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Abstract

Composite materials are more and more important in the industry community.
For the identification of the heterogeneous and anisotropic mechanical behavior of
some composite, the full-field measurements are widespread in the mechanics com-
munity, because they can offer a very rich information of displacement or strain
to exploit heterogeneous tests. During last thirty years, some specific inverse iden-
tification strategies have been proposed but most of these methods consider the
identification problem only on the measured area and would usually need boundary
conditions to be performed. However, the boundary conditions are not always com-
pletely known and might not be on the measurement zone. There is hence a need
of identification methods allowing both the identification over the whole specimen
and the dealing of missing boundary conditions. The Modified Constitutive Relation
Error (M-CRE) allows dealing with such situations through the taking into account
of the whole available information from a theoretical and experimental point of view
without additional assumption.

For the identification of elastic properties, a first mono-scale strategy has been
proposed and actually used to process different types of boundary conditions as well
as their absence. Considering the identification of heterogeneous elastic properties,
the lack of information outside the measurement zone prevents from identifying het-
erogeneous properties in this area. It leads us to propose a multi-scale approach
where micro heterogeneous properties are sought at the measurement level and
macro homogeneous ones at the specimen level.

Key Words : Inverse identification, Modified Constitutive Relation Error,
Multi-scale, Composites.
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Resumé

Les matériaux composites sont de plus en plus important dans la commu-
nauté de l’industrie. Pour l’identification du comportement mécanique anisotrope
et hétérogène de certains composite, les mesures de champs cinématiques sont ré-
pandues dans la communauté mécanique, parce qu’elles offrent de riches informa-
tions en déplacement ou déformation permettant d’exploiter des essais hétérogènes.
Dans les dernières années, certaines identification inverses spécifiques ont été pro-
posées, mais certains de ces méthodes ne considèrent le problème d’identification que
sur la zone de mesure ou ont généralement besoin de conditions limites pour être
mises en oeuvre. Cependant, mener l’identification sur l’ensemble de l’éprouvette
(au-delà de la zone de mesure) offre la possibilité de tenir compte d’information
de conditions limites supplémentaire, même si dans le même temps, cela amène à
traiter d’autres bords sous conditions limites. L’Erreur en Relation de Comporte-
ment Modifiée (ERC-M) permet de traiter ce type de cas en prendant en compte
l’ensemble des informations disponibles d’un point de vue théorique et expérimental
sans hypothèse supplémentaire.

Pour l’identification des propriétés élastiques, une première stratégie mono-
échelle a été proposée et permet effectivement de traiter les differents types de
conditions limites ainsi que leur absence. Pour un matériau hétérogène, les mesures
ne sont pas assez riches pour permettre l’identification des propriétés élastiques
hétérogènes en dehors de la zone de mesure. Une approche multi-échelle est donc
proposée permettant de tenir compte de toute l’éprouvette, dans laquelle des pro-
priétes micros hétérogènes sont recherchées sur la zone de mesure et des propriétes
macros homogènes sur l’ensemble du domaine.

Mots Clés : Identification inverse, Erreur en Relation de Comportement Mod-
ifiée, Multi-échelle, Composites.
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Chapter 1

Introduction

Contents

1.1 Background and Purpose . . . . . . . . . . . . . . . . . . . 1

1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Background and Purpose

Composite materials have been used since several hundred years before Christ.
Not only natural composites are used directly, like wood, bamboo, organic materials,
tissue and minerals, but also man-made composites are applied, for example, ancient
Pharaohs made their slaves use bricks with straw to enhance the structural integrity
of their buildings. During the last few decades, new composites have rapidly spread
from glass fiber for automobile bodies to more specific composites for aerospace
and a range of other applications. The main impetus for the growth of composite
materials is that the properties are superior to those of the individual components
in some specific respects. Sometimes, in order to introduce the high stiffness and
strength in some direction where it is really required, we need highly anisotropic
and heterogeneous composites. Moreover, composites can form the heterogeneous
structures which meet the requirements of specific design and function. Thus,
composite materials enter more and more into the composition of mechanical parts,
and they are now used for critical structures parts (e.g., A350, wind turbine blade,
lifeboat, automotive, etc.), so they require efficient and effective methodology for
characterization. Therefore, their characterization takes a great deal of interest in
the mechanics community.

In the field of materials characterization, experimental tests are necessary in
three main aspects: validate the theoretical behavior models; explore the material
response under various stress states; detect the material response in critical operating
ranges. In practice, most of the mechanical parts are subjected to heterogeneous
stress fields during their life cycle. Firstly, they may be subjected to a complex

1



2 CHAPTER 1. INTRODUCTION

loading. Secondly, it may be introduced by their geometry, necessary for the
assembly of a structure. Such complex heterogeneous loadings or geometries will
introduce many difficulties in the characterization process. For example, in the
simple case of static, not only will there be the stress concentration phenomena, but
also the knowledge of stress distribution will be imperfect. It is therefore necessary
to improve knowledge of these composite materials, in particular under the service
loading status.

We should note that "heterogeneity" of certain materials will depend on the
desired scale of observation and is more pronounced when the scale decreases. In the
specific conditions of use, we would like to identify the property fields which reflect
the space-dependent appearance of these materials, rather than the homogenized
modules. The need to access to detailed data stimulates the use of appropriate
measurement means and the development of suitable characterization techniques.
This is the case of contact-less tracking technologies, such as full-field measurements
[5], which open up new prospects for the identification of mechanical properties.

Taking advantage of full-field measurements, it also implies to develop or adapt
new identification strategies. The overall goal is to optimally exploit a large amount
of measurement data to identify constitutive parameters. Such approach is often
referred as inverse approach. Some specific methods of inverse approach dedicated
to full-field measurements have been proposed during the last thirty years [42], but
most of these methods consider the identification problem only on the measured area
or would usually need boundary conditions to be performed. However, the boundary
conditions are not always completely known. Furthermore, even if they are known
(e.g. free edge), they might not be on the boundary of the measurement zone.
There is hence a need of identification methods allowing both the identification over
the whole specimen, and the dealing of missing boundary condition. The Modified
Constitutive Relation Error (M-CRE) as proposed in this dissertation is a good
method to identify static elastic properties, which allows to deal with such situations
through the taking into account of the whole available information from a theoretical
and experimental point of view.

Furthermore, considering the identification of heterogeneous elastic properties,
the lack of information outside the measurement zone prevents from identifying
heterogeneous properties in this area. However, in the usual experiment cases,
the measurement zone is only a sub-part of the specimen. If we use the mono-
scale approach, we can only identify the local heterogeneous properties of the
measurement zone. It is obvious that the scale of description of behavior needs to
be compatible not only with the measurement means, but also with the computing
means. Hence, a multi-scale approach is proposed to account for any specimen where



1.2. STRUCTURE 3

micro heterogeneous properties are sought at the measurement level and macro
homogeneous ones at the specimen level. The M-CRE is a suitable framework to
achieve such a multi-scale identification.

1.2 Structure

The work is presented according to the following organization:
• The second chapter presents the general context of the study. The significance

of our work is explained by introducing the need of identification of hetero-
geneous and anisotropic composite materials. Various full-field measurements
techniques and inverse approaches for identification are presented and com-
pared to illustrate the reasons for selecting M-CRE.
• An identification strategy is introduced in the third chapter, which is dedicated

to full-field displacement measurements based on the M-CRE developed in our
work. A theoretical presentation of the mono-scale approach in the context of
static elasticity is explained in detail. The formulations with various boundary
conditions are also presented.
• In the forth chapter, the mono-scale approach is tested and validated on

different numerical examples with disturbed measurements. The illustrating
examples also show how to balance between the various possible experimental
information so that the inverse problem is well-posed. The results confirm the
effectiveness and robustness of the proposed strategy.
• The fifth chapter introduces a multi-scale identification strategy based on the

M-CRE. Two coupling schemes are proposed to combine the displacement and
stress fields at both the micro and the macro scales. The details of how to
identify the global homogeneous properties of the whole specimen and the local
heterogeneous properties of the sub-part measurement zone are discussed in
this chapter.
• Some numerical applications of the multi-scale approach are presented in the

sixth chapter. Two steps of validation of this method are clearly illustrated by
the examples. Different types of loading experiments are considered to show
the wide use of our method.
• Some conclusions are given in the seventh chapter.
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2.1 Definition and classification of composite mate-

rials

Composite material is a material made from several different substances in
general. However, there is no really adequate definition of a composite material.
In order to use in structural applications here, an acceptable composite material
should include the following two main points in the definition:

(1) It consists of two or more physically distinct and mechanically separable
materials;

(2) The properties are superior to the properties of the individual components,
and possibly unique in some specific respects.

The second point provides the main motive power to develop the composite
material. For example, fibers have very high strength and modulus but they are
usually very brittle. Plastics have low strength but they may be ductile and have
considerable resistance to some chemical environments. By combining fibers and
plastics, it can produce a new material with a strength and stiffness close to that of
the fibers and with the chemical resistance of the plastic. Moreover, it is possible to
obtain an ability to absorb energy during deformation or some resistance to crack

5
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propagation [1]. In this example, the fiber is denoted as reinforcement, and the
plastic is denoted as matrix.

Composite materials have been classified in many ways depending on the ideas
and concepts that need to be identified. One of the common classifications includes
three large families: natural composite materials, micro-composite materials and
macro-composite engineering products. Since the purpose of our identification is
concerned primarily with micro-composite materials, a more relevant classification
(Table 2.1) is based on the size, shape, and distribution of the two or more phases
in the composite [1].

Shape Distribution
(1) continuous fibers aligned, random
(2) short fibers aligned, random
(3) particulates random
(4) dispersion strengthened with particle size < 10−8 random
(5) lamellar structures aligned
(6) skeletal or interpenetrating networks multi-distribution
(7) multi-component, fibers, particles multi-distribution

Table 2.1: Classification of micro-composite materials

There has been a rapid development in the use of fiber reinforced materials in
various kinds of applications. For example, for automotive, fiber reinforced materials
can be used in body parts, front-end panels, drive shafts, bumpers and so on.
Another application is in aircraft, such materials can be used in fuselages, wings,
landing gear, helicopter blades and so on. The composite materials described in this
dissertation are concerned primarily with fiber reinforced materials.

Young’s Tensile Specific Specific
Material Density modulus strength Young’s modulus tensile strength

(Mg m−3) (GN m−2) (MN m−2) (N m)/Kg (N m)/g
High strength
Al-Zn-Mg alloy 2.80 72 503 25.7 180

Quenched and tempered
low alloy steel 7.85 207 2050-600 26.4 261-76

Carbon fiber-epoxy resin
unidirectional laminae (Vf=0.60)

(i) parallel to fibers 1.62 220 1400 135 865
(ii) perpendicular to fibers 1.62 7 38 4.32 23.46
Glass fiber-polyester resin

unidirectional laminae (Vf=0.50)
(i) parallel to fibers 1.93 38 750 19.7 390

(ii) perpendicular to fibers 1.93 10 22 5.18 11.40
Glass fiber-polyester resin

planar random fibers (Vf=0.20) 1.55 8.5 110 5.5 71

Table 2.2: Comparison of some typical values of the properties of engineering materials at
20 0C (Vf is the volume fraction of fibers) [1]

From Table 2.2, we can find that if fiber reinforced composite materials are
compared to the traditional metals, they do not have a clear advantage on the
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basis of strength and stiffness alone. Their main advantages are considered on the
modulus per unit weight (specific modulus) and the strength per unit weight (specific
strength). The higher specific modulus and specific strength means that the weight
of components can be reduced. Reduction of weight means greater efficiency and
energy saving. That is why the rapid growth of composite materials application
focuses on the moving components, especially in all forms of transport.

On the other hand, Table 2.2 shows that there is a great difference of properties
between different fiber directions (parallel or perpendicular). Since some of the fiber
reinforced composite materials are highly anisotropic and heterogeneous, it may be
either a serious limitation in some application, or a source of outstanding advantages,
because it can introduce a product in specific direction where the high stiffness and
strength is really required.

From the above remarks, the properties of composite materials are very
complex. The components own properties, the volume fractions of components,
the directions of reinforcement, the interfaces properties and the manufacturing
route and processes have their effects on the final properties of composite materials
because of the microstructure and internal stress. In order to apply the composite
materials to engineering and structural products, it is very important to identify
their final properties.

2.2 Measurement and identification

2.2.1 Conventional techniques

Because the composite materials properties depend on many factors, it is
generally difficult to find these exact properties in tables or databases. Sometimes
reasonable values can be found using micro-mechanical models or using the data
given by composite materials suppliers, but generally the safest way to establish
the properties is to measure them experimentally on test specimens [2]. This
is more challenging for fiber reinforced materials because unlike homogeneous
(independent of position) and isotropic (the same in every direction) metals and
ceramics the material properties change from specimen to specimen. Heterogeneous
and anisotropic properties of composite materials add another difficulty in the
measurement technique, since heterogeneity and anisotropy increase the number
of independent material constants.

For the anisotropic elastic properties, a mature laminate theory has been
developed. This theory is used to calculate the elastic properties of laminates from
the properties, orientation and distribution of individual laminae. Full descriptions
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of this theory can be found in many books. One of the most straightforward
accounts is given by R.M. Jones [3] which makes extensive use of an earlier book by
Ashton, Halpin and Petit [4]. It is useful for the simple case of composite laminates,
such as unidirectional lamina. However, the calculation becomes more complex
and time-consuming with complex-directional laminates. Another limitation is the
assumption of homogeneity. Only the averaged apparent mechanical properties are
obtained.

In the other conventional technique using strain gauge, the unknown parameters
are provided directly by a simple relationship between applied load and local
strain measurements. However, it is difficult to acquire such pure states of stress
and strain in composite materials due to their anisotropy and heterogeneity at
different scales. On the other side, the final mechanical properties of composite
are effected by the manufacturing conditions, but we cannot take out test samples
from large industrial structures. These are the reasons why an increasing interest
is found in methods which allow the identification of constitutive parameters from
heterogeneous stress/strain fields. There are two main problems: firstly, how to get
rich measurement information, and secondly, how to treat the indirect relationship
between rich measurement information and unknown parameters. The solutions of
these two problems are introduced and described in the following sections.

2.2.2 Full-field measurements

In the middle of the 20th century, experimental methods in solid mechanics
focused on point-wise measurements for quantitative data. The lack of information
between measurement points, led to a measured response representing an averaged
overall material response. In this case, the identification of the material behavior
was usually limited to homogeneous materials undergoing uniform strain or at least
well controlled strain. In the late 20th century, the development of full-field mea-
surements, a field record of a quantity (displacement, strain, density, temperature),
offered a rich information allowing to take into consideration heterogeneous tests
in terms of stress for the characterization of material behavior. The source of
heterogeneity of the test can come from the material itself, the geometry of the
specimen or the loading. Since the features of composites are heterogeneous at
different scales, full-field measurements are very attractive to composites material
characterization.

Grédiac reviews different kinds of full-field techniques which are proposed and
used in composite material characterization in [5]. Most of the techniques are for
displacement field measurements. Here, two main categories are introduced: (1)
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Non-interferometric methods—the measurand is encoded in the spatial variation
of light intensity, for example, speckle [6], grid method [7] and image correlation
[8]); (2) Interferometric methods—the nature of interference is a beat phenomenon
between two periodic signals of same frequency, which is useful to obtain phase
variation information, such as speckle interferometry [9] and moiré interferometry
[10]). The main features and applications are discussed below.

The self interference of many random coherent waves scattered from a rough
object surface or propagated through a medium of random refractive index
fluctuations results in a granular structure known as speckle pattern [11]. Speckle
patterns carry information about the surface under investigation, because the
position and the irradiance of pattern will be changed when the surface undergoes
changes. We call the technique which monitors the positional changes of the speckle
patterns as speckle photography. The attractiveness of speckle photography lies
in the ability to measure large and out-of-plane displacements [5], and also in the
simplicity of the optical setups. However, it needs coherent light produced by laser
or specific optical device, which requires highly stable environment.

The grid method has a very simple basic principle [12]: a geometric grid is
affixed to a substrate, and the local displacements will modulate the phase of the
grid acting as a periodic carrier. It is useful to measure the in-plane displacement.
This particular techniques is relatively easy to implement and the quality of phase
detection algorithms provides an excellent measurement resolution [13]. Its main
drawback is the required surface preparation.

Compared to speckle photography, when the deformations are smaller than the
speckle size, speckle interferometry is a suitable measurement technique. Speckle
interferometry can be defined as the set of techniques that aim to create, record and
take advantage of a two-beam interference pattern involving at least one speckle wave
[14]. The displacement field is obtained by correlation of two speckle patterns: before
and after object displacement. Neither grating nor smooth surface are necessary,
because this method needs surface to scatter light. The advantage of speckle
interferometry is the increase of sensitivity. However, due to its high sensitivity,
the method is susceptible to environmental disturbances.

Geometric moiré is an effect superimposed over the grid technique, modifying
the spectral information delivered by the technique. It is the nonlinear effect of
beating between two patterns whose spatial frequencies are close to each other
[15]. Based on the same physical phenomenon as the above geometric moiré, moiré
interferometry can observe much greater grating frequency, so that the moiré method
is extended to submicron level [10]. Moiré interferometry can also measure out-of-
plane displacement [16].
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However, all of the above methods have two major limitation [17]: firstly, they
have varying stability requirements, especially limit the interferometric methods
applicability to research environments; secondly, the data processing required to
reduce the fringe patterns and thereby obtain the desired data is laborious and time
consuming for the above methods. At the same time, the rapid growth of computer
technology that spurred continued growth of computational methods also provided
the foundation for the explosion of growth in vision-based full-field experimental
measurement method. Digital image correlation (DIC), which appeared in the early
1980s [18][19], is one of the new vision-based full-field measurement. The details of
DIC are discussed in the following section.

2.2.3 Digital Image Correlation

Different from the above methods, DIC is popular thanks to its relative
simplicity: (1) Neither laser nor specific optical device are required, because it use
incoherent white light; (2) It is rather simple to prepare the surface of the specimen;
(3) By matching different zones of two images captured before and after loading,
the displacements are easily obtained. This straightforward measurement method
is well suited to analyze the specific mechanical properties of composite materials
because of their anisotropic and heterogeneous nature.

In the early 1980s, Peter and Ranson started the correlation method of digital
images. They proposed an approach for conversion of digitized ultra-sound
images into estimates for local surface displacements by employing continuum-based
matching principles [20]. In the following years, several improvements have been
made, such as, the sub-pixel detection algorithm based on interpolation of the
movement [8], and non-linear least squares approaches using first-order gradients
in a matching function to obtain local displacements. Later, Chu presented several
experiments to demonstrate the viability of the correlation method in experimental
mechanics [17]. He used a DAGE MTI analog camera to record images of a speckle
pattern and demonstrated conclusively that the method could be used to measure
deformations. In order to extend the DIC technique to calculate the displacement
gradient terms, Bruck developed a method which can determine displacements and
gradients using the Newton-Raphson method of partial corrections [21]. More and
more applications of DIC were proposed, for instant, Chen combined the Fast
Fourier Transform (FFT) to determine the movements proved fast and accurate
for small planar deformation [22]. On the other hand, for the analysis of very large
deformations, Hild presented the work of an evolution of image processing by the
correlation analysis using a new multi-scale approach [23]. At the same time, the
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vision system of DIC has been developed to stereo-vision system. Luo verified the
ability of stereo-vision system to make local strain and deformation measurements in
cracked material [24]. Three years later, Helm demonstrated a robust stereo-vision
system could be used on full-scale aero-structures as well as on laboratory-scale
specimens [25]. Finally, Bay extended 2D and 3D methods to volumetric images.
He performed DIC on volumetric elements on the interior of a material [26].

The general scheme of DIC is that a video camera observes an object and the
image is digitized and sent to a computer. Within the computer, numerical schemes
utilize the basic theory of deformation as a mapping [8]. There are three main
kinds of DIC: 2D-DIC [27, 28] and planar loading and surfaces, 3D-DIC for general
motion and deformation of curved or planar surface [29], and V-DIC or Digital
Volume Correlation for interior deformation measurements in opaque solids [30].

Here, we only introduce the basic concepts of 2D-DIC. After simple surface
preparation, the specimen has a random pattern on its surface. A single Charge-
Coupled Device (CCD) camera is positioned perpendicular to object surface during
the mechanical test, and records the undeformed image and deformed images. Full-
field displacement data is obtained by using the subset-based approach: match
small subsets of an undeformed image to locations in an image of the surface after
deformation. 2D-DIC has several advantages [31]: it is relatively simple to use under
both laboratory and field conditions; data acquisition and data analysis procedures
are well established; since data analyzed at least 15000 subsets per second, it is
near real time analysis; variability are commonly obtained less than 0.01 pixels in
displacement on a point-to-point basis.

With development of 2D-DIC, several variants of approaches are divided into
"local" approaches and "global" approaches. In traditional local image correlation
techniques, the transformation is decomposed into a multitude of independent and
local transformations, or shape functions, which parameterized by the coefficients of
their local expansion near centers and used in the neighborhood of these centers [32].
Conversely, in a global approach, it is possible to choose a continuous transformation
basis, which can be defined over the whole ROI. One of the reasons investigators
opted to link full-field measurements with numerical simulations was to make the
comparisons easier, possibly seamless, for identification and validation purposes [33].
For example, one of the limitation of local approaches comes from the assumption
that the displacement field is continuous [34]. It means that discontinuity can lead
to large errors in determining the displacement. However, for the global approaches,
specific finite element can then be considered with enriched kinematics, as in the
extended finite element method (X-FEM) framework [35] to add discontinuities to a
given mesh. Finally, the fact that discretization of the displacement field are shared
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with numerical modeling makes the coupling direct and seamless between image
correlation.

2.3 Inverse approach of identification

2.3.1 Inverse approach

The previous sections show that full-field measurements can offer rich measure-
ment information, a key point is then to develop or adapt identification strategies
based on full field measurements. The overall goal is to optimally exploit a large
amount of measurement data to identify constitutive parameters. In particular, the
goal is to estimate as many parameters as possible using as few experiments as
possible. Such approach is often referred as inverse approach in the literature. It
is compared with direct approach (Figure 2.1) which is the determination of output
response (stress, strain, displacement, etc.) when the input excitation (forces, initial
stress, sources, etc.) and the system (geometry, constitutive equations, physical
characteristics, kinematic constraints, etc.) are known. The inverse approach
usually corresponds to situation where the system is at least partially unknown
because of incomplete available information such as the geometry of the system,
constitutive materials and initial conditions. To compensate for, and reconstruct,
the missing information on the system parameters, supplementary (possibly partial)
information about the output response must be sought in addition to the known
input excitation [36].

Input: 

loading

System: 

parameters

Output: 

displacement

       

Direct approach : 

Inverse approach : 

?

?
Figure 2.1: Direct approach and inverse approach

Hadamard proposed a definition of well-posed problems [37]: (1) a solution to
the problem exists; (2) this solution is unique; (3) the solution depends continuously
on data. Inverse problems are often ill-posed in that at least one of the above well-
posedness conditions is violated. The origins of ill-posed character are multiple.
One of the ill-posed source is the measurement uncertainty, which can cause several
solutions or instability of the solution, depending on the nature of the problem. It
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means that a weak disturbance of data can lead to a serious disturbance of solution,
in other words, the solution is highly sensitive to experimental errors. Another
ill-posed source is the indirectly measured boundary condition. If only a global
load of boundary is known, the assumption of traction distribution will introduce a
modeling error.

In order to solve an ill-posed inverse problem, we must turn it into a well-posed
problem. Several regularization methods are possible [38]:

(1) Existence: expand all parameters; reformulate the problem as a minimization
problem.

(2) Uniqueness: if several solutions exist: set up a criterion of choice; regularize
the problem by adding prior information to experimental data [39]; accept the
existence of several solutions, and adopt a probabilistic viewpoint to model prior
information and various uncertainties by constructing an a posteriori probability
density function on solution within a Bayesian framework [40].

(3) Continuity with data: reduce the size of the parameter space; add a term
of minimization energy for discriminating oscillations, or a term of distance from a
reference value to the research physical quantities [41].

However, in the case of using inverse approach to identify the parameters of a
model selected a priori for its relevance, the parameter identification problems are
less sensitive to experimental uncertainties. It means they do not always require
regularization.

2.3.2 Inverse approach specifically designed for full-field mea-

surements

Some specific methods designed for full-field measurements have been proposed
to extract constitutive parameters in the past years, and a review can be found in
[42]. These inverse approaches can be grouped into two large families [38]:

(1) approaches by auxiliary fields: based on the weak form of equilibrium, specific
choices for the test field lead to a direct identification of the sought parameters.
Among these, we can cite the Virtual Fields Method (VFM) [43] and the Reciprocity
Gap Method (RGM) [44] for full-field data.

(2) approaches by minimization: from the overdetermined set of equation
traducing the available information, some equations will be verified exactly through
imposed constraints, while the other equations will simply be better verified through
the minimization of a gap to these equations. The following methods have been
applied to full-field displacement data: the Finite Element Model Updating method
(FEMU) [45], the Equilibrium Gap Method (EGM) [46] and the Constitutive Relation
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Error method (CRE) [47].
The principles, the advantages and the limitations of the above strategies will

be discussed in details below.

2.3.2.1 Virtual Fields Method

This method was first proposed by Grédiac [43] in the framework of static linear
anisotropic elasticity. This approach is applicable to situation with experimental
availability of the strain field, where the strain field is obtained from full-
field measurement (possibly via the approximate differentiation of a measured
displacement field). The loading conditions are assumed to be known. The basic
idea of VFM consists in writing the global equilibrium of the tested specimen with
the principle of virtual work with different and independent virtual fields. This leads
to a system of equations in which the constitutive parameters are unknown. The
key point is to choose the appropriate virtual fields, because each possible choice of
virtual field yields a scalar equation that must be verified by the constitutive model
that predicts the stress value for given strain and constitutive parameters [36].

Many applications of the VFM have been studied and some are in various cases
of composite materials characterization. For example, in [48] a new approach to
the Iosipescu in-plane shear test is presented by using VFM and it is validated by
a finite element simulation for different composite materials. The other paper [49]
deals with the direct identification of the in-plane elastic properties of orthotropic
composite plates (T-shaped specimen) from heterogeneous strain fields. It overcomes
the difficulty of no available exact analytical solution for a geometry such as T-
shaped specimen. In order to extend the composite applications in naval and ground
transportation fields, the thickness of composite is to be increased to fulfill the
structural function. Pierron et al. [50] therefore proposed a method based on VFM
to determine the four through-thickness stiffnesses of thick laminated composite.
There are also other researches about nonlinear model [51] and damage model [52]
using VFM.

Its directness is the main advantages of VFM. Moreover, Avril and Pierron [53]
showed that the stationarity conditions for cost functional associated with FEMU,
CRE or EGM can be interpreted in terms of the virtual fields method for specific
suitably chosen virtual fields.

2.3.2.2 Reciprocity Gap Method

The RGM is primarily suitable to the situations where mechanical field
measurements are available on the boundary. It relies on a simple idea of reciprocity
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property : when a solid is subject to two different loads P1, P2 and presents two
different corresponding responses R1, R2, the work of the P1 load in the R1 response
is equal to the work of the P2 load in the R2 response. The reciprocity gap is
defined through the reciprocity relation between the actual field in the real solid
that provided the measurements and a fictitious solution field in a fictitious solid in
the absence of the unknown elements (cracks, inclusions, sources) [54]. Obviously,
the property of reciprocity is not verified when comparing the two fields, but the
difference of the scalar value will enable the identification of the absence of the
unknown elements.

The RGM is introduced by the work of Bui [44], and then used in the work of
Andrieux and Abda [55] to determine planar cracks with overspecified boundary
data. A series of identification of planar cracks for different families of auxiliary
fields has been studied in the following years. For instance, in elastostatics field, [56]
identifies 2D cracks by the mean of elastic boundary measurements with the search of
the unique zero of the reciprocity gap functional; in elastodynamics field, the work of
[57] shows that a unique family of planar shear waves permits the identification of the
normal, position and a convex hull of a linear crack through simple interpretations
of the instantaneous reciprocity gap; in thermoelasticity field, [58] considers a 3D
homogeneous isotropic elastic solid containing a family of planar cracks submitted to
a time-dependant thermal loading; in viscoelasticity field, the paper of [59] studies
the identification of a planar crack for Zener type linear viscoelastic solids under the
condition of low frequency.

The main advantage of RGM is its simplicity. It can be considered as a variation
on the VFM where kinematical fields are known only on the boundary. However,
there is two limitations of RGM: (1) it is necessity of knowing the measured fields
over the complete outer boundary of the body; (2) it applies only to the case of
linear behavior laws.

2.3.2.3 Finite Element Model Updating method

Since the finite element method [60] can provide displacement, strain or stress
fields in almost any case of specimen geometry, loading conditions and constitutive
equations, it is the most popular numerical method for the direct approach. For the
inverse problem, the FEMU consists of updating the parameters of a finite element
model in order to minimize the difference between measured and simulated fields
[61]. Its principle is shown in Figure 2.2 which is presented in [62].

The process can be described by the following steps:

(1) Perform a first calculation with an initial set of constitutive parameters θ0;
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(2) Collect the data from the finite element model prediction, and then compare
with the experimental measurement;

(3) Formulate an objective function depending on the sought parameters, and
which is often the sum of the square gap between the measured and numerical data;

(4) Implement the optimization method to minimize this objective function;
(5) Stop the procedure when the objective function is lower than a given threshold

value and obtain the identified parameters θ.

Experiment(s)

Physical problem

Measures

Agreement

Yes

Identi ed 

parameters

Finite element 

model

Predictions

UpdateNo

Figure 2.2: Schematic view of FEUM identification [62]

Applications of FEMU to constitutive parameter identification are the subject of
many investigations, a detailed presentation of the application on composites follows
[63]. There are several examples of identification of the in-plane elastic properties
of different kinds of composite, such as eight-ply woven composite laminate [64]
and orthotropic composite which is subjected to a biaxial loading [65]. Recently
identification of in-situ mechanical parameters has been studied. Kang et al. [66]
proposed to identify fiber-matrix interface elastic properties of a metal matrix
composite by matching numerical and experimentally observed interface failure
modes. Later Wang et al. [67] developed this strategy to identify viscoelastic
adhesive interfacial properties. At the same time, other researches focused on the
determination of damage constitutive laws by FEMU. Anghileri et al. [68] analyzed
the identification of model parameters defining damage and failure mechanisms in
composite materials based on a multi-objective optimization. Sztefek and Olsson
studied both the tensile stiffness distribution [69] and nonlinear compressive stiffness
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[70] in impacted composite laminates determined by FEMU. Leclerc et al. [71]
presented a new method to study the elastic properties of composite based Integrated
Digital Image Correlation (I-DIC), which conciliated the best of DIC and FEMU.
In this method, two stages (image correlation and mechanical identification) are
coupled to minimize information losses, while avoiding most of intermediate steps.

Although above approaches have been successfully applied, there are three main
drawbacks of FEMU: (1) the computing time since iterative calculations are required;
(2) the accuracy of identified parameters with real noisy measured data will greatly
depend on the number of local minimal in the objective function [63]; (3) boundary
conditions in terms of traction must often be known to perform the calculations [5].

2.3.2.4 Equilibrium Gap Method

The method of Equilibrium Gap aims at allowing for the identification of a
distribution of elastic properties and its evolution during the test (damage) based
on measured displacement [46]. The basic idea is to find the distributed elastic
properties, with fixed displacement measurements, to verify at best the internal
balance within the material. Assuming quasi-static conditions and no body forces,
the local equilibrium equation could be written as div σ[ε; θ] = 0. At any point of
the sample where ε is known, an equality that must be satisfied by any constitutive
model predicting σ for known ε. Thus, parameters associated with a model, or some
spatial distribution of heterogeneous properties, could be identified by enforcing
satisfaction of local equilibrium. However, measurement or modeling errors generally
implying the unfeasibility of exact equilibrium satisfaction. Instead, it achieves the
balance equation by minimizing the local residual stress on the finite element nodes
[72].

A first attempt to use full-field data to feed an identification procedure for a
damage law has been proposed by Claire et al. [46]. At first, isotropic materials are
consisted in formulating the equilibrium gap on the common middle nodes of the
adjacent Q8 elements [73]. The method was then extended to other types of elements
such as Q4 elements [74] [75]. In the following steps, it is proposed to extend the
approach to orthotropic materials. Instead of using the finite element formulation
of the problem, [76] uses the finite difference formulation, because this choice is
compatible with the way the information is assessed and treated in the usual DIC
software. At the same time, Périé et al. [77] proposed a two-step approach to go
from DIC to an anisotropic damage law based on biaxial test of composite material.

The EGM has the advantage of being directly applicable as a post-treatment
for any displacement field measurement. A specific feature of this method is the
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need to solve the balance problem on the measurement area. However, there are
two main limitations of EGM: (1) it can be considered as equivalent to the VFM
employed with some piecewise particular fields, each of them being defined by a
non-zero virtual displacement of one of the mid-side nodes of the mesh, so the EGM
has the same limitations as the VFM which need field measurements over domain
[42]; (2) considering the EGM based on finite difference implementation, numerical
differentiation of sampled data unfortunately often causes signification amplification
of the original measurement errors [36]. Hence, the approaches with precondition
have been proposed.

2.3.2.5 Constitutive relation error

The CRE measures the distance between a given stress field σ and another stress
field computed through a constitutive model from a given displacement field u. It can
be defined by the form of cost function in its simplest form (small-strain hypothesis,
equilibrium, linear elastic behavior):

J (u, σ, C) =
1

2

∫
Ω

(σ − C : ε(u))C−1(σ − C : ε(u))dΩ

where the elasticity tensor C is allowed to be homogeneous or heterogeneous.
This method was proposed by Ladevèze for error estimation in the finite element

method in the early 1980s [47]. Its principle is based on the model error detection
within the structure. The idea is assumed that the constitutive relation could
be inaccurate, which leads to the constitutive relation error. This error can be
calculated locally on the structure, which allows us to detect the regions which
are not modeled correctly. Almost at the same time, equivalent concepts have
been proposed in other contexts for solving inverse problems. For example, the
electrostatic energy functional of Kohn-Vogelius [78]. The CRE then turned out to
be very useful for model updating in vibration dynamics, based on modal analysis
with experimental data on natural frequencies and modal displacements [79], and
also adapted to the forced vibration problems [80]. In the late 1990s and early 2000s,
the CRE has been theoretically extended to a wide range of problems. For example,
it can incorporate either the damping or the non-linearity due to both materials
and contacts [81]; it can deal with application of a model reduction method to the
updating of models of industrial structures with many degrees of freedom [82]. From
2002, quantitative identification of a behavior model from mechanical test by CRE
has been studied [83][84][85]. The method of CRE measures the distance between
an admissible stress and an admissible displacement [86]. This distance is quantified
by an energy norm, which will be minimized in the identification procedure.
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Three important characteristics of CRE are: (1) its strong and clear physical
meaning; (2) its additive character with respect to the structure, allowing the
definition of local error indicators over substructures [87]; (3) it is in principle
applicable to any identification problem where overdetermined data is available,
that is which does not specifically require full-field measurements. On the other
hand, the CRE framework accommodates full-field measurements in a very natural
way [42].

2.3.3 Modified constitutive relation error

Each inverse approach has its own advantage to use in specific application.
However, there are two common problems: 1. Not all information is available.
For example, in many cases, the full-field measurement is only on a sub-part of the
specimen or boundary conditions may be unknown or not completely known. It
leads to a lack of information outside the measurement zone or on the boundary of
the specimen. Therefore, EGM which needs measurements over the whole domain,
and FEMU/RGM which needs boundary conditions to be performed, may have leave
apart some of the available information or add supplementary hypothesis (e.g. on
boundary conditions). 2. Not all the available information is reliable. For example,
there are measurement uncertainties in experimental study and model errors in
numerical analysis, which may lead to a loss of accuracy of a FEMU approach.

There is hence a need for identification methods allowing both the identification
over the whole specimen, and the dealing of missing boundary condition. The
Modified Constitutive Relation Error (M-CRE) as proposed here is a suitable
method to identify static elastic properties, which allows to deal with such situations
through the taking into account of the whole available information from a theoretical
and experimental point of view [88]. Its principle consists in dividing the relations
which characterize the problem into a reliable set and an uncertain set. The latter
is dealt with only approximately throughout the strategy. The M-CRE was first
developed for model updating in dynamics [80] [89], and then extended to transient
dynamics for linear [90] and non-linear [91] behavior. In this framework, Banerjee et
al.[92] presented the formulation and implementation of M-CRE suitable for large-
scale inverse identification of linear elastic material properties in the context of
steady-state elastodynamics. Considering its application to full-field displacement
measurement, it was first proposed in [84], then several works focused on standard
CRE [93] [86]. In [94], a M-CRE formulation was proposed, allowing the taking
into account of free-edge boundary condition as well as of the lack of boundary
condition, while the measurement zone could be a sub-part of the whole domain. A
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comparison between the M-CRE and the FEMU methods was performed on some
numerical examples where realistic perturbations were added and the result showed
that the M-CRE was more robust.

2.4 Multi-scale approach

After choosing the suitable inverse approach, the next key issue is how to achieve
multi-scale identification. Various multi-scale strategies for direct approach and
inverse approach are separately introduced in the following sections.

2.4.1 Multi-scale strategies for direct approach

There are many multi-scale modeling strategies discussed in the applied me-
chanics communities for direct approach, which involve models of different nature
at different scales. Coupling macro and micro models is aimed to take advantage
of both the simplicity and efficiency of the macro models, as well as the accuracy
of the micro models. Weinan E et al.[95] presented a review of Heterogeneous
Multiscale Methods (HMM) and classify many multi-scale methods in a general
setting. The classical multi-scale techniques include Multigrid Method [96], Domain
Decomposition [97], Wavelet-based Methods [98], Adaptive Mesh Refinement [99],
Fast Multipole Method [100] and Conjugate Gradient Method [101]. They are
general purpose solvers for the micro scale problem. Conversely, there are some
modern multi-scale techniques focusing on further reducing the computational cost
to capture the macro scale behavior of the system, such as Car-Parrinello Method
[102], Quasi-continuum Method [103], Optimal Prediction [104], Heterogeneous
Multiscale Method [105], Gap-Tooth Scheme [106], Adaptive Model Refinement [107]
and FE2 Approach [108].

Among these multi-scale modeling, two types of coupling are applied: concurrent
coupling and serial coupling. The former links the micro scale and the macro scale
models together as the computation goes on [109], and the latter determines an
effective macro scale model from the micro scale model in a pre-processing step
and use the resulted macro scale model in further applications. Yet, two types of
coupling can be combined to yield optimal efficiency: the results of a concurrent
simulation can be used to suggest the functional form for the constitutive relation,
which can then be used in a serial coupling method.
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2.4.2 Multi-scale strategies for inverse approach

For the inverse identification problem, besides the previous multi-scale numerical
simulation strategies, we also need to consider the multi-scale measurement methods.
For example, Johann Rannou et al. proposed a 3D dimensional experimental and
numerical multi-scale analysis of a fatigue crack [110]. At first, X-Ray Computed
Micro Tomography is used to get 3D pictures of in situ test for the morphology of
cracked surface. And then Digital Volume Correlation is applied to measure macro
displacement fields of cracked samples. In a third step, the combination of the
two previous measurement is completed with a level-set modeling and multi-grid
X-FEM simulation to improve the understanding of 3D crack growth laws. Finally
the estimation of stress intensity factors is obtained.

Another example for multi-scale identification is developed by Jean-Charles
Passieux et al.[111]. A nearfield/ farfield multi-scale approach to FE-DIC is proposed
to overcome the tricky and well-known compromise between spatial resolution
and uncertainty, because the level of uncertainty associated with the identified
parameters depends on the quality of the kinematic measurement. At first, two
cameras are used to acquire images with two different image resolutions: farfield
images capture the full specimen at the scale of the structure, while nearfield images
zoom on a structural detail where the displacement field is particularly sensitive
to the identified parameters. Then an automatic and accurate image registration
process is proposed to bridge precisely the measurement performed at both scales.
In a second step, an inverse multi-scale identification method based on the FEMU is
presented. Identification results in [111] show that the multiscale approach greatly
improves the uncertainty of both the measured displacement and the identified
material parameters.

2.5 Conclusion

In this first chapter, we explained the significance of our work by introducing
the need of identification of the heterogeneous and anisotropic composite materials.
Several standard identification procedures based on full-field measurements and
classical multi-scale approaches were presented. However, the two limitations
of measurement/model uncertainty and imperfect boundary conditions are not
always discussed and solved by these standard methods. The following study
seeks to provide solutions. At first, we will present the identification strategy
based on Modified Constitutive Relation Error and the applications of identifying
heterogeneous elastic properties on mono-scale. And then, we will propose a multi-
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scale identification strategy to solve the more complex problems and validate it
through applications.



Chapter 3

Mono-scale identification
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3.1 Introduction

This chapter presents the identification strategy based on the principles of the
Modified Constitutive Relation Error. The basic idea is to construct mechanical
fields and material parameters that are a trade-off between all the available
information but with no further hypothesis. It is applied to the identification of
elastic properties from DIC data and allows to deal with problems with different
kinds of boundary conditions (known or unknown).

3.2 Framework: direct problem and measurements

The identification framework is the one of a mechanical test on a given specimen
in order to identify its elastic properties based on DIC data. The specimen is
hence modeled as a 2D domain Ω, in plane stress. The load is measured over ∂fΩ
as well as the displacement field on one part of the specimen surface Ωm (Figure
3.1). We can also assume a part of the edge of the specimen ∂dΩ is free of load
and the remaining boundary denoted ∂∅Ω corresponds to a lack of knowledge on
the boundary conditions. The elastic properties of the specimen, collected in the

23
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vector θ, can be sought as homogeneous or heterogeneous, isotropic or not. Hence,
the sought unknowns are the elastic parameters, but the stress and displacement
fields are also unknown and are to be determined in order to get θ. This can lead
to the following model and equations describing the available information, both
experimental and theoretical, verified by the stress σ, the displacement u and the
parameters θ :
• On Ω,
� Equilibrium: div σ = 0

� Constitutive relation: σ = C(θ) : ε

� Kinematic compatibility: ε = 1
2
(∇ u+∇Tu)

• On Ωm,
� Displacement measurement: u = ũ

• On ∂dΩ,
� Free edge boundary condition: σ · n = 0

• On ∂fΩ, two cases can be considered depending on the available data:
� Measured traction boundary condition: σ · n = f , on ∂fΩ
or
� Measured global load F0 along a given direction N0:∫

∂Ωf
σ · ndS ·N0 = F0

• On ∂∅Ω = ∂Ω\(∂dΩ ∪ ∂fΩ), unknown boundary condition

Figure 3.1: Direct problem for mono-scale

3.3 Splitting of the equations

The goal of the identification is to take advantage of the redundant information
described by the equations listed in Section 3.2 in order to deduce the material
parameters. Since the equations are redundant, they cannot all be verified exactly by
(u, σ, θ) and some of them hence have to be relaxed. In the following, the equations
to be relaxed are chosen based on the the principle of the Modified Constitutive
Relation Error and will yield the mechanical fields (displacement and stress) and
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material properties that are a trade-off of all the available information [82]. The
trade-off is built so that the reliable information should be exactly verified and
the less reliable information only verified at best by minimizing a functional. To
that purpose, the various equations of the identification problem are split into three
groups:

• the group of reliable equations: the equilibrium equation and the kinematic
compatibility on Ω, the free edge boundary condition on ∂dΩ;
• the group of less reliable equations: the constitutive relation on Ω (whose

parameters are sought), the equality to the measured displacement ũ on Ωm

(with some uncertainties);
• the group of equations whose reliability depends on the study case: the

boundary condition of traction distribution or global load on ∂fΩ.

3.4 Identification strategy

3.4.1 Admissible sets and functionals

In order to identify the properties of the material, the triplet (u, σ, θ) is sought as
the solution of a minimization problem where the reliable equations are considered
as constraints and the less reliable equations are defined as a function that is to
be minimized. Based on the splitting of the equations proposed in Section 3.3, we
therefore introduce:

• the space associated with the constraints on the displacement field:

UAd = {u ∈ H1(Ω)} (3.1)

• the spaces associated with the possible constraints on the stress field:
� equilibrium and free edge:

S0
Ad = {σ ∈ Hdiv(Ω)/div σ = 0 on Ω, σ · n = 0 on ∂dΩ} (3.2)

� traction distribution on ∂fΩ:

SfAd = {σ ∈ Hdiv(Ω)/ σ · n = f on ∂fΩ} (3.3)

� global load on ∂fΩ:

SFAd = {σ ∈ Hdiv(Ω)/

∫
∂fΩ

σ · n dS ·N0 = F0} (3.4)
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• the term of constitutive relation error:

J1(u, σ, θ) =
1

2

∫
Ω

(σ − C : ε(u)) : C−1 : (σ − C : ε(u))dΩ (3.5)

• the term of distance to the displacement measurements on Ωm:

J2(u) =
1

2

∫
Ωm

||u− ũ||2dΩm (3.6)

• the term of distance to the traction distribution on ∂fΩ:

J3(σ) =
1

2

∫
∂fΩ

||σ · n− f ||2dS (3.7)

• the term of distance to the global load on ∂fΩ:

J4(σ) =
1

2
(

∫
∂fΩ

σ · n dS ·N0 − F0)2 (3.8)

Depending on the available data and its reliability, in particular concerning the
traction/load, it is possible to propose various identification formulations, as sum
up in Table 3.1. For example, in the case of missing load boundary conditions, the
first study case with free edge is the basic formulation. If the traction distribution
boundary condition is considered as reliable, we complete the admissible fields
with the space associated with the constraints on traction distribution, and the
functional remains unchanged, leading to the second study case. If this information
is considered as less reliable, we keep the same admissible space as for the basic
formulation and modify the functional adding the J3 term. The other cases use the
same methodology with respect to the global load.

Table 3.1: Various possible formulations (α and β are positive weighting coefficients)

Study case Constraints Functional
∂fΩ = ∅ SAd = S0

Ad J (u, σ, θ) = J1 + αJ2

Reliable traction distribution SAd = S0
Ad ∩ S

f
Ad J (u, σ, θ) = J1 + αJ2

Less reliable traction distribution SAd = S0
Ad J (u, σ, θ) = J1 + αJ2 + βJ3

Reliable global load SAd = S0
Ad ∩ SFAd J (u, σ, θ) = J1 + αJ2

Less reliable global load SAd = S0
Ad J (u, σ, θ) = J1 + αJ2 + βJ4
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3.4.2 The identification problem

We can deduce the definition of the identification problem as the following:

Find the fields (u, σ) ∈ UAd × SAd and the parameters θ ∈ ΘAd minimizing
J (u, σ, θ):

min
(u,σ,θ)∈UAd×SAd×ΘAd

J (u, σ, θ) (3.9)

where ΘAd is the admissible space of parameters.

In practice, the minimization is split into a sequential minimization:

min
θ∈ΘAd

min
(u,σ)∈UAd×SAd

J (u, σ, θ) (3.10)

defining two steps:

• For a given θ, find (u, σ) minimizing J (u, σ, θ) under the above constraints:

min
(u,σ)∈UAd×SAd

J (u, σ, θ) (3.11)

This defines the basic problem that yields the mechanical fields that are a
trade-off of all the information for a given set of material parameters [94]. The
solution of the basic problem is denoted (u(θ), σ(θ)).

• Then, defining the cost function: G(θ) = J (u(θ), σ(θ), θ), the identification of
θ is performed as the minimization of G(θ):

θopt = Argmin
θ
G(θ) = Argmin

θ
J (u(θ), σ(θ), θ) (3.12)

Hence each evaluation of G in the identification process, requires the solving of
the basic problem for a given set of material parameters.

3.5 The basic problem and its solution

3.5.1 Discretization of the basic problem

The basic problem is solved based on a displacement finite element formulation.
Therefore, we introduce the displacement field v such that:

σ = σ(v) with, σ(v) = C : ε(v) (3.13)
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It is shown in [80, 88] in dynamics that such a displacement field exists for
the solution of the basic problem, and in [94] for full-field data in statics. Adding
boundary condition does not change this result.

Using a displacement formulation means that the stress field is statically
admissible only in a finite element manner. This seems acceptable because we
consider that compared to the model errors, the discretization errors should remain
negligible.

It means that the basic problem is rewritten in terms of displacement and
becomes:

Find, for a given θ, (u, v) such that:

min
(u,v)∈H1(Ω)2,σ(v)∈SAd

J (u, σ(v), θ) (3.14)

The displacement fields are given in the finite element form:[
ux(x)

uy(x)

]
= [Φ(x)]U,

[
vx(x)

vy(x)

]
= [Φ(x)]V (3.15)

where [Φ(x)] is the matrix of shape functions, U and V are the vectors of nodal
unknowns associated with the displacement fields u and v.

The stress and strain fields are rewritten in a vectorial manner and C in a matrix
one, so that:

σ = [C]ε (3.16)

and the corresponding finite element description:

ε(u) = [B]U, ε(v) = [B]V (3.17)

where [B] is the matrix of the shape function derivatives.

Then the stiffness matrix is deduced from the weak formulation of equilibrium,
taking into account Equation (3.17) in the following integral:∫

Ω

σT ε(u∗)dΩ =

∫
Ω

ε(v)T [C]ε(u∗)dΩ

=

∫
Ω

V T [B]T [C][B]U∗dΩ

=V T

∫
Ω

[B]T [C][B]dΩ U∗

=V TKU∗

(3.18)
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where K =
∫

Ω
[B]T [C][B]dΩ is the global stiffness matrix of the mechanical problem

on Ω.

The functions introduced in a continuous manner (Section 3.4.1) are thus
discretized as follows:
• the term of constitutive relation error:

J1(U, V, θ) =
1

2
(U − V )TK(U − V ) (3.19)

• the term of distance to the displacement measurements:

J2(U) =
1

2
(ΠU − Ũ)T (ΠU − Ũ) (3.20)

where Ũ is the displacement vector comprising the data on the grid of
measurement points available on Ωm, and Π is a discrete transfer operator.
There are two functions of Π: 1. extracting the adequate dofs from U , defined
on the whole domain Ω, to fit the measurements zone Ωm; 2. projecting the
extracted dofs from the finite element mesh to the data grid based on the FE
shape functions [94]. In the experimental measurements, the measurement
grid and the finite element mesh may be different. The transfer operator Π

is then used to project the mechanical fields of the mesh to the measurement
grid. We can note this is not the exact discretization of the continuous term
J2, but it takes into account the discrete nature of the data, which is rich
enough to consider continuous data in the continuous formulation.

Then, the equations associated with the admissible sets (minimization con-
straints) are also discretized based on the weak form of the equilibrium by choosing
specific test fields.∫

Ω

σ : ε(u∗)dΩ =

∫
∂Ω

σ · n · u∗dS, ∀u∗ ∈ H1(Ω) (3.21)

The left hand side term of Equation (3.21) could be written from Equation (3.18)
as: ∫

Ω

σ : ε(u∗)dΩ = U∗TKV (3.22)

Let us note the index of internal nodes i, the index of free edge nodes d, the
index of forced edge nodes f and the index of all nodes ◦.
• equilibrium equation on Ω, taking into account finite elements u∗ which are

null on ∂Ω. Hence, the U∗TK in Equation (3.22) could be expressed as the
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matrix of remaining lines corresponding to the internal nodes Ki◦:

Ki◦V = 0 (3.23)

• equation associated with free edge on ∂dΩ, taking into account finite elements
u∗ which are null at the nodes out of ∂dΩ:

Kd◦V = 0 (3.24)

• equation associated with traction distribution on ∂fΩ, taking into account
finite elements u∗ which are null at the nodes out of ∂fΩ:

Kf◦V = F̃f (3.25)

where F̃f is the vector of the generalized load at the nodes of ∂fΩ associated
with traction measurements. In the case of less reliable traction distribution,
we introduce a vector Ff for the unknown boundary condition and we set the
term of constraint and the term of the functional as:

Kf◦V = Ff and J3 =
1

2
(Ff − F̃f )T (Ff − F̃f ) (3.26)

• equation associated with global load on ∂fΩ, choosing u∗ = N0 on ∂fΩ and
null elsewhere at the nodes:∫

∂Ω

σ · n · u∗dS =

∫
∂fΩ

σ · n ·N0dS = F̃0 (3.27)

The vector of degrees of freedom associated with u∗ is denoted U∗0 and hence,
from Equation (3.21), (3.22) and (3.27), we can deduce:

U∗T0 KV = F̃0 (3.28)

where F̃0 is the value of the load measurement on the boundary ∂fΩ. In the
case of less reliable load measurement, we introduce a scalar F0 corresponding
to the global load of the basic problem and we set the term of constraint and
the term of the functional as:

U∗T0 KV = F0 and J4 =
1

2
(F0 − F̃0)2 (3.29)

In order to show the basic problem unified for most case, we introduce the index
g, collecting index i, d and f . Also, the projector Πgf allows to transfer the vectors
of generalized forces Ff to the vectors of generalized forces corresponding with the
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Study case Constraints Functional
∂fΩ = ∅ Kg◦V = 0 J1(U, V, θ) + αJ2(U)

Reliable traction distribution Kg◦V = Πgf F̃f J1(U, V, θ) + αJ2(U)
Less reliable traction distribution Kg◦V = ΠgfFf J1(U, V, θ) + αJ2(U) + βJ3(Ff )

Reliable global load Kg◦V = 0 J1(U, V, θ) + αJ2(U)

and U∗T0 KV = F̃0

Less reliable global load Kg◦V = 0 J1(U, V, θ) + αJ2(U) + βJ4(F0)
and U∗T0 KV = F0

Table 3.2: Various possible formulations of the discrete basic problem

problems on the lines of index g. Table 3.2 presents the discretization of various
possible formulations (given for the continuous case in Table 3.1).

3.5.2 Stationarity equations of the basic problem

This basic problem is a quadratic minimization under linear constraints, the
optimality conditions of the first order are sufficient. We hence introduce the
Lagrange multipliers associated with the equality constraints. In the following, we
derive the stationarity equations for the various cases.

3.5.2.1 Case 1: Free edge

The basic problem is:

Find the nodal displacement vectors U,V minimizing:

J (U, V ) = J1(U, V ) + αJ2(U) (3.30)

under the constraint: Kg◦V = 0

Introducing a Lagrange multiplier Λ associated with the constraint:

L(U, V,Λ) = J (U, V ) + ΛT (Kg◦V ) (3.31)

The differential of the Lagrangian dL is expressed:
( ∂L
∂U
, δU) = δUTK(U − V ) + δUTαΠT (ΠU − Ũ)

( ∂L
∂V
, δV ) = δV TK(V − U) + δV TK◦gΛ

(∂L
∂Λ
, δΛ) = δΛTKg◦V

(3.32)

The stationarity system verified by the solution of the basic problem is dL = 0:
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K(U − V ) + αΠTΠU = αΠT Ũ

K(V − U) +K◦gΛ = 0

Kg◦V = 0

(3.33)

We introduce Λ2 =

[
Λ

0

]
,where Λ has Ng dofs (dofs of nodes with index g) and

Λ2 has N dofs (dofs of all nodes). Noting that:

KΛ2 =

[
Kgg Kgn

Kng Knn

][
Λ

0

]
=

[
KggΛ + 0

KngΛ + 0

]
= K◦gΛ (3.34)

where n is index of the nodes except the internal and free edge nodes.
The second equation from (3.33) can be rewritten as:

K(V − U) +K◦gΛ = 0⇒ K(V − U + Λ2) = 0 (3.35)

This equation corresponds to a finite element problem with no load (bulk and
edge) nor prescribed displacement. Hence, its solution is a rigid body motion CR:

V − U + Λ2 = CR (3.36)

Choosing CR = 0, we have V = U − Λ2 . This choice is validated by the fact
that any choice of CR leads to the same value of the cost function G(θ). We can
thus get the following equations:{

KΛ2 + αΠTΠU = αΠT Ũ

Kg◦U −Kg◦Λ2 = 0
(3.37)

And then we replace Λ2 by Λ:

Kg◦Λ2 =
[
Kgg Kgn

] [Λ

0

]
= KggΛ (3.38)

{
αΠTΠU +K◦gΛ = αΠT Ũ

Kg◦U −KggΛ = 0
(3.39)

Finally, we write the equations in a matrix manner which has to be solved
numerically: [

αΠTΠ K◦g

Kg◦ −Kgg

][
U

Λ

]
=

[
αΠT Ũ

0

]
(3.40)

The solution of the basic problem (3.33) is denoted (Us(θ), Vs(θ),Λs(θ)).
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3.5.2.2 Case 2: Reliable traction distribution

The basic problem is:

Find the nodal displacement vectors U,V minimizing:

J (U, V ) = J1(U, V ) + αJ2(U) (3.41)

under the constraint: Kg◦V = Πgf F̃f

Introducing a Lagrange multiplier Λ associated with the constraint:

L(U, V,Λ) = J (U, V ) + ΛT (Kg◦V − Πgf F̃f ) (3.42)

The differential of the Lagrangian dL is expressed:
( ∂L
∂U
, δU) = δUTK(U − V ) + δUTαΠT (ΠU − Ũ)

( ∂L
∂V
, δV ) = δV TK(V − U) + δV TK◦gΛ

(∂L
∂Λ
, δΛ) = δΛTKg◦V − δΛTΠgf F̃f

(3.43)

The stationarity system verified by the solution of the basic problem is dL = 0:
K(U − V ) + αΠTΠU = αΠT Ũ

K(V − U) +K◦gΛ = 0

Kg◦V = Πgf F̃f

(3.44)

After eliminating V by U and Λ as Equation (3.34)-(3.36) in Case 1, Equation
(3.44) is denoted as: {

αΠTΠU +K◦gΛ = αΠT Ũ

Kg◦U −KggΛ = Πgf F̃f
(3.45)

Finally, we write the equations in a matrix manner which has to be solved
numerically: [

αΠTΠ K◦g

Kg◦ −Kgg

][
U

Λ

]
=

[
αΠT Ũ

Πgf F̃f

]
(3.46)

The solution of the basic problem (3.44) is denoted (Us(θ), Vs(θ),Λs(θ)).
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3.5.2.3 Case 3: Less reliable traction distribution

The basic problem is:

Find the nodal displacement vectors U,V and generalized load vector Ff
minimizing:

J (U, V, Ff ) = J1(U, V ) + αJ2(U) + βJ3(Ff ) (3.47)

under the constraint: Kg◦V = ΠgfFf

Introducing a Lagrange multiplier Λ associated with the constraint:

L(U, V, Ff ,Λ) = J (U, V, Ff ) + ΛT (Kg◦V − ΠgfFf ) (3.48)

The differential of the Lagrangian dL is expressed:
( ∂L
∂U
, δU) = δUTK(U − V ) + δUTαΠT (ΠU − Ũ)

( ∂L
∂V
, δV ) = δV TK(V − U) + δV TK◦gΛ

( ∂L
∂Ff

, δFf ) = δF T
f β(Ff − F̃f )− δF T

f ΠfgΛ

(∂L
∂Λ
, δΛ) = δΛT (Kg◦V − ΠgfFf )

(3.49)

The stationarity system verified by the solution of the basic problem is dL = 0:
K(U − V ) + αΠTΠU = αΠT Ũ

K(V − U) +K◦gΛ = 0

βFf − ΠT
gfΛ = βF̃f

Kg◦V − ΠgfFf = 0

(3.50)

Introducing Λ2 =

[
Λ

0

]
, where Λ has Ng dof, et Λ2 has N dof, we can write that

KΛ2 =

[
Kgg Kgn

Kng Knn

][
Λ

0

]
= K◦gΛ (3.51)

where n is index of the nodes except the internal and forced edge nodes.

The second equation from (3.50) can be rewritten as:

K(V − U) +K◦gΛ = 0⇒ K(V − U + Λ2) = 0 (3.52)

This finite element problem corresponding to a free of load problem whose
solution can be any rigid body CR:

V − U + Λ2 = CR (3.53)



3.5. THE BASIC PROBLEM AND ITS SOLUTION 35

Choosing CR = 0, we have V = U − Λ2, so from the equations (3.50) after
eliminating V and Ff , we can get the following equations:{

KΛ2 + αΠTΠU = αΠT Ũ

Kg◦U −Kg◦Λ2 = Λ/β + Πgf F̃f
(3.54)

And then we replace Λ2 by Λ:

Kg◦Λ2 =
[
Kgg Kgn

] [Λ

0

]
= KggΛ (3.55)

The equations (3.54) can thus be expressed as:{
αΠTΠU +K◦gΛ = αΠT Ũ

Kg◦U −KggΛ− Λ/β = Πgf F̃f
(3.56)

Finally, we write the equations in a matrix manner which has to be solved
numerically: [

αΠTΠ K◦g

Kg◦ −(Kgg + Id/β)

][
U

Λ

]
=

[
αΠT Ũ

Πgf F̃f

]
(3.57)

The solution of the basic problem (3.50) is denoted (Us(θ), Vs(θ),Λs(θ), Ffs(θ)).

3.5.2.4 Case 4: Reliable global load

The basic problem is:

Find the nodal displacement vectors U,V minimizing:

J (U, V ) = J1(U, V ) + αJ2(U) (3.58)

under the constraint: Kg◦V = 0 and U∗T0 KV = F̃0

Introducing two Lagrange multipliers Λ and M associated with the constraints:

L(U, V,Λ,M) = J (U, V ) + ΛTKg◦V +MT (U∗T0 KV − F̃0) (3.59)

The differential of the Lagrangian dL is expressed:
( ∂L
∂U
, δU) = δUTK(U − V ) + δUTαΠT (ΠU − Ũ)

( ∂L
∂V
, δV ) = δV TK(V − U) + δV TK◦gΛ + δV TKU∗0M

(∂L
∂Λ
, δΛ) = δΛTKg◦V

( ∂L
∂M
, δM) = δMTU∗T0 KV − δMT F̃0

(3.60)
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The stationarity system verified by the solution of the basic problem is dL = 0:
K(U − V ) + αΠTΠU = αΠT Ũ

K(V − U) +K◦gΛ +KU∗0M = 0

Kg◦V = 0

U∗T0 KV = F̃0

(3.61)

Introducing Λ2 =

[
Λ

0

]
+ U∗0M =

 Λ

U∗02M

0

, where U∗0 =

 0

U∗02

0

, U∗0 has N dof,

U∗02 has Nf dof, we have:

KΛ2 =

Kgg Kgf Kgn

Kfg Kff Kfn

Kng Knf Knn


 Λ

U∗02M

0

 =

KggΛ +KgfU
∗
02M

KfgΛ +KffU
∗
02M

KngΛ +KnfU
∗
02M



= K◦gΛ +K◦fU
∗
02M = K◦gΛ +KU∗0M (3.62)

The second equation from (3.61) can be rewritten as:

K(V − U) +K◦gΛ +KU∗0M = 0⇒ K(V − U + Λ2) = 0 (3.63)

This finite element problem corresponds to a free of load problem whose solution
can be any rigid body CR:

V − U + Λ2 = CR (3.64)

Choosing CR = 0, we have V = U − Λ2, so from the equations (3.61) after
eliminating V , we can get the following equations:

KΛ2 + αΠTΠU = αΠT Ũ

Kg◦U −Kg◦Λ2 = 0

U∗T0 K(U − Λ2) = F̃0

(3.65)

And then we replace Λ2 by Λ and M :

Kg◦Λ2 =
[
Kgg Kgf Kgn

] Λ

MU∗02

0

 = KggΛ +MKg◦U
∗
0 (3.66)
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The equations (3.65) can thus be expressed as:
αΠTΠU +K◦gΛ +KU∗0M = αΠT Ũ

Kg◦U −KggΛ−Kg◦U
∗
0M = 0

U∗T0 KU − U∗T0 K◦gΛ− U∗T0 KU∗0M = F̃0

(3.67)

Finally, we write the equations in a matrix manner which has to be solved
numerically: αΠTΠ K◦g KU∗0

Kg◦ −Kgg −Kg◦U
∗
0

U∗T0 K −U∗T0 K◦g −U∗T0 KU∗0


UΛ
M

 =

αΠT Ũ

0

F̃0

 (3.68)

The solution of the basic problem (3.61) is denoted (Us(θ), Vs(θ),Λs(θ),Ms(θ)).

3.5.2.5 Case 5: Less reliable global load

The basic problem is:

Find the nodal displacement vectors U,V and global load F0 minimizing:

J (U, V, F0) = J1(U, V ) + αJ2(U) + βJ4(F0) (3.69)

under the constraint: Kg◦V = 0 and U∗T0 KV = F0

Introducing two Lagrange multipliers Λ and M associated with the constraints:

L(U, V, F0,Λ,M) = J (U, V, F0) + ΛTKg◦V +MT (U∗T0 KV − F0) (3.70)

The differential of the Lagrangian dL is expressed as:

( ∂L
∂U
, δU) = δUTK(U − V ) + δUTαΠT (ΠU − Ũ)

( ∂L
∂V
, δV ) = δV TK(V − U) + δV TK◦gΛ + δV TKU∗0M

( ∂L
∂F
, δF0) = δF T (β(F0 − F̃0)−M)

(∂L
∂Λ
, δΛ) = δΛTKg◦V

( ∂L
∂M
, δM) = δMTU∗T0 KV − δMTF0

(3.71)
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The stationarity system verified by the solution of the basic problem is dL = 0:

K(U − V ) + αΠTΠU = αΠT Ũ

K(V − U) +K◦gΛ +KU∗0M = 0

β(F0 − F̃0) = M

Kg◦V = 0

U∗T0 KV = F0

(3.72)

As for the Equation from (3.62) to (3.64) in Case 4, we can deduce the following
equations from Equation (3.72):

αΠTΠU +K◦gΛ +KU∗0M = αΠT Ũ

Kg◦U −KggΛ−Kg◦U
∗
0M = 0

U∗T0 KU − U∗T0 K◦gΛ− (U∗T0 KU∗0 + 1/β)M = F̃0

(3.73)

Finally, we write the equations in a matrix manner which has to be solved
numerically:αΠTΠ K◦g KU∗0

Kg◦ −Kgg −Kg◦U
∗
0

U∗T0 K −U∗T0 K◦g −(U∗T0 KU∗0 + 1/β)


UΛ
M

 =

αΠT Ũ

0

F̃0

 (3.74)

The solution of the basic problem (3.72) is denoted (Us(θ), Vs(θ),Λs(θ),Ms(θ), F0s(θ)).

3.6 Explicit calculation of the gradient

After solving the basic problem, the next step is minimizing G(θ). Here, we take
the Case 2 (reliable traction distribution) as the example: G(θ) = J (Us(θ), Vs(θ), θ).
Noting that:

G(θ) = L(Us(θ), Vs(θ),Λs(θ)), θ) (3.75)

We can deduce the gradient of G with respect to θ. Denoting θk the kth

component of θ, we have:

∂G(θ)

∂θk
=

∂L
∂Us︸︷︷︸

0

∂Us
∂θk

+
∂L
∂Vs︸︷︷︸

0

∂Vs
∂θk

+
∂L
∂Λs︸︷︷︸

0

∂Λs

∂θk
+
∂L
∂θk

=
∂L
∂θk

(3.76)

In the particular case with no load data (the calculation is similar for other
cases), it writes:
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∂L(θ)

∂θk
=

∂

∂θk
[
1

2
(Us − Vs)TK(Us − Vs) +

α

2
(ΠUs − Ũ)T (ΠUs − Ũ) + ΛT

sKg◦Vs]

=
1

2
(Us − Vs)T

∂K

∂θk
(Us − Vs) + ΛT

s

∂Kg◦

∂θk
Vs

(3.77)

Because the global stiffness matrix K could be treated as the assembly of local
stiffness matrices with different linearly elastic coefficients, it can be written as:

K(θ) =
n∑
k=1

θkKk (3.78)

where n is the size of θ, Kk is the assembly of the local stiffness matrices
corresponding to θk and corresponds to the global matrix for θk = 1 and θk′ = 0, k′ 6=
k. Such a writing of the stiffness matrix corresponds to any case (homogeneous or
heterogeneous) of elastic properties.

Hence:
∂K

∂θk
= Kk,

∂Kg◦

∂θk
= Kkg◦ (3.79)

Therefore, we get the derivative with respect to θk :

∂G(θ)

∂θk
=

1

2
(Us − Vs)TKk(Us − Vs) + ΛT

sKkg◦Vs (3.80)

3.7 Algorithm of sequential minimization

As described in Section 3.4.2, the methodology is made up of two steps. From
step 1, we get G(θ) = J (u(θ), σ(θ), θ) and the gradient of G(θ). In step 2, we use
the BFGS (Broyden - Fletcher - Goldfarb - Shanno algorithm) or MMA (Method of
Moving Asymptotes) to optimize the parameters θ from the objective function G(θ)

and its gradient. The algorithms are briefly described in the following.

3.7.1 BFGS algorithm

The BFGS algorithm is an iterative method for solving unconstrained nonlinear
optimization problems. It is named from the four people who independently
discovered it in 1970: Broyden [112], Fletcher [113], Goldfarb [114] and Shanno
[115]. It is the most popular Quasi-Newton method, in which the Hessian matrix
of second derivatives doesn’t need to be evaluated directly. Instead of computing a
complete new Hessian matrix in each iteration, we will update the Hessian matrix
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using information about the curvature at the previous step. The function "fmincon"
in Matlab can be chosen to use this method.

3.7.2 MMA algorithm

The Method of Moving Asymptotes (MMA) was first presented by Svanberg
in [116] for non-linear programming in general and structural optimization in
particular. MMA uses a special type of convex approximation. For each step of
the iterative process, a strictly convex approximating sub-problem is generated
and solved. The generation of these sub-problems is controlled by the so-called
moving asymptotes, which both stabilize and speed up the convergence of the general
process. Afterwards this method was further studied and developed. Its globally
convergent version by using the linear searches and trust region could be found in
[117] and [118]. Thanks to Prof. Krister Svanberg from KTH in Stockholm Sweden,
we obtain the Matlab implementation of MMA from him (krille@math.kth.se) and
adapt it to our program.

3.8 Conclusion

In this chapter, we introduced an identification strategy dedicated to full-field
displacement measurements based on the Modified Constitutive Relation Error
developed in our work. Its key point is to construct a trade-off between all the
available information, both experimental and theoretical. A theoretical presentation
in the context of static elasticity was explained in detail. The advantages of this
method will be studied with the applications in the next chapter.
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4.1 Introduction

This chapter is dedicated to applications of the mono-scale identification
based on Modified Constitutive Relation Error. In order to illustrate and study
different properties of this methodology, three examples are presented. At first, an
homogeneous example is studied with various positions and sizes of the measurement
zone, which demonstrates the effectiveness and stability of the basic problem. Then,
an heterogeneous example with a single inclusion compares the identification results
with various boundary conditions: lack of boundary information, adding free edge
and load information. At last, an heterogeneous example with three inclusions is
analyzed with respect to the reliability and the trade-off between all the available
information.

41
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4.2 Example 1: Identification of the elastic proper-

ties of a homogeneous plate

4.2.1 Framework

(a) Reference calculation
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(b) U reference displacement field

Figure 4.1: Numerical example of a homogeneous plate: reference calculation and simu-
lated displacement exact measurement

Before identifying heterogeneous properties, we use a simple homogeneous
example to illustrate the effectiveness of the M-CRE method. A first 2D calculation
is performed in plane stress representing a tensile test on a plate as sketched in Figure
4.1(a), with reference values of the homogeneous and isotropic material parameters
(λ0, µ0). The reference values of parameters are: λ0 = 1, µ0 = 1. The right edge is
under uniform pressure, while the left edge is fixed on the horizontal direction and
one node is clamped to avoid rigid body motion, the upper and bottom edges are free.
The displacements obtained from this calculation are transferred on a regular grid
(50× 50 data points) representing the DIC measurement grid and are illustrated on
Figures 4.1(b). The projection is performed based on the same projection as the one
introduced in Equation (3.21). Some noise can be added to these exact fields in order
to represent the measurement perturbations. The magnitude of the additive noise is
given in percent of the mean value of the displacements. In this example, we assume
that only the upper and bottom edges boundary conditions are known, so we use
the formulation for the free edge case. Both algorithms of sequential minimization
(BFGS and MMA) are effective for the mono-scale identification. Therefore, all the
examples in this chapter are calculated with BFGS.

4.2.2 Position and size of the measurement zone

It is a common situation that the measurement area does not cover the entire
surface of the tested specimen. There are many reasons, for example, the algorithm
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of DIC does not converge in some areas of the photographed area, particularly along
the edges; or we want to choose to focus on a specific specimen part to get a higher
resolution for the displacement. The proposed formulation of M-CRE allows to
perform the identification on a zone where the displacements are measured through
DIC on a sub-part of the considered zone. Yet, when no boundary condition is
available, the basic problem can be ill-posed as the ratio of measurement zone to
calculation zone decreases. This point has to be studied. To illustrate this, the same
example is treated, but the position or size of the displacement measurement zone is
changed (Figure 4.2). Since the bottom boundary is free-edge, the bottom position
means that partial boundary condition information is close to the displacement
information, hence their confrontation is emphasized. On the contrary, the center
position will lose part of the experimental data confrontation. The size of the
measurement zone is characterized by its width lm and compared to the width of the
plate lp through lm

lp
ratio. In this case, lp remains the same and lm reduces, so that

lm
lp

changes from 1 to 0.7, which means the size of the measurement zone reduces
from 50× 50 data points to 35× 35 data points.

lm/lp

Figure 4.2: Various positions and sizes of measurement zone

In the comparison, we fix λ = 1, and then identify µ with a 3% displacement
noise. Figure 4.3 presents the identification objective functions as a function of µ.
Figure 4.3(a) corresponding to a bottom position of the measurement zone various
sizes, whereas Figure 4.3(b) corresponding to a center position. We can find that
all the objective functions are convex and that their minimum is close to the exact
value of µ. It means the calculation and the identification can be performed on
the whole domain, even if the measurement zone is smaller. Table 4.1 presents the
change of the rank and condition number of the matrix for the basic problem with
different lm

lp
when µ = µref . We can find that although the rank deficiency and

condition number are large when the measurement zone is small, we can still use
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Figure 4.3: Comparison of objective function for various positions and sizes of the
measurement zone with a 3% noise

the QR algorithm to solve the basic problem. However, the gradient of the objective
function becomes smaller around its minimum when the ratio of size reduces. It is
normal to lose sensitivity because of the information lost (the number of data points
reduces).

lm
lp

1 0.9 0.8 0.7

Bottom position Matrix rank deficiency 0 0 2 5
Condition number 1.5e+04 3.5e+07 1.9e+17 3.2e+16

Center position Matrix rank deficiency 0 0 2 4
Condition number 1.5e+04 3.5e+07 2.5e+17 4.9e+16

Table 4.1: The rank deficiency and condition number of the matrix for the basic problem
(Case 1 with free edge) when µ = µref

4.3 Example 2: Identification of the elastic proper-

ties of a plate with a single inclusion

4.3.1 Framework

In this section, we propose the illustration of the method on a numerical example
based on the identification of the elastic properties of a plate with a single inclusion.
The plate is assumed to be isotropic and heterogeneous for this illustrating example.
The behavior is thus described by the Lame coefficients: matrix (λ1, µ1) and
inclusion (λ2, µ2). The purpose of this example is to compare the identification
results of heterogeneous material properties according to the information on the
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(a) Reference calculation
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(b) Reference displacement field

Figure 4.4: Numerical example of a plate with a single inclusion: reference calculation and
simulated displacement exact measurement

boundary conditions.
In order to create the measurements, a first calculation is performed representing

a tensile test on a plate as sketched in Figure 4.4(a), with reference values of the
heterogeneous and isotropic material parameters (λ1 = µ1 = 1, λ2 = µ2 = 0.5).
The displacements obtained from this calculation are transferred on a regular grid
(50× 50 data points) representing the DIC measurement grid and are illustrated on
Figures 4.4(b). The projection is performed based on the same projection as the
one introduced in Equation (3.21). Some noise can be added to these exact fields in
order to represent the measurement perturbations. The magnitude of the additive
noise is given in percent of the mean value of the displacements or the mean value
of the load measurement.

4.3.2 Taking into account free edge information
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on 200 samples (mean
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Figure 4.5: Comparison of without information of boundary conditions and with free edge
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The proposed formulation allows to perform the identification on a zone where
the boundary conditions can be completely or partially unknown. At first, we
compare the case without any information on the boundary condition (completely
unknown) and the case of adding information of free edge on the upper and bottom
boundaries (partially unknown). We take two independent analysis: (1) fix λ1,
λ2 and µ2, identify µ1 with various levels of noise. Figure 4.5(a) presents the
identification results on 200 samples of measurement noise, in terms of mean value
and standard deviation of the identified µ1 property as a function of the relative
noise level. It can be noted that the level of error is quite linear with respect
to the noise level. Hence, in the following, we will consider a single noise level;
(2) fix λ1 and the noise level, identify µ1, λ2 and µ2. Figure 4.5(b) presents the
identification results on 200 samples of 5% measurement noise, in terms of mean
value and standard deviation of the ratio of identified parameters and the reference
parameters. From Figure 4.5 we can find that both formulations (with free edge or
not) can obtain a reasonable identification result even though the noise level reaches
5%, but considering the free edge improves significantly the identification results.
However, even with the free edge information, we cannot identify the four material
parameters at the same time due to the lack of information on the load level. In
order to identify all heterogeneous properties, we need more available boundary
information.

4.3.3 Adding load information

free edge traction distribution global load
λ1 unknown λ1 known reliable less reliable reliable less reliable

λ1 1.2479 1 1 1 1 1
µ1 1.2479 1 1 1 1 1
λ2 0.6239 0.5 0.5 0.5 0.5 0.5
µ2 0.6239 0.5 0.5 0.5 0.5 0.5

Table 4.2: The identification results for various boundary conditions (λ1ref = µ1ref =
1, λ2ref = µ2ref = 0.5)

Beside the information of free edge on the boundary condition, we can also add
the information on load. Therefore the second comparison is carried out between
the case only with free edge and the ones with prescribed load edge. From the
identification results of the Table 4.2, we can find that the information of load
is very important. Without the information of load, one of the parameter is to be
known (fixed), in order to identify the others. Otherwise, if we try to identify all four
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parameters, only the ratio of the parameters could be identified (1.2479
0.6239

= 1
0.5

= 2);
but with the information on load, all the parameters could be identified, no matter
the way the load is taken into account.

4.3.4 Optimizing the weighting coefficient α

In order to analyze the effect of the weighting coefficient α associated with the
distance to the displacement measurement, firstly, we determine α0 =

UrefKUref

(ΠU)T ΠU
, and

define α as: α = 10γα0. Then we change γ from 0 to 6 and solve the identification
problem independently for each value of γ in two cases: without measurement noise,
and with a 5% measurement noise on the displacement. Taking the case of reliable
traction distribution as an example, we compare the objective function J1 and J2

with the increasing γ and get the L-curve as presented Figure 4.6. The L-curve
criterion [119] suggests to choose the point of the J1−J2 curve, which is the closest
to (0,0), where both terms are sensitive. Hence, this would lead to a choice of γ = 1

in the case without measurement noise (Figure 4.6(a)). However, in the case with
a 5% measurement noise, choice becomes γ = 3 (Figure 4.6(b)). The other cases of
boundary condition yield similar curves and value.
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Figure 4.6: L-curve of J1 and J2 with the increasing γ

Without noise on the measurement, we can identify the exact parameters with
γ from 0 to 6 while the calculation time reduces (Figure 4.7(a)). The reason
could be concluded that the more sensitive the objective functions are, the faster
the convergence reaches. Yet, if we compare the identification results with a 5%

measurement noise, although the calculation time is reduced when γ = 3 (Figure
4.7(b)), but the relative errors of identification result are large when γ increase
(Figure 4.8). We know that increasing γ leads to increasing objective function,
which will lose the accuracy of the identification result. The choice of γ = 3 is



48 CHAPTER 4. APPLICATION OF MONO-SCALE IDENTIFICATION

unreasonable and a pragmatic choice of γ = 0 is used in the following.
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Figure 4.7: The calculation time with various α
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with various α in the case of 5% measurement noise

4.4 Example 3: Identification of the elastic proper-

ties of a plate with three inclusions

4.4.1 Framework

In this section, we propose the illustration of the method on a numerical example
based on the study of the elastic properties of a plate with three inclusion. The plate
is assumed to be isotropic and heterogeneous for this illustrating example. The
behavior is thus described by the Lame coefficients: matrix (λ1, µ1) and inclusions
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Figure 4.9: Numerical example of a plate with three inclusions: reference calculation and
simulated displacement exact measurement

(λ2, µ2), (λ3, µ3), (λ4, µ4). The purpose of this example is to compare different ways
to take into account the load data. In particular, the stress distribution is hardly
measured experimentally. Therefore, the formulation with traction distribution
needs a hypothesis of the distribution, which may introduce a model error.

In order to create the measurements, a calculation is performed representing a
tensile test on a whole plate as sketched in Figure 4.9(a), with reference values of the
heterogeneous and isotropic material parameters. The displacements obtained from
this calculation are transferred on a regular grid (50× 50 data points) representing
the DIC measurement grid and are illustrated on Figures 4.9(b). The global load
can be measured, but no local information on its distribution is known.

4.4.2 Taking into account the load as reliable information

In order to compare the boundary condition of traction distribution and global
load, we perform the identification on part A whose boundary is close to inclusion
2 so that the load distribution on boundary ΓAB is affected by the inclusion. Yet,
only the global load on ΓAB is supposed to be known. In the first study, we take
into account the load as reliable information. It means the equation related to the
load is considered within the constraints: SAd = S0

Ad ∩ S
f
Ad or SAd = S0

Ad ∩ SFAd.
In the case of reliable global load, we just need the sum of the global load.

However, a hypothesis of distribution is needed in the case of reliable traction
distribution. Since this information is assumed to be unknown as it is usually the
case in experimental set ups, we assume that the traction distribution on ΓAB is
constant, as the blue curve in Figure 4.10(a), where the exact stress distribution
corresponds to the green curve.

Figure 4.10(b) presents the identification results of parameters for the two
boundary condition formulations. The results are significantly better by presuming
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exact stress distribution on boundary AB

false assumption on stress distribution on boundary AB

(a) Assumption on stress distribution
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Figure 4.10: Comparison of reliable traction distribution and reliable global load

the load condition as a global load (the red groups: the mean value of the ratio of
identified parameter and reference is almost equal to 1). Moreover, we can find that,
in the case of traction distribution (the blue groups), identification relative error on
the part near the false boundary assumption is the largest (error on λ2: 34.8% and
on µ2: 10.3%). It means that the model error on the traction distribution would
lead to wrong identification results.

4.4.3 Taking into account the load as less reliable information

In the second study, we take into account the load as less reliable information.
It means the equation related to the load is included as a distance in the functional:
J (u, σ, θ) = J1 + αJ2 + βJ3. First, the formulation with a less reliable traction
distribution is studied. In particular, the choice of the weighting coefficient β is
discussed by comparing the results with the previous ones. Then, the global load
approach is addressed and the identification results are discussed.

4.4.3.1 Traction distribution: optimizing the weighting coefficient

Firstly, we define β0 =
UT
refKUref

F̃T F̃
and β = β010γ. Then we change γ from -9 to 8

and solve the identification problem independently. Figure 4.11 shows the influence
of the weighting coefficient β on the identification results of λ and µ for the four
parameters. We can divide the results into three groups:
• −9 ≤ γ < −6: θid 6= θref , but

θkid
θkref

= 0.8657(constant ∀k): the identification
values are not the good ones but the rigidity ratios are correct, as if no load
data was available (due to a very small weighting factor).
• −6 ≤ γ < −2: θid ≈ θref : the identification result are reasonable.
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Figure 4.11: Comparison of influence of weighting coefficient β on the identification result

• γ ≥ −2: θid 6= θref ,
θkid
θkref
6= constant: the identification results get erroneous, in

particular near ΓAB, and are close to the case with a false traction distribution
(see Figure 4.10).

In order to find out the reason, on one hand, we calculate and compare the
normal stress on the boundary ΓAB from the result. From Figure 4.12(a) we find
that:
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Figure 4.12: Comparison of influence of weighting coefficient β on stress distribution and
objective function

• when γ = −8, the normal stress distribution (the blue line) has the same shape
as the exact distribution, but with a constant ratio. We can conclude that too
small β means weak influence of load information, so the identification result
is similar to the case with only information of free edge, which has good ratio
between parameters, but loses the global stiffness;
• when γ = −4, the normal stress distribution (the magenta line) is the closest

curve to the exact stress distribution and still has the same shape;
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• when γ = −2.62,−2.21,−2, the influence of load information continue to
increase, so the normal stress distribution gets closer to the false assumption
distribution;
• If γ > 0, the normal stress distribution will approximate the false assumption

distribution, leading to identification results similar to the case with reliable
traction distribution.

Hence, we can conclude there is an optimal choice of the weighting factor
leading to both good identification results and stress distribution, despite the false
assumption.

In order to determine this optimal weighting factor, the L-curve [119] was used
to compare different terms of the objective function. Figure 4.12(b) shows that
γ = −2.62 is the compromise point where both values of J1 + αJ2 and J3 are
reasonable.
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Figure 4.13: Comparison of reliable traction distribution and less reliable traction distri-
bution: Identified θk

θkref
on 100 samples (mean value and standard deviation)

with a 5% noise on measured displacement

Figure 4.13 presents the identification results with both prescribed traction
distribution and traction distribution distance with reasonable weighting coefficient
(two groups of less reliable traction distribution). The latter improve significantly
the identification results. Since defining γ = −4 can correct the model error of the
traction distribution, the parameters of inclusion 2 (near ΓAB) are the best in the
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magenta group. However, it reduces the global rigidity: all the ratio of parameters
are below 1. In contrast, based on the L-curve, when γ = −2.62 (the green group),
the parameters of global matrix and inclusion 4 (far from ΓAB) are the best. We can
conclude that the model error of traction distribution could be reduced by optimizing
the weighting coefficient and restore the balance between strain and displacement.
Yet, the choice of the weighting factor may remain tricky and time consuming due
to the L-curve strategy.

4.4.3.2 Global load: effect of measurement perturbation
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Figure 4.14: Comparison of reliable global load and less reliable global load: Identified
θk
θ1
/
θkref
θ1ref

on 100 samples (mean value and standard deviation) with a 5%

noise on measured displacement and a 5% noise on measured force

In order to compare the influence of measurement noise, we use the same example
of a plate with three inclusions (Figure 4.9), and consider two cases: the global
load on the boundary is reliable or not. We add 5% noise on both displacement
measurement and force measurement.

The result are compared in terms of θk
θ1
/
θkref
θ1ref

to compensate the fact that
perturbation on the load leads to an erroneous global rigidity. Figure 4.14 shows
that both formulations (reliable or less reliable global load) can obtain a reasonable
identification result, but the influence of noise is slightly greater in the case assuming
less reliable global load. The results are quite independent to the choice of the
weighting factor. The results are slightly better than for the traction distribution
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(with false assumption) approach and the question of the choice of the weighting
factor is not to be addressed. Hence, when the traction distribution is not known,
it is preferred to choose a global load approach.

4.5 Conclusion

The first illustrating example presented that the calculation could be performed
without some or all boundary conditions, but it was still solved on the whole
domain. On the second illustrating example, it was shown that the method
allowed the calculation with different kinds of boundary conditions and the taking
into account of load-edge improved significantly the identification results. The
last illustrating example showed how to balance between the various possible
experimental information so that the inverse problem was well-posed. In the further
application, we propose a two-scale approach where heterogeneous properties are
sought at the measurement level and homogeneous ones at the specimen/structure
level.
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5.1 Introduction

In the usual experiment cases, the measurement zone is only a sub-part of
the specimen. If we use the mono-scale approach, we can only identify the local
heterogeneous properties of the measurement zone. It means that the lack of
displacement information outside the measurement zone prevents from identifying
heterogeneous properties in this area. Yet, some experimental information such as
boundary conditions could be available outside the measurement zone. It was shown
in the previous chapter that the taking into account of all available information leads
to more accurate identification results. Hence, we would expect a methodology
allowing such a taking into account. A multi-scale approach is therefore proposed
to account for any specimen where micro heterogeneous properties are sought at the
measurement level and macros homogeneous ones at the specimen level.

The M-CRE is a suitable framework to achieve such a multi-scale identification.
In order to adapt it to a multi-scale approach, we need to address the following three
questions:

1. How to trade off the information from different scales?
2. How to combine the information between two scales?

55
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3. How to develop a multi-scale algorithm for the basic problem?
In this chapter, it is proposed to define the identification problem taking into

account the measurement sub-part. Stress and displacement are defined at both
macro and micro scales, and the equations are split according to the reliability of
information. A coupling scheme is then to be defined between the scales, leading to
a basic problem defined at the two scales with the corresponding coupling equation.

5.2 Framework: direct problem and measurements

The identification framework is the one of a mechanical test on a specimen ΩM

where the load is measured on ∂fΩ as well as the displacement field on a sub-part of
the specimen surface Ωm (Figure 5.1). We can also assume a part of the edge of the
specimen ∂dΩ to be free of load and we have no idea on the boundary condition on
∂∅Ω. The elastic properties of the specimen at the macro level, collected in the vector
θM , are sought as homogeneous and isotropic, and the ones of the measurement
part at the micro level collected in the vector θm are sought as heterogeneous
and isotropic. The boundary conditions are only known at the macro level and
displacement is only measured at the micro level. This can lead to the following
model and equations describing the available information, both experimental and
theoretical. The equations verified by the macro stress σM , the macro displacement
uM , the macro parameters θM , the micro stress σm, the micro displacement um and
the micro parameters θm are as follow:

??

M

Figure 5.1: Direct problem for multi-scale

• On ΩM ,
� Equilibrium: div σM = 0

� Macro constitutive relation: σM = C(θM) : εM

� Kinematic compatibility: εM = ∇suM

• On Ωm,
� Equilibrium: div σm = 0

� Micro constitutive relation: σm = C(θm) : εm
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� Kinematic compatibility: εm = ∇sum

� Displacement measurement: um = ũ

• On ∂dΩ,
� Free edge boundary condition: σM · n = 0

• On ∂fΩ,
� Measured traction boundary condition: σM · n = f , on ∂fΩ
or
� Measured global load F0 along a given direction N0:∫

∂fΩ
σM · ndS ·N0 = F0

• On ∂∅Ω = ∂Ω\(∂dΩ ∪ ∂fΩ), unknown boundary condition

5.3 Splitting of the equations and coupling macro

fields and micro fields

5.3.1 Splitting of the equations

As for the mono-scale approach, the various equations of the identification
problem are split into two groups as presented in Table 5.1. At each scale, the
splitting is similar to the one proposed for the mono-scale approach (Section 3.3).
Considering the load data, it is chosen to deal with it as a reliable information in
this first approach. Nonetheless considering such information as less reliable is a
straightforward adaptation of the purposed methodology.

Table 5.1: Different groups of multi-scale equations

Macro fields ΩM Micro fields Ωm

Reliable

div σM = 0 div σm = 0
εM = ∇suM εm = ∇sum

σM · n = 0
σM · n = f , or

∫
∂Ωf

σM · ndS ·N0 = F0

Less reliable um = ũ
σM = C(θM) : εM σm = C(θm) : εm

5.3.2 Coupling the scales

The coupling is used to transfer the information from one scale to the other:
transfer the information of kinematic field measurement to the macro fields, and the
load and boundary condition information to the micro fields.

The key point is to know how to achieve the coupling. We hence need to define
the method to get the equality of the fields in a given manner. There is no doubt that
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it would be interesting to base the method on the ideas of homogenization where the
strain energies at the two scales are equal, but there are actually very few practical
applications if we would like to keep the coupling operator linear. Therefore, we try
a few coupling operators which permit the equality between micro fields and macro
fields through the following ways:

• For the kinematic admissible fields: some possibilities have been proposed (see
Section 5.5.1) to make sure that the equality of the displacement and strain
fields is on average upon zones of adjustable size. Considering the continuous
fields, the coupling operator can be noted:

Lu(uM , um) = 0 (5.1)

• For the static admissible fields: in the case where the stress is described by the
displacement field v as introduced in Section 3.5.1, the same coupling operator
could be used as for u. Otherwise we can impose equality for the stress , either
as an average on volume or on lines where the global loads are forced to be
equal (see Section 5.5.2). In all cases, we can note the coupling operator as:

Lσ(σM , σm) = 0 (5.2)

5.4 Identification strategy

5.4.1 Admissible sets and functional

In order to identify the properties of the material, (uM , σM , um, σm, θM , θm) are
sought as the solution of a minimization problem where the reliable equations are
considered as constraints and the less reliable equations define a functional that is to
be minimized. Here we take the case of reliable traction distribution as an example
to explain in detail. We introduce:

• the space associated with the constraints on macro displacement:

UMAd = {uM ∈ H1(ΩM)} (5.3)

• the space associated with the constraints on micro displacement:

UmAd = {um ∈ H1(Ωm)} (5.4)

• the space associated with the constraints on macro stress:
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� equilibrium and free edge:

S0M
Ad = {σM ∈ Hdiv(ΩM)/div σM = 0 on ΩM , σ

M · n = 0 on ∂dΩ} (5.5)

� traction distribution on ∂fΩ:

SfMAd = {σM ∈ Hdiv(ΩM)/ σM · n = fon ∂fΩ} (5.6)

• the space associated with the constraints on micro stress:

S0m
Ad = {σm ∈ Hdiv(Ωm)/div σm = 0 on Ωm} (5.7)

• the term of macro constitutive relation error:

J1(σM , uM , θM) =
1

2

∫
ΩM

(σM − CM ε(uM)) : CM−1
: (σM − CM ε(uM))dΩM

(5.8)
• the term of micro constitutive relation error:

J2(σm, um, θm) =
1

2

∫
Ωm

(σm−Cm ε(um)) : Cm−1 : (σm−Cm ε(um))dΩm (5.9)

• the term of distance to the displacement measurements on Ωm:

J3(um) =
1

2

∫
Ωm

||um − ũ||2dΩm (5.10)

Because it is the first time the coupling equations for the multi-scale problem
are introduced, we need to explore the reliability of these equations.

• If they are treated as reliable:
� the space associated with the coupling on displacement:

Cu = {uM ∈ H1(Ωm), um ∈ H1(Ωm)/ Lu(uM , um) = 0} (5.11)

� the space associated with the coupling on stress:

Cσ = {σM ∈ Hdiv(Ωm), σm ∈ Hdiv(Ωm)/ Lσ(σM , σm) = 0} (5.12)

• If they are treated as less reliable:
� the term of distance to the displacement coupling on Ωm:

J4(uM , um) =
1

2
(Lu(uM , um))2 (5.13)
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� the term of distance to the stress coupling on Ωm:

J5(σM , σm) =
1

2
(Lσ(σM , σm))2 (5.14)

Depending on the choice concerning the reliability of the equations of coupling,
we can define different study cases which are shown in Table 5.2. And then, various
possible formulations for these study cases are derived in Table 5.3.

Table 5.2: Different reliability of the equations of coupling

Study case 1 2 3 4
Coupling on displacement Reliable Reliable Less reliable Less reliable

Coupling on stress Reliable Less reliable Less reliable Reliable

Table 5.3: Various possible formulations for multi-scale problem (α, γ and ξ are positive
weighting coefficients)

Study Kinematic and static Coupling Functional
case constraints constraints
1 UAd = UMAd × UmAd

CAd = Cu ∩ Cσ J = J1 + J2 + αJ3

2 CAd = Cu J = J1 + J2 + αJ3 + ξJ5

3 SAd = (S0M
Ad ∩ S

fM
Ad )× S0m

Ad

CAd = ∅ J = J1 + J2 + αJ3 + γJ4 + ξJ5

4 CAd = Cσ J = J1 + J2 + αJ3 + γJ4

From the identification results 6.2.2, we found that the cost functions are very
large in Case 1 and Case 2. It means that the constraints of coupling on displacement
are too strong, so we need to relax the constraints. However, if we relax all the
coupling constraints and put them in the cost function, as in Case 3, the condition
number of the system will be too large and the basic problem less accurately
solved. As a consequence, Case 4 appears to be the best choice in the treated cases
for the proposed couplings. We thus define the coupling on stress as constraint,
and the coupling on displacement within the functional in order to present the
implementation and the identification in the following sections (even though all the
four study cases have been implemented).

5.4.2 The identification problem

From the splitting of the equations and the proposed bridging of the scales, we
can conclude the definition of the identification problem as the following:
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Find the fields (uM , um, σM , σm) ∈ (UAd×SAd)∩CAd and the set of parameters
(θM , θm) ∈ ΘAd minimizing :

J (uM , um, σM , σm, θM , θm) = J1 + J2 + αJ3 + γJ4 (5.15)

where UAd = UMAd × UmAd, SAd = (S0M
Ad ∩ S

fM
Ad ) × S0m

Ad , CAd = Cσ, and ΘAd is the
admissible space of parameters.

In practice, as for the mono-scale approach, the minimization is split into a
sequential minimization:

min
(θM ,θm)∈ΘAd

min
(uM ,um,σM ,σm)∈(UAd×SAd)∩CAd

J (uM , um, σM , σm, θM , θm) (5.16)

• For a given (θM , θm), find (uM , um, σM , σm) minimizing J (uM , um, σM , σm, θM , θm)

under the above constraints. This is the basic problem:

min
(uM ,um,σM ,σm)∈(UAd×SAd)∩CAd

J (uM , um, σM , σm, θM , θm) (5.17)

The solution of the basic problem is denoted:

(uM(θM , θm), um(θM , θm), σM(θM , θm), σm(θM , θm)) (5.18)

• Then, defining: G(θM , θm) = J (uM(θM , θm), um(θM , θm), σM(θM , θm), σm(θM , θm), θM , θm),
the identification of (θM , θm) is performed as the minimization of G(θM , θm):

(θM
opt

, θm
opt

) = Arg min
(θM ,θm)∈ΘAd

G(θM , θm) (5.19)

5.5 Coupling operators between the scales

5.5.1 Coupling the displacement fields

The displacement fields are sought in the finite element form. Hence, the coupling
operator aims at coupling the macro dofs and the micro dofs and will be presented
in the discrete form here.

Several approaches have been tested:

• equality in the weak form with macro finite element test fields
• coupling the displacement by diffuse approximation method
• coupling the strain by diffuse approximation method
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5.5.1.1 Coupling in the weak form

The first attempt is to purpose a coupling based on the weak form of the equality
between macro and micro fields. We started from the easiest case of 1D problem
with hierarchical macro and micro meshes (Figure 5.2). The micro and macro
displacements are defined as:

um(x) =
n∑
i

ϕmi (x)umi = [φm(x)]Um (5.20)

uM(x) =
N∑
i

ϕMi (x)uMi = [φM(x)]UM (5.21)

we denote N the number of macro dofs, and n the number of micro dofs.

* *

macro FE mesh

micro FE mesh

Figure 5.2: 1D problem with hierarchical macro and micro meshes

The equality between the micro and the macro fields can be written in a weak
form as: ∫ L

0

λT (x)(uM(x)− um(x))dx = 0,∀λ ∈ L2([0, L]) (5.22)

λ(x) can be chosen in the macro finite element space or in the micro one. We
compare these two methods in the following:
• λ(x) in the macro finite element space:λM(x) = [φM(x)]Λ∫ L

0

λM
T

(x)(uM(x)− um(x))dx = 0 (5.23)



5.5. COUPLING OPERATORS BETWEEN THE SCALES 63

∫ L

0

ΛT [φM ]T ([φM ]UM − [φm]Um)dx = 0 (5.24)

ΛT [(

∫ L

0

[φM ]T [φM ]dx)︸ ︷︷ ︸
A

UM − (

∫ L

0

[φM ]T [φm]dx)︸ ︷︷ ︸
B

Um] = 0 (5.25)

⇒ AUM −BUm = 0 (5.26)

Because A is a square matrix, corresponding to finite element mass matrix,
hence A is reversible. If Um is known, we can calculate UM from Equation
(5.26). More generally, Equation (5.26) leaves n − N degrees of freedom for
the displacement fields.
• λ(x) in the micro finite element space: λm(x) = [φm(x)]Λ∫ L

0

λm
T

(x)(uM(x)− um(x))dx = 0 (5.27)

∫ L

0

ΛT [φm]T ([φM ]UM − [φm]Um)dx = 0 (5.28)

ΛT [(

∫ L

0

[φm]T [φM ]dx)︸ ︷︷ ︸
A

UM − (

∫ L

0

[φm]T [φm]dx)︸ ︷︷ ︸
B

Um] = 0 (5.29)

⇒ AUM −BUm = 0 (5.30)

Because A is a n × N matrix, Equation (5.30) has n equations for N + n

dofs. Since n in practical case should be much larger than N , Equation (5.30)
should lead to an over-constrained problem.

Consequently, λ(x) in the macro finite element space is the reasonable choice.

We succeed to identify the 1D problem with such kind of coupling in various
boundary conditions. However, the calculation becomes more complex when the
macro and micro meshes are not hierarchical. Moreover, this kind of coupling
depends on the size of macro mesh, not on the size of Representative Volume Element
(RVE), which is more important in the coupling multi-scale problem. Hence, we turn
to try the diffuse approximation method for the coupling.

5.5.1.2 Displacement coupling through diffuse approximation

The Diffuse Approximation has been initially developed to generate smooth
approximation functions from a given set of data points [120] in the early 1990s.
The basic idea of the diffuse approximation is to replace the "finite element
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approximation" interpolation, which is valid on an element, by a local weighted
least squares fitting, which is valid on a small neighborhood of a point. Later,
it has been widely used in different fields, such as optimization through response
surfaces [121], field transfer in non linear inelastic analysis [122] and reconstructing
the gradients of noisy full-field data [123].

In our case, the macro mesh and the micro mesh will be hierarchical, so that
every macro node position corresponds to a micro node position as well.

The coupling will then consist in equaling the macro displacement at any macro
node k at position xk with an approximated field estimated at xk, uMk (x), constructed
from the micro field based on diffuse approximation on a bounded neighborhood Vk
of the macro node k.

Figure 5.3 illustrate a model of a coupling scheme in measured domain Ωm. We
choose the span of reconstruction R (Figure 5.3(a)) for the macro node k (red cross)
to define its neighborhood Vk.

Micro nodes

Macro nodes

Rk

(a) Choice of radius of reconstruction

Micro nodes

Macro nodes

RR
k

(b) Choice of weighting functions

Figure 5.3: Coupling with diffuse approximation

For each component of the displacement u, the approximated field uMk (x) is then
sought as a linear combination of monomials:

uMk (x) = 〈p(xk − x)〉{aM} =
m∑
j=1

pj(xk − x)aMj (5.31)

where p is a vector of m independent functions, chosen here as polynomial terms,
and {aM} is a vector of m parameters to be determined.

The approximated displacements at every micro nodes i in the neighborhood Vk
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can be collected in a vector {UM
k } and expressed as a function of {aM}:

{UM
k } =

 ...

〈pj(xk − xi)〉
...

 {aM} = [Pk]{aM} (5.32)

where n is the total number of micro nodes in Vk, and the matrix [Pk] has n rows
and m columns.

The micro displacement at the micro nodes umi in Vk are collected in a vector
{um}. The coefficients aMj , corresponding to the macro node k, are obtained by
minimizing the following expression:

J (aM) =
n∑
i=1

w(xk − xi)(umi − {UM
k }i)2 (5.33)

where w(xk − xi) is a positive weighting function, which equals 0 outside Vk. It is
classically chosen as a cubic spline. Relation (5.33) with (5.32) becomes:

J (aM) =
n∑
i=1

w(xk−xi)(umi −〈p(xk−xi)〉{aM})2 = ({um}−[Pk]{aM})T [W ]({um}−[Pk]{aM})

(5.34)
where [W ] is the diagonal matrix with Wii = w(xk − xi).

In practice, the weighting function vanished outside Vk, thus the only nodes
involved in the summation in (5.34) are located in Vk, preserving the local character
of the approximation. w(xk−xi) can be any positive function defined over a bounded
domain. Because of the square grid of micro nodes in our case, the weighting function
is defined as follows:

w(xk − xi) = wref (
x− xk
Rx

)wref (
y − yk
Ry

) (5.35)

where wref is a dimensionless window function whose derivative zeros at 0 and 1
[123], and here Rx = Ry = R.

The stationarity of J (aM) (5.34) with respect to {aM} leads to the following
linear relation between {aM} and {um}:

{aM} = ([Pk]
T [W ][Pk])

−1[Pk]
T [W ]{um} (5.36)

Then, if the functions for the approximated field (5.31) are monomial from degree
0 to at least 1, it comes that:



66 CHAPTER 5. MULTI-SCALE IDENTIFICATION

• a1 corresponds to the approximated displacement component at point xk
• a2 corresponds to the approximated derivative with respect to x at point xk
• a3 corresponds to the approximated derivative with respect to y at point xk
Such a reconstruction operator can be build at all the macro nodes belonging

to Ωm as the first line of the matrix system involved in Equation (5.36) for both
components of the displacement. We therefore can define the coupling between the
macro and micro finite element displacement as:

AUM
c = BUm (5.37)

where UM
c corresponds to the displacement of the macro nodes coupled with the

micro ones, A is the identity matrix and B collects the corresponding first lines of
Equation (5.36).

5.5.1.3 Strain coupling based on diffuse approximation

An alternative coupling consists in coupling the macro strain field to the micro
strain field at the location of the macro coupled node.

In this case, the strains are reconstructed by diffuse approximation with two
scales:

• apply on the macro node displacements at the macro scale
• apply on the micro node displacements at the micro scale

The neighborhood on micro and macro used in the reconstruction of diffuse
approximations should have the same physical size (so the number of points for the
micro diffuse approximation is more important). This size, a priori, corresponding
to the order of magnitude of RVE size, ought to be studied.

As the above introduced diffuse approximation method, we only need to replace
the approximated displacement field uMk and umi by the approximated strain field
εMk and εmi at the corresponding micro (i) and macro (k) nodes of the hierarchical
meshes. Here, ε is defined as the symmetric gradient of u, which means:

ε =
1

2
(∇u+∇Tu) (5.38)

ε =

 εxxεyy
2εxy

 =


∂ux
∂x
∂uy
∂y

∂ux
∂y

+ ∂uy
∂x

 (5.39)
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In order to simplify, we use the following discretization expressions as:

εMk = CMk UM , εmi = Cmi Um (5.40)

where CM
k and Cm

i are based on (5.39) and the second and third lines of (5.36) for
both displacement components.

Considering (5.40) at all the macro coupled nodes, we therefore can define the
coupling between the macro and micro finite element displacement as:

AUM
c = BUm (5.41)

where UM
c corresponds to the displacement of the macro nodes coupled with the

micro ones.

5.5.2 Coupling the stress fields

We considered two ways for coupling the stress fields: by averaging either on
volumes (surface in 2D), or on lines.

5.5.2.1 Coupling on the associated displacement field

In the case where stress field is represented by a displacement field v at both
scales, it is possible to use the coupling operators developed for U to couple the
micro and macro V .

In order to distinguish from the coupling of the displacement fields, we express
the stress field coupling relation as:

CV M
c = DV m (5.42)

where V M
c corresponds to the displacement of the macro nodes coupled with the

micro ones, C = A and D = B as the coupling operators developed for U .

However, when we use these coupling operators, we find that the coupling error
on stress is always large. It means that we cannot obtain reasonable V . The reason
is due to unlike the displacement information, the stress information is transfered
from macro field to micro field. Since macro field has fewer data points than
micro field, the coupling system becomes indeterminate. Moreover, coupling on
volume introduces a lot of data points, which enlarges the system and increases the
calculating time.
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5.5.2.2 Coupling with global load

Since coupling the stress fields on volume leads to many difficulties, the method
of coupling with global load on some lines of the mesh is proposed. Advantage of
this method is evident. It can avoid the indeterminate problem and guarantee the
existence of V , because the number of lines for macro mesh is equal to the one for
micro mesh. It is also easy and quick to calculate the global load. However, this
kind of coupling will lose some homogenization sprite.

M

Figure 5.4: Coupling with force

The basic idea of this coupling method is simple: the force of every measurement
boundary calculated by macro stress field (the green nodes in Figure 5.4) should be
theoretically equal to that calculated by micro stress field (the blue nodes in Figure
5.4).

Here the boundary of the micro domain is split into four parts:

∂mΩ = ∪4
k=1∂

k
mΩ (5.43)

Then the coupling relationship could be expressed by:∫
∂kmΩ

σM · ndS =

∫
∂kmΩ

σm · ndS, ∀k ∈ {1, 4} (5.44)

In order to get the corresponding equation on V (dofs of the displacement
representing the stress field), we can choose particular test fields in the weak form
of equilibrium (3.22) as proposed in Section 3.5.1 for the mono-scale approach.

At both scales, we choose a finite element test fields such that u∗ = Nk on ∂kmΩ

and 0 elsewhere at the nodes, where Nk is the normal vector to the boundary ∂kmΩ.
Hence:



5.6. SOLVING THE BASIC PROBLEM 69

∫
Ωm

σM : ε(u∗Mk)dΩ =

∫
∂kmΩ

σM · n · u∗MkdS (5.45)

∫
Ωm

σm : ε(u∗mk)dΩ =

∫
∂kmΩ

σm · n · u∗mkdS (5.46)

By denoting U∗Mk the dofs associated to u∗Mk and U∗mk the dofs associated to u∗mk,
we can deduce the discrete form of Equation (5.44), based on (5.45)-(5.46):

U∗TMkK
MV M = U∗TmkK

mV m, ∀k ∈ {1, 4} (5.47)

By collecting Equation (5.47) in the same matrix system, we can express the
coupling equation as:

CV M = DV m (5.48)

where the kth line of C and D are: Ck = U∗TMkK
M and Dk = U∗TmkK

m.

C and D are also denoted:

C = U∗TdMK
M , D = U∗TdmK

m (5.49)

where U∗dM collects the lines U∗Mk and U∗dm collects the lines U∗mk, ∀k ∈ {1, 4}.

5.6 Solving the basic problem

5.6.1 Choice of a displacement formulation

As for the mono-scale approach, we would like to use a displacement finite
element formulation, hence representing σ by a displacement field v such that:

σ = σ(v) = C : ε(v) (5.50)

While the existence of v in the mono-scale case can be shown easily from the equation
of the basic problem, it is not straightforward for the multi-scale approach. Its
existence indeed depends on the choice of the coupling operators between the scales
(Section 5.5.2). The existence of v is usually based on the stationarity equation with
respect to the stress σ. Hence the coupling on the stress will modify this equation
and it needs to be further investigated in order to determine if we can construct a
v field.

It is rather certain that such a field will not exist in the case of a bulk coupling
operator for the micro-macro stress fields. This is one of the reasons why we first
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implemented a coupling operator on the boundaries of the micro domain.

An alternative would be to use a stress-displacement formulation as in [86]. Yet,
another way to circumvent this difficulty is to choose to formulate the basic problem
in terms of displacement from the beginning.

As consequence, we propose here a displacement based definition of the basic
problem:

Find, for a given (θM , θm), (uM , um, vM , vm) such that:

min
(vM ,vm)∈UAd,(uM ,um,σM (vM ),σm(vm))∈(UAd×SAd)∩CAd

J (uM , um, σM(vM), σm(vm), θM , θm)

(5.51)

5.6.2 Discretization of the basic problem

Compared to the model errors, the discretization errors are considered here as
negligible in the weak formulation of finite element. The macro displacement fields
and the associated macro strain fields are given in the finite element form:[

uMx (x)

uMy (x)

]
= [ΦM(x)]UM ,

[
vMx (x)

vMy (x)

]
= [ΦM(x)]V M (5.52)

εM(uM) = [BM ]UM , εM(vM) = [BM ]V M (5.53)

where [φM(x)] is the matrix of shape function for the macro mesh, UM and V M are
the nodal unknown vectors associated with the macro displacement fields uM and
vM .

As for the macro fields, the micro displacement fields and strain fields are in the
following form: [

umx (x)

umy (x)

]
= [Φm(x)]Um,

[
vmx (x)

vmy (x)

]
= [Φm(x)]V m (5.54)

εm(um) = [Bm]Um, εm(vm) = [Bm]V m (5.55)

where [φm(x)] is the matrix of shape function for the micro mesh, Um and V m are
the nodal unknown vectors associated with the micro displacement fields um and
vm.

The functions can be written in the discrete form as follows:
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• the term of macro model error:

J1(UM , V M , θM) =
1

2
(UM − V M)TKM(UM − V M) (5.56)

where KM is the global stiffness matrix of the mechanical macro problem on
ΩM ;
• the term of micro model error:

J2(Um, V m, θm) =
1

2
(Um − V m)TKm(Um − V m) (5.57)

where Km is the global stiffness matrix of the mechanical micro problem on
Ωm;
• the term of distance to the displacement measurements:

J3(Um) =
1

2
(ΠUm − Ũ)T (ΠUm − Ũ) (5.58)

• the term of micro-macro displacement coupling error:

J4(UM , Um) =
1

2
(AUM −BUm)T (AUM −BUm) (5.59)

where A and B are the displacement coupling operators defined in Section
5.5.1.

The constraint equations are deduced from the weak form of equilibrium at each
scale by choosing specific virtual fields as explained in Section 3.5.1 for the mono-
scale approach. At both scales, we denote the index i for internal nodes, the index
g for collection of internal nodes i, free edge d and load edge f , and the index ◦ for
all nodes. The projector Πgf allows to transfer the vectors of generalized forces Ff
to the vectors of generalized forces corresponding with the problems on the lines of
index g.

• macro field equilibrium constraint:

KM
g◦V

M = Πgf F̃f (5.60)

• micro field equilibrium constraint:

Km
i◦V

m = 0 (5.61)

Finally, the coupling between the micro and macro stresses is taken into account
as a constraint as explained in Section 5.4.1, based on the coupling operators C and
D introduced in Section 5.5.2:
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CV M −DV m = 0 (5.62)

5.6.3 Monolithic micro-macro basic problem

Firstly, we try to solve the macro and micro problems at the same time. Based
on the above discretization, the basic problem writes:

Find the displacement UM , V M , Um, V m with fixed θM and θm minimizing:

J (UM , V M , Um, V m, θM , θm) = J1 + J2 + αJ3 + γJ4 (5.63)

with the constraints KM
g◦V

M = Πgf F̃f , Km
i◦V

m = 0, CV M −DV m = 0.

The solution of the basic problem is denoted (UM(θM), V M(θM), Um(θm), V m(θm)).

This basic problem is a quadratic minimization with linear constraints, the
optimality conditions of the first order are sufficient. We can use the method of
Lagrange multipliers to find the local minimal of the function subject to equality
constraints.

Introducing the Lagrange multipliers Λ1,Λ2,Λ3:

L(UM , V M , Um, V m,Λ1,Λ2,Λ3) =J (UM , V M , Um, V m) + ΛT
1 (KM

g◦V
M − Πgf F̃f )

+ ΛT
2 (Km

i◦V
m) + ΛT

3 (CV M −DV m)

(5.64)

where C and D are chosen as defined by Equation (5.49).

The differential of the Lagrangian dL is expressed:



( ∂L
∂UM , δU

M ) = δUM
T
KM (UM − VM ) + δUM

T
γAT (AUM −BUm)

( ∂L
∂VM , δV

M ) = δVMT
KM (VM − UM ) + δVMT

KM
◦gΛ1 + δVMT

KMU∗dMΛ3

( ∂L
∂Um , δUm) = δUmTKm(Um − V m) + δUmTαΠT (ΠUm − Ũ) + δUmTγBT (BUm −AUM )

( ∂L
∂Vm , δV m) = δV mTKm(V m − Um) + δV mTKm

◦iΛ2 − δV mTKmU∗dmΛ3

( ∂L∂Λ1
, δΛ1) = δΛT1 (KM

g◦V
M −Πgf F̃f )

( ∂L∂Λ2
, δΛ2) = δΛT2 (Km

i◦V
m)

( ∂L∂Λ3
, δΛ3) = δΛT3 (U∗TdMK

MVM − U∗TdmKmV m)

(5.65)



5.6. SOLVING THE BASIC PROBLEM 73

The stationarity system is dL = 0, and finally we write the equations in a matrix
manner, in terms of UM , Um and the Lagrange multipliers:



γATA −γATB KM
◦g 0 KMU∗dM

−γBTA αΠTΠ + γBTB 0 Km
◦i −KmU∗dm

KM
g◦ 0 −KM

gg 0 −KM
g◦U

∗
dM

0 Km
i◦ 0 −Km

ii Km
i◦U

∗
dm

U∗TdMK
M −U∗TdmKm −U∗TdMKM

◦g U∗TdmK
m
◦i −U∗TdMKMU∗dM − U∗TdmKmU∗dm





UM

Um

Λ1

Λ2

Λ3


=



0

αΠT Ũ

Πgf F̃f

0

0


(5.66)

V M and V m can be deduced as:

V M = UM − Λ1 − U∗dMΛ3 (5.67)

V m = Um − Λ2 + U∗dmΛ3 (5.68)

The system (5.66) can be solved numerically. Yet, it can be noted that it may be
rank deficient or badly scaled leading to the use of a truncated QR algorithm [38].
Furthermore, the numbers of dofs is about three times the number of macro dofs
plus two times the number of micro ones, leading to a possibly quite large system.

Then, the identification step is based on the cost function defined as:

G(θM , θm) = J (UM(θM), V M(θM), Um(θm), V m(θm), θM , θm) (5.69)

The identification of θM and θm is performed as the minimization of G(θM , θm):

(θMopt, θ
m
opt) = Arg min

θM ,θm
G(θM , θm) (5.70)

5.6.4 Micro-macro iterative solution

Due to the drawbacks associated with the monolithic approach, it is proposed
here to split the basic problem into a coupled problem: one at the micro scale and
the other one at the macro scale that are to be solved iteratively.

5.6.4.1 The coupled micro and macro basic problems

Considering given macro material parameters θM and macro mechanical fields
UM , V M , the macro basic problem is defined as follows:
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Find the macro displacement UM , V M with fixed macro parameters θM and
known micro Um and V m minimizing:

JM(UM , V M) = J1 + γJ4 (5.71)

with the macro constraints KM
g◦V

M = Πgf F̃f .

The solution of (5.71) is denoted: UM(θM , Um, V m), V M(θM , Um, V m).
The equations associated with (5.71) are obtained from the stationarity of the

following Lagrangian:

L(UM , V M ,Λ1) = J (UM , V M) + ΛT
1 (KM

g◦V
M − Πgf F̃f ) (5.72)

The differential of the Lagrangian dL is expressed as:


( ∂L
∂UM , δU

M) = δUMT
KM(UM − V M) + δUMT

γAT (AUM −BUm)

( ∂L
∂VM , δV

M) = δV MT
KM(V M − UM) + δV MT

KM
◦gΛ1

( ∂L
∂Λ1

, δΛ1) = δΛT
1 (KM

g◦V
M − Πgf F̃f )

(5.73)

The stationarity system is dL = 0, and finally it leads to the following equations
in terms of UM and Λ1 corresponding to the macro basic problem:[

γATA KM
◦g

KM
g◦ −KM

gg

][
UM

Λ1

]
=

[
γATBUm

Πgf F̃f

]
(5.74)

Then, for given micro material parameters θm and macro displacements UM , V M ,
the micro basic problem is defined as follows:

Find the micro displacement Um, V m with fixed micro parameters θm and
known macro UM , V M minimizing:

Jm(Um, V m) = J2 + αJ3 (5.75)

with the micro constraints Km
i◦V

m = 0, DV m = CV M

The solution of (5.75) is denoted: Um(θm, UM , V M), V m(θm, UM , V M).
The equations associated with (5.75) are obtained from the stationarity of the

following Lagrangian:

L(Um, V m,Λ2,Λ3) = J (Um, V m) + ΛT
2 (Km

i◦V
m) + ΛT

3 (DV m − CV M) (5.76)
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The differential of the Lagrangian dL is expressed as:
( ∂L
∂Um , δU

m) = δUmTKm(Um − V m) + δUmTαΠT (ΠUm − Ũ)

( ∂L
∂Vm , δV

m) = δV mTKm(V m − Um) + δV mTKm
◦iΛ2 + δV mTKmU∗dmΛ3

( ∂L
∂Λ2

, δΛ2) = δΛT
2 (Km

i◦V
m)

( ∂L
∂Λ3

, δΛ3) = δΛT
3 (U∗TdmK

mV m − U∗TdMKMV M)

(5.77)
The stationarity system is dL = 0, and finally we write the equations in terms

of Um,Λ2 and Λ3 corresponding to the micro basic problem:

 αΠTΠ Km
◦i KmU∗dm

Km
i◦ −Km

ii −Km
i◦U

∗
dm

U∗TdmK
m −U∗TdmKm

◦i −U∗TdmKmU∗dm


U

m

Λ2

Λ3

 =

 αΠT Ũ

0

U∗TdMK
MV M

 (5.78)

Consequently we solve the basic problem with smaller matrix which could be
calculated faster and more stable. The problems (5.74) and (5.78) are then solved
iteratively, through a fixed point scheme. In order to initiate the algorithm, we define
the micro displacement by projecting in a least square manner the measurements
on the finite element mesh: Um = (ΠTΠ)−1ΠT Ũ .

5.6.4.2 Identification step

From the solution of the macro basic problem, we define the macro cost function:

GM(θM) = JM(UM(θM), V M(θM), θM) (5.79)

The identification of θM is performed as the minimization of GM(θM):

θMopt = Argmin
θM
GM(θM) (5.80)

Then, from the solution of the micro basic problem, we can define the micro cost
function:

Gm(θm) = Jm(Um(θm), V m(θm), θm) (5.81)

The identification of θm is performed as the minimization of Gm(θm):

θmopt = Argmin
θm
Gm(θm) (5.82)

There are two possibilities to deal with the identification step:
• We can solve (5.74) and (5.78) for a given θ, until convergence is reached, based
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on the proposed criterion, and perform the identification of θM and θm by the
minimization of (JM +Jm). This corresponds to a sequential minimization of
J with respect to θ and the mechanical fields on the whole two-scale problem;
• We can also perform the identification step at each scale within the fixed

point algorithm. In this case, (5.71) and (5.80) are solved sequentially at the
macro step before moving to the micro step. Then (5.75) and (5.82) are solved
sequentially at the micro scale before keeping on the iteration of the fixed point
algorithm.

Here, we chose the second identification strategy, because the values of the two
scales cost function J are of different orders of magnitude, and the sensibilities of
J on θM and θm are also different. It is difficult to reach convergence when we use
the first identification step. In order to avoid this difficulty, we also need to define
different convergence criterion for the macro and micro parameters in the second
identification step.

5.7 Conclusion

This chapter introduced a multi-scale identification strategy based on the
modified constitutive relation error. It allows to identify the global homogeneous
properties of the whole specimen and also the local heterogeneous properties of the
sub-part measurement zone. We proposed two coupling scheme, one based on diffuse
approximation and the other one based on load, which can combine the stress and
displacement fields at both the micro and the macro scales. As for the mono-scale
approach, the equations are split according to the reliability of information and here
we consider the coupling on displacement as less reliable while the coupling on stress
as reliable. Two multi-scale algorithms are proposed for the basic problem depending
on the size of problem system. The applications of this multi-scale approach will be
presented in the next chapter.
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6.1 Introduction

This chapter aims at showing the applications of the multi-scale identification
based on Modified Constitutive Relation Error. First of all, we need to study the
reliability of the coupling equations and choose a suitable multi-scale basic problem
formulation. Then in order to illustrate this methodology, two steps of validation
are presented. On the first step, only the macro properties are identified for both
homogeneous and heterogeneous examples. The frames of local errors are studied
with the identification results. In order to validate the accuracy of macro properties
for heterogeneous example, we compare with the result of numerical homogenization.
Then on the second step, all the macro and micro properties are identified for both
tension and bending tests. The effects of measurement zone size and noise are
analyzed for the effectiveness of such method. The multi-scale identification results
are also compared with those using mono-scale method for the macro problem. At
last, an heterogeneous example with real material properties is studied.
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6.2 Study of the reliability of the coupling equations

The first study is focused on the choice of a suitable basic problem formulation.
Section 5.4.1 shows that the coupling equations could be considered as constraints
or functionals depending on their reliability. Here, we explain our choice in details
based on numerical examples.

6.2.1 Framework

(a) Reference calculation
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(b) U reference displacement field

Figure 6.1: Numerical example of tension test: reference calculation and simulated
displacement exact measurement

The calculation is performed representing a tensile test on a plate as sketched
in Figure 6.1(a), with reference values of local isotropic elastic Lamé parameters
(blue composition: λ1, µ1 and red composition: λ2, µ2) under assumption of plane
stress. The right edge is under uniform pressure, while the left edge is fixed on the
horizontal direction and one node is clamped to avoid rigid body motion, the upper
and bottom edges are free. The displacements obtained from this calculation are
transferred on a regular grid (51×51 data points) representing the DIC measurement
grid and are illustrated on Figure 6.1(b). Since the effect of the various boundaries
formulation (traction distribution or global load, reliable or less reliable) have been
studied for the mono-scale approach, in the following examples, we only consider
the case of reliable traction distribution (with no false assumption) to be studied in
detail.

6.2.2 Comparison of multi-scale basic problem

Various possible basic problem formulations for various study cases (Table 5.2)
are derived in Table 5.3. We fix the parameters of heterogeneous reference properties
(λ1 = 0.9, λ2 = 0.8, µ1 = 0.7, µ2 = 0.5) and calculate the basic problem directly.
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Table 6.1 presents the rank deficiency and the condition number of the matrix
associated to the basic problem and the cost function for the multi-scale basic
problem for the various study cases.

Table 6.1: Comparison of multi-scale basic problem

Study case 1 2 3 4

Macro

matrix rank deficiency 80 80 0 0
condition number Inf Inf 5.6357e+07 5.6357e+07

JM 3.3438 3.3438 0.0317 0.0317
J1 3.3438 3.3438 7.4078e-04 7.4078e-04
J4 / / 0.7939 0.7939

Micro

matrix rank deficiency 0 0 0 0
condition number 1.0581e+06 1.9164e+16 1.4566e+16 9.9296e+05

Jm 1.0493e-04 1.0474e-04 1.1018e-04 1.1027e-04
J2 1.8586e-07 1.8515e-07 1.9455e-07 1.9534e-07
J3 0.0539 0.0538 0.0566 0.0567
J5 / 3.2431e-07 3.4098e-07 /

From the comparison, we found that the cost functions are very large in Case
1 and Case 2 due to the deficient rank. It means that the constraints of coupling
on displacement are too strong, so we need to relax the constraints. However, if
we relax all the coupling constraints and put them in the cost function, as in Case
3, although the cost function seems small, the condition number of the system is
too large and the basic problem may be badly solved. As a consequence, Case 4
appears to be the best choice in the treated cases for the proposed couplings. We
thus define the coupling on stress as constraint, and the coupling on displacement
within the functional in order to present the implantation and the identification in
the following examples.

6.3 Identification of macro properties

In order to validate the multi-scale identification approach, the first step is to
identify only the macro properties of the sample assuming the micro properties are
known. The framework is the same as in Section 6.2.1.

6.3.1 Example 4: a homogeneous plate

The first test is performed with homogeneous reference properties (λ1 = λ2 = 1,
µ1 = µ2 = 0.5). We fix the micro parameters and identify the macro ones.
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λM µM J J1 J2 J3 J4

1 0.5 4.5239e−11 6.9068e−12 1.6913e−19 6.4229e−14 1.3528e−9

Table 6.2: The identification results of macro properties of a homogeneous plate
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(d) Local coupling error with displacement

Figure 6.2: Local contributions to the terms of J - case of a homogeneous plate

Table 6.2 shows the identification results of macro properties and the various
terms of the objective function (J = J1 + J2 + αJ3 + γJ4). We can find that
the value of identified macro parameters are equal to the reference value of micro
parameters. The values of the objective function terms are also very small, which
could be examined by the frame of local error (Figure 6.2). Because we obtain
the exact values of parameters, the local macro and micro constitutive relation
errors are uniform and almost equal to 0 (Figure 6.2(a)-6.2(b)). Although the local
displacement measurement error is also small, there is some error concentration at
the corner of the plate (Figure 6.2(c)) due to the error of compulsive assumption
of boundary condition. On the contrary, the local coupling error with displacement
appears to be symmetric (Figure 6.2(d)), which means the coupling operator with
diffuse approximation plays a role in the average when the material is homogeneous.
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6.3.2 Example 5: a heterogeneous plate

The second test is changed to the case of heterogeneous reference properties
(λ1 = 0.9, λ2 = 0.8, µ1 = 0.7, µ2 = 0.5). We fix the micro parameters to the exact
ones and identify the macro ones.

λM µM J J1 J2 J3 J4

0.8483 0.6472 0.0921 0.0057 3.1498e−8 0.0103 2.3444

Table 6.3: The identification results of macro properties of a heterogeneous plate
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Figure 6.3: Local contributions to the terms of J - case of a heterogeneous plate

Table 6.3 presents the identification results of macro properties and the various
terms of the objective function (J = J1 + J2 + αJ3 + γJ4). In the heterogeneous
case, the identified macro parameters are between the two values of micro parameters
(λ1 > λM > λ2, µ1 > µM > µ2). The value of the objective function remains small,
but it is larger than in the homogeneous case, especially concerning the term of
coupling with displacement J4. Figure 6.3 shows the local contributions to the
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terms of J . The local macro and constitutive relation error is concentrated at the
corner of the plate (Figure 6.3(a)), as is the local displacement measurement error
(Figure 6.3(c)). However, we can find that the local coupling error with displacement
distributes on the whole plate, but it is more important on the load boundary and
the fixed edge (Figure 6.3(d)). It means that the coupling operator with diffuse
approximation functions better on the center part than on the edges.

In order to validate the identification results of the heterogeneous plate, we
compare them with the results of a numerical homogenization [124]. After
calculation, we find that the identified properties are very close to those obtained
by numerical homogenization: λHM = 0.8483, µHM = 0.6476. It is clearly shown that
the first validation of the multi-scale approach succeeded.

6.4 Identification of macro and micro properties

6.4.1 Example 6: tension test

The second step to validate the multi-scale identification approach is to identify
both the macro and micro properties. We carry out the calculation on the same case
as Example 5 (Section 6.3.2) (Figure 6.1(a)), hence with heterogeneous properties.
We use BFGS to carry out the minimization, but BFGS appears to be too slow to
perform convergence for the micro problem, which is due to a very elongated valley
of the objective function. In order to speed up the convergence, we try to add a
relaxation on the parameters after every iteration step:

θn+1 = pθ0
n+1 + (1− p)θn (6.1)

where θn are the previous iteration parameters, θ0
n+1 are the original new parameters

obtained from the previous step based on a classic method, θn+1 are the final new
enter parameters and 0 < p < 1 is the weighting coefficient, here we chose p = 0.8.

However, it is difficult to add this relaxation on every new iteration when we use
BFGS, because for BFGS, we used the function "fmincon" in Matlab as a "black
box". That is why we choose MMA with such an added relaxation step. A quick
convergence is achieved by this method.

λM µM λ1 λ2 µ1 µ2 J J1 J2 J3 J4

0.8483 0.6472 0.9001 0.8001 0.7 0.6 0.0921 0.0057 3.1353e−8 0.0102 2.3444

Table 6.4: The identification results of macro and micro properties of a heterogeneous plate
on the tension test
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Figure 6.4: Local contributions to the terms of J - case of a heterogeneous plate for
identifying both macro and micro properties on the tension test

From Table 6.4, in the part of macro identification, we find λM = 0.8483 and
µM = 0.6472, which are validated based on numerical homogenization. In the part
of micro identification, the identified micro values are almost equal to the reference
values. Figure 6.4 shows the local error of the functional for the identified properties.
Similarly to the heterogeneous case with only macro parameters identification, the
most important error is the coupling error in terms of displacement. From this point
of view, we succeed to validate the multi-scale approach for identifying both the
macro and micro parameters together. In order to further illustrate the robustness
of this multi-scale approach, in the following analysis, we will study the effect of the
size of the measurement zone and the effect of noise on the identification results.

6.4.1.1 Effect of the size of the measurement zone

The proposed multi-scale formulation allows to perform the identification on
a zone where the displacements are measured through DIC on a sub-part of the
identification zone. To illustrate this, the same measurement zone size is treated
in various sizes of specimen as shown Figure 6.5. The ratio of the size of the
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measurement zone to the global size is characterized by the ratio of its surface
Sm to the global identification surface Si: Sm

Si
.
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Figure 6.5: Comparison of identified θk for various measurement zone sizes on the tension
test

reference value 64% 44% 33% 25% 20% 16%
λM 0.8483 0.8483 0.8483 0.8483 0.8427 0.7528 0.7011
µM 0.6472 0.6472 0.6473 0.6474 0.6498 0.6867 0.7011
λm1 0.9 0.8998 0.8999 0.8998 0.8938 0.7990 0.7478
λm2 0.8 0.7999 0.7999 0.7998 0.7942 0.7060 0.6585
µm1 0.7 0.7000 0.7000 0.7001 0.7027 0.7435 0.7582
µm2 0.6 0.6000 0.6000 0.6001 0.6024 0.6376 0.6503

Table 6.5: The identification results of macro and micro properties for various measurement
zone sizes on the tension test

Figure 6.5 and Table 6.5 present the identification results for various measure-
ment zone size. Obviously, until the ratio reduces to 25%, the method of multi-scale
is very effective and the identification results are accurate. However, when the
ratio is smaller than 25%, the identification results lose accuracy. The reason is that
measurement zone is far away from the boundary, and it loses too many information.
The problem becomes ill-conditioned with a high condition number in the field of
numerical analysis. The solving of the basic problem should have to be further
investigated in this framework.



6.4. IDENTIFICATION OF MACRO AND MICRO PROPERTIES 85

6.4.1.2 Effect of noise

We choose two different ratios of measurement size (64% and 25%) to analyze
the effect of noise. Figure 6.6 shows the identification results on 100 samples with a
1% measurement noise for each ratio, in terms of mean value and standard deviation
of the identified θk

θref
properties. The first point to be noticed is that the multi-scale

method can lead to a reasonable identification result from disturbed measurement.
Then, as could be expected, the identification results are more sensitive to the noise
when the ratio of measurement zone size reduces.
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Figure 6.6: Comparison of identified θk
θkref

on 100 samples of 64% and 25% measurement

zone sizes (mean value and standard deviation) with a 1% noise on the tension
test

6.4.1.3 Mono-scale method for the macro problem

In all the above examples, displacements at the two scales are coupled through
diffuse approximation. Yet, we address here the question of identifying the macro
properties from the measurements through a mono-scale approach (despite the fact
the measurement are rather at the micro-scale). It is therefore proposed to transfer
the displacement measurement to the macro scale using the operator ΠM . The
function of ΠM is the same as the one of Π in the mono-scale approach: transfer the
finite element field to the data grid based on the FE shape functions. The difference
is the mesh size for the finite element field. Here, ΠM transfers the macro finite
element field to the data grid. Meanwhile, the micro basic problem keeps the same
as the one in the multi-scale approach. To compare the results with Figure 6.5 and
Table 6.5, Figure 6.7 and Table 6.6 show the identified θk for various measurement
zone sizes on the tension test with mono-scale method for the macro problem. The
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ratio of the size of the measurement zone to the global size is characterized by the
ratio of its surface Sm to the global identification surface Si: Sm

Si
.
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Figure 6.7: Comparison of identified θk for various measurement zone sizes on the tension
test with mono-scale method for the macro problem

reference value 64% 44% 33% 25% 20% 16%
λM 0.8483 0.8482 0.8482 0.8482 0.8482 0.8457 0.7954
µM 0.6472 0.6473 0.6473 0.6474 0.6474 0.6484 0.6679
λm1 0.9 0.8998 0.8999 0.8998 0.8998 0.8972 0.8445
λm2 0.8 0.7998 0.7999 0.7998 0.7998 0.7974 0.7484
µm1 0.7 0.7001 0.7000 0.7001 0.7001 0.7012 0.7223
µm2 0.6 0.6001 0.6000 0.6001 0.6001 0.6011 0.6193

Table 6.6: The identification results of macro and micro properties for various measurement
zone sizes on the tension test with mono-scale method for the macro problem

Obviously, until the ratio reduces to 20%, this method is very effective and
the identification results are accurate. It is a little better than that using diffuse
approximation coupling, especially for the ratio under 20%. However, when the ratio
is too small, the identification results also lose accuracy. The reason is the same as
above: measurement zone is far away from the boundary, and it loses too many
information. The problem becomes ill-conditioned with a high condition number
in the field of numerical analysis. Moreover, this mono-scale method for the macro
problem is not always effective, such as in the case of bending test. We will show
the details in Section 6.4.2.4.
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6.4.2 Example 7: bending test

(a) Reference calculation
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(b) U reference displacement field

Figure 6.8: Numerical example of bending test: reference calculation and simulated
displacement exact measurement

In order to extend the approach of multi-scale identification to other mechanical
experiments, a bending test is taken into account. The calculation is performed
representing a bending test on the half part of a symmetric plate as sketched in
Figure 6.8(a), with reference values of local composition elastic Lamé parameters
(blue composition: λ1, µ1 and red composition: λ2, µ2) under assumption of plane
stress. The left edge is fixed on the horizontal direction and one node is clamped to
avoid rigid body motion, the upper and bottom edges are free. The displacements
obtained from this calculation are transferred on a regular grid (51×51 data points)
representing the DIC measurement grid size and are illustrated on Figures 6.8(b).
Some noise can be added to these exact fields in order to represent the measurement
perturbations. The magnitude of the additive noise is given in percent of the mean
value of the displacements or the mean value of the load measurement. For the
bending examples, we consider the case of reliable global load M-CRE formulation
to be studied in detail.

λM µM λ1 λ2 µ1 µ2 J J1 J2 J3 J4

0.8402 0.6466 0.9008 0.7995 0.7002 0.6003 3.86 0.02 3.42e−6 4.01 258.91

Table 6.7: The identification results of macro and micro properties of a heterogeneous plate
on the bending test

From Table 6.7, in the part of macro identification, we find λM = 0.8402 and
µM = 0.6466, which are close to the values obtained from numerical homogenization.
In the part of micro identification, the identified micro values are almost equal to
the reference values. However, all the identification results for the bending test
have a little more error compared to those for the tension test. The reason can be
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(c) Local displacement measurement error
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Figure 6.9: Local contributions to the terms of J - case of a heterogeneous plate for
identifying both macro and micro properties on the bending test

found from Figure 6.9, which shows the local error for the identified properties. The
displacement measurement errors 6.9(c) and the coupling errors with different scale
of displacement 6.9(d) are greater than those on tension test. In order to further
illustrate the robustness of this multi-scale approach on the bending test, in the
following analysis, we will study the effect of the size of the measurement zone and
the effect of the position of the measurement zone, before studying the effect of noise
and comparing to a macro mono-scale approach.

6.4.2.1 Effect of the size of the measurement zone

As for the above tension test example, firstly, it needs to illustrate that the
proposed multi-scale formulation allows to perform the identification on a zone where
the displacements are measured through DIC on a sub-part of the identification zone.
Figure 6.10 shows various ratios of the size of the measurement zone to the global
size, which is characterized by the ratio of its surface Sm to the global identification
surface Si: Sm

Si
.
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mesurement zone ratio

Figure 6.10: Comparison of identified θk for various measurement zone sizes on the bending
test

reference value 100% 64% 44% 33%
λM 0.8483 0.8402 0.8359 0.8168 0.7723
µM 0.6472 0.6466 0.6486 0.6347 0.6004
λm1 0.9 0.9008 0.9146 0.8882 0.8359
λm2 0.8 0.7995 0.814 0.7906 0.7445
µm1 0.7 0.7002 0.7119 0.6915 0.6508
µm2 0.6 0.6003 0.6106 0.5931 0.5582

Table 6.8: The identification results of macro and micro properties for various measurement
zone sizes on the bending test

Figure 6.10 and Table 6.8 present the identification results for various mea-
surement zone sizes. Obviously, until the ratio reduces to 44%, the multi-scale
method is effective and the identification results are accurate. However, when ratio
is smaller than 44%, the identification results lose accuracy. The reason is that
measurement zone is far away from the boundary, and it loses too many information.
The problem becomes ill-conditioned with a high condition number in the field of
numerical analysis.

6.4.2.2 Effect of the position of the measurement zone

From the above analysis, we find that the size of the measurement zone will affect
the identification results because of the quantity of available information. The next
analysis is about the influence of the quality of available information. The examples



90 CHAPTER 6. APPLICATION OF MULTI-SCALE IDENTIFICATION

shown in Figure 6.11 are divided into two groups: 64% and 44% of measurement
size, and every group has two different positions of the measurement zone: center
and right.
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Figure 6.11: Comparison of identified θk for various measurement zone positions on the
bending test

reference value 64%-center 64%-right 44%-center 44%-right
λM 0.8483 0.8359 0.8415 0.8168 0.8305
µM 0.6472 0.6486 0.6467 0.6347 0.6439
λm1 0.9 0.9146 0.9105 0.8882 0.8984
λm2 0.8 0.814 0.8093 0.7906 0.7994
µm1 0.7 0.7119 0.7007 0.6915 0.6992
µm2 0.6 0.6106 0.6066 0.5931 0.5997

Table 6.9: The identification results of macro and micro properties for various measurement
zone positions on the bending test

Figure 6.11 and Table 6.9 present the identification results for the two measure-
ment zone positions. Obviously, the results are improved when the position is on
the right side. From Figure 6.8(a) we can find that the load boundary is on the right
side of the specimen, therefore, if the measurement zone cover the load boundary,
it means that partial boundary condition information is close to the displacement
information, hence their confrontation is emphasized. On the contrary, the center
position will lose part of the experimental data confrontation. From the mono-scale
identification examples, we know that load information is very important to identify
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the heterogeneous properties. Consequently, improving the quality of information
can help to improve the identification results.

6.4.2.3 Effect of noise
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Figure 6.12: Comparison of identified θk
θkref

on 100 samples of 64% and 44% measurement

zone sizes (mean value and standard deviation) with a 1% noise on the bending
test

We choose two different ratios of the measurement size (64% and 44%) to analyze
the effect of noise. Figure 6.12 shows the identification results on 100 samples with a
1% measurement noise for each ratio, in terms of mean value and standard deviation
of the identified θk

θref
properties. The first point to be noticed is that the multi-scale

method can obtain reasonable identification results from perturbed measurement.
Then, as could be expected, the identification results are more sensitive to the noise
when the ratio of the measurement zone size to the global size reduces.

6.4.2.4 Mono-scale method for the macro problem

As for the tension test, we also compared the multi-scale approach to a macro
mono-scale one using the operator ΠM to transfer the macro finite element field
to the data grid for the macro basic problem. However, we keep the micro basic
problem the same as the one in the multi-scale approach. Table 6.10 shows identified
θk for various measurement zone sizes on the bending test with mono-scale method
for the macro problem. The ratio of the size of the measurement zone to the global
size is characterized by the ratio of its surface Sm to the global identification surface
Si: Sm

Si
.
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reference value 100% 64% 44% 33%
λM 0.8483 0.8441 0.8417 0.764 1.2
µM 0.6472 0.6476 0.6496 0.2972 0.9244
λm1 0.9 0.902 0.841 1.2 1.2
λm2 0.8 0.801 0.7287 1.2 1.2
µm1 0.7 0.7013 0.643 1.2 1.2
µm2 0.6 0.6011 0.5545 1.2 1.2

Table 6.10: The identification results of macro and micro properties for various measure-
ment zone sizes on the bending test with mono-scale method for the macro
problem

Contrary to the tension test, this method becomes ineffective for the bending
test for ratios of size under 44%. It cannot identify the exact macro parameters,
so that all the identified micro parameters equal to the setting ΘAd upper limit. It
means that the transfer operator ΠM fails to transfer the displacement information
when the stress conditions are more complex. It also means that the identification
of homogeneous properties from data with micro information can lead to erroneous
results if the multi-scale property is not taken into account properly. On the other
hand, it shows that the multi-scale approach with displacement coupling is suitable
for various loading experiments.

6.4.3 Example 8: with real material properties

In order to further verify the multi-scale identification approach, a calculation
is performed representing a tensile test on a plate as sketched in Figure 6.1(a), but
with real material properties values (not dimensionless ones as in previous examples).
We choose a kind of carbon-epoxy composite with parameters shown in Table 6.11,
noting that subscript f refers to the carbon fibres, and subscript m refers to the
epoxy matrix.

Ef (GPa) Em(GPa) νf νm
350 3.5 0.2 0.35

λf (GPa) λm(GPa) µf (GPa) µm(GPa)
73 1.4 145 1.3

Table 6.11: Real material properties of carbon-epoxy composite

Table 6.12 shows the identification results with real material properties. We
find that the identified macro properties are close to those obtained by numerical
homogenization: λHM = 26.2GPa, µHM = 16.5GPa, and the identified micro properties
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λM(GPa) µM(GPa) λf (GPa) λm(GPa) µf (GPa) µm(GPa)
24.4416 14.56 73.7328 1.4014 144.706 1.2999

Table 6.12: Identification results for real material properties of carbon-epoxy composite on
the tension test

are also close to the reference values. It further illustrates that the multi-scale
approach can apply to real experiments.

6.5 Conclusion

In this chapter, we used two steps to validate the multi-scale approach. The first
step was the identification of the macro properties alone, and the second step was
the identification of both the macro and micro properties at the same time. We
obtained the exact values of macro parameters which were validated by numerical
homogenization, and accurate values of the micro parameters. Furthermore, the
study of the measurement zone size effect and noise effect on the tension test
illustrated the robustness of this multi-scale approach. Moreover, the extension
to the heterogeneous elasticity was conducted to numerical examples of a bending
test. Through the measurement zone size effect and position effect studies, we
illustrated the importance of the quantity and quality of available information. And
it was shown the multi-scale approach could yields more accurate results than a
mono-scale one. Finally, the example with real material parameters shows that the
multi-scale approach is applicable in real experiments.
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7.1 Conclusions

The work in this dissertation aims at identifying the heterogeneous elastic
material parameters of composites from inhomogeneous static test and kinematics
field measurements based on Digital Image Correlation. There are two central issues:
one is the management of uncertainties of both experimental data and theoretical
model; the other is the management of different scales between measurement and
identification.

At first, a mono-scale approach based on the Modified Constitutive Relation
Error has been proposed with different boundary conditions. There are two
reasons to make this choice among all inverse approaches. Firstly, most of other
approaches require all the boundary conditions of the studied domain. However, the
information of boundary is not always reliable. It means that some will include noisy
measurements as boundary condition, and others will introduce additional model
errors with model assumptions. Secondly, the solutions of the other identification
methods are often only on the measurement area, smaller than the actual size
of the sample, which does not allow to take advantage of reliable information on
the boundary. M-CRE can overcome these limitations by constructing a trade-off
between all the available information, in a strong physical manner. M-CRE is also
very flexible to deal with different kinds of boundary conditions depending on the
case, which is applicable in the real industry analysis.

The first homogeneous numerical example showed that the calculation with
M-CRE could be performed without some or all boundary condition, but it was
still solved on the whole domain. However, by adding free edge information, the
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identification results were significantly improved. And then on the illustrating
heterogeneous example, it was shown that the method allowed the calculation with
different kinds of boundary conditions and the taking into account of load-edge
could yield the identification of heterogeneous parameters. Another comparison,
taking into account the load condition as reliable information, showed that the
identification results were better by presuming the load condition as a global load
rather than a traction distribution. The reason was that the model error on the
traction distribution would lead to wrong identification results. In order to decrease
this model error and restore the balance, we could take into account the traction
distribution as less reliable information and optimize the weighting coefficient of the
distance to traction distribution.

For the second issue, a multi-scale identification strategy based on the M-CRE
has been introduced, which permits to identify the global homogeneous properties
of the whole specimen and also the local heterogeneous properties of the sub-
part measurement zone. As for the mono-scale approach, the equations are split
according to the reliability of information. The particularity is that the displacement
measurement is only on the micro scale formulation, while the load boundary
condition is only on the macro scale. In order to combine the stress and displacement
fields at both the micro and macro scales, two coupling schemes have been proposed,
one based on diffuse approximation and the other based on load. Two multi-scale
algorithm are also proposed for the basic problem depending on the size of problem
system.

Some numerical examples were used to validate this new multi-scale approach.
There were two steps for validations, the first step was the identification of only
the macro properties of the sample, and the second step was the identification of
both the macro and micro properties at the same time. We obtained values of
macro parameters in very good agreement with numerical homogenization, and the
accurate values of micro parameters. Furthermore, the study of measurement zone
size effect and noise effect illustrated the robustness of this multi-scale approach.
Finally, the extension to the heterogeneous elasticity was conducted to numerical
examples of a bending test.

7.2 Prospects

The methodology developed in this dissertation is very promising. In the future
work, for short-term outlook, we should continue to adapt M-CRE to multi-scale
identification in the case of composite plate: firstly, the coupling operators need
to improve, especially for the zones near boundaries; secondly, the algorithm of
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resolution needs to adapt with smaller measurement area, which means the solving
of the basic problem should be further investigated in this framework; thirdly, the
algorithm of minimization needs to improve in order to speed up the identification
step; finally, the real experiment should be introduced to validate the methodology.

For long-term outlook, we should extend the application of M-CRE: studying the
identification of anisotropic properties of composites with different orientation fibers;
exploiting the images in the life cycle until rupture to identify the damage properties;
attempting to model and locate the properties of complex materials and structures;
extending to the identification on volume with the technique of tomography and
3D-DIC.
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