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Motivation

Surface waves can be studied from different points of view, where the complementary contribution of diverse domains like laboratory measurement, field studies, analytic models and numeric calculations are needed to build the global understanding. The comparison between theory and experiments represents the opportunity to reveal the experimental constraints that can deviate the measurements from the theory, as well as the theoretical assumptions that make models different from reality.

Surface water waves have many applications, like industrial structures dedicated to power generation, petrol exploitation among other near-shore activities. The study of surface waves and its interaction with structures has substantial importance, permitting us to solve some important problems like wave amplification in harbors due to resonance, excitation of trapped modes or scattering of waves through an obstacle. Recently, investigations carried out on metamaterials (Farhat et al. [START_REF] Farhat | Broadband cylindrical acoustic cloak for linear surface waves in a fluid[END_REF], Porter and Newman [START_REF] Porter | Cloaking of a vertical cylinder in waves using variable bathymetry[END_REF]) have raised the possibility that surface piercing structures are invisible to surface waves.

These subjects are of great interest for engineers, mathematicians and physicist, each domain with their own contribution to the general knowledge. Likewise, surface waves exist in nature, for instance wind generated waves, tidal waves or tsunamis (See figure 1.1). In general, these waves are the result of complex interactions which make their analysis complicated. The simplification and the approximation of the signal is a way to isolate and describe the mechanisms involved. In this way, laboratory experiments, trying to reproduce in a controlled way natural phenomena, are of substantial contribution to the science, despite the fact that only some important aspects are reproduced.

The study of the wave itself appears as the first necessary step to study more complex systems. In this frame, the physical scale of the studied phenomena takes an important role when one wants to focus more specifically on one particular aspect of waves. Depending on the scale, different driving 1.2. SURFACE WAVE THEORY forces will dominate the motion; for example, at large scale (ocean waves), gravity, earth rotation and wind are important factors, while surface tension is a negligible force. In contrast, at small scale, the surface tension can be significant, and it should be considered in any theory (under the capillary length).

Surface water waves may have many different behaviors depending mainly on the relative depth and wave height. The nonlinearity is a factor that determines the shape of the wave and the physical characteristics of its propagation.

Surface wave theory

The simplest way to begin with the study of water waves is the derivation of the linear wave theory. Such a theory is based on some basic assumptions that establish the foundation of the following development. Therefore, let us consider an irrotational flow, with velocity u, which can be expressed as:

u = ∇φ (1.1)
where φ represents a scalar potential. If we consider mass conservation, the scalar potential satisfies Laplace's equation: ∆φ = 0 (1. Let us consider in figure 1.2 a surface S(x, y, t) = z -η(x, y, t) = 0 describing surface of the fluid. Then, considering that the surface S moves with the fluid and always contains the same particles, we can express the zero exchange of particles by means of the material derivative:

DS Dt = ∂S ∂t + u • ∇S = 0 (1.3)
where we can replace the surface expressed in terms of z and η and the velocity u in terms of its potential, which yields the kinematic boundary condition at the free surface:

∂φ ∂z = ∂η ∂t + ∂φ ∂x ∂η ∂x + ∂φ ∂y ∂η ∂y , z = η. (1.4)
This boundary condition will be used several times in this thesis. Additionally, the pressure equilibrium in the whole domain for an unsteady flow is expressed with Bernoulli's equation:

∂φ ∂t + 1 2 (∇φ) 2 + gz + P ρ = F (t) (1.5)
where the unsteady function F (t) is an arbitrary function. This leads to the following boundary condition:

∂φ ∂t + 1 2 (∇φ) 2 + gη = 0 , z = η (1.6)
which is called the dynamic boundary condition. Finally, the boundary condition necessary to close the problem, is the impermeable bottom. To express this condition, we consider that the velocity normal to the bottom is zero. Thus, for a flat bottom located at z = -h we have:

∂φ ∂z = 0 , z = -h. (1.7)
As we can observe in equations (1.4) and (1.6), the free surface boundary conditions are nonlinear equations, which can be solved mathematically by different methods, depending on the types of waves present in the phenomenon.

Expansion of surface wave equations

In this section, we shall consider the linearization of the equations by means of the Stokes' expansion, which is a development that permits us to characterize the nonlinearity, as is presented by Dingemans [START_REF] Dingemans | Water wave propagation over uneven bottoms: Linear wave propagation[END_REF] or Osborne [START_REF] Osborne | Nonlinear ocean waves and the inverse scattering transform[END_REF].

We start considering that the exact solution of the surface deformation and the velocity potential can be approximated with a series in a small parameter ǫ. Thus, we have the following expansions:

η = ǫη 1 + ǫ 2 η 2 + ǫ 3 η 3 + ... (1.8) φ = ǫφ 1 + ǫ 2 φ 2 + ǫ 3 φ 3 + ... (1.9)
Besides, we have the kinematic and dynamic boundary conditions from equations (1.4) and (1.6) evaluated at the unknown surface elevation z = η. Considering that the surface elevation is small, we can also approximate the boundary conditions by a Taylor expansion around the constant value z = 0:

φ(x, η, t) = φ z=0 + η ∂φ ∂z z=0 + 1 2 η 2 ∂ 2 φ ∂z 2 z=0 + ... (1.10)
The linearization is obtained after replace the equations (1.8), (1.9) and (1.10) in the boundary condition of equations (1.2), (1.4), (1.6) and (1.7). Thus, taking the terms at the order ǫ we have the first order Laplace equation:

∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 1 = 0 (1.11)
and the following linear boundary conditions:

∂ 2 φ 1 ∂t 2 + g ∂φ 1 ∂z = 0
, z = 0 (1.12) .14) This linear problem has a solution in the form of a sinusoidal function:

gη 1 + ∂φ 1 ∂t = 0 , z = 0 (1.13) ∂φ 1 ∂z = 0 , z = -h. ( 1 
η(x, t) = a cos(kx -ωt), (1.15) where k and ω satisfy the linear dispersion relation of water waves:

ω 2 = gk tanh kh. (1.16)
It is then possible go to the second order. The nonlinear terms come from putting the equations (1.8), (1.9) and (1.10) in the boundary condition of equations (1.2), (1.4), (1.6) and (1.7), and take 1.3. EXPANSION OF SURFACE WAVE EQUATIONS the terms at the order ǫ 2 . After some algebra, we have the following linear problem on φ 2 and η 2 , with source terms from φ 1 and η 1 :

∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 2 = 0
(1.17)

∂ 2 φ 2 ∂t 2 + g ∂φ 2 ∂z = - ∂ ∂t ∂φ 1 ∂x 2 + ∂φ 1 ∂z 2 -η 1 ∂ ∂z ∂ 2 φ 1 ∂t 2 + g ∂φ 1 ∂z
, z = 0 (1.18) [START_REF] Ciliberto | Chaotic mode competition in parametrically forced surface waves[END_REF])

gη 2 + ∂φ 2 ∂t = - 1 2 
∂φ 1 ∂x 2 + ∂φ 1 ∂z 2 -η 1 ∂ 2 φ 1 ∂z∂t , z = 0 (1.
∂φ 2 ∂z = 0 , z = -h. (1.20)
The full development of this Stokes' expansion is the subject of the next chapter, where a theory for nonlinear waves is explained in detail. Therefore, we consider here only the expression of the surface deformation η, obtained from the second order problem posed in equations (1.17) to (1.20). The second order expansion of the surface deformation is:

η(x, t) = a cos(kx -ωt) + a 2 k (3 -tanh 2 kh) 4 tanh 3 kh cos (2(kx -ωt)) - 1 2 
a 2 k sinh 2kh
. (1.21) which is known as the Stokes' wave.

The perturbation series expansion requires that higher order terms have smaller amplitude, i.e. the first order term should be dominant. Therefore, the validity of the expansion above depends on the ratio between the second and the first order terms. Thus, we have the coefficient:

ak (3 -tanh 2 kh) 4 tanh 3 kh ≪ 1 (1.22)
which can be analyzed in the limit of deep and shallow water.

In deep water, tanh kh → 1, and the inequality becomes ka ≪ 1. In this case, the nonlinearity is determined only by the wave steepness ka, which limits the validity of the Stokes' expansion.

In the shallow water limit, we have tanh kh → kh, and the inequality of equation (1.22) becomes ka ≪ (kh) 3 . In this case, the validity of the expansion is given by the non-dimensional depth kh as well as the wave steepness ka. The inequality can be expressed in terms of the wavelength λ = 2π/k, the amplitude a and the depth h as:

St = a h λ h 2 (1.23)
where the numerical factor proportional to 2π has been neglected. This parameter is known as the Stokes parameter, which can be also expressed in terms of the wave height H = 2a. In this case we obtain the parameter proposed by Ursell [START_REF] Ursell | The long-wave paradox in the theory of gravity waves[END_REF], which is known as Ursell number written as:

U r = H h λ h 2 .
(1.24)

Eventually, for long waves sufficiently small, with an Ursell number in the range U r ≪ 100, the Stokes' expansion is valid.

As we have seen, the Ursell number indicates the general nonlinearity of a wave, depending on the parameters depth and amplitude. These parameters can be used to place the different types of waves in a diagram, where regions can be delimited according to the applicability of a given surface waves theory. In figure 1.3, the diagram published by Le-Méhauté [START_REF] Le-Méhauté | An introduction to hydrodynamics and water waves[END_REF] shows the plane (H, h) where several regions are divided. In this diagram the axis have been normalized by the distance gT 2 , where g is the gravity acceleration and T is the wave period T = 2π/ω. [START_REF] Le-Méhauté | An introduction to hydrodynamics and water waves[END_REF]. The wave height H and the water depth h are normalized by gT 2 , where g is the gravity acceleration and T is the wave period.

On the bottom-right area, the linear wave theory is applicable, which means that the waves are sufficiently small, and the wavelength is not too large compared to the water depth. In this conditions, the Stokes' expansion has a negligible second order term. As the amplitude in the deep water region increases, we reach a criterion H/(gT 2 ) = 0.001 where the linear wave theory is no longer applicable, and the second order Stokes theory should be applied. For steeper waves in deep water, the Stokes' expansion should be truncated at higher order to obtain more accurate results.

However, for intermediate depth, the Stokes waves is still an applicable model, when the wave amplitude is such that U r < 26, as mentioned by Dean and Dalrymple [START_REF] Dean | Water wave mechanics for engineers and scientists[END_REF], Svendsen and Jonsson [START_REF] Svendsen | Hydrodynamics of coastal regions[END_REF] or Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]. A diagonal indicates this limit in figure 1.3. When the water depth becomes much smaller than the wavelength the nonlinearity is determined by both depth and steepness, and a set of diagonals in figure 1.3 separate the region of applicability. In shallow water, waves can be solution of the Korteweg-de Vries equation, which have solution in terms of the Jacobian elliptic function. Therefore, the surface deformation of a Cnoidal wave can be expressed as: η(x, t) = η tr + 2a cn 2 (4πK(m)(kx -ωt))) (1.25) where η tr is the height of the trough, cn is a Jacobian elliptic function, and K(m) is the complete elliptic integral of the first type, depending on the elliptic parameter m.

The profile of a linear wave, is compared with a second order Stokes' wave and a Cnoidal wave in figure 1. [START_REF] Beji | Experimental investigation of wave propagation over a bar[END_REF]. We observe that for an intermediate depth the Stokes' wave differs slightly from the linear profile, indicating a small contribution of the second order. On the other hand, the profile of the Cnoidal wave has a profile less symmetrical in the vertical axis, with sharp crests and wide troughs, depending on the elliptic parameter m. The wave profile changes substantially when the water depth is much smaller than the wavelength, evolving gradually to a soliton, in the limit of shallow water waves. A different approximation to the same range of validity can be obtained by means of the Boussinesq equations. This model allows waves traveling in both directions, with the characteristics of weakly nonlinear waves. A simplification of the model considers the elimination of the vertical coordinate, expressing the equations in terms of the depth-averaged horizontal velocity:

ū = η -h dz ∂φ ∂x (1.26)
and the surface deformation η. Thus, considering the validity of the Laplace equation (1.2) and the boundary conditions of equations (1.4), (1.6) and (1.7), we can obtain, after some approximations, the equations describing the wave propagation:

∂η ∂t + ∂ ∂x [(η + h)ū] = 0 (1.27) ∂ ū ∂t + ū ∂ ū ∂x + g ∂η ∂t = h 2 3 
∂ 3 ū ∂x 2 ∂t (1.28)
which are known as the Boussinesq equations (Boussinesq [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF]). The solution of these equations is depth dependent and dispersive. This leads to a dispersion relation in the following form:

ω 2 = ghk 2 1 - k 2 h 2 3 (1.29)
which corresponds also to the second order expansion of the linear dispersion relation of equation (1.16). Some works on nonlinear waves, namely in the case of submerged obstacles, have been carried out by Grue [START_REF] Grue | Nonlinear water waves at a submerged obstacle or bottom topography[END_REF] or Madsen and Sorensen [START_REF] Madsen | Bound waves and triad interactions in shallow water[END_REF], using Boussinesq-type models.

The step problem

An interesting problem is the propagation of the water waves in a region with a substantial change in depth. This phenomenon is important at all the scales. For example, it is associated with the tsunami wave propagating from a deep water region in the ocean and passing over the continental shelf. At the scale of the tsunami wave, the continental shelf behaves like a submerged step that change the wave profile, increasing the steepness and wave height. In figure 1.5, the sketch shows a tsunami generated at the sea bed and propagating toward the continent, where a smooth but considerable change in depth modifies the wave profile and increases the steepness close to the breaking limit. As an introduction, we present in this section the long wave approximation of the propagation of waves over a submerged step developed by Mei et al. [START_REF] Mei | Theory and applications of ocean surface waves[END_REF]. Let us consider a two-dimensional domain (x, z) separated in two regions of different depth at the origin (see figure 1.6). For the first region (x < 0) the depth is h 1 and for the second region the depth is h 2 . For the simple harmonic motion, we have the Helmholtz equation:

∂ 2 η ∂x 2 + k 2 η = 0 (1.30)
where the wavenumber is given by the shallow water approximation:

k = ω √ gh (1.31)
At the step junction, we have [η] = 0 and [h ∂η ∂x ] = 0. To solve the problem we need to consider radiation conditions at the step, which means that for a incident wave coming from x = -∞, there is one reflected wave going to the left (x = -∞), and one transmitted wave going to the right (x = +∞). Thus, we have a general solution at both sides of the step expressed as:

η 1 (x, t) = a e ik 1 x + Re -ik 1 ,
x < 0 (1.32)

η 2 (x, t) = aT e ik 2 x , x > 0 (1.33)
where the amplitude of the incident wave a is known and the reflection and transmission coefficients R and T can be found. By replacing the solutions η 1 and η 2 in the matching conditions, we obtain two equations:

1 + R = T (1.34) k 1 h 1 -k 1 h 1 R = k 2 h 2 T (1.35)
which are the necessary equations to obtain the transmission and reflection coefficient. Next, by replacing the shallow water approximation (1.31) in the matching equations (1.34) and (1.35), and solving for the unknowns R and T we can obtain the following coefficients:

1.5. SPACE-TIME RESOLVED MEASUREMENTS FOR WATER WAVES

T = 2 1 + (h 2 /h 1 ) 1/2
(1.36)

R = 1 -(h 2 /h 1 ) 1/2 1 + (h 2 /h 1 ) 1/2 .
(1.37)

These coefficients determine the long wave limit for the propagation coefficients, when the wavelength is much larger than the water depth. In figure 1.7 we present the reflection and transmission coefficients as a function of the depth ration h 2 /h 1 . In the limit h 2 /h 1 → 0 the reflection coefficient is equal to 1 and the amplitude of the transmitted wave is twice the amplitude of the incident wave. In this case, all the nonlinear effects have been neglected and the perfect reflection for h 2 /h 1 = 0 represents the limit where the step behaves like a wall.

Further, when the ratio h 2 /h 1 > 1, the incident wave comes from the shallow water region and the sign of the reflection change from positive to negative. In this case, the reflected wave has a phase shift of π. The long wave limit is a simple way to introduce the propagation of water waves over a depth discontinuity. A formal demonstration of the validity of the matching conditions can be found in the long wave limit calculation derived by Bartholomeusz [START_REF] Bartholomeusz | The reflexion of long waves at a step[END_REF].

In the following chapters we shall study in detail this problem by considering dispersion effect at the linear order and also the nonlinearity, which leads to the solution of higher orders.

Space-time resolved measurements for water waves

The experiments presented in this work were carried out using the facilities developed previously in the laboratory, which permit the measurement of the water surface deformation by means of the Fourier Transform Profilometry (FTP). This technique, developed initially by Takeda and Mutoh [START_REF] Takeda | Fourier transform profilometry for the automatic measurement of 3-d object shapes[END_REF] for the scan of 3D surfaces, was adapted later by Cobelli et al. [START_REF] Cobelli | Global measurement on water waves by fourier transform profilometry[END_REF] for the study of surface waves.

The principle is based on measuring the phase difference between a reference pattern projected onto the surface of still water and the pattern projected onto the deformed surface. An optic relation permits us to obtain the surface height in each pixel of the image, with a vertical resolution in the same order of the pixel size.

The great advantage of this technique is the possibility to measure a two dimensional field η(x, y, z) with good temporal resolution. Therefore, the measurement represents an innovative tool that is able to analyze a variety of phenomena occurring in both space and time. For instance, the wave focusing (Farhat et al. [START_REF] Farhat | Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders[END_REF]) can be verified with this technique.

This technique has been used to study the time reversal in water waves by Przadka et al. [START_REF] Przadka | Time reversal of water waves[END_REF], the measurements of wave turbulence by Cobelli et al. [START_REF] Cobelli | Different regimes for water wave turbulence[END_REF] and several works in waveguides such as study of trapped modes by Cobelli et al. [START_REF] Cobelli | Experimental study on water-wave trapped modes[END_REF] or the experimental focusing performed by Bobinski et al. [START_REF] Bobinski | Experimental demonstration of epsilon-near-zero water waves focusing[END_REF].

The experiments presented in the next chapters take advantage of the capabilities of the FTP in the measurements of surface waves. The space-time resolved permits us to study important physical properties like temporal and spatial spectra, or the scattering of waves with submerged or surface piercing obstacles. In particular, we test the FTP capabilities in the measurement of nonlinear waves, verifying that the technique performs well even with a considerable wave steepness.

Chapter 2

Multi-modal model of a nonlinear wave passing over a submerged obstacle

Introduction

The mathematical models of surface waves in variable bathymetry utilize a broad variety of tools. In this study we revisit a multi-modal model developed by Massel [51] that gives accurate results for weakly nonlinear conditions, whose applicability was confirmed by Ohyama et al. [START_REF] Ohyama | Applicability of numerical models to nonlinear dispersive waves[END_REF]. Among the earliest models, which solve the linearized equations, one can mention Mei and Black [START_REF] Mei | Scattering of surface waves by rectagular obstacles in waters of finite depth[END_REF], who present a variational formulation, and Miles [START_REF] Miles | Surface-wave scattering matrix for a shelf[END_REF], where the scattering matrix with the transmission and reflection coefficients in both directions is calculated. The model proposed by Newman [START_REF] Newman | Propagation of water waves over an infinite step[END_REF], considered an infinite depth before the step, which can be a good approximation for certain configurations. Likewise, Boussinesq-type equations have been used in the step problem, as performed by Grue [START_REF] Grue | Nonlinear water waves at a submerged obstacle or bottom topography[END_REF].

The multi-modal model developed by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF], solves the problem of propagation of nonlinear waves over a submerged vertical step. The interest of this model, is the possibility to obtain the reflection and transmission coefficients at the first and second order. In this work, we were specially interested in the propagation at the second order, obtaining mathematically and afterwards experimentally, the relative contribution of free and bound waves.

The theory developed by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF] has been improved later in different aspects. In the weakly nonlinear regime, more general bathymetries have been studied in Belibassakis and Athanassoulis [START_REF] Belibassakis | Extension of second-order stokes theory to variable bathymetry[END_REF] and Belibassakis and Athanassoulis [START_REF] Belibassakis | A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions[END_REF]. Besides, oblique incident waves were considered by Rhee [START_REF] Rhee | On the transmission of water waves over a shelf[END_REF], obtaining interesting results for the phase shift of the transmitted and reflected waves.

More recently, in the linear regime, Porter and Porter [START_REF] Porter | Approximations to the scattering of water waves by steep topography[END_REF] used a conformal mapping of the fluid domain to transfer the steep deformations of the bottom topography into smooth functions applied to the modified free surface boundary conditions. This approximations could be a practical solution to the convergence problems that will be shown later. Likewise, also in the linear regime, supplementary modes were added by Athanassoulis and Belibassakis [START_REF] Athanassoulis | A consistent coupled-mode theory for the propagation of small amplitude water waves over variable bathymetry regions[END_REF], obtaining faster convergence in terms of number of modes.

In this chapter, we present the multi-modal model for the case of weakly nonlinear waves passing over a rectangular semi-infinite step. The results are firstly compared with the calculations available in the literature, and then analyzed in terms of the convergence. We give especial attention to the second order, whose source term has difficult convergence due to the abrupt depth discontinuity.

A toy model: Reflection and transmission of a one-dimensional nonlinear wave

We present in this section, as a way of introduction to the nonlinear propagation of surface waves, a simple toy model that represents the transmission of a nonlinear wave through an interface that separates two media. We explain step by step the statement of the problem, the hypotheses assumed and the mathematical operations by which physical results are deduced.

The problem is stated in an infinite domain, where at the origin, we have an interface separating two different media (Fig. 2.1). Two parameters change at the interface, the phase velocity c and the nonlinear constant α. The phase velocity is smaller in the right region, which means that for a harmonic regime (with one fundamental frequency) the wavelength will be necessary shorter in the right region. In the same way, the nonlinear factor α is greater in the right region, which produces a larger contribution of second order terms. The equation (2.1) corresponds to a classical wave equation including a loss term with a constant β which transforms the equation in a dispersive problem. As we will observe later, this loss term is crucial in the solution of the second order problem, to get dispersion.

In addition, a nonlinear source term in the right hand yields a non-homogeneous partial differential equation. Note that, this source term was especially chosen with a temporal derivative, to get rid of constant terms, as will appear in the following.

Thus, we propose a model of nonlinear propagation expressed as a nonlinear wave equation:

∂ 2 φ ∂t 2 + β ∂φ ∂t -c 2 (x) ∂ 2 φ ∂x 2 = α(x) ∂ ∂t φ ∂φ ∂x (2.1)
where β is constant and α(x) and c(x) are piecewise functions representing the nonlinearity and the phase velocity respectively. We define the phase velocity as:

c(x) = c 1 , x < 0 c 2 < c 1 , x > 0 (2.2)
Similarly, the nonlinear parameter is defined as:

α(x) = α 1 , x < 0 α 2 > α 1 , x > 0 (2.
3)

The nonlinear problem can be solved starting with the perturbation method. Considering a small parameter ǫ, we develop the wave function φ as a power series:

φ(x, t) = ǫφ 1 (x, t) + ǫ 2 φ 2 (x, t) + ǫ 3 φ 3 (x, t) + ... (2.4)
Replacing the expanded potential truncated at the second order in the nonlinear equation (2.1), and associating the terms at the order ǫ and ǫ 2 , we get:

ǫ ∂ 2 φ (1) ∂t 2 + β ∂φ 1 ∂t -c 2 (x) ∂ 2 φ 1 ∂x 2 + ǫ 2 ∂ 2 φ 2 ∂t 2 + β ∂φ 2 ∂t -c 2 (x) ∂ 2 φ 2 ∂x 2 = ǫ 2 α(x) ∂ ∂t φ 1 ∂φ 1 ∂x (2.5)

First order problem

Statement of the problem

We start solving the wave equation (2.5) at the order ǫ. By separating the terms at this order, we get an homogeneous equation in the form:

∂ 2 φ 1 ∂t 2 + β ∂φ 1 ∂t -c 2 (x) ∂ 2 φ 1 ∂x 2 = 0 (2.6)
We state the first order problem with the following boundary conditions:

• In x = -∞ there are one incident wave and one wave reflected by the discontinuity.

• In x = +∞ there is one transmitted wave (only outgoing).

• The function φ and its spatial derivative are continuous in the whole domain.

Thus: [φ] = 0 and [ ∂ ∂x φ] = 0 at x = 0.

Method of solution for the first order

We propose a solution according to the boundary conditions at the infinity as:

φ 1 = ae i(kx-ωt) -aRe -i(kx+ωt) , x < 0 (2.7
)

φ 1 = aT e i(kx-ωt) , x > 0 (2.8)
Besides, we get two equations from the continuity conditions at x = 0 for the function φ and its spatial derivative:

φ 1 | x=0 -= φ 1 | x=0 + (2.9) ∂φ 1 ∂x x=0 - = ∂φ 1 ∂x x=0 + (2.10)
Now we replace the proposed solution for x < 0 in equation (2.6) (we omitted the case x > 0 because it is the same procedure as for x < 0). This gives us:

(-ω 2 -iωβ + c 2 1 k 2 )ae i(kx-ωt) -(-ω 2 -iωβ + c 2 1 k 2 )aRe -i(kx+ωt) = 0. (2.11)
Both terms are linearly independent, so the equation is solved, if and only if, each term is equal to zero. This implies that:

ω 2 + iωβ = c 2 1 k 2 , x < 0 (2.12)
In the same way, for x > 0 we have the same condition:

ω 2 + iωβ = c 2 2 k 2 , x > 0 (2.13)
The equations (2.12) and (2.13) are the dispersion relation between ω and k, which will be referred afterwards as the function k = D(ω). As it will be useful in the next section, the dispersive wavenumbers obtained for the multiplies of the frequencies, will be denoted by:

D(nω) = k n , x < 0 l n , x > 0 , n = 1, 2, ... (2.14)
By replacing equations (2.7) and (2.8) in the continuity conditions (2.9) and (2.10), and changing the generic wavenumber k for the dispersive notation k 1 and l 1 from equation (2.14), we get two equations:

1 -R = T (2.15) k 1 + k 1 R = l 1 T (2.16)
Solving for the unknowns R and T we get:

R = l 1 -k 1 l 1 + k 1 (2.17) T = 2k 1 l 1 + k 1 (2.18)

Second order problem

Statement of the problem

Once the first order problem is solved, we search solutions for the second order problem (ǫ 2 ). The small perturbation expansions postpones the influence of the nonlinear term to the second order, knowing already the form of the source term as a function of the homogeneous first order solution (φ 1 ).

We consider the wave equation (2.5) at the order ǫ 2 .

∂ 2 φ 2 ∂t 2 + β ∂φ 2 ∂t -c 2 (x) ∂ 2 φ 2 ∂x 2 = α(x) ∂ ∂t φ 1 ∂φ 1 ∂x (2.19)
This represent a non-homogeneous wave equation. Considering that this type of problems have one particular and one homogeneous solution (φ 2 = φ b 2 + φ f 2 ) we can state separately the boundary conditions at x = ±∞. First, the right side of equation (2.19) depends on φ 1 , which implies that particular solution (φ b

2 ) has the same boundary conditions as for φ 1 :

• In x = -∞ there are one incident wave and one reflected wave from the discontinuity.

• In x = +∞ there is one transmitted wave (only outgoing).

Besides, because the homogeneous problem does not consider a source term with energy coming from the infinity, we have radiation conditions for the homogeneous solution φ f 2 :

• In x = -∞ there is only outgoing waves

• In x = +∞ there is only outgoing waves Similarly to the first order problem, the second order problem should satisfy continuity of the function and its spatial derivative. Thus we have [φ 2 ] = 0 and [ ∂ ∂x φ 2 ] = 0 at x = 0.

Method of solution

In order to solve the second order problem, we have to consider the real part of φ 1 . This form permits us to apply correctly the nonlinear operations at the second order. Therefore, the first order solution is:

φ 1 = ae i(k 1 x-ωt) -aRe -i(k 1 x+ωt) + c.c. , x < 0 (2.20
)

φ 1 = aT e i(l 1 x-ωt) + c.c. , x > 0 (2.21)
where c.c. represents the complex conjugate. We develop the right hand of the equation (2.19). For x < 0 we have:

α 1 ∂ ∂t φ 1 ∂φ 1 ∂x = α 1 2k 1 ω a 2 e 2i(k 1 x-ωt) -a 2 R 2 e -2i(k 1 x+ωt) + c.c. (2.22)
and for x > 0 we have:

α 2 ∂ ∂t φ 1 ∂φ 1 ∂x = α 2 2l 1 ω a 2 T 2 e 2i(l 1 x-ωt) + c.c. (2.23)
In view of the source terms of equations (2.22) and (2.23), we propose a particular solution of equation (2.19) in the following form:

φ b 2 = Ae 2i(k 1 x-ωt) + Be -2i(k 1 x+ωt) + c.c. , x < 0 (2.24) φ b 2 = Ce 2i(l 1 x-ωt) + c.c. , x > 0 (2.25)
as well as we propose an homogeneous solution, according to the radiation condition, in the form:

φ f 2 = aR 2 e -i(k 2 x+2ωt) + c.c. , x < 0 (2.26) φ f 2 = aT 2 e 2i(l 2 x-ωt) + c.c. , x > 0 (2.27)
where the unknowns A, B and C correspond to the particular solution φ b 2 (here and in what follows called bound wave) and the unknowns R 2 and T 2 correspond to the homogeneous solution φ f 2 (here and in what follows called free wave).

When we replace the complete solution (φ 2 = φ b 2 + φ f 2 ) in the left side of equation (2.19), the free wave terms (with R 2 and T 2 ) vanish, and we get the wave equation in terms of the unknowns A, B and C:

4k 2 1 c 2 1 -4ω 2 -2iβω Ae 2i(k 1 x-ωt) + 4k 2 1 c 2 1 -4ω 2 -2iβω Be 2i(k 1 x+ωt) + c.c. = α 1 ∂ ∂t φ 1 ∂φ 1 ∂x + c.c. , x < 0 (2.28) 4l 2 1 c 2 2 -4ω 2 -2iβω Ce 2i(l 1 x-ωt) + c.c. = α 2 ∂ ∂t φ 1 ∂φ 1 ∂x + c.c. , x > 0 (2.29)
We equal the equation (2.22) to (2.28) and the equation (2.23) to (2.29) and we solve for the unknowns A, B and C. We get the complex coefficients of the bound wave:

A = -iα 1 k 1 a 2 β B = iα 1 k 1 a 2 R 2 β C = -iα 2 l 1 a 2 T 2 β (2.30)

A TOY MODEL: ONE-DIMENSIONAL NONLINEAR WAVE

Besides, the second order problem should satisfy continuity of the function and its spatial derivative. Thus, at x = 0 we have:

φ 2 | x=0 -= φ 2 | x=0 + (2.31) ∂φ 2 ∂x x=0 - = ∂φ 2 ∂x x=0 + (2.32)
By replacing the homogeneous and particular solutions in the continuity conditions (equations (2.31) and (2.32)) we have two equations for the unknowns R 2 and T 2 :

(A + B + aR 2 ) e -2iωt + c.c. = (C + aT 2 ) e -2iωt + c.c. (2.33) (2k 1 A -2k 1 B -k 2 aR 2 ) e -2iωt + c.c. = (2l 1 C + l 2 aT 2 ) e -2iωt + c.c. (2.34)
Solving for R 2 and T 2 :

R 2 = (2k 1 A -2k 1 B -2l 1 C -l 2 (A + B -C)) a(k 2 + l 2 ) (2.

35)

T 2 = A + B -C + aR 2 a (2.36)

Numeric example

In this section, we compute a particular example of the previous model. We chose the following parameters that determine the conditions of the problem:

• ω = π • α 1 = 0.1, x < 0 • α 2 = 0.3, x > 0 • β = 0.01 • c 1 = 0.5, x < 0 • c 2 = 0.25, x > 0 • a = 0.01
with this conditions, the steepness of the incident wave is ka = 0.063, which indicates the weak non linearity of the incident wave. Therefore, a consistent weakly nonlinear model can be applied.

Figure 2.2 shows the real part of each component of the first order. The obtained coefficients are R = 1/3, T = 2/3. The continuity of φ 1 and ∂ x φ 1 imposed in equations (2.9) and (2.10) is observable in figure 2.3, where the addition of the incident and reflected wave in the left region match in amplitude and slope with the transmitted wave. Regarding the second order problem, we show separately the bound and free waves in figure 2.4. At this order, the obtained wave coefficients are:

• A = 1 • 10 -5 -6.3 • 10 -3 i • B = -1.1 • 10 -6 + 6.98 • 10 -4 i • C = 2.66 • 10 -5 -1.6 • 10 -2 i • R 2 = -9 • 10 -4 + 0.14i • T 2 = -2.7 • 10 -3 + 1.25i
We observe in figure 2.4 that the bound transmitted wave (Ce 2il 1 x ) is greater than the incident bound wave (Ae 2ik 1 x ), this amplification is due to the increment in the non linearity of the right region, determined by the constant α(x). The free waves, with the coefficients R 2 and T 2 should compensate the discontinuity of the bound wave. Consequently, the amplitude of the transmitted free waves is 3 times greater than reflected free waves. Second order separated waves. In x < 0 there are one incident wave and two reflected waves, corresponding to the particular and homogeneous solution. In x > 0 there are two transmitted waves, from the particular and homogeneous solution.

The continuity of the second order function and its derivative (φ 2 , ∂ x φ 2 ) is shown in figure 2.5. In this figure, similarly to the first order, the wavelength of the transmitted part is shorter than the incident part. Eventually, the addition of the first and second order functions shows continuity at the interface in figure 2.6. Here, the nonlinearity of the signal is clearly visible from the wave profile. 

Concluding remarks about the one dimensional model

The model presented in this section revealed some important hypothesis that should be considered to correctly solve the problem of propagation of nonlinear waves.

Firstly, the nonlinear conditions of the problem are key parameters. In this case, the nonlinear parameter is the stepness ka, which should be a small number (ka ≪ 1). The power series expansion only makes physical sense when this parameter is sufficiently small. Secondly, the boundary conditions at the infinity should be well defined in order to have a wellposed problem. The radiation conditions of the free waves should be imposed from the statement of the problem. Examples of nonlinear developments can be found in Hammack and Henderson [START_REF] Hammack | Resonant interaction among surface water waves[END_REF], Hsu et al. [START_REF] Hsu | Third order approximation to short crested waves[END_REF] and Madsen and Sorensen [START_REF] Madsen | Bound waves and triad interactions in shallow water[END_REF].

The second order problem is a non homogeneous partial differential equation, which has a particular and a homogeneous solution. We observed that the particular solutions should be solved first. This solution fixes the frequency that is applied to the homogeneous solution (in this case 2ω).

To conclude, we consider that the toy model problem presented in this section represents a good exercise for solving a nonlinear wave problem, as a previous step before solving the same problem in the context of surface water waves, which will be analyzed in the next section.

Analysis of the reflection and transmission of a nonlinear gravity

wave over a submerged step (Massel, 1983)

Statement of the problem

We consider the surface gravity wave problem in two dimensions. The geometry of the system can be described from left to right starting with a wave coming from x = -∞ and including a submerged step located at x = 0. Thus, the depth h(x) is a piecewise function expressed as: For simplicity, all the development is presented in the configuration deep-to-shallow water, although the model is perfectly applicable to the case shallow-to-deep water (only some limits in the final integrals should be changed).

h(x) = h , x < 0 h s < h , x > 0 , ( 2 
In both sides of the step, the velocity potential function φ and the surface displacement η should satisfy the laplace equation (volume conservation):

∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ = 0 (2.38)
and the free surface boundary conditions expressed in the following equations:

∂φ ∂z = ∂η ∂t + ∂φ ∂x ∂η ∂x , , z = η (2.39) ∂φ ∂t + 1 2 ∂φ ∂x 2 + ∂φ ∂z 2 + gη = 0 , z = η (2.40)
On the bottom and on the step wall, we impose impervious boundary:

∂φ ∂z = 0 , z = -h(x) (2.41) ∂φ ∂x = 0 , -h < z < -h s , x = 0 (2.42)
The problem can be solved starting with the perturbation method, well explained by Hsu et al. [START_REF] Hsu | Third order approximation to short crested waves[END_REF], Ohyama et al. [START_REF] Ohyama | Applicability of numerical models to nonlinear dispersive waves[END_REF] and Mei et al. [START_REF] Mei | Theory and applications of ocean surface waves[END_REF]. Considering a small parameter ǫ (here we consider in dimensional form ǫ = a), we develop the wave potential φ and the surface displacement η into a power series expansion:

φ(x, z, t) = ǫφ 1 (x, z, t) + ǫ 2 φ 2 (x, z, t) + ... (2.43) η(x, t) = ǫη 1 (x, t) + ǫ 2 η 2 (x, t) + ... (2.44)
Additionally, the total potential can be expressed in a Taylor series expansion, around z = 0, thus we will use expansion in the form:

φ(x, η, t) = φ z=0 + η ∂φ ∂z z=0 + 1 2 η 2 ∂ 2 φ ∂z 2 z=0 + ... (2.45)
We replace the power series (2.43) and (2.44), and the Taylor expansion (2.45) in the Laplace equation (2.38) and in the free surface and bottom boundary conditions (equations (2.39) to (2.42)). We truncate the expressions at the order ǫ 2 :

ǫ ∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 1 + ǫ 2 ∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 2 + O(ǫ 3 ) = 0 (2.46) ǫ ∂ ∂z φ 1 + ǫ 2 ∂ ∂z φ 2 + ǫ 2 η 1 ∂ 2 φ 1 ∂z 2 = ǫ ∂ ∂t η 1 + ǫ 2 ∂ ∂t η 2 + ǫ 2 ∂φ 1 ∂x ∂η 1 ∂x + O(ǫ 3 ) , z = 0 (2.47) ǫ ∂ ∂t φ 1 + ǫ 2 ∂ ∂t φ 2 + ǫ 2 η 1 ∂ 2 φ 1 ∂z∂t + 1 2 ǫ 2 (∇φ 1 ) 2 + ǫgη 1 + ǫ 2 gη 2 + O(ǫ 3 ) = 0 , z = 0 (2.48) ǫ ∂ ∂z φ 1 + ǫ 2 ∂ ∂z φ 2 + O(ǫ 3 ) = 0 , z = -h (2.49) ∂ ∂x ǫφ 1 + ǫ 2 φ 2 + O(ǫ 3 ) = 0 , -h < z < -h s , x = 0 (2.50)
Therefore, we get a nonlinear problem of surface waves over a submerged step.

First order problem

Statement of the problem

We start by solving equations (2.46) to (2.50) at the first order. By separating the terms at the order ǫ, we get a homogeneous equation in the form:

∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 1 = 0 (2.51)
with the boundary conditions:

∂ 2 φ 1 ∂t 2 + g ∂φ 1 ∂z = 0 , z = 0 (2.52
)

gη 1 + ∂φ 1 ∂t = 0 , z = 0 (2.53) ∂φ 1 ∂z = 0 , z = -h (2.54) ∂φ 1 ∂x = 0 , -h < z < -h s , x = 0 (2.55)
This is the classical of diffraction of water waves by a step. We state the following boundary conditions at the infinity:

• In x < 0 there are one incident wave and one reflected wave from the discontinuity.

• In x > 0 there is one transmitted wave (only outgoing).

• The potential φ and its spatial derivative are continuous in the whole domain.

Thus: [φ] = 0 and [ ∂ ∂x φ] = 0 at x = 0 and -h s < z < 0.

Solution of first order

We define the space-time dependent functions corresponding to the incident and reflected waves as:

I k 0 (x, t) =
ga ω e i(k 0 x-ωt) , x < 0 (2.56)

A n (x, t) = ga ω e -i(knx+ωt) , x < 0 (2.57) B m (x, t) = ga ω e i(ksmx-ωt) , x > 0 (2.58)
where k 0 corresponds to the unique real propagating solution and k n = ik 1 , ik 2 , ik 3 , ... to the infinite imaginary evanescent solutions of the dispersion relation of surface gravity waves:

ω 2 = gk n tanh(k n h) (2.59)
and k sm = k s0 , ik s1 , ik s2 , ik s3 , ... correspond, in the same way, to the real and imaginary solutions of the dispersion relation in the shallow water region (here the subindex s indicates the shallow water region):

ω 2 = gk sm tanh(k sm h s ) (2.60)
In addition, the orthogonal basis function that satisfies the boundary conditions (2.52) to (2.54), is a z dependent function in the form:

F n (z) = cosh k n (z + h) cosh k n h , x < 0 (2.61) G m (z) = cosh k sm (z + h s ) cosh k sm h s , x > 0 (2.62)
Hence, the linear potential for both deep and shallow water regions can be written as:

φ 1 = I 0 F 0 + n R n A n F n , x < 0 (2.63) φ 1 = m T m B m G m , x > 0 (2.64)
where R n and T m are the unknown reflection and transmission coefficients.

From the continuity conditions at x = 0 for the potential φ and its spatial derivative, we obtain the following equations:

φ 1 | x=0 -= φ 1 | x=0 + (2.65) ∂φ 1 ∂x x=0 - = ∂φ 1 ∂x x=0 + (2.66)
For faster convergence, we consider a number of modes N for the deep water region, and N s ≈ (h s /h) N for the shallow water region. By replacing equations (2.63) and (2.64) in the conditions (2.65) and (2.66) we obtain:

I 0 F 0 + n R n A n F n = m T m B m G m (2.67) ∂ x I 0 F 0 + n R n ∂ x A n F n = m T m ∂ x B m G m (2.68)
Next, we project the equation (2.67) onto the orthogonal basis G m :

I 0 0 -hs F 0 G m + n R n A n 0 -hs F n G m = T m B m 0 -hs G 2 m . (2.69)
where we have used the orthogonality of the basis G m to eliminate the sum in m in the right hand, i.e. the equation (2.69) is written for each 0 ≤ m ≤ (N s -1). Before projecting the equation (2.68), we use the boundary condition from equation (2.55) to impose the following equivalence of the integrals of the derivative:

0 -h ∂φ 1 ∂x F n dz = 0 -hs ∂φ 1 ∂x F n dz , x = 0 (2.70)
which we use to project the equation (2.68) onto the orthogonal basis F n , and obtain:

∂ x I 0 0 -h F 0 F n + R n ∂ x A n 0 -h F 2 n = m T m ∂ x B m 0 -hs F n G m (2.71)
where we have used the orthogonality of the basis F n to eliminate the sum in n in the left hand, i.e. the equation (2.71) is written for each 0 ≤ n ≤ (N -1). Therefore, we obtain N + N s projected equations.

Finally, we can solve the system for R n :

n R n ∂ x A n N n δ n,γ - m A n ∂ x B m L n,m L γ,m M m B m = -∂ x I 0 N 0 δ 0,γ + m I 0 ∂ x B m L 0,m L γ,m M m B m (2.72)
where δ k,γ is the Kronecker delta and the following notations were used to express the integrals:

L n,m = 0 -hs F n G m (2.73) M m = 0 -hs G 2 m
(2.74)

N n = 0 -h F 2 n (2.75)
The transmission coefficients T m can be easily obtained from (2.69).

Second order problem

Statement of the problem

We now consider the boundary conditions of equations (2.47) and (2.48) at the order ǫ 2 . This leads to the nonlinear wave problem at second order as in section 2.2. Thus, the second order potential φ 2 should satisfy the Laplace equation (Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]):

∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 2 = 0 (2.76)
with the following boundary conditions at the free surface:

∂ 2 φ 2 ∂t 2 + g ∂φ 2 ∂z = - ∂ ∂t ∂φ 1 ∂x 2 + ∂φ 1 ∂z 2 -η 1 ∂ ∂z ∂ 2 φ 1 ∂t 2 + g ∂φ 1 ∂z , z = 0 (2.77)
gη 2 + ∂φ 2 ∂t = - 1 2 ∂φ 1 ∂x 2 + ∂φ 1 ∂z 2 -η 1 ∂ 2 φ 1 ∂z∂t , z = 0 (2.78)
and impervious boundary conditions at the bottom surface:

∂φ 2 ∂z = 0 , z = -h(x) (2.79) ∂φ 2 ∂x = 0 , -h < z < -h s , x = 0 (2.80)
This represents a non-homogeneous surface wave equation. Considering that the non-homogeneous wave problem has one particular and one homogeneous solution (φ 2 = φ b 2 + φ f 2 ) we can state separately the boundary conditions at x = ±∞. First, the right side of (2.77) depends on φ 1 , which implies that the particular solution (φ b

2 ) has the same boundary conditions as for φ 1 . Thus we have at the infinity:

• In x = -∞ there are one incident wave and one reflected wave from the step.

• In x = +∞ there is one transmitted wave (only outgoing).

Besides, because the homogeneous second order problem does not consider a source term with energy coming from the infinity, we have Sommerfeld radiation condition:

• In x = -∞ there is only outgoing waves

• In x = +∞ there is only outgoing waves Similarly to the first order problem, the second order problem should satisfy continuity of the potential and its spatial derivative. Thus, we have [φ 2 ] = 0 and [ ∂ ∂x φ 2 ] = 0 at x = 0.

Second order particular solution

The kinematic and dynamic boundary condition expressed in equations (2.77) and (2.78) have a source term depending on the solution of the linear problem. The solution of this equation is composed by one particular solution φ b 2 (here and in what follows called bound wave) and one the homogeneous solution φ f 2 (here and in what follows called free wave). Thus, the complete solution is:

φ 2 = φ b 2 + φ f 2 (2.81)
We start by finding the bound wave terms, which depend on φ 1 . In order to calculate the source term, we re-write the real part of the linear potential in the form:

φ 1 = I 0 F 0 + n R n A n F n + c.c. , x < 0 (2.82) φ 1 = m T m B m G m + c.c. , x > 0 (2.83)
where c.c. represents the complex conjugate. Thus, we can find and write the incident second order potential in terms of the following (x, t) and z dependent functions:

I 00 (x, t) = C 00 e 2ik 0 x-2iωt + c.c. (2.84) F 00 (z) = cosh 2k 0 (z + h) cosh 2k 0 h (2.85)
This second order wave, usually called Stokes harmonic is the solution of equation (2.77) when there is only one incident wave (equation (2.56)). Thus, it always exists in the propagation of a single wave in constant depth. The simplified expression of the Stokes harmonic is:

I 00 (x, t)F 00 (z) = 3 8 ωa 2 cosh 2k 0 (z + h) sinh 4 (k 0 h) e 2ik 0 x-2iωt + c.c. (2.86)
The bound reflected waves can be written in terms of the (x, t) dependent function:

A n,n ′ (x, t) = C n,n ′ e -i(kn+k n ′ )x-2iωt + c.c. (2.87)
where the constant C n,m is the bound waves constant depending on the linear reflection coefficients. This constant is obtained from the source term by replacing equations (2.82) and (2.83) in the right hand of the equation (2.77) and performing lengthy algebraic manipulations:

C n,n ′ = ig 2 a 2 2ω k 2 n + 4k n k n ′ + k n ′ 2 -k 2 n tanh 2 k n h -k n ′ 2 tanh 2 k n ′ h -4k n k n ′ tanh k n h tanh k n ′ h 4ω 2 -g(k n + k n ′ ) tanh(k n + k n ′ )h (2.
88) For the shallow water region, the bound waves depends on the transmitted linear wave. Thus, the (x, t) dependent function can be expressed as:

B m,m ′ (x, t) = C m,m ′ e i(k sn+ ksm)x-2iωt + c.c. (2.89)
where the coefficient C m,m ′ has the same form as equation (2.88), but using wavenumbers and depth from the shallow water region. The z dependency in the bound reflected waves is expressed, in order to satisfy the source term of equations (2.77) and (2.78), in the following form:

F n,n ′ (z) = cosh(k n + k n ′ )(z + h) cosh(k n + k n ′ )h , x < 0 (2.90) G m,m ′ (z) = cosh(k sn + k sm )(z + h s ) cosh(k sn + k sm )h s , x > 0 (2.91)
In addition, the second order evanescent terms resulting from the multiplication of the Stokes incident harmonic with the evanescent reflected bound waves, can be expressed as:

D 0,n (x) = C 0,n e (ik 0 -kn)x-2iωt + c.c. (2.92)
where the constant coefficient, that depends on the linear reflection coefficients, takes the following form:

C 0,n = ig 2 a 2 2ω k 2 n -4k 0 k n + k n 2 -k 2 0 tanh 2 k 0 h -k n 2 tanh 2 k n h -4k 0 k n tanh k 0 h tanh k n h 4ω 2 -g(k 0 -k n ) tanh(k 0 -k n )h (2.93)
For this term, the z dependent function corresponds to:

H 0,n (z) = cosh(k 0 -k n )(z + h) cosh(k 0 -k n )h , x < 0 (2.94)
Eventually, the second order bound wave potential is:

φ b 2 = I 00 F 00 + n n ′ R n R n ′ A n,n ′ F n,n ′ + n R n D 0,n H 0,n + c.c. , x < 0 (2.95) φ b 2 = m m ′ T m T m ′ B m,m ′ G m,m ′ + c.c. , x > 0 (2.96)

Second order homogeneous solution

In order to satisfy the homogeneous solution (without source terms from φ 1 ), the free waves should follow the dispersion relation at the frequency 2ω, which is given by the bound wave solutions (equations (2.84), (2.87) and (2.89)). Thus, second order dispersive terms are generated at the depth inhomogeneity, due to the absence of dispersive terms in the incident wave.

As consequence, Sommerfeld radiation condition is imposed to the free waves, which implies that the (x, t) dependent function has the following form in the deep region:

A (2) p (x, t) = ga 2ω e -i(κpx+2ωt) + c.c. , x < 0 (2.97)
where κ p = κ 0 , iκ 1 , iκ 2 , iκ 3 , ... correspond to the unique real solution (p = 0) and to the infinite imaginary solutions (p = 1, 2, ..., N ) of the dispersion relation:

(2ω) 2 = gκ p tanh(κ p h) (2.98)
and in the shallow water region we have:

B (2) q (x, t) = ga 2ω e i(κsqx-2ωt) + c.c. , x > 0 (2.99)
where κ sq = κ s0 , iκ s1 , iκ s2 , iκ s3 , ... correspond, in the same way, to the unique real and infinite imaginary solutions of the dispersion relation in the shallow water region:

(2ω) 2 = gκ sq tanh(κ sq h s ). (2.100) 
The orthogonal basis of z dependent functions that satisfy the boundary conditions (2.77) to (2.80) is expressed in the same way as for the linear problem :

F (2) p (z) = cosh κ p (z + h) cosh κ p h , ( 2.101) 
G (2) q (z) = cosh κ sq (z + h s ) cosh κ sq h s . (2.102)
Next, the free wave potential at the second order corresponds to the following sum :

φ f 2 = p R (2) p A (2) p F (2) p + c.c. , x < 0 (2.103) φ f 2 = q T (2) q B (2) q G (2) q + c.c. , x > 0 (2.104)
where the unknowns R

(2)

p and T (2)
q are the transmission and reflection coefficients that shall be obtained in the next calculation.

Construction of the complete second order solution

Similarly to the linear problem, we impose continuity of the second order potential and its derivative at the step position. Thus we have:

[φ 2 ] = 0 , x = 0 (2.105) [∂ x φ 2 ] = 0 , x = 0. (2.106)
We replace the free and bound wave potential from equations (2.95), (2.96) and (2.103), (2.104) in these continuity conditions and we get a set of equations of the unknowns R 

I 00 F 00 + n n ′ R n R n ′ A n,n ′ F n,n ′ + n R n D 0,n H 0,n + p R (2) p A (2) p F (2) p + c.c. = m m ′ T m T m ′ B m,m ′ G m,m ′ + q T (2) q B (2) q G (2) q + c.c.
(2.107)

∂ x I 00 F 00 + n n ′ R n R n ′ ∂ x A n,n ′ F n,n ′ + n R n ∂ x D 0,n H 0,n + p R (2) p ∂ x A (2) p F (2) p + c.c. = m m ′ T m T m ′ ∂ x B m,m ′ G m,m ′ + q T (2) q ∂ x B (2) q G (2) q + c.c.
(2.108)

Next, we project the equation (2.107) onto the orthogonal basis G

(2)

q , that yields:

I 00 0 -hs F 00 G (2) q + n n ′ R n R n ′ A n,n ′ 0 -hs F n,n ′ G (2) q + n R n D 0,n 0 -hs H 0,n G (2) q + p R (2) p A (2) p 0 -hs F (2) p G (2) q + c.c. = m m ′ T m T m ′ B m,m ′ 0 -hs G m,m ′ G (2) q + T (2) q B (2) q 0 -hs G (2) q 2 + c.c.
(2.109) where we have used the orthogonality of the basis G [START_REF] Bartholomeusz | The reflexion of long waves at a step[END_REF] q to eliminate the sum in q in the right hand of the equation, i.e. the projected equation (2.109) is written for each q-th term.

Before projecting the equation (2.108), we use the boundary condition from equation (2.80) to impose the following equivalence of the integrals of the derivative:

0 -h ∂φ 2 ∂x dz = 0 -hs ∂φ 2 ∂x dz , x = 0 (2.110)
which is used to project the equation (2.108) onto the orthogonal basis F

(2) p and to obtain:

∂ x I 00 0 -h F 00 F (2) p + n n ′ R n R n ′ ∂ x A n,n ′ 0 -h F n,n ′ F (2) p + n R n ∂ x D 0,n 0 -h H 0,n F (2) p + R (2) p ∂ x A (2) p 0 -h F (2) p 2 + c.c. = m m ′ T m T m ′ ∂ x B m,m ′ 0 -hs G m,m ′ F (2) p + q T (2) q ∂ x B (2) q 0 -hs G (2) q F (2) p + c.c.
(2.111) Here we have used the orthogonality of the basis F [START_REF] Bartholomeusz | The reflexion of long waves at a step[END_REF] p to eliminate the sum in p in the left hand of the equation, i.e. the projected equation (2.111) is written for each p-th term.

Finally, we can solve the system for R

(2)

p : p R (2) p ∂ x A (2) p N p δ p,γ - q A (2) p ∂ x B (2) q L p,q L γ,q M q B (2) q + c.c. = m m ′ T m T m ′ ∂ x B m,m ′ 0 -hs G m,m ′ F (2) γ -∂ x I 00 0 -h F 00 F (2) γ - n n ′ R n R n ′ ∂ x A n,n ′ 0 -h F n,n ′ F (2) γ - n R n ∂ x D 0,n 0 -h H 0,n F (2) γ + q ∂ x B (2) q L γ,q M q B (2) q I 00 0 -hs F 00 G (2) q + n n ′ R n R n ′ A n,n ′ 0 -hs F n,n ′ G (2) q + n R n D 0,n 0 -hs H 0,n G (2) q - m m ′ T m T m ′ B m,m ′ 0 -hs G m,m ′ G (2) q + c.c.
(2.112) Here, we have expressed some known integrals with the following notation:

L p,q = 0 -hs F (2) p G (2) q (2.113) M q = 0 -hs G (2) q 2
(2.114)

N p = 0 -h F (2) p 2 (2.115)
The transmission coefficients T

(2) q can be easily obtained from equation (2.109).

Surface elevation of free and bound waves

Once we have calculated the velocity potential of free and bound waves in the deep and shallow water region, we can obtain the surface elevation corresponding to those waves. Using the dynamic boundary condition given in equation (2.78), we separate the surface displacement of free and bound waves in the following way:

η f 2 = - 1 g ∂φ f 2 ∂t (2.116) η b 2 = - 1 g ∂φ b 2 ∂t + 1 2 ∂φ 1 ∂x 2 + ∂φ 1 ∂z 2 - 1 g ∂φ 1 ∂t ∂ 2 φ 1 ∂t∂z (2.117)
where φ b 2 and φ f 2 are the two propagating terms of the total second order solution (see equation (2.81)).

The free surface wave elevation is easily obtained from equation (2.116), so we only give an explicit solution of the η b 2 (called Stokes wave in the literature). Let us consider the incident wave coefficient I 00 (x, t) in equation (2.84). The velocity potential of the Stokes wave associated to the incident term is:

φ b 2 = 3 8 ωa 2 cosh 2k 0 (z + h) sinh 4 (k 0 h) sin 2(k 0 x -ωt) (2.118)
Similarly, we only consider the incident term of φ 1 :

φ 1 = ae i(k 0 x-ωt) cosh(k 0 (z + h)) cosh(k 0 h) (2.119)
Then, by replacing φ 1 and φ b 2 in equation (2.117), we obtain the amplitude of the incident bound wave:

η b 2 = 1 4 a 2 k 0 (2 + cosh 2k 0 h) cosh k 0 h sinh 3 k 0 h cos 2(k 0 x -ωt) - 1 2 
a 2 k 0 sinh 2k 0 h (2.120)
Where the constant term corresponds to the shift of the mean water level (Stokes [78]).

Numerical example

Comparison with reference articles

We calculate, from equations (2.69) and (2.72), the reflection and transmission coefficient at the first order for three different configurations. In figure 2.8, there is a good agreement for the transmission coefficients, and some differences in the reflection coefficients, probably due to the number of modes considered by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]. However, a perfect agreement with the work of Rhee [START_REF] Rhee | On the transmission of water waves over a shelf[END_REF] was found when we calculate the transmission and reflection coefficient for the case h s /h = 0.1. In figure 2.9 the absolute value and phase shift of the first order coefficient correspond to those obtained by Rhee [START_REF] Rhee | On the transmission of water waves over a shelf[END_REF]. At the second order, the amplitude of the transmitted and reflected free waves were compared with the results obtained by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]. In figure 2.11, we plot as a function of frequency the first order reflection coefficient R 0 and the reflection and transmission free waves (R 

On the convergence of the second order problem

Although the first order problem has a good convergence with respect to the truncation of the series (thus, we do not present any analysis at this order), the second order shows problems with the convergence when we increase the number of vertical modes in the series. The second order solves the problem of finding the proper free wave coefficients that compensate the bound wave field in order to obtain a continuous solution. To do so, the bound wave field should have a bounded amplitude, i.e. it should not grow with the number of modes considered in the problem.

The bound wave field is the result of the sum of all the evanescent modes obtained from equations (2.88) and (2.93). As example, we recall the bound wave coefficients C n,n from equation (2.88):

C n,n ′ = ig 2 a 2 2ω k 2 n + 4k n k n ′ + k n ′ 2 -k 2 n tanh 2 k n h -k n ′ 2 tanh 2 k n ′ h -4k n k n ′ tanh k n h tanh k n ′ h 4ω 2 -g(k n + k n ′ ) tanh(k n + k n ′ )h (2.
121) In this analysis, we focus in the case n = n ′ , which in the most problematic in the double sum of equation (2.95) (thus, we consider the term R 2 n C n,n ). In figure 2.12 we show the decay of the first order reflection coefficient and the slope n -2 for comparison. We observe that for the case of 100 modes, the convergence is slower than n -2 above the 50th mode approximately. In contrast, the bound wave coefficient |C n,n | has a growth in the exponent n 4 , which can be observed in figure 2. [START_REF] Bryant | Periodic waves in shallow water[END_REF] .

As consequence, the decay of the first order coefficients (R n , T m ) does not compensate the growth of the bound wave constants, and some operation should be performed to ensure the convergence of the second order problem. This issue for the problem could have been anticipated from the equations (2.77) and (2.78). In order to solve the problem of convergence, we propose, previous to the calculation of the second order, a truncation of the first order series for φ 1 at a fraction α of the total number of modes N , with 0 < α < 1. Thus, we consider the first αN modes of φ 1 to calculate the bound wave coefficients in the second order problem. As a pertinent parameter to study the convergence as a function of α, we plot in figure 2.14, the integrated amplitudes of the second order solution at the step position x = 0, which were calculated as:

IA(φ 2 ) = 0 -hs |φ 2 (z)| x=0 dz (2.122) IA(∂ x φ 2 ) = 0 -hs |∂ x φ 2 (z)| x=0 dz.
(2.123)

Figure 2.14 shows the rapid divergence of the amplitude for α > 0.5, which indicates the limit where the free waves coefficients can no longer compensate the amplitude of the bound waves. In this case the total fields φ 2 and ∂ x φ 2 are not smooth. As an example, we show in figures 2.15 and 2.16 the obtained second order fields φ 2 and ∂ x φ 2 for the parameters α = 0.5 and α = 1. We observe for the case α = 1 that the amplitude of the evanescent modes at x = 0 diverges, which affects not only the near field but also the amplitude of the propagating modes. As a consequence, the amplitude of the waves is artificially amplified in one or several orders of magnitude, as we observe in the colorbars. In contrast, the truncation of the first order at α = 0.5 gives a smooth match between the deep and shallow water regions for both φ 2 and ∂ x φ 2 fields. 

Convergence of the solution with the number of modes

First Order

In this section, the truncation parameter α was fixed at 0.5, because it gives the fastest convergence in the range α ≤ 0.5. We considered in this part, the following configuration: h = 0.3 m, h s = 0.15 m, a = 0.023 m and ω = 2π [1/s]. With these conditions, we calculated the first and second order problems, analyzing the convergence as a function of the number of modes, which is indicated in each graph with the number of modes in the deep water region (N ).

In this way, the calculations in the following figures display the improvement of the mode matching when we increase the number of modes. The first result is the first order potential φ 1 shown in figures 2.17 and 2.18. These fields permit to observe the fast convergence of the mode matching, giving a negligible error beyond 20 modes. Regarding the vertical profile of both regions along the matching line x = 0, we show in figure, 2.18, the profiles of the velocity potential φ 1 (x = 0, z). This profile gives a more detailed view of the reduction of the error as a function of the number of modes. 
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Second order

When we move to analyze the second order, we start by calculating the field composed of bound waves, which is used to obtain the free waves field by mode matching at x = 0. In figure 2.21 we observe a divergence at the step position when we increase the number of modes.

The divergence comes from the denominator of the bound waves coefficient in equation (2.88), which tends to zero when the number of modes grows, i.e. the evanescent waves becomes non dispersive for a large number of modes. This discontinuity should be compensated with the free waves coefficients, obtained from the solution of the equation (2.112). q ), the construction of the complete second order field φ 2 yields a continuous and smooth field shown in figure 2.22. The vertical profile at the step location in figure 2.23 shows a good agreement above 24 modes, similarly to the first order field (φ 1 ). Regarding the spatial derivative of the second order matching ∂ x φ 2 , we observe in figure 2.24, a local divergence of the velocity around the step corner, similarly to the first order. In this case, again we confirmed that the horizontal velocity respects the boundary condition stated in equation (2.80), which impose zero horizontal velocity in the range -h < z < -h s , as we can observe in figure 2.25. 

Concluding remarks and perspectives

2.4. CONCLUDING REMARKS AND PERSPECTIVES first order, because there is only transmitted waves in the shallow water region and there is no source term.

If we truncate the development of equation (2.47) at the order ǫ 3 , we obtain the necessary equations to calculate the third order of the model. As consequence, we have the Laplace equation at the third order and the corresponding kinematic and dynamic free surface boundary conditions:

∂ 2 ∂x 2 + ∂ 2 ∂z 2 φ 3 = 0 (2.124) 1 2 ∂φ 3 ∂z - 1 2 
∂η 3 ∂t = ∂φ 1 ∂x ∂η 2 ∂x + ∂φ 2 ∂x ∂η 1 ∂x + η 1 ∂ 2 φ 1 ∂x∂z ∂η 1 ∂x -η 2 ∂ 2 φ 1 ∂z 2 -η 1 ∂ 2 φ 2 ∂z 2 - η 2 1 2 ∂ 3 φ 1 ∂z 3 , z = 0 (2.125) g 2 η 3 + 1 2 ∂φ 3 ∂t = -∇φ 1 η 1 ∂φ 1 ∂z + φ 2 -η 2 ∂ 2 φ 1 ∂z∂t -η 1 ∂ 2 φ 2 ∂z∂t - 1 2 η 2 1 ∂ 3 φ 1 ∂z 2 ∂t , z = 0 (2.126)
On the bottom and the step wall we have impermeable boundaries:

∂φ 3 ∂z = 0 , z = -h(x) (2.127) ∂φ 3 ∂x = 0 , -h < z < -h s , x = 0 (2.128)
The solution of the problem stated above requires hard algebraic manipulations, and is not presented in this work. However, the experiments in the next chapter show that the contribution of the third order is not negligible. This suggests that the calculation of a third order could be an interesting analysis.

Chapter 3

Experimental space time resolved measurements of nonlinear waves: Harmonic modulation over a submerged step

Introduction

The propagation of water waves over submerged obstacles has been widely studied. A whole variety of phenomena present in nature or in applied engineering problems has raised much interest, where the dynamics of water waves plays a significant role.

In general, the submerged obstacles always generate nonlinearities, which can be of different intensity, varying from weakly nonlinear waves up to breaking waves. The experimental work of Rey et al. [START_REF] Rey | Propagation of surface gravity waves over a rectangular submerged bar[END_REF], gave a description of the vortex generated at the corner of a rectangular step, revealing the complexity of the flow for different wave directions and amplitudes. Particularly, in our case, from the wide range of nonlinear waves, we performed experiments being far from the breaking limit. This type of wave has great interest considering the presence of several components in the signal.

The behavior of water waves over submerged obstacles is mostly explained in the theory of propagation of waves in shallow water by Massel [51] and Bryant [START_REF] Bryant | Periodic waves in shallow water[END_REF]. These theories predict the evolution of waves in constant depth for different harmonics, where the second harmonic has particular interest because of the presence of waves with different velocities. These waves are separated in free waves, which agree with the dispersion relation in all the harmonics, and bound waves which are directly created by nonlinearities and do not follow the dispersion relation. Thus, for a given forcing frequency ω, at the harmonic nω, the free wave have a wavenumber given by k n = D(nω), where D represents the linear dispersion relation of water waves. On the other side, the bound wave in the harmonic nω has a wavenumber nk 1 = nD(ω), being merely an integer multiple of the fundamental mode wavenumber.

The mechanism of decomposition of monochromatic incident waves into free and bound waves was characterized by Huang and Dong [START_REF] Huang | Wave deformation and vortex generation in water waves propagating over a submerged dike[END_REF]. They described the mechanism involved when the primary wave passes over the dike and generates a secondary small wave that propagates with lower velocity than the main crest. This difference in celerity, corresponds to the deviation of the dispersion relation curve with respect to the non dispersive harmonics (bound waves).

The presence of free and bound waves is directly observable in the (ω, k) plane, which can be obtained from a Two-Dimensional Fourier Transform of a Space-Time plane. However, most of the studies in nonlinear waves so far have considered punctual measurements, as carried out by Chapalain et al. [START_REF] Chapalain | Observed and modeled resonantly interacting progressive water-waves[END_REF], Beji and Battjes [START_REF] Beji | Experimental investigation of wave propagation over a bar[END_REF], Li and Ting [START_REF] Li | Separation of free and bound harmonics in waves[END_REF], Benoit et al. [START_REF] Benoit | Fully nonlinear and dispersive modeling of surf zone waves: Non-breaking tests[END_REF] and Ohyama and Nadaoka [START_REF] Ohyama | Transformation of a nonlinear wave train passing over a submerged shelf without breaking[END_REF]. These experimental works were mostly devoted to validation of numerical models by comparison of temporal signals. Space-time measurements have been carried out by Brossard and Chagdali [START_REF] Brossard | Experimental investigation of the harmonic generation by waves over a submerged plate[END_REF], Brossard et al. [START_REF] Brossard | Higher harmonics induced induced by a submerged horizontal plate and a submerged rectangular step in a wave flume[END_REF] with moving probes, where the Doppler effect permits identification of free and bound waves in the k spectrum. More recently, experiments performed by Li and Ting [START_REF] Li | Separation of free and bound harmonics in waves[END_REF] and Ting et al. [START_REF] Ting | Experimental investigation of nonliear regular waves transformation over submerged step: Harmonic generation and wave height modulation[END_REF] with a vertical laser sheet measured space-time data along a channel, achieving an interesting separation of free and bound waves. However, this measurement is still in 2-D, and it does not take into account the transverse effects, always presents in wave flume experiments.

The phase mismatch between free and bound wave produces a beating of the second harmonic amplitude, which has been well explained by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF] (here and in what follows called Massel's theory). The question that arises, is what is the range of applicability of this theory?, Does it work for a broad frequency range?. To answer these questions we performed a complete sweep in frequency, testing the beating length predicted by Massel. In addition, our experiments showed also a regular behavior of the beating in the third harmonic, which is not explained by Massel's theory because the author considered a Taylor expansion up to the second order. In this sense, the model developed by Madsen and Sorensen [START_REF] Madsen | Bound waves and triad interactions in shallow water[END_REF] explains theoretically the beating of the third harmonic amplitude. They derived weakly nonlinear solutions of Boussinesq type equations, studying especially the theory of wave-wave interactions in shallow water. Near resonant interactions produced by monochromatic or bichromatic incident waves are solved in terms of Fourier series. The development leads to the evolution equations of nonlinear waves over constant depth. This equations were written in terms of the phase mismatch between free and bound wavenumbers, which drives the beat length of the second and higher harmonics.

In this work we report a complete space-time resolved measurement of nonlinear waves using Fourier Transform Profilometry (FTP) (Takeda et al. [START_REF] Takeda | Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[END_REF], Takeda and Mutoh [START_REF] Takeda | Fourier transform profilometry for the automatic measurement of 3-d object shapes[END_REF]), which was adapted to surface water waves by Cobelli et al. [START_REF] Cobelli | Global measurement on water waves by fourier transform profilometry[END_REF]. We propose an improvement in the accuracy of the measurement and also in the number of dimensions measured. A 3-D field permits the verification of important experimental aspects like wavefront flatness and transverse modes, giving a greater reliability to the measurements.

In order to obtain nonlinear waves in a controlled way, we put a submerged step that separates a deep and a shallow water regions. Waves are generated in the deep water region and travel through the shallow water region. Finally, at the terminal end of the shallow water region a beach is used to dissipate the waves without reflection.

From our measurements, we have decomposed the signal by separating systematically at the second order the bound and free waves. We found that their near resonant interaction not only explains the beating showed by the amplitude of the second harmonic, but also the beating of the third harmonic, which is a complex interaction of three components, whose relative contributions change as a function of the frequency. This variation separates two regimes of beating at the third harmonic, with predominance of different components.

Our results show the relative weight of free and bound waves in the second harmonics, with a decay of free waves amplitudes as a function of forcing frequency. Regarding the third harmonic, a beating is clearly observed for low frequencies. The relative weight of free waves at this order is analyzed in the same manner as the second order. We determine here the region of applicability of multi-modal model, and the limit where the third order is no longer negligible.

Governing equations

The weakly nonlinear model

We use the governing equations of the weakly nonlinear model of surface water waves, described in section 2.3. This model is well adapted to the conditions of the experimental setup, i.e. waves propagating with weak steepness (ka < 0.2) and intermediate depth (kh > 0.5).

The model gives solutions at the first order (linear) as well as at the second order (nonlinear). The first order problem, as was explained in section 2.3, is a homogeneous equation, which has a linear solution for the surface displacement in the form:

η 1 (x, t) = ae i(kx-ωt) (3.1)
where a is the linear wave amplitude and the wavenumber k should satisfy the linear dispersion relation:

ω 2 = gk tanh(kh) (3.2)
In contrast, the second order problem is a non homogeneous boundary value problem which has a particular and a homogeneous solution:

η 2 = η b 2 + η f 2 (3.3)
Where η f 2 is the free wave, which is the homogeneous solution and can be expressed as:

η f 2 (x, t) = aT 2 e i(k 2 x-2ωt) (3.4)
where T 2 is the transmission coefficient at the second order and k 2 is the second order free wavenumber that follows the dispersion relation:

4ω 2 = gk 2 tanh(k 2 h) (3.5)
In addition, η b 2 is the bound wave (particular solution of the second order problem), which can be expressed in the form:

η b 2 (x, t) = 1 4 (aT 1 ) 2 k 1 (2 + cosh 2k 1 h s ) cosh k 1 h s sinh 3 k 1 h s e 2i(k 1 x-ωt) - 1 2 a 2 k sinh 2k 1 h s (3.6)
where T 1 is the transmission coefficient of the first order problem and k 1 is the wavenumber that satisfies the equation (3.2). These theoretical results will be compared further on with the experimental values obtained for the free and bound waves.

Surface tension in water waves

At small scale, the effect of surface tension is no longer negligible. In this work, we consider waves in the range 10 < k 1 < 70 1/m, which have wavelengths of the second and third harmonic in the order of centimeters. Therefore, we modify the equation (2.40) in order to consider the surface tension proportional to the curvature (Dias and Kharif [START_REF] Dias | Nonlinear gravity and capillary-gravity waves[END_REF]) in the dynamic free surface boundary condition:

∂φ ∂t + 1 2 (∇φ) 2 + gη = σ ρ ∂ ∂x     ∂η ∂x 1 + ∂η ∂x 2     , z = η (3.7)
where σ is the surface tension of the pure water and ρ the density. By linearizing this new condition, and considering the usual equations (2.38), (2.39) and (2.41), we can obtain the linear dispersion relation of water waves with surface tension:

ω 2 = gk + σ ρ k 3 tanh(kh) (3.8)
which can be also expressed as:

ω 2 = gk 1 + 1 Bo tanh(kh) (3.9)
where the importance of surface tension with respect to gravitational forces is characterized by the Bond number Bo = ρg σk 2 .

Experimental Set-up

In order to study only the interactions between waves going in one direction, we focused in the infinite shelf case (no reflection in the shallow water part). This configuration permits us to understand the behavior of the transmitted waves in the shallow water part with a negligible reflection from the end of the tank.

The experiments were carried out in a laboratory tank, shown in Fig. 3.1, designed to measure the deformation of the free surface with Fourier Transform Profilometry (FTP) (see Cobelli et al. [20]). Waves are generated by a wavemaker (Fig. 3.2) with frequency f in the range [START_REF] Athanassoulis | A consistent coupled-mode theory for the propagation of small amplitude water waves over variable bathymetry regions[END_REF][START_REF] Beji | Experimental investigation of wave propagation over a bar[END_REF] Hz. Waves travel through a deep water region (6.5 cm depth) of 40 cm length. A step separates the deep water region from a shallow water region with depth 2 cm. After 80 cm, an absorbing beach of 8% slope terminates the tank.

We kept almost constant the wave amplitude in order to leave as unique nonlinear parameter the non dimensional wavenumber k 1 h s . Thus, the incident wave amplitude was always in the range 2.5 < a < 3 mm. The measurement field is 1700 by 400 pixels, covering a surface of 1 m (longitudinal axis) by 0.25 m (transverse axis). In order to cover such large area, the measurements is divided in two parts. In this case, the wave height and the distance from the edge of each part to the camera axis, make the correction proposed by Maurel et al. [START_REF] Maurel | Experimental and theoretical inspection of the phase-to-height relation in fourier transform profilometry[END_REF], crucial for the correct match of both measurements. A typical snapshot of the FTP measurement of the 2D field is shown in Fig. 3.3. The wave profile clearly changes from sinusoidal type to cnoidal type when it passes the step located at x = 0 m. On the other hand, lateral walls do not perturb the flatness of the wave front, as we can observe in Fig. 3.3, because they are sufficiently separated at a distance of 60 cm. This flat wave front allows us to model the phenomenon as 1D in space.

Beach Wavemaker

We have checked that the beach produces a very weak reflection. In Fig. 3.4 we plot the reflection and transmission coefficients in the deep and shallow water regions. In the deep water region the step produces a reflection coefficient around 20% at the fundamental mode (higher harmonics are negligible in this region), whereas for the lee side of the step, the reflection coefficient from the beach is smaller than 6% for the studied frequency range. This weak reflection allows us to model the phenomenon as waves going only in one direction in the shallow water part. The accuracy of the FTP measurement was verified by comparing the wave amplitude with a punctual measurement of a laser sensor with a precision of 5 µm. In Fig. 3.5, we validate the technique using waves in the highest steepness before breaking and in a position where the second harmonic reach the maximum value. This measurement was taken in the shallow water region, because the non linearity in the deep water region is smaller and the accuracy is greater. The temporal difference between the FTP and the laser beam is into an error band of 0.4 mm, which is consistent with the resolution predicted by the FTP technique, limited by the size of the projected pixel. In this experiment, the actual pixel size is 0.39 mm, which confirms the prediction as it has been verified by Cobelli et al. [START_REF] Cobelli | Experimental study on water-wave trapped modes[END_REF]. 

Results

Waves celerity in the space-time plane

Considering that we tried to keep a constant amplitude, we present all the results as a function of the non dimensional wavenumber k 1 h s , where k 1 is the fundamental wavenumber in the shallow water region.

The 1D profile is obtained from the transverse average along the axis y of each instantaneous field. The change of the wave profile as a function of time is extracted to obtain the space-time representation of the surface elevation η(x, t) shown in Figs. 3.6 and 3.7. In this representation, the horizontal axis has the origin at x = 0 where the step is located.

As expected, the crests have smaller velocity in the shallow water region (x > 0). Besides, the nonlinear effects can be clearly evaluated by the asymmetry between crests and troughs: whilst the proportion of negative and positive values is similar in the deep water region, the positive part of the signal becomes narrower in the shallow water region. This difference is due to the cnoidal shape of the waves in shallow water conditions.

Importantly, we can notice the presence of two different types of waves in the shallow water region, with different velocities. In Fig. 3.6, the phase velocity of the first harmonic v 1 = ω/k(ω) is represented in dashed line and the phase velocity of the free wave of the second harmonic v 2 = 2ω/k(2ω) is represented in dashed-dot line. The slope of v 1 and v 2 agree with the two slopes in red and light-blue that we can observe in the shallow water region. This distinction was mentioned by Huang and Dong [START_REF] Huang | Wave deformation and vortex generation in water waves propagating over a submerged dike[END_REF] for waves propagating over a trapezoidal obstacle. The dispersive waves generated at the step have been also observed in the propagation of a solitary wave, as reported by Seabra-Santos et al. [START_REF] Seabra-Santos | Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle[END_REF]. When nonlinearities are greater, new velocities appear in the spatiotemporal plane. In Fig. 3.7, the nondimensional wavenumber is k 1 h s = 0.4 and the wave amplitude is a ≈ 5 mm. The nonlinearity in this case is large, estimated at U r ≈ 100 (Ursell parameter defined in Eq. (1.24)). In this condition, free waves at the third order are non negligible and a third slope is visible from a small wave propagating with lower velocity. This new slope is due to the presence of free waves (k 3 = D(3ω)). 

Analysis of the frequency-wavenumber spectra

From the surface elevation η(x, t), the spatial evolution of the Fourier coefficients η n (x) of each mode are calculated as:

η n (x) = 1 T T 0 dt η(x, t) • e -inωt (3.10) 
Next, a space Fourier transform is computed

ηn (k) = 1 L L 0 dx η n (x) • e -ikx (3.11)
with L the total length of the shallow water region. The spatial spectrum in Fig. 3.8 shows a typical behavior of |η 2 (k)| for k 1 h s = 0.73. Here, two maxima corresponding to the free and bound waves are visible, with wavenumbers k 1 and k 2 previously defined. In the whole range of explored frequencies, we have checked that the k 1 and k 2 values roughly agree with the expected values k(2ω) and 2k(ω) as given by the linear dispersion relation of equation (3.8). The third order spatial spectrum in Fig. 3.9, shows the absolute value of η3 for k 1 h s = 0.73. At this order three maxima are visible. The two first maxima are located at wavenumbers 3k 1 and (k 1 + k 2 ), corresponding to bound waves generated by the first and second harmonic, whereas the third peak is located at k 3 , and corresponds to the free wave generated at 3ω. The positions of the peaks agree with the wavenumbers expected from the linear dispersion relation of equation (3.8). The accurate value obtained for k 3 , confirms the existence of free waves at this order. Let us now gather the spectrum ηn (k) of different forcing frequencies. To obtain this addition, we consider a vector composed by all the forcing frequencies ω j . Thus, we take ηn (k) for a fixed frequency ω j and we define it as ηn (k, ω j ). The addition in j of those spectra for every experiments gives us:

k [1/m]
ηn (k, f ) = j ηn (k, ω j ) η1 (k, ω j ) (3.12)
where each experiment is normalized by the amplitude of the fundamental mode (η 1 (k, ω j )).

The planes |η n (k, ω)| for n = 1, 2, 3 are shown in Fig. 3.10. The fundamental mode perfectly follows the linear dispersion relation. At the second harmonic, the predicted wavenumbers k 2 and 2k 1 are very close for low frequencies (ω < 24 s -1 ), and the resolution of the spectrum does not distinguish two components. Instead, an expanded maximum is observed. For higher frequencies, the two components are distinguishable, with the free waves decaying in amplitude.

At the third harmonic, three regions can be described: at low frequencies (ω < 30 s -1 ), we do not have enough resolution to distinguish the components and an expanded maximun is observed. At intermediate frequencies, (30 < ω < 50 s -1 ) the free wave component k 3 separates from the others and decay rapidly in intensity. Finally, at high frequencies (ω > 50 s -1 ) the two bound waves are visible. 

Separation of free and bound waves

The contributions of free and bound waves vary with the frequency of the incident waves. The ratio of amplitudes between free and bound waves calculated from the Fourier coefficients as |η 2 (k 2 )/η 2 (2k 1 )| is plotted in Fig. 3.11. A clear decay of free waves with respect to bound waves is observed. The amplitudes of free and bound waves are similar for wavenumbers close to k 1 h s = 0.6. This point marks the transition between a regime where free and bound waves are comparable (k 1 h s < 0.6), and a regime where a regular decay of free waves (0.6 < k 1 h s < 1.4) takes place. For comparison, we plot as well the amplitude ratio between free and bound waves calculated with the multi-modal model for the configuration used in the experiments. This model overestimates the free-bound wave ratio, compared to the experimental data. However, the model predicts correctly the decay of this ratio in the studied frequency range. Both theory and experiments, show that beyond k 1 h s = 1.4 only the bound harmonic exists and the waves become linear. In addition, to inspect further the deviation from the multi-modal model, we evaluated the relative phases of the free and bound waves, using a fit of the form :

η 2 (x) = Ae ik 2 x + Be 2ik 1 x (3.13)
where A and B are complex parameters, and represent the amplitude and phase of free and bound waves respectively. In Fig. 3.12 the fitted parameters A and B have a phase difference θ(A/B) close to π, which confirms that free and bound waves, at the second harmonic, have an opposite phases at the position of the step (x = 0 m). The phase difference predicted by multi-modal model is well measured for low wavenumbers (k 1 h s < 0.7) because the contribution of free waves is still comparable to bound waves. In contrast, for higher wavenumbers, the smaller amplitude of the second harmonic (especially the smaller contribution of free waves) produces a lower signal-to-noise ratio which introduces a greater error to the fit. 

.12: Phase difference between free and bound waves for the second harmonic η2 . In the star symbols, we present the angle between the complex coefficients A and B obtained from the fit of Eq. (3.13). The solid line corresponds to the phase difference predicted by the multi-modal model.

Regarding the third harmonic, in Fig. 3.13 the amplitude of the components η3 (k 1 + k 2 ) and η3 (k 3 ) are normalized by η3 (3k 1 ), because this pure bound harmonic is the only one that survives for wavenumbers k 1 h s > 1.4. The relative contribution of free waves η3 (k 3 ) is weaker in this case compared to the second harmonic. Nevertheless it increases for low wavenumbers (k 1 h s < 0.6), where 

Beating length and the influence of the surface tension

We report in Fig. 3.14 typical profiles of the amplitudes |η n (x)| (n = 1, 2, 3), for the three first harmonics. We observe a clear beating in the second harmonic η 2 (x), which start at the step position. At the second harmonic, the wavenumber difference δk = k 2 -2k 1 corresponds to the difference between the free and bound wavenumbers. The second order waves, considering free and bound components, can be written as:

η 2 (x) = a e ik 2 x -e 2ik 1 x (3.14)
which can be expressed in terms of δk:

η 2 (x) = ae 2ik 1 x e iδkx -1 = ae 2ik 1 x e iδkx 2 e iδkx 2 -e -iδkx 2 
, ( 3.15) 
tanking the absolute value we have:

|η 2 (x)|= 2|a sin δkx 2 |. (3.16)
The wavenumber difference δk is, therefore, equal to the inverse of the beating length (L 2 ), as has been derived by Massel [51]:

L 2 = 2π δk = 2π k 2 -2k 1 (3.17)
This theory was later used in higher harmonics by Brossard et al. [START_REF] Brossard | Higher harmonics induced induced by a submerged horizontal plate and a submerged rectangular step in a wave flume[END_REF]. They considered that for higher harmonics, the spatial oscillation may be expressed with the difference in wavenumber between the free wave k n and the bound component nk 1 , integer multiple of the fundamental mode. Thus, Brossard et al. [START_REF] Brossard | Higher harmonics induced induced by a submerged horizontal plate and a submerged rectangular step in a wave flume[END_REF] proposed that the beating length of higher harmonics is:

L n = 2π δk n = 2π k n -nk 1 (3.18)
However, for harmonics higher than 2ω there are several combinations of components, and several wavenumber differences are possible. In general, for two harmonics ω n , ω m with n > m, intermediate free waves with wavenumber k n-m could exist. A theory that includes the wave-wave interaction between every component, was developed by Madsen and Sorensen [START_REF] Madsen | Bound waves and triad interactions in shallow water[END_REF]. They derived the equations of near resonant interactions of waves over constant depth. The nth-harmonic ω n has a wavenumber difference δk n , and the corresponding beating length L m n given by :

L m n = 2π δk n = 2π k n -k n-m -k m (3.19)
where ω n is generated by ω m and ω n-m . Particularly, for the second harmonic we have n = 2 and m = 1, and we recover the Eq. (3.17). The applicability of Eqs. (3.17) and (3.19), will be analyzed in detail further on.

For each wavenumber k 1 h s , we calculated L 2 by measuring the position of the first local minimum. For example, some amplitude profiles of η 2 (x) are shown in Fig. 3.15 for k 1 h s = [0.6, 0.8, 0.95], with its corresponding beating length indicated in dashed line. The beating lengths of the second harmonic are shown in Fig. 3.16 together with the theoretical prediction of Eq. (3.17) derived by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]. The wavenumbers k 1 and k 2 can be calculated with the linear dispersion relation of (3.2), but as we mention previously, the higher harmonics have wavelength in the order of centimeters. Therefore, we also calculated k 1 and k 2 from the linear dispersion relation with surface tension (eq. (3.8)).

In Fig. 3.16 we plot the theoretical curves calculated with and without surface tension. Here we observe that the experimental points follow the equation with surface tension, especially for higher wavenumbers (k 1 h s > 0.6), where the weakly nonlinear theory is applicable. However, for smaller frequencies k 1 h s < 0.6, the beating length of the second harmonic is shorter than expected, which can be explained for the stronger nonlinearities (U r > 60, k 1 h s < 0.5) and the presence of the free waves at the third harmonic. We confirmed that the multi-modal model (Eq. (3.17)) is no longer applicable in this regime. This disagreement was already reported experimentally by Ohyama and Nadaoka [START_REF] Ohyama | Transformation of a nonlinear wave train passing over a submerged shelf without breaking[END_REF] and Christou et al. [START_REF] Christou | The interaction of surface water waves with submerged breakwaters[END_REF]. When the Bond number Bo >> 1, the surface tension effects are negligible. In our experiments, the Bond number at the second order is Bo = 28 for the lowest wavenumber and Bo = 6 for the highest measured wavenumber. Therefore, the Bond number confirms that for higher wavenumbers the beating length agree more exactly with the model that consider surface tension. Recently, the numerical simulations performed by Raoult et al. [START_REF] Raoult | Modeling viscous effect in a fully nonlinear and dispersive potential wave model[END_REF], showed that the incorporation of surface tension in a fully nonlinear dispersive model, gives a good agreement between the simulations and the experiments in terms of the beating length of the second harmonic.

Regarding the third harmonic, when the wavenumbers are smaller than k 1 h s = 0.6, the beating of the third harmonic is independent of the second harmonic and local minima of |η 3 (x)| indicate the beating length L 3 . In Fig. 3.17 we present the amplitude of η 3 (x) at four different wavenumbers k 1 h s = [0.4, 0.47, 0.6, 0.73], where a clear beating in is observed. ,c) k 1 h s = 0.6 and d) k 1 h s = 0.73. We observe that the beating length of the wavenumber k 1 h s = 0.73 is longer than the beating length of k 1 h s = 0.6, due to the disappearance of the free wave component of the third harmonic.

The beating length of the third harmonic is shown in Fig. 3.18. The triad interaction between η3 (k 1 + k 2 ) and η3 (k 3 ) produces a beating L 1 3 obtained from the Eq. (3.19). We report an agreement of the third harmonic beating length with L 1 3 calculated with surface tension, similarly to the case of second harmonic. This suggest a dominant contribution of η3 (k 1 + k 2 ) at the third harmonic, which indicates as well, the dominance at the second harmonic of η2 (k 2 ) over η2 (2k 1 ) for low frequencies (k 1 h s < 0.6), following the trend shown in Fig. 3 The decay of the ratio η3 (k 3 )/η 3 (3k 1 ) observed in Fig. 3.13, produces an abrupt transition of
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the experimental beating length of third harmonic from the curve L 1 3 to L 2 at k 1 h s = 0.6. The free wave η3 (k 3 ) disappears at higher frequencies (k 1 h s > 0.66), and the first local minimum of |η 3 (x)| is no longer visible (in Fig. 3.17-c a weak local minimum of η 3 (x) is visible for k 1 h s = 0.6). For wavenumbers higher than k 1 h s = 0.6, the remaining components are η3 (k 1 + k 2 ) and η3 (3k 1 ). In this case, the wavenumber difference between the remaining terms is given by:

L 3 = 2π δk = 2π (k 1 + k 2 ) -3k 1 = 2π k 2 -2k 1 (3.20)
Thus, the beating length of third harmonic becomes slave to the second harmonic. This case is visible in Fig. 3.17-d, where for k 1 h s = 0.73 the beating length is longer than the beating length of k 1 h s = 0.6.

Comparison between theoretical and experimental harmonic modulation

The theory revisited in chapter 2, as we have discussed so far, permits us to obtain the transmission and reflection coefficients at the first and second order. Particularly at the second order, we have calculated the amplitude of the bound wave, given in equation (3.6), as well as the amplitude of the free wave, expressed in equation (3.4). Therefore, we applied the multi-modal model to the geometry of the experiments and we compared the amplitude of the first harmonic |η 1 (x)| and the second harmonic |η 2 (x)|. In Fig. 3.19, we show the harmonic modulation for two different frequencies: ω = 4π s -1 and ω = 6π s -1 . In both experiments, the wave amplitude was fixed at 3 mm approximately. In order to better compare the theoretical curves to the experiments, we have included the imaginary part of the wave number β, which represents the spatial attenuation of the waves considering bulk effects as well as the bottom friction. The bulk attenuation is calculated according to the Stokes equation:

β bulk = 4k 2 µω ρg + 3σk 2 (3.21)
where k is the real part of the wavenumber, µ is the dynamic viscosity and σ the surface tension of water. Besides, the bottom friction damping is calculated with the equation of plane waves propagating through a rectangular cross section channel. This equation was deduced by Hunt [START_REF] Hunt | Viscous damping of waves over an inclined bed in a channel of finite width[END_REF]:

β bottom = 2k b ν 2ω kb + sinh(2kh) 2kh + sinh(2kh) (3.22)
where b is the width of the wave guide, k is the real part of the wavenumber, and ν is the kinematic viscosity of the water. The total attenuation will be considered as the addition of both coefficients: β = β bulk + β bottom . The relative contribution of each attenuation is plotted separately in section 3.6.3. As we observe in equations (3.21) and (3.22), the β coefficients depend on the wavenumber, and a different attenuation is obtained for each component of the wave. We recall that the multi-modal model does not take into account neither attenuation nor surface tension effects.

In the first case, shown in Fig. 3.19-left, we have a forcing frequency ω = 4π s -1 , which corresponds to a non dimensional wavenumber k 1 h s = 0.6. This wavenumber is close the lower limit of the studied range, being nevertheless weakly nonlinear. In this case, experimental constraints have produced strong attenuation in the measurements. In order to fairly fit the attenuation of all the components, we have fitted the viscosity. The chosen value that fits better the damping of the first harmonic is ν = 2•10 -5 m 2 /s. A similar procedure has been used by Raoult et al. [START_REF] Raoult | Modeling viscous effect in a fully nonlinear and dispersive potential wave model[END_REF] to fit the same experimental data.

Regarding the shape of the harmonics, the multi-modal model predicts very well the reflection coefficient of the first harmonic, which is observable in the good agreement of |η 1 | in the deep water region (x < 0). On the other hand, the amplitude of the second harmonic in the shallow water part is overestimated around 10%, as well as the influence of the surface tension at the scale of the experiments that yields an underestimation of the beating length of |η 2 |. In section 3.6.3, we plot separately the contribution of the surface tension to the beating length of the second harmonic.

In the second case, the attenuation of the experiment corresponds to the pure water, and the viscosity applied to the coefficient β is ν = 1 • 10 -6 m 2 /s. In this case, as we observe in 3.19right, the reflection coefficient is again well estimated. In contrast, a higher wavenumber implies stronger contribution of the capillary effects, which is evident in the mismatch of the second harmonic modulation. At this frequency, the beating length difference is around 25%.

We observe in both cases that there is no modulation of the first harmonic in the shallow water part. As we discussed in chapter 2, the truncation of the multi-modal model at the second order does not produce source terms at the first order and a monochromatic transmitted wave is the only propagating term.

Concluding remarks

We have reported a continuous inspection of the wavelength of the harmonic generation in shallow water after passing a submerged step. This data reveals an interesting behavior of free and bound waves, which we were able to separate using the complete space-time resolved field.

Regarding the second harmonic, free and bound waves showed different relative contributions depending on the nonlinear conditions, quantified using the parameter k 1 h s . The amplitude ratio between free and bound waves decays as a function of the non dimensional wavenumber, from 1 to 0 (where it vanishes), in the range 0.6 < k 1 h s < 1.4. This trend illustrates how the nonlinearities present in the system are gradually negligible, ending up with linear waves beyond k 1 h s = 1.4. We showed experimentally that multi-modal model overestimates the relative contribution of free waves at the second order, which can be attributed in part to the truncation of the calculation at the second order and to the complex nonlinearities generated at the rectangular step.

A similar analysis was performed at the third harmonic. In this case, the relative contribution of the free wave decays faster, and is already negligible over k 1 h s = 0.6. Nevertheless, two components are still considerable, with wavenumbers 3k 1 and (k 1 + k 2 ) respectively.

The FTP technique measures the harmonic beating length with great accuracy. Thus, we have checked the applicability of the model derived by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF], for the beating length of the second harmonic. We found a very good agreement between data and theory, observing a slight discrepancy for the lowest frequency of the inspected range. This observation was already reported by previous works [START_REF] Ohyama | Transformation of a nonlinear wave train passing over a submerged shelf without breaking[END_REF]. Importantly, the surface tension effect are considerable in this scale, with a contribution between 10% and 50% of the beating length as was reported recently by Raoult et al. [START_REF] Raoult | Modeling viscous effect in a fully nonlinear and dispersive potential wave model[END_REF].

The beating length at the third harmonic was measured continuously for the first time, giving clear and interesting results. The experimental data was compared with two models, by considering or not considering surface tension. For all wavenumbers, the Eq. (3.19) with surface tension is the model that predicts correctly the beating length, being consistent with the relative contribution of the three components at this order. We report as well, the point where the beating due to the presence of third order free waves is no longer visible, corresponding in this configuration to k 1 h s = 0.6. For higher frequencies the beating of the third harmonic becomes slave to the second harmonic, and the experimental points jump to the theoretical beating length of the second harmonic.

We suggest that this analysis is extensible to higher orders, giving the correct prediction of the beating length.

Supplementary results

Separation of left and right going waves

The spatiotemporal measurements obtained by FTP, permits to compute directly the frequencywavenumber spectrum. In Fig. 3.20, the space-time graph and its spectrum are shown. From the (ω, k) space in Fig. 3.21, we can distinguish four quadrants that determine the direction of the wave:

• ω > 0; k > 0: Right going wave.

• ω < 0; k > 0: Left going wave.

• ω < 0; k < 0: Right going wave.

• ω > 0; k < 0: Left going wave. Thus, we can mask the (ω, k) plane to separate the left and right going waves. Recently, this method has been used by Kuo et al. [START_REF] Kuo | Using time-stack overlooking images to separate incident and reflected waves in wave flume[END_REF], Li and Ting [START_REF] Li | Separation of free and bound harmonics in waves[END_REF] and Ting et al. [START_REF] Ting | Experimental investigation of nonliear regular waves transformation over submerged step: Harmonic generation and wave height modulation[END_REF], who used their space-time measurements obtained from a vertical laser sheet. The inverse Fourier Transform of the masked spectrum gives new separated space-time planes which are composed of either left or right going waves. In Fig. 3.22, we show both space-time graphs, where we can notice that the incident waves in the shallow water part are smoother because there is no reflection coming from the end of the channel. Next, the temporal decomposition of the separated space-time graphs gives the amplitude of different harmonics for each direction. In Fig. 3.23, the amplitude of the right going waves does not have small oscillations due to the reflection from the beach and from the step (in the deep water region). Thus, this separated signal represents better the interaction between free and bound waves, both propagating in the left-right direction. On the contrary, the amplitude of the reflected waves in the shallow water region is noisy due to the small reflection given by the absorbing beach. In the deep water region (x < 0), the amplitude of the first reflected harmonic grows rapidly, due to the reflection of the step estimated around 20%. 

Complex fit of free and bound waves

We present in Fig. 3.24 an example of the complex fit of the second harmonic in the shallow water region. This fit was used to obtain the phase difference between free and bound waves, as has been shown in Fig. 3.12. The fitted curve, shows good agreement in both real and imaginary part. The wavenumbers 2k 1 and k 2 was left as free parameters, and the obtained values should be compared with the theoretical wavenumbers calculated with the dispersion relation of eq. (3.8). The real part of the fitted wavenumbers agrees with the dispersion relation with surface tension, confirming the importance of this term at the scale of the experiments. This agreement gives us the region of validity of the fit, where the free and bound waves are comparable and separable. 

Chapter 4

Experimental observation of low-frequency modes in a rectangular tank with submerged step

Introduction

We report the dynamics observed when we force a closed tank containing a submerged step that separates two regions with a sudden depth change from deep to shallow water. Two types of resonance are involved: firstly, the complete tank resonates to the natural modes composed of wavenumbers which consider the propagation in both deep and shallow water regions; secondly, the nonlinear conditions in the shallow water part excite low-frequency cavity modes, which in linear combination with the fundamental mode start to fill the frequency spectrum.

We studied the frequency shift between the two types of resonance and the necessary nonlinear conditions to trigger low-frequency modes.

The propagation of nonlinear waves passing over an infinite submerged step involves the generation of nonlinearities, especially when the shallow water depth is much smaller than the wavelength (kh << 1). For a monochromatic incident wave, a well developed theory explains the energy transfer from the fundamental mode to higher harmonics, which considers typically the forcing frequency and amplitude as experimental parameters. Most of the numerical models and experimental works, consider an absorbing area at the end of the channel, usually preferred for studying the propagation of waves in one direction. In this work, we change this boundary condition at the end by a reflecting wall, which makes a new closed geometry, considering the lateral walls and the wavemaker at the opposite side.

The closed rectangular basin involves the presence of resonant modes, which becomes an interesting problem when the bottom contains some submerged structures (in this case a step). Watson and Evans [START_REF] Watson | Resonant frequencies of a fluid in container with internal bodies[END_REF], studied the resonance of a closed basin with submerged blocks, obtaining the resonant frequencies for different sizes and weights of the submerged bodies. One of the most interesting applications of this problem is to sloshing in moving closed tanks (Faltinsen et al. [35], Faltinsen et al. [START_REF] Faltinsen | Resonant three-dimensional nonlinear sloshing in a square-base basin. part 2. effect of higher modes[END_REF]).

In addition, under certain conditions of forcing, closed basins generate subharmonics, which can lead to a quasi-periodic or chaotic motion. This behavior can be found in circular, square and rectangular tanks (Ciliberto and Gollub [19]). In the same way, the subharmonic generation depends on the type of forcing, which can be horizontal, vertical or with an internal wavemaker as was studied by Tsai et al. [START_REF] Tsai | Resonantly excited regular and chaotic motions in a rectangular wave tank[END_REF]. However, so far, research about subharmonic generation has considered a constant depth. In this investigation, we characterize the mechanism that excites low-frequency modes when there are two regions with a substantial difference in depth.

Governing equations

Surface gravity waves under linear conditions and constant depth are known to satisfy the Helmholtz equation:

∆ + k 2 η = 0, (4.1)
where η represents the surface elevation and k the wavenumber given by the linear dispersion relation of water waves:

ω 2 = gk tanh(kh). (4.2)
Let the lateral boundaries of the basin be x = 0, L and y = 0, W . In a closed basin of constant depth h, i.e. with no step, we impose Neumann boundary conditions at the vertical walls as:

∂η ∂x = 0 , x = 0, L (4.3)
For a basin of constant depth h, the trivial solutions are obtained when k is solution of eq. ( 4.2). The eigenvalues of eq. ( 4.1) are obtained by means of separation of variables, leading to the following solution:

η(x, y) = A cos mπx L cos nπy W (4.4)
with m, n = 0, 1, 2, .... In these conditions, the resonant wavenumbers in the longitudinal direction are given by k m = mπ L , and in the transverse direction are given by k n = nπ W . Therefore, unique resonant frequencies ω m , ω n are related to the resonant wavenumbers according to eq. (4.4).

Closed basins with submerged structures have a more complex dynamics (see Watson and Evans [START_REF] Watson | Resonant frequencies of a fluid in container with internal bodies[END_REF] and Choun and Yun [START_REF] Choun | Sloshing characteristics in rectangular tanks with submerged block[END_REF]). The calculation of resonant frequencies with submerged structures, implies new boundary conditions at the depth discontinuity.

Let us separate the basin length L into a deep region of length L 1 and a shallow region of length L 2 , keeping the basin width W constant. Thus, the depth becomes a piecewise function: Assuming waves going in both directions, we have on both sides of the step an approximated solution of the form:

h(x) = h 1 , x < 0 h 2 < h 1 , x > 0 , ( 4 
η 1 = Ae ik 1 x + Be -ik 1 x
, x < 0 (4.6)

η 2 = Ce ik 2 x + De -ik 2 x , x > 0 (4.7)
We denote by R 1 , T 1 the reflection and transmission coefficients of the incident waves going to the right, and R 2 , T 2 the reflection and transmission coefficients of waves going to the left (See Fig. 4.1). These complex coefficients can be calculated by several methods such as Variational Formulation by Miles [START_REF] Miles | Surface-wave scattering matrix for a shelf[END_REF], Multi-modal method developed by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF] or Green's integration theorem as performed by Rhee [START_REF] Rhee | On the transmission of water waves over a shelf[END_REF]. In particular, we compute the coefficients using the linear part of the model developed by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF].

The radiated waves coming out from the depth discontinuity have an amplitude coefficient composed of the reflection and transmission of the incoming waves. Thus, the outgoing coefficients are given by:

Be -ik 1 x = (AR 1 + DT 2 ) e -ik 1 x , , x < 0 (4.8) Ce ik 2 x = (AT 1 + DR 2 ) e ik 2 x , , x > 0 (4.9)
written in matrix form:

B C = R 1 T 2 T 1 R 2 A D (4.10)
We impose Neumann boundary conditions at the lateral walls:

∂η 1 ∂x x=-L 1 = ik 1 Ae -ik 1 L 1 -ik 1 Be ik 1 L 1 = 0 (4.11) ∂η 2 ∂x x=L 2 = ik 2 Ce ik 2 L 2 -ik 2 De -ik 2 L 2 = 0 (4.12)
which leads to the following equations written in matrix form:

A D = e 2ik 1 L 1 0 0 e 2ik 2 L 2 B C (4.13)
Then, we replace equation (4.10) in (4.13) to get the following matrix equation:

B C = R 1 e 2ik 1 L 1 T 2 e 2ik 2 L 2 T 1 e 2ik 1 L 1 R 2 e 2ik 2 L 2 B C = M B C (4.14)
where M is the scattering matrix of the submerged step obtained by Miles [START_REF] Miles | Surface-wave scattering matrix for a shelf[END_REF]. Equation (4.14) is solved by finding the resonant frequencies Ω n that satisfy the equation:

det(M -I) = 0 (4.15)
The resonant wavenumbers, in the deep and shallow water region are denoted by k

(n) 1
and k

(n) 2
respectively, and are given by the dispersion relation at the frequency Ω n :

Ω 2 n = gk (n) 1 tanh k (n) 1 h 1 = gk (n) 2 tanh k (n) 2 h 2 , n = 1, 2, 3, ... (4.16)
The depth ratio h 2 /h 1 produces an obvious difference in the dispersion curves of the two regions, which involves a mismatch between the frequencies corresponding to the integer multiple of the first mode wavenumbers: k 2 . We denote by ω 1 (nk 1 ) and ω 2 (nk 2 ) the dispersive frequencies given by: ω(nk

(1) 1 ) = gnk (1) 1 tanh nk (1) 1 h 1 , n = 1, 2, 3, ... (4.17) ω(nk (1) 
2 ) = gnk

(1)

2 tanh nk (1) 2 h 2 , n = 1, 2, 3, ... (4.18)
Thus, due to the dispersion of water waves, it is straightforward that for higher multiples of the wavenumber, we have the inequality:

ω(nk (1) 1 ) < ω(nk (1)
2 )

, n ≥ 2 

Experimental Set-up

This study was carried out in a laboratory tank designed to measure the deformation of the free surface by means of Fourier Transform Profilometry (FTP) (see Cobelli et al. [20]). The water is painted with T iO 2 in order to get a diffusive surface which projects the sinusoidal pattern usually used in FTP. Images are recorded from the top with a high speed CCD camera of 1024x1024 pixels. Waves are generated by a flap-type wavemaker (Fig. 4.3) driven by an electronic linear motor that enables us to tune the frequency with a precision of 0.01 Hz in a range of [START_REF] Athanassoulis | A consistent coupled-mode theory for the propagation of small amplitude water waves over variable bathymetry regions[END_REF][START_REF] Beji | Experimental investigation of wave propagation over a bar[END_REF] Hz. Additionally, fixed spatial point measurements are taken with an optical laser beam -with a resolution of 5 µm, yielding temporal series sufficiently long to obtain a spectrum with a frequency step of 0.01 Hz.

Waves travel through the deep water region (6.5 cm depth) up to a step separating the deep region from the shallow region with depth 2 cm. The step position is movable as well as the wall at the end of the channel. These movable parts can be used to modify the geometry of the tank, particularly the deep water length L 1 and the shallow water length L 2 . A step separates the deep and the shallow water regions, with an abrupt change of depth. Waves propagate through the shallow water region up to the reflecting wall located at the end of the channel. The measurement area includes a deep water part with the incident waves and the entire shallow water part. Sinusoidal fringes are projected onto the free surface with the video projector (2) and recorded with the high speed camera (3). Continuous temporal measurements in a fixed point are taken with a laser beam sensor (4), which can move in the x direction.

Characterization of quasi-periodic and purely harmonic regimes

Space-time measurements

For convenience, we express all the dimensions normalized by the length of the tank L and the frequencies by the first resonant frequency of a tank without step (L 2 = 0), which is calculated, by means of the shallow approximation as:

Ω L = π L gh 1 (4.20)
The space-time measurements in Fig. 4.4 show the difference between a non resonant and a resonant case. Fig. 4.4a, corresponds to a typical harmonic case, where the strong reflection produced by the wall generates standing maxima. However, when the shallow water wavenumber k 2 is set to be resonant (according to (4.15), Fig. 4.4b shows a stationary regime that is broken and a quasi-periodic pattern appears, with a period of approximately 2.5 s. In both cases, the forcing frequency is 4π s -1 . In order to study systematically the transition to the quasi-periodic state, we fixed L 1 and L 2 keeping the forcing amplitude A wm and frequency ω 0 as the tuning variables.

Experimental spectrum and phase plane

The phase plane position-velocity is a useful graph that shows the periodicity of a temporal signal. We measure at one fixed point at the center of the shallow water region the temporal signal η(t). In Fig. 4.5, the temporal signal and its spectrum show a purely harmonic regime, where the strong nonlinearities of the shallow water part produce a strong second harmonic. When we observe in Fig. 4.6-left the phase plane projected on the axis η(t) and η(t), we have a closed loop, which is characteristic of a periodic signal. In addition, we gather periodic points of the signal in the following way:

η j = η(t 0 + jT ) (4.21) ηj = η(t 0 + jT ) (4. 22 
)
where T is the period of the system, taken in this case at the forcing frequency ω 0 i.e. T = 2π/ω 0 . The arbitrary initial phase is t 0 and j = 1, 2, 3, .... In Fig. 4.5-bottom, the arbitrary chosen periodic points are indicated with red dots, as well as the lowest frequency maximum. These periodic points were projected on the phase plane in In contrast, when we vary the frequency to a quasi-periodic case, we obtain a more interesting dynamics. We plot the frequency spectrum in Fig. 4.7, which reveals the presence of a low-frequency indicated with a red dot in the spectrum. This frequency fills the spectrum in linear combination with the forcing frequency ω 0 . In this case, ω 0 transfers most of the energy to the lowest frequency, which corresponds to the excitation of the first mode Ω 1 (n = 1 in eq. (4.16)). The theoretical frequency of first mode is Ω 1 = 2.51 s -1 , while the measured frequency is Ω 1 = 2.32 s -1 .
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At the forcing frequency ω 0 , the shallow water wavenumber k 2 is close to an integer multiple of the first resonant mode of the complete tank. Therefore, in this case we have:

k 2 ≈ nk (1) 2 (4.23)
Therefore, we excite a low-frequency resonant wave with frequency Ω 1 and wavenumbers k In the quasi-periodic case shown Fig. 4.7 we select the longest period given by the frequency Ω 1 . Thus, the sample is taken periodically with a period of T = 1/Ω 1 .

The phase planes in Fig. 4.8 show the behavior of the complete signal and the periodically sampled points (Poincaré section). The complete signal fills a circle, which indicates that the signal is not periodic and there is no harmonic regime. In addition, the Poincaré section of the periodically sampled points constitutes an orbit that should become a continuous line when the time tends to infinity. In this experiment, a signal long enough permits to observe an orbit with good continuity.

This behavior indicates a quasi-periodic state, where the ratio between the forcing frequency and the first resonant mode is irrational. In this experiment, we have a ratio ω 0 /Ω 1 = 5.619. 

Transient signal

The transition from the periodic to the quasi-periodic regime takes place after incrementing the frequency in 0.01 Hz. Once we set a resonant frequency, the low-frequency modulation starts to develop and reaches a new state after τ = 60 s approximately. This time to stabilization can be observed in Fig. 4.9, where a window of the temporal signal in the shallow water region shows the trigger of the low-frequency modes, and the consequent temporal modulation. 

Low-frequency mode profile

In order to observe the nature of the excited low mode, we obtain the complex field from the Fourier Transform at the lowest frequency Ω 1 :

η (x, y, Ω 1 ) = 1 T T 0 dt η (x, y, t) • e -iΩ 1 t (4.24)
In Fig. 4.10(a) we show the absolute value and the real part of the field η(x, y, Ω 1 ). The field is constant in the transverse direction y, hence we discard the influence of transverse mode in the subharmonic generation. The minimum in amplitude at the step (node) can be clearly observed in the profile graph plotted in Fig. 4.10(b). The x > 0 region, corresponding to the zone over the step, has the typical quarter wavelength profile. This suggests that the excitation of low-frequency modes Ω 1 could be also driven by the excitation of quarter wavelength modes in the shallow water region. 

Low-frequency resonance by varying the forcing frequency

Experiments with frequency tuning showed that the forcing frequencies exciting low-frequency modes are shifted with respect to the frequencies generating amplitude resonance. In Fig. 4.2, we plot the resonant frequencies Ω n of the tank obtained from eq. (4.15).

LOW-FREQUENCY RESONANCE BY FORCING AMPLITUDE

Considering a temporal signal η(t) in the middle of the shallow water region, the amplitude of the waves at the forcing frequency η(ω 0 ) is plotted in Fig. 4.11a. The vertical dashed lines indicate the complete tank modes given by the eq. (4.15). The amplitude peaks agree with the tank modes. ω(nk 1 (1) ) and k

ω(nk 2 (1) 
(1)
2 , calculated from eqs. (4.17) and (4.18) respectively.

In order to quantify the spectral richness, which is correlated with the excitation of low-frequency modes, we define the non-dimensional quantity:

R = 1 - ∞ n=1 η(nω 0 )dω ∞ 0 η(ω)dω (4.25)
where in the numerator of the fraction, η(nω 0 ) corresponds to the harmonics of the forcing frequency ω 0 , representing the frequencies that are typically present in a harmonic regime. In contrast, in the denominator we have the energy spread in the whole spectrum. Therefore, when R is close to zero, it represents a harmonic regime, whereas R close to the unit means a resonant or quasi-periodic regime.

In Fig. 4.11b, the maxima corresponding to the richest spectra agree with the multiples of the shallow water wavenumber of the first resonant mode. As we defined in eq. (4.19), the first mode has wavenumbers k (1)

1 and k (1)
2 , which can be excited when the forcing frequency generates multiples of those wavenumbers. In Fig. 4.11b the shallow water multiples ω(nk

(1)
2 ) are in phase with the resonance, due to the higher nonlinearity in this region. We observe that a threshold of spectral richness can be set at R ≈ 0.5, where beyond this threshold, there is a quasi-periodic behavior.

Low-frequency resonance by forcing amplitude

The nonlinearity in the shallow water part is one of the parameters that triggers the subharmonics. In Fig. 4.12 a to d we plot snapshots of the wave profile for different wave amplitudes. The increment in forcing amplitude leads to a cnoidal wave profile, with stronger nonlinear effects. The nonlinearity is quantified by the non-dimensional Ursell number:

U r = H h λ h 2 (4.26)
where H is the crest to trough wave height and λ is the wavelength (λ = 2π/k). The forcing amplitude that triggers low-frequency modes varies with the forcing frequency. In Fig. 4.13 we plot the spectral richness R as a function of the forcing amplitudes for three different frequency deviation from the low-frequency mode. As expected, the threshold in forcing amplitude varies with the frequency deviations from the resonant modes calculated from eq. (4.15). When the frequency is close to the resonant frequency Ω n , less nonlinearity is needed, then the threshold in forcing amplitude is smaller. 

Concluding remarks

We have found an interesting dynamics in a simple geometry where the interaction of different resonances generates quasi-periodic responses with a simple harmonic forcing. We characterized the low-frequency modulation for a typical harmonic regime and a quasi-periodic regime. In the quasiperiodic regime, the closed orbit of the Poincaré map constitutes a geometrical confirmation of this dynamics. Although we described the periodic and quasi-periodic regimes, the study of the complex dynamics can be investigated further.

We observed from the experiments, that the phenomenon of low-frequency modulation requires to be in a dispersive regime, i.e. the forcing frequency should be sufficiently different from a multiple of the first natural mode (ω 0 = nΩ 1 ). Experiments carried out at lower forcing frequencies, in the order of three or four times Ω 1 , never showed modulation, which can be explained because in these conditions, the frequency ratio (ω 0 /Ω 1 ) is still a rational number. We notice that the resonant modes were calculated using a linear theory. However, the actual system is highly nonlinear, which introduces logic errors in the estimation of the low resonance frequencies. Higher frequencies have better accuracy because the regime is more linear.

We have evaluated the contribution of the nonlinearity in the trigger of low frequencies. We have confirmed that the nonlinearity (controlled by the forcing amplitude) extends the frequency band of low-frequency generation. The described phenomenon is robust and gives repeatable results. Additionally, we highlight that the system requires low energy to trigger a complex dynamics, which is usually obtained at greater forcing amplitude in experiments with a flat bottom basin.

Chapter 5

Measurement of attenuation in shallow water

Introduction

Experimentally, the attenuation of surface waves in shallow water is strongly depending on the bottom friction. In particular, for very shallow water configurations, the damping due to bottom friction becomes larger than the damping due to bulk viscosity. Therefore, it is important to verify the capability of the set up to retrieve the theoretical attenuation, even in very shallow water scenarios.

In order to isolate the contribution of the bottom friction to the total damping, we performed experiments by varying the water depth. Two configurations were considered: first, a random linear field is used to minimize the Helmholtz equation and second, propagating plane waves were measured to obtain the spatial decay in the direction of propagation.

Experimental set-up

Geometry and method of measurement

Experiments were carried out in a laboratory tank designed for the measurement of the free surface using the optical technique of Fourier Transform Profilometry. A sinusoidal pattern is projected by the video projector onto the water surface which has been made diffusive by adding T i0 2 . The fast camera records from the top images of the free surface, where the distorted pattern is then related to the elevation of the free surface. The water depth h was the main controlled parameters, varying in the range 0.85 < h < 5 cm. For each depth, two configurations were considered. In Fig. 5.1 the first configuration includes a wavemaker located at the beginning of the tank, with movable obstacles in front, that generate a randomly distributed wave field. Two oblique located walls reflect waves in diagonal directions, as well as cylindrical obstacles help to generate an isotropic field. When the movable parts are withdrawn, we have the second configuration, where waves propagate in one direction, up to the absorbing beach located at the end of the tank. 

WAVE PACKET IN MULTIPLE DIRECTIONS

Forcing signal

The surface deformation produced by the transient forcing of a wave-packet has been measured. The total recording time is set 100 s, in order that the waves are completely damped. A transient wave packet has an advantage for the later post-treatment, because of its simple Fourier transform. This property is due to the natural windowing given by a signal starting and ending at zero.

Regarding the frequency of the forcing signal, we considered the damping resonance founded by Przadka et al. [START_REF] Przadka | Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?[END_REF], where at 5 cm depth, a damping enhancement was observed at 4 Hz. This damping resonance coincides with the intersection of the dispersion relations of Marangoni and surface waves. Therefore, in order to avoid this resonance, we choose a wave packet at f = 6 Hz, which we keep constant when we decrease the depth, considering that wavenumbers in shallower water are greater.

The measurement of the damping, as will be explained in the next section, requires the assumption of linearity. Considering that this study focuses in measurements in shallow water, we should have a frequency sufficiently high to apply the linear theory. For the experiments, the frequency f = 6 Hz produces a non-dimensional wavenumber kh = 1.4, which is a regime where the linear theory is applicable. In Fig. 5.2 a typical temporal signal is shown. The maximum amplitude is smaller than 1 mm in order to avoid nonlinearities in shallow water conditions.

Wave packet in multiple directions

First, we measured the attenuation by minimizing the Helmholtz equation, as was computed by Przadka et al. [START_REF] Przadka | Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?[END_REF]. The space-time resolved field η(x, y, t) can be transformed to the frequency domain by computing a Fourier transform at the forcing frequency ω:

H(x, y, ω) = ∞ -∞ η(x, y, t) • e iωt dt.
(5.1)

When the wave conditions are linear, in a harmonic regime, it can be demonstrated that the surface elevation H(x, y, ω) is solution of the Helmholtz equation:

(∆ + k 2 )H = 0. (5.2)
where the Laplacian ∆H is calculated numerically, owing to the spatial resolution of the matrix field H(x, y):

∆H ij = 1 dx 2 (H i-1,j + H i+1,j + H i,j-1 + H i,j+1 -4H i,j ) . ( 5.3) 
The complex wavenumber k = κ + iβ has a real part given by the linear dispersion relation of water waves:

ω 2 = gκ + σ ρ κ 3 tanh κh (5.4)
where σ is the surface tension coefficient and ρ the density. The imaginary part β corresponds to the total attenuation.

Method of measurement of attenuation

Considering that for a constant depth all the points in the (x, y) field are solutions of the same equation ( 5.2), we can define a target norm function ǫ = ||(∆ + k 2 )H||, which has to be minimized by varying the real and the imaginary parts of k.

The patterns in Fig. 5.3 show the complex field H and its discrete Laplacian ∆H and reveals the proportionality between these fields. The error of the minimization is obtained by replacing the minimum complex wavenumber of the target function ǫ in Eq. (5.2). Thus, the field of the error is:

ǫ min (x, y) = (∆ + k 2 min )H(x, y), ( 5.5) 
and is shown in Fig. 5.4-right. The error field is randomly distributed in space, and its mean amplitude is around 2% of the mean amplitude of the discrete Laplacian field (Fig. 5.3). Importantly, we highlight that the fields shown in Fig. 5.3 correspond to the most shallow water case of the present study, thus, the most unfavorable. We do not present the results of deeper fields that are more linear and with a better resemblance.

Harmonic one-directional waves

After obtaining the attenuation by minimizing the Helmholtz equation, we changed the geometry of the tank, but kept the water depth and cleanness unchanged (see Fig. 5.1-right). We measure a traveling plane wave, which permits us to obtain directly the damping of surface waves in the direction of propagation. For each depth, we measured a stationary forced traveling wave at f = 6 Hz, which is the same frequency of the transient wavepacket. From the recorded signal, we computed a temporal Fourier decomposition to obtain the complex field H(x, y, ω) at the linear order. The real part of H(x, y, ω) is shown in Fig. 5.5, where we can appreciate that, despite the presence of some transverse modes, the flatness of the wavefront allows us to treat the field as waves propagating only in the x direction.

The transverse average of the wavefield H(x, y, ω) leads to an exponentially damped sinusoidal signal H 1 (x), which can be fitted by the addition of two waves traveling in opposite directions, in order to take into account the reflection from the end of the tank. The fitted equation is:

H 1 (x) = Ae i(κ+iβ)x + Be -i(κ+iβ)x
(5.6)

where A, B and k = (κ + iβ) are the three complex fitted parameters. In Fig. 5.6 the real part and the imaginary part of the signal and show good agreement with the fitted curve along the whole horizontal axis, meaning that the fitted wavenumber represents the actual attenuation. (5.6). The fitted attenuation is β = 0.9864 and the theoretical attenuation considering bulk and bottom effect (see next section) is plotted in black dashed line.

Theoretical attenuation and comparison with experiments

Regarding the very shallow water conditions of the experiments, we consider the attenuation of surface waves as produced by two effects: bulk viscosity and bottom friction. The bulk attenuation is calculated according to the Stokes equation:

β = 4κ 2 µω ρg + 3σκ 2 , (5.7)
where κ is the real part of the wavenumber, ω the wave frequency, µ the dynamic viscosity and σ the surface tension of water. The bottom friction contribution is calculated with the equation of damping for plane waves traveling through a rectangular cross section waveguide. This equation was given by Hunt [START_REF] Hunt | Viscous damping of waves over an inclined bed in a channel of finite width[END_REF] and Mei and Liu [START_REF] Mei | The damping of surface gravity waves in a bounded liquid[END_REF]: The minimization of the Helmholtz equation fits the real and the imaginary part of the wave number. Considering that this solution is obtained under the assumption of linear waves, we should obtain a wavenumber in agreement with the linear dispersion relation of water waves given in eq. (5.4). Therefore, we verified in Fig. 5.9 that the obtained wavenumbers agree very well with the linear dispersion relation, even for a very shallow depth. 

β = 2κ b ν 2ω κb + sinh(2κh) 2κh + sinh(2κh) , ( 5 

Conclusion

We have verified the applicability of the minimization of the Helmholtz equation for shallow water. This method gives accurate measurements of the attenuation of waves propagating with wavelength sufficiently short to use the linear hypothesis.

We performed experiments that allowed us to identify the variation of the depth as the unique relevant parameter that affects the attenuation. We observed that the attenuation remains almost constant for h > 2 cm, where the influence of the bottom friction becomes negligible.

For each depth, consecutive experiments were performed with a transient multi-directional wave and a one-directional plane wave. In both geometries, the minimization of the Helmholtz equation gave very similar results, confirming the robustness of the method for shallow water. In contrast, the fit of a one-directional linear wave to the plane wave data is less accurate in shallow water conditions. In this case, the attenuation is overestimated by the linear fit, probably due to the greater contribution of higher harmonics in the original signal.

Finally, we have extended the work of Przadka et al. [START_REF] Przadka | Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?[END_REF] to varying depths, finding for a given frequency the depth threshold where the contribution of the bottom friction to the total attenuation becomes important. We have obtained for different depths the theoretical attenuation of pure water.

Chapter 6

Wetting properties in small scale experiments of surface waves

Introduction

The experiments performed on this thesis have been developed at a scale where the capillary effect are not always negligible. In fluid mechanics, the characteristic length indicating that the physics is subject to both gravitational and capillary effects is the capillary length (see Batchelor [START_REF] Batchelor | An introduction to fluid dynamics[END_REF]) defined as:

λ c = σ ρg (6.1)
where σ is the water surface tension, ρ the density and g the gravitational acceleration. For the airwater interface, the capillary length is 2.7 mm, which is in the same order of magnitude of the wave amplitude used in our experiments. In this work, most of the experiments focus on the propagation of regular waves in a waveguide. During the development of this thesis, experimental aspects like the absorption of the beach or the flatness of the wavefront have required especial attention. In this frame, we observed from the measurements that the scale of the set-up enhances the perturbation of boundary effects, which leaded to a particular study focused on this subject. In the literature, for instance, Hocking [START_REF] Hocking | The damping of capillary-gravity waves at a rigid boundary[END_REF], Henderson and Miles [START_REF] Henderson | Surface-wave damping in a circular cylinder with a fixed contact line[END_REF] or Nicolás [START_REF] Nicolás | Effects of static contact angles on inviscid gravity-capillary waves[END_REF] have shown that the dissipation due to surface forces in the boundary can exceed the one due to viscosity.

In this chapter, we present two problems that have drawn attention to the role of the wetting properties of the boundaries: the absorption of the beach and the transverse defects generated at the lateral walls.

Influence of meniscus in an absorbing beach

The absorption of waves at the end of the channel is reached by installing a beach with weak slope. The quality of absorption is mainly driven by the beach slope, however, at small scale the contact line at the end of the wet surface has a substantial contribution. In figure 6.1 two configurations are represented, corresponding to different wetting conditions of the beach surface, as is described by Quéré [START_REF] Quéré | Wetting and roughness[END_REF].

The first case in figure 6.1-a, shows the change of the contact angle when the beach is made of plastic material, which is quite hydrophobic. In this case, when a small wave arrives, the contact line is pinned because of the high energy required to move the contact line upwards. Consequently, the contact angle increases and the wave is partially reflected by the negative meniscus. This enhanced reflection by a pinned contact line was recently reported by Michel et al. [START_REF] Michel | Acoustic measurements of surface wave damping by a meniscus[END_REF].

INFLUENCE OF MENISCUS IN AN ABSORBING BEACH

The opposite case is illustrated in figure 6.1-b, where the periodic structure represents the mesh located on the beach surface. The mesh spacing is 500 µm, which is sufficiently large to be filled with water and to keep the fluid trapped in the gaps. This configuration changes completely the wetting of the beach surface, creating a contact line that moves above a surface that is permanently wet, without the cost of energy required to wet the surface. 

Experimental measurement of the beach absorption

Experimentally, we tested the influence of the wetting in an absorbing beach, with the objective of quantifying the contribution of the contact angle to the remaining reflection not absorbed by the beach. Two configurations were considered, which were previously explored in the chapter 3, focused on the experiments of nonlinear wave propagation over a step. Therefore, we compared in figures 6.3 and 6.4, the absorption of the beach for ω = 4π s -1 and ω = 6π s -1 respectively. In both configurations, the water depth is h = 2 cm and the slope of the beach was estimated at 8%.

In figure 6.2 the experimental set-up is shown. We analyzed the influence of the wetting of the beach by adding a nylon mesh with a spacing of 500 µm. This mesh is able to trap the water and keep the surface permanently wet, changing the movement of the water-solid contact line. In the first configuration, at ω = 4π s -1 , the absorbing beach with and without mesh are compared and results are reported in figure 6.3. The reflection without mesh is 28% whereas the reflection coefficient with mesh is 6.3%. We observe in this case that the wetting reduces the beach reflection in a substantial fraction.

x The surface of the beach is covered with a mesh that keeps a wet surface, generating smaller reflection.

At higher frequency, ω = 6π s -1 , the difference is smaller but is still significant. In figure 6.4, the reflection from the beach without mesh is 6%, while the beach with mesh has a reflection coefficient of 2%. In this case, considering that high frequencies usually have smaller reflection (due to its better dissipation at the beach), the improvement due to the wetting is less marked. With such a weak reflection, we have to consider that the linear fit performed on the fundamental mode is not an accurate tool to observe the difference in reflection. In conclusion, the wetting characteristics of the beach surface influence the absorption and should be taken into account in small scale experiments. Likewise, other boundaries of the water tank modify the wave field, when the field size and the wave-amplitude are sufficiently small. In the next section, we will focus on the influence of lateral walls of a narrow wave-guide on the propagation of plane waves..

Influence of meniscus in a narrow channel

In figure 6.5, the sinusoidal pattern usually used in FTP is projected onto the still water surface. In this case, the parallel walls form a narrow waveguide that is used for the propagation of waves below the first cut-off frequency, i.e. in mono-mode conditions. The meniscus observed at the contact line between the water surface and the lateral walls is not negligible at this scale. Therefore, the boundary conditions of this contact line and its contribution to the wave propagation is the topic of study of this section. Theoretical and experimental investigations carried out by Benjamin and Scott [START_REF] Benjamin | Gravity-capillary waves with edge constraints[END_REF] or Hocking [START_REF] Hocking | The damping of capillary-gravity waves at a rigid boundary[END_REF], have explained the propagation of surface waves in narrow channels where the contact line is fixed, which differs from the classical Neumann boundary condition. 3). An additional front camera ( 4) is placed at the end of the channel to record the transverse wave profile. This profile is obtained from the projection of a transverse line, indicated in green dashed line, onto the water surface.

In these experiments, we performed two types of measurements. First, the Fourier Transform Profilometry was used, as in the previous section, by means of a top placed video-projector and fast camera, as we observe in figure 6.6.

Additionally, in order to have a front view of the lateral menisci, we placed a second camera at the end of the channel, which was used to record the profile generated by a transverse line projected by the video-projector. Figure 6.6 shows the second camera placed at the end of the channel, which records the transverse profile indicated in green dashed line.

Decomposition in transverse modes

The wave propagation in a waveguide always involves the presence of transverse modes. In this case, we present the transverse mode decomposition in order to analyze afterwards the difference in the propagation in the cases with and without mesh.

Considering the waveguide width L and the far field water depth h, let φ(x, y) be the complex field of the linear mode obtained from the temporal decomposition:

φ(x, y) = 2 T T 0 η(x, y, t)e iωt dt (6.2)
where ω is the fundamental frequency that satisfies the linear dispersion relation of water waves:

ω 2 = gk tanh kh (6.3)
with k the wavenumber. In a waveguide channel (see figure 6.6), the linear field can be decomposed in a orthogonal basis of transverse functions:

   g n (y) = 1 √ L cos nπy L n = 1 g n (y) = √ 2 √ L cos nπy L n ≥ 2 (6.4)
Thus, the field φ(x, y) can be expressed in a serie of functions:

φ(x, y) = ∞ n=0 ϕ n (x)g n (y) (6.5)
where the x depending functions ϕ n (x) is fitted by the addition of two waves going in opposite directions: 

ϕ n (x) = a n e iknx + R n e -iknx (6.6) with k n = k 2 n -(nπ/L)
k - nπ L ≥ 0 (6.7)
or is an evanescent mode if:

nπ L -k ≥ 0 (6.8)
Thus, we can determine for each frequency a maximum number of propagating modes, which is called here n c .

Cut-off frequency

We calculate the cut-off frequency of the first transverse mode ϕ 1 by taking the critical case of the equation (6.7) for n = 1:

k c = π L (6.9)
and we replace the cut-off wavenumber in equation ( 6.3) to get the cut-off frequency. Considering the parameters of this experiment, we have ω c = 27 s -1 , which means that in the results showed later, waves are in mono-mode propagation i.e. only k 0 = k is real.

Vertical displacement of a transverse profile

Difference between wet and dry lateral walls

In figure 6.7 we present a sequence of 8 snapshots completing one period. In this experiment, the forcing frequency is ω = 4π s -1 and the wave amplitude is 2 mm, which is in the same order of magnitude of the meniscus. The wetting of the lateral walls are different on each side. The left wall is covered with the wetting mesh, while the right wall is only a plastic surface.

The passage of the wave behaves differently on each side. In figure 6.7 we highlight three snapshots indicated with arrows. At t = 0.44 s, we observe the trough of the wave, where the profile is inclined and the left contact line (with mesh) is located below the right contact line (without mesh). In this case, the right contact line is pinned, because the energy required in the dewetting is higher than in the opposite side. The pinning of the right contact line produces the inclination of the wave trough.

Later at t = 0.56 s, the wave height at the center of the channel is at z = 0 approximately. In this snapshot we have recovered the position of the still water, with positives menisci in both contact lines.

At t = 0.752 s, we observe the crest of the wave. On the left side, the wet mesh keeps the same positive meniscus that moves upward with the wave amplitude. In contrast, on the right side the contact line is pinned and the shift of the water level produces a change in the contact angle. In this side, the contact angle becomes instantaneously 90 degrees, which is due to the high energy necessary to wet the wall surface.

Observation of transverse capillary waves

Using the same set-up we have increased the amplitude of the wave in order to force the displacement of the contact line on the side without mesh. A considerable amplitude, relative to the capillary length, changes the regime from a pinned contact line to a freely sliding contact line, as has been defined theoretically by Cocciaro et al. [START_REF] Cocciaro | Experimental investigation of capillarity effects on surface gravity waves: non-wetting boundary conditions[END_REF].

When we increase the amplitude and frequency, the change of the contact angle in the wall without mesh can generate transverse defects, which usually spoil the flatness of the wavefront. To describe this phenomenon, we present in figure 6.8 a series of images of the transverse profile, recorded in a short window of time located around the generation of the defect.

The sequence starts at t = 0.272 s, when the contact line on the right wall reaches the maximum height, which corresponds to the top of the wet region. At this point, the wetting of the wall requires more energy but the water level is still going up. At the next image, at t = 0.288 s the contact line is pinned at the top of the wet region, and the contact angle changes locally due to the upward movement of the water level.

When the contact line is pinned and the contact angle changes, the water surface behaves like a string perturbed at the left extreme. This displacement generates a wave that propagates from left to right, which is indicated with arrows in the following 6 images, from t = 0.304 s to t = 0.384 s. This capillary wave is the origin of the transverse defects observed in the waveguide with sufficient amplitude and without the mesh that wet the wall surface. The generation of capillary waves moving away from the wall and the dynamics of the contact line have been observed in the experimental work of Park et al. [START_REF] Park | Contact line dynamics and boundary layer flow during reflection of a solitary wave[END_REF]. 

FTP measurement of a waveguide with and without mesh

In this section we compare the wave field obtained in a narrow channel, by adding or not adding a mesh on the lateral wall at both sides of the waveguide. As we observe in figure 6.5, the reference image recorded with still water is already deformed by the meniscus. Therefore, the deformed image obtained in the FTP considers the surface deformation due to the wave, but relative to a deformed reference image.

In figure 6.9, we present the field of the fundamental mode measured with FTP, which was obtained from the temporal decomposition in equation (6.2). Figure 6.9-a shows a field with lateral mesh. In this case, the wetting of the wall keeps always a positive meniscus and the contact line has free sliding satisfying Neumann boundary condition. In contrast, in figure 6.9-b the field shows that the boundaries differ from the usual Neumann boundary conditions. In this case, the wavefront has transverse curvatures. The crest of the wave has convex curvature, while the trough of the wave has concave curvature.

This difference in the boundary condition on the wall is further illustrated in figure 6.10, where a transverse profile of the real part (η 1 (x 0 , y)) is plotted. Two profiles along the y axis located at the crest and at the trough of the waves are compared for both cases, with and without lateral mesh. We observe that the curvature generated by the pinned contact line in the configuration without mesh is corrected by the wet surface generated by the mesh. crest with mesh crest without mesh trough with mesh trough without mesh Figure 6.10: Transverse profile along the y-axis of the linear mode for the frequency ω = 6π s -1 and the depth h = 3 cm. We show, for comparison, one crest and one trough of the wave field. In the case of the solid lines, we added a plastic mesh of 500 µm along the lateral waveguides, in order to keep the wall surface wet. As a consequence, the menisci are still constant for the crest and trough and the transverse perturbation observed in the dashed lines (no mesh case) is considerable reduced.

We recall that in this configuration, only one propagating mode exist and no transverse modulation is expected. Therefore, any curvature of the transverse profile does not correspond to the presence of transverse modes, and should be attributed to experimental constraints.

Quantitatively, we can compare the contribution of transverse modes in the configurations with and without lateral mesh. In particular, the second transverse mode g 2 (y) is artificially enhanced in the case without mesh, due the transverse curvature described in figures 6.9 and 6.10. Averaging the functions ϕ(x) along the longitudinal dimension, we can compare the normalized contribution of the second transverse mode. In this way, the case without mesh gives a ratio | φ2 / φ0 |= 5%, while in the case with mesh the ratio is only | φ2 / φ0 |= 0.8%, which is in the noise range.

Conclusion

In this chapter we have observed the importance of the wetting properties in the experimental set-up of surface waves at small scale. Two problems were considered: the wetting properties of an absorbing beach and the wetting of the lateral walls in a narrow channel.

In the first case, the addition of a mesh keeps the beach surface permanently wet, saving the energy consumed by the wetting process and keeping the contact angle small and constant. In contrast, the beach without mesh has a pinned contact line that changes the contact angle creating a locally vertical surface that can reflect partially the capillary wave. At low frequencies and sufficiently small amplitude, the reflection can be reduced 5 times by means of this mechanism.

In the second problem, the wetting properties of lateral walls in a narrow waveguide were analyzed. When the walls have a simple plastic surface, the meniscus changes its contact angle when a wave is passing, and the contact line can be pinned if the wave-amplitude is small. In this case, the boundary conditions on the walls are no longer Neumann type. In contrast, when lateral mesh is added, the positive meniscus moves vertically with the amplitude of the wave, and the measurement of the relative deformation with FTP gives a field without any modulation in the transverse direction, as it is expected theoretically with Neumann boundary conditions on the lateral walls.

Therefore, the addition of a mesh that is able the trap droplets generating a wet surface improves substantially the quality of the measurements, correcting problems that are inherent to the experiments of surface waves at small scale.

Chapter 7

Experimental measurements of perfect wave absorption

Introduction

The absorption of water waves is a problem that catches the interest of scientists and engineers due to the direct applications. Theoretical studies, as well as experimental investigations, have been performed in useful and promising problems like power generation or coastal protection. Regarding the vast theory developed in the last decades, one can mention Evans [START_REF] Evans | A theory for wave-power absorption by oscillating bodies[END_REF], who gives a theory for predicting the wave absorption by oscillating damped floating bodies. Later works (Evans [START_REF] Evans | The oscillating water column wave-energy device[END_REF][START_REF] Evans | Wave-power absorption by systems of oscillating surface pressure distributions[END_REF], Martins-Rivas and Mei [START_REF] Martins-Rivas | Wave power extraction from an oscillating water column at the tip of a breakwater[END_REF], Evans and Porter [START_REF] Evans | Wave energy extraction by coupled resonant absorbers[END_REF]) presents new devices, as the oscillating water column, that improves the energy absorption. A good review of the different types of energy absorbers was published by Falnes [START_REF] Falnes | A review of wave-energy extraction[END_REF]. Now, we turn our attention to a simpler problem. The absorption of water waves by means of friction losses, which in this case plays the role of the mechanical absorber. The same type of perfect absorption has been proposed in acoustics by Romero-García et al. [START_REF] Romero-García | Use of complex frequency plane to design broadband and sub-wavelength absorbers[END_REF] and Romero-García et al. [START_REF] Romero-García | Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators[END_REF].

One important characteristic to measure precisely the absorption is the one-dimensional approximation of the water waves. The possibility of generating waves that are well approximated by the addition of two linear waves traveling in opposite directions, avoid the oblique and transverse effect, giving a clean measurement.

We start by giving a simple example of theoretical wave absorption, in order to explain the relation between the radiation damping and the mechanical leakage. Later, we present experiments of wave absorption using a cylinder as a resonator, finding a geometrical configuration that produces a reflection below 5%.

The radiation damping

If we consider a conservative system, one can think that any movement generated inside is not attenuated. However, in an infinite medium, an oscillation generated in a finite region can be damped, because energy is transported by outgoing waves. These outgoing waves generate decay of the oscillations in the analyzed region. This damping is known as radiation damping and will be explained with the following example, adapted from the model of Carrier [START_REF] Carrier | The dynamics of tsunamis, mathematical problems in geophysical fluid dynamics[END_REF] and Mei et al. [START_REF] Mei | Theory and applications of ocean surface waves[END_REF].

Let us consider a semi-infinite wave channel of water depth h and width L, as shown in figure 7.1. We place at the end of the channel a moving wall of mass M attached to a spring of constant K and a damper of constant C. An incident wave comes from x = -∞ and a wave reflected by the wall, with reflection coefficient R, propagates towards x = -∞. The origin is located at the equilibrium position of the mass-spring system. For the first part, let us consider a conservative system, where the damper constant is C=0. The fundamental principle of dynamics applied to the mass M gives:

M Ẍ = -KX + pLh (7.1)
where X is the spring displacement, -KX is the spring force and pLh is the force applied by the water pressure p over the area of the wall Lh. The surface height is described by the addition of the incident and reflected waves:

η(x) = e ikx + Re -ikx . (7.2)
We know also that the pressure over the wall is given by the water height η(x) at the origin (spring equilibrium position). Thus, we have:

p = ρgη(0) (7.3)
where ρ is the water density and g the gravity acceleration. Considering that the surface height is given by the wave equation, we have at the origin:

η(0) = 1 + R (7.4)
and taking into account a harmonic regime, with a frequency ω, the equation (7.1) becomes:

-

ω 2 M X = -KX + ρgLh(1 + R) (7.5)
Further, we know that at x = 0, the fluid velocity should be equal to the wall velocity ( Ẋ = -iωX). Therefore, we have:

-ig

ω ∂η ∂x x=0 = gk ω (1 -R) = -iωX. (7.6) 
For simplicity, we use the shallow water approximation of water waves, where the phase velocity is given by ω/k = (gh) 1/2 . In addition, the equations (7.5) and (7.6) are used to find the expression of the wall position. Thus, solving these equations for X, we obtain:

X = 2ρgLh M (ω 2 0 -ω 2 ) -i(gh) 1/2 ρLhω (7.7)
where ω 0 = (K/M ) 1/2 is the resonant frequency of the mass-spring system. We have obtained the equation of movement in the form of a damped harmonic oscillator. Thus, the natural frequencies can be obtained from the roots of the denominator of equation (7.7). This gives us:

ω = - i(gh) 1/2 ρLh 2M ± ω 2 0 - (gh) 1/2 ρLh 2M 1/2 (7.8)
where the imaginary part, represents the temporal attenuation. Considering that we have chosen the temporal function e -iωt , the imaginary part of ω satisfies:

- (gh) 1/2 ρLh 2M < 0 (7.9)
which means that the system experience damping due to the radiated waves.

Wave absorption

In this section, we present the necessary conditions to have a perfect wave absorption in the system described in figure 7.1. Let us consider in this section a damper constant C = 0. Thus, equation (7.1) becomes:

M Ẍ = -KX + pLh -C Ẋ (7.10)
where we consider again a harmonic regime, which yields:

- .11) As in the previous calculation, we consider the system composed of the fluid velocity equation (7.6) and the force equation over the mass M in equation (7.11). We solve the equations for the unknown reflection coefficient R and we obtain:

ω 2 M X = -KX + ρgLh(1 + R) + iωCX. ( 7 
R(ω) = ikM (ω 2 -ω 2 0 + iω C M ) + ρLhω 2 ikM (ω 2 -ω 2 0 + iω C M ) -ρLhω 2 .
(7.12)

The wave absorption can occur when the resonator is excited, and consequently, we evaluate the reflection coefficient at the resonant frequency ω 0 and we replace the shallow water approximation of the wavenumber k 0 = ω 0 /(gh) 1/2 . This gives us: R(ω 0 ) = C -ρLh(gh) 1/2 C + ρLh(gh) 1/2 . (

From this equation, we can take the limit cases in order to understand the possible solutions of the problem. First, when C → ∞ there is no movement and the reflection coefficient is R(ω 0 ) = 1. In this case, the wall behaves like a typical static wall. On the other hand, when C → 0 we have resonance without friction, and the wall generates outgoing waves with reflection coefficient R(ω 0 ) = -1, i.e. with a phase shift of π. Eventually, when C = ρLh(gh) 1/2 there is no reflection because the leakage equals the resonance coupling, and the radiated wave is perfectly damped by the friction losses. This is the necessary condition for the perfect absorption.

This model permits us to get a physical idea of the wave absorption phenomenon. However, this behavior can be obtained with many others resonators, more adapted to the experiments with water waves. In this work, we used the trapped mode resonance generated by a cylinder in a waveguide, which is the subject of the next section.

Trapped modes resonance

A surface piercing cylinder located in a waveguide, generate excitation of trapped modes, when the cylinder is sufficiently small and the frequency is close to the cut-off. These modes are generated when the wavenumber is below the first cut-off frequency and it satisfies: k L < π. (7.14) In this condition, the asymmetry of the obstacle, at the resonant wavenumber, excites locally nonsymmetrical evanescent modes, that exist in the near field of the cylinder, and vanish far away. Thus, the resonance is expressed in the amplitude of the evanescent waves, which can theoretically diverge. These modes were firstly reported by Ursell [START_REF] Ursell | Trapping modes in the theory of surface waves[END_REF], and several mathematical models have explained the phenomenon (Evans et al. [START_REF] Evans | Existence theorems for trapped modes[END_REF], Evans and Linton [START_REF] Evans | Trapped modes in open channels[END_REF]). The theoretical prediction of the trapped modes has been developed by Callan et al. [START_REF] Callan | Trapped modes in two-dimensional waveguides[END_REF] and Evans and Porter [START_REF] Evans | Trapping and near-trapping by arrays of cylinders in waves[END_REF], who predicted the resonant wavenumber kL (normalized by L) as a function of the ratio between the cylinder diameter D and the waveguide width L.

Results analysis 7.3.1 Mono-modal propagation

The measurement of the absorption is simplified if we consider plane waves. To obtain such conditions, the traveling waves should be in a range of wavelength that have one propagating mode. Thus, waves following the linear dispersion relation: 

ω 2 =

Obtaining the absorption coefficient

Considering a linear regime, with negligible contribution of higher harmonics, we average the FTP data in time by means of a Fourier Transform at the forcing frequency ω. Thus, the fundamental mode η 1 (x, y) is obtained as: where T represents an integer number of wave periods.

Once we have the complex field of the fundamental mode, we average in the transverse direction y, considering plane waves. Thus, we have a one-dimensional wave, which can be approximated by the addition of two linear waves in opposite directions: η1 (x) = a e ikx + Re -ikx (7.18) where a is the amplitude of the incident wave and R represents the reflection coefficient evaluated at the end-wall. It is important to notice that a, R and k are complex coefficients. Thus, the complex fit has 6 free parameters.

As an example, we present in figure 7.3 the real part of the linear mode and the fitted curve, for four different wavenumbers. We observe that the curves are well fitted by the equation (7.18) x To verify the accuracy of the fit, we compare the real part of the wave vector with the expected value given by the linear dispersion relation, in equation (7.15). For the explored frequency range, the fitted parameter shows good agreement with the theoretical value. 

Comparison of low and high absorption cases

The real part and the absolute value of the complex field η 1 (x, y) are shown in figure 7.6. In this case, h = 5 cm and the wavenumber kL = 2.3 is such that the resonator is not excited and there is no absorption. Thus, the absolute value shows a strong modulation, due to the interference between the incident and the reflected wave. The reflection coefficient, obtained from the complex fit of equation (7.18) in this case is |R|= 0.97. In contrast, at the same water depth, when we set the frequency to be resonant (kL = 2.5), we can have high absorption at the resonator, which generates a negligible reflected wave. In this case, as we observe in figure 7.7, the amplitude is slightly modulated by a very weak reflected wave. On the other hand, the real part shows a flat wave-front, similarly to the non-resonant case. In this case, the reflection coefficient obtained from the fit is |R|= 0.08. As we have discussed previously, the flatness of the wavefront observed in figures 7.6 and 7.7, allows us to analyze the phenomenon as one-dimensional. Therefore, we present in figure 7.8 the transverse average of the two limit cases considered: low and high absorption. In the low-absorption case, shown in figure 7.8-top, the red dashed line corresponds to the amplitude modulation due to the interaction between the incident and reflected waves. This modulation has a minimum close to zero at x = -0.2 m, which indicates that reflection is close to 1 at the end of the channel (x = 0 m). The attenuation of the reflected wave produces a weaker modulation at the beginning of the channel (x ≈ -0.7 m). That is why the coordinate system has been placed at the end of the channel, where the reflection coefficient is evaluated.

In contrast, the high-absorption case, shown in figure 7.8-bottom, has small oscillations of the wave amplitude and the attenuation is visible only in the incident wave.

Variation of resonator parameters

The influence of the cylinder position has been inspected by varying the parameters δ and γ indicated in figure 7.2. The variation of these parameters influences the absorption due to the amplification of the resonance. In all the experiments, the frequency resonance of trapped modes is indicated by a vertical line and expressed as k c L.

Variation of δ

The first analysis consists of varying the transverse asymmetry of the cylinder located near the end-wall. As indicated in figure 7.2, the parameter δ = 0 corresponds to the cylinder located at the center line of the channel. The increase of δ produces excitation of non-symmetrical trapped modes resonance, and consequently a growth in the absorption. In figure 7.9 we compare four different values of δ with the reflection measured without cylinder (called wall in the figure). In this experiments, the size of the cylinder is D/L = 0.8 which limits the possible values of δ in the transverse direction. Thus, the maximum displacement is δ max = 6 mm, where the cylinder is in contact with the lateral wall. The absorption increases almost twice when δ changes from 2 mm to 5 mm. That is an experimental confirmation of the larger contribution of trapped modes to the resonance. 

Variation of γ

Once we have verified that in the previous experiment the best absorption was obtained at δ = 5 mm, we kept this parameter constant and we started to vary γ from γ/L = 0.88 to γ/L = 1.45. In figure 7.10, we present eight different values of γ showing a significant improvement of the wave absorption. In this case, we suggest that the position of the cylinder, far from the end-wall, assists the absorption due to that the evanescent transmitted waves have sufficiently space to vanish before the end-wall. Consequently, the interaction between the cylinder and the end-wall is smaller. 

Variation of δ for a larger γ and smaller cylinder

In order to allow more freedom of movement to the cylinder, we use in this case a smaller cylinder, with a diameter D/L = 0.64. Likewise, we consider that the best absorption in the γ varying experiment was obtained at γ/L = 1.45, which we fix as well in this experiment. The reduction of the cylinder size gives us, as expected, an improvement in the absorption with values of |R| 2 < 0.05, as shown in figure 7.11. This improvement can be explained by the greater asymmetry given by the smaller cylinder that amplifies the trapped modes.

However, we observe that the variation of δ does not affect substantially the minimum reflection (maximum absorption). This is a considerable different behavior with respect to the experiments shown in figure 7.9, where the asymmetry plays an important role. Therefore, we suggest that a different mechanism of absorption is taking place in this case, which is related to the harbor resonance excited in the partially enclosed basin formed between the cylinder and the end-wall. In a second project, we have changed the boundary conditions at the end of the channel, adding a reflecting wall. This new configuration generate a closed basin, where the excitation of eigen-modes is a direct consequence. In this case, we were interesting in the effect of the nonlinearities produces by the step in the dynamic of this closed system. We have found a complex dynamics where quasiperiodic responses are excited by a harmonic forcing. The resonant modes were calculated by means of a linear theory. However, the system is nonlinear, which introduces errors in the calculation of the low modes. In addition, we have confirmed that the nonlinearity (controlled by the forcing amplitude) can trigger low frequency modes in the neighborhood of the resonant frequency. We highlight that the system requires low energy to trigger a complex dynamics, which is usually obtained at greater forcing amplitude when the basin has a flat bottom.

During the development of the thesis, experimental problems were always present. Among those problems, two have been studied in detail: the attenuation of waves on shallow water and the wetting properties of the boundaries at small scale. In the first case, we extended the minimization of the Helmholtz equation (as was performed by Przadka et al. [START_REF] Przadka | Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?[END_REF]) to variable depth, reaching very shallow water configurations (h < 1 cm). We isolated the depth as the unique relevant parameter that modifies the total attenuation. Further, we determined experimentally the depth threshold were the bottom friction start to be relevant. In the same way, the wetting properties of the boundaries are important when the amplitude of the measured waves is in the order or the capillary length. After several experimental trials, we have chosen a nylon-mesh to cover the boundaries. This mesh, with small spacing, traps water droplets eliminating the energy required to wet the surface. We verified experimentally that the use of this type of surface can improve the wave absorption of a beach and can avoid transverse defect in the propagation of a plane wave in a wave-guide.

Eventually, in the last chapter we present an ongoing work about wave absorption. As principal observation, when we distanced the cylinder from the end-wall, the transverse position of the cylinder did not influence the absorption. Therefore, we consider in this case the existence of other types of resonance. Despite the lack of explanation about the resonance in this case, we reached to measure an almost perfect absorption, verifying as well that the transverse eccentricity of the cylinder increase the absorption.

Perspectives

Some part of this thesis left open questions, that can be explored in detail in future works. In the step problem, the multi-modal model did not include surface tension in the calculation. One interesting possibility is add this effect in the model, in order to make it more suitable to small scales. Besides, the calculation of the third order can not only give the harmonic modulation of the third harmonic, but also generate terms at the first order, which form a source term. This source term produces modulation at the first order, which would make the solution more similar to experiments. Regarding the convergence of the second order, despite the robustness of the truncation proposed, we suggest that the problem of the singularity of the Laplacian at the edge is a serious limitation to the modal approaches.

Additionally, the study of the evolution of a transient signal or a soliton can also be useful for study its propagation over a step. Likewise, experimental measurement of oblique incident waves over a submerged step have not been systematically studied so far. This field can be a good complementary work to the study presented in this thesis.

We have studied the step problem with a monochromatic incident wave. A random forcing could be an interesting possibility for the study of the wave propagation in terms of the modification of the (ω, k) spectrum. This analysis can be also a first step to the study of the wave turbulence in a region including an abrupt depth discontinuity.

Eventually, considering that the last part of this thesis has not been finished, experiments of wave absorption with other types of resonators should be carried out to complete the understanding of this phenomenon.
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 11 Figure 1.1: Coastal waves with a marked nonlinear shape. Ile de Ré, France.
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 13 Figure 1.3: Diagram of applicability of different theories of water waves. Le-Méhauté [47]. The wave height H and the water depth h are normalized by gT 2 , where g is the gravity acceleration and T is the wave period.
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 15 Figure 1.5: Sketch of the deformation of a tsunami wave passing over a continental shelf. (Image from SHOA Chile)
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 16 Figure 1.6: Surface wave with a depth discontinuity.
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 17 Figure 1.7: Reflection and transmission coefficient at the long wave limit.
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 21 Figure 2.1: Scheme of the one dimension propagation problem of a nonlinear wave. The incident wave comes from the left side. The origin x = 0 is located at the medium interface.
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 2223 Figure2.2: Real part of the first order waves. In x < 0 there are an incident and a reflected wave. In x > 0 there is a transmitted wave.
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 24 Figure 2.4: Second order separated waves. In x < 0 there are one incident wave and two reflected waves, corresponding to the particular and homogeneous solution. In x > 0 there are two transmitted waves, from the particular and homogeneous solution.
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 25 Figure 2.5: Second order added waves. There is continuity of the wave and its derivative at x = 0.
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 26 Figure 2.6: Complete wave function φ (first and second order added). We observe the nonlinear profile and the continuity in x = 0.
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 28 Figure 2.8: Reflection and Transmission at the first order for three different configurations: 1) h = 0.3 m and h s = 0.15 m; 2) h = 0.3 m and h s = 0.2 m; 3) h = 0.8 m and h s = 0.15 m. Comparison with the Figure 2 of Massel [51].

  By plotting the coefficients in both directions -Deep to shallow (sub-index d to s) and shallow to deep (sub-index s to d) propagation -we found that the amplitude of the reflection coefficients is equal in both directions |R d to s |= |R s to d | whereas the phase of the transmission coefficients remains equal in both directions θ(T d to s ) = θ(T s to d ), as it is shown in figure 2.10. These relations were demonstrated by Newman [60].
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 29 Figure 2.9: Absolute value of transmission and reflection coefficients at the first order. h s /h = 0.1. Comparison with the Figure 2 of Rhee [73]. Solid black lines indicate the results of Rhee [73], dashed black lines indicate the results of Newman [60] (Shallow water approximation). The legend indicates our results.
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 210 Figure 2.10: Phase shift of reflection and transmission coefficients at the first order. h s /h = 0.1. Comparison with the Figure 3 of Rhee [73]. Solid black lines indicate the results of Rhee [73], dashed black lines indicate the results of Newman [60] (Shallow water approximation). The legend indicates our results.

  for the configuration h = 0.3 m, h s = 0.15 m and a = 0.023 m. A good agreement was found.
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 211 Figure 2.11: Reflection and transmission coefficients of the second order free waves, in red solid and dashed lines. For comparison, the first order reflection is indicated in solid blue line. The curves are compared with the Figure 6 of Massel [51] (black lines). The water depth is h = 0.3 m and h s = 0.15 m. The wave amplitude is a = 0.023 m.
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 2124213 Figure 2.12: Decay of the reflection coefficients |R n | for 100 modes. We plot for comparison the slope n -2 .
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 214 Figure 2.14: Integrated amplitude of the second order field φ 2 and its horizontal derivative ∂ x φ 2 . The integrated amplitude is computed along the vertical axis at the step position, in order to show the divergence of the evanescent modes when we vary the truncation parameter α.
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 215 Figure 2.15: Example of the second order potential φ 2 for a convergent case α = 0.5 and a divergent case α = 1.
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 216 Figure 2.16: Example of the second order derivative of the potential ∂ x φ 2 for a convergent case α = 0.5 and a divergent case α = 1.
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 217218 Figure 2.17: Real part of the near field at the first order φ 1 for different numbers of modes considered in the calculation.
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 219 Figure 2.19: Real part of the near field of the first horizontal derivative ∂ x φ 1 . Each graph represents different numbers of modes considered in the calculation.
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 220 Figure 2.20: Vertical profile at x = 0 (step position) of the mode matching of the horizontal derivative of the first order. The blue solid line represents the derivative of the field from the deep water region. The red dashed line represents the derivative of the field from the shallow water region.
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 2 Figure 2.21: Bound waves field. The graphs show the Real part of the near field considering only the source term, i.e. the terms depending on the first order in eq. (2.77) and (2.78).
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 2 Figure 2.22: Complete second order field φ 2 . The graphs show the real part of the near field of the total second order solution, considering here both bound and free waves fields. The addition of both complementary fields, guarantees the continuity over the step.
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 223 Figure 2.23: Vertical profile at x = 0 (step position) of the mode matching of the total second order field. The blue solid line represents the field from the deep water region. The red dashed line represents the field from the shallow water region.
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 2 Figure 2.24: Horizontal derivative of the second order field ∂ x φ 2 . The graphs show the real part of the near field of the x-derivative of the second order for different numbers of modes.

Figure 2 . 25 :

 225 Figure 2.25: Vertical profile at x = 0 (step position) of the mode matching of the x-derivative of the second order field. The blue solid line represents the field from the deep water region. The red dashed line represents the field from the shallow water region.
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 31 Figure 3.1: Experimental Set-Up. The green sinusoidal pattern is projected on the water surface pigmented with particles of T iO 2 . With the FTP technique, a phase difference between the deformed image (in the picture) and a reference image (still water) is obtained. This phase difference is proportional to the surface elevation, giving a complete space-time resolved field.
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 32 Figure 3.2: Experimental Set Up. A flapping type wavemaker generates waves in the deep water region. A step separates the deep and the shallow water regions, with an abrupt change of depth. Waves propagate through the shallow water region up to the non-reflecting beach located at the end of the channel. The measurement area includes a deep water part with the incident waves and the whole shallow water part.
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 33 Figure 3.3: Typical 2D measured field. Here k 1 h s = 0.6. The submerged step is located at x = 0 m. The sinusoidal profile becomes cnoidal after the step. The wave front still flat up to the end of the channel, which allows us to treat the system as 1-dimensional.
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 34 Figure 3.4: Reflection and transmission coefficients at the linear order for different wavenumbers. ( * ) Reflection coefficient from the step measured in the deep water region (x < 0). (x) Transmission coefficient from the step measured in the shallow water region. (+) Reflection coefficient from the beach in the shallow water region (x > 0). The solid lines show the reflection and transmission coefficients at the first order calculated with the weakly nonlinear theory developed by Massel [51].
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 35 Figure 3.5: Comparison between a single point extracted from the Fourier Transform Profilometry and a fix point measurements of vertical displacement with a laser beam. In figure a), both measurement are superposed, and in figure b) the difference between both measurements is in the range h F T P -h laser ≤ 0.4 mm. The chosen point for the comparison is x = 0.3 m and the forcing frequency is ω = 4π s -1 .
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 36 Figure 3.6: Spatiotemporal representation of the surface elevation for a wavenumber k 1 h s = 0.6. The bottom step is located at x = 0. Two different phase velocities are identified: The dashed line indicates the phase velocity v 1 from the fundamental mode and the dash-dot line indicates the phase velocity v 2 corresponding to the second order free wave.
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 37 Figure 3.7: Spatiotemporal representation of the surface elevation for a wavenumber k 1 h s = 0.4. The bottom step is located at x = 0. At this frequency, nonlinearities are stronger and a third small wave is visible after the step. In the inset, the colors are saturated to distinguish three different slopes.
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 238 Figure 3.8: Amplitude of the second harmonic η2 (k), as a function of wave number. Wavenumber k 1 h s = 0.73. Vertical lines indicate the wavenumber expected from the linear dispersion relation (Eq. (3.8))
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 39 Figure 3.9: Amplitude of the third harmonic η3 (k), as a function of wave number. Wavenumber k 1 h s = 0.73. Vertical lines indicate the wavenumber expected from the linear dispersion relation (Eq. (3.8))
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 310 Figure 3.10: Spectra in the k, ω plane of several experiments. In figure a), we collected the k, ω spectra of a series of experiments at the fundamental frequency. A solid line represents the linear dispersion relation. Figure b) shows the gathered spectrum at the second order (2ω). Here, the solid line represents the linear dispersion relation and the dashed line corresponds to the bound wave curve k(2ω). Finally, figure c) shows the spectrum at 3ω, which contains three dispersion curves: the solid line corresponding to the linear dispersion relation, the dashed line representing the bound wave curve (k 1 + k 2 ) and the dash-dot line indicating the bound wave curve 3k 1 .

Figure 3 . 11 :

 311 Figure 3.11: Amplitude ratio of Fourier coefficients for the second harmonic η2 . In the x symbols, the amplitude of free waves (η 2 (k 2 )) is normalized by the amplitude of bound waves (η 2 (2k 1 )).
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 4313 Figure3.13: Ratio of amplitudes of Fourier coefficients for η3 (k). Square symbols show the ratio between the free wave coefficient η3 (k 3 ) and the bound wave coefficient η3 (3k 1 ). Dots symbols show the ratio between the bound wave coefficients η3 (k 1 + k 2 ) and η3 (3k 1 ).
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 314 Figure 3.14: Amplitude of harmonics |η n (x)|, n = 1, 2, 3. Wavenumber k 1 h s = 0.6.
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 315 Figure 3.15: Amplitude of second harmonics |η 2 (x)| (Eq. (3.10)). The first local minimum is indicated by the dashed lines, corresponding to the beating length of the second harmonic. Three different wavenumbers are shown: a) k 1 h s = 0.6, b) k 1 h s = 0.8 and c) k 1 h s = 0.95
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 316 Figure 3.16: beating length of second harmonic η 2 (x) as a function of the wavenumber k 1 h s . The solid line represents the multi-modal model with the incorporation of wavenumbers calculated from the dispersion relation with the surface tension (eq. (3.8)). For comparison, the dashed line corresponds to the original multi-modal model without surface tension.
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 317 Figure 3.17: Amplitude of harmonics |η 3 (x)| (Eq. (3.10)). The local minimum indicated with the dashed lines, correspond to the beating length of the third harmonic. Four different wavenumber are shown: a) k 1 h s = 0.4, b) k 1 h s = 0.47, c) k 1 h s = 0.6 and d) k 1 h s = 0.73. We observe that the beating length of the wavenumber k 1 h s = 0.73 is longer than the beating length of k 1 h s = 0.6, due to the disappearance of the free wave component of the third harmonic.
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 319 Figure 3.19: Left: Amplitude of the first and second harmonics at ω = 4π s -1 . Right: Amplitude of the first and second harmonics at ω = 6π s -1
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 320321 Figure 3.20: Left: Space-time graph for ω = 4πs -1 . Right: Amplitude of different temporal harmonic, obtained from the temporal decomposition of the space-time plane.

Figure 3 . 22 :

 322 Figure 3.22: Left: Space-time graph of incident or right going waves. Right: Space-time graph of reflected or left going waves.
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 323 Figure 3.23: Left: Amplitude of different harmonics of the right going waves. Right: Amplitude of different harmonics of the left going waves.
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 324 Figure 3.24: Second harmonic and fitted curve. a) Real part of the signal and fitted curve. b) Imaginary part of signal and fitted curve.

Figure 3 . 25 :

 325 Figure 3.25: Real part of the fitted wavenumbers of free and bound waves. The obtained values are compared with the corresponding theoretical curves of free waves k 2 in the dashed line and bound waves 2k 1 in the solid line.
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 63 Contribution of the terms added to the multi-modal model

Figure 3 . 26 :

 326 Figure 3.26: Relative contribution of the terms added to the multi-modal model (dashed lines) and comparison with experiments (solid lines) at ω = 4π s -1 . (a) Original multi-modal model with the truncation explained in section 2.3.6. (b) Multi-modal model with the contribution of the bulk attenuation from equation (3.21). (c) Multi-modal model with the contribution of the bottom friction from equation (3.22). (d) Multi-modal model with the attenuation due to bulk and bottom effects. (e) Multi-modal model with the attenuation due to bulk and bottom effects and the contribution of the surface tension in the calculation of the wavenumbers. The surface tension changes the beating length of the second harmonic, with better agreement with the experiments.
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 41 Figure 4.1: Geometry of the scattering problem.

Figure 4 . 2 :

 42 Figure 4.2: a)Blue lines represent resonant frequencies for the eigen modes calculated with eq. (4.15). b) Wavenumber of the deep and shallow water regions at the resonant frequencies calculated with (4.15)

Figure 4 . 3 :

 43 Figure 4.3: Experimental set up. A flapping type wavemaker (1) generates waves in the deep water region.A step separates the deep and the shallow water regions, with an abrupt change of depth. Waves propagate through the shallow water region up to the reflecting wall located at the end of the channel. The measurement area includes a deep water part with the incident waves and the entire shallow water part. Sinusoidal fringes are projected onto the free surface with the video projector (2) and recorded with the high speed camera (3). Continuous temporal measurements in a fixed point are taken with a laser beam sensor (4), which can move in the x direction.

Figure 4 . 4 :

 44 Figure 4.4: Space-Time graphs η(x, t) of: (Top) non resonant case with L = 78 cm and (Bottom) resonant case with L = 68 cm. In both cases the forcing frequency is 4π s -1

  Fig 4.6-right, maintaining a fixed position, which confirms a harmonic regime.
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 45 Figure 4.5: Periodic case. Top: Spectrum and temporal signal for ω 0 = 12.25 s -1 . Bottom: Temporal signal measured at a fixed point in the shallow water part. Red dots indicate the points of the signal sampled at the period T = 1/ω 0 , which is also indicated in the spectrum above.
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 46 Figure 4.6: Left: Phase plane of the entire signal. Right: Phase plane of periodic points (right) taken at the period T = 1/ω 0 " with ω 0 = 12.25 s -1 . Periodic case
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  according to equation (4.16).
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 47 Figure 4.7: Quasi-periodic case. Top: Spectrum and temporal signal for ω 0 = 12.7 s -1 . Bottom: Temporal signal measured at a fixed point in the shallow water part. Red dots indicate the points of the signal sampled at the period T = 1/Ω 1 , which is also indicated in the spectrum above.
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 48 Figure 4.8: Left: Phase plane of the entire signal. Right: Phase plane of periodic points taken at the period T = 1/Ω 1 , with Ω 1 = 2.26 s -1 . The closed orbit in the right figure confirms the quasi-periodic behavior.
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 49 Figure 4.9: Transient signal from the harmonic state to the modulated signal with the trigger of the lowfrequency mode.

Figure 4 .

 4 Figure 4.10: a) Absolute value and real part of the Fourier Coefficient field obtained at Ω 1 = 0.37 Hz. There is no influence of transverse modes. b) Longitudinal profile of the absolute value and the real part of the Fourier Coefficients. We observe a node at the step (x = 0).

)Figure 4 .

 4 Figure 4.11: a) Amplitude of the forcing frequency. Dashed lines represent the resonant frequencies of the tank including both deep and shallow water parts calculated from eq. (4.15). b) Spectral richness ratio R as a function of forcing frequency (see eq. (4.25)). Vertical lines represent the frequencies corresponding to the integer multiples of the lowest resonant wavenumbers k (1) 1
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 412 Figure 4.12: Wave profile for different forcing amplitudes: a) 5 mm, b) 10 mm, c) 15 mm and d) 20 mm. For each of these forcing amplitudes the Ursell number is: a) 12.5, b) 25, c) 37 and d) 52 respectively.

Figure 4 . 13 :

 413 Figure 4.13: Spectral richness as a function of the forcing frequency and amplitude for three different frequency shifts relative to the low-frequency resonance. The horizontal series vary in frequency with a constant forcing amplitude. In the region above the red dashed line occurs excitation of low-frequency modes.
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Figure 5 . 1 :

 51 Figure 5.1: Top view of the experimental set-up. (Left) Geometrical configuration for the isotropic field. In the left side, a wavemaker generates waves propagating in the right direction. Wave are reflected by the oblique walls and the cylindrical obstacles. The square region of measurement is indicated in green. (Right) Plane wave configuration. The region of measurement is extended and the waves arrive up to the absorbing beach.

Figure 5 . 2 :

 52 Figure 5.2: Temporal signal of the free surface elevation at a fixed point for a transient forcing.

Figure 5 . 3 :

 53 Figure 5.3: (Left) Real part of the complex field. h = 0.85 cm, f = 6 Hz. (Right) Real part of the discrete Laplacian of the same complex field.

Figure 5 . 4 :

 54 Figure 5.4: (Left) Minimization of the norm ǫ = ||(∆ + k 2 )H|| in the plane (κ, β) with k = κ + iβ. h = 0.85 cm, f = 6 Hz. (Right) Error of the objective function ǫ min (x, y) = (∆ + k 2 min )H(x, y). A rectangle of zerovalues masks a local increase of error due to the specular reflection of the projected pattern used for FTP (not considered in the minimization).

Figure 5 . 5 :

 55 Figure 5.5: Real part of the plane wave H(x, y, ω). h = 0.85 cm, f = 6 Hz

Figure 5 . 6 :

 56 Figure 5.6: One-dimensional signal H(x, ω) obtained from a transverse average at h = 0.85 cm and f = 6 Hz. (Top) Real part and (Bottom) imaginary part. The red dashed line shows the fitted curve, according to Eq.(5.6). The fitted attenuation is β = 0.9864 and the theoretical attenuation considering bulk and bottom effect (see next section) is plotted in black dashed line.
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 58 Figure 5.8: Attenuation measured with the minimization of the Helmholtz equation and the exponential fit of a plane wave. Different experiments

Figure 5 . 9 :

 59 Figure 5.9: Real part of the obtained wavenumber κ and the wavenumbers predicted by the linear dispersion relation in eq. (5.4), as a function of the water depth. The forcing frequency is f = 6.0 Hz.

Figure 6 . 1 :

 61 Figure 6.1: Schematic representation of the wave reflection in a beach with different wetting properties. (a) The surface of the beach is made of hydrophobic plastic, and the contact line is pinned when the water level moves up and down. (b) The surface of the beach is covered with a mesh that keep the surface wet. The contact line moves up and down with the water level.

Figure 6 . 2 :

 62 Figure 6.2: Experimental set-up for the measurement of the beach absorption. Waves are generated with a flap-type wavemaker (1). The sinusoidal pattern projected onto the water surface by the video-projector (2) is recorded with a fast camera[START_REF] Batchelor | An introduction to fluid dynamics[END_REF]. At the end of the channel, an absorbing plastic beach (8% slope) is covered with a removable mesh (4), which permits us to change the wetting properties of the beach.
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 63 Figure 6.3: Real part and absolute value of the fundamental mode. The water depth is h = 2 cm, the beach start at x = 0.8 m and the forcing frequency is ω = 4π s -1 . (Left) The surface of the beach is made of simple plastic (hydrophobic). (Right) The surface of the beach is covered with a mesh that keeps a wet surface, generating smaller reflection.
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 64 Figure 6.4: Real part and absolute value of the fundamental mode. The water depth is h = 2 cm, the beach start at x = 0.8 m and the forcing frequency is ω = 6π s -1 . (Left) The surface of the beach is made of simple plastic (hydrophobic). (Right) The surface of the beach is covered with a mesh that keeps a wet surface, generating smaller reflection.
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 65 Figure 6.5: Projection of the sinusoidal pattern onto the still water surface for the measurement with Fourier Transform Profilometry. In this set-up, a narrow waveguide is used for experiments of propagation in one dimension. The meniscus at both sides is visible.

Figure 6 . 6 :

 66 Figure 6.6: Experimental set-up for the measurement of mono-mode waves in a narrow channel. Waves are generated with a flap-type wavemaker and travel along the narrow channel of with L. The usual Fourier Transform Profilometry is performed with the video-projector (2) and the top camera (3). An additional front camera (4) is placed at the end of the channel to record the transverse wave profile. This profile is obtained from the projection of a transverse line, indicated in green dashed line, onto the water surface.
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 67 Figure 6.7: Serie of snapshots in one period. ω = 4π s -1 . Images of the transverse profile recorded with the front camera placed at the end of the channel (see figure 6.6).
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 68 Figure 6.8: Series of snapshots of the transverse capillary wave. ω = 6π s -1 . Images of the transverse profile recorded with the front camera placed at the end of the channel (see figure 6.6).

Figure 6 . 9 :

 69 Figure 6.9: Real part of the linear mode for the frequency ω = 6π s -1 and the depth h = 3 cm. We added on the top figure, a plastic mesh of 500 µm along the lateral waveguides, in order to modify the wetting properties of the wall. As a consequence, the menisci are still constant for the crest and trough and the curvature observed in the bottom figure (no mesh case) is considerable reduced. Lateral mesh are placed along the x axis, i.e. at the top and bottom of the fields shown here.
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 71 Figure 7.1: Schematic representation of a semi-infinite wave channel coupled to a mass-spring-damper system.

η 1

 1 (x, y) = 2 T T 0 η(x, y, t) • e iωt dt(7.17) 
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 73 Figure 7.3: Real part of the complex signal (blue solid line) and fitted curve (red dashed line). The maximum absorption occurs at kL = 2.51.
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 74 Figure 7.4: Imaginary part of the complex signal (blue solid line) and fitted curve (red dashed line). The maximum absorption occurs at kL = 2.51.

Figure 7 . 5 :

 75 Figure 7.5: Wavenumber obtained from the fit.
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 76 Figure 7.6: Complex field obtained from the temporal decomposition of the measured surface. (Top) Real part of the linear mode Re(η 1 (x, y)). (Bottom) Absolute value of the linear mode |η 1 (x, y)|. The non-dimensional wavenumber is kL = 2.3, which corresponds to a non-absorbing case.
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 77 Figure 7.7: Complex field obtained from the temporal decomposition of the measured surface. (Top) Real part of the linear mode Re(η 1 (x, y)). (Bottom) Absolute value of the linear mode |η 1 (x, y)|. The non-dimensional wavenumber is kL = 2.47, which corresponds to high absorption.
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 78 Figure 7.8: Comparison of the wave modulation in a case with high reflection (top) and with high absorption (bottom).

Figure 7 . 9 :

 79 Figure 7.9: Reflection coefficient measured at the wall position. The distance to the end γ = 55mm or γ/L = 0.88. The size of the cylinder is D/L = 0.8.
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 710 Figure 7.10: Series with D/L = 0.8; δ = 5 mm; δ max = 6 mm
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 711 Figure 7.11: Series with D/L = 0.64; γ/L=1.45; δ max = 11 mm
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	Figure 3.18: Beating length of third harmonic η 3 (x) as a function of the wavenumber k 1 h s . Blue solid line rep-
	resents the theoretical second order beating length, calculated with surface tension. Red dashed line correspond
	to the second order beating length according to Massel [51] (only gravity waves). Black dash-dot line represents
	the third order beating length from equation (3.19) with surface tension. Green dot line shows the beating

length predicted by equation

(3.19

) whithout surface tension. Finally, red dots correspond to the experimental data.

  2 and k satisfying the dispersion relation in equation(6.3). The n -th mode is propagating if:

  gk tanh kh,(7.15) have an unique propagating mode if the wavenumber k satisfies:

	k -	π L	≤ 0.	(7.16)

We have re-visited the multi-modal model proposed by Massel[START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]. We confirmed the capability of the model to obtain efficiently the transmission and reflection coefficients, with good accuracy at the first and second order. We have reproduced the calculations published by Massel[START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF] and Rhee[START_REF] Rhee | On the transmission of water waves over a shelf[END_REF], finding good agreement with these references. Of particular interest are the invariance of the transmission phase shift and the invariance of the reflection absolute value, when we compared the problem of a wave going from the deep to the shallow region or vice versa. This invariance could be useful in problems of resonant modes in closed tank with submerged bodies, where the phase shift in both directions is required. We will use these properties later in this work.We analyzed the convergence of the second order problem, which is not straightforward with a large number of modes. We suppose that the calculations performed by Massel[START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF] did not have convergence problems by means of the small amount of modes considered by the author. However, nowadays the computational power reveals easily the slow convergence of the first order coefficients (R n , T m ), which do not compensate the fast growth of the bound wave coefficients C n,n ′ . We propose a criterion for truncating the first order series and input it in the second order problem. The selected threshold (α ≤ 0.5) ensures the convergence of the second order, and renders the solution more accurate as a function of the number of modes.We can note that the model could be improved with the incorporation of the surface tension effect, in order to better model the small scale phenomena.2.4.1 Third order problemThe calculation of the third order, might be useful to obtain a more realistic modulation of the first order. The development of the third order equations should give terms at the frequency ω, which constitute a source term at the first order. The present model does not consider modulation at the
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where b is the width of the waveguide, κ the real part of the wavenumber and ν the kinematic viscosity of the water.

For comparison, the theoretical decay that considers the addition of the damping from equations (5.8) and (5.7), is shown in Fig. 5.6. The good agreement between the theoretical decay and the one obtained by fitting the experimental data, confirms that the damping calculated from the minimization of the Helmholtz equation is directly applicable in one-dimensional wave propagation.

In Fig. 5.7, the attenuation obtained by minimizing the Helmholtz equation shows good agreement with the attenuation predicted with the addition of both bulk and bottom effects. This agreement is valid in the two studied configurations: transient forcing with random field and stationary forcing with plane wave field. On the other hand, the exponential fit shows a positive shift at small depth compared to the theoretical value, which suggests that the minimization of the Helmholtz equation is the most exact method of measurement of attenuation. The damping measured with the exponential fit becomes less accurate for shallow water, due to the nonlinearity of the waves. In contrast, for shallow water and intermediate depth, the minimization of the Helmholtz equation is still a robust method.

Several experiments performed all at f = 6 Hz with varying depth are gathered in Fig. 5.8. The agreement of all the experiments with the theoretical attenuation confirms the good repeatability of the measurement and the robustness of the method. A plateau is observed at h > 2 cm, where the contribution of the bottom friction becomes negligible. On the other hand, for smaller depths (h < 2 cm), the contribution of the bottom friction becomes dominant and a fast decay of the damping is confirmed by the experiments.

Experimental measurements of trapped modes were performed by Cobelli et al. [START_REF] Cobelli | Experimental study on water-wave trapped modes[END_REF], who measured the trapped modes excited by an asymmetrical wavemaker located near the channel entrance, on a cylinder located at the longitudinal axis of the guide. Their experiments confirmed the prediction of the resonant frequency, given by Callan et al. [START_REF] Callan | Trapped modes in two-dimensional waveguides[END_REF], for the first branch (D/L < 0.8) and also predicted by Evans and Porter [START_REF] Evans | Trapping and near-trapping by arrays of cylinders in waves[END_REF] for the second branch of the resonance curve (0.8 < D/L < 1). The excellent agreement found in the resonant frequencies, permits us to estimate precisely the frequency that generates perfect absorption.

Experimental set-up

Experiments were carried out in a narrow channel designed to measure the wave deformation by means of Fourier Transform Profilometry (FTP), as is described in figure 7.2. The channel was 62 mm width and 800 mm long. The water depth was fixed at 50 mm, which permits us to generate easily linear waves in intermediate depth conditions. A fast camera recorded the images of the surface deformation, obtained from the reflection of the sinusoidal pattern projected by a video-projector. A sampling frequency of 50 fps was fast enough to analyze the phenomenon.

Waves are generated by a flap-type wavemaker driven by a linear motor. This motor gives a very precise movement, which is useful in the generation of linear waves. Waves travel along the narrow channel, whose lateral walls are covered with a thin nylon mesh that keeps the surface wet, avoiding meniscus effect, which is non negligible at the scale of the experiments. The measurement area covers 550 mm approximately before the cylinder, located at the end of the channel. The position of the cylinder is defined with the parameters δ and γ corresponding to the distance from the longitudinal axis and to the end wall respectively.

Conclusions and perspectives

We have presented in this chapter an ongoing work that has given so far promising results, showing experimental evidence of the perfect absorption with a simple resonator.

We have verified that the excitation of non-symmetrical trapped modes grows with the asymmetry of the cylinder. When the cylinder is located sufficiently close to the end-wall, the asymmetry is the main parameter that controls the absorption. The maximum absorption was found for the maximum transverse eccentricity.

When we vary the distance between the cylinder and the end-wall, the absorption grows significantly. We observed that when the cylinder is sufficiently distant from the end-wall, the transverse position of the cylinder does not affect the absorption. Therefore, we consider in this case the existence of other resonances that are excited at the same frequency, for instance, a harbor-type resonance can be generated in the partially-closed region behind the cylinder. This project will be continued with the trial of other types of resonators, with the objective of finding the best configuration that produces perfect absorption. One possibility is a rectangular Helmholtz-type resonator, which permits us to better control the resonance in terms of the quality factor.

Chapter 8

Conclusion and perspectives

Conclusions of main results

In this thesis we have presented an analysis of the propagation of nonlinear waves over a submerged step. This is a fundamental experiment in fluid mechanics, that has been studied by many groups from different points of view and at various scales. However, the space-time measurement developed by our group confers new possibilities of investigation, which we used to explore experimentally some aspects that have not been systematically studied until now.

As a first part, in order to have a theoretical reference, we re-visited the multi-modal model proposed by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF]. We have reproduced the calculations, finding good agreement with the available references in the literature. However, at the second order we found problems of convergence, when the calculations considered a large number of modes. This led to a more detailed analysis, in which we proposed a truncation that ensures the convergence of the second order.

The experiments carried out in the laboratory tank revealed an interesting phenomenon occurring in the shallow water region: the spatial beating of the second harmonic. As predicted by Bryant [START_REF] Bryant | Periodic waves in shallow water[END_REF] and Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF], this beating is due to the nonlinear interaction between free and bound waves. We were able to separate those waves using the complete space-time resolved field.

Free and bound waves showed different relative contributions depending on the nonlinearities. The amplitude ratio between free and bound waves decays as a function of the non dimensional wavenumber. This trend illustrates how the nonlinearities present in the system are gradually negligible. We showed experimentally that Massel model overestimates the relative contribution of free waves at the second order, which can be attributed in part to the truncation of the calculation at the second order and to the complex nonlinearities generated at the rectangular step. Likewise, Massel model predicted the phase difference between free and bound waves, calculated at the step position. The fit of the second order signal by the addition of two waves (free and bound) gave us the phase difference between both components. We verified experimentally that the free and bound waves have opposite phase at the step, when the relative contribution of both are of the same order. However, this could not be verified when the free wave was much smaller.

The scale of the experiments makes the surface tension effect non-negligible. We have found in this work a clear difference between the beating length at the second harmonic predicted by Massel [START_REF] Massel | Harmonic generation by waves propagating over submerged step[END_REF] (which does not take into account surface tension), and the actual beating length obtained experimentally. Recent works, as carried out by Raoult et al. [START_REF] Raoult | Modeling viscous effect in a fully nonlinear and dispersive potential wave model[END_REF], have shown that the inclusion of surface tension can match the modulation of the second harmonic.

Additionally, the experimental results showed that the third harmonic is not negligible at low frequencies. Despite the fact that the weakly nonlinear model was truncated at the second order, we analyzed at the third order the relative contribution of free and bound waves and its beating length. The beating length at the third harmonic was measured continuously for the first time and was in agreement with the wavenumber calculated with surface tension. We reported as well, the point where the beating due to the presence of third order free waves is no longer visible.