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RESUME

Dans cette these, il est question de spiked models pour des matrices aléatoires non-
hermitiennes. Plus précisément, on considére des matrices de type A + P, tel que
le rang de P reste borné indépendamment de Ia taille de la matrice qui tend vers
Iinfini, et tel que A est une matrice aléatoire non-hermitienne. Tout d’abord, on
prouve que dans le cas ol la matrice P possede des valeurs propres hors du bulk,
quelques valeurs propres de A + P (appelées outliers) apparaissent loin de celui-
ci. Ensuite, on regarde les fluctuations des outliers de A autour de leurs limites et
on montre que celles-ci ont la méme distribution que les valeurs propres d’une cer-
taine matrice aléatoire de taille finie. Ce genre de phénomene avait déja été observé
pour des modeles hermitiens. De maniere inattendue, on montre que les vitesses de
convergence des outliers varient (en fonction de la Réduite de Jordan de P) et que
des corrélations peuvent apparaitre entre des outliers situés a une distance macro-
scopique 1’'un de I'autre. Le premier modele de matrices non-hermitiennes que
I’on consideére provient du théoreme du Single Ring que 1’on doit a Guionnet, Kr-
ishnapur et Zeitouni. Un autre modele étudié est celui des matrices dites “presque”
hermitiennes : c’est-a-dire lorsque A est hermitienne mais P ne I’est pas. Enfin, on
regarde aussi les outliers pour des matrices Elliptiques Gaussiennes. Cette theése
traite aussi de la convergence en loi de variables aléatoires du type Tr(f(A)M) ou
A est une matrice du théoreme du Single Ring et f est une fonction holomorphe
sur un voisinage du bulk et la norme de Frobenius de M est de I’ordre de v/N. En
corollaire de ce résultat, on obtient des théorémes type “Centrale Limite” pour les
statistiques linéaires de A (pour des fonctions tests holomorphes) et des projections
de rang finies de la matrice A (comme par exemple les entrées de la matrice).



ABSTRACT

This thesis is about spiked models of non Hermitian random matrices. More specif-
ically, we consider matrices of the type A + P, where the rank of P stays bounded
as the dimension goes to infinity and where the matrix A is a non Hermitian ran-
dom matrix. We first prove that if P has some eigenvalues outside the bulk, then
A + P has some eigenvalues (called outliers) away from the bulk. Then, we study
the fluctuations of the outliers of A around their limit and prove that they are dis-
tributed as the eigenvalues of some finite dimensional random matrices. Such facts
had already been noticed for Hermitian models. More surprising facts are that out-
liers can here have very various rates of convergence to their limits (depending
on the Jordan Canonical Form of P) and that some correlations can appear be-
tween outliers at a macroscopic distance from each other. The first non Hermitian
model studied comes from the Single Ring Theorem due to Guionnet, Krishnapur
and Zeitouni. Then we investigated spiked models for nearly Hermitian random
matrices : where A is Hermitian but P isn’t. At last, we studied the outliers of
Gaussian Elliptic random matrices. This thesis also investigates the convergence
in distribution of random variables of the type Tr(f(A)M) where A is a matrix
from the Single Ring Theorem and f is analytic on a neighborhood of the bulk and
the Frobenius norm of M has order v/N. As corollaries, we obtain central limit
theorems for linear spectral statistics of A (for analytic test functions) and for finite
rank projections of f(A) (like matrix entries).
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CONTENTS 4

Notation

Here are several notations used in this thesis.

Bold letters a, A always designate a vector or a matrix, whereas regular letters a,A
stand for a real or complex number.

A* stands for the adjoint of matrix A.

A N(R) (resp. .# n(C)) is the set of square matrices of size N x N with real (resp.
complex) entries.

M p4(R) (resp. A p4(C)) is the set of rectangular matrices with p rows and g
columns with real (resp. complex) entries.

For any matrix A € .# y(C) with eigenvalues A1,..., Ay, we shall denote by u, :=
1 N

N Z 0y,, the empirical spectral measure of A.
i=1

1
For any real measure u, we shall denote by Gy (z) = / ——u(dx), the Cauchy
J 7—x

Transform of L.



Introduction

The first model ever studied in the random matrix theory was sample covariance
matrices. Given a sample Xi,...,Xy € R? drawn from a centered law, the p x p
matrix S = [X; --- Xy|[X; - - - Xy]* plays a key role in statistical analysis. We know,
from the law of large numbers that %S is a good approximation of X = E[X; X/ ],
the population covariance matrix, as long as p is fixed and N goes to infinity. How-
ever, many problems involve high dimensional data which means that p may be
on the same order than N so that the covariance matrix ¥ is harder to catch. The
study of the largest eigenvalues, as for example in the statistical method of prin-
cipal components analysis, may give interesting information about ¥, especially
in the almost null case, which means that ¥ is not so far from the identity matrix.
Johnstone, in 2001 (see [57]), proposed, what he called, a spiked model where
the covariance matrix has all its eigenvalues equal to one, except a finite num-
ber of them (the spikes). Then, Baik, Ben Arous and Péché, in 2005, pointed out
an interesting phenomenon of phase transition (called the BBP phase transition)
where the asymptotic behavior of the largest eigenvalues depends on the spikes.
Afterwards, this phenomenon has been widely studied for Hermitian models in

[77,43, 28,29, 19, 20, 16, 17, 30, 61, 62]. Also, Tao, Benaych-Georges and my-
self, O’Rourke, Renfrew, Bordenave and Capitaine studied non-Hermitian models:
in [92, 21, 73, 24, 85, 23] were considered spiked i.i.d., isotropic or elliptic ran-

dom matrices, in the following sense: the authors added a perturbing matrix (with
a finite number of non-zero eigenvalues which are the spikes) and proved that for
large enough spikes, some outliers (eigenvalues at macroscopic distance of the
bulk) appear at precise positions.

This thesis investigates mostly the asymptotic behavior of such isolated eigen-
values (outliers) of additive deformations for non Hermitian models (see Chapters
LIII and IV). The challenge in the study of such models is that, due to the non
Hermitian structure of the perturbation matrix, severals problems occur. First, the
perturbation matrix is no longer diagonalizable, which means that we have to con-
sider the Jordan Canonical Form of the matrix to truly understand the fluctuations :
surprisingly, we proved that the converge rate of the outliers is not necessarily v/N
as in the Hermitian case, but depends on the size of the Jordan block associated to
the eigenvalue. Also, the outliers tend to locate around their limit at the vertices
of a regular polygon. At last, unlike in the Hermitian case, the eigenvectors of the
perturbation matrix cannot be supposed orthogonal : it leads to potential correla-
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tions between fluctuations around outliers even when are at a macroscopic distance
from each other.

The first model of random matrices we study (see Chapter I), that we shall call
the Single Ring Theorem model, is a non Hermitian model which is isotropic in the
sense that, seen as a linear map, its distribution does not depend on the orthonormal
bases chosen to represent its transformation matrix. The “Single Ring Theorem”,
firstly mentioned and partially proved by the Physicists Feinberg and Zee in [42]
and completely proved by Guionnet, Krishnapur and Zeitouni in [49], was named
after the fact that the eigenvalues of such matrices tend to concentrate on an unique
ring.

The second model studied (see Chapters III), called sometimes nearly Her-
mitian random matrices, consists in Hermitian random matrices deformed by an
additive non-Hermitian matrix with possibly complex eigenvalues. This model ap-
pears in the physics literature, especially in the case where the perturbation matrix
is skew-Hermitian, i.e. P* = —P (see [44, 45, 46, 47]).

The last model we considered is the Gaussian Elliptic Ensemble (see Chap-
ter IV) which is some sort of intermediate model between the Gaussian Unitary
Ensemble and the Ginibre Ensemble. The generic location of the outliers has al-
ready been studied for elliptic random matrices (see [73]), but the authors did not
consider the fluctuations.

This thesis also studies the asymptotic behavior of spectral linear statistics for
random matrices from the Single Ring Theorem (see Chapter II). At last, matrix
entries of random matrices whose distribution is invariant by unitary conjugation
are also studied in a quite general framework, with application to fluctuations of
outliers of elliptic matrices (see section 4.2.5).

0.1 The “Single Ring Theorem’ Model

0.1.1 Singular values of a matrix
We remind here the definition of the singular values of matrix

Definition 0.1.1 (Singular values). Let A be N x N matrix. The singular val-
ues si,...,sy of A the eigenvalues of the positive-semidefinite Hermitian matrix
AA*,

The positive-semidefinite Hermitian matrix v/ AA* is also the “Hermitian” part
of the polar decomposition of A, i.e. A can be written as a unique product of an
unitary matrix U and a positive-semidefinite Hermitian matrix H

A = UH.

Hence, a geometric interpretation of the singular values of A is to see them as the
values of the semiaxes of the ellipsoid

Ea = {Av, |v|=1}.
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O~

Figure 1: Singular values s; and s, of a matrix A € R**2.

Moreover, unlike the eigenvalues, the singular values are a good criterion for
the distance to the null matrix. In fact, some of the usual matrix norms can be
defined thanks to the singular values.

N
Al == VTrAA* = Y 2, 1Al = HHll‘aleAVIlz = m]gfcsi.
i=1 Viz= =

0.1.2 Definition of the model

Let A be a N x N random matrix such that

S1
A =10 v @)
SN
where
e U, V and the s;’s are independent,
e U and V are Haar-distributed,
e (s1,...,85v) is a random N-tuple of non negative real numbers.

Note that A is isotropic in the sense that the distribution of A is invariant by left
and right multiplication by any unitary matrix (independent from A) due to the
properties of the Haar measure. Conversely, any random matrix whose distribution
satisfies such invariant condition is of the form (1). Actually, one can see the dis-
tribution of A as : A is uniformly distributed among the matrices whose singular
values are (sy,...,5n).

0.1.3 Examples

We can already give some examples.

- A Haar-distributed matrix fulfills the previous condition with (sy,...,sy) ~
5oV,
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- Another important example is the Ginibre ensemble, which is N x N random
matrices G with i.i.d. entries whose distribution are centered Gaussian vari-
ables with variance 1/N. It is easy to show that for any unitary matrix U
(independent from G), one has

¢ Yuc Y qu

- More generally, random matrices Ay distributed according to the law

1
—exp (—=NTrV(XX"))dX,
Zy
where dX is the Lebesgue measure of the N x N complex matrices set, V is a
polynomial with positive leading coefficient and Zy is a normalization con-
stant. One can notice that V (x) = 5 gives the renormalized Ginibre matrices.

0.1.4 The Single Ring Theorem

One distinctive feature of such matrices is that their eigenvalues tend to spread
over a single annulus centered in the origin (see Figures 3.11(a), 3.11(b), 2(c) and
2(d)). This result, partially proved by Feinberg and Zee in [42], is due to Guionnet,
Krishnapur and Zeitouni ([49]) where they made the following assumptions. For
all N > 1, let Ay be a N x N random matrix such that

AN = UNTNVN,

where Ty = diag(sy,...,sy) is a non-negative diagonal matrix and Uy and Vy are
both Haar-distributed, independent from each other and independent from the s;’s.
Then we make additional assumptions.

Hypothesis 0.1.2. The empirical spectral measure of Ty

M=

1
Hry = N 8,

1

Il
_

converges in probability to a compactly supported measure v.
Hypothesis 0.1.3. There exists M > 0, such that P(|| Tx||op > M) — 0,
Hypothesis 0.1.4.

1
Im(z) > N ¥ = ‘Im (GMTN (Z)) ‘ < pe
where, for any measure ®, Gg designates its Cauchy Transform

Golz) = / 1 oav).

I—X
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Remark 0.1.5. There is actually another assumption in the Single Ring Theorem
[49], but Rudelson and Vershynin showed in [86] that it was unnecessary. In [10],
Basak and Dembo also weakened the hypotheses of the Single Ring Theorem
(roughly allowing Hypothesis 0.1.4 not to hold on a small enough set, so that v
is allowed to have some atoms).

Theorem 0.1.6 (Single Ring Theorem, [49]). If Ay is a sequence of random ma-
trices satisfying the previous hypothesis, then

1. The empirical spectral measure of Ay converges in probability to a deter-
ministic probability measure L.

2. The measure U possesses a radially-symmetric density p(z) with respect to
the Lebesgue measure on C depending only on v and supported on a single
ring {z € C, a <z < b} where

1
a:= \/W ;b= /xzv(dx).

Remark 0.1.7. With the convention 1/ = 0, one can have a = 0 so that the sup-
port is a disk (see for example the Ginibre case figure 3.11(b)). Also, if v is a
Dirac measure, we have a = b so that the support is a circle (see for example the
Haar-distributed case figure 3.11(a)).

Remark 0.1.8. One should notice that the support of U is a single ring and can-
not consist in two concentric annuli for example, which means that the support is
connected even if it is not the cas for the one of v (see figure 2(d)).

The previous theorem gives us the global behavior of the spectrum of Ay but
allows, for example, a finite number of eigenvalues to stay away from the bulk (i.e.
the support of limit distribution). Guionnet and Zeitouni proved in 2012 ([50]) that
the Single Ring model doesn’t have these particular kind of eigenvalue, usually
called outliers. More precisely, they showed the following result.

Theorem 0.1.9 (Convergence of the support in the Single Ring Theorem, [50]). As
N goes to infinity,

max 4| 2 b, min 4] 5 a.
A€Sp(An) A€Sp(Ay)

0.2 The Gaussian Elliptic Ensemble

Matrices from the Gaussian elliptic ensemble, first introduced in [89], can be de-
fined as follows.

Definition 0.2.1. A Gaussian elliptic matrix of parameter p € [—1,1] is a random
matrix Y = [y;;]V ;-1 such that
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(a) Spectrum of a 500 x 500 Haar- (b) Spectrum of a 500 x 500 Ginibre ma-
distributed matrix. trix.
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(d) Spectrum of a 500 x 500 random matrix
of the form ~ Udiag(sy,...,sn)V where of the form ~ Udiag(sy,...,sny)V where

(SI,A .. 7SN) ~ %1[175] (dx)®N. (Sl,.. .,SN) ~ %(51 + 33)®N
Figure 2: Spectrum of isotropic matrices.

o {(vij,vji),1 <i<j<N}U{yii, 1 <i<N}isafamily of independent random
vectors,

o {(ij,yji),1 <i< j<N} areii.d. Gaussian such that
Ey; =Ey% =Eyijy: =0, Ely;>=Ely;>=1 d Eyyi=
Yij Yji YijYji ) Yij Yji an Yijyji =P
e {yi,1 <i <N} areii.d. Gaussian such that

Eyi=p and Ely;]*=1.

Remark 0.2.2. This ensemble is called elliptic due to the fact the eigenvalues of
such matrices tend to spread over an ellipse. Indeed, it is known (see [89]) that
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when one renormalizes by ﬁ a matrix from the Gaussian elliptic ensemble, its
limiting eigenvalue distribution, as N goes to infinity, is the uniform measure p,
on the ellipse

Re(z)? Im(z)?
ép = {ZEC;(1+(2)2+(1(ZP))2 §1}. 2)

#
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(a) Spectrum of a 500 x 500 Gaussian (b) Spectrum of a 500 x 500 Gaussian el-
elliptic matrix where p = 0.2. liptic matrix where p = —0.4.

Figure 3: Spectrum of Gaussian elliptic matrices.

Remark 0.2.3. Gaussian elliptic matrices can be seen as an generalization of GUE
matrices and the Ginibre matrices. Indeed, a Gaussian elliptic matrix Y of param-
eter p can be realized as

where H; and Hj are two independent GUE matrices from the GUE. Hence GUE
matrices (resp. Ginibre matrices) are Gaussian elliptic matrices of parameter 1
(resp. 0).

One can also define more general elliptic random matrices (see [70, 71, 73,
] for more details). One feature of the Gaussian elliptic matrices is that their
distribution is invariant by unitary conjugation (see for example Remark 0.2.3).

0.3 Spiked models

In this thesis, we study an additive deformation of random matrices. Forany N > 1,
let Ay be a N x N random matrix with no “natural outliers” : i.e. with a probability
tending to one, there is no eigenvalue of Ay away from the bulk. Let Py bea N x N
matrix of perturbation which shall be “small” in the sense
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e the rank of Py is bounded : it means that there exists a fixed integer k,
independent from N, such that rank(Py) <k,

e the operator norm of Py is also bounded, uniformly in N.

We also assume that Py is independent from Ay. Then, we consider
Ay = Ay+Py. A3)

As Py has finite rank, it barely affects the global behavior of the spectrum, never-
theless, it can generate outliers. Since we assume that Ay has no natural outliers,
the questions are :

- what are the conditions on Py to observe outliers for XN?
- is there a phase transition as in [9]?

- what are the behavior of such outliers (location, distribution of the fluctua-
tions, rate of convergence, correlation ...)?

0.4 Results

In the first paper Outliers in the Single Ring Theorem [21], we did observe a phase
transition: we proved that all eigenvalues of Py with a modulus higher than b (the
upper radius of the ring support) give birth to an outlier equal to this eigenvalue.
Conversely, any eigenvalue with modulus lower than b generate no outlier, even
inside the inner circle of the ring (i.e. the z with modulus lower than a) : see Figure
1.5.

The true novelty of this paper was the result on the fluctuations : due to the non Her-
mitian form of the additive perturbation, we had to consider the Jordan Canonical
Form (JCF) of the matrix P and we showed that asymptotic behavior of the outliers

highly depends on the JCF of Py : more precisely, unlike the Hermitian case, the

. . 1 . 1 .
convergence rate is no longer necessarily — but is equal to ———— where p is

VN (VA 77

the size of the Jordan block associated to the eigenvalue of Py. Moreover, the out-
liers tend to locate around their limit at the vertices of a p-sided regular polygon
(see Figure 1.6). At last, since the perturbation is not Hermitian, its eigenvectors
cannot necessarily be chosen orthogonal : we showed that it can make appear some
correlations between outliers at macroscopique distance from each other. This last
phenomenon has been already noticed by Knowles and Yin in [62] in the Hermi-
tian case, but the correlation they observed was due to the non Gaussian structure
of the model, whereas in our case we can observe such correlated outliers for ran-
dom matrices from the Ginibre ensemble. Our proofs, as in most other results, rely
on heavily the so-called Weingarten calculus, an integration method for the Haar
measure on the unitary group developed by Collins and Sniady in [36, 38].
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In a second time, using the same tools than the previous paper, we obtained
results on the fluctuations of linear spectral statistics of a random matrix A form the
Single Ring Theorem. More precisely, for any analytic function f on the ring {a <
|z| < b} and any deterministic matrix N (whose Frobenius norm is a O(N -1/ 2)),
we proved that

Tr((f(A) = f(0)DN)

weakly converges to a Gaussian distribution. One of the main difficulties of this
second paper was since {a < |z| < b} is not simply connected, we had to study
Laurent series of matrix A and understand the joint distribution of (A,A~"). As an
application of the result, we were able to study a multiplicative perturbation which
yields spikes inside the inner circle of the ring (see Figure 2.8).

Then, we wanted to use the good understanding of the non Hermitian structure
of the additive perturbation on well-known models. Hence, in the third paper,
we investigated nearly Hermitian random matrices which are Hermitian random
matrices with a non Hermitian additive deformation. We found back the same kind
of result from the first paper (phase transition, various rates of convergence due to
the JCF of the perturbation, correlation between far away outliers,...) but we also
proved that in some cases, the spikes can outnumber the rank of the perturbation
(see Figure 3.9(b)), phenomenon already observed in [19] in the case where the
support of the limit spectral distribution has a disconnected support (see also [12]).
In our case, the phenomenon occurs even for connected support.

At last, we studied more generic models which are invariant in distribution by
unitary conjugation. We obtained the limit distribution of the fluctuations of matrix
entries and as an application of this result, we studied the outliers of low-ranked
perturbation of matrices from the Gaussian elliptic ensemble. We proved, up to
some changes, that main theorem of the first paper still apply for such matrices
(see Figure 4.12).
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Abstract :

This text is about spiked models of non-Hermitian random matrices. More specifically, we
consider matrices of the type A + P, where the rank of P stays bounded as the dimension
goes to infinity and where the matrix A is a non-Hermitian random matrix, satisfying an
isotropy hypothesis: its distribution is invariant under the left and right actions of the uni-
tary group. The macroscopic eigenvalue distribution of such matrices is governed by the so
called Single Ring Theorem, due to Guionnet, Krishnapur and Zeitouni. We first prove that
if P has some eigenvalues out of the maximal circle of the single ring, then A + P has some
eigenvalues (called outliers) in the neighborhood of those of P, which is not the case for the
eigenvalues of P in the inner cycle of the single ring. Then, we study the fluctuations of the
outliers of A around the eigenvalues of P and prove that they are distributed as the eigen-
values of some finite dimensional random matrices. Such kind of fluctuations had already
been shown for Hermitian models. More surprising facts are that outliers can here have
very various rates of convergence to their limits (depending on the Jordan Canonical Form
of P) and that some correlations can appear between outliers at a macroscopic distance
from each other (a fact already noticed by Knowles and Yin in [62] in the Hermitian case,
but only for non Gaussian models, whereas spiked Gaussian matrices belong to our model
and can have such correlated outliers). Our first result generalizes a result by Tao proved
specifically for matrices with i.i.d. entries, whereas the second one (about the fluctuations)
is new.

1.1 Introduction

We know that, most times, if one adds to a large random matrix, a finite rank per-
turbation, it barely modifies its spectrum. However, we observe that the extreme
eigenvalues may be altered and deviated away from the bulk. This phenomenon
has already been well understood in the Hermitian case. It was shown under sev-
eral hypotheses in [77, 43, 28,29, 19, 20, 16, 17, 30, 61, 62] that for a large random
Hermitian matrix, if the strength of the added perturbation is above a certain thresh-
old, then the extreme eigenvalues of the perturbed matrix deviate at a macroscopic
distance from the bulk (such eigenvalues are usually called outliers) and have well
understood fluctuations, otherwise they stick to the bulk and fluctuate as those of
the non-perturbated matrix (this phenomenon is called the BBP phase transition,
named after the authors of [9], who first brought it to light for empirical covari-
ance matrices). Also, Tao, O’Rourke, Renfrew, Bordenave and Capitaine studied a
non-Hermitian case: in [92, 73, 24] they considered spiked i.i.d. or elliptic random
matrices and proved that for large enough spikes, some outliers also appear at pre-
cise positions. In this paper, we study finite rank perturbations for another natural
model of non-Hermitian random matrices, namely the isofropic random matrices,
i.e. the random matrices invariant, in law, under the left and right actions of the
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unitary group. Such matrices can be written

S1
A=U v, (1.1)
SN

with U and V independent Haar-distributed random matrices and the s;’s some pos-
itive numbers which are independent from U and V. We suppose that the empirical
distribution of the s;’s tends to a probability measure v which is compactly sup-
ported on R*. We know that the singular values of a random matrix with i.i.d.
entries satisfy this last condition (where v is the Marcenko-Pastur quarter circular
law with density 7~ !v/4 — le[m} (x)dx, see for example [2, 6, 91, 25]), so one can
see this model as a generalization of the Ginibre matrices (i.e. matrices with i.i.d.
standard complex Gaussian entries). In [49], Guionnet, Krishnapur and Zeitouni
showed that the eigenvalues of A tend to spread over a single annulus centered in
the origin as the dimension tends to infinity. Furthermore in [50], Guionnet and
Zeitouni proved the convergence in probability of the support of its ESD (Empir-
ical Spectral Distribution) which shows the lack of natural outliers for this kind
of matrices (see Figure 1.4). This result has been recently improved in [15] with
exponential bounds for the rate of convergence.

In this paper, we prove that, for a finite rank perturbation P with bounded oper-
ator norm, outliers of A+ P show up close to the eigenvalues of P which are outside
the annulus whereas no outlier appears inside the inner circle of the ring. Then we
show (and this is the main difficulty of the paper) that the outliers have fluctuations
which are not necessarily Gaussian and whose convergence rates depend on the
shape of the perturbation, more precisely on its Jordan Canonical Form?. Let us
denote by a < b the radiuses of the circles bounding the support of the limit spec-
tral law of A. We prove that for any eigenvalue 6 of P such that || > b, if one
denotes by

Ply--sP1 > P2y s P2> > Poye-o Pa
—_— —_————
B times B, times Bo, times

the sizes of the blocks of type R,(6) (notation introduced in Footnote 2) in the
Jordan Canonical Form of P, then there are exactly 1 p; + - - - + Bape outliers of

ZRecall that any matrix M in the set .#x(C) of N x N complex matrices is similar to a square
block diagonal matrix

R, (6) (0) & 1 (0)
(0 SR
Rea(02) where  R,(8) = o € M,(C),

0 R, (6, 0 o

which is called the Jordan Canonical Form of M, unique up to the order of the diagonal blocks [53,
Chapter 3].



1.1. INTRODUCTION 17

A +P tending to 6 and among them, B p; go to 8 at rate N~/(2P1) B, p; go to 6
at rate N~/ (2r2) etc... (see Figure 1.4). Moreover, we give the precise limit distri-
bution of the fluctuations of these outliers around their limits. This limit distribu-
tion is not always Gaussian but corresponds to the law of the eigenvalues of some
Gaussian matrices (possibly with correlated entries, depending on the eigenvectors
of P and P*). A surprising fact is that some correlations can appear between the
fluctuations of outliers with different limits. In [62], for spiked Wigner matrices,
Knowles and Yin had already brought to light some correlations between outliers
at a macroscopic distance from each other but it was for non Gaussian models,
whereas spiked Ginibre matrices belong to our model and can have such correlated
outliers.

_ -3
33 = =Y o ) 3 =3 -2 -1 0 T 2 3 T 02

Figure 1.4: Spectrums of A (left), of A+ P (center) and zoom on a part of the
spectrum of A + P (right), for the same matrix A (chosen as in (1.1) for s;’s uni-
formly distributed on [0.5,4] with N = 10%) and P with rank 4 having one block
R3(6) and one block R;(0) in its Jordan Canonical Form (6 = 4 +i). We see, on
the right, four outliers around 8 (0 is the red cross): three of them are at distance
~ N~'/¢ and one of them, much closer, is at distance &~ N~'/2. One can notice that
the three ones draw an approximately equilateral triangle. This phenomenon will
be explained by Theorem 1.2.10.

The motivations behind the study of outliers in non-Hermitian models comes
mostly from the general effort toward the understanding of the effect of a per-
turbation with small rank on the spectrum of a large-dimensional operator. The
Hermitian case is now quite well understood, and this text provides a review of
the question as far as outliers of isotropic non-Hermitian models are concerned.
Besides, isotropic non-Hermitian matrix models also appear in wireless networks
(see e.g. the recent preprint [94]).
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1.2 Results

1.2.1 Setup and assumptions

Let, for each N > 1, Ay be a random matrix which admits the decomposition
Ay =UyNTyV, with Ty = diag (sq, ..., sy) where the s;’s are non negative numbers
(implicitly depending on V) and where Uy and Vy are two independent random
unitary matrices which are Haar-distributed and independent from the matrix Ty.
We make (part of) the assumptions of the Single Ring Theorem [49] :

— Hypothesis 1: There is a deterministic number » > 0 such that as N — o, we
have the convergence in probability

1

— Tr(Ty) — b

— Hypothesis 2: There exists M > 0, such that P(|| Tx||op > M) — 0,
— Hypothesis 3: There exist a constant k¥ > 0 such that

1
Im() > N = [Im (G, (2))| < -

where for M a matrix, ty denotes the empirical spectral distribution (ESD) of M
and for g a probability measure, G, denotes the Stieltjes transform of p, that is

Example 1.2.1. Thanks to [49], we know that our hypotheses are satisfied for
example in the model of random complex matrices Ay distributed according to the
law

1
—exp(—NTrV(XX"))dX,
Zn

where dX is the Lebesgue measure of the N x N complex matrices set, V is a
polynomial with positive leading coefficient and Zy is a normalization constant. It
is quite a natural unitarily invariant model. One can notice that V' (x) = 5 gives the
renormalized Ginibre matrices.

Remark 1.2.2. If one strengthens Hypothesis 1 into the convergence in probability
of the ESD pur, of Ty to alimit probability measure v, then by the Single Ring The-
orem [49, 86], we know that the ESD ua, of Ay converges, in probability, weakly
to a deterministic probability measure whose support is {z € C, a < |z| < b} where

= (fx2v(dx) ",
= ([<v(dx)"*.
Remark 1.2.3. According to [50], with a bit more work (this works consists in

extracting subsequences within which the ESD of Ty converges, so that we are
in the conditions of the previous remark), we know that there is no natural outlier
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outside the circle centered at zero with radius b as long as ||Ty||op is bounded,
even if Ty has his own outliers. In Theorem 1.2.6, to make also sure there is no
natural outlier inside the inner circle (when a > 0), we may suppose in addition
that supy ||T1T,1 llop < ee.

Remark 1.2.4. In the case where the matrix A is a real isotropic matrix (i.e. where
U and V are Haar-distributed on the orthogonal group), despite the facts that the
Single Ring Theorem still holds, as proved in [49], and that the Weingarten cal-
culus works quite similarly, our proof does not work anymore: the reason is that
we use in a crucial way the bound of Lemma 1.5.10, proved in [15] thanks to an
explicit formula for the Weingarten function of the unitary group, which has no
analogue for the orthogonal group. However, numerical simulations tend to show
that similar behaviors occur, with the difference that the radial invariance of certain
limit distributions is replaced by the invariance under the action of some discrete
groups, reflecting the transition from the unitary group to the orthogonal one.

1.2.2 Main results

Let us now consider a sequence of matrices Py (possibly random, but independent
of Uy, Ty and Vy) with rank lower than a fixed integer  such that |Py/||op is also
bounded. Then, we have the following theorem (note that in its statement, ry, as
the A;(Py)’s, can possibly depend on N and be random):

Theorem 1.2.5 (Outliers for finite rank perturbation). Suppose Hypothesis 1 to
hold. Let € > 0 be fixed and suppose that Py hasn’t any eigenvalues in the band
{z€C, b+e<|z| <b+3e} for all sufficiently large N, and has ry, eigenvalues
counted with multiplicity’ Ay (Py), ..., A, (Py) with modulus higher than b+ 3e.

Then, with a probability tending to one, Ay + Py has exactly r, eigenvalues
with modulus higher than b+ 2€. Furthermore, after labeling properly,

P
vie {l,...,n}, A(Ay+Py)—AL(Py) 25 0,
This first result is a generalization of Theorem 1.4 of Tao’s paper [92], and so
is its proof. However, things are different inside the annulus. Indeed, the following
result establishes the lack of small outliers:

Theorem 1.2.6 (No outlier inside the bulk). Suppose that there exists M’ > 0 such
that

P(”T&IHOP >M')—0
and that there is a > 0 deterministic such that we have the convergence in proba-
bility
1

1 _
NLS T

i=1

3To sort out misunderstandings: we call the multiplicity of an eigenvalue its order as a root of
the characteristic polynomial, which is greater than or equal to the dimension of the associated
eigenspace.
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Then for all 6 €)0,al, with a probability tending to one,

HAy+Py ({z€Clz <a-4}) =0,
where A, +py IS the Empirical Spectral Distribution of Ay +Py.

Theorems 1.2.5 and 1.2.6 are illustrated in Figure 1.5 (see also Figure 1.4). We
drew circles around each eigenvalues of Py and we do observe the lack of outliers
inside the annulus.

-3 -2 -1 0 1 2 3 4 5

Figure 1.5: Eigenvalues of Ay + Py for N = 5.10°, v the uniform law on [0.5,4]
and Py = diag(1,4 +i,4 —i,0,...,0). The small circles are centered at 1,4+

and 4 — i, respectively, and each have a radius 1< (we will see later that in this

VN
particular case, the rate of convergence of A;(Ay +Py) to A;(Py) is ﬁ).

Let us now consider the fluctuations of the outliers. We need to be more pre-
cise about the perturbation matrix Py. Unlike Hermitian matrices, non-Hermitian
matrices are not determined, up to a conjugation by a unitary matrix, only by their
spectrums. A key parameter here will be the Jordan Canonical Form (JCF) of Py.
From now on, we consider a deterministic perturbation Py of rank < r/2 with r
an integer independent of N (denoting the upper bound on the rank of Py by r/2
instead of r will lighten the notations in the sequel).

As dim(ImPy + (kerPy)+) < r, one can find a unitary matrix Wy and an r x r
matrix Po such that

P, = wy [0 V) we. (1.2)
0 0

To simplify the problem, we shall suppose that Po does not depend on N (even
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though most of what follows can be extended to the case where Po depends on N
but converges to a fixed r X r matrix as N — oo).

Let us now introduce the Jordan Canonical Form (JCF) of Po : we know that
up to a basis change, one can write Po as a direct sum of Jordan blocks, i.e. blocks
of the type

o 1 (0)
R,(0) = - 1 eMy(C) (BeC.p>1). (13)
(0) 6

Let us denote by 64, ..., 6, the distinct eigenvalues of Po which are in {|z| > b+3¢}
(for b as in Hypothesis 1 and € as in the hypothesis of Theorem 1.2.5) and for each
i=1,...,q, introduce a positive integer ¢;, some positive integers p; 1 > -+ > p; o,
corresponding to the distinct sizes of the blocks relative to the eigenvalue 6; and
Bi1;---,Biq such that for all j, R, (6;) appears fB; ; times, so that, for a certain
Q € GL,(C), we have:

q
J=Q '"PoQ = (Matrix with spec. C {|z| <b+3e}) D P
RPi.j(ei)

Bi,; blocks
(1.4)

M 0
where @ is defined, for square block matrices, by M@ N := ( 0 N> .

The asymptotic orders of the fluctuations of the eigenvalues of XN =Ay+Py
depend on the sizes p; ; of the blocks. Actually, for each 6;, we know, by Theorem
1.2.5, there are ):?‘;1 pij x Bi,j eigenvalues of Ay which tend to 6; : we shall write

B~
them with a tilda and a 6; on the top left corner: A. Theorem 1.2.10 below will
state that for each block with size p; ; corresponding to 6; of the JCF of Po, there

6~
Pi, jA )
whose convergence rate will be N ~1/(2pij) | As there are Bi,; blocks of size p; ;, there

are actually p; ; x B; ; eigenvalues tending to 6; with convergence rate N—1/@pij)

are p; ; eigenvalues (we shall write them with p; ; on the bottom left corner :

0~ .
(we shall write them p”/ls,t withs € {1,...,p;j} andz € {1,...,B; ;}). It would be
convenient to denote by A, ; the vector with size p; ; x f3; ; defined by

0, ~
A,'J = <N1/(2Pi.j) . (p’_ljﬂ,” — 9,)) 1<s<p, (1.5)

1<t<B;;
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Let us now define the family of random matrices that we shall use to character-
ize the limit distribution of the A; ;’s. For each i =1,...,q, let I(6;) (resp. J(6;))
denote the set, with cardinality Z?‘;l Bi . of indices in {1,...,r} corresponding to
the first (resp. last) columns of the blocks R, .(6;) (1 < j < @) in (1.4).

Remark 1.2.7. Note that the columns of Q (resp. of (Q~!)*) whose index belongs
to 1(6;) (resp. J(6;)) are eigenvectors of Po (resp. of Po*) associated to 6; (resp.
6,). Indeed, ifk eI (6;) and e denotes the k-th vector of the canonical basis, then
Je, = 0;e;, so that Po(Qe;) = 6,Qey.

Now, let

(mfe)i-1...q. (1.6)

(k,0)eJ (6:) x1(6:)

be the random centered complex Gaussian vector with covariance

B (mb m 6 6, b
(’"kﬁmk’w) =0, Elmimg, )= 06, 2 ¢;Q'(Q ') er €/ Q" Qey,
1.7)
where e1,...,e, are the column vectors of the canonical basis of C". Note that

each entry of this vector has a rotationally invariant Gaussian distribution on the
complex plane.

For each i, j, let K(i, j) (resp. K(i,j)™) be the set, with cardinality f3; ; (resp.
):J, 1 Bi.j), of indices in J(6;) corresponding to a block of the type R, (6;) (resp.
to a block of the type R, ,(6;) for j' < j). In the same way, let L(i, ) (resp.
L(i,j)~) be the set, with the same cardinality as K(i, j) (resp. as K(i,j)), of
indices in 1(6;) corresponding to a block of the type R, ;(6;) (resp. to a block of
the type Rpi,j,(Gi) for j/ < j). Note that K(i,j)~ and L(i, j)~ are empty if j = 1.
Let us define the random matrices

9,'71 . 6; 9,',H . 0;
M= ek - M;™ = Imylienci
LeL(i,j)- LeL(i.j)
(1.8)
6,111 | 0; 0,1V, 0;
MO = ek M= g lkeig)
CeL(i,j)~ CeL(i,j)
and then let us define the matrix M?" as
-1
6 . n 6,1V A 6,11 [ x6:,1 6,11
MY = 6, <Mj M (Mj ) M > (1.9)

Remark 1.2.8. It follows from the fact that the matrix Q is invertible, that M?" Tis
a.s. invertible and so is M?".

Remark 1.2.9. From the Remark 1.2.7 and (1.7), we see that each matrix M?" es-
sentially depends on the eigenvectors of Py and of Py, associated to blocks R, (6;)

in (1.4) and the correlations between several M?" ’s depend essentially on the scalar
products of such vectors.
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Now, we can formulate our main result.

Theorem 1.2.10.  I. As N goes to infinity, the random vector

(Aijh<i<q

1<j<oy

defined at (1.5) converges jointly to the distribution of a random vector

(A7j)1<i<q
I<j<o;
with joint distribution defined by the fact that for each 1 <i<gand1 < j<
i, A7} is the collection of the p;, J-”’ roots of the eigenvalues of M?" defined
at (1.9).

2. The distributions of the random matrices MJG-’ are absolutely continuous with
respect to the Lebesgue measure and none of the coordinates of the random

vector (A‘f]) I1<i<q has distribution supported by a single point.
o)<

Remark 1.2.11. Each non zero complex number has exactly p; ; p; ;™ roots, draw-
ing a regular p; ;-sided polygon. Moreover, by the second part of the theorem, the
spectrums of the M?"’s almost surely do not contain 0, so each A7} is actually a
complex random vector with p; ; x B; ; coordinates, which draw f3; ; regular p; ;-

sided polygons.

Example 1.2.12. For example, suppose that Py has only one eigenvalue 6 with
modulus > b+ 2¢ (i.e. ¢ = 1), with multiplicity 4 (i.e. r, =4). Then five cases can
occur (illustrated by simulations in Figure 1.6, see also Figure 1.4, corresponding
to the case (b)):

(a) The JCF of Py for 6 has one block with size 4 (so that o) = 1, (p1,1,B1,1) =
(4,1)) : then the 4 outliers of Ay are the vertices of a square with center ~ 6
and size ~ N~1/8 (their limit distribution is the one of the four fourth roots
of the complex Gaussian variable Om(l’!1 with covariance given by (1.7)).

(b) The JCF of Py for 6 has one block with size 3 and one block with size 1
(sothat ay =2, (p1,1,B1,1) = (3,1), (p12,B12) = (1,1)) : then the 4 outliers
of KN are the vertices of an equilateral triangle with center ~ 0 and size
~ N~/ plus a point at distance ~ N~'/2 from 6 (the three first ones behave
like the three third roots of the variable Gmf_l and the last one behaves like
0(m§, —mf ymf, /m? ) where m,,m¢ ,,m§  .mf, are Gaussian variables
with correlations giveh by (1.7)). ' 7 7 7
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(©)

(d)

(e)

The JCF of Py for 6 has two blocks with size 2 (so that &y = 1, (p1.1,B1.1) =
(2,2)) : then the 4 outliers of XN are the extremities of two crossing segments
with centers =~ 6 and size ~ N~ !/4 (their limit distribution is the one of the
square roots of the eigenvalues of the matrix

where m? | ,m% ;,m§ | ,mf ; are Gaussian variables with correlations given by

(1.7)).

The JCF of Py for 8 has one block with size 2 and two blocks with size 1 (so
that o = 2, (p1,1,ﬁ1,1) = (2, 1), <p1’2,ﬁ172) = (1,2) ) : then the 4 outliers of
Ay are the extremities of a segment with center ~ 6 and size ~ N~/* plus
two points at distance ~ N ~1/2 from @ (the two first ones behave like the
square roots of @m? | and the two last ones behave like the eigenvalues of
the matrix ,

0 0 0
0 _ mszs M3y 0 (m3,; 0 0
My =6 0 o | ;0 0 mys My,
mys Nyy L1 \"4
where the mf j’s are Gaussian variables with correlations given by (1.7)).

The JCF of Py for 6 has four blocks with size 1 (sothat oy =1, (p1.1,B1,1) =

(1,4)) : then the 4 outliers of Ay are four points at distance ~ N~'/2 from 6
(their limit distribution is the one of the eigenvalues of the matrix

where the m? .’

ij’sare Gaussian variables with correlations given by (1.7)).
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(a) The blue dots draw a square with cen-
ter &~ 0 at distance ~ N~1/8 from 6

18 19 20 21 22

(c) The blue dots draw two crossing seg-
ments with centers ~ 6 and lengths ~
N~ 1 / 4

25

(b) The blue dots draw an equilateral
triangle with center ~ 6 at distance ~
N1/ from 6 plus a point at distance
~N~1/2 from 6

18 19 20 21 22

(d) The blue dots draw a segment with
center ~ 0 and length ~ N —1/4 plus two
points at distance ~ N 12 from 6

Figure 1.6: The four first cases of Example 1.2.12 (the fifth one, less visual, does
not appear here): the red cross is 8 and the blue circular dots are the outliers of
Ay + Py tending to 8. Each figure is made with the simulation of Ay a renormal-
ized Ginibre matrix with size 2.103 plus Py (whose choice depends of course of

the case) with 0 = 2.

1.2.3 Examples
Uncorrelated case

Let us suppose that

Vil = 1,...,q, Yk, 0, 0') € J(6;) x 1(6;) x J(6,) x I(6),

—1 —1
e Q (Q ey - €,QQep = Ly—p —r

(1.10)
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Note that it is the case when in (1.7), Q is unitary, i.e. when P is unitarily conju-
J 0 . .
gated to (O 0) , with J as in (1.4).

By (1.7), Hypothesis (1.10) implies that the entries m,?fg of the random vector
of (1.6) are independent and that each m,ffg has a distribution which depends only
on ;. Let us introduce some notation. For B a positive integer, we define*

Ginibre(B) := B x f random matrix with i.i.d. .47(0,1) entries, (1.11)

Ginibre(B, ) := B x B’ random matrix with i.i.d. .47(0, 1) entrie§].12)
and we get the following corollary:
Corollary 1.2.13. If Hypothesis (1.10) holds, then :

1. the collection of random vectors (A 1,Ai2, ..., Aig,), indexedbyi=1,...,q,
i.e. by the distinct limit outliers 0;, is asymptotically independent,

2. foreachi=1,...,qand each j=1,...,q; the matrix M?i is distributed as:
o if j=1, then
0 6;b

N

Ginibre(Bi,j),

o if j> 1, then

: 0;b .. .. . _ .
Y P (Glnlbre(Bi, j) — Ginibre(p; j, pi, ;) x Ginibre(p; ;) I Ginibre(p; , B;, ])) ,

VI
where the four Ginibre matrices involved if j > 1 are independent and where
i—1
Pij =Y By
Remark 1.2.14.

e The first part of this corollary means that under Hypothesis (1.10), the fluc-
tuations of outliers of Ay with different limits are independent. We will see
below that it is not always true anymore if Hypothesis (1.10) does not hold.

e In the second part of this corollary, j = 1 means that p; ; = max; p; j, i.e.
that we consider the outliers of A, at the largest possible distance (=~ N~ 1/ (21’“))
from 6;.

*For any ¢ > 0, .#(0,06%) denotes the centered Gaussian law on C with covariance

1620
2\o o2/
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o In the second part of the corollary, for j > 1, the four matrices involved are
independent, but the M?i ’s are not independent as j varies (the reason is that

the matrix MJ(?" Tof (1.9) contains Mﬁ" IV as a submatrix as soon as Jj <.

e If one weakens Hypothesis (1.10) by supposing it to hold only for i = i’ (resp.
i # i), then only the second (resp. first) part of the corollary stays true.

The i = i’ case of the last point of the previous remark implies the following
corollary.

Corollary 1.2.15. If, for a certain i, o; = Bi1 = 1 (i.e. if ; is an eigenvalue of P
with multiplicity’ pi1 but with associated eigenspace having dimension one), then

the random vector
6, ~
(Nl/(ZPi,l) . (p“)bs,l _ 91'))
' 1<s<pi

e 2
converges in distribution to the vector of the pi71th roots of a A (0 b

random variable.

Correlated case

If Hypothesis (1.10) does not hold anymore, then the individual and joint distribu-

tions of the random matrices M?" are not anymore related to Ginibre matrices as

in Corollary 1.2.13: the entries of the matrices Mf"’l"H’IH’IV of (1.9) can have non

uniform variances, even be correlated, and one can also have correlations between
. . RS . ..
the entries of two matrices M?’, M j,’/ for 6; # 6. This last case has the surprising

consequence that outliers of KN with different limits can be asymptotically corre-
lated. Such a situation had so far only been brought to light, by Knowles and Yin
in [62], for deformation of non Gaussian Wigner matrices. Note that in our model
no restriction on the distributions of the deformed matrix Ay is made (Ay can for
example be a renormalized Ginibre matrix). The following corollary gives an ex-
ample of a simple situation where such correlations occur. This simple situation
corresponds to the following case : we suppose that for some i # ¢’ in {1,...,q},
we have i1 = By = 1. We let £ and ¢’ (resp. k and k") denote the indices in
{1,...,r} corresponding to the last (resp. first) columns of the block R,, , (6;) and
of the block R, (6;) and set

K = ¢,Q '(Q ey - €/Q"Qe. (1.13)

We will see in the next corollary that as soon as K # 0, the fluctuations of outliers
at macroscopic distance from each other (i.e. with distinct limits) are not indepen-

SLet us recall that what is here called the multiplicity of an eigenvalue its order as a root of the
characteristic polynomial, which is not smaller than the dimension of the associated eigenspace.
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dent. Set
2. |6
S

212
NP 2 0;:|°b R
G0 @ e Qe 0% @ e Qe
4

(1.14)

Corollary 1.2.16. Under this hypothesis, forany 1 <s < p;andany 1 <s' < py |,
as n — oo, the random vector

Y Pil , ~ Pi' 1
(Zn.Z4) = (W( G'As,l—ei) ,Jﬁ< o A«.,l—e,v> ) (1.15)

Dil Pi 1

converges in distribution to a complex centered Gaussian vector (Z,Z') defined by

_ 6,6, > K
Z~N(0,6%), Z ~N(0,067%), E[zZ] =0, E[ZZ] = Yt
L16)

Example 1.2.17. Let us illustrate this corollary (which is already an example) by
a still more particular example. Suppose that A,, is a renormalized Ginibre matrix
and that for 6 = 1.5+, 8’ =3 +i and for k € R\{—1, 1}, Po is given by

(6 o) ., (1 %
Po_Q(o 9'>Q’ Q_<K' 1)'

In this case, g =2, o = = P11 = P21 :ﬁm :l};] =landl=k=1, V=

k' = 2. Thus Ay + Py has two outliers EN = :_,Il,l and jLV’N = pf_lihl and one

can compute the numbers K, o,6’ of (1.13), (1.14) and get '

5% — (14 x2)? 57 — (14 2)? E[Z7] - 7—41(2 .

(1—16]72)(1 —x?)? (1—16"172)(1 —x?)? (1-(66")~1)(1—x2)?

B _ 1.17)

We see that for k = 0, Zy = v/N(A — 6) and Zy = v/N(A' — 8') are asymptotically

independent, but that for k¥ # 0, Zy and Z}, are not asymptotically independent

anymore. This phenomenon and the accuracy of the approximation (Zy,Zy) ~

(Z,7') for N >> 1 are illustrated by Table 1.1 and Figure 1.7, where 103 samples of

(Zn,Z};) have been simulated for N = 10°.

1.2.4 Preliminaries to the proofs

First, for notational brevity, from now on, N will be an implicit parameter (A :=
Ay, P:=Py,...), except in case of ambiguity.

Secondly, from now on, we shall suppose that T is deterministic. Indeed, once
the results established with T deterministic, as T is independent from the others
random variables and the only relevant parameter b is deterministic, we can condi-
tion on T and apply the deterministic result. So we suppose that T is deterministic
and that there is a constant M independent of N such that for all N,

ITllop < M.
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E[|Z]] E[|Z'|?] E[zZ']
K‘:O‘ k=212 K:O‘K:Tl/z k=0 ‘K:Z*I/z
Theorical | 1.444 | 13.0 1.111 | 10.0 0.0 —8.755 —1.358i
Empirical | 1.492 | 12.72 1.107 | 10.04 0.00616 —0.00235; | —8.917—1.317i

Table 1.1: Comparison between theoretical asymptotic formulas (1.16) and (1.17)
and a Monte-Carlo numerical computation made out of 103 matrices with size N =
103,

) -3 -2 -1 o 1 2 -10 -5 0 5 I

(a) k¥ =0 : uncorrelated case. (b) k¥ = 2712 . correlated case. The
straight line is the theoretical optimal re-
gression line (i.e. the line with equation
y = ax where a minimizes the variance of
Y —aX, computed thanks to the asymp-
totic formulas (1.16) and (1.17)): one can
notice that it fits well with the empirical
datas.

Figure 1.7: Lack of correlation/correlation between outliers with different limits
: abscissas (resp. ordinates) of the dots are X := J(Zy) (resp. Y := 3(Z))) for
103 independent copies of (Zy, Z)) (computed thanks to matrices with size N = 10
as for Table 1.1).

Thirdly, as the set of probability measures supported by [0, M] is compact, up to
an extraction, one can suppose that there is a probability measure ® on [0, M] such
that the ESD of T converges to ® as N — . We will work within this subsequence.
This could seem to give a partial convergence result, but in fact, what is proved is
that from any subsequence, one can extract a subsequence which converges to the
limit given by the theorem. This is of course enough for the proof. Note that

by Hypothesis 1, we have b = / x*@(dx). Having supposed that the ESD of T

converges to @ insures that A satisfies the hypotheses® of the Single Ring Theorem

OThere is actually another assumption in the Single Ring Theorem [49], but Rudelson and Ver-
shynin recently showed in [86] that it was unnecessary. In [10], Basak Dembo also weakened the
hypotheses (roughly allowing Hypothesis 3 not to hold on a small enough set, so that v is allowed
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of [49] and of the paper [50]. We will use it once, in the proof of Lemma 1.6.1,
where we need one of the preliminary results of [50].
At last, notice that A + P and V(A 4+ P)V* have the same spectrum, that

V(A+P)V* = VUT + VPV*, (1.18)

and that as U and V are independent Haar-distributed matrices, VU and V are also
Haar-distributed and independent. It follows that we shall, instead of the hypothe-
ses made above the statement of Hypotheses 1, 2, and 3, suppose that:

A=UT with T deterministic and U Haar-distributed (1.19)

and P is independent of A and invariant, in law, by conjugation by any unitary matrix.

In the sequel Ey will denote the expectation with respect to the randomness of U
and not to the one of P. In the same way, Ep will denote the expectation with
respect to the randomness of P.

1.2.5 Sketch of the proofs

We start with the following trick, now quite standard in spiked models. Let B €
M nxr(C) and C € A ,n(C) such that P = BC (where .# ,,,(C) denotes the
rectangular complex matrices of size p X ¢). Then

det(zI—A) = det(zI— (A+P))
= det(zI—A)det(I-(zI-A)"'P)
= det(zI—A)det(I-(zI-A) 'BC)
= det(zI—A)det(I-C(zI-A)"'B). (1.20)

For the last step, we used the fact that for all M € .#,xy and N € .Z y,(C),
det (I, + MN) = det(Iy +NM). Therefore, the eigenvalues z of A which are not
eigenvalues of A are characterized by

det(I-C(zI—A)"'B) = 0. (1.21)

In view of (1.20), as previously done by Tao in [92], we introduce the meromorphic
functions (implicitly depending on N)

f(z) = det(I-C(zI-A) 'B) = m, (1.22)
g(z) = det(I-C(zI) 'B) = dectl(eztI(Z—I)P) (1.23)

to have some atoms). As it follows from the recent preprint [15] that the convergence of the ex-
treme eigenvalues first established in [50] also works in this case, we could harmlessly weaken our
hypotheses down to the ones of [10].
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and aim to study the zeros of f.

e The proof of Theorem 1.2.5 (eigenvalues outside the outer circle) relies on
the fact that on the domain {|z| > b+2¢}, f(z) = g(z). This follows from the fact
that for |z| > b+ 2¢, the N x N matrix (zI — A)~! —z~'T has small entries, and even
satisfies

X((A-A) 'z Dy <1 (1.24)

for deterministic unitary column vectors X,y.

e The proof of Theorem 1.2.6 (lack of eigenvalues inside the inner circle) relies
on the fact that for |z| <a— 8, ||C(zI — A)_IBHOp < 1. We will see that it follows

from estimates as the one of (1.24) for A replaced by A~!.

e The most difficult part of the article is the proof of Theorem 1.2.10 about the
fluctuations of the outliers around their limits 6; (1 <i < g). As the outliers are the
zeros of f, we shall expand f around any fixed 6;. Specifically, for each block size
pij (1 < j < o), we prove at Lemma 1.5.1 that for m; ; =} ; Bi.pi; and M?i
the matrix with size’ f3; ; defined above, we have

7 (e,- e /(Zzp,;,j)) ~ 2 det (2~ MP). (1.25)
This proves that A + P has 7; ; outliers tending to ; at rate < N~'/(?Pii), has
pij % PBi j outliers tending to 6; at rate n~1/(2Pij) and that these pi,j % PBi j outliers are
distributed as the p;, jth roots of the eigenvalues of Mje-’ﬂ We see that the key result
in this proof is the estimate (1.25). To prove it, we first specify the choice of the
already introduced matrices B € .#y,(C) and C € .#,«n(C) such that P = BC
by imposing moreover that CB = J (recall that J is the r x r Jordan Canonical Form
of P of (1.4)). Then, for

5 ._ o 2 Z . N |
7= 61+N‘/(2Pw')’ X5 = VNC((ZI-A)"' -7 'DB,

we write

F5) = det (I—;J—IXIZV)

VN
1 1 .
= det (I 6 J+9, (1 14N/ @pij) 0! > 1 \/NXN>
-2
N 1 206, 1 _.
~ det (I — 9,- J+ WJ — \/NX§V> (1.26)

"Recall the B; j is the number of blocks Ry, ,(6;) in the JCF of P.
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At this point, one has to note that (obviously) det (I—6; 'J) = 0 and that (really
not obviously) the r x r random array X5, converges in distribution to a Gaussian
array as N — oo (this is proved thanks to the Weingarten calculus). Then the re-
sult will follow from a Taylor expansion of (1.26) and a careful look at the main
contributions to the determinant.

1.3 Eigenvalues outside the outer circle : proof of Theo-
rem 1.2.5

We start with Equations (1.20) and (1.21), established in the previous Section, and
the functions f and g, introduced at (1.22) and (1.23).

Lemma 1.3.1. As N goes to infinity, we have
(P)
sup |f(z) —g(z)] —

|z|>b+2¢

0.

Before proving the lemma, let us explain how it allows to conclude the proof
of Theorem 1.2.5. The poles of f and g are respectively eigenvalues of the A
and of the null matrix, hence for N large enough, they have no pole in the region
{z€ C,; |z| > b+2¢&}, whereas their zeros in this region are precisely the eigen-
values of respectively A and P that are in this region. But |g| admits the following
lower bound on the circle with radius b+ € : as we assumed that any eigenvalue of
P is at least at distance at least € from {z € C; |z| = b+2¢}, one has

N 9. r
inf lgo) = inf L=tR=API < € >

|<|=b+2¢ ls|=b+2¢ ||V b+2¢

so that by the previous lemma, with probability tending to one,
VzeC,lzl =b+2e = |f(2) —5(2)| <ls(2)l,

and so, by Rouché’s Theorem [ 1 1, p. 131], we know that inside the region {z € C,|z| < b+ 2¢},
f and g have the same number of zeros (since they both have n poles). Therefore,

as their total number of zeros is n, f and g have the same number of zeros outside

this region.

Also, Lemma 1.3.1 allows to conclude that, after a proper labeling

vie{l,....n}, M(A)—nP) o,
Indeed, for each fixed i € {1,...,r},

[T~

J=1

4;(P)
Ai(A)
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Let us now explain how to prove Lemma 1.3.1. One can notice at first that it
suffices to prove that

sup || C(cT—A)'B—C(D) "Bl o, (1.27)

|z|>b+2¢

simply because the function det : .#,(C) — C is Lipschitz over every bounded set
of .#(C). Then, the proof of Lemma 1.3.1 is based on both following lemmas
(whose proofs are postponed to Section 1.6).

Lemma 1.3.2. There exists a constant C; > 0 such that the event
(g)N = {Vk Z 17 ”Ak”op § Cl : <b+8>k}
has probability tending to one as N tends to infinity.

Lemma 1.3.3. Forall k > 0, as N goes to infinity, we have

ICA*Blop 2 0.
On the event &'y defined at Lemma 1.3.2 above, we write, for |z| > b+ 2¢,
+oo Ak
CEI—-A)"'B-C(a)'B = C) -—B.
f=1%

and it suffices to write that for any 8 > 0,
p( wp [Cl-A)B-CE) B, >8] < B(s5)+p( P Acr Bl 8
: " -7 S (b+2e)1 T2

_
2

|z|>b+2¢
+P(éyand ||C Y ——— B
k=ko+1 (b+28) N op

By to Lemma 1.3.2 and the fact that C and B are uniformly bounded (see Remark
1.5.2), we can find ko so that the last event has a vanishing probability. Then, by
Lemma 1.3.3, the probability of the last-but-one event goes to zero as N tends to
infinity. This gives (1.27) and then Lemma 1.3.1.

1.4 Lack of eigenvalues inside the inner circle : proof of
Theorem 1.2.6

Our goal here is to show that for all § €]0,a[, with probability tending to one, the
function f defined at (1.22) has no zero in the region {z € C, |z] <a— §}. Recall
that

f(z) = det(I-C(zI-A)"'B),
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so that a simple sufficient condition would be ||C(zI — A)*IBHOp < 1forall 7] <
a— 0. Thus, it suffices to prove that with probability tending to one as n tends to
infinity,
sup [[C(zA—-A)"'B, <1.
|z|<a—0&

By Remark 1.2.3, we know that A is invertible. As in Section 1.3, we write, for all
lz| <a-9,

CH-A)'B = —CA'(I-:A"")"'B

= —CcY 'A7B.
k=1

The idea is to see A~! as an isotropic random matrix such as A, since A~! =
\'A diag(%, RN i)U*, and satisfies the same kind of hypothesis. Indeed, Hypothe-
ses 1 and 2 are automatiquelly satisfied because a > 0 (see Remark 1.2.3), and
the following lemma, proved in Section 1.6.2, insures us that Hypotheses 3 is also
satisfied.

Lemma 1.4.1. There exist a constant K > 0 such that

= 1
Im(z) > N " = ’Im (G#T_1 (z))‘ < =

Thus, according to [50], the support of -1 converges in probability to the
annulus

{z €eC, b1 <7< ail} as N — oo, and so, according to (1.27),

sup CZ k+1B LP)> 0.
[E]>a'+e k= 16

Therefore
-1 > Ak

Pl sup HCzI A) BH <1l]) >1-P sup Z—

le|<a—8 Eatte| =t S on
with a proper choice for €. [
1.5 Proof of Theorem 1.2.10
1.5.1 Lemma 1.5.1 granted proof of Theorem 1.2.10
Recall that we write P = BC and we know that

sup |c@—a)'B-z"'cB| o, (1.28)
op

|z|>b+2¢

— 1,
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(again, for notational brevity, N will be an implicit parameter, except in case of
ambiguity).

Following the ideas of [ 1 6], we shall negd to differentiate the function f defined
at (1.22) to understand the fluctuations of A — 0, and to do so, we shall need to be
more accurate in the convergence in (1.28).

Let us first state our key lemma, whose proof is postponed in Section 1.5.3.
Recall from (1.4) that we supposed the JCF of P to have, for the eigenvalue 6;, B; |
blocks with size p; 1, ...... , Bi.o; blocks with size p; o,. Recall also that

f(z) = det(I-C(zI-A)"'B).
Lemma 1.5.1. Forall j € {1,...,0;}, let Fjei (z) be the rational function defined
by
Fo() = f <9,-+Z>. (1.29)
N1/@pij)

Then, there exists a collection of positive constants (¥ j)1<i<q and a collection
1<j<o;
of non vanishing random variables (C; j)1<i<q independent of z, such that we have
1<j<o;
the convergence in distribution (for the topology of the uniform convergence over

any compact set)

(N%'ijei('))lﬁiSq — (Z €C v Z-Cj-det (Zpi’j _Mqi)>1§i§q

(e} J
1<j<a; V7 1<j<0
where M?" is the random matrix introduced at (1.7) and 7; j := Y1 ; Biipi-

To end the proof of Theorem 1.2.10, we make sure that we have the right num-
ber of eigenvalues of A thanks to complex analysis considerations (Cauchy for-
mula) :

e FEigenvalues tending to 6; with the highest convergence rate :

- Lemma 1.5.1 tells us that on any compact set, F’ je,- and z% det(z" —
M?" ) have the exact same number of roots (for any large enough N, the
poles of F je,- leave any compact set), so, for the smallest block size p; ¢,

we know that FO(Z." has exactly B o, X pi,q, Toots which do not eventually
leave any compact set as N goes to infinity.

- Moreover, we know that the only roots of F(f]’f are the N'/ (ZP"-%')(}, -

6;)’s where 2 are the eigenvalues of A.

. 0 ~
- We conclude that there are exactly f3; o, X pi o, eigenvalues <Pi,a,- 7Ls,,> 1<s<pic,
1§t§Bi,oq

of A such that

>

0 ~
N1/ 2pig;) <pf,a,- Svt—@) = 0(1),
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6, ~
and thanks to Lemma 1.5.1, we know that the N1/2pici (Pi aﬂs,t - 9,') s

satisfy the equation
det(z" —Mg"’,) +o(1) =0

and so are tighted and converge jointly in distribution to the p; j‘h roots
of the eigenvalues of Mg;;.. As MZ;;. is a. s. invertible (recall Remark

6 ~
1.2.8), none of the N1/2Pio; (p Ass — 6;) ’s converge to 0.

i, 0t

e Then, we take the second smallest size p; ,—1 and work likewise: we know
there are exactly

i1+ Bii—1 X Pioy—1 = Bi.ow X Pi.oy + Bi.oy—1 X Pioy—1
eigenvalues of A such that

N1/2Pioi1 (1 _ ei) = 0(1).
6 ~
We know that the eigenvalues b a.).&, (1 <s<pig, 1 <t<PBig)are among

them (because p; o,—1 > pi o) SO there are B; o,—1 X pj o1 other eigenvalues

6~ ~
<Pi,ai—l M,z) 1<5<pios of A such that

1 ﬁtﬁﬁi,ai—l

N'/2piai (6" is,t—ei> = 0(1).

Pi,a;j—1

wil?m) 1<s<pig_1 COMVEIEES jointly in distribution to the

6;
It follows that ( i
1§t§ﬁi,txi—]

p}f‘al_fl roots of the eigenvalues of Mg"l.f, (which are almost surely non zero).

e Ateach step, 7, ; corresponds to the number of eigenvalues we have already
“discovered” and which go to 6; faster than N —1/(2pij) (because p; g < -+ <
pi.1), and so it explains the presence of the factor z%- before det(z” — M?")
the previous lemma. So one can continue this induction and conclude. that
way, we get the exact number of eigenvalues of A.

It remains now to prove Lemma 1.5.1. We begin with the convergence of z —
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1.5.2 Convergence of z — Xj,.

Recall that in order to simplify, we wrote, at (1.2),

Po O 1o
P=W W' =W Q W,
0 o0 0 0
where J is a Jordan Canonical Form and W is supposed to be Haar-distributed from

(1.19). We also wrote P = BC without specifying any choice. For now on, we shall
set down

B = W<%J> € My (C) and C := (Q*1 O)W* € M rxn(C).

(1.30)
One can easily notice that

CB=1J ; BB=JQQJ ; CcC'=Q Q1 (1.31)
so that all these matrix products do not depend on N.

Remark 1.5.2. With this specific choice, the norm of the matrix B (resp. C) is
uniformly bounded by ||QJ||op (resp. [|Q~!||) which doesn’t depend on N.

For |z| > b+ 2¢, we define the .# ,(C)-valued random variable
X; = Vi€ ((d-A) "=z ) B, (1.32)

Lemma 1.5.3. As N goes to infinity, the finite dimensional marginals of (X3,) 2| >b+2e
converge to the ones of a centered complex Gaussian process (X* = [x] ;| 1<i,j<r)|s|>b12e
such that for all 6,0" in {|z| > b+ 2¢},

0 b? 1 * *o. ¥ P .
° xm. ~ JV(O, Wmelcc el‘ejB Bej>,

1

e E(x0pf) = 0 E(x05f)) = Lol eCC e -€/B Be;.
Recall now that the event & has been defined at Lemma 1.3.2 and has proba-

bility tending to one.

Lemma 1.5.4. There is C finite such that for N large enough, on {|z| > b+ 2¢},

4
E(MN > <C,

where || - || denotes a norm on # ,(C).

We deduce, by e.g. [59, Cor. 14.9] (slightly modified because of the presence
of 1), that as N — oo, the random process (Xj)|;|>p+2¢ converges weakly, for
the topology of uniform convergence on compact subsets, to the random process

(X%) 7> b42¢

a Z
9N
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Proof of lemma 1.5.3

Let us fix an integer p, some complex numbers zi,...,z, from {|z|] > b+ 2¢},
some complex numbers Vi, ...,V, and some integers i1, ji,...,ip, j, in {1,...,7}
and define

Z vie; Xye),.

At first, we notice that on the event éa y of Lemma 1.3.2, we can rewrite Gy this
way
Gy = fZVreszZ k+1BeJr \szfct Z k+1
k>17%r =1 k>17%r
where b, designates the Ji-th column of B and ¢, the i;-th column of C*. As
P(&n) — 1, &Y is irrelevant to weak convergence (see details below at (1.36)),
here is what we shall do :

e Step one : We set

b? b b;c; ¢
2%y 2% — b*

vlv, >0, (1.33)

and prove that for all fixed mteger ko, there is 1y, such that

)4 k
Gy = fZ Zc’Ab’ 9z :((i:)ﬂ(o,o2—nko), (1.34)

k+1

ant that 1, — 0 when kg — o. Note that o2 doesn’t depend on N thanks to (1.31).

e Step two : We show that the rest shall be neglected for large enough k9. More
precisely, for all § > 0, we prove that there exists a large enough integer ko such
that

) 2 ¢ Ak,
limsupE { 1, x [VNY v Y " < 8. (1.35)
=1 k>ky <t

N—o0

(for &y the event of Lemma 1.3.2 above). After that, we shall easily conclude.
Indeed, to prove that Gy converges in distribution to .4 (0, 0'2) it suffices to prove
that, for any Lipstichtz bounded test function F' with Lipschitz constant .ZF,

E[F(Gy)] — E[F(2)],

(d)

where Z is a random variable such that Z = .4~ (0, 0‘2). So, we write

[E[F(Gy)—F(2)]| < [E[F(GN)—F(Gn)ll+[E[F(Gnk) —F(Z)]|+ (1.36)

[E[F(Z,) - F(2)]]

: i ¢/ A*b
< 2|F||P(£5) + ZrE (np < VNY T S ) +
t=1  k>ky =t

[E[F(GNxy)] = EF (Ziy)]| + Lr E|Z, = Z|
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which can be made as small as needed by (1.34) and (1.35) if Z and Z, are coupled
in the right way.

o Proof of step one : Convergence of the finite sum.

Let us fix a positive integer kg. Our goal here is to determine the limits of all the
moments of the r.v. Gy, defined at (1.34) to conclude it is indeed asymptotically
Gaussian. More precisely, we have

Lemma 1.5.5. There exists ¢ > 0 and Ny, such that limy,_,.. N, = 0 and such that
for all large enough ky and all non negative distinct integers q, s,

E[|GN7,(0|2‘1} = g (=) +o(l)  and E[quv7kOG;V7k0] = o(1).

To prove Lemma 1.5.5, we need to recall a main result about integration with
respect to the Haar measure on unitary group, (see [38, Cor. 2.4 and Cor. 2.7]),

Proposition 1.5.6. Let k be a positive integer and U = (u; ;) a Haar-distributed
matrix. Let (i1,...,ix), ({},...,0), (j1,--.,Jjk) and (J},...,J;) be four k-tuple of
{1,...,N}. Then

_ -1
B uil’jl”'ui/"f‘j"'uilhjll”'ui;\"jl/(:| = L Oty = Oty Oty -~ Oy WE(TO-37)

o,TES,

where Wg is a function called the Weingarten function. Moreover, for ¢ € Sy, the
asymptotical behavior of Wg(0) is given by

Nlolwg(o) = Moeb(c)+0<]$2>, (1.38)

where |0| denotes the minimal number of factors necessary to write G as a product
of transpositions, and Moeb denotes a function called the Mobius function.

Remark 1.5.7. a) The permutation ¢ for which Wg(o) will have the largest order
is the only one satisfying |o| =0, i.e. ¢ = id. As a consequence, the only thing we
have to know here about the Mgbius function is that Moeb(id) = 1 (see [38]).

b) Notice that if for all p # g, i, # iy and j, # j,, then there is at most one non
zero term in the RHT of (2.22).

Lemma 1.5.5 follows from the following technical lemma (we use the index m
in {-},, to denote a multiset, i.e. {xi,...,x;}m is the class of the k-tuple (xi,...,x;)
under the action of the symmetric group Sy).

Lemma1.5.8. Letky,...,k,andly,...,l; be some positive integers, let iy, ... ,ig,1},...,i
be some integers of {1,...,r}. Then :

1. If{kl,...,kq}m #{l,...,l},, we have

E [\/ﬁc;‘l Alby, - V/Ne; A'ab; V/NE; Aby - VNeAlby | = o(1)
1 s k
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2. In the other case, s = q and one can suppose that Iy = ky,...,l, = k,. Under
such an assumption, we have

E [VNc; A“1bj, ---v/Nej Afib, x/ﬁc%; Aliby ---V/Ne; Alby

_ bz<kl+”+k ) Z Hb* blfcl,c +0(1)

O'GSkl ..... kg

where Sy, i, is the set of permutations of {1,...,q} such that for each t =
1, - q, k[ = kG(I)‘

3. Moreover,

E \Fll ki+1

1<ky,....kg=ko Ztl

1<K, ...k, <ko
ko
[
Zl[Z/(
t
LIS bicie; +o(l).

b2 Lo () U™

Iq k +1 \Fclq

’q

b,l\r(:/l k/Jrl \FC
%,

- Tl

O'ESq t=1 Z l o) Zifzilo-([) -

Let us briefly explain the main ideas of the proof of this lemma (detailed proof
is given in Section 1.6). First, let us recall that A = UT, so that these expectations
expand as sums of terms as

E Wig 1yiny * " Uigy 11,y 1 Wioping Mgy it r Yo sng = Wiy v nsdip i ¥jo2sing ™ Mgt sngs | -

If the u; ;’s were independent and distributed as .4 (0, %), the result would be eas-
ily proved because most of these expectations would be equal to zero. In our case,
the difficulty is that, according to Proposition 2.5.1, lots of expectations do not
vanish and they are expressed with the Weingarten function (which is a very com-
plicated function). However, we notice that when these expectations do not vanish
as in the Gaussian case, Wg(id) never occurs in (2.22), so that they are negligible
thanks to (2.23).

At last, it is easy to conclude the proof of Lemma 1.5.5 thanks to Lemma
1.5.8. Indeed, for any integers g # s, we have from (1) of Lemma 1.5.8 that
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E [G;’V 1 ON ko} = 0(1). Moreover, we have

2q * & Ak A¥ '
E“GNJC()‘ :| = NIE ZViCi];Fbi Zv’ Z ek/-Hb

k'=1

q
- Y [Iviv: ¥ [fcllAklb,,fc,Aklb/. -VNe; Alsb;, VNe; Alib,

il yoomsig 1=1 iy kq
k/

ko
1-( L& )
i %
by bice +o(l)

= ¥ [ X112

=1 oeSqt 1 i %, sy S
q
= g!x (0% =) +o(l)

where for o is given by (1.33) and |y, | < 02 (b+2£)2k°

o Proof of step two : Vanishing of the tail of the sum.

Our goal here is to prove that the rest can be neglected, i.e. that for all § > 0, there
exists a large enough integer ko such that for any ¢t € {1,...,p} and for &y the

event of Lemma 1.3.2 above,

imsupE [ 1, < [V Y SAP) o s 1
PE | Ly x [VN Y, " < 8. (1.39)
N—eo k>ko <t
First, using the fact that
1 (b+€)k
E Loy x [ A < IBllop ICllenCi g 5

it is easy to show that for a large enough positive constant C (depending only on
€), we have

VN Y E[ﬂgN Z7 1 AkD, H o(1).
k>ClogN
Now, we only need to prove that
\F 2
Vo >0, Jkg, forall N large enough, T E {]lg,v X |c; Akb, } <$.
ko<k<ClogN ||

At first, we notice that

ClogN Akb ClogN \/N ClogN \/N

(]lg’,v VN Z & ’ ) <y WE(ﬂgN x |e;at|) < Y SEr|fE [ﬂcsw x
k= k=ko k=ko

2
¢ Akp,
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Then we condition with respect to the o-algebra of U, i.e. write

2
:| :E|:]l(g’NXEP<

Let us now remember that we have supposed, at (1.19), that P = BC is invariant,
in law, by conjugation by any unitary matrix. Hence one can introduce a Haar-

distributed unitary matrix V, independent of all other random variables, and write

P @ VPV*, so that

E {MN x |cfAkb, ¢’ Ap,

2>] —E [MN « Ep (c,*Akb,b;“(A*)kc,ﬂ .

Ep (c;“Akb,b,* (A* )kc,> — Ep (TrAkb,b,* (A*)kc,c:) (1.40)
— FEp (EV (TrAka,b;‘V* (A*)ch,c;‘V*>) ,
where Ey denotes the expectation with respect to the randomness of V.

Then, we shall use the following lemma, whose proof is postponed to Section
1.6.4.

Lemma 1.5.9. Let V be an N x N Haar-distributed unitary matrix and let A, B,
C, D be some deterministic N x N matrices. Then

1
1
TNV {TrACTrBD + TrATrCTrBTrD}.

By this lemma, one easily gets

[Ev (TrA Vb V(A7) Ve, V') | < o= (IAY3, + | Tr (4) ) IBI3,ICI3,

hence as B and C are supposed to be bounded, there is a constant C such that
c
Ep (c;‘Akb,b;‘(A*)kc,) < (\\Akugp+ |'Tr (A%) }2) .
Then, we use the following lemma, a weaker version of [ 15, Theorem 1].

Lemma 1.5.10. There exists a positive constant K such that for all k < ClogN, for
all large enough N,

E[|Tr (A% ] < K(b+e)*.

By (1.40) and Lemma 1.5.10, for all k£ < ClogN, there exists some positive
21 C(b+e)
¢ Akb, ] < M

constant C’ such that
E|leg, x
\/ [ " VN

Hence as |z;| > b+ 2¢ for N large enough, (1.39) is proved.
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Proof of Lemma 1.5.4

The proof relies on the same tricks of the proof of Lemma 1.5.3, using the already
noticed fact that for |z| > b+ 2¢,

Ak
15, X5 = VN1g, ZCFB,

k>1
so that
jznngN = — N]lgNI;l(kH)csz.

1.5.3 Proof of Lemma 1.5.1

To prove Lemma 1.5.1, we shall need to do a Taylor expansion of F je,- (z). From

now on, we fix a compact set K and consider z € K. Recall that F je; (z) and X3}, have
been defined respectively at (1.29) and (1.32) as

F(z) =det (I— C <<91~+N*1/<2”"~f>z) I—A)i1 B) X, = VNC ((ZI—A)_1 —Zfl> B,

J

hence, using Lemma 1.5.4 and the convergence of X3, to X* established at Section
1.5.2,

1 1 ~1/2ni)
o B I S 6,+N bz
A6 = (1 g - )

1 1 1
_ _p-! —1 . R "]
B det<l Kl (1 1+N—‘/<2Pf~.f>z9,-1>J \/NX +0<\/N)>

1
= det (I - 01'_]'] +Z5N6i_2J + \/NG>

where we define

b ! _ NV __x®
Oy = . (1 — 1+N1/(2Pi-f')z9i1> =N (1+o0(1)) and G=-X"+4o0(1).
Let us write J by blocks
* | (0) ](9)
J =100 1J6) | (0
©) ] (0) | =
where J(6;) is the part with the blocks associated to 6;. And so, we write
N 1(0) ] (0)
I-67'J=1| (0| N | (0
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where N’ and N” are invertible matrices and N is the diagonal by blocks matrix

N = I-6,"diag(R,,(8),....Rp,(6),...... Ry, (6),.., Ry, (6:))
Bi blocks Bi,e; blocks
= -6, 'diag(R,,,(0),...,R,, (0),...... R, (0),....R,, (0)) (1.42)
B: 1 blocks Bi.; blocks

with R,(60) as defined at (1.3) for p an integer and 0 € C.

Let us now expand the determinant det (I — 9171.] + zSNOfZJ +N-V 2G) using
the columns replacement approach of following formula, where the M;’s and the
H,;’s are the columns of two r x r matrices M and H (that one will think of as an
error term, even though the formula below is exact)

,
det(M+H) = det(M)+ ) det(M|Ms|...|He|... M)+ ) det(M]...

k=1 1<k <kr<r
+ ..+ Y det (M, |...|Hy,|... |Hy|...|M;)
1<k <kp<---<ks<r
r
+ ...+ Y det(H|Hy|...|M|...|H,)+det(H)
k=1

We shall use this formula with M =1 — Gi_lJ and H = zﬁNGi_ZJ +N12G, and
we shall keep only higher terms. It means that the determinant is a summation of
determinants of M where some of the columns are replaced by the corresponding
column of zdy 9172J or of N~1/2G. Recall that M has several columns of zeros (the
ones corresponding to null columns of N), so we know that we have to replace at
least these columns to get a non-zero determinant. Moreover, we won’t replace
the columns of N’ or N” because this would necessarily make appear negligible
terms (recall that N” and N are invertible), so all the non-negligible determinants
will be factorizable by det(N’)det(N”). So now, let us understand what are the
non-negligible terms in the summation.

To make things clear, let us start with an example. We choose p; ; = 3 and the
matrix N given, via (1.42), by

01 00
0 0 1 0 (0)
0 0 0 1
N_ g1 0000
: 01 0 ’
0 0 1
(0) 0 0 0
0
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we know we have to replace at least 3 columns (the first, the fifth and the last ones)
which correspond to the first column of each diagonal blocks, and we shall deal
with one block at the time. Let us deal with the first one. If we replace this column
by the corresponding column of zdy Gi_zJ , we get

1 1
E@OO
0 0 L o
281\/ 91'1
o ° @
0 0

We see that in this case, some non linearly independent columns appear. It
follows that once one has replaced a null column by a column from z5N9i72J , the
whole block needs to be replaced to get a non zero determinant :

1 1 1 1
& 5 0 0 g 92 00 g g 0
0 0 2 o0 o L 1 o 11
76y g’ I (z8y)? O g" I (z8y)° o 91"2
(0) ’ (0) o 0 &
0 0 0 0 Oy
& # 0 0
0 + L0
SN (Z5N)4 6; ?l_z 1 ’
o &
1
0 %

Another possibility to fill a null column would be to replace it by the corre-
sponding one in N~/2G:

81,1 9%. 0 0
g1 0 9%_ 0
g1 0 0 el,-
ge41 0 0 O

We obtain an invertible block directly (i.e. without having to replace the whole
block as above). However, in this example, 6y > N —1/2 (because p; j = 3), this
term might be negligible. If 516', > N~1/2, then first choice is relevant (the other
would be negligible), or else, if 5;‘, < NV 2 we would make the second choice.
Our strategy is to choose J on the blocks of size p < p; ; (because &5 > N —1/2y
and G on the blocks of size p > p; ; (because 8 < ﬁ). For the blocks of size

p = pi.j, we can choose both (because &y ~ \LW)' So in our example, the non

Som © ©
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negligible terms are

81,1 9%, 0 0
@1 0 & 0
o (0)
83,1 0 O 9
28, 126, . 120N . 20N , O% &1 0 0 0
de< N> |N3|Ny J —Jo| —J7|—J3 = 7.
} } } } l ‘912 ‘91_2 ‘91_2 \/N gs.1 GL, 9%2 0
871 0 0 9%
88,1 0O 0 O
and
811 él. 0 0 g5
1
g1 0 5 0 g5
KO (U
g1 0 0 g &5
G 1) 1) 0O 0 O
det(l}NZ}Ng}M} }N6}N7}ZNJ) Y 2N G
VN VN N | gs g5 & 0 0
0 2 o0
86,1 0) 86,5 6,
871 g75 0 0 O
88,1 gss 0 0

and one can easily notice that the sum of the non negligible terms is

281\/ Z6N Z6N Z5N

G G 8
det<\/1]v}N2}N3}N4}6i2]5‘eizjﬁ‘9i2J7‘9i2J8>+det<\/;v|N2|N3|N4|\F|N6|N7|ZN )

n 1
0 .
NH#'*I'

Now that this example is well understood, let us treat the general case :

z 1

9i6 N 2 p

84,1 84,5
3

871 815~ G

— We know that there are ;1 +--- + fB; j—1 blocks of size larger than p; ; so
we will replace the first column of each of these blocks by the corresponding
column of N~1/2G.

— For all the blocks of lower size, we replace all the columns by the cor-
responding column of zéy6; 6.2J. The number of such columns is 7; =

Bi,j+1 X pijr + - Bioy X Pigy-

o o O

D=
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— We also know that there are f3; ; blocks of size p; ; and for each block, we
have two choices so that represents 25 non negligible terms.

And so, we conclude that :

1 m 1
e The statement holds for ¥ ; = 2 Z Bii+ 2l;j + 5 Bi.j-
=1 i,j

e All the non negligible terms are factorizable by z™J.

e Using notations from (1.8), we define the matrices

9,',1 . 9,' 9,',11 . 9['
M= (g ke ) M o= [gedkex(i)
LeL(i,j)~ CeL(i,j)
6,111 | 6; 6,1V | 0;
M = (g ke M; = Igekek (i)
CeL(i,j)- LeL(i.j)

and with a simple calculation, one can sum up all the non-negligible terms

by
YL Mo
'Zm! e)jm 6;,1V ! Pij +0< ; )
Yi.j s is bJ Yi.j
Ntj Mj Mj _Zei Iﬁ,;,j Nt

where C is a deterministic constant equal to & a power of 6;1. Then, using
a well-know formula (see for example Eq. (A1) of [2] p. 414), we have

MO MO ;
; ; B 6,1 6, IV 6,111 /-y £ 6i,1\—1 1 4611 .
‘ Meji’HI Mei’IV _]ZPi,j Iﬁ = 91- /T det <MJ > det <91(Mj _Mj (MJ ) Mj ) — 7P 'IIﬁi‘j> .
J J 0; “Pij

e Thanks to Lemma 1.5.3, we know that

e g b? 1
E (me’ me," /) = 0, E <m9’ me}' /> = — ——¢;CCey e,B'Bey,
ke M o k0 M ¢ 0.0, 0,0, — b’ k K € ¢
and from (1.31), we write

e;CC*ey e;B"'Be; = ¢,Q '(Q 1)er ¢/J°Q"QJe,

then, from the definition of the set L(i, j), we know that if ¢ € L(i, j) then
Je, = 6,ey, so, finally,

— >
B, Y b _ _
E(”’/?fz ’”k/':w) =0, E(’”Jffe mk/l:é’> Y ) ¢Q '(Q ") er €,Q"Qey.
0 —
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1.6 Proofs of the technical results

1.6.1 Proofs of Lemmas 1.3.2 and 1.3.3

Lemma 1.6.1. There exists a constant C, independent of N, such that with prob-
ability tending to one,

sup H(zI—A)_lHOp < C.
|z|=b+e

Proof. Note that for any n > 0,
_ 1
1A —A) " lop < 0 vi([-n.n]) =0,

where V¢ .= ﬁ Yy, (5,5.5 + 8yz) and the s7’s are the singular values of zI — A.
By Corollary 10 of [50], for any z such that |z| > b, there is 3; such that with
probability tending to one,

VZ([_ﬁZv BZ]) =0.

It follows from standard perturbation inequalities that with probability tending to
one, for any 7’ such that |7/ —z| < %,

d ﬁz ﬁz
vi(l—=,=])=0.
(2.2
Then with a compacity argument, one concludes easily. (]

Proof of Lemma 1.3.2

Note first that thanks to the Cauchy formula, for all x € C,

1 k
|x]<b—|—€ — VkZO, xk:%/ Zidz
2iT J|z|=b+e T—X
Moreover, by [50, Th. 2], the spectral radius of A converges in probability to b, so
that with probability tending to one, by application of the holomorphic functional
calculus (which is working even for non-Hermitian matrices) to A,

1
V>0, AF = 7/ F(z—A)"dz.
2T J|7|=b+e
Thus with probability tending to one,
Vk >0 Al € — I-A)"! kd
>0, A%l < sup [|(zL—A)""[|op X 2| dz.
27 | =pre le|=b+e

Then one concludes using the previous lemma.
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Proof of Lemma 1.3.3

Since CA*B is a square r x r matrix, it suffices to prove that each entry tends, in
probability, to 0. And since B and C are uniformly bounded (see Remark 1.5.2) ,
one just has to show that for all unit vectors b and c,

()
cA'b —4 0. (1.43)
Recall that A = UT and
* Ak —_—
cA'dD = Z Ciobikui07ilsilui17i2si2”'Mik—hiksik?
10,01 50k
and so we have
NN —_— T — — —

Eu|c*A'D|" = Y Cciobibjsivsj, i 8 E [tigi iy iy -+ iy, iTjo jy By o - Ty i)

iQ)seensif

Jor--Jk

Let (i1,...,i), (&, i), (J1,---,Jx) and (j},..., ;) be k-tuples of intergers
lower than n. By Proposition 2.5.1, we know that

B lui, ooy Ty gy - %a] # 0

if and only if there are two permutations ¢ and 7 so that for all p € {I,... k},
ig(p) = 1, and jy(p) = j,. In our case, we know that for a (i, ..., i) fixed, there
will be no more than (k+ 1)! tuples (jo,...,jx) leading to a non-zero expectation.
By Proposition 2.5.1 again, we know that all these expectations are O (N _k). So,
one concludes with the following computation

1
Eule’AD" < ¥ ¥ |G bibig |5 - ><0< k>
HESk41 0055k N

(0) 7Tk (k)

! 1
< Y X5 [’Cio‘zlbik’2+|ci,¢(o| |bi, ]} 5] ><0<Nk>
HESkr1 00 ik
< (k+1)! Z RS (N—k)

(59 oot -<0)

1.6.2 Proof of Lemma 1.4.1

Lemma 1.4.1 is a direct consequence of the following lemma.
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Lemma 1.6.2. Let U be a probability measure whose support is contained in an
interval [m,M] C]0, +oo[. Let u=" denote the push-forward of i by the map t —
1/t. Thenforallx € R, y > 0,

M ifx ¢ [1/(2M),2/m],

ImG,-1(x+iy)| < ' 1.44
| pt (xFiy) < {8"11‘424 ImG,, (%—Hm;})‘ otherwise. (14

Proof. Note that
) y
ImG,, - = [ ———u(dt).
| maG, l(x_‘_ly)‘ /(x_l/t)2+y2“'( )

If x¢ [1/(2M),2/m], then for all € [m,M], |x—1/t| > 1/(2M), and (1.44) follows
from the fact that for all y > 0, we have

y

- <M.

yr+(1/(2M))?
If x € [1/(2M),2/m], then for all ¢ € [m,M],

1 < X < 2

2M?2 — t T m?

hence
2+ x? 1 2+(yt>2 < 1 1 ; 2+ m2y 2
2 x X — 4Mm* x 2

and (1.44) follows directly. U

1.6.3 Proof of Lemma 1.5.8

First of all, as ||B||op and ||C||op are bounded (see Remark 1.5.2) and for any unitary

matrix V, VB @ B and CV* (d:) C, we know, by for example Theorem 2 of [54], that

there is constant C such that with a probability tending to one,

logN log N
VN >1, max |b;;| < C\/i and max [cj;| < Cy/ og (1.45)
1<i<N ' "~ N I<i<N 7 N

I<j<r 1<j<r

Outline of the proof

If we expand the following expectation

*Akip. ... ARb: ¢ Aliby - - ¢t Abb:
E|c; Alb;, -} Alby, c; ATib, ciQAsblfr}
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(where the expectation is with respect to the randomness of U), we get a summation
of terms such as

E u el ceeelt el Uy 0 Uy o e U g e U .
h1h2 Tk kg +1 19,1192 lgkglakg+1 “1y 1115 1,141 Toils 2 T tslss+1 }
k; factors ky factors 1; factors I, factors

Our goal is to find out which of these terms will be negligible before the others.
First, we know from Proposition 2.5.1 that the expectation vanishes unless the set
of the first indices (resp. second) of the u;;’s is the same as the set of the first
indices (resp. second) of the #;;’s. Secondly, each expectation is computed thanks
to the following formula (see Proposition 2.5.1):

B -1
E [ty il g Ty = L S Sy Sy - Sy, We(T0THLAT)

k
O,TES o

Then, by (2.23) of Proposition 2.5.1, we know that the prevailing terms are the ones
involving Wg(id), i.e. those allowing to match the i’s in the u;;’s with the i"’s in the
uiy j’s thanks to a permutation which also matches j’s in the u;;’s with the j’s in the
uy j’s. To prove the second part of Lemma 1.5.8, we shall characterize such terms
among those of the type of (1.46) and prove that the other ones are negligible. To
prove the first part of the lemma, we shall prove that only negligible terms occur,
ie. that if {ki,...,k;} # {l1,... L}, then Wg(id) can never occur in (1.46).
Then, the third part of the lemma is only a straightforward summation following
from the first and second parts.

Proof of (2) of Lemma 1.5.8:

Now, we reformulate the (2) from Lemma 1.5.8 this way : let k; > kp > --- > kqy
be distinct positive integers and my, ...,m, positive integers, and let (iaﬁ) 1<B<q
lgagmﬁ

and (i:x [3) 1<B<q be some integers of {1,...,r}. Our goal is to prove that
T 1<a<mg

E[\/ch* Alb;, VNe; Al ---V/Nej  AYb, VNe,  Akiby | x
! 1,1 ) my, ’ my,

11 lml 1

VNc: _ARb; +/Nci Akby - VNc;  Akb; \/Nei  Akby
12 1.2 2 o lmg.q mq,q lmq.q mg.q

IV k q my

eI L TT(vg, b ey, ) | +o():
t=1 [ €S s=1 (o)1 o
. . i .
We will denote the coordinate of b; 5 (bt‘"ﬁ) . We write
> 1<t<N

N _ lop o

Cia.ﬁA lbiaﬁ = Z Ct() ulOvtlstl utl ,-lzstz e Mtkl 1 'stkl stkl btkl . (1 48)

lgl‘o,...,l‘kl <N
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In order to simply notation, we shall use bold letters to designate tuples of
consecutive indices. For example, we set t; ; 1= (fo,; j,t1,ij,- - - ki, J-) and write

Ut ; == Ungijnig W1tk ) Stij 2= Sty St (1.49)

so if we expand the whole expectation in (1.48) with respect to the randomness of
U, we get terms as

E utl,l e utml,l I/ltllyl T ut:"l'l e MtL,q e utmq,q utllvq T ut;nq,q

= E H H H Wiy pestatipe M’fz,b@f% 1be’

1<c<qg 1<b<m, 0<a<k.—1

and by Proposition 2.5.1, for this expectation to be non-zero, the set of the first
indices (resp. second) of the u; ;’s must be the same than the set of the first indices
(resp. second) of the #; ;’s, which can be expressed by the following equalities of
multisets®

{tapes 1<c<q, 1<b<m, 0<a<hk—1}, =

/ (1.50)
{thpes 1<c<g, 1<b<m,0<a<k.—1},

{tape: 1<c<q,1<b<m, 1<a<k} =

, (1.51)
{ta,b,c; 1<c<gq, 1<b<m, lgagkc}m

For now on, we denote by K =) m;k; and by p =Y m;.

To make a better use of these multisets equalities, we shall need to reason on
the 7,5 ’s which are pairwise distincts and so, in a first place, we prove that the
summation over the non pairwise indices is negligible.

To do so, we deduce first from (1.50) and (1.51) that for any fixed collection of

indices (7,,c), there is only a O(1) choices of collection of indices (r, ,, .) leading
to a non vanishing expectation. Then, noticing that
Card{type: 1 <c<gq,1<b<m.,0<a<k} = O(NKP),

(where K =Y m;k; and p = Y. m;), we know that the summation contains a O (N¥*P~1)
of terms. At last, we use the fact that the expectation over the u; ;’s and the #; ;’s

is at most O(N~X), that sup;s; < M and that |b;| and |¢;] = O< IOI%N> (recall

8Recall that the notion of multiset has been defined before Lemma 1.5.8: a multiset is roughly a
collection of elements with possible repetitions (as in tuples) but where the order of appearance is
insignificant (contrarily to tuples). For example,

{1,2,2,3}, = {3,2,1,2}, # {1,2,3},,.
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(1.45)), to claim that each term of the sum is at most a O((logN)**N~X=P) (one
should not forget that each cAXb is multiply by v/N). We conclude that the sum-

. A .. c g . log N)2P
mation over the non pairwise distinct indices is a O (%)

For now on, we consider only the pairwise distinct indices so that (1.50) and
(1.51) can be seen as set equalities (instead of multiset). Also, if one sees the sets as
K-tuple, the equalities (1.50) and (1.51) means that there exists two permutations
o1 and 07 in Sk so that forall 1 <c<gq, 1 <b<my, 0 <a<k;—1 (resp.
1 <a<ky), wehavet,, . =tc apc) €SP 1y} . = loy(abiec))-

Remark 1.6.3. The notation 7, (45, is a little improper: the set
{(a,b,c); 1<c<gq,1<b<m; 0<a<k.—1}

is identified with {1,...,K} thanks to the colexicographical order (where K =
Y mik;).

Thanks to the Proposition 2.5.1 and the Remark 2.5.3, we know that the expec-
tation of the u;,, ’s and the iy ’s is equal to Wg(oj00, 1) and so, we know that
we can neglect all of these with 6; # &,. For now on, we suppose 6] = 0.

One needs to understand that the sets {#,; 1 <c<gq, 1 <b<m., 0<a <k}
and
{ta‘,;%c ; 1<e<q, 1 <b<m 1 <a<k.} are very similar except for the shift
for the first index. Due to this likeness and the fact that they are both mapped onto
the 7/, ’s in the same way (i.e. 61 = 0,), we prove that the choice of oy is very
speciﬁé :

— First, using the distinctness of the indices, it easy to see that the equalities (1.50)
and (1.51) lead us to these new equalities of sets

{tope; 1<c<q, 1<b<m} = {,.; 1<c<q,1<b<m}, (152
and
{tipe: 1<c<q, 1<b<mc} = {t . 1<c<q,1<b<m}, (153)

— According to the equality (1.52), we know that {fo., 1 <c<g, 1 <b<m.}
is an invariant set of ;. Indeed, we know that

{to0pc); 1<c<q, 1<b<m} C {1

a

pei 1Se<g, 1<b<m, 0<a<k —1},

and with the condition (1.52), to avoid non pairwise distinct indices, we must have
{tgl(o’b’c); 1<c<gq, lgbgmc} = {t(/),b,c; 1<c<gq, lgbgmc},

and so, we deduce that

{topes 1<c<q, 1<b<m} = {tg0p0); 1<c<q, 1<b<m}.
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- As 01 = 02, 0 permutes {t; . ; 1 <c<gq, 1 <b<m.}inthe same way (ac-

tually, the sets {(a,b,c); 1<c<q, 1<b<m., 0<a<k.—1}and

{(a,b,c); 1<c<p, 1 <b<m, | <a<k} areindentified to the same set (with
cardinality K) thanks to the colexicographical order, and so, the action of o] and

0, must be seen on this common set).

— Aseachelementof {t;.; 1 <c<gq, 1 <b<m} hasonly one corresponding

t:i, ef (indeed by (1.50) and (1.51) and as the #’s and the #"’s are pairwise distinct, to

each 7 corresponds a unique ¢'), we deduce that 67 permutes {tu,’c ; 1<e<q, 1 <b<m.}
in the same way (indeed, it allows to claim that

(toy(1p): 1<c<q, 1<b<me) = (toy(1pe); 1<c<q, 1<b<m)

as K-tuples.

— As 01 = 0y, we know that 6, permutes {3 1 <c<g, 1 <b<m.} in the
same way, and so on until one shows that 6, permutes {tkq,b,c ; 1<e<qg, 1<b< mc}
in the same way.

— However, according to (1.53), we know that {f; p.; 1 <c<gq, 1 <b<m.}
is an invariant set of 0.

Therefore, as {t pc; 1<c<gq, 1 <b<m.}and{t; p.: 1<c<q, 1<b<m}
are invariant sets by 0», we know that

{tipe: 1<e<q, 1<b<mcf{tx pe: 1<c<q, 1<b<mc} = {ti,pq: 1 <b<my}

is also an invariant set of 0, and we deduce that o; permutes in the same way
every set of the form {#,5, 4, 1 <b <my} forl € {0,k;—1}. And so, we rewrite
the equalities (1.52) and (1.53)

{topes 1<e<q—1,1<b<m} = {153 1<c<q—1,1<b<m].54)
and
{tipe: 1<e<q—1,1<b<m} = {1 .3 1<c<q—1,1<b<mf].55)

and one can make an induction on g to show that there exist y; € Sy, U2 €
Smys - lg € Sm, such thatforall 1 <c <gq,1<b<m. 1 <a<k., wehave

!/
ta,b,c = tcl(a*,bzc) = tavué'(b)ac

and so, to sum up, we deduce that the non negligible terms that we get when we
expand the whole expectation are terms such as

E H H H uta,b.,z?vtaJrl‘b,cutatuc(b),c7ta+l./,1(-(b).c
1<c<qg 1<b<m, 0<a<k.—1
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where for all ¢, i, belongs to S, and so, one can easily deduce that

E [\/chk

\/Ncl’f, Akb; X

my,1 my,1

VN c; Ak b, ﬂJ

mg,q

11,1 im]J

Alb;, VNe; Al ---/Nej  AYD
’ 1,1 E mys

VNe; ARb;,VNe; Alby ------VNej A%b
5 12 B me,

i1 Ing.q

1L\ [ Viuagisa 2 o
_ MHul(s)u S S Mul(s),u
B N Zsi ’ H Z H Z btku.&,u btku.stustku,s‘uCt(),s.ucto‘s,u +0(1)
i=1 u=1l | Uy ESpm, s=1 1§t()‘.v,u <N
1 Stku JSU <N
oK nmy
_ * . *
=<1 X 11 (bi;lu(s)_ubtw 'cis,uci;m(s)tu) +o(1),
u=1 #uESmu s=1
and we can conclude.
Remark 1.6.4. We used the fact that
1 N
stl? = b +o(1) (1.56)
i=1
& BLivs 2 2
o, y
Zlbj bl°s; = b°b} b +o(l). (1.57)
]:

The relation (1.56) is obvious and the (1.57) can be proved using the fact P is
invariant, in law, by conjugation by any unitary matrix (we explained at Section
1.2.4 that we can add this hypothesis).

Proof of (1) of Lemma 1.5.8:

The proof of (1) goes along the same lines as the previous proof. Our goal is to
show that

E \/chflAklb,-l~-'\/chquqbiq\/]ch,lAllbifl-~-\/1Vcl’.ZAlsb,-3} = o(1).

At first, one can notice that if } k; # Y [;, the expectation is equal to zero. We
assume now that ) k; =) /;, and let K denote the common value. Then, we distin-
guish two cases.

e Firstcase: g =

Then we can also focus on the “pairwise distinct indices” summation, by sim-
ilar argument as in the previous proof. We suppose that there exists j such that
kj # 1; (otherwise, one should read the previous proof). Our goal is to show that
there is no expectation equal to Wg(id) (which means that we cannot have 6 = 0,)
in that case and so we shall conclude that

1
E \/Nc;jAklb,-l..-\/Nc;;A"qb,-q\/Nc;,lAhbﬂl.--\/Nc;.;]Alqbi,q} = 0<N>.
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Let us gather the k;’s which are equal and in order to simply the expressions,
we shall use notations in the same spirit than (1.49)

\/N(C*Akab)ia = \/]V(:ﬁk Akabil,a e \/Nc?m%aAkabima,a7

N,a

VN(eABb)y = \/Nc;;ﬁAfﬁb,]ﬁm\/Nc;f, ﬁAfﬁb, . (1.58)
1, ’ nﬁ. '1ﬁ>

so that we rewrite our expectation

E [\/N(C*Ak‘b)il - VN(c"AlD);, VN(e*Alib)y --- VN (e Alb)y

with Y7 mik; = 23:1 njljand ky > --- >k, and [y > --- > [;. Without loss of gen-
erality, we shall assume that (k,,m,) # (5, ny) (indeed, otherwise, we can start the
induction from the previous proof until we find an integer x such that (k,_x,m,_,) #
(ly—x,ns—y) to show that the expectation is equal to

B [VN(C A", VN (AR b, VN(eAlb)y -+ VN (c'Al-<b)

: s/
b—x L x

x H Y ﬁE[\/IT/ciJAk’b,-m\/ﬁcﬁ Akb;

L §),
t=r—x+1 €S, s=I w(s),t M (5) .t

}-1—0(1),

and the following of the proof is the same). We shall also assume that &k, < /.
According to Proposition 2.5.1, we have the following equalities

{tape; 1<c<r 1<b<m, 0<a<k.—1}

(1.59)
= {t)es 1<e<s5,1<b<n, 0<a<l -1},
and

{tape; 1<c<r 1<b<me, 1<a<k}

, (1.60)
= {thye: 1<c<s,1<b<n, 1<a<l},

and let o7 and o, the two permutations describing these equalities. Let us prove
by contradiction that 6; # o, and so let us suppose that o) = 0,. As we consider
only pairwise distinct indices, we have also

{tope: 1<c<r1<b<m} = {t54.: 1<c<s, 1<b<n.}, (1.61)
and

{te.pe: 1<c<r1<b<m} = {1 .3 1<c<s, 1<b<n.}, (1.62)

According to the fact that oy = 0, and (1.61), we can deduce that

{types 1<c<rn1<b<m} = {1g o3 1<c<s, 1<b<n.}, (1.63)
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and here comes the contradiction. Indeed, if k, < [, then
{tipe: 1<c<s, 1<b<n}n{t p.3 1<c<s, 1<b<n.}=0,
otherwise, k, = [; (which means m, # ny), let us suppose m, < ng, so that
Card {1 ;. 1<c<s, 1<b<n fn{t ,.: 1<c<s,1<b<n.} = ns
however,
Card {tr, pc; 1<c<n1<b<m}N{tipe; 1<c<r,1<b<m} = m,,

which is, according to (1.62) and (1.63), impossible.

e Second case : ¢ # s

Without loss of generality, we suppose that g > s. We cannot consider here the
pairwise distinct indices simply because the cardinal of the #; ;’s is different than
the one of the 7; ;’s.
Expanding the product

E {\/Nc; Alib, -+ v/Nej Alsb;, VNe; Altby - VN Alsb,-g} ,

we get terms such as

Eu [”to,l da T Uy g Mg Mgy gt g Meh '”tl/lfl,l,tl/l_l ut())z,t{_z e ”t,/rlﬁs,t,/w
According to Proposition 1.3.1, for the expectation to be non zero, one needs
to have the equality of sets
!/ / !/ !/ / !/
{l‘()?] T —1,1,002, - -5 Tk —1,25 - - - ,l‘kqfl,q} = {t0,17t1,17 ... 7tl|fl,17t0,27 ... ,l‘127172, ... ,tlstS},
_ !/ / !/ / !/ / /
{tl’l,tz,l,...,tkl,l,thz,...,tkz’z,tm,...,tkq,q} = {tl’l,tu,...,tll’l,tl’z,...,tlzﬁz,tm,...,tlﬁs}.
Set of :={top, 1 <b<r,0<a<ky)}and B= {t;,b, 1<b<s 0<a< zb}.

According to the previous inequalities, to (1.45) and to the fact that all the expec-
tations are O (N -K ) , We write

‘E [\/ﬁc; Alib, -+ v/Nej Afsb;, VNe; Altby -+ VN Alsbl-g} ‘

log*(N s -
< C4q0gN2§)'Nq;- Z Z Hstl,asu(n‘,a)"'Su(tka,a>XO(N_K)

10,155k 1 ue B a=1

t()‘q:--.-vtkq.q
q q
< 0flo ZQ(N).N‘ITH*K*%I Z 1 Hsz o g? _|_Hs2 st
= g 2 ] a Ia.a L B(t1a) Wty )
ue a= a=
10,1550k 1

tO.qw- . 7tkq,q
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On the one hand,

q
Z HSZ_, "‘Stzka_a < Card(%'d)xCard({l,...,N}KW) « MK — 0(NK+‘1),

a
u_e%’f/ a=1
10,15-+50ky 1
z().qvmvtkqg

On the other,

2 2
> HS 1) tk‘”) = o)x ), Hst]/ L, = O(N"")
uep? a= tf/),l""‘rllll,l a=1 ' a,
10,150ty 1 ,
t05qv-"--fkq.q T

Indeed, for any fixed J = {fg ,#] -+ s8], 1,800, +1], 25+ --» 1], }- there are O(1)
of W’sin fﬂjﬁj and/ = {t(),],t]’],. cos kg 1500255y 25 - 7tkq,q} such thatu(l) =
J.

Therefore,

‘EU [\/NCZA]‘I b;, -.-\/NC;;Akqbiq\/Nc:.(/lAllbi/l '~'\/NCZAleig.J ) = 0 (logzq(N) ,N—%) 7

2
and, since g > s, it is at least a O (%)

Proof of (3) of Lemma 1.5.8:

If {kl,...,kq}m # {k&,...,k;}m, we know that it contributes to the o(1). So we
rewrite

ko q kL,
) E H\F Civ Fq +1bla\Fc’ st
kiokg=1 | a=1 Zi z
Ky k=1
ko ko q Aka W
= ) ) ET] \/Nc?aikaJrlbia\/Nc;aik&-&-lbiix +o(1).
ki e skg=1 K., k’:l a=1 2, L,

Then, we fixed (ki,...,k,), and let us calculate

ko q Aka Ake
* . * 77 h.
Y E | [T Ve, b VNE, by, | (1.64)
k’l ----- k/—l a=1 i 2,
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to do so, we will use the previous notations and write

kiyo.. kisko, .o okay ks, oo ks
—_—— —— ~——
my my my
and we shall show that (1.64) doesn’t depend on the m;’s but depends only on
q = Y m;k;. We rewrite the summation

ki Ak’1 ky k;,,]
/N o - JNet . /Net ,
B | VN, b, VNG k’l+1b’/1,1 Nei, 51 Pin, \VN¢; fy 1 Ky 1 AL
{kll7'“7k£1}m:{k17"'~,k5}m Zil,l Zl,l 1 lml.l i
s my,1
A +1 Akl +
)ﬂl m1 m2
VN¢;,, k+]b112V ngm "V szzzm lmzz\fcz’mzzm
i12 lm22 Ly
ll 2 lm22
(1.65)
!
Aks Akq
*
' \/Ncl‘m_y s _ket1 blmy v\/]vclfnY B k’ +1 b Ung,s
lms,.r l;ns s
We gather the k;’s which are equal, so we rewrite the summation thanks to
permutations of the set
I ={(a,B), 1 <B<s, 1 <aa<my}:
e ~ Ak Ak ~ Ak
*
Z E 111 ki+1 blll C, wn Kt bi;,L(l.l) “'\/Nciml 1 _ki+1 ’ml 1 C/ (mp.1) A1l bi;.l(ml.l)
HES.y i1,1 Z Ty 1 b Zi’
(1 1 w(my,1)

e AR N AT AL
VNe;,, k+1b’12 Ney wi2) Z2 ! Tar T i) VNG, T P c'om) 2t LA
i12 Lu(1,2) img.s Y (ms.5)

except that we count several times each terms. Indeed, for example, if one wants
to rearrange

Ak] Ak] ko Akl Akz Ak1
E Ciry b,lvlcm - btz,lcn;Tz b’lvzci’l_lTl bl'l,lci’u b bt'z,lciqul b"l,z (1.66)
i1 2,1 i12 Zi'lyl i, Ziﬁ,z

there are two ways to do it :

£ e Aklb i Ak Al Aklb i Ak by Ak AR Ak Al
Cira o Py, TP, © b1 T P TP, i T Pia € byl
L i1 Zz/Ll i2,1 ' Zi/L2 i sz
or
Ele Ay o Ay, o Al e Alp o ATy o ATy
,” i € Tk ill,zcillkil iz.lcﬂl_lTl iy 112 k> 2 12, ky |
11 1 Zi/l'2 i2,1 Zi/L1 i12 2121
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and so (1.66) would be counted twice. Actually, it is easy to see that y; and U

give us the same terms if and only if 0 = o,

1

is a permutation such that for

all (i,j) € #, o(i,j) = (¢, ) (it means that ¢ doesn’t change the second index).
Let us denote by Sy, ., the set of such 6’s in S ;. Then the expression of (1.65)
rewrites
¥ = (T[] e, N
S E—— ——b; c, —Dby
CardSy, .k, ye5, |a=ipoi i f;:l pa -a>zk°‘+l .
1 s my 1
*
= Gads L X = by, ch, ¢ 4o(l)
CardSkl7__.7kq ES ;s GESy, .. 4y 1=1 u=1 Zi;«.tzi;l( 3 Zluzzl Goll () gop ()
1 s .
= C dS Z Z HH / ll”‘ lufcl (L,,)+O(l)
Ak ky oS gy WES 5 1= ut ThuaZiy, o \ Zius iy, e
s m 1 b2 ki
= Y Il — = by  bic,e  +o(l)
Zi 2 Zi 2 wt )
HES s t=1u=1 sy, Yt S )
and if we go back to the notation {1,...,k,}, we have
s m 1 b2 ki
Z HH .z, .z b* bl‘” lup lu(um) -
ﬂesj t=1u=1 Zlu.tzl#(“‘t) ZIHJZ[#(NJ)
q 1 b2 ki
YT (2) b b
oeS,1=1 Zl}zigm Zl}zi;(,) o) o)
and so
ko Ak Ak’
* . k
< VNciuzlebllVNciq RSN Ne;, ot b, VNe; k’+1
e f % g 4
ko ko AR,
- Z Z Eiv ll k+1b,,\fc, k’+1 "VNiq ky+1 l,q\Fc, k’ b +o(1)
Kiyookg=1 K. k=1 i 'z, iy ‘z
b1ty Er iy}, :
ko q 1 b2 ki
= Z ZH — — b* b,t- ic +0(1)
k|,...,kq:1 GeSq t=1 ZlTZl/o-([) Zl?zl/a([)
2 ko
(b
ﬁ 1 <Z"Z/<)>
ot
b, b,cic; +o(l).
.5 _ 12 i L Pt
creSq =1 %k, Ll b o) o

This allows to conclude directly.
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1.6.4 Proof of Lemma 1.5.9

We want to compute
E :=ETrAVBV*CVDV".

Let us denote the entries of V by v;;, the entries of A by a;;, the entries of B by
bjj... Then, expanding the trace, we have

E= Y ElaqpgvpibijvyjcycverdiVail
1<a,B,i,j,7,TkI<n

=Eopijyrkl

By the left and right invariance of the Haar measure on the unitary group (see
Proposition 2.5.1), for the expectation of a product of entries of V and V to be non
zero, we need each row to appear as much times in V as in V and each column to
appear as much times in V as in V. It follows that for Eq .i,jy.7k to be non zero,
we need to have the equalities of multisets:

{B:ttm={a.v}m,  {ik}m={Js}m
The first condition is equivalent to one of the three conditions
ao=B=y=r7 or ao=B#y="1 or ao=1#B=y
and the second condition is equivalent to one of the three conditions
i=j=k=1I or i=j#k=1 or i=1l#j=k

Hence we have 9 cases to consider below. In each one, the involved moments of
the v;;’s are computed thanks to e.g. Proposition 4.2.3 of [52]: for any a,b,c,d, we
have

2
E N=———
[|Vab| ] N(N+1)
1 e
e fa=c
b#d = Elva|’|val’] =
ﬁ ifa#c
. 1
a ?é b and ¢ # d = E[VacvadVdebc] = —m
So let us treat the 9 cases:
e Under condition ¢« = B =y=rtand i = j =k =1, we have
2
Y, Eapijyeri = Y ElacavaibiVaicaavaidiVail = —— Y daaCaa Y bidi
arﬁaiv.j:’)/7r7k7l N aVi N(N+ 1) 4 i

1
e Underconditionx=pP =y=tandi=j#k=1[, weget ———— ) dgaC
ﬁ Y J# g N(N—i—l); aoCoo

Y biidik

ik
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e Under conditionx = =y=rtandi=1+# j =k, weget
e Under conditionx =B #y=tandi=j=k=1,we get
e Under conditionaa =B #y=rtandi= j#k=1, weget
e Under conditionaa =B #y=rtandi=1+# j=k, weget
e Under conditionax=t# B =yandi=j=k=1, Weget
e Under conditionax =t# B =yandi=j#k=1, weget

e Underconditionx=t# B =yandi=1+# j=k, weget ————

N(N
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AqaCaa ) bijdji
L Y bijd;

i#]

Z aa(xcyyz biid;;

a#y

Z AoaCyy Z biid

a;éy i#k

1 Z a(x(xc’y’}/zbl/dﬂ

aFy i#]

Z AaBCBa Z biidi

) o7

—7 L dapcpa Y, bidu

a;«éﬁ i#k

Z aa[;05a Zbl}dﬂ

a#ﬁ i#j

N+1

N+1

Summing up the nine previous sums, we easily get the desired result:

N(N + 1)E = 2Zaaacaa Zbudn + Zaaacaa andkk + Zaaacaa Z szd]z
i#k t%]
+ Z aaacy}/zbndn Z aocacyyzbudkk"‘ T Z a(xoccyyzszd]z
a#ty a#V i#k 0!757/ i#]
+ Z aaﬁcﬁazblldll + Z AaBCRa Zblzdkk Z AaBCBa Zbl]d]l
a7B laZs i7k laZs 7

Zaaacaazbiidkk+Zaaacaazbijdji
N—1 Z aaanZbudﬂ

oty a#y

—|—N7 Z aa/}CB(beudkk Ni
a#p
= TrBTrD Zaaacaa Z AgaCyy+ o
a N-1 a#}' N
+TrBD Zawcaa +— Z dooCyy —
iz N-1

N
N_1 {TrACTrBTrD+ TrATrCTrBD}

1
———{TrACTrBD +TrATrCTrBTrD}.

N-—1

Z aaacwzbudkk
Z AaBCho Zb‘/dﬂ

7J

n aaﬁcﬁa}

}

[ L dapCpa
a#ﬁ
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Abstract :

We consider a non-Hermitian random matrix A whose distribution is invariant under the
left and right actions of the unitary group. The so-called Single Ring Theorem, proved by
Guionnet, Krishnapur and Zeitouni [49], states that the empirical eigenvalue distribution
of A converges to a limit measure supported by a ring S. In this text, we establish the
convergence in distribution of random variables of the type Tr(f(A)M) where f is ana-
lytic on S and the Frobenius norm of M has order \/IV . As corollaries, we obtain central
limit theorems for linear spectral statistics of A (for analytic test functions) and for finite
rank projections of f(A) (like matrix entries). As an application, we locate outliers in
multiplicative perturbations of A.

2.1 Introduction

The Single Ring Theorem, by Guionnet, Krishnapur and Zeitouni [49], describes
the empirical distribution of the eigenvalues of a large generic matrix with pre-
scribed singular values, i.e. an N x N matrix of the form A = UTV, with U,V
some independent Haar-distributed unitary matrices and T a deterministic matrix
whose singular values are the ones prescribed. More precisely, under some tech-
nical hypotheses, as the dimension N tends to infinity, if the empirical distribution
of the singular values of A converges to a compactly supported limit measure ® on
the real line, then the empirical eigenvalues distribution of A converges to a limit
measure [ on the complex plane which depends only on ®. The limit measure
U (see Figure 2.8(a)) is rotationally invariant in C and its support is the annulus
S:={z€C;a<|z] <b}, witha,b >0 such that

a’= / x2dO(x) and b= / x*dO(x).

In this text, we consider such a matrix A and we study (Theorem 2.2.4) the joint
weak convergence, as N — oo, of random variables of the type
Tr(f(A)M),

for f an analytic function on the ring S whose Laurent series expansion has null
constant term and M a deterministic N X N matrix satisfying some limit conditions.
These limit conditions (see (2.1)) allow to consider both:

— fluctuations, around their limits as predicted by the Single Ring Theorem, of
linear spectral statistics of A (for M = I):

N
Trf(A) = ;f(li%

where A1, ..., Ay denote the eigenvalues of A,
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— finite rank projections of f(A) (for M = v/N x (a matrix with bounded rank)),
like the matrix entries of f(A).

Let us present both of these directions with more details.

2.1.1 Linear spectral statistics of A

As far as Hermitian random matrices are concerned, linear spectral statistics fluc-
tuations usually come right after the macroscopic behavior, with the microscopic
one, in the natural questions that arise (see e.g., among the wide literature on the

subject, [58, 60, 88, 56, 8, 7, 64, 87, 1, 64, 5, 32, 18]). For unitary or orthogonal
matrices, also, many results have been proved (see e.g. the results of Diaconis et
al in [39, 40], the ones of Soshnikov in [90] or the ones of Lévy and Maida in

[63]). For non-Hermitian matrices, established results are way less numerous: the
first one was [83], by Rider and Silverstein, for analytic test functions of matrices
with i.i.d. entries, then came the paper [84] by Rider and Virdg, who managed,
thanks to the explicit determinantal structure of the correlation functions of the
Ginibre ensemble, to study the fluctuations of linear spectral statistics of such ma-
trices for € test functions. Recently, in [74], O’Rourke and Renfrew studied the
fluctuations of linear spectral statistics of elliptic matrices for analytic test func-
tions. The reason why, except for the breakthrough of Rider and Virdg in [84],
many results are limited to analytic test functions is that when non-normal matri-
ces are concerned, functional calculus makes sense only for analytic functions: if
one denotes by A;,..., Ay the eigenvalues of a non-Hermitian matrix A, one can
estimate Y| £(A;) out of the numbers TrA* or Tr((z —A)~') only when f is an-
alytic. For a €2 test function f, one relies on the explicit joint distribution of the
Ai’s or on Girko’s so-called Hermitization technique, which expresses the empir-
ical spectral measure of A as the Laplacian of the function z — log|det(z — A)|
(see e.g. [48, 25]). This is a way more difficult problem, which we consider in a
forthcoming project.

In this text, as a corollary of our main theorem, we prove that for A = UTV
an N x N matrix of the type introduced above and f(z) = },,c7 a,2" an analytic
function on a neighborhood of the limit support S of the empirical eigenvalue dis-
tribution of A, the random variable

Tr f(A) —Nag

converges in distribution, as N — oo, to a centered complex Gaussian random vari-
able with a given covariance matrix (see Corollary 2.2.7). This is a first step in the
study of the noise in the Single Ring Theorem. We notice a quite common fact in
random matrix theory: the random variable Tr f(A) — Nag = Y~ f(A) —E f(A)
does not need to be renormalized to have a limit in distribution, which reflects
the eigenvalue repulsion phenomenon (indeed, would the A;’s have been i.i.d., this
random variable would have had order v/N).
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Next, two corollaries are given (Corollaries 2.2.11 and 2.2.13), one about the
Bergman kernel and the resolvant and one about the log-correlated limit distribu-
tion of the characteristic polynomial out of the support.

2.1.2 Finite rank projections and matrix entries

A century ago, in 1906, Emile Borel proved in [26] that, for a uniformly distributed
point (Xi,...,Xy) on the unit Euclidian sphere S¥~!, the scaled first coordinate
V/NX| converges weakly to the Gaussian distribution as the dimension N tends to
infinity. As explained in the introduction of the paper [3] of Diaconis et al., this
means that the features of the “microcanonical” ensemble in a certain model for
statistical mechanics (uniform measure on the sphere) are captured by the “canon-
ical" ensemble (Gaussian measure). Since then, a long list of further-reaching
results about the asymptotic normality of entries of random orthogonal or unitary
matrices have been obtained (see e.g. [3, 65, 33, 37, 55, 14]).

In this text, as a corollary of our main theorem, we prove that for A = UTV an
N x N matrix of the type introduced above, f(z) = ¥,,czanz" an analytic function
on a neighborhood of the limit support S of the empirical eigenvalue distribution
of A and a,b some unit column vectors, the random variables of the type

VN(b*f(A)a—agb*a)

converge in joint distribution, as N — oo, to centered complex Gaussian random
variables with a given covariance matrix (see Corollary 2.2.15). This allows for
example to consider matrix entries of f(A), in the vein of the works of Soshnikov
et al. for Wigner matrices in [76, 80] (see Corollary 2.2.18 and Remark 2.2.19). It
also applies to the study of finite rank perturbations of A of multiplicative type: the
BBP phase transition (named after the authors of the seminal paper [9]) is well un-
derstood for additive or multiplicative perturbations (A=A+PorA= A(I+P))
of general Hermitian models (see [77, 30, 19] or [9, 20]), for additive perturbations
of various non-Hermitian models (see [92, 21, 73, 24]), but multiplicative pertur-
bations of non-Hermitian models were so far unexplored. In Remark 2.2.16 and
Figure 2.8, we explain briefly how our results allow to enlighten a BBP transition
for such perturbations.

Organisation of the paper: In the next section, we state our main theorem (The-
orem 2.2.4) and its corollaries, all of which go without proof, except Corollary
2.2.13. The rest of the paper is devoted to the proof of Theorem 2.2.4, to the proof
of Corollary 2.2.13 and to the appendix, where we state several technical results
needed here.

2.2 Main result

Let A be a random N x N matrix implicitly depending on N such that A = UTV,
with U, V, T independent and U, V Haar-distributed on the unitary group. We make
the following hypotheses on T:
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Assumption 2.2.1. As N — oo, the sequence (N —ITr TT*) 12 converges in proba-
bility to a deterministic limit » > 0 and there is M < oo such that with probability
tending to one, ||T||op < M.

Assumption 2.2.2. With the convention 1/cc = 0 and 1/0 = oo, the sequence

(VT T2
converges in probability to a deterministic limit a > 0. If a > 0, we also suppose
that there is M’ < oo such that with probability tending to one, [T~ ||o, <M’

The following assumption, which could possibly be relaxed following Basak
and Dembo’s approach of [10], is made to control tails of Laurent series but can
be removed if the f;’s have finite Laurent expansion, like in Corollary 2.2.8 or in
Remark 2.2.19.

Assumption 2.2.3. There exist a constant k¥ > 0 such that

Im(z) > n* = N '|ImTr((z— VTT*) )| < %

For f an analytic function on a neighborhood of the ring

S:={zeC;a<|z] <b},

the matrix f(A) is well defined with probability tending to one as N — oo, as it was
proved in [50, 15] that the spectrum of A is contained in any neighborhood of §
with probability tending to one. We denote the Laurent series expansion, on S, of
any such function f by

f@) =Y an(f)Z"

nez
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Theorem 2.2.4. For each N > 1, let My,..., My be N X N deterministic matrices
such that for all i, j, as N — oo,

1 1 1
NTI‘M,‘ — T, NTI'MIM}k — O, NTrMiMj — ﬁij (21)

Let f1,..., fr be analytic on a neighborhood of S. Then, as N — oo, the random
vector
k
(Tffj(A)Mj —ao(fj) Ter) .

converges to a centered complex Gaussian vector (4(f1),...,9(fx)) whose distri-
bution is defined by
ES(f,)9(f;) = Y ((n=1)57i+Bij) (an(f;)a—n(fi) +a—n(fi)an(f))

n>1

E{f(ﬁ)g(f,) = Z((n—l)’L’,-@—{—OC,-‘,-)(an(ﬁ)an(f,-)bzn—f—a,n(f,-)a,n(fj)afbl).

n>1

Remark 2.2.5. Note that if a =0, as the f;’s are analytic on S, we have a_,(fj) =0
for each n > 1 and each j, so that the above expression still makes sense. Besides,
it seems reasonable to verify that the two series above converge:

Y nlan(fi)llan(f) 0™ < (I}llgf\an(fj)\b”)anan(fi)lb” < o

n>1 n>1
Y rlan(f)llan(fF)l < (maxjan(f)[B") Y nlan(fj)la™ < oo
n>1 = n>1

Remark 2.2.6 (Relation to second order freeness). A theory has been developed
recently about Gaussian fluctuations (called second order limits) of traces of large
random matrices, the most emblematic articles in this theory being [606, 68, 69, 34].
Theorem 2.2.4 can be compared to some of these results. However, our hypotheses
on the matrices we consider are of a different nature than the ones of the previously
cited papers, since the convergence of the non commutative distributions is not
required here: our hypotheses are satisfied for example by matrices like M; =
V/Nx(an elementary N x N matrix), which have no bounded moments of order
higher than two.

Our two main applications are the case where the M;’s are all I (Corollaries
2.2.7 and 2.2.8) and the cases where the M ;’s are /N times matrices with bounded
rank and norm, like elementary matrices (Corollaries 2.2.15 and 2.2.18). In the
case M = I, we immediately obtain the following corollary about linear spectral
statistics of A.

Corollary 2.2.7. Let f1,..., fr be analytic on a neighborhood of S. Then, as N —

oo, the random vector
k

(Trs5(A) ~ Nao(£)))

j=1
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converges to a centered complex Gaussian vector (9 (f1),...,9(fx)) such that
EY ()9 (f;) = Y Inlan(fi)a-n(f;)
nez
EY(f)9(f;) = Y n(an(f)an(£b™ +a n(fi)an(fj)a™").
n>1

For n > 1, let us define the functions

0y . (% )n +(4 '
o) = (5)'=(4)
These functions (plus the constant one) define a basis of the space of analytic func-
tions on a neighborhood of S and we have the change of basis formula

. b pn ;
Y ad =ao+ ) ¢y 0 (2)+¢, 9, (2) = Vn>1, (a >=< " > <C>

nez n>1 a_p a —a C
implying that

Y lan( )P0 +lan(£)Pa = 2) lex ()P +le (O

n>1 n>1

Besides, these functions allow to identify the underlying white noise in Theorem
2.2.4 (we only state it here in the case M; = I, but this of course extends to the
case of general M;’s, allowing for example to state analogous results for the matrix
entries).

Corollary 2.2.8 (Underlying white noise). The finite dimensional marginal distri-
butions of

(Tr g, (A))n=1U(Tr @, (A))z1

converge to the ones of a collection (9, )y>1 U (9, )u>1 of independent centered
complex Gaussian random variables satisfying

E|9E)? = 2 : E(4F)? = +2n(a/b)".

Remark 2.2.9 (Ginibre matrices). In the particular case where A is a Ginibre ma-
trix (i.e. withi.i.d. entries with law .4'¢(0,N~!)), we find back the result of Rider
and Silverstein [83], noticing that in this case a = 0 and b = 1, so that a,(f) =0
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when n < 0 and E¥(f;)¥(f;) = 0, and, for dm(z) the Lebesgue measure on C,

1 d d
S RN

T

_ ! ! &) f(&) .
a /Z<1 %Circle(l-kg)jé; 7] dé]dézd (Z)

T _W ircle(1+¢) (gl _Z)z (62 _2)2

n'—1

_ 1 Ji(&1)fi(&) 1 A2\ z
= _Wﬁircle(l—i—e)ﬁirde(l-&-s)é%é;zn/z<1n’n221nn (51) <€2> dm(z)d&€;d&,

! £\ —n—1
T T am féme(lﬂ) ?éircle(l+£) filénfi(&) Y n(&i&) " d&idé,

n>1

= Z nan(fi)an(fj)

n>1

Remark 2.2.10. If T =1, and the f;’s are polynomial, we find back a result of
Diaconis and Shahshahani [39, Theorem 1] on the limit joint distribution of

(Tr(Uk))

where U is Haar-distributed. Actually, the Corollary 2.2.7 is slightly stronger, since
the result holds for A = UT or A = UTYV as long as T satisfies

n

)
k=1

.1 2 .1 2
AIITLNTr(T ) 71\11520NTr<T ) =1, 2.2)
in which case A may be seen as a multiplicative perturbation of U. T satisfies
the condition (2.2) if for example all its diagonal coefficients are equal to 1 except
o(N) of them (which stay away from 0 and oo).

Corollary 2.2.11 (Bergman kernel and resolvant). The random process

(Tr(z—A)™"),_ U (Tr(Z_A)il)\zbb

lz]<a

converges, for the finite-dimensional distributions, to a centered complex Gaussian
process

(92)151<a Y (FE) =0

with covariance defined by

_ b? __ a2 1
EY.9, = m’ EAA = m> EG. Ay = — (2 —2)?
and by the fact that

_io i0 law
VO ER, (e 1 %>\z|<a Y <el %) b (Fo)ia U (o
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Remark 2.2.12. The kernel of the limit Gaussian analytic function, in the previous
corollary, is, up to a constant factor, the Bergman kernel (see [13, 78]).

Corollary 2.2.13 (Characteristic polynomial out of the support). The random pro-
cess

(log|det(z—A)[ —TrlogT) ,, U (log|det(z— A)[ — Nlog|z]) -,

converges, for the finite-dimensional distributions, to a centered real Gaussian pro-
cess

() 1g1<a Y (FE) 10

lz]<a
with covariance defined by

7 b2
2EL.Y, = —log|1 - \ QEAA = —log|l - =|,  2EZ. =—log|l—|.
Z Z

Remark 2.2.14. As z # 7 both tend to the same point of the boundary of S, the
above covariances are equivalent to —log|z —Z’|. In the light of the log-correlation
approach to the Gaussian Free Field (see [41]), it supports the idea that on the limit
support S, the characteristic polynomial of A should tend to an object related to the
Gaussian Free Field, as for Ginibre matrices (see Corollary 2 of [84]). It would
be interesting to see in what extent such a convergence depends on the hypotheses
made on the precise distribution of the singular values of T.

In the case M; = V/Na b}, we immediately obtain the following corollary:

Corollary 2.2.15. For each N > 1, let aj,by,...,a;, by be deterministic column
vectors with size N such that for all i, j, as N — oo,

. b, b.b
aja; — K, €C : bja; — 1" €C : bib, — K7’ €C

Let f1,..., fix be analytic on a neighborhood of S = Ring(a,b). Then, as N — oo,
the random vector

VA (b (M), —Biasan (7))

j=1
converges to a centered complex Gaussian vector (4 (f1),...,%9 (fx)) such that
GRS = L & (an(fan(f)) +aa(fan(f)))
n>1
GHGF) = L iy (an(fan(F)b* +an(faa(Fi)a").
n>1

Remark 2.2.16 (Application to multiplicative finite rank perturbations of A). The
previous corollary has several applications to the study of the outliers of spiked
models related to the Single Ring Theorem. It allows for example to understand
easily, using the technics developed in [21], the impact of multiplicative finite
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rank perturbations on the spectrum of A (whereas only additive perturbations had
been studied so far). For example, one can deduce from this corollary that for P
a deterministic matrix with bounded operator norm and rank one, if one defines
A :=A(I+P)and A := A(I+AP), then

e the matrix A has no outlier (i.e. the support of its spectrum still converges to
S),

e the matrix A has no outlier with modulus > b, but each eigenvalue A of P
such that [A| > a~! gives rise to an outlier of A located approximately at
—A~! (besides, when the multiplicity of A as an eigenvalue of P is 1, the
fluctuations of the outlier around —A ~! are Gaussian and with order N~/ 2).

This phenomenon is illustrated by Figure 2.8.

To state the next corollary, let us first give the definition of Gaussian elliptic
matrices.

Definition 2.2.17 (Gaussian elliptic matrices). Let p € C such that [p| < 1. A
Gaussian elliptic matrix with parameter p is an N X N Gaussian centered complex
random matrix X = (x;;) satisfying :

(1) the random vectors (x;;,X;;) . j are independent,

i

(2) Vi, E|x;|*> =1 and ExZ = p,
3) Vi#j, E|x,-j|2 =1, Exizj =0, Ex,-jxji =p and IEx,-ij-i: 0.

This matrix ensemble was introduced by Girko in [48], and its name is due to
the fact that its empirical eigenvalue distribution is the uniform distribution inside
an ellipse. In the case where p = 0 (resp. p = 1), we get a Ginibre (resp. GUE)
matrix.

Corollary 2.2.18. Let f be analytic on a neighborhood of S = Ring(a,b) such that

Y lan( NP6 +lan(f)Pa™ = 1.

n>1

Let k be a fixed positive integer and let [ = I(N) be a (possibly depending on N)
subset of {1,...,N} with cardinality k. Let us define the random k x k matrix

Xy = VN [f(A)ij —ao(f)8; }

(i.j)elxI

Then, as N — oo, the matrix Xy converges in distribution to a k X k Gaussian
elliptic matrix X with parameter p,

p =2 Z an(f)a-n(f)-

n>1
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-3 -2 -1 o 1 2 3

(c) Spectrum of A := A(I+ AP)
(small circles are centered at the
theoretical limit locations of the
outliers)

Figure 2.8: Outliers/lack of outliers for multiplicative perturbations: simula-
tion realized with a single 103 x 10 matrix A = UTV when the singular values of T
are uniformly distributed on [0.5,4] and P = diag(—2, (0.8 +0.5i)~!,1/3,0,...,0).
As predicted, none of these matrices has any outlier outside the outer circle, nor
do the two first ones inside the inner circle, but A has two outliers inside the inner
circle, close to the predicted locations.

Remark 2.2.19.  a) In the case where f(z) = z, we find back the well-known
result that any principal submatrix with fixed size of v/NU matrix converges
to a Ginibre matrix (see e.g. [3, 55]).

b) By Corollary 2.2.18, the statement of the first part of this remark happens to
stay true, up to a constant multiplicative factor, if U is replaced by A = UTV
or even by A" or by f(A) if f is analytic in a neighborhood of the disc
B(0,b).

c¢) Italso follows from what precedes that for any n > 1, any sequence of princi-
pal submatrices with fixed size of \/N/2(U"+U™") and \/N/2(U" —U™")
converge in distribution to a GUE matrix and i times a GUE matrix, both
being independent.
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2.3 Proof of Theorem 2.2.4

To avoid having to treat the cases a > 0 and a = 0 separately all along the proof,
we shall suppose that a > 0 (the case a = 0 is more simple, as sums run only on
n > 0). Besides, note that by invariance of the Haar measure, the distribution of
the random matrix A depends on T only through its singular values, so we shall
suppose that T = diag(sy,...,sy), with s; > 0. At last, as the limit distributions, in
Theorem 2.2.4, only depend on T only through the deterministic parameters a, b,
up to a conditioning, one can suppose that T is deterministic (and that both ||T||o,
and | T~!||op are uniformly bounded, by Asssumptions 2.2.1 and 2.2.2).

2.3.1 Randomization of the M ;’s

Let us define W := VU. The random matrix W is also Haar-distributed and inde-
pendent from V. Besides, for each j, as A = UTV = V*WTV,

Tl‘fj (A)M] = TI'V*fj (WT)VM] = TI'fJ(WT)VMJV*

As a consequence, we shall suppose that A = UT (instead of A = UTV) and that
there is a Haar-distributed random unitary matrix V, independent of U, such that
for each j, M; = VM ;V*, with 1\7[1 yenn ,1\~/1k a collection of deterministic matrices
also satisfying (2.1).

2.3.2 Tails of the series

Let us first prove that Theorem 2.2.4 can be deduced from the particular case where
there is ng such that for all n, we have

n| >ng = Vj=1,...,k, a,(f;) =0.
Let € € (0,a/2) such that the domain of each f; contains Ring(a — 2¢,b+ 2¢).

Lemma 2.3.1. There is a constant C independent of N such that for any n such
that n® < N and any j =1,...,k, we have

E|TrA™™;|* < Cn? (1y50(b+ €)*" + Ly<o(a—€)™")

Proof. With the notation of Section 2.3.1, let Ey denote the expectation with re-
spect to the randomness of V. For each n € Z and each j, by Lemma 2.5.6, we
have

Ey|TrA"M;> = EyTrA"VM;V'Tr(A*)"VM;V*

1 - -
= (TrA"Tr(A")" TrM, TrM 4 TrA™ (A7) Tr MM )

N1
1 T AV Ty NN “(A*)"TrM,; TrM*
TNV (TrA™ Tr(A")" TV M + Tr A" (A)" Tr M, Tr M3 )
1 VI Te M V' Tr MM
< 7 (ITrA" PTeV TeM; + TrA”(A°) T MM )
< C(|TrA"?+ N TrA"(A%)")
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where C is a constant independent of N. Then the conclusion follows from Lemma
2.5.5. O

Lemma 2.3.2. There are some constants C > 0 and ¢ € (0,1) and a sequence
& = & of events such that
P(&) — 1

N—oo
and such that for all N, alln; > 0and all j =1,...k, we have

E’]lg Y au(f) Tr(A™;)| < eN(1 =)™

[n|>ny
Proof. By [21, Lem. 3.2], we known that there is a constant C; such that the event
E=EN:={Vn>0,||A"||op <Ci(b+€)"}N{Vn <0, ||A"|op < Ci(a—e)"}

has probability tending to one.
Then one concludes easily, noting first that by non-commutative Holder in-
equalities (see [2, Eq. (A.13)]), we have

Ci(b+€)"N\/N-ITEM;M5  ifn >0
Ci(a—€)"N /N ' TrtM;M;  ifn <0

and secondly that there is ¢ € (0, 1) such that for each j, the sequences

(an<fj>§’jf2:>n>o : <an(fj)((fl__;)n,,)n<0

are bounded. O

16| Tr(A™M,)| <

As a consequence of Lemmas 2.3.1 and 2.3.2, for any 0 < ng < n; < N'/6 and
any j=1,...,k,

E[le ¥ a(f)TAM)| < ¥ |a()VEE)\/ETrAM,)P

[n|>no no<|n|<n;
+E ‘ le Y, an(f)) Tr(A"Mj)‘
|n|>n;

Z Clan(f}) In? (ﬂnzo(b +8)" + Ty<o(a— S)Zn)

no<|n|<n;

FCN(1—c)m

IN

Choosing first n; = |[Alog N | for A a large enough constant and then using the fact
that forany j =1,... k,

Y lan(f)In* (Luzo(b+€)*" + Ly<o(a —€)*") <o,

nez
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we deduce that for any 6 > 0, there is g > O fixed such that for all N large enough,

ZE le Y an(fj) Tr(A™™;)| < 8,

j=1 [n|>ng

for & = &y as in Lemma 2.3.2.
Let us now suppose Theorem 2.2.4 to be proved in the particular case where
there is ng such that for all n, we have

‘n| >ny = Vj=1,...,k, an(fj):O

and let us prove it in the general case. Let Xy denote the random vector of (2.2).
We want to prove that as N — oo, the distribution of Xy tends to the one of & :=
(G(f1),...,9(fi)), i.e. that for any function F : C¥ — C which is 1 Lipschitz and
bounded by 1, we have

EF(Xy) mEF(%)

To do so, we first set

Xos = (L @) Tr(AM) ~TiMpao())

|n|<no

By hypothesis, for any fixed ng, Xy ,, converges in distribution to a centered com-
plex Gaussian vector 4, := (%, (f1), - - -, %, (fx)) such that

E (% ()% (f;)] = EGHG)]+ny
B[4 ()] = E[9(75)]+ a0,

where lim )" n;7|+16;7| = 0. Therefore,

Mm% i j<k

E[F(Xy) = F(9)]]
< |EIF(Xn) = F Xyl + [E[F (Xnmg) = F (o)l + [E [F (%) — F(9)]]
< 2P(6) +E [L6l|Xy — X [13] + 1B [F (Xng) = F (%)l +E [[|%, — 4 3]
which can be as small as we want by (2.3) and the fact that Xy ,, @, ‘G, if 9, and
¢ are coupled the right way.

2.3.3 Proof of Theorem 2.2.4 when the f;’s are polynomial in z and

Zfl

We suppose here that there is ng > 0 such that for all n > np and all 1 < j <
an(f;) =0. Without any loss of generality, we also assume that for all j, ao( fi)=
In this case, any linear combination of the Tr f;(A)M;’s can be written

k
Z Trfj = Z TI'AnNn

n|<no
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k
where N, := Z vja,(fj)M;. Written this way, we notice that to prove that the limit
j=1
distribution of Gy is Gaussian, we simply have to prove that the random vector
(TrA"N,)

—np<n<ng

converges in distribution to a Gaussian vector. We will prove it by computing the
limit of the joint moments.

Before going any further, recall that by the preliminary randomization of the
N;’s from section 2.3.1, we suppose that A = UT (instead of A = UTV) and that
there is a Haar-distributed random unitary matrix V, independent of U, such that
for each j, N; = VN ;V*, with N ; a deterministic matrix.

We shall proceed in three steps:

a) First, we prove the asymptotic independence of the random vectors

(TrA"N,, TrA™"N_,) -,
by the factorization of the joint moments. More precisely, we prove, thanks
to Corollary 2.5.4, that for any (p,)r" ;. (qa)2 s (Fa)he s (Sn)02 s,
E [ [T (TrA"N,)™ (TrA™N,)* (TrA—"an)rn‘(TrA*”N,n)S"}
1<n<ng
=TT E[(Tra"N,)" (TrAN,) ™ (TrA™"N-,))"(TrA "N_,)"| +o(1)

1<n<ng

b) Then, we prove for any fixed », the random complex vector
(TrA"N,,TrA""N_,)

converges in distribution to a centered complex Gaussian vector thanks to the
criterion provided by the Lemma 2.5.7. This criterion consists in proving that
the joint moments, at the large N limit, satisfy the same induction relation as
the moments of a Gaussian distribution.

¢) It will follow from a) and b) that when all f;’s are polynomials in z and 7 1

the random vector of (2.2) converges in distribution to a centered Gaussian
vector. To conclude the proof, the last step will be to prove that the limit
covariance is the one given in Theorem 2.2.4.

In the proofs of a) and b), we shall need to compute expectations with respect to
the randomness of the Haar-distributed matrix U. More precisely, we shall need
to compute sums of expectations with respect of U resulting from the expansion
of products of traces involving powers of A (such as TrA”N,,). To do so, we will
use the Weingarten calculus (see Proposition 2.5.1) and shall always proceed in the
following way: first, we use (2.22) to state that all the terms of the sum are null
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except those for which the left (resp. right) indices involved in u are obtained by
permuting the left (resp. right) ones involved in u. Then, we claim, by Remark
2.5.2, that among the remaining terms, we can neglect all those whose indices are
not pairwise distinct. At last, once all the remaining terms are, up to multiplicative
constant, equal to Wg (o) for some permutation o, we neglect all those for which
0 # id (see Remark 2.5.3) and the summation finally gets easy to compute. We
introduce here a notation that we shall use several times :

IZIé = {(il, cooyin) €{1,...,N}"; i1,... i, are pairwise distinct} 2.3)

(this set implicitly depends on N).

2.3.4 Proof of b)

In this part, as n is fixed, we shall denote N, (resp. N_,) by M = [M;;] (resp.
K = [K;}]). For any non-negative integers p, q,r,s, wet set

Mpgrs = E(TrA"M)”(TrA"M)’ (TrA"K)"(TrA—"K)’

and our goal is to show that, as N goes to infinity, the numbers m,, , ,.; have limits
satisfying conditions (2.26), (2.27), (2.29), (2.30) and (2.31) of the Lemma 2.5.7.
Note that (2.26) and (2.29) follow from the fact the the Haar measure on the unitary
group is invariant by multiplication by any e, 6 € R. We shall use the following
notations

1 1 1
lim —Tr(MM*) =:ay ; lim NTr(KK*) =: oK ;I&ENTr(MK) =: Bmx

N—o0 N—oo

.1 .1
J\I;IBLNTrM =M ; J\III—IgoNTrK_' TK.

TrA"M and TrA~"K are asymptotically two circular Gaussian complex vari-
ables satisfying conditions (2.27) and (2.31)

We simply have to show that for any integer p > 1

E| TrA"M\ZP = pv(bZ"(( — D> +om))” +o(1), (2.4
E|TrA7K|” = pl(a¥((n—1)|w]>+ax))’ +o(1), (2.5)

E(TrA"™ TrA"K)” p!((n— 1)tk + Pux)” +o(1) . (2.6)
We shall prove it by induction on p. So first, we show the previous relation for

— 1. Recall that we assume that M = VMV* and K = VKV*, where M and K
are deterministic, so that, using the Lemma 2.5.6, we have (denoting again by Ey
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the expectation with respect to the randomness of V),

Ev|TrA"VMV*|?

= lTrA"(A*)" (lTr1\~/[1\~/I* - |1Tr1\~/[‘2>
N N N
Y Q) 1
+ [ TrA"[7[ S TeM| +0<N>

Ev|TrA"VKV*|®

1 1 ~ =~ 1 ~
= —TrA (A" ( = Tr (KK*) — |- TrK |’
N N N
a2y L2 1
TrA™"|"|=TrK|"+0| =
+ APl RP o)
~ ~ l = 1 ~1_ =
EyTrA"VMV TrA""VKV* = —TrMK- —TrM— TrK
N N N
1 ~1_ 1
TrA"TrA™"—TrM—-TrK+ 0| — | .
+ TrA"Tr N TM T + (N>
This is asymptotically determined by the limits of E ’ TrA” 2, E | TrA™" 2, ETrA"TrA™",

N'ETrA"(A*)", N"'ETrA~"(A*)~". First, we compute IEJ’TrA”’2 for n > 1.
We write

E|TrA"|?

= Y Elwii i gy W) SinSjy o 8i,S,e (27)
1<iy,...,in<N
1<t oo jn<N
From (2.22), we have a condition on the i;’s and the j;’s for a non-vanishing ex-
pectation, which is the multiset’ equality

{iv,-yin}y, = {J1s-- s dntms (2.8)

The first consequence of (2.8) is that the sum is in fact over O(N") terms which all
are at most O(N "), which means that any sub-summation over o(N") terms might
be neglected. So from now on, we shall only sum over the n-tuples (i1, ...,i,) € ij
(recall notation (2.3)). Then (2.7) becomes

_ 2 2 o L —
- Z Siy S, Z E [”1112 C Ui Big i) "‘”la(n)lau)] +o(1)

(ilwn»in)eljlé OESy

E ’ TrA"’2

Let ¢ € S, be the cycle (12 ---n). From (2.22) (see Remark 2.5.2), as long as the
ii’s are pairwise distinct, one can write

B tiriy i Hig g ”’”iow)ia(l)} = Wg(oc'o7'c)
and from (2.23) and Remark 2.5.3, we know that the non-negligible terms are the

ones such that cc™'o~ !¢ = id, ie. 6c = co, which means that ¢ must be a

9We use the index m in {-},, to denote a multiset, which means that {xi,...,x,},, is the class of
the n-tuple (x1,...,x,) under the action of the symmetric group S,,.
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power of ¢ and so, only n permutations ¢ contribute to the non negligible terms.
At last, as Moeb(id) = 1, we have

E|TrA"|?

= Z sizl---sl-znXnN_"(1+0(l))+0(1)
(it oeesin) €T}

&Y
= n(NZle> +o(1) = nb* +o(1).

In the same way, one can get

IE‘TrA*”‘2 = na"+o(1),
ETrA"TrA™ = n+o(l).

Let us now consider N~ ETrA”(A*)" for n > 1. We have

1 *\N — RN [
NETYA”(A) = N Y E(wigiy iy i, oy, W) SiSy e 8i@9)

1<ig,i1yeesin <N
1<josjtsesjn <N
10=J0; ln=Jn

As previously, we know that by (2.22), that for the expectation to be non zero, we
must have the multiset equality

{ioy - yint, = {Jos--rintys (2.10)

The first consequence of (2.10) is that the sum is in fact over O(N"*!) terms which

are all at most O(N -l ), so that any sub-summation over 0(N"+1) terms might
be neglected. As previously, we shall sum over the pairwise distinct indices Iffle

(see notation (2.3)). Hence (2.9) becomes

—1 n(A*\n —1 2 2
N7 ETrA"(A")" = N Z Siy S, Z E [“ioil S Wi i, Wi )i “uia(n—l)io'(n)]
O-ESVHrl
5(0)=0
o(n)=n

(i()vilw-win)elil

Let ¢ € S,41 be the cycle (012 ---n). From (2.22) (see Remark 2.5.2) one can
write

—1 -1
E Ujgiy « Ui, i, Uig Uiy = Wg (GC () C).

o) <n—1>io<n>}

As previously, o must be a power of ¢ for the asymptotic contribution to be non-
negligible. However, this time, we impose ¢(0) = 0 and ¢ (n) = n, so that the only
possible choice is 6 = id which means that only one term contributes this time. At
last,

1
NETrA”(A*)” = b +o0(1),
The same way, one can get

1
SETAT(AY) ™ = a ().
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This concludes the first step of the induction.
In the second step, we have to prove the following induction relation: for any
p=2,

E|TrA"M|” = pE|TrA"M|*E|TrA"M|*" " 1 o(1) .11
E|TrA"K[” = pE|TrA"K['E|TrA"K[*" " 4o(1) (2.12)
E(TrA"MTrA"K)? = pE[TrA"M TrA"K]E[(TrA"M TrA~"K)""']
{013)
Let us first consider E ‘ TrA”M‘Zp . We shall use the following notation
TrA"™™ = Z Wigiy Siy =~ Wi, iy Si,Miip = ZuiSiMinioa
0,1 o i

where the bold letter i denotes the (n+ 1)-tuple (io,...,i,) and where we set

Ui := Uigiy * Uiy, > Si o= Sip S, -

n

Hence,

EITAMP = ¥ B [ty 5] s Mo 7 Mg sy D T4)

As usual, we know we can sum over the i*’s satisfying that (i, ... i) (the p(n+1)-
tuple obtained by concatenation of the i’s) has pairwise distinct entries and such
that we have the set equality:

{hr<a<posus<a) = {jf1<a<po<p<n}. @19

Then, in order to have Wg(id), we must match each of the (n+ 1)-tuples i',...,i"
with one of the (n+ 1)-tuples j',...,j?, i.e. that for all 1 <A < p, there is a
1 < A’ < p such that we have the set equality

A 2 A 2 a0 2 Y
{i*} = {zo,zl,...,zn} = {]O 1 ,...,Jn} = {j* }.

We rewrite (2.14) by summing according the possible choice to match {i'} =
1 1
{zo,zl,...,zn}

p
2p [
n — B o1 Usp . 1:1.8: RS BRI Y D . Iy
E|TrAM|” = ) E [uys - uipllyr -+ o] s My sji Mo -+~ soMipipsipMp i +o0(1)

j
A=1 (i‘,..‘,il’)elf(nﬂ)

U'd?)ED
ilejt
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where i' < j* stands for the set equality {i(l),i%,.. 1 {]0 ,]1 - ,jf:}. Then,
we know that the set of indices {i},i},...,i} } is disjoint from the others, so that by
Corollary 2.5.4,

E [”il UL W] - E [uilu?} E [uiz e Uip U T T W}

and up to a proper relabeling of the indices, all the choices lead to the same value
of the expectation, so that

E|TrA"M|”
p ZE l/tll/ll]SlMl 1SlMJ,1”j0 Z E l2 MJp 12M22S2M22 SlpMppSJpMpp—i-O(l)
i'ely,, (e d)ET, )
i'er, (e d”)E, iy

pE[|Tr(AM)[P E[ | Tra™) 7] 4o0(1).

This proves (2.11). In the same way, we prove (2.12) and (2.13), and thus conclude
the proof of the induction.

Remark 2.3.3. In the last computation, we split the expectation and so we sepa-
rated the summation implying that

I

o
pn+l) = In+1><I(

p—1)(n+1)

which is obviously inaccurate. Nevertheless, we easily have that
# #
Cardl ) = Card( XX )(n+1)> (1+0(1)),

which means that this inaccuracy is actually contained in the o(1).

To conclude the proof of b), we have to prove that Tr A"M and Tr A~"K satisfy
Condition (2.30) at the large N limit.

TrA"M and Tr A~"K satisfy Condition (2.30) at the large N limit

We apply the same idea as previously, but for a slightly more complicated expecta-
tion. Let p,q,r,s be positive integers and such that p — g = r —s. We denote joint
moments by m,, ; .

Mpgrs = E(TrAM)”(TrA"M)’ (TrA~K)" (TrA"K)’, (2.16)
and as
TI'A”M = Z uioilsil .'.uin—linsinMiniO = Z“iSiMinio
00,01 5--+sIn
TrA7"'K = Z ﬁin,linsizl "'ﬁioilsll i Zul l()l,,a

Insin—15e+5i0
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we rewrite (2.16) as follow

NYITE
E Y JI 5MpaMp wKy @Ko oty oty (2.17)
Spvsie ol kg kn TG 5 T J
il,..i» 1<A<p kV9]
jl o 1<u<q
K. K 1<v<r
ll " 1<6<s
(recall that the s; = s;, ---s;, for i = (io,...,in)). As previously, we deduce from

Proposition 2.5.1 that for the non vanishing expectations, we must have the follow-
ing multiset equality

{fhrsa<posp<nl U{h 12 <50<p<n)

m

_ {jﬁ, 1gxgq,ogu§n}mu{kﬁ, 1§A§r,ogugn} (2.18)

m

from which we deduce that we can restrict the summation to the tuples such that

.1 :pql #
i',...,i"1'...IF) €l g
and that, for the non negligible terms (i.e. those which lead to Wg(id)), we must
match each of the (n+ 1)-tuples involved in u (the i’s and the I’s) with one of those
involved in % (the j’s and the k’s). For example, we sum according to the choice
the “partner” of i'.

q
NV
Mmpars = E L M,x )LM# uKk k"Ké" geulauloujuukv
T § ; Siv 81 i
o=1 i, )61# 1<A<p 1

#1<u<q
Glelm 2\ o
ioj* 1<6<s

-
St
+ ZE Z H Sir J”M AM#7HKkvk#Kgogeulluleu']uukv—i—o(l),
i€l

B=1  (iler* 1<i<p K51
(Rjer* [=h=d
il KB 1<v
1§9§s

where to simplify, (i,1) stands for the (p+s)(n+ 1)-tuple obtained by the concate-
nation of the i*’s and the 1#’s, and 17 implicitly means Ié L))" As previously,

we use the Corollary 2.5.4 to split the expectations. Hence, one easily gets
Mpgrs = qE U TrA"Mﬂ Mp_1g-1s+7E [TTA"MTrA7"K] mp_1 4,15+ 0(1).

To get the other relations, we just sum according to the choice of the partner of j!
(resp. k! and 1}).
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2.3.5 Proof of a): asymptotic factorisation of joint moments

The proof relies mostly on Corollary 2.5.4. We first expand the expectation

E[ [T (TrA™,)" (TrA"N,)" (TrA™"N_,)"(TrA~"N_,)"].  (2.19)

1<n<no
Let Ml-( " denote the (i, j)-th entry of N, and recall that for i = (i, ..., i), we set
Ui i= Ujpi, - Ui, i, ; Si = Siy e Si, -
We get
TrA"N, = Z Wigiy Siy * Uiy iy SiyM; Zulsl
10,1 sveesin
TrA™"N_, = Z Ui, i, ;" L. < Uioi, iy M, Zu. _leozn ,

insin—1re-osi0

so that

Sin 2 Sinu —_— — —_—
E H Z H AM(””;)L nlM(;l)p .n.uM]En,\:,lk)n ”MZ" K) olu A Uyn, Gu m, #uknivz 20)
1<n<ng 1”l ..... inpn lflfl’n SkrvSpwe - tnto I Jo o 0
o 1<i=g,
knl kn.rn ISVSrn
1’1«,1““7]’14571 1<6<s,
where we use bold letters such as i"* to denote (n+ 1)-tuples (i’ A Y A,

We can use the same ideas as in [21, Lemma 5.8] to state that the non-negligible
terms of the sum must satisfy that for all n, there are as much (n+ 1)-tuples in-
volved in u as in %, which means that

PntSn = gn+Tn,

and that we must have the multiset equalities

no

U{tt 1=a<pmo<u<n} U 122 <0,0<pu<n)

n=1 m

no

= Ul 1sa<g0<p<a) u{kt 12 <00 <oy

n=1

We deduce that there are a O(Nzn"(Pn+sn)) non zero terms in (2.20) and we can
easily show that any subsum over a o(NX+"(Pr5)) is negligible so that for now on
we shall sum over the non pairwise indices. Then, we know that we can neglect
any expectation Ey which won’t lead to Wg(id) (see (2.23)) so that (2.21) becomes

vi<n<n,  {#1<2<p0<p<nlul{dt 12 <s,0<u<n]

_ {Ju ,1</1<qn,o<u<n}u{k#= ,1§A§r,,,ogugn}.
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It follows that the set of indices involved in the expansion of the Tr A"N,,, TrA™"N_,,
TrA"N,, TrA="N_,, is disjoint from the set of indices involved in the expansion
of the TrA”N,,,, TrA™"N_,,, TrA™N,,, TrA="N_,,, as long as n # m. Therefore,
Corollary 2.5.4 allows to conclude the proof of a).

2.3.6 Proof of c): computation of the limit covariance

Let f,g be polynomials in z and 77!

such that, as N — oo,

and let M,N be N x N deterministic matrices

1 1 1 1
—TM—17 ; —TtIN—7 ; —TrMN* — a ; —TrMN — .
N N N N

We need to check that the limits of both sequences

E(Tr f(A)M —ao(f) TrM)(Trg(A)N —ao(g) TrN)

and
E(Tr f(A)M — ao(f) TrM)(Trg(A)N — ao(g) TrN)

are the ones given in the statement of Theorem 2.2.4. Note that it suffices to com-
pute the limits for f = g and M = N. Indeed, using the classical polarization
identities for M and N, first for general polynomials f, g, we reduce the problem to
the case M = N. Then, we use polarization identities again to reduce the problem
to f=g.

Also, recall that since A 9 ¢'9A for any deterministic 6, we know that for any
positive distinct integers p, g, we have

ETrAPMTrA M = ETrA’MTrAM = 0.

It follows, using (2.4), (2.5) and (2.6), that

E|Tr f(AM—ao(f)TTM? = Y au(f)a.(f) ETrA"MTrA"M
mneZ
#0

_ Z<\an(f)|2E]TrA"M]2+|a,n(f)\2E‘TrA’”M‘2)

n>1

— Y (lan(NIPO*" +lau(F)Pa™") (=) + o),

n>1
E(Trf(AM—ao(f)TrM)* = Y au(f)a.(f) ETTA"MTrA"M

m neZ

= Z2an fETTA"MTrA™"M

n>1

— 2Y a(f)aa(f)((n—1)T*+B),

n>1

which concludes the proof.
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2.4 Proof of Corollary 2.2.13

It is easy to see that for any z ¢ S, we have

TrlogT+Re 7", with 7N :=TrY,_, % if |z| < a.

log|det(z —A)| = '
g | det( )l {Nlogzy—i—Ree%’év, With@53=—Tan2157if]z\>b,

(in the first case, we used the fact that |detA| = detT). Then, by Theorem 2.2.4,
(") o U (%)

|lz]<a lz|>b

converges, for the finite-dimensional distributions, to a centered complex Gaussian
process

(D) <a Y (B2 50

lz]<a

with covariance defined by

L =
By =0, Bl =—log(l——3),

— b?
E‘%Z‘@Z/ = 0, Eﬁzﬂz’ = log(l - 7)7
hid
/

Eo#y = —log(1-7), Ed# =0,

where log denotes the canonical complex log on B(1,1). Then, one concludes by
noting that for A,B € C,2ReARe B = Re(AB+AB).

2.5 Appendix

2.5.1 Weingarten calculus on the unitary group

Here comes a main result about integration with respect to the Haar measure on
unitary group, (see [38, Cor. 2.4 and Cor. 2.7]). To simplify, for any k-tuples
i=(i1,...,0c)and j = (Jj1,..., jx), we set

Uij = Ui j Uiy jp - Ui iy

Proposition 2.5.1. Let k be a positive integer and U = (u;;) a N x N Haar-distributed

matrix. Leti= (iy,....i), i = (i},...,5), 5= (1., Jx) and § = (j},- .., J;) be
Sour k-tuples of {1,...,N}. Then

E[ugirg] = Y SO iy - O, WelTo™h), (222)

o,TESK

where Wg is a function called the Weingarten function. Moreover, for ¢ € Sy, the
asymptotical behavior of Wg(0o) is given by

Nlolwg(o) = Moeb(o )+0<1\}2> (2.23)
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where |G| denotes the minimal number of factors necessary to write © as a product
of transpositions, and Moeb denotes a function called the Mobius function.

Remark 2.5.2. One should notice that if all k-tuples (i1, ..., i), (ji,.--,jk), ({],---,0}),
and (1, ..., j;) have pairwise distinct entries, then (2.22) becomes simpler because
in this case there is at most one non-zero term in the sum.

Remark 2.5.3. The permutation ¢ for which Wg(o') will have the largest order is
the only one satisfying |6| =0, i.e. 6 = id. Also, Moeb(id) = 1 (see [38]).

Here comes an useful corollary which permits to simplify many computations.

Corollary 2.5.4. Leti= (i1,...,ip), j=(j1,.- -, Jp), k= (ki,...,kg), 1= (41,...,4,),

= (,..,0,), 3 =l dp) K= (ks k), Vo= (€4, €}) be tuples such

the multisets defined by i and i (resp. by jand j, by kK and X', by 1 and V') are equal
and such that

{il,...,ip}ﬁ{kl,...,kq} = {jl,...,jp}ﬁ{ll,...,lq} = (.
Then

1
E [umuk’lui/’j/ukz_’y] =E [”i,jm] E [ukJm] <1 +0 <1V2>> .

Proof. To prove this result, we first recall the exact expression of the Mobius
function : for any permutation ¢ with cycle decomposition C1C; - - - C,,

Moeb(o) = H(—l)‘c"HCand_l,
i=1
2k

k
are two permutations with disjoint supports, then

1
where Cat; is the k-th Catalan number, k+1( > Then, obviously, if ¢ and T

Moeb(c 07) = Moeb(c)Moeb(1) and loot| = |o]+]1].
Thus

1

NPHItlotlwe(got) = Moeb(cfof)+0<Nz>
1

= Moeb(G)Moeb(T)+0<Nz>

1
= nPtlolwg(o)NT1T wg (1) (1 +0<N2>>
So that
NZ

One can easily conclude. U

We(aor) = Welo)Wee) (1+0( 3 ) ).

We also need the following lemmas in the paper.
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Lemma 2.5.5. Let A = UT with U Haar-distributed on the unitary group and T
deterministic. Let € > 0. There is a finite constant C depending only on € (in
particular, independent of N and of T) such that for all positive integer n such that
n® < (2—€)N, we have

m

2 n
ETrA"(A")") < CNn? <m2 + ”N"">

and

2 n
E[| TrA"|?] < C(mz—i-n’;w) ,

where my := N~ TrTT* and me := || T||op-
Proof. See [15, Th. 1]. O

Lemma 2.5.6. Let V be Haar-distributed and let A,B, C,D be deterministic N x N
matrices. Then we have

1
ETrAVBV'TrCVDV* = N1 (TrATrCTrBTrD + TrACTrBD)

1
_]V(Tl) (TrATrCTrBD + TrACTrB TrD)

Proof. Let .#y(C) denote the set of N x N complex matrices. It has already been
proved, in [21, Lem. 5.9], that for any matrices A,B,C,D € .Zy(C), we have

1
ETrAVBV*CVDV* = Y 1{TrACTrBTrD+TrATrCTrBD} (2.24)

1
_m {TrACTrBD+TrATrCTrBTrD}.

We deduce that

1
EVeV VeV = N1 { Y Ej,k®Ek,j®Ei,é®Eﬁ,i+Ei7j®Ek7Z®Ef,k®Eji}
i7j7k~,‘€
1
NI T & B @B QE @B+ B QE k@B @ o
( - ) i,j.k,l
(2.25)

where the E, ; denote the elementary matrices. Indeed, the linear morphism ¥ from
My (C)®* to the space of 4-linear forms on .#y(C) defined by

YMeN2P2Q)(A,B,C,D):=TrAMBNCPDQ

is an isomorphism, and (2.24) proves that the left and right hand terms of (2.25)
have the same image by . Then, applying

M®N®P®Q +— Tr (AMBN) Tr (CPDQ)
on both sides of (2.25), we deduce the lemma. O
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2.5.2 Moments of a Gaussian vector with values in C?

The following lemma allows to prove that a complex random vector (X,¥) is Gaus-
sian without having to compute all its joint moments, by only proving an induction
relation.

Lemma 2.5.7. Let (X,Y) be a Gaussian random vector with values in C* whose
distribution is characterized by

EX = Ex? = EY = EY? = 0, (2.26)
and
E|X|*>=o0x; E|Y|* =0y ; EXY = oxy ; EXY =0. (2.27)
Then, the moments
Mpgrs = EXPX'Y'Y’ (2.28)
satisfy
P—qFr—s = mpgys =0, (2.29)
qoOxMp_1.g—1,rs TTOXYMp—1.g.r—1.s
POXMp 1 g—1,s +SOXYMp g1 151
Mpas = SGYm:q,rfql,sfl +pGXYmZil,q,r71,s 230
roymp gr—1.5—1+tqOXyMp g1 rs5—1
and

mpop0 = E(XY)? = plogy. (2.31)

Conversely, if (X,Y) is a random vector with values in C* such that both X and
Y are Gaussian and have joint moments my, g rs Satisfying (2.26), (2.27), (2.29),
(2.30) and (2.31), then (X,Y) is Gaussian.

law

Proof. First, one easily obtains (2.29) by noticing that for any 8 € R, (e'?X,e70y) =
(X, 7).

To prove the remaining, we consider (X,Y) as areal 4-tuple (R(X),3(X),R(Y),3(Y))

(x1,x2,x3,x4) With covariance matrix

Ox 0 CX(ny) 3(ny)
r— l 0 Ox S(ny) —%(ny)
2 m(ny) S(ny) Oy 0

3(ny) —%(ny) 0 Oy
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Its Fourier transform is given, for t = (t,,%,,13,14), by
d(t) = Eexp(i ( (t1x1 +trx0 +13x3 + t4x4))

= exp{-— (ch(t1 +6)+oy(B+1)) - ;SR(GXY) (tits —tots) — %S(ny) (3 +1i14) }
We define the differential operators

ox = d|+idh 87 = 0| —1ch
oy = ok+ids a? = J;—i0d4

so that

EXPXY'Y’ = (—i)PHatrofologard(t)| (2.32)
and

ox®(t) = —%(Gx(tl—f-llz)—l—GXY (13 —ity) ) D(t)

ox®(t) = —%(Gx(tl—ll‘z)—l-cxy (13 +it4) ) D(t)

() = 3 (0v(1s +its) + oy (1 —it))(D)

oyd(t) = —%(Gy(l3—ll‘4)+ﬁxy (t1 +i12) ) D(t)

We easily deduce that

IGILAED(t)| _ = —qoxdf oL 'ayasd(t)],_,—roxydf Loy (b,
so that
EXPXY'Y = qoxEXP'X 'YV 4 rowy EXPTIXIYTIY
This proves (2.30). To prove the last point, we simply write
Gx(tl +it2)+6xy(t3—it4) r
E(XY)? = (—1)PoLard(t)|_, : oLd(t)= (— . ) o(t).

Then, using Leibniz formula and noticing that for all £ < p,

)

ak(_Gx(l‘l—|—it2)+6xy(t3—it4))l" . 0 ifk<p
4 2 =0 ") pl(oyy)P ifk=p

one can easily conclude.
Conversely, let (X,¥) be a random vector with values in C2 such that both X
and ¥ are Gaussian and have joint moments myp 4.r.s satisfying (2.26), (2.27), (2.29),
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(2.30) and (2.31). Let N denote the set of non-negative integers and let us define
the sets

A ={(p.q,r,5) EN*; p—q#r—s},
My = {(p,q,r,S) eNY; (rts+|p—al) (p+g+|r—s|) (p+r+lg—s|) (g+s+[p—rl) 20}
and, fork > 1,
M = {(p,q,r.s)EN*; (p—1,q—1,rs)or (p—1,q,r—1,s) or
(qu—l,r,s—l)Or(p,q,r—l,s—l)6:%7(,1}

Then by hypothesis, the joint moments function 7, 4 s coincides with m, 4 s on
U . Besides, by (2.30), if i1, 4 s coincides with m,, , s on %1, then 7, 4 1.
coincides with m,, .. on 7. As

N* = rul 4,
k>0

~ .. . C e 5 o |
we deduce that m,, 4 s coincides with m,, 4 s on N*, wich implies that (X,Y) =

(X,Y). 0
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Abstract :

In this paper, we study the asymptotic behavior of the outliers of the sum a Hermitian
random matrix and a finite rank matrix which is not necessarily Hermitian. We observe
several possible convergence rates and outliers locating around their limits at the vertices of
regular polygons as in [21], as well as possible correlations between outliers at macroscopic
distance as in [62] and [2]]. We also observe that a single spike can generate several
outliers in the spectrum of the deformed model, as already noticed in [19] and [12]. In the
particular case where the perturbation matrix is Hermitian, our results complete the work
of [16], as we consider fluctuations of outliers lying in “holes" of the limit support, which
happen to exhibit surprising correlations.

3.1 Introduction

It is known that adding a finite rank perturbation to a large matrix barely changes
the global behavior of its spectrum. Nevertheless, some of the eigenvalues, called
outliers, can deviate away from the bulk of the spectrum, depending on the strength
of the perturbation. This phenomenon, well known as the BBP transition, was
first brought to light for empirical covariance matrices by Johnstone in [57], by
Baik, Ben Arous and Péché in [9], and then shown under several hypothesis in the
Hermitian case in [77, 43, 28, 29, 79, 19, 20, 16, 17, 30, 61, 62]. Non-Hermitian
models have been also studied: i.i.d. matrices in [92, 24, 82], elliptic matrices in
[73] and matrices from the Single Ring Theorem in [21]. In [21], and lately in
[82], the authors have also studied the fluctuations of the outliers and, due to non-
Hermitian structure, obtained unusual results: the distribution of the fluctuations
highly depends on the shape of the Jordan Canonical Form of the perturbation, in
particular, the convergence rate depends on the size of the Jordan blocks. Also, the
outliers tend to locate around their limit at the vertices of a regular polygon. At
last, they observe correlations between the fluctuations of outliers at a macroscopic
distance with each other.

In this paper, we show that the same kind of phenomenon occurs when we perturb
an Hermitian matrix H with a non-Hermitian one A. More precisely, we study
finite rank perturbations for Hermitian random matrices H whose spectral measure
tends to a compactly supported measure p and the perturbation A is just a complex
matrix with a finite rank. With further assumptions, we prove that outliers of H+
A may appear at a macroscopic distance from the bulk and, following the ideas
of [21], we show that they fluctuate with convergence rates which depend on the
matrix A through its Jordan Canonical Form. Remind that any complex matrix is
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similar to a block diagonal matrix with diagonal blocks of the type
0 1 (0)

RGo)=| |

0
©0) 0

so that A ~ diag (R, (61),...,R, (6,)), this last matrix being called the Jordan
Canonical Form of A [53, Chapter 3]. We show, up to some hypothesis, that for
any eigenvalue 6 of A, if we denote by

Pl,--sP1> D2y, P2 > > Doy -+ -5 Pa
—_— — —_——

B times B> times Bo times

the sizes of the blocks associated to 0 in the Jordan Canonical Form of A and
introduce the (possibly empty) set

% = {sec. a®) =g}

1
where G, (z) 1= / ——u(dx) is the Cauchy transform of the measure u, then
Z—Xx

there are exactly Bip + -+ Bopeq outliers of H+ A tending to each element of
. We also prove that for each element £ in .%p, there are exactly f; p; outliers
tending to & at rate N~1/(21) B, p, outliers tending to & at rate N~1/(2P2)etc...
(see Figure 3.10). Furthermore, the limit joint distribution of the fluctuations is ex-
plicit, not necessarily Gaussian, and might show correlations even between outliers
at a macroscopic distance with each other. This phenomenon of correlations be-
tween the fluctuations of two outliers with distinct limits has already been proved
for non-Gaussian Wigner matrices when A is Hermitian (see [62]), while in our
case, Gaussian Wigner matrices can have such correlated outliers: indeed, the cor-
relations that we bring to light here are due to the fact that the eigenspaces of A are
not necessarily orthogonal or that one single spike generates several outliers. In-
deed, we observe that the outliers may outnumber the rank of A. This had already
been noticed in [19, Remark 2.11] when the support of the limit spectral measure
of H has some “holes” or in the different model of [12], where the authors study
the case where A is Hermitian but with full rank and is invariant in distribution by
unitary conjugation. Here, the phenomenon can be proved to occur even when the
support of the limit spectral measure of H is connected. At last, if we apply our
results in the particular case where A is Hermitian, we also see that two outliers at
a macroscopic distance with each other are correlated if they both are generated by
the same spike (which can occur only if the limit support is disconnected) and are
independent otherwise (see Figure 3.11). From this point of view, this completes
the work of [16], where fluctuations of outliers lying in “holes" of the limit support
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had not been studied.

The fact to consider a non-Hermitian deformation on a Hermitian random matrix
has already been studied in theoretical physics (see [44, 45, 46, 47]) in the particu-
lar case where H is a GOE/GUE matrix and A is a non negative Hermitian matrix
times i (the square root of —1). They proved a weaker version of Theorem 3.2.3 in
this specific case but didn’t study the fluctuations.

The proofs of this paper rely essentially on the ideas of the paper [21] about outliers

in the Single Ring Theorem and on the results proved in [79, 80, 16]. More pre-
cisely, the study of the fluctuations reproduce the outlines of the proofs of [21] as
long as the model fulfills some conditions. Thanks to [79, 80], we show that these

conditions are satisfied for Wigner matrices. At last, using [16] and the Weingarten
calculus, we show the same for Hermitian matrices invariant in distribution by uni-
tary conjugation. In the appendix, as a tool for the outliers study, we prove a result
on the fluctuations of the entries of such matrices.

3.2 General Results

At first, we formulate the results in general settings and we shall give, in the next
section, examples of random matrices on which these results apply.

3.2.1 Convergence of the outliers

Set up and assumptions

For all N > 1, let Hy be an Hermitian random N x N matrix whose empirical spec-
tral measure, as N goes to infinity, converges weakly in probability to a compactly
supported measure (U

1 N
by o= 5 ) S — 1 3.1
i=1
We shall suppose that p is non trivial in the sense that u is not a single Dirac
measure. Also, we suppose that Hy does not possess any natural outliers, i.e.

Assumption 3.2.1. As N goes to infinity, with probability tending to one,

sup  dist(A,supp(n)) — O.
AeSpec(Hy)

Forall N > 1, let Ay be an N x N random matrix independent from Hy (which
does not satisfies necessarily Ay, = Ay) whose rank is bounded by an integer r
(independent from N). We know that we can write

Ay = uld O\ g (3.2)
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where U is an N X N unitary matrix and Ay is 2r X 2r matrix. We notice that Ay
only depends on the 2r-first columns of U so that, we shall write

Ay = UyAoU;,,

where the N x 2r matrix Uy, designates the 2r-first columns of U. We shall assume
that A is deterministic and independent from N. We shall denote by 64,...,0; the
distinct non-zero eigenvalues of A and ki, ...,k; their respective multiplicity'?
(note that Z{Zl ki <r). We consider the additive perturbation

Hy = Hy-+Ay, (3.3)

We set
1

the Cauchy transform of the measure p. We introduce, for all i € {1,...,j}, the
finite, possibly empty, set

So, = {éeC\supp(u),Gu(i)Zé_

} , and m; := Card.p (3.5)
l

We make the following assumption
Assumption 3.2.2. For any J > 0, as N goes to infinity, we have

o,

op

sup
dist(z,supp(p)) >4

’U;, (21— Hy) ' Usy — Gy (2)1

Result

Theorem 3.2.3 (Convergence of the outliers). For 6y,...,0;, ki,...,kj, Sp,,...,S,

and my,...,m; as defined above, with probability tending to one, Hy :=Hy+Ay

J

possesses exactly Zk,-m,- eigenvalues at a macroscopic distance of supp U (out-
i=1

liers). More precisely, for all small enough & > 0, for all large enough N, for all

ie{l,...,j}, ifwe set

yef = {éi,1> .. 'aél}mi}7

there are m; eigenvalues 1,31 feen ,Lmi of Hy in {z, dist(z,supp(u)) > O} satisfying

71,-7,! = &Einto(l), forallne{l,....m;},

after a proper labeling.

19The multiplicity of an eigenvalue is defined as its order as a root of the characteristic polynomial,
which is greater than or equal to the dimension of the associated eigenspace.
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Remark 3.2.4. If all the .%y,’s are empty, there is possibly no outlier at all. This
condition is the analogous of the phase transition condition in [19, Theorem 2.1]
in the case where the 6;’s are real, which is if

- lim Gy (x), lim Gy (x
0 x—a- li( )7x%b+ IJ( )

where a (resp. b) designates the infimum (resp. the supremum) of the support of

U, then, 6; does not generate any outlier. In our case, if |6;] is large enough, .7,

is necessarily non-empty'!, which means that a strong enough perturbation always

creates outliers.

Remark 3.2.5. We notice that the outliers can outnumber the rank of A. This
phenomenon was already observed in [19] in the case where the support of the
limit spectral distribution has a disconnected support (see also [12]). In our case,
the phenomenon occurs even for connected support (see Figure 3.9(b)).

(a) Spectrum of an Hermitian matrix of
size N = 2000, whose spectral measure
tends to the semi-circle law U (dx) :=
ﬁ\/4fx2]l[72,2](dx) (such as Wigner

(b) Spectrum of an Hermitian matrix of size
N = 2000, whose spectral measure tends
to %5,1 (dx) + 28 (dx) + %,usc(dx) and with
perturbation matrix A = diag(iv/2,0...,0).

matrix), with perturbation matrix A =
diag(iv/2,0...,0).

Figure 3.9: Spectrums of two Hermitian matrices with the same limit bulk but
different limit spectral densities on this bulk, perturbed by the same matrix: both
do not have the same number of outliers (the blue crosses “+).

3.2.2 Fluctuations of the outliers

To study the fluctuations, one needs to understand the limit distribution of

VN Hugr (21 —Hy) ' Uy, — Gu(2)1 (3.6)

op

due to the fact that the Cauchy transform of a compactly supported measure can always be
inverted in a neighborhood of infinity.
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In the particular case where Hy is a Wigner matrix, we know from [79] that this
quantity is tight but does not necessarily converge. Hence, we shall need additional
assumptions.

Set up and assumptions

As Ay is not Hermitian, we need to introduce the Jordan Canonical Form (JCF) to
describe the fluctuations. More precisely, we shall consider the JCF of Ay which
does not depend on N. We know that, in a proper basis, Ag is a direct sum of
Jordan blocks, i.e. blocks of the form

0 1 (0)

R,(6) = c  pxpmatix, 6cC,p>1 (3.7)

0) :
0

Let us denote by 0y, ..., 0, the distinct eigenvalues of A such that .7 # 0 (see
(3.5) for the definition of .3), and for each i = 1,...,q, we introduce a positive
integer ¢y, some positive integers p;1 > --- > p; o corresponding to the distinct
sizes of the blocks relative to the eigenvalue 6; and fB; 1, ..., B; ¢ such that for all j,
R, .(6;) appears f3; ; times, so that, for a certain 2r x 2r non singular matrix Q, we
have:

Rpi‘j (91')

q Q;
J = QAQ=ApPHP (3.83)

i=1 1
! Rpi.j(ei)

Bi,j blocks

M 0 N
where @ is defined, for square block matrices, by M@ N := ( 0 N) and A is a

matrix such that its eigenvalues 0 are such that .y = 0 or null.

The asymptotic orders of the fluctuations of the eigenvalues of Hy + Ay de-
pend on the sizes p; ; of the blocks. Actually, for each 6; and each &;, € %, =
{&i1,-..,Eim}, we know, by Theorem 3.2.3, there are Z?;l pij % Bj,j eigenvalues

A of Hy + Ay which tend to &;, : we shall write them with a &;,, on the top left

corner, as follows

éi,n'i.

Theorem 3.2.10 below will state that for each block with size p; ; corresponding to
6; in the JCF of A, there are p; ; eigenvalues (we shall write them with p; ; on the
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bottom left corner : 5 7L) whose convergence rate will be N~1/(2rii) As there are
Bi,j blocks of size p, s there are actually p; ; x B; ; eigenvalues tending to &; , with

convergence rate N~!/(27ij) (we shall write them pé ﬁ"ly ; with s € {1,...,p; j} and
t€{1,...,Bi;}). It would be convenient to denote by A; j, the vector with size
pi.j * Bij defined by
.. ‘:i.n’v
Ai,j,n = <N1/(2pz,1) . (l’i,j ﬂ,&, — é,n>> 1<s<pi; 3.9
1<1<p;;

In addition, we make an assumption on the convergence of (3.6).

Assumption 3.2.6.

_ 1
(1) The vector (\/NUE, ((f,n —Hy) - 9> U2,> \< 4o, COMVErges in distri-
i 1=q

bution and none of its entries tends to zero.

1§n§mi
(2) Forallk>1,allie {l,...,q} andalln € {1,...,m;},

VNU;, ((éi,n _ HN)—(k+1) _/ (gl.:i(a’x))kJrl > U,

is tight.
or

(0°) Forallie {l1,...,q} andalln € {1,...,m;}, as N goes to infinity,

VA (TG = g)) o

_ 1 _
(1’) The vector <\/IVU§r ((é,n —Hy) ' - NTr (& —Hy) 1) U2r> _con-
<i<q
1<n<m;

verges in distribution and none of its entries tends to zero.

(2’) Forallk>1andforalli€ {1,...,q},

1 -
\/NUS, ((‘Sln ) e NTr (éi,n *HN) (k+1)) Uy,

is tight.

As in [21], we define now the family of random matrices that we shall use to
characterize the limit distribution of the A; ;,’s. For each i =1,...,q, let I(6;)
(resp. J(6;)) denote the set, with cardinality Z?‘; , Bi.j, of indices in {1,...,r} cor-
responding to the first (resp. last) columns of the blocks Rpi__,(Gi) A<j<a)in
(3.8).
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Remark 3.2.7. Note that the columns of Q (resp. of (Q*l )*) whose index beloggs
to 1(6;) (resp. J(6;)) are eigenvectors of Ag (resp. of Aj)) associated to 6; (resp. 6;).
See [21, Remark 2.7].
Now, let
<m,?j;”> L<icg (3.10)
' lgngm,
(,0)€J(6,)x1(8;)

be the multivariate random variable defined as the limit joint-distribution of

v s _ 1 d -
<\/NekQ ', <(¢§i,n ~Hy) ' - > Uere£> 1<i<q 9, (m,?,g ) 1<i<q

91’ 1<n<m; jointly 1<n<m;
(k,0)€1(6;) x1(6;) (k,0)€J(8;)x1(6;)
(3.11)
(which does exist by Assumption 3.2.6) and where ey, ..., e, are the column vectors

of the canonical basis of C").

For each i, j, let K(i, j) (resp. K(i,j)”) be the set, with cardinality f; ; (resp.
Zi; 11 Bi.j7), of indices in J(6;) corresponding to a block of the type R, (6;) (resp.
to a block of the type Rpi‘j,(Gi) for j/ < j). In the same way, let L(i,j) (resp.
L(i,j)”) be the set, with the same cardinality as K(i,j) (resp. as K(i,j)™), of
indices in 1(6;) corresponding to a block of the type R, ;(6;) (resp. to a block of
the type R, ,(6;) for j' < j). Note that K(i, /)™ and L(i, j)~ are empty if j = 1.

Let us define the random matrices for each n € {1,...,m;}
(78 0;,n 6,11 | __ 6;.n
jo = i ke jon = ke
LeL(i,j)~ CeL(i,j)
(3.12)
9,-,HI o 9,',}1 9,-,IV o 9,',}’[
Mj,n = [mk,[ ]keK(iJ) Mj7n = [mk,z ]keK(isj)
leL(i.j)- (eL(i,j)
and then let us define the f; ; x B; ; matrix M?fn as
~1
0 ._ 6,1V 6,111 (3 16i,1 6,11
My, = 6 (an —Mj, (Mj,n) Mja ) (3.13)

Remark 3.2.8. It follows from the fact that the matrix Q is invertible, that M?’;ll is
a.s. invertible and so is M?’n.

Remark 3.2.9. In the particular case where A( is Hermitian (which means that
Q' = Q" and the 6;’s are real), then the matrces M?"n are also Hermitian.

Now, we can formulate the result on the fluctuations.

Result

Theorem 3.2.10. 1. As N goes to infinity, the random vector

(Aijn)1<i<q
1<)j<0;
1<n<m;
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defined at (3.9) converges to the distribution of a random vector

(A7 n) 15i<q
1<j<o;
1<n<m;
with joint distribution defined by the fact that foreach 1 <i<q, 1 < j< o

and 1 <n <m;, A7;, is the collection of the p;, j’h roots of the eigenvalues

. o;
of some random matrix M',.

6;
j7n
with respect to the Lebesgue measure and the random vector (A}’j’jﬂ) 1<i<q
1)<

2. The distributions of the random matrices M are absolutely continuous
has no deterministic coordinate.

Theorem 3.2.10 is illustrated in Figure 3.10 with an example. We clearly see
appearing regular polygons.

Figure 3.10: Spectrum of a Wigner matrix of size N = 5000 with perturbation
matrix A = diag (Rs(1.5+2i),R3(—2+1.5i),0,...,0). We see the blue crosses
“4” (outliers) forming respectively a regular pentagon and an equilateral triangle

around the red dots “e” (their limit). We also see a significant difference between
the two rates of convergence, N —1/10 apd N—1/6,

3.3 Applications

In this section, we give examples of random matrices which satisfy the assumptions
of Theorem 3.2.3 and Theorem 3.2.10.

3.3.1 Wigner matrices

Let Hy = ﬁWN be a symmetric/Hermitian Wigner matrix with independent en-

tries up to the symmetry. More precisely, we assume that
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Assumption 3.3.1.
Real symmetric case :

° (WN)W.,I <i< j<N, are independent,

e The (Wy); ;’s fori# j (resp. i = j), are identically distributed,
e E(Wy)11 =E(Wy)12=0, E(Wy)T, =20% E(Wy)i, =07,
o3 i =E|(Wy)11]° < oo, ms:=E[(Wy)i2] < oo

Hermitian case :
° (ReWN)l.j, (ImWN)l.ﬁl <i<j<N, (WN)I.J.,I <i <N, are independent.
e The (ReWy); ;’s,(ImWy); ;’s for i # j (resp. (Wy);;’s), are identically distributed,
2
(o)
o E(Wy)1.1 =E(Wx)12 =0, E(Wy)i, =07, E(ReWy)}, = >

® (3= E’(WN)lJP < o0, ms 2:E|(WN)172|5 < o0,

In this case, we have the following version of Theorem 3.2.3

Theorem 3.3.2 (Convergence of the outliers for Wigner matrices).

Let 6y,...,0; be the eigenvalues of Ay such that |6;| > o. Then, with probability
tending to one, for all large enough N, there are exactly j eigenvalues 11, e ,I T
of Hy := ﬁWN + Ay at a macroscopic distance of [—20,20] (outliers). More
precisely, for all small enough & > 0, for all large enough N, foralli € {1,...,j},

2

A= 9,~+%+o(1),

after a proper labeling.
Proof. We just need to check that Assumptions 3.2.1 and 3.2.2 are satisfied.

- As long as the entries of Wy have a finite fourth moment, we know (see [0,
Theorem 5.2]) that Assumption 3.2.1 is satisfied.

- Now, we need to show that for any 8 > 0, as N goes to infinity,

o,

sup U3, (A1~ Hy) ' Uz — G, (2)1 .,

dist(z,supp(u))>6

Since we are dealing with 2r x 2r sized matrices, it suffices to prove that
for any unite vectors u,v of CV, for any § > 0 and any 1 > 0, as N goes to
infinity,

P ( sup
dist(z,supp(u))>0

(I Hy) " —G#S((z)I)v’ > n) 0.
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Moreover, as both G, (z) and H(zl —Hy)™! H goes to 0 when |z| goes to
op

infinity, we know there is a large enough constant M such that we just need
to prove that

P ( sup
dist(z,supp(u))>0
sl <M

u((A—Hy)~! —G#M(Z)I)V‘ > n) 0.

Then, for any ' > 0, the compact set K = {z, dist(z,supp(pt)) > 6 and |z| <
M} admits a n’-net, which is a finite set {zj,...,z,} of K such that

VzeK,Jie{l,....,p}, lz—z|<n,

so that, using the uniform boundedness of the derivative of Gy (z) and
u(z— HN)f1 v on K, for a small enough 7', we just need to prove that

P(Iéf(’u*((zil—HN)_l—G”_w(zl-)I)V’ >n/2) — 0.

Then, we properly decompose each function x — zl%x as a sum of a smooth
compactly supported function and one that vanishes on a neighborhood of
[—20,20] and conclude using [79, (ii) Theorem 1.6]

Moreover, in the Wigner case, we have

1—V7?—40?
Gu,(z) = T g2

where \/z2 — 4072 is the branch of the square root with branch cut [—26,20] so
that for any z outside [—20,20], the equation G, (z) =  possesses one solution
if and only if |6| > ¢ and the unique solution is

o2

0+ —
—l—e,

which means that in the Wigner case, the outliers cannot outnumber the rank of the
perturbation, and the phase transition condition is simply : |0| > o. Actually in
[12] (see Remark 3.2), the authors explain that if u is H-infinitely divisible, then
the sets .%p,’s have at most one element, which means that for Wigner matrices, it
is not possible to observe the phenomenon of “outliers outnumber the rank of A”.

Remark 3.3.3. One can find an other proof of Theorem 3.3.2 in [?] as a particular
case of the Theorem 2.4 (see [?, Remark 2.5]) due to the fact that a Wigner matrix
can be seen as a particular Elliptic matrix. Nevertheless, the authors of [?] don’t
deal with the matter of the fluctuations.

O

To study the fluctuations of the outliers in the Wigner case, we must make an
additional assumption on the perturbation Ay.
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Assumption 3.3.4. The matrix Ay has only a finite number (independent of N) of
entries which are non-zero.

Remark 3.3.5. Assumption 3.3.4 is equivalent to suppose that U, (the 2r-first
columns of U), possesses only a finite number K (independent of N) of non-zero
rows. Actually, this assumption is the analogous “the eigenvectors of A don’t
spread out” hypothesis corresponding to the “case a)” in [?].

Remark 3.3.6. If U is Haar-distributed and independent from W, we can avoid
making Assumption 3.3.4 (see section 3.3.2). One can also slightly weaken As-
sumption 3.3.4 by assuming that the 2r-first rows of U correspond to the N first
coordinates of a collection of non-random vectors uy,...,uy, in £Z(N) (see [79,
Theorem 1.7]).

Theorem 3.3.7 (Fluctuations for Wigner matrices).
With Assumtions 3.3.1 and 3.3.4, Theorem 3.2.10 holds. Moreover;, the distribution
of the random vector
("%?fe) 1<i<q )
(kﬁ)e](e,) XI(BI')
defined by (3.10), is

(6Q Uk 2 (€U Qer) 11y

(k,0)€J(6:)x1(6;)
2
where &; := 60; + % and where Y (z) is a K x K random field defined by
(@) = (G @) (WE+Y() (3.14)

where W\K) is the K x K upper-left corner submatrix of a matrix WN such that

Wy @WN and Y (2) is a K x K Gaussian random field defined by [50, (2.7),(2.8),(2.9),(2.10),(2.11),(2.12)]
in the real case and [50, (2.42),(2.43),(2.44),(2.45),(2.46),(2.47)] in the complex
case.

Remark 3.3.8. This provides an example of non universal fluctuations, in the sense
that the (m,?fi) ’s are not necessarily Gaussian. However, when Hy is a GOE or

GUE matrix, the (m,f’ g) ’s are centered Gaussian variables such that
i 0y *y— —1\* * 3k
E (mlffg mk/',e/) = Ve(&.&) (6Q 1 (Q ) er €,Q Qep + 88y 3.15)

E (ml(jfe m/?i@/) = Ve(&,&) (€,Q ' (Q ") er €;Q"Qer + 808 y),

for the GOE, and

E <ml?k mszﬁ@) = Y&, &) O, (3.16)

E(’”l?/ m/?ig/) = Vie(,&) Q1 (Q ) er €;,Q"Qey,
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for the GUE, where

lI/SC (Z’ W) = Gf"sc (Z)Glziu (W> (62 + 64(psc (Z’ W)) )

1 1

sc\Zy = —_— sel(dx).
Pse(z,w) p— (dx)

We notice that, if Q! # Q¥, then we might observe correlations between the fluc-
tuations of outliers at a macroscopic distance with each other. This phenomenon
has already been observed in [62] for non-Gaussian Wigner matrices whereas, here,
the phenomenon may still occur for GUE matrices. Actually, (3.15) and (3.16) can
be simplified due to the fact

0°Gp,, (1) =26 (1) +1 = 0,

_ G.uxc (Z) — GuSr (W)
—w

so that @.(z,w) = satisfies

607Gy, (2)Gu, W) Psc(z,w) = Pue(z.w) = G (2)Gp (W) (3.17)
Hence,
G}, (&G, (&) (0% + 0% 0y (&i, &)
= 0°Gu (8)Gu. (6) | Gu (8) G (61) + 0 G, (6) G (E)9ic 6 &1)
= 076, (6)Gu. (6)puc (& &)
= 058, 8r) — G, (&)Gp, (&) = Pse(&i,Er)-

and we fall back on the expression of the variance for the UCI model (see section
3.3.2), which is expected since the GUE belongs to the UCI model.

Proof. We show that the assumptions 3.3.1 and 3.3.4 imply Assumption 3.2.6,
more precisely (1) and (2). For (1), we simply use [80, Theorem 2.1/2.5] to show
that

VNUS, ((z —Hy) ' =G, (Z)I> Us,

converges weakly (as it is done in [79]). The limit distribution is also given by [80,
Theorem 2.1/2.5].

Then for (2), we know by [80, (i) of Theorem 2.3/2.7] (respectively [80, (iii) of
Proposition 2.1]) that, for all £ > 1, the diagonal entries (respectively the off-
diagonal entries) of the matrix

VN((z—Hy) ' - / (z—x) g (dx)T)
converge in distribution so that
VNU3, <(z —Hy) ' - / (z—x)*! usc(dx)1> Uy,

is tight. O
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3.3.2 Hermitian matrices whose distribution is invariant by unitary
conjugation

Let Hy be an Hermitian matrix such that for any unitary N x N matrix Uy, we have

—
=

UyHyUy = Hy. (3.18)

Hy can be written Hy = UyDyUy, where Dy is diagonal, Uy is Haar-distributed
and Uy and Dy are independent. We also assume that Hy satisfies (3.1) and As-
sumption 3.2.1. We shall call such matrices UCI matrices (for Unitary Conjugation
Invariance). In this case, as we can we can write

Hy = Hy+Ay = Uy (Dy+UyAyUy)Us,

so that, without any loss of generality, we can simply assume that Hy is a diagonal
matrix and Ay is a matrix of the form

Ay = UyAgUs,

where Uy, is the 2r-first columns of an Haar-distributed matrix independent from
Hy.

Theorem 3.3.9 (Convergence of the outliers for UCI matrices).
IfHy is an UCI matrix, then Theorem 3.2.3 holds.

Remark 3.3.10. Unlike the Wigner case, Theorem 3.2.3 does not need to be refor-
mulated. In this case, we do observe the phenomenon of the outliers outnumbering
the rank of Ay.

Proof. We just need to check that Assumption 3.2.2 is satisfied. To do so, one
can apply a slightly modified version of [16, Lemma 2.2], where we replace all the
“dist(z, [a,b]) > 8" by “dist(z,supp(i)) > 6", which does not change the ideas of
the proof. (]

For the fluctuations, we need to assume that for alli € {1,...,¢} and all n €
{1,...,m;}, as N goes to infinity,

1 _ 1

VN <Tr(€,;n—HN) ‘-)) —0. (3.19)
N ' 91'

Remark 3.3.11. Actually, in [16], the authors make the same assumption ([16,

Hypothesis 3.1]).

Theorem 3.3.12 (Fluctuations for UCI matrices).
If Hy is an UCI matrix, then if satisfies Theorem 3.2.10. More precisely, the

6;,n .
My ) 1<i<q ’
1<n<m;
(k,0)eJ (6;)x1(6;)
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defined by (3.10) are centered Gaussian variables such that
6y
E (’”1? Vgl ) = D(&insSirw) Ok St
o' Oy £\ o*O)— —1y* * Yk
E (m,f:}{" my > = D(&in &) Q Q) er €/Q"Qey,

where

Plaw) = zlxw o /z xH /W%u(dx)

_ { GG G ()Gu(w) - if2#w,
_G;t() (Gu(z )? . otherwise.

Remark 3.3.13. Remind that we supposed that u is not a single Dirac measure, so
that @ is not equal to zero.

Remark 3.3.14. If Ay is Hermitian, the size of all the Jordan blocks are equal to
1 and the fluctuations are real random variables (see Remark 3.2.9). We find back
that, in the Hermitian case, fluctuations between outliers at a macroscopic distance
are independent (see [ 16]) except if the two outliers come from the same eigenvalue
of A (i.e. they both belong to the same set .%%). In this case, the fluctuations
of outliers belonging to the same set .% are all correlated. This phenomenon is
illustrated by Figures 3.11(a) and 3.11(b).

(a) Uncorrelated case : Gu(&;) # (b) Correlated case : Gu(&) =
Gy (&), which means that &; and &, Gy (&), which means that & and &
do not belong to the same set .. belong to the same set .%p.

Figure 3.11: Correlation between the fluctuations of two outliers &; # &, for a
sample of 400 matrices of size 500, in the case where both H and A are Hermi-
tian and where the support of u is disconnected. Here p(dx) is taken equal to
3(8-1(dx) + 1y ) (d)).

Proof. We just need to check that Hy satisfies (1), (2) of Assumption 3.2.6 (since
(0) is assumed below). Actually, for any k > 1 and any i € {1,...,q}, the diagonal
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matrix !
(éi,n - HN) WD) - N Tr (gi,n - HN) _(k+1)7

fulfill the assumptions of Theorem 3.4.6, so that (2') is true. Then, (1’) is true
thanks to Theorem 3.4.8. This theorem also gives us the covariance.
O

3.4 Proofs

3.4.1 Convergence of the outliers : proof of Theorem 3.2.3

In [12], the authors give an interpretation of why the limit is necessarily a solution
of Gu(z) = é with the subordinate functions of the free additive convolution of
measures in the particular case where one of the measure is &y (see [12, Example
4.1]). Actually, our definition of the sets .#p,’s corresponds to the one of the set
Og in [12, Definition 4.1]. A quick (but inaccurate) way to see why the limit is
Gﬁl (é) and to understand the approach of the proof, is to write

det(z — (Hy + Ay)) = det(z — Hy)det (1— (z—HN)*lAN) :
then if (z — Hy) ™' ~ Gy (z)I, we can write

det (z— (Hy + Aw)) ~ det (z— Hy) Gy (2) det <G1(Z)I—AN>
u

so that if z is an outlier of Hy + Ay, % must be an eigenvalue of Ay.

To do it properly, we introduce the following function'?,

f(z) = det <I — U5, (zI-H) B U2’A0> - - (je:((Z}iNI;;v?N))

. (3.20)

we know that the zeros of f are eigenvalues of H, which are not eigenvalues of
Hy. Then, we introduce the function

foz) = det(I-—Gyu(z)Ag), (3.21)
and the proof of Theorem 3.2.3 relies on the two following lemmas.

Lemma 3.4.1. As N goes to infinity, we have

P
sip  |(2)— fola)l > 0.
dist(z,supp(u))>0

12we used a classical trick of finite rank perturbation models which det(I,, + AB) = det(I,, +BA)
for any m X n matrix A and n X m matrix B
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Lemma 3.4.2. Let K be a compact set and let € > 0 such that

J
o dist(K, U o) > €,
i=1

e dist(K,supp(u)) > €.

Then, with a probability tending to one,

inf (I— _Hy)'A )’ .
Zngdet (z—Hy) NIl >0

If these lemmas are true, the end of the proof goes as follow. We know that,
with a probability tending to one, there is € > 0, such that

e there is a constant M > 0 such that Hy + Ay has no eigenvalues in the area
{z, |z > M},

e Spec(Hy) C {z, dist(z,supp(u)) < €},

We set _
J
S o= Uygi
i=1
and we define
J
7 = U U {zlz-¢&l<¢e} (3.22)
izl:ﬁef’g[

with the convention that .4 = 0 if ./ = (. Up to a smaller choice of €, we can
suppose that none of the disk centered in the element of the .%p,’s and of radius &
intersects each other nor intersect {z, dist(z,supp(u)) < €}. Then, using Lemma
3.4.2, with

K = {z, [z <M}\(7* U{z, dist(z,supp(ut)) < €}),

we deduce all the eigenvalues of ﬁN~are contained in . U {z, dist(z,supp(u)) <
€}. Indeed, if z is an eigenvalue of Hy such that dist(z, supp(t)) > €, z must be a
zero of f.

Moreover, for each i € {1,...,j} and each § € .%p,, we know that from Lemma
34.1
sup  |f(z) = fo(z)] — 0,  and inf |fo(z)] > 0.
z|i—El=¢ zli—E|=¢

we deduce by Rouché Theorem (see [ 11, p. 131]) that f and fj, for all large enough
N, have the same number of zeros inside the domain {z, |z — &| < €}, for each &
in the .#,’s.

Now, we just need to prove the two previous lemmas.



3.4. PROOFS 110

Proof. [of Lemma 3.4.1] We know that, for some positive constant C,

sup  |f(@) - fold)] < € up
dist(z,supp(pt))>0 dist(z,supp(u

‘U2r< z—Hy)~ —Gu( ) )U2r

op

and we conclude with Assumption 3.2.2. O
Proof. [of Lemma 3.4.2] We write, thanks to Assumption 3.2.2,

det (I— (z—Hy)™" AN) = det (I — U3, (z—Hy)™! UZ,A())
= det(I— w(2)Ao+0o(1))

= U 1-Gu(2)6) +o(1).

Then, since z € K, it easy to show that for each 7, |1 — G, (z)6;| > 0. O

3.4.2 Fluctuations

The proof of Theorem 3.2.10 is the same than [21, Theorem 2.10] and all we need
to do here is to prove this analogous version of [21, Lemma 5.1].

Lemma 3.4.3. Forall j € {1,...,04} and all n € {1,...,m;}, let Fj?;(z) be the
rationnal function defined by

F\(2) —f(é,n+N1/ )> (3.23)

Then, there exists a collection of positive constants (% j)1<i<q and a collection
1<j<ea
of non vanishing random variables (C; Js n) I1<i<q independent of z, such that we
1<j<o;
1<n<m;

have the convergence in distribution (for the | topology of the uniform convergence
over any compact set)

(N”“’ F f,)};(')) I<icg — (Z €C — Z%-Cjp-det (Zp ”j —M?fn)) 1<i<q

1<j<oy N7 1<j<a
1<n<m; 1<n<m;
0 . .. -
where Mjfn is the random matrix introduced at (3.11) and m; ; 1= Y- ; Biipi-

Once this lemma proven, the Theorem 3.2.10 follows (see section 5.1 of [21]
for more details). To prove Lemma 3.4.3, we shall proceed as it is done in [21]
to prove Lemma 5.1. First, we write, for a fixed 6;,(= 0), a fixed n € {1,...,m;}
and a fixed j € {1,..., 04} (which shall be implicit) and fixed p; j(= p), recall that
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A)=QJQ !,

-1
F]Gn (Z) = det <I - (én + m - HN) U2rQJQ_1U;r>

det <I—Gu (§n+1\,l/z(2p)>J—\leN(§"+1/z(zm>>
= det (I—;—Gl (én)Nl/ Zp)( o(1 ))J_\/NZN@” Nl/Z(Zp)>)

where

Zu(z) == VNQ U3, (2~ H) ™' = Gu(2)T) U2.QJ.

Remind that by definition, G, (&,) = 6. From here, the reasoning to end the
proof is the exact same than the one from [21, Lemma 5.1]. Nevertheless, we still
have to prove that, for all 6 and for all », for all compact set K and for all z € K,

Zy (& + m) = Zn(&)+o(1), and Zy(&,) converges weakBy24)

To do so, we write (thanks to 3.4.4),

_ 1
A \/IVQIUE,((@—HN) 1—>U2rQJ

1 (dx)

+ Z <N1/2p> VNQ- 1Uzr<(§n—HN)(k“)—/(§n_

x)k_H ) UZrQJ

" —(k+1) 1
* WQUzr (én o HN> (5" N]/ 2p) HN> UZrQJ+0(1) .

The last term is a o(1) since dist(&,, Spec(Hy)) > € and one can conclude if (1), (2)
are satisfied in Assumption 3.2.6. Otherwise, if it’s (0'), (1), (2'), we write

Z e [ ]
v(&+viey) = VNQ 1U2,<NTr<én—HN) —9>U2rQJ

+VNQ'U;, ((@ —Hy) ' - %Tr(én HN)‘I) U,,QJ

1

* Z (Nl/ 2p> VNQ ler<(<Sn—HN)("“)—NTr(én—HNN)UerJ

+ WQUE (én - HN) Sy (‘Sn HN)

1

U, QJ + 0(1) .
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Appendix

3.4.3 Linear algebra lemmas

Lemma 3.4.4. Let A be a matrix and A € C be such that both A and A + A1 are
non singular. Then, for all p > 1,

(A+AD)"" = f(—;L)HA*M(—A)PA*P(A+/u)*1
k=1

Lemma 3.4.5 (Schur’s complement [53] ). For any A,B,C,D, one has, when it
makes sense

(A B>1:< (A-BD'C)”" —(A-BD"'C) 'BD! )

CD —D'C(A-BD'C)"" D '4+D'C(A-BD"'C) 'BD"!

3.4.4 Fluctuations of the entries of UCI random matrices

We give here some results on the fluctuations of the entries of UCI matrices, which
means, matrices of the form H := UDU* where U is Haar-distributed and D is a
complex diagonal matrix.

Theorem 3.4.6 (Fluctuations of the entries of UCI random matrices). Let T be an
N X N diagonal matrix such that
1 * 2 1 2 2 1 #\k
TrT = 0, NTrTT — o°, NTrT — 17, Vk>1, NTr(TT ) = 0(1)3.25)

Letw,,...,u, be p distinct columns of a Haar-distributed unitary matrix. Then

p
\/N<ufi’ Tuti> L
i,j=1
converges in distribution to a centered complex Gaussian vector (% j)ip i1 with
covariance

E(%, %) = 60847 5 E[% ;9] = 8x8;00°

Remark 3.4.7. If H := UDU* satisfies (3.1) and Assumption 3.2.1, then T :=
D — 4 TrD satisfies (3.25).

Here comes a version of Theorem 3.4.6, with several matrices diagonal T. Due
to the complex values of the diagonal matrices, the following theorem is not a
simple consequence of Theorem 3.4.6 and Cramér—Wold theorem.

Theorem 3.4.8. Let Ty,..., T, be N X N diagonal matrices such that for all m,n €

{1,...,q9}

1 . 1 1 .
T, =0,  STT,T, — o2 5 T T, — T2 Vk > 1, NTr(Tme)k =

m,n’ m,n’

o(1).
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Letw,,...,u,, be p distinct columns of an Haar-distributed matrix. Then

(V N<ut,'7 Tmutj>) 1<i<p »
1<j<p
1<m<q

converges in distribution to a centered complex Gaussian vector (E% j,m) 1<i<p With

I<j<p
1<m<q
covariance
2 . 17 _ 2
E [%7],mgk727n] = l7£ 5J7k Tm,ﬂ > E [givj7mgk7£7n:| - l7k 6]7£ O-m,n

Proof of Theorem 3.4.6. Without any loss of generality, due to the invariance by
conjugation by a matrix of permutation, we can suppose thatty =1,/ =2,...,1, =
p. Then, we just need to show that

X = VNTr(U'TUA)

where A is a N X N deterministic matrix of the form

A, O
A = ( Op 0) , AP = (ai»j)zl'j,j:l c %p(@),

is a asymptotically Gaussian. Before starting, we remind some definition. Let
(My,...,M,) be g matrices. For any permutation ¢ € S, with cycle decomposition

0 = (in,1 i) (21 iaky) - (in1 e ink,)

we denote by
Tre (M), = ]I;[lTr (M, M, ). (3.26)

For example, if 0 = (13)(256) € Se, then
6
TI'G (Mt)tzl = TI‘(MlM3) TI‘(MzMsM(,) TI'(M4).

Let M(2n) be the set of all perfect matching on {1,...,2n} which is a subset of Sy,
of the permutation which are the product of n transpositions with disjoint support.

For example
M(4) = {(12)(34),(13)(24),(14)(23)} .

Then, if the following lemma is true, one can conclude the proof.

Lemma 3.4.9. Let Ty,..., T, be q diagonal matrix such for all i,j € {1,...,q},

1 1
Tl =0 3 STTT, — 7 Vk > 1, NTr(T,-ij)k = 0(1).(3.27)
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Let Ay,...,A, be g matrices of the form

Ao,
A= (B0
0 O

where the A ;’s are K x K matrices independent from N where K is a fixed integer.
Let U be a Haar-distributed matrix. Then, as N goes to infinity,

q/2
q Tro (A;)? _ ifqi .
E|[[VNT: (U'T,UA)| —> (,6%@ Fa )l:‘g%(% how Yaiseven
= 0 if g is odd.

Indeed, once we suppose Lemma 3.4.9 satisfied, we need to compute for all
p,q

E[[VNTrUTUA]"[VNTrUTUA]’| = B[ [VNTrU'TUA]” [N TrU'T UA"] ]

in order to apply Lemma 3.4.10. According to Lemma 3.4.9, for T, =T and A, =
A, we have

E[VNTrU*TUA]? L
if q is odd.

{CardM(q) Tr(A%)?/279/2  if q s even,
(remind that CardM(q) = (¢ — 1)(¢ — 3)---3) which means that the limit distri-
bution of X already satisfies (3.30) and (3.31). Let p > 1 and ¢ > 2 be two fixed
integers such that p + ¢ is even, then, using notations from (3.26), we know thanks
to Lemma 3.4.9 that

E[[VNTIUTUA) [VANTIUTUAT | = — ¥ Tro (A Tro (T,)/ 2028)
N2 oeM(ptq)

where

(T, Tpig) = (T, T, T T and (Ay,...,Apsy) = (A,..., A, A", A%).
—— ——— —_——— ———
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We rewrite the right side of (3.28) summing according to the value of o(1).

rtq

Z Trcy (Al) Trg (Tt)p+q = Z Z TI'G (A[)p qTrcy (Tt>p+q
oceEM(p+q) a=2ceM(p+q)
o(l)=a
s ptaq ptq
= Y Ti(AA)TI(TIT.) ) Troea) (A) Troo(ia) (Tr) ]
a=2 oeM(p+q)
o(l)=a
p
= YTAMTT? Y Tro (A)7 e (T,)70
a=2 ceM(p+q-2)
N +q-2 +q-2
+ Y TAA'TITT Y Tre (A)7 T (T),
a=p+1 oeM(p+q-2)

where

o~

Aty Apig2) = (A, AA A and (Aq,..., A, 2) = (A,..., A, A%, ..., A%).

At last, one easily deduces that
E|[VNTrUTUA]" [VNTrU'T'UA'] | = %TrTZ TrA%(p—1)E | [VNTrU"TUA]"*[VN TrU'T'UA")|
+ %TrTT* TrAA"E|[VNTrU'TUA]" ' [VATrU'T'UA']" | +o(1)

and so /N Tr(U*TAU) satisfies (3.32) which means according to Lemma 3.4.10
that its limit distribution is Gaussian.

At last, to compute to covariance of the (%, j)’s, one can simply use [22, Lemma
A.6]. (]

Proof of Theorem 3.4.8. This time, we shall use Lemma 3.4.11 to show that for
any Ay,...,A,, N X N deterministic matrix of the form

Am,p 0 m\ P

the vector | |
<NTr (U*T1UA1),...,NTr (U*T,UA,))

converges weakly to a Gaussian multivariate. Thanks to Theorem 3.4.6, we know
that for each m,

L™ (U*T,UA,,)
N
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is asymptotically Gaussian. Then, we show that

1 p1 1 q1 1 Pr 1 qr
E [(NTr (U*TIUAl)) (NTr (U*TTUA’{)) <NTr (U*T,UA,)) (NTr (U*TjUAj‘)) ]
satisfies (3.35) and (3.36) using Lemma 3.4.9. O

Proof of Lemma 3.4.9. We know from [?, Proposition 3.4]

E = N2 Y Wg(too ) Tre (A)? | Tre (T))?

i=1
0,TES,

q
H VNT: (U'T,UA,)
1=

where Wg is a function called the Weingarten function. Moreover, for o € S, the
asymptotical behavior of Wg(0o) is at most given by

Wg(o) = O(N79). (3.29)

First, one should notice that if o has one invariant point (which means a cycle
of size one in its cycle decomposition), then

Tro (Ti)?:l =0,

also, if o has r cycles in its cycle decomposition, then, by the Holder inequality,

Trs (T))7_, = O(N").

i=
Actually, the maximum of cycles in its decomposition that can have ¢ without any
1-sized cycle is gJ so that, using (3.29)

i=1

N2Wg(6ot ") Tr, (A,-)?:1 Trg (Tl_)q _ O(NL%J—%) |

so that first, if g is odd

E IZ[\/IVTr(U*T,UAI) = o(l).
t=1

Moreover, if g = 2r, then the only way to have
N12Wg(o ot ") Tre (A)? Tre (T))?, # o(1)
is to have
e T=0,
e 0O is a product of g = r transpositions with disjoint support.

One easily conclude. U
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3.4.5 Moments of a complex Gaussian variable.

The following lemma allows to prove that a random variable is Gaussian if and
only if its moments satisfy an induction relation.

Lemma 3.4.10. Let Z be a complex Gaussian variable such that
Ez] =0, E[Z}] = 7%, E[|z]*] = o (3.30)
Then, forall p > 1
E[z??] = pi!t® and E[Z*'"'] =0, (where p!! := %)31)
p!
also, for all p,q > 0,
E [ZP”Z‘I”] — 6%(q+2)E [ZP“Z‘”I] +72(p+1)E [ZPZ‘HZ] (3.32)
= S(p+E |27 | 4B g+ DE 277,

Conversely, any complex random variable Z satisfying (3.30),(3.31) and (3.32) is
a complex Gaussian variable.

Proof. First, recall that if Z = X| +iX; is a complex random Gaussian such that
Eiz] =0, E[Z?] = *, E[|Zz]*] = o7,
then, its Fourier transform is given, for t =1, +it, € C, by
Dz(1) = Eexp(i(Xiti +Xon2))

= exp (—i((t12+t22)62+(t12—t%)Re(172)+2t1t21m(72))>

We define the differential operators
0, = 0d1+idy ; J = d)—id (3.33)

so that
E[z'Z"] = (—i)’"19Fdd(r)|

o (3.34)

One can easily compute
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therefore, for any p > 0, g > 0,

o) = ot <—; (ro® +77%) cp(t))

_ —%toz@erl(ID(t) - %czaf’“ (fo(1))
_ *%taz&qu’(f) - %fz@f’“@(r) — 7 (p+1)9/(r)
and
W) = optiast? <_; (to? +11%) <I>(t)>
1 1 _
_ —Ecza?+2(t8;p+l¢(t)) _ ifzgtp+l(ta;]+2q)(t))
= o (%%’”“8?“%) +(q+2)9 " o))
hence,
E [ZP+2] = Tz(p—f— 1)E[zP],
B[22 = gt )E (207 4 P+ )E 277
and the same way,
E[Z?] = 2(p+DE[Z],
B [Zp+27q+2] — o(p+2)E [Zp+lzq+l} +2(g+ 1)E [ZerZZq]'

Conversely, one can easily prove by induction that any complex random variable
Z satisfying (3.30),(3.31) and (3.32) has all its moments uniquely determined and
since the complex Gaussian variable also satisfies (3.30),(3.31) and (3.32), one can
conclude.

(]
More generally, one can show the following lemma
Lemma 3.4.11. Let (Xi,...,X,) be a centered complex Gaussian vector. Then, for
all non negative integers p1,qi,...,pr,qr foralli € {1,...,r}
=1, EXPR" XK = (g DE X E[XPR XXX

)
_ —1 1 o
+ Ziij[X,-Xj]IE[Xf"qu‘---Xf X XD
J:
i

-

Y. .4 i—1 gj—1 Al

+ Z'IQjE[Xin]E{XFIXI l~-~Xip J,J ~~erXr :|
]:
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ifgi>1, EXIX"-xPX"] = (qﬁl)E[XT-Z}E[X{"K"]--~X,~”fYﬂ"‘2---Xf"Z‘f’]

r -
j=1

+ Y ¢;E[XX]E [Xlel‘“ xp o x !

j=1

J#i
with the convention that X' = 0.
Conversely, if X1,...,X, are r centered Gaussian variables satisfying (3.35) and
(3.36), then (Xi,...,X;) is a centered complex Gaussian vector.

Proof. In the same spirit as the proof of Lemma 3.4.10, we obtain (3.35) and (3.36)
by derivating the Fourier transform. The converse is proved by induction. U

X

. ~X[”qu’}
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Abstract :

For any family of N X N random matrices (A )ycx Which is invariant, in law, under unitary
conjugation, we give general conditions for central limit theorems of random variables of
the type Tr(A;M), where the Euclidean norm of M has order VN (such random variables
include for example the normalized matrix entries v/NA(i,j)). A consequence is the
asymptotic independence of the projection of the matrices A; onto the subspace of null
trace matrices from their projections onto the orthogonal of this subspace. This result is
used to study the asymptotic behaviour of the outliers of a spiked elliptic random matrix.
More precisely, we show that their fluctuations around their limits can have various rates
of convergence, depending on the Jordan Canonical Form of the additive perturbation.
Also, some correlations can arise between outliers at a macroscopic distance from each
other. These phenomena have already been observed in [21] with random matrices from
the Single Ring Theorem.

4.1 Introduction

This paper is firstly concerned with the fluctuations of sums of entries of unitarily
invariant random matrices when the dimension tends to infinity and, secondly, with
its application to the fluctuations of the outliers of spiked elliptic matrices.

The first problem is to find out conditions under which, for given collections
(Ag)kek of random matrices and (M) <z, of non-random matrices, the finite marginals
of

(Tr (AxM,) — ETr (AcMy)) 4.1)

keK leL

converge as the dimension N tends to infinity. We shall always suppose that the
M, ’s have Euclidean norms of order v/N, i.e. that the random variables

1
— TrM,M;
N
are bounded in probability. These hypotheses are satisfied by matrices

M, = VN x (an elementary matrix) 4.2)

but also by more complex matrices, like a matrices whose entries all have order
N71/2 as Wigner matrices. In this framework, the main hypothesis we need for
the random vector of (4.1) to be asymptotically Gaussian is the global invariance,
in law, of (A )kex under unitary conjugation, i.e. that for any unitary matrix U,

law %
A= (UAUY), -
It then appears that the question decomposes into two independent problems: one
associated to the projections of the A’s onto the space of null trace matrices (see

Theorem 4.2.2) and one associated to the convergence of the centered traces of the
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Ay’s; and that both give rise to independent asymptotic fluctuations (see Theorem
4.2.5 and Corollary 4.2.6). These results extend an already proved partial result in
this direction, Theorem 6.4 of [16] (see also Theorem 1.2 of [81] in the particular
case of real symmetric matrices Ay). The main advantages of Theorems 4.2.2 and
4.2.5 over the results of [81] and [16] is that they do not require the matrices M,
to be well approximated by matrices with finitely many non zero entries and that
they give the asymptotic independence mentioned above. Besides, the technical
hypotheses needed here are weaker than in the existing literature. Our proofs are
based on the so-called Weingarten calculus, an integration method for the Haar
measure on the unitary group developed by Collins and Sniady in [36, 38].

All these results belong to a long list of results begun in 1906 with the theo-
rem by Borel [26] stating that any coordinate of a uniformly distributed random
vector of the sphere of RY with radius v/N is asymptotically standard Gaussian as
N — oo, and continued e.g. with the papers [81, 3, 55, 65, 33, 37, 14, 31, 22] on
central limit theorems on large symmetric spaces for the orthogonal and the uni-
tary group. Some of the results of the previously cited papers can be deduced from
Theorems 4.2.2 and 4.2.5. More generally, we notice in Corollary 4.2.7 that for
collections of random matrices which are invariant, in law, under unitary conju-
gation, the convergence in second-order distribution implies that the matrix entries
(or, more generally, random variables of the type of (4.1)) are asymptotically Gaus-
sian. Second order freeness is a theory that has been developed these last ten years
about Gaussian fluctuations (called second order limits) of traces of large random
matrices, the most emblematic articles in this theory being [06, 68, 67, 34]. Our
results cannot be deduced directly from this theory, because the “test matrices"
we consider (i.e. the matrices M) are not supposed to have second order limit
distributions (and actually do not have any in many cases, as the one of (4.2)).

These general results about asymptotic fluctuations of matrix entries mentioned
above are then applied to the fluctuations of the outliers of Gaussian elliptic ma-
trices. It is easy to see that the global behavior of the spectrum of a large ran-
dom matrix is not altered, from the macroscopic point of view, by a low rank
additive perturbation. However, some of the eigenvalues, called outliers, can de-
viate away from the bulk, depending on the strength of the perturbation. Firstly
brought to light for empirical covariance matrices by Johnstone in [57], this phe-
nomenon, known as the BBP transition, was proved by Baik, Ben Arous and
Péché in [9], and then shown under several hypothesis on the Hermitian case in
[77,43,28,29,79, 19, 20, 16, 17, 30, 61, 62]. Non-Hermitian models have been
also studied: i.i.d. matrices in [92, 24, 82], real elliptic matrices in [73], matrices
from the Single Ring Theorem in [21] and also nearly Hermitian matrices [85, 75].
As an application of our main result, we investigate the fluctuations of the outliers
and due to the non-Hermitian structure, we prove, as in [21, 24, 82, 85], that the
distribution of the fluctuations highly depends on the shape of the Jordan Canonical
Form of the perturbation, in particular, the convergence rate depends on the size of
the Jordan blocks. Also, the outliers tend to locate around their limit at the vertices
of a regular polygon (see Figure 4.12). At last, as in [21], we observe potential cor-
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relations between the fluctuations of outliers at a macroscopic distance with each
other (see Remark 4.2.21).

The paper is organized as follows. In Section 4.2, we state our main results
(Theorems 4.2.2, 4.2.5, 4.2.13 and 4.2.19) and their corollaries. These theorems
are then proved in the following sections and an appendix is devoted to a technical
result needed here.

4.2 Main results

4.2.1 General results

Let A = (Ax),, be a collection of N x N random matrices and let (M), be a

collection N x N non random matrices, both implicitly depending on N.

leL

Assumption 4.2.1.

(a) A is invariant in distribution under unitary conjugation: for any unitary ma-
trix U,
law % .
A= (VA7) s
(b) foreachk € K, and each p,q > 1, %Tr |A¢|?” is bounded in L independently
of N;

(c) foreach k,k’ € K, we have the following convergences, in L2, to non random
variables:

1 I 1 ,
Al/lil’!oﬁ TI'AkAkI — NTrAk . NTI‘A]{/ = T(k,k )

and 1 1 1
Al]glgo N TrAkAZ/ — N TrAk . N TrA,t/ = T(k,k,);

(d) for each ¢,/ € L, we have the following convergences:

1 1 1
lim —TrM/My — —=TrMy - —TrMy = 1y 4,
pim — TrM My — = TrMe - = TrMy = 1 (4.3)
and | | |
1\%1;130 N TngMZ/ — N TI'M[ . N TrMZ/ = Bgél. (44)

Under this sole hypothesis, we first have the following result, focused on the
case where the M/’s all have null trace, i.e. focused on the projections of the A;’s
onto the space of such matrices.

Theorem 4.2.2. Under Hypothesis 4.2.1, if, for each ¢, Tr(My) = 0, the finite
marginals of

(Tr (AxMy)) (4.5)

keK leL
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with

converge to the ones of a complex centered Gaussian vector (%74) keK fcL

covariance

E (%% o] = newt(k,K), and E (%% | = Burt(k, k).

Remark 4.2.3. Note that by invariance of the distribution of A under unitary con-
jugation, we have

ETr (AxM;) =E (%TrAk) TrMy,

hence the random variables of (4.5) are centered and the ones of (4.7) below rewrite
1
Tr (AMy) —E (NTrAk) TrMy.

The following theorem gives the joint fluctuations of the projections of the A;’s
on null trace matrices and of their traces.

Assumption 4.2.4. The finite marginals of the process (TrAk — IETrAk) rek Con-
verge to those of a random centered vector (7 )rcx and for each ¢ € L, there is
ay € C such that

1
lim NTng = QY. (4.6)

N—oo

Theorem 4.2.5. Under Hypotheses 4.2.1 and 4.2.4, the finite marginals of

(Tr (AxM,) —ETr (AcMy)) 4.7

keK (eL

converge to the ones of (%,g + oy 71() is a complex cen-

where (gkvf)keK,éeL
and with covariance

keK el

tered Gaussian vector independent from (%) kK

E [gkjgk/’g/] = T]gg/l’(k,k/), and [% (G 0 ﬁpp/f k k’

A consequence of this theorem is the asymptotic independence of the projec-
tion of the matrices Ay onto the subspace of null trace matrices from their projec-
tions onto the orthogonal of this subspace:

Corollary 4.2.6. Under Hypotheses 4.2.1 and 4.2.4, suppose that for any { € L,
we have Tr(My) = 0. Then the processes

(Tr (AkM(g)) and (TrAk — ETI‘Ak>

keK leL kekK

are asymptotically independent.
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4.2.2 Second-order freeness implies fluctuations of matrix elements

The following corollary of Theorem 4.2.5 is obvious. Let C(xx,x;,k € K) denote
the space of polynomials in the non commutative variables xi, x;, indexed by k € K.

Corollary 4.2.7. Let (Ak) ek be a collection of N X N random matrices which is
invariant by unitary conjugation and which converges in second order x-distribution
to some family a = (ay )kek in (2,71, 72) as N — oo. Let (ME)KGL be a collection
non random matrices satisfying (4.3), (4.4) and (4.6).

Then the finite marginals of

(Tr (P(A)M;) —ETr (P(A)My)) (4.8)

PeC(x;.x; ,keK) leL

converge to the ones of a complex centered Gaussian vector

(‘%’i’vf)PeC@k,xZ,keK),EeL
such that, for all P,Q € C(xy,x{,k € K) and {,0' € L,

EApe e = ouopt(P(a),Q(a))+New (11(P(a)Q(a)) — 71 (P(a)71(Q(a))),
EApeHpr = o0pn(P(a),Q(a)*)+ B (11(P(a)Q(a)) — 71 (P(a))T1(Q(a)")).

Remark 4.2.8. The following matrices have been shown to converge in second
order *-distribution:

- GUE matrices or so-called matrix models where the entries interact via a
potential [56],

- Ginibre matrices [83],
- matrices arising from the Haar measure on the unitary group U (N) [39],

- matrices arising from the heat kernel measure on U (N) [63] and on GLy(C)

511,

- Wishart matrices, matrices of the type UAV or UAU*, with U,V indepen-
dent and Haar distributed on U(N) and A deterministic with a limit spectral
distribution [66, 68, 67, 34].

A consequence of Corollary 4.2.7 is that any non commutative polynomial in in-
dependent random matrices taken from the list above has asymptotically Gaussian
entries, which are independent modulo a possible symmetry.
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4.2.3 Left and right unitary invariant matrices

Here is another corollary on random matrices invariant by left and right unitary
multiplication.

Corollary 4.2.9. Let A = (Ay)
that:

ek be a collection of N x N random matrices such

(a’) A is invariant by left and right multiplication by unitary matrix: for any

unitary matrix U, A faw (UAk) fav (AkU)

kek = keK"

(b’) for each k and each p,q, %Tr |Ax|*? is bounded in L9 independently of N;

(c’) for each k,k', the sequence %TrAkA}';, converges in L* to some non random
limits denoted t(k,k').

Let (M[) teL be a collection non random matrices satisfying (4.3), (4.4) and (4.6).
Then the finite marginals of

(Tr(AxMr))iek rer

converge to the ones of a complex centered Gaussian vector (%{75) rek rer With
covariance

Egk7[gk/7g/ = 0, and Egkjgk/’g/ = ﬁgﬁg/f(k,?).

The proof of this corollary is postponed to Section 4.3.4: we show that the
hypotheses of the corollary imply Hypotheses 4.2.1 and 4.2.4.

4.2.4 Permutation matrix entries under randomized basis

In [93], the individual entries of a uniform random N x N permutation matrix S
conjugated by a uniform random orthogonal matrix are studied. The limit distribu-
tion of the number of d-cycles, indexed by d > 1, is known to be asymptotically,
as N — oo, a Poisson process (Z;)4>1 on the set of positive integers with intensity
1/d by [4], which means in particular that each trace Tr(S¥), where k > 1, con-
verges in distribution to ¥, d 2. Thanks to Theorem 4.2.5 and Remark 4.2.3, we
deduce from this limiting Poisson distribution the following result about the matrix
entries of a uniform permutation matrix S conjugated by a uniform unitary matrix.

Corollary 4.2.10. Let S be a N x N random permutation matrix which is uniformly
distributed, U be a N x N random unitary matrix which is Haar distributed , and
(Mg) e @ collection of non random matrices satisfying (4.3), (4.4) and (4.6). Then
the finite marginals of

(TI' (USkU*MZ) ) k>1,0el
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where (%k,g) is a com-

converge to the ones of (%/ + oy Zd\kd%)kzl.éey k>1.0eL

plex centered Gaussian vector with covariance
ES v =0, and EG Gy = Lz Prr,

and (Zy)4>1 is a Poisson process on the set of positive integers with intensity 1/d
which is independent from (gk’g) keN LeL

4.2.5 Low rank perturbation for Gaussian elliptic matrices

Matrices from the Gaussian elliptic ensemble, first introduced in [89], can be de-
fined as follows.

Definition 4.2.11. A Gaussian elliptic matrix of parameter p € [—1,1] is a random
matrix Y = [y; J]fv j—1 such that

o {(vij,yji),1 <i<j<N}U{yis, 1 <i<N}isafamily of independent random
vectors,

e {(yij,vji),1 <i< j<N} areii.d. Gaussian such that
Ey;;=Ey; =Ey;y;i=0, Ely’=Elyi|>’=1 and Ey;y;=p
e {yi,1 <i <N} arei.i.d. Gaussian such that

Ey:i=p and Ely;]*=1.

Remark 4.2.12. Gaussian elliptic matrices can be seen as an generalization of
GUE matrices and the Ginibre matrices. Indeed, a Gaussian elliptic matrix Y of
parameter p can be realized as

where H; and H; are two independent GUE matrices from the GUE. Hence GUE
matrices (resp. Ginibre matrices) are Gaussian elliptic matrices of parameter 1
(resp. 0).

One can also define more general elliptic random matrices (see [70, 71,73, 74]
for more details). In our case, it is easy to see that the Gaussian elliptic ensemble
is invariant in distribution by unitary conjugation (see for example Remark 4.2.12)
which allows us to use our Theorem 4.2.5 for this model. In this section, we are
interested in the outliers in the spectrum of these matrices. Indeed, it is known
(see [89]) that when you renormalize by ﬁ the matrix Y, its limiting eigenvalue
distribution is the uniform measure (i, on the ellipse

o ~ Re(z)?  Im(z)?
% = {0 Thpp oy < 1)

4.9)
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Also, we know that adding a finite rank matrix P to such a matrix Y barely alters
its spectrum (see [71, Theorem 1.8]). In other words, most of the eigenvalues
remain distributed according to i, but the perturbation P may give rise to outliers.
The generic location of the outliers has already been studied for elliptic random
matrices (see [73]), but the authors did not consider the fluctuations.

Forall N > 1,let Xy := ﬁYN where Yy is an N x N Gaussian elliptic matrix
of parameter p and let Py be a N X N random matrix independent from Xy whose
rank is bounded by an integer r (independent from N). We consider the additive
pertubation

Xy = \/INYN+PN = Xy +Pu.
Since, for any unitary matrix U which is independent from Xy, we have Xy @
UXyU*, we can assume that Py has the following block structure

P 0
Py = (0 O) ,  where P is a 2r x 2r matrix

(indeed, any complex matrix is unitarily similar to a upper triangular matrix and
since the rank of Py is lower than r, we have dim(ImPy + (KerPy)*) < 2r).

Theorem 4.2.13 (Outliers for finite rank perturbations of a Gaussian elliptic ma-
trix). Let € > 0. Suppose that Py does not have any eigenvalue A such that

Al > 1 and 1+|p|+e < ‘).Jr%‘ < 1+|p|+3e, (4.10)

and has exactly j < r eigenvalues Ay (Py),...,A;(Py) (counted with multiplicity)
such that, for eachi=1,...,j,
M,,(PN” > 1 and

Ai(Py) + > 14 |p|+3e. (4.11)

p
vl

Then, with probability tending to one, XN := Xy + Py possesses exactly j eigen-
values Ay,...,Ajin{z€ C;lz| > 1+

p|+2¢e} and after a proper labeling

PRy P
A = A,(PN)J%_(PN) +o(1), (4.12)

foreach 1 <i<j.

Remark 4.2.14. In [73], the authors prove this result for real elliptic random
matrices and have a more precise statement. Indeed, they replace in our condi-
tions (4.10) and (4.11) the area {z € C; 1+ |p|+¢€ < |z| < 1+ |p|+3¢€} (resp.
{z€C, |z > 1+|p|+3¢€}) by &p3e\épe (resp. by &5 3¢) Where & ¢ is a -
neighborhood of the ellipse &), (see (4.9)). But our proof relies on the identity

Tr(z—X)! = Z 7T XK,
k>0

this is why (4.10) and (4.11) are circular conditions, instead of elliptic ones.
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To study the fluctuations of the outliers I,- around their generic locations as
given by (4.12), we need to specify the shape of the matrix P as it is done in [21].
Indeed, since P is not Hermitian, we need to introduce its Jordan Canonical Form
(JCF) which does not depend on N. We know that, in a proper basis, P is a direct
sum of Jordan blocks, i.e. blocks of the form

0 1 (0)
R,(0) = o , p X p matrix, 0cC,p>1 (4.13)

. |

0)

0

Let us denote by 6,..., 0, the distinct eigenvalues of P satisfying condition
(4.11). For convenience, we shall write from now on
o = 6+2. (4.14)
0;

We introduce a positive integer ;, some positive integers p;| > -+ > p; g COI-
responding to the distinct sizes of the blocks relative to the eigenvalue 6; and
Bi1;--,Biq such that for all j, R, (6;) appears fB; ; times, so that, for a certain
2r x 2r non singular matrix Q, we have:

q
J =QPQ=PPH P (4.15)
Rl’i,_/(el')

Bi,j blocks

M 0 .
where @ is defined, for square block matrices, by M@ N := (O N) and P is

a matrix such that its eigenvalues 6 are such that [6] < 1 or [§| = |6 +p6~'| <
I+p+e.
The asymptotic orders of the fluctuations of the eigenvalues of Xy + Py depend
on the sizes p; ; of the blocks. We know, by Theorem 4.2.13, there are Z?‘; 1 Pij X
Bi.j eigenvalues A of Xy + Py which tend to 6; = 6; + pGi_I: we shall write them
with a 6; on the top left corner, as follows
6~
A

Theorem 4.2.19 below will state that, for each block with size p; ; corresponding
to 6; in the JCF of P, there are p; ; eigenvalues (we shall write them with p; ; on
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6~ .
the bottom left corner: pi_/,l) whose convergence rate will be N~1/(271i) . As there

are f3; ; blocks of size p; j, there are actually p; ; x jAeigenvalues tending to o;

6~
with convergence rate N~!/(2Pi)) (we shall write them p,-,-lS-f withs € {1,...,pi;}
andr € {1,...,B; ;}). It would be convenient to denote by A; ; the vector with size
Di.j X Bt}j defined by
o (Nvenn (%7
Aij = (N D (st a)) v (4.16)
1<t<B;

As in [21], we define now the family of random matrices that we shall use
to characterize the limit distribution of the A; ;’s. For each i =1,...,q, let I(6;)
(resp. J(6;)) denote the set, with cardinality 27;1 Bi,j, of indices in {I,...,2r}
corresponding to the first (resp. last) columns of the blocks Rp,ﬁj(e,-) 1<j<o
in (4.15).

Remark 4.2.15. Note that the columns of Q (resp. of (Q!)*) whose index be-
longs to (6;) (resp. J(6;)) are eigenvectors of P (resp. of P*) associated to 6; (resp.
0;). See [21, Remark 2.8].

Now, let

<m1?5> 1<i<q @1
(k,0)€J(6;)x1(6))

be the random centered complex Gaussian vector with covariance

1 1

E[me,- me,,., ,} _ (7_7>5 Y
koM ¢ 6.0, —p 6,6, ko' Ok! ¢ wis)
;O A A — —1\* * ’

. [m/?:fmk”,é'} = @p(6,6,)eQ ' (Q ") e - €,Q"Qey,

where ey, ..., ey, are the column vectors of the canonical basis of C?" and
%) = [ L1 (dw) /L (dw)/L (aw)
P B Z—W?—Wﬂp z—wup ?_W“p ’

Remark 4.2.16. We will see in section 4.3.5 that (4.17) is in fact the limit distri-
bution of

* Oy — A -1 1 d )
(e (6x0 ™ g )ee) o () e
' (k02 (6;)x1(6;) (k,£)€T(6;)x1(6;)

This convergence is a consequence of Theorem 4.2.5.
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Remark 4.2.17. When p = 0, one has

1 11 1 1 1 1
Dy(z,7) = —/ —— dw—/ dw/ dw

Tlw<1z—=w7 —w Tlw<iz—w  T)w<1Z —w
1 1 1

Z—-1 zZ D -1)
We recover the expression of the covariance in the Ginibre case (see [21]). Also,
the expression of ®; corresponds to the covariance in the GUE case (see [85]).

For each i, j, let K(i, j) (resp. K(i,j)”) be the set, with cardinality f; ; (resp.
Zj:; 11 Bi.j7), of indices in J(6;) corresponding to a block of the type R, .(6;) (resp.
to a block of the type R, ,(6;) for j' < j). In the same way, let L(i, ) (resp.
L(i,j)") be the set, with the same cardinality as K(i,j) (resp. as K(i,j) ), of
indices in 1(6;) corresponding to a block of the type R, ;(6;) (resp. to a block of
the type R, ,(8;) for j' < j). Note that K(i, /)~ and L(i, j)~ are empty if j = 1.
Let us define the random matrices

0,1 . 0;, 0,11 | 0;
Mj = [mk,en]keK(i,j)* Mj = [mk,e‘]keK(i,j)’
(eL(i,j)" (eL(i,))
(4.19)
6,11 | 6; 0,1V | 6;,
Mj,n = [mk/]kel((i,j) Mj = [mk,en]kel((i,j)
CeL(i,j)~ CeL(i))
and then let us define the matrix M?" as
-1
0 . 6,1V 6;,111 0.1 6;.11
MY, = 6, <Mj ~M° (Mj ) M > (4.20)
6:,1

Remark 4.2.18. It follows from the fact that the matrix Q is invertible, that M

is a.s. invertible and so is M?’ﬁ

J

Now, we can state the result on the fluctuations.

Theorem 4.2.19. 1. As N goes to infinity, the random vector

(Aij)1<i<q

1<j<a;

defined at (4.16) converges to the distribution of a random vector

(A7) 1i<q

1<j<o;

with joint distribution defined by the fact that, for each 1 <i<qgand1 < j<
0, A7; is the collection of the p;, jth roots of the eigenvalues of some random

matrix M?".
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12 +
144 T e
1.6 b=

Figure 4.12: Spectrum of a Gaussian elliptic matrix of size N = 2500 with pertur-
bation matrix P = diag (Rs(1.5+2.625i),R3(1.5 —1.51),0,...,0). We see the blue
crosses “+” (outliers) forming respectively a regular pentagon and an equilateral
triangle around the red dots “e” (their limit). We also see a significant difference
between the two rates of convergence, N~'/10 and N~/

2. The distributions of the random matrices M?’ are absolutely continuous with

respect to the Lebesgue measure and the random vector (A‘f]) 1<i<q hasno
REY A
deterministic coordinate.

Remark 4.2.20. Each non zero complex number has exactly p; ; p; ;™ roots, draw-
ing a regular p; ;-sided polygon. Moreover, by the second part of the theorem, the
spectrums of the Me”s almost surely do not contain 0, so each A7; is actually a
complex random Vector with p; j x B; ; coordinates, which draw B, ,j regular p; ;-

sided polygons.

Remark 4.2.21. We notice that in the particular case where the matrix Q is unitary,
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the covariance of the Gaussian variables (m,f’ €> 1<i<q can be rewritten
7 (k0EI(6)x1(8)
1 1
E|: 61' 9;/ ,] = (7— )6 /6/ s
my g 0.6, —p  0,6; 0 Ok’ ¢
.0, AA

E [mi?fzmk;,w] = D(6;,0/) k000

Which means that for any i, such that i # i, the familly (m,?’ é) is in-
"/ (k,0)eJ (6:) x1(6:)

6,

dependent from <mk"€ . Indeed, since the Jordan blocks associated

) (k,0)€J(6,)x1(6y)
to 6; are distinct with those associated to 6y, the sets 1(6;) and J(6;) don’t share any
common index with 7(6;) and J(6;). We can deduce that in this particular case, all
the fluctuations around 6; are independent from those around 6; (see [21, section
2.3.1.] for more details).

However, in the general case, there is no particular reason to have independance
between the fluctuations around two spikes at macroscopique distance. To illus-
trate this phenomenon, we can take the same particular example than [21, Example
2.17] since a Ginibre matrix is also an Gaussian elliptic matrix. In this example,
the authors of [21] took a matrix P of the form

p=0(’ %o a=('"). kzz
0o o Kk 1

and they empirically confirmed that, in the case k # 0, the fluctuations of the out-
liers around O are correlated with these around 6’.

4.3 Proofs of Theorem 4.2.2 and Theorem 4.2.5

4.3.1 Preliminary result

Let (Bk) rex be a collection of (implicitly depending on N) N x N random matrices
such that

(1) for each k € K, almost surely, TrB; = 0;

(ii) foreachk € K, and each p,q > 1, %Tr |B;|?” is bounded in L¢ independently
of N;

(iii) for each k,k’ € K, we have the following convergences to nonrandom vari-
ables in L?

.1 o1 _
lim NTerBk/ = 1(k,k') and &ﬂNTrB"BZ’ = t(k,k").

N—oo

Let also (Mg) be a collection non random matrices such that

leL
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(iv) for each ¢,¢' € L, we have the following convergences

1 1 1
lim —TrMMpy — —TrM,- —TrMy = nyp
lmN riviyMy N rivly N My = Tee

N—oo
and
li —ITMM*——ITM —ITM*——B
1m r i r . r U /.
N e N ¢ N ¢ o

N—oo

Atlast, let U= U™ be an N x N Haar-distributed unitary random matrix indepen-

dent of (Bk)kel('

Proposition 4.3.1. Let us fix p > 1, (ki,...,kp) € KP and ({y,...,L,) € LP. If (i),
(ii), (iii) and (iv) hold, then the centered vector

(Tr (UB,,UM,)) 4.21)

1<i<p

converges in distribution, as N — oo, to a complex centered Gaussian vector (g,)
such that, for all i,7,

1<i<p

E%%y = Moy, (ki ki), and BGGy = By, (ki ki)

Besides, for any sequence (Yy) of bounded random variables such that Yy is in-
dependent of UN) and EYy has a limit L and any polynomial f in p complex
variables and their conjugates, we have

Jlim E [Yyf (Tr (UB, UM, ),1 <i< p)] = LE[f(%,1 <i<p)].

Proof. First, we can suppose the B;’s and the M,’s are all Hermitian (which makes
the entries of the vector of (4.21) real), up to changing

1 * 1 *
B)rex — <B(k,1) = E(BkJer% B = 2i(Bk_Bk)> ,
(ke)ek x{1,2}
1 . 1 .
M) e, — (MW) ::E(MngMg), M2 ::ﬁ(Mg—Mf)> )
(¢,€)eLx{1,2}

Second, as all B;’s have null trace, up to changing M, — M, — %Tng, one can
suppose that all M,’s have null trace.
To prove the full proposition, it suffices to prove the convergence

lim E

N—boo

Yy [ Tr (UB, UM,,)
i=1

1

= LyE [H%]

foranyn > 1, (ky,...,k,) € K", ({1,...,¢,) € L" and any sequence (Yy) of bounded
random variables independent from UW) such that limy_,..EYy = Ly. Indeed, we
can take each k as many times as we want in (kj,...,k,) (and the same for ¢),
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which implies the convergence of the expectation of any polynomials as wanted
and consequently the convergence in distribution of finite dimensional marginals.

Let n > 1, and &,, be the n-th symmetric group, and G,,, be the subset of
permutations in &, with only cycles of length 2. We denote be #0 the number
of cycles of 0 € &, and by Fix(o) the number of fixed points of ¢. The neutral
element of G,, is denoted by id,,. For any 6 € G,,, we set

Tr(; (Ni):lzl = H Tr (N[1 NIZ tee N[m)

cycle (titp-ty)
de o

For example, for o € &¢, 0 := (1,2,3,4,5,6) — (3,2,4,1,6,5)
Tre (Ni)0_, = Tr(NiN3Ng) Tr (N2) Tr (NsN).

Lemma 4.3.2. Let n > 1, (ki,...,k,) € K", (¢1,...,¢,) € L", and (Yy) be any
sequence of bounded random variables such that limy_,. EYy = L. With the above
assumptions on M and B, we have, for all y and ¢ in S,

Try (M&-)L = ﬂFix(y):OO(Nn/2>
and

E[YnTrs (Bi)!,] = Loce.N"’Ly ] t(ki.k;)+o(N"?).
cycle (i,))
de o
Proof. Because B;’s and M,’s have null traces, the formulas are true in presence
of fixed points. Thus, we can assume that o and 7y have no fixed point.

The first result comes from Lemma 4.3.6 and from the fact that, for each ¢,
TrMZ = O(N).

The second result can be proved in two steps. First, if o ¢ &,,,, the non-
commutative Holder’s inequality (see [2, Appendix A.3]) and Hypothesis (ii) say
us that

(E [YNTrG (By,)" ] ’ — O(N*®) = o(N"2).

If 6 € &, (and n > 0 is even), we decompose & in 2-cycles 6 = (i1 ji1) -+ (in/2 Ju/2)-
By classical Holder’s inequality, the absolute difference between

n/2
YN H N Tr Bkit Bk.iz
t=1

n/2—1

“n n 1
NT"E |YyTro (By)'_, | = E and E | ¥y [  TrBy,By, IE[NTer,.IBkj]]

is less than

n/2— n
an 1/2n H [( Ter”BkN>
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and consequently converges to 0 - using again the non-commutative Holder’s in-
equality (see [2, Appendix A.3]) and Hypothesis (ii) to control E(% TrBy, By, )2,
By a direct induction on n/2, it means that the expectation of product

n/2

- 1

N n/ZE [YNTI'(; (Bkj)Z:l] =E [YN I I1 NTerikajt]
t=

has the same limit as the product of expectation

n/2 1
Evy][]E [N TrBy, Bkjt] ,
=1

and the result follows. O
Letn>1, (ki,...,k,) €K", (¢1,...,4,) € L", and (Yy) be any sequence of bounded
random variables such that limy_,.[EYy = L. Using [67, Proposition 3.4] (and,
first, an integration with respect to the randomness of U, and then a “full expecta-
tion"), we have

E

YNﬁTr(UBkiU*Mg,.)] = Y Wg(oy HE[yTrs (Bi),_,] Try (M@:22)

i=1 0,7€6,
where Wg is the Weingarten function. We know from [38, Coro. 2.7] and [72,
Propo 23.11] that, for any 7 € G,,,
Wg(t) = O(N**") and Wg(1,) = N"+O(N"2).
It implies, by Lemma 4.3.2, that for o,y € &,,
We(oy ) E[Yy Tro (B))! | Try (M), = Tocs,, Lrix(n=o ONHT ™) = 1y _oce,,0(1),

and more precisely, using the exact asymptotic for y = o € G,,», that

We(oy )E[YyTre (Bi)_ | Try (M), =1y-ges,, Ly [] =(ki.kj)nee, +o0(1).
cycle (i)
de o
As a consequence, we can rewrite (4.22) as

Yy [ Tr (UB, UM,,)
i=1

i=

E :LY Z I I T(ki)kj)nfi(fj—f_o(l)’
cc6,;cycle (i,))
de o

which is the wanted convergence in order to prove the proposition, since

E!H%]Z Y I vkikj)ne,.
i=1 cc6,;cycle (i,))
de o
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4.3.2 Proof of Theorem 4.2.5

First, note that, for each k € K, EA = 4 E[Tr(A)]I, hence for By := Ay — 1, Tr(Ay)]
and Ty := & Tr(Ay) — E 4 Tr(Ay), one can write

(Ak - EAk) bek (Bk + Tk])beK'

Let us now introduce an (implicitly depending on N) Haar-distributed unitary ma-
trix U independent of the collection A. By unitary invariance, we get

law

(Ac—EAW) yex = (BitTil) g =

bk = (UBU* + Tl

bek”

Then, by Proposition 4.3.1, we know that, for any n > 1, any ky,...,k, € K and
any ¢1,...,¢, € L, the random vector

(Tr(UBLUMy)), ;.
converges in distribution to a complex centered Gaussian vector (Jﬁ) |<i<p SUCh
that, for all i,7’, o
E A = (tlki ki) —T(ki)T(kir)) (Mo, — o,0,),

]E%% - (T(ki,?ﬂ) - T(ki)f(ki’)) (W,—é[/ - af,-ailﬂ) .
Besides, Proposition 4.3.1 also says that

(Tr(UB,U"My,))

1<i<n

is asymptotically independent from (Tk,. Tr(Mg,.)) which converges in distri-
bution, by Hypothesis (d), to (o, Z%,)

(g")lgign’ that for (%’j)

1<i<n’®

L <i<n: As it is clear, from the covariance of

independent from (agi 7 ocgl.) we have

1<i<n 1<i<n’

1.
(4) 1<i<n = (%)gign + (o Z‘t’)lgign’

the theorem is proved. U

4.3.3 Proof of Theorem 4.2.2

It is a direct application of Proposition 4.3.1 since if TrM = 0, then

Te(AM) = Tr [(A— %(TrA)I)M],

so that one can assume that TrA = 0. O
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4.3.4 Proof of Corollary 4.2.9

We just need to show that the hypotheses of the corollary imply Hypotheses 4.2.1
and 4.2.4.

The proof of Hypothesis 4.2.1 comes down to the following computations,
where we introduce a Haar-distributed unitary matrix U independent of (Ay)rex
and use Equation (33) of [22]. We have

E]%TrAk}z = %E [Ey [Tr(UA,) Tr(A;U)] ]
— (B = 0 )
and
E ]%Tr(AkAk/ N %E [Ey [Tr(AUALU) Tr(Ap U AU ]
= (1 0(1)E (Tr(AD) Tr(ApAL) + THAAL) Tr(AwAD)

- o)

Now, in order to show Hypothesis 4.2.4, we want to prove that, for any fixed r,
(Tr(A,),- . ,Tr(Akr))::1 is asymptotically Gaussian. Letn > 1 and i1, ji,. .., i, jn €

{1,...,r}, using [67, Proposition 3.4], we have
n n
E ZI_]]Tr(AkQ)Tr(A,’;j[) - E EUgTr(UAkif)Tr(A;le*)
1 n
= Y E Tr(AkikAk,-a(a) +o(1).
ce6, (=1
Then, one can prove that
1 L 1 1
v L EIIT(@AA; )| = 5 X IIE Tr (A, A )| +o(1) 4.23)
ccG, (=1 ce6, (=1

Indeed, similarly from above, we use classical Holder’s inequality to state that the

difference between
n

Kl;ll Tr (Aki[ A]tjg(f)

N"E

)

and

—(n— = * 1 *
N-(-DR HTr(AkikAkjd ) E{NTr(AkinAkjm))]

®
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is lower than

| ] 1
E Tr (A AL, )| Var (S Tr(A, A, )

Jo(t n
=1 a(f)

n—

which tends to O thanks to the non-commutative Holder’s inequality and the fact
that ﬁTr(AnA”;(n)) converges in probability to a constant. We conclude the proof
(4.23) with a simple induction. Once we have (4.23), we can conclude using the
Wick Formula. U

4.3.5 Proofs of Theorem 4.2.13 and Theorem 4.2.19.

In this section, we will directly apply [85, Theorem 2.3 and Theorem 2.10] in order
to prove both Theorems 4.2.13 and 4.2.19. To do so, we only need to prove that
the Gaussian elliptic ensemble satisfies the assumptions of [85, Theorem 2.3 and
Theorem 2.10]. This is the purpose of the following proposition.

Proposition 4.3.3. Let Xy := \LFNYN where Yy is an N X N Gaussian elliptic ma-
trix of parameter p. Then, as N — oo, we have:

(i) I Xn|lop converges in probability to 1+ |p|;
(ii) for any 6 >0, as N goes to infinity, we have the convergence in probability

sup  max_ef (A—Xy) 'e;—m(z)| — 0,

l2|>1+]p|+8 1 Sii<2r

1
where m(z) = /Z_Wup(dw);

(iii) for any z such that |z| > 1+ |p| + €, we have the convergence in probability

1
\/N(NTr(z—X)_l —m(z)) — 0;
(iv) the finite marginals of random process

(\/N(e}k (z—X) 'ej— 5~-1Tr(z—X)_1 ))

YN 2> 1+]p|+e

1<i,j<2r

converge to the ones of the complex centered Gaussian process

(Fij.2) > 141l e
1<i,j<2r
satisfying

E|%:j%r 2] = 8ijdj < / ()I(Z,W)#p(dW)— / Z_lwup(dW) / z’iw“”(dw)>’
84,75 52) = 8y (| et = [ o) [ o plaw))
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(v) forany p > 1, any 1 <i,j<2randany |z| > 1+ |p|+¢€, the sequence
* - 1 -
VN (€ (z—X) peli—S,-‘,NTr(z—X) )

is tight.

Remark 4.3.4. One should be careful about the fact that our m(z) is not the same
from [73, Lemma 4.3] but the opposite. Moreover, for any |0| > 1, we still have
(see [73, (5.2) and (5.3)])

m(z) = — z =0+

1
0
so that it is easy to compute E [, ; %/ s +] in (iv) forz=0+5 andZ = 6"+ &,

indeed
/(W)I(Z,_).up(dw)_/Z_lwﬂp(dw)/z,iwﬂp(dw)
_mE=m@) L om) = 90% !

z2—7 —p 66"

Also, for any |z| > 2+/]|p|, it might be useful to write
— Y prCar(k)z 2,

k>0

where Cat(k) = kil (2k) is the k-th Catalan number.

Proof of Proposition 4.3.3. First, (i) is a direct consequence of [71, Theorem 1.9].
It implies that, with a probability tending one, for any fixed |z| > 1+ |p|, one can

write
(Z_XN)fl — szkflxﬁ(v.
k>0

Moreover, if we apply the Theorem 4.2.5 with

1 .
(MZ):(\/NEji)lgi,jgzr and  (Ag)=((z—Xw) _NTr(Z_XN) I)|z\>1+\p|+e

(since Xy is invariant in distribution by unitary conjugation, so is (z—Xy) ” for
any p > 1), we easily obtain (iv). The same for (v) by changing the exponent —1
into —p. At last, we just need to prove (ii) and (iii) and to do so, we prove the
following lemma.

Lemma 4.3.5. Let Xy be a N x N Gaussian elliptic matrix of parameter —1 < p <
1. Then, for any z such that |z| > 1+ |p| +¢€,

%Tr(z—XN)_l _m() = 0(\/1N>
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Indeed, once the previous Lemma is shown, we clearly have (iii), and here
comes the proof of (ii).
Proof of (ii). Let n > 0 and let i, j be two integers lower than 2r. Since [ Xy|[,,

is bounded, we know that H (z—Xy) ! H goes to 0 when |z| — oo, as the function
op

m(z), so that, we know there is a positive constant M such that

P( suplef(z—Xy) 'e;—8m(z)|>n)=P( sup |ef(z—Xn) "e;—8m(z)|>n)+o(1).
|z|>1+p+e I+pte<|z|l<M

Then, for any 1’ > 0, the compact set K = {1+ p + € < |z| < M} admits a ’-net
that we denote by Sy, which is a finite set of K such that

VzeK, I €Sy, |z-7Z|<n,

5o that, using the uniform boundedness of the derivative of m(z) and e} (z — Xy) ' e;
on K, we have for a small enough n’

P(suplef (z—X) ' ej—dym(@)| >n) = P( U {|efc=X)"e;=8ym(d)| >n/2})

zeK

ZESTI'
At last, we write, for any z € Sy,
P(|ei (z=X) " e; = 8m()| > n/2)
_ 1 _ 1 _
< P(lef(z—X) lej—&-jNTr(z—X) "'>n/4)+P (5, 5 Tr(z=X) "—m(z)| >n/4).

The first term vanishes thanks to Theorem 4.2.5 with M = /NE ;i and the second
one vanishes by Lemma 4.3.5. (]
Proof of Lemma 4.3.5. First of all, let us write, for any 7 > 0,

1 _
P(‘NTr(z—XN) 1—m(z)’ > \;']V)
1

AN 1
B (E‘NTr(z—XN)l —ENTr(z—XN)*l

nz

which means that we just have to prove that

2 1
= 0<N> , (4.24)

2 1
— 0(1\7) . (4.25)

Proof of (4.24): We know from [9, Theorem 1.1] that (4.24) is true for a Wigner
matrix. Here, the idea of the proof is to use the fact that the Stieltjes transform

‘E;]Tr (z—XN)*l —m(z)

and

1 1
E‘NTr(z—XN)l—ENTr(z—XN)l




4.3. PROOFS OF THEOREM 5.2.2 AND THEOREM 5.2.5 142

of the semicircular law of variance 62 = p is equal to m(z) outside the ellipse ép
when p > 0. First, we shall suppose that p > 0 up to changing Xy into iXy. For
any i # j, we have

2
Ex;

= Exjuji = %, and Ex} = 0. (4.26)

One can notice that if Wy is a real symmetric Gaussian matrix of variance p with
iid entries such that, for any i # j,

Ew? = Ewjwj = Ew?, = P 4.27)

ij N’
then we have, by the Wick formula applied to the expansion of the traces,
o E[TrW§] >0and E [TrX} | >0,
e E[TrW} | > E [TrX}] since there are more non-zero terms for Wy than for
Xy.
Also, we know that, for any z such that |z| > 1+ p + €,

1
E—Tr(z—Wy) ' = Yz k= IE[ Ter] and IE Tr(z Zzik 1E[ TrXN}
N ) k=0

converge to the same limit

= Z Cat(k)p*z=*=1,  where Cat(k) is the k-th Catalan number.
=

Moreover, by the Wick formula again, for &%,(2k) (resp. NC»(2k)) the set of
pairings (resp. non crossing pairings) of {1,...,2k},

E[Trxf\,"} = Y Y IT Bl
1<y, ik SN e P25 (2k) {s,t}enm

= Z Z H ]E [’xi& Is41 xitit+l ]

ne P (2k) 1<it,....in<N {sit}en

Note that using the Dyck path interpretation of NC»(2k) (see e.g. [72]), one can
easily see that i the previous sum, the term associated to each w € NC(2k) is
precisely p¥. Hence as the cardinality of NC,(2k) is Cat(k) (see [72] again) and
each E [x,-xl-s 1 X, +1] is non negative, we have

E {TrXIZ\,k} > Cat(k)p.

At last, we know from e.g. [9, Theorem 1.1] that, for any z such that |z| > 1+ p +€,
we have

E%Tr(z—WN)_l—m(Z) = 0<\l/ﬁ>=
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so that, to conclude, it suffices to write

1 1
E—Tr(z—Xy) ' —=m(z)| < Z(E*Trxzzf—Cat(k)Pk)\Zr%fl
N iz N
1
< Y (E—TrW3 —Cat(k)p¥)|z| 2!
iz N

_ E%Tr(\zy—wjv)*l—m(\zy) _ 0(\/%)

Proof of (4.25): We apply the same idea but this time Wy is a real symmetric Gaus-
sian matrix of variance p with iid entries, such that, for any i # j,

1 p
EW:'Zi — N ) Ewijwj,- = EWLZJ = N (428)

From e.g. [9, Theorem 1.1], we know that, for all |z| > 1+ |p| +&,
()
=o|—).
N

2

1 1
IE‘NTr(z—WN)_1 —IE‘,NTr(z—WN)_1

Moreover, we can write

1 1
]E‘NTr(z—XN)l—ENTr(z—XN)l

2 2

1 _
- E‘NTr(z—XN) !

1 .
_‘ENTr(z—XN) !

1 e — —
_ ﬁk;OZ 1 (B T TG | - ETeXGETX ).
b 2

By the Wick formula, we see that, for all &, ¢,

0 < B |TrX{TrXy| —~ETrXyETeX], < E[TrWiTr Wy | — ETr W ETr WY,

Indeed,
E [TrXfVTrXI(/V] = Z E [xiliz M X, 'xi;fMi;chl}
1<iy,...,ix<N
1<ty iy SN
= ) ) [T Efxaxs) (4.29)
1<iy,...,ix <N ﬂE@z(k#»f) {a,b}eﬂf
1§i2+1,.‘.,i;(+é§N
Xigigr ifl<a<k-1
where x, = Kl ifa=k
C ) mg,  fk+l<a<k+l-1
ifa=k+4¢.

Xit
k40 k+1
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We have also

ETrXKETrX!, = Y Y I Ekex] J] Elxexd,

1<ip,...ixSN 1€ 2, (k) {a,b}en {c,d}en
1<ii sl o SN UE D (L)

which is a subsum of (4.29). Hence, as all the [E [x,x;]’s are non negative (see
(4.26)), we conclude that

E|[TrX{TrX) | > ETrXEETeX,.
Since, for all @ and b, E [x,xp] < E [w,wp] (see (4.28)), we deduce that
E[TrX{TrX) | - ETXEETeX, < E | TeWiTrW) | - ETr Wi ETrwy,

At last, we can write

1 2

1
E‘NTr(z—XN)l—ENTr(z—XN)l

1

< ; PRl (]E [TrX'fVTrXﬁ,} —ETrX’;,ETrxﬁ,)
k,0>0
1 o _ N
< a5 LR (B e WE T W | - ETWLETEWY,)

k>0

[-2)

= E‘;]Trﬂz\ —WN)fl —E%Trﬂz\ —Wy)

Appendix: a matrix inequality
Lemma 4.3.6. For any k > 2 and any Hermitian matrix H,
‘Ter‘ < (Ter)k/2

more generally, for any family of Hermitian matrices Hy, ..., Hy,

k
|Tr (H;---Hy)| < []\/TrH?
i=1
Proof. We know that, for any non negative Hermitian matrices A and B, one has

TrAB <TrATrB

so that, for any p > 1,
TrH? < (Ter)p
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also,

TrH?H! < VIrR2VIrHY < VTIrR2\/ (TrH2) ™ = (TrH2) 372

Then, using the non-commutative Holder’s inequality (see [2, A.3]), we deduce
that

k k
e (K, - H) | < [T (TelE) " < ((TrH,?)"/Z)l/k.
i=1 i=1
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