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Abstract in English

Particles, when subjected into a flow, display non-trivial dynamics comprised of
a variety of deformations and predominant orientations depending on their elasticity
and geometry and the flow velocity field. Flows can conversely be modified when the
particle stresses are sufficiently large. This thesis presents theoretical and numerical
results on this two-way relationship between particles and flows in two parts.

Part I starts with a stability analysis and numerical simulations that show a
semiflexible Brownian particle in an extensional flow undergo tumbling, a phenome-
non commonly associated with shear flows only. Chapter 2 extends analytical tools
only available for elementary polymer models or for steady flows to general bead-
rod-spring models in a random flow. By building on the previous chapters, Chap.
3 culminates with the study of a yet unexplored Lagrangian degree of freedom in a
turbulent flow: bending. A semiflexible particle is shown to display different bending
behaviours in two- and three-dimensional random flows. This prediction is confirmed
via direct numerical simulations in turbulent flows.

Part II concerns “elastic turbulence”, a chaotic regime created in a flow with low
inertial forces by the addition of elastic polymers. Chapter 4 provides an estimate
for the number of degrees of freedom of the solution of this chaotic system via the
Lyapunov dimension of the attractor of the two-dimensional Oldroyd-B model, a
model known to reproduce elastic turbulence. Chapter 5 questions the necessity
of elasticity in producing the aforementioned chaotic regime and concludes that a
rodlike-polymer solution can create a regime similar to elastic turbulence.
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Abstract en français (Résumé)

Des particules dans un écoulement présentent des dynamiques non triviales basées
sur des déformations variées et des orientations privilégiées des particules, selon
leur élasticité et géométrie, et la structure du champ de vitesse. Réciproquement,
un écoulement peut être modifié lorsque les contraintes dues aux particules sont
suffisamment intenses. Cette thèse expose des résultats théoriques et numériques sur
cette inter-relation.

La Ière partie de la thèse débute par une analyse de stabilité et des simulations
numériques montrant quune particule brownienne semi-flexible dans un écoulement
hyperbolique effectue un mouvement de retournement; un phénomène généralement
associé aux écoulements cisaillés. Le Chap. 2 étend des outils analytiques connus,
pour des modèles de polymères simples ou pour des écoulements indépendants du
temps, aux modèles “bead-rod-spring” généraux dans un écoulement aléatoire. A
partir des résultats précédents, le Chap. 3 aboutit à l’étude d’un degré de liberté
lagrangien jusquici inexploré dans un écoulement turbulent: la flexion. La statis-
tique de la flexion dune particule semi-flexible dépend fortement de la dimension de
lécoulement aléatoire sous-jacent.

La IIème partie concerne la turbulence élastique; un régime chaotique créé en
ajoutant des polymères élastiques dans un écoulement à faible inertie. Le Chap. 4
estime le nombre de degrés de liberté d’une solution de ce régime en calculant la
dimension de Lyapunov de l’attracteur du modèle Oldroyd-B bidimensionnel. Le
Chap. 5 étudie une solution diluée de polymères rigides et montre que lélasticité
nest pas indispensable pour générer un régime comparable à celui de la turbulence
élastique.
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General introduction

There is a two-way relationship between particles and flows. Indeed the dynamics
of a particle depends on the flow in which it is immersed, and conversely, a flow can
feel the particles and can be modified owing to their presence. The former is often
studied by considering how a single particle behaves under the effect of a flow. These
particles can be polymers, rods, filaments, red blood cells, vesicles, among others.
For instance, rods and elastic filaments are found to align in the direction of a shear
flow; such a configuration is unstable and particles perform end-over-end reversals
[7, 15]. Particles may also deform, such as flexible fibers that buckle into U-shaped,
S-shaped, or even W-shaped figures when transported in a cellular flow [10].

One of the well-studied dynamics is the stretching of a flexible object in a flow. In
particular, Perkins et al. observed that an extensional flow stretches a DNA polymer
[13], consistent with the predictions of de Gennes on the coil–stretch transition of
elastic particles in time-independent extensional flows [5]. This transition depends
on the ratio of the magnitude of the velocity gradient to that of the elastic force.
If the flow is not strong enough to overcome the elastic forces of the polymer, the
polymer would remain in its equilibrium coiled state. A sufficiently strong flow would
however stretch it to its maximum length. The coil–stretch transition also exists for
chaotic flows, but the transition between the coiled and stretched configurations is
not as sharp and a polymer may more easily switch between the two configurations
[1]. These differences are due to the fluctuating nature of the velocity gradient.

The examples above illustrate how a particle may orient or deform under the
effect of a flow. In the presence of a sufficient quantity of these particles, the fluid
or flow properties may display non-Newtonian effects due to the feedback of the
particles. One of the more amusing ones is the phenomenon of shear-thickening
[4]. Such an idea is frequently demonstrated in scientific fairs, where children are
asked to run over a tub of water mixed with substantial amounts of cornstarch. In
the presence of rapid successive running or jumping motions, the water-cornstarch
solution displays shear-thickening and allows a person to momentarily not submerge
in the fluid; shear-thickening is defined as an increase in the viscosity of the fluid
with increasing shear rate in a steady shear flow.

Of perhaps more practical importance is that the addition of even a few parts per
million of elastic particles such as polyacrylamide or polyethylene oxide in turbulent
flows can reduce drag resistance [2, 12, 14]. The applications of drag reduction range
from efficient fluid transfer in pipes that are used in industrial companies to efficient
water usage and controllability in firefighting [8, 17]. Drag reduction may be obtained
by using either rigid or flexible particles [14, 16, 17]. A main difference, however, is
the necessity of higher concentrations of rigid polymers to achieve maximum drag
reduction; less flexible polymers are required if both the turbulent intensity of the
flow and polymer elasticity are sufficiently high [14]. This implies that elasticity plays
a significant role in the amplification of elastic stresses in cases of low concentration.

5



6 GENERAL INTRODUCTION

The phenomenon of drag reduction described above emerges when polymers are
injected in a flow that is otherwise turbulent. With low fluid inertia, a flow without
any polymers is laminar. The presence of elastic particles in such a flow however
triggers elastic instabilities and creates a turbulent-like regime characterized by the
activation of a range of scales in the kinetic-energy spectrum and an increase in both
the flow resistance and the elastic stresses as polymer elasticity increases [9]. The
emergence of this chaotic regime dubbed as “elastic turbulence” is attributed to the
stretching of polymers, which absorb energy, stretch and produce a secondary flow
(see, e.g., Refs. [3, 9]).

The association of the viscoelastic effects above to polymer-stretching illustrates
how single-polymer dynamics and their collective effect are inseparable. Indeed,
the constitutive models of polymer solutions with which analytical and numerical
calculations reproduce the aforementioned phenomena can be derived from equations
describing the evolution of a single particle in the flow (see, e.g., Refs. [6, 11]). This
thesis presents analytical and numerical results on certain aspects of this relationship.

Part 1 of this thesis considers single-particle dynamics towards understanding a
Lagrangian degree of freedom that, as far as we know, has not yet been explored in a
turbulent flow: bending. Chapter 1 reports the existence of tumbling, a phenomenon
normally associated to shear flows, in a purely extensional flow. To this end, a
stability analysis and numerical simulations were performed on the dynamics of a
simple semiflexible Brownian particle in an extensional flow. Chapter 2 extends
tools currently available only for elementary polymer models or for steady flows to
general-bead-rod spring models in random flows. By then building on the stability
analysis in Chap. 1 and by utilising the analytical tools derived in Chap. 2, Chapter
3 provides an analytical prediction on the bending dynamics of a semiflexible particle
in a turbulent flow. This prediction is confirmed via direct numerical simulations of
the Lagrangian trajectories of the particle in a turbulent flow.

Part 2 of this thesis discusses some properties of elastic turbulence. Chapter 4
provides an estimate for the number of degrees of freedom of the solution of this
chaotic system via the Lyapunov dimension of the attractor of the two-dimensional
Oldroyd-B model, which is known to reproduce elastic turbulence successfully in
numerical simulations. Chapter 5 questions the necessity of elasticity in producing a
turbulent-like regime. It will be shown that even a solution of rigid rodlike polymers
can create a chaotic regime similar to elastic turbulence.
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Additional remarks on the thesis

This work is a compilation of the work that the student has performed in the
course of three years. Parts of the results, such as certain numerical simulations
presented here, were done in collaboration with other people. The simulations on
the trumbbell in extensional flow (Chap. 1) as well as those on the rodlike polymer
solutions (Chap. 5) were wholly performed by the student. The simulation of the
trumbbell in a turbulent flow (Chap. 3) is a joint work with S.S. Ray. Lastly, the
simulations for the Lyapunov dimension (Chap. 4) were done in collaboration with
A. Gupta.

Appendices, when provided, are at the end of each chapter. These appendices
describe or explain some technical terms or detailed calculations that the student
skipped to avoid lengthy digressions. Note also that the variables used in the ap-
pendices may not necessarily hold the same definition as elsewhere in the previous
chapters due to the extensive use of notations.

Two sets of bibliographic entries are provided, one at the end of each part. Each
set is a compilation of the entries from the relevant chapters preceding the bibliog-
raphy.
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Part I

Single-particle dynamics





Introduction

Understanding particle-laden flows often requires understanding how a single par-
ticle behaves in these flows. Whereas following the evolution of a single particle
instead of hundreds is evidently advantageous in experimental set-ups, this single-
particle approach is practical more so from the theoretical and numerical point of
view because the number of degrees of freedom becomes significantly low to allow a
more complete understanding of the particle, its dynamics, and its potential effect
on the flow. Limiting the observation to one particle also permits the isolation of the
effects of the flow on the particle from all other effects. In particular it is possible to
neglect the feedback flow that the particle may induce on the flow by assuming that
the stress it exerts on the fluid is negligible. Hydrodynamic interactions that would
be present in non-dilute suspensions may also be safely disregarded. Fundamental
results on dilute polymer solutions also indicate that the quantities measuring the
rheological properties of these solutions are but linear combinations of those from
more dilute solutions, i.e. the effect of the particles on these quantities is propor-
tional to their concentration [60]. Hence, single-particle dynamics provides a first
step towards the general behaviour of particles in a flow.

The simplification to a single particle does not prevent it from displaying rich
dynamics, as displayed by the multitude of research being performed. The study of
particle transport and dynamics involves a variety of different particles: models exist
depending on whether they are passive or active [34, 97], tracer or inertial [17, 35,
97], pointlike, rodlike or complex-shaped [21, 22, 32, 87, 102, 106], elastic or rigid
[12, 12, 33, 45, 65, 75], not to mention biological particles [27, 52, 53]. The choices
for the flow into which these particles can be subjected into are likewise extensive:
laminar [16, 60, 75], random [14, 69, 72], or turbulent [35, 42, 73]. The presence of
boundaries or obstacles may further increase the complexity of the problem [7, 65].

Some recent work on particle dynamics include that on crosses and jacks [66],
which are manufactured by three-dimensional printing. They confirm existing ana-
lytical and numerical results on the rotation of spherical and ellipsoidal objects in
turbulent flow. The study of rigid triaxial ellipsoids [21] and four-bead particles [43],
extend these studies on the effect of turbulent flow on spheroidal particles by reducing
symmetry and thereby allowing more non-trivial dynamics. Chiral dipoles provide
an example of particles without axial symmetry but retaining rotational symmetry
and were shown to perform preferential rotation in isotropic turbulence (see Fig. I.1)
[56]. Another active field of research is the study of deformable particles motivated
by biological structures, such as the helical-shaped flagella of some bacteria. He-
lices of nanosale thickness were synthesized and were found to considerably uncoil
in a high-velocity flow and relax back to its coiled structure when the flow is turned
off (see Fig. I.2). Environmentally-motivated research also require modelling more
complex particles. For instance, aerosols particles are not perfect spheres but are
generally modeled as such. A slightly more complex model than a sphere is given

15



16 INTRODUCTION

Figure I.1. (Left) A model of a chiral dipole made of 40 spheres.
(Right) A chiral dipole produced by 3D printing. From Ref. [56].
Reprinted figure with permission from Kramel S, Voth GA, Tympel S,
Toschi F, Phys. Rev. Lett. 117, 154501 (2016). Copyright (2016) by
the American Physical Society.

Figure I.2. Deformation of a synthesized helix of thickness around
50 nm in a flow of order 10 mm/s. From Ref. [75]. Reprinted figure
with permission from Pham J, Morozov A, Crosby AJ, Lindner A, du
Roure O, Phys. Rev. E, 92, 011004(R) (2016). Copyright (2016) by
the American Physical Society.

by isotropic helicoids, which are spheres endowed with an internal parity orientation
(see figure I.3). These isotropic helicoids break reflection invariance but preserve
rotation invariance; the so-called left-handed particles and right-handed particles
respond differently to the same vortical structures [43, 44].

The wide interest on particle dynamics in laminar and turbulent flows is not
surprising given that the applications span various sciences from biology to meteo-
rology. In biology, the dynamics of microscopic particles like red blood cells, bacteria
and DNAs have continuously been studied [27, 53, 64]. For instance, understand-
ing the particle dynamics in blood, which is a dense suspension, gives insight into
the rheological properties of the blood cells, which in turn is related to the stable
circulation of blood called homeostasis. The study of the dispersion of particulates
in the atmosphere and in cities are of clear practical importance. To cite an ex-
ample, the exposure of the city to toxic ozone particulates were linked to regional
wind patterns and day-night and seasonal thermal fluctuations [49]. These various
studies nevertheless rely on possibly the same underlying physics of complex flows
and fluids, thereby motivating studying the simple models of particles in flows and
their behaviours.

https://doi.org/10.1103/PhysRevLett.117.154501
https://doi.org/10.1103/PhysRevE.92.011004
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Figure I.3. Illustation of a left-handed (left) and a right-handed
(right) helocoid. The velocity difference between that of the fluid u
and the particle v results in a net torque τH produces a (counter-)
clockwise motion for the (right-) left-handed helicoid. From Ref. [44].
Reprinted figure with permission from Gustavsson K, Biferale L, Phys.
Rev. Fluids1, 054201 (2016). Copyright (2016) by the American Phys-
ical Society.

The first part of the thesis consists of three chapters on the dynamics of simple
particles in various flows. Even if each chapter has its own intrinsic interest, a
common thread lies in studying the bending dynamics of a particle in a turbulent
flow. Indeed, the first chapter introduces a prototype three-bead-two-rod trumbbell
model (see Fig. I.4) and studies its bending (and tumbling) dynamics in a purely
extensional flow as a first step towards turbulence. The second chapter equips the
reader with an analytical tool to study complex-shaped particles in random flows,
which had been previously used to predict particle dynamics in turbulent flows. By
building on the results of the first two chapters, the third chapter addresses the
question of bending of semiflexible particles in a turbulent flow. This Lagrangian
degree of freedom, to the best of my knowledge, has not yet been explored. The
contents of each chapter are further detailed below.

x1

x2

x3

χ

Figure I.4. The trumbbell model, consisting of three beads at
x1,x2,x3 connected by two rigid rods. The internal angle between
the rods is χ.

Chapter 1

In the first chapter, the phenomenon of tumbling, i.e. the reversal of orienta-
tion of microscopic objects is explored in stretching-dominated flows. Tumbling is
commonly associated with shear flows, but has not been reported in extensional
flows. To see if tumbling may occur in a non-fluctuating planar extensional velocity
field, the dynamics of a semiflexible trumbbell is studied. Indeed a simpler two-
bead “dumbbell” model would remain aligned to the stretching direction and be

https://doi.org/10.1103/PhysRevFluids.1.054201
https://doi.org/10.1103/PhysRevFluids.1.054201


18 INTRODUCTION

unable to perform tumbling. Having a single bending mode proves to be sufficient
to exhibit tumbling. The study commences in two dimensions, wherein two stable
configurations (extended and folded) of the trumbbell are established. It is then
shown to undergo a random tumbling-through-folding motion from one extended
configuration to another. The probability distribution of long tumbling times is ex-
ponential with a mean time exponentially increasing with the Weissenberg number,
which compares the strength of the extensional flow to that of the trumbbell’s elastic
restoring potential. The results are then explained by considering tumbling as an
escape from a basin of attraction. Analogous results are drawn for three-dimensional
planar extensional flows.
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Chapter 2

Towards the goal of studying the bending dynamics in a turbulent flow, the
trumbbell may be subjected to a random flow. An important tool used in Chap. 1 is
the diffusion equation for a trumbbell, whose solution gives the probability density
function of the configuration of the particle. The diffusion equation as provided (e.g.
in Ref. [10]) can be easily extended for a general-bead-rod-spring model. This equa-
tion is not however directly applicable when considering random flows. In this chap-
ter, the diffusion equation for a general bead-rod-spring model in short-correlated
Gaussian random flows is derived. To illustrate its practicality, this equation is
solved analytically under isotropic conditions for a finitely-extensible model that has
both rigid and elastic links. Its application to the trumbbell is left to the next
chapter.

Chapter 3

The first part of the thesis culminates with the third chapter, which is on the
study of the bending dynamics of a particle in a turbulent flow. Bending is one of the
simplest deformations that a flexible polymer may experience, and yet, it has not been
explored before in a turbulent flow. To this end (and once again), the simplest model
that can exhibit bending is considered: a trumbbell that has but a single bending
mode. This chapter builds on the insights from purely extensional flows (Chap. 1)
so as to highlight the effect of turbulence on the bending dynamics. The Lagrangian
dynamics of the trumbbell in homogeneous and isotropic turbulent flows is then
studied in the context of a short-correlated random flow, whose associated diffusion
equation is derived in Chap. 2. Finally, the predictions of this analytically solvable
model are confirmed by using direct numerical simulations of a turbulent flow. The
stationary statistics of the bending angle of the trumbbell shows a strong dependence
on the dimension of the flow. In two-dimensional turbulence, particles are either
found in a fully extended or in a fully folded configuration. In three dimensions, the
predominant configuration is the fully extended one. Such a sensitivity of the bending
statistics on the dimensionality of the flow is peculiar to fluctuating flows and is not
observed in laminar stretching flows. These results are explained by considering the
temporal statistics of folding and unfolding.





CHAPTER 1

Tumbling in an extensional flow

1.1. Introduction

Various microscopic objects, when immersed in a laminar shear flow, perform a
tumbling motion in the plane of the shear. These include anisotropic solid particles,
flexible and semiflexible polymers, vesicles, bacteria, red blood cells. Even though
tumbling may be simply defined as a reversal of the orientation of a particle with
respect to some referential orientation, the entirety of the tumbling motion may
exhibit richer dynamics commensurate to the complexity of the particle.

One of the most famous studies of tumbling in a viscous fluid is that of Jeffery,
where the motion of an spheroidal object in a viscous shear flow is described [51].
In the absence of external forces, an axisymmetric particle will perform a periodic
motion and, depending on its initial orientation define one of the marginally-stable
“Jeffery’s orbits”; the associated period can be calculated as a function of the shear
rate and the particle’s aspect ratio. Interestingly, even bacteria (e.g. Escherichia
coli) that are not completely axisymmetric display a tumbling behaviour in a shear
flow following the predictions of Jeffery. Based on a microfluidic experiment using
shear flow, Kaya and Kosher have produced a model that can estimate the period
of a tumbling as a function of the aspect ratio of the bacteria and the distance of
its centre from the wall of the microfluidic device [53]. Other particles that lose the
completely axisymmetric property may still tumble but may possibly deviate from
the classical Jeffery orbits. For instance rigid rodlike particles (see Fig. 1.1) with
some random deformations at the ends perform quasiperiodic tumbling [31, 33].

Figure 1.1. Asymmetric glass rods in a microchannel; the center rod
is approximately 15 µm long. From Ref. [33]: Einarsson J, Mihiretie
BM, Laas A, Ankardal S, Angilella JR, Hanstorp D, Mehlig B. Phys.
Fluids, AIP Advances, Vol. 28, 013302 (2016); used in accordance
with the Creative Commons Attribution (CC BY) license.

Rheological particles such as vesicles and red blood cells in a shear flow display a
wider variety of dynamics owing to a deformable membrane around the fluid particle

21
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Figure 1.2. A red blood cell performs tank-threading in a flow with
low shear. From Ref. [27].

Figure 1.3. (Left) Successive snapshots of actin filaments of length
8 µm and 16 µm show tumbling in a shear flow by buckling. Photo
reproduced from Ref. [45]. Reprinted figure with permission from
Harasim M, Wunderlich B, Peleg O, Kröger M, Bausch AR, Phys.
Rev. Lett. 110, 108302 (2013). Copyright (2013) by the American
Physical Society. (Right) A DNA tumbling in a shear flow via a coiling
transition. From Ref. [88]. Reprinted figure with permission from
Schroeder CM, Teixeira RE, Shaqfeh ESG, Chu S, Phys. Rev. Lett.
95, 018301 (2005). Copyright (2005) by the American Physical Society.

(see Refs. [27, 52] and references therein). Whereas it is observed that they tumble
in weak flows similarly to how anisotropic solid particles do, they perform tank-
threading in stronger flows. Placing a marker at a fixed point in the membrane allows
one to confirm that the membrane deforms, rolls and reverses its orientation like the
tracks of a tank; Fig. 1.2 shows such a transition. The extent of the deformation
depends on the elasticity of the particle and the strength of the flow. Other non-
trivial intermediate dynamics between tumbling and tank-threading have also been
observed, such as spinning and vascillating behaviours, and have been studied as
functions of the aspect ratio of the particle and the ratio of elastic and viscous forces
of the particle and the fluid respectively.

Likewise complex are the behaviours of flexible and semiflexible polymers in shear
flows, where the tumbling dynamics goes through buckling or coiling [40, 45, 88]. The
buckling behaviour, displayed by actin filaments for instance, is akin to the tank-
threading behaviour but in the absence of an internal fluid and a closed membrane.
Such a behaviour is seen in Fig. 1.3 (left). Tumbling dynamics may also happen
through a coiling transition. For instance, a DNA polymer (see Fig. 1.3) spends most
of its time stretched and aligned in the direction of the flow until parts of it, due to
thermal fluctuation, lie in the unstable direction of the flow, causing the polymer to
(partially) coil. The polymer then tumbles and again stretches and orients to the
direction of the shear. This transition is illustrated in Fig. 1.4.

https://doi.org/10.1103/PhysRevLett.110.108302
https://doi.org/10.1103/PhysRevLett.110.108302
https://doi.org/10.1103/PhysRevLett.95.018301
https://doi.org/10.1103/PhysRevLett.95.018301
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Figure 1.4. A polymer in a shear flow stretches in the direction of
the shear or tumbles via a coiled configuration. From Smith DE, Bab-
cock HP, Chu S. Science 283, 1724 (1999) (Ref. [93]). Reprinted with
permission from AAAS.

The various examples above illustrate the fact that the tumbling dynamics of a
particle depends on its nature and on its interaction with the fluid: tumbling may
occur only within a restricted range of shear rates, and it can be periodic, chaotic,
or random. Numerous numerical studies confirm these experimental observations
[8, 9, 50, 92, 104, 107]. In the case of ran tumbling, it would be useful to note the
the tumbling time, i.e. the time between two successive reversal of orientations is
exponential with a typical tumbling time that decreases as the flow becomes stronger
[19, 40, 79, 99].

The general dynamics of tumbling motion in shear flows is captured by some
of the simplest objects that tumble, such as axisymmetric solid particles and elastic
dumbbells. In a viscous simple shear flow of a Newtonian fluid, indeed, the motion of
a neutrally buoyant axisymmetric particle follows Jeffery’s orbits as mentioned above:
it spends most of the time aligned with the direction of the flow and periodically
reverses its orientation [11, 51]. An elastic dumbbell (see Fig. 1.5), which consists
of two beads joined by a spring, also performs an end-over-end tumbling motion
in a shear flow [15, 19, 79, 99]. The dumbbell models a flexible polymer with an
equilibrium length R0 by its end-to-end vector R, which captures its length and
orientation in space. Under the effect of an incompressible linear velocity field u
(in this case, a shear flow u = λ(y, 0, 0)), the evolution of R obeys the equation
(summation over repeated indices is implied throughout this thesis unless otherwise
indicated by the presence of a non-vanishing index)

d

dt
Ri = Rk∂kui −

f(R2)

2τ
Ri +

√
R2

0

τ
ξi(t) (1.1)

where ∂k is the derivative in the kth coordinate, f(R2) is a specific function that
expresses the rate of extension (constant equal to 1 in the simplest case), τ is the



24 1. TUMBLING IN AN EXTENSIONAL FLOW

Figure 1.5. Illustration of the a dumbbell composed of two beads
and an elastic link.

polymer relaxation time and ξ(t) is white noise. Under the effect of Brownian fluc-
tuations, the reversals occur at random times and are characterised by a transition
from the stretched to the coiled state. The distribution of the time intervals sep-
arating two reversals has an exponential tail with a time scale that decreases as a
power-law of the Weissenberg number (the product of the amplitude of the velocity
gradient and the relaxation time of the spring). These predictions from the analyses
of these simple models explain the numerical and experimental findings.

The descriptions above describe how a shear flow affects particles. Here the ques-
tion of whether tumbling can also exist in stretching-dominated flows is addressed. If
so, what are the minimal requirements for a particle to tumble in such flows and how
does the resulting tumbling motion compare with the analogous motion in a shear
flow? The orientational dynamics of an axisymmetric solid particle or of an elastic
dumbbell in a purely extensional velocity field is trivial: such objects indeed simply
align with the stretching direction. In order to observe tumbling in the extensional
flow, particles that permit different dynamics, e.g. bending, must be considered. The
‘trumbbell’, also known as trimer or three-bead-two-rod model, is one of the simplest
semiflexible objects. It consists of three beads joined by two rigid connectors and of
an elastic hinge at the central bead [10, 46]. Owing to its simplicity, it was initially
introduced in chemical physics to study analytically the low-frequency dynamics of
stiff macromolecules [10, 37, 46, 85]. It was also used as the prototypical system for
showing that the infinite-stiffness limit of elastic bonds is singular, i.e. the behaviour
of elastic polymers with vanishing elasticity does not correspond to the behaviour of
their completely rigid counterparts [48].

The trumbbell model is sufficient to respond to the question posed above. Indeed
it is shown in this chapter that a particle in the form of a trumbbell may tumble
in an extensional flow. It initially spends a significant amount of time extended
and oriented along the stretching direction of the flow. Occasionally, a favourable
sequence of Brownian fluctuations makes the trumbbell fold, reverse its orientation,
and unfold. This tumbling-through-folding dynamics is examined in terms of the
stable configurations of the trumbbell and of the associated basins of attraction.
The properties of the statistics of the tumbling times are explained by using the
large deviations theory. In particular, the analysis of the tumbling statistics reveals a
fundamental difference between the tumbling motion of a trumbbell in an extensional
flow and the tumbling motion of an elastic dumbbell in a simple shear flow. In the



1.2. THE TRUMBBELL 25

x1

x2

x3

χ

Figure 1.6. The trumbbell model, consisting of three beads at
x1,x2,x3 connected by two rigid rods. The internal angle between
the rods is χ.

former case, indeed, the mean time that separates two reversals grows with the
Weissenberg number, and moreover, this growth is exponential.

Section 1.2 describes the trumbell and its equations of motion. An alternative
formulation of the trumbbell in terms of its angles and a diffusion equation for its
configuration is given in Sec. 1.3. Section 1.4 examines the stationary statistics of
the configuration of a trumbbell in a two-dimensional extensional flow. In particular,
a linear stability analysis establishes the fixed points of the system. Section 1.5
analyses the tumbling motion and its statistical properties. Analogous results in three
dimensions are also presented. Finally, concluding remarks and potential extensions
of the work are given in Sec. 1.6.

1.2. The trumbbell

A trumbbell consists of three identical beads located at xν (ν = 1, 2, 3) and joined
by two inertialess rods of length ` (see Fig. 1.6) [10, 46]. The rods connecting the
beads are described by the vectors

ρ1 = x1 − x2,

ρ3 = x3 − x2.
(1.2)

The internal angle between the rods is denoted by χ. In this chapter, the two
configurations obtained by interchanging x1 and x3 are distinguished from each
other, thus χ varies between 0 and 2π. When χ = 0, 2π the trumbbell is folded;
when χ = π it is fully extended. An elastic hinge at the middle models the entropic
forces that oppose the bending of the trumbbell. The force exerted by the hinge is
described by a harmonic potential

φ(χ) =
A

2
(χ− π)2 (1.3)

for some non-negative constant A that represents the magnitude of the potential.
The trumbbell is advected by a linear velocity field u(x, t), in which each bead

experiences Stokes’ drag with drag coefficient ζ. The fluid is Newtonian. The beads
are assumed to be sufficiently small for them to experience Brownian fluctuations and
for the velocity gradient∇u to be spatially uniform across the trumbbell. The inertia
of the beads and the hydrodynamic interactions between them are disregarded [25,
62]. It is furthermore assumed that the trumbbell does not modify the flow.

The position vectors of the beads satisfy the following evolution equations:

mẍν = −ζ[ẋν − u(xν , t)] + tν + fν +
√
D ην(t), ν = 1, 2, 3, (1.4)
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where m is the mass of each bead, D = 2ζKT (K is the Boltzmann constant and T is
temperature), and ην(t) are independent d-dimensional white noises. The restoring
forces fν take the form (derivation in appendix 1.7.1):

f1 = Aχ (ρ̂1 cotχ− ρ̂3 cscχ) ,

f2 = −(f1 + f3), (1.5)

f3 = Aχ (ρ̂3 cotχ− ρ̂1 cscχ) ,

with Aχ = A(π− χ)/` and ρ̂i = ρi/|ρi|. The tensions tν keep the distances between
the beads constant. The terms on the right hand side of Eq. (1.4) describe Stokes’
drag, the rigidity of the rods, the resistance of the particle to bend, and Brownian
noise, respectively. Neglecting inertial effects yields:

ẋν = u(xν , t) +
1

ζ

[
tν + fν +

√
D ην(t)

]
, ν = 1, 2, 3. (1.6)

In the following it will be useful to isolate the evolution of the internal configuration
of the trumbbell from the motion of its centre of mass

xCM =
x1 + x2 + x3

3
, (1.7)

which evolves like a tracer owing to the linearity of the velocity field:

ẋCM = u(xCM, t) +

√
D

3
η̂(t), (1.8)

where η̂(t) is white noise. In the reference frame of xCM the configuration of the
trumbbell can be described by using the vectors ρ1 and ρ3 defined in Eq. (1.2) and
which, from Eq. (1.6), satisfy the following differential equations:

ρ̇1 = ρ1 · ∇u+
1

ζ
(2t1 + t3) +

1

ζ
(2f1 + f3) + Γη̃1,

ρ̇3 = ρ3 · ∇u+
1

ζ
(2t3 + t1) +

1

ζ
(2f3 + f1) + Γη̃3,

(1.9)

where Γ =
√

2D/ζ and η̃i = [ηi(t)− η2(t)] /
√

2 with 〈η̃i(t)〉 = 0 and 〈η̃αi (t)η̃βi (t′)〉 =
δαβδ(t − t′), i = 1, 3. The tensions may be calculated explicitly by imposing the
rigidity constraints d|ρi|2/dt = 0 or

ρi ◦ ρ̇i = 0, (1.10)

where the symbol ‘◦’ indicates that the dot products involving the noise terms are
understood in the Stratonovich sense [54] (see also appendix 1.7.2). Equations (1.10)
form a linear system in the variables |t1| and |t3| (in terms of ρ1,ρ3) and yields:

t1 = −ζcχ [2σ1 − σ3 cosχ− Ãχ + 2Γ(ρ̂1 ◦ η̃1)− Γ cosχ(ρ̂3 ◦ η̃3)]ρ̂1,

t2 = −(t1 + t3),

t3 = −ζcχ [2σ3 − σ1 cosχ− Ãχ + 2Γ(ρ̂3 ◦ η̃3)− Γ cosχ(ρ̂1 ◦ η̃1)]ρ̂3,

(1.11)

where σi =
∑

α,β `ρ̂
α
i ∂

αuβ ρ̂βi , cχ = (4 − cos2 χ)−1, and Ãχ = ζ−1Aχ sinχ(2 − cosχ).

By substituting Eqs. (1.11) into Eqs. (1.9), the following system is obtained:

ρ̇1 = A1 + B11 ◦ η̃1(t) + B13 ◦ η̃3(t),

ρ̇3 = A3 + B31 ◦ η̃1(t) + B33 ◦ η̃3(t).
(1.12)
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The explicit forms of the vectors A1,A3 are:

A1 = ρ1 · ∇u− 2cχ

[
2σ1 − σ3 cosχ− Ãχ

]
ρ̂1

−cχ
[
2σ3 − σ1 cosχ− Ãχ

]
ρ̂3 +

1

ζ
(2f1 + f3) ,

A3 = ρ3 · ∇u− 2cχ

[
2σ3 − σ1 cosχ− Ãχ

]
ρ̂3

−cχ
[
2σ1 − σ3 cosχ− Ãχ

]
ρ̂1 +

1

ζ
(2f3 + f1) ,

and the matrix-valued coefficients of the noises are

B11 = Γ [I + cχ (ρ̂3 cosχ− 4ρ̂1)⊗ ρ̂1] ,

B13 = 2Γcχ (ρ̂1 cosχ− ρ̂3)⊗ ρ̂3,

B31 = 2Γcχ (ρ̂3 cosχ− ρ̂1)⊗ ρ̂1,

B33 = Γ [I + cχ (ρ̂1 cosχ− 4ρ̂3)⊗ ρ̂3] ,

where I is the identity matrix and ⊗ denotes the tensor product. The internal angle
χ can be obtained from ρ1 ·ρ3 = `2 cosχ. This formulation holds both for d = 2 and
for d = 3 dimensions. It will be used later for numerical simulations, especially for
the d = 3 case.

1.3. The angular formulation of the trumbbell

An alternative formulation for the evolution of the trumbbell can be obtained
by expressing its configuration in terms of angular variables. In the reference frame
of the centre of mass xCM, the configuration of the trumbbell can be described by
2(d − 1) angular coordinates q, where d is the dimension of the flow [10, 46]. For
d = 2, q = (θ, χ) where χ is again the internal angle and 0 6 θ < 2π gives the
orientation of the rod ρ3 = x3 − x2 with respect to a fixed frame of reference. For
d = 3, q = (α, β, γ, χ) where 0 6 α < 2π, 0 6 β < π and 0 6 γ < 2π are the Euler
angles that specify the orientation of the orthogonal triad (x3 − x1) ∧ (x2 − xCM),
x3 − x1, x2 − xCM with respect to a fixed coordinate system.

Let us denote the separation vectors describing the location of the beads with
respect to xCM as

rν = xν − xCM. (1.13)

The statistics of the configuration of the trumbbell at a time t is specified by the
probability density function (PDF) Ψ(q; t), which is normalised as

∫
Ψ(q; t) dq = 1

and satisfies the following diffusion equation [46] (see also Ref. [10] for the deriva-
tion.):

∂Ψ

∂t
= − ∂

∂qi

{
Gij
[(
κkl(t)rlν

∂rkν
∂qj
− 1

ζ

∂φ

∂qj

)
Ψ− KT

ζ

√
h
∂

∂qj

(
Ψ√
h

)]}
, (1.14)

where κkl(t) = ∂luk(t) is the velocity gradient evaluated at xCM, h = det(H) with

Hij =
∂rkν
∂qi

∂rkν
∂qj

and G = H−1. (1.15)

Note that in a linear flow the orientational dynamics of the trumbbell only depends
on the velocity gradient which is spatially uniform. The internal configuration of
the trumbbell is therefore decoupled from the position of the centre of mass. This
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implies that the statistics of the angular variables q is independent of xCM. Hence,
without any loss of generality, the dynamics of the trumbbell is studied in the frame
of reference that is translated with the centre of mass. Also note that the stationary
PDF of q, Ψst(q), takes the form

Ψst(q) = Jψst(q), (1.16)

where J is proportional to the Jacobian of the transformation from the rν to the q
coordinates; J = 1 for d = 2 and J = sinχ sin β for d = 3. Details for calculating
these Jacobian may be found in Sec. 2.6.3.

In the absence of both the flow gradient (κ = 0) and the restoring potential
(A = 0), the stationary PDF takes the form [46]

ψst(q) = ψ0(χ) (1.17)

with
ψ0(χ) ∝

√
4− cos2 χ, (1.18)

which shows that the stationary PDF depends only on the bending angle χ. In this
case, the configuration with the rods being perpendicular (χ = π/2) has slightly
greater probability than the other configurations, while the folded (χ = 0) and the
extended (χ = π) configurations are equally probable. The restoring potential breaks
this symmetry. For A 6= 0, then [46]

ψst(χ) ∝ ψ0(χ) exp

[
−Z

2
(χ− π)2

]
, (1.19)

where Z ≡ A/KT is a stiffness parameter that compares the amplitude of the restor-
ing potential to that of the thermal fluctuations (recall that K is the Boltzmann
constant and T is temperature). The extended configuration χ = π is evidently the
most probable one, and its probability increases as Z increases. The plots of ψst are
given in Fig. 1.7. Evidently, when the trumbbell is introduced in a non-uniform flow
(κ 6= 0) its dynamics results from the interplay between the restoring elastic force
and the deformation caused by the flow.

The results on the stationary PDF of χ are not the only advantages of considering
angular variables. It is practical especially for the case d = 2 for two more reasons:
first a stability analysis can be carried out in two variables θ, χ instead of four (each
component of the rods ρ1,ρ3) and consequently only two variables will be evolved
when numerical simulations would eventually be performed.

To study the dynamics of the trumbbell, it is useful to rewrite the diffusion equa-
tion (1.14) as a Fokker–Planck equation (FPE), which is associated to a stochastic
differential equation on the variable q. The FPE is a differential equation of the form

∂Ψ

∂t
= − ∂

∂qi
(V iΨ) +

1

2

∂2

∂qi∂qj
(DijΨ), (1.20)

from which we obtain the drift and diffusion coefficients V i and Dij, respectively.
The associated system of Itô stochastic differential equations (SDEs) to this FPE
(1.20) is then given by:

dqi = V idt+ D̃ij dW j(t) (1.21)

where D̃D̃> = D and dW j(t) are independent Brownian motions. Note that the
choice of D̃ is not unique. It is also remarked that if the flow is random, the velocity
gradient κ in Eq. (1.14) will have a noise term associated to it and the desired
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Figure 1.7. The stationary PDF ψst(χ) in the absence of flow for
different values of the stiffness parameter Z. The black dotted line
represents the PDF in the absence of a restoring potential.

PDF would have to be averaged over its realizations (a diffusion equation taking a
stochastic gradient into consideration is derived in Chap. 2).

In the following subsections, the explicit expressions of the coefficients appearing
in the diffusion equation (1.14) and, for the two-dimensional case, the coefficients of
the associated FPE, are provided.

1.3.1. Two dimensions. As discussed at the beginning of this section, the
angular variables describing the trumbbell in two dimensions are q = (θ, χ), where χ
is the internal angle and 0 ≤ θ < 2π is the angle that the vector ρ3 = x3−x2 makes
with the x-axis on some fixed frame of reference (see Fig. 1.8). The separation
vectors rν defined in Eq. (1.13) can then be expressed in terms of θ and χ as

r1 =
`

3
(2 cos(θ + χ)− cos(θ), 2 sin(θ + χ)− sin(θ)) ,

r2 = − `
3

(cos(θ + χ) + cos(θ), sin(θ + χ) + sin(θ)) ,

r3 =
`

3
(2 cos(θ)− cos(θ + χ), 2 sin(θ)− sin(θ + χ)) .

The other coefficients in the diffusion equation are then derived as h = `4(4−cos2 χ)/9
and (see Eq. (1.15) for the definition)

G =
1

`2


6

4− cos2 χ
− 3

2 + cosχ

− 3

2 + cosχ

6

2 + cosχ

 .

The FPE (1.20) in two variables can then be written with its coefficients as

V θ = − 6KT sinχ

ζ`2(2− cosχ)(2 + cosχ)2
− 3A(π − χ)

ζ`2(2 + cosχ)
− 1

4− cos2 χ
×
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Figure 1.8. A trumbbell in the frame of reference of its centre of
mass. The origin coincides with the centre of mass. The flow is exten-
sional (streamlines shown in gray) with stretching in the x direction
and compression in the y direction.

{[2 sinχ cos2(θ + χ) + cos θ(4 sin θ − cosχ sin(θ + χ))]κ11(t) +

[2 cosχ sin2(θ + χ)− sin θ(2 + cosχ) sin(θ + χ) + 4 sin2 θ]κ12(t) +

[−2 cosχ cos2(θ + χ) + cos θ(2 + cosχ) cos(θ + χ)− 4 cos2 θ]κ21(t) +

[2 cos θ(sin(θ + χ)− 2 sin θ) + cosχ(sin θ cos(θ + χ)− sin(2(θ + χ)))]κ22(t)},

V χ =
12KT sinχ

ζ`2(2− cosχ)(2 + cosχ)2
+

6A(π − χ)

ζ`2(2 + cosχ)
+

sinχ

2 + cosχ
{[1− 2 cos(2θ + χ)]×

κ11(t)− 2 sin(2θ + χ)[κ12(t) + κ21(t)] + [1 + 2 cos(2θ + χ)]κ22(t)
}
.

and

Dθθ =
12KT

ζ`2(4− cos2 χ)
, Dθχ = − 6KT

ζ`2(2 + cosχ)
, Dχχ =

12KT

ζ`2(2 + cosχ)
.

The associated system of Itô SDEs (1.21) in the case d = 2 is then given by:

θ̇(t) = V θ +
√
Dθθ ξθ(t),

χ̇(t) = V χ +
Dθχ

√
Dθθ

ξθ(t) +

√
Dχχ − (Dθχ)2

Dθθ
ξχ(t),

(1.22)

where ξθ(t) and ξχ(t) are independent white noises. Note that in Eqs. (1.22) Dχχ −
(Dθχ)2/Dθθ = 3KT/ζ`2.

1.3.2. Three dimensions. For d = 3, the configuration is given by four angles
q = (α, β, γ, χ) where the first three are the Euler angles and χ is again the internal
angle as defined in Sec. 1.3. It would be convenient to work in the frame of reference
that follows the trumbbell, i.e. with trumbbell’s centre of mass at its origin. In
particular, this transformation from a fixed frame of reference x,y and z to the new
set of axes x′ = (x3−x1)∧ (x2−xCM), y′ = x3−x1, and z′ = x2−xCM keeps the
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rods of the trumbbell ρ1 = x1 − x2, ρ3 = x3 − x2 in the y′-z′ plane:

ρ1 = `
[
cos
(χ

2

)
z′ − sin

(χ
2

)
y′
]
,

ρ3 = `
[
cos
(χ

2

)
z′ + sin

(χ
2

)
y′
]
.

The transformation is given by the matrix Σ := cosα cos β cos γ − sinα sin γ sinα cos β cos γ + cosα sin γ − sin β cos γ
− cosα cos β cos γ − sinα sin γ − sinα cos β cos γ + cosα sin γ sin β sin γ

cosα sin β sinα sin β cos β

 ;

and the separation vectors (see Eq. (1.13)) can then be written as

r1 =
`

3
(2ρ1 − ρ3) ,

r2 = − `
3

(ρ1 + ρ3) ,

r3 =
`

3
(2ρ3 − ρ1) .

The other coefficients in the diffusion equation (1.14) may now be obtained for the
case d = 3, in particular, the matrix G and the determinant h of G−1. These results
may be found in Refs. [10, 46]:

G11 =
3(−3 cos 2γ(cosχ− 1) + cosχ− 5) csc2 β sec2

(
χ
2

)
8`2(cosχ− 2)

G12 =
9 cos γ csc β sin γ tan2

(
χ
2

)
2`2(2− cosχ)

= G21

G13 =
3(3 cos 2γ(cosχ− 1)− cosχ+ 5) cot β csc β sec2

(
χ
2

)
8`2(cosχ− 2)

= G31

G22 =
3
(
−6 cos2 γ sec2

(
χ
2

)
+ 3 cos 2γ + 1

)
4`2(cosχ− 2)

G23 =
9 cot β sin 2γ tan2

(
χ
2

)
4`2(cosχ− 2)

= G32

G33 =
{

9 sin2 β sin2 2γ sin4
(χ

2

)
− [3 cos 2γ(cosχ− 1)− cosχ+ 5] ×[

cos2
(χ

2

)
sin2 β + 3

(
cos2 γ + cos2 β sin2 γ

)
sin2

(χ
2

)]}
×

[2`2(cosχ− 2) sin2 β sin2 χ]−1

G44 =
6

`2(cosχ+ 2)

G14 = G24 = G34 = G41 = G42 = G43 = 0

and h = − 1
54
`8 sin2 β sin2 χ(cos 2χ− 7). These expressions will be useful in Chap. 3,

where analytical expressions of the PDFs of the trumbbell will be derived. It would
be further possible to calculate the expressions of the drift and diffusion coefficients
V i and Dij in the FPE (1.20) and the associated SDEs (1.21) for the d = 3 case.
They are however not reported as they will not be used in the stability analysis nor
in the subsequent numerical simulations. In fact, the angular formulation in the case
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d = 3 is not suitable for simulations since, for instance, G33 blows up to infinity as
β → 0 or χ→ 0.

1.4. Stationary statistics in the extensional flow

The goal of this chapter is to study if a trumbbell performs an end-to-end reversal
in an extensional flow. The existence of any tumbling requires a configuration from
which a trumbbell may tumble from and another configuration to which it tumbles to.
In this section, the stationary configurations of the trumbbell in an extensional flow is
studied. In particular, stable fixed points of the system will be identified. From this
point the angular formulation given in Sec. 1.3 is assumed unless otherwise indicated.

It is convenient to formulate the equations (such as Eqs. (1.22)) in terms of
two dimensionless parameters: the stiffness parameter (already used and defined in
Eq. (1.19))

Z =
A

KT
(1.23)

and the Weissenberg number

Wi =
λζ`2

A
, (1.24)

where λ is the magnitude of the velocity gradient. The latter compares the strengths
of the flow and of the restoring force. In addition, the Péclet number is also intro-
duced

Pe =
λζ`2

KT
= ZWi , (1.25)

which is the relative intensity of the flow to Brownian noise.
To simplify the stability analysis and study the existence of tumbling, first con-

sider a two-dimensional flow (tumbling in a three-dimensional planar extensional
flow will be considered in Sec. 1.5.2). This assumption is valid if the trumbbell is
immersed in a thin layer of fluid, for instance, in microfluidic experiments. Consider
the extensional flow

u(x, y) = λ(x,−y), λ > 0, (1.26)

which consists of a stretching direction x and a compressing direction y (Fig. 1.8).
For this flow, the stationary PDF of θ and χ takes the form

ψst(θ, χ) ∝
√
h exp

[
Φ− φ
KT

]
(1.27)

with Φ = (ζ/2)κijriνr
j
ν [46]. Its explicit expression is:

ψst(θ, χ) ∝
√

4− cos2 χ exp

[
Z Wi(2 cosχ− 1) cos(2θ + χ)

3
− Z(π − χ)2

2

]
. (1.28)

The contour plot of lnψst(θ, χ) is shown in Fig. 1.9 for representative values of Z
and Wi . It is easily shown that the maxima of ψst(θ, χ) are located at Pπ : (θ =
nπ, χ = π), where n is an integer. Hence, the trumbbell spends most of the time in
an extended configuration and oriented in the stretching direction of the flow. The
peaks at Pπ become narrower as Wi increases, showing stronger preference for these
configurations (see the marginal PDF of θ, ψmar(θ) in Fig. 1.10). Also note that these
peaks are not symmetrically distributed around Pπ in Fig. 1.9.

1.4.1. Stability analysis without restoring potential. To understand the
behaviour of ψst(θ, χ) when the flow is much stronger than both the restoring force
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Figure 1.9. Contourplot of lnψst(θ, χ) for Z = 1 and Wi = 6. One
minimum energy path (see Sec. 1.5) connecting (π, π) and (0, π) is
drawn with a solid magenta curve.
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Figure 1.10. The marginal PDF ψmar(θ) of θ for Z = 1 and Wi = 5
(red, solid), Wi = 10 (green, dashed), and Wi = 20 (blue, dotted).

and Brownian noise, set A = 0 and KT = 0 in Eqs. (1.22), which corresponds to
considering the limiting case Wi = Pe =∞. The resulting system is:

θ̇(t) = − λ

2(4− cos2 χ)
[7 sin(2θ) + 4 cos(2θ + χ) sinχ− sin(2(θ + χ))] ,

χ̇(t) = − 4λ

2 + cosχ
[sinχ cos(2θ + χ)] .

(1.29)



34 1. TUMBLING IN AN EXTENSIONAL FLOW

The linear stability analysis of this system yields two stable configurations, both
aligned with the stretching direction of the flow (θ = 0, π, 2π):

(1) The extended configuration Pπ : (θ = nπ, χ = π) with two negative eigen-

values: µ
(1)
π = −4λ, µ

(2)
π = −2λ.

(2) The folded configuration P0 : (θ = nπ, χ = 0, 2π) with two negative eigen-

values µ
(1)
0 = −2λ, µ

(2)
0 = −4λ/3.

As the velocity gradient λ becomes stronger, both configurations become increasingly
stable, since the eigenvalues are proportional to λ. However, the ratio of the most

negative eigenvalues of the two configurations is µ
(1)
π /µ

(1)
0 = 2; hence the extended

configuration Pπ is more stable than the folded one P0 for all λ and is expected to
dominate the long-time statistics. This fact can be understood by noting that the
velocity of a bead is proportional to its distance from the center of mass, and in the
extended configuration Pπ the end beads are farther from xCM than they are in the
folded configuration P0. The presence of the two stable configurations is seen in the
vector plot of (θ̇, χ̇) shown in Fig. 1.11.
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Figure 1.11. Vector plot of λ−1(θ̇, χ̇) for Wi = Pe =∞. The size of

the arrows are proportional to the magnitude of the vector λ−1(θ̇, χ̇).
The basins of attraction of Pπ (blue disks) are in gray; those of P0 (red
disks) are in white.
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Figure 1.12. Three configurations near an extended equilibrium con-
figuration for the same value of χ = 2.8.

As both θ̇ and χ̇ are proportional to λ (see Eqs. (1.29)), the geometrical structure
of the vector plot does not change with λ. In accordance with the stability analysis
of the fixed points of Eqs. (1.29), the vectors that lie in the neighbourhood of Pπ are
larger than those in the neighbourhood of P0. Therefore, the presence of Brownian
noise allows an easier escape from the basin of attraction of the folded configuration
P0 than from that of the extended configuration Pπ. Conversely, a trumbbell in an
extended configuration is more likely to remain in the basin of attraction of this
configuration, until there is sufficient noise for it to fold. Also note that the basin of
attraction of the points Pπ is not symmetrically distributed around them, but there
is a preferential direction along which the system is more strongly attracted (see
Fig. 1.11). Consider indeed two configurations with the same value of χ close to π
and with θ either slightly less than π or slightly greater than it (see Fig. 1.12). It is
clear that the latter configuration is more strongly attracted to Pπ.

1.4.2. Stability analysis in the presence of a restoring potential. In the
presence of a restoring potential (Wi < ∞,Pe = ∞), the fixed points of system
(1.22) and their stability can be calculated numerically. Only Pπ remain stable fixed
points; the configurations P0 are no longer fixed because of the restoring potential.
However, if the flow is sufficiently strong (Wi & 4 for Z = 1), there exist stable
points P? : (θ?, χ?) that approach P0 as Wi increases (see Fig. 1.13 and Fig. 1.14,
left). Moreover, the points Pπ are more stable than P? for all λ and as Wi increases,
the eigenvalues of Pπ and P? approach the corresponding eigenvalues of the Wi =∞
case (see Fig. 1.14, right). Finally, the basins of attraction of Pπ and P? have similar
structures to those of Pπ and P0 when Wi is infinite (see Figs. 1.11 and 1.13). These
results indicate that the intuition gained from the study of the Wi = ∞ case holds
true also for Wi <∞. In particular, the stability analysis of the fixed points explains
why ψst(θ, χ) shows high peaks only at the extended configuration Pπ and not at the
folded configuration (see Fig. 1.9). Furthermore, the examination of the basins of

attraction of Pπ and of the vector field (θ̇, χ̇) clarifies the shape of these peaks.
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Figure 1.13. Vector plot of (θ̇, χ̇) for Z = 1,Wi = 6. The white
areas are now the basins of attraction of P? (red disks). The light
blue curve with markers is a trajectory (θ(t), χ(t)) corresponding to a
tumbling motion from θ = χ = π to θ = 0, χ = π (see Sec. (1.5)).
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Figure 1.15. Time series of cos θ(t) (left, top) and cosχ(t) (left,
bottom) for a two-dimensional extensional flow with Z = 1,Wi = 6.
Right: zoom of the time series of cos θ, cosχ, cos(θ+χ) over a tumbling
event.

1.5. Tumbling dynamics

The analysis of the fixed points and their basins of attraction in the preceding
section opens the possibility of the existence of tumbling in extensional flows. In
the (θ, χ) phase space, a tumbling manifests through a trajectory from one basin
of attraction of Pπ to another. Indeed, for sufficiently large Wi , the trumbbell is
trapped in the basin of attraction of one of the extended configuration Pπ for a
long time. However, Brownian fluctuations may occasionally make it tumble be-
tween the aligned configuration (θ = 0, 2π) and the anti-aligned one (θ = π). To
investigate this phenomenon, numerical simulations of Eqs. (1.22) were performed
by using the Euler–Maruyama scheme with a time step dt = 10−3 (a brief descrip-
tion of the numerical scheme can be found in appendix 1.7.3 of this chapter) [54].
Numerical simulations with smaller time steps were performed to confirm the ac-
curacy of the results. The inspection of a representative time series of cos θ(t) and
cosχ(t) confirms the aforementioned tumbling dynamics and shows that these re-
versals are characterised by partial folding (see Fig. 1.15). A typical trajectory in
the (θ, χ) phase space is shown in Fig. 1.13. The trumbbell is initially extended
and anti-aligned with the stretching direction. A favourable sequence of Brownian
fluctuations makes it exit from the initial basin of attraction and pass through that
of the folded configuration. The trumbbell then unfolds towards the extended but
aligned configuration. A movie, provided as a supplementary material of Ref. [77]
(also available in http://math.unice.fr/~elcplan/tumbling.avi), further illus-
trates this tumbling-through-folding motion.

Although the trumbbell always folds (possibly not completely) during a tum-
bling event, there are instances in which folding does not result in a reversal and
the trumbbell rapidly unfolds back into the original configuration (see for instance
Fig. 1.15 at t ≈ 1.2 × 103). In order to correctly identify a tumbling event, the
following criterion is applied. Suppose that at time t1 the trumbbell is sufficiently
extended, i.e.

| cos θ| > 1− ε, | cos(θ + χ)| > 1− ε, cos θ cos(θ + χ) < 0 (1.30)

http://math.unice.fr/~elcplan/tumbling.avi
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Figure 1.16. PDFs of the tumbling time in two dimensions (left) and
three dimensions (right) for Z = 1 and Wi = 6 (red squares), Wi = 7
(blue circles), and Wi = 8 (brown triangles). The insets show τ0 as a
function of Wi .

for some small ε. A tumbling then occurs at time t2 if t2 is the smallest time after
t1 such that the criteria (1.30) is again satisfied and cos θ(t1) cos θ(t2) < 0. In the
simulations, ε is set to 0.01; the specific choice of ε was verified not to affect the
statistical analysis of tumbling, provided the threshold 1− ε is sufficiently close to 1.

1.5.1. Properties of the tumbling dynamics. The tumbling dynamics de-
scribed above is not periodic. On the contrary, the time τ separating two tumbling
events is distributed randomly. For each different value of the Weissenberg number
Wi , at least 104 tumbling realizations were collected. The resulting PDF of τ has an
exponential tail:

p(τ) ∝ exp(−τ/τ0) (1.31)

for τ � τ0. Moreover, the typical tumbling time τ0 increases exponentially as a func-
tion of Wi (see Fig. 1.16, left). Hence, as the flow becomes stronger, it takes a longer
time for a tumbling to occur. The configurations Pπ indeed become increasingly
stable, and larger Brownian fluctuations are required for the system to escape from
the basins of attraction of Pπ.

The above properties of the PDFs p(τ) can be predicted by using the Freidlin–
Wentzell large deviations theory [36] (see also Ref. [98]). Indeed, for large values of
Wi (or Pe since Z = 1 is kept constant in the simulations), tumbling in an extensional
flow can be regarded as escaping from an attractor of a stochastic dynamical system
in the limit of small noise. The PDF of the exit time thus has an exponential
tail and the mean exit time increases exponentially as the amplitude of the noise
vanishes. The same theory also predicts the tumbling-through-folding phenomenon.
Indeed, the most probable transition paths, or minimum energy paths, that connect
two adjacent configurations Pπ are parallel to the gradient of the pseudo-potential
V = − lnψst [28]. The application of the improved string method to V [30] shows
that these minimum energy paths pass through the folded configurations P?, which
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are saddle points of V (see also appendix 1.7.4). By way of illustration, a minimum
energy path connecting (π, π) and (0, π) is given in Fig. 1.13.

1.5.2. Extension to three dimensions. The analysis so far considers a two-
dimensional velocity field. However, in a realistic planar extensional flow, a trumbbell
may move outside the plane of the flow. This situation can be described by consid-
ering a three-dimensional velocity field

u = λ(x,−y, 0), λ > 0. (1.32)

In this case, the trumbbell has four degrees of freedom q = (α, β, γ, χ) as described in
Sec. 1.3.2. This formulation, however, is not suitable for numerical simulations (see
remark in Sec. 1.3.2). To circumvent this difficulty, the formulation of the trumbbell
in terms of its rods ρ1 and ρ3 (see Sec. 1.2) is used. The system (1.12) of Stratonovich
stochastic differential equations for ρ1 and ρ3 has been numerically solved with the
Euler–Heun method with dt = 10−3 (a brief description of the scheme is available in
appendix 1.7.3) [54].

When Wi is sufficiently high, the trumbbell is observed to be predominantly in
the extended configuration χ = π with the separation vectors aligned or anti-aligned
with the stretching direction of the flow. At random times, the trumbbell folds and
reverses its orientation, with a dynamics similar to that observed in two dimensions.
A time series showing cosχ and the first component of ρ1 is shown in Fig. 1.17.
The tumbling events can be identified as before by replacing cos θ, cos(θ + χ) with
the first components of ρ1 and ρ3, respectively. The PDF of the tumbling time is
again exponential for long times with a time scale increasing exponentially with Wi
(see Fig. 1.16, right). The tumbling statistics, therefore, shows properties similar to
those found in a purely two dimensional flow. For the same values of Wi , the mean
tumbling time is however significantly shorter than in two dimensions. This fact
is attributed to the increased dimensionality of the system, which makes it easier
for the trumbbell to escape from the aligned or anti-aligned configuration. For the
same reason, the asymptotic exponential behaviour of the typical tumbling time τ0

is observed at larger Wi compared to the two-dimensional case.
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1.6. Concluding remarks and perspectives

The phenomenon of tumbling is commonly associated with shear flows. The
simplest objects that perform end-over-end tumbling in a simple shear, viz. axisym-
metric solid particles and the dumbbell, exhibit a trivial orientational dynamics in an
extensional flow and do not tumble. It was shown that, in contrast, a rich dynamics
is obtained by considering one of the most elementary semiflexible objects, namely
the trumbbell. The mere consideration of one bending mode indeed yields a ran-
dom end-over-end tumbling motion with exponentially distributed tumbling times.
While it is well known that several microscopic objects tumble in a shear flow, tum-
bling had not been observed in an extensional flow before. Moreover, a fundamental
qualitative difference between the tumbling motion in an extensional flow and the
analogous motion in a shear flow is found. In the latter case, the typical tumbling
time decreases as a power law of Wi ; in the former case, it increases exponentially
as Wi increases. This difference is a consequence of the fact that the configurations
aligned with the flow are stable in an extensional flow, whereas they are unstable in
a shear flow.

This chapter also shows that in an extensional flow, a trumbbell reverses its
orientation by folding and then extending again in the opposite direction. This
dynamics is reminiscent of the buckling instability of a fiber near to a hyperbolic
point [63, 81]. Nevertheless, the tumbling motion described here is triggered by
Brownian fluctuations that bend the trumbbell, whereas the buckling instability of
a fiber results from its internal dynamics and does not necessarily require Brownian
fluctuations.

The simplicity of the trumbbell model has allowed the study of its tumbling
motion in detail and to relate this phenomenon to the properties of the stable con-
figurations of the trumbbell and to the structure of the corresponding basins of
attraction. In this study, the most elementary version of the trumbbell model was
considered. In particular, hydrodynamic and excluded volume interactions between
the beads are disregarded. If the size of the beads is sufficiently smaller than their
mutual separations, the inclusion of such interactions into the model would some-
what modify the stable folded configuration (e.g. exact location of the fixed point
P?) but not the essential structure of the phase space of the system. Hydrodynamic
and excluded volume interactions are however secondary to the main flow especially
when Wi increases. Therefore, although a more accurate description of the trumbbell
would require taking into account these interactions [25, 62], these interactions are
not expected to alter the essential properties of the tumbling dynamics, as long as
the size of the beads is small compared to their mutual separations.

Further explorations of this study include modification of the particle, for in-
stance, to four-bead particles or n-bead chains. The rigidity of the rods may also be
relaxed to an extensible spring. It is inferred that the former case may probably still
exhibit tumbling, but with increasing difficulty as n increases, since it requires a very
favourable sequence of partial foldings in the extensional flow. In the latter case, not-
ing that the rigidity of the rods in this chapter permitted the tumbling, an infinitely
extensible (and sufficiently elastic) spring will probably imitate the behaviour of an
elastic dumbbell. A finitely-extensible spring may possibly display more interesting
dynamics. All these suggested extensions considered variations of the particle but
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keeps the flow extensional steady. The trumbbell in a random or turbulent flow will
be the topic of Chap. 3.

1.7. Appendices

1.7.1. Calculation of the restoring forces. The forces fν in Eqs. (1.5) can
be obtained in two steps: first, by obtaining the direction of the force and then
obtaining its magnitude. The calculation for f1 is demonstrated here; that for f3

follows similarly. The relation f2 = −(f1 + f3) is required in the balance of forces.

Since f1 ⊥ ρ1 (f1 pushes the rod ρ1 to open), then {f̂1, ρ̂1} forms an orthonormal
basis for R2 (recall that v̂ = v/|v| for a vector v), and hence

ρ3 = (ρ3 · ρ̂1)ρ̂1 + (ρ3 · f̂1)f̂1

= ρ3 cosχρ̂1 − ρ3 sinχf̂1.

It then follows that f̂1 = ρ̂1 cotχ − ρ̂3 cscχ. The magnitude can be calculated by
noting that f1 = ∇φ, where φ = A

2
(π − χ)2 is the potential. The gradient can be

calculated in polar coordinates ρ1, χ as

f1 =

(
∂φ

∂ρ1

,
1

ρ1

∂φ

∂χ

)
=

(
0,
A

`
(π − χ)

)
,

from which the magnitudeAχ appearing in Eqs. (1.5) is obtained. Note that Eqs. (1.5)
for the forces correct a typing error in Ref. [25] in the relation of the forces f1,f2

and f3.

1.7.2. Itô and Stratonovich stochastic differential equations. Let W (t)
be a Wiener process and g(t) be L2-integrable (for time [0, T ]). The Itô integral∫ T

0
g(x, t) dW (t) is the mean-square limit of the sum

n−1∑
i=1

g(ξi)(W (ti+1)−W (ti))

as n → ∞, where 0 = t0 < t1 < · · · < tn = T is a partition of [0, T ] into n
intervals and ξi ∈ [ti, ti+1] is chosen to be ξi = ti. It is well known that the Itô
calculus, while enjoying the martingale property, does not obey the same usual rules
of classical calculus due to the fact that dW 2(t) = dt in the sense of the mean square.
Transformations or nonlinear combinations of stochastic differentials must use the
known Itô formula [54].

A different choice for ξi results in a different value of the integral. The choice
of ξi = 1

2
(ti + ti+1) leads to the Stratonovich integral, which has the advantage of

preserving the rules of classical calculus. To distinguish the Stratonovich integral,

the symbol ‘◦’ is used:
∫ T

0
g ◦ dW (t). The choice of Itô or Stratonovich depends

largely on the particular model at hand. Many systems that use white noise to
model smooth real noise, such as systems in physics and engineering that are derived
from physical laws, generally use the Stratonovich formulation. On the other hand,
biological processes often use the Itô formulation because the resulting SDEs are
often approximated from discrete processes.
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Classifying an SDE as Itô or Stratonovich depends on the interpretation of the
stochastic integral. There exists a relation, however, that associates any Stratonovich
SDE to an Itô SDE and vice versa. For instance in the one-dimensional setting, any
solution x to the Itô SDE

dx = A dt+ B dW (t)

for some functions A(x, t),B(x, t) is also a solution of the Stratonovich SDE

dx =

(
A− 1

2
B∂B
dx

)
dt+ B dW (t).

The reader is referred to the next chapter (Sec. 2.3.1) where the derivation of this
relation is given (in vector form and with multiple sources of noise). The reader may
also check Ref. [54] for more details.

1.7.3. Numerical methods for stochastic integration. In this section, the
Euler–Maruyama method and the Euler–Heun method are described. These inte-
grate the Itô and Stratonovich diffential equations, respectively. These methods are
strong Taylor approximation with order of convergence 0.5; they are sufficient in
view of the equations concerned in this thesis. Consider a system of Itô SDEs

dqi = V idt+ D̃ij dW j(t)

where W is a vector of m independent Wiener processes. The Euler–Maruyama
method allows the calculation of the value qin+1 = qi(t + δt) from its previous value
qin = qi(t) (δt is the time step of integration) by the relation:

qin+1 = qin + V i(qn)δt+ D̃ij(qn)(W j
n+1 −W j

n). (1.33)

While it may be convenient to convert the Stratonovich SDEs into Itô SDEs and
use the Euler–Maruyama method, the Euler–Heun method takes into account this
transformation. Let

dqi = Aidt+Bij ◦ dW j(t)

be a system of Stratonovich SDEs. The value of qin+1 calculated from qin is given by
first calculating an intermediate value, say pn with

pin = qin + D̃ij(xn)(W j
n+1 −W j

n)

followed by the relation:

qin+1 = qin + V i(qn)δt+
1

2

(
D̃ij(qn) + D̃ij(pn)

)
(W j

n+1 −W j
n).

It is useful to remind the reader that the differences W j
n+1 −W j

n are normally dis-

tributed with zero-mean and variance
√
δt, by definition of a Wiener process. The

reader is referred to Ref. [54] for more details.

1.7.4. Minimum energy paths and the String method. Consider a system
in which a particle experiences thermal fluctuations and whose permissible states x
is associated to a smooth surface potential V that describes its energy. For the
purposes of simplification, suppose that V has two different local minima M1 and
M2, i.e. there exist two stable configurations for the particle. Thanks to the thermal
noise, a particle on a local minimum say M1 may eventually escape the basin of
M1 and explore the surface, depending on the geometry of V and on the amount of
thermal noise available.
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A minimum energy path (MEP) connecting M1 and M2 is the path by which
the transition between these two local minima requires minimal energy or thermal
noise to achieve. Associated to a minimum energy path is a large probability that
the transition between the two states M1 and M2 will occur through the states
represented by the points in the minimum energy path. It is defined mathematically
as a smooth curve ϕ0 such that

(∇V )⊥(ϕ0(α)) = 0,

where (∇V )⊥ =∇V −(∇V, τ)τ is the component of∇V normal to ϕ0 (τ is the unit
tangent to ϕ0(α), and α ∈ [0, 1] parametrizes the string ϕ0 such that ϕ0(0) = M1

and ϕ0(1) = M2. The (zero-energy) string method is a computational tool that is
used to calculate the MEP in the absence of thermal noise [29]. In this case, the
points on the string ϕ0(α) are evolved such that

ϕ̇0(α) = −(∇V )⊥ϕ0(α) + r(α, t)τ

where r enforces some reparametrization. A simplified and improved string method
groups the tangential term from (∇V )⊥ together with the parametrization r, and
the evolution only requires

ϕ̇0(α) = −(∇V )ϕ0(α) + r̄(α, t)τ,

which is less computationally expensive. Details can be found in Refs. [28, 29, 30].





CHAPTER 2

Bead-rod-spring models in random flows

2.1. Introduction

The previous chapter considered the trumbbell in a laminar extensional flow as
an initial step to study its bending dynamics in a turbulent flow. Another step
closer towards a turbulent flow is to study the trumbbell in a Gaussian random flow
with short correlation time, which still permits analytical results even with a velocity
gradient that is time-dependent [35]. The diffusion equation (1.14) as provided in the
previous chapter cannot be used because it assumes a steady flow, which a random
flow is not. In this chapter, a diffusion equation will be derived that will work not
only for a trumbbell in a random flow but also for more general particle models.

The study of polymer solutions generally requires a coarse-grained description
of a polymer molecule that significantly reduces the complexity of the particle but
retains its essential features. A successful and well-established approach consists in
using bead-rod-spring models, where a polymer is described as a sequence of beads
connected by rigid or elastic links [6, 10, 22, 70] (see Fig. 2.1). By selecting the
number of beads and the nature of the links, it is possible to build flexible, semi-
flexible, or rigid molecules with various internal structures. Polymers, for instance,
can be considered as a long chain of hundreds of freely-jointed beads while axisym-
metric rods can be considered as a sequence of rigidly-connected beads. Semiflexible
particles like fibers can be described by beads with restoring potentials, a minimal
example of which is the trumbbell (see Chap. 1). More complex shapes like the tri-
dumbbell, i.e. three dumbbells oriented in three orthogonal directions and merged
at their midpoints, can be attained if the beads are not restricted to form a chain
or restricted to lie in a plane. Given the variety of particles that they can model,
bead-rod-spring models play a central role across several fields, including rheology,
non-Newtonian fluid mechanics, chemical physics, soft matter [10, 59].

Analytical solutions of these bead-rod-spring models represent an essential step
towards the derivation of constitutive equations and hence the prediction of the non-
Newtonian properties of polymeric fluids [6, 10, 60, 70]. In spite of their conceptual
simplicity, the internal dynamics of bead-rod-spring models may be exceedingly com-
plex. For this reason bead-rod-spring models have been solved analytically only in
simplified settings. In the case of laminar flows, analytical results are restricted to
linear velocity fields with elementary time dependence, namely steady, start-up, or
oscillatory extensional and shear flows [6, 10, 70]. In the case of randomly fluctuating
flows, exact solutions are only available for dumbbells, which are simply composed
of two beads and a single elastic or rigid link [2, 3, 14, 16, 18, 19, 67, 89, 95, 99]. In
the latter case, even if they correctly predict some general phenomena, results are
limited to observables that concern the end-to-end vector describing the dumbbell.
For instance, in an isotropic, homogenous, random flow, the coil-stretch transition

45
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can be observed because it can be captured by the elastic dumbbells. Bending or
buckling cannot be exhibited by dumbbells.

In recent years, however, there has been a growing interest in the Lagrangian dy-
namics of complex-shaped objects in turbulent flows since they offer a more realistic
model than dumbbells. The coil-stretch transition and tumbling phenomenon con-
tinue to be studied [64, 105], but these more complex particles may now necessitate
considering entaglements or take into consideration hydrodynamic or bead-bead in-
teractions. In this chapter an analytical tool that is applicable even to these complex
particles is provided via a diffusion equation for the probability distribution function
(PDF) of the configuration of a general bead-rod-spring polymer in a random flow.
The derived equation will be used in this thesis primarily to analytically predict the
bending dynamics of a semiflexible particle (the trumbbell) in a turbulent flow in
Chap. 3. To permit a fully analytical result, turbulent flows have been modeled as
Gaussian random flows with short correlation time [55]. Indeed short-correlated sto-
chastic fields have been widely employed in the theoretical study of turbulent flows
as they have yielded fundamental results on passive-scalar mixing and on turbulent
dynamo [35]. Moreover, they have been used to predict the coil–stretch transition of
polymers in turbulent flows [3] and the associated critical slowing down [16]. This is
in spite of suffering shortcomings as real flows are not delta-correlated in time nor
are turbulent velocity fields Gaussian.

The general bead-rod spring model is introduced in Section 2.2; the formulation
follows the approach in Refs. [10, 70]. Section 2.3 describes the derivation of the dif-
fusion equation of a general bead-rod-spring model for a short-correlated, Gaussian,
random flow. In Sec. 2.4, the practical use of this diffusion equation is illustrated by
calculating the stationary configuration in an isotropic random flow for a model that
has both rigid and elastic links between the beads: the elastic rhombus model [23].
Concluding remarks and perspectives will follow.

2.2. Bead-rod-spring models

Consider N spherical beads with mass mµ, µ = 1, . . . , N . Let xµ denote the
position vector of the µth bead with respect to a space-fixed coordinate system. The
position of the centre of mass of the polymer is

xCM =
∑
µ

mµxµ/
∑
µ

mµ, (2.1)

and the position vector of the µth bead referred to the centre of mass is

rµ = xµ − xCM. (2.2)

The polymer is immersed in a Newtonian fluid, whose motion is described by the
incompressible velocity field u(x, t). The velocity gradient, κ = ∇u, κij = ∂ui/∂xj,
is assumed to be uniform over the length of the polymer. If the flow is turbulent,
this assumption means that the size of the polymer is much smaller than the viscous-
dissipation scale. The force of the flow on bead µ is given by Stokes’s law with drag
coefficient ζµ; the inertia of the beads is disregarded. Furthermore, the concentration
of the solution is sufficiently small for polymer–polymer hydrodynamic interactions
to be negligible, and the flow is unperturbed by the presence of polymers.

Assume that the beads are subject to D′ rigidity constraints. Then, the number
of degrees of freedom of the polymer in the frame of reference of the centre of mass is
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Figure 2.1. Illustration of a general bead-rod-spring model with rigid
and elastic links.

D = d(N−1)−D′, where d is the dimension of the flow. It is therefore convenient to
specify the configuration of the polymer in terms of D coordinates q = (q1, . . . , qD),
which describe its degrees of freedom. The statistics of the coordinates q is given
by the PDF ψ(q; t). The choice of notation should have hinted that this is a more
general formulation than the one used in Chap. 1. Indeed, the formulation in this
chapter may be used to obtain the trumbbell model by considering three beads and
choosing the appropriate force terms between the beads and neglecting hydrodynamic
interactions. For instance, a three-dimensional trumbbell will have D = 3(3−1)−2 =
4 degrees of freedom, which were taken to be the Euler angles α, β, γ and the internal
angle χ.

The tensors ζµν are defined implicitly from the equation:
∑

ν ζµν · (ζ−1
ν δνµ′I +

Ωνµ′) = δµµ′I, where δµµ′ is the Kronecker delta, I is the identity matrix, and the ten-
sors Ωνµ describe the hydrodynamic interactions between the µth and the νth bead
(in the simplest approximation Ωµν is the Oseen tensor, which is used to estimate
the effect of one moving bead µ on the velocity field felt by another bead ν; its ex-
plicit expression is available, e.g., in Ref. [10]). Define also the tensors Z =

∑
µν ζµν ,

Λν = Z−1 ·∑µ ζµν , and ζ̃µν = ζµν − ΛT
µ · Z · Λν . Finally, fµν is the force exerted

by the νth bead over the µth one through the springs and fµ is the external force
on bead µ (which is assumed to be independent of xCM). Then, Ψ(q; t) satisfies the
diffusion equation [10, 70]:

∂

∂t
Ψ(q; t) = − ∂

∂qi

{
G̃ij
[(
Mjklκkl(t) + F j + Fj

)
Ψ−KT

√
h
∂

∂qj

(
Ψ√
h

)]}
, (2.3)

where K is the Boltzmann constant, T is temperature,

Mjkl = rlν
∂rmµ
∂qj

ζ̃mkµν , F j =
∑
ν

fkµν
∂rkµ
∂qj

, Fj = fkµ
∂rkµ
∂qj

, (2.4)
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h = det(H), and G̃ = H̃
−1

with:

Hij = mµ

∂rkµ
∂qi

∂rkµ
∂qj

, H̃ij = ζ̃klµν
∂rkµ
∂qi

∂rlν
∂qj

. (2.5)

Equation (2.3) and the expressions (2.5) are the generalizations of Eqs. (1.14) and
(1.15), where the beads were assumed to be identical and external forces were disre-
garded. The stationary solution of Eq. (2.3) can be calculated exactly when hydro-
dynamic bead–bead interactions are negligible (Ωµν = 0 for all µ, ν = 1, . . . , N) or
equilibrium averaged (Ωµν is replaced with its average value at equilibrium) and the
velocity gradient is time-independent and symmetric (κ = κT) [10, 23]. For other
flows, Bird et al. [10] note that the analytical solution of Eq. (2.3) is in general a
formidable problem.

2.3. Diffusion equation for a short-correlated random flow

The diffusion equation (2.3) for the general bead-rod-spring model holds for a
time-dependent velocity gradient. Whereas it was steady in the previous chapter,
the velocity gradient now fluctuates randomly in time, as in turbulent flows. This
section then derives the diffusion equation for the case of a random flow κ(t) that is
a delta-correlated-in-time (d× d)-dimensional Gaussian stochastic process with zero
mean and correlation:

〈κkl(t)κmn(t′)〉 = Kklmnδ(t− t′), (2.6)

where the specific form of the tensor K depends on the statistical symmetries of the
flow and δ is the Dirac-delta function. Under the assumption that the velocity gra-
dient satisfies Eq. (2.6), Equation (2.3) is now stochastic and describes the evolution
of Ψ(q; t) for a given realization of the flow; the velocity gradient κ(t) is a multi-
plicative noise and is interpreted in the Stratonovich sense. It is useful to repeat
the comment in the introduction that while the assumption on the decorrelation of
time is unrealistic, this simplification yields analytical results that in many instances
nevertheless reflect the dynamics of the system.

A convenient way to derive the diffusion equation that takes into consideration
two different sources of noice (the stochastic velocity field and the thermal fluctua-
tions) requires two main steps. First, the corresponding Stratonovich SDE (stochas-
tic differential equation) to Eq. (2.3) is written in its Itô form, and secondly, the
resulting Itô form is converted into a diffusion equation, in which the coefficient K
will appear. At this point, the eager reader may wish to jump over the calculations
to view the final result, which is given as the diffusion equation (2.21). The technical
calculations that follow may be read at one’s convenience.

The first step in the upcoming calculations requires the Stratonovich SDE asso-
ciated with Eq. (2.3). This SDE is (see Ref. [38]):

dqi = Ai dt+ Bij ◦ dW j(t) + Cikl ◦ dΓkl(t), (2.7)

whereW (t) isD-dimensional Brownian motion and Γ(t) is such that κ(t) = dΓ(t)/dt,
i.e. Γ(t) is a Gaussian process with 〈Γkl(t)〉 = 0 and 〈Γkl(t)Γmn(t′)〉 = Kklmn min(t, t′).
The symbol ‘◦’ indicates that the SDE is interpreted in the Stratonovich sense. The
coefficients are

Ai = G̃ij(F j + Fj) +KT
βia√
h

∂

∂qj
(√

hβja
)
, (2.8)
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Bij =
√

2KTβij, (2.9)

Cikl = G̃ijMjkl. (2.10)

In the above equations, β is such that ββT = G̃ (it is assumed that G̃ is positive
definite—this condition is easily verified when the masses and the drag coefficients
are the same for all beads).

2.3.1. Step 1: Converting into the Itô formulation. Following the strategy
indicated above, the Itô version of Eq. (2.7) is derived in this subsection and culmi-
nates in Eq. (2.19); it is done formally by generalizing the standard transformation
rules for SDEs to tensorial Brownian motion. Assume that the Itô version is:

dqi(t) = Ai dt+ Bij dW j(t) + Cikl dΓkl(t), (2.11)

where the coefficients A,B,C are to be determined. Equation (2.7) is first written
in integral form:

qi(t) = qi(t0) +

∫ t

t0

Ai dt′ +

∫ t

t0

Bia ◦ dW a(t′) +

∫ t

t0

Cikl ◦ dΓkl(t′). (2.12)

Consider a partition of the interval [t0, t] into N subintervals [tτ−1, tτ ], τ = 1, . . . , N .
The Stratonovich integrals in Eq. (2.12) are, by definition:∫ t

t0

Bia ◦ dW a(t′) = lim
N→∞

N∑
τ=1

Bia
(
qS
τ , tτ−1

)
∆W a

τ , (2.13)

∫ t

t0

Cikl ◦ dΓkl(t′) = lim
N→∞

N∑
τ=1

Cikl
(
qS
τ , tτ−1

)
∆Γklτ , (2.14)

where the limits are understood in the mean-square, and where the following short-
hand notations are used:

qS
τ =

1

2
(qτ + qτ−1),

qτ = q(tτ ),

∆W a
τ = W a(tτ )−W a(tτ−1),

∆Γklτ = Γkl(tτ )− Γkl(tτ−1).

The following notations are also introduced ∆tτ = tτ − tτ−1 and XI
τ = XI(qτ , tτ ) for

any tensor X and set of indices I. Define ∆qτ−1 = qτ − qτ−1, whence

qS
τ = qτ−1 + ∆qτ−1/2.

Expanding the coefficients in (2.13) and (2.14) at qτ−1 in ∆qτ−1 yields:

Bia(qS
τ , tτ−1) = Biaτ−1 +

∆qjτ−1

2

∂Biaτ−1

∂qj
+ h.o.t., (2.15)

Cikl(qS
τ , tτ−1) = Ciklτ−1 +

∆qjτ−1

2

∂Ciklτ−1

∂qj
+ h.o.t. (2.16)

The differences ∆qjτ−1 are now written according to its Itô discretization:

∆qjτ−1 = Aj
τ−1∆tτ + Bja

τ−1∆W a
τ + Cjmnτ−1 ∆Γmnτ + h.o.t. (2.17)
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After substituting Eqs. (2.15), (2.16), (2.17) into Eqs. (2.13), (2.14) and using the
formal rules ∆Γkl ×∆Γmn = Kklmn∆t, ∆W j ×∆W a = δja∆t and ∆W j ×∆Γkl = 0
(owing to the independence of the velocity gradient and thermal noise), Eqs. (2.13)
and (2.14) can be written as:∫ t

t0

Bia ◦ dW a(t′) = lim
N→∞

N∑
τ=1

(Biaτ−1 ∆W a
τ +

Bja
τ−1

2

∂Biaτ−1

∂qj
∆t),

∫ t

t0

Cikl ◦ dΓkl(t′) = lim
N→∞

N∑
τ=1

(
Ciklτ−1 ∆Γklτ +

1

2
KklmnCjmnτ−1

∂Ciklτ−1

∂qj
∆t

)
.

The first terms in the sums yield Itô stochastic integrals, whereas the second terms
give ordinary integrals, hence:∫ t

t0

Bia ◦ dW a(t′) =

∫ t

t0

Bia dW a(t′) +

∫ t

t0

Bja

2

∂Bia

∂qj
dt′,∫ t

t0

Cikl ◦ dΓkl(t′) =

∫ t

t0

Cikl dΓkl(t′) +

∫ t

t0

KklmnCjmn∂C
ikl

∂qj
dt′.

Therefore, for Eq. (2.11) to be equivalent to Eq. (2.7), the coefficients must satisfy
B = B, C = C, and

Ai = Ai +
1

2
Bja

∂Bia

∂qj
+

1

2
KklmnCjmn∂C

ikl

∂qj
. (2.18)

The Itô form of Eq. (2.7) is thus:

dqi =

(
Ai +

1

2
Bja

∂Bia

∂qj
+

1

2
KklmnCjmn∂C

ikl

∂qj

)
dt+ Bij dW j(t) + Cikl dΓkl(t). (2.19)

2.3.2. Step 2: The diffusion equation. The immediately-preceding Itô SDE
can then be converted into the desired diffusion equation. Denote by p(q; t) the
PDF of the configuration of the polymer with respect to the realizations both of the
velocity gradient and of thermal noise. Let f(q) be a function of q. Itô’s lemma will
first be generalized for a tensorial Brownian motion. The expansion gives

∆f = f(q + ∆q)− f(q) = ∆qi
∂f

∂qi
+

∆qi∆qj

2

∂2f

∂qi∂qj
+ h.o.t.

The substitution of ∆qi and ∆qj from Eq. (2.11) and the use of the formal rules then
give:

df

dt
=

[
Ai + BiadW

a(t)

dt
+ Cikl

dΓkl(t)

dt

]
∂f

∂qi
+

1

2

(
BiaBja +KklmnCiklCjmn

) ∂2f

∂qi∂qj
.

The averaging over the noises and the application of the properties of the Itô integral
then yield:〈

df

dt

〉
=

d

dt
〈f〉 =

∫
f

(
∂p

∂t

)
dq,

=

∫ [
Ai ∂f

∂qi
+

1

2

(
BiaBja +KklmnCiklCjmn

) ∂2f

∂qi∂qj

]
p dq.
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Integrating the right-hand side by parts gives:∫
f

(
∂p

∂t

)
dq =

∫
f

[
− ∂

∂qi
(Aip) +

1

2

∂2

∂qi∂qj

(
BiaBjap+KklmnCiklCjmnp

)]
dq.

Since f(q) is arbitrary, the expressions inside the brackets should be equal. This gives
the diffusion equation corresponding to Eq. (2.19) when A,B and C are chosen as
above:

∂p

∂t
= − ∂

∂qi

[(
Ai +

1

2
Bja

∂Bia

∂qj
+

1

2
KklmnCjmn∂C

ikl

∂qj

)
p

]
+KT

∂2

∂qi∂qj
(G̃ijp) +

Kklmn
2

∂2

∂qi∂qj
(CiklCjmnp). (2.20)

The terms in Eq. (2.20) are then rearranged, leading to:

∂p

∂t
=

∂

∂qi

{
1

2
KklmnG̃iaMakl ∂

∂qj

(
G̃jbMbmnp

)
+ G̃ij

[
− (F j + Fj)p+KT

√
h
∂

∂qj

(
p√
h

)]}
. (2.21)

Equation (2.21) determines the evolution of the PDF of the configuration of a general
bead-rod-spring model in a short-correlated Gaussian random flow.

2.4. An example: the rhombus model

The PDF p(q; t) describing the configuration of any bead-rod-spring polymer
satisfies the derived equation (2.21). This will be used in Chap. 3 to study the
trumbbell in a random flow. Nevertheless, its utility in obtaining an exact calculation
of the stationary solution is demonstrated here for a model even more complex than
the trumbbell. Consider now a bead-rod-spring model that has both rigid and elastic
links; to keep calculations simple, consider an elastic plane rhombus model [23] (see
Fig. 2.2). It describes a finitely extensible polymer and consists of four coplanar
identical beads connected by four rods and of an elastic spring between two opposing
beads (Fig. 2.2). The angle 0 ≤ σ ≤ π/2 between the spring and one of the rods
describes the deformation of the rhombus. The spring is at rest if the rods are

Figure 2.2. The elastic plane rhombus model consisting of four
coplanar beads at position xν , ν = 1, . . . , 4 connected by four rigid
rods and an elastic spring between two opposing beads. The angle
between the spring and one of the rods is denoted by σ.
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perpendicular to each other. If σ 6= π/4, the spring stretches or compresses the
rhombus back to its equilibrium; the force that it exerts on the beads is given by the
harmonic potential

φ(σ) =
A

2
(
√

2 cosσ − 1)2, (2.22)

where A > 0 is the magnitude of the potential.
To simplify calculations, all the beads are assumed to be identical, and hence

they have the same masses and drag coefficients (mµ = m, ζµ = ζ for µ = 1, . . . , 4);
let ` be the length of the rods. In addition, hydrodynamical bead–bead interactions
are disregarded (Ωµν = 0), and no external forces act on the polymer (fµ = 0).
Under these assumptions, it follows that ζµν = ζδµνI,F = 0, and the coefficients in
(2.4) and (2.5) simplify to

Mjkl = ζrlµ
∂rkµ
∂qj

, F j = − ∂φ
∂qj

, H̃ij = ζ
∂rkµ
∂qi

∂rkµ
∂qj

. (2.23)

The contribution of rhombic particles to the viscoelastic properties of a solution, such
as the normal stress coefficient and the viscosity, have been calculated exactly [23].
In particular, the addition of n rhombuses increases the viscosity by 3nζ`2; this result
also holds for other variants of the rhombus model, such as that whose beads are
non-planar and that which does not deform. The normal stress coefficient of the
polymer solution, by contrast, varies according to the flexibility of the rhombus. In
more recent literature, a fully elastic rhombus model has been used to investigate
the motion of deformable active particles [57].

If the random flow is incompressible and statistically invariant under rotations
and reflections, the components of K take the form:

Kijkl =
2λ

d(d− 1)
[(d+ 1)δikδjl − δijδkl − δilδjk], (2.24)

where λ is the maximum Lyapunov exponent of the flow [35]. One can find a sketch

of the derivation of K in appendix 2.6.1. By denoting G = ζG̃, Eq. (2.20) can be
written as a Fokker–Planck equation:

∂p

∂t
= − ∂

∂qi
(V ip) +

1

2

∂2

∂qi∂qj
(Dijp), (2.25)

where the drift and diffusion coefficients are

V i = Gjbrnν
∂rmν
∂qb

∂

∂qj

(1

2
KklmnGiarlµ

∂rkµ
∂qa

)
− Gij

ζ

∂φ

∂qj
+
KT

ζ
√
h

∂

∂qj

(
Gij
√
h
)
, (2.26)

and

Dij = KklmnGiarlµ
∂rkµ
∂qa

Gjbrnν
∂rmν
∂qb

+
2GijKT

ζ
. (2.27)

2.4.1. Two dimensions. In the case of a two-dimensional flow (d = 2), the
rhombus may be described by the angular variables q = (θ, σ), where θ gives the
orientation of the spring x3 − x1 with respect to the horizontal axis. The vectors
rµ = xµ − xCM (as in Eq. (2.2)) can be expressed as:

r1 = `(− cos θ cosσ,− sin θ cosσ) = −r3, (2.28)

r2 = `(− sin θ sinσ, cos θ sinσ) = −r4. (2.29)



2.4. AN EXAMPLE: THE RHOMBUS MODEL 53

The coefficients appearing in the diffusion equation are Gij = δij/2`
2 and h = 4`2.

When time is rescaled by the characteristic time scale of the restoring potential

τ = ζ`2/A (2.30)

and Eqs. (2.28), (2.29) are replaced into Eqs. (2.26), (2.27), the drift and diffusion
coefficients in Eq. (2.25) become:

V σ = −1

2
(
√

2− 2 cosσ) sinσ, (2.31)

Dθθ =
1

Z
+

Wi

2
(5 + cos 4σ), (2.32)

Dσσ =
1

Z
+

Wi

2
(1− cos 4σ), (2.33)

where Z = A/KT is the stiffness parameter that compares the strength of the restor-
ing potential to the noise and the Weissenberg number Wi = λτ measures the relative
strength of the flow to that of the restoring potential φ(σ) defined in (2.22).The other
coefficients V θ, Dσθ, Dθσ are all zero. The fact that all the coefficients are indepen-
dent of θ reflects the isotropy of the flow and implies that the long-time PDF of the
configuration is a function of the angle σ alone. Given reflecting boundary conditions
at σ = 0 and σ = π/2, the stationary PDF pst(σ) can be analytically calculated to
be [38]

pst(σ) ∝ 1

Dσσ
exp

(
2

∫ σ

0

V σ(σ′)

Dσσ(σ′)
dσ′
)
. (2.34)

The explicit form of the PDF of σ can be evaluated as:

pst(σ) ∝ 1

Dσσ

∣∣∣∣C2
σ − C2

+

C2
σ + C2

−

∣∣∣∣Z/4C1

exp

{
Z
√

Wi Z

2C1

×
[

arctanh (Cσ/C+)

C+

+
arctan (Cσ/C−)

C−

]}
(2.35)

with Cσ =
√

2Wi Z cosσ, C1 =
√

Wi Z(Wi Z + 1), and C± =
√
C1 ±Wi Z. The

details of this calculation are given in the appendix 2.6.4. Figure 2.3 illustrates the
graph of pst(σ) for Z = 1 and different values of Wi . The probability of the rhombus
being fully stretched (σ = 0) or fully compressed (σ = π/2) increases with Wi ,
i.e. the rhombus exhibits an almost rodlike configuration when a very strong flow
dominates the dynamics. However, the stretched configuration is favored compared
to the compressed one, because the restoring force is weaker for σ = 0 than for
σ = π/2.

2.4.2. Three dimensions. In a three-dimensional flow, the number of degrees
of freedom of the elastic planar rhombus is D = 4 and the rhombus is represented by
its angles: q = (α, β, γ, σ), where the first three coordinates are the Euler angles that
define the plane on which the rhombus lies (see Sec. (1.3.2)). The explicit expressions
of the components of G are [10, 23]:

G11 =
1 + cos 2γ cos 2σ

`2 sin2 β sin2 2σ

G12 = − sin 2γ cos 2σ

`2 sin2 β sin2 2σ
= G21
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Figure 2.3. Stationary PDF pst(σ) for d = 2 and Z = 1, normalized
such that

∫
pst(σ) dσ = 1.

G13 = − cos βG11 = G31

G22 =
1− cos 2γ cos 2σ

`2 sin2 2σ

G23 =
cot β cos 2σ sin 2γ

`2 sin2 2σ
= G32

G33 =
3 + 2 cos(2(γ − σ)) + cos 4σ + 2 cos(2(γ + σ))− 4 csc2 β(1 + cos 2γ cos 2σ)

4`2 sin2 2σ

G44 =
1

2`2

G14 = G24 = G34 = G41 = G42 = G43 = 0

while the determinant h = detG−1 is h = 4`8 sin2 2σ sin2 β. The PDF p(q) of the con-
figuration again satisfies a rescaled version of Eq. (2.25) by using the transformation
s = t/τ , where V i and Dij are given as follows:

V α =
2

Z
sin 2γ cot β csc β cot 2σ csc 2σ,

V β = cot β csc2 2σ

[
1

Z
(1 + cos 2γ cos 2σ) +

Wi

3
(1− cos 4σ)

]
,

V γ = − 1

2Z
(3 + cos 2β) csc2 β cot 2σ csc 2σ sin 2γ,

V σ =
1

Z
cot 2σ − 1

2
(
√

2− 2 cosσ) sinσ.

The diffusion coefficients Dij are:

Dαα = 4 csc 2β V β, Dαβ = − tan β V α, Dαγ = −2 csc β V β,

Dββ =
1

Z
(cos2 γ sec2 σ + sin2 γ csc2 σ) +

4Wi

3
,

Dβγ = sin β V α, Dσσ =
1

Z
+

Wi

4
(1− cos 4σ)
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Figure 2.4. The function p̃(σ) for d = 3 and Z = 1, normalized such
that

∫
p̃(σ) sin 2σ dσ = 1.

Dγγ = 48 csc2 2σ

{
24

Z

[
4
(
cos 2γ cos 2σ cot2 β + csc2 β − cos 4σ

)
− 3
]

+Wi
[
−3 cos 8σ + 12 cos 4σ + 32 csc2 β (1− cos 4σ)− 9

]}
.

By symmetry, Dβα = Dαβ, Dγα = Dαγ, Dγβ = Dβγ. All the other coefficients are
zero.

In view of the isotropy of the flow, assume that the stationary PDF of the con-
figuration takes the form pst(q) = p̃(σ) sin β sin 2σ, where the factor sin β sin 2σ is
proportional to the Jacobian of the coordinate transformation from rµ to q (see ap-
pendix 2.6.3 for a short explanation). Substituting pst(q) into Eq. (2.25) results into
a Fokker–Planck equation in the variable σ alone:

0 =
∂pst(q)

∂s
= − ∂

∂σ
(V σpst) +

1

2

∂2

∂σ2
(Dσσpst), (2.36)

where s = t/τ . The partial derivatives with respect to the Euler angles indeed
cancel each other. Under reflecting boundary conditions at σ = 0 and σ = π/2, the
solution of Eq. (2.36) takes the form given in Eq. (2.34) with modified expressions
for V σ and Dσσ. The exact form of the stationary PDF of the angle σ is derived in
three dimensions:

p̃(σ) ∝ 1

Dσσ
√

Wi Z sin2 2σ + 2

∣∣∣∣C2
σ − C2

+

C2
σ + C2

−

∣∣∣∣Z/4C1

× exp

{
Z
√

Wi Z/2

2C1

[
arctanh (Cσ/C+)

C+

+
arctan (Cσ/C−)

C−

]}
(2.37)

with Cσ =
√

Wi Z cosσ, C1 =
√

Wi Z(Wi Z + 2)/2, and C± =
√
C1 ±Wi Z/2.

This can be obtained by following the same integration as in the 2D case (see
Sec. 2.6.4). The graph of p̃(σ) is shown in Fig. 2.4. The statistics of the inter-
nal angle σ is qualitatively the same for d = 2 and d = 3 (the curves in Figs. 2 and
3 indeed differ only slightly for the same Wi). This behaviour is attributed to the
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fact that the rhombus can only deform in the plane to which it belongs and cannot
undergo three-dimensional deformations, which makes its dynamics weakly sensitive
to the dimension of the flow.

2.5. Concluding remarks and perspectives

Bead-rod-spring models are the foundation of the kinetic theory of polymer so-
lutions. There is a broad literature on the analytic solutions of these models for
laminar flows. In the case of fluctuating flows, such as turbulent flows, analytical
results are restricted to dumbbells. Here, a general description of bead-rod-spring
models in short-correlated random flows is given and its usage is demonstrated by
exactly solving the elastic rhombus model under isotropic conditions. To the best of
my knowledge, this is the first instance of an exact solution of a multibead model
that include both elastic and rigid links and is transported by a randomly-fluctuating
flow. The diffusion equation (2.21) for random flows that is obtained in this chapter
will likewise be used for the trumbbell in the succeeding chapter, where bending
dynamics will be studied in turbulent flows by using both analytical methods and
direct numerical simulations.

A variety of approaches exists to study complex-shaped particles. For instance,
several models exist for flexible particles, such as a series of beads connected by
inertialess rodes (possibly freely-jointed) [10], a series of rods [94], or as a flexible
beam as used in slender body theory [63]. It would be noteworthy to establish a
comparison between models that aim to describe the same particle, and consider the
availability and potential extension of each model to more general situations.

It is hoped that the tools developed in this chapter will stimulate new studies on
the dynamics of complex-shaped particles in turbulent flows. For instance, the rhom-
bus model (or a variant ot if) could be used to examine how deformability influences
the alignment and orientation statistics of microscopic particles in turbulent flows
[73]. The stretching dynamics of bead-spring chains has also received attention in
the context of nonequilibrium statistical mechanics [24]; the probability of work and
entropy production have been studied for laminar gradient flows [61, 90, 100, 103].
It would be interesting to generalize those studies to the case considered here, where
the velocity gradient is a tensorial noise (see, e.g., Ref. [20]).

2.6. Appendices

2.6.1. Components of a random flow. In the classical work [84], Robertson
derived that the form of the tensor R that gives the velocity correlation

Rik =
〈ui(x)uk(x

′)〉
〈u2〉 (2.38)

between the ith component of the velocity u(x) and the kth component of u(x′)
(of two points x,x′ in space) under the assumption of isotropic, homogenous, and
parity-invariant turbulence is

Rik(r) = Q1(r)rirk +Q2(r)δik, (2.39)

where Qi(r) are even functions of the distance r = |x− x′| between the two points.
If the flow is incompressible, then ∂Rik/∂xk = 0. Taking the divergence of the
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preceding equation yields

0 = r
∂Q1

∂r
+ (d+ 1)Q1 +

1

r

∂Q2

∂r
. (2.40)

It is assumed that Qi(r) takes the form Qi(r) = αir
2 + βi because r is assumed to

be much smaller than the relevant dissipation length scales. This yields

α1 = 0, (2.41)

α2 = −β1

2
(d+ 1), (2.42)

which is obtained by equating the constants and the coefficients of r2. Moreover,
β2 = 1 since Rik(0) = δik. Hence, Eq (2.39) becomes

Rik(r) = δik −
β1

2

[
(d+ 1)δikr

2 − 2rirk
]
. (2.43)

The correlation of the velocity gradients ∇u can be derived to be

Kijklδ(t− t′) = 〈∂jui(x, t)∂luk(x′, t′)〉 = −∂j∂lRik(0)δ(t− t′), (2.44)

and hence, K takes the form

Kijkl = β1[(d+ 1)δikδjl − δijδkl − δilδjk], (2.45)

where the coefficient β1 is proportional to the Lyapunov exponent λ of the flow [35].

2.6.2. Lyapunov exponent of a flow. The Lyapunov exponent λ of a flow
characterizes the average exponential growth rate of the distance between two par-
ticles in a flow. Suppose that two particles are separated by R(t). Then

λ = lim
t→∞

〈
ln
|R(t)|
|R(0)|

〉
, (2.46)

where the average is taken over all particle pairs. A positive Lyapunov exponent
means that on average the distance between two particles grows exponentially with
time. It is thus used as an indicator and a measure of the chaoticity of a flow. In
contrast, a negative Lyapunov exponent implies that the particles tend to coalesce.
This exponent can be measured in numerical simulations, for instance, by performing
averages of particle pair separations normalized with respect to their initial configu-
ration, or by performing a QR algorithm [68].

2.6.3. Jacobian. Additional details on how to obtain the determinant J of the
Jacobian matrix are given, where the transformation is from the Cartesian to the
angular coordinates of the elastic planar rhombus model both in two and in three
dimensions. The derivation for the Jacobian of the trumbbell model can be obtained
similarly by associating χ with 2σ. Without loss of generality, let the centre of mass
be the origin.

The rhombus is fully determined by specifying two of the vectors rν , say r1 and
r2 as in Eqs. (2.28),(2.29). This is equivalent, by some linear transformation, to
specifying the two rods ρ1 = r1 − r2 = x1 − x2 and ρ3 = r3 − r2 = x3 − x2 that
connect the beads. In two dimensions, these rods have four degrees of freedom and
can be expressed as a function of q = {θ, σ, ρ1, ρ3}, where ρ1 and ρ3 specify the
lengths of the rods and will later be considered as constants. Let p be a vector
whose components are the concatenated components of ρ1,ρ3. The Jacobian matrix
∂pi/∂qj is then calculated by first expressing each component of p in terms of q
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using Eqs. (2.28),(2.29). The determinant of this Jacobian matrix is ρ1ρ2 = `2. The
Jacobian is then set, in two dimensions, to J = 1, and the constants will go into the
normalization factor.

In three dimensions, the rods have six degrees of freedom and q is taken to be
q = {α, β, γ, σ, ρ1, ρ3}. In this case, the orientation vectors of the rods are expressed
as

ρ1 = ρ1(sinσΣ2 − cosσΣ1) (2.47)

ρ3 = ρ3(− cosσΣ1 − sinσΣ2) (2.48)

where Σ1 and Σ2 are the first two rows, respectively, of the rotation matrix (1.23)
that puts the plane on which the rhombus resides in as the new y and z axes. With
p defined as above, the Jacobian matrix ∂pi/∂qj is obtained and, after stipulating
that ρ1 and ρ3 are constants, J is solved to be proportional to sin β sin 2σ.

2.6.4. Details of calculation in 2D. The details of the calculation of the
stationary PDF in the 2D case is shown here. Note that from Eq. (2.34),

pst(σ) ∝ 1

Dσσ(σ)
exp

(
2

∫ σ

0

V σ(x)

Dσσ(x)
dx
)

(2.49)

with

V σ(x) = −1

2
(
√

2− 2 cosx) sinx,

Dσσ(x) =
1

Z
+

Wi (1− cos 4x)

2
=

2−Wi Z(8 cos4 x− 8 cos2 x)

2Z
.

The main goal is to integrate the inner integral∫
V σ(x)

Dσσ(x)
dx =

∫ σ

0

− Z(
√

2− 2 cosx) sinx

2−Wi Z(8 cos4 x− 8 cos2 x)
dx. (2.50)

After substituting u =
√

2 cosx, the integral is then split into the sum∫
V σ(x)

Dσσ(x)
dx = I + II (2.51)

where

I =
Z

2

∫
u

Wi Z(u2 − 1)2 − (1 + Wi Z)
du (2.52)

II = −Z
2

∫
1

Wi Z(u2 − 1)2 − (1 + Wi Z)
du. (2.53)

By using a subsitution v = u2 − 1 and Eq. (3.3.23) in Ref. [1], the integral I can be
solved to be

I = −Z
4

∫
1

(Wi Z + 1)−Wi Z v2
dv

= − Z

8
√

Wi Z(Wi Z + 1)
ln

∣∣∣∣∣
√

Wi Z + 1 +
√

Wi Zv√
Wi Z + 1−

√
Wi Zv

∣∣∣∣∣
= − Z

8
√

Wi Z(Wi Z + 1)
ln

∣∣∣∣∣
√

Wi Z + 1 +
√

Wi Z(2 cos2 x− 1)√
Wi Z + 1−

√
Wi Z(2 cos2 x− 1)

∣∣∣∣∣
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=
Z

4C1

ln

∣∣∣∣C2
σ − C2

+

C2
σ − C2

−

∣∣∣∣ , (2.54)

where the last step involves various algebraic manipulations and substitutions using
the auxiliary variables

Cσ =
√

2Wi Z cosx, (2.55)

C1 =
√

Wi Z(Wi Z + 1), (2.56)

C± =
√
C1 ±Wi Z. (2.57)

The other integral II can be integrated by first rewriting B2 = 1 +
1

Wi Z
:

II = − 1

2Wi

∫
1

(u2 − 1)2 −B2
du

= − 1

4BWi

∫ −1

u2 + (B − 1)
+

1

u2 − (B + 1)
du. (2.58)

Since B > 1, the first term will have arctan as its antiderivative. The second term
will require Eq. (3.3.23) of [1]. Rewriting this in terms of x gives:

II =
1

4BWi

arctan
(√

2 cosx√
B−1

)
√
B − 1

+
1

2
√
B + 1

ln

∣∣∣∣∣
√
B + 1 +

√
2 cosx√

B + 1−
√

2 cosx

∣∣∣∣∣
 . (2.59)

The relation
√
B ± 1

√
Wi Z = C± and the application of Eq. (4.6.22) of Ref. [1] to

the second term then gives

II =
Z
√

Wi Z

2C1

[
arctan(Cσ/C−)

C−
+

arctanh(Cσ/C+)

C+

]
. (2.60)

The sum of Eqs. (2.54) and (2.60) gives the solution of the integral in Eq. (2.49),
which gives the PDF in Eq. (2.35). The solution to the three-dimensional case follows
similarly.





CHAPTER 3

Bending of semiflexible particles in turbulent flows

3.1. Introduction

The study of hydrodynamic turbulence and turbulent transport has received con-
siderable impulse from the development of experimental, theoretical, and numerical
Lagrangian techniques in which the particle is followed along its trajectory and ob-
servation is done “from the point-of-view of the particle” [35, 71, 87, 97]. This is in
contrast to Eulerian techniques where the trajectories of the particles are seen from
a third-person point-of-view. Lagrangian techniques are widely used in various ap-
plications to geophysics, astrophysics, and chemical engineering. The translational
dynamics of tracer and inertial pointlike particles is, for instance, intimately related
to the mixing properties of turbulent flows [4]. Taking cloud formation as an example,
turbulent flow in the atmosphere results in increased collision rates and coalescence
of smaller particles into larger ones [91]. Mixing is also present in oceans, where
it allows a redistribution of salt concentrations and temperature, as evidenced by
experimental studies cited in Ref. [96].

In recent years, increasing attention has been drawn to the Lagrangian dynamics
in turbulent flows of microscopic objects that possess a complex shape or internal
degrees of freedom, such as elastic dumbbells (Refs. [69] and references therein), solid
spheroids and ellipsoids [13, 21, 41, 42, 73, 80, 101], crosses and jacks [66], helicoids
[44], chiral dipoles [56], as discussed in the introduction to Part I. In this chapter,
the Lagrangian statistics of yet another internal degree of freedom that as far as we
know had not been explored before, i.e. the ability of a turbulent flow to bend a
semiflexible particle, is examined.

As a minimal model, consider the trumbbell, which was introduced and studied
in the context of extensional flows in Chap. 1. As a simple semiflexible object, it
was verified that the trumbbell reproduces a coiling and stretching behaviour in a
shear flow that manifests as a transition between extended and folded states and a
tumbling motion occurring only in the folded state. Here, the trumbbell is regarded
as a simple model that allows the isolation of the bending dynamics of a semiflexible
particle from the evolution of other potential degrees of freedom. This approach thus
gives the probability distribution function (PDF) of the bending angle analytically
for laminar and random flows and numerically for fully-developed turbulence.

The stationary statistics of the bending internal angle will be shown to depend
strongly on the dimension of the flow and on its turbulent character. In a two-
dimensional (2D) homogeneous and isotropic, incompressible turbulent flow, the dis-
tribution of the bending angle is bimodal; the configurations in which the trumbbell
is either extended or folded are most probable, with the folded configuration being
the most likely for strong turbulence. By contrast, in three-dimensional (3D) tur-
bulence, the extended configuration dominates and becomes increasingly probable

61
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as the amplitude of the velocity gradient increases. Such a sensitivity of the bend-
ing statistics on the flow dimensionality is peculiar to fluctuating flows and is not
observed in laminar stretching flows.

In Chap. 1, the orientational dynamics of the trumbbell was studied. This chap-
ter considers the trumbbell in light of its bending dynamics, firstly in a laminar
extensional flow in Sec. 3.2. The trumbbell’s bending dynamics in both 2D and 3D
turbulent flows is then predicted by subjecting it to a short-corrrelated random flow
in Sec. 3.3; the diffusion equation for random flows (2.21) that was derived in the
previous chapter is instrumental in this step. In Sec. 3.4, the analytical PDF for
the bending angle is compared to the resulting PDFs obtained by performing direct
numerical simulations of the trumbbell in 2D and 3D turbulent flows. Concluding
remarks and perspectives are given thereafter.

3.2. Bending in the extensional flow

The trumbbell model, previously introduced in Sec. 1.2, is composed of three
identical beads connected by two rigid rods. Recall that its configuration in the
frame of reference of its center of mass can be described by the angular variables
q = (θ, χ) in a two-dimensional space (where θ gives the orientation of one of the
rods with respect to the x axis of the frame of reference and χ is the internal angle)
and q = (α, β, γ, χ) in a three-dimensional space (where α, β, γ are the Euler angles
that give the orientation of the plane in which the trumbbell resides and χ is again
the internal angle). In contrast to Chap. 1, however, the bending angle χ in this
chapter is considered to lie in the interval 0 ≤ χ ≤ π only. As before, an elastic
hinge at the middle bead opposes the bending of the trumbbell and the force exerted
by the hinge is described by a harmonic potential

φ(χ) =
A

2
(χ− π)2 (3.1)

for some non-negative constant A that represents the magnitude of the potential.
The PDF of q still satisfies the diffusion equation (1.14) (for laminar flows). The
trumbbell is also sufficiently small so that, when in a turbulent flow, the end-to-end
length (2`) is smaller than the Kolmogorov length of the flow.

Since a turbulent flow displays stretching locally, the effect of pure steady stretch-
ing on the statistics of the bending angle χ is first examined. Consider the trumbbell
in a 2D extensional flow (see Fig. 3.1):

u = λ(x,−y), λ > 0.

Since the velocity gradient κij = ∂jui satisfies κ = κ>, the stationary PDF of q is
known analytically and was given in Eq. (1.27). The statistics of χ varies according
to the orientation θ of the trumbbell; however, the average effect of the flow can be
understood by considering the marginal stationary PDF of χ:

Ψ̂st(χ) = Jψ̂st(χ) (3.2)

with J the Jacobian of the transformation from the Cartesian to the angular co-
ordinates (J = 1 in two dimensions and J = sinχ sin β in three dimensions as in
Chap. 1) and

ψ̂st(χ) ∝ ψ0(χ) exp

[
−Z

2
(π − χ)2

]
I0

(
ZWi

3
(1− 2 cosχ)

)
, (3.3)
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Figure 3.1. A trumbbell in an extensional flow (streamlines shown
in gray) with stretching in the x- and compression in the y-direction.
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Figure 3.2. Extensional flow : ψ̂st(χ) (a) for d = 2 and (b) d = 3
and Z = 1, Wi = 0 (black), Wi = 10 (red), Wi = 50 (blue), Wi = 100
(green).

where I0 is the modified Bessel function of the first kind of order 0,

ψ0(χ) ∝
√

4− cos2 χ,

and the stiffness parameter Z and the Weissenberg number Wi = λτ are as defined in
Eqs. (1.23),(1.24) (τ is the characteristic time scale of the restoring potential). The
product of Z and Wi yields the Péclet number Pe, as in (1.25). On average the 2D
extensional flow favors the χ = π configuration, with this effect becoming stronger
as Wi increases (see Fig. 3.2(a)). The linear stability analysis performed in Sec. 1.4
indeed shows that when the flow dominates over the restoring potential (Wi � 1)
and thermal noise is disregarded, both the folded and the extended configurations are
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Figure 3.3. Extensional flow : T0 vs ∆χ for (a) d = 2, Z = 0 and
from bottom to top Pe = 4, 8, 12, 16, 20, 24; (b) d = 3 and the same
values of Z and Pe as in (a).

stable and their stability improves with increasing Wi , but the latter configuration
is more attractive than the former for all Wi . For a 3D uniaxial extensional flow

u = λ
(
x,−y

2
,−z

2

)
, λ > 0,

the stationary PDF ψ̂st(χ) can again be calculated by using κ = κT. It is shown in

Fig. 3.2(b). Clearly, ψ̂st(χ) has a similar shape in two and in three dimensions.
An inspection of the temporal dynamics of the trumbbell however reveals a strong

dependence on the dimension of the flow. To illustrate this point, consider the
situation in which the flow dominates over the restoring force (Wi � 1, Z = 0) and
study the temporal evolution of χ(t) as a function of Pe. In particular, it is useful
to analyze the first-passage time

T0 : the average time it takes for an initially folded trumbbell (χ = 0)
to exit the interval (0,∆χ)

The value of T0 for various values of Pe is shown in Fig. 3.3 as a function of ∆χ. The
time T0 is calculated through a Monte Carlo simulation of the stochastic differential
equations that govern the Lagrangian dynamics of the trumbbell for d = 2 and d = 3
(see Sec. 1.5). The first-passage time T0 behaves similarly for d = 2 and d = 3.

i. For small values of ∆χ, T0 ∝ (∆χ)2 because the dynamics is dominated by
Brownian motion,

ii. it keeps increasing as a function of ∆χ until ∆χ ≈ π/2;
iii. it then becomes independent of ∆χ, because the average time required to

completely unfold a trumbbell with χ > π/2 is much shorter than the time
it takes to unfold an initially folded trumbbell up to χ ≈ π/2.

However, for comparable values of Pe, the time T0 is at least one order of magnitude
longer in two dimensions than in three. The reason for this difference is geometrical:
for d = 2 the degrees of freedom of the trumbbell are two, whereas they are four
for d = 3; hence in the latter case it is easier for thermal noise to move the system
away from the folded configuration. Such dependence of the dynamics on the spatial
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dimension d does not affect the shape of ψ̂st(χ) (see Fig. 3.2), because the velocity
gradient κ is constant in time and the system has the time to evolve to its stationary
configuration. However, the flow dimension may impact the stationary statistics of
χ in a turbulent flow since κ fluctuates in such a flow.

3.3. Bending in a random flow

In order to investigate if the the dimension of the flow affects the statistics of the
bending angle χ analytically, the trumbbell is subjected to the Kraichnan random
flow in the Batchelor regime [55]. The same flow was used in the previous chapter
to predict the configuration of an elastic planar rhombus in a turbulent flow (see
Sec. 2.4). The velocity gradient is a δ-correlated-in-time (d×d)-dimensional Gaussian
stochastic process with zero mean and correlation: 〈κij(t)κkl(t′)〉 = Kijklδ(t − t′),
where

Kijkl =
2λ

d(d− 1)
[(d+ 1)δikδjl − δijδkl − δilδjk] (3.4)

and λ is now the Lyapunov exponent of the flow. The form of the tensor K en-
sures that the flow is incompressible and statistically isotropic (see appendix 2.6.1
of the previous chapter). Let P (q; t) be the normalised PDF of the configuration
of the trumbbell with respect to the realizations both of κ(t) and of thermal noise
(
∫
P (q; t)dq = 1). Thanks to the lengthy calculations in Chap. 2 for general bead-

rod-spring models, the diffusion equation (2.21) in a stochastic flow can be readily
used for the trumbbell.

First consider the trumbbell in the 2D case. By using the angular variables
q = (θ, χ) and the corresponding coefficient G, Eq. (2.21) can be rewritten as a
FPE in θ and χ. The drift and diffusion coefficients, however, do not depend on the
absolute orientation θ but only on the internal angle χ because of statistical isotropy.
Hence the stationary PDF of the configuration is a function of χ alone and so is the
stationary solution of the following FPE:

∂P

∂s
= − ∂

∂χ
(V P ) +

1

2

∂2

∂χ2
(DP ), (3.5)

with s = t/τ , the drift term as

V (χ) =
12 sinχ

Z (2− cosχ) (2 + cosχ)2 +
6 (π − χ)

(2 + cosχ)
+

2Wi
sinχ[5 + cosχ− 11 cos(2χ)− cos(3χ)]

(2− cosχ) (2 + cosχ)3 , (3.6)

and the diffusion term as

D(χ) =
12

Z(2 + cosχ)
+ 16Wi

sin2 χ

(2 + cosχ)2
, (3.7)

where now the Weissenberg number Wi = λτ depends on the Lyapunov exponent
λ. It is remarked that the other drift and diffusion coefficients are not all zero but
they are unreported since under isotropic conditions the general FPE in q (i.e. of a
similar form to Eq. (1.20)) reduces to Eq. (3.5). The stationary solution of Eq. (3.5)
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Figure 3.4. Batchelor-Kraichnan flow: (a) pst(χ) for d = 2, Z = 1,
and Wi = 0 (black), Wi = 10 (red), Wi = 50 (blue), Wi = 100
(green), Wi = 150 (magenta). The inset shows the values of pst(χ) at
χ = 0 (dashed line) and χ = π (solid line) vs Wi ; (b) pst(χ) for d = 3
and the same values of Z and Wi as in (a).

that satisfies periodic boundary conditions is [83]:

Pst(q) = Jpst(χ) ∝ 1

D(χ)
exp

(
2

∫ χ

0

V (η)

D(η)
dη

)
. (3.8)

The function pst(χ) is plotted in Fig. 3.4(a) for different values of Wi . For small Wi ,
the most probable configuration is the χ = π one, as in the hyperbolic flow. However,
as Wi increases, a second peak emerges near χ = 0, while intermediate values of χ
become less and less probable. At large Wi , pst(χ) consists of two narrow peaks, one
at χ = π and the other approaching χ = 0, with the latter becoming more and more
pronounced with increasing Wi .

In three dimensions, the same approach is done. The previously-derived diffusion
equation Eq. (2.21) can once again be rewritten as a FPE for the trumbbell in a
random flow, this time in the variables q = {α, β, γ, χ}, where the first three angles
give the orientation in space and χ is the bending angle. Owing to statistical isotropy,
Pst(q) is again the stationary solution of a FPE (3.5) in the variable χ alone (the
other unreported coefficients cancel each other when the general FPE is simplified)
and takes the form in Eq. (3.8) with

V (χ) =
3[4 + 13 cosχ− 4 cos(2χ)− cos(3χ)]

2Z sinχ(2− cosχ) (2 + cosχ)2 +
6 (π − χ)

(2 + cosχ)

+ Wi
sinχ[63 cosχ− 15 cos(3χ) + 296 sin2 χ]

12 (2− cosχ) (2 + cosχ)3 (3.9)

and

D(χ) =
12

Z(2 + cosχ)
+ 26Wi

sin2 χ

3(2 + cosχ)2
. (3.10)
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Figure 3.4(b) shows that a tiny peak at χ = 0 emerges only for very large Wi and
the χ = π configuration prevails for all Wi . Thus, the statistics of χ is different in
two and in three dimensions. In particular only for d = 3 is the behaviour of pst(χ)
similar to that found for the extensional flow.

The difference in the stationary statistics of χ for d = 2 and d = 3 can again be
understood by assuming Wi � 1 and Z = 0 and by considering the first-passage
time from a folded configuration T0 (from the previous section) and the first-passage
time from an extended configuration, i.e.

Tπ : the mean time it takes for an initially extended trumbbell (χ = π)
to exit the interval (π −∆χ, π) through the left.

The ratio T0/Tπ is plotted in Fig. 3.5 as a function of ∆χ for increasing Pe. The
first-passage times T0 and Tπ are calculated from a numerical simulation of the Itô
SDE

χ̇ = V (χ) +
√
D(χ) ξ(t) (3.11)

associated to the FPE (3.5) for d = 2 (using Eqs. (3.6) and (3.7)), and the SDE on
cosχ

d

dt
(cosχ) = − sinχV (χ)− 1

2
cosχD(χ)− sinχ

√
D(χ) ξ(t) (3.12)

for d = 3 (using Eqs. (3.9),(3.10)). For d = 3, cosχ is evolved instead of χ because
the drift term (3.9) of χ̇ becomes singular when χ = 0 because of a sinχ in the
denominator. In both d = 2, 3, ξ(t) is white noise.

For small ∆χ, T0 > Tπ both for d = 2 and d = 3, because in the folded configu-
ration the end beads have very similar velocities and it is therefore difficult for the
flow to separate them. However, T0/Tπ is greater for d = 2 than for d = 3; moreover,
it grows fast as a function of Pe for d = 2 and is almost independent of Pe for d = 3.
This is because for d = 2 the beads are confined to the plane and it is much more
difficult for the flow to separate them compared to the 3D case.

When ∆χ ≈ π, T0 and Tπ are comparable for d = 2, whereas T0 � Tπ for d = 3,
i.e., in this case the average time required to completely unfold an initially folded
trumbbell is much shorter than that required to fold an initially extended one. The
reason for this is once again geometrical; it is indeed more difficult to fold two rods
whose orientations fluctuate in a three-dimensional space than to fold two rods that
are confined to a plane.

The above discussion explains why, for d = 2, pst(χ) shows a second peak near
to χ = 0 and this peak dominates for a strong flow, whereas pst(χ) does not enjoy
the same property for d = 3.

3.4. Direct numerical simulations

To ensure that the qualitative properties of the statistics of the bending angle
χ do not depend on the Gaussianity and temporal decorrelation of the Batchelor–
Kraichnan flow, Lagrangian direct numerical simulations of the trumbbell model in
2D and 3D incompressible, isotropic turbulence were performed on a 2π-periodic
domain. Since the trumbbells are considered as passive, the code consists of two
decoupled parts. First, the velocity gradients are obtained from the evolution of
the Navier–Stokes equation by using a standard pseudospectral method; these La-
grangian trajectories are developed in collaboration with S.S. Ray. The second part
of the code consists of seeding the flow with 105 trumbbells in two dimensions and
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Figure 3.5. Batchelor-Kraichnan flow: T0/Tπ vs ∆χ for d = 2
(red) and d = 3 (black), Z = 0, and from bottom to top Pe =
30, 50, 100, 150.

with 106 trumbbells in three dimensions. By coupling the Lagrangian velocity gra-
dients obtained from the pseudospectral method to the Lagrangian code simulating
the SDEs for the configuration of the trumbbell (the same code used in Chap. 1), the
statistics of χ is then computed. Further details on the pseudospectral method used,
how the Lagrangian trajectories are obtained, and how the Lyapunov exponent of
the flow is calculated from it are available in the appendix of this chapter.

The Weissenberg number of the turbulent flow is defined in the same manner as
for the random flow, i.e., Wi = λτ , where now λ is the Lyapunov exponent of the
turbulent flow in the simulations. The numerical results shown in Fig. 3.6 confirm
the predictions based on the Batchelor-Kraichnan flow. In particular, for d = 2, the
χ = π configuration is favoured at small Wi . As Wi increases, the probability of a
folded configuration grows significantly and eventually, at extremely large Wi , pst(χ)
displays strong peaks at χ ≈ 0 and χ ≈ π, with the former peak prevailing over the
latter. For d = 3, pst(χ) has a maximum at χ = π, which grows with increasing Wi ;
a very small peak near to χ = 0 only appears for very large Wi .

3.5. Concluding remarks and perspectives

The bending statistics of semiflexible particles has been studied in laminar and
turbulent flows by considering the trumbbell as a minimal model. In both 2D and 3D
laminar extensional flows, two stable configurations of the trumbbell are found, albeit
one is much more dominant than the other, thereby producing a PDF strongly skewed
with a preference for the extended configuration. To predict the trumbbell’s bending
behaviour in turbulent flows it was subjected to a short-correlated random flow; a
difference in the PDFs between d = 2 and d = 3 manifested for large values of Wi by
the appearance of a second (even higher) peak in the folded χ = 0 configuration in
the 2D case, whereas the 3D flow revealed a PDF essentially similar to the laminar
case. Finally, direct numerical simulations confirm the analytical predictions that the
stationary distribution of the bending internal angle depends strongly on whether
the flow is laminar or turbulent and, in the turbulent case, is sensitive to the flow
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Figure 3.6. Homogeneous isotropic turbulence: (a) pst(χ) for d = 2,
Z = 1, and Wi = 0.04 (black), Wi = 17.53 (red), Wi = 45.3 (blue),
Wi = 54 (green), Wi = 102 (magenta); (b) pst(χ) for d = 3, Z = 1,
and Wi = 3.3 (black), Wi = 26.3 (red), Wi = 49.3 (blue), Wi = 131.4
(green), Wi = 197.1 (magenta).

dimensionality. This behaviour is explained in terms of the first-passage times from
the folded and the extended configurations of the trumbbell.

These results suggest that the rheology of suspensions of semiflexible particles
may also exhibit an analogous strong dependence on the properties of the flow. For
instance, the two-peaked PDF in a 2D turbulent flow suggest frequent folding and
unfolding, which may in turn exert more stress on the flow. How would a suspension
behave differently between two and three dimensions in the presence of these bending
and unbending particles? The advent of 3D printing coupled with the Lagrangian
experimental techniques of following particles allow the observation of complex par-
ticle dynamics and deformation even in turbulent flows [97]; it would be desirable
to confirm the effect of dimensionality reported here. Furthermore, a generalization
to particles with multiple bending modes or a comparison with actin filaments and
elastic fibers will prove instrumental in characterizing the bending dynamics of semi-
flexible particles [63]. Indeed it is hoped this work would lead to further experiments
directed towards the study of the Lagrangian dynamics of semiflexible particles in
turbulent flows and the non-Newtonian properties of turbulent suspensions of such
particles.

3.6. Appendix

The pseudospectral method performs a portion of the evolution of a PDE in
the spectral space with the aim of simplifying the calculations, in particular, dif-
ferentiation. Multiplications are however done in real space because they become
convolutions, and hence more costly, in spectral space. The cost in computation will
then largely involve performing the Fourier and inverse Fourier transforms of the
variables. In both simulations, the 2/3-dealiasing rule was used to avoid misrepre-
senting the flow which may occur due to the nonlinear terms: the multiplication of
two or more functions in real space may result in the activation of modes higher than
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those that can be represented in the Fourier modes, and these larger modes manifest
as additional input in the smaller modes.

The codes themselves may involve several optimisations and various technical
details, some of which are detailed below. The code in two dimensions, for instance,
works via the stream function ψ =∇−1ω, where ω = |∇× u| is the vorticity of the
incompressible velocity field u. The Navier–Stokes equation is then considered in
the following form:

∂tω + J (ψ, ω) = ν∆ω + f − aω (3.13)

where J (ψ, ω) = (∂xψ)(∂yω)− (∂xω)(∂yψ), ν is the kinematic viscosity (ν = 10−5),
f is a forcing (in this case, the force term was f(x, y) = −F0kf cos(kfx) injected at
wavenumber kf = 4 and with amplitude F0 = 5 × 10−3), and the last term is an
air-drag induced Ekman friction (coefficient set to a = 0.01). An initial vorticity
ω in Fourier space is given and then evolved using the equation in Fourier space
by using a time integrator. A second-order (exponential) Runge–Kutta method was
used: Each timestep dt involves two steps. First, an intermediate value ω̂(k) of
the vorticity (in the Fourier space, hence k) is obtained by advancing only with
dt/2. Then, by using the updated intermediate value of the velocity û associated
to ω̂, the new value of ω can be obtained by evolving the intermediate value by
another dt/2. Each dt/2-step requires performing an inverse Fourier of the velocities
to perform the multiplication in real space and a Fourier transform of the product
to obtain the (intermediate) value of ω̂. The force term is only added at the end
of each timestep dt and is done in real space. The velocity can then be computed
from the vorticity via the spectral form of the relation u = (−∂yψ, ∂xψ) together

with the relation ψ̂(k) = k−2ω̂(k). The choice of the parameters [74, 82] yields
a Taylor-microscale Reynolds number ReTay = urmslTay/ν = 827, lTay = 0.1 in the
non-equilibrium, statistically steady state, where urms is the root-mean-square of the
velocity and lTay is the Taylor microscale (the Taylor-microscale Reynolds number
is written as ReTay and not the more commmon Reλ because λ is defined in this
chapter as the Lyapunov exponent of the flow). The number of collocation points is
10242.

For d = 3, the Navier-Stokes equation

∂tu+ u · ∇u = −∇p+ ν∆u+ f , (3.14)

where p is pressure, has been evolved by using the Runge–Kutta method; the kine-
matic viscosity is set to ν = 10−3. The forcing f has a fixed energy input and forced
at scales less than or equal to kf = 2 such that the mean energy dissipation balances
the power input (see Refs. [58, 86] for further details on the forcing and the numerical
simulations). The parameters chosen give a Taylor microscale lTay = 0.35 and the
associated Reynolds number ReTay = 121. A total of 5123 collocation points were
used.

The trumbbell considered is a tracer particle and its transport in space is simply
the transport of its centre of mass xCM. Note that the evolution of xCM follows
Eq. (1.8), but the noise is disregarded because it is negligible compared to the tur-
bulent diffusivity. These Lagrangian trajectories (and their gradients) may then
be obtained independently of the trumbbell. The Lagrangian trajectories that ad-
vects xCM may be obtained from the Eulerian velocities calculated above by using
a bilinear-interpolation scheme [74, 78, 82]; if xCM does not lie on a gridpoint, the
scheme estimates its velocity by a weighted average of the four nearest gridpoints.
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The Weissenberg number of the turbulent flow is defined in the same manner as
for the random flow, i.e., Wi = λτ , where now λ is the Lyapunov exponent of the
turbulent flow in the simulations. The exponent λ of the turbulent flow is calculated
via a QR factorization [26, 68] given the Lagrangian velocities u(x, t)

ẋ = u(x, t). (3.15)

The QR code factorizes ∇u into an orthogonal matrix Q and an upper triangular
matrix R, and the largest Lyapunov exponent is

λ = lim
t→∞

〈
1

t
logR11(t)

〉
, (3.16)

where the averaging 〈·〉 is done over the different particle trajectories. This QR
factorization is directly performed on the previously-calculated velocity gradients
∇u.
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[22] Cruz C, Chinesta F, Réigner G. Review on the Brownian dynamics simulation of
bead-rod-spring models encountered in computational rheology. Arch. Comput.
Methods Eng. 19, 227 (2012).

[23] Curtiss CF, Bird RB, Hassager O. Kinetic theory and rheology of macromolec-
ular solutions, in Adv. Chem. Phys. 35, 31 (John Wiley & Sons, NJ, 1976).

[24] Dhar A. Work distribution functions in polymer stretching experiments. Phys.
Rev. E 71, 036126 (2005).

[25] Diaz FG, Garcia de la Torre J. Simulation of the rotational Brownian dynamics
of a simple segmentally flexible model: The elastic trumbbell. J. Chem. Phys.
88, 7698 (1988).

[26] Dieci L, Russell RD, van Vleck ES. On the computation of Lyapunov exponents
for continuous dynamical systems. SIAM J. Numer. Anal. 34, 402 (1997).

[27] Dupire J, Socol M, Viallat A. Full dynamics of a red blood cell in shear flow.
Proc. Natl Acad. Sci. 109, 20808 (2012).

[28] E W, Vanden-Eijnden E. Transition-path theory and path-finding algorithms
for the study of rare events. Annu. Rev. Phys. Chem. 61, 391 (2010).

[29] E W, Ren W, Vanden-Eijnden E. String method for the study of rare events.
Phys. Rev. B 66, 052301 (2002).

[30] E W, Ren W, Vanden-Eijnden E. Simplified and improved string method for
computing the minimum energy paths in barrier-crossing events. J. Chem. Phys.
126, 164103 (2007).

[31] Einarsson J, Johansson A, Mahata SK, Mishra Y, Angilella JR, Hanstorp D,
Mehlig B. Aperiodic tumbling of microrods advected in a microchannel flow. Acta
Mechanica 224, 2281 (2013).

[32] Einarsson J, Candelier F, Lundell F, Angilella JR, Mehlig B. Effect of weak fluid
inertia upon Jeffery orbits. Phys. Rev. E 91, 041002(R) (2015).

[33] Einarsson J, Mihiretie BM, Laas A, Ankardal S, Angilella JR, Hanstorp D,
Mehlig B. Tumbling of asymmetric microrods in a microchannel flow. Phys. Fluids
28, 013302 (2016).

[34] Elgeti J, Winkler RG, Gompper G. Physics of microswimmers—single particle
motion and collective behaviour: a review. Rep. Prog. Phys. 78, 056601 (2015).
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Part II

Chaotic dynamics
at low Reynolds number





Introduction

In the experiment performed by Groisman and Steinberg [36], a viscous sugar
syrup is injected with a dilute solution (80 ppm by weight) of high-molecular-weight
polyacrylamide and placed in between two concentric parallel plates that are 10 mm
apart from each other (see Fig. II.1(a)); the lower plate of diameter 43.6 mm is fixed
while the upper plate of diameter 38 mm is rotating. By further seeding the flow
with light-reflecting flakes, the flow can be visualized. Snapshots were taken from the
upper plate (see Fig. II.1(b)) and they show the formation of swirls and a chaotic
behaviour reminiscent of turbulence. In this experiment the Reynolds number is

(a) (b)

Figure II.1. The experimental set-up (a) and the resulting flow visu-
alization (b) in the experiment of Groisman and Steinberg. Reprinted
by permission from Macmillan Publishers Ltd: Nature 405, 53, copy-
right (2000) (Ref. [36]).

Re = 0.7. Since Re is small, the turbulent-like behaviour is attributed to the elastic
forces at play.

Indeed, one of the most remarkable properties of viscoelastic fluids such as poly-
mer solutions is the formation of instabilities at very low Reynolds numbers [47, 68].
Such instabilities are of a purely elastic nature; they occur when inertial forces are
negligible and elastic forces are strong. The relevant dimensionless number is the
Weissenberg number Wi (the ratio of the polymer relaxation time and the typical
time scale of the flow). As described above, elastic instabilities eventually lead to a
chaotic regime known as elastic turbulence if Wi is sufficiently high [36].

Since the pioneering work by Groisman and Steinber [36], various microfluidic
experiments have been performed to study elastic turbulence. It is easily observed
in curved flow structures [17, 18, 37, 38, 63, 79] and is recently also observed in pipe
flows [15] and channel flows [10, 58]. Other than in polymer solutions containing
the usual high-molecular weight polymers (polyacrylamide, polyethylene oxide), the
turbulentlike behaviour has also been observed in complex fluids, in particular, using
wormlike micelles for the elastic particles. Micelles are likewise elastic but which
break into smaller molecules and recombine into longer structures [4, 31].
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Experimental studies reveal that the emergence of this regime is characterized by
a fast growth of the Lyapunov exponent of the flow [16]. In addition, the kinetic-
energy spatial and temporal spectra have a power-law behaviour, which indicates the
presence of a large number of active scales in the flow. The spatial spectrum, k−a with
a > 3, is however steeper than for Newtonian turbulence, where the exponent is −5/3
in three dimensions, i.e. velocity fluctuations in elastic turbulence are concentrated at
small wave numbers [19, 36]. This chaotic regime is associated to polymers stretching
in the flow [18, 36]. Indeed, it is argued that the flow stretches and injects energy into
the polymers, which then feedback to the flow until a stationary state is achieved.

The experimental findings are enriched further from the numerical and theoret-
ical point of view. Striking similarities between the equations for viscoleastic poly-
mer solutions and that for magnetohydrodynamics are identified in the literature
[8, 32, 56]. Filaments dubbed as elastic waves were observed in the vorticity field in
numerical simulations and bring to mind the Alfvén waves in magnetohydrodynamics
[8]. Moreover, elastic turbulence can also be numerically reproduced in simulations
using polymer solution models, for instance using the two-dimensional Oldroyd-B
model with a Kolmogorov force [7, 8]. The Oldroyd-B model, which will be further
described in the upcoming chapter, is one of the simplest constitutive models and is
characterized by linear elasticity. The Kolmogorov flow is a parallel flow and pro-
duces a sinusoidal mean flow even in the presence of elastic polymers. The presence
of a critical Reynolds number under which inertial forces are negligible in the Kol-
mogorov flow points to the role of elastic forces in creating the chaotic regime [12].
Other constitutive models have been used to simulate elastic turbulence, such as
those with a nonlinear elastic force (see, e.g., [41]). Numerical and theoretical stud-
ies considering different flow configurations (e.g. plane Couette, Poiseuille or cellular
flows) also display the presence of these elastic instabilities, [41, 50, 53]. Consistent
with experimental results, numerical simulations indicate that the polymers stretch
and exert stronger elastic forces on the flow if Wi is sufficiently high. Snapshots of
the vorticity field (see Fig. II.2) and the observed increase in the Lyapunov exponents
(see, e.g. Ref. [7]) also point to the presence of mixing.

Elastic turbulence has found important applications in microfluidics in view of
the fact that it can create chaotic flows and strongly enhance mixing in devices
that, owing to their microscopic size, are characterized by a low Reynolds number
[1, 18, 45, 62, 75]. Indeed, viscoelastic solutions are considered as alternatives to the
more traditional methods of passively inducing mixing by introducing curves and ob-
stacles on the geometry of the flow, and of actively perturbing the flow, for instance,
mechanically or by thermal or electrokinetic instabilities [57, 69, 70]. Since elastic
turbulence is chaotic but remains spatially smooth, further insight into particle dy-
namics below the dissipation scale of hydrodynamic turbulence can be obtained from
the elastic-turbulent regime generated in microfluidics experiments where observa-
tions are easier to perform [44]. Moreover, the potential use of elastic turbulence
in the oil industry has recently emerged as a very promising application. Aqueous
polymer solutions are indeed used to recover the oil that remains trapped inside the
pores of reservoir rocks after an initial water flooding, and elastic turbulence has
been proposed as a mechanism to explain the unexpectedly high efficiency of this oil
recovery method [20, 51].

This second part of the thesis studies elastic turbulence in two different orienta-
tions.
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Figure II.2. Vorticity field in numerical simulations of the two-
dimensional Oldroyd-B model at low Re = 0.7 and Wi = 22.4 and
with a Kolmogorov forcing. Black (white) represents maximum (mini-
mum) vorticity. From Ref. [8]. Reprinted figure with permission from
Berti S, Boffetta G, Phys. Rev. E 82, 036314 (2010). Copyright (2010)
by the American Physical Society.

Chapter 4

This chapter poses the question of the quantitative characterization of this chaotic
regime via its number of degrees of freedom. To this end, the Oldroyd-B model is
used being the simplest constitutive model that reproduces elastic turbulence. The
Lyapunov dimension of the attractor (in the solution space) of the Oldroyd-B model
is estimated as a function of Wi by combining a mathematical analysis of the model
with direct numerical simulations.

Chapter 5

This subpart of the thesis is motivated by experimental and numerical results of
polymer solutions in the high-Re regime that show that elasticity of polymers is dis-
pensable to produce drag reduction. The (un)necessity of elasticity so as to enhance
mixing in the low-Re regime is examined by simulating a solution of rodlike poly-
mers. The results show the emergence of a chaotic regime that manifests through an
increase in the flow resistance and a power-law in the kinetic-energy spectrum. The
significant polymer contribution to the total stress paired with a negligible Reynolds
stress imply that the chaotic regime is not caused by inertial forces but rather by
the presence of the rodlike polymers.

https://doi.org/10.1103/PhysRevE.82.036314




CHAPTER 4

Lyapunov dimension of elastic turbulence

4.1. Introduction

The simplest constitutive model of polymer solutions is the Oldroyd-B model [55],
in which the dissolved polymer phase is described by a symmetric tensor field, termed
the polymer conformation tensor, which represents the moment of inertia of polymers
averaged over thermal fluctuations. The Oldroyd-B model is thus a system of partial
differential equations (PDEs) that describes the joint evolution of the velocity and
the polymer conformation tensor. In particular, the polymer feedback on the flow
is given by a stress term proportional to the conformation tensor. The relevant
dimensionless number is the Weissenberg number Wi , i.e. the ratio of the polymer
relaxation time and the typical time scale of the flow. The main limitations of this
model are that it assumes a single polymer relaxation time and linear elasticity. The
latter, in extensional flows and in the absence of polymer feedback, can lead to an
unbounded growth of the conformation tensor and hence of polymer stresses. In
spite of its simplicity, the model successfully reproduces the main features of elastic
turbulence, as just discussed in the introduction [7, 8, 32, 35]. In particular numerical
simulations show that elastic turbulence is observed also in two-dimensional settings.
Other than attracting the physicists for its dynamical interest and the industry for
its possible applications, elastic turbulence has also attracted much attention in the
mathematical community over the last two decades. Mathematicians have focused on
the existence, uniqueness and regularity of solutions (see, e.g., Refs. [3, 24, 29, 43, 49]
for some recent studies).

This chapter aims at providing an analytic and quantitative characterization of
the chaotic regime due to elastic instabilities in two dimensions via the Oldroyd-B
model. A mathematical definition of the number of degrees of freedom of PDEs is
given by the dimension of its global attractor in the functional space of the solution,
where the global attractor is defined as the set of solutions to which any solution
converges to [66]. For the two-dimensional Oldroyd-B model the bounds found by
Constantin and Kliegl [24] on the L2-norms of the vorticity ω and the polymer con-
formation tensor σ, ‖ω‖2 and ‖σ‖2, are exponential in time (and double exponential

for ‖∇σ‖2). Thus, no bounded long-time averages 〈·〉 = limT→∞
1
T

∫ T
0
· dt have been

found to exist and therefore, in a strictly rigorous sense, no global attractor is known
to exist. However, numerical simulations of elastic turbulence suggest that ‖ω‖2,
‖σ‖2 and ‖∇σ‖2 are indeed bounded in time for various values of Wi (see Fig. 4.1
and Sec. 4.5). One practical way of progressing is to work under the following tech-
nical assumption with a subsequent strategy :

i. Given that numerical calculations of ‖ω‖2, ‖σ‖2 and ‖∇σ‖2 are finite in
time, as shown in Sec. 4.5, the existence of a global attractor A is assumed;
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Figure 4.1. Time series for ‖∇σ‖2
2 for a simulation of the

two-dimensional Oldroyd-B model with a cellular forcing f =
−f0n[cos(nx) + cos(ny)] with n = 4 and f0 = 0.16 for different values
of Wi .

ii. Based on (i), the Lyapunov dimension of A is estimated. The estimate
will use the long-time averages 〈‖ω‖2〉, 〈‖σ‖2〉 and 〈‖∇σ‖2〉; the numerical
bounds found for these quantities in terms of Wi are used in the estimates.

An introduction to the method used to estimate the Lyapunov dimension is pro-
vided in Sec. 4.2. The equations of the Oldroyd-B model are given in Sec. 4.3, and
the estimation, which involves a number of technical steps, follows in Sec. 4.4. The
numerical simulations that complete the study and justify the assumed attractor is
found in Sec. 4.5. Concluding remarks and perspectives follow thereafter.

4.2. Lyapunov exponents of dynamical systems

This section extends the methods to estimate the Lyapunov dimension of ordinary
differential equations (ODEs) to PDEs. Indeed, a connection between the system
dynamics and the attractor dimension is provided by the notion of the Lyapunov
exponents via the Kaplan–Yorke formula. For ODEs, the Lyapunov exponents con-
trol the exponential growth or contraction of volume elements in phase space, and
the Kaplan–Yorke formula expresses the balance between volume growth and con-
traction realized on the attractor. The Kaplan–Yorke formula, which originated as a
phase-space argument for ODEs, has been nevertheless rigorously applied to global
attractors in PDEs by Constantin and Foias [22] (see also Ref. [33]). It is important
to note that the definition of the Lyapunov exponents, defined before in Chap. 2 as
the exponential growth rate between two trajectories in the space, will be extended to
a more general notion: it will define the exponential growth rate between trajectories
in the solution space of a PDE (e.g. L2 space). The next subsections will go through
the Kaplan–Yorke formula and the extension to PDEs via the ‘trace formula’.

4.2.1. The Kaplan–Yorke formula. The Kaplan–Yorke formula is used to
define the Lyapunov dimension of the attractor of a dynamical system and is the
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following : for Lyapunov exponents µ1 ≥ µ2 ≥ · · · ≥ µn ≥ · · · , the Lyapunov
dimension dL(A) is given by

dL(A) = N − 1 +
µ1 + . . .+ µN−1

−µN
, (4.1)

where the number N of µn is chosen to satisfy
N−1∑
n=1

µn ≥ 0 but
N∑
n=1

µn < 0 . (4.2)

Note that according to the definition of N , the ratio of exponents in (4.1) satisfies

0 ≤ µ1 + . . .+ µN−1

−µN
< 1 . (4.3)

In simple terms, the value of N that turns the sign of the sum of the Lyapunov
exponents as in (4.2) is that value that bounds above dL(A) such that

N − 1 ≤ dL(A) < N . (4.4)

The preceding inequalities mean that there are (N − 1) dimensional volumes in the
phase-space that grow larger in time whereas any N -dimensional volume contracts
over time.

4.2.2. The trace formula. In the PDE case the phase space is infinite-dimensional.
To use the method for PDEs to find an estimate for dL(A), it is necessary to ex-
tend the idea of the Lyapunov exponents to global Lyapunov exponents via a trace
formula, whose derivation is demonstrated here [26, 66].

The following derivation will seem to be performed for an ODE on q (it is also
valid for ODEs). For PDEs, however, q is not in the real d-dimensional space (e.g.
Rd). Rather, q lies in an infinite-dimensional space associated to the solution space
of the PDE. By taking the Fourier transform of a PDE, q can for instance be taken to
account for the different wavenumbers characterizing the basis functions that define
the solution. The following derivation then will be defined for an arbitrary large N -
dimensional (truncated) system; the value of N can be increased until indefinitely.
Indeed, the goal is to identify the value N that turns the sign of the PDE counterpart
of
∑N

n=1 µn and thus gives inequality (4.4).
Consider an N -dimensional (truncated) system in the solution space of a PDE.

Then q evolves as
dq

dt
= G(q, t) (4.5)

for some sufficiently smooth function G associated to the PDE on the variable q.
Let q(0) be an initial point on the attractor A. To quantify the growth of infini-
tesimal “volumes” in the solution space around the point q(0), consider an initial
perturbation q(0) + δqi(0) for N orthogonal vectors δqi, i = 1, . . . , N and see how
the N -volume or parallelepiped of volume

VN(t) = |δq1 ∧ δq2 ∧ · · · ∧ δqN | (4.6)

evolves with the evolution of δqi (see Fig. 4.2). This volume is given by

VN(t)2 = det M(t) (4.7)
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Figure 4.2. Illustration of the evolution of an initial N -parallelipiped
(N = 3) over time. Note the difference of notation: δq in the text is
equivalent to δx in the illustration. From Ref. [66].

where Mij(t) = δqi(t) · δqj(t). Taking the logarithm of Eq. (4.7), differentiating over
time and using the property that log det M = Tr[log M] yields

2
d log VN
dt

=
d

dt
log det M =

d

dt
Tr[log M] = Tr

[
M−1dM

dt

]
. (4.8)

The evaluation of the trace in the equation above requires a time-dependent orthog-
onal set of basis vectors {φi}, i = 1, . . . , N that also span the space spanned by {δqi}
and which permits the definition of a matrix m

mij = φi · δqj, (4.9)

whose components are the projections of δqj onto φi, and which satisfies the relations

M = m>m. (4.10)

Now under an assumption on the smoothness of G in Eq. (4.5), the evolution of the
δqi(t) over time follows the linearised evolution

d

dt
δqi = Aδqi (4.11)

where A is the linearised operator associated to G. The evolution of the orthogonal
basis {φi} can then be expressed in terms of

aij = φi · Aφj. (4.12)

Taking the derivative of Eq. (4.10) and using Eqs. (4.11) and (4.12) yields

dMij

dt
=

dδqi
dt
· δqj + δqi ·

dδqj
dt

= Aδqi · δqj + δqi · Aδqj
= (δqi · φl)(Aφl · φk)(φk · δqj) + (δqi · φl)(φl · Aφk)(φk · δqj)
= mli(akl + alk)mkj,

whence,
dM

dt
= m>(a> + a)m, (4.13)
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where one of the steps used the fact that {φi} is an orthonormal basis. Hence, thanks
to the expressions in Eqs. (4.10) and (4.13), Eq. (4.8) can be written as

d

dt
log VN(t) =

1

2
Tr

[
M−1dM

dt

]
=

1

2
Tr[m−1(m>)−1m>(a> + a)m]

=
1

2
Tr[m−1(a> + a)m]

= Tr[a]. (4.14)

Then from Eq. (4.12)

Tr[a] = φi · Aφi = (φj · Aφi)(φi · φj)
= Tr[APN ], (4.15)

where PN(u) = φi(φi · u) is the operator that projects a vector u onto {φi}. In-
tegrating for the volume from Eq. (4.14) up to a time t and by using the preceding
equation gives

VN(t) = VN(0) exp

[∫ t

0

Tr[A(τ)PN(τ)] dτ

]
= VN(0) exp

[
t

(
1

t

∫ t

0

Tr[A(τ)PN(τ)] dτ

)]
= VN(0) exp [t 〈Tr [APN ]〉] , (4.16)

where 〈·〉 = limT→∞
1
T

∫ T
0
· dt is the time average. The sum of the first N Lyapunov

exponents, which characterize the exponential growth rate of an N -volume, is then
taken to be the

N∑
n=1

µn = 〈Tr [APN ]〉 . (4.17)

Clearly if the time average of the trace is negative, the volume decays to zero and the
definition in (4.17) would be consistent with the definition of the Lyapunov exponents
as in the subsection 4.2.1.

It is useful to remark that the trace formula (4.17) had already been utilised
to obtain the attractor dimension for the 2D Navier–Stokes equation in terms of
the Grashof number. Given an incompressible velocity field u defined on a periodic
domain [0, L]2, the 2D Navier–Stokes equation is

∂tu+ u · ∇u = −∇p+ ν∆u+ F , (4.18)

where p is pressure, ν is kinematic viscosity, F is a (divergence-free) body force. The
Lyapunov dimension of its global attractor A is estimated as [23, 25]:

dL(A) ≤ cG2/3(1 + lnG)1/3, (4.19)

where G = L2‖F ‖2/ν
2 is the Grashof number and c is a generic constant.

The Lyapunov dimension further gives an insight into the resolution length re-
quired to fully capture the dynamics of the system. For a d-dimensional system
of size L, the resolution length `res of the smallest feature in the dynamics is con-
nected to dL(A) by dL(A) ∼ (L/`res)

d [67]. Indeed, the formalism for calculating the
Lyapunov dimension was developed to obtain a mathematically rigorous estimate of
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Figure 4.3. Illustration of a single extensible dumbbell.

the number of degrees of freedom of a system with the goal of verifying the avail-
able estimates based on dimensional or empirical arguments. It the case of the 2D
Navier–Stokes equation, the associated resolution scale obtained from the Lyapunov
dimension corresponds to the Kraichnan length [26]

λKr =

(
ν3

χ

)1/6

, (4.20)

which is the unique length scale that can be derived by using dimensional anal-
ysis based on the viscosity ν and then average enstrophy dissipation rate χ =
ν〈‖∇ω‖2

2〉/L2. Indeed, in 2D turbulence, enstrophy plays the role that energy takes
in 3D turbulence and by analogy, it is λKr that determines the cut-off value in the
enstrophy spectrum. The estimate of the Lyapunov dimension thus supports the
existing dimensional estimates for the theory of turbulence. This chapter extends
the use of these formulas to estimate the Lyapunov dimension in a more complex
setting by coupling two PDEs: one for the velocity field and another for the polymer
conformation tensor.

4.3. The 2D Oldroyd-B model for polymer solutions

The method to estimate the Lyapunov dimension discussed above can be applied
to any dynamical system. The choice for the two-dimensional Oldroyd-B model lies
in the fact that it is one of the simplest constitutive models of polymer solutions that
can reproduce elastic turbulence in numerical simulations. In the Oldroyd-B model,
a polymer is described by a dumbbell whose end-to-end vector R captures its length
and orientation in space (see Fig. 4.3). Under the effect of an incompressible linear
velocity field u, the evolution of R obeys the equation

d

dt
Ri = Rk∂kui −

f(R2)

2τ
Ri +

√
R2

0

τ
ξi(t), (4.21)

where R0 is the equilibrium length of the polymer, f(R2) is a force, τ is the polymer
relaxation time and ξ(t) is white noise. In particular, the choice of f(R2) = 1 will, in
the continuum, give rise to the Oldroyd-B model. An ensemble of these particles can
be represented by the symmetric polymer conformation tensor σij = 〈RiRj〉ξ/R2

0,
where 〈·〉ξ is an average over thermal noise. The evolution of σ follows by first using
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the rules of stochastic calculus for Itô differential integrals

d

dt
(RiRj) = (∇u)ikRkRj + (∇u)jkRkRi −

R2
0

τ

(
RiRj

R2
0

− δij
)

+

√
R2

0

τ
(ξiRj + ξjRi) ,

(4.22)
where (∇u)ij = ∂jui. Taking the average over noise eliminates the last term. The
polymer feedback to the flow is modeled by an additional stress term in the Navier–
Stokes equation. On the periodic unit square Ω = [0, 1]2, the dimensionless form of
the Oldroyd-B model is then given by

∂tu+ u · ∇u = −∇p+
1

Re
∆u+

β

Wi Re
∇ · σ + F , (4.23a)

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)> − 1

Wi
(σ − I) +

1

Pe
∆σ, (4.23b)

where p is pressure and where Re = UL/ν, Pe = UL/κ and Wi = Uτ/L are the
Reynolds, Péclet and Weissenberg numbers respectively with L and U as the char-
acteristic lengths and velocities of the flow and κ as the diffusion coefficient of the
centre of mass of the polymers. Indeed the Laplacian term in Eq. (4.23b) originates
from the diffusion of the centre of mass of polymers [30]; it ensures the global reg-
ularity of the two-dimensional Oldroyd-B model [24] and improves the stability of
numerical simulations, even though the values of Pe used in practice are considerably
lower than its realistic values [71, 74]. The first two (Re,Pe) of these dimensionless
numbers describe the ratio of the inertial forces to the viscous forces and to the rate
of diffusion of the centre of mass, respectively, while the last dimensionless number
(Wi) compares the time scale of the flow to the relaxation time of the polymer.
The positive constant β is proportional to the polymer concentration and equilib-
rium extension. The forcing F is time-independent, periodic and divergence-free
(∇ · F = 0).

In two dimensions, Eqs. (4.23) can be rewritten in terms of the scalar vorticity
ω = ẑ · (∇× u) :

∂tω + u · ∇ω =
1

Re
∆ω +

β

Wi Re
ẑ · ∇× (∇ · σ) + f, (4.24a)

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)> − 1

Wi
(σ − I) +

1

Pe
∆σ , (4.24b)

where f = ẑ · (∇ × F ) and u = ∇⊥∆−1ω with ∇⊥ ≡ (−∂y, ∂x). Since F is
periodic, the spatial average of ω is zero, and the inverse Laplacian of ω is properly
defined. Figure 4.4 shows snapshots of the ω and Trσ fields from a numerical
simulation of Eqs. (4.24) in the elastic-turbulence regime using a cellular forcing f =
−f0n[cos(nx) + cos(ny)] with n = 4 and f0 = 0.16. Note that Trσ is concentrated
over very thin regions, which is associated with large gradients in the polymer-
conformation-tensor field.

4.4. Estimating the Lyapunov dimension

It is possible to estimate the Lyapunov dimension of the Oldroyd-B model in
Eqs. (4.24) via the trace formula discussed in Sec. 4.2.2, which estimates the growth
rate of N -dimensional volumes in the space of the solutions (ω,σ). To use the trace
formula in Eq. (4.17) requires the methods of Refs. [22],[23],[25] and, in particular,
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(a)

(b)

Figure 4.4. Pseudocolor plot of : (a) ω and (b) log10 Trσ for Re =
Rec/

√
2, Wi = 20, β = 0.2 ; and a cellular forcing with n = 4 and

f0 = 0.16 (see Sec. 4.5 for the details).
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the L∞-estimates of Ref. [21]. These references will be cited during the crucial steps
of the calculation.

Denote by q = (ω,σ) a solution of system (4.24) and denote by δq = (δω, δσ)
the infinitesimal displacement about q in the solution space. As in Eq. (4.11) the
displacements δq satisfy the linearized set of equations from Eqs. (4.24):

d

dt
δq = A(t)δq =


−u · ∇δω +

1

Re
∆δω − δu · ∇ω +

β

Wi Re
ẑ · ∇× (∇ · δσ)

(∇δu)σ + σ(∇δu)> − δu · ∇σ − u · ∇δσ + · · ·
+(∇u)δσ + δσ(∇u)> − δσ

Wi
+

1

Pe
∆δσ

 ,

(4.25)

where the explicit form of the operator A(t) can be obtained by using u =∇⊥∆−1ω
to express u and δu in terms of ω and δω, respectively. Following the discussion
in Sec. 4.2, take different sets of initial conditions q(0) + δqi(0) which evolve into
q(t) + δqi(t) for i = 1, . . . , N . If they are chosen to be linearly independent, these
δqi form an N -dimensional parallelepiped of volume VN(t) which changes over time
as (see Eq. 4.16)

VN(t) = VN(0) exp {t 〈Tr [APN ]〉} , (4.26)

where, as before, 〈·〉 is the time average and PN is the L2-orthogonal projection onto
the finite dimensional subspace span {δq1, δq2, . . . , δqN}.

To estimate the Lyapunov dimension requires finding the value of N that turns
the sign of 〈Tr [APN ]〉. This value of N bounds above dL(A) as in inequality (4.4). In
elastic turbulence it is assumed that Pe � 1, Wi � 1 and 0 < Re < Rec, where Rec

is the critical value for the appearance of inertial instabilities in a flow. The whole
calculation is divided into three parts simply to allow the reader to pause after a series
of technical steps; some inequalities that will be used in the derivation are provided
in the appendix. The technical details may be skipped and the reader is redirected
to Eqs. (4.46a) and (4.46b) (Sec. 4.4.3), which give the sufficient conditions for N
so that the time average in Eq. (4.26) is negative.

4.4.1. Estimating the trace: Part I. The trace Tr [APN ] can be expressed
as (e.g. Refs. [22, 26, 66])

Tr [APN ] =
N∑
n=1

∫
Ω

Φn · AΦn dx, (4.27)

where {Φn}Nn=1 = {(φωn,φσn)}Nn=1 with (φσn)> = φσn is an orthonormal set spanning
the subspace generated by the displacements {(δωn, δσn)}Nn=1. The orthonormality
of {Φn}Nn=1 should be interpreted as follows :∫

Ω

φωmφ
ω
n dx+

∫
Ω

φσm : φσn dx = δmn, (4.28)

whence
N∑
n=1

∫
Ω

|Φn|2dx =
N∑
n=1

∫
Ω

(
|φωn|2 + |φσn|2

)
dx = N . (4.29)

The symbol ‘:’ denotes the inner product between matrices, σ : σ′ ≡ Tr[σ>σ′] and
where |φσn|2 = φσn : φσn =

∑
i,j |(φσn)ij|2. The following inequality (e.g. Ref. [66], see
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also inequality (4.52) in Appendix 4.7.1) will also be used when the norms of φωn,φ
σ
n

or of their gradients are estimated:

Θ ≡ Tr [−∆PN ] = −
N∑
n=1

∫
Ω

(
φωn∆φωn + φσn : ∆φσn

)
dx ≥ cN2, (4.30)

where c is henceforth regarded as a generic, positive, dimensionless constant. The
terms appearing in Eq. (4.27) can be explicitly listed as (the terms that follow from
u · ∇δω and u · ∇δσ vanish because of the incompressibility of u)

Tr [APN ] =
1

Re

N∑
n=1

∫
Ω

φωn∆φωn dx+
1

Pe

N∑
n=1

∫
Ω

φσn : ∆φσndx (4.31a)

−
N∑
n=1

∫
Ω

φωnvn · ∇ω dx−
N∑
n=1

∫
Ω

φσn : (vn · ∇σ) dx (4.31b)

+
β

Wi Re

N∑
n=1

∫
Ω

φωnẑ · (∇×∇ · φσn) dx− 1

Wi

N∑
n=1

∫
Ω

|φσn|2 dx (4.31c)

+
N∑
n=1

∫
Ω

φσn : [(∇vn)σ + σ(∇vn)>] dx (4.31d)

+
N∑
n=1

∫
Ω

φσn : [(∇u)φσn + φσn(∇u)>] dx, (4.31e)

where vn =∇⊥∆−1φωn. By using (4.30), the Laplacian terms in (4.31a) can be shown
to satisfy (under the assumption Pe > Re)

1

Re

N∑
n=1

∫
Ω

φωn∆φωn dx+
1

Pe

N∑
n=1

∫
Ω

φσn : ∆φσn dx ≤ − 1

Re
Θ . (4.32)

The advective terms (4.31b) are treated by using the result of Ref. [21] and its
subsequent use in Ref. [25] : i.e. a Cauchy–Schwarz inequality, an L∞ bound for
the terms involving vn (see inequality (4.53) in the appendix or Refs. [21, 25]), and
inequality (4.30)∣∣∣∣∣

N∑
n=1

∫
Ω

[
φωnvn · ∇ω + φσn : (vn · ∇σ)

]
dx

∣∣∣∣∣ ≤ c (1 + ln Θ)1/2Θ1/4(‖∇ω‖2 + ‖∇σ‖2) ,

(4.33)
where ‖ · ‖2

2 =
∫

Ω
| · |2dx and |∇σ|2 =

∑
i,j,k |∂kσij|2.

To estimate the feedback term in (4.31c), integration by parts, the Cauchy–
Schwarz inequality, the relations |∇× (φωnẑ)| = |∇φωn| and |∇ ·φσn|2 ≤ |∇φσn|2, and
inequality (4.30) are used:∣∣∣∣∣

N∑
n=1

∫
Ω

φωnẑ · (∇×∇ · φσn) dx

∣∣∣∣∣ ≤
N∑
n=1

∫
Ω

|∇φωn||∇φσn| dx ≤ Θ . (4.34)

The second term in (4.31c) satisfies

1

Wi

N∑
n=1

∫
Ω

|φσn|2dx =
b

Wi
, 0 < b < N ≤ cΘ1/2 . (4.35)



4.4. ESTIMATING THE LYAPUNOV DIMENSION 95

The stretching term that involves ∇vn in (4.31d) is first integrated by parts. The
Cauchy-Schwarz inequality is then applied twice to obtain∣∣∣∣∣
N∑
n=1

∫
Ω

φσn : [(∇vn)σ + σ(∇vn)>] dx

∣∣∣∣∣ ≤ 2
N∑
n=1

∫
Ω

(|φσn||∇σ||vn|+ |∇φσn||σ||vn|) dx.

The same techniques employed to get inequality (4.33) are used to obtain :∣∣∣∣∣
N∑
n=1

∫
Ω

φσn : [(∇vn)σ + σ(∇vn)>] dx

∣∣∣∣∣ ≤ c (1 + ln Θ)1/2
(
Θ1/2‖σ‖2 + Θ1/4‖∇σ‖2

)
.

(4.36)
The other stretching term (4.31e) is estimated by first applying the Cauchy–Schwarz
inequality and inequality (4.30) :∣∣∣∣∣

N∑
n=1

∫
Ω

φσn : [(∇u)φσn + φσn(∇u)>] dx

∣∣∣∣∣ ≤ 2‖∇u‖2

∣∣∣∣∣
∫

Ω

( N∑
n=1

|Φn|2
)2

dx

∣∣∣∣∣
1/2

.

Then note that in two dimensions ‖∇u‖2 = ‖ω‖2 and use the Lieb–Thirring inequal-
ity for the set of orthonormal functions {Φn}Nn=1 (see inequality (4.51) in appendix
4.7.1 or Ref.[23])∣∣∣∣∣

N∑
n=1

∫
Ω

φσn : [(∇u)φσn + φσn(∇u)>] dx

∣∣∣∣∣ ≤ c‖ω‖2Θ1/2 . (4.37)

Using (4.32)–(4.37), the trace Tr [APN ] can now be estimated in terms of Θ as follows

Tr [APN ] ≤
( β

Wi
− 1
) 1

Re
Θ− b

Wi
+ c(1 + ln Θ)1/2Θ1/2‖σ‖2

+c(1 + ln Θ)1/2Θ1/4 (‖∇σ‖2 + ‖∇ω‖2) + c‖ω‖2Θ1/2 . (4.38)

4.4.2. Estimating the trace: Part II. After estimating each of the terms in
(4.31), the goal is now to express the time average of the trace in terms of 〈Θ〉, which
from (4.30) will provide an estimate for the value ofN that makes the 〈Tr [APN ]〉 < 0.

In the third term in the right-hand side of inequality (4.38), it is useful to write
Θ1/2 = ΘaΘ1/2−a with 0 < a < 1/2. Taking the time average of inequality (4.38) and
applying the Cauchy–Schwarz and Hölder’s inequalities on the time variable yields

〈Tr [APN ]〉 ≤
( β

Wi
− 1
) 1

Re
〈Θ〉 − b

Wi
+ c〈‖ω‖2

2〉1/2〈Θ〉1/2

+c〈(1 + ln Θ)3/2Θ3a〉1/3〈Θ3(1/2−a)〉1/3〈‖σ‖3
2〉1/3

+c〈(1 + ln Θ)Θ1/2〉1/2
(
〈‖∇σ‖2

2〉1/2 + 〈‖∇ω‖2
2〉1/2

)
. (4.39)

The bound in (4.39) can be further improved by estimating 〈‖∇ω‖2
2〉. First multiply

Eq. (4.24a) by ω, integrate over space, and take the time average (noting that is
necessary to use the assumption that ‖ω‖2 is finite and hence 〈∂t‖ω‖2

2〉 = 0) :

1

Re
〈‖∇ω‖2

2〉 =
〈∫

Ω

ωẑ · ∇× F dx
〉

+
β

Wi Re

〈∫
Ω

ωẑ · ∇× (∇ · σ) dx
〉
. (4.40)
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Then integrate by parts and apply the Cauchy–Schwarz inequality, first in space and
then in time, to obtain

〈‖∇ω‖2
2〉1/2 ≤ Re‖F ‖2 +

β

Wi
〈‖∇σ‖2

2〉1/2. (4.41)

Moreover, Jensen’s inequality for concave functions (see inequality (4.54) in appendix
4.7.1) allows us to express (4.39) as a function of 〈Θ〉 :

〈Tr [APN ]〉 ≤
( β

Wi
− 1
) 1

Re
〈Θ〉 − b

Wi
+ c〈‖ω‖2

2〉1/2〈Θ〉1/2

+c(1 + ln〈Θ〉)1/2〈Θ〉1/2〈‖σ‖3
2〉1/3 + cRe(1 + ln〈Θ〉)1/2〈Θ〉1/4‖F ‖2

+c
(
1 + βWi−1

)
(1 + ln〈Θ〉)1/2〈Θ〉1/4〈‖∇σ‖2

2〉1/2. (4.42)

Note that for this last inequality to hold, a must be such that Θ3(1/2−a) and (1 +
ln Θ)3/2Θ3a are concave functions. The choice a = 1/5 guarantees that Θ3(1/2−a) is
concave for all values of Θ and (1+ln Θ)3/2Θ3a is concave for Θ > 5. This restriction
on Θ is justified since Θ ≥ cN2 and in elastic turbulence N is large. The trace
〈Tr [APN ]〉 is thus guaranteed to be negative if, by using Jensen’s inequality and
inequality (4.41), 〈Θ〉 satisfies(

1− β

Wi

)
〈Θ〉 ≥ cRe〈‖ω‖2

2〉1/2〈Θ〉1/2 + cRe2(1 + ln〈Θ〉)1/2〈Θ〉1/4‖F‖2

+cRe(1 + ln 〈Θ〉)1/2
{
〈Θ〉1/2〈‖σ‖3

2〉1/3

+
(
1 + β

1

Wi

)
〈Θ〉1/4〈‖∇σ‖2

2〉1/2
}
. (4.43)

4.4.3. Estimating the trace: Part III. The inequality (4.43) that must be
satisfied holds if (1 − βWi−1)〈Θ〉 ≈ 〈Θ〉 is greater than each of the terms in the
right hand side. While it may look daunting to handle five inequalities, many of the
terms will not contribute significantly in the elastic-turbulence regime. Under the
assumptions that 0 < Re < Rec and Wi � 1, it is easy to see that (1−βWi−1)〈Θ〉 ≈
〈Θ〉 is greater than each of the terms in the first line of (4.43). As ‖F ‖2 is independent
of Wi , 〈Θ〉 dominates the forcing term. In the elastic-turbulence regime of the
Oldroyd-B model, the kinetic-energy spectrum decays rapidly as a function of the
wave number [7, 8], and ‖ω‖2 is expected to be small as Wi increases. Therefore, 〈Θ〉
also controls the enstrophy term in (4.43) —this is confirmed numerically in Fig. 4.6.

The number of significant terms in (4.43) is thus reduced to two. Direct numerical
simulations of the Oldroyd-B model show that in elastic turbulence Trσ grows as Wi
increases and σ develops strong gradients [7, 8]. Therefore, both ‖σ‖2 and ‖∇σ‖2

are expected to increase with Wi . To analyze the σ- and ∇σ-terms in (4.43), it
is useful to note that for any M independent of 〈Θ〉1/2 and any 0 < λ < 3/2 the
following holds

〈Θ〉1/2 ≥ cM1/(2−λ)(1 + lnM)1/2(2−λ) =⇒ 〈Θ〉 ≥ cM〈Θ〉λ/2(1 + ln〈Θ〉)1/2. (4.44)

The proof is given in appendix 4.7.2. Here, this implication was used for λ = 1 for
the σ- term and λ = 1/2 for the∇σ- term. The inequalities below are thus sufficient
conditions for (4.43) to hold :

〈Θ〉1/2 > cRe〈‖σ‖3
2〉1/3

(
1 + ln Re + ln〈‖σ‖3

2〉1/3
)1/2

, (4.45a)
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〈Θ〉1/2 > cRe2/3〈‖∇σ‖2
2〉1/3

(
1 + ln Re + ln〈‖∇σ‖2

2〉1/2
)1/3

, (4.45b)

Since Θ ≥ cN2 (see inequality (4.30)), these can be converted into sufficient condi-
tions on N for the growth rate 〈Tr [APN ]〉 to be negative and the N -volume VN to
contract :

N > cRe〈‖σ‖3
2〉1/3

(
1 + ln Re + ln〈‖σ‖3

2〉1/3
)1/2

,

N > cRe2/3〈‖∇σ‖2
2〉1/3

(
1 + ln Re + ln〈‖∇σ‖2

2〉1/2
)1/3

,

(4.46a)

(4.46b)

where, again, ‖ · ‖2
2 =

∫
Ω
| · |2dx, |σ|2 =

∑
i,j |σij|2 and |∇σ|2 =

∑
i,j,k |∂kσij|2.

These conditions depend on estimates for 〈‖σ‖3
2〉 and 〈‖∇σ‖2

2〉. It has been shown
in Ref. [24] that these are at least exponential in time and thus cannot be used.
Until these bounds are improved, direct numerical simulations will be necessary to
find their behaviour in terms of Wi .

4.5. Direct numerical simulations of elastic turbulence

The conditions that the time average in Eq. (4.26) must satisfy (so that any
N -dimensional volume contracts) were reduced after a series of estimations to two
inequalities (4.46a) and (4.46b), which have terms that currently do not have prac-
tical analytical bounds. Direct numerical solutions will then be used to obtain es-
timates for the terms 〈‖σ‖3

2〉 and 〈‖∇σ‖2
2〉. These simulations were performed in

collaboration with A. Gupta.
The solutions of the Oldroyd-B model in Eqs. (4.24) are simulated using the

approach described in Refs. [40] and [41]. For the time integration, the fourth-
order Runge–Kutta scheme with timestep δt = 10−4 was used, while the fourth-
order central-finite-difference scheme with 10242 collocation points is employed for
the spatial derivatives. To accurately resolve the steep gradients of the polymer
conformation tensor σ, the Kurganov–Tadmor scheme was applied to the advection
term in Eq. (4.24b) [46] (see Ref. [76] for the application of this scheme to viscoelastic
fluids), which allows us to set Pe = ∞ in (4.24b). The velocity is calculated from
the vorticity via the Poisson equation ∆ψ = ω, where ψ is the stream function:
u = ∇⊥ψ. The pseudospectral method is used to solve the Poisson equation in
Fourier space. The simulations were performed on [0, 2π]2 and the solutions were
rescaled appropriately.

Three kinds of forcing are considered: a cellular forcing

f = −f0n[cos(nx) + cos(ny)]

with n = 4, a cellular forcing with n = 10, and a Kolmogorov forcing

f = −f0n cos(nx)

with n = 8 (see Fig. 4.4 for a snapshot of a simulation in the cellular flow in
the presence of polymers). In all simulations f0 is chosen so that the resulting Re
is below the critical Reynolds number Rec above which inertial instabilities occur,
in particular, Re = Rec/

√
2 (see also Sec. 5.2 for more details on the Kolmogorov

flow). Hence in the absence of polymers (β = 0) the stationary vorticity field shows
alternating vortices and antivortices for the cellular forcing and a parallel sinusoidal
flow for the Kolmogorov forcing. The parameter β is set to β = 0.2. A different
value of β simply rescales the value of Wi in the simulations. It was checked that in
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Figure 4.5. The kinetic-energy balance in wave-number space is
written: ∂tE(k) + T (k) = Tp(k) − 2νk2E(k) + F (k), where T (k) is
the energy transfer due to inertia, Tp(k) is the polymer contribution,
and F (k) is the forcing term. Tp(k) (red) and 2νk2E(k) (black) are
shown in the steady state for a Kolmogorov forcing (n = 8, f0 = 1.28)
and Re = 0.7Rec (see Fig. 4.6(c))

.

the elastic-turbulence regime, the kinetic-energy transfer due to the fluid inertia is
negligible, so the chaotic dynamics is entirely due to polymer stresses (see Fig. 4.5).

The numerical simulations show that 〈‖∇σ‖2
2〉1/3 is greater than 〈‖σ‖3

2〉1/3 and, at
large Wi , 〈‖∇σ‖2

2〉1/3 ∼Wiα with α ≈ 0.7 for the three different forcings considered
here (see Fig. 4.6 (a)–(c)). This result is in agreement with the observation of large
gradients in the polymer conformation field in Fig. 4.4 as well in previous numerical
simulations [7, 8]. It follows that the value of N such that N -volumes contract is
determined by inequality (4.46b). The conclusion is that in the elastic-turbulence
regime and under the specified assumptions, the two-dimensional Oldroyd-B model
has a finite-dimensional global attractor with Lyapunov dimension

dL(A) ≤ N , (4.47)

where N is the minimum value of N satisfying (4.46b). Thus, up to logarithmic
corrections,

dL(A) . cRe2/3〈‖∇σ‖2
2〉1/3 ∼ CWiα , (4.48)

where α ≈ 0.7 and C depends on Re. Further numerical simulations at smaller values
of Re = 0.35Rec indicate that α does not depend on Re. It is worth noting that since
‖∇σ‖ grows with Wi , inequality (4.46a) and (4.46b) implies that lower Re requires
higher Wi to obtain the same attractor dimension. This is in agreement with the
stability analysis of the Oldroyd-B model, according to which the critical Wi for the
appearance of elastic instabilities increases as Re decreases (e.g., Refs. [12, 47]).
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Figure 4.6. Plot of 〈‖ω‖2
2〉1/2 (black squares), 〈‖σ‖3

2〉1/3 (blue circles)
and 〈‖∇σ‖2

2〉1/3 (red triangles) as a function of Wi for Re = Rec/
√

2,
β = 0.2, and (a) cellular forcing with n = 4, f0 = 0.16, (b) cellular
forcing with n = 10, f0 = 2.50, (c) Kolmogorov forcing with n = 8,
f0 = 1.28; (d) Kinetic-energy spectrum for Wi = 20 for case (a) in
red, case (b) in blue and case (c) in black. The spectrum shows a
power-law behaviour E(k) ' k−a with a ≈ 3.1 for case (a), a ≈ 3.0 for
case (b) and a ≈ 3.7 for case (c).

4.6. Conclusions and perspectives

Through a mathematical and numerical analysis of the two-dimensional Oldroyd-
B model in the elastic-turbulence regime, a practical estimate of the dimension of
its (assumed) global attractor is provided. The estimate shows that the complex-
ity of the attractor is related to the formation of large gradients in the polymer
conformation field.

The asymptotic power-law dependence of dL(A) on Wi was found to be the same
for different forcings considered. The potential universality of the exponent α still
remains to be confirmed. Likewise the study assumed a periodic boundary condition.
It would be interesting to investigate if the exponent α depends on the forcing and
the boundary conditions.
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As mentioned in the introduction of this chapter, the main limitation of the
Oldroyd-B model is the absence of a maximum polymer elongation. Other constitu-
tive models of polymer solutions, such as the FENE-P model, overcome this limita-
tion by introducing in Eq. (4.21) a nonlinear elastic force f(R2) = (1−R2/Rmax)−1

that diverges when Trσ = R2 approaches the square of the maximum elongation
Rmax. Indeed, FENE-P stands for “finitely-extensible nonlinear elastic” dumbbell
model using the Peterlin approximation in the averaging over thermal noise (see
Refs. [41, 73] for the application of the FENE-P model to the study of elastic tur-
bulence). However, using a nonlinear elastic force does not prevent the formation of
large gradients in the σ-field [73]. In other words, large values of ∇σ seem to occur
independently of the form of the force that describes the elasticity of polymers. The
estimate (4.48) depends on ‖∇σ‖2 rather than ‖σ‖2. This fact suggests that even
if the estimate (4.48) is based on the Oldroyd-B model, it may also be relevant to
other constitutive models.

Our analysis can be adapted to the Oldroyd-B model coupled with the unsteady
Stokes equations,

∂tu = −∇p+
1

Re
∆u+

β

Wi Re
∇ · σ + F (4.49)

in which the u · ∇u term is set to zero. The estimates for N given in (4.46a) and
(4.46b) are unchanged. The Re = 0 case, in which (4.23a) is replaced with the Stokes
equations [72, 73],

0 = −∇p+
1

Re
∆u+

β

Wi Re
∇ · σ + F (4.50)

requires by contrast a separate mathematical analysis and a new set of numerical
simulations, because ω depends on σ via a time-independent differential relation and
the system (4.24) reduces to a dynamical system in the σ-space only.

Lastly, elastic turbulence is observed at low Re and high Wi . When both Re
and Wi are high, the addition of polymers to a two-dimensional turbulent flow sup-
presses large-scale velocity fluctuations [2]. This phenomenon is once again correctly
reproduced by the Oldroyd-B model [11]. Estimate (4.43), which gives a sufficient
condition for the contraction of N -volumes, holds for all values of Re. It would be
interesting to investigate the implications of this estimate for the attractor dimension
in the high-Re regime.

4.7. Appendices

4.7.1. Useful inequalities.
Lieb–Thirring inequality. The Lieb–Thirring inequality was used, for instance,

in inequality (4.37). It states that for orthonormal functions φi, n = 1, . . . , N in d
dimensions [26, 48] ∫

Ω

(
N∑
n=1

|φn|2
) d+2

d

dx ≤ c

N∑
n=1

∫
Ω

|∇φn|2 dx. (4.51)
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Inequality (4.30). The Lieb–Thirring inequality can also be used to prove the

inequality on the trace Tr [−∆PN ] in (4.30) by first using Cauchy–Scwarz inequality:

N2 =

[∫
Ω

N∑
n=1

|φn|2 dx

]2

≤

1 ·

∫
Ω

(
N∑
n=1

|φn|2
)2

dx

1/2


2

=

∫
Ω

(
N∑
n=1

|φn|2
)2

dx

Then by using the Lieb–Thirring inequality,

N2 ≤
∫

Ω

(
N∑
n=1

|φn|2
)2

dx ≤ c
N∑
n=1

∫
Ω

|∇φn|2 dx = cTr[−∆PN ] (4.52)

The reader is reminded that the constant c may differ from equation to equation.
L∞ estimate. The L∞ estimate for functions vn with orthonormal gradients and

defined over the periodic box [0, L]2 is [21]∥∥∥∥∥∑
n=1

|vn|2
∥∥∥∥∥
∞
≤ c

(
1 + ln

(
L2 Tr[−∆PN

])
. (4.53)

In this chapter, L = 1. A proof may be found in Refs. [21, 25].
Jensen’s inequality. Lastly, Jensen’s inequality for a concave function states that

for any function g and a concave function h defined on the domain Ω:

h

(
1

|Ω|

∫
Ω

g(x) dx

)
≥ 1

|Ω|

∫
Ω

h(g(x)) dx, (4.54)

where |Ω| =
∫

Ω
1 dx.

4.7.2. Proof of Statement (4.44). Here a proof of (4.44) is provided under
the assumption that N ≥ 4, which holds for a chaotic regime: for any 0 ≤ λ < 3/2
and expression M

N ≥ cM1/(2−λ)(1 + lnM)1/2(2−λ) =⇒ N 2 ≥ cMN λ(1 + lnN 2)1/2 (4.55)

Suppose, on the contrary, that

N 2 < cMN λ(1 + lnN 2)1/2, (4.56)

then

N 2(2−λ)

1 + lnN 2
< c2M2

(4− 2λ) lnN − ln(1 + 2 lnN ) < 2 ln |M|+ 2 ln c

3− 2λ

2
lnN 2 < 2 ln |M|+ 2 ln c

where the fact that lnN ≥ ln (1 + 2 lnN ) if N ≥ 4 was used. Then,

1 + lnN 2 <
4

3− 2λ
ln |M|+ 4

3− 2λ
ln c+ 1

1 + lnN 2 < c(1 + ln |M|) (4.57)

Putting Eqs. (4.56),(4.57) together, then

N 2 < cMN λ (1 + ln|M|)1/2 (4.58)
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which contradicts the left side of the implication in (4.55). The assumption (4.56) is
then invalid and the implication (4.55) holds.



CHAPTER 5

Emergence of chaos in a viscous solution of rodlike polymers

5.1. Introduction

In a laminar flow the dispersion of substances occurs by molecular diffusion, which
operates on extremely long time scales. Microfluidic flows, such as those used in bio-
chemistry, are typically laminar because of their small Reynolds number (Re) and
are thus ineffective in mixing. Various strategies have therefore been developed to
accelerate mixing and dispersion at low fluid inertia [57, 69, 70]. The available strate-
gies are commonly divided into two classes, passive or active, according to whether
the desired effect is obtained through the geometry of the device or through an os-
cillatory forcing within the device itself [70]. An alternative method for improving
the mixing properties of low-Reynolds-number flows was proposed by Groisman and
Steinberg [37] and uses elastic turbulence (see the introduction of Part II). The effec-
tiveness of this mixing method can be seen in Fig. 5.1, where in particular, the lower
left panel is a snapshot of a completely Newtonian fluid that did not mix whereas a
polymer solution exhibited mixing (right panel) under exactly the same set-up (see
Refs. [1, 18, 45, 62, 75] for other experiments using elastic turbulence to facilitate
mixing).

It is well-known that when the Reynolds number is large elastic- and rigid-
polymer solutions exhibit remarkably similar macroscopic behaviour (see, e.g., Refs.
[5, 34, 60, 77]). In both cases the turbulent drag is considerably reduced compared
to that of the solvent alone, according to a phenomenology that seems to depend
little on the microscopic structure of the solution. In particular, when either type
of polymer is added in sufficiently high concentrations to a turbulent channel flow
of a Newtonian fluid, the velocity profile continues to depend logarithmically on the
distance from the walls of the channel, but the mean velocity increases to a value
known as maximum-drag-reduction asymptote. It would then be valid to ask if the
similarity between elastic- and rigid-polymer solutions that is present in regimes at
high values of Re carries over to the low-Re regime, i.e. can chaos be generated at low
Reynolds numbers via the addition of rigid polymers? An affirmative answer to this
question would identify an alternative mechanism for generating chaos in low-inertia
polymer solutions that does not rely on elasticity.

Section 5.2 first revisits the model for rodlike polymer solutions that was used
by Benzi et al. [5] to numerically simulate drag reduction and then reintroduces the
Kolmogorov flow. Details on the numerical simulation of the coupled set of equations
describing the velocity and rigid polymers in a low-Re number regime is presented in
Sec. 5.3. The results presented in Sec. 5.4 reveal that the addition of rodlike polymers
produce a chaotic regime in an otherwise laminar flow. Concluding remarks on the
comparison of the chaotic regime to elastic turbulence and on possible extensions of
this work are then provided at the end.

103



104 5. EMERGENCE OF CHAOS IN A VISCOUS SOLUTION OF RODLIKE POLYMERS

Figure 5.1. (a) An experimental microfluidic set-up of curved rings
where two identical fluids (one is dyed) are injected before the curve
labeled 1. The depth of the channel is 3 mm, and the rings have an
inner radius of 3 mm and an outer radius of 6 mm. The snapshots
indicate the state of mixing of (b) a Newtonian fluid (65% saccharose
and 1% NaCl in water) and (c) a viscoelastic fluid polymer solution (80
ppm of polyacrylamide) with Wi = 6.7, both at Re = 0.16 and taken
at curve labeled 29. Further details are available in Ref. [37]. White
regions in (b) and (c) indicate the dyed fluid. Reprinted by permission
from Macmillan Publishers Ltd: Nature 410, 905, copyright (2001)
(Ref. [37]).

5.2. The model of rodlike-polymer solutions

To highlight the role of rigidity, consider a dilute solution of inertialess rodlike
polymers. The polymer phase is described by a symmetric unit-trace tensor field

Rij(x, t) = ninj, (5.1)

where n is the orientation of a rigid polymer and the average is taken over the
polymers contained in a volume element at position x. The evolution of n follows
Jeffery’s equation:

∂tni + uk∂kni = (δik − nink)∂luknl. (5.2)

The coupled evolution of the conformation tensor R(x, t) and the incompressible
velocity field u(x, t) is then given by the following equations [27, 64]:

∂tui + uk∂kui = −∂ip+ ν∂2ui + ∂kσik + fi , (5.3a)

∂tRij + uj∂jRij = (∂kui)Rkj +Rik(∂kuj)− 2Rij(∂luk)Rkl , (5.3b)

where ∂k = ∂/∂xk, p is pressure, ν is the kinematic viscosity, and f is a body-force.
The polymer stress tensor σ takes the form [27]:

σij = 6νηpRij(∂luk)Rkl, (5.4)

where ηp is proportional to the polymer concentration (the definition of ηp here is
a factor of the ηp in Ref. [6]). Its value determines the amplitude of the polymer
feedback on the flow. First note that the differences of Eqs. (5.3) to that of the
Oldroyd-B model in Eqs. (4.23) stem even from how the end-to-end orientation vector
n is modeled from that in Eq. (4.21). To remind the reader of this difference, the

www.nature.com
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notationR is instead used for the conformation tensor of rigid rods. Also, Eqs. (5.3)
and (5.4) are based on a quadratic approximation proposed by Doi and Edwards
[27]. More sophisticated closures have been used in the literature (see e.g. Ref. [52]
and references therein); here, the simplest model that may display instabilities at
low Reynolds (Re) number is considered. Indeed, such a handy approximation did
not prevent this model from exhibiting drag reduction [5]. In addition, the rotational
diffusion of polymers is disregarded to ensure that any instability originates from the
presence of polymers alone.

For large values of the Re, the system described by Eqs. (5.3) has been shown
to reproduce the main features of drag reduction in turbulent solutions of rodlike
polymers [5, 6, 64]. Here, the same system is studied but at small values of the
Reynolds number. Equations (5.3) are solved over a two-dimensional 2π-periodic
box and f is taken to be the Kolmogorov force

f =
(

0, F sin
(x
L

))
, (5.5)

where L gives the scale of the forcing. In the absence of polymers (ηp = 0) the flow
has the laminar solution

u =
(

0, U0 sin
(x
L

))
(5.6)

with U0 = FL2/ν, which becomes unstable when Re = U0L/ν exceeeds the critical
value Rec =

√
2 and turbulent when Re is further increased [54]. Even in the

turbulent regime, the mean flow has the sinusoidal form

〈u〉 =
(

0, U sin
(x
L

))
, (5.7)

where 〈·〉 denotes an average over the variable y and over time.
The Kolmogorov force has been previously used in the context of non-Newtonian

fluid dynamics to theoretically and numerically study turbulent drag reduction [13],
the formation of low-Re instabilities in viscoelastic [9, 12] and rheopectic flows [14],
and in elastic turbulence [7, 8]. In these studies, there is an extra stress tensor in
the evolution of the flow field that couples it to the evolution of the conformation
tensor, as in Eq. (5.3a). In the presence of elastic Oldroyd-B polymers, a non-
trivial stability diagram on the Re-Wi phase space was drawn (as in Chap. 4, Wi
is the Weissenberg number); increasing Wi and keeping Re < Rec induces elastic
instabilities [12]. Moreover, the resulting mean flow remains sinusoidal both in the
elastic turbulence and in the drag reduction regime [7, 8, 9]. There is, at present, no
reason to expect that the mean flow will remain sinusoidal in the presence of rodlike
polymers—this assumption is confirmed in the simulations described below.

Under the action of the forcing (5.5) and decoupling the polymer feedback (ηp =
0) results to a sinusoidal laminar flow as in Eq. (5.7); the conformation tensor at
equilibrium is

R =

(
0 0
0 1

)
, (5.8)

which was derived by setting the time derivative in Eq. (5.3b) to zero and keeping
the mean dimensionless length of the rods at 1.
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(a) (b)

Figure 5.2. (a) Snapshot of the vorticity field ω for polymer concen-
tration ηp = 3 and forcing scale L = 1/8. Black (white) represents
regions of negative (positive) vorticity. (b) Snapshot of the component
R11 of the conformation tensor R corresponding to the vorticity field.
Black represents one, white represents zero.

5.3. Numerical simulations

To see if a chaotic regime manifests in a polymer solution of rigid rods, numerical
simulations of Eqs. (5.3) with a Kolmogorov forcing (5.5) are then performed by using
a dealiased pseudospectral method with 10242 gridpoints. The time-integration uses
a fourth-order Runge-Kutta method with timestep dt = 10−5 or smaller—the stiffness
of the equations indeed increases with ηp. The viscosity is set to ν = 1, the length
scale of the forcing is either L = 1/4 or L = 1/8, and F is chosen so as to keep
Re = 1 fixed below Rec in the absence of rods, i.e. a stable laminar flow results if
ηp = 0. The feedback coefficient is varied from ηp = 1 to ηp = 5 to explore the effect
of polymer concentration on the stability of the flow. Initially, the flow is a weak
perturbation of the ηp = 0 stable solution, while the components of the conformation
tensorR are randomly distributed. The latter permits a shorter transient than from
the stable configuration of the ηp = 0 case (see Eq. (5.8)), in which all polymers are
aligned with the shear direction.

An inspection of the vorticity field ω = |∇× u| reveals that the flow is strongly
modified by the presence of the rods (see Fig. 5.2(a)). The streamlines wiggle over
time and thin filaments form. These filaments correspond to appreciable localized
perturbations of the tensor R away from the laminar fixed point (see Fig. 5.2(b))
and are due to the rods being unaligned with the shear direction. A movie showing
the vorticity during the transition from a quasiperiodic state to a chaotic regime with
ηp = 3 and L = 1/4 is available at http://math.unice.fr/~elcplan/transition.
gif. In the movie, black (white) represents negative (positive) vorticity.

5.4. Analysis

To quantify the effect of the rods on the flow and see if they induce forces similar
to the elastic forces in the case of viscoelastic solutions, the amount of polymer stress

http://math.unice.fr/~elcplan/transition.gif
http://math.unice.fr/~elcplan/transition.gif


5.4. ANALYSIS 107

−1

−0.5

0

0.5

1

0 π/2 π 3π/2 2π

x

Figure 5.3. Profiles of Reynolds stress Πr (brown, solid), viscous
stress Πν (blue, dotted), and polymer stress Πp (red, dashed), divided
by the amplitude of the total stress Πtot for L = 1/4 and ηp = 3.

ηp L Πr/Πtot Πν/Πtot Πp/Πtot

1 1/8 0.001 0.996 0.004
2 1/8 0.004 0.887 0.110
3 1/4 0.005 0.787 0.209
3 1/8 0.005 0.795 0.200
4 1/8 0.007 0.710 0.284
5 1/8 0.006 0.647 0.347

Table 5.1. The stresses Πr, Πν , and Πp divided by the total stress
Πtot for different values of the concentration ηp and forcing scale L.

contribution is calculated and compared to the viscous stress. In the steady state
the momentum budget can be obtained by averaging Eq. (5.3a) over y and time:

∂xΠr = ∂x(Πν + Πp) + fy, (5.9)

where Πr = 〈uxuy〉, Πν = ν∂x〈uy〉, and Πp = 〈σxy〉 are the Reynolds, viscous, and
polymer stress, respectively. Remarkably these profiles were found to be sinusoidal
as in the ηp = 0 case, namely Πr = −S cos(x/L), Πν = νUL−1 cos(x/L) and Πp =
Σ cos(x/L) (see Fig. 5.3). Equation (5.9) then yields the following relation between
the amplitudes S, U and Σ of the different contributions to the stress:

S +
νU

L
+ Σ = FL. (5.10)

The contributions for different values of the concentration ηp are given in Table
5.1 and the inset of Fig. 5.4. The results confirm that the polymer contribution
to the total stress increases with ηp whereas that of the viscous stress decreases.
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Figure 5.4. The normalized mean power injected P/Plam as a func-
tion of ηp. Inset: The amplitudes of the stresses Πr (brown �), Πν

(blue •), and Πp (red ×) divided by the amplitude of the total stress
Πtot for L = 1/8 and different values of ηp (see Table 5.1).

The contribution of the Reynolds stress is extremely small (less than 10−2), which
demonstrates that inertial effects remain negligible as ηp is increased.

That this increase in the polymer contribution to the stress translates to a chaotic
regime remains to be verified: one can check if the injection of polymers generates
an increase in the flow resistance, which can be quantified by calculating the mean
power P = 〈f · u〉 = FU/2 needed to maintain a mean flow U (〈·〉 now denotes a
space-time average). In the absence of polymers, the force required to obtain the
same mean flow would be F0 = νU/L2 and the corresponding mean power would be
Plam = F0U/2. Figure 5.4 shows the ratio

P

Plam

=
F

F0

=
FL2

νU
(5.11)

as a function of ηp and confirms that more power is required to keep the mean flow
fixed in solutions with higher concentrations.

An alternative way to demonstrate the increase in the flow resistance is to keep
the forcing fixed and compare the kinetic energies. The time series of the kinetic
energy in Fig. 5.5 show that, in the case of a low concentration (ηp = 1), the
system repetitively attempts but fails to escape the laminar regime in a quasiperiodic
manner. The amount of kinetic energy is initially close to that in the laminar regime.
After some time, the solution dissipates a small fraction of kinetic energy but quickly
relaxes back towards the laminar regime until it restarts this cyclic pattern. In
contrast, for higher concentrations the kinetic energy is significantly reduced and,
after an initial transient, it fluctuates chaotically around a constant value. It was
observed that using a different initial condition for the conformation tensor R may
give rise to longer transients that involve a quasiperiodic sequence of activations and
relaxations comparable to that observed for low values of ηp. The statistical steady
state achieved at later times is nevertheless independent of any particular choice of
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dash-dotted) and ηp = 5 (magenta, solid) divided by the kinetic energy
E0 = F 2L4/2ν2 corresponding to ηp = 0 and with the same value of
the force F = 512 and forcing scale L = 1/8.

initial conditions. Figures 5.4 and 5.5 furthermore suggest the presence of a threshold
concentration for the appearance of chaotic fluctuations.

Further insight into the apparent chaotic regime is gained by examining the
kinetic-energy spectrum. For sufficiently large values of ηp, the spectrum behaves as
a power law E(k) ∼ k−α, where the exponent depends both on the scale of the force
and on the concentration and varies between 4 and 5 (see Fig. 5.6). Therefore a
wide range of scales is activated and these results in an enhancement of the mixing
properties of the flow. Furthermore, the energy transfer due to the fluid inertia is
negligible, and the dynamics is characterized by a scale-by-scale balance between the
polymer energy transfer and viscous dissipation (inset of Fig. 5.6).

5.5. Concluding remarks and perspectives

The chaotic regime described here has properties comparable to those of elastic
turbulence in viscoelastic fluids, inasmuch as the flow resistance is increased with
the addition of rods and the kinetic-energy spectrum displays a power-law steeper
than k−3. In addition the Reynolds stress and the energy transfer due to the fluid
inertia are negligible; hence the emergence of chaos is entirely attributable to polymer
stresses.

This chapter establishes an analogy between the behaviour of viscoelastic fluids
and that of solutions of rodlike polymers at low Re, similar to what is observed at
high Re number. This demonstrates that elasticity is not essential to generate a
chaotic dynamics at low inertia. The results therefore show that a chaotic behaviour
at low Re can also be observed in fluids that are not viscoelastic. These results
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Figure 5.6. The kinetic energy spectrum E(k) for L = 1/4, ηp = 3
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suggest an alternative mechanism to enhance mixing in microfluidic devices that
presumably has the benefit of being less affected by the degradation observed in
elastic turbulence [38]. Indeed, there are experimental evidences that for rodlike
polymers the degradation due to large strains is weaker than for elastic polymers
[61].

It is hoped that these results will stimulate experimental studies on the dynam-
ics of rodlike polymer solutions at low Re. Open questions concern the dependence
of the mixing properties of these solutions on the type of force and on the bound-
ary conditions. Experimental and numerical results of elastic turbulence indicate a
power law with exponent between −3 and −4 [7, 8, 44], which is less steep than
the power law observed here (between −4 and −5). It would then be informative to
further quantify similarities and differences between the instabilities in rigid polymer
solutions and those in viscoelastic solutions, for instance, to check if the slope of the
power law is significantly different, if stability diagram of the Re−ηp space is similar
to that in Ref. [12], or if the degrees of chaoticity (quantified via the Lyapunov expo-
nents) in the rigid polymer solutions compare to those in viscoelastic cases. Lastly,
the orientation and rotation statistics of microscopic rods in turbulent flows has re-
cently attracted a lot of attention [28, 39, 42, 59, 65, 78]; it would be interesting to
investigate the dynamics of individual rods in the flow regime studied in this chapter.
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