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This thesis is about spiked models of non Hermitian random matrices. More specifically, we consider matrices of the type A + P, where the rank of P stays bounded as the dimension goes to infinity and where the matrix A is a non Hermitian random matrix. We first prove that if P has some eigenvalues outside the bulk, then A + P has some eigenvalues (called outliers) away from the bulk. Then, we study the fluctuations of the outliers of A around their limit and prove that they are distributed as the eigenvalues of some finite dimensional random matrices. Such facts had already been noticed for Hermitian models. More surprising facts are that outliers can here have very various rates of convergence to their limits (depending on the Jordan Canonical Form of P) and that some correlations can appear between outliers at a macroscopic distance from each other. The first non Hermitian model studied comes from the Single Ring Theorem due to Guionnet, Krishnapur and Zeitouni. Then we investigated spiked models for nearly Hermitian random matrices : where A is Hermitian but P isn't. At last, we studied the outliers of Gaussian Elliptic random matrices. This thesis also investigates the convergence in distribution of random variables of the type Tr( f (A)M) where A is a matrix from the Single Ring Theorem and f is analytic on a neighborhood of the bulk and the Frobenius norm of M has order √ N. As corollaries, we obtain central limit theorems for linear spectral statistics of A (for analytic test functions) and for finite rank projections of f (A) (like matrix entries).
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RÉSUMÉ

Dans cette thèse, il est question de spiked models pour des matrices aléatoires nonhermitiennes. Plus précisément, on considère des matrices de type A + P, tel que le rang de P reste borné indépendamment de la taille de la matrice qui tend vers l'infini, et tel que A est une matrice aléatoire non-hermitienne. Tout d'abord, on prouve que dans le cas où la matrice P possède des valeurs propres hors du bulk, quelques valeurs propres de A + P (appelées outliers) apparaissent loin de celuici. Ensuite, on regarde les fluctuations des outliers de A autour de leurs limites et on montre que celles-ci ont la même distribution que les valeurs propres d'une certaine matrice aléatoire de taille finie. Ce genre de phénomène avait déjà été observé pour des modèles hermitiens. De manière inattendue, on montre que les vitesses de convergence des outliers varient (en fonction de la Réduite de Jordan de P) et que des corrélations peuvent apparaître entre des outliers situés à une distance macroscopique l'un de l'autre. Le premier modèle de matrices non-hermitiennes que l'on considère provient du théorème du Single Ring que l'on doit à Guionnet, Krishnapur et Zeitouni. Un autre modèle étudié est celui des matrices dites "presque" hermitiennes : c'est-à-dire lorsque A est hermitienne mais P ne l'est pas. Enfin, on regarde aussi les outliers pour des matrices Elliptiques Gaussiennes. Cette thèse traite aussi de la convergence en loi de variables aléatoires du type Tr( f (A)M) où A est une matrice du théorème du Single Ring et f est une fonction holomorphe sur un voisinage du bulk et la norme de Frobenius de M est de l'ordre de √ N. En corollaire de ce résultat, on obtient des théorèmes type "Centrale Limite" pour les statistiques linéaires de A (pour des fonctions tests holomorphes) et des projections de rang finies de la matrice A (comme par exemple les entrées de la matrice).

Notation

Here are several notations used in this thesis.

-Bold letters a, A always designate a vector or a matrix, whereas regular letters a, A stand for a real or complex number.

-A * stands for the adjoint of matrix A.

-M N (R) (resp. M N (C)) is the set of square matrices of size N × N with real (resp. complex) entries.

-M p,q (R) (resp. M p,q (C)) is the set of rectangular matrices with p rows and q columns with real (resp. complex) entries.

-For any matrix A ∈ M N (C) with eigenvalues λ 1 , . . . , λ N , we shall denote by µ A := 1 N

Introduction

The first model ever studied in the random matrix theory was sample covariance matrices. Given a sample X 1 , . . . , X N ∈ R p drawn from a centered law, the p

× p matrix S = [X 1 • • • X N ][X 1 • • • X N ]
* plays a key role in statistical analysis. We know, from the law of large numbers that 1 N S is a good approximation of Σ = E[X 1 X * 1 ], the population covariance matrix, as long as p is fixed and N goes to infinity. However, many problems involve high dimensional data which means that p may be on the same order than N so that the covariance matrix Σ is harder to catch. The study of the largest eigenvalues, as for example in the statistical method of principal components analysis, may give interesting information about Σ, especially in the almost null case, which means that Σ is not so far from the identity matrix. Johnstone, in 2001 (see [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF]), proposed, what he called, a spiked model where the covariance matrix has all its eigenvalues equal to one, except a finite number of them (the spikes). Then, Baik, Ben Arous and Péché, in 2005, pointed out an interesting phenomenon of phase transition (called the BBP phase transition) where the asymptotic behavior of the largest eigenvalues depends on the spikes. Afterwards, this phenomenon has been widely studied for Hermitian models in [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF][START_REF] Féral | Péché The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF][START_REF] Capitaine | Féral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations[END_REF][START_REF] Capitaine | Féral Central limit theorems for eigenvalues of deformations of Wigner matrices[END_REF][START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF][START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF][START_REF] Capitaine | Février Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices[END_REF][START_REF] Knowles | Yin The isotropic semicircle law and deformation of Wigner matrices[END_REF][START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF]. Also, Tao, Benaych-Georges and myself, O'Rourke, Renfrew, Bordenave and Capitaine studied non-Hermitian models: in [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF][START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF][START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF][START_REF] Bordenave | Capitaine Outlier eigenvalues for deformed i.i.d. random matrices[END_REF][START_REF] Rochet | Complex outliers of Hermitian random matrices[END_REF][START_REF] Benaych-Georges | Fluctuation of matrix entries and application to outliers of elliptic matrices[END_REF] were considered spiked i.i.d., isotropic or elliptic random matrices, in the following sense: the authors added a perturbing matrix (with a finite number of non-zero eigenvalues which are the spikes) and proved that for large enough spikes, some outliers (eigenvalues at macroscopic distance of the bulk) appear at precise positions.

This thesis investigates mostly the asymptotic behavior of such isolated eigenvalues (outliers) of additive deformations for non Hermitian models (see Chapters I,III and IV). The challenge in the study of such models is that, due to the non Hermitian structure of the perturbation matrix, severals problems occur. First, the perturbation matrix is no longer diagonalizable, which means that we have to consider the Jordan Canonical Form of the matrix to truly understand the fluctuations : surprisingly, we proved that the converge rate of the outliers is not necessarily √ N as in the Hermitian case, but depends on the size of the Jordan block associated to the eigenvalue. Also, the outliers tend to locate around their limit at the vertices of a regular polygon. At last, unlike in the Hermitian case, the eigenvectors of the perturbation matrix cannot be supposed orthogonal : it leads to potential correla-tions between fluctuations around outliers even when are at a macroscopic distance from each other.

The first model of random matrices we study (see Chapter I), that we shall call the Single Ring Theorem model, is a non Hermitian model which is isotropic in the sense that, seen as a linear map, its distribution does not depend on the orthonormal bases chosen to represent its transformation matrix. The "Single Ring Theorem", firstly mentioned and partially proved by the Physicists Feinberg and Zee in [START_REF] Feinberg | Non-Gaussian non-Hermitian random matrix theory: phase transition and addition formalism[END_REF] and completely proved by Guionnet, Krishnapur and Zeitouni in [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], was named after the fact that the eigenvalues of such matrices tend to concentrate on an unique ring.

The second model studied (see Chapters III), called sometimes nearly Hermitian random matrices, consists in Hermitian random matrices deformed by an additive non-Hermitian matrix with possibly complex eigenvalues. This model appears in the physics literature, especially in the case where the perturbation matrix is skew-Hermitian, i.e. P * = -P (see [START_REF] Fyodorov | Statistics of S-matrix poles in few-channel chaotic scattering: Crossover from isolated to overlapping resonances[END_REF][START_REF] Fyodorov | Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time reversal invariance[END_REF][START_REF] Fyodorov | Khoruzhenko Systematic Analytical Approach to Correlation Functions of Resonances in Quantum Chaotic Scattering[END_REF][START_REF] Fyodorov | Sommers Random matrices close to Hermitian or unitary: overview of methods and results[END_REF]).

The last model we considered is the Gaussian Elliptic Ensemble (see Chapter IV) which is some sort of intermediate model between the Gaussian Unitary Ensemble and the Ginibre Ensemble. The generic location of the outliers has already been studied for elliptic random matrices (see [START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF]), but the authors did not consider the fluctuations.

This thesis also studies the asymptotic behavior of spectral linear statistics for random matrices from the Single Ring Theorem (see Chapter II). At last, matrix entries of random matrices whose distribution is invariant by unitary conjugation are also studied in a quite general framework, with application to fluctuations of outliers of elliptic matrices (see section 4.2.5).

The "Single Ring Theorem" Model 0.1.1 Singular values of a matrix

We remind here the definition of the singular values of matrix Definition 0.1.1 (Singular values). Let A be N × N matrix. The singular values s 1 , . . . , s N of A the eigenvalues of the positive-semidefinite Hermitian matrix √ AA * .

The positive-semidefinite Hermitian matrix √ AA * is also the "Hermitian" part of the polar decomposition of A, i.e. A can be written as a unique product of an unitary matrix U and a positive-semidefinite Hermitian matrix H A = UH.

Hence, a geometric interpretation of the singular values of A is to see them as the values of the semiaxes of the ellipsoid Moreover, unlike the eigenvalues, the singular values are a good criterion for the distance to the null matrix. In fact, some of the usual matrix norms can be defined thanks to the singular values.

E A := {Av, v = 1} .
A 2 := √ Tr AA * = N ∑ i=1 s 2 i , A op := max v 2 =1 Av 2 = N max i=1 s i .

Definition of the model

Let A be a N × N random matrix such that

A := U     s 1 . . . s N     V (1) 
where

• U, V and the s i 's are independent,

• U and V are Haar-distributed,

• (s 1 , . . . , s N ) is a random N-tuple of non negative real numbers.

Note that A is isotropic in the sense that the distribution of A is invariant by left and right multiplication by any unitary matrix (independent from A) due to the properties of the Haar measure. Conversely, any random matrix whose distribution satisfies such invariant condition is of the form [START_REF] Anderson | A CLT for a band matrix model[END_REF]. Actually, one can see the distribution of A as : A is uniformly distributed among the matrices whose singular values are (s 1 , . . . , s N ).

Examples

We can already give some examples.

-A Haar-distributed matrix fulfills the previous condition with (s 1 , . . . , s N ) ∼ δ ⊗N 1 .

-Another important example is the Ginibre ensemble, which is N × N random matrices G with i.i.d. entries whose distribution are centered Gaussian variables with variance 1/N. It is easy to show that for any unitary matrix U (independent from G), one has

G (d) = UG (d) = GU.
-More generally, random matrices A N distributed according to the law

1 Z N exp (-N TrV (XX * )) dX,
where dX is the Lebesgue measure of the N × N complex matrices set, V is a polynomial with positive leading coefficient and Z N is a normalization constant. One can notice that V (x) = x 2 gives the renormalized Ginibre matrices.

The Single Ring Theorem

One distinctive feature of such matrices is that their eigenvalues tend to spread over a single annulus centered in the origin (see Figures 3.11 . This result, partially proved by Feinberg and Zee in [START_REF] Feinberg | Non-Gaussian non-Hermitian random matrix theory: phase transition and addition formalism[END_REF], is due to Guionnet, Krishnapur and Zeitouni ( [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF]) where they made the following assumptions. For all N ≥ 1, let A N be a N × N random matrix such that

A N := U N T N V N ,
where T N = diag(s 1 , . . . , s N ) is a non-negative diagonal matrix and U N and V N are both Haar-distributed, independent from each other and independent from the s i 's.

Then we make additional assumptions.

Hypothesis 0.1.2. The empirical spectral measure of T N

µ T N := 1 N N ∑ i=1 δ s i
converges in probability to a compactly supported measure ν.

Hypothesis 0.1.3. There exists M > 0, such that P( T N op > M) -→ 0, Hypothesis 0.1. [START_REF] Arratia | The Cycle Structure of Random Permutations[END_REF].

Im(z) > N -κ =⇒ Im G µ T N (z) ≤ 1 κ ,
where, for any measure Θ, G Θ designates its Cauchy Transform G Θ (z) := 1 zx Θ(dx).

Remark 0.1.5. There is actually another assumption in the Single Ring Theorem [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], but Rudelson and Vershynin showed in [START_REF] Rudelson | Vershynin Invertibility of random matrices: unitary and orthogonal perturbations[END_REF] that it was unnecessary. In [START_REF] Basak | Dembo Limiting spectral distribution of sums of unitary and orthogonal matrices[END_REF],

Basak and Dembo also weakened the hypotheses of the Single Ring Theorem (roughly allowing Hypothesis 0.1.4 not to hold on a small enough set, so that ν is allowed to have some atoms).

Theorem 0.1.6 (Single Ring Theorem, [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF]). If A N is a sequence of random matrices satisfying the previous hypothesis, then [START_REF] Anderson | A CLT for a band matrix model[END_REF]. The empirical spectral measure of A N converges in probability to a deterministic probability measure µ.

2. The measure µ possesses a radially-symmetric density ρ(z) with respect to the Lebesgue measure on C depending only on ν and supported on a single ring {z ∈ C, a ≤ z ≤ b} where a := 1 x -2 ν(dx)

; b := x 2 ν(dx).

Remark 0.1.7. With the convention 1/∞ = 0, one can have a = 0 so that the support is a disk (see for example the Ginibre case figure 3.11(b)). Also, if ν is a Dirac measure, we have a = b so that the support is a circle (see for example the Haar-distributed case figure 3.11(a)).

Remark 0.1.8. One should notice that the support of µ is a single ring and cannot consist in two concentric annuli for example, which means that the support is connected even if it is not the cas for the one of ν (see figure 2(d)).

The previous theorem gives us the global behavior of the spectrum of A N but allows, for example, a finite number of eigenvalues to stay away from the bulk (i.e. the support of limit distribution). Guionnet and Zeitouni proved in 2012 ( [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF]) that the Single Ring model doesn't have these particular kind of eigenvalue, usually called outliers. More precisely, they showed the following result.

Theorem 0.1.9 (Convergence of the support in the Single Ring Theorem, [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF]). As N goes to infinity,

max λ ∈Sp(A N ) |λ | (P) -→ b, min λ ∈Sp(A N ) |λ | (P)
-→ a.

The Gaussian Elliptic Ensemble

Matrices from the Gaussian elliptic ensemble, first introduced in [START_REF] Sommers | Spectrum of large random asymmetric matrices[END_REF], can be defined as follows.

Definition 0.2.1. A Gaussian elliptic matrix of parameter ρ ∈ [-1, 1] is a random matrix Y = [y i j ] N i, j=1 such that (a) Spectrum of a 500 × 500 Haardistributed matrix.

(b) Spectrum of a 500 × 500 Ginibre matrix.

(c) Spectrum of a 500 × 500 random matrix of the form ∼ U diag(s 1 , . . . , s N )V where (s 1 , . . . , s N ) ∼ 1 4 1 [START_REF] Anderson | A CLT for a band matrix model[END_REF][START_REF] Bai | Silverstein CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] (dx) ⊗N .

(d) Spectrum of a 500×500 random matrix of the form ∼ U diag(s 1 , . . . , s N )V where (s 1 , . . . , s N ) ∼ 1 2 (δ 1 + δ 3 ) ⊗N .

Figure 2: Spectrum of isotropic matrices.

• {(y i j , y ji ), 1 ≤ i < j ≤ N}∪{y ii , 1 ≤ i ≤ N} is a family of independent random vectors,

• {(y i j , y ji ), 1 ≤ i < j ≤ N} are i.i.d. Gaussian such that E y 2 i j = E y 2 ji = E y i j y ji = 0, E |y i j | 2 = E |y ji | 2 = 1 and E y i j y ji = ρ

• {y ii , 1 ≤ i ≤ N} are i.i.d. Gaussian such that E y 2 ii = ρ and E |y ii | 2 = 1.

Remark 0.2.2. This ensemble is called elliptic due to the fact the eigenvalues of such matrices tend to spread over an ellipse. Indeed, it is known (see [START_REF] Sommers | Spectrum of large random asymmetric matrices[END_REF]) that when one renormalizes by 1 √ N a matrix from the Gaussian elliptic ensemble, its limiting eigenvalue distribution, as N goes to infinity, is the uniform measure µ ρ on the ellipse

E ρ := z ∈ C ;
Re(z) 2 (1 + ρ) 2 + Im(z) 2 (1ρ) 2 ≤ 1 .

(

) 2 
(a) Spectrum of a 500 × 500 Gaussian elliptic matrix where ρ = 0.2.

(b) Spectrum of a 500 × 500 Gaussian elliptic matrix where ρ = -0.4. Remark 0.2.3. Gaussian elliptic matrices can be seen as an generalization of GUE matrices and the Ginibre matrices. Indeed, a Gaussian elliptic matrix Y of parameter ρ can be realized as

Y = 1 + ρ 2 H 1 + i 1 -ρ 2 H 2 ,
where H 1 and H 2 are two independent GUE matrices from the GUE. Hence GUE matrices (resp. Ginibre matrices) are Gaussian elliptic matrices of parameter 1 (resp. 0).

One can also define more general elliptic random matrices (see [START_REF] Naumov | Elliptic law for real random matrices[END_REF][START_REF] Nguyen | The elliptic law[END_REF][START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF][START_REF] O'rourke | Renfrew Central limit theorem for linear eigenvalue statistics of elliptic random matrices[END_REF] for more details). One feature of the Gaussian elliptic matrices is that their distribution is invariant by unitary conjugation (see for example Remark 0.2.3).

Spiked models

In this thesis, we study an additive deformation of random matrices. For any N ≥ 1, let A N be a N × N random matrix with no "natural outliers" : i.e. with a probability tending to one, there is no eigenvalue of A N away from the bulk. Let P N be a N × N matrix of perturbation which shall be "small" in the sense

• the rank of P N is bounded : it means that there exists a fixed integer k, independent from N, such that rank(P N ) ≤ k,

• the operator norm of P N is also bounded, uniformly in N.

We also assume that P N is independent from A N . Then, we consider

A N := A N + P N . (3) 
As P N has finite rank, it barely affects the global behavior of the spectrum, nevertheless, it can generate outliers. Since we assume that A N has no natural outliers, the questions are :

-what are the conditions on P N to observe outliers for A N ?

-is there a phase transition as in [START_REF] Baik | Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF]?

-what are the behavior of such outliers (location, distribution of the fluctuations, rate of convergence, correlation ...)?

Results

In the first paper Outliers in the Single Ring Theorem [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], we did observe a phase transition: we proved that all eigenvalues of P N with a modulus higher than b (the upper radius of the ring support) give birth to an outlier equal to this eigenvalue. Conversely, any eigenvalue with modulus lower than b generate no outlier, even inside the inner circle of the ring (i.e. the z with modulus lower than a) : see Figure 1.5.

The true novelty of this paper was the result on the fluctuations : due to the non Hermitian form of the additive perturbation, we had to consider the Jordan Canonical Form (JCF) of the matrix P and we showed that asymptotic behavior of the outliers highly depends on the JCF of P N : more precisely, unlike the Hermitian case, the convergence rate is no longer necessarily 1 √ N but is equal to 1 ( √ N) 1/p where p is the size of the Jordan block associated to the eigenvalue of P N . Moreover, the outliers tend to locate around their limit at the vertices of a p-sided regular polygon (see Figure 1.6). At last, since the perturbation is not Hermitian, its eigenvectors cannot necessarily be chosen orthogonal : we showed that it can make appear some correlations between outliers at macroscopique distance from each other. This last phenomenon has been already noticed by Knowles and Yin in [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF] in the Hermitian case, but the correlation they observed was due to the non Gaussian structure of the model, whereas in our case we can observe such correlated outliers for random matrices from the Ginibre ensemble. Our proofs, as in most other results, rely on heavily the so-called Weingarten calculus, an integration method for the Haar measure on the unitary group developed by Collins and Śniady in [START_REF] Collins | Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability[END_REF][START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF].

In a second time, using the same tools than the previous paper, we obtained results on the fluctuations of linear spectral statistics of a random matrix A form the Single Ring Theorem. More precisely, for any analytic function f on the ring {a ≤ |z| ≤ b} and any deterministic matrix N (whose Frobenius norm is a O N -1/2 ), we proved that Tr (( f (A)f (0)I)N)

weakly converges to a Gaussian distribution. One of the main difficulties of this second paper was since {a ≤ |z| ≤ b} is not simply connected, we had to study Laurent series of matrix A and understand the joint distribution of (A, A -1 ). As an application of the result, we were able to study a multiplicative perturbation which yields spikes inside the inner circle of the ring (see Figure 2.8).

Then, we wanted to use the good understanding of the non Hermitian structure of the additive perturbation on well-known models. Hence, in the third paper, we investigated nearly Hermitian random matrices which are Hermitian random matrices with a non Hermitian additive deformation. We found back the same kind of result from the first paper (phase transition, various rates of convergence due to the JCF of the perturbation, correlation between far away outliers,...) but we also proved that in some cases, the spikes can outnumber the rank of the perturbation (see Figure 3.9(b)), phenomenon already observed in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] in the case where the support of the limit spectral distribution has a disconnected support (see also [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF]). In our case, the phenomenon occurs even for connected support.

At last, we studied more generic models which are invariant in distribution by unitary conjugation. We obtained the limit distribution of the fluctuations of matrix entries and as an application of this result, we studied the outliers of low-ranked perturbation of matrices from the Gaussian elliptic ensemble. We proved, up to some changes, that main theorem of the first paper still apply for such matrices (see Figure 4.12).

I Outliers in the Single Ring Theorem

Florent Benaych-Georges and Jean Rochet Abstract :

This text is about spiked models of non-Hermitian random matrices. More specifically, we consider matrices of the type A + P, where the rank of P stays bounded as the dimension goes to infinity and where the matrix A is a non-Hermitian random matrix, satisfying an isotropy hypothesis: its distribution is invariant under the left and right actions of the unitary group. The macroscopic eigenvalue distribution of such matrices is governed by the so called Single Ring Theorem, due to Guionnet, Krishnapur and Zeitouni. We first prove that if P has some eigenvalues out of the maximal circle of the single ring, then A + P has some eigenvalues (called outliers) in the neighborhood of those of P, which is not the case for the eigenvalues of P in the inner cycle of the single ring. Then, we study the fluctuations of the outliers of A around the eigenvalues of P and prove that they are distributed as the eigenvalues of some finite dimensional random matrices. Such kind of fluctuations had already been shown for Hermitian models. More surprising facts are that outliers can here have very various rates of convergence to their limits (depending on the Jordan Canonical Form of P) and that some correlations can appear between outliers at a macroscopic distance from each other (a fact already noticed by Knowles and Yin in [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF] in the Hermitian case, but only for non Gaussian models, whereas spiked Gaussian matrices belong to our model and can have such correlated outliers). Our first result generalizes a result by Tao proved specifically for matrices with i.i.d. entries, whereas the second one (about the fluctuations) is new.

Introduction

We know that, most times, if one adds to a large random matrix, a finite rank perturbation, it barely modifies its spectrum. However, we observe that the extreme eigenvalues may be altered and deviated away from the bulk. This phenomenon has already been well understood in the Hermitian case. It was shown under several hypotheses in [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF][START_REF] Féral | Péché The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF][START_REF] Capitaine | Féral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations[END_REF][START_REF] Capitaine | Féral Central limit theorems for eigenvalues of deformations of Wigner matrices[END_REF][START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF][START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF][START_REF] Capitaine | Février Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices[END_REF][START_REF] Knowles | Yin The isotropic semicircle law and deformation of Wigner matrices[END_REF][START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF] that for a large random Hermitian matrix, if the strength of the added perturbation is above a certain threshold, then the extreme eigenvalues of the perturbed matrix deviate at a macroscopic distance from the bulk (such eigenvalues are usually called outliers) and have well understood fluctuations, otherwise they stick to the bulk and fluctuate as those of the non-perturbated matrix (this phenomenon is called the BBP phase transition, named after the authors of [START_REF] Baik | Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF], who first brought it to light for empirical covariance matrices). Also, Tao, O'Rourke, Renfrew, Bordenave and Capitaine studied a non-Hermitian case: in [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF][START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF][START_REF] Bordenave | Capitaine Outlier eigenvalues for deformed i.i.d. random matrices[END_REF] they considered spiked i.i.d. or elliptic random matrices and proved that for large enough spikes, some outliers also appear at precise positions. In this paper, we study finite rank perturbations for another natural model of non-Hermitian random matrices, namely the isotropic random matrices, i.e. the random matrices invariant, in law, under the left and right actions of the unitary group. Such matrices can be written

A = U     s 1 . . . s N     V, (1.1) 
with U and V independent Haar-distributed random matrices and the s i 's some positive numbers which are independent from U and V. We suppose that the empirical distribution of the s i 's tends to a probability measure ν which is compactly supported on R + . We know that the singular values of a random matrix with i.i.d. entries satisfy this last condition (where ν is the Marčenko-Pastur quarter circular law with density π -1 √ 4x 2 1 [0,2] (x)dx, see for example [START_REF] Anderson | An Introduction to Random Matrices[END_REF][START_REF] Bai | Silverstein Spectral analysis of large dimensional random matrices[END_REF][START_REF] Tao | Topics in random matrix theory[END_REF][START_REF] Bordenave | Chafaï Around the circular law[END_REF]), so one can see this model as a generalization of the Ginibre matrices (i.e. matrices with i.i.d. standard complex Gaussian entries). In [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], Guionnet, Krishnapur and Zeitouni showed that the eigenvalues of A tend to spread over a single annulus centered in the origin as the dimension tends to infinity. Furthermore in [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF], Guionnet and Zeitouni proved the convergence in probability of the support of its ESD (Empirical Spectral Distribution) which shows the lack of natural outliers for this kind of matrices (see Figure 1.4). This result has been recently improved in [START_REF] Benaych-Georges | Exponential bounds for the support convergence in the Single Ring Theorem[END_REF] with exponential bounds for the rate of convergence.

In this paper, we prove that, for a finite rank perturbation P with bounded operator norm, outliers of A+P show up close to the eigenvalues of P which are outside the annulus whereas no outlier appears inside the inner circle of the ring. Then we show (and this is the main difficulty of the paper) that the outliers have fluctuations which are not necessarily Gaussian and whose convergence rates depend on the shape of the perturbation, more precisely on its Jordan Canonical Form 2 . Let us denote by a < b the radiuses of the circles bounding the support of the limit spectral law of A. We prove that for any eigenvalue θ of P such that |θ | > b, if one denotes by p 1 , . . . , p 1

β 1 times > p 2 , . . . , p 2 β 2 times > • • • > p α , . . . , p α β α times
the sizes of the blocks of type R p (θ ) (notation introduced in Footnote 2) in the Jordan Canonical Form of P, then there are exactly

β 1 p 1 + • • • + β α p α outliers of 2 Recall that any matrix M in the set M N (C) of N × N complex matrices is similar to a square block diagonal matrix        R p 1 (θ 1 ) (0) R p 2 (θ 2 ) . . . (0) R p r (θ r )        where R p (θ ) =         θ 1 (0) . . . . . . . . . 1 (0) θ         ∈ M p (C),
which is called the Jordan Canonical Form of M, unique up to the order of the diagonal blocks [START_REF] Horn | Matrix Analysis[END_REF]Chapter 3].

A + P tending to θ and among them, β 1 p 1 go to θ at rate N -1/(2p 1 ) , β 2 p 2 go to θ at rate N -1/(2p 2 ) , etc... (see Figure 1.4). Moreover, we give the precise limit distribution of the fluctuations of these outliers around their limits. This limit distribution is not always Gaussian but corresponds to the law of the eigenvalues of some Gaussian matrices (possibly with correlated entries, depending on the eigenvectors of P and P * ). A surprising fact is that some correlations can appear between the fluctuations of outliers with different limits. In [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF], for spiked Wigner matrices, Knowles and Yin had already brought to light some correlations between outliers at a macroscopic distance from each other but it was for non Gaussian models, whereas spiked Ginibre matrices belong to our model and can have such correlated outliers. We see, on the right, four outliers around θ (θ is the red cross): three of them are at distance ≈ N -1/6 and one of them, much closer, is at distance ≈ N -1/2 . One can notice that the three ones draw an approximately equilateral triangle. This phenomenon will be explained by Theorem 1.2.10.

The motivations behind the study of outliers in non-Hermitian models comes mostly from the general effort toward the understanding of the effect of a perturbation with small rank on the spectrum of a large-dimensional operator. The Hermitian case is now quite well understood, and this text provides a review of the question as far as outliers of isotropic non-Hermitian models are concerned. Besides, isotropic non-Hermitian matrix models also appear in wireless networks (see e.g. the recent preprint [START_REF] Zhang | Data Modeling with Large Random Matrices in a Cognitive Radio Network Testbed: Initial Experimental Demonstrations with 70 Nodes[END_REF]).

Results

Setup and assumptions

Let, for each N ≥ 1, A N be a random matrix which admits the decomposition

A N = U N T N V n with T N = diag (s 1 , . . . , s N )
where the s i 's are non negative numbers (implicitly depending on N) and where U N and V N are two independent random unitary matrices which are Haar-distributed and independent from the matrix T N . We make (part of) the assumptions of the Single Ring Theorem [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF] : -Hypothesis 1: There is a deterministic number b ≥ 0 such that as N → ∞, we have the convergence in probability

1 N Tr(T 2 N ) -→ b 2 ,
-Hypothesis 2: There exists M > 0, such that P( T N op > M) -→ 0, -Hypothesis 3: There exist a constant κ > 0 such that

Im(z) > N -κ =⇒ Im G µ T N (z) ≤ 1 κ ,
where for M a matrix, µ M denotes the empirical spectral distribution (ESD) of M and for µ a probability measure, G µ denotes the Stieltjes transform of µ, that is

G µ (z) = µ(dx) z -x .
Example 1.2.1. Thanks to [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], we know that our hypotheses are satisfied for example in the model of random complex matrices A N distributed according to the law 1

Z N exp (-N TrV (XX * )) dX,
where dX is the Lebesgue measure of the N × N complex matrices set, V is a polynomial with positive leading coefficient and Z N is a normalization constant. It is quite a natural unitarily invariant model. One can notice that V (x) = x 2 gives the renormalized Ginibre matrices.

Remark 1.2.2. If one strengthens Hypothesis 1 into the convergence in probability of the ESD µ T N of T N to a limit probability measure ν, then by the Single Ring Theorem [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF][START_REF] Rudelson | Vershynin Invertibility of random matrices: unitary and orthogonal perturbations[END_REF], we know that the ESD µ A N of A N converges, in probability, weakly to a deterministic probability measure whose support is {z ∈ C, a ≤ |z| ≤ b} where

a = x -2 ν(dx) -1/2 , b = x 2 ν(dx) 1/2 .
Remark 1.2.3. According to [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF], with a bit more work (this works consists in extracting subsequences within which the ESD of T N converges, so that we are in the conditions of the previous remark), we know that there is no natural outlier
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outside the circle centered at zero with radius b as long as T N op is bounded, even if T N has his own outliers. In Theorem 1.2.6, to make also sure there is no natural outlier inside the inner circle (when a > 0), we may suppose in addition that sup N≥1 T -1 N op < ∞. Remark 1.2.4. In the case where the matrix A is a real isotropic matrix (i.e. where U and V are Haar-distributed on the orthogonal group), despite the facts that the Single Ring Theorem still holds, as proved in [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], and that the Weingarten calculus works quite similarly, our proof does not work anymore: the reason is that we use in a crucial way the bound of Lemma 1.5.10, proved in [START_REF] Benaych-Georges | Exponential bounds for the support convergence in the Single Ring Theorem[END_REF] thanks to an explicit formula for the Weingarten function of the unitary group, which has no analogue for the orthogonal group. However, numerical simulations tend to show that similar behaviors occur, with the difference that the radial invariance of certain limit distributions is replaced by the invariance under the action of some discrete groups, reflecting the transition from the unitary group to the orthogonal one.

Main results

Let us now consider a sequence of matrices P N (possibly random, but independent of U N , T N and V N ) with rank lower than a fixed integer r such that P N op is also bounded. Then, we have the following theorem (note that in its statement, r b , as the λ i (P N )'s, can possibly depend on N and be random): Theorem 1.2.5 (Outliers for finite rank perturbation). Suppose Hypothesis 1 to hold. Let ε > 0 be fixed and suppose that P N hasn't any eigenvalues in the band {z ∈ C, b + ε < |z| < b + 3ε} for all sufficiently large N, and has r b eigenvalues counted with multiplicity3 λ 1 (P N ), . . . , λ r b (P N ) with modulus higher than b + 3ε.

Then, with a probability tending to one, A N + P N has exactly r b eigenvalues with modulus higher than b + 2ε. Furthermore, after labeling properly,

∀i ∈ {1, . . . , r b }, λ i (A N + P N ) -λ i (P N ) (P) -→ 0.
This first result is a generalization of Theorem 1.4 of Tao's paper [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF], and so is its proof. However, things are different inside the annulus. Indeed, the following result establishes the lack of small outliers: Theorem 1.2.6 (No outlier inside the bulk). Suppose that there exists M > 0 such that P( T -1 N op > M ) -→ 0 and that there is a > 0 deterministic such that we have the convergence in probability

1 N N ∑ i=1 s -2 i -→ 1 a 2 .
Then for all δ ∈]0, a[, with a probability tending to one,

µ A N +P N ({z ∈ C, |z| < a -δ }) = 0,
where µ A N +P N is the Empirical Spectral Distribution of A N + P N .

Theorems 1.2.5 and 1.2.6 are illustrated in Figure 1.5 (see also Figure 1.4). We drew circles around each eigenvalues of P N and we do observe the lack of outliers inside the annulus. √ N (we will see later that in this particular case, the rate of convergence of λ i (A

N + P N ) to λ i (P N ) is 1 √ N ).
Let us now consider the fluctuations of the outliers. We need to be more precise about the perturbation matrix P N . Unlike Hermitian matrices, non-Hermitian matrices are not determined, up to a conjugation by a unitary matrix, only by their spectrums. A key parameter here will be the Jordan Canonical Form (JCF) of P N . From now on, we consider a deterministic perturbation P N of rank ≤ r/2 with r an integer independent of N (denoting the upper bound on the rank of P N by r/2 instead of r will lighten the notations in the sequel).

As dim(Im P N + (ker P N ) ⊥ ) ≤ r, one can find a unitary matrix W N and an r × r matrix Po such that

P n = W N Po 0 0 0 W * N . (1.2)
To simplify the problem, we shall suppose that Po does not depend on N (even

1.2. RESULTS
though most of what follows can be extended to the case where Po depends on N but converges to a fixed r × r matrix as N → ∞).

Let us now introduce the Jordan Canonical Form (JCF) of Po : we know that up to a basis change, one can write Po as a direct sum of Jordan blocks, i.e. blocks of the type

R p (θ ) =        θ 1 (0) . . . . . . . . . 1 (0) θ        ∈ M p (C) (θ ∈ C, p ≥ 1). (1.3)
Let us denote by θ 1 , . . . , θ q the distinct eigenvalues of Po which are in {|z| > b+3ε} (for b as in Hypothesis 1 and ε as in the hypothesis of Theorem 1.2.5) and for each i = 1, . . . , q, introduce a positive integer α i , some positive integers p i,1 > • • • > p i,α i corresponding to the distinct sizes of the blocks relative to the eigenvalue θ i and β i,1 , . . . , β i,α i such that for all j, R p i, j (θ i ) appears β i, j times, so that, for a certain Q ∈ GL r (C), we have:

J = Q -1 PoQ = (Matrix with spec. ⊂ {|z| ≤ b + 3ε}) q i=1 α i j=1     R p i, j (θ i ) . . . R p i, j (θ i )     β i, j blocks (1.4)
where ⊕ is defined, for square block matrices, by M ⊕ N := M 0 0 N .

The asymptotic orders of the fluctuations of the eigenvalues of A N := A N + P N depend on the sizes p i, j of the blocks. Actually, for each θ i , we know, by Theorem 1.2.5, there are ∑ α i j=1 p i j × β i, j eigenvalues of A N which tend to θ i : we shall write them with a tilda and a θ i on the top left corner:

θ i λ . Theorem 1.
2.10 below will state that for each block with size p i, j corresponding to θ i of the JCF of Po, there are p i, j eigenvalues (we shall write them with p i, j on the bottom left corner :

θ i p i, j λ )
whose convergence rate will be N -1/(2p i, j ) . As there are β i, j blocks of size p i, j , there are actually p i, j × β i, j eigenvalues tending to θ i with convergence rate N -1/(2p i, j ) (we shall write them θ i p i, j λ s,t with s ∈ {1, . . . , p i, j } and t ∈ {1, . . . , β i, j }). It would be convenient to denote by Λ i, j the vector with size p i, j × β i, j defined by

Λ i, j := N 1/(2p i, j ) • θ i p i, j λ s,t -θ i 1≤s≤p i, j 1≤t≤β i, j
.

(1.5)
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Let us now define the family of random matrices that we shall use to characterize the limit distribution of the Λ i, j 's. For each i = 1, . . . , q, let I(θ i ) (resp. J(θ i )) denote the set, with cardinality ∑ α i j=1 β i, j , of indices in {1, . . . , r} corresponding to the first (resp. last) columns of the blocks R p i, j (θ i ) (1 ≤ j ≤ α i ) in (1.4).

Remark 1.2.7. Note that the columns of Q (resp. of (Q -1 ) * ) whose index belongs to I(θ i ) (resp. J(θ i )) are eigenvectors of Po (resp. of Po * ) associated to θ i (resp. θ i ). Indeed, if k ∈ I(θ i ) and e k denotes the k-th vector of the canonical basis, then

Je k = θ i e k , so that Po(Qe k ) = θ i Qe k . Now, let m θ i k, i=1,...,q, (k, )∈J(θ i )×I(θ i ) (1.6)
be the random centered complex Gaussian vector with covariance

E m θ i k, m θ i k , = 0, E m θ i k, m θ i k , = b 2 θ i θ i -b 2 e * k Q -1 (Q -1 ) * e k e * Q * Q e , (1.7 
) where e 1 , . . . , e r are the column vectors of the canonical basis of C r . Note that each entry of this vector has a rotationally invariant Gaussian distribution on the complex plane.

For each i, j, let K(i, j) (resp. K(i, j) -) be the set, with cardinality β i, j (resp.

∑ j-1 j =1 β i, j
), of indices in J(θ i ) corresponding to a block of the type R p i, j (θ i ) (resp. to a block of the type R p i, j (θ i ) for j < j). In the same way, let L(i, j) (resp. L(i, j) -) be the set, with the same cardinality as K(i, j) (resp. as K(i, j) -), of indices in I(θ i ) corresponding to a block of the type R p i, j (θ i ) (resp. to a block of the type R p i, j (θ i ) for j < j). Note that K(i, j) -and L(i, j) -are empty if j = 1. Let us define the random matrices

M θ i ,I j := [m θ i k, ] k∈K(i, j) - ∈L(i, j) - M θ i ,II j := [m θ i k, ] k∈K(i, j) - ∈L(i, j) (1.8) M θ i ,III j := [m θ i k, ] k∈K(i, j) ∈L(i, j) - M θ i ,IV j := [m θ i k, ] k∈K(i, j) ∈L(i, j)
and then let us define the matrix M θ i j as

M θ i j := θ i M θ i ,IV j -M θ i ,III j M θ i ,I j -1 M θ i ,II j (1.9)
Remark 1.2.8. It follows from the fact that the matrix Q is invertible, that M θ i ,I j is a.s. invertible and so is M θ i j .

Remark 1.2.9. From the Remark 1.2.7 and (1.7), we see that each matrix M θ i j essentially depends on the eigenvectors of P N and of P * N associated to blocks R p i, j (θ i ) in (1.4) and the correlations between several M θ i j 's depend essentially on the scalar products of such vectors. Now, we can formulate our main result. Theorem 1.2.10.

1. As N goes to infinity, the random vector

(Λ i, j ) 1≤i≤q
1≤ j≤α i defined at (1.5) converges jointly to the distribution of a random vector

Λ ∞ i, j 1≤i≤q 1≤ j≤α i
with joint distribution defined by the fact that for each 1 ≤ i ≤ q and 1 ≤ j ≤ α i , Λ ∞ i, j is the collection of the p i, j th roots of the eigenvalues of M θ i j defined at (1.9).

2. The distributions of the random matrices M θ i j are absolutely continuous with respect to the Lebesgue measure and none of the coordinates of the random vector Λ ∞ i, j 1≤i≤q 1≤ j≤α i has distribution supported by a single point.

Remark 1.2.11. Each non zero complex number has exactly p i, j p i, j th roots, drawing a regular p i, j -sided polygon. Moreover, by the second part of the theorem, the spectrums of the M θ i j 's almost surely do not contain 0, so each Λ ∞ i, j is actually a complex random vector with p i, j × β i, j coordinates, which draw β i, j regular p i, jsided polygons.

Example 1.2.12. For example, suppose that P N has only one eigenvalue θ with modulus > b + 2ε (i.e. q = 1), with multiplicity 4 (i.e. r b = 4). Then five cases can occur (illustrated by simulations in Figure 1.6, see also Figure 1.4, corresponding to the case (b)):

(a) The JCF of P N for θ has one block with size 4 (so that α 1 = 1, (p 1,1 , β 1,1 ) = (4, 1)) : then the 4 outliers of A N are the vertices of a square with center ≈ θ and size ≈ N -1/8 (their limit distribution is the one of the four fourth roots of the complex Gaussian variable θ m θ 1,1 with covariance given by (1.7)).

(b) The JCF of P N for θ has one block with size 3 and one block with size 1 (so that

α 1 = 2, (p 1,1 , β 1,1 ) = (3, 1), (p 1,2 , β 1,2 ) = (1, 1 
)) : then the 4 outliers of A N are the vertices of an equilateral triangle with center ≈ θ and size ≈ N -1/6 plus a point at distance ≈ N -1/2 from θ (the three first ones behave like the three third roots of the variable θ m θ 1,1 and the last one behaves like

θ (m θ 4,4 -m θ 1,4 m θ 4,1 /m θ 1,1 ) where m θ 1,1 , m θ 1,4 , m θ 4,1 , m θ 4,4
are Gaussian variables with correlations given by (1.7)). 
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Examples

Uncorrelated case

Let us suppose that

∀i, i = 1, . . . , q, ∀(k, , k , ) ∈ J(θ i ) × I(θ i ) × J(θ i ) × I(θ i ), (1.10) 
e * k Q -1 (Q -1 ) * e k • e * Q * Q e = 1 k=k , = 1.2. RESULTS
Note that it is the case when in (1.7), Q is unitary, i.e. when P is unitarily conjugated to J 0 0 0 , with J as in (1.4).

By (1.7), Hypothesis (1.10) implies that the entries m θ i k, of the random vector of (1.6) are independent and that each m θ i k, has a distribution which depends only on θ i . Let us introduce some notation. For β a positive integer, we define 4 Ginibre(β ) := β × β random matrix with i.i.d. N (0, 1) entries, (1.11) Ginibre(β , β ) := β × β random matrix with i.i.d. N (0, 1) entries, (1.12) and we get the following corollary: Corollary 1.2.13. If Hypothesis (1.10) holds, then :

1. the collection of random vectors (Λ i,1 , Λ i,2 , . . . , Λ i,α i ), indexed by i = 1, . . . , q, i.e. by the distinct limit outliers θ i , is asymptotically independent, 2. for each i = 1, . . . , q and each j = 1, . . . , α i , the matrix M θ i j is distributed as:

• if j = 1, then M θ i j ∼ θ i b |θ i | 2 -b 2
Ginibre(β i, j ),

• if j > 1, then

M θ i j ∼ θ i b |θ i | 2 -b 2
Ginibre(β i, j ) -Ginibre(β i, j , ρ i, j ) × Ginibre(ρ i, j ) -1 × Ginibre(ρ i, j , β i, j ) ,

where the four Ginibre matrices involved if j > 1 are independent and where

ρ i, j = ∑ j-1 j =1 β i, j .
Remark 1.2.14.

• The first part of this corollary means that under Hypothesis (1.10), the fluctuations of outliers of A N with different limits are independent. We will see below that it is not always true anymore if Hypothesis (1.10) does not hold.

• In the second part of this corollary, j = 1 means that p i, j = max j p i, j , i.e. that we consider the outliers of A n at the largest possible distance (≈ N -1/(2p i,1 ) ) from θ i . 4 For any σ > 0, N (0, σ 2 ) denotes the centered Gaussian law on C with covariance 1 2

σ 2 0 0 σ 2 .
• In the second part of the corollary, for j > 1, the four matrices involved are independent, but the M θ i j 's are not independent as j varies (the reason is that the matrix M θ i ,I j of (1.9) contains M θ i ,IV j as a submatrix as soon as j < j).

• If one weakens Hypothesis (1.10) by supposing it to hold only for i = i (resp. i = i ), then only the second (resp. first) part of the corollary stays true.

The i = i case of the last point of the previous remark implies the following corollary.

Corollary 1.2.15. If, for a certain i, α i = β i,1 = 1 (i.e. if θ i is an eigenvalue of P with multiplicity5 p i,1 but with associated eigenspace having dimension one), then the random vector

N 1/(2p i,1 ) • θ i p i,1 λ s,1 -θ i 1≤s≤p i,1
converges in distribution to the vector of the p i,1 th roots of a N (0,

b 2 |θ i | 2 (|θ i | 2 -b 2 ) ) random variable.

Correlated case

If Hypothesis (1.10) does not hold anymore, then the individual and joint distributions of the random matrices M θ i j are not anymore related to Ginibre matrices as in Corollary 1.2.13: the entries of the matrices M θ i ,I,II,III,IV j of (1.9) can have non uniform variances, even be correlated, and one can also have correlations between the entries of two matrices M θ i j , M θ i j for θ i = θ i . This last case has the surprising consequence that outliers of A N with different limits can be asymptotically correlated. Such a situation had so far only been brought to light, by Knowles and Yin in [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF], for deformation of non Gaussian Wigner matrices. Note that in our model no restriction on the distributions of the deformed matrix A N is made (A N can for example be a renormalized Ginibre matrix). The following corollary gives an example of a simple situation where such correlations occur. This simple situation corresponds to the following case : we suppose that for some i = i in {1, . . . , q}, we have β i,1 = β i ,1 = 1. We let and (resp. k and k ) denote the indices in {1, . . . , r} corresponding to the last (resp. first) columns of the block R p i,1 (θ i ) and of the block R p i ,1 (θ i ) and set

K := e * k Q -1 (Q -1 ) * e k • e * Q * Q e . (1.13) 
We will see in the next corollary that as soon as K = 0, the fluctuations of outliers at macroscopic distance from each other (i.e. with distinct limits) are not indepen-dent. Set 

σ 2 := |θ i | 2 b 2 |θ i | 2 -b 2 e * k Q -1 (Q -1 ) * e k • e * Q * Q e , σ 2 := |θ i | 2 b 2 |θ i | 2 -b 2 e * k Q -1 (Q -1 ) * e k • e * Q * Q e . ( 1 
(Z N , Z N ) := √ N θ i p i,1 λ s,1 -θ i p i,1 , √ N θ i p i ,1 λ s ,1 -θ i p i ,1 (1.15) 
converges in distribution to a complex centered Gaussian vector (Z, Z ) defined by

Z ∼ N (0, σ 2 ) , Z ∼ N (0, σ 2 ) , E[ZZ ] = 0 , E[ZZ ] = θ i θ i b 2 K θ i θ i -b 2 . (1.16)
Example 1.2.17. Let us illustrate this corollary (which is already an example) by a still more particular example. Suppose that A n is a renormalized Ginibre matrix and that for θ = 1.5 + i, θ = 3 + i and for κ ∈ R \{-1, 1}, Po is given by

Po = Q θ 0 0 θ Q -1 , Q = 1 κ κ 1 . In this case, q = 2, α 1 = α 2 = p 1,1 = p 2,1 = β 1,1 = β 2,1 = 1 and = k = 1, = k = 2.
Thus A N + P N has two outliers λ N := θ p 1,1 λ 1,1 and λ N := θ p 2,1 λ 1,1 and one can compute the numbers K, σ , σ of (1.13), (1.14) and get

σ 2 = (1 + κ 2 ) 2 (1 -|θ | -2 )(1 -κ 2 ) 2 σ 2 = (1 + κ 2 ) 2 (1 -|θ | -2 )(1 -κ 2 ) 2 E[ZZ ] = -4κ 2 (1 -(θ θ ) -1 )(1 -κ 2 ) 2 .
(1.17) We see that for κ = 0, Z N = √ N( λθ ) and Z N = √ N( λθ ) are asymptotically independent, but that for κ = 0, Z N and Z N are not asymptotically independent anymore. This phenomenon and the accuracy of the approximation (Z N , Z N ) ≈ (Z, Z ) for N 1 are illustrated by Table 1.1 and Figure 1.7, where 10 3 samples of (Z N , Z N ) have been simulated for N = 10 3 .

Preliminaries to the proofs

First, for notational brevity, from now on, N will be an implicit parameter (A := A N , P := P N , . . . ), except in case of ambiguity.

Secondly, from now on, we shall suppose that T is deterministic. Indeed, once the results established with T deterministic, as T is independent from the others random variables and the only relevant parameter b is deterministic, we can condition on T and apply the deterministic result. So we suppose that T is deterministic and that there is a constant M independent of N such that for all N, T op ≤ M. Figure 1.7: Lack of correlation/correlation between outliers with different limits : abscissas (resp. ordinates) of the dots are X := ℑ(Z N ) (resp. Y := ℑ(Z N )) for 10 3 independent copies of (Z N , Z N ) (computed thanks to matrices with size N = 10 3 as for Table 1.1).
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E[|Z|

2 ] E[|Z | 2 ] E[ZZ ] κ = 0 κ = 2 -1/2 κ = 0 κ = 2 -1/2 κ = 0 κ = 2 -1/2
Thirdly, as the set of probability measures supported by [0, M] is compact, up to an extraction, one can suppose that there is a probability measure Θ on [0, M] such that the ESD of T converges to Θ as N → ∞. We will work within this subsequence. This could seem to give a partial convergence result, but in fact, what is proved is that from any subsequence, one can extract a subsequence which converges to the limit given by the theorem. This is of course enough for the proof. Note that by Hypothesis 1, we have b 2 = x 2 Θ(dx). Having supposed that the ESD of T converges to Θ insures that A satisfies the hypotheses 6 of the Single Ring Theorem of [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF] and of the paper [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF]. We will use it once, in the proof of Lemma 1.6.1, where we need one of the preliminary results of [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF].

At last, notice that A + P and V(A + P)V * have the same spectrum, that

V(A + P)V * = VUT + VPV * , (1.18) 
and that as U and V are independent Haar-distributed matrices, VU and V are also Haar-distributed and independent. It follows that we shall, instead of the hypotheses made above the statement of Hypotheses 1, 2, and 3, suppose that:

A = UT with T deterministic and U Haar-distributed (1. 19 
)
and P is independent of A and invariant, in law, by conjugation by any unitary matrix.

In the sequel E U will denote the expectation with respect to the randomness of U and not to the one of P. In the same way, E P will denote the expectation with respect to the randomness of P.

Sketch of the proofs

We start with the following trick, now quite standard in spiked models. Let B ∈ M N×r (C) and C ∈ M r×N (C) such that P = BC (where M p×q (C) denotes the rectangular complex matrices of size p × q). Then det(zI -A) = det(zI

-(A + P)) = det(zI -A) det I -(zI -A) -1 P = det(zI -A) det I -(zI -A) -1 BC = det(zI -A) det I -C(zI -A) -1 B . (1.20)
For the last step, we used the fact that for all M ∈ M r×N and N ∈ M N×r (C), det (I r + MN) = det (I N + NM). Therefore, the eigenvalues z of A which are not eigenvalues of A are characterized by

det I -C(zI -A) -1 B = 0. (1.21)
In view of (1.20), as previously done by Tao in [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF], we introduce the meromorphic functions (implicitly depending on N)

f (z) := det I -C(zI -A) -1 B = det(zI -A) det(zI -A) , (1.22) 
g(z) := det I -C(zI) -1 B = det(zI -P) det(zI) (1.23) to have some atoms). As it follows from the recent preprint [START_REF] Benaych-Georges | Exponential bounds for the support convergence in the Single Ring Theorem[END_REF] that the convergence of the extreme eigenvalues first established in [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF] also works in this case, we could harmlessly weaken our hypotheses down to the ones of [START_REF] Basak | Dembo Limiting spectral distribution of sums of unitary and orthogonal matrices[END_REF].

RESULTS

and aim to study the zeros of f .

• The proof of Theorem 1.2.5 (eigenvalues outside the outer circle) relies on the fact that on the domain {|z| > b + 2ε}, f (z) ≈ g(z). This follows from the fact that for |z| > b + 2ε, the N × N matrix (zI -A) -1z -1 I has small entries, and even satisfies

x * ((zI

-A) -1 -z -1 I)y 1 (1.24)
for deterministic unitary column vectors x, y.

• The proof of Theorem 1.2.6 (lack of eigenvalues inside the inner circle) relies on the fact that for |z| < aδ , C(zI -A) -1 B op < 1. We will see that it follows from estimates as the one of (1.24) for A replaced by A -1 .

• The most difficult part of the article is the proof of Theorem 1.2.10 about the fluctuations of the outliers around their limits θ i (1 ≤ i ≤ q). As the outliers are the zeros of f , we shall expand f around any fixed θ i . Specifically, for each block size p i, j (1 ≤ j ≤ α i ), we prove at Lemma 1.5.1 that for π i, j := ∑ l> j β i,l p i,l and M θ i j the matrix with size 7 β i, j defined above, we have

f θ i + z N 1/(2p i, j ) ≈ z π i, j • det z p i, j -M θ i j . (1.25) 
This proves that A + P has π i, j outliers tending to θ i at rate N -1/(2p i, j ) , has p i, j × β i, j outliers tending to θ i at rate n -1/(2p i, j ) and that these p i, j × β i, j outliers are distributed as the p i, j th roots of the eigenvalues of M θ i j . We see that the key result in this proof is the estimate (1.25). To prove it, we first specify the choice of the already introduced matrices B ∈ M N×r (C) and C ∈ M r×N (C) such that P = BC by imposing moreover that CB = J (recall that J is the r ×r Jordan Canonical Form of P of (1.4)). Then, for

z := θ i + z N 1/(2p i, j ) , X z N := √ NC((zI -A) -1 -z-1 I)B ,
we write

f (z) = det I - 1 z J - 1 √ N X z N = det I -θ -1 i J + θ -1 i 1 - 1 1 + N -1/(2p i, j ) zθ -1 i J - 1 √ N X z N ≈ det I -θ -1 i J + zθ -2 i N 1/(2p i, j ) J - 1 √ N X z N (1.26)
7 Recall the β i, j is the number of blocks R p i, j (θ i ) in the JCF of P.

EIGENVALUES OUTSIDE THE OUTER CIRCLE

At this point, one has to note that (obviously) det Iθ -1 i J = 0 and that (really not obviously) the r × r random array X z N converges in distribution to a Gaussian array as N → ∞ (this is proved thanks to the Weingarten calculus). Then the result will follow from a Taylor expansion of (1.26) and a careful look at the main contributions to the determinant. 

sup |z|≥b+2ε | f (z) -g(z)| (P) -→ 0.
Before proving the lemma, let us explain how it allows to conclude the proof of Theorem 1.2.5. The poles of f and g are respectively eigenvalues of the A and of the null matrix, hence for N large enough, they have no pole in the region {z ∈ C ; |z| > b + 2ε}, whereas their zeros in this region are precisely the eigenvalues of respectively A and P that are in this region. But |g| admits the following lower bound on the circle with radius b + ε : as we assumed that any eigenvalue of P is at least at distance at least ε from {z ∈

C ; |z| = b + 2ε}, one has inf |z|=b+2ε |g(z)| = inf |z|=b+2ε ∏ N i=1 |z -λ i (P)| |z| N ≥ ε b + 2ε r ,
so that by the previous lemma, with probability tending to one,

∀z ∈ C, |z| = b + 2ε =⇒ | f (z) -g(z)| < |g(z)|,
and so, by Rouché's Theorem [11, p. 131], we know that inside the region {z ∈ C, |z| ≤ b + 2ε}, f and g have the same number of zeros (since they both have n poles). Therefore, as their total number of zeros is n, f and g have the same number of zeros outside this region. Also, Lemma 1.3.1 allows to conclude that, after a proper labeling ∀i ∈ {1, . . . , r b }, λ i ( A)λ i (P)

(P) -→ 0. Indeed, for each fixed i ∈ {1, . . . , r b }, r ∏ j=1 1 - λ j (P) λ i ( A) = g(λ i ( A)) = f (λ i ( A)) -g(λ i ( A)) ≤ sup |z|≥b+2ε | f (z) -g(z)| (P)
-→ 0.

LACK OF EIGENVALUES INSIDE THE INNER CIRCLE

Let us now explain how to prove Lemma 1.3.1. One can notice at first that it suffices to prove that

sup |z|≥b+2ε C(zI -A) -1 B -C(zI) -1 B op (P) -→ 0, (1.27) 
simply because the function det : M r (C) → C is Lipschitz over every bounded set of M r (C). Then, the proof of Lemma 1.3.1 is based on both following lemmas (whose proofs are postponed to Section 1.6).

Lemma 1.3.2. There exists a constant C 1 > 0 such that the event

E N := {∀k ≥ 1, A k op ≤ C 1 • (b + ε) k }
has probability tending to one as N tends to infinity.

Lemma 1.3.3. For all k ≥ 0, as N goes to infinity, we have

CA k B op (P) -→ 0.
On the event E N defined at Lemma 1.3.2 above, we write, for |z| ≥ b + 2ε,

C(zI -A) -1 B -C(zI) -1 B = C +∞ ∑ k=1 A k z k+1 B.
and it suffices to write that for any δ > 0,

P sup |z|≥b+2ε C(zI -A) -1 B -C(zI) -1 B op > δ ≤ P (E c N ) + P k 0 ∑ k=1 CA k B op (b + 2ε) k+1 > δ 2 + P   E N and C +∞ ∑ k=k 0 +1 A k (b + 2ε) k+1 B op > δ 2   .
By to Lemma 1.3.2 and the fact that C and B are uniformly bounded (see Remark 1.5.2), we can find k 0 so that the last event has a vanishing probability. Then, by Lemma 1.3.3, the probability of the last-but-one event goes to zero as N tends to infinity. This gives (1.27) and then Lemma 1.3.1.

1.4 Lack of eigenvalues inside the inner circle : proof of Theorem 1.2.6

Our goal here is to show that for all δ ∈]0, a[, with probability tending to one, the function f defined at (1.22) has no zero in the region {z ∈ C, |z| < aδ }. Recall that

f (z) = det I -C(zI -A) -1 B ,
so that a simple sufficient condition would be C(zI -A) -1 B op < 1 for all |z| < aδ . Thus, it suffices to prove that with probability tending to one as n tends to infinity, sup

|z|<a-δ C(zI -A) -1 B op < 1.
By Remark 1.2.3, we know that A is invertible. As in Section 1.3, we write, for all |z| < aδ ,

C (zI -A) -1 B = -CA -1 I -zA -1 -1 B = -C ∞ ∑ k=1 z k-1 A -k B.
The idea is to see A -1 as an isotropic random matrix such as A, since

A -1 = V * diag( 1 s 1 , . . . , 1 s N )U *
, and satisfies the same kind of hypothesis. Indeed, Hypotheses 1 and 2 are automatiquelly satisfied because a > 0 (see Remark 1.2.3), and the following lemma, proved in Section 1.6.2, insures us that Hypotheses 3 is also satisfied.

Lemma 1.4.1. There exist a constant κ > 0 such that

Im(z) > N -κ ⇒ Im G µ T -1 (z) ≤ 1 κ .
Thus, according to [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF], the support of µ A -1 converges in probability to the annulus z ∈ C, b -1 ≤ |z| ≤ a -1 as N → ∞, and so, according to (1.27),

sup |ξ |>a -1 +ε C ∞ ∑ k=1 A -k ξ k+1 B (P) -→ 0. Therefore P sup |z|<a-δ C(zI -A) -1 B op < 1 ≥ 1-P   sup |ξ |>a -1 +ε C ∞ ∑ k=1 A -k ξ k-1 B op > 1   -→ 1 ,
with a proper choice for ε.

1.5 Proof of Theorem 1.2.10 1.5.1 Lemma 1.5.1 granted proof of Theorem 1.2.10

Recall that we write P = BC and we know that

sup |z|>b+2ε C (zI -A) -1 B -z -1 CB op (P) -→ 0, (1.28) 
(again, for notational brevity, N will be an implicit parameter, except in case of ambiguity). Following the ideas of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF], we shall need to differentiate the function f defined at (1.22) to understand the fluctuations of λθ , and to do so, we shall need to be more accurate in the convergence in (1.28).

Let us first state our key lemma, whose proof is postponed in Section 1.5.3. Recall from (1.4) that we supposed the JCF of P to have, for the eigenvalue θ i , β i,1 blocks with size p i,1 , . . . . . . , β i,α i blocks with size p i,α i . Recall also that

f (z) = det I -C(zI -A) -1 B .
Lemma 1.5.1. For all j ∈ {1, . . . , α i }, let F θ i j (z) be the rational function defined by

F θ i j (z) := f θ i + z N 1/(2p i, j ) .
(1.29)

Then, there exists a collection of positive constants (γ i, j ) 1≤i≤q

1≤ j≤α i and a collection of non vanishing random variables (C i, j ) 1≤i≤q 1≤ j≤α i independent of z, such that we have the convergence in distribution (for the topology of the uniform convergence over any compact set)

N γ i, j F θ i j (•) 1≤i≤q 1≤ j≤α i -→ N→∞ z ∈ C → z π i, j •C i, j • det z p i, j -M θ i j 1≤i≤q 1≤ j≤α i
where M θ i j is the random matrix introduced at (1.7) and π i, j := ∑ l> j β i,l p i,l . To end the proof of Theorem 1.2.10, we make sure that we have the right number of eigenvalues of A thanks to complex analysis considerations (Cauchy formula) :

• Eigenvalues tending to θ i with the highest convergence rate :

-Lemma 1.5.1 tells us that on any compact set, F θ i j and z π i, j det(z p i, j -M θ i j ) have the exact same number of roots (for any large enough N, the poles of F θ i j leave any compact set), so, for the smallest block size p i,α i , we know that F θ i α i has exactly β i,α i × p i,α i roots which do not eventually leave any compact set as N goes to infinity.

-Moreover, we know that the only roots of F θ i α j are the N 1/(2p i,α i ) ( λθ i )'s where λ are the eigenvalues of A.

-We conclude that there are exactly β i,α i × p i,α i eigenvalues

θ i p i,α i λ s,t 1≤s≤p i,α i 1≤t≤β i,α i of A such that N 1/(2p i,α i ) θ i p i,α i λ s,t -θ i = O (1) ,
and thanks to Lemma 1.5.1, we know that the N 1/2p i,α i

θ i p i,α i λ s,t -θ i 's satisfy the equation det(z p i,α i -M θ i α i ) + o(1) = 0
and so are tighted and converge jointly in distribution to the p i, j th roots of the eigenvalues of

M θ i α i . As M θ i α i is a. s. invertible (recall Remark 1.2.8), none of the N 1/2p i,α i θ i p i,α i λ s,t -θ i 's converge to 0.
• Then, we take the second smallest size p i,α i -1 and work likewise: we know there are exactly

π i,α i -1 + β i,α i -1 × p i,α i -1 = β i,α i × p i,α i + β i,α i -1 × p i,α i -1
eigenvalues of A such that

N 1/2p i,α i -1 λ -θ i = O(1).
We know that the eigenvalues

θ i p i,α i λ s,t (1 ≤ s ≤ p i,α i , 1 ≤ t ≤ β i,α i ) are among them (because p i,α i -1 > p i,α i ) so there are β i,α i -1 × p i,α i -1 other eigenvalues θ i p i,α i -1 λ s,t 1≤s≤p i,α i -1 1≤t≤β i,α i -1 of A such that N 1/2p i,α i -1 θ i p i,α i -1 λ s,t -θ i = O (1) .
It follows that

θ i p i,α i -1 λ s,t 1≤s≤p i,α i -1 1≤t≤β i,α i -1
converges jointly in distribution to the p th i,α i-1 roots of the eigenvalues of M θ i α i-1 (which are almost surely non zero).

• At each step, π p i, j corresponds to the number of eigenvalues we have already "discovered" and which go to θ i faster than

N -1/(2p i, j ) (because p i,α i < • • • < p i,1
), and so it explains the presence of the factor z π i, j before det(z p i, j -M θ i j ) the previous lemma. So one can continue this induction and conclude. that way, we get the exact number of eigenvalues of A.

It remains now to prove Lemma 1.5.1. We begin with the convergence of z → X z N .

1.5.2 Convergence of z → X z N .

Recall that in order to simplify, we wrote, at (1.2),

P = W Po 0 0 0 W * = W QJQ -1 0 0 0 W * ,
where J is a Jordan Canonical Form and W is supposed to be Haar-distributed from (1.19). We also wrote P = BC without specifying any choice. For now on, we shall set down

B := W QJ 0 ∈ M N×r (C) and C := Q -1 0 W * ∈ M r×N (C).
(1.30) One can easily notice that

CB = J ; B * B = J * Q * QJ ; CC * = Q -1 (Q -1 ) * , (1.31) 
so that all these matrix products do not depend on N.

Remark 1.5.2. With this specific choice, the norm of the matrix B (resp. C) is uniformly bounded by QJ op (resp. Q -1 ) which doesn't depend on N.

For |z| > b + 2ε, we define the M r (C)-valued random variable

X z n := √ nC (zI -A) -1 -z -1 B.
(1.32)

Lemma 1.5.3. As N goes to infinity, the finite dimensional marginals of (X z N ) |z|>b+2ε converge to the ones of a centered complex Gaussian process (X z = [x z i, j ] 1≤i, j≤r ) |z|>b+2ε such that for all θ , θ in {|z| > b + 2ε},

• x θ i, j ∼ N 0, b 2 |θ | 2 1 |θ | 2 -b 2 • e * i CC * e i • e * j B * Be j , • E x θ i, j x θ k,l = 0, E x θ i, j x θ k,l = b 2 θ θ 1 θ θ -b 2 • e * i CC * e k • e * l B * Be j .
Recall now that the event E N has been defined at Lemma 1.3.2 and has probability tending to one. Lemma 1.5.4. There is C finite such that for N large enough, on {|z| > b + 2ε},

E 1 E N ∂ ∂ z X z N 4 ≤ C,
where • denotes a norm on M r (C).

We deduce, by e.g. [59, Cor. 14.9] (slightly modified because of the presence of 1 E N ), that as N → ∞, the random process (X z N ) |z|>b+2ε converges weakly, for the topology of uniform convergence on compact subsets, to the random process

(X z ) |z|>b+2ε Proof of lemma 1.5.3
Let us fix an integer p, some complex numbers z 1 , . . . , z p from {|z| > b + 2ε}, some complex numbers ν 1 , . . . , ν p and some integers i 1 , j 1 , . . . , i p , j p in {1, . . . , r} and define

G N := p ∑ t=1 ν t e * i t X z t N e j t .
At first, we notice that on the event E N of Lemma 1.3.2, we can rewrite G N this way

G N = √ N p ∑ t=1 ν t e * i t C ∑ k≥1 A k z k+1 t Be j t = √ N p ∑ t=1 ν t c * t ∑ k≥1 A k z k+1 t b t .
where b t designates the j t -th column of B and c t the i t -th column of C * . As

P(E N ) -→ 1, E c
N is irrelevant to weak convergence (see details below at (1.36)), here is what we shall do :

• Step one : We set σ 2 := ∑ i,i ν i ν i b 2 z i z i b * i b i c * i c i z i z i -b 2 > 0, (1.33) 
and prove that for all fixed integer k 0 , there is

η k 0 such that G N,k 0 := √ N p ∑ t=1 ν t k 0 ∑ k=1 c * t A k b t z k+1 t (d) -→ Z k 0 (d) : = N 0, σ 2 -η k 0 , (1.34) 
ant that η k 0 → 0 when k 0 → ∞. Note that σ 2 doesn't depend on N thanks to (1.31).

•

Step two : We show that the rest shall be neglected for large enough k 0 . More precisely, for all δ > 0, we prove that there exists a large enough integer k 0 such that lim sup

N→∞ E 1 E N × √ N p ∑ t=1 ν t ∑ k>k 0 c * t A k b t z k+1 t ≤ δ . (1.35) 
(for E N the event of Lemma 1.3.2 above). After that, we shall easily conclude. Indeed, to prove that G N converges in distribution to N 0, σ 2 it suffices to prove that, for any Lipstichtz bounded test function

F with Lipschitz constant L F , E [F(G N )] -→ E [F(Z)] ,
where Z is a random variable such that Z

(d) = N 0, σ 2 . So, we write |E [F(G N ) -F(Z)]| ≤ |E [F(G N ) -F(G N,k 0 )]| + |E [F(G N,k 0 ) -F(Z k 0 )]| + (1.36) |E [F(Z k 0 ) -F(Z)]| ≤ 2 F ∞ P (E c N ) + L F E 1 E N × √ N p ∑ t=1 ν t ∑ k>k 0 c * t A k b t z k+1 t + |E [F(G N,k 0 )] -E [F(Z k 0 )]| + L F E |Z k 0 -Z|
which can be made as small as needed by (1.34) and (1.35) if Z and Z k 0 are coupled in the right way.

• Proof of step one : Convergence of the finite sum.

Let us fix a positive integer k 0 . Our goal here is to determine the limits of all the moments of the r.v. G N,k 0 defined at (1.34) to conclude it is indeed asymptotically Gaussian. More precisely, we have Lemma 1.5.5. There exists σ > 0 and η k 0 such that lim k 0 →∞ η k 0 = 0 and such that for all large enough k 0 and all non negative distinct integers q, s,

E |G N,k 0 | 2q = q! • (σ 2 -η k 0 ) q + o(1) and E G q N,k 0 G s N,k 0 = o(1).
To prove Lemma 1.5.5, we need to recall a main result about integration with respect to the Haar measure on unitary group, (see [START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]Cor. 2.4 and Cor. 2.7]), Proposition 1.5.6. Let k be a positive integer and U = (u i, j ) a Haar-distributed matrix. Let (i 1 , . . . , i k ), (i 1 , . . . , i k ), ( j 1 , . . . , j k ) and ( j 1 , . . . , j k ) be four k-tuple of {1, . . . , N}. Then

E u i 1 , j 1 • • • u i k , j k u i 1 , j 1 • • • u i k , j k = ∑ σ ,τ∈S k δ i 1 ,i σ (1) . . . δ i k ,i σ (k) δ j 1 , j τ(1) . . . δ j k , j τ(k) Wg(τσ -1 ), (1.37) 
where Wg is a function called the Weingarten function. Moreover, for σ ∈ S k , the asymptotical behavior of Wg(σ ) is given by

N k+|σ | Wg(σ ) = Moeb(σ ) + O 1 N 2 , (1.38) 
where |σ | denotes the minimal number of factors necessary to write σ as a product of transpositions, and Moeb denotes a function called the Möbius function.

Remark 1.5.7. a) The permutation σ for which Wg(σ ) will have the largest order is the only one satisfying |σ | = 0, i.e. σ = id. As a consequence, the only thing we have to know here about the Möbius function is that Moeb(id) = 1 (see [START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]). b) Notice that if for all p = q, i p = i q and j p = j q , then there is at most one non zero term in the RHT of (2.22). Lemma 1.5.5 follows from the following technical lemma (we use the index m in {•} m to denote a multiset, i.e. {x 1 , . . . , x k } m is the class of the k-tuple (x 1 , . . . , x k ) under the action of the symmetric group S k ). Lemma 1.5.8. Let k 1 , . . . , k q and l 1 , . . . , l s be some positive integers, let i 1 , . . . , i q , i 1 , . . . , i s be some integers of {1, . . . , r}. Then :

1. If k 1 , . . . , k q m = {l 1 , . . . , l s } m , we have E √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i s A l s b i s = o (1)
2. In the other case, s = q and one can suppose that l 1 = k 1 , . . . , l q = k q . Under such an assumption, we have

E √ Nc * i 1 A k 1 b j 1 • • • √ Nc * i q A k q b j q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i s A l s b i s = b 2(k 1 +•••+k q ) ∑ σ ∈S k 1 ,...,kq q ∏ t=1 b * i σ (t) b i t c * i t c i σ (t) + o (1)
where S k 1 ,...,k q is the set of permutations of {1, . . . , q} such that for each t = 1, . . . , q, k t = k σ (t) .

3. Moreover,

∑ 1≤k 1 ,...,k q =k 0 1≤k 1 ,...,k q ≤k 0 E   √ Nc * i 1 A k 1 z k 1 +1 i 1 b i 1 √ Nc * i 1 A k 1 z k 1 +1 i 1 b i 1 • • • √ Nc * i q A k q z k q +1 i q b i q √ Nc * i q A k q z k q +1 i q b i q   = ∑ σ ∈S q q ∏ t=1 b 2 z i t z i σ (t) 1 - b 2 z i t z i σ (t) k 0 z i t z i σ (t) -b 2 b * i σ (t) b i t c * i t c i σ (t) + o (1) .
Let us briefly explain the main ideas of the proof of this lemma (detailed proof is given in Section 1.6). First, let us recall that A = UT, so that these expectations expand as sums of terms as

E u i 0,1 ,i 1,1 • • • u i k 1 -1,1 ,i k 1 ,1 u i 0,2 ,i 1,2 • • • u i kr -1,r ,i kr ,r u j 0,1 , j 1,1 • • • u j l 1 -1,1 , j l 1 ,1 u j 0,2 , j 1,2 • • • u j ls-1,s , j ls,s .
If the u i, j 's were independent and distributed as N 0, 1 N , the result would be easily proved because most of these expectations would be equal to zero. In our case, the difficulty is that, according to Proposition 2.5.1, lots of expectations do not vanish and they are expressed with the Weingarten function (which is a very complicated function). However, we notice that when these expectations do not vanish as in the Gaussian case, Wg(id) never occurs in (2.22), so that they are negligible thanks to (2.23).

At last, it is easy to conclude the proof of Lemma 1.5.5 thanks to Lemma 1.5.8. Indeed, for any integers q = s, we have from (1) of Lemma 1.5.8 that

E G q N,k 0 G s N,k 0 = o(1)
. Moreover, we have

E G N,k 0 2q = N q E   ∑ i ν i c * i k 0 ∑ k=1 A k z k+1 i b i q ∑ i ν i c * i k 0 ∑ k =1 A k θ k +1 i b i q   = ∑ i 1 ,...,i q i 1 ,...,i q q ∏ t=1 ν i t ν i t ∑ k 1 ,...,k q k 1 ,...,k q E √ Nc * i 1 A k 1 b i 1 √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i q A k q b i q = ∑ i 1 ,...,i q i 1 ,...,i q q ∏ t=1 ν i t ν i t ∑ σ ∈S q q ∏ t=1 b 2 z i t z i σ (t) 1 - b 2 z i t z i σ (t) k 0 z i t z i σ (t) -b 2 b * i σ (t) b i t c * i t c i σ (t) + o (1) = q! × σ 2 -η k 0 q + o (1)
where for σ is given by (1.33) and

|η k 0 | < σ 2 • ( b b+2ε ) 2k 0 .
• Proof of step two : Vanishing of the tail of the sum.

Our goal here is to prove that the rest can be neglected, i.e. that for all δ > 0, there exists a large enough integer k 0 such that for any t ∈ {1, . . . , p} and for E N the event of Lemma 1.3.2 above, lim sup

N→∞ E 1 E N × √ N ∑ k>k 0 c * t A k b t z k+1 t ≤ δ . (1.39)
First, using the fact that

E 1 E N × z -k-1 t c * t A k b t ≤ B op C op C 1 (b + ε) k (b + 2ε) k+1 ,
it is easy to show that for a large enough positive constant C (depending only on ε), we have

√ N ∑ k>C log N E 1 E N × z -k-1 t c * t A k b t = o (1)
. Now, we only need to prove that ∀δ > 0, ∃k 0 , for all N large enough,

∑ k 0 <k<C log N √ N |z t | k+1 E 1 E N × c * t A k b t 2 ≤ δ .
At first, we notice that

E 1 E N × √ N C log N ∑ k=k 0 c * t A k b t z k+1 t ≤ C log N ∑ k=k 0 √ N |z t | k+1 E 1 E N × c * t A k b t ≤ C log N ∑ k=k 0 √ N |z t | k+1 E 1 E N × c * t A k b t
Then we condition with respect to the σ -algebra of U, i.e. write

E 1 E N × c * t A k b t 2 = E 1 E N × E P c * t A k b t 2 = E 1 E N × E P c * t A k b t b * t (A * ) k c t .
Let us now remember that we have supposed, at (1.19), that P = BC is invariant, in law, by conjugation by any unitary matrix. Hence one can introduce a Haardistributed unitary matrix V, independent of all other random variables, and write

P (d)
= VPV * , so that

E P c * t A k b t b * t (A * ) k c t = E P Tr A k b t b * t (A * ) k c t c * t (1.40) = E P E V Tr A k Vb t b * t V * (A * ) k Vc t c * t V * ,
where E V denotes the expectation with respect to the randomness of V.

Then, we shall use the following lemma, whose proof is postponed to Section 1.6.4.

Lemma 1.5.9. Let V be an N × N Haar-distributed unitary matrix and let A, B, C, D be some deterministic N × N matrices. Then

E Tr AVBV * CVDV * = 1 N 2 -1 {Tr AC Tr B Tr D + Tr A Tr C Tr BD} (1.41) - 1 N(N 2 -1)
{Tr AC Tr BD + Tr A Tr C Tr B Tr D} .

By this lemma, one easily gets

| E V Tr A k Vb t b * t V * (A * ) k Vc t c * t V * | ≤ 2 N -1 A k 2 op + Tr A k 2 B 2 op C 2 op
hence as B and C are supposed to be bounded, there is a constant C such that

E P c * t A k b t b * t (A * ) k c t ≤ C N A k 2 op + Tr A k 2 .
Then, we use the following lemma, a weaker version of [START_REF] Benaych-Georges | Exponential bounds for the support convergence in the Single Ring Theorem[END_REF]Theorem 1].

Lemma 1.5.10. There exists a positive constant K such that for all k ≤ C log N, for all large enough N,

E Tr A k 2 ≤ K (b + ε) 2k .
By (1.40) and Lemma 1.5.10, for all k ≤ C log N, there exists some positive constant C such that

E 1 E N × c * t A k b t 2 ≤ C (b + ε) k √ N .
Hence as |z t | ≥ b + 2ε for N large enough, (1.39) is proved.

Proof of Lemma 1.5.4

The proof relies on the same tricks of the proof of Lemma 1.5.3, using the already noticed fact that for |z| > b + 2ε,

1 E N X z N = √ N1 E N ∑ k≥1 C A k z k+1 B, so that ∂ ∂ z 1 E N X z N = - √ N1 E N ∑ k≥1 (k + 1)C A k z k+2 B.
1.5.3 Proof of Lemma 1.5.1

To prove Lemma 1.5.1, we shall need to do a Taylor expansion of F θ i j (z). From now on, we fix a compact set K and consider z ∈ K. Recall that F θ i j (z) and X z N have been defined respectively at (1.29) and (1.32) as

F θ i j (z) = det I -C θ i + N -1/(2p i, j ) z I -A -1 B X z N = √ NC (zI -A) -1 -z -1 B,
hence, using Lemma 1.5.4 and the convergence of X z N to X z established at Section 1.5.2,

F θ i j (z) = det I - 1 θ i + N -1/(2p i, j ) z J - 1 √ N X θ i +N -1/(2p i, j ) z N = det I -θ -1 i J + θ -1 i 1 - 1 1 + N -1/(2p i, j ) zθ -1 i J - 1 √ N X θ i + o 1 √ N = det I -θ -1 i J + zδ N θ -2 i J + 1 √ N G
where we define

δ N := θ i z 1 - 1 1 + N -1/(2p i, j ) zθ -1 i = N -1/(2p i, j ) (1+o(1)) and G = -X θ i +o(1).
Let us write J by blocks

J =     * (0) (0) (0) J(θ i ) (0) (0) (0) *    
where J(θ i ) is the part with the blocks associated to θ i . And so, we write

I -θ -1 i J =     N (0) (0) (0) N (0) (0) (0) N    
where N and N are invertible matrices and N is the diagonal by blocks matrix

N = I -θ -1 i diag(R p i,1 (θ i ), . . . , R p i,1 (θ i ) β i,1 blocks , . . . . . . , R p i,α i (θ i ), . . . , R p i,α i (θ i ) β i,α i blocks ) = -θ -1 i diag(R p i,1 (0), . . . , R p i,1 (0) 
β i,1 blocks , . . . . . . , R p i,α i (0), . . . , R p i,α i (0) β i,α i blocks ) (1.42)
with R p (θ ) as defined at (1.3) for p an integer and θ ∈ C.

Let us now expand the determinant det

I -θ -1 i J + zδ N θ -2 i J + N -1/2
G using the columns replacement approach of following formula, where the M k 's and the H k 's are the columns of two r × r matrices M and H (that one will think of as an error term, even though the formula below is exact)

det (M + H) = det (M) + r ∑ k=1 det M 1 M 2 . . . H k . . . M r + ∑ 1≤k 1 <k 2 ≤r det M 1 . . . H k 1 . . . H k 2 . . . M r + . . . + ∑ 1≤k 1 <k 2 <•••<k s ≤r det M 1 . . . H k 1 . . . H k s . . . M r + . . . + r ∑ k=1 det H 1 H 2 . . . M k . . . H r + det (H)
We shall use this formula with

M = I -θ -1 i J and H = zδ N θ -2 i J + N -1/2
G, and we shall keep only higher terms. It means that the determinant is a summation of determinants of M where some of the columns are replaced by the corresponding column of zδ N θ -2 i J or of N -1/2 G. Recall that M has several columns of zeros (the ones corresponding to null columns of N), so we know that we have to replace at least these columns to get a non-zero determinant. Moreover, we won't replace the columns of N or N because this would necessarily make appear negligible terms (recall that N and N are invertible), so all the non-negligible determinants will be factorizable by det(N ) det(N ). So now, let us understand what are the non-negligible terms in the summation.

To make things clear, let us start with an example. We choose p i, j = 3 and the matrix N given, via (1.42), by

N = -θ -1 i                 0 1 0 0 0 0 1 0 (0) 0 0 0 1 0 0 0 0 0 1 0 0 0 1 (0) 0 0 0 0                
, we know we have to replace at least 3 columns (the first, the fifth and the last ones) which correspond to the first column of each diagonal blocks, and we shall deal with one block at the time. Let us deal with the first one. If we replace this column by the corresponding column of zδ N θ -2 i J, we get

zδ N 1 θ i 1 θ i 0 0 0 0 1 θ i 0 (0) 0 1 θ i 0 0
We see that in this case, some non linearly independent columns appear. It follows that once one has replaced a null column by a column from zδ N θ -2 i J, the whole block needs to be replaced to get a non zero determinant :

zδ N 1 θ i 1 θ i 0 0 0 0 1 θ i 0 (0) 0 1 θ i 0 0 -→ (zδ N ) 2 1 θ i 1 θ 2 i 0 0 0 1 θ i 1 θ i 0 (0) 0 1 θ i 0 0 -→ (zδ N ) 3 1 θ i 1 θ 2 i 0 0 0 1 θ i 1 θ 2 i 0 (0) 1 θ i 1 θ i 0 0 -→ (zδ N ) 4 1 θ i 1 θ 2 i 0 0 0 1 θ i 1 θ 2 i 0 (0) 1 θ i 1 θ 2 i 0 1 θ i ,
Another possibility to fill a null column would be to replace it by the corresponding one in N -1/2 G:

g 1,1 1 
θ i 0 0 g 2,1 0 1 θ i 0 g 3,1 0 0 1 θ i g 4,1 0 0 0
We obtain an invertible block directly (i.e. without having to replace the whole block as above). However, in this example, δ N N -1/2 (because p i, j = 3), this term might be negligible. If δ 4 N N -1/2 , then first choice is relevant (the other would be negligible), or else, if δ 4 N N -1/2 , we would make the second choice. Our strategy is to choose J on the blocks of size p < p i, j (because δ p N N -1/2 ) and G on the blocks of size p > p i, j (because δ p N 1 √ N ). For the blocks of size p = p i, j , we can choose both (because δ

p i, j N ≈ 1 √ N ). So in our example, the non negligible terms are det G 1 √ N N 2 N 3 N 4 zδ n θ 2 i J 5 zδ n θ 2 i J 6 zδ N θ 2 i J 7 zδ N θ 2 i J 8 = -z 4 • δ 4 N √ N g 1,1 1 θ i 0 0 (0) g 2,1 0 1 θ i 0 g 3,1 0 0 1 θ i g 4,1 0 0 0 g 5,1 (0) 1 θ i 1 θ 2 i 0 0 g 6,1 0 1 θ i 1 θ 2 i 0 g 7,1 0 0 1 θ i 0 g 8,1 0 0 0 1 θ i and det G 1 √ N N 2 N 3 N 4 G 5 √ N N 6 N 7 zδ N θ 2 i J 8 = -z • δ N N • g 1,1 1 θ i 0 0 g 1,5 (0) g 2,1 0 1 θ i 0 g 2,5 g 3,1 0 0 1 θ i g 3,5 g 4,1 0 0 0 g 4,5 g 5,1 (0) g 5,5 1 θ i 0 g 6,1
g 6,5 0

θ i 0 g 7,1 g 7,5 0 0 g 8,1 g 8,5 0 1 θ i
and one can easily notice that the sum of the non negligible terms is

det G 1 √ N N 2 N 3 N 4 zδ N θ 2 i J 5 zδ N θ 2 i J 6 zδ N θ 2 i J 7 zδ N θ 2 i J 8 + det G 1 √ N N 2 N 3 N 4 G 5 √ N N 6 N 7 zδ N θ 2 i J 8 = z θ 6 i 1 N 1+ 1 2p i, j g 4,1 g 4,5 g 7,1 g 7,5 -z 3 θ i + o 1 N 1+ 1 2p i, j .
Now that this example is well understood, let us treat the general case :

-We know that there are β i,1 + • • • + β i, j-1 blocks of size larger than p i, j so we will replace the first column of each of these blocks by the corresponding column of N -1/2 G.

-For all the blocks of lower size, we replace all the columns by the corresponding column of zδ N θ -2 i J. The number of such columns is π i, j :=

β i, j+1 × p i, j+1 + • • • β i,α i × p i,α i .
-We also know that there are β i, j blocks of size p i, j and for each block, we have two choices so that represents 2 β i, j non negligible terms.

And so, we conclude that :

• The statement holds for γ i, j = 1 2

j-1 ∑ l=1 β i,l + π i, j 2p i, j + 1 2 β i, j .
• All the non negligible terms are factorizable by z π i, j .

• Using notations from (1.8), we define the matrices

M θ i ,I j := [g θ i k, ] k∈K(i, j) - ∈L(i, j) - M θ i ,II j := [g θ i k, ] k∈K(i, j) - ∈L(i, j) M θ i ,III j := [g θ i k, ] k∈K(i, j) ∈L(i, j) - M θ i ,IV j := [g θ i k, ] k∈K(i, j) ∈L(i, j)
and with a simple calculation, one can sum up all the non-negligible terms by

C • z π i, j N γ i, j M θ i ,I j M θ i ,II j M θ i ,III j M θ i ,IV j -z p i, j θ i I β i, j + o 1 N γ i, j
where C is a deterministic constant equal to ± a power of θ -1 i . Then, using a well-know formula (see for example Eq. (A1) of [START_REF] Anderson | An Introduction to Random Matrices[END_REF] p. 414), we have

M θ i ,I j M θ i ,II j M θ i ,III j M θ i ,IV j -z p i, j θ i I β i, j = θ -β i, j i det M θ i ,I j det θ i (M θ i ,IV j -M θ i ,III j (M θ i ,I j ) -1 M θ i ,II j ) -z p i, j I β i, j .
• Thanks to Lemma 1.5.3, we know that

E m θ i k, m θ i k , = 0, E m θ i k, m θ i k , = b 2 θ i θ i 1 θ i θ i -b 2 e * k CC * e k e * B * B e ,
and from (1.31), we write

e * k CC * e k e * B * Be = e * k Q -1 (Q -1 ) * e k e * J * Q * QJe
then, from the definition of the set L(i, j), we know that if ∈ L(i, j) then Je = θ i e , so, finally,

E m θ i k, m θ i k , = 0, E m θ i k, m θ i k , = b 2 θ i θ i -b 2 e * k Q -1 (Q -1 ) * e k e * Q * Q e .
1.6 Proofs of the technical results 

(zI -A) -1 op ≤ C 1 .
Proof. Note that for any η > 0,

(zI -A) -1 op ≤ 1 η ⇐⇒ ν z ([-η, η]) = 0,
where

ν z := 1 2N ∑ N i=1 (δ -s z i + δ s z i )
and the s z i 's are the singular values of zI -A. By Corollary 10 of [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF], for any z such that |z| > b, there is β z such that with probability tending to one,

ν z ([-β z , β z ]) = 0.
It follows from standard perturbation inequalities that with probability tending to one, for any z such that |z -z| < β z 2 ,

ν z ([- β z 2 , β z 2 ]) = 0.
Then with a compacity argument, one concludes easily.

Proof of Lemma 1.3.2

Note first that thanks to the Cauchy formula, for all x ∈ C,

|x| < b + ε =⇒ ∀k ≥ 0, x k = 1 2iπ |z|=b+ε z k z -x dz.
Moreover, by [50, Th. 2], the spectral radius of A converges in probability to b, so that with probability tending to one, by application of the holomorphic functional calculus (which is working even for non-Hermitian matrices) to A,

∀k ≥ 0, A k = 1 2iπ |z|=b+ε z k (z -A) -1 dz.
Thus with probability tending to one,

∀k ≥ 0, A k op ≤ 1 2π sup |z|=b+ε (zI -A) -1 op × |z|=b+ε |z| k dz.
Then one concludes using the previous lemma. Recall that A = UT and

c * A k b = ∑ i 0 ,i 1 ,...,i k c i 0 b i k u i 0 ,i 1 s i 1 u i 1 ,i 2 s i 2 • • • u i k-1 ,i k s i k ,
and so we have

E U c * A k b 2 = ∑ i 0 ,...,i k j 0 ,..., j k c i 0 c j 0 b i k b j k s i 1 s j 1 . . . s i k s j k E u i 0 ,i 1 u i 1 ,i 2 • • • u i k-1 ,i k u j 0 , j 1 u j 1 , j 2 . . . u j k-1 , j k .
Let (i 1 , . . . , i k ), (i 1 , . . . , i k ), ( j 1 , . . . , j k ) and ( j 1 , . . . , j k ) be k-tuples of intergers lower than n. By Proposition 2.5.1, we know that

E u i 1 , j 1 • • • u i k , j k u i 1 , j 1 • • • u i k , j k = 0
if and only if there are two permutations σ and τ so that for all p ∈ {1, . . . , k}, i σ (p) = i p and j τ(p) = j p . In our case, we know that for a (i 0 , . . . , i k ) fixed, there will be no more than (k + 1)! tuples ( j 0 , . . . , j k ) leading to a non-zero expectation. By Proposition 2.5.1 again, we know that all these expectations are O N -k . So, one concludes with the following computation

E U |c * A k b| 2 ≤ ∑ µ∈S k+1 ∑ i 0 ,...,i k c i 0 c i µ(0) b i k b i µ(k) s 2 i 1 . . . s 2 i k × O 1 N k ≤ ∑ µ∈S k+1 ∑ i 0 ,...,i k 1 2 |c i 0 | 2 |b i k | 2 + |c i µ(0) | 2 |b i µ(k) | 2 s 2 i 1 . . . s 2 i k × O 1 N k ≤ (k + 1)! ∑ i 0 ,...,i k |c i 0 | 2 |b i k | 2 s 2 i 1 • • • s 2 i k O N -k ≤ 1 N N ∑ i=1 s 2 i k-1 N ∑ j=1 |b j | 2 s 2 j × O 1 N = O 1 N .
1.6.2 Proof of Lemma 1.4.1

Lemma 1.4.1 is a direct consequence of the following lemma.

Lemma 1.6.2. Let µ be a probability measure whose support is contained in an interval [m, M] ⊂]0, +∞[. Let µ -1 denote the push-forward of µ by the map t -→ 1/t. Then for all x ∈ R, y > 0,

| Im G µ -1 (x + iy)| ≤ M if x / ∈ [1/(2M), 2/m], 8M 4 m 2 Im G µ 1 x + i m 2 y 2 otherwise. (1.44) Proof. Note that | Im G µ -1 (x + iy)| = y (x -1/t) 2 + y 2 µ(dt). If x / ∈ [1/(2M), 2/m], then for all t ∈ [m, M], |x -1/t| ≥ 1/(2M)
, and (1.44) follows from the fact that for all y > 0, we have 

y y 2 + (1/(2M)) 2 ≤ M. If x ∈ [1/(2M), 2/m], then for all t ∈ [m, M], 1 2M 2 ≤ x t ≤ 2 m 2 hence x - 1 t 2 + y 2 = x 2 t 2 1 x -t 2 + yt x 2 ≥ 1 4M
= B and CV * (d) = C, we know, by for example Theorem 2 of [START_REF] Jiang | Maxima of entries of Haar distributed matrices[END_REF], that there is constant C such that with a probability tending to one,

∀N ≥ 1, max 1≤i≤N 1≤ j≤r |b i, j | ≤ C log N N and max 1≤i≤N 1≤ j≤r |c j,i | ≤ C log N N . (1.45)

Outline of the proof

If we expand the following expectation

E c * i 1 A k 1 b i 1 • • • c * i q A k q b i q c * i 1 A l 1 b i 1 • • • c * i s A l s b i s
(where the expectation is with respect to the randomness of U), we get a summation of terms such as

E u t 1,1 t 1,2 • • • u t 1,k 1 t 1,k 1 +1 k 1 factors • • ••u t q,1 t q,2 • • • u t q,kq t q,kq+1 k q factors u t 1,1 t 1,2 • • • u t 1,l 1 t 1,l 1 +1 l 1 factors • • ••u t s,1 t s,2 • • • u t s,ls t s,ls+1 l s factors
.

(1.46) Our goal is to find out which of these terms will be negligible before the others. First, we know from Proposition 2.5.1 that the expectation vanishes unless the set of the first indices (resp. second) of the u i j 's is the same as the set of the first indices (resp. second) of the u i j 's. Secondly, each expectation is computed thanks to the following formula (see Proposition 2.5.1):

E u i 1 , j 1 • • • u i k , j k u i 1 , j 1 • • • u i k , j k = ∑ σ ,τ∈S k δ i 1 ,i σ (1) . . . δ i k ,i σ (k) δ j 1 , j τ(1) . . . δ j k , j τ(k) Wg(τσ -1 ), (1.47)
Then, by (2.23) of Proposition 2.5.1, we know that the prevailing terms are the ones involving Wg(id), i.e. those allowing to match the i's in the u i j 's with the i 's in the u i j 's thanks to a permutation which also matches j's in the u i j 's with the j 's in the u i j 's. To prove the second part of Lemma 1.5.8, we shall characterize such terms among those of the type of (1.46) and prove that the other ones are negligible. To prove the first part of the lemma, we shall prove that only negligible terms occur, i.e. that if k 1 , . . . , k q m = {l 1 , . . . , l s } m , then Wg(id) can never occur in (1.46). Then, the third part of the lemma is only a straightforward summation following from the first and second parts.

Proof of (2) of Lemma 1.5.8:

Now, we reformulate the (2) from Lemma 1.5.8 this way : let

k 1 > k 2 > • • • > k q
be distinct positive integers and m 1 , . . . , m q positive integers, and let i α,β 1≤β ≤q 1≤α≤m β and i α,β 1≤β ≤q 1≤α≤m β be some integers of {1, . . . , r}. Our goal is to prove that

E √ Nc * i 1,1 A k 1 b i 1,1 √ Nc * i 1,1 A k 1 b i 1,1 • • • √ Nc * i m 1 ,1 A k 1 b i m 1 ,1 √ Nc * i m 1 ,1 A k 1 b i m 1 ,1 × √ Nc * i 1,2 A k 2 b i 1,2 √ Nc * i 1,2 A k 2 b i 1,2 • • • • • • √ Nc * i mq,q A k q b i mq,q √ Nc * i mq,q A k q b i mq,q = b 2 ∑ k i m i × q ∏ t=1 ∑ µ t ∈S m t m t ∏ s=1 b * i µ t (s),t b i s,t • c * i s,t c i µ t (s),t + o(1).
We will denote the coordinate of b

i α,β : b i α,β t 1≤t≤N
. We write

c * i α,β A k 1 b i α,β = ∑ 1≤t 0 ,...,t k 1 ≤N c i α,β t 0 u t 0 ,t 1 s t 1 u t 1 ,t 2 s t 2 • • • u t k 1 -1 ,t k 1 s t k 1 b i α,β t k 1 . (1.48)
In order to simply notation, we shall use bold letters to designate tuples of consecutive indices. For example, we set t i, j := (t 0,i, j ,t 1,i, j , . . . ,t k j ,i, j ) and write

u t i, j := u t 0,i, j ,t 1,i, j • • • u t k j -1,i, j ,t k j ,i, j ; s t i, j := s t 1,i, j • • • s t k j ,i, j , (1.49) 
so if we expand the whole expectation in (1.48) with respect to the randomness of U, we get terms as

E u t 1,1 • • • u t m 1 ,1 u t 1,1 • • • u t m 1 ,1 • • • • u t 1,q • • • u t mq,q u t 1,q • • • u t mq,q = E ∏ 1≤c≤q ∏ 1≤b≤m c ∏ 0≤a≤k c -1 u t a,b,c ,t a+1,b,c u t a,b,c ,t a+1,b,c ,
and by Proposition 2.5.1, for this expectation to be non-zero, the set of the first indices (resp. second) of the u i, j 's must be the same than the set of the first indices (resp. second) of the u i, j 's, which can be expressed by the following equalities of multisets8 

t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c -1 m = t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c -1 m (1.50) t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 1 ≤ a ≤ k c m = t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 1 ≤ a ≤ k c m (1.51) 
For now on, we denote by K = ∑ m i k i and by ρ = ∑ m i .

To make a better use of these multisets equalities, we shall need to reason on the t a,b,c 's which are pairwise distincts and so, in a first place, we prove that the summation over the non pairwise indices is negligible.

To do so, we deduce first from (1.50) and (1.51) that for any fixed collection of indices (t a,b,c ), there is only a O(1) choices of collection of indices (t a,b,c ) leading to a non vanishing expectation. Then, noticing that

Card {t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c } = O N K+ρ-1 ,
(where K = ∑ m i k i and ρ = ∑ m i ), we know that the summation contains a O N K+ρ-1 of terms. At last, we use the fact that the expectation over the u i, j 's and the u i, j 's

is at most O N -K , that sup i s i < M and that |b i | and |c i | = O log N N (recall (1.45))
, to claim that each term of the sum is at most a O (log N) 2ρ N -K-ρ (one should not forget that each cA k b is multiply by √ N). We conclude that the summation over the non pairwise distinct indices is a O (log N) 2ρ N .

For now on, we consider only the pairwise distinct indices so that (1.50) and (1.51) can be seen as set equalities (instead of multiset). Also, if one sees the sets as K-tuple, the equalities (1.50) and (1.51) means that there exists two permutations σ 1 and σ 2 in S K so that for all 1

≤ c ≤ q, 1 ≤ b ≤ m q , 0 ≤ a ≤ k q -1 (resp. 1 ≤ a ≤ k q ), we have t a,b,c = t σ 1 (a,b,c) (resp. t a,b,c = t σ 2 (a,b,c) ). Remark 1.6.3. The notation t σ 1 (a,b,c) is a little improper: the set {(a, b, c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c -1}
is identified with {1, . . . , K} thanks to the colexicographical order (where

K = ∑ m i k i ).
Thanks to the Proposition 2.5.1 and the Remark 2.5.3, we know that the expectation of the u t a,b,c 's and the u t a,b,c 's is equal to Wg(σ 1 • σ -1

2 ) and so, we know that we can neglect all of these with σ 1 = σ 2 . For now on, we suppose σ 1 = σ 2 .

One needs to understand that the sets {t a,b,c ; 1

≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a < k c } and {t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 1 ≤ a ≤ k c }
are very similar except for the shift for the first index. Due to this likeness and the fact that they are both mapped onto the t a,b,c 's in the same way (i.e. σ 1 = σ 2 ), we prove that the choice of σ 1 is very specific :

-First, using the distinctness of the indices, it easy to see that the equalities (1.50) and (1.51) lead us to these new equalities of sets

{t 0,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } = t 0,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , (1.52) and {t k c ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } = t k c ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , (1.53) -According to the equality (1.52), we know that {t 0,b,c , 1 ≤ c ≤ q, 1 ≤ b ≤ m c } is an invariant set of σ 1 . Indeed, we know that t σ 1 (0,b,c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c ⊂ t a,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c -1 ,
and with the condition (1.52), to avoid non pairwise distinct indices, we must have

t σ 1 (0,b,c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c = t 0,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c ,
and so, we deduce that

{t 0,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } = t σ 1 (0,b,c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c . -As σ 1 = σ 2 , σ 2 permutes {t 1,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } in the same way (ac- tually, the sets {(a, b, c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c -1} and {(a, b, c) ; 1 ≤ c ≤ p, 1 ≤ b ≤ m c , 1 ≤ a ≤ k c }
are indentified to the same set (with cardinality K) thanks to the colexicographical order, and so, the action of σ 1 and σ 2 must be seen on this common set).

-As each element of {t 1,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } has only one corresponding t d,e, f (indeed by (1.50) and (1.51) and as the t's and the t 's are pairwise distinct, to each t corresponds a unique t ), we deduce that σ 1 permutes {t 1,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } in the same way (indeed, it allows to claim that

t σ 1 (1,b,c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c = t σ 2 (1,b,c) ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c as K-tuples.
-As σ 1 = σ 2 , we know that σ 2 permutes {t 2,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } in the same way, and so on until one shows that σ 2 permutes t k q ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c in the same way.

-However, according to (1.53), we know that

{t k c ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } is an invariant set of σ 2 .
Therefore, as t k q ,b,c ; 1

≤ c ≤ q, 1 ≤ b ≤ m c and {t k c ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c } are invariant sets by σ 2 , we know that t k q ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c ∩ t k c ,b,c ; 1 ≤ c ≤ q, 1 ≤ b ≤ m c = t k q ,b,q ; 1 ≤ b ≤ m q
is also an invariant set of σ 2 and we deduce that σ 1 permutes in the same way every set of the form t l,b,q , 1 ≤ b ≤ m q for l ∈ 0, k q -1 . And so, we rewrite the equalities (1.52) and (1.53)

{t 0,b,c ; 1 ≤ c ≤ q -1, 1 ≤ b ≤ m c } = t 0,b,c ; 1 ≤ c ≤ q -1, 1 ≤ b ≤ m c , (1.54) 
and

{t k c ,b,c ; 1 ≤ c ≤ q -1, 1 ≤ b ≤ m c } = t k c ,b,c ; 1 ≤ c ≤ q -1, 1 ≤ b ≤ m c , (1.55) 
and one can make an induction on q to show that there exist

µ 1 ∈ S m 1 , µ 2 ∈ S m 2 , . . . , µ q ∈ S m q such that for all 1 ≤ c ≤ q, 1 ≤ b ≤ m c , 1 ≤ a ≤ k c , we have t a,b,c = t σ 1 (a,b,c) = t a,µ c (b),c
and so, to sum up, we deduce that the non negligible terms that we get when we expand the whole expectation are terms such as

E ∏ 1≤c≤q ∏ 1≤b≤m c ∏ 0≤a≤k c -1 u t a,b,c ,t a+1,b,c u t a,µc(b),c ,t a+1,µc(b),c
where for all c, µ c belongs to S m c and so, one can easily deduce that

E √ Nc * i 1,1 A k 1 b i 1,1 √ Nc * i 1,1 A k 1 b i 1,1 • • • √ Nc * i m 1 ,1 A k 1 b i m 1 ,1 √ Nc * i m 1 ,1 A k 1 b i m 1 ,1 × √ Nc * i 1,2 A k 2 b i 1,2 √ Nc * i 1,2 A k 2 b i 1,2 • • • • • • √ Nc * i mq,q A k q b i mq,q √ Nc * i mq,q A k q b i mq,q = 1 N N ∑ i=1 s 2 i K-ρ • q ∏ u=1     ∑ µ u ∈S mu m u ∏ s=1     ∑ 1≤t 0,s,u ≤N 1≤t ku,s,u ≤N b i µu(s),u t ku,s,u b i s,u t ku,s,u s 2 t ku,s,u c i s,u t 0,s,u c i µu(s),u t 0,s,u         + o(1) = b 2K × q ∏ u=1 ∑ µ u ∈S mu m u ∏ s=1 b * i µu(s),u b i s,u • c * i s,u c i µu(s),u + o(1),
and we can conclude.

Remark 1.6.4. We used the fact that

1 N N ∑ i=1 s 2 i = b 2 + o(1) (1.56) N ∑ j=1 b i α,β j b i γ,δ j s 2 j = b 2 b * i α,β b i γ,δ + o(1). (1.57) 
The relation (1.56) is obvious and the (1.57) can be proved using the fact P is invariant, in law, by conjugation by any unitary matrix (we explained at Section 1.2.4 that we can add this hypothesis).

Proof of (1) of Lemma 1.5.8:

The proof of (1) goes along the same lines as the previous proof. Our goal is to show that

E √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i s A l s b i s = o (1)
.

At first, one can notice that if ∑ k i = ∑ l j , the expectation is equal to zero. We assume now that ∑ k i = ∑ l j , and let K denote the common value. Then, we distinguish two cases.

• First case : q = s Then we can also focus on the "pairwise distinct indices" summation, by similar argument as in the previous proof. We suppose that there exists j such that k j = l j (otherwise, one should read the previous proof). Our goal is to show that there is no expectation equal to Wg(id) (which means that we cannot have σ 1 = σ 2 ) in that case and so we shall conclude that

E √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i q A l q b i q = O 1 N .
Let us gather the k i 's which are equal and in order to simply the expressions, we shall use notations in the same spirit than (1.49)

√ N(c * A k α b) i α := √ Nc * i 1,α A k α b i 1,α • • • √ Nc * i mα ,α A k α b i mα ,α , √ N(c * A β b) i β := √ Nc * i 1,β A β b i 1,β • • • √ Nc * i n β ,β A β b i n β ,β , (1.58) 
so that we rewrite our expectation

E √ N(c * A k 1 b) i 1 • • • √ N(c * A k r b) i r √ N(c * A 1 b) i 1 • • • √ N(c * A s b) i s with ∑ r i=1 m i k i = ∑ s j=1 n j l j and k 1 > • • • > k r and l 1 > • • • > l s .
Without loss of generality, we shall assume that (k r , m r ) = (l s , n s ) (indeed, otherwise, we can start the induction from the previous proof until we find an integer x such that (k r-x , m r-x ) = (l s-x , n s-x ) to show that the expectation is equal to

E √ N(c * A k 1 b) i 1 • • • √ N(c * A k r-x b) i r-x √ N(c * A 1 b) i 1 • • • √ N(c * A s-x b) i s-x × r ∏ t=r-x+1 ∑ µ t ∈S m t m t ∏ s=1 E √ Nc * i s,t A k t b i s,t √ Nc * i µ t (s),t A k t b i µ t (s),t + o(1) ,
and the following of the proof is the same). We shall also assume that k r ≤ l s .

According to Proposition 2.5.1, we have the following equalities

t a,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m c , 0 ≤ a ≤ k c -1 = t a,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c , 0 ≤ a ≤ l c -1 , (1.59) 
and

t a,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m c , 1 ≤ a ≤ k c = t a,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c , 1 ≤ a ≤ l c , (1.60) 
and let σ 1 and σ 2 the two permutations describing these equalities. Let us prove by contradiction that σ 1 = σ 2 and so let us suppose that σ 1 = σ 2 . As we consider only pairwise distinct indices, we have also

{t 0,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m c } = t 0,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c , (1.61) 
and

{t k c ,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m c } = t l c ,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c , (1.62)
According to the fact that σ 1 = σ 2 and (1.61), we can deduce that

{t k r ,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m c } = t k r ,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c , (1.63)
and here comes the contradiction. Indeed, if k r < l s , then

t l c ,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c ∩ t k r ,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c = / 0,
otherwise, k r = l s (which means m r = n s ), let us suppose m r < n s , so that

Card t l c ,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c ∩ t k r ,b,c ; 1 ≤ c ≤ s, 1 ≤ b ≤ n c = n s however, Card {t k c ,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m c } ∩ {t k r ,b,c ; 1 ≤ c ≤ r, 1 ≤ b ≤ m r } = m r ,
which is, according to (1.62) and (1.63), impossible.

• Second case : q = s Without loss of generality, we suppose that q > s. We cannot consider here the pairwise distinct indices simply because the cardinal of the t i, j 's is different than the one of the t i, j 's. Expanding the product

E √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i s A l s b i s ,
we get terms such as

E U u t 0,1 ,t 1,1 • • • u t k 1 -1,1 ,t k 1 ,1 u t 0,2 ,t 1,2 • • • u t kq-1,q ,t kq,q u t 0,1 ,t 1,1 • • • u t l 1 -1,1 ,t l 1 ,1 u t 0,2 ,t 1,2 • • • u t ls-1,s ,t ls,s
According to Proposition 1.3.1, for the expectation to be non zero, one needs to have the equality of sets {t 0,1 ,t 1,1 , . . . ,t k 1 -1,1 ,t 0,2 , . . . ,t k 2 -1,2 , . . . ,t k q -1,q } = {t 0,1 ,t 1,1 , . . . ,t l 1 -1,1 ,t 0,2 , . . . ,t l 2 -1,2 , . . . ,t l s -1,s }, {t 1,1 ,t 2,1 , . . . ,t k 1 ,1 ,t 1,2 , . . . ,t k 2 ,2 ,t 1,3 , . . . ,t k q ,q } = {t 1,1 ,t 2,1 , . . . ,t l 1 ,1 ,t 1,2 , . . . ,t l 2 ,2 ,t 1,3 , . . . ,t l s ,s }.

Set A := {t a,b , 1 ≤ b ≤ r, 0 ≤ a ≤ k b } and B = t a,b , 1 ≤ b ≤ s, 0 ≤ a ≤ l b .
According to the previous inequalities, to (1.45) and to the fact that all the expectations are O N -K , we write

E √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i s A l s b i s ≤ C 4q log 2q (N) N 2q • N q+s 2 • ∑ t 0,1 ,...,t k 1 ,1 . . . t 0,q ,...,t kq,q ∑ µ∈B A q ∏ a=1 s t 1,a s µ(t 1,a ) • • • s µ(t ka,a ) × O N -K ≤ O log 2q (N) • N q+s 2 -K-2q ∑ µ∈B A t 0,1 ,...,t k 1 ,1 . . . t 0,q ,...,t kq,q 1 2 q ∏ a=1 s 2 t 1,a • • • s 2 t ka,a + q ∏ a=1 s 2 µ(t 1,a ) • • • s 2 µ(t ka,a )
On the one hand,

∑ µ∈B A t 0,1 ,...,t k 1 ,1 . . . t 0,q ,...,t kq,q q ∏ a=1 s 2 t 1,a • • • s 2 t ka,a ≤ Card(B A ) × Card {1, . . . , N} K+q × M 2K = O N K+q .
On the other,

∑ µ∈B A t 0,1 ,...,t k 1 ,1 . . . t 0,q ,...,t kq,q q ∏ a=1 s 2 µ(t 1,a ) • • • s 2 µ(t ka,a ) = O (1) × ∑ t 0,1 ,...,t l 1 ,1 . . . t 0,s ,...,t ls,s s ∏ a=1 s 2 t l 1 ,a • • • s 2 t la,a = O N K+s .
Indeed, for any fixed J = {t 0,1 ,t 1,1 , . . . ,t l 1 ,1 ,t 0,2 , . . . ,t l 2 ,2 , . . . ,t l s ,s }, there are O(1) of µ's in S I →J and I = {t 0,1 ,t 1,1 , . . . ,t k 1 ,1 ,t 0,2 , . . . ,t k 2 ,2 , . . . ,t k q ,q } such that µ(I) = J.

Therefore,

E U √ Nc * i 1 A k 1 b i 1 • • • √ Nc * i q A k q b i q √ Nc * i 1 A l 1 b i 1 • • • √ Nc * i s A l s b i s = O log 2q (N) • N -q-s 2 ,
and, since q > s, it is at least a O log 2q (N)

√ N

.

Proof of (3) of Lemma 1.5.8:

If k 1 , . . . , k q m = k 1 , . . . , k q m , we know that it contributes to the o(1). So we rewrite

k 0 ∑ k 1 ,...,k q =1 k 1 ,...,k q =1 E   q ∏ α=1 √ Nc * i α A k α z k α +1 i 1 b i α √ Nc * i α A k α z k α +1 i α b i α   = k 0 ∑ k 1 ,...,k q =1 k 0 ∑ k 1 ,...,k q =1 {k 1 ,...,kq} m ={k 1 ,...,k q } m E   q ∏ α=1 √ Nc * i α A k α z k α +1 i 1 b i α √ Nc * i α A k α z k α +1 i α b i α   + o (1)
.

Then, we fixed (k 1 , . . . , k q ), and let us calculate

k 0 ∑ k 1 ,...,k q =1 {k 1 ,...,kq} m ={k 1 ,...,k q } m E   q ∏ α=1 √ Nc * i α A k α z k α +1 i 1 b i α √ Nc * i α A k α z k α +1 i α b i α   , (1.64)
to do so, we will use the previous notations and write

  k 1 , . . . , k 1 m 1 , k 2 , . . . , k 2 m 2 , . . . , k s , . . . , k s m s  
and we shall show that (1.64) doesn't depend on the m i 's but depends only on q = ∑ m i k i . We rewrite the summation

∑ {k 1 ,...,k q } m ={k 1 ,...,k s } m E    √ Nc * i 1,1 A k 1 z k 1 +1 i 1,1 b i 1,1 √ Nc * i 1,1 A k 1 z k 1 +1 i 1,1 b i 1,1 • • • √ Nc * i m 1 ,1 A k 1 z k 1 +1 i m 1 ,1 b i m 1 ,1 √ Nc * i m 1 ,1 A k m 1 z k m 1 +1 i m 1 ,1 b i m 1 ,1 √ Nc * i 1,2 A k 2 z k 2 +1 i 1,2 b i 1,2 √ Nc * i 1,2 A k m 1 +1 z k m 1 +1 +1 i 1,2 b i 1,2 • • • √ Nc * i m 2 ,2 A k 2 z k 2 +1 i m 2 ,2 b i m 2 ,2 √ Nc * i m 2 ,2 A k m 1 +m 2 z k m 1 +m 2 +1 i m 2 ,2 b i m 2 ,2
(1.65)

• • • √ Nc * i ms,s A k s z k s +1 i ms,s b i ms,s √ Nc * i ms,s A k q z k q +1 i ms,s b i ms,s   .
We gather the k i 's which are equal, so we rewrite the summation thanks to permutations of the set

I = {(α, β ), 1 ≤ β ≤ s, 1 ≤ α ≤ m s } : ∑ µ∈S I E   √ Nc * i 1,1 A k 1 z k 1 +1 i 1,1 b i 1,1 √ Nc * i µ(1,1) A k 1 z k 1 +1 i µ(1,1) b i µ(1,1) • • • √ Nc * i m 1 ,1 A k 1 z k 1 +1 i m 1 ,1 b i m 1 ,1 √ Nc * i µ(m 1 ,1) A k 1 z k 1 +1 i µ(m 1 ,1) b i µ(m 1 ,1) √ Nc * i 1,2 A k 2 z k 2 +1 i 1,2 b i 1,2 √ Nc * i µ(1,2) A k 2 z k 2 +1 i µ(1,2) b i µ(1,2) • • • √ Nc * i ms,s A k s z k s +1 i ms,s b i ms,s √ Nc * i µ(ms,s) A k s z k s +1 i µ(ms,s) b i µ(ms,s)  
except that we count several times each terms. Indeed, for example, if one wants to rearrange

E   c * i 1,1 A k 1 z k 1 i 1,1 b i 1,1 c * i 2,1 A k 1 z k 1 i 2,1 b i 2,1 c * i 1,2 A k 2 z k 2 i 1,2 b i 1,2 c * i 1,1 A k 1 z k 1 i 1,1 b i 1,1 c * i 2,1 A k 2 z k 2 i 2,1 b i 2,1 c * i 1,2 A k 1 z k 1 i 1,2 b i 1,2   ,(1.66)
there are two ways to do it :

E   c * i 1,1 A k 1 z k 1 i 1,1 b i 1,1 c * i 1,1 A k 1 z k 1 i 1,1 b i 1,1 c * i 2,1 A k 1 z k 1 i 2,1 b i 2,1 c * i 1,2 A k 1 z k 1 i 1,2 b i 1,2 c * i 1,2 A k 2 z k 2 i 1,2 b i 1,2 c * i 2,1 A k 2 z k 2 i 2,1 b i 2,1   , or E   c * i 1,1 A k 1 z k 1 i 1,1 b i 1,1 c * i 1,2 A k 1 z k 1 i 1,2 b i 1,2 c * i 2,1 A k 1 z k 1 i 2,1 b i 2,1 c * i 1,1 A k 1 z k 1 i 1,1 b i 1,1 c * i 1,2 A k 2 z k 2 i 1,2 b i 1,2 c * i 2,1 A k 2 z k 2 i 2,1 b i 2,1   ,
and so (1.66) would be counted twice. Actually, it is easy to see that µ 1 and µ 2 give us the same terms if and only if σ = µ 1 • µ -1 2 is a permutation such that for all (i, j) ∈ I , σ (i, j) = (i , j) (it means that σ doesn't change the second index). Let us denote by S k 1 ,...,k q the set of such σ 's in S I . Then the expression of (1.65) rewrites

1 Card S k 1 ,...,k q ∑ µ∈S I E   s ∏ α=1 m α ∏ β =1 √ Nc * i β ,α A k α z k α +1 i β ,α b i β ,α √ Nc * i µ(β ,α) A k α z k α +1 i µ(β ,α) b i µ(β ,α)   = 1 Card S k 1 ,...,k q ∑ µ∈S I ∑ σ ∈S k 1 ,...,kq s ∏ t=1 m t ∏ u=1 1 z i u,t z i µ(u,t) b 2 z i u,t z i µ(u,t) k t b * i σ •µ(u,t) b i u,t c * i u,t c i σ •µ(u,t) + o (1) = 1 Card S k 1 ,...,k q ∑ σ ∈S k 1 ,...,kq ∑ µ∈S I s ∏ t=1 m t ∏ u=1 1 z i u,t z i µ(u,t) b 2 z i u,t z i µ(u,t) k t b * i µ(u,t) b i u,t c * i u,t c i µ(u,t) + o (1) = ∑ µ∈S I s ∏ t=1 m t ∏ u=1 1 z i u,t z i µ(u,t) b 2 z i u,t z i µ(u,t) k t b * i µ(u,t) b i u,t c * i u,t c i µ(u,t) + o (1)
and if we go back to the notation {1, . . . , k q }, we have

∑ µ∈S I s ∏ t=1 m t ∏ u=1 1 z i u,t z i µ(u,t) b 2 z i u,t z i µ(u,t) k t b * i µ(u,t) b i u,t c * i u,t c i µ(u,t) = ∑ σ ∈S q q ∏ t=1 1 z i t z i σ (t) b 2 z i t z i σ (t) k t b * i σ (t) b i t • c * i t c i σ (t)
and so

k 0 ∑ k 1 ,...,k q =1 k 1 ,...,k q =1 E   √ Nc * i 1 A k 1 z k 1 +1 i 1 b i 1 √ Nc * i 1 A k 1 z k 1 +1 i 1 b i 1 • • • √ Nc * i q A k q z k q +1 i q b i 1,q √ Nc * i q A k q z k q +1 i q b i q   = k 0 ∑ k 1 ,...,k q =1 k 0 ∑ k 1 ,...,k q =1 {k 1 ,...,kq} m ={k 1 ,...,k q } m E   √ Nc * i 1 A k 1 z k 1 +1 i 1 b i 1 √ Nc * i 1 A k 1 z k 1 +1 i 1 b i 1 • • • √ Nc * i q A k q z k q +1 i q b i 1,q √ Nc * i q A k q z k q +1 i q b i q   + o (1) = k 0 ∑ k 1 ,...,k q =1 ∑ σ ∈S q q ∏ t=1 1 z i t z i σ (t) b 2 z i t z i σ (t) k t b * i σ (t) b i t • c * i t c i σ (t) + o(1) = ∑ σ ∈S q q ∏ t=1 b 2 z i t z i σ (t) 1 - b 2 z i t z i σ (t) k 0 z i t z i σ (t) -b 2 b * i σ (t) b i t c * i t c i σ (t) + o (1) .
This allows to conclude directly.

1.6.4 Proof of Lemma 1.5.9

We want to compute

E := E Tr AVBV * CVDV * .
Let us denote the entries of V by v i j , the entries of A by a i j , the entries of B by b i j . . . Then, expanding the trace, we have

E = ∑ 1≤α,β ,i, j,γ,τ,k,l≤n E[a αβ v β i b i j v γ j c γτ v τk d kl v αl ] :=E α,β ,i, j,γ,τ,k,l
By the left and right invariance of the Haar measure on the unitary group (see Proposition 2.5.1), for the expectation of a product of entries of V and V to be non zero, we need each row to appear as much times in V as in V and each column to appear as much times in V as in V. It follows that for E α,β ,i, j,γ,τ,k,l to be non zero, we need to have the equalities of multisets:

{β , τ} m = {α, γ} m , {i, k} m = { j, l} m
The first condition is equivalent to one of the three conditions

α = β = γ = τ or α = β = γ = τ or α = τ = β = γ
and the second condition is equivalent to one of the three conditions

i = j = k = l or i = j = k = l or i = l = j = k.
Hence we have 9 cases to consider below. In each one, the involved moments of the v i j 's are computed thanks to e.g. Proposition 4.2.3 of [START_REF] Hiai | Petz The semicircle law, free random variables, and entropy[END_REF]: for any a, b, c, d, we have

•• E[|v ab | 4 ] = 2 N(N + 1) , •• b = d =⇒ E[|v ab | 2 |v cd | 2 ] =      1 N(N+1) if a = c 1 N 2 -1 if a = c •• a = b and c = d =⇒ E[v ac v ad v bd v bc ] = - 1 N(N 2 -1)
So let us treat the 9 cases:

• Under condition α = β = γ = τ and i = j = k = l, we have ∑ α,β ,i, j,γ,τ,k,l E α,β ,i, j,γ,τ,k,l = ∑ α,i E[a αα v αi b ii v αi c αα v αi d ii v αi ] = 2 
N(N + 1) ∑ α a αα c αα ∑ i b ii d ii • Under condition α = β = γ = τ and i = j = k = l, we get 1 N(N + 1) ∑ α a αα c αα ∑ i =k b ii d kk • Under condition α = β = γ = τ and i = l = j = k, we get 1 N(N + 1) ∑ α a αα c αα ∑ i = j b i j d ji
• Under condition α = β = γ = τ and i = j = k = l, we get 1

N(N + 1) ∑ α =γ a αα c γγ ∑ i b ii d ii • Under condition α = β = γ = τ and i = j = k = l, we get -1 N(N 2 -1) ∑ α =γ a αα c γγ ∑ i =k b ii d kk • Under condition α = β = γ = τ and i = l = j = k, we get 1 N 2 -1 ∑ α =γ a αα c γγ ∑ i = j b i j d ji • Under condition α = τ = β = γ and i = j = k = l, we get 1 
N(N + 1) ∑ α =β a αβ c β α ∑ i b ii d ii • Under condition α = τ = β = γ and i = j = k = l, we get 1 N 2 -1 ∑ α =β a αβ c β α ∑ i =k b ii d kk • Under condition α = τ = β = γ and i = l = j = k, we get -1 N(N 2 -1) ∑ α =β a αβ c β α ∑ i = j b i j d ji
Summing up the nine previous sums, we easily get the desired result:

N(N + 1)E = 2 ∑ α a αα c αα ∑ i b ii d ii + ∑ α a αα c αα ∑ i =k b ii d kk + ∑ α a αα c αα ∑ i = j b i j d ji + ∑ α =γ a αα c γγ ∑ i b ii d ii - 1 N -1 ∑ α =γ a αα c γγ ∑ i =k b ii d kk + N N -1 ∑ α =γ a αα c γγ ∑ i = j b i j d ji + ∑ α =β a αβ c β α ∑ i b ii d ii + N N -1 ∑ α =β a αβ c β α ∑ i =k b ii d kk - 1 N -1 ∑ α =β a αβ c β α ∑ i = j b i j d ji = ∑ α a αα c αα ∑ i,k b ii d kk + ∑ α a αα c αα ∑ i, j b i j d ji + N N -1 ∑ α =γ a αα c γγ ∑ i, j b i j d ji - 1 N -1 ∑ α =γ a αα c γγ ∑ i,k b ii d kk + N N -1 ∑ α =β a αβ c β α ∑ i,k b ii d kk - 1 N -1 ∑ α =β a αβ c β α ∑ i, j b i j d ji = Tr B Tr D ∑ α a αα c αα - 1 N -1 ∑ α =γ a αα c γγ + N N -1 ∑ α =β a αβ c β α + Tr BD ∑ α a αα c αα + N N -1 ∑ α =γ a αα c γγ - 1 N -1 ∑ α =β a αβ c β α = N N -1 {Tr AC Tr B Tr D + Tr A Tr C Tr BD} - 1 N -1 {Tr AC Tr BD + Tr A Tr C Tr B Tr D} .

Introduction

The Single Ring Theorem, by Guionnet, Krishnapur and Zeitouni [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], describes the empirical distribution of the eigenvalues of a large generic matrix with prescribed singular values, i.e. an N × N matrix of the form A = UTV, with U, V some independent Haar-distributed unitary matrices and T a deterministic matrix whose singular values are the ones prescribed. More precisely, under some technical hypotheses, as the dimension N tends to infinity, if the empirical distribution of the singular values of A converges to a compactly supported limit measure Θ on the real line, then the empirical eigenvalues distribution of A converges to a limit measure µ on the complex plane which depends only on Θ. The limit measure µ (see Figure 2.8(a)) is rotationally invariant in C and its support is the annulus

S := {z ∈ C ; a ≤ |z| ≤ b}, with a, b ≥ 0 such that a -2 = x -2 dΘ(x) and b 2 = x 2 dΘ(x).
In this text, we consider such a matrix A and we study (Theorem 2.2.4) the joint weak convergence, as N → ∞, of random variables of the type

Tr( f (A)M),
for f an analytic function on the ring S whose Laurent series expansion has null constant term and M a deterministic N × N matrix satisfying some limit conditions. These limit conditions (see (2.1)) allow to consider both:

-fluctuations, around their limits as predicted by the Single Ring Theorem, of linear spectral statistics of A (for M = I):

Tr f (A) = N ∑ i=1 f (λ i ),
where λ 1 , . . . , λ N denote the eigenvalues of A,

-finite rank projections of f (A) (for M = √ N×(a matrix with bounded rank)), like the matrix entries of f (A).

Let us present both of these directions with more details.

Linear spectral statistics of A

As far as Hermitian random matrices are concerned, linear spectral statistics fluctuations usually come right after the macroscopic behavior, with the microscopic one, in the natural questions that arise (see e.g., among the wide literature on the subject, [START_REF] Jonsson | Some limit theorems for the eigenvalues of a sample covariance matrix[END_REF][START_REF] Khorunzhy | Pastur Asymptotic properties of large random matrices with independent entries[END_REF][START_REF] Sinai | Soshnikov Central limit theorem for traces of large random symmetric matrices with independent matrix elements[END_REF][START_REF] Johansson | On the fluctuations of eigenvalues of random Hermitian matrices[END_REF][START_REF] Bai | On the convergence of the spectral empirical process of Wigner matrices[END_REF][START_REF] Bai | CLT for linear spectral statistics of Wigner matrices[END_REF][START_REF] Lytova | Pastur Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF][START_REF]Shcherbina Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and Sample Covariance Random Matrices[END_REF][START_REF] Anderson | A CLT for a band matrix model[END_REF][START_REF] Lytova | Pastur Central limit theorem for linear eigenvalue statistics of random matrices with independent entries[END_REF][START_REF] Bai | Silverstein CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF][START_REF] Chatterjee | Fluctuations of eigenvalues and second order Poincaré inequalities[END_REF][START_REF] Benaych-Georges | Male Central limit theorems for linear statistics of heavy tailed random matrices[END_REF]). For unitary or orthogonal matrices, also, many results have been proved (see e.g. the results of Diaconis et al in [START_REF] Diaconis | On the eigenvalues of random matrices, Studies in applied probability[END_REF][START_REF] Diaconis | Linear functionals of eigenvalues of random matrices[END_REF], the ones of Soshnikov in [START_REF] Soshnikov | The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities[END_REF] or the ones of Lévy and Maïda in [START_REF] Lévy | Maïda Central limit theorem for the heat kernel measure on the unitary group[END_REF]). For non-Hermitian matrices, established results are way less numerous: the first one was [START_REF] Rider | Silverstein Gaussian fluctuations for non-Hermitian random matrix ensembles[END_REF], by Rider and Silverstein, for analytic test functions of matrices with i.i.d. entries, then came the paper [START_REF] Rider | The noise in the circular law and the Gaussian free field[END_REF] by Rider and Virág, who managed, thanks to the explicit determinantal structure of the correlation functions of the Ginibre ensemble, to study the fluctuations of linear spectral statistics of such matrices for C 1 test functions. Recently, in [START_REF] O'rourke | Renfrew Central limit theorem for linear eigenvalue statistics of elliptic random matrices[END_REF], O'Rourke and Renfrew studied the fluctuations of linear spectral statistics of elliptic matrices for analytic test functions. The reason why, except for the breakthrough of Rider and Virág in [START_REF] Rider | The noise in the circular law and the Gaussian free field[END_REF], many results are limited to analytic test functions is that when non-normal matrices are concerned, functional calculus makes sense only for analytic functions: if one denotes by λ 1 , . . . , λ N the eigenvalues of a non-Hermitian matrix A, one can estimate ∑ N i=1 f (λ i ) out of the numbers Tr A k or Tr((z -A) -1 ) only when f is analytic. For a C 2 test function f , one relies on the explicit joint distribution of the λ i 's or on Girko's so-called Hermitization technique, which expresses the empirical spectral measure of A as the Laplacian of the function z -→ log | det(z -A)| (see e.g. [START_REF]Girko The elliptic law[END_REF][START_REF] Bordenave | Chafaï Around the circular law[END_REF]). This is a way more difficult problem, which we consider in a forthcoming project.

In this text, as a corollary of our main theorem, we prove that for A = UTV an N × N matrix of the type introduced above and f (z) = ∑ n∈Z a n z n an analytic function on a neighborhood of the limit support S of the empirical eigenvalue distribution of A, the random variable Tr f (A) -Na 0 converges in distribution, as N → ∞, to a centered complex Gaussian random variable with a given covariance matrix (see Corollary 2.2.7). This is a first step in the study of the noise in the Single Ring Theorem. We notice a quite common fact in random matrix theory: the random variable Tr f (A) -Na 0 = ∑ N i=1 f (λ i ) -E f (λ i ) does not need to be renormalized to have a limit in distribution, which reflects the eigenvalue repulsion phenomenon (indeed, would the λ i 's have been i.i.d., this random variable would have had order √ N).

Next, two corollaries are given (Corollaries 2.2.11 and 2.2.13), one about the Bergman kernel and the resolvant and one about the log-correlated limit distribution of the characteristic polynomial out of the support.

Finite rank projections and matrix entries

A century ago, in 1906, Émile Borel proved in [START_REF] Borel | Sur les principes de la théorie cinétique des gaz[END_REF] that, for a uniformly distributed point (X 1 , . . . , X N ) on the unit Euclidian sphere S N-1 , the scaled first coordinate √ NX 1 converges weakly to the Gaussian distribution as the dimension N tends to infinity. As explained in the introduction of the paper [START_REF] D'aristotile | Newman Brownian motion and the classical groups. With Probability, Statisitica and their applications[END_REF] of Diaconis et al., this means that the features of the "microcanonical" ensemble in a certain model for statistical mechanics (uniform measure on the sphere) are captured by the "canonical" ensemble (Gaussian measure). Since then, a long list of further-reaching results about the asymptotic normality of entries of random orthogonal or unitary matrices have been obtained (see e.g. [START_REF] D'aristotile | Newman Brownian motion and the classical groups. With Probability, Statisitica and their applications[END_REF][START_REF] Meckes | Linear functions on the classical matrix groups[END_REF][START_REF] Chatterjee | Multivariate normal approximation using exchangeable pairs[END_REF][START_REF] Collins | Borel theorems for random matrices from the classical compact symmetric spaces[END_REF][START_REF] Jiang | How many entries of a typical orthogonal matrix can be approximated by independent normals?[END_REF][START_REF]Benaych-Georges Central limit theorems for the Brownian motion on large unitary groups[END_REF]).

In this text, as a corollary of our main theorem, we prove that for A = UTV an N × N matrix of the type introduced above, f (z) = ∑ n∈Z a n z n an analytic function on a neighborhood of the limit support S of the empirical eigenvalue distribution of A and a, b some unit column vectors, the random variables of the type It also applies to the study of finite rank perturbations of A of multiplicative type: the BBP phase transition (named after the authors of the seminal paper [START_REF] Baik | Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF]) is well understood for additive or multiplicative perturbations ( A = A + P or A = A(I + P)) of general Hermitian models (see [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF][START_REF] Capitaine | Février Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices[END_REF][START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] or [START_REF] Baik | Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF][START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF]), for additive perturbations of various non-Hermitian models (see [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF][START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF][START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF][START_REF] Bordenave | Capitaine Outlier eigenvalues for deformed i.i.d. random matrices[END_REF]), but multiplicative perturbations of non-Hermitian models were so far unexplored. In Remark 2.2.16 and Figure 2.8, we explain briefly how our results allow to enlighten a BBP transition for such perturbations.

√ N(b * f (A)a -a 0 b * a) converge in joint distribution, as N → ∞,
Organisation of the paper: In the next section, we state our main theorem (Theorem 2.2.4) and its corollaries, all of which go without proof, except Corollary 2.2.13. The rest of the paper is devoted to the proof of Theorem 2.2.4, to the proof of Corollary 2.2.13 and to the appendix, where we state several technical results needed here.

Main result

Let A be a random N × N matrix implicitly depending on N such that A = UTV, with U, V, T independent and U, V Haar-distributed on the unitary group. We make the following hypotheses on T: Assumption 2.2.1. As N → ∞, the sequence N -1 Tr TT * 1/2 converges in probability to a deterministic limit b > 0 and there is M < ∞ such that with probability tending to one, T op ≤ M.

Assumption 2.2.2. With the convention 1/∞ = 0 and 1/0 = ∞, the sequence

N -1 Tr((TT * ) -1 ) -1/2
converges in probability to a deterministic limit a ≥ 0. If a > 0, we also suppose that there is M < ∞ such that with probability tending to one, T -1 op ≤ M .

The following assumption, which could possibly be relaxed following Basak and Dembo's approach of [START_REF] Basak | Dembo Limiting spectral distribution of sums of unitary and orthogonal matrices[END_REF], is made to control tails of Laurent series but can be removed if the f j 's have finite Laurent expansion, like in Corollary 2.2.8 or in Remark 2.2.19.

Assumption 2.2.3.

There exist a constant κ > 0 such that

Im(z) > n -κ =⇒ N -1 Im Tr((z - √ TT * ) -1 ) ≤ 1 κ .
For f an analytic function on a neighborhood of the ring

S := {z ∈ C ; a ≤ |z| ≤ b},
the matrix f (A) is well defined with probability tending to one as N → ∞, as it was proved in [START_REF] Guionnet | Zeitouni Support convergence in the Single Ring Theorem[END_REF][START_REF] Benaych-Georges | Exponential bounds for the support convergence in the Single Ring Theorem[END_REF] that the spectrum of A is contained in any neighborhood of S with probability tending to one. We denote the Laurent series expansion, on S, of any such function f by

f (z) = ∑ n∈Z a n ( f )z n .
Theorem 2.2.4. For each N ≥ 1, let M 1 , . . . , M k be N × N deterministic matrices such that for all i, j, as N → ∞,

1 N Tr M i -→ τ i , 1 N Tr M i M * j -→ α i j , 1 N Tr M i M j -→ β i j (2.1)
Let f 1 , . . . , f k be analytic on a neighborhood of S. Then, as N → ∞, the random vector

Tr f j (A)M j -a 0 ( f j ) Tr M j k j=1
converges to a centered complex Gaussian vector (G ( f 1 ), . . . , G ( f k )) whose distribution is defined by

E G ( f i )G ( f j ) = ∑ n≥1 (n -1)τ i τ j + β i j a n ( f i )a -n ( f j ) + a -n ( f i )a n ( f j ) E G ( f i )G ( f j ) = ∑ n≥1 (n -1)τ i τ j + α i j a n ( f i )a n ( f j )b 2n + a -n ( f i )a -n ( f j )a -2n .
Remark 2.2.5. Note that if a = 0, as the f j 's are analytic on S, we have a -n ( f j ) = 0 for each n ≥ 1 and each j, so that the above expression still makes sense. Besides, it seems reasonable to verify that the two series above converge:

∑ n≥1 n|a n ( f i )||a n ( f j )|b 2n ≤ max n≥1 |a n ( f j )|b n ∑ n≥1 n|a n ( f i )|b n < ∞ ∑ n≥1 n|a n ( f i )||a -n ( f j )| ≤ max n≥1 |a n ( f i )|b n ∑ n≥1 n|a -n ( f j )|a -n < ∞.
Remark 2.2.6 (Relation to second order freeness). A theory has been developed recently about Gaussian fluctuations (called second order limits) of traces of large random matrices, the most emblematic articles in this theory being [START_REF] Mingo | Nica Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices[END_REF][START_REF] Mingo | Speicher Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces[END_REF][START_REF] Mingo | Second order freeness and fluctuations of random matrices. II. Unitary random matrices[END_REF][START_REF] Collins | Speicher Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants[END_REF]. Theorem 2.2.4 can be compared to some of these results. However, our hypotheses on the matrices we consider are of a different nature than the ones of the previously cited papers, since the convergence of the non commutative distributions is not required here: our hypotheses are satisfied for example by matrices like M j = √ N×(an elementary N × N matrix), which have no bounded moments of order higher than two.

Our two main applications are the case where the M j 's are all I (Corollaries 2.2.7 and 2.2.8) and the cases where the M j 's are √ N times matrices with bounded rank and norm, like elementary matrices (Corollaries 2.2.15 and 2.2.18). In the case M = I, we immediately obtain the following corollary about linear spectral statistics of A. Corollary 2.2.7. Let f 1 , . . . , f k be analytic on a neighborhood of S. Then, as N → ∞, the random vector Tr f j A -Na 0 ( f j ) k j=1 converges to a centered complex Gaussian vector (G ( f 1 ), . . . , G ( f k )) such that

E G ( f i )G ( f j ) = ∑ n∈Z |n|a n ( f i )a -n ( f j ) E G ( f i )G ( f j ) = ∑ n≥1 n a n ( f i )a n ( f j )b 2n + a -n ( f i )a -n ( f j )a -2n .
For n ≥ 1, let us define the functions

ϕ ± n (z) := z b n ± a z n .
These functions (plus the constant one) define a basis of the space of analytic functions on a neighborhood of S and we have the change of basis formula

∑ n∈Z a n z n = a 0 + ∑ n≥1 c + n ϕ + n (z)+c - n ϕ - n (z) ⇐⇒ ∀n ≥ 1, a n a -n = b -n b -n a n -a n c + n c - n , implying that ∑ n≥1 |a n ( f )| 2 b 2n + |a -n ( f )| 2 a -2n = 2 ∑ n≥1 |c + n ( f )| 2 + |c - n ( f )| 2 .
Besides, these functions allow to identify the underlying white noise in Theorem 2.2.4 (we only state it here in the case M j = I, but this of course extends to the case of general M j 's, allowing for example to state analogous results for the matrix entries).

Corollary 2.2.8 (Underlying white noise). The finite dimensional marginal distributions of

(Tr ϕ + n (A)) n≥1 (Tr ϕ - n (A)) n≥1 converge to the ones of a collection (G + n ) n≥1 ∪ (G - n ) n≥1 of independent centered complex Gaussian random variables satisfying E |G ± n | 2 = 2 ; E(G ± n ) 2 = ±2n(a/b) n .
Remark 2.2.9 (Ginibre matrices). In the particular case where A is a Ginibre matrix (i.e. with i.i.d. entries with law N C (0, N -1 )), we find back the result of Rider and Silverstein [START_REF] Rider | Silverstein Gaussian fluctuations for non-Hermitian random matrix ensembles[END_REF], noticing that in this case a = 0 and b = 1, so that a n ( f ) = 0 when n < 0 and E G ( f i )G ( f j ) = 0, and, for dm(z) the Lebesgue measure on C,

1 π |z|<1 ∂ ∂ z f i (z) ∂ ∂ z f j (z)dm(z) = 1 π |z|<1 - 1 4π 2 Circle(1+ε) Circle(1+ε) f i (ξ 1 ) (ξ 1 -z) 2 f j (ξ 2 ) (ξ 2 -z) 2 dξ 1 dξ 2 dm(z) = - 1 4π 2 Circle(1+ε) Circle(1+ε) f i (ξ 1 ) f j (ξ 2 ) ξ 2 1 ξ 2 2 1 π |z|<1 ∑ n,n ≥1 nn z ξ 1 n-1 z ξ 2 n -1 dm(z)dξ 1 dξ 2 = - 1 4π 2 Circle(1+ε) Circle(1+ε) f i (ξ 1 ) f j (ξ 2 ) ∑ n≥1 n ξ 1 ξ 2 -n-1 dξ 1 dξ 2 = ∑ n≥1 na n ( f i )a n ( f j )
Remark 2.2.10. If T = I, and the f k 's are polynomial, we find back a result of Diaconis and Shahshahani [39, Theorem 1] on the limit joint distribution of

Tr(U k ) n k=1
, where U is Haar-distributed. Actually, the Corollary 2.2.7 is slightly stronger, since the result holds for A = UT or A = UTV as long as T satisfies lim

N→∞ 1 N Tr(T 2 ) = lim N→∞ 1 N Tr(T -2 ) = 1, (2.2) 
in which case A may be seen as a multiplicative perturbation of U. T satisfies the condition (2.2) if for example all its diagonal coefficients are equal to 1 except o(N) of them (which stay away from 0 and ∞).

Corollary 2.2.11 (Bergman kernel and resolvant). The random process

Tr(z -A) -1 |z|<a ∪ Tr(z -A) -1 |z|>b
converges, for the finite-dimensional distributions, to a centered complex Gaussian process

(G z ) |z|<a ∪ (H z ) |z|>b
with covariance defined by

E G z G z = b 2 (b 2 -zz ) 2 , E H z H z = a 2 (a 2 -zz ) 2 , E G z H z = - 1 (z -z) 2 .
and by the fact that

∀θ ∈ R, e -iθ G z |z|<a ∪ e iθ H z |z|>b law = (G z ) |z|<a ∪ (H z ) |z|>b .
Remark 2.2.12. The kernel of the limit Gaussian analytic function, in the previous corollary, is, up to a constant factor, the Bergman kernel (see [START_REF] Bell | The Cauchy transform, potential theory, and conformal mapping[END_REF][START_REF] Peres | Zeros of the i.i.d. Gaussian power series: a confor-mally invariant determinantal process[END_REF]).

Corollary 2.2.13 (Characteristic polynomial out of the support). The random process

(log | det(z -A)| -Tr log T) |z|<a ∪ (log | det(z -A)| -N log |z|) |z|>b
converges, for the finite-dimensional distributions, to a centered real Gaussian process

(G z ) |z|<a ∪ (H z ) |z|>b
with covariance defined by

2 E G z G z = -log |1- zz a 2 | , 2 E H z H z = -log |1- b 2 zz | , 2 E G z H z = -log |1- z z | .
Remark 2.2.14. As z = z both tend to the same point of the boundary of S, the above covariances are equivalent tolog |zz |. In the light of the log-correlation approach to the Gaussian Free Field (see [START_REF] Duplantier | Log-correlated Gaussian fields: an overview[END_REF]), it supports the idea that on the limit support S, the characteristic polynomial of A should tend to an object related to the Gaussian Free Field, as for Ginibre matrices (see Corollary 2 of [START_REF] Rider | The noise in the circular law and the Gaussian free field[END_REF]). It would be interesting to see in what extent such a convergence depends on the hypotheses made on the precise distribution of the singular values of T.

In the case M j = √ Na j b * j , we immediately obtain the following corollary:

Corollary 2.2.15. For each N ≥ 1, let a 1 , b 1 , . . . , a k , b k be deterministic column vectors with size N such that for all i, j, as N → ∞,

a * i a j -→ κ a,a i j ∈ C ; b * i a j -→ κ b,a i j ∈ C ; b * i b j -→ κ b,b i j ∈ C
Let f 1 , . . . , f k be analytic on a neighborhood of S = Ring(a, b). Then, as N → ∞, the random vector

√ N b * j f j (A)a j -b * j a j a 0 ( f j ) k j=1 converges to a centered complex Gaussian vector (G ( f 1 ), . . . , G ( f k )) such that E G ( f i )G ( f j ) = ∑ n≥1 κ a,a ji κ b,b i j a n ( f i )a -n ( f j ) + a -n ( f i )a n ( f j ) E G ( f i )G ( f j ) = ∑ n≥1 κ b,a ji κ b,a i j a n ( f i )a n ( f j )b 2n + a -n ( f i )a -n ( f j )a -2n .
Remark 2.2.16 (Application to multiplicative finite rank perturbations of A). The previous corollary has several applications to the study of the outliers of spiked models related to the Single Ring Theorem. It allows for example to understand easily, using the technics developed in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], the impact of multiplicative finite rank perturbations on the spectrum of A (whereas only additive perturbations had been studied so far). For example, one can deduce from this corollary that for P a deterministic matrix with bounded operator norm and rank one, if one defines A := A(I + P) and  := A(I + AP), then

• the matrix A has no outlier (i.e. the support of its spectrum still converges to S),

• the matrix  has no outlier with modulus > b, but each eigenvalue λ of P such that |λ | > a -1 gives rise to an outlier of  located approximately at -λ -1 (besides, when the multiplicity of λ as an eigenvalue of P is 1, the fluctuations of the outlier around -λ -1 are Gaussian and with order N -1/2 ).

This phenomenon is illustrated by Figure 2.8.

To state the next corollary, let us first give the definition of Gaussian elliptic matrices.

Definition 2.2.17 (Gaussian elliptic matrices). Let ρ ∈ C such that |ρ| ≤ 1. A Gaussian elliptic matrix with parameter ρ is an N × N Gaussian centered complex random matrix X = (x i j ) satisfying :

(1) the random vectors x i j , x ji i≤ j are independent,

(2) ∀i, E |x ii | 2 = 1 and E x 2 ii = ρ, (3) 
∀i = j, E |x i j | 2 = 1, E x 2 i j = 0, E x i j x ji = ρ and E x i j x ji = 0.

This matrix ensemble was introduced by Girko in [START_REF]Girko The elliptic law[END_REF], and its name is due to the fact that its empirical eigenvalue distribution is the uniform distribution inside an ellipse. In the case where ρ = 0 (resp. ρ = 1), we get a Ginibre (resp. GUE) matrix.

Corollary 2.2.18. Let f be analytic on a neighborhood of S = Ring(a, b) such that

∑ n≥1 |a n ( f )| 2 b 2n + |a -n ( f )| 2 a -2n = 1.
Let k be a fixed positive integer and let I = I(N) be a (possibly depending on N) subset of {1, . . . , N} with cardinality k. Let us define the random k × k matrix

X N := √ N f (A) i j -a 0 ( f )δ i j (i, j)∈I×I .
Then, as N → ∞, the matrix X N converges in distribution to a k × k Gaussian elliptic matrix X with parameter ρ, As predicted, none of these matrices has any outlier outside the outer circle, nor do the two first ones inside the inner circle, but  has two outliers inside the inner circle, close to the predicted locations.

ρ := 2 ∑ n≥1 a n ( f )a -n ( f ).
Remark 2.2.19. a) In the case where f (z) = z, we find back the well-known result that any principal submatrix with fixed size of √ NU matrix converges to a Ginibre matrix (see e.g. [START_REF] D'aristotile | Newman Brownian motion and the classical groups. With Probability, Statisitica and their applications[END_REF][START_REF] Jiang | How many entries of a typical orthogonal matrix can be approximated by independent normals?[END_REF]). b) By Corollary 2.2.18, the statement of the first part of this remark happens to stay true, up to a constant multiplicative factor, if U is replaced by A = UTV or even by A n or by f (A) if f is analytic in a neighborhood of the disc B(0, b).

c) It also follows from what precedes that for any n ≥ 1, any sequence of principal submatrices with fixed size of N/2(U n + U -n ) and N/2(U n -U -n ) converge in distribution to a GUE matrix and i times a GUE matrix, both being independent.

Proof of Theorem 2.2.4

To avoid having to treat the cases a > 0 and a = 0 separately all along the proof, we shall suppose that a > 0 (the case a = 0 is more simple, as sums run only on n ≥ 0). Besides, note that by invariance of the Haar measure, the distribution of the random matrix A depends on T only through its singular values, so we shall suppose that T = diag(s 1 , . . . , s N ), with s i ≥ 0. At last, as the limit distributions, in Theorem 2.2.4, only depend on T only through the deterministic parameters a, b, up to a conditioning, one can suppose that T is deterministic (and that both T op and T -1 op are uniformly bounded, by Asssumptions 2.2.1 and 2.2.2).

Randomization of the M j 's

Let us define W := VU. The random matrix W is also Haar-distributed and independent from V. Besides, for each j, as A = UTV = V * WTV,

Tr f j (A)M j = Tr V * f j (WT)VM j = Tr f j (WT)VM j V *
As a consequence, we shall suppose that A = UT (instead of A = UTV) and that there is a Haar-distributed random unitary matrix V, independent of U, such that for each j, M j = V M j V * , with M 1 , . . . , M k a collection of deterministic matrices also satisfying (2.1).

Tails of the series

Let us first prove that Theorem 2.2.4 can be deduced from the particular case where there is n 0 such that for all n, we have

|n| > n 0 =⇒ ∀ j = 1, . . . , k, a n ( f j ) = 0.
Let ε ∈ (0, a/2) such that the domain of each f j contains Ring(a -2ε, b + 2ε).

Lemma 2.3.1.

There is a constant C independent of N such that for any n such that n 6 ≤ N and any j = 1, . . . , k, we have

E | Tr A n M j | 2 ≤ Cn 2 1 n≥0 (b + ε) 2n + 1 n≤0 (a -ε) 2n
Proof. With the notation of Section 2.3.1, let E V denote the expectation with respect to the randomness of V. For each n ∈ Z and each j, by Lemma 2.5.6, we have

E V | Tr A n M j | 2 = E V Tr A n V M j V * Tr(A * ) n V M * j V * = 1 N 2 -1 Tr A n Tr(A * ) n Tr M j Tr M * j + Tr A n (A * ) n Tr M j M * j - 1 N(N 2 -1) Tr A n Tr(A * ) n Tr M j M * j + Tr A * (A * ) n Tr M j Tr M * j ≤ 1 N 2 -1 | Tr A n | 2 Tr M j Tr M * j + Tr A n (A * ) n Tr M j M * j ≤ C | Tr A n | 2 + N -1 Tr A n (A * ) n ,
where C is a constant independent of N. Then the conclusion follows from Lemma 2.5.5.

Lemma 2.3.2. There are some constants C > 0 and c ∈ (0, 1) and a sequence E = E N of events such that

P(E ) -→ N→∞ 1
and such that for all N, all n 1 ≥ 0 and all j = 1, . . . , k, we have

E 1 E ∑ |n|>n 1 a n ( f j ) Tr(A n M j ) ≤ CN(1 -c) n 1 .
Proof. By [21, Lem. 3.2], we known that there is a constant C 1 such that the event

E = E N := {∀n ≥ 0, A n op ≤ C 1 (b + ε) n } ∩ {∀n ≤ 0, A n op ≤ C 1 (a -ε) n }
has probability tending to one. Then one concludes easily, noting first that by non-commutative Hölder inequalities (see [2, Eq. (A.13)]), we have

1 E | Tr(A n M j )| ≤        C 1 (b + ε) n N N -1 Tr M j M * j if n ≥ 0 C 1 (a -ε) n N N -1 Tr M j M * j if n ≤ 0
and secondly that there is c ∈ (0, 1) such that for each j, the sequences

a n ( f j ) (b + ε) n (1 -c) n n≥0 ; a n ( f j ) (a -ε) n (1 -c) -n n≤0 are bounded.
As a consequence of Lemmas 2.3.1 and 2.3.2, for any 0 < n 0 < n 1 ≤ N 1/6 and any j = 1, . . . , k,

E 1 E ∑ |n|>n 0 a n ( f j ) Tr(A n M j ) ≤ ∑ n 0 <|n|≤n 1 |a n ( f j )| P(E ) E | Tr(A n M j )| 2 + E 1 E ∑ |n|>n 1 a n ( f j ) Tr(A n M j ) ≤ ∑ n 0 <|n|≤n 1 C|a n ( f j )|n 2 1 n≥0 (b + ε) 2n + 1 n≤0 (a -ε) 2n +CN(1 -c) n 1
Choosing first n 1 = A log N for A a large enough constant and then using the fact that for any j = 1, . . . , k,

∑ n∈Z |a n ( f j )|n 2 1 n≥0 (b + ε) 2n + 1 n≤0 (a -ε) 2n < ∞,
we deduce that for any δ > 0, there is n 0 > 0 fixed such that for all N large enough,

k ∑ j=1 E 1 E ∑ |n|>n 0 a n ( f j ) Tr(A n M j ) ≤ δ , for E = E N as in Lemma 2.3.2.
Let us now suppose Theorem 2.2.4 to be proved in the particular case where there is n 0 such that for all n, we have

|n| > n 0 =⇒ ∀ j = 1, . . . , k, a n ( f j ) = 0
and let us prove it in the general case. Let X N denote the random vector of (2.2). We want to prove that as N → ∞, the distribution of X N tends to the one of G := (G ( f 1 ), . . . , G ( f k )), i.e. that for any function F : C k → C which is 1 Lipschitz and bounded by 1, we have

E F(X N ) -→ N→∞ E F(G ).
To do so, we first set

X N,n 0 := ∑ |n|<n 0 a n ( f j ) Tr A n M j -Tr(M j )a 0 ( f j ) k j=1
By hypothesis, for any fixed n 0 , X N,n 0 converges in distribution to a centered complex Gaussian vector

G n 0 := (G n 0 ( f 1 ), . . . , G n 0 ( f k )) such that E [G n 0 ( f i )G n 0 ( f j )] = E [G ( f i )G ( f j )] + η n 0 i j E G n 0 ( f i )G n 0 ( f j ) = E G ( f i )G ( f j ) + δ n 0 i j ,
where lim

n 0 →∞ ∑ 1≤i, j≤k |η n 0 i j | + |δ n 0 i j | = 0. Therefore, |E [F(X N ) -F(G )]| ≤ |E [F(X N ) -F(X N,n 0 )]| + |E [F(X N,n 0 ) -F(G n 0 )]| + |E [F(G n 0 ) -F(G )]| ≤ 2P(E c ) + E 1 E X N -X N,n 0 2 2 + |E [F(X N,n 0 ) -F(G n 0 )]| + E G n 0 -G 2 2
which can be as small as we want by (2.3) and the fact that X N,n 0

-→ G n 0 if G n 0 and G are coupled the right way. We suppose here that there is n 0 > 0 such that for all n > n 0 and all 1 ≤ j ≤ k, a n ( f j ) = 0. Without any loss of generality, we also assume that for all j, a 0 ( f j ) = 0. In this case, any linear combination of the Tr f j (A)M j 's can be written

G N := k ∑ j=1 ν j Tr f j (A)M j = ∑ |n|≤n 0 Tr A n N n where N n := k ∑ j=1 ν j a n ( f j )M j .
Written this way, we notice that to prove that the limit distribution of G N is Gaussian, we simply have to prove that the random vector

(Tr A n N n ) -n 0 ≤n≤n 0
converges in distribution to a Gaussian vector. We will prove it by computing the limit of the joint moments. Before going any further, recall that by the preliminary randomization of the N j 's from section 2.3.1, we suppose that A = UT (instead of A = UTV) and that there is a Haar-distributed random unitary matrix V, independent of U, such that for each j, N j = V N j V * , with N j a deterministic matrix.

We shall proceed in three steps:

a) First, we prove the asymptotic independence of the random vectors

Tr A n N n , Tr A -n N -n n≥1
by the factorization of the joint moments. More precisely, we prove, thanks to Corollary 2.5.4, that for any

(p n ) n 0 n=1 , (q n ) n 0 n=1 , (r n ) n 0 n=1 , (s n ) n 0 n=1 , E ∏ 1≤n≤n 0 Tr A n N n p n Tr A n N n q n Tr A -n N -n r n Tr A -n N -n s n = ∏ 1≤n≤n 0 E Tr A n N n p n Tr A n N n q n Tr A -n N -n r n Tr A -n N -n s n + o(1)
b) Then, we prove for any fixed n, the random complex vector

(Tr A n N n , Tr A -n N -n )
converges in distribution to a centered complex Gaussian vector thanks to the criterion provided by the Lemma 2.5.7. This criterion consists in proving that the joint moments, at the large N limit, satisfy the same induction relation as the moments of a Gaussian distribution.

c) It will follow from a) and b) that when all f j 's are polynomials in z and z -1 , the random vector of (2.2) converges in distribution to a centered Gaussian vector. To conclude the proof, the last step will be to prove that the limit covariance is the one given in Theorem 2.2.4.

In the proofs of a) and b), we shall need to compute expectations with respect to the randomness of the Haar-distributed matrix U. More precisely, we shall need to compute sums of expectations with respect of U resulting from the expansion of products of traces involving powers of A (such as Tr A n N n ). To do so, we will use the Weingarten calculus (see Proposition 2.5.1) and shall always proceed in the following way: first, we use (2.22) to state that all the terms of the sum are null except those for which the left (resp. right) indices involved in u are obtained by permuting the left (resp. right) ones involved in u. Then, we claim, by Remark 2.5.2, that among the remaining terms, we can neglect all those whose indices are not pairwise distinct. At last, once all the remaining terms are, up to multiplicative constant, equal to Wg(σ ) for some permutation σ , we neglect all those for which σ = id (see Remark 2.5.3) and the summation finally gets easy to compute. We introduce here a notation that we shall use several times :

I = n := (i 1 , . . . , i n ) ∈ {1, . . . , N} n ; i 1 , . . . , i n are pairwise distinct (2.3)
(this set implicitly depends on N).

Proof of b)

In this part, as n is fixed, we shall denote N n (resp.

N -n ) by M = [M i j ] (resp. K = [K i j ]
). For any non-negative integers p, q, r, s, wet set Tr A n M and Tr A -n K are asymptotically two circular Gaussian complex variables satisfying conditions (2.27) and (2.31)

m p,q,r,s := E Tr A n M p Tr A n M q Tr A -n K r Tr A -n K s and
We simply have to show that for any integer p ≥ 1

E Tr A n M 2p = p! b 2n ((n -1)|τ M | 2 + α M ) p + o(1) , (2.4) E Tr A -n K 2p = p! a -2n ((n -1)|τ K | 2 + α K ) p + o(1) , (2.5) E Tr A n M Tr A -n K p = p! (n -1)τ M τ K + β M,K p + o(1) . (2.6)
We shall prove it by induction on p. So first, we show the previous relation for p = 1. Recall that we assume that M = V MV * and K = V KV * , where M and K are deterministic, so that, using the Lemma 2.5.6, we have (denoting again by E V the expectation with respect to the randomness of V),

E V Tr A n V MV * 2 = 1 N Tr A n (A * ) n 1 N Tr M M * - 1 N Tr M 2 + Tr A n 2 1 N Tr M 2 + O 1 N E V Tr A -n V KV * 2 = 1 N Tr A -n (A * ) -n 1 N Tr K K * - 1 N Tr K 2 + Tr A -n 2 1 N Tr K 2 + O 1 N E V Tr A n V MV Tr A -n V KV * = 1 N Tr M K - 1 N Tr M 1 N Tr K + Tr A n Tr A -n 1 N Tr M 1 N Tr K + O 1 N .
This is asymptotically determined by the limits of

E Tr A n 2 , E Tr A -n 2 , E Tr A n Tr A -n , N -1 E Tr A n (A * ) n , N -1 E Tr A -n (A * ) -n . First, we compute E Tr A n 2 for n ≥ 1.
We write

E Tr A n 2 = ∑ 1≤i 1 ,...,i n ≤N 1≤ j 1 ,..., j n ≤N E [u i 1 i 2 • • • u i n i 1 u j 1 j 2 • • • u j n j 1 ] s i 1 s j 1 • • • s i n s j n . (2.7)
From (2.22), we have a condition on the i k 's and the j k 's for a non-vanishing expectation, which is the multiset 9 equality

{i 1 , . . . , i n } m = { j 1 , . . . , j n } m , (2.8) 
The first consequence of (2.8) is that the sum is in fact over O(N n ) terms which all are at most O(N -n ), which means that any sub-summation over o(N n ) terms might be neglected. So from now on, we shall only sum over the n-tuples (i 1 , . . . , i n ) ∈ I = n (recall notation (2.3)). Then (2.7) becomes

E Tr A n 2 = ∑ (i 1 ,...,i n )∈I = n s 2 i 1 • • • s 2 i n ∑ σ ∈S n E u i 1 i 2 • • • u i n i 1 u i σ (1) i σ (2) • • • u i σ (n) i σ (1) + o(1) Let c ∈ S n be the cycle (1 2 • • • n). From (2.22) (see Remark 2.5.
2), as long as the i k 's are pairwise distinct, one can write

E u i 1 i 2 • • • u i n i 1 u i σ (1) i σ (2) • • • u i σ (n) i σ (1) = Wg σ c -1 σ -1 c
and from (2.23) and Remark 2.5.3, we know that the non-negligible terms are the ones such that σ c -1 σ -1 c = id, i.e. σ c = cσ , which means that σ must be a power of c and so, only n permutations σ contribute to the non negligible terms. At last, as Moeb(id) = 1, we have

E Tr A n 2 = ∑ (i 1 ,...,i n )∈I = n s 2 i 1 • • • s 2 i n × nN -n 1 + o(1) + o(1) = n 1 N N ∑ i=1 s 2 i n + o(1) = nb 2n + o(1) .
In the same way, one can get

E Tr A -n 2 = na -2n + o(1) , E Tr A n Tr A -n = n + o(1) .
Let us now consider N -1 E Tr A n (A * ) n for n ≥ 1. We have

1 N E Tr A n (A * ) n = N -1 ∑ 1≤i 0 ,i 1 ,...,i n ≤N 1≤ j 0 , j 1 ,..., j n ≤N i 0 = j 0 , i n = j n E u i 0 i 1 • • • u i n-1 i n u j 0 j 1 • • • u j n-1 j n s i 1 s j 1 • • • s i n s j n (2.9)
As previously, we know that by (2.22), that for the expectation to be non zero, we must have the multiset equality

{i 0 , . . . , i n } m = { j 0 , . . . , j n } m , (2.10) 
The first consequence of (2.10) is that the sum is in fact over O N n+1 terms which are all at most O N -n-1 , so that any sub-summation over o N n+1 terms might be neglected. As previously, we shall sum over the pairwise distinct indices I = n+1 (see notation (2.3)). Hence (2.9) becomes

N -1 E Tr A n (A * ) n = N -1 ∑ (i 0 ,i 1 ,...,i n )∈I = n+1 s 2 i 1 • • • s 2 i n ∑ σ ∈S n+1 σ (0)=0 σ (n)=n E u i 0 i 1 • • • u i n-1 i n u i σ (0) i σ (1) • • • u i σ (n-1) i σ (n) Let c ∈ S n+1 be the cycle (0 1 2 • • • n). From (2.22) (see Remark 2.5.2) one can write E u i 0 i 1 • • • u i n-1 i n u i σ (0) i σ (1) • • • u i σ (n-1) i σ (n) = Wg σ c -1 σ -1 c .
As previously, σ must be a power of c for the asymptotic contribution to be nonnegligible. However, this time, we impose σ (0) = 0 and σ (n) = n, so that the only possible choice is σ = id which means that only one term contributes this time. At last,

1 N E Tr A n (A * ) n = b 2n + o(1) ,
The same way, one can get

1 N E Tr A -n (A * ) -n = a -2n + o(1) .
This concludes the first step of the induction.

In the second step, we have to prove the following induction relation: for any p ≥ 2,

E Tr A n M 2p = p E Tr A n M 2 E Tr A n M 2(p-1) + o(1) (2.11) E Tr A -n K 2p = p E Tr A -n K 2 E Tr A -n K 2(p-1) + o(1)
(2.12)

E(Tr A n M Tr A -n K) p = p E Tr A n M Tr A -n K E Tr A n M Tr A -n K p-1 +o(1) (2.13)
Let us first consider E Tr A n M 2p . We shall use the following notation

Tr A n M = ∑ i 0 ,i 1 ,...,i n u i 0 i 1 s i 1 • • • u i n-1 i n s i n M i n i 0 =: ∑ i u i s i M i n i 0 ,
where the bold letter i denotes the (n + 1)-tuple (i 0 , . . . , i n ) and where we set

u i := u i 0 i 1 • • • u i n-1 i n ; s i := s i 1 • • • s i n .
Hence,

E Tr A n M 2p = ∑ i 1 ,...,i p j 1 ,...,j p E u i 1 • • • u i p u j 1 • • • u j p s i 1 M i 1 n i 1 0 s j 1 M j 1 n j 1 0 • • • s i p M i p n i p 0 s j p M j p n j p 0 (2.14)
As usual, we know we can sum over the i k 's satisfying that (i 1 , . . . , i p ) (the p(n+1)tuple obtained by concatenation of the i's) has pairwise distinct entries and such that we have the set equality:

i λ µ , 1 ≤ λ ≤ p, 0 ≤ µ ≤ n = j λ µ , 1 ≤ λ ≤ p, 0 ≤ µ ≤ n . (2.15)
Then, in order to have Wg(id), we must match each of the (n + 1)-tuples i 1 , . . . , i p with one of the (n + 1)-tuples j 1 , . . . , j p , i.e. that for all 1 ≤ λ ≤ p, there is a 1 ≤ λ ≤ p such that we have the set equality

{i λ } =: i λ 0 , i λ 1 , . . . , i λ n = j λ 0 , j λ 1 , . . . , j λ n := {j λ }.
We rewrite (2.14) by summing according the possible choice to match {i

1 } = i 1 0 , i 1 1 , . . . , i 1 n E Tr A n M 2p = p ∑ λ =1 ∑ (i 1 ,...,i p )∈I = p(n+1) (j 1 ,...,j p )∈I = p(n+1) i 1 ↔j λ E u i 1 • • • u i p u j 1 • • • u j p s i 1 M i 1 n i 1 0 s j 1 M j 1 n j 1 0 • • • s i p M i p n i p 0 s j p M j p n j p 0 + o(1) ,
where i 1 ↔ j λ stands for the set equality i 1 0 , i 1 1 , . . . , i 1 n = j λ 0 , j λ 1 , . . . , j λ n . Then, we know that the set of indices i 1 0 , i 1 1 , . . . , i 1 n is disjoint from the others, so that by Corollary 2.5.4,

E u i 1 • • • u i p u j 1 • • • u j p = E u i 1 u j λ E u i 2 • • • u i p u j 1 • • • u j λ -1 u j λ +1 • • • u j p
and up to a proper relabeling of the indices, all the choices lead to the same value of the expectation, so that

E Tr A n M 2p = p ∑ i 1 ∈I = n+1 j 1 ∈I = n+1 E u i 1 u j 1 s i 1 M i 1 n ,i 1 0 s j 1 M j 1 n , j 1 0 ∑ (i 2 ,...,i p )∈I = (p-1)(n+1) (j 2 ,...,j p )∈I = (p-1)(n+1) E u i 2 • • • u j p s i 2 M i 2 n i 2 0 s j 2 M j 2 n j 2 0 • • • s i p M i p n i p 0 s j p M j p n j p 0 + o(1) = p E Tr(A n M) 2 E Tr(A n M) 2(p-1) + o(1) .
This proves (2.11). In the same way, we prove (2.12) and (2.13), and thus conclude the proof of the induction.

Remark 2.3.3. In the last computation, we split the expectation and so we separated the summation implying that

I = p(n+1) = I = n+1 × I = (p-1)(n+1)
which is obviously inaccurate. Nevertheless, we easily have that

Card I = p(n+1) = Card I = n+1 × I = (p-1)(n+1) 1 + o(1) ,
which means that this inaccuracy is actually contained in the o(1).

To conclude the proof of b), we have to prove that Tr A n M and Tr A -n K satisfy Condition (2.30) at the large N limit.

Tr A n M and Tr A -n K satisfy Condition (2.30) at the large N limit

We apply the same idea as previously, but for a slightly more complicated expectation. Let p, q, r, s be positive integers and such that pq = rs. We denote joint moments by m p,q,r,s :

m p,q,r,s := E Tr A n M p Tr A n M q Tr A -n K r Tr A -n K s , (2.16) 
and as

Tr A n M = ∑ i 0 ,i 1 ,...,i n u i 0 i 1 s i 1 • • • u i n-1 i n s i n M i n i 0 = ∑ i u i s i M i n i 0 Tr A -n K = ∑ i n ,i n-1 ,...,i 0 u i n-1 i n s -1 i n • • • u i 0 i 1 s i 1 K i 0 i n = ∑ i u i s -1 i K i 0 i n ,
we rewrite (2.16) as follow

E ∑ i 1 ,...,i p j 1 ,...,j q k 1 ,...,k r l 1 ,...,l s ∏ 1≤λ ≤p 1≤µ≤q 1≤ν≤r 1≤θ ≤s s i λ s j µ s k ν s l θ M i λ n ,i λ 0 M j µ n , j µ 0 K k ν 0 ,k µ n K θ 0 , θ n u i λ u l θ u j µ u k ν (2.17) (recall that the s i = s i 1 • • • s i n for i = (i 0 , . . . , i n )).
As previously, we deduce from Proposition 2.5.1 that for the non vanishing expectations, we must have the following multiset equality

i λ µ , 1 ≤ λ ≤ p, 0 ≤ µ ≤ n m λ µ , 1 ≤ λ ≤ s, 0 ≤ µ ≤ n m = j λ µ , 1 ≤ λ ≤ q, 0 ≤ µ ≤ n m k λ µ , 1 ≤ λ ≤ r, 0 ≤ µ ≤ n m ,(2.18)
from which we deduce that we can restrict the summation to the tuples such that

(i 1 , . . . , i p , l 1 , . . . l s ) ∈ I = (p+s)(n+1)
and that, for the non negligible terms (i.e. those which lead to Wg(id)), we must match each of the (n + 1)-tuples involved in u (the i's and the l's) with one of those involved in u (the j's and the k's). For example, we sum according to the choice the "partner" of i 1 .

m p,q,r,s = q ∑ α=1 E ∑ (i,l)∈I = (j,k)∈I = i 1 ↔j α ∏ 1≤λ ≤p 1≤µ≤q 1≤ν≤r 1≤θ ≤s s i λ s j µ s k ν s l θ M i λ n ,i λ 0 M j µ n , j µ 0 K k ν 0 ,k µ n K θ 0 , θ n u i λ u l θ u j µ u k ν + r ∑ β =1 E ∑ (i,l)∈I = (j,k)∈I = i 1 ↔k β ∏ 1≤λ ≤p 1≤µ≤q 1≤ν≤r 1≤θ ≤s s i λ s j µ s k ν s l θ M i λ n ,i λ 0 M j µ n , j µ 0 K k ν 0 ,k µ n K θ 0 , θ n u i λ u l θ u j µ u k ν + o(1) .
where to simplify, (i, l) stands for the (p + s)(n + 1)-tuple obtained by the concatenation of the i λ 's and the l µ 's, and I = implicitly means I = (p+s)(n+1) . As previously, we use the Corollary 2.5.4 to split the expectations. Hence, one easily gets

m p,q,r,s = q E Tr A n M 2 m p-1,q-1,r,s + r E Tr A n M Tr A -n K m p-1,q,r-1,s + o(1) .
To get the other relations, we just sum according to the choice of the partner of j 1 (resp. k 1 and l 1 ).

Proof of a): asymptotic factorisation of joint moments

The proof relies mostly on Corollary 2.5.4. We first expand the expectation

E ∏ 1≤n≤n 0 Tr A n N n p n Tr A n N n q n Tr A -n N -n r n Tr A -n N -n s n . (2.19) Let M (n)
i j denote the (i, j)-th entry of N n and recall that for i = (i 0 , . . . , i n ), we set

u i := u i 0 i 1 • • • u i n-1 i n ; s i := s i 1 • • • s i n .
We get

Tr A n N n = ∑ i 0 ,i 1 ,...,i n u i 0 i 1 s i 1 • • • u i n-1 i n s i n M (n) i n i 0 = ∑ i u i s i M (n) i n i 0 Tr A -n N -n = ∑ i n ,i n-1 ,...,i 0 u i n 1 i n s -1 i n • • • u i 0 i 1 s i 1 M (-n) i 0 i n = ∑ i u i s -1 i M (-n) i 0 i n , so that E ∏ 1≤n≤n 0 ∑ i n,1 ,...,i n,pn j n,1 ,...,j n,qn k n,1 ,...,k n,rn l n,1 ,...,l n,sn ∏ 1≤λ ≤p n 1≤µ≤q n 1≤ν≤r n 1≤θ ≤s n s i n,λ s j n,µ s k n,ν s l n,θ M (n) i n,λ n i n,λ 0 M (n) j n,µ n j n,µ 0 M (-n) k n,ν 0 k n,µ n M (-n) n,θ 0 n,θ n 
u i n,λ u l n,θ u j n,µ u k n,ν (2.20) 
where we use bold letters such as i n,λ to denote (n + 1)-tuples (i n,λ 0 , i n,λ 1 , . . . , i n,λ n ). We can use the same ideas as in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]Lemma 5.8] to state that the non-negligible terms of the sum must satisfy that for all n, there are as much (n + 1)-tuples involved in u as in u, which means that p n + s n = q n + r n , and that we must have the multiset equalities

n 0 n=1 i n,λ µ , 1 ≤ λ ≤ p n , 0 ≤ µ ≤ n m n,λ µ , 1 ≤ λ ≤ s n , 0 ≤ µ ≤ n m = n 0 n=1 j n,λ µ , 1 ≤ λ ≤ q n , 0 ≤ µ ≤ n m k n,λ µ , 1 ≤ λ ≤ r n , 0 ≤ µ ≤ n m . (2.21)
We deduce that there are a O N ∑ n n(p n +s n ) non zero terms in (2.20) and we can easily show that any subsum over a o N ∑ n n(p n +s n ) is negligible so that for now on we shall sum over the non pairwise indices. Then, we know that we can neglect any expectation E U which won't lead to Wg(id) (see (2.23)) so that (2.21) becomes 

∀1 ≤ n ≤ n 0 , i n,λ µ , 1 ≤ λ ≤ p n , 0 ≤ µ ≤ n n,λ µ , 1 ≤ λ ≤ s n , 0 ≤ µ ≤ n = j n,λ µ , 1 ≤ λ ≤ q n , 0 ≤ µ ≤ n k n,λ µ , 1 ≤ λ ≤ r n , 0 ≤ µ ≤ n .

It follows that the set of indices involved in the expansion of the Tr

A n N n , Tr A -n N -n , Tr A n N n , Tr A -n N -n , is

Proof of c): computation of the limit covariance

Let f , g be polynomials in z and z -1 and let M, N be N × N deterministic matrices such that, as N → ∞,

1 N Tr M -→ τ ; 1 N Tr N -→ τ ; 1 N Tr MN * -→ α ; 1 N Tr MN -→ β .
We need to check that the limits of both sequences

E(Tr f (A)M -a 0 ( f ) Tr M)(Tr g(A)N -a 0 (g) Tr N) and E(Tr f (A)M -a 0 ( f ) Tr M)(Tr g(A)N -a 0 (g) Tr N)
are the ones given in the statement of Theorem 2.2.4. Note that it suffices to compute the limits for f = g and M = N. Indeed, using the classical polarization identities for M and N, first for general polynomials f , g, we reduce the problem to the case M = N. Then, we use polarization identities again to reduce the problem to f = g.

Also, recall that since A

= e iθ A for any deterministic θ , we know that for any positive distinct integers p, q, we have

E Tr A p M Tr A -q M = E Tr A p MTr A q M = 0.
It follows, using (2.4), (2.5) and (2.6), that

E |Tr f (A)M -a 0 ( f ) Tr M| 2 = ∑ m,n∈Z =0 a m ( f )a n ( f ) E Tr A m MTr A n M = ∑ n≥1 |a n ( f )| 2 E Tr A n M 2 + |a -n ( f )| 2 E Tr A -n M 2 -→ ∑ n≥1 |a n ( f )| 2 b 2n + |a -n ( f )| 2 a -2n (n -1)|τ| 2 + α , E (Tr f (A)M -a 0 ( f ) Tr M) 2 = ∑ m,n∈Z =0 a m ( f )a n ( f ) E Tr A m M Tr A n M = ∑ n≥1 2a n ( f )a -n ( f ) E Tr A n M Tr A -n M -→ 2 ∑ n≥1 a n ( f )a -n ( f ) (n -1)τ 2 + β ,
which concludes the proof.

Proof of Corollary 2.2.13

It is easy to see that for any z / ∈ S, we have

log | det(z -A)| = Tr log T + Re A N z , with A N z := Tr ∑ n≤-1 A n nz n if |z| < a. N log |z| + Re B N z , with B N z := -Tr ∑ n≥1 A n nz n if |z| > b,
(in the first case, we used the fact that | det A| = det T). Then, by Theorem 2.2.4,

A N z |z|<a ∪ B N z |z|>b
converges, for the finite-dimensional distributions, to a centered complex Gaussian process

(A z ) |z|<a ∪ (B z ) |z|>b
with covariance defined by

E A z A z = 0, E A z A z = -log(1 - zz a 2 ), E B z B z = 0, E B z B z = -log(1 - b 2 zz ), E A z B z = -log(1 - z z ), E A z B z = 0,
where log denotes the canonical complex log on B(1, 1). Then, one concludes by noting that for A, B ∈ C, 2 Re A Re B = Re(AB + AB).

Appendix

Weingarten calculus on the unitary group

Here comes a main result about integration with respect to the Haar measure on unitary group, (see [START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]Cor. 2.4 and Cor. 2.7]). To simplify, for any k-tuples i = (i 1 , . . . , i k ) and j = ( j 1 , . . . , j k ), we set

u i,j := u i 1 j 1 u i 2 j 2 • • • u i k j k Proposition 2.5.1.
Let k be a positive integer and U = (u i j ) a N ×N Haar-distributed matrix. Let i = (i 1 , . . . , i k ), i = (i 1 , . . . , i k ), j = ( j 1 , . . . , j k ) and j = ( j 1 , . . . , j k ) be four k-tuples of {1, . . . , N}. Then

E u i,j u i ,j = ∑ σ ,τ∈S k δ i 1 ,i σ (1) . . . δ i k ,i σ (k) δ j 1 , j τ(1) . . . δ j k , j τ(k) Wg(τσ -1 ), (2.22) 
where Wg is a function called the Weingarten function. Moreover, for σ ∈ S k , the asymptotical behavior of Wg(σ ) is given by

N k+|σ | Wg(σ ) = Moeb(σ ) + O 1 N 2 , (2.23) 
where |σ | denotes the minimal number of factors necessary to write σ as a product of transpositions, and Moeb denotes a function called the Möbius function.

Remark 2.5.2. One should notice that if all k-tuples (i 1 , . . . , i k ), ( j 1 , . . . , j k ), (i 1 , . . . , i k ), and ( j 1 , . . . , j k ) have pairwise distinct entries, then (2.22) becomes simpler because in this case there is at most one non-zero term in the sum.

Remark 2.5.3. The permutation σ for which Wg(σ ) will have the largest order is the only one satisfying |σ | = 0, i.e. σ = id. Also, Moeb(id) = 1 (see [START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]).

Here comes an useful corollary which permits to simplify many computations.

Corollary 2.5.4. Let i = (i 1 , . . . , i p ), j = ( j 1 , . . . , j p ), k = (k 1 , . . . , k q ), l = ( 1 , . . . , q ), i = (i 1 , . . . , i p ), j = ( j 1 , . . . , j p ), k = (k 1 , . . . , k q ), l = ( 1 , . . . , q ) be tuples such the multisets defined by i and i (resp. by j and j , by k and k , by l and l ) are equal and such that {i 1 , . . . , i p } ∩ {k 1 , . . . , k q } = { j 1 , . . . , j p } ∩ {l 1 , . . . , l q } = / 0.

Then

E u i,j u k,l u i ,j u k ,l = E u i,j u i ,j E u k,l u k ,l 1 + O 1 N 2 .
Proof. To prove this result, we first recall the exact expression of the Möbius function : for any permutation σ with cycle decomposition

C 1 C 2 • • •C r , Moeb(σ ) = r ∏ i=1 (-1) |C i |-1 Cat |C i |-1 ,
where Cat k is the k-th Catalan number,

1 k + 1 2k k
. Then, obviously, if σ and τ are two permutations with disjoint supports, then

Moeb(σ • τ) = Moeb(σ ) Moeb(τ) and σ • τ = |σ | + |τ|.
Thus

N p+q+|σ •τ| Wg(σ • τ) = Moeb(σ • τ) + O 1 N 2 = Moeb(σ ) Moeb(τ) + O 1 N 2 = n p+|σ | Wg(σ )N q+|τ| Wg(τ) 1 + O 1 N 2 So that Wg(σ • τ) = Wg(σ ) Wg(τ) 1 + O 1 N 2 .
One can easily conclude.

We also need the following lemmas in the paper.

Lemma 2.5.5. Let A = UT with U Haar-distributed on the unitary group and T deterministic. Let ε > 0. There is a finite constant C depending only on ε (in particular, independent of N and of T) such that for all positive integer n such that n 6 < (2ε)N, we have We deduce that

E Tr A n (A n ) * ) ≤ CNn 2 m 2 + nm 2 ∞ N n and E[| Tr A n | 2 ] ≤ C m 2 + nm 2 ∞ N n ,
E V ⊗ V * ⊗ V ⊗ V * = 1 N 2 -1 ∑ i, j,k, E j,k ⊗ E k, j ⊗ E i, ⊗ E ,i + E i, j ⊗ E k, ⊗ E ,k ⊗ E j,i - 1 N(N 2 -1) ∑ i, j,k, E j,k ⊗ E , j ⊗ E i, ⊗ E k,i + E i, j ⊗ E j,k ⊗ E k, ⊗ E ,i , (2.25) 
where the E r,s denote the elementary matrices. Indeed, the linear morphism Ψ from M N (C) ⊗4 to the space of 4-linear forms on M N (C) defined by

Ψ(M ⊗ N ⊗ P ⊗ Q)(A, B, C, D) := Tr AMBNCPDQ
is an isomorphism, and (2.24) proves that the left and right hand terms of (2.25) have the same image by Ψ. Then, applying

M ⊗ N ⊗ P ⊗ Q -→ Tr AMBN Tr CPDQ
on both sides of (2.25), we deduce the lemma.

Moments of a Gaussian vector with values in C 2

The following lemma allows to prove that a complex random vector ( X, Ỹ ) is Gaussian without having to compute all its joint moments, by only proving an induction relation.

Lemma 2.5.7. Let (X,Y ) be a Gaussian random vector with values in C 2 whose distribution is characterized by

E X = E X 2 = EY = EY 2 = 0, (2.26) 
and

E |X| 2 = σ X ; E |Y | 2 = σ Y ; E XY = σ XY ; E XY = 0. (2.27)
Then, the moments

m p,q,r,s := E X p X q Y r Y s (2.28) satisfy p -q = r -s =⇒ m p,q,r,s = 0, (2.29) 
m p,q,r,s =           
qσ X m p-1,q-1,r,s + rσ XY m p-1,q,r-1,s pσ X m p-1,q-1,r,s + sσ XY m p,q-1,r,s-1 sσ Y m p,q,r-1,s-1 + pσ XY m p-1,q,r-1,s rσ Y m p,q,r-1,s-1 + qσ XY m p,q-1,r,s-1

(2.30) and m p,0,p,0 = E(XY

) p = p!σ p XY . (2.31) 
Conversely, if ( X, Ỹ ) is a random vector with values in C 2 such that both X and Ỹ are Gaussian and have joint moments mp,q,r,s satisfying (2.26), (2.27), (2.29), (2.30) and (2.31), then ( X, Ỹ ) is Gaussian.

Proof. First, one easily obtains (2.29) by noticing that for any θ ∈ R, (e iθ X, e -iθ Y ) law

= (X,Y ).

To prove the remaining, we consider (X,Y ) as a real 4-tuple (ℜ(X), ℑ(X), ℜ(Y ), ℑ(Y )) =: (x 1 , x 2 , x 3 , x 4 ) with covariance matrix

Γ := 1 2       σ X 0 ℜ(σ XY ) ℑ(σ XY ) 0 σ X ℑ(σ XY ) -ℜ(σ XY ) ℜ(σ XY ) ℑ(σ XY ) σ Y 0 ℑ(σ XY ) -ℜ(σ XY ) 0 σ Y       .
Its Fourier transform is given, for t = (t 1 ,t 2 ,t 3 ,t 4 ), by

Φ(t) := E exp i(t 1 x 1 + t 2 x 2 + t 3 x 3 + t 4 x 4 ) = exp - 1 4 σ X (t 2 1 + t 2 2 ) + σ Y (t 2 3 + t 2 4 ) - 1 2 ℜ(σ XY ) t 1 t 3 -t 2 t 4 - 1 2 ℑ(σ XY ) t 2 t 3 + t 1 t 4
We define the differential operators

∂ X = ∂ 1 + i∂ 2 ∂ X = ∂ 1 -i∂ 2 ∂ Y = ∂ 3 + i∂ 4 ∂ Y = ∂ 3 -i∂ 4 so that E X p X q Y r Y s = (-i) p+q+r+s ∂ p X ∂ q X ∂ r Y ∂ s Y Φ(t) t=0 (2.32) 
and

∂ X Φ(t) = - 1 2 σ X (t 1 + it 2 ) + σ XY (t 3 -it 4 ) Φ(t) ∂ X Φ(t) = - 1 2 σ X (t 1 -it 2 ) + σ XY (t 3 + it 4 ) Φ(t) ∂ Y Φ(t) = - 1 2 σ Y (t 3 + it 4 ) + σ XY (t 1 -it 2 ) Φ(t) ∂ Y Φ(t) = - 1 2 σ Y (t 3 -it 4 ) + σ XY (t 1 + it 2 ) Φ(t)
We easily deduce that

∂ p X ∂ q X ∂ r Y ∂ s Y Φ(t) t=0 = -qσ X ∂ p-1 X ∂ q-1 X ∂ r Y ∂ s Y Φ(t) t=0 -rσ XY ∂ p-1 X ∂ q X ∂ r-1 Y ∂ s Y Φ(t) t=0 so that E X p X q Y r Y s = qσ X E X p-1 X q-1 Y r Y s + rσ XY E X p-1 X q Y r-1 Y s .
This proves (2.30). To prove the last point, we simply write

E(XY ) p = (-1) p ∂ p X ∂ p Y Φ(t) t=0 ; ∂ p X Φ(t) = - σ X (t 1 + it 2 ) + σ XY (t 3 -it 4 ) 2 p Φ(t).
Then, using Leibniz formula and noticing that for all k ≤ p,

∂ k Y - σ X (t 1 + it 2 ) + σ XY (t 3 -it 4 ) 2 p t=0 = 0 if k < p p!(σ XY ) p if k = p ,
one can easily conclude. Conversely, let ( X, Ỹ ) be a random vector with values in C 2 such that both X and Ỹ are Gaussian and have joint moments mp,q,r,s satisfying (2.26), (2.27), (2.29), (2.30) and (2.31). Let N denote the set of non-negative integers and let us define the sets K := (p, q, r, s) ∈ N 4 ; pq = rs , H 0 := (p, q, r, s) ∈ N 4 ; (r +s+|p-q|) (p+q+|r -s|) (p+r +|q-s|) (q+s+|p-r|) = 0 and, for k ≥ 1,

H k := (p, q, r, s) ∈ N 4 ; (p -1, q -1, r, s) or (p -1, q, r -1, s) or (p, q -1, r, s -1) or (p, q, r -1, s -1) ∈ H k-1
Then by hypothesis, the joint moments function mp,q,r,s coincides with m p,q,r,s on K ∪ H 0 . Besides, by (2.30), if mp,q,r,s coincides with m p,q,r,s on H k-1 , then mp,q,r,s coincides with m p,q,r,s on H k . As

N 4 = K ∪ k≥0 H k ,
we deduce that mp,q,r,s coincides with m p,q,r,s on N 4 , wich implies that ( X, Ỹ

) law = (X,Y ).
similar to a block diagonal matrix with diagonal blocks of the type

R p (θ ) :=        θ 1 (0) . . . . . . (0) . . . 1 θ        , so that A ∼ diag R p 1 (θ 1
), . . . , R p q (θ q ) , this last matrix being called the Jordan Canonical Form of A [53, Chapter 3]. We show, up to some hypothesis, that for any eigenvalue θ of A, if we denote by p 1 , . . . , p 1

β 1 times > p 2 , . . . , p 2 β 2 times > • • • > p α , . . . , p α β α times
the sizes of the blocks associated to θ in the Jordan Canonical Form of A and introduce the (possibly empty) set

S θ := ξ ∈ C, G µ (ξ ) = 1 θ where G µ (z) := 1 z -x µ(dx)
is the Cauchy transform of the measure µ, then there are exactly β 1 p 1 + • • • + β α p α outliers of H + A tending to each element of S θ . We also prove that for each element ξ in S θ , there are exactly β 1 p 1 outliers tending to ξ at rate N -1/(2p 1 ) , β 2 p 2 outliers tending to ξ at rate N -1/(2p 2 ) , etc... (see Figure 3.10). Furthermore, the limit joint distribution of the fluctuations is explicit, not necessarily Gaussian, and might show correlations even between outliers at a macroscopic distance with each other. This phenomenon of correlations between the fluctuations of two outliers with distinct limits has already been proved for non-Gaussian Wigner matrices when A is Hermitian (see [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF]), while in our case, Gaussian Wigner matrices can have such correlated outliers: indeed, the correlations that we bring to light here are due to the fact that the eigenspaces of A are not necessarily orthogonal or that one single spike generates several outliers. Indeed, we observe that the outliers may outnumber the rank of A. This had already been noticed in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF]Remark 2.11] when the support of the limit spectral measure of H has some "holes" or in the different model of [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF], where the authors study the case where A is Hermitian but with full rank and is invariant in distribution by unitary conjugation. Here, the phenomenon can be proved to occur even when the support of the limit spectral measure of H is connected. At last, if we apply our results in the particular case where A is Hermitian, we also see that two outliers at a macroscopic distance with each other are correlated if they both are generated by the same spike (which can occur only if the limit support is disconnected) and are independent otherwise (see Figure 3.11). From this point of view, this completes the work of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF], where fluctuations of outliers lying in "holes" of the limit support had not been studied. The fact to consider a non-Hermitian deformation on a Hermitian random matrix has already been studied in theoretical physics (see [START_REF] Fyodorov | Statistics of S-matrix poles in few-channel chaotic scattering: Crossover from isolated to overlapping resonances[END_REF][START_REF] Fyodorov | Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time reversal invariance[END_REF][START_REF] Fyodorov | Khoruzhenko Systematic Analytical Approach to Correlation Functions of Resonances in Quantum Chaotic Scattering[END_REF][START_REF] Fyodorov | Sommers Random matrices close to Hermitian or unitary: overview of methods and results[END_REF]) in the particular case where H is a GOE/GUE matrix and A is a non negative Hermitian matrix times i (the square root of -1). They proved a weaker version of Theorem 3.2.3 in this specific case but didn't study the fluctuations. The proofs of this paper rely essentially on the ideas of the paper [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] about outliers in the Single Ring Theorem and on the results proved in [START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF][START_REF] Pizzo | Soshnikov Fluctuations of matrix entries of regular functions of Wigner matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]. More precisely, the study of the fluctuations reproduce the outlines of the proofs of [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] as long as the model fulfills some conditions. Thanks to [START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF][START_REF] Pizzo | Soshnikov Fluctuations of matrix entries of regular functions of Wigner matrices[END_REF], we show that these conditions are satisfied for Wigner matrices. At last, using [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] and the Weingarten calculus, we show the same for Hermitian matrices invariant in distribution by unitary conjugation. In the appendix, as a tool for the outliers study, we prove a result on the fluctuations of the entries of such matrices.

General Results

At first, we formulate the results in general settings and we shall give, in the next section, examples of random matrices on which these results apply.

Convergence of the outliers Set up and assumptions

For all N ≥ 1, let H N be an Hermitian random N × N matrix whose empirical spectral measure, as N goes to infinity, converges weakly in probability to a compactly supported measure µ

µ N := 1 N N ∑ i=1 δ λ i (H) -→ µ. (3.1) 
We shall suppose that µ is non trivial in the sense that µ is not a single Dirac measure. Also, we suppose that H N does not possess any natural outliers, i.e.

Assumption 3.2.1. As N goes to infinity, with probability tending to one, sup

λ ∈Spec(H N ) dist(λ , supp(µ)) -→ 0.
For all N ≥ 1, let A N be an N × N random matrix independent from H N (which does not satisfies necessarily A * N = A N ) whose rank is bounded by an integer r (independent from N). We know that we can write

A N := U A 0 0 0 0 U * (3.2)
where U is an N × N unitary matrix and A 0 is 2r × 2r matrix. We notice that A N only depends on the 2r-first columns of U so that, we shall write

A N := U 2r A 0 U * 2r ,
where the N × 2r matrix U 2r designates the 2r-first columns of U. We shall assume that A 0 is deterministic and independent from N. We shall denote by θ 1 , . . . , θ j the distinct non-zero eigenvalues of A 0 and k 1 , . . . , k j their respective multiplicity 10(note that ∑ j i=1 k i ≤ r). We consider the additive perturbation

H N := H N + A N , (3.3) 
We set

G µ (z) := 1 z -x µ(dx). (3.4) 
the Cauchy transform of the measure µ. We introduce, for all i ∈ {1, . . . , j}, the finite, possibly empty, set

S θ i := ξ ∈ C \ supp(µ), G µ (ξ ) = 1 θ i , and 
m i := Card S θ i (3.5)
We make the following assumption Assumption 3.2.2. For any δ > 0, as N goes to infinity, we have sup dist(z,supp(µ))>δ

U * 2r (zI -H N ) -1 U 2r -G µ (z)I op (P) -→ 0.
Result Theorem 3.2.3 (Convergence of the outliers). For θ 1 , . . . , θ j , k 1 , . . . , k j , S θ 1 , . . . , S θ j and m 1 , . . . , m j as defined above, with probability tending to one, H N := H N + A N possesses exactly j ∑ i=1 k i m i eigenvalues at a macroscopic distance of supp µ (outliers). More precisely, for all small enough δ > 0, for all large enough N, for all i ∈ {1, . . . , j}, if we set

S θ i = {ξ i,1 , . . . , ξ i,m i }, there are m i eigenvalues λ i,1 , . . . , λ i,m i of H N in {z, dist(z, supp(µ)) > δ } satisfying λ i,n = ξ i,n + o(1)
, for all n ∈ {1, . . . , m i }, after a proper labeling.

Remark 3.2.4. If all the S θ i 's are empty, there is possibly no outlier at all. This condition is the analogous of the phase transition condition in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF]Theorem 2.1] in the case where the θ i 's are real, which is if

1 θ i ∈ lim x→a -G µ (x), lim x→b + G µ (x)
where a (resp. b) designates the infimum (resp. the supremum) of the support of µ, then, θ i does not generate any outlier. In our case, if |θ i | is large enough, S θ i is necessarily non-empty 11 , which means that a strong enough perturbation always creates outliers.

Remark 3.2.5. We notice that the outliers can outnumber the rank of A. This phenomenon was already observed in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] in the case where the support of the limit spectral distribution has a disconnected support (see also [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF]). In our case, the phenomenon occurs even for connected support (see Figure 3.9(b)). Figure 3.9: Spectrums of two Hermitian matrices with the same limit bulk but different limit spectral densities on this bulk, perturbed by the same matrix: both do not have the same number of outliers (the blue crosses "+").

Fluctuations of the outliers

To study the fluctuations, one needs to understand the limit distribution of

√ N U * 2r (zI -H N ) -1 U 2r -G µ (z)I op . (3.6) 
In the particular case where H N is a Wigner matrix, we know from [START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF] that this quantity is tight but does not necessarily converge. Hence, we shall need additional assumptions.

Set up and assumptions

As A N is not Hermitian, we need to introduce the Jordan Canonical Form (JCF) to describe the fluctuations. More precisely, we shall consider the JCF of A 0 which does not depend on N. We know that, in a proper basis, A 0 is a direct sum of Jordan blocks, i.e. blocks of the form

R p (θ ) =        θ 1 (0) . . . . . . (0) . . . 1 θ        , p × p matrix, θ ∈ C, p ≥ 1 (3.7)
Let us denote by θ 1 , . . . , θ q the distinct eigenvalues of A 0 such that S θ = / 0 (see (3.5) for the definition of S θ ), and for each i = 1, . . . , q, we introduce a positive integer α i , some positive integers p i,1 > • • • > p i,α i corresponding to the distinct sizes of the blocks relative to the eigenvalue θ i and β i,1 , . . . , β i,α i such that for all j, R p i, j (θ i ) appears β i, j times, so that, for a certain 2r × 2r non singular matrix Q, we have:

J = Q -1 A 0 Q = Â q i=1 α i j=1     R p i, j (θ i ) . . . R p i, j (θ i )     β i, j blocks (3.8)
where ⊕ is defined, for square block matrices, by M ⊕ N := M 0 0 N and  is a matrix such that its eigenvalues θ are such that S θ = / 0 or null. The asymptotic orders of the fluctuations of the eigenvalues of H N + A N depend on the sizes p i, j of the blocks. Actually, for each θ i and each ξ i,n ∈ S θ i = {ξ i,1 , . . . , ξ i,m i }, we know, by Theorem 3.2.3, there are ∑ α i j=1 p i j × β i, j eigenvalues λ of H N + A N which tend to ξ i,n : we shall write them with a ξ i,n on the top left corner, as follows

ξ i,n λ .
Theorem 3.2.10 below will state that for each block with size p i, j corresponding to θ i in the JCF of A 0 , there are p i, j eigenvalues (we shall write them with p i, j on the bottom left corner : ξ i,n p i, j λ ) whose convergence rate will be N -1/(2p i, j ) . As there are β i, j blocks of size p i, j , there are actually p i, j × β i, j eigenvalues tending to ξ i,n with convergence rate N -1/(2p i, j ) (we shall write them ξ i,n p i, j λ s,t with s ∈ {1, . . . , p i, j } and t ∈ {1, . . . , β i, j }). It would be convenient to denote by Λ i, j,n the vector with size p i, j × β i, j defined by

Λ i, j,n := N 1/(2p i, j ) • ξ i,n p i, j λ s,t -ξ i,n 1≤s≤p i, j 1≤t≤β i, j
.

(3.9)

In addition, we make an assumption on the convergence of (3.6).

Assumption 3.2.6.

(1) The vector

√ NU * 2r (ξ i,n -H N ) -1 - 1 θ i U 2r 1≤ i≤q 1≤n≤m i converges in distri-
bution and none of its entries tends to zero.

(2) For all k ≥ 1, all i ∈ {1, . . . , q} and all n ∈ {1, . . . , m i },

√ NU * 2r ξ i,n -H N -(k+1) - µ(dx) (ξ i,n -x) k+1 U 2r is tight.
or (0') For all i ∈ {1, . . . , q} and all n ∈ {1, . . . , m i }, as N goes to infinity,

√ N 1 N Tr (ξ i,n -H N ) -1 - 1 θ i -→ 0.
(1') The vector

√ NU * 2r (ξ i,n -H N ) -1 - 1 N Tr ξ i,n -H N -1 U 2r 1≤ i≤q 1≤n≤m i con-
verges in distribution and none of its entries tends to zero.

(2') For all k ≥ 1 and for all i ∈ {1, . . . , q},

√ NU * 2r ξ i,n -H N -(k+1) - 1 N Tr ξ i,n -H N -(k+1) U 2r is tight.
As in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], we define now the family of random matrices that we shall use to characterize the limit distribution of the Λ i, j,n 's. For each i = 1, . . . , q, let I(θ i ) (resp. J(θ i )) denote the set, with cardinality ∑ α i j=1 β i, j , of indices in {1, . . . , r} corresponding to the first (resp. last) columns of the blocks R p i, j (θ i ) (1 ≤ j ≤ α i ) in (3.8). Remark 3.2.7. Note that the columns of Q (resp. of (Q -1 ) * ) whose index belongs to I(θ i ) (resp. J(θ i )) are eigenvectors of A 0 (resp. of A * 0 ) associated to θ i (resp. θ i ). See [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]Remark 2.7].

Now, let

m θ i ,n k, 1≤i≤q 1≤n≤m i (k, )∈J(θ i )×I(θ i ) (3.10)
be the multivariate random variable defined as the limit joint-distribution of

√ Ne * k Q -1 U * 2r (ξ i,n -H N ) -1 - 1 θ i U 2r Qe 1≤i≤q 1≤n≤m i (k, )∈J(θ i )×I(θ i ) (d) -→ jointly m θ i ,n k, 1≤i≤q 1≤n≤m i (k, )∈J(θ i )×I(θ i )
(3.11) (which does exist by Assumption 3.2.6) and where e 1 , . . . , e r are the column vectors of the canonical basis of C r ).

For each i, j, let K(i, j) (resp. K(i, j) -) be the set, with cardinality β i, j (resp.

∑ j-1 j =1 β i, j
), of indices in J(θ i ) corresponding to a block of the type R p i, j (θ i ) (resp. to a block of the type R p i, j (θ i ) for j < j). In the same way, let L(i, j) (resp. L(i, j) -) be the set, with the same cardinality as K(i, j) (resp. as K(i, j) -), of indices in I(θ i ) corresponding to a block of the type R p i, j (θ i ) (resp. to a block of the type R p i, j (θ i ) for j < j). Note that K(i, j) -and L(i, j) -are empty if j = 1. Let us define the random matrices for each n ∈ {1, . . . , m i }

M θ i ,I j,n := [m θ i ,n k, ] k∈K(i, j) - ∈L(i, j) - M θ i ,II j,n := [m θ i ,n k, ] k∈K(i, j) - ∈L(i, j) (3.12) M θ i ,III j,n := [m θ i ,n k, ] k∈K(i, j) ∈L(i, j) - M θ i ,IV j,n := [m θ i ,n k, ] k∈K(i, j) ∈L(i, j)
and then let us define the β i, j × β i, j matrix M θ i j,n as

M θ i j,n := θ i M θ i ,IV j,n -M θ i ,III j,n M θ i ,I j,n -1 M θ i ,II j,n (3.13) 
Remark 3.2.8. It follows from the fact that the matrix Q is invertible, that M θ i ,I j,n is a.s. invertible and so is M θ i j,n . Remark 3.2.9. In the particular case where A 0 is Hermitian (which means that Q -1 = Q * and the θ i 's are real), then the matrces M θ i j,n are also Hermitian. Now, we can formulate the result on the fluctuations.

Result

Theorem 3.2.10.

1. As N goes to infinity, the random vector

(Λ i, j,n ) 1≤i≤q
1≤ j≤α i 1≤n≤m i defined at (3.9) converges to the distribution of a random vector

Λ ∞ i, j,n 1≤i≤q 1≤ j≤α i 1≤n≤m i
with joint distribution defined by the fact that for each 1 ≤ i ≤ q, 1 ≤ j ≤ α i and 1 ≤ n ≤ m i , Λ ∞ i, j,n is the collection of the p i, j th roots of the eigenvalues of some random matrix M θ i j,n .

2. The distributions of the random matrices M θ i j,n are absolutely continuous with respect to the Lebesgue measure and the random vector Λ ∞ i, j,n 1≤i≤q

1≤ j≤α i has no deterministic coordinate.

Theorem 3.2.10 is illustrated in Figure 3.10 with an example. We clearly see appearing regular polygons. Figure 3.10: Spectrum of a Wigner matrix of size N = 5000 with perturbation matrix A = diag (R 5 (1.5 + 2i), R 3 (-2 + 1.5i), 0, . . . , 0). We see the blue crosses "+" (outliers) forming respectively a regular pentagon and an equilateral triangle around the red dots "•" (their limit). We also see a significant difference between the two rates of convergence, N -1/10 and N -1/6 .

Applications

In this section, we give examples of random matrices which satisfy the assumptions of Theorem 3.2.3 and Theorem 3.2.10.

Wigner matrices

Let H N = 1 √ N W N be a symmetric/Hermitian Wigner matrix with independent entries up to the symmetry. More precisely, we assume that Assumption 3.3.1. Real symmetric case :

• W N i, j , 1 ≤ i ≤ j ≤ N, are independent,
• The (W N ) i, j 's for i = j (resp. i = j), are identically distributed,

• E(W N ) 1,1 = E(W N ) 1,2 = 0, E(W N ) 2 1,1 = 2σ 2 , E(W N ) 2 1,2 = σ 2 , • c 3 := E |(W N ) 1,1 | 3 < ∞, m 5 := E |(W N ) 1,2 | 5 < ∞.
Hermitian case :

• Re W N i, j , Im W N i, j , 1 ≤ i < j ≤ N, W N i,i , 1 ≤ i ≤ N, are independent.
• The (Re W N ) i, j 's, (Im W N ) i, j 's for i = j (resp. (W N ) i,i 's), are identically distributed,

• E(W N ) 1,1 = E(W N ) 1,2 = 0, E(W N ) 2 1,1 = σ 2 , E(Re W N ) 2 1,2 = σ 2 2 , • c 3 := E |(W N ) 1,1 | 3 < ∞, m 5 := E |(W N ) 1,2 | 5 < ∞.
In this case, we have the following version of Theorem 3.2.3

Theorem 3.3.2 (Convergence of the outliers for Wigner matrices).

Let θ 1 , . . . , θ j be the eigenvalues of A N such that |θ i | > σ . Then, with probability tending to one, for all large enough N, there are exactly j eigenvalues λ 1 , . . . , λ j of H N := 1 √ N W N + A N at a macroscopic distance of [-2σ , 2σ ] (outliers). More precisely, for all small enough δ > 0, for all large enough N, for all i ∈ {1, . . . , j},

λ i = θ i + σ 2 θ i + o(1) ,
after a proper labeling.

Proof. We just need to check that Assumptions 3.2.1 and 3.2.2 are satisfied.

-As long as the entries of W N have a finite fourth moment, we know (see [START_REF] Bai | Silverstein Spectral analysis of large dimensional random matrices[END_REF]Theorem 5.2]) that Assumption 3.2.1 is satisfied.

-Now, we need to show that for any δ > 0, as N goes to infinity, sup dist(z,supp(µ))>δ

U * 2r (zI -H N ) -1 U 2r -G µ sc (z)I op (P) -→ 0.
Since we are dealing with 2r × 2r sized matrices, it suffices to prove that for any unite vectors u,v of C N , for any δ > 0 and any η > 0, as N goes to infinity,

P sup dist(z,supp(µ))>δ u * (zI -H N ) -1 -G µ sc (z)I v > η -→ 0.
Moreover, as both G µ sc (z) and (zI -H N ) -1 op goes to 0 when |z| goes to infinity, we know there is a large enough constant M such that we just need to prove that

P sup dist(z,supp(µ))>δ |z| ≤ M u * (zI -H N ) -1 -G µ sc (z)I v > η -→ 0.
Then, for any η > 0, the compact set K = {z, dist(z, supp(µ)) > δ and |z| ≤ M} admits a η -net, which is a finite set {z 1 , . . . , z p } of K such that ∀z ∈ K, ∃i ∈ {1, . . . , p}, |zz i | < η , so that, using the uniform boundedness of the derivative of G µ sc (z) and u * (z -H N ) -1 v on K, for a small enough η , we just need to prove that

P p max i=1 u * (z i I -H N ) -1 -G µ sc (z i )I v > η/2 -→ 0.
Then, we properly decompose each function x → 1 z i -x as a sum of a smooth compactly supported function and one that vanishes on a neighborhood of [-2σ , 2σ ] and conclude using [79, (ii) Theorem 1.6] Moreover, in the Wigner case, we have

G µ sc (z) = z - √ z 2 -4σ 2 2σ 2 ,
where √ z 2 -4σ 2 is the branch of the square root with branch cut [-2σ , 2σ ] so that for any z outside [-2σ , 2σ ], the equation G µ sc (z) = 1 θ possesses one solution if and only if |θ | > σ and the unique solution is

θ + σ 2 θ ,
which means that in the Wigner case, the outliers cannot outnumber the rank of the perturbation, and the phase transition condition is simply : |θ | > σ . Actually in [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF] (see Remark 3.2), the authors explain that if µ is -infinitely divisible, then the sets S θ i 's have at most one element, which means that for Wigner matrices, it is not possible to observe the phenomenon of "outliers outnumber the rank of A".

Remark 3.3.3. One can find an other proof of Theorem 3.3.2 in [?] as a particular case of the Theorem 2.4 (see [?, Remark 2.5]) due to the fact that a Wigner matrix can be seen as a particular Elliptic matrix. Nevertheless, the authors of [?] don't deal with the matter of the fluctuations.

To study the fluctuations of the outliers in the Wigner case, we must make an additional assumption on the perturbation A N . Assumption 3.3.4. The matrix A N has only a finite number (independent of N) of entries which are non-zero. Remark 3.3.5. Assumption 3.3.4 is equivalent to suppose that U 2r (the 2r-first columns of U), possesses only a finite number K (independent of N) of non-zero rows. Actually, this assumption is the analogous "the eigenvectors of A don't spread out" hypothesis corresponding to the "case a)" in [?].

Remark 3.3.6. If U is Haar-distributed and independent from W, we can avoid making Assumption 3.3.4 (see section 3.3.2). One can also slightly weaken Assumption 3.3.4 by assuming that the 2r-first rows of U correspond to the N first coordinates of a collection of non-random vectors u 1 , . . . , u 2r in 2 (N) (see [ , defined by (3.10), is

e * k Q -1 U * K,2r ϒ(ξ i )U K,2r Qe 1≤i≤q (k, )∈J(θ i )×I(θ i )
, where ξ i := θ i + σ 2 θ i and where ϒ(z) is a K × K random field defined by

ϒ(z) := (G µ sc (z)) 2 W (K) + Y(z) (3.14)
where W (K) is the K × K upper-left corner submatrix of a matrix W N such that

W N (d)
= W N and Y(z) is a K ×K Gaussian random field defined by [80, (2.7),(2.8),(2.9),(2.10),(2.11),(2.12)] in the real case and [80, (2.42),(2.43),(2.44),(2.45),(2.46),(2.47)] in the complex case.

Remark 3.3.8. This provides an example of non universal fluctuations, in the sense that the m θ i k, 's are not necessarily Gaussian. However, when H N is a GOE or GUE matrix, the m θ i k, 's are centered Gaussian variables such that

E m θ i k, m θ i k , = ψ sc (ξ i , ξ i ) e * k Q -1 (Q -1 ) * e k e * Q * Qe + δ k, δ k , , (3.15) 
E m θ i k, m θ i k , = ψ sc (ξ i , ξ i ) e * k Q -1 (Q -1 ) * e k e * Q * Qe k + δ k, δ k , ,
for the GOE, and

E m θ i k, m θ i k , = ψ sc (ξ i , ξ i ) δ k, δ k , , (3.16) 
E m θ i k, m θ i k , = ψ sc (ξ i , ξ i ) e * k Q -1 (Q -1 ) * e k e * Q * Q e ,
for the GUE, where

ψ sc (z, w) := G 2 µ sc (z)G 2 µ sc (w) σ 2 + σ 4 ϕ sc (z, w) , ϕ sc (z, w) := 1 z -x 1 w -x µ sc (dx).
We notice that, if Q -1 = Q * , then we might observe correlations between the fluctuations of outliers at a macroscopic distance with each other. This phenomenon has already been observed in [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF] for non-Gaussian Wigner matrices whereas, here, the phenomenon may still occur for GUE matrices. Actually, (3.15) and (3.16) can be simplified due to the fact

σ 2 G 2 µ sc (z) -zG µ sc (z) + 1 = 0, so that ϕ sc (z, w) = - G µ sc (z) -G µ sc (w) z -w satisfies σ 2 G µ sc (z)G µ sc (w)ϕ sc (z, w) = ϕ sc (z, w) -G µ sc (z)G µ sc (w). (3.17) 
Hence,

G 2 µ sc (ξ i )G 2 µ sc (ξ i ) σ 2 + σ 4 ϕ sc (ξ i , ξ i ) = σ 2 G µ sc (ξ i )G µ sc (ξ i ) G µ sc (ξ i )G µ sc (ξ i ) + σ 2 G µ sc (ξ i )G µ sc (ξ i )ϕ sc (ξ i , ξ i ) = σ 2 G µ sc (ξ i )G µ sc (ξ i )ϕ sc (ξ i , ξ i ) = ϕ sc (ξ i , ξ i ) -G µ sc (ξ i )G µ sc (ξ i ) = Φ sc (ξ i , ξ i ).
and we fall back on the expression of the variance for the UCI model (see section 3.3.2), which is expected since the GUE belongs to the UCI model.

Proof. We show that the assumptions 3.3.1 and 3.3.4 imply Assumption 3.2.6, more precisely (1) and (2). For (1), we simply use [80, Theorem 2.1/2.5] to show that √ NU * 2r (z -H N ) -1 -G µ sc (z)I U 2r , converges weakly (as it is done in [START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF]). The limit distribution is also given by [80, Theorem 2.1/2.5]. Then for (2), we know by [80, (i) of Theorem 2.3/2.7] (respectively [80, (iii) of Proposition 2.1]) that, for all k ≥ 1, the diagonal entries (respectively the offdiagonal entries) of the matrix

√ N (z -H N ) -k-1 -(z -x) -k-1 µ sc (dx)I converge in distribution so that √ NU * 2r (z -H N ) -k-1 -(z -x) -k-1 µ sc (dx)I U 2r
is tight.

Hermitian matrices whose distribution is invariant by unitary conjugation

Let H N be an Hermitian matrix such that for any unitary N × N matrix U N , we have

U N H N U * N (d) = H N . (3.18) 
H N can be written

H N = U N D N U * N where D N is diagonal, U N is
Haar-distributed and U N and D N are independent. We also assume that H N satisfies (3.1) and Assumption 3.2.1. We shall call such matrices UCI matrices (for Unitary Conjugation Invariance). In this case, as we can we can write

H N = H N + A N = U N (D N + U * N A N U N ) U * N ,
so that, without any loss of generality, we can simply assume that H N is a diagonal matrix and A N is a matrix of the form

A N = U 2r A 0 U * 2r
where U 2r is the 2r-first columns of an Haar-distributed matrix independent from H N .

Theorem 3.3.9 (Convergence of the outliers for UCI matrices).

If H N is an UCI matrix, then Theorem 3.2.3 holds.

Remark 3.3.10. Unlike the Wigner case, Theorem 3.2.3 does not need to be reformulated. In this case, we do observe the phenomenon of the outliers outnumbering the rank of A N .

Proof. We just need to check that Assumption 3.2.2 is satisfied. To do so, one can apply a slightly modified version of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]Lemma 2.2], where we replace all the "dist(z, [a, b]) > δ " by "dist(z, supp(µ)) > δ ", which does not change the ideas of the proof.

For the fluctuations, we need to assume that for all i ∈ {1, . . . , q} and all n ∈ {1, . . . , m i }, as N goes to infinity, 

√ N 1 N Tr (ξ i,n -H N ) -1 - 1 θ i -→ 0. ( 3 
S θ i ) ≥ ε, • dist(K, supp(µ)) ≥ ε.
Then, with a probability tending to one,

inf z∈K det I -(z -H N ) -1 A N > 0.
If these lemmas are true, the end of the proof goes as follow. We know that, with a probability tending to one, there is ε > 0, such that • there is a constant M > 0 such that H N + A N has no eigenvalues in the area {z, |z| > M},

• Spec(H N ) ⊂ {z, dist(z, supp(µ)) < ε},

We set

S := j i=1
S θ i and we define

S ε := j i=1 ξ ∈S θ i {z, |z -ξ | < ε} (3.22)
with the convention that S ε = / 0 if S = / 0. Up to a smaller choice of ε, we can suppose that none of the disk centered in the element of the S θ i 's and of radius ε intersects each other nor intersect {z, dist(z, supp(µ)) < ε}. Then, using Lemma 3.4.2, with

K := {z, |z| ≤ M} \ (S ε ∪ {z, dist(z, supp(µ)) < ε}) ,
we deduce all the eigenvalues of H N are contained in S ε ∪ {z, dist(z, supp(µ)) < ε}. Indeed, if z is an eigenvalue of H N such that dist(z, supp(µ)) > ε, z must be a zero of f . Moreover, for each i ∈ {1, . . . , j} and each ξ ∈ S θ i , we know that from Lemma we deduce by Rouché Theorem (see [11, p. 131]) that f and f 0 , for all large enough N, have the same number of zeros inside the domain {z, |zξ | < ε}, for each ξ in the S θ i 's. Now, we just need to prove the two previous lemmas.

Let A 1 , . . . , A q be q matrices of the form

A i = A 0,i 0 0 0
where the A 0,i 's are K × K matrices independent from N where K is a fixed integer.

Let U be a Haar-distributed matrix. Then, as N goes to infinity,

E q ∏ t=1 √ N Tr U * T t UA t -→        ∑ σ ∈M(q) Tr σ A i q i=1 q/2 ∏ t=1 τ σ (2t-1),σ (2t) if q is even. 0 if q is odd.
Indeed, once we suppose Lemma 3.4.9 satisfied, we need to compute for all p, q

E √ N Tr U * TUA p √ N Tr U * TUA q = E √ N Tr U * TUA p √ N Tr U * T * UA * q ,
in order to apply Lemma 3.4.10. According to Lemma 3.4.9, for T t ≡ T and A t ≡ A, we have

E √ N Tr U * TUA q -→ Card M(q) Tr(A 2 ) q/2 τ q/2 if q is even, 0 if q is odd.
(remind that Card M(q) = (q -1)(q -3) • • • 3) which means that the limit distribution of X already satisfies (3.30) and (3.31). Let p ≥ 1 and q ≥ 2 be two fixed integers such that p + q is even, then, using notations from (3.26), we know thanks to Lemma 3.4.9 that ).

E √ N Tr U * TUA p √ N Tr U * T * UA * q = 1 N p+q 2 ∑ σ ∈M(p+q)
We rewrite the right side of (3.28) summing according to the value of σ (1).

∑ σ ∈M(p+q)

Tr σ A t , where

( A 1 , . . . , A p+q-2 ) = (A, . . . , A p-2 , A * , . . . , A * q ) and ( A 1 , . . . , A p+q-2 ) = (A, . . . , A p-1 , A * , . . . , A * q-1
).

At last, one easily deduces that

E √ N Tr U * TUA p √ N Tr U * T * UA * q = 1 N Tr T 2 Tr A 2 (p -1) E √ N Tr U * TUA p-2 √ N Tr U * T * UA * q + 1 N Tr TT * Tr AA * q E √ N Tr U * TUA p-1 √ N Tr U * T * UA * q-1 + o(1)
and so √ N Tr(U * TAU) satisfies (3.32) which means according to Lemma 3.4.10 that its limit distribution is Gaussian. At last, to compute to covariance of the G i, j 's, one can simply use [START_REF] Benaych-Georges | Rochet Fluctuations for analytic test functions in the Single Ring Theorem[END_REF]Lemma A.6].

Proof of Theorem 3.4.8. This time, we shall use Lemma 3.4.11 to show that for any A 1 , . . . , A r , N × N deterministic matrix of the form The following lemma allows to prove that a random variable is Gaussian if and only if its moments satisfy an induction relation.

A m = A m,p 0 0 0 , A m,p = a m i, j p i, j=1 ∈ M p (C), the vector 1 N Tr U * T 1 UA 1 , . . . , 1 
Lemma 3.4.10. Let Z be a complex Gaussian variable such that

E [Z] = 0, E Z 2 = τ 2 , E |Z| 2 = σ 2 . (3.30)
Then, for all p ≥ 1

E Z 2p = p!!τ 2p and E Z 2p+1 = 0, where p!! := (2p)! 2 p p! (3.31)
also, for all p, q ≥ 0,

E Z p+2 Z q+2 = σ 2 (q + 2) E Z p+1 Z q+1 + τ 2 (p + 1) E Z p Z q+2 (3.32) = σ 2 (p + 2) E Z p+1 Z q+1 + τ 2 (q + 1) E Z p+2 Z q .
Conversely, any complex random variable Z satisfying (3.30),(3.31) and (3.32) is a complex Gaussian variable.

Proof. First, recall that if Z = X 1 + iX 2 is a complex random Gaussian such that

E [Z] = 0, E Z 2 = τ 2 , E |Z| 2 = σ 2 ,
then, its Fourier transform is given, for t = t 1 + it 2 ∈ C, by

Φ Z (t) := E exp (i(X 1 t 1 + X 2 t 2 )) = exp - 1 4 (t 2 1 + t 2 2 )σ 2 + (t 2 1 -t 2 2 ) Re(τ 2 ) + 2t 1 t 2 Im(τ 2 )
We define the differential operators

∂ t := ∂ 1 + i∂ 2 ; ∂ t := ∂ 1 -i∂ 2 (3.33) so that E Z p Z q = (-i) p+q ∂ p t ∂ q t Φ(t) t=0 . (3.34) 
One can easily compute

∂ t Φ(t) = - 1 2 tσ 2 + tτ 2 Φ(t) ; ∂ t Φ(t) = - 1 2 tσ 2 + tτ 2 Φ(t)
therefore, for any p ≥ 0, q ≥ 0,

∂ p+2 t Φ(t) = ∂ p+1 t - 1 2 tσ 2 + tτ 2 Φ(t) = - 1 2 tσ 2 ∂ p+1 t Φ(t) - 1 2 τ 2 ∂ p+1 t tΦ(t) = - 1 2 tσ 2 ∂ p+1 t Φ(t) - 1 2 τ 2 t∂ p+1 t Φ(t) -τ 2 (p + 1)∂ p t Φ(t)
and

∂ p+2 t ∂ q+2 t Φ(t) = ∂ p+1 t ∂ q+2 t - 1 2 tσ 2 + tτ 2 Φ(t) = - 1 2 σ 2 ∂ q+2 t t∂ p+1 t Φ(t) - 1 2 τ 2 ∂ p+1 t t∂ q+2 t Φ(t) = -σ 2 t 2 ∂ p+1 t ∂ q+2 t Φ(t) + (q + 2)∂ p+1 t ∂ q+1 t Φ(t) -τ 2 t 2 ∂ p+1 t ∂ q+2 t Φ(t) + (p + 1)∂ p t ∂ q+2 t Φ(t) , hence, E Z p+2 = τ 2 (p + 1) E [Z p ] , E Z p+2 Z q+2 = σ 2 (q + 2) E Z p+1 Z q+1 + τ 2 (p + 1) E Z p Z q+2
and the same way,

E Z p+2 = τ 2 (p + 1) E Z p , E Z p+2 Z q+2 = σ 2 (p + 2) E Z p+1 Z q+1 + τ 2 (q + 1) E Z p+2 Z q .
Conversely, one can easily prove by induction that any complex random variable Z satisfying (3.30),(3.31) and (3.32) has all its moments uniquely determined and since the complex Gaussian variable also satisfies (3.30),(3.31) and (3.32), one can conclude.

More generally, one can show the following lemma Lemma 3.4.11. Let (X 1 , . . . , X r ) be a centered complex Gaussian vector. Then, for all non negative integers p 1 , q 1 , . . . , p r , q r , for all i ∈ {1, . . . , r}

if p i ≥ 1, E X p 1 1 X 1 q 1 • • • X p r r X r q r = (p i -1) E X 2 i E X p 1 1 X 1 q 1 • • • X p i -2 i X i q i • • • X p r r X r q r + r ∑ j=1 j =i p j E [X i X j ] E X p 1 1 X 1 q 1 • • • X p i -1 i • • • X p j -1 j • • • X p r r X r q r (3.35) + r ∑ j=1 q j E X i X j E X p 1 1 X 1 q 1 • • • X p i -1 i • • • X q j -1 j • • • X p r r X r q r
A k 's; and that both give rise to independent asymptotic fluctuations (see Theorem 4.2.5 and Corollary 4.2.6). These results extend an already proved partial result in this direction, Theorem 6.4 of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] (see also Theorem 1.2 of [START_REF] Rains | Normal limit theorems for symmetric random matrices Probab[END_REF] in the particular case of real symmetric matrices A k ). The main advantages of Theorems 4.2.2 and 4.2.5 over the results of [START_REF] Rains | Normal limit theorems for symmetric random matrices Probab[END_REF] and [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF] is that they do not require the matrices M to be well approximated by matrices with finitely many non zero entries and that they give the asymptotic independence mentioned above. Besides, the technical hypotheses needed here are weaker than in the existing literature. Our proofs are based on the so-called Weingarten calculus, an integration method for the Haar measure on the unitary group developed by Collins and Śniady in [START_REF] Collins | Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability[END_REF][START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]. All these results belong to a long list of results begun in 1906 with the theorem by Borel [START_REF] Borel | Sur les principes de la théorie cinétique des gaz[END_REF] stating that any coordinate of a uniformly distributed random vector of the sphere of R N with radius √ N is asymptotically standard Gaussian as N → ∞, and continued e.g. with the papers [START_REF] Rains | Normal limit theorems for symmetric random matrices Probab[END_REF][START_REF] D'aristotile | Newman Brownian motion and the classical groups. With Probability, Statisitica and their applications[END_REF][START_REF] Jiang | How many entries of a typical orthogonal matrix can be approximated by independent normals?[END_REF][START_REF] Meckes | Linear functions on the classical matrix groups[END_REF][START_REF] Chatterjee | Multivariate normal approximation using exchangeable pairs[END_REF][START_REF] Collins | Borel theorems for random matrices from the classical compact symmetric spaces[END_REF][START_REF]Benaych-Georges Central limit theorems for the Brownian motion on large unitary groups[END_REF][START_REF] Cébron | Fluctuations of Brownian Motions on GL N[END_REF][START_REF] Benaych-Georges | Rochet Fluctuations for analytic test functions in the Single Ring Theorem[END_REF] on central limit theorems on large symmetric spaces for the orthogonal and the unitary group. Some of the results of the previously cited papers can be deduced from Theorems 4.2.2 and 4.2.5. More generally, we notice in Corollary 4.2.7 that for collections of random matrices which are invariant, in law, under unitary conjugation, the convergence in second-order distribution implies that the matrix entries (or, more generally, random variables of the type of (4.1)) are asymptotically Gaussian. Second order freeness is a theory that has been developed these last ten years about Gaussian fluctuations (called second order limits) of traces of large random matrices, the most emblematic articles in this theory being [START_REF] Mingo | Nica Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices[END_REF][START_REF] Mingo | Speicher Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces[END_REF][START_REF] Mingo | Second order freeness and fluctuations of random matrices. II. Unitary random matrices[END_REF][START_REF] Collins | Speicher Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants[END_REF]. Our results cannot be deduced directly from this theory, because the "test matrices" we consider (i.e. the matrices M ) are not supposed to have second order limit distributions (and actually do not have any in many cases, as the one of (4.2)).

These general results about asymptotic fluctuations of matrix entries mentioned above are then applied to the fluctuations of the outliers of Gaussian elliptic matrices. It is easy to see that the global behavior of the spectrum of a large random matrix is not altered, from the macroscopic point of view, by a low rank additive perturbation. However, some of the eigenvalues, called outliers, can deviate away from the bulk, depending on the strength of the perturbation. Firstly brought to light for empirical covariance matrices by Johnstone in [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF], this phenomenon, known as the BBP transition, was proved by Baik, Ben Arous and Péché in [START_REF] Baik | Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF], and then shown under several hypothesis on the Hermitian case in [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF][START_REF] Féral | Péché The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF][START_REF] Capitaine | Féral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations[END_REF][START_REF] Capitaine | Féral Central limit theorems for eigenvalues of deformations of Wigner matrices[END_REF][START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF][START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF][START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF][START_REF] Capitaine | Février Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices[END_REF][START_REF] Knowles | Yin The isotropic semicircle law and deformation of Wigner matrices[END_REF][START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF]. Non-Hermitian models have been also studied: i.i.d. matrices in [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF][START_REF] Bordenave | Capitaine Outlier eigenvalues for deformed i.i.d. random matrices[END_REF][START_REF] Rajagopalan | Outlier eigenvalue fluctuations of perturbed iid matrices[END_REF], real elliptic matrices in [START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF], matrices from the Single Ring Theorem in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] and also nearly Hermitian matrices [START_REF] Rochet | Complex outliers of Hermitian random matrices[END_REF][START_REF] O'rourke | Matchett Wood Spectra of nearly Hermitian random matrices[END_REF]. As an application of our main result, we investigate the fluctuations of the outliers and due to the non-Hermitian structure, we prove, as in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF][START_REF] Bordenave | Capitaine Outlier eigenvalues for deformed i.i.d. random matrices[END_REF][START_REF] Rajagopalan | Outlier eigenvalue fluctuations of perturbed iid matrices[END_REF][START_REF] Rochet | Complex outliers of Hermitian random matrices[END_REF], that the distribution of the fluctuations highly depends on the shape of the Jordan Canonical Form of the perturbation, in particular, the convergence rate depends on the size of the Jordan blocks. Also, the outliers tend to locate around their limit at the vertices of a regular polygon (see Figure 4.12). At last, as in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], we observe potential cor-converge to the ones of a complex centered Gaussian vector G k, k∈K, ∈L with covariance

E G k, G k , = η τ(k, k ), and E G k, G k , = β τ(k, k ).
Remark 4.2.3. Note that by invariance of the distribution of A under unitary conjugation, we have

E Tr A k M = E 1 N Tr A k Tr M ,
hence the random variables of (4.5) are centered and the ones of (4.7) below rewrite

Tr A k M -E 1 N Tr A k Tr M .
The following theorem gives the joint fluctuations of the projections of the A k 's on null trace matrices and of their traces. 

Tr A k M -E Tr A k M k∈K, ∈L (4.7) 
converge to the ones of G k, + α T k k∈K, ∈L where G k, k∈K, ∈L is a complex centered Gaussian vector independent from T k k∈K and with covariance

E G k, G k , = η τ(k, k ), and E G k, G k , = β τ(k, k ).
A consequence of this theorem is the asymptotic independence of the projection of the matrices A k onto the subspace of null trace matrices from their projections onto the orthogonal of this subspace: 

Second-order freeness implies fluctuations of matrix elements

The following corollary of Theorem 4.2.5 is obvious. Let C x k , x * k , k ∈ K denote the space of polynomials in the non commutative variables x k , x * k , indexed by k ∈ K.

Corollary 4.2.7. Let A k k∈K be a collection of N × N random matrices which is invariant by unitary conjugation and which converges in second order * -distribution to some family a = (a k ) k∈K in (A , τ 1 , τ 2 ) as N → ∞. Let M ∈L be a collection non random matrices satisfying (4.3), (4.4) and (4.6).

Then the finite marginals of

Tr P(A)M -E Tr P(A)M P∈C x k ,x * k ,k∈K , ∈L (4.8) 
converge to the ones of a complex centered Gaussian vector

H P, P∈C x k ,x * k ,k∈K , ∈L such that, for all P, Q ∈ C x k , x * k , k ∈ K and , ∈ L, E H P, H Q, = α α τ 2 (P(a), Q(a)) + η τ 1 (P(a)Q(a)) -τ 1 (P(a))τ 1 (Q(a)) , E H P, H Q, = α α τ 2 (P(a), Q(a) * ) + β τ 1 (P(a)Q(a) * ) -τ 1 (P(a))τ 1 (Q(a) * ) .
Remark 4.2.8. The following matrices have been shown to converge in second order * -distribution:

-GUE matrices or so-called matrix models where the entries interact via a potential [START_REF] Johansson | On the fluctuations of eigenvalues of random Hermitian matrices[END_REF],

-Ginibre matrices [START_REF] Rider | Silverstein Gaussian fluctuations for non-Hermitian random matrix ensembles[END_REF],

-matrices arising from the Haar measure on the unitary group U(N) [START_REF] Diaconis | On the eigenvalues of random matrices, Studies in applied probability[END_REF],

-matrices arising from the heat kernel measure on U(N) [START_REF] Lévy | Maïda Central limit theorem for the heat kernel measure on the unitary group[END_REF] and on GL N (C) [START_REF] Cébron | Fluctuations of Brownian Motions on GL N[END_REF],

-Wishart matrices, matrices of the type UAV or UAU * , with U, V independent and Haar distributed on U(N) and A deterministic with a limit spectral distribution [START_REF] Mingo | Nica Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices[END_REF][START_REF] Mingo | Speicher Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces[END_REF][START_REF] Mingo | Second order freeness and fluctuations of random matrices. II. Unitary random matrices[END_REF][START_REF] Collins | Speicher Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants[END_REF].

A consequence of Corollary 4.2.7 is that any non commutative polynomial in independent random matrices taken from the list above has asymptotically Gaussian entries, which are independent modulo a possible symmetry.

Left and right unitary invariant matrices

Here is another corollary on random matrices invariant by left and right unitary multiplication.

Corollary 4.2.9. Let A = A k k∈K be a collection of N × N random matrices such that:

(a') A is invariant by left and right multiplication by unitary matrix: for any unitary matrix U, A

law = UA k k∈K law = A k U k∈K ;
(b') for each k and each p, q, 1 N Tr |A k | 2p is bounded in L q independently of N;

(c') for each k, k , the sequence 1 N Tr A k A * k converges in L 2 to some non random limits denoted τ(k, k ).

Let M ∈L be a collection non random matrices satisfying (4.3), (4.4) and (4.6). Then the finite marginals of (Tr(A k M )) k∈K, ∈L converge to the ones of a complex centered Gaussian vector G k, k∈K, ∈L with covariance

E G k, G k , = 0, and E G k, G k , = β , τ(k, k ).
The proof of this corollary is postponed to Section 4.3.4: we show that the hypotheses of the corollary imply Hypotheses 4.2.1 and 4.2.4.

Permutation matrix entries under randomized basis

In [START_REF] Tsou | The Distribution of Permutation Matrix Entries Under Randomized Basis[END_REF], the individual entries of a uniform random N × N permutation matrix S conjugated by a uniform random orthogonal matrix are studied. The limit distribution of the number of d-cycles, indexed by d ≥ 1, is known to be asymptotically, as N → ∞, a Poisson process (Z d ) d≥1 on the set of positive integers with intensity 1/d by [START_REF] Arratia | The Cycle Structure of Random Permutations[END_REF], which means in particular that each trace Tr(S k ), where k ≥ 1, converges in distribution to ∑ d|k dZ d . Thanks to Theorem 4.2.5 and Remark 4.2.3, we deduce from this limiting Poisson distribution the following result about the matrix entries of a uniform permutation matrix S conjugated by a uniform unitary matrix. 

Low rank perturbation for Gaussian elliptic matrices

Matrices from the Gaussian elliptic ensemble, first introduced in [START_REF] Sommers | Spectrum of large random asymmetric matrices[END_REF], can be defined as follows.

Definition 4.2.11. A Gaussian elliptic matrix of parameter ρ ∈

[-1, 1] is a random matrix Y = [y i j ] N i, j=1 such that • {(y i j , y ji ), 1 ≤ i < j ≤ N}∪{y ii , 1 ≤ i ≤ N} is a family of independent random vectors, • {(y i j , y ji ), 1 ≤ i < j ≤ N} are i.i.d. Gaussian such that E y 2 i j = E y 2 ji = E y i j y ji = 0, E |y i j | 2 = E |y ji | 2 = 1 and E y i j y ji = ρ • {y ii , 1 ≤ i ≤ N} are i.i.d. Gaussian such that E y 2 ii = ρ and E |y ii | 2 = 1.
Remark 4.2.12. Gaussian elliptic matrices can be seen as an generalization of GUE matrices and the Ginibre matrices. Indeed, a Gaussian elliptic matrix Y of parameter ρ can be realized as

Y = 1 + ρ 2 H 1 + i 1 -ρ 2 H 2 ,
where H 1 and H 2 are two independent GUE matrices from the GUE. Hence GUE matrices (resp. Ginibre matrices) are Gaussian elliptic matrices of parameter 1 (resp. 0).

One can also define more general elliptic random matrices (see [START_REF] Naumov | Elliptic law for real random matrices[END_REF][START_REF] Nguyen | The elliptic law[END_REF][START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF][START_REF] O'rourke | Renfrew Central limit theorem for linear eigenvalue statistics of elliptic random matrices[END_REF]] for more details). In our case, it is easy to see that the Gaussian elliptic ensemble is invariant in distribution by unitary conjugation (see for example Remark 4.2.12) which allows us to use our Theorem 4.2.5 for this model. In this section, we are interested in the outliers in the spectrum of these matrices. Indeed, it is known (see [START_REF] Sommers | Spectrum of large random asymmetric matrices[END_REF]) that when you renormalize by 1 √ N the matrix Y, its limiting eigenvalue distribution is the uniform measure µ ρ on the ellipse

E ρ := z ∈ C ; Re(z) 2 (1 + ρ) 2 + Im(z) 2 (1 -ρ) 2 ≤ 1 . (4.9) 
Also, we know that adding a finite rank matrix P to such a matrix Y barely alters its spectrum (see [START_REF] Nguyen | The elliptic law[END_REF]Theorem 1.8]). In other words, most of the eigenvalues remain distributed according to µ ρ but the perturbation P may give rise to outliers. The generic location of the outliers has already been studied for elliptic random matrices (see [START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF]), but the authors did not consider the fluctuations. For all N ≥ 1, let X N := 1 √ N Y N where Y N is an N × N Gaussian elliptic matrix of parameter ρ and let P N be a N × N random matrix independent from X N whose rank is bounded by an integer r (independent from N). We consider the additive pertubation

X N := 1 √ N Y N + P N = X N + P N .
Since, for any unitary matrix U which is independent from X N , we have X N

= UX N U * , we can assume that P N has the following block structure P N = P 0 0 0 , where P is a 2r × 2r matrix (indeed, any complex matrix is unitarily similar to a upper triangular matrix and since the rank of P N is lower than r, we have dim(Im P N + (Ker P N ) ⊥ ) ≤ 2r).

Theorem 4.2.13 (Outliers for finite rank perturbations of a Gaussian elliptic matrix). Let ε > 0. Suppose that P N does not have any eigenvalue λ such that

|λ | > 1 and 1 + |ρ| + ε < λ + ρ λ < 1 + |ρ| + 3ε, (4.10) 
and has exactly j ≤ r eigenvalues λ 1 (P N ), . . . , λ j (P N ) (counted with multiplicity) such that, for each i = 1, . . . , j,

|λ i (P N )| > 1 and λ i (P N ) + ρ λ i (P N ) > 1 + |ρ| + 3ε. ( 4.11) 
Then, with probability tending to one, X N := X N + P N possesses exactly j eigenvalues λ 1 , . . . , λ j in {z ∈ C ; |z| > 1 + |ρ| + 2ε} and after a proper labeling

λ i = λ i (P N ) + ρ λ i (P N ) + o(1) , (4.12) 
for each 1 ≤ i ≤ j.

Remark 4.2.14. In [START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF], the authors prove this result for real elliptic random matrices and have a more precise statement. Indeed, they replace in our conditions (4.10) and (4.11) the area {z ∈ C ; 1

+ |ρ| + ε < |z| < 1 + |ρ| + 3ε} (resp. {z ∈ C, |z| > 1 + |ρ| + 3ε}) by E ρ,3ε \E ρ,ε (resp. by E c ρ,3ε
) where E ρ,ε is a εneighborhood of the ellipse E ρ (see (4.9)). But our proof relies on the identity

Tr (z -X) -1 = ∑ k≥0 z -k-1 Tr X k ,
this is why (4.10) and (4.11) are circular conditions, instead of elliptic ones.

To study the fluctuations of the outliers λ i around their generic locations as given by (4.12), we need to specify the shape of the matrix P as it is done in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]. Indeed, since P is not Hermitian, we need to introduce its Jordan Canonical Form (JCF) which does not depend on N. We know that, in a proper basis, P is a direct sum of Jordan blocks, i.e. blocks of the form We introduce a positive integer α i , some positive integers p i,1 > • • • > p i,α i corresponding to the distinct sizes of the blocks relative to the eigenvalue θ i and β i,1 , . . . , β i,α i such that for all j, R p i, j (θ i ) appears β i, j times, so that, for a certain 2r × 2r non singular matrix Q, we have: The asymptotic orders of the fluctuations of the eigenvalues of X N +P N depend on the sizes p i, j of the blocks. We know, by Theorem 4.2.13, there are ∑ α i j=1 p i j × β i, j eigenvalues λ of X N + P N which tend to θi = θ i + ρθ -1 i : we shall write them with a θi on the top left corner, as follows θi λ .

R p (θ ) =        θ 1 ( 
J = Q -1 PQ = P
Theorem 4.2.19 below will state that, for each block with size p i, j corresponding to θ i in the JCF of P, there are p i, j eigenvalues (we shall write them with p i, j on the bottom left corner: θi p i, j λ ) whose convergence rate will be N -1/(2p i, j ) . As there are β i, j blocks of size p i, j , there are actually p i, j × β i, j eigenvalues tending to θi with convergence rate N -1/(2p i, j ) (we shall write them θi p i, j λ s,t with s ∈ {1, . . . , p i, j } and t ∈ {1, . . . , β i, j }). It would be convenient to denote by Λ i, j the vector with size p i, j × β i, j defined by Λ i, j := N 1/(2p i, j ) • θi p i, j λ s,t -θi 1≤s≤p i, j 1≤t≤β i, j .

(4.16)

As in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], we define now the family of random matrices that we shall use to characterize the limit distribution of the Λ i, j 's. For each i = 1, . . . , q, let I(θ i ) (resp. J(θ i )) denote the set, with cardinality ∑ α i j=1 β i, j , of indices in {1, . . . , 2r} corresponding to the first (resp. last) columns of the blocks R p i, j (θ i ) (1 ≤ j ≤ α i ) in (4.15). Remark 4.2.15. Note that the columns of Q (resp. of (Q -1 ) * ) whose index belongs to I(θ i ) (resp. J(θ i )) are eigenvectors of P (resp. of P * ) associated to θ i (resp. θ i ). See [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]Remark 2.8].

Now, let

m θ i k, 1≤i≤q (k, 
)∈J(θ i )×I(θ i ) (4.17) be the random centered complex Gaussian vector with covariance

E m θ i k, m θ i k , = 1 
θ i θ i -ρ - 1 
θ i θ i δ k, δ k , E m θ i k, m θ i k , = Φ ρ ( θi , θi )e k Q -1 (Q -1 ) * e k • e Q * Qe , (4.18) 
where e 1 , . . . , e 2r are the column vectors of the canonical basis of C 2r and

Φ ρ (z, z ) = 1 z -w 1 z -w µ ρ (dw) - 1 z -w µ ρ (dw) 1 z -w µ ρ (dw).
Remark 4.2.16. We will see in section 4.3.5 that (4.17) is in fact the limit distribution of

√ Ne * k Q -1 θi -X N -1 - 1 θ i Qe 1≤i≤q (k, )∈J(θ i )×I(θ i ) (d) -→ m θ i k, 1≤i≤q (k, )∈J(θ i )×I(θ i )
This convergence is a consequence of Theorem 4.2.5.

Remark 4.2.17. When ρ = 0, one has

Φ 0 (z, z ) = 1 π |w|≤1 1 z -w 1 z -w dw - 1 π |w|≤1 1 z -w dw 1 π |w|≤1 1 z -w dw = 1 zz -1 - 1 zz = 1 zz (zz -1)
.

We recover the expression of the covariance in the Ginibre case (see [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]). Also, the expression of Φ 1 corresponds to the covariance in the GUE case (see [START_REF] Rochet | Complex outliers of Hermitian random matrices[END_REF]).

For each i, j, let K(i, j) (resp. K(i, j) -) be the set, with cardinality β i, j (resp.

∑ j-1 j =1 β i, j ), of indices in J(θ i ) corresponding to a block of the type R p i, j (θ i ) (resp. to a block of the type R p i, j (θ i ) for j < j). In the same way, let L(i, j) (resp. L(i, j) -) be the set, with the same cardinality as K(i, j) (resp. as K(i, j) -), of indices in I(θ i ) corresponding to a block of the type R p i, j (θ i ) (resp. to a block of the type R p i, j (θ i ) for j < j). Note that K(i, j) -and L(i, j) -are empty if j = 1. Let us define the random matrices

M θ i ,I j := [m θ i ,n k, ] k∈K(i, j) - ∈L(i, j) - M θ i ,II j := [m θ i k, ] k∈K(i, j) - ∈L(i, j) (4.19) 
M θ i ,III 1. As N goes to infinity, the random vector

(Λ i, j ) 1≤i≤q
1≤ j≤α i defined at (4.16) converges to the distribution of a random vector Λ ∞ i, j 1≤i≤q 1≤ j≤α i with joint distribution defined by the fact that, for each 1 ≤ i ≤ q and 1 ≤ j ≤ α i , Λ ∞ i, j is the collection of the p i, j th roots of the eigenvalues of some random matrix M θ i j . ), 0, . . . , 0). We see the blue crosses "+" (outliers) forming respectively a regular pentagon and an equilateral triangle around the red dots "•" (their limit). We also see a significant difference between the two rates of convergence, N -1/10 and N -1/6 .

2. The distributions of the random matrices M θ i j are absolutely continuous with respect to the Lebesgue measure and the random vector Λ ∞ i, j 1≤i≤q

1≤ j≤α i has no deterministic coordinate.

Remark 4.2.20. Each non zero complex number has exactly p i, j p i, j th roots, drawing a regular p i, j -sided polygon. Moreover, by the second part of the theorem, the spectrums of the M θ i j 's almost surely do not contain 0, so each Λ ∞ i, j is actually a complex random vector with p i, j × β i, j coordinates, which draw β i, j regular p i, jsided polygons. Remark 4.2.21. We notice that in the particular case where the matrix Q is unitary, which implies the convergence of the expectation of any polynomials as wanted and consequently the convergence in distribution of finite dimensional marginals.

Let n ≥ 1, and S n be the n-th symmetric group, and S n,2 be the subset of permutations in S n with only cycles of length 2. We denote be #σ the number of cycles of σ ∈ S n and by Fix(σ ) the number of fixed points of σ . The neutral element of S n is denoted by id n . For any σ ∈ S n , we set If σ ∈ S n,2 (and n > 0 is even), we decompose σ in 2-cycles σ = (i 1 j 1 ) • • • (i n/2 j n/2 ). By classical Hölder's inequality, the absolute difference between As a consequence, we can rewrite (4.22) as

Tr σ N i n i=1 = ∏ cycle (t 1 t 2 •••t m ) de σ Tr N t 1 N t 2 • • • N t m
N -n/
E Y N n ∏ i=1 Tr UB k i U * M i = L Y ∑ σ ∈S n,2 ∏ cycle (i, j) de σ τ(k i , k j )η i j + o(1),
which is the wanted convergence in order to prove the proposition, since

E n ∏ i=1 G i = ∑ σ ∈S n,2
∏ cycle (i, j) de σ τ(k i , k j )η i j . Let us now introduce an (implicitly depending on N) Haar-distributed unitary matrix U independent of the collection A. By unitary invariance, we get

A k -E A k b∈K = B k + T k I b∈K law = UB k U * + T k I b∈K .
Then, by Proposition 4.3.1, we know that, for any n ≥ 1, any k 1 , . . . , k n ∈ K and any 1 , . . . , n ∈ L, the random vector

Tr(UB k i U * M i ) 1≤i≤n
converges in distribution to a complex centered Gaussian vector H i 1≤i≤n such that, for all i, i ,

E H i H i = τ(k i , k i ) -τ(k i )τ(k i ) η i i -α i α i , E H i H i = τ(k i , k i ) -τ(k i )τ(k i ) η i i -α i α i .
Besides, Proposition 4.3.1 also says that Tr(UB k i U * M i ) 1≤i≤n is asymptotically independent from T k i Tr(M i ) 1≤i≤n , which converges in distribution, by Hypothesis (d), to α i T k i 1≤i≤n . As it is clear, from the covariance of G i 1≤i≤n , that for H i 1≤i≤n independent from α i T k i α i 1≤i≤n , we have

G i 1≤i≤n law = H i 1≤i≤n + α i T k i 1≤i≤n ,
the theorem is proved. We just need to show that the hypotheses of the corollary imply Hypotheses 4.2.1 and 4.2.4. The proof of Hypothesis 4.2.1 comes down to the following computations, where we introduce a Haar-distributed unitary matrix U independent of (A k ) k∈K and use Equation [START_REF] Chatterjee | Multivariate normal approximation using exchangeable pairs[END_REF] of [START_REF] Benaych-Georges | Rochet Fluctuations for analytic test functions in the Single Ring Theorem[END_REF]. We have

E 1 N Tr A k 2 = 1 N 2 E E U Tr(UA k ) Tr(A * k U * ) = 1 N 3 (1 + o(1)) E [Tr(A k A * k )] = O 1 N 2 ,
and Then, one can prove that 1 )

E 1 N Tr(A k A k ) 2 = 1 N 2 E E U Tr(A k UA k U) Tr(A k U * A k U * ) = 1 N 4 (1 + o(1)) E Tr(A k A * k ) Tr(A k A * k ) + Tr(A k A * k ) Tr(A k A * k ) = O 1 N 2 .
N n ∑ σ ∈S n E n ∏ =1 Tr A k i A * k j σ ( ) = 1 
N n ∑ σ ∈S n n ∏ =1 E Tr A k i A *
Indeed, once the previous Lemma is shown, we clearly have (iii), and here comes the proof of (ii). Proof of (ii). Let η > 0 and let i, j be two integers lower than 2r. Since X N op is bounded, we know that (z -X N ) -1 op goes to 0 when |z| → ∞, as the function m(z), so that, we know there is a positive constant M such that P sup |z|>1+ρ+ε e * i (z -X N ) -1 e j -δ i j m(z) > η = P sup 1+ρ+ε<|z|<M e * i (z -X N ) -1 e j -δ i j m(z) > η +o(1) .

Then, for any η > 0, the compact set K = {1 + ρ + ε ≤ |z| ≤ M} admits a η -net that we denote by S η , which is a finite set of K such that ∀z ∈ K, ∃z ∈ S η , |zz | < η , so that, using the uniform boundedness of the derivative of m(z) and e * i (z -X N ) -1 e j on K, we have for a small enough η P sup z∈K e * i (z -X) -1 e jδ i j m(z) > η = P z∈S η e * i (z -X) -1 e jδ i j m(z) > η/2

At last, we write, for any z ∈ S η , P e * i (z -X) -1 e jδ i j m(z) > η/2

≤ P e * i (z -X) -1 e jδ i j 1 N Tr (z -X) -1 > η/4 + P δ i j 1 N Tr (z -X) -1m(z) > η/4 .

The first term vanishes thanks to Theorem 4.2.5 with M = √ NE ji and the second one vanishes by Lemma 4.3.5. Proof of Lemma 4.3.5. First of all, let us write, for any η > 0,

P 1 N Tr (z -X N ) -1 -m(z) > η √ N ≤ 4N η 2 E 1 N Tr (z -X N ) -1 -E 1 N Tr (z -X N ) -1 2 + E 1 N Tr (z -X N ) -1 -m(z) 2 ,
which means that we just have to prove that

E 1 N Tr (z -X N ) -1 -m(z) 2 = o 1 N , (4.24) 
and One can notice that if W N is a real symmetric Gaussian matrix of variance ρ with iid entries such that, for any i = j,

E 1 N Tr (z -X N ) -1 -E 1 N Tr (z -X N ) -1 2 = o 1 N . ( 4 
E w 2 ii = E w i j w ji = E w 2 i j = ρ N , (4.27) 
then we have, by the Wick formula applied to the expansion of the traces,

• E Tr W k N ≥ 0 and E Tr X k N ≥ 0,

• E Tr W k N ≥ E Tr X k N since there are more non-zero terms for W N than for X N . Also, we know that, for any z such that |z| > 1 + ρ + ε, Note that using the Dyck path interpretation of NC 2 (2k) (see e.g. [START_REF] Nica | Lectures on the combinatorics of free probability[END_REF]), one can easily see that i the previous sum, the term associated to each π ∈ NC 2 (2k) is precisely ρ k . Hence as the cardinality of NC 2 (2k) is Cat(k) (see [START_REF] Nica | Lectures on the combinatorics of free probability[END_REF] again) and each E x i s i s+1 x i t i t+1 is non negative, we have

E 1 N Tr (z -W N ) -1 = ∑ k≥0 z -k-1 E 1 N Tr W k N and E 1 N Tr (z -X N ) -1 = ∑ k≥0 z -k-1 E 1 N Tr X k
E Tr X 2k N ≥ Cat(k)ρ k .
At last, we know from e.g. [9, Theorem 1.1] that, for any z such that |z| > 1+ρ +ε, we have

E 1 N Tr (z -W N ) -1 -m(z) = o 1 √ N ,
so that, to conclude, it suffices to write

E 1 N Tr (z -X N ) -1 -m(z) ≤ ∑ k≥0 E 1 N Tr X 2k N -Cat(k)ρ k |z| -2k-1 ≤ ∑ k≥0 E 1 N Tr W 2k N -Cat(k)ρ k |z| -2k-1 = E 1 N Tr (|z| -W N ) -1 -m(|z|) = o 1 √ N .
Proof of (4.25): We apply the same idea but this time W N is a real symmetric Gaussian matrix of variance ρ with iid entries, such that, for any i = j,

E w 2 ii = 1 N ; E w i j w ji = E w 2 i j = ρ N . (4.28) 
From e.g. [9, Theorem 1.1], we know that, for all |z| > 1 + |ρ| + ε,

E 1 N Tr (z -W N ) -1 -E 1 N Tr (z -W N ) -1 2 = o 1 N .
Moreover, we can write

E 1 N Tr (z -X N ) -1 -E 1 N Tr (z -X N ) -1 2 = E 1 N Tr (z -X N ) -1 2 -E 1 N Tr (z -X N ) -1 2 = 1 N 2 ∑ k, ≥0 z -k-1 z --1 E Tr X k N Tr X N -E Tr X k N E Tr X N .
By the Wick formula, we see that, for all k, ,

0 ≤ E Tr X k N Tr X N -E Tr X k N E Tr X N ≤ E Tr W k N Tr W N -E Tr W k N E Tr W N .
Indeed, where

E Tr X k N Tr X N = ∑ 1≤i 1 ,...,i k ≤N 1≤i k+1 ,...,i k+ ≤N E x i 1 i 2 • • • x i k i 1 x i k+1 i k+2 • • • x i k+ i k+1 = ∑ 1≤i 
x a =            x i a i a+1 if 1 ≤ a ≤ k -1 x i k i 1 if a = k x i a i a+1 if k + 1 ≤ a ≤ k + -1
x i k+ i k+1 if a = k + .

We have also which is a subsum of (4.29). Hence, as all the E [x a x b ]'s are non negative (see (4.26)), we conclude that

E Tr X k N E Tr X N = ∑ 1≤i 
E Tr X k N Tr X N ≥ E Tr X k N E Tr X N .
Since, for all a and b, E [x a x b ] ≤ E [w a w b ] (see (4.28)), we deduce that

E Tr X k N Tr X N -E Tr X k N E Tr X N ≤ E Tr W k N Tr W N -E Tr W k N E Tr W N
At last, we can write

E 1 N Tr (z -X N ) -1 -E 1 N Tr (z -X N ) -1 2 ≤ 1 N 2 ∑ k, ≥0 |z| -k-1 |z| --1 E Tr X k N Tr X N -E Tr X k N E Tr X N ≤ 1 N 2 ∑ k, ≥0 |z| -k-1 |z| --1 E Tr W k N Tr W N -E Tr W k N E Tr W N = E 1 N Tr (|z| -W N ) -1 -E 1 N Tr (|z| -W N ) -1 2 = o 1 N .
Appendix: a matrix inequality 
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 121 Figure 1: Singular values s 1 and s 2 of a matrix A ∈ R 2×2 .

  (a), 3.11(b), 2(c) and 2(d))

Figure 3 :

 3 Figure 3: Spectrum of Gaussian elliptic matrices.

Figure 1 . 4 :

 14 Figure 1.4: Spectrums of A (left), of A + P (center) and zoom on a part of the spectrum of A + P (right), for the same matrix A (chosen as in (1.1) for s i 's uniformly distributed on [0.5,4] with N = 10 3 ) and P with rank 4 having one block R 3 (θ ) and one block R 1 (θ ) in its Jordan Canonical Form (θ = 4 + i). We see, on the right, four outliers around θ (θ is the red cross): three of them are at distance ≈ N -1/6 and one of them, much closer, is at distance ≈ N -1/2 . One can notice that the three ones draw an approximately equilateral triangle. This phenomenon will be explained by Theorem 1.2.10.

Figure 1 . 5 :

 15 Figure 1.5: Eigenvalues of A N + P N for N = 5.10 3 , ν the uniform law on [0.5, 4]and P N = diag(1, 4 + i, 4i, 0, . . . , 0). The small circles are centered at 1,4 + i and 4i, respectively, and each have a radius10 

Figure 1 . 6 :

 16 Figure 1.6: The four first cases of Example 1.2.12 (the fifth one, less visual, does not appear here): the red cross is θ and the blue circular dots are the outliers of A N + P N tending to θ 1 . Each figure is made with the simulation of A N a renormalized Ginibre matrix with size 2.10 3 plus P N (whose choice depends of course of the case) with θ = 2.

  ) and a Monte-Carlo numerical computation made out of 10 3 matrices with size N = 10 3 . (a) κ = 0 : uncorrelated case. (b) κ = 2 -1/2 : correlated case. The straight line is the theoretical optimal regression line (i.e. the line with equation y = ax where a minimizes the variance of Y -aX, computed thanks to the asymptotic formulas (1.16) and (1.17)): one can notice that it fits well with the empirical datas.

Proof of Lemma 1 . 3 . 3 Since

 133 CA k B is a square r × r matrix, it suffices to prove that each entry tends, in probability, to 0. And since B and C are uniformly bounded (see Remark 1.5.2) , one just has to show that for all unit vectors b and c, c * A k b

( a )Figure 2 . 8 :

 a28 Figure 2.8: Outliers/lack of outliers for multiplicative perturbations: simulation realized with a single 10 3 ×10 3 matrix A = UTV when the singular values of T are uniformly distributed on [0.5, 4] and P = diag(-2, (0.8 + 0.5i) -1 , 1/3, 0, . . . , 0).As predicted, none of these matrices has any outlier outside the outer circle, nor do the two first ones inside the inner circle, but  has two outliers inside the inner circle, close to the predicted locations.

2. 3 . 3

 33 Proof of Theorem 2.2.4 when the f j 's are polynomial in z and z -1

1 N 1 N 1 N 1 N 1 N

 11111 29) follow from the fact the the Haar measure on the unitary group is invariant by multiplication by any e iθ , θ ∈ R. We shall use the following notations lim N→∞ Tr MM * =: α M ; lim N→∞ Tr KK * =: α K ; lim N→∞ Tr MK =: β M,K lim N→∞ Tr M =: τ M ; lim N→∞ Tr K =: τ K .

  disjoint from the set of indices involved in the expansion of the Tr A m N m , Tr A -m N -m , Tr A m N m , Tr A -m N -m , as long as n = m. Therefore, Corollary 2.5.4 allows to conclude the proof of a).

where m 2 := N - 1

 21 Tr TT * and m ∞ := T op . Proof. See [15, Th. 1]. Lemma 2.5.6. Let V be Haar-distributed and let A, B, C, D be deterministic N × N matrices. Then we have E Tr AVBV * Tr CVDV * = 1 N 2 -1 (Tr A Tr C Tr B Tr D + Tr AC Tr BD) -1 N(N 2 -1) (Tr A Tr C Tr BD + Tr AC Tr B Tr D) Proof. Let M N (C) denote the set of N × N complex matrices. It has already been proved, in [21, Lem. 5.9], that for any matrices A, B, C, D ∈ M N (C), we have E Tr AVBV * CVDV * = 1 N 2 -1 {Tr AC Tr B Tr D + Tr A Tr C Tr BD} (2.24) -1 N(N 2 -1) {Tr AC Tr BD + Tr A Tr C Tr B Tr D} .

√ 4 -

 4 (a) Spectrum of an Hermitian matrix of size N = 2000, whose spectral measure tends to the semi-circle law µ sc (dx) := 1 2π x 2 1[-2,2](dx) (such as Wigner matrix), with perturbation matrix A = diag(i √ 2, 0 . . . , 0). (b) Spectrum of an Hermitian matrix of size N = 2000, whose spectral measure tends to 2 5 δ -1 (dx) + 2 5 δ 1 (dx) + 1 5 µ sc (dx) and with perturbation matrix A = diag(i √ 2, 0 . . . , 0).

  -ξ |=ε | f (z)f 0 (z)| -→ 0, and inf z,|z-ξ |=ε | f 0 (z)| > 0.

  1 A a ) Tr(T 1 T a ) ∑ σ ∈M(p+q) σ (1)=a

N 1 N

 1 Tr U * T r UA r converges weakly to a Gaussian multivariate. Thanks to Theorem 3.4.6, we know that for each m, Tr U * T m UA m 3.4.5 Moments of a complex Gaussian variable.

Assumption 4 . 2 . 4 . 1 N. 6 ) 4 . 2 . 5 .

 42416425 The finite marginals of the process Tr A k -E Tr A k k∈K converge to those of a random centered vector (T k ) k∈K and for each ∈ L, there is α ∈ C such that limN→∞ Tr M = α . (4Theorem Under Hypotheses 4.2.1 and 4.2.4, the finite marginals of

Corollary 4 . 2 . 6 .

 426 Under Hypotheses 4.2.1 and 4.2.4, suppose that for any ∈ L, we have Tr(M ) = 0. Then the processes Tr A k M k∈K, ∈L and Tr A k -E Tr A k k∈K are asymptotically independent.

Corollary 4 . 2 . 10 .

 4210 Let S be a N × N random permutation matrix which is uniformly distributed, U be a N × N random unitary matrix which is Haar distributed , and M ∈L a collection of non random matrices satisfying (4.3), (4.4) and (4.6). Then the finite marginals ofTr US k U * M k≥1, ∈Lconverge to the ones of G k, + α ∑ d|k dZ d k≥1, ∈L , where G k, k≥1, ∈L is a complex centered Gaussian vector with covarianceE G k, G k , = 0, and E G k, G k , = 1 k=k β , ,and (Z d ) d≥1 is a Poisson process on the set of positive integers with intensity 1/d which is independent from G k, k∈N, ∈L .

  ⊕ is defined, for square block matrices, by M ⊕ N := M 0 0 N and P is a matrix such that its eigenvalues θ are such that |θ | < 1 or | θ | = |θ + ρθ -1 | < 1 + ρ + ε.

M θ i ,I j - 1 M( 4 . 20 )

 1420 m θ i k, ] k∈K(i, j) ∈L(i, j) - M θ i ,IV j := [m θ i ,n k, ] k∈K(i, j) ∈L(i, j)and then let us define the matrix M θ i j asM θ i j,n := θ i M θ i ,IV j -M θ i ,III j θ i ,II j Remark 4.2.18. It follows from the fact that the matrix Q is invertible, that M θ i ,I j is a.s. invertible and so is M θ i j . Now, we can state the result on the fluctuations. Theorem 4.2.19.

Figure 4 . 12 :

 412 Figure 4.12: Spectrum of a Gaussian elliptic matrix of size N = 2500 with perturbation matrix P = diag (R 5 (1.5 + 2.625i), R 3 (1.5 -1.5i), 0, . . . , 0). We see the blue crosses "+" (outliers) forming respectively a regular pentagon and an equilateral triangle around the red dots "•" (their limit). We also see a significant difference between the two rates of convergence, N -1/10 and N -1/6 .

For example, for σ ∈ S 6 ,

 6 σ := (1, 2, 3, 4, 5, 6) → (3, 2, 4, 1, 6, 5)Tr σ N i 6 i=1 = Tr N 1 N 3 N 4 Tr N 2 Tr N 5 N 6 . Lemma 4.3.2. Let n ≥ 1, (k 1 , . . . , k n ) ∈ K n , ( 1 , . . . , n ) ∈ L n ,and (Y N ) be any sequence of bounded random variables such that lim N→∞ EY N = L. With the above assumptions on M and B, we have, for all γ and σ in S n ,Tr γ M i n i=1 = 1 Fix(γ)=0 O N n/2 and E Y N Tr σ B k i n i=1 = 1 σ ∈S n,2 N n/2 L Y ∏ cycle (i, j) de σ τ(k i , k j ) + o(N n/2 ).Proof. Because B k 's and M 's have null traces, the formulas are true in presence of fixed points. Thus, we can assume that σ and γ have no fixed point. The first result comes from Lemma 4.3.6 and from the fact that, for each , Tr M 2 = O(N) .The second result can be proved in two steps. First, if σ / ∈ S n,2 , the noncommutative Hölder's inequality (see[START_REF] Anderson | An Introduction to Random Matrices[END_REF] Appendix A.3]) and Hypothesis (ii) say us that E Y N Tr σ B k i j n j=1 = O(N #σ ) = o(N n/2 ).

∏ i=1 Tr

 i=1 UB k i U * M i = ∑ σ ,γ∈S n Wg(σ γ -1 ) E[Y N Tr σ B i n i=1 ] Tr γ M i n i=1 , (4.22)where Wg is the Weingarten function. We know from[START_REF] Collins | Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF] Coro. 2.7] and[START_REF] Nica | Lectures on the combinatorics of free probability[END_REF] Propo 23.11] that, for any τ ∈ S n ,Wg(τ) = O N #τ-2n and Wg(1 n ) = N -n + O(N -n-2 ).It implies, by Lemma 4.3.2, that for σ , γ ∈ S n ,Wg(σ γ -1 ) E[Y N Tr σ B i n i=1 ] Tr γ M i n i=1 = 1 σ ∈S n,2 1 Fix(γ)=0 O(N (#(σ γ -1 )-n) ) = 1 γ=σ ∈S n,2 O(1),and more precisely, using the exact asymptotic for γ = σ ∈ S n,2 , thatWg(σ γ -1 ) E[Y N Tr σ B i n i=1 ] Tr γ M i n i=1 = 1 γ=σ ∈S n,2 L Y ∏ cycle (i, j)de σ τ(k i , k j )η i j +o(1).

4. 3 . 2 5 First

 325 Proof of Theorem 4.2., note that, for each k ∈ K, E A k = 1 N E[Tr(A k )]I, hence for B k := A k -1 N Tr(A k )I and T k := 1 N Tr(A k ) -E 1 N Tr(A k ), one can write A k -E A k b∈K = B k + T k I b∈K .

4. 3 . 3 2

 332 Proof of Theorem 4.2.It is a direct application of Proposition 4.3.1 since if Tr M = 0, then Tr(AM) = Tr A -1 N (Tr A)I M , so that one can assume that Tr A = 0. 4.3.4 Proof of Corollary 4.2.9

Now, in order to show Hypothesis 4 . 2 . 4 ,

 424 we want to prove that, for any fixed r, Tr(A k 1 ), . . . , Tr(A k r ) r i=1 is asymptotically Gaussian. Let n ≥ 1 and i 1 , j 1 , . . . , i n , j n ∈ {1, . . . , r}, using [67, Proposition 3.4], we haveE n ∏ =1 Tr(A k i ) Tr(A * k j ) = E E U n ∏ =1 Tr(UA k i ) Tr(A * k j U * )

k j σ ( ) + o( 1 )N 1 N

 11 . (4.23) Indeed, similarly from above, we use classical Hölder's inequality to state that the difference between Tr(A k in A * k j σ (n)

. 25 )

 25 Proof of (4.24): We know from [9, Theorem 1.1] that (4.24) is true for a Wigner matrix. Here, the idea of the proof is to use the fact that the Stieltjes transform of the semicircular law of variance σ 2 = ρ is equal to m(z) outside the ellipse E ρ when ρ > 0. First, we shall suppose that ρ ≥ 0 up to changing X N into iX N . For any i = j, we haveE x 2 ii = E x i j x ji = ρ N, and E x 2 i j = 0. (4.26)

N

  converge to the same limit m(z) = ∑ k≥0 Cat(k)ρ k z -2k-1 , where Cat(k) is the k-th Catalan number. Moreover, by the Wick formula again, for P 2 (2k) (resp. NC 2 (2k)) the set of pairings (resp. non crossing pairings) of {1, . . . , 2k}, E Tr X 2k N = ∑ 1≤i 1 ,.

  1 ,...,i k ≤N 1≤i k+1 ,...,i k+ ≤N ∑ π∈P 2 (k+ ) ∏ {a,b}∈π E [x a x b ](4.29)

  1 ,...,i k ≤N 1≤i k+1 ,...,i k+ ≤N ∑ π∈P 2 (k) µ∈P 2 ( ) ∏ {a,b}∈π E [x a x b ] ∏ {c,d}∈µ E [x c x d ] ,

  

Table 1 . 1 :

 11 Comparison between theoretical asymptotic formulas (1.16) and (1.17

	Theorical 1.444 13.0	1.111 10.0	0.0	-8.755 -1.358i
	Empirical 1.492 12.72	1.107 10.04	0.00616 -0.00235i -8.917 -1.317i

  .[START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] 
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  2 E Y N Tr σ B k j Tr B k i 1 B k j 1and consequently converges to 0 -using again the non-commutative Hölder's inequality (see[START_REF] Anderson | An Introduction to Random Matrices[END_REF] Appendix A.3]) and Hypothesis (ii) to control E( 1 N Tr B k i t B k j t ) 2n. By a direct induction on n/2, it means that the expectation of productN -n/2 E Y N Tr σ B k j Tr B k i t B k j t ,and the result follows.Let n ≥ 1, (k 1 , . . . , k n ) ∈ K n , ( 1 , . . . , n ) ∈ L n ,and (Y N) be any sequence of bounded random variables such that lim N→∞ EY N = L. Using [67, Proposition 3.4] (and, first, an integration with respect to the randomness of U, and then a "full expectation"), we have
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	E Y N								
		n j=1 = E Y N	n/2 ∏ t=1	1 N	Tr B k i t B k j t and E Y N	n/2-1 ∏ t=1	1 N	Tr B k i t B k j t E	1 N	Tr B k i 1 B k j 1
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	=	∑ π∈P 2 (2k)	∑ 1≤i 1 ,...,i 2k ≤N	{s,t}∈π ∏	E x i s i s+1 x i t i t+1

  Lemma 4.3.6. For any k ≥ 2 and any Hermitian matrix H, Tr H k ≤ Tr H 2 k/2 more generally, for any family of Hermitian matrices H 1 , . . . , H k , Tr H 1 • • • H k ≤ We know that, for any non negative Hermitian matrices A and B, one has Tr AB ≤ Tr A Tr B so that, for any p ≥ 1, Tr H 2p ≤ Tr H 2 p Tr H 2 2p = Tr H 2 (2p+1)/2 . Then, using the non-commutative Hölder's inequality (see [2, A.3]), we deduce that Tr H 1 • • • H k ≤

	also,					
	Tr H 2p+1 ≤	√ Tr H 2	√ Tr H 4p ≤	√ Tr H 2	
			k ∏ i=1	Tr |H i | k 1/k ≤	k i=1 ∏	Tr H 2 i	k/2 1/k	.

k ∏ i=1 Tr H 2 i Proof.

Pour ne pas créer une quelconque impression de hiérarchisation des personnes, toute liste a été classée par ordre alphabétique des noms de famille.

To sort out misunderstandings: we call the multiplicity of an eigenvalue its order as a root of the characteristic polynomial, which is greater than or equal to the dimension of the associated eigenspace.

Let us recall that what is here called the multiplicity of an eigenvalue its order as a root of the characteristic polynomial, which is not smaller than the dimension of the associated eigenspace.

There is actually another assumption in the Single Ring Theorem[START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], but Rudelson and Vershynin recently showed in[START_REF] Rudelson | Vershynin Invertibility of random matrices: unitary and orthogonal perturbations[END_REF] that it was unnecessary. In[START_REF] Basak | Dembo Limiting spectral distribution of sums of unitary and orthogonal matrices[END_REF], Basak Dembo also weakened the hypotheses (roughly allowing Hypothesis 3 not to hold on a small enough set, so that ν is allowed

Recall that the notion of multiset has been defined before Lemma 1.5.8: a multiset is roughly a collection of elements with possible repetitions (as in tuples) but where the order of appearance is insignificant (contrarily to tuples). For example, {1, 2, 2, 3} m = {3, 2, 1, 2} m = {1, 2, 3} m .

Florent Benaych-Georges and Jean Rochet

We use the index m in { • } m to denote a multiset, which means that {x 1 , . . . , x n } m is the class of the n-tuple (x 1 , . . . , x n ) under the action of the symmetric group S n .

Jean Rochet

The multiplicity of an eigenvalue is defined as its order as a root of the characteristic polynomial, which is greater than or equal to the dimension of the associated eigenspace.

due to the fact that the Cauchy transform of a compactly supported measure can always be inverted in a neighborhood of infinity.
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Abstract :

We consider a non-Hermitian random matrix A whose distribution is invariant under the left and right actions of the unitary group. The so-called Single Ring Theorem, proved by Guionnet, Krishnapur and Zeitouni [START_REF] Guionnet | Zeitouni The Single Ring Theorem[END_REF], states that the empirical eigenvalue distribution of A converges to a limit measure supported by a ring S. In this text, we establish the convergence in distribution of random variables of the type Tr( f (A)M) where f is analytic on S and the Frobenius norm of M has order √ N. As corollaries, we obtain central limit theorems for linear spectral statistics of A (for analytic test functions) and for finite rank projections of f (A) (like matrix entries). As an application, we locate outliers in multiplicative perturbations of A.

Abstract :

In this paper, we study the asymptotic behavior of the outliers of the sum a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian. We observe several possible convergence rates and outliers locating around their limits at the vertices of regular polygons as in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], as well as possible correlations between outliers at macroscopic distance as in [START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF] and [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]. We also observe that a single spike can generate several outliers in the spectrum of the deformed model, as already noticed in [START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF] and [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF]. In the particular case where the perturbation matrix is Hermitian, our results complete the work of [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF], as we consider fluctuations of outliers lying in "holes" of the limit support, which happen to exhibit surprising correlations.

Introduction

It is known that adding a finite rank perturbation to a large matrix barely changes the global behavior of its spectrum. Nevertheless, some of the eigenvalues, called outliers, can deviate away from the bulk of the spectrum, depending on the strength of the perturbation. This phenomenon, well known as the BBP transition, was first brought to light for empirical covariance matrices by Johnstone in [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF], by Baik, Ben Arous and Péché in [START_REF] Baik | Péché Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF], and then shown under several hypothesis in the Hermitian case in [START_REF] Péché | The largest eigenvalue of small rank perturbations of Hermitian random matrices[END_REF][START_REF] Féral | Péché The largest eigenvalue of rank one deformation of large Wigner matrices[END_REF][START_REF] Capitaine | Féral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations[END_REF][START_REF] Capitaine | Féral Central limit theorems for eigenvalues of deformations of Wigner matrices[END_REF][START_REF] Pizzo | On finite rank deformations of Wigner matrices[END_REF][START_REF] Benaych-Georges | The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices[END_REF][START_REF] Benaych-Georges | The singular values and vectors of low rank perturbations of large rectangular random matrices[END_REF][START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF][START_REF] Benaych-Georges | Large deviations of the extreme eigenvalues of random deformations of matrices[END_REF][START_REF] Capitaine | Février Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices[END_REF][START_REF] Knowles | Yin The isotropic semicircle law and deformation of Wigner matrices[END_REF][START_REF] Knowles | Yin The outliers of a deformed Wigner matrix[END_REF]. Non-Hermitian models have been also studied: i.i.d. matrices in [START_REF] Tao | Outliers in the spectrum of i.i.d. matrices with bounded rank perturbations[END_REF][START_REF] Bordenave | Capitaine Outlier eigenvalues for deformed i.i.d. random matrices[END_REF][START_REF] Rajagopalan | Outlier eigenvalue fluctuations of perturbed iid matrices[END_REF], elliptic matrices in [START_REF] O'rourke | Renfrew Low rank perturbations of large elliptic random matrices[END_REF] and matrices from the Single Ring Theorem in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF]. In [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], and lately in [START_REF] Rajagopalan | Outlier eigenvalue fluctuations of perturbed iid matrices[END_REF], the authors have also studied the fluctuations of the outliers and, due to non-Hermitian structure, obtained unusual results: the distribution of the fluctuations highly depends on the shape of the Jordan Canonical Form of the perturbation, in particular, the convergence rate depends on the size of the Jordan blocks. Also, the outliers tend to locate around their limit at the vertices of a regular polygon. At last, they observe correlations between the fluctuations of outliers at a macroscopic distance with each other. In this paper, we show that the same kind of phenomenon occurs when we perturb an Hermitian matrix H with a non-Hermitian one A. More precisely, we study finite rank perturbations for Hermitian random matrices H whose spectral measure tends to a compactly supported measure µ and the perturbation A is just a complex matrix with a finite rank. With further assumptions, we prove that outliers of H + A may appear at a macroscopic distance from the bulk and, following the ideas of [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF], we show that they fluctuate with convergence rates which depend on the matrix A through its Jordan Canonical Form. Remind that any complex matrix is defined by (3.10) are centered Gaussian variables such that

where

: otherwise.

Remark 3.3.13. Remind that we supposed that µ is not a single Dirac measure, so that Φ is not equal to zero.

Remark 3.3.14. If A N is Hermitian, the size of all the Jordan blocks are equal to 1 and the fluctuations are real random variables (see Remark 3.2.9). We find back that, in the Hermitian case, fluctuations between outliers at a macroscopic distance are independent (see [START_REF] Benaych-Georges | Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices[END_REF]) except if the two outliers come from the same eigenvalue of A (i.e. they both belong to the same set S θ ). In this case, the fluctuations of outliers belonging to the same set S θ are all correlated. This phenomenon is illustrated by Figures 3.11 Proof. We just need to check that H N satisfies (1 ), (2 ) of Assumption 3.2.6 (since (0 ) is assumed below). Actually, for any k ≥ 1 and any i ∈ {1, . . . , q}, the diagonal matrix

fulfill the assumptions of Theorem 3.4.6, so that (2 ) is true. Then, (1 ) is true thanks to Theorem 3.4.8. This theorem also gives us the covariance. In [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF], the authors give an interpretation of why the limit is necessarily a solution of G µ (z) = 1 θ with the subordinate functions of the free additive convolution of measures in the particular case where one of the measure is δ 0 (see [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF]Example 4.1]). Actually, our definition of the sets S θ i 's corresponds to the one of the set O θ in [START_REF] Belinschi | Outliers in the spectrum of large deformed unitarily invariant models[END_REF]Definition 4.1]. A quick (but inaccurate) way to see why the limit is G -1 µ ( 1 θ ) and to understand the approach of the proof, is to write z) must be an eigenvalue of A N .

Proofs

To do it properly, we introduce the following function 12 ,

we know that the zeros of f are eigenvalues of H N which are not eigenvalues of H N . Then, we introduce the function

and the proof of Theorem 3.2.3 relies on the two following lemmas.

Lemma 3.4.1. As N goes to infinity, we have

12 we used a classical trick of finite rank perturbation models which det(I m + AB) = det(I n + BA) for any m × n matrix A and n × m matrix B Proof. [of Lemma 3.4.1] We know that, for some positive constant C,

and we conclude with Assumption 3.2.2.

Proof. [of Lemma 3.4.2] We write, thanks to Assumption 3.2.2,

Fluctuations

The proof of Theorem 3.2.10 is the same than [21, Theorem 2.10] and all we need to do here is to prove this analogous version of [21, Lemma 5.1].

Lemma 3.4.3. For all j ∈ {1, . . . , α i } and all n ∈ {1, . . . , m i }, let F θ i j,n (z) be the rationnal function defined by

(3.23)

Then, there exists a collection of positive constants (γ i, j ) 1≤i≤q

1≤ j≤α i and a collection of non vanishing random variables (C i, j,n ) 1≤i≤q 1≤ j≤α i 1≤n≤m i independent of z, such that we have the convergence in distribution (for the topology of the uniform convergence over any compact set)

where M θ i j,n is the random matrix introduced at (3.11) and π i, j := ∑ l> j β i,l p i,l .

Once this lemma proven, the Theorem 3.2.10 follows (see section 5.1 of [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] for more details). To prove Lemma 3.4.3, we shall proceed as it is done in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] to prove Lemma 5.1. First, we write, for a fixed θ i (= θ ), a fixed n ∈ {1, . . . , m i } and a fixed j ∈ {1, . . . , α i } (which shall be implicit) and fixed p i, j (= p), recall that

where

Remind that by definition, G µ (ξ n ) = θ -1 . From here, the reasoning to end the proof is the exact same than the one from [21, Lemma 5.1]. Nevertheless, we still have to prove that, for all θ and for all n, for all compact set K and for all z ∈ K,

To do so, we write (thanks to 3.4.4),

The last term is a o(1) since dist(ξ n , Spec(H N )) > ε and one can conclude if (1), ( 2) are satisfied in Assumption 3.2.6. Otherwise, if it's (0 ), ( 1), (2 ), we write 

Lemma 3.4.5 (Schur's complement [START_REF] Horn | Matrix Analysis[END_REF] ). For any A, B, C, D, one has, when it makes sense

Fluctuations of the entries of UCI random matrices

We give here some results on the fluctuations of the entries of UCI matrices, which means, matrices of the form H := UDU * where U is Haar-distributed and D is a complex diagonal matrix.

Theorem 3.4.6 (Fluctuations of the entries of UCI random matrices). Let T be an N × N diagonal matrix such that

Let u t 1 , . . . , u t p be p distinct columns of a Haar-distributed unitary matrix. Then

, converges in distribution to a centered complex Gaussian vector G i, j p i, j=1 with covariance Here comes a version of Theorem 3.4.6, with several matrices diagonal T. Due to the complex values of the diagonal matrices, the following theorem is not a simple consequence of Theorem 3.4.6 and Cramér-Wold theorem.

Theorem 3.4.8. Let T 1 , . . . , T q be N × N diagonal matrices such that for all m, n ∈ {1, . . . , q}

Let u t 1 , . . . , u t p be p distinct columns of an Haar-distributed matrix. Then

, converges in distribution to a centered complex Gaussian vector G i, j,m 1≤i≤p

1≤ j≤p 1≤m≤q

with covariance

Proof of Theorem 3.4.6. Without any loss of generality, due to the invariance by conjugation by a matrix of permutation, we can suppose that t 1 = 1,t 2 = 2, . . . ,t p = p. Then, we just need to show that

where A is a N × N deterministic matrix of the form

is a asymptotically Gaussian. Before starting, we remind some definition. Let (M 1 , . . . , M q ) be q matrices. For any permutation σ ∈ S q , with cycle decomposition

we denote by

For example, if σ = (13)(256) ∈ S 6 , then

Let M(2n) be the set of all perfect matching on {1, . . . , 2n} which is a subset of S 2n of the permutation which are the product of n transpositions with disjoint support. For example M(4) = {(12)(34), (13)( 24), (14)(23)} .

Then, if the following lemma is true, one can conclude the proof.

Lemma 3.4.9. Let T 1 , . . . , T q be q diagonal matrix such for all i, j ∈ {1, . . . , q},

is asymptotically Gaussian. Then, we show that

satisfies (3.35) and (3.36) using Lemma 3.4.9.

Proof of Lemma 3.4.9. We know from [?, Proposition 3.4]

where Wg is a function called the Weingarten function. Moreover, for σ ∈ S q , the asymptotical behavior of Wg(σ ) is at most given by

First, one should notice that if σ has one invariant point (which means a cycle of size one in its cycle decomposition), then Tr σ T i q i=1 = 0, also, if σ has r cycles in its cycle decomposition, then, by the Holder inequality,

Actually, the maximum of cycles in its decomposition that can have σ without any 1-sized cycle is q 2 so that, using (3.29)

Moreover, if q = 2r, then the only way to have

is to have

• σ is a product of q 2 = r transpositions with disjoint support.

One easily conclude.

PROOFS

with the convention that X -1 = 0.

Conversely, if X 1 , . . . , X r are r centered Gaussian variables satisfying (3.35) and (3.36), then (X 1 , . . . , X r ) is a centered complex Gaussian vector.

Proof. In the same spirit as the proof of Lemma 3.4.10, we obtain (3.35) and (3.36) by derivating the Fourier transform. The converse is proved by induction.

IV Fluctuation of matrix entries and application to outliers of elliptic matrices

Florent Benaych-Georges, Guillaume Cébron and Jean Rochet Abstract :

For any family of N × N random matrices (A k ) k∈K which is invariant, in law, under unitary conjugation, we give general conditions for central limit theorems of random variables of the type Tr(A k M), where the Euclidean norm of M has order √ N (such random variables include for example the normalized matrix entries √ NA k (i, j)). A consequence is the asymptotic independence of the projection of the matrices A k onto the subspace of null trace matrices from their projections onto the orthogonal of this subspace. This result is used to study the asymptotic behaviour of the outliers of a spiked elliptic random matrix. More precisely, we show that their fluctuations around their limits can have various rates of convergence, depending on the Jordan Canonical Form of the additive perturbation. Also, some correlations can arise between outliers at a macroscopic distance from each other. These phenomena have already been observed in [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] with random matrices from the Single Ring Theorem.

Introduction

This paper is firstly concerned with the fluctuations of sums of entries of unitarily invariant random matrices when the dimension tends to infinity and, secondly, with its application to the fluctuations of the outliers of spiked elliptic matrices.

The first problem is to find out conditions under which, for given collections (A k ) k∈K of random matrices and (M ) ∈L of non-random matrices, the finite marginals of

Tr but also by more complex matrices, like a matrices whose entries all have order N -1/2 , as Wigner matrices. In this framework, the main hypothesis we need for the random vector of (4.1) to be asymptotically Gaussian is the global invariance, in law, of (A k ) k∈K under unitary conjugation, i.e. that for any unitary matrix U,

It then appears that the question decomposes into two independent problems: one associated to the projections of the A k 's onto the space of null trace matrices (see Theorem 4.2.2) and one associated to the convergence of the centered traces of the relations between the fluctuations of outliers at a macroscopic distance with each other (see Remark 4.2.21).

The paper is organized as follows. In Section 4.2, we state our main results (Theorems 4.2.2, 4.2.5, 4.2.13 and 4.2.19) and their corollaries. These theorems are then proved in the following sections and an appendix is devoted to a technical result needed here.

Main results

General results

Let A = A k k∈K be a collection of N × N random matrices and let M ∈L be a collection N × N non random matrices, both implicitly depending on N. (a) A is invariant in distribution under unitary conjugation: for any unitary matrix U,

(c) for each k, k ∈ K, we have the following convergences, in L 2 , to non random variables: lim

(d) for each , ∈ L, we have the following convergences:

and lim

Under this sole hypothesis, we first have the following result, focused on the case where the M 's all have null trace, i.e. focused on the projections of the A k 's onto the space of such matrices. 

the covariance of the Gaussian variables

can be rewritten

Which means that for any i, i such that i = i , the familly

. Indeed, since the Jordan blocks associated to θ i are distinct with those associated to θ i , the sets I(θ i ) and J(θ i ) don't share any common index with I(θ i ) and J(θ i ). We can deduce that in this particular case, all the fluctuations around θ i are independent from those around θ i (see [21, section 2.3.1.] for more details). However, in the general case, there is no particular reason to have independance between the fluctuations around two spikes at macroscopique distance. To illustrate this phenomenon, we can take the same particular example than [21, Example 2.17] since a Ginibre matrix is also an Gaussian elliptic matrix. In this example, the authors of [START_REF] Benaych-Georges | Outliers in the Single Ring Theorem[END_REF] took a matrix P of the form

and they empirically confirmed that, in the case κ = 0, the fluctuations of the outliers around θ are correlated with these around θ . (ii) for each k ∈ K, and each p, q ≥ 1, 1 N Tr |B k | 2p is bounded in L q independently of N;

(iii) for each k, k ∈ K, we have the following convergences to nonrandom variables in

Let also M ∈L be a collection non random matrices such that 

converges in distribution, as N → ∞, to a complex centered Gaussian vector G i 1≤i≤p such that, for all i, i ,

Besides, for any sequence (Y N ) of bounded random variables such that Y N is independent of U (N) and EY N has a limit L and any polynomial f in p complex variables and their conjugates, we have

Proof. First, we can suppose the B k 's and the M 's are all Hermitian (which makes the entries of the vector of (4.21) real), up to changing

.

Second, as all B k 's have null trace, up to changing M → M -1 N Tr M , one can suppose that all M 's have null trace.

To prove the full proposition, it suffices to prove the convergence

for any n ≥ 1, (k 1 , . . . , k n ) ∈ K n , ( 1 , . . . , n ) ∈ L n and any sequence (Y N ) of bounded random variables independent from U (N) such that lim N→∞ EY N = L Y . Indeed, we can take each k as many times as we want in (k 1 , . . . , k n ) (and the same for ), is lower than

) ,

which tends to 0 thanks to the non-commutative Hölder's inequality and the fact that 1 N Tr(A n A * σ (n) ) converges in probability to a constant. We conclude the proof (4.23) with a simple induction. Once we have (4.23), we can conclude using the Wick Formula. 

Moreover, if we apply the Theorem 4.2.5 with

(since X N is invariant in distribution by unitary conjugation, so is (z -X N ) -p for any p ≥ 1), we easily obtain (iv). The same for (v) by changing the exponent -1 into -p. At last, we just need to prove (ii) and (iii) and to do so, we prove the following lemma.