.657 0.511
2800 0.684 0.590
3500 0.648 0.558

700 0.572 0.499
1400 0.562 0.499

S = 4 2100 0.572 0.469
2800 0.586 0.506
3500 0.535 0.451

58

Figure 4.8: Simulation with Zipf Distribution 1.6 (for D) and Zeta Distribution
2 (for judgments)

Figure 4.9: Simulation with Zipf Distribution 1.6 (for D) and Zeta Distribution
3 (for judgments)

59

Figure 4.10: Simulation with Zipf Distribution 1.6 (for D) and Zeta Distribu-
tion 4 (for judgments)

Table 4.3: Simulation with a collection D based on Zipf distribution using
λ = 1.6 – Comparison of the two approaches (i.e., Past Results and Cosine)
according to average P@10 (over 30 queries)

Approaches
Zeta Distribution D Size Past Results Cosine

700 0.754 0.660
1400 0.758 0.607

S = 2 2100 0.737 0.622
2800 0.769 0.599
3500 0.731 0.604

700 0.605 0.523
1400 0.659 0.570

S = 3 2100 0.625 0.550
2800 0.658 0.531
3500 0.650 0.549

700 0.537 0.450
1400 0.547 0.454

S = 4 2100 0.543 0.454
2800 0.580 0.449
3500 0.561 0.434

60

Discussion

It is relevant to emphasize that Zipf distribution was used with value
1.6, in order to simulate frequency distributions of the words on topics.
Although, in more precise way Zipf distribution with values between 1.4 and 1.8
are used to simulate the distribution of the frequencies of words on vocabulary
(Poosala, 1997; Zipf, 1949). In our case, it has been applied to select, terms of
the topics (we have considered the number of the topics like vocabulary). We
argued this decision, because in a document of real life, it is feasible to find
terms used in other fields (i.e., in other topics). It has been the main argument
by which, we have used not only the Zipf distribution but also the exponential
distribution to build the collections of documents.

In addition, the objective of fixing different parameter values in Zeta dis-
tributions (S = 2, 3 and 4) to simulate the judgments of users was to analyse
how this function influences average P@10. According to tables 4.1, 4.2 and
4.3 and figures from 4.2 to 4.10, when the parameter S is increased in Zeta
distribution, the results shows that both average P@10 decreases for both
traditional retrieval (cosine) and our approach (past results). This phenomenon
can be observed in all the configurations used to build the collections of
documents.

The results reported in tables 4.1, 4.2 and 4.3 and figures 4.2 to 4.10
show that there is a quite stable average P@10 for both approaches, when
varying the number of simulated documents for a given configuration of
distribution parameters. Thus, it seems not necessary to test simulations with
more generated documents to expect other system behaviors.

Both approaches used to test the simulated collections have homoge-
neous effectiveness according to average P@10 over all the queries. However,
performances differ from one collection to another supporting the idea that the
different collections could be used as different scenarios.

4.7 Conclusions

Faced with the lack of suitable collections for evaluation of IRSs based on past
queries and past results, an alternative to create an IR collection in a traditional
costly way lies in simulation. Related work on simulation in the domain of IR has
first been presented. Approaches using simulation, which can be found in the IR
literature, take place mainly in the field of interactive information retrieval (IIR)
These approaches intend to simulate users’ interactions in a retrieval process,
aiming to explore search strategies and how queries are submitted by users.
Apart from IIR, few work on simulation in IR can be found in the literature,
and none usable for evaluating the approach presented in the next chapter of

61

this thesis.

Then, an approach of framework to produce various collections to support eva-
luation of IRSs based on past queries and past results has been described. Si-
mulated collections are generated as usually in IR, i.e., composed of a set of
documents, a set of queries, and relevance judgments on documents. Therefore,
one of the main objectives of this framework was to provide an ideal environ-
ment to evaluate approaches based on similar past queries and results, where
exist similar queries with their own judgments of users. The framework sup-
plies a clean experimental environment (i.e., stemming, stop-word removal are
omitted) and robust (i.e, final results do not depend of particular characteris-
tics of a system). Configurable simulations of documents, queries, and users’
judgments are based on well-known laws of information science, such as Zipf’s
and Bradfor’s laws, used in various research fields such as Digital Libraries and
Information Retrieval (Chen and Leimkuhler, 1986; Sparck Jones and Willett,
1997a; Schaer, 2013).

The proposed framework was tested to simulate various collections. Several sce-
narios have been simulated under different probability distributions to build the
collections of documents and determine the relevant documents given a query.
To build the documents, exponential distribution with parameters 1.0 and 1.5,
was applied. Similarly, Zipf distribution was employed to build the documents
with parameter 1.6. The main reason was to select terms from different topics
(different fields, i.e, chemistry, computer science, biology to mention a few),
which compose a document. On the other hand, Zeta distribution have been
used to represent the Bradford’s law, which allows to simulate the judgment
users. Three parameters for Zeta distribution have been applied in the experi-
ments (S = 2, S = 3 and S = 4), aiming to cover a wide range of applications on
this distribution. Experiment results showed homogeneous effectiveness of the
two tested approaches according to average P@10 over all the queries. Further-
more, performances differ from one simulated collection to another supporting
the idea that the different collections could be used as different scenarios.

The simulated collections were used in experiments presented in Chapter 5 to
evaluate randomized algorithms in the domain of similar past queries and com-
pared effectiveness with a traditional IR method.

62

Chapter 5

Probabilistic Approaches in
IR for reusing past results

Résumé : Chapitre 5
De nombreux travaux ont porté sur l’amélioration des résultats pour des
requêtes particulières. Plusieurs approches apportent des solutions impliquant
une sélection efficace des systèmes pour répondre à certains types de requêtes,
en appliquant des techniques de fouille de données par exemple. Cependant,
certaines tâches de fouille de données nécessitent un coût élevé ainsi que du
temps lorsque les jeux de données utilisés sont hétérogènes. En outre, il est
possible de trouver des approches qui impliquent une analyse exhaustive de
toutes les solutions possibles pour donner la meilleure réponse à une requête
(par exemple, la meilleure précision pour chaque type de requête). D’autres
solutions correspondent à des approches basées sur des techniques d’appren-
tissage (par exemple, les réseaux de neurones, les algorithmes génétiques et
les machines à vecteurs de support). Les données de base utilisées pour les
approches reposant sur les techniques d’apprentissage, sont composées de
«requêtes passées et leurs documents avec jugements des utilisateurs». Bien que
les approches d’apprentissage et d’optimisation ne peuvent pas être réellement
considérées comme relatives à «l’utilisation des résultats de recherche passés
», elles ne sont pas très différentes. En effet, elles impliquent d’analyser les
relations entre les requêtes déjà soumises à un système (requêtes passées) et
leurs documents retournés (résultats antérieurs). En outre, de bons résultats
reflètent une adequation compréhension entre les algorithmes et les données
passées (« requêtes passées » et leurs « jugements de pertinence ») utilisés pour
l’apprentissage.

En outre, il est fréquent que deux SRI, qui utilisent la même collection four-
nissent des résultats différents pour un ensemble de requêtes. L’idée est que

63

chaque SRI ne connaît pas la distribution de probabilité des jugements de perti-
nence sur les documents pour une requête donnée (c.-à-d., comment la fonction
de distribution de probabilité affecte la pertinence des documents obtenus pour
une requête). Cependant, il est possible d’apprécier de façon empirique que les
documents les plus pertinents ont tendance à apparaître en haut de la liste ré-
sultat. Ainsi, pour un SRI, si nous connaissons les documents retournés et les
jugements de pertinence pour une requête, et nous avons une nouvelle requête
très similaire à cette requête, alors nous pouvons utiliser les documents perti-
nents associés pour répondre à la nouvelle requête. Ainsi, l’hypothèse la plus
importante utilisée dans le cadre de cette thèse, est que les documents perti-
nents ont tendance à apparaître en haut de la liste des résultats (à savoir, le
premier document qui apparaît en haut de la liste a une probabilité plus éle-
vée d’être pertinent que le dernier document de la liste). Un type d’algorithme
probabiliste, utilisé lorsque les entrées de l’algorithme sont non-déterministes,
correspond aux algorithmes de Monte Carlo et Las Vegas. Ainsi, les algorithmes
de Monte Carlo sont utilisés dans cette thèse pour attribuer une probabilité
de pertinence en fonction de la position d’un document pertinent dans la liste
obtenue à partir de la requête passée la plus proche.

Il est important de souligner qu’il existe une différence importante entre les mé-
thodes de Monte Carlo (ou des expériences de Monte Carlo) et les algorithmes
de Monte Carlo. Les méthodes de Monte Carlo comprennent une large gamme
d’algorithmes de calcul, qui sont basés sur un échantillonnage aléatoire répété
pour obtenir des résultats numériques. En général, ces méthodes sont utilisées
en Physique pour simuler des systèmes avec de nombreux degrés de liberté,
tels que les fluides et les structures cellulaires. En outre, les méthodes de Monte
Carlo sont utilisées dans des problèmes mathématiques, telles que l’optimisation,
l’intégration numérique, et la génération de tirage dans une distribution de pro-
babilité. Quelques approches de RI ont appliqué des méthodes de Monte Carlo.
Par exemple plusieurs d’entre elles sont liées à l’optimisation (Puolamäki et al.,
2005; Cemgil and Kappen, 2011; Roitman et al., 2014), d’autres se sont concen-
trées sur un échantillonnage aléatoire (Alexandrov et al., 2003). Cependant, ces
travaux ne sont liés ni à des algorithmes randomisés, ni avec les requêtes passées
et leurs résultats, qui constituent le sujet de cette thèse. Ce genre d’approche
ne sera donc pas détaillé dans cette thèse.

Différentes des approches probabilistes basées sur des techniques d’apprentis-
sage et d’optimisation, qui peuvent nécessiter des ressources élevées, en temps
mais aussi en coût, dans cette thèse un ensemble d’algorithmes randomisés qui
ne nécessitent pas d’apprentissage et fournissent une précision acceptable sont
présentés. Ces algorithmes sélectionnent les documents pertinents en fonction
de leur position dans la liste des résultats de la requête passée la plus proche.
À notre connaissance, aucune approche similaire n’a été proposée dans la lit-
térature. Comme évoqué dans les chapitres précédents, cela peut être dû à un
manque de collections appropriées pour l’évaluation. Par conséquent, quelques
travaux connexes seront présentés dans ce chapitre, surtout basés sur l’appren-
tissage, qui peuvent être vus comme une sorte de réutilisation des requêtes

64

passées.

Ce chapitre vise à fournir une vue d’ensemble sur les algorithmes randomisés.
En outre, quatre algorithmes randomisés qui constituent une importante contri-
bution de cette thèse, ainsi que leurs résultats empiriques sont présentés. Le
chapitre est organisé comme suit. La section 5.2, présente les travaux connexes
sur les approches probabilistes en RI en utilisant des requêtes passées pour
l’apprentissage ou l’optimisation. Dans la section 5.3, un aperçu sur les algo-
rithmes de Las Vegas et Monte Carlo est introduit. Dans la section 5.4, quatre
algorithmes randomisés sont proposées pour la réutilisation de requêtes passées.
Dans la section 5.5, les résultats empiriques utilisant les algorithmes proposés
sont analysés. Enfin, à la section 5.6, les conclusions sont présentées.

65

5.1 Introduction

A large range of work has focused on improving the list of retrieval documents
for particular queries. Several approaches provide solutions that involve effec-
tive selection of systems to respond to certain types of queries (e.g., difficult
queries, are queries which provide poor results, in other words a bad precision),
by applying data mining techniques for example. Nevertheless, some tasks of
data mining require high cost in money as well as time when the used datasets
are heterogeneous. Besides, it is possible to find solutions that involve an ex-
haustive analysis of all possible alternatives to give the best answer to a query
(i.e., the best precision for each type of query). Prior solutions correspond to
approaches based on learning techniques (e.g., neural networks, genetic algo-
rithms and support vector machines). Baseline data used for approaches relying
on learning techniques, are composed of “past queries and their documents with
judgments of users”. Despite the fact that all steps applied in machine learning
and optimization cannot be seen as “the use of past search results”, these are
not very different. Indeed, it implies to analyze the relationship between queries
previously submitted in a system (past queries) and their retrieved documents
(past results). Furthermore, good results reflect a deep comprehension between
algorithms and past data (“past queries” and their “judgments of users”) used
for training.

In addition, different two IRSs, which use the same collection C can provide
different results (i.e., the list of documents obtained for each IRS is different
and as consequence precision is different) for a set of queries Q. The idea
is that each IRS does not know the probability distribution of relevance
judgments on D for a given query that belongs to Q (i.e., how the probability
distribution function assigns the relevance to the documents obtained as result
of a query). However, it is feasible to appreciate empirically that the most
relevant documents tend to appear at the top of results. Thus, for an IRS if
we know C for example, and we have Q′, which is very similar to Q, then we
can use the associated relevant documents to answer queries of Q′. Thereby,
the most important assumption used in the domain of this thesis, is that
the relevant documents tend to appear at the top of the result list (i.e., the
first document that appear at the top of the list has higher probability to be
relevant than the last document in the list). A kind of probabilistic algorithms,
that are used when algorithm inputs are non-deterministic, correspond to
Monte Carlo and Las Vegas algorithms. Thus, Monte Carlo algorithms are
employed in this thesis to assign a probability of relevance according to the posi-
tion of a relevant document in the list obtained from the most similar past query.

It is important to point out that there is an important difference bet-
ween Monte Carlo methods (or Monte Carlo experiments) and Monte Carlo
algorithms. Monte Carlo methods comprise a wide range of computational
algorithms, which are based on repeated random sampling to obtain numerical
results. Commonly, these methods are used in physics to simulate systems with

66

many coupled degrees of freedom, such as fluids, disordered materials, strongly
coupled solids, and cellular structures. Furthermore, Monte Carlo methods are
used in mathematical problems, such as optimization, numerical integration,
and generating draws from a probability distribution. Few approaches in IR
have applied Monte Carlo methods, for example several of them are related
to optimization (Puolamäki et al., 2005; Cemgil and Kappen, 2011; Roitman
et al., 2014) ; while others are focused on random sampling (Alexandrov et al.,
2003). Nevertheless, it is relevant to emphasize that these works are related
neither to randomized algorithms nor with past queries, which are applied in
this thesis.

Different to the probabilistic approaches based on learning techniques and
optimization, which can involve high resources not only in time but also cost,
in this thesis a set of randomized algorithms that do not require learning time
and provide an acceptable precision are presented. These algorithms select
relevant documents according to their position in the result list from the most
similar past query.

This chapter aims to provide an overview about randomized algorithms.
Furthermore, four randomized algorithms which constitute an important
contribution of this thesis along with their empirical results are presented.
The chapter is organized as follows. Section 5.2, presents related work about
probabilistic approaches in IR using past queries for learning or optimization.
In section 5.3, an overview about Las Vegas and Monte Carlo algorithms is
introduced. In section 5.4, four randomized algorithms are proposed. In section
5.5, empirical results using the proposed algorithms are analysed. Finally, in
section 5.6, conclusions are presented.

5.2 Related Work

The literature of IR is crammed with different contributions that use techniques
and probabilistic algorithms to improve results of a retrieval process. Roughly
speaking, two major types of research can be easily distinguished : learning
techniques and optimization. Bayesian Networks and variants are widely used
probabilistic techniques. Although bayesian networks provide a high-level repre-
sentation for a probability distribution over a set of variables, which model the
problem domain, an understandable and compact representation of the involved
variables in the problem are needed. Generally, this representation is obtained
as the result of a data mining process. Whereby, when the data mining process
is complex, it can involve time and considerable effort. Furthermore, a poor
representation of variables can supply disappointing results. Other approaches
rely on probability estimations, for example, of term frequencies or document
relevance.

Traditional approaches based on Bayesian Networks build a network by using

67

documents. In contrast, Indrawan et al. (1996) came up with a model where
Bayesian Networks are composed of two entities, evidence or cause and hypo-
thesis or effect. Thus, retrieving a relevant document corresponds to calculating
a conditional probability. Therefore, a set of relevant documents is obtained by
ranking the belief value on the query node in decreasing order. Preliminary re-
sults on CACM, ADI and MED collections showed promising performance of
the system. Despite the fact that Bayesian networks are not used in this thesis,
we also apply probability to recover relevant documents. This probability is not
a conditional probability, it is rather an assigned probability for the randomized
algorithms according the position in the result list, which is obtained from the
most similar past query.

In the domain of text categorization, Joachims (1997) presented a probabilistic
variant of the Rocchio classifier (tf − idf algorithm) denominated PrTFIDF.
PrTFIDF provides a new perception about the vector space model by using a
descriptor for every document, the theorem of total probability, and the Bayes’
theorem. Empirical results on six categorization tasks using Usenet articles sho-
wed that the two probabilistic methods Bayes and PrTFIDF supply performance
improvements of up to 40% reduction of error rate on five of the six tasks. The
author pointed out that PrTFIDF not only provides a better theoretical unders-
tanding, but also has a good performance. The approach presented in this thesis
differs from this work both in terms of objectives (i.e., reuse of past results vs
text categorization), and because it proposes an additional process applicable to
any initial IR model. Besides, the Bayes’ theorem is not applied in this thesis.
However, this work provides a source of inspiration about the use of probabilities
in the IR domain.

In a more usual ad-hoc retrieval process, Hiemstra (1998) proposed a new pro-
babilistic model. This model has as assumption that documents and queries are
defined by ordered sequences of single terms, which is well-known in the field
of statistical natural language processing. A new probabilistic interpretation of
tf−idf term weighting is proposed. Both documents and queries are modeled as
compound events through an ordered sequence of events. Experimental results
on Cranfield collection showed that this model outperforms the vector space
model. Different to this research, which consider probability at the term weigh-
ting level, this thesis deals with document relevance probability. Furthermore,
the approach proposed in this thesis can be applied to any IR model.

Blei et al. (2003) designed a simple hierarchical Bayesian approach for modeling
document collections and other large-scale data collections. The model assumes
that a document is built by choosing a random set of multinomial probabilities
for a set of possible “topics”, and then repeatedly generating words by sampling
from the topic mixture. The authors claim that a limitation of this model is the
lack of sensitivity according to the number of topic. Nevertheless, researchers
assert that this parameter can be obtained empirically. Thus, this work is similar
to this thesis because document collections are simulated. Indeed, the words
(i.e., terms) that compose a document are chosen from “topics” using several

68

probability distributions. Besides, the main difference is that Bayesian networks
are not applied in this thesis.

Lillis et al. (2006), promoted the Probfuse algorithm, which merges results from
several IR algorithms. It was compared with the well-known CombMNZ al-
gorithm. Using Profuse, for each document of a result, a score is associated
according of its relevance likelihood, which is used in ranking the documents
at the end, in a fused result set. This likelihood is obtained considering both
the performance of the underlying IR models and the number of training que-
ries. Experiments on four document collections – Cranfield, LISA, NPL and
Med – were carried out, showing best results for Probfuse. Like in this work, in
this thesis the randomized algorithms use the result list of recovered documents
assigning a relevance likelihood for relevant documents. However, in this thesis
probabilities are not applied for fusing results from several IR algorithms produ-
cing different results for a submitted query. Probabilities are used to determine
relevant documents in most similar queries to build results for new submitted
queries.

More recently, a method to expand queries based on Bayesian networks was
introduced by de Campos et al. (2013). Using a learning algorithm the method
builds the network which represent some of the relationships among the terms
that appear in a document collection. Thus, this network is used as a thesaurus
(specific for that collection) with the purpose to provide new terms with a high
probability of being related with the initial query. Experiments have been carried
out on three standard test collections – Adi, Cranfield and Medlars. Despite the
fact that final results are moderate, the authors pointed out that their approach
is a good baseline for heterogeneous document collections. Unlike this research,
this thesis does not rely on neither Bayesian Networks nor learning algorithm.
However, adding new terms with some probabilities is an inspiring idea for future
work.

As stated previously, probabilistic approaches in IR can be categorized in two
types, learning techniques and optimization. The main drawback that present
both categories is that these, can take considerable time. Some optimization
techniques imply the use of genetic algorithms, where an inadequate election of
the fitness function and the initial population can take a substantial execution
time. Learning techniques are applied commonly after a data mining process,
which can be the result of a difficult human task. Most probabilistic approaches
in IR involve an exhaustive analysis of all possible options to look for the best
answer to a query (typically, the best precision for each type of query). It can
be seen as trying to find for each system a function that not only provide the
relevant documents given a query but also put this list of relevant documents
at the beginning of the result list. Therefore, trying to discover this function to
assign relevant documents (i.e., a distribution function) is almost impossible.

By contrast, simple solutions in terms of representation and implementation can
be proposed through randomized algorithms. Typically, randomized algorithms
are used when the problem to solve implies high resources in time or when

69

algorithm input is non-deterministic (i.e., data of algorithm input have a proba-
bility distribution). It is important to mention that the main difference of our
algorithms with respect to the existing approaches is that we assign a relevance
probability (i.e., an assignment of the probability according to the document
position in the result list is provided) to the relevant documents obtained from
the most similar past query. The most important assumption used here, is that
the relevant documents tend to appear at the top of the result list. The ran-
domized algorithms presented in this thesis suppose that when the position of
the document (in the list of documents) is at the top (close to the query), the
document has higher probability to be relevant than a document at the bottom
of the list. Furthermore, these randomized algorithms are simple to implement,
they do not require learning time, are robust, effective and can be adapted to
several domains.

5.3 Randomized Algorithms

In contrast to Bayesian Networks and Genetic Algorithms, Monte Carlo and
Las Vegas algorithms are employed typically when the problem is hard to solve
like NP problems (i.e., time is a relevant factor in order to supply an answer) or
when algorithm input is non-deterministic. In the world, all processes are not
deterministic, several processes rely on random. For example, simple processes
such as flipping a coin are random. Another example of non-deterministic
problems is a card game. In such a game, someone attempts to guess a card.
After every round the probability to guess is increased. At the end, in the 51st
round, both cards have accomplished their maximum probability (50% percent
for both). Therefore, it is always possible to find a wrong probability (except
for the last card). Contrary to deterministic methods involved in subjects such
as geometry and logic, which have been treated mathematically for several
thousand years, the mathematical study of probabilities is relatively new ; the
first known attempts to seriously formalize it came about in the 1600s. The
study of random processes in computer science is more recent yet, but it has
been involved from its creation.

Kleinberg and Tardos (2005) pointed out that random processes in the
computation domain can be split in two different ways. The first, is to consider
the world behavior randomly, where a traditional algorithm tackles randomly
generated input. This approach is well-known as average-case analysis, due to
the study about the behaviour of an algorithm on an average input rather than
a worse-case input. A second way corresponds to the notion of randomized,
it is to consider algorithms that behave randomly, that is the data provides
the same worst-case input as always, however the role of randomization in this
approach is purely internal to the algorithm.

Las Vegas algorithms provide an answer either true or false, and this

70

answer is always soundness. For example let consider an unsorted array, in
which one wants to find a number. Here, the algorithm provides a random
position (from 1 to N), and the searched number is compared with the number,
which is at the random position. If both numbers are equal, the algorithm
returns true. Otherwise, the number which is in the random position is swapped
for the number at first position. Now, the algorithm can choose a random
position (from 2 to N). Again the searched number is compared with the
number, which is at the random position. If the searched number is different
to the number at the random position, the number at the random position is
swapped for the number at second position, and so on. Finally, the number
can always be found because it is inside the array. On the other hand, if
the searched number is not inside the array, the algorithm should respond
false. In both cases (true or false), the answer is always soundness. Las Vegas
algorithms were introduced by the mathematician Laszlo Babai in 1979, with
the aim to tackle the graph isomorphism problem. The denomination of “Las
Vegas” comes from a popular city in Nevada, which is internationally famous
for gambling.

By contrast, Monte Carlo algorithms supply an answer, which can be
unsoundness (i.e., when algorithm gives true, it could be false, or when
algorithm gives false, it could be true). When the algorithm gives true or false,
and one of these answers is soundness, it is called true-biased. Otherwise, both
answers can be unsoundness, it is called two-sided errors. Using the previous
example (i.e., given an unsorted array), if one wants to review only k elements
of the array (k < N), in order to reduce the searching time and whether
the number is inside of k elements, the algorithm should return true (it is
soundness). On the contrary, if the searched number is in the other portion of
elements (N − k), the algorithm will respond false, when the number is inside
the array. This example corresponds to true-biased Monte Carlo algorithms,
because when the algorithm returns true, it is soundness, but if the answer
is false, it is not a soundness answer. In our particular case, the randomized
algorithms presented in this thesis correspond to two-sided errors (i.e., both
answers true or false can be unsoundness). It is because, we are not sure about
judgments of users with respect to whether a document is either relevant or
non-relevant regarding the query. Nevertheless, we can suppose that when the
position of the document (in the list of documents) is at the top, the document
has higher probability to be relevant than a document at the bottom of the list.

Finally, it is important to emphasize that it is not the aim of this chap-
ter to provide a review of theoretical literature in this area. Further readings
include books by Kleinberg and Tardos (2005); Cormen et al. (2001);
Banachowski et al. (1991); Gonnet (1984).

71

5.4 Contribution to the reuse of past searches

5.4.1 Description of the algorithms

In this section, the main contribution of this thesis is exposed. Four randomized
algorithms are presented and analysed. These algorithms are categorized as
Monte Carlo, specifically two-side error. As stated previously, the main reason
by which this algorithm type have been chosen, is because it is not possible
to know the probabilistic distribution about judgments of users over the
list of retrieved documents given a query. It is because relevance judgments
about a document considering the query are issued traditionally by a group of
experts without considering the ranking functions. Nevertheless, it is feasible
to assume that documents that appear at the top of the result list have higher
probability to be relevant than documents that appear at the bottom of the list.

This approach considers a storage process in which each computed query
is stored with its documents and relevance judgments. Second, for the retrieval
process, each new query is compared with the past queries in the system, and
if there is a past query quite similar in the system then relevant documents of
this past query are recovered according to our algorithms. In this way, relevant
documents are used to respond to the new query. Thus, each algorithm works
on the list of retrieved documents, which belongs to the most similar past query
with respect to the new query.

In the following paragraph, we present a set of definitions and notations,
which are applied on all the algorithms.

5.4.2 Definitions and notations

It is important to highlight that the definitions comprised between 1 and 13
are common to the four algorithms. Broadly speaking, each algorithm uses an
additional array called B[N], which has as purpose to support the obtaining of
probability. This array contains 1 and 0, and its use can be seen as flip on coin
with head “1” or the tail side “0”, half of array contains 1, and the other half
contains 0. Thus, the probability to have a head “1” in the second round rises
to 75%. Besides, VN (q) can be seen as the list of retrieved documents given a
query q.

Definition 1. Let DB = D ∪ Q be an IR dataset, composed of a finite set of
documents D, and a finite set of past queries Q

a) ∀di ∈ D ∧ ∀qj ∈ Q, both di and qj are unique.

By this definition, we have a collection of documents D, and a collection of past
queries Q.

72

The point a) indicates that there are not two equal documents as well as not
two equal queries.

Definition 2. Let Q′ = {q′} be a finite set of new queries, such as every query
is unique.

Definition 3. Let VN (q) be a set of N retrieved documents given q.

Definition 4. Let A(q) be the set of all the relevant documents retrieved for
the query q, such as A(q) ⊆ VN (q).

Definition 5. Let A′(q) be the set of all the non-relevant documents retrieved
for the query q, such as A′(q) ⊆ VN (q).

Definition 6. Given a query q, such as q ∈ Q, p(q) = (q, VN (q)) is defined as
the profile of the query q, which the pair composed of the query and its retrieved
documents.

Definition 7. Let P =
⋃
p(q) be the set of all the query profiles stored in the

system.

Definition 8. Given a query q′, such as q′ ∈ Q′. Rp(q′, P) corresponds to the
set of retrieved documents from the most similar past query in P according to
a similarity measure (e.g., cosine).

Definition 9. ∂ : Rp(q′, P) → A(q′) is a function, which assigns the most
relevant documents to a new query q′, such as q′ ∈ Q′ (see Definition 6 and
Definition 7).

Definition 10. ‖x‖ denotes the integer part of a real number, such as x ≥ 0.

Definition 11. dxe denotes the upper integer of x.

Definition 12. Given a binary array B[N], such as B has N elements, and a
N

is the proportion of values in B that are equal to 1 (true).

This array is the baseline to provide a level of general probability for all the
documents. Nevertheless, the probability of each document according to its
position in the list VN (q), is computed by all the algorithms.

The first algorithm

The first algorithm splits the list of retrieved documents from the most
similar past query in NG groups, where each group contains the same quantity
of documents. The first group is composed of the first documents appearing
at the top of the list. The first group has the greatest probability to get a hit
with respect to all other groups. The second group has higher probability to
get a hit than the third group, and so on. Besides, each document of a given
group has a different likelihood to have a hit. The first element of the group
has a higher likelihood to have a hit than the last element of the group. On
balance, each group has different probabilities to have a hit, and at the same

73

time, the documents of a group have different likelihoods. Thus, a document
in the position i has higher probability than a document in the position i+1.
The main reason that supports this design, is because generally the documents
that appear at the top of lists are relevant meanwhile that the documents at
the bottom of lists are not relevant.
In Figure 5.1, the algorithm 1 splits the list in NG groups (NG = 4), with
the same quantity of documents (2ne = 8). The probability for each document
is determined by two factors. First, it depends on the group the document
belongs to, and second to the relative position of the document in the group, for
example, for the document d1 (group 1), which is the same for the document d13
(group 2). Moreover, the number of iterations K (see Definition 16) with the
purpose to find “1” inside the B[N] is the same. Nevertheless, the probability
in the first group is bounded by 24

32 . Finally, the probability for the document
in the position i, considering the group (from 1 to NG), it belongs to, is given
by
∑K
l=1

1
(2group)l

Fig. 1. List of retrieved documents as past search result. Our algorithm
splits the list in NG groups (NG = 4), with the same quantity of documents
(2ne = 8). The probability for each document is determined by two factors.
First, it depends on the group the document belongs to, and second to the
relative position of the document in the group. For example, for the document
d1 (group 1), the error (see Definition 17) is 0.05, which is the same for the
document d13 (group 2). Moreover, the number of iterations K (see Definition
18) with the purpose to find 1 inside the B[N] is the same. Nevertheless, the
probability in the first group is bounded by 24

32
. Finally, the probability for the

document in the position i, considering the group (from 1 to NG) , which
it belongs, is given by

∑K
l=1

1
(2group)l.

V. DESIGN OF INFORMATION RETRIEVAL BENCHMARK

A typical IR collection is composed of three sets: docu-
ments, queries and relevance judgments per query (i.e., indi-
cations on documents considered as relevant or not relevant)
[32]. Our method consists of two steps, based on prior work
about IR dataset simulation [33]. The first step aims at creating
terms, documents, and queries. Both Heap’s law and Zipf’s law
have been considered to build document collections. Heaps’
law indicates that a document with size O(n) (where n is
the number of terms) has a vocabulary with size (Oβ), where
0 < β < 1. Therefore, a simulated document can represent
a document written in English of O(n2) terms [34], [35].
We assume that both processes, elimination of stop words
and stemming were carried out. Furthermore, according to
the terms that compose each document, documents belong to
several subjects. Zipf’s law [36], [37] is applied to simulate
the distribution of the frequencies of words in the vocabulary
(to select the terms from topics). Like Zipf’s law, exponential
distribution also have been used as an alternative for selecting
terms from topics. Otherwise, past queries are created from
documents and new queries are built from past queries. Finally,
Bradford’s law, is used to simulate relevant judgments provided
by users about document relevance for a specific query [38].

A. Documents and queries

Each document is composed of terms. A term is made
up by letters of the English alphabet. Each letter is come up
with uniform distribution and each term is unique. The set of
terms is split in subsets that describe topics. The idea is to
represent different subjects. Aiming at building a document,

Algorithm 1 B[N], ne,NG,APast(q), VN (q), q′

Require: B[N] is a boolean array, ne is a number of elements
in each group, VN (q) is the list of retrieved documents for
the query q, q′ is the most similar query with respect to q

Ensure: ANew(q′) is a list of relevant documents for the query
q′

1: ANew(q)← ∅
2: for i← 1, N do
3: B[i]← false
4: end for
5: for i← 1, N2 do
6: j ← random(1, ..., N)
7: B[j]← true
8: end for
9: i← 1

10: for b← 1, NG do
11: for c← 1, c < 2ne do
12: u← log2(2

M(N) − c)
13: U ← ‖u‖
14: E ← u− U
15: E ← 1− E
16: K ← log2(

1
E)

17: K ← pKq
18: for l← 1, l ≤ K do
19: index← Index(b,N)
20: indexF ← (index.Inf +

(rand(1, .., index.Sup))
21: if B[indexF] = true then
22: if ([idDoc =

Position(i of VN (q))] is in APast(q)) then
23: ANew(q

′)← ANew(q
′) ∪ didDoc

24: i← i+ 1
25: end if
26: else
27: i← i+ 1
28: end if
29: end for
30: end for
31: end for
32: return(ANew(q

′))

either Zipf or Exponential distributions is applied to select
terms. According to term selections, each document is related
to a main topic and various other minor topics.

Past queries are created from documents. Like documents,
terms are chosen under uniform distribution in order to build
the past queries. It is important to emphasize that the intersec-
tion among past queries is empty. New queries are built from
past queries. For each past query a new query is built, either by
changing a term or adding another term. Thus, the most similar
and unique query for the new query is its corresponding past
query. In summary, when a number of queries is given, at
the beginning the past queries are built from documents, and
afterwards the new queries are created from past queries.

B. Relevance judgments

To represent relevant judgments provided by users about
document relevance for a specific query we base on the
Bradford’s law. The Bradford’s law states that most relevant

Figure 5.1: List of retrieved documents, which is split by the Algorithm 1

The following definitions are used for the first algorithm.

Definition 13. Let N ' NG ∗ 2ne be the approximate number of documents,
where NG is the number of groups containing documents of VN (q), and 2ne
corresponds to the number of elements by group.

Definition 14. Let i be the position of a document in VN (q), such as the first
element (i = 1) represents the most similar document, then
Gx(ne, i,NG) = min{x | x ∈ N∧ x ∈ [1, NG]∧ i ≤ x ∗ 2ne}, corresponds to the
assigned set for the element i.

Definition 15. Let ε(ne, i,NG,N) = 1 − [log2(2M(N) −
〈i MOD (Gx(ne, i,NG) + 1)〉)−‖log2(2M(N)−〈i MOD (Gx(ne, i,NG) + 1)〉‖]
be the error assigned for the document at the position i in VN (q).

74

Definition 16. Let K(ne, i,N,NG) = dlog2〈 1
ε(ne,i,NG,N) 〉e be the number of

iterations on B[N], to assign the likelihood for the document at the position i
in VN (q).

Thus, ϕ : F (i)→ {0, 1}, is the probability function used by the algorithm 1.

F (i) =
{

1 : Pri(1) =
∑K(ne,i,N,NG)
l=1

2(M(N)−Gx(ne,i,NG))

(2M(N))l ,

0 : Pri(0) = 1− Pri(1)

where Pri(1) is the likelihood of hit (1) for the element i, and Pri(0) represents
the probability of miss (0) for the element i.

As shown in Figure 5.1, it is possible to calculate the probability for the docu-
ment d1. Let consider the values as follows : N = 30, NG = 4, ne = 3, i = 1
and the value of M(N) = 5. Thus, the probability for the first element of VN (q)
is computed as : G(3, 1, 4, 30) = 1 (the first document in the list, is in the first
group), ε(3, 1, 4, 30) = 0.005, (see Algorithm 1). Therefore,K(ne, i,N,NG) = 5.
As the document d1 belongs to the first group, which has 1

2 , then the probability
for the first document is 1

2 + 1
4 + 1

8 + 1
16 + 1

32 , therefore Pr1(1) = 0.968.

In a similar way, for elements of the second group, the search to find a “1” inside
the array B, is limited between the range 1 to N

2 or N
2 + 1 to N (see Algorithm

1, lines 29 and 32). Finally, the probability for the first element of second group
d13 is 1

4 + 1
16 + 1

64 + 1
256 + 1

1024 , Pr9(1) = 0.333.

Preliminary results are presented in figures 5.2, 5.3, 5.4 and in Table 5.1, expo-
nential distribution have been used to select the terms from topics (these are
terms that belong to a particular area, such as biology, mathematics to mention
a few) and built the documents, Zeta distribution have been used to simulate
the judgments of users. Similarly, other results are presented in figures from 5.5
to 5.10 and in Tables 5.2 and 5.3.

It is important to emphasize that the empirical results are analysed and discus-
sed in detail in section 5.5.

75

Algorithm 1:
Data: B[N] (see Definition 12) is a boolean array, ne is a number of

elements in each group, VN (q) is the list of retrieved documents for the
query q, q′ is the most similar query with respect to q

Result: ANew(q′) is a list of relevant documents for the query q′
1 ANew(q)← ∅;
2 Index.Inf ← 0;
3 Index.Sup← 0;
4 for i← 1 to N do
5 B[i]← false;
6 end
7 for i← 1 to N

2 do
8 j ← random(1, ..., N);
9 B[j]← true;

10 end
11 i← 1;

// b is the group number
12 for b← 1 to NG do
13 for c← 1, c < 2ne do
14 u← log2(2M(N) − c);
15 U ← ‖u‖;
16 E ← u− U ;
17 E ← 1− E;

// This is the error, see Definition 15
18 K ← log2(1

E);
19 K ← pKq;

// This is the iteration number, see Definition 16
20 for l← 1 to K do
21 if b = 1 then
22 Index.Inf ← 1;
23 Index.Sup← N ;
24 else
25 valor ← random(0, 1);
26 if valor = 0 then
27 Index.Inf ← 1;
28 Index.Sup← N

2b ;
29 else
30 Index.Inf ← N

2 ;
31 Index.Sup← N

2 + N
2b ;

32 end
33 indexF ← (index.Inf + (rand(1, .., index.Sup));
34 if B[indexF] = true then
35 if ([idDoc = Position(i of VN (q))] is in APast(q)) then

ANew(q′)← ANew(q′) ∪ didDoc;
36 i← i+ 1;
37 ;
38 else i← i+ 1;
39 ;
40 else
41 end
42 end
43 end
44 end
45 end
46 return(ANew(q′));

76

Figure 5.2: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.3: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 3 (for judgments)

77

Figure 5.4: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 4 (for judgments)

Table 5.1: Evaluation results of the two approaches (i.e., The first algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.0

Results
Zeta Distribution D Size Algorithm 1 Cosine

700 0.758 0.589
1400 0.738 0.615

S = 2 2100 0.756 0.607
2800 0.769 0.672
3500 0.754 0.639

700 0.642 0.499
1400 0.649 0.547

S = 3 2100 0.608 0.529
2800 0.652 0.581
3500 0.611 0.559

700 0.555 0.429
1400 0.516 0.429

S = 4 2100 0.534 0.428
2800 0.547 0.486
3500 0.541 0.468

78

Figure 5.5: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.6: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 3 (for judgments)

79

Figure 5.7: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 4 (for judgments)

Table 5.2: Evaluation results of the two approaches (i.e., The first algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.5

Results
Zeta Distribution D Size Algorithm 1 Cosine

700 0.764 0.638
1400 0.787 0.675

S = 2 2100 0.716 0.595
2800 0.784 0.683
3500 0.736 0.634

700 0.637 0.556
1400 0.680 0.597

S = 3 2100 0.654 0.511
2800 0.684 0.590
3500 0.646 0.558

700 0.564 0.499
1400 0.564 0.499

S = 4 2100 0.570 0.469
2800 0.578 0.506
3200 0.531 0.451

80

Figure 5.8: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Zipf Distribution 1.6 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.9: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Zipf Distribution 1.6 (for D) and Zeta Distribution 3 (for judgments)

81

Figure 5.10: Evaluation of the two approaches (i.e., The first algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Zipf Distribution 1.6 (for D) and Zeta Distribution 4 (for judgments)

Table 5.3: Evaluation results of the two approaches (i.e., The first algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on Zipf distribution using λ = 1.6

Results
Zeta Distribution D Size Algorithm 1 Cosine

700 0.748 0.660
1400 0.758 0.607

S = 2 2100 0.736 0.622
2800 0.767 0.599
3500 0.727 0.604

700 0.599 0.523
1400 0.659 0.570

S = 3 2100 0.625 0.550
2800 0.673 0.531
3500 0.650 0.549

700 0.526 0.450
1400 0.547 0.454

S = 4 2100 0.543 0.454
2800 0.573 0.449
3500 0.561 0.434

82

The second algorithm

The second algorithm is inspired by the logistic distribution. Commonly,
the denomination “logistic regression” is used because it corresponds to a
general model of regression. At the same time, it is denominated logistic
discrimination because employed to solve classification issues. When the
estimation of probabilities involves two or more variables, it is called ranking.
Usually, this method is applied when there are two possibilities of answers. It
can be seen as “1 or 0”, or “relevant or non-relevant”. Broadly speaking, the
closest documents to the query (documents are at the top of the list) have a
higher probability to be “relevant”. Therefore, the previous paragraph provides
the main argument to support this design.

The following definitions are used for the second algorithm.

Definition 17. Let logit(i, α, β) = log
p′1

1−(α+ β
i)

be a bound used to cal-
culate the number of iterations, according to the position i of the document
in VN (q), where p′1 corresponds to the initial probability, and α + β

i is a
polynomial of degree 1.

Definition 18. Let K ′(i, α, β, γ) = delogit(i,α,β) ∗ γe corresponds to the ite-
ration number on B[N] for each i > 1, and γ is a real number. For i = 1,
K ′(1, α, β, γ) = dlog2(1

1−p′1
)e.

Thus, ϕ′ : F ′(i)→ {0, 1}, is the probability function used by the algorithm 2.

F ′(i) =
{

1 : Pr′i(1) =
∑K′(i,α,β,γ)
l=1

1
2l ,

0 : Pr′i(0) = 1− Pr′i(1)

Pr′i(1) is the likelihood of hit (1) for the element i using the algorithm 2, mean-
time Pr′i(0) represents the probability of miss (0) for the element i.

Aiming to provide an example for Algorithm 2, the values are set as follows
α = −4, β = 2.0, p′1 = 0.92 and λ = 10. It is important to highlight that
half of elements in B[N] has 1, and the rest of elements are 0. Therefore, for
i = 1, logit(1,−4, 2.0) = −1.181. Thus, the probability for the first element
is Pr′1(1) = 1

2 + 1
4 + 1

8 + 1
16 = 0.9375. In a similar way, the probability for

the 9th element is calculated as follows, i = 9, logit(9,−4, 2.0) = −1.647 and
K ′(9,−4, 2.0, 10) = 2 (see the Algorithm 2). Whereby, the probability is given
by Pr′1(9) = 1

2 + 1
4 = 0.75.

Preliminary results are presented in figures 5.11, 5.12, 5.13 and in Table 5.4,
exponential distribution have been used to built the documents, Zeta distribu-
tion have been used to simulate the judgments of users. In a similar way, other
results are presented in figures from 5.14 to 5.19 and in Tables 5.5 and 5.6.

83

Algorithm 2:
Data: B[N] (see Definition 12) is a boolean array, VN (q) is the list of

retrieved documents for the query q, q′ is the most similar query with
respect to q

Result: ANew(q′) is a list of relevant documents for the query q′
1 ANew(q)← ∅;
2 for i← 1 to N do
3 B[i]← false;
4 end
5 for i← 1 to N

2 do
6 j ← random(1, ..., N);
7 B[j]← true;
8 end
9 for i← 1 to N do

10 pi′ ← 1− (α+ β);
11 pi← e

log(P1
pi′);

12 E ← pi ∗ γ;
13 if i = 1 then
14 E ← 1− P1;
15 K ← plog2(1

E)q;
16 else
17 K ← pEq;
18 end
19 for l← 1 to l ≤ K do
20 indexF ← random(1, ..., N);
21 if B[indexF] = true then
22 if ([idDoc = Position(i of VN (q))] is in APast(q)) then

ANew(q′)← ANew(q′) ∪ didDoc;
23 i← i+ 1;
24 ;
25 else i← i+ 1;
26 ;
27 else
28 end
29 end
30 end
31 return(ANew(q′));

84

Figure 5.11: Evaluation of the two approaches (i.e., The second algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.12: Evaluation of the two approaches (i.e., The second algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 3 (for judgments)

85

Figure 5.13: Evaluation of the two approaches (i.e., The second algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 4 (for judgments)

Table 5.4: Evaluation results of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.0

Results
Zeta Distribution D Size Algorithm 2 Cosine

700 0.689 0.589
1400 0.707 0.615

S = 2 2100 0.712 0.607
2800 0.677 0.672
3500 0.714 0.639

700 0.603 0.499
1400 0.618 0.547

S = 3 2100 0.576 0.529
2800 0.586 0.581
3500 0.568 0.559

700 0.520 0.429
1400 0.506 0.429

S = 4 2100 0.503 0.428
2800 0.478 0.486
3500 0.499 0.468

86

Figure 5.14: Evaluation of the two approaches (i.e., The second algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.15: Evaluation of the two approaches (i.e., The second algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 3 (for judgments)

87

Figure 5.16: Evaluation of the two approaches (i.e., The second algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 4 (for judgments)

Table 5.5: Evaluation results of the two approaches (i.e., The second Algorithm
Using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.5

Results
Zeta Distribution D Size Algorithm 2 4 Cosine

700 0.720 0.638
1400 0.726 0.675

S = 2 2100 0.641 0.595
2800 0.736 0.683
3500 0.684 0.634

700 0.579 0.556
1400 0.632 0.597

S = 3 2100 0.559 0.511
2800 0.632 0.590
3500 0.588 0.558

700 0.494 0.499
1400 0.502 0.499

S = 4 2100 0.482 0.469
2800 0.548 0.506
3200 0.487 0.451

88

Figure 5.17: Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with a collection
using Zipf Distribution 1.6 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.18: Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with a collection
using Zipf Distribution 1.6 (for D) and Zeta Distribution 3 (for judgments)

89

Figure 5.19: Evaluation of the two approaches (i.e., The second algorithm
using Past Results and Cosine) according to average P@10 with a collection
using Zipf Distribution 1.6 (for D) and Zeta Distribution 4 (for judgments)

Table 5.6: Evaluation results of the two approaches (i.e., The second Algorithm
Using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on Zipf distribution using λ = 1.6

Results
Zeta Distribution D Size Algorithm 2 Cosine

700 0.689 0.660
1400 0.708 0.607

S = 2 2100 0.663 0.622
2800 0.706 0.599
3500 0.678 0.604

700 0.551 0.523
1400 0.601 0.570

S = 3 2100 0.557 0.550
2800 0.592 0.531
3500 0.576 0.549

700 0.479 0.450
1400 0.479 0.454

S = 4 2100 0.457 0.454
2800 0.493 0.449
3500 0.524 0.434

90

The third algorithm

The third algorithm divides the list of retrieved documents in groups of
power two, where each group contains different quantities of documents. For
example, if the list of documents comprises 30 documents, the number of
documents will be rounded up to the next number in power two, i.e., n = 32.
Thus, the number of groups is 5 (because 32 < {24 +23 +22 +21 +20} > 30 see
Definition 14). Later on, groups of documents are defined as follows. The first
group is composed by 24 documents. The second group involves 23 documents,
the third group is composed of 22 documents, and so on, in such a way that the
sum of documents does not outperform n = 32. The biggest group is composed
of documents that appear in the first positions (between the position 1 and 16).
The next biggest group comprises documents that appear from the position
17 to 24, and so on. Similarly to the first algorithm, the first group has the
greatest probability to get a hit with respect to all other groups. The second
group has higher probability to get a hit with than the third group, and so on.
Besides, a document in the position i has higher probability than a document
in the position i+1. To sum up, the likelihood of a document to be relevant
is determined by two factors : the group it belongs to and its position in the
group. The essential assumption behind this design, is that this is similar to
the use of tree entropy (similar to compression algorithms, where the most used
data appear close to the root, it means that these data has highest probabilities
to be accessed), where the highest probabilities are given close to the root.

In Figure 5.20, the algorithm 3 splits the list of retrieval documents in
M(N) (see Definition 20) groups, thus M(32) = 4.

Figure 5.20: List of retrieved documents, which is split by the Algorithm 3

The following definitions are used for the third algorithm.

91

Definition 19. M(N) = min{m | m ∈ N ∧
∑m
k=0 2k ≥ N ∧N < 2m+1} be the

upper bound set, which involves documents of VN (q)(in power two)

Definition 20. Let i be the position of a document in VN (q), such as the first
element (i = 1) represents the most similar document, then fx(i,N) = min{x |
x ∈ N ∧ i ≤

∑x
k=1

2M(N)

2k }, corresponds to the number of sets assigned for the
document i.

Definition 21. Let
v(i,N) = (2M(N)−fx(i,N) − 1) − [〈(

∑fx(i,N)
k=1 2M(N)−k) − i〉mod(2M(N)−fx(i,N))]

be the value assigned to i, from 0 to 2M(N)−fx(i,N).

Definition 22. Φ(i,N) = log2(2M(N)−fx(i,N)−v(i,N))−‖log2(2M(N)−fx(i,N)−
v(i,N))‖ a decimal number, which is [0, 1[.

Definition 23. Let
K(i,N) =

{
dΦ(i,N)e ∗ ‖M(N)− fx(i,N)‖ : if Φ(i,N) ≥ 0.5
bΦ(i,N)c ∗ ‖M(N)− fx(i,N)‖ : if Φ(i,N) < 0.5 be the

number of iterations to look for a hit in the array B.

Thus, β : F (i)→ {0, 1}, is the hit and miss function.

F (i) =
{

1 : Pri(1) =
∑K(i,N)
l=1

2‖M(N)−fx(i,N)‖

(2M(N))l ,

0 : Pri(0) = 1− Pri(1)

where Pri(1) is the probability of a hit (1), and Pri(0) corresponds to
the probability of a miss (0) for the element i.

The third algorithm works as follows. The list of retrieved documents is
split in subsets of elements in power two. In our case, VN (q) has 30 do-
cuments, however it can be approximated to 32 documents. Thus, if we
apply Definition 20, then M(N) = 5. Therefore, VN (q) is split in 5 sub-
sets. In general terms, Pri(1) for every subset is different. Specifically on
2‖M(N)−fx(i,N)‖

(2M(N)) . Thus, the space of possible candidates for the first subset is
2‖5−1)‖

(25) = 1
2 , for the second subset is 2‖5−2)‖

(25) = 1
4 and so on. To show how the

probability decreases according to the subsets, two examples are provided,
for the first subset and the third subset. The second element of the first
subset is i = 2, thus applying the Definition 20, fx(2, 30) = 1, therefore,
v(2, 30) = (25−1 − 1)− [〈(

∑1
k=1 25−1)− 2〉) mod 25−1] = 1 (see Definition 22).

Applying Definition 23.
Φ(2, 30) = log2(25−1 − 1)− ‖log2(25−1 − 1)‖ = 3.906− 3 = 0.906.

In figures 5.21, 5.22, 5.23 and in Table 5.7, preliminary results are presented ex-
ponential distribution have been used to built the documents, Zeta distribution
have been used to simulate the judgments of users. Similarly, other results are
presented in figures from 5.24 to 5.29 and in Tables 5.8 and 5.9. As mentioned
previously, in section 5.5 the final results are discussed and the algorithms are
compared.

92

Algorithm 3:
Data: B[N] (see Definition 12) is a boolean array, VN (q) is the list of

retrieved documents for the query q, q′ is the most similar query with
respect to q

Result: ANew(q′) is a list of relevant documents for the query q′
1 ANew(q)← ∅;
2 for i← 0, sum← 0 to sum < N + 1 do
3 sum← sum+ 2i;
4 end
5 k ← i− 1;
6 for i← 1 to N do
7 B[i]← false;
8 end
9 for i← 1 to N

2 do
10 j ← random(1, ..., N);
11 B[j]← true;
12 end
13 l← 1;
14 while k ≥ 0 AND l < N do
15 for i← 0 to < 2k do

// This is the document position at the list
16 I ← 2k − i u← log2(I);
17 U ← ‖u‖;
18 u← u− U ; // This is the decimal number, see Definition 22
19 if u− 0, 5 ≥ 0 then
20 K ← dlog2(I)e;

// This is the number of iterations see Definition 23
21 else
22 K ← blog2(I)c;
23 end
24 for j ← 1 to j ≤ k ∗K do
25 if 2k ∗ 2 ≥ N then
26 index = N ;
27 else
28 index = 2k ∗ 2− 1;
29 end
30 if B[indexF] = true then
31 if ([idDoc = Position(i of VN (q))] is in APast(q)) then

ANew(q′)← ANew(q′) ∪ didDoc;
32 l← l + 1;
33 ;
34 else l← l + 1;
35 ;
36 else
37 end
38 end
39 end
40 k ← k − 1;
41 end
42 return(ANew(q′));

93

Figure 5.21: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.22: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 3 (for judgments)

94

Figure 5.23: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 4 (for judgments)

Table 5.7: Evaluation results of the two approaches (i.e., The third Algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.0

Results
Zeta Distribution D Size Algorithm 3 Cosine

700 0.756 0.589
1400 0.738 0.615

S = 2 2100 0.756 0.607
2800 0.769 0.672
3500 0.754 0.639

700 0.649 0.499
1400 0.649 0.547

S = 3 2100 0.611 0.529
2800 0.646 0.581
3500 0.611 0.559

700 0.555 0.429
1400 0.514 0.429

S = 4 2100 0.534 0.428
2800 0.544 0.486
3500 0.541 0.468

95

Figure 5.24: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.25: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 3 (for judgments)

96

Figure 5.26: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 4 (for judgments)

Table 5.8: Evaluation results of the two approaches (i.e., The third Algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.5

Results
Zeta Distribution D Size Algorithm 3 Cosine

700 0.764 0.638
1400 0.787 0.675

S = 2 2100 0.730 0.595
2800 0.784 0.683
3500 0.736 0.634

700 0.638 0.556
1400 0.680 0.597

S = 3 2100 0.654 0.511
2800 0.684 0.590
3500 0.646 0.558

700 0.569 0.499
1400 0.559 0.499

S = 4 2100 0.570 0.469
2800 0.581 0.506
3200 0.531 0.451

97

Figure 5.27: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Zipf Distribution 1.6 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.28: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Zipf Distribution 1.6 (for D) and Zeta Distribution 3 (for judgments)

98

Figure 5.29: Evaluation of the two approaches (i.e., The third algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Zipf Distribution 1.6 (for D) and Zeta Distribution 4 (for judgments)

Table 5.9: Evaluation results of the two approaches (i.e., The third algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on Zipf distribution using λ = 1.6

Results
Zeta Distribution D Size 2 Algorithm 3 Cosine

700 0.748 0.660
1400 0.758 0.607

S = 2 2100 0.736 0.622
2800 0.768 0.599
3500 0.727 0.604

700 0.599 0.523
1400 0.665 0.570

S = 3 2100 0.625 0.550
2800 0.672 0.531
3500 0.650 0.549

700 0.526 0.450
1400 0.512 0.454

S = 4 2100 0.543 0.454
2800 0.573 0.449
3500 0.561 0.434

99

The fourth algorithm

Finally, the fourth algorithm assigns probabilities for each document ac-
cording to the position in the list. Thus, the first document, which is at the top
of the list (for VN (q) (first position i=1)) has the highest probability to have
a hit (1 or true). The next document with highest probability to have a hit,
corresponds to the second document (the position i=2), and so on. Different
to the previous design, this algorithm is naive, and takes into consideration
only the list. Therefore, this assumption is based on that closer documents
with respect to the query q, should be relevant documents (according to our
approach).

The following definitions are used for the fourth algorithm.

Applying Definition 24, Let K(2, 30) = dΦ(2, 30)e ∗ ‖5− 1‖ = 1 ∗ 4 = 4.
Thus, Pr2(1) =

∑4
l=1

2‖5−1‖

(25)l = 0.757. In the same way, v(26, 30) = (25−3− 1)−
[〈(16 + 8 + 4) − 26〉) mod 25−3] = 1. Finally, Pr26(1) =

∑2
l=1

2‖5−3‖

(25)l = 0.128

Definition 26. K(i,N) = logd ba e

(
2Ni
)
be the number of iterations to look for

hit in the array B. Thus, β : F (i)→ r, is the function to guess the judgment of

the user. F (i) =
{

1 : Pri(1) =
∑K(i,N)
l=1

al

bl+1 ,
0 : Pri(0) = 1− Pri(1)

and Pri(1) is the probability of hit (1) for the document i, and Pri(0)
represents the probability of miss (0) for the document i. Therefore, the
last document in VN (q) has less probability to have a hit. It is important
to highlight that the previous designs are based on assumptions about the
distribution of user judgments (relevance of documents in the list), because
theoretically the distribution of user judgments is unknown. In other words,
different collections, stopping, stemming processes and algorithms provided by
IRS to recover documents, should provide different relevance distributions for
the documents. Therefore, designs are general assumptions and not particular,
but these are founded on the hypothesis that “closer documents with respect
to the query q, should be relevant documents”.

The probability for each document is determined by the number of itera-
tions in order to look for an 1, inside the array B[N].

For instance, if N = 20, a = 2, b = 3, i = 10 (the document in the position i)
and we give a natural number on d bae = 2. Thus K(10, 20) = 2.
Pr10(1) =

∑2
l=1

2l
3l+1 = 0.370. Initial results are exposed in figures 5.30,

5.31, 5.32 and in Table 5.10, exponential distribution have been used to built
the documents, Zeta distribution have been used to simulate the judgments of
users. In a similar way, other results are presented in figures from 5.33 to 5.38

100

and in Tables 5.11 and 5.12.

Algorithm 4:
Data: B[N] (see Definition 12) is a boolean array, APast(q) is a list of

relevant documents for the query q, VN (q) is the list of retrieved
documents for the query q, q′ is the most similar query for q

Result: ANew(q′) is a list of relevant documents for the query q′
1 ANew(q)← ∅;
2 for i← 1 to N do
3 B[i]← false;
4 end
5 for i← 1 to N

2 do
6 j ← random(1, ..., N);
7 B[j]← true;
8 end
9 l← 1;

10 for j ← 1 to N do
11 flag ← false;
12 k ← dlogd ba e

(
2
N
j

)
e;

// This is the number of iterations see Definition 24
13 for i← 1 to k do

// From lines 13 to 18, the probability is obtained
14 pos← random(1, ..., N);
15 if B[pos] = true then
16 flag ← true ;
17 end
18 end
19 if flag = true then
20 if ([idDoc = Position(l of VN (q))] is in APast(q)) then
21 ANew(q′)← ANew(q′) ∪ didDoc;
22 l← l + 1;
23 end
24 else
25 l← l + 1 ;
26 end
27 end
28 return(ANew(q′));

101

Figure 5.30: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.31: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 3 (for judgments)

102

Figure 5.32: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.0 (for D) and Zeta Distribution 4 (for judgments)

Table 5.10: Evaluation results of the two approaches (i.e., The fourth algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries) with
a collection D based on exponential distribution using θ = 1.0

Results
Zeta Distribution D Size Algorithm 4 Cosine

700 0.745 0.589
1400 0.701 0.615

S = 2 2100 0.704 0.607
2800 0.749 0.672
3500 0.745 0.639

700 0.637 0.499
1400 0.612 0.547

S = 3 2100 0.597 0.529
2800 0.626 0.581
3500 0.595 0.559

700 0.550 0.429
1400 0.494 0.429

S = 4 2100 0.520 0.428
2800 0.526 0.486
3500 0.520 0.468

103

Figure 5.33: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.34: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 3 (for judgments)

104

Figure 5.35: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using
Exponential Distribution 1.5 (for D) and Zeta Distribution 4 (for judgments)

Table 5.11: Evaluation results of the two approaches (i.e., The fourth Algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries) with
a collection D based on exponential distribution using θ = 1.5

Results
Zeta Distribution D Size Algorithm 4 Cosine

700 0.726 0.638
1400 0.764 0.675

S = 2 2100 0.703 0.595
2800 0.775 0.683
3500 0.693 0.634

700 0.627 0.556
1400 0.655 0.597

S = 3 2100 0.624 0.511
2800 0.663 0.590
3500 0.613 0.558

700 0.561 0.499
1400 0.542 0.499

S = 4 2100 0.536 0.469
2800 0.580 0.506
3200 0.487 0.451

105

Figure 5.36: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using Zipf
Distribution 1.6 (for D) and Zeta Distribution 2 (for judgments)

Figure 5.37: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using Zipf
Distribution 1.6 (for D) and Zeta Distribution 3 (for judgments)

106

Figure 5.38: Evaluation of the two approaches (i.e., The fourth algorithm using
Past Results and Cosine) according to average P@10 with a collection using Zipf
Distribution 1.6 (for D) and Zeta Distribution 4 (for judgments)

Table 5.12: Evaluation results of the two approaches (i.e., The fourth algorithm
using Past Results and Cosine) according to average P@10 (over 30 queries) with
a collection D based on Zipf distribution using λ = 1.6

Results
Zeta Distribution D Size Algorithm 4 Cosine

700 0.724 0.660
1400 0.726 0.607

S = 2 2100 0.724 0.622
2800 0.759 0.599
3500 0.719 0.604

700 0.566 0.523
1400 0.642 0.570

S = 3 2100 0.621 0.550
2800 0.675 0.531
3500 0.636 0.549

700 0.522 0.450
1400 0.517 0.454

S = 4 2100 0.532 0.454
2800 0.570 0.449
3500 0.557 0.434

107

5.5 Empirical Results

As stated in chapter four, specifically in section 4.3, which is related to the
framework developed in this thesis, three sets compose the framework : docu-
ments, queries and relevance judgments per query (i.e., indications on relevant
or non-relevant documents). In a first step, terms, documents, and queries are
created. Two distributions are used, specifically exponential with values 1.5 and
1.0 in order to build documents. In the same way, Zipf distribution is used to re-
present the Heaps’ law with the purpose to build the set of documents (Navarro
et al., 2000; Silva de Moura et al., 2000). Zeta distribution is used to represent
the Bradford’s law, which provides relevant judgments assigned by users about
document relevance for a specific query (Garfield, 1980). Both processes, elimi-
nation of stop-words and stemming were not carried out.

5.5.1 Experimental Environment

Experimental environment has been set up in the same way as in chapter four.
Thus the length of a term | t |, was between 3 and 7. Uniform distribution
was used to establish the length. The number of terms | T | was 700 in each
experiment. The number of terms for each document was between 15 and 30.
Therefore, according to Heaps’ law (Heaps, 1978), it was feasible to represent
documents between 300 to 900 terms. The number of topics (i.e., a topic is
subject or particular area, such as biology, computer sciences, chemistry among
others) used in each experiment was 7, whereby each topic was formed by
100 terms. When a document was built, terms of other topics were chosen
using either Exponential distribution or Zipf distribution. Whereby, most of
the words, which composed a document were chosen from a specific topic. The
number of documents used in each experiment corresponded to 700, 1400, 2100,
2800 and 3500.

On the other hand, terms for a query were between 3 and 8. Terms of a
query were chosen from a particular document. Both terms and documents
were chosen using uniform distribution to build the past queries. 15 composed
the past queries. From the set of past queries, 15 new queries were built.
Finally, the number of queries in each experiment was 30.

5.5.2 Experimental Results

In this section, three experiments for the four randomized algorithms are repor-
ted. Both, in first and second experiment, Exponential distribution have been
used to build the collection of documents D. Like previous, in the third expe-
riment, Zipf distribution has been applied to build D. Additionally, we have
used the Student’s Paired t-Test (paired samples) on each average P@10 (our

108

approach with respect to cosine) for each set of documents (700, 1400, 2100,
2800 and 3500). Results are shown as average P@10 over all the queries.

5.5.2.1 Experiment 1

a) Exponential distribution (with parameter θ = 1.0) was used to build D.
Zeta distribution (with parameter S = 2) was applied to determine the list of
relevant documents for each query. The average results for P@10 are displayed
in Table 5.13. Algorithm 1 had an average of 3.8 queries that were not improved
applying our approach (with respect to the past query). An average of 25.8
queries led to result improvements with our approach. The highest p-value was
lower than 1.0 E-6 applying the Paired t-test. Algorithm 2 presented an average
of 10.6 queries that were not improved and an average of 19.4 queries were
improved using this algorithm. The highest p-value for algorithm 2 was also
lower than 1.0 E-6 applying the Paired t-test. The algorithm 3 had an average
of 3.8 queries that were not improved applying our approach (with respect
to the past query). An average of 26 queries led to result improvements with
our approach. The highest p-value was lower than 4.0 E-5 applying the Paired
t-test. For the algorithm 4, the average number of queries where our approach
was improved, corresponds to 23.8. The highest p-value was 1.169 E-19.

b) Here, exponential distribution (θ = 1.0) was applied to build D. Zeta
distribution (S = 3) was used to determine the list of relevant documents for
each query. Average results for P@10 are displayed in Table 5.13. Algorithm
1 had an average of 7.4 queries that were not improved with our approach.
An average of 21 queries led to result improvements with our approach. The
highest p-value was lower than 1.0 E-6 applying the Paired t-test. Algorithm
2 presented an average of 10.6 queries not improved and an average of 18.4
queries were improved using this algorithm. The highest p-value for algorithm 2
was 9.91 E-005 applying he Paired t-test. The algorithm 3 presented an average
of 7.6 queries not improved and an average of 21.2 queries were improved
using this algorithm. The highest p-value for algorithm 3 was 0.014 applying
he Paired t-test. For the algorithm 4, The average number of queries, where
our approach lost with respect to the past query was 9. The average number
of queries where our approach was improved, corresponds to 19.2. The highest
p-value was 1.129 E-09.

c) In this scenario, exponential distribution (with parameter θ = 1.0)
was used to build D. Zeta distribution (with parameter S = 4) was applied
to determine the list of relevant documents for each query. In Table 5.13,
the average results for P@10 can be seen. Algorithm 1 had an average of 5.8
queries that were not improved with our approach. Our approach improved, on
average, 21.1 queries. The highest p-value was lower than 1.0E-6 applying the
Paired t-test. The algorithm 2 led to an average of 10.6 queries not improved
and an average of 17 queries were improved using this algorithm. The highest

109

p-value for the algorithm 2 was 1.71 E-005 applying the Paired t-test. The
algorithm 3 had an average of 6.8 queries that were not improved applying our
approach (with respect to the past query). An average of 20.4 queries led to
result improvements with our approach. The highest p-value was lower than
0.0029 applying the Paired t-test. For the algorithm 4, The average number of
queries where our approach did not improve regarding past queries, was 8. The
average number of queries where our approach was improved, corresponds to
19.6. The highest p-value was 3.070 E-10.

Table 5.13: Evaluation results of the two approaches (i.e., the 4 algorithms
reusing past results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.0

Approaches
Zeta Distribution D Size Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Cosine

700 0.758 0.689 0.756 0.745 0.589
1400 0.738 0.707 0.738 0.701 0.615

S = 2 2100 0.756 0.712 0.756 0.704 0.607
2800 0.769 0.677 0.769 0.749 0.672
3500 0.754 0.714 0.754 0.745 0.639

700 0.642 0.603 0.649 0.637 0.499
1400 0.649 0.618 0.649 0.612 0.547

S = 3 2100 0.608 0.576 0.611 0.597 0.529
2800 0.652 0.586 0.646 0.626 0.581
3500 0.611 0.568 0.611 0.595 0.559

700 0.555 0.520 0.555 0.550 0.429
1400 0.516 0.506 0.514 0.494 0.429

S = 4 2100 0.534 0.503 0.534 0.520 0.428
2800 0.547 0.478 0.544 0.526 0.486
3500 0.541 0.499 0.541 0.520 0.468

5.5.2.2 Experiment 2

a) In this scenario, exponential distribution (with parameter θ = 1.5) was
applied to build the collection D. Zeta distribution (with parameter S = 2)
was used to determine the list of relevant documents for each query. Average
results for P@10 are displayed in Table 5.14. Algorithm 1 had an average of
4 queries that were not improved applying our approach while an average of
25.6 queries with result improvements. When calculating the Student’s paired
t-test, the highest p-value was lower than 1.0 E-6. The algorithm 2 presented
an average of 10.2 queries without improvements and an average of 19.6 queries
were improved using this algorithm. The highest p-value for the algorithm
2 was of 1.50 E-006 for the Paired t-test. The algorithm 3 had an average
of 3.8 queries that were not improved applying our approach (with respect

110

to the past query). An average of 26.4 queries led to result improvements
with our approach. The highest p-value was lower than 0.00019 applying the
Paired t-test. For the algorithm 4, the average number of queries where our ap-
proach did not improve was 6.2 over 30 queries. The average number of queries
improved corresponds to 23.4. The highest p-value for the t-test was 7.081 E-05.

b) Exponential distribution (with parameter θ = 1.5) was used to build
the collection D. Zeta distribution (with parameter S = 3) was used to
determine the list of relevant documents for each query. In Table 5.14 shows the
average results for P@10. The algorithm 1, presented an average of 5.4 queries
that were not improved applying our approach. Our approach improved, on
average, 24 queries. The highest p-value was lower than 1.0 E-06 for the Paired
t-test. The algorithm 2 had an average of 11.4 queries not improved and an
average of 18.6 queries were improved using this algorithm. The highest p-value
for the algorithm 2 was 0.0045 applying the Paired t-test. The algorithm 3
had an average of 5.4 queries that were not improved applying our approach
(with respect to the past query). An average of 24.2 queries led to result
improvements with our approach. The highest p-value was lower than 0.004
applying the Paired t-test. The algorithm 4 had an average of 8.4 queries that
were not improved applying our approach. The average number of queries,
where our approach was better, corresponds to 21.2. The highest p-value for
the t-test was 4.464 E-05.

c) In this scenario, exponential distribution (with parameter θ = 1.5)
was applied to build the collection D. Zeta distribution (with parameter S = 4)
was used to determine the list of relevant documents for each query. Average
results for P@10 are presented in Table 5.14. The algorithm 1 did not improve,
on average, 8 queries. An average of 19.4 queries were improved. The highest
p-value applying the Paired t-test was lower than 1.0 E-06. The algorithm 2
had an average of 10.2 queries that were not improved and an average of 17.8
improved queries using this algorithm. The highest p-value for the algorithm
2 was 0.028 applying the Paired t-test. The algorithm 3 had an average of
6.6 queries that were not improved applying our approach (with respect to
the past query). An average of 21.2 queries led to result improvements with
our approach. The highest p-value was lower than 0.0031 applying the Paired
t-test. For the algorithm 4, The average number of queries, where our approach
did not improve was 8. The average number of queries where our approach was
improved, corresponds to 18.6. The highest p-value was 1.304 E-08.

111

Table 5.14: Evaluation results of the two approaches (i.e., the 4 algorithms
reusing past results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on exponential distribution using θ = 1.5

Approaches
Zeta Distribution D Size Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Cosine

700 0.764 0.720 0.764 0.726 0.638
1400 0.787 0.726 0.787 0.764 0.675

S = 2 2100 0.716 0.641 0.730 0.703 0.595
2800 0.784 0.736 0.784 0.775 0.683
3500 0.736 0.684 0.736 0.693 0.634

700 0.637 0.579 0.638 0.627 0.556
1400 0.680 0.632 0.680 0.655 0.597

S = 3 2100 0.654 0.559 0.654 0.624 0.511
2800 0.684 0.632 0.684 0.663 0.590
3500 0.646 0.588 0.646 0.613 0.558

700 0.564 0.494 0.569 0.561 0.499
1400 0.564 0.502 0.559 0.542 0.499

S = 4 2100 0.570 0.482 0.570 0.536 0.469
2800 0.578 0.548 0.581 0.580 0.506
3500 0.531 0.487 0.531 0.487 0.451

5.5.2.3 Experiment 3

a) In this scenario, Zipf distribution (with parameter λ = 1.6) was applied to
build D. Zeta distribution (with parameter S = 2) was used to determine the
list of relevant documents for each query. Average results for P@10 are shown
in Table 5.15. The average number of queries, where our approach did not
improve results using past queries, was 4. The average number of queries where
our approach improved results was 24.8. The highest p-value was lower than
1.0 E-06 applying the Paired t-test. The algorithm 2 had an average of 9.8
queries that were not improved and an average of 19.6 queries were improved
using this algorithm. The highest p-value for the algorithm 2 was also lower
than 1.0 E-06 for the Paired t-test. The algorithm 3 had an average of 4.2
queries that were not improved applying our approach (with respect to the
past query). An average of 24.8 queries led to result improvements with our
approach. The highest p-value was lower than 0.00013 applying the Paired
t-test. For the algorithm 4, The average number of queries, where our approach
did not improve regarding past queries, was 6. The average number of queries
where our approach was improved, corresponds to 22.6. The highest p-value
was 2.205 E-18.

b) Here, Zipf distribution (with parameter λ = 1.6) was used to build
D. Zeta distribution (with parameter S = 3) was applied to determine the

112

list of relevant documents for each query. The results for P@10 can be seen
in Table 5.15. The average number of queries where our approach failed was
6.8. The average number of queries where our approach was better was 22.4.
The highest p-value was lower than 1.0 E-06 applying the Paired t-test. The
algorithm 2 had an average of 11.2 queries that were not improved and an
average of 17.4 queries were improved using this algorithm. The highest p-value
for the algorithm 2 was 0.0190 applying the Paired t-test. The algorithm 3
presented an average of 8.2 queries not improved and an average of 21 queries
were improved using this algorithm. The highest p-value for algorithm 3 was
0.0017 applying he Paired t-test. For the algorithm 4, The average number of
queries where our approach lost with respect to the past query, was 8. The
average number of queries where our approach was better, corresponds to 20.8.
The highest p-value was 5.779 E-13.

c) Zipf Distribution (with parameter λ = 1.6) was used to build D. Zeta
distribution (with parameter S = 4) was applied to determine the list of
relevant documents for each query. Average results for P@10 are shown in Table
5.15. The average number of queries, where our approach did not improve,
corresponded to 3.6. The average number of queries where our approach was
better was 25.2. The p-value was lower than 1.0 E-06 applying the Paired t-test.
The algorithm 2 had an average of 11 queries that were not improved and an
average of 17.8 improved queries using this algorithm. The highest p-value
for the algorithm 2 was 0.00162 applying the Paired t-test. The algorithm 3
presented an average of 4.6 queries not improved and an average of 24.4 queries
were improved using this algorithm. The highest p-value for algorithm 3 was
0.006 applying he Paired t-test. For the algorithm 4, The average number of
queries, where our approach did not improve, corresponds to 3.8. The average
number of queries where our approach was better, was 24.4. The highest
p-value was 9.413 E-21.

It is important to point out that both, the number of queries and num-
ber of documents do not influence final results. It is because there is no relation
between the increase number of queries and the number of documents on
precision results. The reasons are the following :

— Each past query is obtained from a document and the new query is built
from a unique past query. In other words, for each past query there is a unique
new query. Moreover, the intersection between past queries is empty as well
as the intersection between new queries (see Definition 1. b) and Definition
2). For example, if we want to build one hundred queries, first we build fifty
old query, which are different and subsequently the others fifty new queries
are built from the past queries. On balance, increasing the number of queries
does not have impact on the final results.

— Analogously, increasing the number of documents does not alter the final
results, because the relevance of the documents (judgments of users) is obtai-
ned by applying Zeta distribution on the list of retrieved documents, which

113

are obtained from the matching between the query and all the documents of
the collection (see section 4.3.2).

In summary, both increases (the number of documents and the number of que-
ries) will not provide a variation on final results.

Table 5.15: Evaluation results of the two approaches (i.e., the 4 algorithms
reusing past results and Cosine) according to average P@10 (over 30 queries)
with a collection D based on Zipf distribution using λ = 1.6

Approaches
Zeta Distribution D Size Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Cosine

700 0.748 0.689 0.748 0.724 0.660
1400 0.758 0.708 0.758 0.726 0.607

S = 2 2100 0.736 0.663 0.736 0.724 0.622
2800 0.767 0.706 0.768 0.759 0.599
3500 0.727 0.678 0.727 0.719 0.604

700 0.599 0.551 0.599 0.566 0.523
1400 0.659 0.601 0.665 0.642 0.570

S = 3 2100 0.625 0.557 0.625 0.621 0.550
2800 0.673 0.592 0.672 0.675 0.531
3500 0.650 0.576 0.650 0.636 0.549

700 0.526 0.479 0.526 0.522 0.450
1400 0.547 0.479 0.512 0.517 0.454

S = 4 2100 0.543 0.457 0.543 0.532 0.454
2800 0.573 0.493 0.573 0.570 0.449
3500 0.561 0.524 0.561 0.557 0.434

5.6 Conclusions

As mentioned in Chapter 3, few approaches take advantage of previously sub-
mitted queries. Queries previously processed can be useful when a new similar
query is submitted to an IRS. Similar past queries (with respect to a new query)
can be recovered along with their relevant documents and these documents can
be reused to provide a list of documents for the new query. The research reported
in this chapter, had as purpose to analyze the feasibility of using randomized
algorithms to select relevant documents, which have been retrieved from the
most similar past query.

The approach proposed is very different from the probabilistic that can be found
in the literature. Probabilistic approaches can be categorized in two branches,
learning and optimization approaches, which are founded on bayesian networks
and their variants, or genetic algorithms. It should be noted that approaches
based on randomized algorithms have not been studied on IR implementations.

114

Four randomized algorithms were designed and evaluated on three global expe-
rimental scenarios. Two of them split the list of retrieved documents in groups,
an algorithm is inspired by logistic distribution because it provides the ranking
notion for two possible answers (relevant or non-relevant), and the last is a basic
algorithm. The four algorithms works over the list of retrieved documents from
the most similar past query. It is important to emphasize that the designs of the
algorithms were different, because they suppose in different ways the relevance
of some documents according to their position in the list. In other words, the
relevance distribution depends on the judgments of users issued for a list of re-
covered documents, given a query. Thus, different IRSs should consider different
distributions of relevance. Therefore, designs are based on an assumption, which
is general for all cases. It is that the relevant documents tend to be at the top
of the result list returned for the query.

The experimental scenarios were simulated, and several distributions were used
to build documents and provide the judgments of users (see chapter 4). Empi-
rical results showed better precision (P@10) of randomized algorithms (using
results retrieved with cosine model) compared with the initial traditional re-
trieval (cosine). The experimental results were validated applying the Student’s
paired t-test in each experiment. The best results were provided by algorithm
1, which splits the list of retrieved documents in similar groups (with the same
quantity of documents). The main advantages of these algorithms are : first,
these algorithms are easy to implement, do not require time of learning as used
in approaches relying on optimization techniques. Second, these algorithms can
be implemented inside IRSs or search engines, or externally.

The approach presented in this chapter relies on the storage of past queries with
their results and the search of similar past queries when a new submitted query.
An improvement of the approach can reside in clustering past queries and find
the most similar cluster for a new submitted query. The result associated to the
query representing the cluster (i.e., centroid) could then be used to build the
result for the new query. The next chapter introduces a first idea of clustering
approach for this purpose.

115

116

Chapter 6

Clustering in IR

Résumé : Chapitre 6
Comme mentionné dans le chapitre 3, plusieurs approches tirent avan-
tages des requêtes soumises précédemment. Néanmoins, la plupart d’entre elles
exploitent les requêtes répétées dans le but d’améliorer leur performance en
temps de traitement. Ces approches sont liées principalement à la gestion de
cache. D’autres types d’approches visent à améliorer les résultats en étendant
ou modifiant les requêtes.

Dans les chapitres 4 et 5, nous avons présenté des résultats sur l’utilisation de
requêtes passées similaires. Bien que ces résultats soient préliminaires, ceux-ci
éclairent sur la possibilité d’améliorer la précision. À partir des résultats empi-
riques, deux aspects importants sont à mentionner. Tout d’abord, la similarité
entre les requêtes a été effectuée en utilisant la mesure cosinus. Deuxièmement,
certains documents pertinents de la requête passée la plus similaire peuvent être
utilisés pour répondre à une nouvelle requête. Par conséquent, les deux aspects
doivent être considérés dans le but de fournir de bons résultats pour les ap-
proches reposant sur l’utilisation de requêtes passées. Un troisième aspect non
négligeable correspond au stockage. Par conséquent, il est nécessaire de stocker
et de recueillir les requêtes passées similaires avec leurs documents, et de com-
parer une nouvelle requête soumise à toutes les requêtes passées stockées pour
en trouver de similaires. Une structure de données qui permet d’optimiser le sto-
ckage et la recherche de requêtes passées similaires correspond aux clusters. Le
clustering repose généralement sur des mesures de similarité. Dans le cadre de
cette thèse, qui porte sur la réutilisation des recherches précédentes, une nouvelle
mesure de similarité pour le clustering est proposée, qui tient compte des re-
quêtes et de leurs résultats. Cette mesure est appelée QDSM (Query-Document
Similarity Measure). QDSM est basée sur l’utilisation des documents pertinents,
qui sont associées aux requêtes. QDSM est calculée en utilisant la plus longue

117

séquence commune (LCS).

Deux grandes catégories de clustering sont facilement identifiables dans la lit-
térature : le clustering statique et le clustering post-recherche. D’une part, le
clustering statique est l’application traditionnelle de la méthode de clustering
sur une collection de documents. D’autre part, le clustering post-recherche utilise
de l’information liée à la requête dans le clustering de documents. La similarité
entre les requêtes est liée à l’intersection entre les termes de la requête. Typique-
ment, les fonctions telles que Jaccard ou cosinus sont utilisées pour mesurer la
similarité entre les requêtes. Toutefois, ces fonctions ne prennent pas en compte
le contexte spécifique dans lequel la similarité des deux objets est jugée.

Ce chapitre vise à étudier une approche préliminaire sur une nouvelle mesure
de similarité (QDSM) pour un clustering requête-document. Le chapitre est
organisé comme suit. Dans la section 6.2, les principes du clustering en RI sont
décrits. Dans la section 6.3, les travaux connexes sur les approches qui traitent
de clustering en RI sont présentés. Dans la section 6.4, notre contribution est
décrite. Dans les sections 6.5 et 6.6, les expérimentations et les résultats finaux
sont décrits. Enfin, dans la section 6.7, les conclusions sont rapportées.

118

6.1 Introduction

As mentioned in chapter 3, several approaches obtain advantages from submit-
ted queries previously. Nevertheless, most of them benefit from repeated queries
with the purpose to improve their performance in run-time. Approaches that
address the performance in run-time are related mainly with caching. Other
types of approaches aiming to improve the results extending or modifying the
queries.

In chapter 4 and chapter 5, we have presented some results about the use of
similar past queries. Despite the fact that these results are incipient, these are
interesting giving hints on the possibility to improve precision. From the empiri-
cal results, two aspects are important to mention. First, the similarity between
queries was carried out using cosine. Second, some relevant documents from
the most similar past query can be used to answer a new query. Therefore,
both aspects should be considered with the aim to provide good results for the
approaches relying on the use of past queries. A third aspect not negligible cor-
responds to the storage. Therefore, it is necessary to store and gather the similar
past queries along with their documents, and compare a new submitted query
to all the stored past queries to find similar ones. A data structure that enables
optimizing the search of similar past queries corresponds to clusters. Clustering
usually relies on similarity measures. In the domain of this thesis, dealing with
the reuse of past searches, a new similarity measure for clustering is proposed,
which considers the queries and their results. This measure is called Query-
Document Similarity Measure (QDSM). QDSM is based on the use of relevant
documents, which are associated to queries. Relevant document are known when
the retrieval process has finished for a past query (i.e., relevant documents are
unknown before to be submitted in an IRS). QDSM is calculated by using the
longest common subsequence (LCS).

Two major categories of clustering are easily identifiable in the literature : sta-
tic clustering and post-retrieval clustering. On one hand, static clustering is the
traditional application of the cluster method on a document collection. On the
other hand, post-retrieval clustering includes information from the query into
the clustering of documents. Similarity between queries is related to the over-
lapping among query terms. Typically, similarity functions such as Jaccard or
cosines are used to measure the similarity between queries. Nevertheless, these
functions do not consider the specific context under which the similarity of two
objects is judged.

This chapter aims at investigating a preliminary approach on a new similarity
measure (QDSM) for query-document clustering. The chapter is organized as
follows. In section 6.2, document clustering for IR is described. In section 6.3,
related work about approaches which deal with clustering in IR are presented.
In section 6.4, our contribution is described. In sections 6.5 and 6.6, the ex-
perimental environments and final results are provided. Finally, in section 6.7,
conclusions are reported.

119

6.2 Document Clustering for IR

The clustering task has been carried out by humans (Willett, 1988) for a long
time. Cluster analysis or clustering is a multivariate statistical technique that
aims to collect object groups in such a way that objects in the same group
are similar in a space, which is usually multi-dimensional. Groups of objects
are composed in such a way that objects in the same cluster are similar to
one another and dissimilar to objects in other clusters (Gordon, 1987). Cluster
analysis techniques have been widely applied in different research fields such as
medical sciences, social sciences, earth sciences and engineering sciences, among
others (Anderberg, 1973). Indeed, several applications of cluster analysis can be
found in many areas of research. Nowadays, this task has been fully automated
thanks to advances in computer technology (Willett, 1988). Furthermore, the
application of cluster analysis has been carried out in IR not only for term
clustering, but also for document clustering. Document clustering is applied
on the basis of shared terms between documents. Term clustering provides a
group representation of terms that belong to documents or queries. Usually,
term clustering is applied in query expansion, thesaurus linking, and automatic
thesaurus construction.

Typically, document clustering has been applied statically to whole document
collections before querying. By contrast, the resulting groups of documents ob-
tained from post-retrieval clustering tend to be different for different queries.
Two types of clustering are widely known in IR, partitioning and hierarchic.

Commonly in partitioning clustering, documents are represented by a vector in
an n-dimension space, where n corresponds to the number of terms that com-
pose the indexing vocabulary of the database. Thus, given a set of N documents,
partitioning cluster builds a single organization of k mutually exclusive clusters,
where k is either priori provided, or determined as part of clustering method.
Usually, the computation requirements of this method are low, which are com-
prised between O(N) and O(NlogN) for the clustering of N documents (Willett,
1988). As a result, partitioning methods were very popular in a started early in
IR (Salton, 1971). The basic idea behind this method is to choose some initial
partition of documents, later on add objects incrementally to the clusters to
obtain a better partition (Anderberg, 1973) (e.g., cluster membership, number
of clusters, cluster size) to achieve an optimal solution (Salton and Wong, 1978;
Willett, 1988). First experiments showed that the effectiveness of searches based
on document partitions is significantly inferior to searches based on unclustered
files (Salton, 1971).

Many hierarchic clustering applications exist in the IR literature, which have
been carried out considering the use of single terms. On the contrary, recent
approaches deal with document representations through phrasal units by em-
ploying different levels of linguistic analysis. This type of clustering has been
widely accepted in the IR community Willett (1988), since it provides a sound
theoretical basis. Commonly, each document D is represented as a vector

120

D = {d1, d2, ..., dn}, where n is the number of terms that compose the indexing
vocabulary of the document collection. All terms that compose the indexing
vocabulary are used in the indexing representation (Rijsbergen, 1979). Before
clustering the documents, several processes take place, such as stemming, stop-
ping, and normalization. Subsequently, a relative weight about the importance
of each term considering the whole document collection is obtained to increase
effectiveness (Salton and Buckley, 1987). Once an appropriate representation is
obtained for the set of documents to cluster, it is necessary to have a measure
according to the similarity degree for all possible pairs of documents that belong
to this set. To achieve this goal, a large number of measures that quantify the
resemblance between objects can be applied to provide a categorization. Four
main classes of measures are distinguished : association, dissimilarity, probabilis-
tic, and correlation coefficients (Sneath and Sokal, 1973). Most of the literature
deals with the association and dissimilarity, whereas the use of correlation co-
efficients and probabilities in document clustering is limited.

It is important to highlight that in the domain of this thesis, experimentations
will be restricted to single-term indexing units. Thus, a hierarchic clustering
is employed in this thesis. This type is appropriate for our issue and is widely
accepted in the IR community (Willett, 1988), since it provides a sound theore-
tical basis. A contribution of this thesis is to change the static use of similarity,
and to provide a new query-sensitive similarity measure.

6.3 Related Work

This section presents approaches of the literature dealing with query clustering
which take into account the context in which the similarity is used.

A pioneering approach was proposed by Tombros et al. (2002) by using hie-
rarchic query-specific clustering with the aim to enhance of effectiveness in the
retrieval process. To this end, a set of experiments have been studied. The as-
sumption is that the hierarchy should be adjusted to a specific query increasing
the probability to put relevant documents to the query in close clusters. Speci-
fically, two main aspects of this research have been considered. First, studying
progressively the variation of the optimal cluster effectiveness achieved from
the application of hierarchic clustering to a larger number of top-ranked docu-
ments returned from an IFS, and second comparing this effectiveness with the
effectiveness of an IFS. In the experimental environment five document collec-
tions CACM, CISI, LISA, Medline and TREC (WSJ) have been considered.
Furthermore, four hierarchic agglomerative methods : Group average, Ward,
Complete Link and Single Link were compared, meanwhile seven different num-
bers of top-ranked documents were employed in the experiments. Final results
indicated that there is not a statistically significant variation in query-specific
clustering effectiveness for different values of top-ranked documents, and that
query-specific clustering significantly outperforms static clustering for all expe-

121

rimental conditions. The main conclusion from these results is that they provide
evidence for the application of hierarchic query-specific clustering to IR based
on improved effectiveness. Inspired for this pioneering work on the QSSM mea-
sures, from the empirical results of this work, we have decided to use Average
Link algorithm because this algorithm provided the best results. However, the
approach presented in this thesis is incipient and more experiments should be
carried out in a future work considering more document collections.

A next work by Tombros and van Rijsbergen (2004) proposed an axiomatic
view where relevant documents tend to be highly similar to each other, there-
fore these should appear in the same cluster. The approach proposes the use of
query-sensitive similarity measures (QSSM) whose purpose is to join a pair of do-
cuments, which have attributes that are expressed in the query. Query-sensitive
measures can be defined through a function with two components. The first
component corresponds to a conventional similarity between two documents,
meantime the second component takes into consideration a common similarity
for three objects : a pair of documents and the query. Three query-sensitive mea-
sures were tested M1, M2 and M3. Two measures (M1 and M3) used a different
function to combine static and variable similarities (M1 used a product of the
two sources while M3 used a linear combination). The third measure only took
into account common terms between documents and in query terms (measure
M2). Six document collections have been used in the experimental scenarios. To
determine the separation degree between relevant and non-relevant documents,
the N-Nearest Neighbour test have been applied, in particular the 5-NN test.
Final results indicate that measures M1 and M3 are always significantly more
effective than the cosine, and are not strongly dependent on query length. Other-
wise, the measure M2 is sensitive to variations of query length, but despite this,
it also brought significant improvements over the cosine in a large number of
experimental conditions. The main conclusion from this research is that the use
of query-sensitive measures for the calculation of inter-document relationships
is highly effective. Similar to this work, in this thesis a new measure which takes
into account the context is proposed. This work is an inspiration because good
results were obtained taking into account the queries. Differing from Tombros
and van Rijsbergen (2004), the queries are stored along with their documents,
which were retrieved for the submitted query.

Similarly, Hasanzadeh and Keshavarzi (2009) pointed out that relevant docu-
ments tend to be more similar to each other than non-relevant documents, thus
they tend to appear in the same clusters. Whereby, query-specific clustering was
investigated by using a QSSM on an experimental environment. Broadly spea-
king, the system takes a query and a large document collection as input. In the
first step, relevant documents are found and displayed as a ranked list according
to their similarity with the query. Subsequently, some of the top documents in
the list along with the query are clustered by using a QSSM. The TIPSTER do-
cument collection and the K-mean algorithm have been employed to carry out
the experiments. The measure of similarity considers the cosine between two
relevant documents and the cosine between the documents and the query. From

122

the conclusions, the authors claimed that query-specific clustering improves the
effectiveness of ranked lists. Like in this work, in this thesis the queries are also
stored along with their documents. Nevertheless, the main difference is that
our measure considers both the number of relevant documents and the cosine
between the queries, where LCS algorithm is applied to obtain the similarity
(i.e., the query is stored with n most similar documents with respect to the
query, the documents are relevant and non-relevant documents). Furthermore,
the Average Link algorithm was used for clustering and tested in our experiment
on the CACM collection.

With a different goal, Baeza-Yates et al. (2004) developed a method, which pro-
vides a list of related queries for a submitted query to a search engine. Related
queries correspond to previously submitted queries. The method is grounded
on a query clustering process, where groups of semantically similar queries are
identified. Historical preferences of registered users in query logs are used to
build the clusters. The clustering process is based on a term-weight vector re-
presentation of obtained queries considering the clicked URLs from the query.
The method presents two advantages. First, it determines the related queries
and second, it ranks the queries according to a relevance criterion. The queries
are ranked considering two criteria : (a) the similarity between the queries which
belong to the cluster and the input query, and (b) the support, which measures
how much the answers of the query have attracted the attention of users. Finally,
through the combination of the measures (a) and (b), it is feasible to define the
interest of a recommended query. To test this approach, a set of experiments
was carried out. Log files of a search engine were used. Empirical results showed
improvements on average precision. Similar to this research, in our approach
the previously submitted queries are stored in the cluster along with their do-
cuments. We also consider the related queries (i.e., past queries stored in the
cluster), which are obtained using our similarity measure. Nevertheless, we do
not consider user sessions nor collections based on log files.

An interesting classification of query clustering was proposed by Fu et al. (2004)
who compared different query similarity measures. In this classification three ca-
tegories : Content-based approaches, Feedback-based approaches and Results-
based approaches have been proposed. Content-based approaches compare query
term vectors. In simple words, common terms can be used to characterize the
clusters of queries. Several similarity functions such as cosine similarity, Jaccard
similarity, and Dice similarity were used in this category. The authors sugges-
ted that this method is not profitable in the context of search engines, due to
the average length of query terms. In contrast, feedback-based approaches use
users’ selections on search results as similarity measure. Such approaches rely on
clicked documents by user using log files. Thus, two queries are similar if they
promote the selection of similar documents. Two disadvantages are mentioned,
the first is given when the number of relevant documents is high, and the se-
cond occurs when there are few common documents. Results-based approaches
calculate the similarity between queries by calculating the overlap on returned
documents for the queries. Relevant documents should appear at the begin-

123

ning of the result lists. The main drawback of this kind of approach is that it
consumes high execution time. In the experimental scenarios, URLs have been
considered to obtain the empirical results. Final results showed good results
when the three approaches were used at the same time. This work is interesting
for us, because it supplies a classification of query clustering. From this clas-
sification, the approach exposed in this thesis is a mix between Content-based
approaches and Results-based approaches, because we use both the term queries
and their results. Specifically, we also calculate the overlap on returned docu-
ments. Furthermore, the author pointed out that “relevant documents should
appear at the beginning of the result lists”, which is one of main assumptions
in this thesis.

In the context of query-oriented multi-document summarization, Wei et al.
(2008) developed a cluster-sensitive graph model. Over this model, an algo-
rithm called QoCsR is executed. Global and local information (intra and inter-
document) are considered in this model. Five types of relations are used, which
consider three objects : document, sentence and query. The relevance between
sentence and query as well as document and query are considered. A cluster is
defined as a document which has a collection of sentences. It considers the re-
lations sentence-document, and most important the relation sentence-sentence
(called intra-document). Using two clusters the relation sentence-sentence de-
nominated inter-document is defined. Experimental evaluations using ROUGE
and DUC 2005 datasets show improvements when using QoCsR. Similar to this
work, in this thesis we want to represent the relations between the documents
and queries. However, different to this approach, we do not present a cluster as
a document with a collection of sentences. In addition, a graph model appears
interesting as future work, specially when the number of clusters is considerable.

More recently, Saravanakumar and Moturi (2011) proposed a framework to iden-
tify and summarize the semantic of the user query. At the beginning, results
are classified in potential groups, subsequently the user chooses a group to re-
rank the final result. Whereby, this framework offers to the user a personalized
search service. The proposed framework is composed of preprocessing module
and clustering modules. In the preprocessing module, the query is given by the
user where non-relevant words from the query are removed and the semantic is
provided taking into account the context. Clustering modules are responsible to
yield the semantic of this model. It is important to emphasize that the user’s
history is used to customize the information. User interests are stored in the
user’s profile to improve the search. Different to this research, in this thesis, we
do not consider the user interactions with the clusters. Moreover, the session
users are not covered in this thesis. However, this approach is relevant for us,
because when a user is surfing on the web with the aim to cover his/her infor-
mation needs, a query can be redefined as many times as necessary. Therefore,
this research presents an interesting trend for future work.

A new interesting problem was introduced by Niederberger et al. (2012). They
presented an approach concerned in clustering and visualization, with which it

124

is possible to learn at the same time that the dataset is increasing in size. A
German document corpus have been used. This corpus comprises between 300
to 1000 documents with an average length of 54 terms. Experimental results
show that this method outperforms standard clustering algorithms with respect
to classification reliability in real time. At the same time, this approach provides
an innovative visualization for the problem of dimensionality reduction. Despite
the fact that this work is totally different with respect to this thesis, it provides
a new interesting problem, which also was exposed by Fu et al. (2004). This
problem is related with execution time, specially in real time context.

Moreno et al. (2013) suggested a new methodology, which adapts the K-means
algorithm to a third-order similarity measure initially developed for Topic Seg-
mentation. The adaptation of K-means algorithm allows labeling each cluster
directly from its centroids. The evolution of the objective function on the adap-
ted K-means is modeled to define automatically the “best” number of clusters.
Two datasets have been used ODP-239 and MORESQUE. The performance of
this approach have been compared to : PRC algorithms, OPTIMSRC, and the
classical bisecting incremental K-means. A new measure denominated “b-cubed
F” was used to evaluate not only cluster homogeneity but also completeness. Em-
pirical results showed an improvement with respect to traditional approaches.
This work is recent, and different to this research, which does not propose a new
methodology, and does not use partition algorithms like K-means. Nevertheless,
this approach is interesting not only from an efficiency point of view but also
for the way to find the “best” number of clusters. As future work, we should
consider other types of algorithms and datasets to corroborate our measure and
its performance.

Different to the traditional metrics used in the IR clustering context, the query-
sensitive similarity as metric has achieved a relevant position on IR cluste-
ring environment. Na (2013) suggested a probabilistic framework that defines
query-sensitive similarity rooted in probabilistic co-relevance, where the simila-
rity between two documents is proportional to the probability of co-relevance
for a specific query. Two cases were considered to determine the co-relevance.
First, the relevance of a document is independent from to the relevance of other
documents. Finally, the relevance of a document is dependent of others. Aiming
to prove this approach, several experimental scenarios have been executed using
TREC collections and the nearest neighbour test. Final results showed that the
proposed query-sensitive similarity measure performs better than term-based
similarity. Like this research, our assumption is that a relevant document has
a probability not inconsiderable to be relevant for another similar query. Ne-
vertheless, we do not calculate that probability directly, instead, we use our
measure.

125

6.4 Our Contribution

In this section, we describe our approach of clustering for reusing past queries
and their results. This approach stores past queries along with a set of docu-
ments, in order to respond to new queries using relevant documents from the
most similar query. The approach relies on a hierarchic clustering, and more pre-
cisely, on the group average link method. Hierarchic clustering is appropriate
for our issue and is widely accepted in the IR community (Willett, 1988), since
it provides a sound theoretical basis. Among the various approaches, the ave-
rage link method is the most used hierarchic methods (Sneath and Sokal, 1973).
Finally, a new similarity measure is defined in this query-document clustering
context, which is denominated QDSM (query-document similarity measure).

6.4.1 Hierarchic Clustering Methods

Hierarchic clustering methods provide a classification in a tree-shaped structure,
which is composed by objects (i.e., documents), where objects in the same
cluster are strongly similar to each other. At the same time they are within
larger clusters that contain less similar objects.

Let X be a set of documents, which will be clustered, X = {x1, x2, . . . , xN},
where each document xi corresponds to a n-dimensional vector, and each
dimension is an indexing term. A clustering of X in k sets can be defined as
R = {C1, C2, ..., Ck}, such that the following conditions are satisfied :

— Each cluster Ci contains at least one document : Ci 6= ∅, i = 1, ..., k
— The union of all clusters is the set X :

⋃
ki=1

m;Ci = X

— Two clusters do not have documents in common : Ci ∩ Cj = ∅, i 6= j, i, j =
1, ..., k

Let R1 be a clustering composed by k clusters, which is nested in the
clustering R2, such that R2 has r < k clusters, if each cluster in R1 is a
subset of a cluster in R2, and at least one cluster of R1 is a proper subset
of R2 (Theodoridis and Koutroumbas, 1999). For example, the clustering
R1 = {{x1, x3}, {x4}, {x2, x5}} is nested in R2 = {{x1, x3, x4}, {x2, x5}}.
Otherwise, R1 is not nested within R3 = {{x1, x4}, {x3}, {x2, x5}}.

Hierarchic methods can be split into two categories, agglomerative and
divisive. The agglomerative method provides a series of (N − 1) merges, for a
collection of N documents, where results of clustering are built from the bottom
to the top of the structure. In the divisive method, a single initial clustering
is split into smaller groups of documents consecutively (Rijsbergen, 1979).
Typically, divisive methods supply as result monothetic classifications, where
documents that belong to a specific cluster must contain certain terms with the

126

aim to obtain membership Sneath and Sokal (1973); Rijsbergen (1979); Gordon
(1987). On the other hand, in polythetic clustering it is not necessary to have
specific terms for membership in a cluster. Moreover, such structures are results
of agglomerative methods. It should be noted that polythetic clusterings have
been widely used in IR and that hierarchic agglomerative clustering methods
(HACM) are still used in this field (Willett, 1988).

Agglomerative methods can be distinguished on two different theories,
concepts of matrix theory or concepts of graph theory. Built on the premise
that methods based on matrix theory are most used, in this thesis I will use this
type of methods (Willett, 1988). Thus, the input to an HACM corresponds a si-
milarity matrix S(X) that contains the values for all interdocument associations.

Commonly, hierarchic agglomerative methods follow the next generic pro-
cedure (Murtagh, 1983) :

1. Determine all interdocument similarities.
2. Form a cluster from the two closest objects or clusters.
3. Redefine the similarities between the new cluster and all other objects or

clusters, leaving all other similarities unchanged.
4. Repeat steps 2 and 3 until all objects are in one cluster.

Several agglomerative methods do not apply exactly the third step mentioned
previously. At each step t of the clustering process, the size of the similarity
matrix S(X) (which initially is N ×N) is transformed into (N − t)× (N − t).
Thus, the matrix in the step t, is derived from the matrix St−1(X) by deleting
the two rows and columns that correspond to the newly merged documents
(or clusters), and by adding a new row and column that contain the new
similarities between the newly formed cluster and all unaffected (from step t of
the process) documents or clusters.

The representation obtained after applying a hierarchic clustering me-
thod corresponds to the form of a dendrogram (Jardine and Sibson, 1968)
(see Figure 4.1). Usually, a dendrogram is represented as a tree, which has
numeric levels associated to its branches. The numeric values represent the
different levels of similarity by which clusters are formed. For each similarity
level, a line perpendicular can be traced. Thus, each branch of the tree that
is fragmented corresponds to a cluster. At the bottom level of similarity, all
documents compose a single cluster.

Most hierarchic agglomerative algorithms run on the stored matrix approach,
where the similarity matrix is built in secondary memory (Hartigan (1975)).
Thus, a typical algorithm that works on N documents by using the stored
matrix approach has storage requirements of O(N2)(i.e., for the storage of
the similarity matrix), meantime that time requirements accomplish the O(N3).

It is important to point out that despite the fact that the storage effi-

127

Figure 6.1: A similarity dendrogram

ciency of clustering methods is relevant, in this thesis, the storage efficiency is
not a relevant factor. Although the efficiency of the various clustering methods
is not of primary importance in this thesis, for reasons of completeness I will
also refer to the efficiency of commonly used algorithms that implement the
various methods. Readings that offer significant amount of detail on aspects of
efficiency include Murtagh (1984); Willett (1988).

In the following paragraphs, I will present the group average link me-
thod, which is a hierarchic clustering method that have been used in this
thesis.

6.5 Group average link

The similarity between two clusters in the group average link method corres-
ponds to the mean of the similarities between all pairs of documents, such that
one document of the pair is in one cluster and the other document in the other
cluster.

As a result, to apply the group average link algorithm, clusters are for-
med on the basis of average similarities, and therefore it is not possible to infer
something about the maximum or minimum similarities between documents
in a cluster (Voorhees, 1985). As a consequence of vast range of comparative
studies carried out by different researchers, Sneath and Sokal (1973) pointed
out that the average link method is the most used hierarchic methods.

6.5.1 Query-document similarity measure

This section describes formally the new similarity measure proposed in the
query-document clustering context, which is denominated QDSM (query-
document similarity measure) and the clustering process.

Let q, d, q′, D, Q, and Q′ denote a past query, a document, a new query, a

128

corpus of documents, a finite set of past queries, and a finite set of new queries
respectively.

Definition 1 Let VN (q) be a set of N retrieved documents given q, using a
measure as cosine between query q and documents.

Definition 2 Let A(q) be the finite set of all relevant documents for the query
q, such as A(q) ⊂ VN (q).

Definition 3 Let A′(q) be the finite set all non-relevant documents for the query
q,such as A′(q) ⊂ VN (q).

Given a query q, such as q ∈ Q, then it is possible to denote c(q) = q ∪ VN (q)
as the set of all retrieved documents and the query q. Let C =

⋃
c(q) be the set

of all retrieved documents with their respective queries.

Definition 4 Let LCS(VN (q), VN (q′))→ N be the function which is the result
applying the Longest Common Subsequence algorithm between two lists of docu-
ments for the queries q and q′. It is applied considering just relevant documents.

In Figure 6.2 a), relevant documents contain the value 1, in the format didDoc(1),
meanwhile irrelevant documents contain the value 0. The distance provided by
LCS(VN (q), VN (q′)) corresponds to the match of relevant documents.

Definition 5 QDSM(q, q′) = sim(q,q′)+LCS(VN (q),VN (q′))
1+Max(|A(q)|,|A(q′)| corresponds to the

Query-Document Similarity Measure, which is used for the query-document clus-
tering.

In Figure 6 b) VN (Q) corresponds to a centroid, thus every VN (q) corresponds
to an object in the cluster. QDSM(q, q′) is the distance used to build the clus-
ter. sim(q,Q) corresponds to the distance between a new query and the cen-
troid. Basically, query-document clustering is supported by two steps. First, the
executed query is stored with its documents (see Definition 1). To build the
query-document clusters using the stored queries, the QDSM distance is used
(see Definition 5). In Figure 6.2 b), the centroid (cq) corresponds to VN (Q),
meanwhile VN (Q′), VN (Q′′) and VN (Q′′′) are objects of the cluster. It is im-
portant to mention that every time that an object is added to some cluster,
the centroid is updated. Finally, when the cluster is built and a new query q is
provided, it is compared with every centroid. Thus, from the cluster with the
most similar centroid (see Figure 6.2, b) is used to respond to the new query.
Therefore, to built the list of documents for q using N-Nearest Neighbour, such
as N = 2 (see Figure 6.2, b)), relevant documents from VN (Q′) and VN (Q′′) are
used to answer the new query.

6.6 Experimental Environment

The experimental environment in this section, is composed basically of the well-
known dataset “CACM”. The main reason by which this dataset was used, is

129

Figure 6.2: the distance used to build the cluster

130

because it is small and provides judgments of users. It is important to highlight
that four datasets were evaluated “CISI”, “LISA”, “Medlards” and “CACM”,
but “CACM” has more queries than the previous. “CACM” contains 64 queries
and 3204 documents. On the other hand, it is important to mention that data-
sets founded on log files have been omitted because the relevance of documents
is complex to obtain. Several applications relying on log files provide their own
definitions of precision. The main idea behind this contribution, is to have a
general perspective with the aim to extend and analyze deeply once obtained
the first experimental results. The clustering algorithm employed in this section
is “Average Link”. Average Link have been widely used in the IR domain. Fur-
thermore, it provides good performance regarding effectiveness (Tombros and
van Rijsbergen, 2004).

6.7 Experimental Results

In this section, an experiment has been carried out. The main idea was to
build a cluster of queries along with their lists of documents taking into
consideration the first ten documents. The number of terms used was 6,354 on
the documents, where terms such as numbers 1,2, and so on were deleted, as
well as the stop-words. Similarly, the number of terms used to build the cluster
of queries was 491, the stop-words were eliminated. The stemming process was
not carried out on the two clusters. Within the most similar pairs of queries
using cosine, which have been obtained from the cluster of queries, correspond
to the queries q19 and q63 with a similarity of 0.667. The first clusters have been
considered because they are the most similar. Here, I show the first seven most
similar clusters considering the cosine and QDSM distance. The final results are
not always similar because as mentioned previously only were considered the
first ten documents of lists of documents for each query. Besides, it is important
to point out that the overlap among relevant documents for every pairs of
queries is very small. Even in several cases the overlap was empty (see Table
6.1). Thus, this experiment is only a first approach, therefore, more experiments
should be considered in order to obtain a more robust conclusion. Besides, it
is not important to analyse the difference among the clusters with 3 or more
queries, because almost all they tend to the cosine when the clusters are grouped.

From the Table 6.1, it is possible to see that the similarity is increased
when the difference between LCS(V (q), V (q′)) and max(|A(q)|, |A(q′)|) is
small, for example in (Q10, Q19) and (Q17, Q13). By contrast, if the difference
between LCS(V (q), V (q′)) and max(|A(q)|, |A(q′)|) is greater, the similarity
decreases (see (Q19, Q63)). On the other hand, when the list does not have
relevant documents and the overlap between the list is empty, the similarity is
equal to the cosine (see (Q50, Q51)).

In addition, it is important to mention that the centroid notion mentio-

131

ned previously was not used here, because “Average Link” is hierarchic
clustering.

Table 6.1: The seven closest clusters (the similarities Cosine and QDSM) are
compared. Overlap- relevant documents correspond to the same relevant do-
cuments for both queries, LCS(V (q), V (q′)) is the quantity of relevant docu-
ments for both queries taking into consideration the first ten documents and
max(|A(q)|, |A(q′)|) is the list that contains most relevant documents.

Approaches
Pairs Cosine QDSM Overlap-relevant documents LCS(V(q), V(q’)) max(|A(q)|, |A(q’)|)

(Q19, Q63) 0.667 0.518 7 4 8
(Q50, Q51) 0.544 0.544 0 0 0
(Q10, Q19) 0.455 0.691 6 3 5
(Q28, Q9) 0.446 0.089 0 0 5
(Q8, Q9) 0.446 0.074 0 0 5

(Q17, Q13) 0.424 0.774 7 5 7
(Q25, Q52) 0.394 0.043 0 0 9

6.8 Conclusions

In this section, a review of the state-of-art of clustering in IR have been pre-
sented. The contribution of this section corresponds to the definition of a new
QSSM measure. This measure is denominated “QDSM”, which takes into consi-
deration the relevant-recovered documents (i.e., documents from the list) for
each query. Thus, two queries are similar considering not only the similarity
between them, but also how many documents are similar in both lists. Final
conclusions are difficult to obtain, because several experimental scenarios should
be analysed. First of all, despite the fact that “CACM” contains 64 queries, the
lists of documents for similar queries do not have an important quantity of re-
levant documents. Furthermore, in many cases the overlap between the lists of
documents is empty. Therefore, it is necessary to look for other datasets, which
have considerable overlap between the lists of documents. Another option is to
increase the number of relevant documents, for example, using relevant terms
from relevant documents. In any case, further experiments should be carried
out.

132

Chapter 7

Conclusion

Résumé : conclusions
La littérature de RI est nourrie de différentes contributions telles que des
approches d’indexation, des fonctions d’appariemment, des modèles formels et
des approches de retour de pertinence. Cependant, peu d’approches visent à ti-
rer un avantage des recherches effectuées dans le passé par d’autres utilisateurs.
En outre, la plupart de ces approches sont liées à des moteurs de recherche dans
le contexte du Web, basées sur des historiques de requêtes stockés dans des
fichiers de logs. Néanmoins, la plupart de ces approches se concentrent sur les
requêtes répétitives soumises par un même utilisateur. À notre connaissance,
peu de travaux traitent de l’utilisation de requêtes passées similaires. Ainsi,
cette recherche aborde les questions de l’exploitation des résultats de recherche
passés avec l’objectif de construire les résultats retournés pour de nouvelles
requêtes à l’aide des documents pertinents de requêtes passées similaires et en
améliorer la précision. Pour atteindre cet objectif, cette thèse répond à trois
problématiques :
— fournir un cadre pour simuler des collections dans le contexte de la réutili-

sation des recherches passées,
— fournir des algorithmes de type Monte Carlo pour sélectionner les documents

de résultats de recherches passées suivant différentes stratégies,
— fournir une mesure de similarité (QDSM) pour une approche de clustering

requête-documents fondée sur le stockage des requêtes passées.

1) Un cadre de simulation de collections de documents, requêtes et
jugements des utilisateurs.

Dans cette thèse, un cadre pour simuler des collections de documents, requêtes
et jugements des utilisateurs a été défini. Ce cadre fournit un environnement
idéal pour évaluer les approches fondées sur les résultats de recherche passés.

133

Plusieurs scénarios expérimentaux peuvent être construits en utilisant ce cadre.
En d’autres termes, il est possible de construire non seulement un nombre
différent de documents, mais aussi un nombre différent de requêtes sous
différentes distributions de probabilité. Les documents peuvent être construits
en utilisant une distribution uniforme, la distribution exponentielle, et la
distribution Zipf. Les jugements des utilisateurs sont eux construits en utilisant
la distribution Zeta, qui représente une loi de Bradford. Par conséquent,
l’interaction humaine n’est plus nécessaire pour déterminer la pertinence des
documents pour une requête, ce qui implique une réduction de coût et de temps.
De plus, la suppression des mots-vides, la racinisation et l’adaptation (i.e.,
modifier les caractéristiques de certains systèmes afin de l’adapter aux besoins
expérimentaux) ne sont pas nécessaires. Ainsi, il est possible d’évaluer non
seulement les approches fondées sur les résultats de recherches passées, mais
aussi d’autres approches. Plusieurs scénarios expérimentaux ont été simulés
sous différentes distributions de probabilité. L’efficacité de notre approche a
été évaluée et comparée à une méthode de RI traditionnelle (cosinus). Le test
pairé de Student a été appliqué pour confirmer les résultats expérimentaux.
Les expérimentations présentent les meilleurs résultats pour notre approche
par rapport à la recherche traditionnelle, pour les dix premiers documents
récupérés (P@10). La prochaine étape naturelle à cette recherche est d’obtenir
de nouvelles distributions pour la construction de documents, requêtes et
jugements de l’utilisateur et d’ajouter ensuite de nouvelles fonctionnalités au
cadre de simulation.

2) Un ensemble d’algorithmes de type Monte Carlo pour la réutilisa-
tion de résultats de recherches passées.

Dans cette thèse quatre algorithmes probabilistes ont été évalués au moyen
de plusieurs scénarios expérimentaux qui ont été fournis par notre cadre de
simulation. Ces algorithmes visent à réutiliser les documents pertinents extraits
de la requête passée la plus similaire. Ces algorithmes ont comme avantages
d’être faciles à mettre en œuvre et de ne pas nécessiter d’apprentissage. De plus,
ces algorithmes peuvent être implémentés de manière interne à un SRI ou de
manière externe. Le premier algorithme divise la liste de documents récupérés
en groupes, où chaque groupe contient le même nombre de documents. Le
second algorithme est inspiré par la distribution logistique. Le troisième
algorithme divise la liste de documents récupérés en groupes de puissance
deux, où chaque groupe contient un nombre différent de documents. Enfin,
le quatrième algorithme assigne des probabilités pour chaque document en
fonction de sa position dans la liste de documents récupérés. Ces algorithmes
ont été comparés avec une méthode de RI traditionnelle (cosinus). Les résultats
expérimentaux ont été validés en appliquant le test pairé de Student pour
chaque expérience. Toutes les expériences présentent de meilleurs résultats
pour nos algorithmes par rapport à la recherche traditionnelle. Ces expériences
ont considéré les dix premiers documents récupérés (P@10). Il est important de
souligner que les meilleurs résultats ont été fournis par le premier algorithme.

134

Enfin, dans les expériences menées, le nombre de requêtes et le nombre de
documents n’ont pas d’influence sur les résultats finaux. Comme recherche
future, il sera intéressant d’appliquer ces algorithmes avec des données réelles.
En outre, la performance en temps n’a pas été étudiée, et devrait être com-
parée avec d’autres approches probabilistes telles que les algorithmes génétiques.

3) Une nouvelle mesure de similarité (QDSM) pour stocker des
groupes de requêtes passées similaires avec leurs documents perti-
nents.

La principale contribution dans cette section était la définition d’une nouvelle
mesure de similarité pour un clustering de requêtes avec leurs documents, bap-
tisée QDSM (Query Document Similarity Measure). La méthode de clustering
comprend deux étapes. Tout d’abord, les requêtes exécutées sont stockées avec
leurs documents pertinents (et non pertinents). Pour construire les groupes de
requêtes-documents à partir des requêtes stockées, la distance QDSM est utili-
sée. Cette mesure prend en compte les documents pertinents associés à leurs re-
quêtes. L’algorithme de plus longue sous-séquence commune est appliqué entre
deux listes de documents (correspondant à deux requêtes). Documents et re-
quêtes ont été regroupés en utilisant le lien moyen. La collection Cranfield a été
utilisée pour de premières expérimentations car elle fournit des jugements des
utilisateurs. Bien que cet ensemble de données soit de taille limitée, cette étude
permet de donner un éclairage sur les performances de la méthode proposée.

135

The literature of IR is crammed with different contributions such as indexing ap-
proaches, matching functions, formal models and relevance feedback approaches.
However, few approaches gain advantage from searches performed in the past.
Furthermore, most of these approaches are in the domain of web search engines,
which are based on historical queries stored in log files. Nevertheless, most of
these approaches concern repetitive queries. To the best of our knowledge, few
works deal with the use of similar past queries. Thus, this research addressed
the issues of exploiting past search results to improve precision for new queries
using relevant documents from similar past queries. Achieving this goal, implied
to cover three objectives :
— To provide a framework to simulate collections in the domain of past search

results.
— To propose a set of Monte Carlo algorithms to improve precision.
— To give a similarity measure (QSSM) on query-document clustering, in

order to store past queries in clusters.

In the following paragraphs, I list the contributions of this thesis. I first present
the overall contribution that I believe has been achieved, when the work of this
thesis is taken as a whole. I then list in more details some of the individual
contributions.

1) A framework to simulate document collections, queries and
judgments of users.

In chapter 3, an extensive bibliographic review have been presented about the
approaches which deal with the use of past search results. Two categories of
approaches based on past queries (past results) are identifiable -approaches
rooted in user session and without user session. Approaches based on user ses-
sions are related personalization and customization, however these approaches
use either matching learning techniques or other techniques, which involve high
resources of time. To sum up, the most relevant conclusions related to past
queries based on user sessions, in particular query adaptation and adaptive
retrieval require that users provide ad-hoc relevance judgments or keywords for
the tasks of classifications.

A problem pointed out is the lack of suitable collections to evaluate sys-
tems based on past results. Most approaches are rooted in the use of historical
queries on the Web, most of which are focused on repetitive queries. Therefore,
these collections are not suitable to evaluate approaches based on past queries
because the relevance judgments are not provided. A solution for the previous
problem is to build suitable environments to analyze the advantages of
approaches relying on past search results using simulation.

As a result of previous analysis, in this thesis a framework to simulate
document collections, queries and judgments of users have been built. This

136

framework provides an ideal environment to evaluate approaches based on past
search results. In section 4.3, the framework is described. Several experimental
scenarios can be built by using this framework. In other words, it is possible
to build not only different numbers of documents but also different numbers
of queries under different probability distributions. Documents can be built
by using uniform distribution, exponential distribution, and Zipf distribution.
Judgments of users are built using Zeta distribution, which represents the
Bradford’s law. Therefore, human interaction is unnecessary to provide the
relevance of documents given a query, which implies a reduction of cost and
time. Moreover, stemming, stopping and tunning (to change characteristics of
some particular system in order to adapt to the experimental needs) processes
are not necessary. Thus, not only approaches founded on past search results
can be evaluated, but also other approaches such as randomized algorithms.
Hence, this framework serves as baseline to provide preliminary results, and
simultaneously supplies a window for future researches.

In section 4.5, several experimental scenarios were simulated under dif-
ferent probability distributions. Aiming to build the documents, exponential
distributions with parameters 1.0 and 1.5, was instantiated. Additionally, Zipf
distribution was used to build the documents with parameter 1.6. The main
reason was to choose terms from different topics (different fields, i.e, computer
science, marketing and medicine among others), which compose a document.
Otherwise, three parameters for Zeta distributions were used in the experiments
(S = 2, S = 3 and S = 4), in order to cover a wide range of applications on
these distributions. The effectiveness of our approach have been evaluated and
compared with traditional retrieval (cosine). Experiments showed homogeneous
effectiveness of the two tested approaches according to average P@10 over all
the queries. Furthermore, performances differ from one simulated collection
to another supporting the idea that the different collections could be used as
different scenarios.

2) A set of Monte Carlo algorithms to improve precision.

A bibliographic review about the state-of-the-art of probabilistic approaches is
presented in Chapter 5. On balance, the major part of probabilistic algorithms
in IR can be categorized in two classes, learning techniques and optimization.
Approaches based on learning techniques such as neural networks, genetic
algorithms and support vector machines imply a high cost in learning time as
well as diverse convergence times when the used datasets are heterogeneous.

In this thesis, four randomized algorithms have been evaluated. These al-
gorithms aim at reusing relevant documents retrieved from the most similar
past query. Two advantages are provided for these algorithms : first, these
algorithms are easy to implement, and do not require time of learning as used in
approaches relying on optimization techniques. Second, these algorithms can be
implemented inside IRSs or search engines, or externally. In section 5.4.1, the

137

algorithms are described. Roughly speaking, the first algorithm splits the list of
retrieved documents in groups, where each group contains the same quantity of
documents. The second algorithm is inspired by the logistic distribution. The
third algorithm divides the list of retrieved documents in groups of power two,
where each group contains different numbers of documents. Finally, the fourth
algorithm assigns probabilities for each document according to the position in
the list of retrieved documents.

In section 5.5, the four randomized algorithms were evaluated using seve-
ral experimental scenarios, which were provided by our framework. Similar
to the experimental environments described in section 4.5, exponential dis-
tributions with parameters 1.0 and 1.5, are used to build the documents. In
addition, Zipf distribution was used to build the documents with parameter
1.6. On the other hand, three parameters for Zeta distribution were used
in the experiments (S = 2, S = 3 and S = 4), aiming to provide the user
judgments. Our algorithms were compared with traditional retrieval (cosine).
The experimental results were validated applying the Student’s paired t-test
in each experiment. All experiments present better results of our algorithms
than the traditional retrieval. These experiments have considered the top ten
retrieved documents (P@10). It is important to highlight that the best results
were issued by Algorithm 1.

3) A new QSSM measure to store similar past queries along
with their relevant documents.

A wide range of approaches deals with the use of clustering in IR. Seve-
ral approaches have been presented in chapter 6. Clustering in IR have been
used to improve efficiency and effectiveness of IRS. Overall, two major cate-
gories of clustering are easily identifiable : static clustering and post-retrieval
clustering. On one hand, static clustering is the traditional application of the
cluster method on a document collection. On the other hand, post-retrieval
clustering includes information from the query into the clustering of documents.
The main contribution in this section was a new definition of a similarity
measure for query-document clustering, which is denominated query document
similarity measure (QDSM). Basically, query-document clustering is supported
by two steps. First, the executed query is stored with its documents (relevant
and non-relevant). To build the query-document clusters using the stored
queries, the QDSM distance is used. This measure takes in consideration the
relevant documents associated with their queries. Th Longest Common Subse-
quence algorithm is applied between two lists of documents (for two queries) to
obtain the (QDSM). Documents and queries were clustered using the average
link. The main reason by which this algorithm was used, is because it provides
good results, which are highly accepted by the IR community (Tombros et al.,
2002). In section 6.8, one experiment was carried out. “CACM” dataset was
used because it contains judgments of users. Despite the fact that this dataset
is little, it was chosen because it has 64 queries. Final results are not enough

138

to obtain a conclusion about this measure. First of all, because the overlap
among the lists of documents for similar queries is small. Even in several cases
the overlap between them was empty. Furthermore, the quantity of relevant
documents is small considering the quantity of documents. It is important to
point out that this is only a first approach, therefore, many experiments should
be carried out with the purpose to obtain conclusions on this measure.

7.1 Directions for Future Research

The research presented in this thesis addressed the issues of exploiting past
search results, with the aim to improve precision for new similar queries. A
framework to simulate collections was built. Four randomized algorithms were
proposed and evaluated. Finally, a basic approach for a new QSSM measure
was developed and evaluated, however, some issues remain open.

1) Extending the framework to incorporate new functionalities.

The current state of the design and implementation of our framework al-
lows building several experimental scenarios. However, many other general
and particular characteristics of IRSs can be incorporated and simulated.
Moreover, some particular characteristics of search engines could be simulated
too. Therefore, the natural next step in this research is to obtain new empirical
distributions about building documents, queries, and judgments of user, to
subsequently add new functionalities inside the framework.

2) A set of Monte Carlo algorithms to improve precision.

Nowadays, few randomized algorithms are used in the IR domain. In this
particular case, randomized algorithms have been used to improve precision,
however, these algorithms were not evaluated on real datasets. Furthermore,
performance in time was not studied. In summary, several results should be
evaluated on a traditional ad-hoc collection, besides the efficiency in time should
be compared with other probabilistic approaches such as genetic algorithms.

3) Expanding evaluation of experimental scenarios for the new
QSSM measure.

The IR literature is crammed with approaches that deal with the use of
clustering. In this thesis, a basic approach for a new QSSM measure have
been evaluated. Nevertheless, the results reported in this thesis are preliminary
and therefore, these should be extended to other datasets, which contain a
considerable overlap between the lists of documents for two similar queries.
It should consider a considerable number of relevant documents for both lists

139

of documents. Furthermore, several trends could be studied, for instance, the
performance in real time and web documents among others. However, it is
important to point out that this is not easy, because most of the current
datasets must be adapted in the domain of past search results.

140

References

Alexandrov, V., Dimov, T., Karaivanova, A., and Tan, C. (2003). Parallel monte
carlo algorithms for information retrieval. Mathematics and Computers in
Simulation (MATCOM), 62(3) :289–295.

Alonso, O. and Mizzaro, S. (2012). Using crowdsourcing for trec relevance
assessment. Inf. Process. Manage., 48(6) :1053–1066.

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press.

Azzopardi, L., Järvelin, K., Kamps, J., and Smucker, M. D. (2011). Report
on the sigir 2010 workshop on the simulation of interaction. SIGIR Forum,
44(2) :35–47.

Baeza-Yates, R., Hurtado, C., and Mendoza, M. (2004). Query recommendation
using query logs in search engines. In Proceedings of the 2004 International
Conference on Current Trends in Database Technology, EDBT’04, pages 588–
596, Berlin, Heidelberg. Springer-Verlag.

Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Baeza-Yates, R. A. and Saint-Jean, F. (2003). A three level search engine index
based in query log distribution. In Nascimento, M. A., de Moura, E. S., and
Oliveira, A. L., editors, SPIRE, volume 2857 of Lecture Notes in Computer
Science, pages 56–65. Springer.

Banachowski, L., Kreczmar, A., and Rytter, W. (1991). Analysis of Algorithms
and Data and Structures. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Barry, C. L. (1994). User-defined relevance criteria : an exploratory study.
Journal of the American Society for Information Science, 45 :149–159.

Bedi, P. and Chawla, S. (2010). Agent based information retrieval system using
information scent. Journal of Artifical Intelligence, Asian Network for Science
Information, 4(3) :220–238.

Beitzel, S. M., Jensen, E. C., Chowdhury, A., Grossman, D., and Frieder, O.
(2004). Hourly analysis of a very large topically categorized web query log.

141

In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’04, pages 321–
328, New York, NY, USA. ACM.

Bharat, K. and Henzinger, M. R. (1998). Improved algorithms for topic distilla-
tion in a hyperlinked environment. In In SIGIR Conference on Research and
Development in Information Retrieval.

Bigot, A., Chrisment, C., Dkaki, T., Hubert, G., and Mothe, J. (2011). Fusing
different information retrieval systems according to query-topics : a study
based on correlation in information retrieval systems and trec topics. Inf.
Retr., 14(6) :617–648.

Blei, D., Ng, A., and Jordan (2003). Hierarchical Bayesian models for applica-
tions in information retrieval, pages 25–44. Oxford University Press,.

Borlund, P. and Ingwersen, P. (1997). The development of a method for the
evaluation of interactive information retrieval systems. Journal of Documen-
tation, 53 :225–250.

Broder, A. (2002). A taxonomy of web search. SIGIR Forum, 36(2) :3–10.

Brown, E. W., Callan, J. P., Croft, W. B., Moss, J. E. B., Eliot, J., and Moss,
B. (1994). Supporting full-text information retrieval with a persistent object
store. In In 4th Intl. Conf. on Extending Database Technology, pages 365–378.

Cemgil, A. T. and Kappen, B. (2011). Monte carlo methods for tempo tracking
and rhythm quantization. CoRR, abs/1106.4863.

Cetintas, S., Si, L., and Yuan, H. (2011). Using past queries for resource selection
in distributed information retrieval. Technical Report 1743, Department of
Computer Science, Purdue University.

Chen, Y.-S. and Leimkuhler, F. F. (1986). A relationship between Lotka’s
Law, Bradford’s Law, and Zipf’s Law. Journal of The American Society for
Information Science, 37 :307–314.

Chowdhury, G. (2010). Introduction to Modern Information Retrieval, Third
Edition. Facet Publishing, 3rd edition.

Cooper, M. D. (1973). A simulation model of an information retrieval system.
Information Storage and Retrieval, 9(1) :13 – 32.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition.

Cui, H., Wen, J.-R., Nie, J.-Y., and Ma, W.-Y. (2003). Query expansion by
mining user logs. IEEE Trans. on Knowl. and Data Eng., 15(4) :829–839.

de Campos, L. M., Fernández-Luna, J. M., and Huete, J. F. (2013). Query
expansion in information retrieval systems using a bayesian network-based
thesaurus. CoRR, abs/1301.7364.

142

Dou, Z., Song, R., and Wen, J.-R. (2007). A large-scale evaluation and analysis
of personalized search strategies. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 581–590, New York, NY,
USA. ACM.

Fagni, T., Perego, R., and Silvestri, F. (2004). A highly scalable parallel caching
system for web search engine results. In Euro-Par 2004 Parallel Processing,
pages 347–354.

Fagni, T., Perego, R., Silvestri, F., and Orlando, S. (2006). Boosting the per-
formance of web search engines : Caching and prefetching query results by
exploiting historical usage data. ACM Trans. Inf. Syst., 24(1) :51–78.

Fitzpatrick, L. and Dent, M. (1997). Automatic feedback using past queries : So-
cial searching ? In Proceedings of the 20th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’97, pages 306–313, New York, NY, USA. ACM.

Fonseca, B. M., Golgher, P. B., de Moura, E. S., and Ziviani, N. (2003). Using
association rules to discover search engines related queries. In Proceedings of
the First Conference on Latin American Web Congress, LA-WEB ’03, pages
66–, Washington, DC, USA. IEEE Computer Society.

Fu, L., Dion, D. H., and Schubert, S. S. (2004). The effect of similarity measures
on the quality of query clusters. Journal of Information Science, 30(5) :396–
407.

Fuhr, N. and Lalmas, M. (2007). Advances in xml retrieval : The inex initiative.
In Proceedings of the 2006 International Workshop on Research Issues in
Digital Libraries, IWRIDL ’06, pages 16 :1–16 :6, New York, NY, USA. ACM.

Fuhr, N., Lalmas, M., Malik, S., and Szlávik, Z. (2005). Advances in XML
Information Retrieval : Third International Workshop of the Initiative for the
Evaluation of XML Retrieval, INEX 2004, Dagstuhl Castle, ... 2004 (Lecture
Notes in Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

Garfield, E. (1980). Bradford’s Law and Related Statistical Patterns. Essays of
an Information Scientist, 4(19) :476–483.

Gonnet, G. (1984). Handbook of Algorithms and Data Structures. International
Computer Science Series. Addison-Wesley Publishing Company.

Gordon, A. D. (1987). A Review of Hierarchical Classification. Journal of the
Royal Statistical Society. Series A (General), 150(2) :119–137.

Gray, P. and Watson, H. J. (1998). Present and future directions in data ware-
housing. SIGMIS Database, 29(3) :83–90.

Gutiérrez-Soto, C. (2014a). Simulation, randomized and clustering algorithms
for information retrieval. In Proceedings of the Doctoral Consortium (RR

143

2014), The 8th International Conference On Web Reasoning And Rule Sys-
tems, Athens, Greece.

Gutiérrez-Soto, C. (2014b). Taking advantage from past search results through
a probabilistic algorithm. In The 3rd Spanish Conference on Information
Retrieval (CERI 2014), A Coruña, Spain, pages 1–9.

Gutiérrez-Soto, C. and Hubert, G. (2013). Evaluating the interest of revamping
past search results. In Decker, H., Lhotská, L., Link, S., Basl, J., and Tjoa,
A., editors, Database and Expert Systems Applications, volume 8056 of Lecture
Notes in Computer Science, pages 73–80. Springer Berlin Heidelberg.

Gutiérrez-Soto, C. and Hubert, G. (2014). Probabilistic reuse of past search
results. In Database and Expert Systems Applications - 25th International
Conference, DEXA 2014, Munich, Germany, September 1-4, 2014. Procee-
dings, Part I, pages 265–274.

Gutiérrez-Soto, C. and Hubert, G. (2014). Randomized algorithm for informa-
tion retrieval using past search results. In Research Challenges in Information
Science (RCIS), 2014 IEEE Eighth International Conference on, pages 1–9.

Gutiérrez-Soto, C. and Hubert, G. (2015). On the reuse of past searchesin
information retrieval :study of two probabilistic algorithms. International
Journal of Information System Modeling and Design, 6(2) :71–90.

Harman, D. (1993). Overview of the first trec conference. In Proceedings of the
16th Annual International ACM SIGIR Conference on Research and Deve-
lopment in Information Retrieval, SIGIR ’93, pages 36–47, New York, NY,
USA. ACM.

Hartigan, J. A. (1975). Clustering Algorithms. John Wiley & Sons, Inc., New
York, NY, USA, 99th edition.

Hasanzadeh, S. and Keshavarzi, A. (2009). Application of query sensitive simila-
rity measure in ir systems. In Proceedings of the 2009 Third Asia International
Conference on Modelling and Simulation, AMS ’09, pages 73–78, Washington,
DC, USA. IEEE Computer Society.

Heaps, H. S. (1978). Information Retrieval : Computational and Theoretical
Aspects. Academic Press, Inc., Orlando, FL, USA.

Hiemstra, D. (1998). A Linguistically Motivated Probabilistic Model of Informa-
tion Retrieval. In ECDL ’98 : Proceedings of the Second European Conference
on Research and Advanced Technology for Digital Libraries, pages 569–584,
London, UK. Springer-Verlag.

Hust, A. (2004). Introducing Query Expansion Methods for Collaborative In-
formation Retrieval. In Dengel, A., Junker, M., and Weisbecker, A., editors,
Reading and Learning - Adaptive Content Recognition, volume 2956 of Lecture
Notes in Computer Science, pages 252–280, Berlin, Heidelberg, New York.
Springer-Verlag.

144

Huurnink, B., Hofmann, K., De Rijke, M., and Bron, M. (2010). Validating query
simulators : an experiment using commercial searches and purchases. In Pro-
ceedings of the 2010 international conference on Multilingual and multimodal
information access evaluation : cross-language evaluation forum, CLEF’10,
pages 40–51, Berlin, Heidelberg. Springer-Verlag.

Indrawan, M., Ghazfan, D., and Srinivasan, B. (1996). Using bayesian networks
as retrieval engines. In TREC.

Jansen, B. J., Spink, A., and Saracevic, T. (2000). Real life, real users, and
real needs : A study and analysis of user queries on the web. Inf. Process.
Manage., 36(2) :207–227.

Jardine, N. and Sibson, R. (1968). The construction of hierarchic and non-
hierarchic classifications. Computer Journal, (11) :184.

Joachims, T. (1997). A probabilistic analysis of the rocchio algorithm with
tfidf for text categorization. In Proceedings of the Fourteenth International
Conference on Machine Learning, ICML ’97, pages 143–151, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Jones, K. S. (1972). A statistical interpretation of term specificity and its ap-
plication in retrieval. Journal of Documentation, 28 :11–21.

Jónsson, B. T., Franklin, M. J., and Srivastava, D. (1998). Interaction of query
evaluation and buffer management for information retrieval. In Proceedings of
the 1998 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’98, pages 118–129, New York, NY, USA. ACM.

Kearns, M. J. (1989). The Computational Complexity of Machine Learning.
PhD thesis, Harvard University, USA, Cambridge, MA, USA. UMI Order
No : GAX89-26128.

Keen, E. M. (1992). Presenting results of experimental retrieval comparisons.
Inf. Process. Manage., 28(4) :491–502.

Kelly, D. (2009). Methods for Evaluating Interactive Information Retrieval
Systems with Users. Foundations and Trends in Information Retrieval, 3 :1–
224.

Kleinberg, J. and Tardos, E. (2005). Algorithm Design. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment.
J. ACM, 46(5) :604–632.

Lempel, R. and Moran, S. (2003). Predictive caching and prefetching of query
results in search engines. In Proceedings of the 12th International Conference
on World Wide Web, WWW ’03, pages 19–28, New York, NY, USA. ACM.

Lewis, D. D. and Jones, K. S. (1996). Natural language processing for informa-
tion retrieval. Commun. ACM, 39(1) :92–101.

145

Lillis, D., Toolan, F., Mur, A., Peng, L., Collier, R., and Dunnion, J. (2006).
Probability-based fusion of information retrieval result sets. Artif. Intell. Rev.,
25(1-2) :179–191.

Liu, X. and Croft, W. B. (2002). Passage retrieval based on language models.
In Proceedings of the Eleventh International Conference on Information and
Knowledge Management, CIKM ’02, pages 375–382, New York, NY, USA.
ACM.

Luo, Q., Naughton, J. F., Krishnamurthy, R., Cao, P., and Li, Y. (2000). Active
query caching for database web servers. In WebDB, pages 29–34. Springer.

Markatos, E. (2001). A linguistically motivated probabilistic model of informa-
tion retrieval. Comput. Commun., 24(2) :137–143.

Moreno, J. G., Dias, G., and Cleuziou, G. (2013). Post-retrieval clustering using
third-order similarity measures. In ACL (2), pages 153–158. The Association
for Computer Linguistics.

Murtagh, F. (1983). A survey of recent advances in hierarchical clustering al-
gorithms. Computer Journal, 26(4) :354–359.

Murtagh, F. (1984). Complexities of hierarchic clustering algorithms : state of
the art. Computational Statistics Quarterly, (1) :101–113.

Na, S.-H. (2013). Probabilistic co-relevance for query-sensitive similarity mea-
surement in information retrieval. Inf. Process. Manage., 49(2) :558–575.

Navarro, G., De Moura, E. S., Neubert, M., Ziviani, N., and Baeza-Yates, R.
(2000). Adding compression to block addressing inverted indexes. Inf. Retr.,
3(1) :49–77.

Niederberger, T., Stoop, N., Christen, M., and Ott, T. (2012). Hebbian Prin-
cipal Component Clustering for Information Retrieval on a Crowdsourcing
Platform. Nonlinear Dynamics of Electronic Systems, Proceedings of NDES
2012, pages 1–4.

Nopiah, Z. M., Khairir, M. I., Abdullah, S., Baharin, M. N., and Arifin, A.
(2010). Time complexity analysis of the genetic algorithm clustering me-
thod. In Proceedings of the 9th WSEAS International Conference on Si-
gnal Processing, Robotics and Automation, ISPRA’10, pages 171–176, Ste-
vens Point, Wisconsin, USA. World Scientific and Engineering Academy and
Society (WSEAS).

Ouksel, A. (2002). Mining the world wide web : An information search approach
by george chang, marcus j. healey (editor), james a. m. mchugh, jason t. l.
wang. SIGMOD Rec., 31(2) :69–70.

Poosala, V. (1997). Zipf’s law. Technical Report 900 839 0750, Bell Laboratories.

Puolamäki, K., Salojärvi, J., Savia, E., Simola, J., and Kaski, S. (2005). Combi-
ning eye movements and collaborative filtering for proactive information re-

146

trieval. In Proceedings of the 28th Annual International ACM SIGIR Confe-
rence on Research and Development in Information Retrieval, SIGIR ’05,
pages 146–153, New York, NY, USA. ACM.

Raghavan, V. V. and Sever, H. (1995). On the reuse of past optimal queries.
In Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’95, pages 344–350,
New York, NY, USA. ACM.

Reid, J. (2000). A task-oriented non-interactive evaluation methodology for.
Information Retrieval Systems, Information Retrieval, 2 :115–129.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 2nd edition.

Robertson, S. E., van Rijsbergen, C. J., and Porter, M. F. (1981). Probabilistic
models of indexing and searching. In Proceedings of the 3rd Annual ACM
Conference on Research and Development in Information Retrieval, SIGIR
’80, pages 35–56, Kent, UK, UK. Butterworth & Co.

Roitman, H., Hummel, S., and Kurland, O. (2014). Using the cross-entropy
method to re-rank search results. In Proceedings of the 37th International
ACM SIGIR Conference on Research & ; Development in Information
Retrieval, SIGIR ’14, pages 839–842, New York, NY, USA. ACM.

Salton, G. (1971). The SMART Retrieval System and ;Experiments in Automatic
Document Processing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Salton, G., Allan, J., and Buckley, C. (1993). Approaches to passage retrieval
in full text information systems. In Proceedings of the 16th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’93, pages 49–58, New York, NY, USA. ACM.

Salton, G. and Buckley, C. (1987). Term weighting approaches in automatic
text retrieval. Technical report, Cornell University, Ithaca, NY, USA.

Salton, G. and McGill, M. (1983). Introduction to Modern Information Retrie-
val. McGraw-Hill computer science series. McGraw-Hill International.

Salton, G. and McGill, M. J. (1986). Introduction to Modern Information Re-
trieval. McGraw-Hill, Inc., New York, NY, USA.

Salton, G. and Wong, A. (1978). Generation and search of clustered files. ACM
Trans. Database Syst., 3(4) :321–346.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for auto-
matic indexing. Commun. ACM, 18(11) :613–620.

Sanderson, M. (2010). Test Collection Based Evaluation of Information Retrieval
Systems. Foundations and Trends in Information Retrieval, 4(4) :247–375.

Saraiva, P. C., Silva de Moura, E., Ziviani, N., Meira, W., Fonseca, R., and
Riberio-Neto, B. (2001). Rank-preserving two-level caching for scalable search

147

engines. In Proceedings of the 24th Annual International ACM SIGIR Confe-
rence on Research and Development in Information Retrieval, SIGIR ’01,
pages 51–58, New York, NY, USA. ACM.

Saravanakumar, K. and Moturi, M. (2011). Article : Semantic based personali-
zed framework for information retrieval. International Journal of Computer
Applications, 20(4) :14–17. Full text available.

Schaer, P. (2013). Applied informetrics for digital libraries : an overview of
foundations, problems and current approaches. Historical Social Research,
38(3) :267–281.

Schamber, L., Eisenberg, M., and Nilan, M. S. (1990). A re-examination of
relevance : Toward a dynamic, situational definition. Inf. Process. Manage.,
26(6) :755–776.

Shen, X., Tan, B., and Zhai, C. (2005). Context-sensitive information retrieval
using implicit feedback. In Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, SI-
GIR ’05, pages 43–50, New York, NY, USA. ACM.

Silva de Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R. (2000). Fast
and flexible word searching on compressed text. ACM Trans. Inf. Syst.,
18(2) :113–139.

Sneath, P. and Sokal, R. (1973). Numerical Taxonomy : The Principles and
Practice of Numerical Classification. A Series of books in biology. W. H.
Freeman.

Song, S.-K. and Myaeng, S. H. (2012). A novel term weighting scheme based
on discrimination power obtained from past retrieval results. Inf. Process.
Manage., 48(5) :919–930.

Sparck Jones, K. and Willett, P., editors (1997a). Readings in Information
Retrieval. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Sparck Jones, K. and Willett, P., editors (1997b). Readings in Information
Retrieval. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Steichen, B., Ashman, H., and Wade, V. (2012). A comparative survey of perso-
nalised information retrieval and adaptive hypermedia techniques. Inf. Pro-
cess. Manage., 48(4) :698–724.

Tague, J. M. and Nelson, M. J. (1981). Simulation of user judgments in biblio-
graphic retrieval systems. In Proceedings of the 4th annual international ACM
SIGIR conference on Information storage and retrieval : theoretical issues in
information retrieval, SIGIR ’81, pages 66–71, New York, NY, USA. ACM.

Teevan, J., Adar, E., Jones, R., and Potts, M. A. S. (2007). Information re-
retrieval : repeat queries in yahoo’s logs. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’07, pages 151–158, New York, NY, USA. ACM.

148

Theodoridis, S. and Koutroumbas, K. (1999). Pattern Recognition. Academic
Press, San Diego, CA, USA.

Tombros, A. and van Rijsbergen, C. J. (2004). Query-sensitive similarity mea-
sures for information retrieval. Knowl. Inf. Syst., 6(5) :617–642.

Tombros, A., Villa, R., and Rijsbergen, C. J. V. (2002). The effectiveness of
query-specific hierarchic clustering. In in information retrieval. Information
Processing and Management, pages 559–582.

Van Rijsbergen, C. J. (1986). A new theoretical framework for information
retrieval. SIGIR Forum, 21(1-2) :23–29.

Voorhees, E. M. (1985). The effectiveness and efficiency of agglomerative hie-
rarchical clustering in document retrieval. PhD thesis, Cornell University.

Voorhees, E. M. and Harman, D. K. (2005). TREC : Experiment and Evaluation
in Information Retrieval. MIT Press, Cambridge, MA, USA.

Wei, F., Li, W., Lu, Q., and He, Y. (2008). A cluster-sensitive graph model for
query-oriented multi-document summarization. In Macdonald, C., Ounis, I.,
Plachouras, V., Ruthven, I., and White, R. W., editors, ECIR, volume 4956
of Lecture Notes in Computer Science, pages 446–453. Springer.

White, R. W., Ruthven, I., Jose, J. M., and Van Rijsbergen, C. J. (2005). Eva-
luating implicit feedback models using searcher simulations. ACM Trans. Inf.
Syst., 23(3) :325–361.

Willett, P. (1988). Recent trends in hierarchic document clustering : A critical
review. Inf. Process. Manage., 24(5) :577–597.

Xie, Y. and O’Hallaron, D. (2002). Locality in search engine queries and its
implications for caching. In In IEEE Infocom 2002, pages 1238–1247.

Yue, Y. and Joachims, T. (2009). Interactively optimizing information retrieval
systems as a dueling bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 1201–1208,
New York, NY, USA. ACM.

Zerchaninova, I. L. (2008). Bradford’s law of scattering for climate-friendly
technologies and metainformational effect of time. Technical report, Institute
for Time Nature Explorations.

Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort. Addison-
Wesley (Reading MA).

149

Résumé

La recherche d’informations (RI) concerne l’obtention d’éléments (habituellement
documents) de nature non structurée (habituellement du texte) qui satisfait un be-
soin d’information, dans de grandes collections de documents. Un système de recherche
d’information (SRI) a pour objectif de représenter et de stocker de grandes quantités
d’informations, pour faciliter et accélérer l’identification des informations pertinentes
estimées pour une requête de l’utilisateur. Les deux processus principaux mis d’un
SRI sont l’indexation et l’appariement. Le processus d’indexation vise à représenter
les représentations des documents, de manière efficace non seulement pour le stockage,
mais aussi pour l’accès. Le processus d’appariement vise à estimer si un document est
pertinent pour une requête exprimée par un utilisateur. Cette mise en correspon-
dance est généralement représentée par un score. Lorsque le processus est appliqué,
un ensemble de documents est retourné à l’utilisateur sous forme de liste classée par
score décroissant. Bien que les systèmes de RI aient émergé dans les années 1940, des
améliorations sont vraiment apparues dès la fin des années 1950. Les améliorations
en RI les plus importantes sont liées à l’évaluation des SRI. La communauté RI a
bénéficié notamment de collections d’évaluation, notamment au travers de l’initiative
TREC, qui organise chaque année un atelier. Ces ateliers ont offert aux chercheurs la
possibilité de mesurer l’efficacité de leur système et de comparer les approches.

De nombreuses approches en RI traitant de l’indexation, de fonctions d’apparie-
ment, de modèles formels, et de retour de pertinence ont été proposées. Cependant,
peu d’approches tirent avantage des recherches effectuées précédemment par d’autres
utilisateurs. Les recherches passées constituent pourtant une source d’information utile
pour les nouveaux utilisateurs (nouvelles requêtes). Par exemple, un utilisateur inté-
ressé par un nouveau sujet pourrait bénéficier des recherches antérieures menées par
les utilisateurs précédents intéressés par le même sujet. En raison de l’absence de
collections ad-hoc de RI, à ce jour il y a un faible intérêt de la communauté RI au-
tour de l’utilisation des recherches passées. En effet, la plupart des collections de RI
existantes sont composées de requêtes indépendantes. Ces collections ne sont pas ap-
propriées pour évaluer les approches fondées sur les requêtes passées parce qu’elles ne
comportent pas de requêtes similaires ou qu’elles ne fournissent pas de jugements de
pertinence.

Par conséquent, il n’est pas facile d’évaluer ce type d’approches. En outre, l’éla-
boration de ces collections est difficile en raison du coût et du temps élevés néces-
saires. Une alternative consiste à simuler les collections. Par ailleurs, les documents
pertinents de requêtes passées similaires peuvent être utilisées pour répondre à une
nouvelle requête. De nombreuses contributions ont été proposées portant sur l’utilisa-
tion de techniques probabilistes pour améliorer les résultats de recherche. Des solutions
simples à mettre en oeuvre pour la réutilisation de résultats de recherches peuvent être
proposées au travers d’algorithmes probabilistes. De plus, ce principe peut également
bénéficier d’un clustering des recherches antérieures selon leurs similarités. Ainsi, dans
cette thèse un cadre pour simuler des collections pour des approches basées sur les
résultats de recherche passées est mis en oeuvre et évalué. Quatre algorithmes proba-
bilistes pour la réutilisation des résultats de recherches passées sont ensuite proposés
et évalués. Enfin, une nouvelle mesure dans un contexte de clustering est proposée.

