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de
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Groupes Projectifs et Arrangements de Droites

Résumé : Le but de cette thèse est de considérer différentes questions sur les groupes
projectifs et sur les arrangements de droites dans le plan projectif P2. Un groupe projectif est
un groupe qui est isomorphe au groupe fondamental d’une variété projective lisse complexe.
Pour étudier les groupes projectifs, des techniques sophistiquées de topologie algébrique et
de géométrie algébrique ont été développées pendant les dernières décennies, par exemple la
théorie des variétés caractéristiques combinée avec la théorie de Hodge s’est montrée être un
outil puissant. Les arrangements de droites dans le plan projectif P2 ont une place centrale dans
l’étude des groupes projectifs. En effet, il y a beaucoup de questions ouvertes sur les groupes
projectifs, et la théorie des arrangements d’hyperplans, en particulier celle des arrangements de
droites, qui est un domaine très actif de recherche, peut suggérer des solutions à ces problèmes.
En outre, les problèmes sur les groupes fondamentaux de complémentaires des arrangements
d’hyperplans peuvent être réduits au cas des arrangements de droites, en utilisant le bien
connu Théorème de Zariski du type de Lefschetz. Assez souvent, pour étudier les groupes
projectifs ou quasi-projectifs, on considère d’abord les arrangements de droites pour obtenir
des idées intuitives.

Dans le Chapitre 1 nous donnons une présentation du contenu de cette thèse, énumérant
les résultats principaux suivant les chapitres.

Dans le Chapitre 2 nous donnons un résumé des techniques utilisées dans cette thèse. Les
outils principaux sont la théorie de Hodge classique et la théorie de Hodge mixte, la théorie
des variétés caractéristiques et certaines propriétés des arrangements d’hyperplans.

Nous étudions en détail les propriétés des variétés caractéristiques dans les Chapitres 3 et
4. Dans le Chapitre 3, les relations principales entre les variétés caractéristiques, les variétés
de résonance et les premières variétés logarithmiques sont établies en utilisant le modèle de
Gysin construit par J. Morgan. Dans le Chapitre 4 nous démontrons plusieurs théorèmes sur
les sous-espaces isotropes. Nous montrons que ces théorèmes sur les sous-espaces isotropes
restent valides même dans le cas des surfaces non-kähleriennes. De plus, nous obtenons des
inégalités sur les nombres de Hodges qui font intervenir les variétés caractéristiques.

Dans le Chapitre 5 nous discutons en principal la géométrie de la fibre de Milnor d’une
courbe plane projective, en la reliant aux propriétés des morphismes construits à partir de
multinets, une classe spéciale de pinceaux de courbes. Nous montrons que la fibre générale
d’un tel morphisme est connexe, donc on obtient des pinceaux irrationnels ; des généralisations
sont proposées, au cas où les polynômes ne sont pas de produits de facteurs linéaires. Nous
donnons après cela un critère pour décider la non-1-formalité de fibres de Milnor, ainsi que
de nouveaux exemples des arrangements de droites dont la fibre de Milnor associé n’est pas
1-formelle.

Dans le Chapitre 6 nous discutons certaines surfaces algébrique associées aux arrange-
ments de droites. Le but principal est d’obtenir des formules compactes pour les nombres
de Chern des surfaces projectives lisses obtenues par compactifications des fibres de Milnor.
Nous montrons ensuite que ces surfaces ne sont jamais de quotients de boules.

Dans le dernier Chapitre, nous montrons que les surfaces ainsi obtenues à partir d’un
arrangement ayant seulement des points doubles et triples sont de surfaces de type général
dans la classification de Kodaira. La question ouverte principale sur la topologie de la fibre de
Milnor est si la monodromie associée est déterminée par la combinatoire. Nous expliquons la
relation étroite entre cette question ouverte majeure et l’irrégularité des surfaces correspon-
dantes. En outre, nous explorons les surfaces obtenues à partir d’arrangements de courbes, en
compactifiant leurs fibres de Milnor dans des espaces projectifs pondérés.



Dans cette thèse nous obtenons aussi des résultats d’un intérêt indépendant, par exemple
sur les morphismes définis sur un produit d’espaces projectifs dans le Chapitre 4, sur la fibre
générale de certains morphismes dans le Chapitre 5 et les critères sur les surfaces de type
générales au Chapitre 7.

Mots-clés : arrangements de droites, fibre de Milnor, théorie de Hodge, groupe fonda-
mental, variété caractéristique, 1-formalité, surfaces projectives de type général.



Projective Groups and Line Arrangements

Abstract: The objective of this thesis is to investigate various questions about projective
groups and line arrangements in the projective plane P2. A projective group is a group
which is isomorphic to the fundamental group of a smooth complex projective variety. To
study projective groups, sophisticated techniques in algebraic topology and algebraic geometry
have been developed in the passed decades, for instance, the theory of cohomology jump
loci, together with Hodge theory, has been proven a powerful tool. Line arrangements in
the projective plane P2 are of special interest in the study of projective groups. Indeed,
there are many open questions related to projective groups, and the theory of hyperplane
arrangements, and in particular that of line arrangements, which is quite an active area of
research, may provide insights for these problems. Furthermore, problems concerning the
fundamental groups of the complements of hyperplane arrangements can be reduced to the
case of line arrangements, due to the celebrated Zariski theorem of Lefschetz type. Very
often, in the study of projective groups or quasi-projective groups, one usually considers line
arrangements first to get some intuitive ideas.

In Chapter 1, we give an outline of the content of this thesis, containing a brief exposition
of the main results in the following chapters.

In Chapter 2, we give a review of fundamental materials that we used throughout the
thesis. The crucial tools are classical Hodge theory and mixed Hodge theory, theory of
cohomology jump loci and the special properties of hyperplane arrangements.

We explore in detail properties of cohomology jump loci in Chapter 3 and Chapter 4. In
Chapter 3, the main relations between characteristic varieties, resonance varieties and first
logarithmic varieties are established via the Gysin model constructed by J. Morgan. In Chap-
ter 4, various isotropic subspace theorems are proved. We extend the well-known isotropic
subspace theorems to the case of non-Kählerian surfaces. In addition, some inequalities about
Hodge numbers are given in terms of the cohomology jump loci.

In Chapter 5, we discuss mainly geometry of the Milnor fiber of a projective plane curve by
showing properties of morphisms associated to multinets, a special class of pencils of curves.
We prove that the morphisms have connected generic fibers, thus they give irrational pencils;
some extensions are also given, for instance, morphisms concerning homogeneous polynomials
which are not necessarily linear forms. After that, we give a criterion for non-1-formality of
the Milnor fiber and some new examples of line arrangements whose Milnor fibers are not
1-formal.

In Chapter 6, we discuss some algebraic surfaces associated to line arrangements. The
main part is to give compact formulae for the Chern numbers of the associated projective
surfaces. Then with the help of the developed surface theory, we show that the associated
surfaces can never be ball quotients.

In the last Chapter, we show the associated surfaces are of general type if the line ar-
rangements have only nodes or triple points as singularities. The open question about the
topology of the Milnor fiber being combinatorially determined is also discussed. Moreover, we
also make an exploration of surfaces associated to curves arrangements and compactifications
of the Milnor fibers in weighted projective spaces.

In this thesis, we also prove some theorems that are of independent interest and can be
used elsewhere, for instance, we prove properties concerning morphisms from products of
projective spaces in Chapter 4, we show that some morphisms have generic connected fibers
in Chapter 5 and we give criteria for a projective surface to be of general type in Chapter 7.

Keywords: line arrangements, Milnor fiber, Hodge theory, fundamental group, coho-



mology jump loci, 1-formal, projective surfaces of general type.
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1
Introduction

1.1 Motivations and Contexts

The study of geometry and topology of Kähler manifolds has quite a long history. On the
one hand, the cohomology theory of Kähler manifolds, which arises from the classical Hodge
theory, is much richer than that of the more general differential or Riemannian manifolds.
The Hodge decomposition and Lefschetz decomposition give much restrictive conditions on
the geometry and topology for a manifold being compact Kähler, for an excellent exposi-
tion of Hodge theory on compact Kähler manifolds, we refer to [Voi1]; more generally, for
quasi-projective manifolds, mixed Hodge theory can be established and similar results can be
obtained, see [PeS],[Del71],[Del74] and also Appendix C in [Dim92] for a short review. On the
other hand, the class of Kähler manifolds contains lots of differential and topological spaces
we encounter frequently, for example, projective manifolds and complements of line arrange-
ments in the complex projective plane P2. These manifolds provide a number of interesting
examples in geometry and topology.

As is well-known, every finitely presented group is the fundamental group of a compact
differential manifold of dimension greater than or equal to four, see [Man]. However, not every
group can be the fundamental group of a quasi-projective manifold. A finitely presented group
is said to be projective (resp. quasi-projective) if it can be realized as the fundamental group
of a projective (resp. quasi-projective) manifold. The study of cohomology jump loci gives
specific conditions for a group to be quasi-projective. Together with the mixed Hodge theory,
this study has proven to be a powerful tool to study quasi-projective groups. In such a study
of quasi-projective manifolds, hyperplane arrangements stand out.

In the theory of hyperplane arrangements, one of the most remarkable feature is to deeply
understand the geometry and topology of the Milnor fiber F , for example, its Betti numbers
or the characteristic polynomial of the monodromy, and study whether they are determined by
the combinatorics of the arrangement. As a matter of fact, investigations on the monodromy
action from different points of view often give various results on other aspects, e.g., the Betti
numbers. Moreover, if the study concerns only the fundamental group of the complement
of the arrangement, then the discussions can often be further reduced to the case of line
arrangements in P2. In dimension 2, the Milnor fiber is an algebraic surface, so surface theory
may also be applied.

One can construct interesting algebraic surfaces from line arrangements. A typical example
in this direction is the Hirzebruch surface constructed from a line arrangement A, from study
of which, some new and very useful inequalities about the combinatorics of A are obtained,
see [Hi]. The Hirzebruch surface does not seem to be closely related to the Milnor fiber,
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however, we can construct surfaces directly from the Milnor fiber. The hope is that using the
very developed surface theory, more properties of the Milnor fiber will be revealed.

Our basic philosophy in this thesis is to apply various tools from different branches of
mathematics to study the Minor fiber of an arrangement. For a line arrangement A in P2,
its Milnor fiber F is on the one hand is a quasi-projective manifold, hence we may use mixed
Hodge theory to study its cohomology jump loci; on the other hand, F is also a surface, for
which the well-known surface theory may help. Moreover, a line arrangement is a quite special
object in topology and much has been well understood about the complement M = M(A) for
the arrangement A, see [OT]. Since F is clearly a Galois cover of M , it is a natural idea to
study F using the known results on M and studying the monodromy associated to the Galois
cover. In addition, although F is a smooth manifold, it has a compactification F in P3 which
has isolated singularities; some properties of F reflect the properties of F , thus singularity
theory can also be applied to study F . Of course, tools from differential geometry, differential
topology, algebraic geometry and analytic geometry can be applied.

Therefore, our study of the Milnor fiber is via a mixture of different theories. Naturally,
during such a study of the Milnor fiber F using various tools, we can hope not only to
understand better its topology and geometry, but to obtain some results which are true in
more general settings and which can be applied elsewhere to study quite different objects. For
example, we prove in Chapter 5, Section 1, that some morphisms have connected generic fibers,
and these results can be applied to study deformations of hypersurfaces, see also [Wang].

1.2 Conventions and Notations

In this section, we give an outlined description of the conventions and notations that will
be applied throughout the whole thesis.

A real n-dimensional manifold will be a connected C∞ manifold that appears in differential
geometry, namely it is a Hausdorff second countable topological space X equipped with an
open cover

X =
⋃
i∈I

Ui,

and a system of homeomorphisms φi : Ui → Vi ⊆ Rn, i ∈ I where Vi is an open set in Rn such
that whenever Ui ∩ Uj 6= ∅,

φi ◦ φ−1j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

is C∞. A complex manifold is defined similarly, with the main point being that Rn is replaced
by Cn and φi ◦ φ−1j is biholomorphic map. Typical examples of complex manifolds are: the
complex Euclidean space Cn and the complex projective space Pn.

Let X be a real manifold, the sheaf of complex valued differential forms of degree p will
be denoted by ApX , while the sheaf of real valued differential forms of degree p is denoted by
ApX,R. Also denote Γ(X,−) : F 7→ Γ(X,F) the global section functor acting on sheaves over
X, which to each sheaf F , associates the set of global sections Γ(X,F). Denote

ApX = Γ(X,ApX).

Denote by Ωp
X,R the vector bundle of real p-forms.

When X is a complex manifold, we have the sheaf of holomorphic functions on X, denoted
by OX . The sheaf of meromorphic functions on X will be denoted byMX . We also have the
sheaf of holomorphic forms of degree p, denoted by Ωp

X , which is also, up to an identification,



1.2. Conventions and Notations 3

the holomorphic bundle of holomorphic p-forms. In addition, we denote Ap,qX the sheaf of
differential forms of type (p, q) on X, while we denote Ωp,q

X the corresponding vector bundles.
For cohomology of X, we use Hk(X) to denote the k-th De Rham cohomology or singular

cohomology of X with complex coefficients. More generally, let A be a ring, for instance
A = Z,Q,R, denote by Hk(X,A) be the k-th singular cohomology with coefficients in A.

For any sheaf F over X, denote Hk(X,F) the k-th cohomology of X with coefficients in
F . More generally, let A be any ring and F• be a bounded from below complex of sheaves
of A-modules on X, denote by Hk(X,F•) be the k-th hypercohomology; this cohomology is
given as follows: let I• be an injective resolution of F•, then

Hk(X,F•) = Hk(Γ(X, I•)).

A complex manifold X is said to be a quasi-projective (resp. projective) manifold if it
is also a quasi-projective (resp. projective) variety. Let X be a quasi-projective manifold.
A projective manifold X is said to be a good compactification of X, if there is an injective
morphism j : X ↪→ X such that j(X) is a Zariski open subset of X and in addition, D =
X − j(X) is a simple normal crossing divisor in X, i.e., D admits an irreducible component
decomposition D =

⋃
iDi such that each Di is a smooth hypersurface in X and for any p ∈ D,

there exists a holomorphic coordinate neighbourhood (U, (zi)) centered at p for X in which
D ∩ U is a union of coordinate hyperplanes:

D ∩ U = {z1z2 · · · zk = 0}.

Very often, we will not explicitly write out the morphism j, and simply identify X with j(X).
Now let X be a good compactification of a quasi-projective manifold X and let D =

X − X. The sheaf Ωp

X
(∗D) is the sheaf of meromorphic p-forms on X with poles along D.

Alternatively, since D is a simple normal crossing divisor, we may choose a local coordinate
neighbourhood (U, (zi)) as above in X such that

D ∩ U = {fD = 0}

with fD = z1z2 · · · zk. Then

Ωp

X
(∗D)(U) = { ω

f `D
: ω ∈ Ωp

X
(U), ` ≥ 0 } = lim−→̀Ωp

X
(`D).

Clearly, (Ω•
X

(∗D), d) is a complex of sheaves. The sheaf of logarithmic poles of degree p along
D, denoted by Ωp

X
(logD), is defined as follows:

Ωp

X
(logD)(U) = { η ∈ Ωp

X
(∗D)(U) : fDη, fDdη ∈ Ωp

X
(U) };

in view of the fact that D ∩ U = {z1z2 · · · zk = 0}, we obtain

Ω1
X

(logD)(U) = OX(U)〈dz1
z1
, · · · , dzk

zk
, dzk+1, · · · , dzn〉

and

Ωp

X
(logD)(U) =

p∧
Ω1
X

(logD)(U).

In particular, Ωp

X
(logD)(U) is locally free for every p. (Ω•

X
(logD), d) is also a complex of

sheaves, and in fact it computes the cohomology of X, namely, we have

Hk(X) = Hk(X,Ω•
X

(logD)).
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The complex Ω•
X

(logD) admits two natural filtrations, which induces two filtrations on Hk(X)

and gives the mixed Hodge structure on Hk(X). For more details, see [Voi1] and Chapter 2
of this thesis.

Now we turn to the most important object in this thesis: hyperplane arrangement. A
hyperplane arrangement A in Pn is a finite union of hyperplanes:

A = {H1, · · · , Hd}

where Hi : Li = 0 is a hyperplane in Pn defined by a linear form Li. Denote |A| = d the
number of hyperplanes in A. The defining polynomial of A is

Q = Q(A) =
d∏
j=1

Li.

Let V (Q) be the projective variety in Pn defined by Q = 0, which is also the union of
hyperplanes in A. The complement of A is defined as

M = M(A) = Pn \ V (Q) = Pn \
d⋃
j=1

Hj,

while the Milnor fiber of A is
F = F (A) : Q = 1

in Cn+1. It is clear that we have a natural map

p : F →M

induced by the projection Cn+1 \ {0} → Pn. Clearly, p is a Galois cover of degree d.
Hyperplane arrangements have quite special properties compared to other algebraic or

geometric objects. There has been an excellent book on hyperplane arrangements by Orlik
and Terao [OT], in which many combinatorial properties of A, properties of topology and
geometry of M and their relations are given.

Here is a list of symbols we will use in the sequel.
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A manifold is always connected unless otherwise stated.

Pn complex projective space of dimension n
Hk(X,A) singular cohomology of X with coefficients in a ring A
Hk(X) simpler notation for Hk(X,C)
Hk(X,F) cohomology of X with coefficients in sheaf F
Hk(X,F•) hypercohomology of X for a complex of sheaves F•
F pHk(X) Hodge filtration for Hk(X)
WmH

k(X) Weight filtration for Hk(X)
GrpF p-th graded piece for the filtration F •

GrWm m-th graded piece for the filtration W•
j : X ↪→ X X is a good compactification of X
χ(X) the topological Euler characteristic of X
f : X → C an irrational pencil where C is a smooth curve with χ(C) < 0

In Chapters 2-4, the following symbols are used:

V1(X) the first characteristic variety of X
R1(X) the first resonance variety of X
TC1(V1(X)) the tangent cone at the identity 1 of V1(X)
LR1(X) the first logarithmic resonance variety of X
h1,1(X) dimH1(X,Ω1

X) when X is compact
h2,0(X) dimH0(X,Ω2

X) when X is compact
F k(X) simpler notation for H0(X,Ωk

X
(logX)) when X is quasi-projective

In Chapters 5-7, the following symbols are fixed:

A a line arrangement in P2 or hyperplane arrangement in Pn
Q defining equation of A
M complement of A
F Milnor fiber of A
p : F →M the natural Galois cover
h : F → F the monodromy map h(x) = exp(2π

√
−1/d)x

h∗ the monodromy action in cohomology
Hk(F )a eigenspace of h∗ in Hk(F )
Hk(F )1 invariant subspace for h∗

Hk(F ) 6=1 direct sum of eigenspaces of eigenvalues 6= 1

In Chapters 6-7, the following symbols are fixed:

F compactification of F in P3

F̃ minimal desingularization of F
tr number of singular points of multiplicity r
KX the canonical divisor
c21(X), c2(X) Chern numbers
MY (X) Miyaoka-Yau number, equal to 3χ(X)−K2

X

DCI,DCII differences of Chern numbers
DCIr,d, DCIIr,d differences of Chern numbers for a singular point of multiplicity r
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1.3 Contents of Thesis

The content of this thesis is closely related to the study of the above aspects, namely,
cohomology jump loci, Hodge theory and theory of line arrangements. We shall recall and
extend some natural constructions of projective manifolds from line arrangements in P2.

For the topology of quasi-projective manifolds, we achieve some inequalities on Hodge
numbers by considering characteristic varieties, resonance varieties and their extensions. After
that, we focus our attention to some special quasi-projective manifolds, e.g., the Milnor fibers
of line arrangements.

1.3.1 Chapter 2

In Chapter 2, we mainly review some materials of fundamental importance for our study,
namely, mixed Hodge theory and cohomology jump loci; we also give several examples of
interesting objects in our study, for instance, formal spaces and hyperplane arrangements.
For hyperplane arrangements, we concentrate on the affine Milnor fiber and the monodromy
action. These are classical results and are in fact well-known. We state some of the basic
results and list some references for interested readers to consult for the proofs.

1.3.2 Chapter 3

In Chapter 3, we present a new point of view on the first logarithmic resonance varieties
for smooth quasi-projective varieties, which are defined by A. Dimca [Dim10]. With the help
of the Gysin model of a quasi-projective variety, we discuss the relations between the first
logarithmic variety and the tangent cone at the identity of the first characteristic variety.

The main point is to prove these results without using the relations between characteristic
varieties and irrational pencils described by Arapura [Ara] and Bauer [Bau]. The only ingre-
dient we use is the basic structure theorem about the characteristic variety V1(X) established
in [DP14],[DPS09], namely, the tangent cone TC1(V1(X)) is a mixed Hodge substructure of
H1(X). Then using computations via the Gysin model, we establish the relations between
the first logarithmic variety LR1(X) and the tangent cone TC1(V1(X)).

The key tool to give such relations is Proposition 3.1.2. Then we first consider several
special interesting cases separately: H1(X) of pure weight 2, see Proposition 3.2.1; X being
projective, see Corollary 3.3.2; X being a punctured curve, see Corollary 3.4.1. Finally we
consider the general case, see Proposition 3.5.1 and Corollary 3.5.2.

1.3.3 Chapter 4

In Chapter 4, we aim at giving some inequalities on Hodge numbers.
We first prove some basic theorems, especially isotropic subspace theorems, that are very

useful in the study of cohomology jump loci. These theorems, e.g., Theorem 4.1.1, can be
found in some books and papers, see [BHPV],[Ara]; however, we give much more detailed
proofs. Moreover, we provide several theorems for compact smooth surfaces that are not
necessarily Kähler, therefore the corresponding results are not contained in the classical forms
which are stated only for Kähler manifolds. See Theorem 4.1.6 and Theorem 4.1.11, Theorem
4.2.2.

Furthermore, we prove some properties for morphisms with sources products of projec-
tive spaces, see Lemma 4.3.1 and Lemma 4.3.2; these properties will be used, together with
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isotropic subspace theorems, to deduce inequalities about Hodge numbers; they are also in-
teresting in their own right.

Finally, we prove some inequalities on Hodge numbers, achieving our aim. We first prove
Theorem 4.4.3 and Corollary 4.4.9, which extend the case known before of compact Kähler
manifolds without any irrational pencils described in Corollary 4.4.5. Furthermore, we show
that similar results hold for smooth quasi-projective varieties, see Theorem 4.4.13 and Corol-
lary 4.4.16, where the role of V1(X) is replaced by LV1(X).

1.3.4 Chapter 5

The main theme in Chapter 5 is to understand the geometry and topology of the Milnor
fiber F of a line arrangement A in P2. However, we prove much more general results that
hopefully have in their own interest.

We first investigate the connectivity of the generic fiber in a pencil of projective hyper-
surfaces, see Lemma 5.1.1. Then we prove a number of technical results, see Lemmata 5.1.4,
5.1.9, 5.1.10.

Next we specialize to the case of a line arrangement A which carries a multinet structure.
Let M = M(A) be the complement of the line arrangement A in P2. We prove that the
associated morphism f : M → C (where C is obtained from P1 by deleting ≥ 3 points) has a
generic connected fiber, see Proposition 5.2.1.

Moreover, starting from f : M → C, there is natural way to construct a morphism
g : F → H, where H is a smooth curve of negative Euler characteristic; such a construction
was introduced by Dimca and Papadima [DP11].

Our first main result here is Proposition 5.2.3, which gives sufficient conditions for g to be
itself an irrational pencil, i.e., its generic fiber is connected. Using this result, we show that
the Milnor fiber of any monomial arrangement

A(m,m, 3) : (xm − ym)(ym − zm)(zm − xm) = 0, m ≥ 3

is not 1-formal, generalizing the case m = 3 treated by Zuber in [Zub]. This is done by
showing that in these cases g∗W1H

1(H) 6= W1H
1(F ). On the other hand, when

g∗W1H
1(H) = W1H

1(F )

holds, then we prove that the multinet structure on A is unique, see Theorem 5.4.3 and
Corollary 5.4.4. Recall that the Ceva arrangementA(3, 3, 3) has 4 distinct multinet structures,
see Section 2.3.10 (4), hence the above criterion is quite sharp.

1.3.5 Chapter 6

One of the main open questions in hyperplane arrangement theory is whether the topol-
ogy of the Milnor fiber F , e.g., its Betti numbers or the characteristic polynomial of the
monodromy action on each Hm(F ), are determined by the combinatorics. In Chapter 6, we

consider the compactification F of F in P3 in the case of a line arrangement A in P2. If F̃ is
the minimal desingularization of F , then we compute the Chern numbers of F̃ in terms of the
combinatorics. The hope is that using the classification theory of smooth projective surfaces,
we can better understand the topology of the Milnor fiber F in this case.

In order to compute the Chern numbers

c21(F̃ ) = K2
F̃
, c2(F̃ ) = χ(F̃ ),
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we first determine the corresponding values for the singular surface F in (6.3.2) and (6.3.3).
Then we express the differences

DCI = K2
F̃
−K2

F
, DCII = χ(F̃ )− χ(F )

in terms of contributions coming from the singularities of F , which are in bijection with the
multiple points of the line arrangement A. Hence, one writes

DCI =
∑
r

trDCIr,d, DCII =
∑
r

trDCIIr,d

where tr is the number of singular points of multiplicity r ≥ 2 in A and d = |A| is the number
of lines in A.

The hard part, done in Section 6.7, is to find compact formulae for the invariants DCIr,d
and DCIIr,d, without the implicit use of the associated continued fractions coming from the
resolution of weighted homogeneous surface singularities recalled in Theorem 6.5.2.

A by-product of these computations is the fact that F̃ is not a ball quotient, see Theorem
6.8.1 and Remark 6.8.3.

1.3.6 Chapter 7

In Chapter 7, we use the results in Chapter 6 to show that many of the surfaces F̃
associated to line arrangements A are of general type. We also explicitly compute the Hodge
numbers of several such surfaces.

Using two simple criteria, Proposition 7.1.1 and Proposition 7.1.2, which may be of in-
dependent interest, we show that some of the surfaces F̃ are of general type. A result of
this type is Theorem 7.2.5, where line arrangements with only nodes and triple points are
discussed.

Then we explain in Section 7.3 that the open question about the topology of F being
determined by the combinatorics mentioned above is partially equivalently to the question
whether the Hodge numbers of the smooth surface F̃ are determined by the combinatorics.
Example 7.2.2 shows that the numbers of multiple points are enough to determine the Chern
numbers of F̃ , but are not enough to determine the Betti numbers of F̃ .

A similar phenomenon is that the numbers tr of multiple points of A determine the spec-
trum of the line arrangement A, see [BS], but not the Poincaré-Deligne polynomial, see
[Dim10P].

Next, we discuss whether an irrational pencil g : F → H considered in Chapter 5 can be
extended to a morphism g : F̃ → H, where H is a smooth compactification of H. This is
done in Section 7.4

Finally, our computations of Chern numbers apply to a minimal resolution of singularities
of a cyclic cover of P2 ramified over any curve having only strict ordinary r-multiple points.
In particular, we can apply this technique to

(i) the curves considered by Bailet [Bai16] and get in this way surfaces with larger b1(F̃ ).

(ii) arrangements of nonrational curves in P2 and hopefully obtain some ball quotients.

An attempt in this direction is done in Section 7.5.



2
Preliminaries

The study of geometry and topology of (connected) Kähler manifolds has quite a long
history. On the one hand, the cohomology theory of a Kähler manifold, which arises from
the classical Hodge theory, is much more fruitful than that of a more general differential
or Riemannian manifold. The Hodge decomposition and Lefschetz decomposition of the
cohomology give much restrictive conditions on the geometry and topology for a manifold
being compact Kähler; more generally, for a quasi-projective manifold, mixed Hodge theory
can be established and similar restrictions can be obtained. On the other hand, the class of
Kähler manifolds contains lots of differential and topological spaces we encounter frequently,
for example, projective manifolds and complements of line arrangements in the projective
plane. These manifolds provide a number of interesting resources in geometry and topology.

As is well-known, every finitely presented group can be realized as the fundamental group
of a compact differential manifold of dimension greater than or equal to 4, see for instance
[Man]. However, not every group can be the fundamental group of a compact Kähler manifold,
a fortiori, a projective manifold. As is shown by Serre [Ser], any finite group can be realized as
the fundamental group of a projective manifold; and in the same paper, the author proposes
the problem about characterizing or finding properties of quasi-projective groups, that is,
finitely presented groups that can be obtained as the fundamental groups of quasi-projective
manifolds.

The study of cohomology jump loci provides specific conditions for a group to be quasi-
projective. Together with the Hodge theory for Kähler manifolds, this study has been proven
to be a powerful tool to study the fundamental group of a Kähler manifold. Historically, one
usually studies its linear representations in order to study a group. And a representation of the
fundamental group corresponds naturally to a local system of vector spaces, and quite often,
the local systems can be equipped with more restrictive structures, for example, variation of
Hodge structures. When the set of all representations of the fundamental group are taken
into consideration, these special structures put restrictions on the cohomology jump loci.

In this chapter, we shall make a overview of the fundamental materials we shall use in
the sequel, principally divided into two different kinds: differential analysis and algebraic
geometry. Of course, one point of view is influenced by and influences the other.

2.1 Hodge theory and mixed Hodge theory

In this section, we make a survey of some Hodge theory and mixed Hodge theory that we
will need. For some basic definitions and properties of Hodge structures and mixed Hodge
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structures, we refer to the book [PeS] and to the Appendix C in [Dim92].

2.1.1 Hodge theory for compact Kähler manifolds

By a Kähler manifold, we refer to a complex manifold X which is equipped with a Her-
mitian metric g such that the associated fundamental form (called Kähler form) ω = ωg is
closed. Locally, g can be written as

g =
∑
j,k

g
jk

dzj dzk

while

ω =
1

2

∑
j,k

g
jk

dzj ∧ dzk.

An equivalent characterization of Kähler manifold is the existence of holomorphic normal
coordinates, namely, holomorphic coordinates (z1, · · · , zn) centered at any given point x ∈ X
in which

g
jk

= δjk +O(|z|2), j, k = 1, · · · , n.

Typical examples of Kähler manifolds are the Euclidean space Cn, the complex tori
Cn/Z2n, Riemann surfaces, projective manifolds and blowups of any given Kähler manifold.

There are topological restrictions for a compact manifold X to be Kähler, for instance, its
first Betti number must be even, which follows immediately from the Hodge decomposition
of H1(X,C), see Theorem 2.1.2 below. As a consequence, if a finitely presented group G is
isomorphic the fundamental group of a compact Kähler manifold, then the rank of G must
necessarily be even. To get more delicate restrictions for a group being Kähler, namely, being
the fundamental group of a compact Kähler manifold, a more precise study of the structure
of the cohomology ring H•(X,C) is indispensable.

Briefly summarized, there are Hodge decompositions, Lefschetz decompositions and po-
larizations on the cohomology ring H•(X,C) for a compact Kähler manifold X.

Hodge decomposition

Given a compact Riemannian manifold, one can represent its cohomology by harmonic
forms . This is the classical Hodge theorem. There, one obtains two naturally defined differ-
ential operators, namely, the exterior differential d and its formal adjoint d∗, via which one
defines the Laplace-Beltrami operator ∆ = dd∗ + d∗d. A harmonic form is a differential form
which is annihilated by ∆, or equivalently, by both d and d∗.

On a compact Kähler manifold X, one can further define more operators. First, since X
is a complex manifold, the differential forms on X can be decomposed according to types

AkX =
⊕
p+q=k

Ap,qX

and thus the exterior differential d is also decomposed into two first-order differential operators
∂ and ∂, with d = ∂ + ∂. More precisely, for a differential form α of type (p, q),

∂α = (p+ 1, q)-component of dα

and
∂α = (p, q + 1)-component of dα.
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One also gets their formal adjoints ∂∗ and ∂
∗

such that d∗ = ∂∗ + ∂
∗
. Furthermore, we also

obtain the associated Laplace operators

∆∂ = ∂∂∗ + ∂∗∂, ∆∂ = ∂ ∂
∗

+ ∂
∗
∂.

Second, wedge product with the Kähler form ω on X provides us with another operator,
called Lefschetz operator L:

L = ω ∧ .

It is a zero-order operator, with formal adjoint denoted by Λ.
The most important relations between these operators are the Kähler identities, one of

which is
[Λ, ∂] = −

√
−1∂∗.

The other identities can be obtained by complex conjugation and taking adjoint. An impor-
tant consequence of these identities is

∆ = 2∆∂ = 2∆∂.

In particular, ∆ preserves the type of forms, or more briefly, ∆ is homogeneous. Therefore, a
k-form α =

∑
p+q=k α

p,q is harmonic if and only if each component αp,q is. Thus, we obtain
the following theorem.

Theorem 2.1.2 (Hodge Decomposition Theorem, see [Voi1]). Suppose X is a compact Kähler
manifold of complex dimension n. Let Hp,q be the cohomology of X that can be represented
by closed (p, q)-forms.

Then we have the following decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q, 0 ≤ k ≤ 2n.

Moreover,

(i) this decomposition does not depend on the specific choices of Kähler metrics on X;

(ii) complex conjugation gives an isomorphism Hq,p ∼= Hp,q;

(iii) any cohomology belonging to Hp,q can be represented by a unique ∆∂-harmonic form of
type (p, q), hence by Dolbeault theorem, we have an isomorphism

Hp,q ∼= Hp,q ∼= Hq(X,Ωp
X),

where Hp,q is the set of ∆∂-harmonic forms of type (p, q);

(iv) Serre duality: Hp,q ∼= Hn−p,n−q.

Lefschetz decomposition

A delicate discussion about the Lefschetz operator L and its adjoint Λ gives the following
hard Lefschetz isomorphism theorem.
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Theorem 2.1.3 (Hard Lefschetz Theorem, see [Voi1]). Let X be a compact Kähler manifold
with Kähler form ω.

Then the morphism of vector bundles

Ln−k = ωn−k∧ : Ωk
X,R → Ω2n−k

X,R

or equivalently, the operator of order zero Ln−k : AkX,R → A2n−k
X,R with k ≤ n, is an isomor-

phism.
As a consequence,

Ln−k : Hk(X,R)→ H2n−k(X,R), k ≤ n

is an isomorphism.

Definition 2.1.4. We say that a form α on X of degree k ≤ n is primitive if Ln−k+1α = 0,
or equivalently Λα = 0.

We have

Theorem 2.1.5 (Lefschetz Decomposition Theorem, see [Voi1]). Let X be a compact Kähler
manifold.

Then every cohomology class α ∈ Hk(X,R) admits a unique decomposition

α =
∑
r

Lrαr

where the αr are of degree k − 2r ≤ min(k, 2n − k) and are primitive in the sense that
Ln−k+2r+1αr = 0 in H2n−k+2r+2(X,R).

As a consequence, let

Hk(X,C)prim = ker(Ln−k+1 : Hk(X,C)→ H2n−k+2(X,C)), k ≤ n

then
Hk(X,C) =

⊕
r

0≤k−2r≤min(k,2n−k)

LrHk−2r(X,C)prim.

Moreover, this decomposition is compatible with the Hodge decomposition.

Polarization

Now let X be a compact Kähler manifold with Kähler metric g and Kähler form ω. Define
the following intersection form on Hk(X,R), k ≤ n:

Q(α, β) =

∫
X

Ln−kα ∧ β =

∫
X

ωn−k ∧ α ∧ β,

then Q is nondegenerate by Poincaré duality and hard Lefschetz theorem 2.1.3. Moreover, Q
is symmetric when k is even, alternating when k is odd, and thus

Hk(α, β) = (
√
−1)kQ(α, β)

defines a Hermitian form on Hk(X,C).

Theorem 2.1.6. (see [Voi1]) Let X be a compact Kähler manifold, then we have the following:
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(i) the Hodge decomposition in Theorem 2.1.2

Hk(X,C) =
⊕
p+q=k

Hp,q, 0 ≤ k ≤ n

is an orthogonal decomposition for Hk;

(ii) the Lefschetz decomposition in Theorem 2.1.5

Hk(X,C) =
⊕
r

2r≤k

LrHk−2r(X,C)prim, k ≤ n

is also an orthogonal decomposition for Hk;

(iii) on each primitive component LrHk−2r(X,C)prim, Hk induces the form (−1)rHk−2r;

(iv) (−1)k(k−1)/2(
√
−1)p−q−kHk is positive definite on the complex subspace Hp,q

prim = Hp,q ∩
Hk(X,C)prim.

2.1.7 Mixed Hodge theory

Mixed Hodge theory for quasi-projective manifolds

Let X be a quasi-projective manifold. By compactification and then desingularization, we
may assume X = X \D, where X is a projective manifold, D is a divisor in X with normal
crossings; we may assume furthermore that each irreducible component of D is a smooth
hypersurface in X. Denote by j : X ↪→ X and i : D ↪→ X the natural inclusions.

The sheaves of logarithmic forms Ω•
X

(logD) and Rj∗CX are isomorphic, and hence com-
putes the cohomology H•(X,C):

Hk(X,C) = Hk(X,Ω•
X

(logD)).

We may define two filtrations on Ω•
X

(logD), namely the weight filtration W defined over Q,
which is increasing and the Hodge filtration F defined over C, which is decreasing, and these
two filtrations induce naturally two filtrations on the cohomology H•(X,C). In fact, we have
the following.

Theorem 2.1.8 (Mixed Hodge Theory for quasi-projective manifolds, see [Voi1]). Let X be a
quasi-projective manifold with X = X \D where X is a smooth compactification of X and D a
normal crossing divisor in X; assume that moreover D = ∪i∈IDi is the irreducible component
decomposition of D with Di a smooth hypersurface in X.

Then H•(X,C) admits a naturally defined mixed Hodge structure (MHS) defined via the
weight filtration W and the Hodge filtration F on Ω•

X
(logD), such that

(i) the spectral sequence WE
•,•
r associated to the weight filtration W begins with

WE
p,q
1
∼= H2p+q(D(−p),C), p ≤ 0, q ≥ 0

and degenerates at E2, where

D(−p) =
⊔

i1<···<i−p

i1,··· ,i−p∈I

Di1 ∩ · · · ∩Di−p ;

by convention, D(0) = X.
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(ii) the morphism

d1 : WE
p,q
1
∼= H2p+q(D(−p),C)→ WE

p+1,q
1

∼= H2p+q+2(D(−p−1),C)

restricted on each component H2p+q(Di1 ∩ · · · ∩ Di−p ,C) can be identified, up to sign,
with the Gysin map induced by the various inclusions

Di1 ∩ · · · ∩Di−p ∩Dj ↪→ Di1 ∩ · · · ∩Di−p , j ∈ I \ {i1, · · · , i−p}.

(iii) the spectral sequence FE
•,•
r associated to the Hodge filtration F starts with

FE
p,q
1 = Hq(X,Ωp

X
(logD))

and degenerates at E1.

Mixed Hodge theory for arbitrary algebraic varieties

Given an arbitrary complex algebraic variety X. If X is not smooth, then apply a resolu-
tion of singularities; and if it is not compact, then use a smooth compactification. Eventually,
we can equip the cohomology H•(X,C) with a MHS. More precisely, we have the following.

Theorem 2.1.9 (Mixed Hodge Theory for algebraic varieties, see [Dim92], Appendix C). Let
X be a complex algebraic variety.

Then there is a MHS on H•(X,Q) such that the following properties hold for all k ≥ 0:

(i) the weight filtration W on Hk(X,Q) satisfies

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2k = Hk(X,Q)

namely, GrWi H
k(X,Q) 6= 0 only for i ∈ [0, 2k];

(ii) the Hodge filtration F on Hk(X,C) satisfies

Hk(X,C) = F 0 ⊇ F 1 ⊇ · · · ⊇ Fm ⊇ Fm+1 = 0,

namely, GrpFH
k(X,C) 6= 0 only for p ∈ [0, k];

(iii) if X is smooth, then Wk−1H
k(X,Q) = 0, namely all the weights on Hk(X,Q) are ≥ k,

and moreover,
WkH

k(X,Q) = j∗Hk(X,Q)

for any good compactification j : X ↪→ X;

(iv) if X is compact, then WkH
k(X,Q) = Hk(X,Q), namely all the weights on Hk(X,Q)

are ≤ k, and moreover,

Wk−1H
k(X,Q) = ker(p∗ : Hk(X,Q)→ Hk(X̃,Q))

for any surjective map p : X̃ → X with X̃ compact and smooth;

(v) the assignment X 7→ Hk(X,Q) is functorial, i.e., any morphism f : X → X ′ of algebraic
varieties induces a MHS morphism

f ∗ : Hk(X ′,Q)→ Hk(X,Q).

Unless otherwise explicitly mentioned in the sequel, we shall write H•(X) for H•(X,C)
for an algebraic variety X, equipped with the MHS above.
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2.2 Basics on cohomology jump loci

In order to study the fundamental group of a manifold, one considers its representations;
to study the properties of the linear representations, one considers the cohomology jump loci:
mainly characteristic varieties and resonance varieties.

2.2.1 Definitions

We shall focus on the case of 1-dimensional representations of the fundamental group,
which is already very interesting.

Let X be a quasi-projective manifold, or more generally a connected finite CW complex.
Let

T(X) = Hom(π1(X),C∗)

be the parameter space of 1-dimensional representations of π1(X), which is also called the
character variety of X. It is an algebraic group whose irreducible component containing
the identity is an algebraic torus T0(X) = (C∗)b1(X); and when H1(X,Z) is torsion free,
T(X) = T0(X). For ρ ∈ T(X), we shall denote Lρ for the corresponding rank 1 local system
on X.

The characteristic varieties of X are the jump loci for the cohomology of X, with coeffi-
cients in rank 1 local systems, i.e.,

Vjk(X) = {ρ ∈ T(M) : dimHj(X,Lρ) ≥ k}.

When j = 1, we use the simpler notation Vk(X) = V1
k(X).

For higher dimensional representations, one can similarly define the characteristic varieties
and discuss their properties, see [DP14]; however, it turns out that a lot of valuable infor-
mation for the higher dimensional representations can be deduced by just considering some
1-dimensional sub-representations, see [MPPS].

To define resonance varieties, we consider a commutative differential graded algebra (CDGA)
K. By definition, a k-CDGA K = (K•, d) (where k = Q,R,C) is equipped with a multiplica-
tion under which K =

⊕
p≥0K

p is a commutative graded algebra, and a differential d which
satisfies the graded Leibniz rule, i.e., d(a ·b) = da ·b+(−1)pa ·db for a ∈ Kp. Unless otherwise
specifically stated in the sequel, any CDGA is also finitely generated with unity, K0 = k, and
k = C.

The resonance varieties of a CDGA K are the cohomology jump loci for the cohomology
of the twisted differentials (also known as Aomoto complexes of K), namely,

Rj
k(K) = {α ∈ H1(K) : dimHj(K, dα) ≥ k}.

where we have written dα = d + α∧. When j = 1, we use the simpler notation Rk(K) =
R1
k(K).

We have the following well-known basic results.

Proposition 2.2.2 (See for instance [Ara]). The following properties hold:

(i) for any connected finite CW complex, the characteristic variety Vjk(X) is a closed alge-
braic subset of T(X) for any k, j.

(ii) for any finitely generated CDGA K, Rj
k(K) is a closed algebraic subset of H1(K) for

all k, j.
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Let X be a connected finite CW complex, a fortiori a quasi-projective manifold, the
resonance variety of X is defined as

Rj
k(X) = Rj

k(H
•(X)),

where H•(X) is regarded as a CDGA with zero differential.

2.2.3 Formality

Formality of a topological space plays a central role in the study of the cohomology jump
loci. To survey some results on this aspect, we first recall several equivalence relations in
the category of CDGAs. These results are quite fundamental and classical, and for a more
detailed exposition, we refer to [DP14] for instance.

A morphism of CDGA φ : K → K ′ is called quasi-isomorphism if the induced map
on cohomology φ∗ : H i(K) → H i(K ′) is an isomorphism for all i ≥ 0; it is called a q-
isomorphism (1 ≤ q <∞) if the induced morphism φ∗ : H i(K)→ H i(K ′) is an isomorphism
for i ≤ q and a monomorphism for i = q + 1. Two CDGAs K and K ′ are called q-equivalent
(respectively, weakly equivalent) if there is a zig-zag sequence consisting of q-isomorphisms
of CDGAs (respectively, quasi-isomorphisms) connecting them. In the sequel, we shall apply
an abuse of notation to denote ∞-isomorphisms for quasi-isomorphisms, ∞-equivalences for
weak equivalences. Notation: K 'q K ′ (1 ≤ q ≤ ∞) if K and K ′ are q-equivalent.

Let 1 ≤ q ≤ ∞. A CDGA K is called q-formal (for q =∞, formal) if it is q-equivalent to
its cohomology algebra H•(K) (with the zero differential).

By [Sul], a connected finite CW-complex has Sullivan’s model of polynomial forms, Ω•(X)
which is a CDGA defined over Q. X is called q-formal (for q = ∞, formal) if so is Ω•(X).
If a CDGA K 'q Ω•(X), then K is called a q-model (for q =∞, model) of X. Note that in
general Ω•(X) is not finitely generated, but it can still be q-equivalent to a finitely generated
CDGA.

Many interesting spaces we encounter have some formalities.

Example 2.2.4. (1) Compact Kähler manifolds are formal, as is shown in [DGMS].
In particular, smooth projective varieties are formal.
(2) Let X be a quasi-projective manifold. Then X is 1-formal if H1(X) is pure of weight

2, see [Mor].
For example, hypersurface complements in Pn are 1-formal for n ≥ 2. Note also that there

are varieties with H1 pure of weight 1, but not 1-formal.
(3) Hyperplane arrangement complements are formal, see [Bri].
(4) Spheres are formal, see [He].
(5) Products of formal spaces are formal and wedges of formal spaces are formal, see [He].
(6) Given a compact, connected Lie group G. Let K denote the connected component of

its neutral element e, in the subgroup of elements fixed by a given involution. The quotient
G/K, which is a symmetric space, is then a formal space. This is proved in [Cartan].

2.2.5 Properties of cohomology jump loci

Here we summarize some properties about cohomology jump loci that will be needed in
the sequel.
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Characteristic varieties and irrational pencils

Let X be a quasi-Kähler X, namely, X = X \D with X compact Kähler and D a normal
crossing divisor. The characteristic variety V1(X) has close relations with irrational pencils of
X, as first proved in [Ara]. By definition, an irrational pencil of X is an equivalence class of
surjective morphisms f : X → C with C being a smooth curve, satisfying the following two
conditions: (i) χ(C) < 0; (ii) a generic fiber of f is connected. Here the equivalence relation
is defined as follows: two morphisms f : X → C and f ′ → C ′ are equivalent if there exists an
isomorphism η : C → C ′ such that f ′ = f ◦ η.

We denote E(X) the set of all irrational pencils of X. To any f ∈ E(X), we associate
Wf = f ∗T(f(X)).

Let IC1(X) be the set of irreducible components of positive dimension (i.e. dimension
> 0) passing through 1 of the characteristic variety V1(X). Then we have the following (see
also [Ara],[Dim08],[DPS09]).

Theorem 2.2.6. Suppose X is a (connected) quasi-Kähler manifold. Then the following hold.

(i) for any f ∈ E(X), Wf is an irreducible component of V1(X);

(ii) the map f 7→ Wf gives a one-to-one correspondence between E(X) and IC1(X).

(iii) for any irreducible components V1 and V2 of V1(X), V1 ∩ V2 is a finite set.

In particular, E(X) is finite.

So the irreducible components of tangent cone TC1(V1(X)) at 1 of the characteristic
variety V1(X) have close relations with irrational pencils of X. They are also closely related
to maximal isotropic subspaces of H1(X), see [Bau],[Cat],[Dim08].

Relations between characteristic varieties and resonance varieties
—without formality assumptions

Let X be a connected finite CW complex. The basic relations between characteristic
varieties of X and resonance varieties of a q-models of X are given as follows, see also [DP14],
Theorem B.

Theorem 2.2.7. Let X is a connected finite CW complex and K a CDGA with dimKi <∞
for i ≤ q which is a q-model for X (q ≥ 1). Then for all j ≤ q and k ≥ 0, there is a
local analytic isomorphism (Rj

k(K), 0) ∼= (Vjk(X), 1), induced by the exponential map exp :
H1(X,C)→ H1(X,C∗) = T0(X).

We say that a CDGA K has positive weights if there exist decompositions

H i =
⊕
j∈Z

Ki
j

for all i such that K•j ·K•k ⊆ K•j+k and K1
j = 0 for j ≤ 0. A subspace E ⊆ K1 is called weighted

homogeneous if E =
⊕

j(E ∩K1
j ). Note that a decomposition as above gives a C∗-action on

K1, and E is weighted homogeneous means exactly that E is invariant under this C∗-action.
A typical example of a CDGA having positive weights is given by the Gysin model of a

quasi-projective manifold.
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Example 2.2.8 (Gysin model of a quasi-projective manifold). Let X be a quasi-projective
manifold. Pick any smooth compactification, X = X − D, where D = ∪i∈IDi is a union of
smooth divisors with normal crossings.

There is an associated CDGA defined over Q, A = (A•, d) = (A•(X,D), d), called the
Gysin model of the compactification, constructed as follows. As a vector space,

Ak =
⊕
p+l=k

Ap,l

where
Ap,l =

⊕
|S|=l

Hp(
⋂
i∈S

Di,C)(−l)

where S runs through the l-element subsets of I and (−l) denotes the Tate twist. The
multiplication is induced by cup product, and has the property that Ap,l · Ap′,l′ ⊆ Ap+p

′,l+l′ .
The differential, d : Ap,l → Ap+2,l−1, is defined by using the various Gysin maps coming from
intersections of divisors. See [FM] for full details.

Morgan proved in [Mor] that Ω•(X) '∞ A, and moreover, the associated cohomology
isomorphism preserves Q-structures. By definition the weight of Ap,l is p+ 2l, and we clearly
obtain a positive weight decomposition of (A•, d), inducing a splitting of Deligne’s weight
filtration on H•(X).

Theorem 2.2.9 (See [DP14], Theorem C, D). Let X be a connected finite CW complex and
K a CDGA with dimKi < ∞ for i ≤ q which is a q-model for X (q ≥ 1). If K is defined
over Q and has positive weights, and the isomorphism induced by the zig-zag of q-equivalences,
H1(X,C) ∼= H1(K), preserves Q-structures. Then the following hold:

(i) for all j ≤ q and k ≥ 0, Rj
k(K) is a finite union of linear subspaces of H1(X,C) ∼=

H1(K) that are defined over Q and weighted homogeneous;

(ii) for all j ≤ q and k ≥ 0, every irreducible component of Vjk(X) passing through 1 is a
subtorus of the character torus T0(X).

In particular, when X is a quasi-projective manifold and A = (A•, d) is the Gysin model
of X, then Rj

k(A) is a union of linear subspaces of H1(X,C).

In fact, when X is a quasi-projective manifold, every irreducible component of Vjk(X) of
positive dimension is a translated subtorus of the character variety T(X), see [BWens]. In
addition, let A be its Gysin model, then each irreducible component of Rj

k(A) is a mixed
Hodge substructure of H1(X,Q) for all j, k, see Theorem D in [DP14].

Theorem 2.2.10 (See [MPPS]). Let X be a finite CW complex and K a CDGA with dimKi <
∞ for i ≤ q which is a q-model for X (q ≥ 1). Then the following hold:

(i) for all j ≤ q and k ≥ 0, the tangent cone TC0(Rj
k(K)) at 0 to the resonance vari-

ety Rj
k(K) is contained in the resonance variety Rj

k(X)of X, namely, TC0(Rj
k(K)) ⊆

Rj
k(X).

(ii) suppose that, moreover, K is defined over Q and has positive weights, and the iso-
morphism induced by the zig-zag of q-equivalences, H1(X,C) ∼= H1(K), preserves Q-
structures. Then for all j ≤ q and k ≥ 0, Rj

k(K) ⊆ Rj
k(X).
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Relations between characteristic varieties and resonance varieties
—with formality assumptions

For a space with some formality, the characteristic varieties and resonance varieties admit
special properties. We just make a brief summary as follows.

Corollary 2.2.11. Let X be a finite CW complex which is q-formal (q ≥ 1). Then the
following hold:

1. for all j ≤ q and k ≥ 0, there is a local isomorphism (Rj
k(X), 0) ∼= (Vjk(X), 1), induced

by the exponential map exp : H1(X,C) → H1(X,C∗). In particular, TC0(Rj
k(X)) ∼=

TC1(Vjk(X)).

2. suppose that, moreover, X admits a q-model K, dimKi < ∞, i ≤ q, which is defined
over Q and has positive weights, and the isomorphism induced by the zig-zag of q-
equivalences, H1(X,C) ∼= H1(K), preserves Q-structures. Then for all j ≤ q and
k ≥ 0, TC1(Vjk(X)) = Rj

k(X).

3. In addition, if X is a quasi-projective manifold and q-formal, then for all j ≤ q and
k ≥ 0, any irreducible component of Rj

k(X) is a mixed Hodge substructure of H1(X).

Indeed, since H•(X) is a q-model for X, the statements follow directly from Theorem
2.2.9.

Corollary 2.2.12. Let X be a quasi-Kähler manifold which is 1-formal, then TC1(V1(X)) =
R1(X) and moreover the map f 7→ f ∗H1(f(X)) gives a one-to-one correspondence between
E(X) and the set of irreducible components of R1(X). In addition, any two distinct irreducible
components of R1(X) intersect only at the origin.

Indeed, the statements follows directly from Theorem 2.2.6.

In the sequel, we shall mainly concentrate on V1(X), R1(X) and 1-formality for a quasi-
projective manifold X. Here the following points are worth to re-emphasize:

1. V1(X), R1(X) and the 1-formality depend only on the fundamental group π1(X) of X;

2. Each irreducible component of V1(X) passing through 1 is a subtorus of T0(X);

3. Each irreducible component of TC1(V1(X)) is a mixed Hodge substructure of H1(X);

4. TC1(V1(X)) = R1(A), where A is the Gysin model for X;

5. Always TC1(V1(X)) ⊆ R1(X); equality holds when X is 1-formal.

2.3 Hyperplane arrangements

In this section, we survey some basic notions and properties for hyperplane arrangements.
For more details, we refer to the excellent book [OT].
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2.3.1 Definitions

A hyperplane arrangement A in Pn is a finite set of hyperplanes in Pn, i.e.,

A = {H1, · · · , Hd}

where Hi : Li = 0 with Li a nonzero linear form (defined up to a scalar multiplication) for
i = 1, · · · , d. The polynomial

Q = Q(A) =
d∏
i=1

Li

is called the defining polynomial of A. By definition, Q is a reduced polynomial of degree
d = |A|, defined up to a scalar multiplication.

The complement

M(A) = Pn \ V (Q) = Pn \
d⋃
i=1

Hi

is called the complement of the arrangement A, and moreover,

F (A) = Q−1(1)

is called the Milnor fiber of the arrangement, where Q is viewed as a map Q : Cn+1 → C.
More generally, given a homogeneous polynomial Q ∈ C[x0, · · · , xn] of degree d, one can

similarly define the complement

M(Q) = Pn \ V (Q),

where V (Q) : Q = 0 is the projective hypersurface in Pn, and the (affine) Milnor fiber

F (Q) : Q = 1

in Cn+1.
When there is no confusion, we shall denote M for the complement and F the Minor fiber,

without mentioning the arbitrarily chosen polynomial Q or the hyperplane arrangement A.

2.3.2 Complement, Milnor fiber and monodromy

Here we only make a review of some basic definitions concerning the Milnor fiber and the
monodromy action. For a more detailed description, we refer to [Dim92].

With the notations above, let ξ = exp(2π
√
−1/d), Define the geometric monodromy h :

F → F by
h(x0, · · · , xn) = (ξx0, · · · , ξxn),

then h is an algebraic morphism and gives an action on F of group

µd = 〈ξ〉 = {z ∈ C : zd = 1} ∼= 〈h〉 ∼= Z/dZ

with quotient
F/µd = M.

In fact, the natural projection p : F → M is a regular covering with Deck transformation
group µd.
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The map h induces the algebraic monodromy on cohomology

h∗ : H i(F,Q)→ H i(F,Q)

which is also a MHS morphism for each i ≥ 0.
Since hd = Id, we have h∗ is diagonalizable with possible eigenvalues d-th roots of unity

ξk, k = 0, 1, · · · , d− 1. Denote, for i ≥ 0,

H i(F )a = ker(a · Id− h∗ : H i(F )→ H i(F ))

the eigenspace corresponding to a ∈ C. Clearly, H i(F )1 = p∗H i(M) for all i.
A more general form of the following theorem is proved in [CS95].

Theorem 2.3.3. Let Q ∈ C[x0, · · · , xn] be a (possibly not square-free) homogeneous polyno-
mial of degree d ≥ 2 and F : Q = 1 be its Milnor fiber. If a and b generate the same subgroup
of µd = Z/dZ, then the eigenspaces H i(F )a and H i(F )b are isomorphic for all i ≥ 0.

Furthermore, we have

Hn−1(F,Q) = Hn−1(F,Q)1 ⊕Hn−1(F,Q)6=1

where Hn−1(F,Q)1 = ker(Id−h∗) and Hn−1(F,Q) 6=1 = ker(Id+h∗+ · · ·+h∗d−1). In addition,
the following hold.

Theorem 2.3.4 (see [DP11]). If Q ∈ C[x0, · · · , xn] is a square-free homogeneous polynomial
of degree d such that V (Q) ⊆ Pn has only isolated singularities, and let F be its Milnor fiber.
Then the mixed Hodge structure on Hn−1(F,Q) splits, i.e., the subspaces Hn−1(F,Q)1 and
Hn−1(F,Q)6=1 inherit pure Hodge structure from Hn−1(F,Q), such that Hn−1(F,Q)1 (respec-
tively Hn−1(F,Q)6=1) has weight n (respectively n− 1).

2.3.5 Cohomology of complements of hyperplane arrangements

Given a hyperplane arrangement A = {H1, · · ·Hd} in Pn, with Hi : Li = 0. We can
associate to it a graded algebra R(A) generated by degree 1 elements

ωi =
1

2π
√
−1

dLi
Li

, i = 1, · · · d.

Then a fundamental theorem in the theory of hyperplane arrangements is that the map

ωi 7→ [ωi]

gives an algebra isomorphism R(A) ∼= H•(M(A)). For more algebras constructed from the
combinatorics of A, see [OT].

Moreover, the following hold:

1. H•(M(A)) is generated by H1(M(A)), and ωi = 1
2π
√
−1

dLi

Li
, i = 1, · · · d−1 give a basis

for H1(M(A)).

2. For 0 ≤ k ≤ n, Hk(M(A)) is pure of weight 2k, and of type (k, k).

Indeed, it suffices to show that ωi is of type (1, 1) for all i. Fix i, and let Li : M(A)→ C∗
be the map induced by Li. Then

ωi = L∗i

(
1

2π
√
−1

dz

z

)
;

the desired result immediately follows since L∗i is a MHS morphism and 1
2π
√
−1

dz
z
∈

H1(C∗) is of type (1, 1).
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Furthermore,

3. H•(M(A),Z) is torsion free.

4. M(A) is formal, see [Bri].

2.3.6 Complement and Milnor fiber of a line arrangement

Let M = M(Q) for a homogenous polynomial Q ∈ C[x0, · · · , d].
If n > 2, then by the Zariski theorem of Lefschetz type (see for instance [Dim92]), for a

generic 2-dimensional plane P ∼= P2 ⊆ Pn, the natural homomorphism of fundamental groups

π1(M ∩ P )→ π1(M),

induced by the inclusion M ∩P →M , is an isomorphism. Hence, for our purpose of studying
the fundamental group, it suffices to study only the case n = 2, and hence complements of
plane curves and lines arrangements in P2.

Now given a line arrangement A = {L1, · · · , Ld} in P2. Let Q =
∏

i Li be its defining
equation, M = M(A) its complement and F : Q = 1 its Milnor fiber, p : F → M the
natural projection; the geometric monodromy h : F → F defined by h(x) = ξ · x with
ξ = exp(2π

√
−1/d), the algebraic monodromy hi : H i(F ) → H i(F ) for all i ≥ 0, the

eigenspaces H i(F )a = ker(a · Id− h∗ : H i(F )→ H i(F )) and H i(F ) 6=1 = ⊕a6=1H
i(F )a.

Since M is formal, the irreducible components of R1(M) correspond to irrational pencils.
Let f : M → C be an irrational pencil of M , then f ∗ : H1(C) → H1(M) is injective, hence
W1H

1(C) = 0 since H1(M) has pure weight 2. Denote C a smooth compactification of C,
then from W1H

1(C) ∼= H1(C), we have H1(C) = 0 and thus C ∼= P1, i.e., C is P1 deleting
k ≥ 3 points: C = P1 \ {(−βi, αi) : i = 1, · · · , k}. Consequently, the morphism f extends to
a rational map f : P2 99K P1 with f = (Q1, Q2) where Q1, Q2 are two coprime homogenous
polynomials. Note that the indeterminacies B of f form a finite set, because P2 is smooth
and P1 is proper. Hence f is also defined even on a Zariski open subset of V (Q) ⊆ P2.

Further, we claim that f(P2 − B) = P1. Indeed, otherwise f gives a rational map f :
P2 99K C, which is necessarily a morphism by Hartog’s theorem; but then f is constant by
the maximal principle, contradiction.

Now for each i ≤ k, we consider the Zariski closure the preimage f
−1

((−βi, αi)), namely,
the curve Qi := αiQ1 + βiQ2 = 0 in P2. It can not intersect M since f(M) avoids the
point (−βi, αi), so V (Qi) ⊆ V (Q), and thus Qi has only irreducible factors Li, i = 1, · · · , Ld,
namely, Qi = L

mi,1

1 L
mi,2

2 · · ·Lmi,d

d for some mi,j ≥ 0, j = 1, · · · , d. All these motivate the
theory of multinets associated to a line arrangement.

Definition 2.3.7 (See [FY]). A (k, e)-multinet M = (A;m;B) on a line arrangement A
consists of the following data:

i) An integer k ≥ 3, and a partition of A = {L1, · · · , Ld} into k subsets, say

A = A1 ∪ A2 ∪ · · · ∪ Ak.

ii) An assignment of multiplicities on the arrangement, namely,

m : {1, · · · , d} → Z>0.

iii) A finite set B, called the base locus.
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Moreover, the following conditions are satisfied:

1. There is an integer e such that ∑
Lj∈Ai

m(j) = e

for all i = 1, · · · , k.

2. For any Lj ∈ Ai and Lj′ ∈ Ai′ with i 6= i′, Lj ∩ Lj′ belongs to B.

3. For each b ∈ B, the sum

nb =
∑

Lj∈Ai :Lj3b

m(j)

is independent of i.

4. For each i ≤ k, the space ( ⋃
Lj∈Ai

Lj

)
\B

is connected.

Without loss of generality, we always assume gcd(m(j) : j = 1, · · · , d) = 1. If m(j) = 1
for all j, the multinet is said to be reduced. If, in addition, every b ∈ B is contained in exactly
one line from each Ai, the multinet is called a (k, e)-net.

The following theorem summarizes what is known about the non-trivial multinets on
arrangements.

Theorem 2.3.8 (See [Yuz]). Let M = (A;m;B) be a (k, e)-multinet on a line arrangement
A. Then the following hold.

(i) If |B| > 1, then k = 3 or 4.

(ii) If there is an j such that m(j) > 1, then k = 3.

Now given a line arrangement A = {L1, · · · , Ld} and a (k, e)-multinetM = (A;m;B) on
it, define

Qi =
∏
Lj∈Ai

L
m(j)
j

for each i ≤ k. Then as is shown in [FY], Q1, · · · , Qk belongs to a pencil, namely, the vector
space C〈Q1, · · · , Qk〉 has dimension 2. Let Qi = αiQ1 + βiQ2 for i ≤ q with (α1, β1) = (1, 0)
and (α2, β2) = (0, 1) and G(u, v) =

∏k
i=1(αiu+ βiv), then we get a morphism

f : M = M(A)→ C = P1 \ V (G), f(x, y, z) = (Q1(x, y, z), Q2(x, y, z)).

This map f in fact gives an irrational pencil for M , which is called the irrational pencil
associated to the multinet M. Moreover, we have the following: the following sets coincide

• E(M) consisting of irrational pencils of M ;

• mE(M) consisting of irrational pencils of M associated to multinets of A;

and, the assignment [f ] 7→ f ∗T(f(M)) gives a one-to-one correspondence between E(M) (or
mE(X)) and
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• IC1(M) consisting of all irreducible components of V1(M) passing through 1;

in addition, the assignment [f ] 7→ f ∗H1(f(M)) gives a one-to-one correspondence between
E(X) (or mE(X)) and

• IC1(R1(M)) consisting of all irreducible components of R1(M);

About the monodromy action, we have (see [LibE])

Theorem 2.3.9. Let a ∈ µd and assume that there is a line in A, say L1, such that the
multiplicity mp of any multiple points of V (Q(A)) situating on L1 satisfies either mp = 2 or
amp 6= 1, then H1(F )a = 0.

2.3.10 Examples

We provide here some examples of arrangements by giving their defining polynomials. We
only give brief descriptions of the dimensions of the eigenspaces H1(F )a for the monodromy
h∗ : H1(F )→ H1(F ), where F is the Milnor fiber.

In all the examples, we will use (P1, P2) to denote the pencil determined by P1 and P2. A
more standard notation will be given in Chapter 5.

1. (see [CS95]) The A3-arrangement is defined by

Q = xyz(x− y)(y − z)(z − x)

with d = 6 and ξ = exp(2π
√
−1/6). This arrangement is given by three completely

reducible fibers of the pencil of conics (x(y − z), z(z − x)).

V (Q) has 4 triple points and 3 double points, and on any line in the arrangement, there
are 2 triple points and 1 double point of V (Q). So by Theorem 2.3.9, H1(F )a 6= 0 only
if a = 1, ξ2, ξ4; and by Theorem 2.3.3, dimH1(F )ξ2 = dimH1(F )ξ4 .

In fact, one has dimH1(F )ξ2 = dimH1(F )ξ4 = 1.

2. (see [BDS]) The Hesse arrangement is defined by

Q = xyz((x3 + y3 + z3)3 − 27x3y3z3)

with d = 12 and ξ = exp(2π
√
−1/12). This arrangement consists of the 4 completely

reducible fibers in the pencil of cubics (x3 + y3 + z3, xyz).

V (Q) has 12 double points and 9 points of multiplicity 4. So by Theorem 2.3.9,
H1(F )a 6= 0 only if a = 1, ξ3, ξ6, ξ9.

In fact, one has dimH1(F )a = 2 for a = ξ3, ξ6, ξ9.

3. (see [CS95]) The Pappus configuration (93)1 is given by

Q = xyz(x− y)(y − z)(x− y − z)(2x+ y + z)(2x+ y − z)(−2x+ 5y − z)

consists of three reducible fibers in a cubic pencil.

In this case, d = 9 and ξ = exp(2π
√
−1/9). We have that H1(F )a 6= 0 only if a =

1, ξ3, ξ6; and by Theorem 2.3.3, dimH1(F )ξ3 = dimH1(F )ξ6 .

In fact, one has dimH1(F )ξ3 = dimH1(F )ξ6 = 1.
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4. (see [Bai14],[Dim]) The Ceva arrangement is defined by

Q = (x3 − y3)(y3 − z3)(z3 − x3),

with d = 9 and ξ = exp(2π
√
−1/9).

This arrangement can grouped in four different ways such that it contains three com-
pletely reducible fibers in a pencil of cubics. More precisely, let

L1 = x− y, L2 = x− exp(2π
√
−1/3)y, L3 = x− exp(4π

√
−1)y,

L4 = y − z, L5 = y − exp(2π
√
−1/3)z, L6 = y − exp(4π

√
−1)z,

L7 = z − x, L8 = z − exp(2π
√
−1/3)x, L9 = z − exp(4π

√
−1)x,

then the arrangements contains three completely reducible fibers belonging to each of
the following four pencils: 

P1 = (L1L2L3, L4L5L6),

P2 = (L1L4L7, L2L5L8),

P3 = (L1L5L9, L2L6L8),

P4 = (L1L6L8, L2L4L9).

We have dimH1(F )a = 2 for a = ξ3, ξ6, and 0 otherwise with a 6= 1.

5. (see [Dim]) More generally, consider the arrangement A(m,m, 3) defined by

Q = (xm − ym)(ym − zm)(zm − xm).

Then the eigenvalues of h∗ : H1(F ) → H1(F ) are only cubic roots of unity. Set θ =
exp(2π

√
−1/3), then we have two cases:

(i) If m ≡ 0 mod 3, then dimH1(F )θ = dimH1(F )θ2 = 2;

(ii) If m 6≡ 0 mod 3, then dimH1(F )θ = dimH1(F )θ2 = 1.

Now we list some line arrangements for which H1(F ) 6=1 = 0.

6. (see [CS95]) The arrangement (93)2 is defined by

Q = xyz(x+ y)(y + z)(x+ 3z)(x+ 2y + z)(x+ 2y + 3z)(4x+ 6y + 6z),

with d = 9. For this arrangement, H1(F ) 6=1 = 0.

7. (see [Bai14], [CS95]) The B3-arrangement is defined by

Q = xyz(x2 − y2)(y2 − z2)(z2 − x2)

for which H1(F )6=1 = 0.

8. (see [Bai14]) The arrangement defined by

Q = xy(x2 − y2)(x2 − 4y2)((2x+ y)2 − z2)((2x+ y)2 − z2)((2x+ y)2 − 9z2)

satisfies H1(F )6=1 = 0.
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Besides line arrangements, we can also consider curve arrangements. We will consider
the singular fibers, which are either line arrangements or nodal cubics, in a pencil of
cubics.

9. (see [Bai16]) Consider the pencil of cubics C1 = (Q1 = 3xyz+y3 + z3, Q2 = 3xyz+x3 +
z3). Then there are 5 singular fibers in C1

Q1, Q2, Q1 −Q2, Q1 − t1Q2, Q1 − t2Q2

where t1, t2 are the two roots of the equation t2 − 3t+ 1 = 0.

Let Q be the product of all the singular fibers, namely,

Q = Q1Q2(Q1 −Q2)(Q1 − t1Q2)(Q1 − t2Q2),

and F : Q = 1 the Milnor fiber of Q in C3.

Define the map h and monodromy action h∗ : H1(F )→ H1(F ) as before, we have that
the eigenvalues of h∗ are all 5-th roots of unity. Moreover,

dimH1(F )a =

{
10, a = 1;

3, a5 = 1, a 6= 1.

Note also that Q is a free divisor.

10. (see [Bai16]) Consider the pencil C2 = (Q1 = y(x − y − z)(2x + y − z), Q2 = xz(2x −
5y + z)), then there are 6 singular fibers in C2:

Q1, Q2, Q1 −Q2, Q1 − t1Q2, Q1 − t2Q2, Q1 − t3Q2,

where t1, t2, t3 are the three roots of the equation 125t3 − 399t2 + 339t− 1 = 0.

Let Q = Q1Q2(Q1 − Q2)(Q1 − t1Q2)(Q1 − t2Q2)(Q1 − t3Q2) and F its Milnor fiber.
Then the eigenvalues of the monodromy h∗ : H1(F ) → H1(F ) are all 6-th roots of
unity. Moreover,

dimH1(F )a =

{
11, a = 1;

4, a6 = 1, a 6= 1.

Q is also a free divisor.
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First Logarithmic Resonance Varieties

3.1 History

The study of relations between characteristic varieties and resonance varieties dates back
to [CS99], in which the case of hyperplane arrangement complements is discussed. This is the
first paper, to my knowledge, concerning such relations between the seemingly quite different
cohomology jump loci. After that, A. Libgober in [LibF] discusses these relations in general
settings, and claims incorrectly that TC1(V1(X)) = R1(X) for any algebraic variety X. But
he proves correctly the inclusion TC1(V1(X)) ⊆ R1(X). In 2009, the paper [DPS09] came out.
In this paper the equality TC1(V1(X)) = R1(X) is established for 1-formal varieties and many
applications are given. In recent papers, such as [DP14] or [BW], the tangent cone is no longer
mentioned, but replaced by an isomorphism of germs (V1(X), 1) ∼= (R1(X), 0). This is due to
the fact that the variety R1(X) is in fact a cone, i.e. it is defined by homogeneous equations,
and for such varieties, one has TC0(R1(X)) = R1(X); what is more, an isomorphism of germs
(X, 0) = (Y, 0) implies an isomorphism of their tangent cones TC0(X) = TC0(Y ).

Now let X be a quasi-projective manifold such that X = X \ D, where X is a smooth
compactification of X and D is a normal crossing divisor in X and D = ∪i∈IDi such that
every irreducible component Di of D is a smooth hypersurface.

As in the previous chapter, the cohomology H•(X) admits a MHS defined via the logarith-
mic complex Ω•

X
(logD). More precisely, a decreasing Hodge filtration F and an increasing

weight filtration W can be given on the complex Ω•
X

(logD); and we have the spectral se-
quences

FE
p,q
1 = Hq(X,Ωp

X
(logD))⇒ Hp+q(X)

degenerating at E1, and

WE
p,q
1 = H2p+q(D(−p),C)(p)⇒ Hp+q(X)

(where (p) denotes the Tate twist) degenerating at E2. In particular, the MHS of H1(X) is
given by

H1(X) = H1,0(X)⊕H0,1(X)⊕H1,1(X)

with
W1H

1(X) = H0,1(X)⊕H1,0(X), F 1H1(X) = H1,0(X)⊕H1,1(X)

and
H1,1(X) = F 1H1(X) ∩ F 1H1(X).

As a consequence, GrW2 H
1(X) is pure of type (1, 1).
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In addition, X admits a model, the Gysin model A, as in Example 2.2.8, which is given
by

Ak =
⊕
p+l=k

Ap,l

where

Ap,l =
⊕
|S|=l

Hp

(⋂
i∈S

Di

)
(−l)

where S runs through all the l-element subsets of I and (−l) denotes the Tate twist. The
multiplication is induced by the cup-product and satisfies

Ap,l · Ap′,l′ ⊆ Ap+p
′,l+l′

and the differentials d : Ak → Ak+1 are induced by the d′1s : WE
•,•
1 → WE

•,•
1 , see also [Mor]

and [DPS15]. In particular, the differential d : A0 → A1 is the zero map, and the differential
d : A1 → A2 is given by

d(η, (bj)j∈J) =

(∑
j∈J

ιj!(bj), 0, 0

)
(3.1.1)

for η ∈ H1(X) and bj ∈ H0(Dj). Here ιj : Dj → X denotes the inclusion and ιj! : H0(Dj)→
H2(X) the corresponding Gysin map.

A fundamental result in [DP14] says that the tangent cone TC1(Vjk(X)) can be identified
with the resonance variety Rj

k(A). Moreover, it is a finite union of linear subspaces of H1(X)
and in addition, any irreducible component of TC1(Vjk(X)) ∼= Rj

k(X) is in fact a rational
mixed Hodge substructure of H1(X). A fortiori, R1(X) is a finite union of mixed Hodge
substructures of H1(X). On the other hand, unless X is 1-formal, the resonance variety
R1(X) is in general not a union of linear subspaces of H1(X).

To extend the linearity of R1(X) from a 1-formal variety to a general quasi-projective
manifold, A. Dimca in [Dim10] introduces the logarithmic cohomology complex

F k(X) = F kHk(X) = H0(X,Ωk
X

(logD)),

without any formality assumption on X and defines the first logarithmic resonance variety

LR1(X) = {α ∈ F 1(X) : H1(F •(X), α∧) 6= 0}.

An illustrative theorem about the first logarithmic variety LR1(X) in [Dim10] states that
LR1(X) is a finite union of linear subspaces of F 1(X), and for any irreducible component I
of LR1(X), I + I is an irreducible component of TC1(V1(X)) = R1(A), where A is the Gysin
model.

In fact, by considering the relations between isotropic subspaces and irrational pencils, A.
Dimca proves the following.

Theorem 3.1.1 (See [Dim10], Proposition 4.5). For any quasi-projective manifold X, the
following hold.

(i) The (strictly) positive dimensional irreducible components of LR1(X) are exactly the
maximal isotropic subspaces I ⊆ F 1(X), namely

∧2 I = 0 in F 2(X), satisfying dim I ≥
2.

As a consequence, LR1(X) is a union of linear subspaces of F 1(X).
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(ii) If I and I ′ are distinct irreducible components of LR1(X), then I ∩ I ′ = 0.

(iii) The mapping
[f ] 7→ If = f ∗F 1(C)) = f ∗H0(C,Ω1

C
(logB));

induces a bijection between the set E0(X) of equivalence classes of irrational pencils
f : X → C with g∗(C) ≥ 2 and the set of positive dimensional irreducible components
of the first logarithmic resonance variety LR1(X).

Here C is a smooth compactification for C, B = C − C is a finite set and g∗(C) =
b1(C)− g(C) = dimH0(C,Ω1

C
(logB)).

(iv) Moreover, if I 6= 0 is an irreducible component of LR1(X), then I + I is an irreducible
component of TC1(V1(X)).

Conversely, any irreducible component E = Ef 6= 0 of TC1(V1(X)), not coming from
an irrational pencil f : X → C onto a once-punctured elliptic curve C, is of this form,
with I = F 1E.

In particular, α ∈ LR1(X) if and only if both Hodge type components α1,0 and α1,1 of α
are in the same irreducible component of LR1(X).

In this chapter, we establish the basic relations between the tangent cone TC1(V1(X))
and the first logarithmic variety LR1(X) without using the results in Arapura [Ara] and
Bauer[Bau] on irrational pencils, see also the next chapter of this thesis; instead, our discus-
sions rely only on computations via the Gysin model above.

We first propose a quite useful proposition for discussing the relations between TC1(V1(X))
and LR1(X).

Proposition 3.1.2. Let X be a quasi-projective manifold and E an irreducible component of
TC1(V1(X)), equipped with the induced MHS of H1(X). Then the following hold:

(i) if I = F 1E ⊆ LR1(X) and has positive dimension, then F 1E is an irreducible component
of LR1(X);

(ii) suppose that, moreover, for any irreducible component E of TC1(V1(X)) with F 1E of
positive dimension, F 1E ⊆ LR1(X), then for any irreducible component I ⊆ LR1(X)
of positive dimension, I + I is an irreducible component of TC1(V1(X)).

Proof. Given an irreducible component E of TC1(V1(X)). Assume F 1E ⊆ LR1(X) has
positive dimension.

Since E is a linear subspace of H1(X), I = F 1E is an irreducible subvariety of F 1(X) and
therefore there exists an irreducible component I ′ of LR1(X) such that I ′ ⊇ I.

Now consider the Gysin model A of X. Since d : A0 → A1 is the zero map, the first
cohomology group H1(X) and hence F 1(X) can be naturally seen as a subspace of A1. By
the formula (3.1.1) and noting that d|F 1(X) = 0, one obtains immediately that LR1(X) ⊆
R1(A) = TC1(V1(X)). In particular, I ′ ⊆ TC1(V1(X)) and thus, there exists an irreducible
component E ′ ⊆ TC1(V1(X)) satisfying I ′ ⊆ E ′.

From the choice of I ′, we have F 1E ⊆ I ′ ⊆ E ′, and hence E ⊆ E ′ since E ′ is a mixed Hodge
substructure of H1(X). Therefore, E = E ′ since E and E ′ are both irreducible components
of TC1(V1(X)).

Consequently, I ′ ⊆ E ′ = E, and thus I ′ ⊆ E ∩ F 1(X) = F 1E = I, namely, I = I ′ is an
irreducible component of LR1(X) and E = I + I. This proves (i).



30 Chapter 3. First Logarithmic Resonance Varieties

For (ii), given an irreducible component I of LR1(X), then it is an irreducible closed
subset of R1(A) = TC1(V1(X)) and hence I ⊆ E for some irreducible component E of
TC1(V1(X)). By assumption, F 1E ⊆ LR1(X) and I ⊆ E ∩ F 1(X) = F 1E. Since I is an
irreducible component, one has I = F 1E and thus E = I + I.

3.2 Case 1: H1 having pure weight 2

When H1(X) is of pure weight 2, LR1(X) has special properties.

Proposition 3.2.1. Let X be a quasi-quasi-projective manifold. If H1(X) is pure of weight
2, then LR1(X) = TC1(V1(X)).

In particular, LR1(X) is a union of linear subspaces of F 1(X).

Proof. If H1(X) is pure of weight 2, then X is 1-formal (see [Mor]), R1(X) = TC1(V1(X)).
Moreover, F 1(X) = H1(X), so by the very definitions of R1(X) and LR1(X), we have
LR1(X) = R1(X).

3.3 Case 2: X being compact

We first verify the condition in Proposition 3.1.2 when X is itself compact, and hence the
Gysin model A = (H•(X), d = 0) with F k(X) = Hk,0(X). Note also that X is formal in this
case.

Claim 3.3.1. Let X be a projective manifold and E 6= 0 an irreducible component of TC1(V1(X)).
Then F 1E ⊆ LR1(X).

Proof. We use the decomposition

H1(X) = H0,1(X)⊕H1,0(X) = F 1(X)⊕ F 1(X),

so any element α ∈ H1(X) can be written as α = β + γ with β, γ ∈ F 1(X). Here we have
represented the cohomology classes in F 1(X) by holomorphic (or anti-holomorphic) forms.

Given any 0 6= α1 ∈ F 1E, one has α1 + α1 ∈ E. By definition, there exists β2 + γ2 ∈
H1(X) \ C(α1 + α1) such that

(α1 + α1) ∧ (β2 + γ2) = 0,

that is,
α1 ∧ β2 = 0, α1 ∧ γ2 = 0, α1 ∧ γ2 + α1 ∧ β2 = 0.

If β2 /∈ Cα1 or γ2 /∈ Cα1, we are done. Otherwise, suppose

β2 = Aα1, γ2 = Bα1,

for some A,B ∈ C, then

0 = α1 ∧ γ2 + α1 ∧ β2 = (A−B)α1 ∧ α1,

meaning that (A−B)α1 ∧ α1 is an exact differential form on X.
Let ω be any Kähler form on X, then

0 = (A−B)α1 ∧ α1 ∧ ωdimX−1,
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meaning that the right hand side is an exact form, so integration over X gives

(A−B)

∫
X

|α1|2 = 0.

Since α1 6= 0, A = B and thus

β2 + γ2 = B(α1 + α) ∈ C(α1 + α1).

Contradiction.

By applying Proposition 3.1.2, we obtain the following.

Corollary 3.3.2. Let X be a projective manifold. Then the natural mapping E 7→ F 1E gives
a one-to-one correspondence between the set of irreducible components of TC1(V1(X)) and
that of LR1(X), with inverse given by I 7→ I + I.

In particular, LR1(X) a finite union of linear subspaces of F 1(X).

3.4 Case 3: X being a punctured curve

Now we consider the simplest non-compact case, namely X = C \ {p0, · · · , pn} is an
(n+ 1)-punctured curve, where C is a complete smooth curve of genus g.

The Gysin model of X is given by
A0 = H0(C) = C,
A1 = H1(C)⊕

⊕n
j=0H

0(pj) = C2g ⊕ Cn+1,

A2 = H2(C) = C.

The differential d : A0 → A1 is zero and d : A1 → A2 is given by

d(η, (b1, · · · , bn+1)) =
n+1∑
j=1

bi

where η ∈ H1(C).
Let

W2 = ker(d : ⊕jH0(pj)→ A2),

then one has the following
H0(X) = H0(C) = C,
H1(X) = H1(C)⊕W2 = H0,1(C)⊕H1,0(C)⊕W2,

H2(X) = 0,

and 
F 0(X) = H0(C),

F 1(X) = H1,0(C)⊕W2,

F 2(X) = 0.

Notice that dimF 1(X) = g + n and dimA1 = 2g + n+ 1.
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1. If g + n > 1, dimF 1(X) > dimF 0(X) + dimF 2(X) and dimA1 > dimA0 + dimA2, in
this case

LR1(X) = F 1(X), and TC1(V1(X)) = H1(X),

we are done.

2. If g + n = 0, then g = 0 and n = 0, then X is a once-punctured sphere, hence is
simply connected, and thus H1(X) = 0, there is nothing to prove, because in this case
TC1(V1(X)) = 0 and LR1(X) = 0.

3. Let g + n = 1, then dimF 1(X) = 1 and LR1(X) = 0.

There are two possibilities for TC1(V1(X)):

(i) if g = 0 and n = 1. Then 
A0 = C,
A1 = C2,

A2 = C.

The differential d : A1 → A2 is given by d(b1, b2) = b1 + b2. An easy calculation
gives R1(A) = 0.

(ii) if g = 1 and n = 0. Then

dimA1 = 2g + n+ 1 = 3 > 2 = dimA0 + dimA2,

therefore R1(A) = H1(X) 6= 0.

Therefore, we have the following

Corollary 3.4.1. Let X be a punctured curve. Then unless X is an elliptic curve with one
point deleted, the natural mapping E 7→ F 1E gives a one-to-one correspondence between the
set irreducible components of the tangent cone TC1(V1(X)) and that of LR1(X), with inverse
given by I 7→ I + I.

In any case, LR1(X) is a union of linear subspaces of F 1(X).

Remark 3.4.2. When X is a once-punctured elliptic curve, the computations above also
shows that

LR1(X) = 0, and TC1(V1(X)) = H1(X)

Moreover, TC1(V1(X)) = H1(X) is 2-dimensional and pure of weight 1.
Let X be a quasi-projective manifold of higher dimension. Then irreducible components

of TC1(V1(X)) correspond to irrational pencils f : X → S with S a smooth curve of negative
Euler characteristic, see Theorem 2.2.6. The discussions about the first logarithmic resonance
varieties for punctured curves above may convince one to pay attention to the irrational pencils
onto a once-punctured curve or irreducible components of TC1(V1(X)) having dimension 2
and pure weight 1.
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3.5 Case 4: general setting

Now suppose X is a smooth quasi-projective algebraic variety of dimension m > 1, and
X is a compactification of X with D = X−X =

⋃n
j=1Dj a normal crossing divisor such that

each Dj is a smooth hypersurface in X.
We explore in a detailed fashion of the relations between LR1(X) and TC1(V1(X)) via

the Gysin model of X. Denote ιj : Dj → X the natural inclusion and ω a Kähler form of X.
The Gysin model of X is given by

A0 = H0(X,C) = C,
A1 = H1(X,C)⊕

⊕
j H

0(Dj) = (H0,1(X) +H1,0(X))⊕ Cn,

A2 = H2(X,C)⊕
⊕

j H
1(Dj)⊕

⊕
j<kH

0(Dj ∩Dk).

An element α ∈ A1 will be written as (β + γ, (bj)) with β, γ ∈ H1,0(X) holomorphic forms
and (bj) ∈ Cn an n-tuple of complex numbers.

The differential d : A0 → A1 is the zero map while d : A1 → A2 is given by

d(β + γ, (bj)) =

(∑
j

ιj!(bj), 0, 0

)
.

So {
H0(X) = H0(X),

H1(X) = H0,1(X)⊕H1,0(X)⊕W2,

where
W2 = {(b1, · · · , bn) ∈ Cn

∣∣∑
j

ιj!(bj) = 0} ⊆ A1,

and in addition, {
F 0(X) = H0(X),

F 1(X) = H1,0(X)⊕W2.

Given a nonzero irreducible component E of TC1(V1(X)), we shall find conditions on the
divisor D such that F 1E ⊆ LR1(X). To this end, let 0 6= (α, (bj)) ∈ F 1E ⊆ F 1(X), we first
have by definition

∑
ιj!(bj) = 0, i.e., (bj) ∈ W2.

Since E is a mixed Hodge substructure of H1(X), (α+α, (bj)) ∈ E and thus by definition,
there exists

(β + γ, (cj)) ∈ A1 \ C(α + α, (bj))

such that
(d+ (α + α, (bj))∧)(β + γ, (cj)) = 0,

that is,(∑
ιj!(cj) + α ∧ γ + α ∧ β + α ∧ β + α ∧ γ, (ι∗j(α + α)cj + bjι

∗
j(β + γ)), (bjckDj ·Dk)

)
= 0,

where Dj ·Dk is the intersection product of Dj and Dk as homology classes and ι∗j : H1(X)→
H1(Dj) is the induced map on cohomology by the inclusion ιj : Dj → X.

Therefore, we obtain

(1) α ∧ β = 0, α ∧ γ = 0,
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(2)
∑
ιj!(cj) + α ∧ γ + α ∧ β = 0,

(3′) ι∗j(α + α)cj + bjι
∗
j(β + γ) = 0,

(4) (bjckDj ·Dk) = 0.

If the map ι∗j : H1(X)→ H1(Dj) is injective for each j, then by (3′), it follows that

(α + α)cj + bj(β + γ) = 0,

or
(3) cjα = bjβ, cjα = bjγ.

Here we identified bj, cj ∈ H0(Dj) with their corresponding images in H0(X) via the iso-
morphism ι∗j : H0(X) ' H0(Dj), and also used the fact that the product in A1 is anti-
commutative. We shall consider the following three cases.

(i) If (bj) = 0, then α 6= 0 and
(5) α ∧ β = 0, α ∧ γ = 0,

(6)
∑
ιj!(cj) + α ∧ γ + α ∧ β = 0,

(7) cjα = 0, cjα = 0

From (7), cjα is an exact form. Since α 6= 0, we have that cj = 0, thus (cj) = 0.
Therefore, we have 

α ∧ β = 0, α ∧ γ = 0,

α ∧ γ + α ∧ β = 0,

(β + γ, 0) /∈ C(α + α, 0).

A similar argument as in the compact case gives that β /∈ Cα or γ /∈ Cα, and note that
(β, 0) ∧ (α, 0) = 0 and (γ, 0) ∧ (α, 0) = 0, so (α, 0) ∈ LR1(X).

(ii) If bj 6= 0 for all j, then from (3), we obtain

cjα = bjβ, cjα = bjγ,

so
γ = Ajα, β = Ajα

with Aj = cj/bj.

• If α 6= 0, then
A1 = · · · = An = A

with

A =

∫
X

γ ∧ α ∧ ωm−1
/∫

X

α ∧ α ∧ ωm−1,

and so
(β + γ, (cj)) = A(α + α, (bj)) ∈ C(α + α, (bj)),

contradicting the choice of (β + γ, (cj)).
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• If α = 0, then ∑
ιj!(cj) = 0, bjβ = 0, bjγ = 0.

From the last two equations, we get γ = β = 0 since bj 6= 0.

By assumption, (cj) /∈ C(bj) and from
∑
ιj!(cj) = 0, one has (0, (cj)) ∈ F 1(M),

therefore (α, (bj)) = LR1(X).

(iii) If b1 = · · · = bp 6= 0 and bp+1 = · · · = bn = 0 for some 1 < p < n.

If α 6= 0, then from the equations

cjα = 0, cjα = 0, j = p+ 1, · · · , n

we get cj = 0 for j = p + 1 · · · , n, and moreover, from bjγ = cjα, j = 1, · · · , p, one
obtains

cj/bj = A =

∫
X

γ ∧ α ∧ ωm−1
/∫

X

α ∧ α ∧ ωm−1

for j = 1, · · · , p. Hence, β = Aα and γ = Aα, so

(β + γ, (cj)) = A(α + α, (bj))

contradiction.

Therefore, in this case, we must have α = 0, and then∑
ιj!(cj) = 0

and hence (0, (cj)) ∈ F 1(X). Furthermore, b1β = 0 and b1γ = 0 imply that β = γ = 0,
so (cj) /∈ C(bj) by assumption. Thus, (0, (bj)) ∈ LR1(X).

In conclusion, if (α, (bj)) ∈ F 1E for an irreducible component E of TC1(V1(X)), one has
(α, (bj)) ∈ LR1(X), under the condition that dimX > 1 and each ι∗j : H1(X) → H1(Dj) is
injective. By Proposition 3.1.2, we have

Proposition 3.5.1. Let X be a (connected) quasi-projective manifold such that X = X \D
as above of dimension > 1. Suppose each ι∗j : H1(X) → H1(Dj) is injective, then the
natural mapping E 7→ F 1E gives a one-to-one correspondence between the set of irreducible
components of the tangent cone TC1(V1(X)) and that of LR1(X), with inverse given by I 7→
I + I.

Corollary 3.5.2. If X = X −
⋃
j Dj is a quasi-projective manifold of dimension n > 1

and H2n−1(X − Dj) = 0 for each j, then the correspondence in Proposition 3.5.1 holds. In
particular, this is the case if for each j, X −Dj is affine, for instance, Dj is an hyperplane
section of the projective manifold X.

Proof. The first assertion follows from the cohomology exact sequence associated to the pair
(X,Dj):

· · · → H1(X,Dj)→ H1(X)→ H1(Dj)→ · · ·
and the duality isomorphism H1(X,Dj) ' H2n−1(X −Dj). If X −Dj is affine, just use the
fact that a smooth affine variety of complex dimension n has the homotopy type of a CW
complex of real dimension ≤ n, see [Voi2], Theorem 1.22.

The interested reader may have found that in all cases we have discussed above, LR1(X)
is always a finite union of linear subspaces of F 1(X). We have also emphasized the special-
ity of the once-punctured elliptic curve in our discussions about punctured curves. These
phenomena are not isolated.



4
Isotropic Subspace Theorems and Inequalities

of Hodge Numbers

In this chapter, we aim at giving some inequalities of Hodge numbers, as extensions of those
in [BHPV]. In [BHPV], the authors gives some inequalities concerning the Hodge numbers
h1,1(X), h1,0(X), h2,0(X) etc. for a compact complex surface X that does not admit any
irrational pencil. As is known that irrational pencils have close relations with the characteristic
variety V1(X), it is natural that more general inequalities on Hodge numbers can be obtained
by taking into account the dimension of V1(X) for a more general quasi-projective manifold
X.

4.1 Castelnuovo-De Franchis theorems

The existence of an irrational pencil can be ensured by the celebrated Castelnuovo-De
Franchis (CDF) theorem for a compact surface, a Kähler manifold or a quasi-projective
manifold. Plainly speaking, such theorems say that existence of two linearly independent
holomorphic 1-forms with wedge product zero implies existence of an irrational pencil.

In this section, we shall give detailed proofs of several versions of CDF theorems. None
of the theorems and proofs is new and they are in fact given in many books and articles;
however, it is still difficult to find a reference containing all of them, that is why we include
the statements and proofs here.

Theorem 4.1.1 (CDF Theorem for compact Kähler manifolds). Let X be a compact Kähler
manifold, and ω1, ω2 ∈ H0(X,Ω1

X) be two linearly independent 1-forms such that ω1 ∧ω2 = 0.
Then there exists an irrational pencil f : X → C from X to a complete smooth curve of

genus ≥ 2 such that ω1, ω2 ∈ f ∗H1(C,KC).

Proof. We first give an outline of the proof containing several claims, then we continue to
prove our claims.

Step 1: Outline of proof By assumption, ω1 ∧ ω2 = 0, we have

Claim 4.1.2. There exists a nonconstant meromorphic function f1 on X such that ω2 = f1ω1.

So we have a rational morphism f1 : X 99K P1. By resolving the indeterminacies via
blowups, we obtain a proper morphism τ : X̃ → X and a holomorphic map f2 : X̃ → P1.

Then the Stein factorization gives X̃
f3−→ C

h−→ P1 such that each fiber of f3 is connected. The
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above process can be summarized by the following diagram

X̃

τ

��

f3 //

f2
��

C

h
��

X
f1
// P1

By Stein Factorization Theorem, C is normal (since X̃ is smooth), and hence smooth since
C is 1-dimensional.

Since on a Kähler manifold, holomorphic forms are closed, dω2 = 0, so we have

0 = dω2 = d(f1ω1) = df1 ∧ ω1.

Let ω̃i = τ ∗ωi, i = 1, 2, then df2 ∧ ω̃1 = 0. Hence, ω̃1 = g1df2 for some meromorphic function
g1 on X̃.

Claim 4.1.3. g1 ∈ f ∗3 (M(C)), namely, g1 is constant along the general fiber of f3. Here
M(C) denotes the field of meromorphic functions on C.

In fact, since X̃ is Kähler, we have 0 = dω̃1 = dg1 ∧ df2. Let C ′ ⊆ C × P1 be the
image of the map (f3, g1) : X̃ 99K C × P1, then C ′ has dimension 1. Moreover, since f3 =

pr1 ◦ (f3, g1) : X̃ → C has connected fibers (pr1 is the projection of C × P1 onto the first
factor), pr1|C′ : C ′ → C is of degree one. Since C is smooth, C ′ is isomorphic to C by Zariski
Main Theorem. From the isomorphism pr1 : C ′ ' C, we obtain that g1 ∈ f ∗3 (M(C)).

Similarly, we also have ω̃2 = g2df2, with g2 ∈ f ∗3 (M(C)). Indeed, ω̃2 = f2ω̃1 = f2g1df2 :=
g2df2 with g2 = f2g1.

More precisely, from the discussions above, one obtains that C ′ is the graph of a map
g′1 : C → P1, so g1 = g′1 ◦ f3. Thus,

ω̃1 = g1df2 = f ∗3 (g′1)f
∗
3dh = f ∗3 (g′1dh).

Let η1 = g′1dh. Then η1 is a meromorphic form on C.

Claim 4.1.4. η1 ∈ H0(C,KC), namely, η1 is holomorphic.

So ω̃1 ∈ f ∗3H0(C,KC). Similarly, ω̃2 ∈ f ∗3H0(C,KC).
We are done once we show the following

Claim 4.1.5. The blowup τ : X̃ → X is not needed, namely, f3 ◦ τ−1 : X 99K C is a
morphism.

Step 2: Proof of Claim 4.1.2 Indeed, given p such that ω1(p) 6= 0, we may choose
local holomorphic coordinates (z1, z2, · · · ) around p on X such that ω1 = dz1, by the fact
that dω1 = 0 and the holomorphic Poincaré Lemma. Then ω1 ∧ ω2 = 0 gives ω2 = f1ω1

for some locally defined holomorphic function f1. So one obtains that f1 = ω2/ω1 is a well-
defined meromorphic function on X. Clearly, f1 is not constant since ω1 and ω2 are linearly
independent.

Step 3: Proof of Claim 4.1.4 Choose a point p ∈ C, and local coordinate t around p.
Further, choose a smooth point x ∈ f−1(p)red. Then there are local coordinates (z1, · · · , zn)
around x such that t ◦ f3 = zk1 . If η1 = φ1(t)dt, then

ω̃1 = f ∗3 η1 = φ(zk1 )kzk−11 dz1.
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Since ω̃1 is holomorphic, φ1 and hence η1 is holomorphic.
Step 4: Proof of Claim 4.1.5 Since τ is a composition of a sequence of blowups, we

have
Xl

τl
��

ρl

��

Xl−1

τl−1 ��

ρ
l−1

��

...

τ2

��
X1

τ1
��

ρ1

""
X

f3◦τ−1
// C

with Xl = X̃, τ = τ1 ◦ τ2 ◦ · · · ◦ τl, ρl = f3 and τj : Xj → Xj−1 (X0 = X) a blowup along a
smooth submanifold of Xj−1. In particular, Xj is smooth for all j.

Since dim f ∗H0(C,KC) ≥ 2, we have that g(C) ≥ 2 and so the universal cover C̃ is
isomorphic to D = {z ∈ C : |z| < 1} by the uniformization theorem. For m > 0, any
morphism Pm → C factors through Pm → D, hence must be constant by the maximum
principle.

Now consider the final blowup τl : Xl → Xl−1. Each fiber of τl is either one point or
some Pm for some m > 0, hence each fiber of τl is mapped to a point under ρl, thus ρl−1 is a
morphism and the blowup τl is not needed. By a decreasing induction on l, we obtain that,
none of the blowups τl is needed and f3 ◦ τ−1 is a morphism. We are done.

Theorem 4.1.6 (CDF Theorem for surfaces). Let X be a compact smooth surface and ω1, ω2

two linearly independent holomorphic 1-forms such that ω1 ∧ ω2 = 0.
Then there exists an irrational pencil f : X → C with C a complete smooth curve of genus

≥ 2 such that ω1, ω2 ∈ f ∗H0(C,KC).

Proof. By checking the proof of the previous theorem, it suffices to show that any holomorphic
1-form is closed.

Indeed, let ω be a holomorphic 1-form, one has

0 =

∫
X

d(ω ∧ dω) =

∫
X

dω ∧ dω,

so dω = 0. (Let dω = fdz1 ∧ dz2, then

dω ∧ dω = |f |2dz1 ∧ dz2 ∧ dz1 ∧ dz2 = 4|f |2dvol.)

Remark 4.1.7. A compact surface is not necessarily Kähler. In fact, a surface is Kähler if
and only if the first Betti number b1 is even, see [BHPV].

Theorem 4.1.8 (Log CDF Theorem, see [Bau]). Let X be a quasi-projective manifold with a
smooth compactification X: D = X −X being a divisor with normal crossings, and ω1, ω2 ∈
H0(X,Ω1

X
(logD)) be two linearly independent 1-forms with ω1∧ω2 = 0 in H0(X,Ω2

X
(logD)).
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Then there exists an irrational pencil f : X → C with C a quasi-projective curve such that
ω1, ω2 ∈ f ∗H0(C,Ω1

C
(log(C − C))). Moreover, we have the following diagram

X �
� //

f

��

X

f
��

C �
� // C

where C is a smooth compactification of C.

Remark 4.1.9. Let C be a non-complete smooth curve and C its smooth compactification.
Then we call g(C) = g(C) the genus of C and g∗(C) = dimH0(C,ΩC(log(C − C))) the
logarithmic genus of C. Clearly, b1(C) = g(C) + g∗(C).

The irrational pencil f : X → C obtained above satisfies g∗(C) ≥ 2, which is a stronger
condition than χ(C) < 0. Such irrational pencils are called logarithmic irrational pencils. If
C is not complete, the pencil f is called strictly logarithmic.

Proof. As in the proof of Theorem 4.1.1, we have

(i) ω2 = f1ω1 for some rational function f1 on X.

f1 defines a rational map X 99K P1, and hence by resolving the indeterminacies and
applying Stein factorization we have the following commutative diagram

X̃

τ
��

f3 //

f2
��

C

h
��

X
f1
// P1

as in the proof of Theorem 4.1.1.

(ii) Since elements in H0(X,Ω1
X

(logD) are closed by mixed Hodge theory, a similar argu-
ment as in the proof of Theorem 4.1.1 gives

τ ∗ω1 = ω̃1 = f ∗3 η1, τ ∗ω2 = ω̃2 = f ∗3 η2,

with η1, η2 rational 1-forms on C.

Claim 4.1.10. η1 is a logarithmic form.

Indeed, as in the proof of Claim 4.1.4, we have here ω1 = φ1(z
k
1 )kzk−11 dz1. Since ω1 has

at most logarithmic poles by assumption, so does η1.

Similarly, we have that η2 has at most logarithmic poles.

The smooth curve C = C−B withB ⊆ C a finite set such that η1, η2 ∈ H0(C,Ω1
C

(logB)).

(iii) The blowup τ : X̃ → X is not needed.

If g(C) ≥ 1, we are done by a similar argument as in the proof of Claim 4.1.5, since
the universal cover of C is either C or D = {z ∈ C : |z| < 1}. Observe also that
each exceptional fiber of τ is covered by various projective spaces Pm’s (m > 0) and is
connected by Zariski Main Theorem.
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Now we assume C = P1. If there exists an x ∈ X such that ωi, i = 1 or 2 is regular at
x and a Pm ⊆ τ−1(x) for some m > 0, then since ωi is regular at x, ω̃i is regular along
Pm. If f3(Pm) = P1, then η1 is regular, we get a contradiction since H0(P1, KP1) = 0.
Hence f3(Pm) is a point and the blowup is not necessary.

Therefore, the base locus of f3 ◦ τ−1 is contained in Y ⊆ D where neither ω1 nor ω2 is
regular. Note that the base locus of f3 ◦ τ−1 is of codimension 2: in fact, since P1 is
projective, the base locus has codimension ≥ 2; since the map f3 ◦ τ−1 can be written
as (f 1

3 , f
2
3 ) : X 99K P1, the base locus is V (f 1

3 , f
2
3 ), namely the common zeros of f 1

3 , f
2
3 ,

hence it has codimension ≤ 2. On the other hand, since C is equal to P1 minus at least
three points (because dimH0(C,Ω1

C
(log(C−C))) ≥ 2), the base locus is contained in the

intersection of at least three fibers of f3 and thus three distinct irreducible components
of D, hence it has codimension ≥ 3 since D has normal crossings, contradiction.

Theorem 4.1.11 (CDF Theorem for several forms, see [Cat],[Bau]). The following hold:

1. Let X be a compact Kähler manifold, or a compact surface, and ω1, · · · , ωr, r ≥ 2 linearly
independent forms in H0(X,Ω1

X) such that ωi∧ωj = 0 in H0(X,Ω2
X) for any pair (i, j).

Then there exists an irrational pencil f : X → C with C a complete smooth curve of
genus ≥ 2 such that ωi ∈ f ∗H0(C,KC), i = 1, · · · , r.

2. Let X be a quasi-projective manifold with a smooth compactification X: D = X−D is a
divisor with normal crossings, and ω1, · · · , ωr ∈ H0(X,Ω1

X
(logD)) linearly independent

forms with ωi ∧ ωj = 0 in H0(X,Ω2
X

(logD)) for any pair (i, j).

Then there exists a logarithmic irrational pencil f : X → C with C a quasi-projective
curve such that ωi ∈ f ∗H0(C,Ω1

C
(log(C − C))), i = 1, · · · , r. Moreover, we have the

following diagram

X �
� //

f

��

X

f
��

C �
� // C

where C is a smooth compactification of C.

The proof is completely the same as Theorem 4.1.1, Theorem 4.1.6 and Theorem 4.1.8.

4.2 Isotropic subspace theorems

In this section, we prove several isotropic subspace theorems, as natural extensions and
applications of CDF theorems.

Theorem 4.2.1 (See [Cat]). Let X be a compact Kähler manifold, then there exists a ir-
rational pencil f : X → C, where C is a complete smooth curve of genus g ≥ 2, if and
only if there is a g-dimensional maximal isotropic subspace V of H1(X). Here saying V is
isotropic means that its image if zero under the cup product map H1(X)

∧
H1(X)→ H2(X),

i.e.
∧2 V = 0.

Moreover, any maximal isotropic subspace V as above occurs as a pull-back f ∗V ′ of a
maximal isotropic subspace V of H1(C) for some f : X → C as above.



4.2. Isotropic subspace theorems 41

Proof. Let V be a isotropic subspace of dimension g ≥ 2, and φ1, · · · , φg a basis of V . Since

H1(X,C) = H0(X,Ω1
X) ⊕ H0(X,Ω1

X), we can write φ1 = ω1 + η1, · · · , φg = ωg + ηg with
ωi, ηj ∈ H0(X,Ω1

X) for i, j = 1, · · · , g. Let

U = C〈ω1, · · · , ωg〉, W = C〈η1, · · · , ηg〉.

By assumption, one has, for any i, j

(ωi + ηi) ∧ (ωj + ηj) = 0,

so
ωi ∧ ηi = 0, ηi ∧ ηj = 0, ωi ∧ ηj + ηi ∧ ωj = 0.

In particular,
∧2 U = 0 and

∧2W = 0. The proof is divides into three cases:

1. If dimU ≥ 2 and dimW ≥ 2, then we can first apply CDF Theorem to U and W
respectively to get two irrational pencils f : X → C and f ′ : X → C ′. Consider now
the product φ : (f, f ′) : X → C × C ′.

(i) If the image of φ is a curve C ′′, we are done by Stein factorization, since V pulls
back from H1(C ′′).

(ii) Otherwise, φ is surjective. Then φ∗ : H1(C × C ′)→ H1(X) is injective since X is
Kähler (see [Voi1], Lemma 7.28) and from Künneth formula, one has H•(C×C ′) =
H•(C) ⊗ H•(C ′). In this case, the relations between ωi’s and ηj’s can not hold,
and we are done.

Indeed, assume WLOG ω1 6= 0, we have

ω1 ∧ ηj + ωj ∧ η1 = 0

in φ∗H•(C × C ′) = f ∗H•(C) ⊗ f ′∗H•(C ′) ∼= H•(C) ⊗H•(C ′). If for some j ≥ 2,
ωj, ω1 are linearly independent, we obtain ω1 ∧ ηj = 0 and thus ηj = 0. Therefore,
we can choose a basis of V among which an element is either completely contained
in U or completely contained in W . But for a nonzero element of U and nonzero
element of W , their wedge product cannot be zero by the Künneth formula for
H•(C × C ′). This contradicts that fact that V is isotropic and that dimU ≥ 2
and dimW ≥ 2..

2. If dimU = 1, we may assume ω2 = · · · = ωg = 0, then ω1 ∧ ηj = 0 for j ≥ 2, hence
ω1 ∧ ηj = 0. In fact, let ω be any Kähler form on X,

0 =

∫
X

(ω1 ∧ ηj) ∧ ω1 ∧ ηj ∧ ωdimX−2 = −
∫
X

(ω1 ∧ ηj) ∧ ω1 ∧ ηj ∧ ωdimX−2,

so ω1 ∧ ηj = 0.

We also have ω1 ∧ η1 = 0. Indeed, from η1 ∧ ηj = 0 for j ≥ 2, we have that η1 is a
meromorphic multiple of ηj if ηj 6= 0. Therefore, from ω1 ∧ ηj = 0, we get ω1 ∧ η1 = 0.

Thus, the CDF Theorem can be applied to the subspace U+W , whose dimension is ≥ 2,
hence V pulls-back from a curve of genus ≥ 2. To see why dim(U +W ) ≥ 2, we assume
the contrary, then all ηj’s are scalar multiples of ω1, and thus we have ω1 ∧ ω1 = 0,
which implies that ω1 = 0, contradiction.
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The genus of the curve must be equal to g by the maximality of V . In fact, let f : X → C
be the map with C of genus h. Then since X is Kähler, f ∗ : H1(C) → H1(X) is
injective and note that any isotropic subspace of f ∗H1(C) ⊆ H1(X) has dimension h.
By our settings, V ⊆ f ∗H1(C) is isotropic, hence it is contained in a maximal isotropic
subspace V ′ of f ∗H1(C). On the other hand, V ′ is also an isotropic subspace of H1(X),
hence V ′ ⊆ V ′′ for a maximal isotropic subspace V ′′ of H1(X). Therefore we have
V ⊆ V ′ ⊆ V ′′. The equalities hold because V is a also maximal isotropic subspace for
H1(X). Consequently, g = dimV = dimV ′ = h.

The same argument applies if dimW = 1.

3. If dimU = 0 or dimW = 0, then we can directly apply the CDF Theorem and complete
the proof.

From the proof above, one can see that on a compact surface, we have the following.

Theorem 4.2.2. Let X be a compact surface, then there exists an irrational pencil f : X → C,
where C is a complete smooth curve of genus g ≥ 2, if and only if there is a g-dimensional
maximal isotropic subspace V of H1(X).

Moreover, any maximal isotropic subspace V as above occurs as a pull-back f ∗V ′ of a
maximal subspace V ′ of H1(C) for some f : X → C as above.

Proof. By following the proof of Theorem 4.2.1, it suffices check the following:

(i) If ω ∧ η = 0 for ω ∈ H0(X,Ω1
X) and η ∈ H1(X,OX), then ω ∧ η = 0.

Indeed, we have

0 =

∫
X

ω ∧ η ∧ ω ∧ η =

∫
X

ω ∧ η ∧ ω ∧ η,

so we are done.

(ii) For any holomorphic map f : X → C with a connected generic fiber, f ∗ : H1(C) →
H1(X) is injective.

In fact, we have that f∗ : π1(X)→ π1(C) is surjective.

Remark 4.2.3. (1) In the proof above, we have implicitly used the Hodge decomposition

H1(X) = H0(X,Ω1
X)⊕H1(X,OX)

for any compact smooth surface X and represented the cohomology in H0(X,Ω1
X) or

H1(X,OX) by differential forms via Dolbeault theorem; see also [BHPV], Theorem 2.10.

(2) The above isotropic subspace theorem for a compact smooth surface seems new; despite
of the similarity of the isotropic subspaces theorems in [Cat], we do not need the Kähler
condition on the manifold.

By applying the logarithmic CDF theorem, we can obtain similarly an isotropic subspace
theorem for a quasi-projective manifold. Nevertheless, complexity arises in this case due to
the non-compactness of the base manifold. Recall that in the proofs above, we used repeatedly
integration of forms over the compact base manifold.

Theorem 4.2.4 (See [Bau],[Dim08]). Let X be a quasi-projective manifold, X = X \D with
X smooth projective and D a normal crossing divisor. Then the following hold:
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1. Every real maximal isotropic subspace V of H1(X,R) either of dimension ≥ 3 or of
dimension 2 but not coming from a non-isotropic subspace V ′ of H1(X,R) determines
a unique logarithmic pencil f : X → C onto a curve C with logarithmic genus g∗ ≥ 2.

The curve C is projective if and only if V ⊆ H1(X,R) and is isotropic there, otherwise,
V = f ∗H1(C,R), and one says that the pencil is strictly logarithmic.

2. There is a bijective correspondence equivalence between the maximal real isotropic sub-
spaces V ⊆ H1(X) of dimension β ≥ 3, which are not contained in H1(X), and the set
of strictly logarithmic irrational pencils f : X → C with b1(C) = β.

Remark 4.2.5. We will not give the proof of the above theorem, but mention here an
application.

Let X be a quasi-projective manifold with a smooth compactification X and let 0 6= E ⊆
TC1(V1(X)) be an irreducible component completely contained in GrW2 H

1(X) = H1,1(X),
then it determines an irrational pencil f : X → C with E = f ∗H1(C) by Theorem 2.2.6.
Note that f ∗W1H

1(C) = W1H
1(E) = 0, so C is obtained from P1 deleting ≥ 3 points. Also,

E = f ∗H1(C) is real isotropic for the wedge product on H1(X).
We claim that E is a maximal real isotropic subspace. Indeed, if not, there exists a

maximal one E ′ % E. Clearly, dimE ′ ≥ 2 and E ′ 6⊆ H1(X), so by the theorem above, there
exists an irrational pencil f ′ : X → C ′ such that E ′ = f ′∗H1(C ′). Therefore, by Theorem
2.2.6 again, we have that E ′ is an irreducible component of TC1(V1(X)) strictly containing
another irreducible component E, contradiction.

Also, from the proof we see that dimE ≥ 2 for any irreducible componentE of TC1(V1(X)).
See also the discussion following Lemma 5.4.1 in the next Chapter.

The isotropic subspace theorems are indeed very tasteful ingredients in the theory of
irrational pencils and cohomology jump loci, for deeper issues concerning isotropic subspace
theorem, see [Dim08].

4.3 Morphisms from products of projective spaces

In order to deduce some Hodge number inequalities via isotropic subspaces, we will make
use of some properties of morphisms from products of projective spaces, which are also inter-
esting for their own right.

Lemma 4.3.1. Let
f : Pn → Pm

be a morphism between projective spaces. Then the image of f has either dimension 0 or n.

Lemma 4.3.2. Let
f : Pn1 × Pn2 → Pm

be a morphism, then the image of f has dimension 0, n1, n2 or n1 + n2.
If dim Imf = 0, then f is a constant map.
If dim Imf < n1 + n2, then f factors through the first projection Pn1 × Pn2 → Pn1 or the

second projection Pn1 × Pn2 → Pn2.

Remark 4.3.3. (1) Clearly, Lemma 4.3.2 can be extended for the source space being Pn1 ×
Pn2 × · · · × Pnk .
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(2) Lemma 4.3.1 and its proof below are those of Proposition 6, §7, [Mum2]; Lemma 4.3.2
is used without proof in [BHPV] when a section named “some inequalities on Hodge
numbers” is given, and there the authors give the reference [RV]. However, [RV] is
written in German, which prevent us from understanding the proof. So we give a proof
ourselves here.

Proof of Lemma 4.3.1 Let Y = Imf , then Y is a closed subvariety of Pm. Let r = dimY
and we may assume 0 < r < n.

Choose general r + 1 linear functions L1, · · · , Lr+1 of Pm such that

V (L1, · · · , Lr+1) ∩ Y = ∅.

Then V (f ∗Li) 6= ∅, i = 1, · · · , r + 1 since V (Li) ∩ Y 6= ∅,∀i and

V (f ∗L1, · · · , f ∗Lr+1) = ∅.

But r + 1 ≤ n by assumption and V (f ∗L1, · · · , f ∗Lr+1) has codimension at most r + 1, so it
cannot be empty. Contradiction. �

Proof of Lemma 4.3.2 We first give an outline of the proof containing some claims, then
we finish the proof by proving our claims.

Step 1: Outline of proof Let Y = Imf be the closed subvariety of Pm and r = dimY .
Assume WLOG that 0 < r < n1 + n2.

Note that f : Pn1 × Pn2 → Y is a surjective morphism, so there exists a Zariski open set
V of Y such that res f : f−1(V ) → V is smooth, i.e., for any p ∈ f−1(V ), f(p) is a smooth
point of V and the differential map f∗,p : Tp(f

−1(V )) → Tf(p)V is surjective. In addition,
there exist open sets in strong topology U1 ⊆ Pn1 and U2 ⊆ Pn2 such that

U1 × U2 ⊆ f−1(V ).

In particular, res f : U1 × U2 → f(U1 × U2) := U is a holomorphic submersion.
Now consider the tangent map

f∗ : T (U1 × U2) = TU1 × TU2 → TU.

Let
ker f∗ = {ξ ∈ TU1 × TU2 : f∗ξ = 0}.

Since r = dimY < n1 + n2, ker f∗ 6= 0.
Let pr1 : T (U1 × U2) = TU1 × TU2 → TU1 and pr2 : TU1 × TU2 → TU2 be the natural

projections, then we obtain two projections

res pr1 : ker f∗ → TU1

and
res pr2 : ker f∗ → TU2.

Moreover, at any point (x, y) ∈ U1 × U2, res pr1,(x,y) and res pr2,(x,y) cannot simultaneously
be zero.

Without loss of generality, assume that there exists (x0, y0) ∈ U1 × U2 satisfying

res pr1,(x0,y0) 6= 0.

Then by continuity, there exists an open set U ′1 ⊆ U1 such that for any x ∈ U ′1 we have
res pr1,(x,y0) 6= 0.

We shall prove the following.
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Claim 4.3.4. With the settings above, we have dim f(Pn1 × {y0}) < n1.

Hence by Lemma 4.3.1, f(Pn1 × {y0}) is one point. Then we are done by applying the
following.

Lemma 4.3.5. Let X, Y, Z be irreducible varieties with X proper, and f : X × Y → Z a
morphism (seen as a family of morphisms from X to Z with parameter space Y ).

If there exists y0 ∈ Y such that f(X × {y0}) ⊆ Z is one point, then for any y ∈ Y ,
f(X×{y}) ⊆ Z is one point, namely, the morphism f factors through the projection X×Y →
Y .

Step 2: Proof of Claim 4.3.4 With our settings, we have that for any x ∈ U ′1,

res pr1 : ker f∗,(x,y0) → TxU
′
1

is nonzero.
Given any u ∈ Im(res pr1), there exists v ∈ Ty0U2 such that f∗,(x,y0)(u, v) = 0 by definition

of ker f∗. We claim that f∗,(x,y0)(u, 0) = 0. Indeed, consider the following diagram

Cn1+1 \ {0} × Cn2+1 \ {0}
π

��

F

))
Pn1 × Pn2

f // Y ⊆ Pm

where π is the natural projection. We shall denote any pre-image of (x, y) under π by (X, Y ).
By assumption, given any (X, Y0) such that π(X, Y0) = (x, y0) and (U, V ) ∈ Cn1+1×Cn2+1

satisfying π∗,(X,Y0)(U, V ) = (u, v), we have

F∗,(X,Y0)(U, V ) = 0.

Choose a smooth curve γ(t) = (γ1(t), γ2(t)) defined on (−ε, ε), ε > 0 such that γ(0) = (X, Y0)
and dγ

dt
(0) = (U, V ), then

dF (γ1(t), γ2(t))

dt
(0) = 0.

Now for any λ ∈ C∗, we clearly have F (γ1(t), γ2(t)) = F (λ · γ1(t), γ2(t)). Therefore taking
derivatives on both sides at t = 0, we obtain that

F∗,(λX,Y0)(λU, V ) = 0;

but F∗,(X,Y0) is homogeneous of positive degree in X, so F∗,(X,Y0)(λ
pu, v) = 0 for some p > 0,

thus applying π∗, we have
f∗,(x,y0)(λu, v) = 0, ∀λ ∈ C∗,

i.e., (λu, v) ∈ ker f∗,(x,y0) for all λ ∈ C∗. Since ker f∗,(x,y0) is a linear subspace of TxU
′
1×Ty0U2,

we deduce that (u, 0) ∈ ker f∗,(x,y0).
In conclusion, for the map res f : Pn1 × {y0} → Pm, we have

ker f∗,x 6= 0, ∀x ∈ U ′1.

Thus, f(Pn1 × {y0}) has dimension < n1. For otherwise, res f : Pn1 × {y0} → f(Pn1 × {y0})
is generically finite to one and its differential would be generically injective, contradicting the
existence of the nonempty U ′1 above.
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Step 3: Proof of Lemma 4.3.5 Recall that we are given a map f : X × Y → Z with
f(X × {y0}) being one point. Consider the incidence variety

X = {(x, y, z) ∈ X × Y × Z : z = f(x, y)}

with p12 : X → X × Y and p23 : X → Y × Z the natural projections. Then p12 is an
isomorphism, and hence X is irreducible.

Let Y = p23(X ), then Y is closed, since X is proper. Moreover, it is also irreducible, as
the image of the irreducible variety X . Furthermore, let pY : Y → Y be the projection to Y ,
then pY is surjective.

Now by assumption p−1Y (y0) = f−1(X×{y0}) is just one point, we see that dimY = dimY .
Choose any point x ∈ X, then the map s : Y 3 y 7→ (y, f(x, y)) ∈ Y gives a section of
pY . Moreover, first the image s(Y ) is isomorphic to Y , so it is irreducible; second, since
the projection pY : Y → Y is separated, s is also a closed immersion. So by dimension
consideration, we have s(Y ) = Y , i.e., f(X × {y}) = f(x, y) for any y ∈ Y . We are done.
�

4.4 Inequalities of Hodge numbers

We now deduce some inequalities of Hodge numbers by considering the dimensions of
isotropic subspaces.

4.4.1 Compact case

We first give the following definition.

Definition 4.4.2. Let X be a compact Kähler manifold or a compact surface. A subspace
T of H1,0(X) = H0(X,Ω1

X) is called totally non-isotropic if for any linearly independent
ω1, ω2 ∈ T , ω1 ∧ ω2 6= 0 in H2,0(X) = H0(X,Ω2

X).

We immediately have the following observation.

Theorem 4.4.3. Let X be a compact Kähler manifold or a compact surface. If there exists
a totally non-isotropic subspace T ⊆ H1,0(X) of dimension t ≥ 2, then

(i) h2,0(X) ≥ 2t− 3;

(ii) h1,1(X) ≥ 2t− 1.

Proof. (i) Consider the morphism

φ : T × T → H2,0(X), φ(ω, η) = ω ∧ η.

We will mainly concern the dimension of the image. To this end, we compute the rank
of the differential φ∗ at a general element (ω, η). We have

φ∗,(ω,η)(ω
′, η′) = ω ∧ η′ + ω′ ∧ η.

Choosing (ω, η) generically, we see that kerφ∗,(ω,η) is a linear combination of (0, ω), (η, 0),
(ω,−η) with coefficients in H0(X,OX) = C. Indeed, choose a generic point p ∈ X
and local holomorphic coordinates (z1, z2, · · · ) around p such that ω = dz1, η = dz2.
One easily verifies that the result holds locally, hence globally, since the forms under
consideration are holomorphic.

Therefore φ∗,(ω,η) has rank 2t− 3 and so dim Imf = 2t− 3 and h2,0 ≥ dim Imf = 2t− 3.
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(ii) Consider the map

ψ : T × T → H1,1(X), ψ(ω, η) = ω ∧ η.

If ω, η ∈ T satisfy ψ(ω, η) = 0, i.e., ω ∧ η = 0, ω ∧ η = 0, see the proof of Theorem 4.2.1
and Theorem 4.2.2. Hence, η and ω are linearly dependent since by assumption T is
totally non-isotropic. If, in addition, neither of ω nor η is zero, then η = Aω for some
A ∈ C∗ and moreover, ω ∧ η = 0. Therefore ω ∧ ω = 0, implying that ω = 0.

Consequently, ψ induces a map

P(ψ) : P(T )× P(T )→ P(H1,1(X)).

When restricted to each slice P(T ) × {η}, {ω} × P(T ), the map P(ψ) is injective. In
fact, given ω 6= 0, if η, η′ ∈ T such that ω ∧ η = ω ∧ η′, i.e., ω ∧ η − η′ = 0. We have
ω ∧ η − η′ = 0 and thus η− η′ = Bω for some B ∈ C by the discussion above. From the
equation ω ∧ η − η′ = 0 and ω 6= 0, one sees that B = 0, i.e., η = η′.

Therefore, the image of P(ψ) has dimension 2(t− 1) by Lemma 4.3.2. Hence

h1,1(X)− 1 = dimP(H1,1(X)) ≥ dim ImP(ψ) = 2(t− 1),

namely, h1,1(X) ≥ 2t− 1.

Alternatively, we can show that the image of ψ has dimension 2t− 1 by computing the
differential ψ∗. For generic ω, η ∈ T , we have

ψ∗,(ω,η)(ω
′, η′) = ω′ ∧ η + ω ∧ η′,

so the kernel of ψ∗,(ω,η) is spanned by (ω,−η) with coefficients in H0(X,OX) = C, and
the image of ψ has dimension 2t − 1. The details of the computation are similar as in
the proof of (i), that is why we omit them.

Lemma 4.4.4. Let X be a compact Kähler manifold or a compact surface. Then X admits
a totally non-isotropic subspace T of dimension h1,0(X), or equivalently, H1,0(X) is totally
non-isotropic if and only if X admits no irrational pencils.

Proof. By the CDF theorem, we see that existence of a nontrivial isotropic subspace of
H1,0(X) is equivalent to the existence of an irrational pencil. Thus H1,0(X) is itself totally
non-isotropic is equivalent to the non-existence of irrational pencils.

So we have reproved the inequalities of Hodge numbers in [BHPV], namely

Corollary 4.4.5 (Prop. 5.2 & 5.3 in [BHPV]). Let X be a compact Kähler manifold or a
compact surface. If X admits no irrational pencils, then

(i) h2,0(X) ≥ 2h1,0(X)− 3;

(ii) h1,1(X) ≥ 2h1,0(X)− 1.

Remark 4.4.6. The above inequalities are titled “some inequalities for Hodge numbers” in
[BHPV], but we have already given different proofs.

Inspired by the intuition that isotropic subspaces have close relation with the first char-
acteristic variety, we obtain the following.
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Lemma 4.4.7. Let X be a compact Kähler manifold, and T ⊆ H1,0(X). Then T is totally
non-isotropic if and only if T ∩ TC1(V1(X)) has dimension at most 1.

Proof. Observe first thatX is formal and moreover, each irreducible component of TC1(V1(X))
is a linear subspace of H1(X).

Suppose dimT ∩ TC1(V1(X)) ≤ 1. If T is not totally non-isotropic, then there exist
linearly independent ω1, ω2 ∈ T such that ω1 ∧ ω2 = 0. Therefore ω1, ω2 are contained in a
maximal isotropic subspace of H1,0(X), which corresponds to an irrational pencil by CDF
Theorem, and hence an irreducible component of TC1(V1(X)) by Theorem 2.2.6; this irre-
ducible component is unique, since any two irreducible components of TC1(V1(X)) intersect
trivially. Consequently, T ∩ TC1(V1(X)) contains a linear subspace spanned by ω1, ω2 whose
dimension is at least 2, contradiction.

Conversely, if dimT ∩ TC1(V1(X)) ≥ 2, then dimT ∩ I ≥ 2 for an irreducible component
I ⊆ TC1(V1(X)), hence there exists linearly independent ω1, ω2 ∈ T ∩ I. Since I is an
isotropic subspace by the correspondences between isotropic subspaces, irrational pencils and
irreducible components of TC1(V1(X)), we have ω1 ∧ ω2 = 0 since ω1, ω2 ∈ I, and thus T is
not totally non-isotropic, since ω1, ω2 ∈ T are linearly independent.

Lemma 4.4.8. Let X be a compact Kähler manifold and s = dimV1(X) > 0, i.e., s is the
largest dimension of the irreducible components of V1(X) passing through 1. Then X admits
a totally non-isotropic subspace T of dimension h1,0(X)− s/2 + 1.

Proof. Each irreducible component of TC1(V1(X)) has the form U ⊕U , for H ⊆ H1,0(X), by
Theorem 2.2.6, so TC1(V1(X)) ∩H1,0(X) is a union of linear subspaces of dimension ≤ s/2.

We can choose a linear subspace T ⊆ H1,0(X) of dimension h1,0 − s/2 + 1 such that
dimT ∩ TC1(V1(X)) ∩ H1,0(X) = dimT ∩ TC1(V1(X)) ≤ 1. By Lemma 4.4.7, T is totally
non-isotropic. We are done.

Corollary 4.4.9. Let X be a compact Kähler manifold and s = dimV1(X) > 0. Then

(i) h2,0(X) ≥ 2h1,0(X)− s− 1;

(ii) h1,1(X) ≥ 2h1,0(X)− s+ 1.

Remark 4.4.10. 1. When X is a compact Kähler manifold, either s = dimV1(X) = 0 or
s ≥ 4, since for any irrational pencil f : X → C, C is a complete smooth curve with
genus g ≥ 2.

Therefore, although when s = 2, the inequalities we get are formally the same as the
case s = 0, such a coincidence can never occur.

2. We conjecture that the above inequalities still hold for a compact surface X with
dimV1(X) > 0. However, if X is not Kähler, no special properties of V1(X), such
as, its relations with irrational pencils and isotropic subspaces, are known: all these
prevent us from giving extension for compact surfaces.

4.4.11 Quasi-projective case

If X is a quasi-projective manifold, we may consider the first logarithmic resonance va-
riety LR1(X) defined in [Dim10]. Note that the irreducible components of LR1(X) have
close relations with isotropic subspaces in F 1(X) and irrational pencils. So we can get some
inequalities of Hodge numbers by a similar method as in the compact case.
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Definition 4.4.12. Let X be a quasi-projective manifold. A subspace T of F 1(X) =
H0(X,Ω1

X
(logD)) is called totally non-isotropic if for any linearly independent ω1, ω2 ∈ T ,

ω1 ∧ ω2 6= 0 in F 2(X) = H0(X,Ω2
X

(logD)).

The definition above coincides with the compact case when X is itself compact, hence we
used the same notation. A similar argument as in the previous section gives the following,
with a little difference in the proof.

Theorem 4.4.13. Let X be a quasi-projective manifold. If X admits a totally non-isotropic
subspace T of dimension t, then

dimF 2(X) ≥ 2t− 3.

Proof. The proof is different from the compact case due to the following observation: for
general (ω, η) ∈ T × T , if (ω′, η′) satisfies

ω′ ∧ η + ω ∧ η′ = 0,

then we obtain (ω′, η′) is a linear combination of (0, ω), (η, 0) and (ω,−η) with coefficients
in H0(X,OX). However, since X is not compact, H0(X,OX) 6= C in general. So we can
only deduce that (ω′, η′) is of the form (h1η, 0), (0, h2, ω) or (h3ω,−h3η), where h1, h2, h3 are
holomorphic functions on X.

Therefore, it suffices to show that for a general element ξ ∈ T , if hξ ∈ T for some
holomorphic function h on X, then h is constant. Indeed, (hξ) ∧ ξ = 0; if h is not constant,
hξ and ξ are linearly independent, contradicting the totally non-isotropic assumption of T .
We are done.

Let s′ = dimLR1(X) = maxI dim I where I runs over all irreducible components of LR1

and f 1 = dimF 1(X). Then clearly, there exists a linear subspace T such that T ∩LR1(X) is
a union of linear subspaces of F 1(X) and has dimension at most 1.

Similar to Lemma 4.4.7, we have

Lemma 4.4.14. Let X be a quasi-projective manifold. and T ⊆ F 1(X). Then T is totally
non-isotropic if and only if T ∩ LR1(X) has dimension at most 1.

Corollary 4.4.15. Let X be a quasi-projective manifold. If s′ = dimLR1(X) > 0, then

dimF 2(X) ≥ 2(f 1 − s′ + 1)− 3 = 2(f 1 − s′)− 1 = 2 · codimLR1(X)− 1.

Proof. Clearly, there exists a linear subspace T of dimension t = f 1−s′+1 such that T ∩LR1

has dimension ≤ 1, then T is totally non-isotropic. We are done by applying the results
above.

Corollary 4.4.16. If X be a quasi-projective manifold and s′ = dimLR1(X), then the fol-
lowing hold:

1. If s′ = 0, then dimF 2(X) ≥ 2 · dimF 1(X)− 3;

2. If s′ > 0, then dimF 2(X) ≥ 2 · (dimF 1(X)− s′)− 1.

Remark 4.4.17. LR1(X) cannot be 1-dimensional. Indeed, any positive dimensional irre-
ducible components of LR1(X) corresponds to an isotropic subspace of F 1(X) of positive
dimension, whose dimension is at least 2.



5
Geometry of Milnor Fibers of Line

Arrangements

Given a nonzero homogeneous polynomial Q ∈ C[x0, · · · , xn], n ≥ 1 of degree d ≥ 2, by
the well-known Milnor Fibration Theorem, the map

Q : Cn+1 \ {Q = 0} → C∗

is a smooth locally trivial fiber bundle. For a proof of Milnor Fibration Theorem, see [Mil],
and for deeper properties of the Milnor fibration, see [Dim92]. The affine hypersurface

F = Q−1(1)

in Cn+1 is called the (affine) Milnor fiber of Q. It is a smooth manifold of complex dimension
n, and has the homotopy type of a finite CW complex of real dimension ≤ n.

Associated to Q, one also obtains the projective hypersurface

V (Q) = {Q = 0} ⊆ Pn

and moreover its complement

M = M(Q) = Pn \ V (Q).

The natural projection Cn+1 \ {0} → Pn restricted to F gives a covering map

p : F →M

with
µd = {z ∈ C : zd = 1} = Z/dZ

as the group of Deck transformations. Let ξ = exp(2π
√
−1/d), then we have the geometric

monodromy
h : F → F

defined by h((x0, · · · , xn)) = (ξx0, · · · , ξxn), which induces the algebraic monodromy in co-
homology

h∗ : H i(F,Q)→ H i(F,Q).

for all i. Moreover, H i(F,Q) admits a natural MHS and h∗ is in fact a MHS morphism
because h is algebraic. In addition, denote

H i(F )a = ker(a · Id− h∗ : H i(F )→ H i(F ))
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the eigenspace of h∗ for a ∈ C and i ≥ 0.
Furthermore, when Q is square-free and V (Q) has only isolated singularities, Hn−1(F ) has

only two weights: n − 1 and n, as is proved in [DP11]. In fact, in [DP11], the authors show
that

Wn−1H
n−1(F ) = Hn−1(F ) 6=1

and
GrWn H

n−1(F ) = Hn−1(F )1,

where
Hn−1(F ) 6=1 = ker(h∗d−1 + · · ·+ h∗ + Id) =

⊕
a6=1

Hn−1(F )a.

When Q defines a hyperplane arrangement, its complement and Milnor fiber can have
more interesting properties, see Preliminary of this thesis. In this chapter, we investigate the
Milnor fiber from topological as well as geometric points of view. In particular, we discuss
specifically irrational pencils and 1-formality, by considering the relations between the Milnor
fiber and the complement.

5.1 Topological properties of Milnor fibers

Given a homogenous polynomial Q ∈ C[x0, · · · , xn] with decomposition of its linear factors

Q = Lk11 L
k2
2 · · ·L

kl
l

then it is well known that the Milnor fiber F : Q = 1 is connected if and only if gcd(k1, · · · , kl) =
1. Since we do not find a good reference, we first give a proof of it for a more general setting.

Lemma 5.1.1. Let Q ∈ C[x0, · · · , xn] be a homogenous polynomial of degree d ≥ 2 and

Q = Qk1
1 Q

k2
2 · · ·Q

kl
l

with Q1, · · · , Ql irreducible polynomials and ki > 0 for i = 1, · · · , l. Then the Milnor fiber
F : Q = 1 in Cn+1 has exactly gcd(k1 degQ1, · · · , kl degQl) connected components.

In particular, the following hold.

(i) F is connected if and only if gcd(k1 degQ1, · · · , kl degQl) = 1.

(ii) If F is completely reducible, namely, degQi = 1 for i ≥ 1, F is connected if and only if
gcd(k1, · · · , kl) = 1.

Proof. Let M = Pn − V (Q) be the complement, then we have a covering p : F →M with µd
as its group of Deck transformations. From the end of the homotopy exact sequence, we have

π1(M)→ µd → π0(F )→ 0.

The sequence ends with 0 because M is connected. Hence, π0(F ) is equal to the index in µd
of the image of the homomorphism π1(M)→ µd.

Note that the map π1(M) → µd is exactly the topological monodromy associated to the
covering p : F →M . Also it factors through

H1(M,Z) = π1(M)/[π1(M), π1(M)]→ µd
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where [•, •] denotes the commutator subgroup, since µd is abelian.
For any i = 1, · · · , l, choose a small disk Di in Pn that intersects transversely with V (Qi)

but does not intersect other Dj’s. Let γi = ∂Di with orientation naturally determined by
those of V (Qi) and Di around the intersection point, then γi’s provide a basis for H1(M,Z)
and the map H1(M,Z)→ µd is given by

γi 7→ ki degQi.

Hence Im(π1(M) → µd) ∼= µd/d′ where d′ = gcd(k1 degQ1, · · · , kl degQl), which has index d′

in µd. We are done.

Recall that a set of generators of π1(M) or H1(M) can be provided by the γi’s, as in the
proof above. This construction will be applied without mentioning again in the sequel.

Corollary 5.1.2. Let A : Q = 0 be a hyperplane arrangement consisting of d hyperplanes,
then the Milnor fiber F : Q = 1 is a connected smooth manifold.

In particular, the topological monodromy map π1(M)→ µd is surjective, where M = M(A)
is the complement.

5.1.3 Morphisms with connected fibers

We can extend the above discussion about connectivity for more polynomials.
Given two homogenous polynomials Q1, Q2 ∈ C[x0, · · · , xn] of degree d, we denote by

PQ1,Q2 = {λQ1 + µQ2 : (λ, µ) ∈ P1}

the pencil determined by them. We shall call an element in PQ1,Q2 a fiber of it.

Lemma 5.1.4. Let n ≥ 2 and d ≥ 3. Suppose Q1, Q2 ∈ C[x0, · · · , xn] are two homogeneous
polynomials of degree d such that Q1 is decomposed as Q1 = q1q2 where qi, i = 1, 2 are
irreducible, coprime and deg q1 6= deg q2, and gcd(Q1, Q2) = 1.

Then a generic fiber of the map

ρ : M = Pn \ V (Q1Q2) −→ C, ρ = (Q1, Q2)

is connected, where C = P1 \B with B = {(1, 0), (0, 1)}.

Proof. Consider the Stein factorization: there exists a finite map p0 : C0 → C and a morphism
ρ0 : M → C0 such that a generic fiber of ρ0 is connected, and ρ = p0 ◦ ρ0. Note that C0 is
also a noncompact curve, so it has the form C0 = C0 \B0 where C0 is complete smooth curve
and B0 ⊆ C0 is a finite set of points.

In the sequel, we first give an outline of the proof containing some claims, then we prove
our claims.

Step 1: Outline First, we have

Claim 5.1.5. C0 = P1.

So ρ0 : M → C0 is given by ρ0 = (P1, P2) for two coprime homogeneous polynomials
P1, P2. Moreover, p0 : C0 ⊆ P1 → C ⊆ P1 extends to a morphism p′0 : C0 = P1 → P1, which
is necessarily of the form

p′0(u, v) =

( m∏
j=1

(a1,ju+ b1,jv),
m∏
j=1

(a2,ju+ b2,jv)

)
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where (a1,j, b1,j) 6= (a2,k, b2,k), j, k = 1, · · · ,m in P1.
If m = 1, then p′0 is an isomorphism and we are done. So suppose m > 1. Then from

ρ = p0 ◦ ρ0, we have that

(Q1, Q2) =

( m∏
j=1

(a1,jP1 + b1,jP2),
m∏
j=1

(a2,jP1 + b2,jP2)

)
.

and furthermore, we deduce that

Claim 5.1.6. {
Q1 = c

∏m
j=1(a1,jP1 + b1,jP2)

Q2 = c
∏m

j=1(a2,jP1 + b2,jP2)

for some c ∈ C.

By assumption, m > 1 and Q1 has exactly two irreducible factors q1, q2, so m = 2 and
there exist complex numbers ci,j, i, j = 1, 2 such that qi = ci,1P1 + ci,2P2 for i = 1, 2. But
then deg q1 = deg q2, contradiction.

Step 2: Proof of Claim 5.1.5 Since ρ0 : M → C0 has a connected generic fiber,
the induced map between fundamental groups ρ0,∗ : π1(M) → π1(C0) is surjective, hence
ρ∗0 : H1(C0)→ H1(M) is injective. Note that ρ∗0 is a morphism of mixed Hodge structures, so

ρ∗0 : W1H
1(C0)→ W1H

1(M)

is also injective.
Now we have W1H

1(C0) = Im(H1(C0)→ H1(C0)) ∼= H1(C0) and

W1H
1(M) = Im(H1(Pn)→ H1(M)) ∼= H1(Pn) = 0,

therefore H1(C0) = 0 and C0
∼= P1.

Step 3: Proof of Claim 5.1.6 The main point is to show

m∏
j=1

(a1,jP1 + b1,jP2) and
m∏
j=1

(a2,jP1 + b2,jP2)

are coprime. First, the polynomials a1,jP1 + b1,jP2, a2,kP1 + b2,kP2 are mutually coprime for
any j, k = 1, · · · ,m. Indeed, gcd(a1,jP1 + b1,jP2, a2,kP1 + b2,kP2) = gcd(P1, P2) = 1 since
(a1,j, b1,j) 6= (a2,k, b2,k) in P1. Hence

gcd

( m∏
j=1

(a1,jP1 + b1,jP2),
m∏
j=1

(a2,jP1 + b2,jP2)

)
= 1.

Now, from the equality

(Q1, Q2) =

( m∏
j=1

(a1,jP1 + b1,jP2),
m∏
j=1

(a2,jP1 + b2,jP2)

)
we get that Q2 ·

∏m
j=1(a1,jP1 + b1,jP2) − Q1 ·

∏m
j=1(a2,jP1 + b2,jP2) vanishing identically on

M = Pn \ V (Q1Q2), thus for some s sufficiently large,

(Q1Q2)
s

(
Q2 ·

m∏
j=1

(a1,jP1 + b1,jP2)−Q1 ·
m∏
j=1

(a2,jP1 + b2,jP2)

)
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vanishes identically on Pn (see [Ha], Lemma 5.14), hence it is zero as a polynomial, and

Q2 ·
m∏
j=1

(a1,jP1 + b1,jP2) = Q1 ·
m∏
j=1

(a2,jP1 + b2,jP2)

as an equality of polynomials in C[x0, · · · , xn]. Furthermore,

gcd(Q1, Q2) = 1, gcd

( m∏
j=1

(a1,jP1 + b1,jP2),
m∏
j=1

(a2,jP1 + b2,jP2

)
= 1,

we obtain that

Q1

∣∣∣∣ m∏
j=1

(a1,jP1 + b1,jP2), and
m∏
j=1

(a1,jP1 + b1,jP2)

∣∣∣∣Q1,

so Q1 is a multiple of
∏m

j=1(a1,jP1 + b1,jP2); similar for Q2.

Corollary 5.1.7. Under the assumption of Lemma 5.1.4, the pencil PQ1,Q2 contains at most
d2 − 1 reducible fibers.

Proof. This follows from the main theorem in [Vis], and we just need to show that a fiber
V (h), for h ∈ PQ1,Q2 generic, is irreducible.

Indeed, since gcd(Q1, Q2) = 1, the base locus V (Q1, Q2) of the pencil PQ1,Q2 has codi-
mension 2, and V (h) is pure of codimension 1. So it suffices to prove V (h) \ V (Q1, Q2)
is irreducible. It is connected by Lemma 5.1.4, and smooth by Bertini Theorem, so it is
irreducible as desired.

Remark 5.1.8. The proofs of Lemma 5.1.4 and Corollary 5.1.7 provide a prototype to show
that a morphism admits a connected generic fiber. Here we summarize the key points in the
proofs as follows:

(i) showing that C0 is P1.

In this step, no restrictions on Q1, Q2 are needed.

(ii) showing that Q1 and Q2 are of the form{
Q1 = c

∏m
j=1(a1,jP1 + b1,jP2)

Q2 = c
∏m

j=1(a2,jP1 + b2,jP2)

for some coprime P1 and P2.

In this step, we only need that Q1 and Q2 are coprime, we do not even need that Q1, Q2

are reduced.

(iii) showing a generic fiber of the pencil PP1,P2 is irreducible.

In this step, we only need that gcd(P1, P2) = 1 and that a generic fiber of the morphism
ρ0 = (P1, P2) is connected.

Given a homogenous polynomial Q with decomposition into its irreducibles

Q = Qk1
1 Q

k2
2 · · ·Q

kl
l .

We call Q inhomogeneous for irreducibles if degQi, i = 1, · · · , l are not all the same integer.
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Lemma 5.1.9. Let Q1, Q2 ∈ C[x0, · · · , xn] be two homogenous polynomials of degree d ≥ 2
such that

(i) gcd(Q1, Q2) = 1;

(ii) the pencil PQ1,Q2 contains k ≥ d2/4 reducible fibers, i.e., there exist k distinct points
(αi, βi) ∈ P1 such that

Qi = αiQ1 + βiQ2, i = 1, · · · , k

are reducible, where (α1, β1) = (1, 0) and (α2, β2) = (0, 1);

(iii) for all i = 1, · · · , k, Qi is inhomogeneous for irreducibles.

Let Q = Q1Q2 · · ·Qk, then the map

ρ : M = M(Q)→ C, ρ = (Q1, Q2)

with C = P1 \ {(−βj, αj) : j = 1, · · · , k}, has a connected generic fiber.
In particular, the pencil PQ1,Q2 contains at most d2 − 1 reducible fibers.

Proof. Consider the Stein factorization: there exists a finite map p0 : C0 → C and a morphism
ρ0 : M → C0 such that a generic fiber of ρ0 is connected, and ρ = p0 ◦ ρ0. Note that C0 is
also a noncompact curve, so it has the form C0 = C0 \B0 where C0 is complete smooth curve
and B0 ⊆ C0 is a finite set of points.

As in the proof of Lemma 5.1.4, we have C0 = P1 and a morphism p′0 : C0 → P1. Let
m = deg ρ′0, and without loss of generality, we may suppose m > 1. Then there exists 2m
points (ai,l, bi,l), i = 1, 2, l = 1, · · · ,m points in P1 and two coprime polynomials P1 and P2

such that {
Q1 = c

∏m
l=1(a1,lP1 + b1,lP2)

Q2 = c
∏m

l=1(a2,lP1 + b2,lP2)

for some constant c.
For each i, composing f with the morphism (u, v) 7→ (u, αiu+ βiv), we obtain that other

Qi’s have similar decompositions as Q1, Q2. Therefore, there exists km points (ai,l, bi,l), i =
1, · · · , k, l = 1, · · · ,m and two coprime polynomials P1 and P2 such that

Qi = c

m∏
l=1

(ai,lP1 + bi,lP2), i = 1, · · · , k,

for some constant c.
Fix i, since Qi is inhomogeneous for irreducibles, we have that degP1 = degP2 = d/m > 1

and moreover, there exists an ji ∈ {1, · · · , l} such that ai,jiP1 + bi,jiP2 is reducible. Thus, in
this way, we obtain k reducible fibers in the pencil PP1,P2 . In addition, a generic fiber in the
pencil PP1,P2 is irreducible, by a similar argument as in the proof of Corollary 5.1.7. This is
impossible by applying the main theorem in[Vis], since by assumption

(d/m)2 − 1 ≤ d2/4− 1 < k.

�

Recall that a homogenous polynomial Q is called completely reducible if all its irreducible
factors are linear forms.
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Lemma 5.1.10. Let n ≥ 2 and d ≥ 3. Let Q1, Q2 ∈ C[x0, · · · , xn] be two completely reducible
polynomials such that gcd(Q1, Q2) = 1. Assume there exists another completely reducible
polynomial Q3 = λ0Q1 + µ0Q2 in PQ1,Q2 and that V (Q1) and V (Q2) are not cones over the
same linear subspace of codimension 2.

Let M = Pn \ V (Q1Q2Q3) be the complement of the hypersurface V (Q1Q2Q3). Then the
map defined by Q1, Q2

ρ : M → C, ρ(x0, · · · , xn) = (Q1(x0, · · · , xn), Q2(x0, · · · , xn))

has a connected generic fiber, where C = P1 − B with B = {(1, 0), (0, 1), (µ0,−λ0)} a set of
three points in P1.

In particular, there are at most 4 completely reducible fibers in PQ1,Q2.

Proof. Consider the Stein factorization: there exists a finite map p0 : C0 → C and a morphism
ρ0 : M → C0 such that a generic fiber of ρ0 is connected, and ρ = p0 ◦ ρ0. Note that C0 is
also a noncompact curve, so it has the form C0 = C0 \B0 where C0 is complete smooth curve
and B0 ⊆ C0 is a finite set of points.

We have C0 = P1 and a morphism p′0 : C0 → P1. Let m = deg ρ′0, and without loss of
generality, suppose m > 1. Proceeding as in the proof of Lemma 5.1.9, we obtain that

Qi = c
m∏
l=1

(ai,lP1 + bi,lP2), i = 1, · · · , 3,

for 3m points (ai,l, bi,l), i = 1, 2, 3, l = 1, · · · ,m in P1, two coprime polynomials P1 and P2 and
a constant c. In this way, we obtain 3m ≥ 6 completely reducible fibers in the pencil PP1,P2 .

Note that degP1 = degP2 > 1, for otherwise V (Q1) and V (Q2) are cones over V (P1, P2)
which is a linear subspace of codimension 2, contradicting our assumption. Hence by [PY]
or [Yuz], there are at most 4 completely reducible fibers in the pencil PP1,P2 . Note that the
irreducibility of a generic fiber in PP1,P2 holds well.

Therefore, we have obtained the desired contradiction.

Remark 5.1.11. The Lemmas 5.1.4 and 5.1.10 have a remarkable application in the study
of tangential deformations of homogenous polynomials, see [Wang].

5.2 Morphisms associated to multinets

For the theory of multinets, we refer to [FY] and Preliminaries of this thesis. Let A =
{L1, · · · , Ld} be a line arrangement in P2 with defining polynomial Q, which we always assume
is centerless, i.e., ∩jLj = ∅. Note that we identify a line Li with its defining equation, i.e., a
linear form Li = Li(x, y, z).

Given a (k, e)-multinet M = (A;m;B) on A, we obtain two important invariants:

(1) a multiplicity function m : {1, · · · , d} → Z>0.

Let mi = m(i).

(2) a partition
A = A1 ∪ A2 ∪ · · · ∪ Ak

into k ≥ 3 sets such that ∑
Lj∈Ai

mj = e

independent of j.
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(3) gcd(mi : i = 1, · · · , d) = 1. (as we always assume)

Let
Qi =

∏
Lj∈Ai

L
mj

j , i = 1, · · · , k

and
Q′ = Q1Q2 · · ·Qk.

Then the vector space C〈Q1, · · · , Qk〉 has dimension 2, namely, Qi ∈ PQ1,Q2 for all i.
Assume Qi = αiQ1 + βiQ2, i = 1, · · · , k where (α1, β1) = (1, 0) and (α2, β2) = (0, 1) and

define
f : M = M(Q)→ C, f = (Q1, Q2)

with C = P1 \ {(−βj, αj) : j = 1, · · · , k}.
We call f the morphism (defined up to isomorphism) associated to the given multinet or

more briefly the associated morphism. Then from Lemma 5.1.10, we obtain the following.

Proposition 5.2.1. Let A be a centerless line arrangement in P2 .
Then any associated morphism f for a (k, e)-multinet of A has a connected generic fiber,

in other words, an irrational pencil of M .
In particular, a generic fiber of f is irreducible, and hence k ≤ 4 by [Yuz].

Conversely, it turns out any irrational pencil is associated to a multinet, see [FY] for more
details.

Remark 5.2.2. Contrary to the conventional notion where a map from a variety to P1 is
called a rational pencil, in this thesis, we call a morphism onto P1 with ≥ 3 points deleted
an irrational pencil. Recall also that by definition, an irrational pencil is a morphism onto a
smooth curve with negative Euler characteristic (under suitable equivalence relations).

Now let F ′ : Q′ = 1 be the Milnor fiber of Q′ in C3, and moreover

G(u, v) =
k∏
i=1

(αiu+ βiv) = uv
k∏
i=3

(αiu+ βiv)

and H : G = 1 the Milnor fiber of G in C2 and p′ : H → C the natural projection. Let
g′ : F ′ → H be defined as g′(x, y, z) = (Q1(x, y, z), Q2(x, y, z)), then we have the following
diagram

F ′

p

��

g′ // H

p′

��
M

f // C.

Note that g′ is well defined since Q′ =
∏k

i=1(αiQ1 + βiQ2).
The base locus of the pencil PQ1,Q2 is V (Q1, Q2), which is a finite set. For any i = 1, · · · , k

and b ∈ V (Q1, Q2), let nb,i be the multiplicity at b of the (possibly nonreduced) scheme Qi = 0,
namely, nb,i =

∑
Lj∈Ai

mj, then by the definition of a multinet, nb,1 = nb,2 = · · · = nb,k, which

we shall simply denote by nb. Then the multiplicity at b of Q′ = 0 is knb.

Proposition 5.2.3. With the notations above, assume gcd(nb : b ∈ V (Q1, Q2)) = 1, then a
generic fiber of g′ is connected.

Furthermore, g′ is an irrational pencil of F ′.
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Proof. First observe that F ′ is connected since gcd(m1, · · · ,md) = 1. So for the covering
p : F ′ →M of degree ke, the monodromy map is surjective, i.e.,

π1(M)→ µke = Z/keZ

is surjective. Recall also that π1(M) has generators provided by γ1, · · · , γd, where γi is the
boundary of a small disk intersecting transversely to Li, and the monodromy map above is
given by γi 7→ mi mod ke.

Let K be a generic fiber of f , then by Proposition 5.2.1, K is connected. Now consider
the covering map p restricted to p−1(K), then by the proof of Lemma 5.1.1, the number of
connected components is equal to the index in µke of the group

Im(π1(K)→ µke),

which is the same as the image of the composition

π1(K)→ π1(M)→ µke.

Note that the map π1(K)→ µke factors through H1(K,Z)→ H1(M,Z)→ µke.
Now for any b ∈ V (Q1, Q2), we can choose a small topological disk D in P2 such that

D \ {b} is contained in K. Indeed, the closure of K contains the base locus V (Q1, Q2)
and K is locally contractible as an algebraic variety. Moreover, choose a tubular product
N ∼= (D \ {b}) × [−ε, ε] for ε > 0 small enough such that N ∩K ∼= (D \ {b}) × {0} and the
boundary ∂N is completely contained in M .

Then the boundary ∂D ⊆ K is homologous in M to ∂(D\{b})×{ε}), which is mapped to
knb mod ke under the map π1(M)→ µke. Hence the image of the map π1(K)→ µke contains
at least the subgroup

〈knb mod ke : b ∈ V (Q1, Q2〉 ∼= µe,

since gcd(nb : b ∈ V (Q1, Q2)) = 1 by assumption. Therefore, p−1(K) has at most k connected
components.

Let f(K) = x and p′−1(x) = (x1, · · · , xk). Then p−1(K) =
⊔
l g
−1(xl). Since p′−1(f(K))

consists of k distinct points, p−1(K) has at least k connected components.
Consequently, p−1(K) has exactly k connected components, one for each preimage under

p′ of f(K). Since K is generically chosen, we have that a generic fiber of g is connected.
To see that g′ is an irrational pencil, we only need to check χ(H) < 0. Indeed, χ(H) =

k · χ(C) = k · (2− k) < 0 since k ≥ 3.

When the multinet is a reduced, namely, mi = 1 for all i = 1, · · · , k, and then d = ke.
Recall also that a reduced multinetM = (A;m;B) is a net if any point b ∈ B satisfies nb = 1.

From the discussions above, we have the following.

Proposition 5.2.4. Let A = {L1, · · · , Ld} be a centerless line arrangement such that

(i) there exists a partition
A = A1 ∪ A2 ∪ · · · ∪ Ak

into k ≥ 3 sets and each Ai contains e = d/k lines.

(ii)

Qi =
∏
Lj∈Ai

Lj, i = 1, · · · , k

such that the vector space C〈Q1, · · · , Qk〉 is of dimension 2.
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Let moreover Q =
∏d

j=1 Li, F : Q = 1 the Milnor fiber and M = P2 \ V (Q) the complement;
let Qi = αiQ1 + βiQ2 for i = 1, · · · , k with (α1, β1) = (1, 0) and (α2, β2) = (0, 1), G =∏k

i=1(αiu+ βiv), H : G = 1 the Milnor fiber in C2 and C = P1 \ V (G).
Then for the diagram

F

p
��

g // H

p′

��
M

f // C

where f = (Q1, Q2), g = (Q1, Q2) and p, p′ are the natural projections, the following hold:

1. f is an irrational pencil of M .

2. For b ∈ V (Q1, Q2), let nb be the numbers of lines in A1 passing through b. If gcd(nb :
b ∈ V (Q1, Q2)) = 1, then g is an irrational pencil of F .

In particular, the conclusion holds if some b ∈ V (Q1, Q2) is a smooth point of V (Q1).
This is the case if the constructions above are from a (k, e)-net of A.

5.3 1-formality of Milnor fiber

Given a centerless line arrangementA = {L1, · · · , Ld}. We suppose there exists a partition
A = A1 ∪ A2 ∪ · · · ∪ Ak into k ≥ 3 sets and each Ai contains e = d/k lines. Moreover,
Qi =

∏
Lj∈Ai

Lj, i = 1, · · · , k such that the vector space C〈Q1, · · · , Qk〉 is of dimension 2.
Then as above, we have the following diagram

F

p
��

g // H

p′

��
M

f // C.

Now we also take the monodromy h∗ : H i(F )→ H i(F ) into account, induced by h : F →
F, , h((x, y, z)) = (ξx, ξy, ξz) with ξ = exp(2π

√
−1/d). Denote

H i(F )a = ker(a · Id− h∗ : H i(F )→ H i(F ))

and
H i(F )6=1 =

⊕
a6=1

H i(F )a.

Then we have W1H
1(F ) = H1(F )6=1 while H1(F )1 = p∗H1(M).

Moreover, we have the following

Proposition 5.3.1. With notations as above, we have W1H
1(F ) ⊆ R1(F ).

Proof. Without loss of generality, assume W1H
1(F ) = H1(F ) 6=1 6= 0. It suffices to consider

the following two cases:

(i) For any a2 6= 1, if H1(F )a 6= 0, then also H1(F )a−1 6= 0, because a−1 and a generate the
same subgroup of µd, see [CS95]. Moreover, for any nonzero elements α1 ∈ H1(F )a and
α2 ∈ H1(F )a−1 , we claim that α1 ∪ α2 = 0 in H2(F ), hence H1(F )a ⊆ R1(F ).

Indeed, α1 ∪ α2 ∈ H2(F )1 ∩W2H
2(F ) = p∗H2(M)∩W2H

2(F ). Since H2(M) is pure of
type (2, 2), we have that W2H

2(F ) ∩ p∗H2(M) = 0 since p∗ is a MHS morphism.
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(ii) If H1(F )−1 6= 0, then it has even dimension, since H1(F ) 6=1 a MHS of pure weight 1. So
for any α3 ∈ H1(F )−1, we can find α4 ∈ H1(F )−1 which is linearly independent to α3.
Just as in the first case, we have α3 ∪ α4 = 0, and hence α3 ∈ R1(F ).

The following proof of non-formality of the Milnor fiber can date back to [Zub].

Theorem 5.3.2. With notations as above. If g admits a connected generic fiber and

g∗W1H
1(H) $ W1H

1(F ),

then F is not 1-formal.

Proof. Suppose on the contrary that F is 1-formal, then g∗H1(H) is an irreducible component
of R1(F ). Moreover, g∗ : H1(H)→ H1(F ) is injective and

dimW1H
1(H) = dimH1(H)

where H : G(u, v) + tk = 0 in P2. Note that H is a smooth plane curve of degree k. By the
degree-genus formula, g(H) = (k − 1)(k − 2)/2 > 0 since k ≥ 3, so we have that

dimW1H
1(H) = 2g(H) > 0.

Furthermore, since W1H
1(F ) ⊆ R1(F ) by Proposition 5.3.1, there exists an irreducible

component, say E, of R1(F ) such that E ⊇ W1H
1(F ).

Since by assumption g∗W1H
1(H) $ W1H

1(F ), we obtain that E 6= g∗H1(H) and also E∩
g∗H1(H) ⊇ g∗W1H

1(H) is nonzero. Therefore, we obtain two distinct irreducible components
of R1(F ), namely, E and g∗H1(H), intersecting nontrivially. This contradicts Theorem 2.2.6
(iii).

Example 5.3.3. Consider the arrangement A(m,m, 3):

Q = (xm − ym)(ym − zm)(zm − xm),

where m ≡ 0 mod 3 and Q1 = xm − ym, Q2 = ym − zm, Q3 = zm − xm.
Proceeding as above, we have that the map g is an irrational pencil for the Milnor fiber F :

Q = 1, since V (Q1, Q2) are all smooth points of V (Q1). Moreover, k = 3, so dimW1H
1(H) =

2; on the other hand, dimW1H
1(F ) = dimH1(F )6=1 = 4 by the example given in Section

2.3.10.
So F is not 1-formal in this case. In particular, when m = 3, we obtain the example given

in [Zub].

5.4 Cohomology jump loci of Milnor fiber

With the settings before Theorem 5.3.2, assume further g is an irrational pencil and
g∗W1H

1(H) = W1H
1(F ). Then g∗H1(H) is an irreducible component of TC1(V1(F ))). Sup-

pose there exists another irreducible component 0 6= E ⊆ TC1(V1(F )), then necessarily,
E ⊆ GrW2 H

1(F ) = H1(F )1 = p∗H1(M) since 0 = E ∩ g∗H1(H) ⊇ E ∩W1H
1(F ). Hence, E is

a MHS having pure type (1, 1). All these give sufficient motivations to study the irreducible
components of TC1(V1(F )) that are pure of type (1, 1). We first propose an interesting lemma
about morphisms to curves (compare [DPS09], Lemma 6.10).
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Lemma 5.4.1. Let ρ : Y → C be a dominating morphism from a quasi-projective manifold
Y to a smooth curve C. Then the induced homomorphism in cohomology ρ∗ is injective on
W1H

1, namely
ρ∗ : W1H

1(C)→ W1H
1(Y )

is injective.

Proof. By Stein Factorization, it suffices to prove the case where Y is itself a curve. Indeed,

let Y
ρ′−→ C ′

p0−→ C be the Stein factorization for ρ such that a generic fiber of ρ′ is connected,
p0 : C ′ → C is finite and ρ = p0 ◦ ρ′. Since ρ′ has a connected generic fiber, the induced map
ρ′∗ : π1(Y ) → π1(C

′) is surjective, hence ρ′∗ is injective on H1, a fortiori, on W1H
1. If p∗0 is

injective on W1H
1, hence so is ρ∗ because ρ∗ = ρ′∗ ◦ p∗0.

Now assume Y is also a curve. We claim that we can assume one step further that Y and
C are both complete smooth curves. Indeed, let i1 : Y ↪→ Y and i2 : C ↪→ C be two smooth
compactifications, then we obtain a rational morphism

ρ = i2 ◦ ρ : Y 99K C

which must be a morphism by Zariski Main Theorem, because it is a morphism between two
complete smooth curves. Hence we have the following diagram

Y � _

i1
��

ρ // C� _

i2
��

Y
ρ // C,

and the induced homomorphisms on W1H
1:

W1H
1(Y ) W1H

1(C)
ρ∗oo

W1H
1(Y ) = H1(Y )

i∗1

OO

W1H
1(C) = H1(C).

i∗2

OO

ρ∗oo

Clearly i∗1, i
∗
2 above are isomorphisms. If ρ∗ is injective, so is ρ∗.

Therefore, we are reduced to consider a surjective morphism ρ : Y → C between two
complete smooth curves. Indeed, ρ is a finite map and ρ∗ρ

∗ = deg ρ · Id where ρ∗ is the Gysin
map, see [Voi1], Section 7.3.2. Alternatively, we can also apply [Voi1], Lemma 7.28, since in
our situation, Y is a compact Kähler manifold. We are done.

Now let A be a centerless line arrangement, F its Milnor fiber and M its complement.
Suppose E ⊆ TC1(V1(F )) is a positive dimensional irreducible component pure of type (1, 1),
then E is a maximal isotropic subspace of H1(F ) by Remark 4.2.5, a fortiori, of p∗H1(M).
Hence E = p∗E ′ for some maximal isotropic subspace of H1(M); by correspondence between
maximal isotropic subspaces and irrational pencils, we have that E ′ is also an irreducible
component of TC1(V1(M)) = R1(M). Therefore, there exists a (kE, eE)-multinet ME =
(A;mE;BE) on A with associated morphism f = (Q1, Q2) : M → C with f ∗H1(C) = E ′. In
particular, we have the following diagram

F

p
��

g=f◦p

!!
M

f // C.
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Lemma 5.4.2. With notations as above, a generic fiber of g is connected, i.e., g is an
irrational pencil of F .

Proof. Consider the Stein Factorization

F

p

��
g=f◦p

  

g′0 // C ′

p0
��

M
f
// C

where a generic fiber of g′0 is connected and p0 is a finite map. Let C ′ be a smooth compacti-
fication of C ′.

First, C ′ ∼= P1. Indeed, g′∗H1(C ′) is a connected component of TC1(V1(X)) containing
both g∗H1(C) = p∗f ∗H1(C) = E and g∗W1H

1(C ′). If g(C ′) > 0, then dim g′∗W1H
1(C ′) =

2g(C ′) > 0 by Lemma 5.4.1. Hence g′∗0 H
1(C ′) strictly contains E, contradiction.

Second, p0 extends to p′0 : C ′ ∼= P1 → P1. Let deg p′0 = m and without loss of generality,
suppose m > 1. Then

χ(C ′) ≤ m · χ(C) ≤ 2 · χ(C) < χ(C),

and thus dimH1(C ′) > dimH1(C). Therefore, g′∗0 H
1(C ′) is an irreducible component of

TC1(V1(F )) strictly containing g∗H1(C) = E, contradiction.

Theorem 5.4.3 (Compare [PaS], Theorem 1.5). The multinet ME is not reduced, namely,
there exists a j satisfying mE(j) > 1. In particular, kE = 3 and dimE = 2.

Proof. Otherwise, the map g will match a diagram as before Theorem 5.3.2:

F

p

��

g // H

p′

��
M

f // C,

hence each fiber of g contains at least kE ≥ 3 connected components, contradicting the above
lemma. For other statements, just apply the main theorem in [Yuz].

As an obvious corollary of the above theorem, we have the following.

Corollary 5.4.4. Assume there exists a net structure M = (A;m;B) on A with associated
morphisms f : M → C and g : F → H such that g∗W1(H) = W1(F ). For any irreducible
component E ′ 6= f ∗H1(C) of TC1(V1(M)) of positive dimension, we have E ′ = f ∗E′H

1(CE′)
where fE′ : M → CE′ is the associated morphism to a multinet ME′ = (A;mE′ ;BE′).

Then, ME′ is not a net.
Therefore, there is only one net structure on A.
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Surfaces associated to line arrangements and

Chern numbers

One of the main open questions in hyperplane arrangement theory is whether the topol-
ogy of the Milnor fiber F , e.g., its Betti numbers or the characteristic polynomials of the
monodromy action on each Hm(F ), are determined by the combinatorics. In this chapter, we

consider the compactification F of F in P3 in the case of a line arrangement A in P2. If F̃ is
the minimal desingularization of F , then we compute the Chern numbers of F̃ in terms of the
combinatorics. The hope is that using the classification theory of smooth projective surfaces,
we can better understand the topology of the Milnor fiber F in this case.

6.1 Basic topology

Let Z be a topological space. We can define its singular cohomology groups H∗(Z,Z) and
homology groups H∗(Z,Z). Moreover, we have the cohomology groups and homology groups
with compact support, see [PeS], Appendix B.

By definition, the cohomology group of Z of degree k with compact support, denoted by
Hk
c (Z,Z), is

Hk
c (Z,Z) = lim−→

K⊆Z
Hk(Z,Z −K,Z),

where K ranges over all compact subsets of Z, and the direct limit (or inductive limit) is
taken with respect to the natural morphism Hk(Z,Z −K1,Z) → Hk(Z,Z −K2,Z) induced
by the inclusion (Z,Z − K2) ↪→ (Z,Z − K1) for any two compact subsets K1 ⊆ K2 of Z.
The corresponding compactly supported version for homology of dimension k, denoted by
HBM
k (Z,Z), is usually called Borel-Moore homology, and is given by

HBM
k (Z,Z) = lim←−

K⊆Z
Hk(Z,Z −K,Z),

where K varies among all the compact subsets of Z and the projective limit (or inverse limit)
is taken with respect to the morphism Hk(Z,Z −K2,Z)→ Hk(Z,Z −K1,Z) induced by the
inclusion (Z,Z −K2) ↪→ (Z,Z −K1) for any two compact subsets K1 ⊆ K2 of Z.

6.1.1 Differential topology

When Z is a smooth manifold, the cohomology groups and homology groups admit quite
interesting properties. Now assume Z is a complex manifold of complex dimension n, which
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is sufficient for our purpose of applications. Then Z is an oriented differential manifold
with a canonical orientation induced by the complex structure. The orientation class gives
canonically a generator [Z] ∈ HBM

2n (Z,Z) ∼= Z, corresponding to 1 ∈ Z; the class [Z] is also
called the fundamental class for Z.

Taking cap-product with [Z] gives the Poincaré duality

[Z]∩ : Hk
c (Z,Z) ' H2n−k(Z,Z), k ≤ 2n,

and also
[Z]∩ : Hk(Z,Z) ' HBM

2n−k(Z,Z), k ≤ 2n;

in addition, we have a pairing

Hn
c (Z,Z)×Hn(Z,Z)→ Z, (ξ, η) 7→ [Z] ∩ (ξ ∪ η).

See [PeS], Appendix B. For simplicity, write ξ · η = [Z] ∩ (ξ ∪ η).
Since Z is smooth, by de Rham Theorem, the cohomology in Hk(Z) = Hk(Z,Z) ⊗Z C

can be represented by closed forms; correspondingly, the cohomology with compact support in
Hk
c (Z) = Hk

c (Z,Z)⊗ZC can be represented by closed forms with compact support. Moreover,
the Poincaré duality with complex coefficients can be represented as

Hk
c (Z)×H2n−k(Z)→ C, ([ω1], [ω2]) 7→

∫
Z

ω1 ∧ ω2, (6.1.1)

where ω1, ω2 are closed forms and ω1 has compact support. The integration makes sense since
ω1 ∧ ω2 has compact support. The pairing in (6.1.1) is perfect by Poincaré duality, see also
[BT], §5.

Clearly, when Z is itself compact, the homology or cohomology with compact support
coincides with the usual ones.

6.2 Intersection theory on surfaces

6.2.1 Intersection theory for smooth surfaces

Let X be a connected smooth quasi-projective surface. Assume C,D are two reduced
irreducible curves on X such that C is compact. Then for C, we have H2(C,Z) ' Z with
a generator [C] corresponding to 1 ∈ Z; this is a classical result since topologically C is a
finite CW complex of real dimension 2. In fact, let Sing(C) be the singular locus of C, then
Sing(C) is a set consisting of finite points and the long exact sequence for homology groups
associated to the pair (C, Sing(C)) gives

H2(Sing(C),Z) = 0→ H2(C,Z)→ H2(C, Sing(C),Z)→ H1(Sing(C),Z) = 0,

so
H2(C,Z) ' H2(C, Sing(C),Z);

meanwhile, let ν : C̃ → C be a normalization for C, then since complex analytic spaces are
locally contractible, and ν : C̃ \ν−1(Sing(C))→ C \Sing(C) is an isomorphism, by the Strong
Excision Theorem (see [PeS], Theorem B. 3), we have

H2(C, Sing(C),Z) ' H2(C̃, ν
−1(Sing(C)),Z);
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note that ν−1(Sing(C)) is also a set of finite points, by considering the exact sequence of

homology groups associated to the pair (C̃, ν−1(Sing(C))), we get

H2(C̃, ν
−1(Sing(C)),Z) ' H2(C̃,Z) ' Z,

where the last isomorphism follows from the fact that C̃ is a smooth complete curve. Since
all the isomorphisms above are canonical, we have in fact obtained an isomorphism

ν∗ : H2(C̃,Z) ' H2(C,Z)

induced by the normalization ν : C̃ → C, so [C] = ν∗([C̃]), where [C̃] ∈ H2(C̃,Z) is the

fundamental class for C̃.
Similarly, for D, we have HBM

2 (D,Z) ' Z. Indeed, let D ⊆ D∗ be a compactification of D
such that D∗\D is a set of finite points; let D∗∗ be the space obtained from D∗ by contracting
D∗ \D to a point. Let ∞ ∈ D∗∗ be the image D∗ \D under the contraction. Then D∗∗ is a
one point compactification of D and

HBM
2 (D,Z)

1∼= H2(D
∗∗,∞,Z)

2∼= H2(D
∗, D∗ \D,Z)

3∼= H2(D
∗,Z)

4∼= Z,

where
1∼= follows from Formula (B− 2) in [PeS],

2∼= follows from the Strong Excision Theorem

(see [PeS], Theorem B. 3), and
3∼= follows by considering the exact sequence for homology

groups associated to the pair (D∗, D∗ \D) and the fact that D∗ \D is a set of finitely many

points, and
4∼= follows from our above discussions about H2(C,Z) and the fact that D∗ is

a compact curve. Denote by [D] the generator for HBM
2 (D,Z) corresponding to 1 ∈ Z '

HBM
2 (D,Z).

Moreover, we have a natural map H2(C,Z)→ H2(X,Z) induced by the inclusion C ↪→ X.
Denote, by abuse of notation, by [C] ∈ H2

c (X,Z) the image of [C] ∈ H2(C,Z) under the
composition H2(C,Z) → H2(X,Z) ∼= H2

c (X,Z). Similarly, denote by [D] ∈ H2(X,Z) the
image of [D] ∈ H2(D,Z) under the composition HBM

2 (D,Z)→ HBM
2 (X,Z) ∼= H2(X,Z).

Finally, with the help of the pairing H2
c (X,Z)×H2(X,Z)→ Z, we define the intersection

number of C and D by
C ·D = [C] · [D].

We shall also write C2 = C · C.
Now a few points are worth to emphasize:

(i) Since X is smooth, C,D can be seen as Cartier divisors and hence they correspond to
two line bundles, i.e., OX(C) and OX(D), then the class [C] (resp. [D]) is exactly the
first Chern class c1(OX(C)) (resp. c1(OX(D))). Moreover,

C ·D = deg(ν∗OX(D)|C),

where ν : C̃ → C is the normalization of C.

Therefore, if C ∩D = ∅, we have C ·D = 0, since OX(D)|C is a trivial bundle on C.

(ii) If dimC ∩ D = 0, namely, C and D intersect at finitely many points. Let x ∈ C ∩ D
be any intersection point and OX,x be the local ring at x of X. Assume f, g ∈ OX,x are
local equations for the germs at x of C,D respectively. Then we have the intersection
multiplicity of C,D at x

(C ·D)x = dimCOX,x/(f, g);
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note that the right hand side makes sense since OX,x/(f, g) is an Artinian ring, hence a
finite-dimensional vector space. Moreover,

C ·D =
∑

x∈C∩D

(C ·D)x,

(see [BHPV], Chapter II) from which it obviously follows that C ·D = 0 when C∩D = ∅.

(iii) Now integration over the smooth locus of C defines a linear functional

H2(X)→ C, [ω] 7→
∫
C\Sing(C)

ω.

This is well defined, see [Voi1], Theorem 11.21, and hence by Poincaré duality gives an
element in H2

c (X). By de Rham theorem, this element can be represented by a closed
form ωC on X with compact support.

Similarly, integration over the smooth locus of D gives a linear functional

H2
c (X)→ C, [ω] 7→

∫
D\Sing(D)

ω

and hence, by Poincaré duality, it gives an element in H2(X) and can be represented by
a closed form ωD on X.

Then we have

C ·D =

∫
X

ωC ∧ ωD.

The integration above makes sense since ωC ∧ ωD is a 4-form with compact support.

(iv) When X is compact, then by the celebrated Hirzebruch-Atiyah-Singer Riemann-Roch
Theorem (see [BHPV], Chapter I), we have

χ(OX(m1C +m2D)) =
2∑
p=0

(−1)p dimCH
p(X,OX(m1C +m2D))

is a polynomial of degree ≤ 2 of m1,m2, see also [Deb], and moreover, it admits the
following asymptotic expression:

χ(OX(m1C +m2D)) =
1

2
(m2

1C
2 + 2m1m2C ·D +m2

2D
2) + · · · ;

hence C ·D is the coefficient of m1m2 in χ(OX(m1C +m2D)).

Extending by linearity, we can define the intersection number of any two divisors, namely,
let C,D are two divisors on X such that C =

∑
niCi and D =

∑
mjDj where Ci, Dj are

reduced irreducible curves and all Ci’s are compact, then define

C ·D =
∑

nimjCi ·Dj.
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6.2.2 Intersection theory for normal surfaces

Given a quasi-projective surface X. When X is not smooth, we assume that X is normal,
namely, the local ring OX,x at any point x ∈ X is an integrally closed domain. In particular,
X is regular in codimension 1, and thus we can consider the Weil divisors and Cartier divisors
on X.

Let C be a reduced irreducible curve on X and D a Cartier divisor on X such that C, as
a Weil divisor, has compact support, i.e., C is compact. We define the intersection number
of C and D by

C ·D = deg(ν∗OX(D)|C), (6.2.1)

where ν : C̃ → C is the normalization. Extend this definition by linearity for a general Weil
divisor with compact support and a general Cartier divisor, that is, let C =

∑
niCi where Ci

are reduced irreducible curves and all Ci’s are compact and D is a Cartier divisor, then

C ·D =
∑

niCi ·D.

Recall that two Weil divisors D,D′ on X are called rationally equivalent, denoted by
D ∼ D′ if the difference D − D′ is a principal divisor, i.e., D − D′ = (f) for some rational
function f on X, where (f) = (f)0− (f)∞ is the zeros of f minus the poles of f . If D,D′ are
two Cartier divisors and D ∼ D′, we have, by Formula (6.2.1)

C ·D = C ·D′,

for any Weil divisor C on X with compact support.
Moreover, if X is compact and C,D are both Cartier divisors, then C · D = D · C; in

addition, even if the compact normal surface X is not smooth, the number

χ(OX(m1C +m2D)) =
2∑
p=0

(−1)p dimHp(X,OX(m1C +m2D))

still makes sense and is in fact a polynomial in m1,m2 of degree ≤ 2; furthermore, C · D is
the coefficient of m1m2 in it, see [Deb].

Finally, we emphasize once more that if C,D has disjoint support, then C ·D = 0, since
OX(D)|C is a trivial line bundle.

6.2.3 Projection formula

Let X̃,X be two normal quasi-projective surfaces and π : X̃ → X be a proper surjective
morphism. Two functors on divisors π∗ and π∗ are defined as follows:

(i) For any reduced irreducible curve C on X, seen as a Weil divisor, we define π∗C =

π−1(C) as the scheme-theoretic inverse image of C on X̃. Note that π∗C can be regarded

as a Weil divisor on X̃. Extending by linearity, we define π∗C for any Weil divisor C
on X, a fortiori, for any Cartier divisor on X. Note that if C is a Cartier divisor on X,
then π∗C is also a Cartier divisor on X̃.

(ii) Given any reduced irreducible curve E on X̃, seen as a Weil divisor. If E is contracted
by π to a point, we define π∗E = 0, as a Weil divisor. If π(E) is a curve, then define

π∗E = deg(π|E)π(E).

Extending by linearity, we can define π∗E for any Weil divisor E on X̃, with π∗E
regarded as a Weil divisor on X.
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The following property of intersection theory is of great importance in the sequel, see also
[Deb].

Theorem 6.2.4 (Projection formula). Let X̃,X be normal quasi-projective surfaces and π :

X̃ → X a proper surjective morphism between them. Let C be an reduced irreducible compact
curve on X and D is a Cartier divisor on X. Then

π∗C · π∗D = (deg π)C ·D.

If moreover, E is a reduced irreducible compact curve on X̃ such that either E is contracted
by π or the restriction π|E : E → π(E) has degree deg(π), then

E · π∗D = π∗E ·D.

Thus, by linearity, we have the following corollary.

Corollary 6.2.5. Let X̃,X be normal quasi-projective surfaces and π : X̃ → X a proper
surjective morphism between them. Let C be a Weil divisor on X with compact support and
D a Cartier divisor on X. Then

π∗C · π∗D = (deg π)C ·D.

If moreover, E is a Weil divisor with compact support on X̃ such that for each irreducible
component E0 of E with dim π(E0) = 1, the restriction π|E0 : E0 → π(E0) has degree deg(π),
then

E · π∗D = π∗E ·D;

in particular, this is the case if π is a birational morphism, namely deg π = 1; and moreover,
if dimπ(E) = 0, then E · π∗D = 0.

The proof of Theorem 6.2.4 will be divided into the following several steps.
Step 1: C and C ′ = π−1(C) are both smooth complete curves and the restriction

π|C′ : C ′ → C has degree deg(π : X̃ → X)
In this case, π∗C = C ′ and thus

π∗C · π∗D = deg(π|∗C′OX(D)|C).

We are done by recalling the following proposition.

Proposition 6.2.6. Let S, T be smooth irreducible complete curves and ρ : S → T a mor-
phism. Let L be a line bundle over T , then

deg(ρ∗L) = deg ρ deg(L).

Proof. If ρ is not surjective, namely, ρ(S) is one point, then ρ∗L is trivial and deg ρ = 0, the
equality obviously holds. So WLOG assume ρ is surjective.

Let s be any meromorphic section of L, then by definition, deg(L) = deg(s) and deg(ρ∗L) =
deg(ρ∗s). Here (s) denotes the Cartier divisor associated to s.

Let p ∈ T be such that s(p) = 0, and let ρ−1(p) = {q1, · · · , qr}. Fix i, choose local
coordinate z centered at qi and local coordinate w centered at p such that ρ can be represented
as w = zki and moreover, in the coordinate patch under consideration, s can be represented
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as s = wjp . Then jp = ordp(s) and
∑r

i=1 ki = deg ρ. In addition, around qi, ρ
∗s = (zki)jp ,

hence ordqi(ρ
∗s) = ki · jp, hence

r∑
i=1

ordqi(ρ
∗s) = deg ρ · ordp(s).

Similarly, when p is a pole for s, we have the same equation, namely,∑
q∈ρ−1(p)

ordq(ρ
∗s) = deg ρ · ordp(s).

Therefore, we have

deg(ρ∗L) =
∑

p∈Supp((s))

∑
q∈ρ−1(p)

ordq(ρ
∗s)

= deg(ρ)
∑

p∈Supp((s))

ordp(s)

= deg(ρ) deg(L).

Step 2: Proof of the first statement
Let π∗C =

∑
imiC

′
i, where C ′i are irreducible reduced compact curves in X̃. Let also

νi : C̃ ′i → C ′i be the normalization of C ′i, and π′i : C ′i → C be the restriction of π to C ′i. Then
by definition (6.2.1),

π∗C · π∗D =
∑
i

mi deg(ν∗iOX̃(π∗D)|C′i)

=
∑
i

mi deg(ν∗i π
′∗
i OX(D)|C)

=
∑
i

mi deg((π′i ◦ νi)∗OX(D)|C).

Now νi ◦ πi : C̃ ′i → C factors though the normalization ν : C̃ → C since C̃ ′i is normal, namely
we have the following diagram

C̃ ′i
π̃′i //

νi

��

C̃

ν

��
C ′i

π′i // C;

hence, by definition (6.2.1) and Proposition 6.2.6, we have

deg((πi ◦ νi)∗OX(D)|C) = deg(π̃′i
∗
ν∗OX(D)|C)

= deg(π̃′i) deg(ν∗OX(D)|C)

= deg(π̃′i)(C ·D)

= deg(π′i)(C ·D),

therefore, we obtain that

π∗C · π∗D =
∑
i

mi deg((π′i ◦ νi)∗OX(D)|C)

=
∑
i

mi deg(π′i)(C ·D)

=

(∑
mi deg(π′i)

)
C ·D.
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Moreover, we also have
∑
mi deg(π′i) = deg π, so,

π∗C · π∗D = (deg π)C ·D.

Step 3: Conclusion
Now we prove the equality E · π∗D = π∗E ·D.
If π(E) is one point, say π(E) = {p}, then choose an open neighborhood U of p such that

OX(D)|U is trivial, then
OX̃(π∗D)|π−1(U) = π∗OD(D)|U

is a trivial bundle over π−1(U). Note that E ⊆ π−1(U), so π∗OX(D)|E is trivial, and hence

E · π∗D = deg(ν∗(π∗OX(D)|E)) = 0,

where ν : Ẽ → E is the normalization.
By linearity, E · π∗D = 0 if E is a combination of curves that are contracted by π.
If E is not contracted by π, then, by assumption,

π∗π∗E = deg(π)E + E ′,

where E ′ is a linear combination of curves contracted by π. By the above discussion, E ′·π∗D =
0, and hence

(deg π)E · π∗D = π∗π∗E · π∗D = (deg π)π∗E ·D,

hence, by Step 2,
E · π∗D = π∗E ·D.

For more comprehensive descriptions on intersection theory, we refer to [Fu] and [EH].

6.3 Projective surfaces and the Miyaoka–Yau inequal-

ity

6.3.1 Chern classes and Chern numbers

Let X be a smooth projective surface. Then as a complex manifold, X admits a naturally
defined holomorphic bundle rank 2, namely, the holomorphic tangent bundle of X, denoted
by TX.

For any complex vector bundle V over X, we have the associated Chern classes, denoted
by ci(V) ∈ H2i(X,Z), of the bundle V ; for details, see [BT]. Now considering the underlying
complex bundle of the holomorphic tangent bundle TX, we thus have the first Chern class
c1(TX) ∈ H2(X,Z) of X and the second Chern class c2(TX) ∈ H4(X,Z) of X. Furthermore,
we call the number

c21(X) = [X] ∩ (c1(TX) ∪ c1(TX)) ∈ Z

the first Chern number of X, and

c2(X) = [X] ∩ c2(TX) ∈ Z

the second Chern number of X.
The line bundle KX =

∧4 T ∗X which is the dual of the line bundle
∧4 TX, is called the

canonical bundle of X; in addition, KX , identified as an invertible sheaf on X, corresponds to
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a Cartier divisor on X, still denoted by KX by abuse of notation. We call KX the canonical
divisor of X.

We have
c21(X) = K2

X , c2(X) = χ(X),

where χ(X) denotes the (topological) Euler number of X; for a proof of the latter equality,
see [BT].

6.3.2 Classification of smooth projective surfaces

It is possible to classify smooth projective surfaces up to birational isomorphisms, see
[BHPV]. Such a classification depends heavily on the numerical properties of the canonical
divisor.

Let X be a smooth projective surface. The canonical divisor KX is called big if

dimH0(X,OX(mKX)) ≥ cm2

when m is sufficiently large for some constant c > 0 (independent of m). KX is called nef if
KX · C ≥ 0 for any reduced irreducible curve C on X. Moreover, a curve E on X is called a
(−1)-curve if E is a smooth rational curve and E2 = −1. X is called minimal if it does not
contain any (−1)-curve.

Every smooth projective surface X has a birational minimal model X ′; by definition, this
means that X ′ is a smooth projective surface which is birationally isomorphic to X and X ′

does not contain any (-1)-curve. In fact, X ′ can be obtained from X by successively blowing
down (−1)-curves, which is the inverse process of blowing up.

The smooth projective surface X is said to be of general type if KX is big. We have that
X is of general type if and only if its minimal model X ′ is; in addition, X ′ is unique and KX′

is big and nef.
Furthermore, for a surface to be of general type, there are many topological restrictions,

one of which is the celebrated Miyaoka–Yau inequality, namely, if X is a smooth projective
surface of general type, we have

c21(X) ≤ 3 c2(X)

where equality holds if and only if X is a ball quotient. By definition, this means that X is
biholomorphic to B/Γ, where B = {(z1, z2) ∈ C2 : 1 − |z1|2 − |z2|2 > 0} equipped with the
Kähler metric whose Kähler form is given by ωB = −

√
−1∂∂ log(1− |z1|2 − |z2|2), and Γ is a

discrete subgroup of isometries of B.
For more properties of projective surfaces, the classification of surfaces and history and

proof of the Miyaoka–Yau inequality, see the excellent book [BHPV].

6.3.3 Miyaoka–Yau number for a compact normal surface

Let X be a compact surface on a smooth projective threefold Y . When X is smooth, then
we have, by the adjunction formula for the canonical divisor of X,

KX = (KY +X)|X .

Indeed, the line bundle OY (X)|X ∼= NX/Y , the normal bundle of X in Y , hence

KX
∼= KY |X ⊗NX/Y = KY ⊗OY (X)|X = (KY +X)|X .
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When X is only normal, or equivalently, in our case X has only isolated singularities, there
is also a well-defined canonical class KX for X. In fact, on the smooth locus X \ Sing(X), we
can define the canonical bundle, and hence its associated Cartier divisor; by taking closure in
X of this divisor, we obtain KX . Usually, for a general normal surface X, KX , although can
be always defined, is not a Cartier divisor but only a Weil divisor. But here X is a surface
lying on the ambient threefold Y , the adjunction formula still holds

KX = (KY +X)|X .

This can be seen as follows: the equality obviously holds when restricted to X \ Sing(X),
which is a smooth submanifold of Y ; moreover, Sing(X) has codimension 2 in X because X
is normal, hence any divisor on X is uniquely determined by its restriction to X \ Sing(X),
we are done.

Since Y is smooth, both KY and X are Cartier divisors on Y , hence KX is a Cartier
divisor on X. Thus we have the intersection number K2

X = KX ·KX . By Proposition 3.5 in
[Deb], we have

K2
X = (KY +X) · (KY +X) ·X, (6.3.1)

where the RHS is the intersection number of three Cartier divisors KY +X,KY +X,X on Y .
Moreover, when X is smooth, its second Chern number is the topological Euler number,

i.e., c2(X) = χ(X); when X is only normal, we can still have c2(X) as a homology class of
X, however, the topic about Chern classes on singular varieties is quite complicated and thus
instead we shall use χ(X) as a substitute of c2(X).

Finally, in view of the Miyaoka-Yau inequality, we give the following definition.

Definition 6.3.4. Let X ⊆ Y be a normal surface on a smooth projective threefold Y , the
Miyaoka–Yau number of X is defined by

MY (X) = 3χ(X)−K2
X .

Note that if X is smooth and of general type, MY (X) ≥ 0; and if moreover π : X̃ → X

be a blowup at one point of X, then MY (X̃) = MY (X) + 4.

Example 6.3.5. Let A = {L1, · · · , Ld} with Lk : `k = 0, k = 1, · · · d, be a line arrangement
in P2 with defining polynomial Q = `1`2 · · · `d, then the surface

F : Q(x, y, z) + td = 0

is a normal surface in P3, and is the most natural compactification for the Milnor fiber
F : Q = 1 of A.

Then by definition,
KF = (KP3 + F )|F ∼ (d− 4)H|F ,

where H is a hyperplane section of P3. Indeed, we have F ∼ dH and KP3 ∼ −4H. Therefore,
using Formula (6.3.1), we have

K2
F

= d(d− 4)2. (6.3.2)

Moreover, there is a natural projection

p : F → P2, (x, y, z, t) 7→ (x, y, z),
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which is a branched covering of degree d with ramification locus V (Q) ⊆ P2, hence

χ(F ) = dχ(P2 − V (Q)) + χ(V (Q))

= dχ(P2)− (d− 1)χ(V (Q))

= 3d− (d− 1)χ(V (Q)).

Let Cd be a smooth curve of degree d in P2, then

χ(V (Q)) = χ(Cd) +
∑

p∈V (Q)

µp(V (Q)) = d(3− d) +
∑
r

trµr(V (Q)),

where tr be the number of singular points of multiplicity r in V (Q) and µp(V (Q)) (resp.
µr(V (Q))) is the Milnor number for V (Q) at the point p (resp. a point of multiplicity r), see
[Wal]. Note that if p is a singularity of multiplicity r, then locally around p, we have

(V (Q), p) : Gr(x, y) = 0,

where Gr(x, y) is a product of r distinct linear forms. Therefore, by definition,

µp(V (Q)) = µr(V (Q)) = dimC
C[x, y]

(∂Gr/∂x, ∂Gr/∂y)
= (r − 1)2.

So we have

χ(V (Q)) = d(3− d) +
∑
r

tr(r − 1)2,

implying that

χ(F ) = 3d− (d− 1)

(
d(3− d) +

∑
r

tr(r − 1)2
)

= d(d2 − 4d+ 6)− (d− 1)
∑
r

tr(r − 1)2 (6.3.3)

Consequently,

MY (F ) = 3χ(F )−K2
F

= 3d(d2 − 4d+ 6)− 3(d− 1)
∑
r

tr(r − 1)2 − d(d− 4)2

= 2d(d− 1)2 − 3(d− 1)
∑
r

tr(r − 1)2

= 2(d− 1)
∑
r

trr(r − 1)− 3(d− 1)
∑
r

tr(r − 1)2

= (d− 1)
∑
r

tr(r − 1)(3− r). �

Remark 6.3.6. In the above calculations, we have used the equality d(d−1)
2

=
∑
tr
r(r−1)

2
.

This is well-known and can be shown as follows. We count the number of intersection points
of the d lines in A under the rule that any two lines intersect at one point. Then in total, we
have d(d−1)

2
intersection points. Meanwhile, we can count the number of intersections points

in another way: a point of multiplicity r on V (Q) is counted r(r−1)
2

times, hence we eventually

have
∑
tr
r(r−1)

2
intersection points. Therefore, the desired equality holds.
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Example 6.3.7. 1. Let A : (x3−y3)(y3−z3)(z3−x3) = 0, then MY (F ) = 0, since tr 6= 0
only if r = 3.

2. Denote the Milnor number of the line arrangement A by

µ(A) =
∑

p∈V (Q)

µp(V (Q)) =
∑
r

tr(r − 1)2,

then

MY (F ) = 2d(d− 1)2 − 3(d− 1)µ(A) = 3(d− 1)

[
2d(d− 1)

3
− µ(A)

]
.

As is shown in [DIM], Example 4.6, µ(A) ≥ d(d− 1)/2. Indeed,

µ(A) =
∑
r

tr(r − 1)2 ≥
∑
r

tr

(
r

2

)
=
d(d− 1)

2

where the last equality follows from Remark 6.3.6. On the other hand, as

b0(V (Q))− b1(V (Q)) + b2(V (Q)) = χ(V (Q)) = d(3− d) + µ(A)

and we obviously have b0(V (Q)) = 1 and b2(V (Q)) = d, it follows that

b1(V (Q)) = (d− 1)2 − µ(A) ≥ 0

implying that µ(A) ≤ (d− 1)2.

Therefore, MY (F ) can be positive for some line arrangement A, for instance, A is a
generic line arrangement where µ(A) = d(d − 1)/2; meanwhile, MY (F ) can also be
negative, e.g., A is a pencil of d lines where µ(A) = (d− 1)2.

Let X have an isolated singularity 0 ∈ X, and π : X̃ → X be a minimal resolution (see

below) of the singularity 0, given by successive embedded blowups. Let π′ : Ỹ → Y be the

effect of the successive blowups on Y . Then Ỹ is a smooth projective threefold, on which X̃ is
a normal surface, hence we have the canonical divisor KX̃ = (KỸ +X̃)|X̃ and the Miyaoka-Yau

number of X̃: MY (X̃) = 3χ(X̃)−K2
X̃

.

Definition 6.3.8. Three numerical invariant differences for the minimal resolution π : X̃ →
X are defined as follows:

(i) The difference for the first Chern number is

DCI = K2
X̃
−K2

X ;

(ii) The difference for the second Chern number is

DCII = χ(X̃)− χ(X);

(iii) The difference for the Miyaoka-Yau number is

DMY = MY (X̃)−MY (X) = 3DCII −DCI.



6.4. Surfaces associated to line arrangements 75

If (X, 0) : Gr(x, y) + td = 0 around the local coordinates (x, y, t) centered at 0 on Y
where Gr is a product of r distinct linear forms, then it turns out that the differences defined
above are determined by r and d, and will be denoted by DCIr,d, DCIIr,d and DMYr,d =
3DCIIr,d −DCIr,d.

Remark 6.3.9. For the resolution π : X̃ → X, we have

KX̃ = π∗KX +
∑

aiEi, (6.3.4)

where Ei are the exceptional curves (i.e. curves that are contracted by π). So by the projection
formula,

DCI = K2
X̃
−K2

X

=

(
π∗KX +

∑
aiEi

)2

−K2
X

= π∗K2
X + 2

∑
aiEi · π∗KX +

(∑
aiEi

)2

−K2
X

= K2
X + 0 +

(∑
aiEi

)2

−K2
X

=

(∑
aiEi

)2

.

Therefore, to compute DCI, we still need the intersection matrix (Ei ·Ej) and the coefficients
ai’s in Formula (6.3.4).

6.4 Surfaces associated to line arrangements

Let A = {L1, · · · , Ld} with Li : `i = 0, i = 1, · · · , d be a line arrangement in P2 with
defining polynomial Q = Q(A) = `1`2 · · · `d.

Definition 6.4.1. Given r ≥ 2. If a point x ∈ P2 lies on exactly r lines in A, or equivalently,
x is a singular point of multiplicity r of the curve V (Q) ⊆ P2, we say x is of multiplicity r.

The number of points of multiplicity r will be denoted by tr. Moreover, denote

f0 =
∑

tr, f1 =
∑

rtr.

Now we begin to consider surfaces that can be constructed from the given line arrangement
A. The basic philosophy is that we first construct a possibly singular surface as a branched
cover of P2, then we resolve the singularities.

6.4.2 Hirzebruch’s construction

In the celebrated paper [Hi], F. Hirzebruch considers the Kummer cover of P2 branched
over the given line arrangement, and after suitable blowups, he obtains some smooth surfaces
of general type and computes the Chern numbers c21 and c2. With the help of Miyaoka–Yau
inequality, he gives some numerical constraints on ti’s for a given arrangement. In the sequel
of this subsection, we make a review of his results about the constructions of surfaces.
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Let τ : P̂2 → P2 be the blowup of P2 along the intersection points of A, and X the
algebraic surface with function filed

C(z1/z0, z2/z0)((`2/`1)
1/n, · · · , (`d/`1)1/n)

which is an abelian extension of the function field C(z1/z0, z2/z0) of P2. Then X is normal
and we obtain a ramified cover

π : X → P2

with the lines in A as the ramification locus. Let Y be the fibred product

Y = X ×P2 P̂2,

then as is shown in [Hi], Y is a smooth projective surface. Moreover, the following holds.

Proposition 6.4.3 (See [Hi]). Let Y be the algebraic surface associated to the line arrange-
ment A = {L1, · · · , Ld} constructed as above, and tr the number of points lying on exactly r
lines in A for r = 2, · · · , d, and f0 =

∑
tr, f1 =

∑
rtr.

Then we have the following:

(i) The second Chern number or Euler number of Y satisfies

c2(Y )/nd−3 = χ(Y )/nd−3

= n2(3− 2d+ f1 − f0) + 2n(d− f1 + f0) + f1 − t2.

(ii) The first Chern number c21(Y ) satisfies

c21(Y )/nd−3 = n2(−5d+ 9 + 3f1 − 4f0) + 4n(d− f1 + f0)

+f1 − f0 + d+ t2.

Moreover, if in addition, d ≥ 6, n ≥ 2, td = td−1 = td−2 = 0, the following hold:

(iii) Y is of general type.

(iv) if A cannot be divided into two pencils of lines, Y is minimal, i.e., it does not contain
any (−1)-curves.

In particular, we have

(3c2(Y )− c21(Y ))/nd−3 = n2(f0 − d) + n(−2f1 + 2f0 + 2d)

+2f1 + f0 − d− 4t2. (6.4.1)

By applying Proposition 6.4.3, when the above number is zero, we get several surfaces that
are ball quotients, as are given in [Hi].

Example 6.4.4. We give the line arrangements provided in [Hi], so that the associated
surfaces Y are ball quotients.

1. The (unique) arrangement A1(6) with d = 6, and t2 = 3, t3 = 4 and tr = 0 otherwise.

In fact, A1(6) is the arrangement A(2, 2, 3) appearing in Section 2.3.10.

2. The Hesse arrangement, d = 12 and t2 = 12, t4 = 9 and tr = 0 otherwise.
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3. The arrangement A0
3(3) coming, by dualizing, from the nine inflection points on a cubic.

We have d = 6, t3 = 12 and tr = 0 otherwise.

Indeed, A0
3(3) is exactly the Ceva arrangement or the arrangement A(3, 3, 3) in Section

2.3.10.

More importantly, when the surface Y is of general type (which is indeed the case when
the line arrangement is quite general by Proposition 6.4.3), from 3c2(Y )− c21(Y ) ≥ 0, we can
get remarkable inequalities about the numbers tr’s. Here we do not give the details, however
we will apply one inequality that was given by Hirzebruch in [Hi] in an essential way.

For interesting generalizations of Hirzebruch’s method and more examples, see [Mat] and
the references of it.

6.4.5 Compactifications of Milnor fibers of line arrangements

Let A = {L1, · · · , Ld}, Li : `i = 0 with d ≥ 4 be a line arrangement in P2 with defining
polynomial Q(x, y, z) = `1`2 · · · `d.

Consider the Milnor fiber F : Q = 1 in C3, for which we have a natural compactification

F : Q(x, y, z) + td = 0

in P3. F is a singular normal surface in P3; a singular point of multiplicity r of V (Q) gives a
singular point of multiplicity r of F , and vice versa. Moreover, since Q is a product of linear
forms, around a singular point of F of multiplicity r, we have F : Gr(x, y) + td = 0 with
Gr(x, y) a product of r distinct linear forms, whose resolution will be detailed investigated in
next section.

Let π : F̃ → F be a minimal resolution of F , namely, the following three conditions hold:

(i) F̃ is a smooth surface and π is proper birational morphism;

(ii) π : F̃ \ π−1(Sing(F ))→ F \ Sing(F ) is an isomorphism;

(iii) there is no exceptional (−1)-curves on F̃ , i.e., a rational curve E on F̃ such that E2 = −1
and E is contracted to a point by π.

Such a resolution π can be obtained by successive embedded blowups, namely by blowing up
along submanifolds of P3 as well as the resulting manifolds in each step. Note that KF̃ is a

Cartier divisor since F̃ is smooth.

Determination of the canonical divisor

Let p1, · · · , ps be all the singular points of F and ri be the multiplicity of pi. Let
Ei,1, · · · , Ei,vi be the irreducible components of π−1(pi) and Mi,j,k = Ei,j · Ei,k be the in-
tersection product of Ei,j and Ei,k. Let moreover,

Mi = (Mi,j,k)

be the intersection matrix of Ei,j’s for any fixed i. It is a vi × vi matrix. In addition, let

M =


M1

M2

. . .

Ms

 .
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Set
Ei = (Ei,1, Ei,2 · · · , Ei,vi)

as a 1× vi matrix and

E = (E1, · · · , Es) = (E1,1, · · · , E1,v1 , E2,1, · · · , Es,vs)

as a 1× (v1 + · · · vs) matrix.
Then the canonical divisor KF̃ is of the following form

KF̃ = π∗KF +
s∑
i=1

vi∑
j=1

ai,jEi,j.

Let
Ai = (ai,1, ai,2, · · · , ai,vi)T

be a vi × 1 matrix, where ( )T denotes the transpose of a matrix, and

A = (a1,1, · · · , a1,v1 , a2,1, · · · , as,vs)T ,

be a (v1 + · · ·+ vs)× 1 matrix, then KF̃ can be written as

KF̃ = π∗KF + EA

= π∗KF +
s∑
i=1

EiAi. (6.4.2)

Taking intersection product of KF̃ with the exceptional divisors Ei,j’s, we get, for all i =
1, · · · , s and k = 1, · · · , vi,

Ei,k ·KF̃ = Ei,k · π∗KF +

vi∑
j=1

ai,jMi,k,j +
∑
i′ 6=i

vi′∑
j=1

ai′,jEi,k · Ei′,j.

Note also that all the surfaces under consideration are compact and all the divisors are
Cartier. By the projection formula, Ei,k · π∗KF = 0 for k = 1, · · · , vi and i = 1, · · · , s. Also,
Ei,k ·Ei′,j = 0 when i 6= i′ since Ei,k ∩Ei′,j = ∅ (they are contracted to different points by π).
Therefore, we have

Ei,k ·KF̃ =

vi∑
j=1

Mi,k,jai,j.

Let
Ei ·KF̃ = (Ei,1 ·KF̃ , · · · , Ei,vi ·KF̃ ),

be a 1× vi matrix, then the above equality can be written as

MiAi = (Ei ·KF̃ )T . (6.4.3)

Now we list some basic results, in the form we shall use, concerning the resolution of singu-
larities of a normal surface.

i) For each i, the fiber π−1(pi) is connected. This follows from Zariski Main Theorem.

ii) Each Ei,j is a smooth complete curve, see Theorem 6.5.2 below.
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iii) For each i, Mi is a symmetric, negative definite vi × vi matrix, see [Mum1]. So Mi is a
fortiori invertible and we may define

Ni = −Mi
−1.

Then each Ni is symmetric and positive definite.

Hence, from the equality (6.4.3), we have

Ai = −Ni(Ei ·KF̃ )T ,

and hence by equality (6.4.2), we have

KF̃ = π∗KF −
s∑
i=1

EiNi(Ei ·KF̃ )T . (6.4.4)

Furthermore, by the adjunction formula,

Ei,j ·KF̃ = 2g(Ei,j)− 2− E2
i,j. (6.4.5)

We claim that, for all i, j, this number is always nonnegative. Indeed, if

2g(Ei,j)− 2− E2
i,j < 0,

Since E2
i,j is a diagonal entry for Mi, we have E2

i,j ≤ −1, so

2g(Ei,j) < 2 + E2
i,j ≤ 1;

we deduce that g(Ei,j) = 0, i.e., Ei,j is a rational curve. Moreover, from −2−E2
i,j < 0, E2

i,j ≤
−1, we get E2

i,j = −1, thus Ei,j is a (−1)-curve, contradicting our assumption that F̃ is a
minimal resolution.

The adjunction formula (6.4.5) above together with (6.4.4) also shows that KF̃ is uniquely
determined once we know the genera g(Ei,j)’s and the intersection matrices Mi’s.

Finally, by the projection formula, we have, by Formula (6.4.4),

K2
F̃
−K2

F
=

( s∑
i=1

EiNi(Ei ·KF̃ )T
)2

=
s∑
i=1

(
EiNi(Ei ·KF̃ )T

)2

.

Note that the term EiNi(Ei · KF̃ )T involves only the resolution of the point pi, hence the
above formula motivates us to study carefully the resolution of only one singularity of a
normal surface or more specifically, resolution of a normal surface germ.

Miyaoka–Yau number

Recall that pi is a singular point of F of multiplicity ri. By definition, we have

DCIri,d =

(
EiNi(Ei ·KF̃ )T

)2

,
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and hence

K2
F̃
−K2

F
=

s∑
i=1

DCIri,d =
∑
r

trDCIr,d.

Similarly, for the Euler number, we have

χ(F̃ )− χ(F ) =
s∑
i=1

DCIIri,d =
∑
r

trDCIIr,d,

therefore, by Example 6.3.5,

MY (F̃ ) = MY (F ) +
∑

tr(3DCIIr,d −DCIr,d)

= MY (F ) +
∑

trDMYr,d

=
∑
r

tr(d− 1)(r − 1)(3− r) +
∑
r

trDMYr,d

=
∑
r

tr((d− 1)(r − 1)(3− r) +DMYr,d). (6.4.6)

From this, we can see that the number (d− 1)(r− 1)(3− r) +DMYr,d is of great importance
in our computations of the Miyaoka-Yau numbers; for later convenience, we set

Er,d = (d− 1)(r − 1)(3− r) +DMYr,d.

We use the notation Er,d since we will estimate it carefully in the sequel and of course this
number depends only on r and d.

6.5 Resolution of singularities

Given a singular surface X, we can apply Hironaka’s desingularization process to get a
smooth surface X̃ and a proper birational morphism π : X̃ → X which is an isomorphism
away from the singular locus of X. Here we assume that X is normal. The normality of
X implies that X has only isolated singularities. Typical examples of normal surfaces are
hypersurfaces with isolated singularities in C3 or P3.

Let (X, 0) ⊆ (Cn, 0) be a germ of a singular surface with isolated singularity 0 and π :

X̃ → X be a resolution of the singularity. This resolution π is called very good if

(i) X̃ is a smooth complex surface with boundary ∂X̃ = ∂X;

(ii) π is a proper analytic morphism;

(iii) the exceptional divisor E := π−1(0) = ∪sj=1Ei has only normal crossings;

(iv) moreover, each Ej is a smooth curve for j = 1, · · · , s and Ej · Ek ≤ 1 for all j 6= k.

Recall also that a resolution π : X̃ → X is called minimal if the conditions above (i), (ii), (iv)

holds and there is no exceptional (−1)-curve C on X̃, i.e., C ⊆ π−1(0), C ∼= P1 and C2 = −1.
Since X is normal, E = π−1(0) is connected by Zariski Main Theorem; in particular, this is
the case for a hypersurface with an isolated singularity in C3. Note that a minimal resolution
is not necessarily very good, which is different from the definition of minimal resolution in
[Dim92], p.50.
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To a very good resolution π : X̃ → X, we can associate the dual graph: its vertices
correspond to the exceptional curves Ej, j = 1, · · · , s and two vertices Ej and Ek are joined
by an edge if and only if Ej ·Ek 6= 0. To include more information, one usually considers the
weighted dual graph, where the vertex corresponding to Ej is weighted by −E2

j .
Now let X be a hypersurface in a 3-dimensional projective manifold Y . Locally, X has the

form X : f(u, v, t) = 0 where (u, v, t) are the local coordinates of Y around the point under
consideration. Assume from now on X has only isolated singularities and 0 ∈ X is a singular
point of X, and the above local coordinates (x, y, t) are centered at 0.

We shall consider singularities of the type (X, 0) : f(u, v, t) = 0 with f(u, v, t) = Gr(u, v)+
td, where Gr(u, v) is a product of r distinct linear forms in u, v. For instance, when we consider
the compactification of the Milnor fiber of a line arrangement, each singular point is of this
type. Such a type of singularity in fact belongs to a special class of singularities, namely
weighted homogeneous singularities, whose resolutions are explicitly known.

6.5.1 Weighted homogenous singularities

Consider the C∗ action on C3 given by

a · (z1, z2, z3) = (aw1z1, a
w2z2, a

w3z3),

where the weights wi = weight(zi) are strictly positive integers satisfying

gcd(w1, w2, w3) = 1.

An isolated surface singularity (X ′, 0) : f ′(z1, z2, z3) = 0 is called weighted homogeneous of
degree N for the weights wi if

a · f ′(z1, z2, z3) = f ′(aw1z1, a
w2z2, a

w3z3) = aNf ′(z1, z2, z3), ∀a ∈ C∗.

In our situation, (X, 0) : f(u, v, t) = Gr(u, v) + td = 0 is weighted homogeneous with weights
w1 = weight(u) = d/ gcd(r, d),

w2 = weight(v) = d/ gcd(r, d),

w3 = weight(t) = r/ gcd(r, d).

and with degree N = dr/ gcd(r, d) = lcm(r, d). For the following theorem, see [Dim92],
Section 4.10.

Theorem 6.5.2. Let (X, 0) : f(u, v, t) = Gr(u, v) + td = 0, r ≤ d be an isolated weighted
homogeneous singularity of degree N = rd/ gcd(r, d), where Gr(u, v) is a product of r distinct
linear forms in u, v, for the weights

w1 = weight(u) = d/ gcd(r, d),

w2 = weight(v) = d/ gcd(r, d),

w3 = weight(t) = r/ gcd(r, d).

Then there is a resolution π : X̃ → X such that:

(i) there is a C∗ action on X̃ under which the morphism π is equivariant.
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(ii) the exceptional divisor π−1(0) has exactly one component, denoted by E0, which is fixed

pointwise by the C∗ action on X̃.

(iii) π−1(0) has the following form

π−1(0) = E0 ∪ E1 ∪ · · · ∪ Eq,

where for each k = 1, · · · , q,
Ek = E1

k ∪ · · · ∪ Er
k

is a disjoint union of r curves, corresponding to vertices of distance k from the center
in the dual graph below.

(iv) For each k = 1, · · · , q and j = 1, · · · , r, the curve Ej
k is a smooth rational irreducible

curve and has self-intersection (Ej
k)

2 = −nk ≤ −2 (independent of j).

(v) E0 is isomorphic to C = (X − {0})/C∗, a smooth curve of genus

g(C) =
1

2

[
N2

w1w2w3

−
∑
i<j

N gcd(wi, wj)

wiwj
+
∑
i

gcd(N,wi)

wi
− 1

]
=

1

2
(r − 2)(gcd(r, d)− 1). (6.5.1)

(vi) The components E0, E
j
k’s meet transversally according to the following star-shaped graph

v
@
@

�
� v

. . .

v
. .
.

vv v · · ·v· · · v vvv b n1n1 n2n2

nq−1 nqnq−1nq

where the central vertex corresponds to E0 and there are exactly r arms, which have the
same length q and the same weight sequences n1, · · · , nq.

(vii) Moreover, the above dual graph satisfies the following: if we index the arms 1, 2, · · · , r
from leftmost to right by the anticlockwise order and go along the arm indexed by j from
the end closest to E0 to the one farthest to E0, we get, in order, the vertices corresponding
to the curves Ej

1, E
j
2, · · · , Ej

q .

(viii) Let α = w1 = d/ gcd(r, d) and b′ = w3 = r/ gcd(r, d). When α = 1, then there are in fact
no arms, i.e., q = 0 and in this case, let β = 0. When α > 1, choose 0 < β < α such
that βb′ ≡ −1 modα. Then the weights of the vertices of the dual graph are determined
as follows:

• The weight of the central vertex is

b =
N

w1w2w3

+ rβ/α =
gcd(r, d)(1 + b′β)

α
.

• The weight sequence (n1, · · · , nq) along each arm is given by the following continued
fraction decomposition

α

β
= n1 −

1

n2 − 1
···− 1

nq

.
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Let (X, 0) : f(u, v, t) = Gr(u, v) + td = 0 be a surface germ in (C3, 0), where Gr is a

product of r distinct linear binary forms. Let π : X̃ → X be the resolution given in Theorem
6.5.2. With the notations in the theorem, we shall write the divisors on X̃,

Ek = E1
k + E2

k · · ·+ Er
k, k = 1, · · · , q.

Clearly, each Ek is a Cartier divisor with compact support on X̃, and

E2
k = −rnk, k = 1, · · · , q,

and

Ek · Ek′ =

{
r, if k′ = k ± 1,

0, otherwise.

Also,, we can see that
χ(X̃)− χ(X) = −1 + χ(E0) + rq.

Indeed, essentially X̃ is obtained from X by replacing 0 by (1 + rq) curves intersecting

according to the dual graph; E0 contributes to χ(E0) for χ(X̃); each arm in the dual graph
gives rise to a disjoint union of q copies of P1 \ {one point} ∼= C, and hence contributes q for

χ(X̃).
Moreover, note that KX̃ has the following form

KX̃ = π∗KX + a0E0 +
∑
k,j

ajkE
j
k.

As before, set
Ej = (Ej

1, · · · , Ej
q),

and
aj = (aj1, · · · , ajq),

then
KX̃ = π∗KX + a0E0 +

∑
j

Ej(aj)
T
.

By considering the adjunction formula, we have

E0 ·KX̃ = g(E0)− 2− E2
0 = 2g(E0)− 2 + b

and for all k, j,
Ej
k ·KX̃ = g(Ej

k)− 2− (Ej
k)

2 = −2 + nk,

hence, by projection formula and Theorem 6.5.2, we get a systems of equations{
−ba0 + (a11 + · · ·+ ar1) = (r − 2)(gcd(r, d)− 1)− 2 + b

−nkajk + (ajk−1 + ajk+1) = −2 + nk, ∀k, j
(6.5.2)

where we have denoted aj0 = a0 and ajq+1 = 0 for all j.
Recall that the intersection matrix of E0, E

l
k’s is negative definite, so from (6.5.2) we

can uniquely solve a0, a
j’s. Moreover, we can see that if (a0, a

1, · · · , ar) is a solution of the
system (6.5.2), (a0, a

j, a2, · · · , aj−1, aj, aj+1, · · · , ar) is also a solution for any j > 1, hence by
uniqueness of the solution, we have

a1 = a2 = · · · = ar,
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namely,
a1k = a2k = · · · = ark

for all k, hence KX̃ has the following form

KX̃ = π∗KX + a0E0 +

q∑
k=1

akEk = π∗KX +

q∑
k=0

akEk,

satisfying (following from (6.5.2)){
−ba0 + ra1 = (r − 2)(gcd(r, d)− 1)− 2 + b

−nkak + (ak−1 + ak+1) = −2 + nk, k = 1, · · · , q,
(6.5.3)

where aq+1 = 0.

6.6 Examples of resolutions of surfaces

Now we continue applying the notations in the above section, and considering the resolu-
tion given in Theorem 6.5.2 of the surface germ (X, 0) : Gr(x, y) + td = 0.

Example 6.6.1. When r = 2, then (X, 0) is a singularity of type Ad−1, and its minimal

resolution π : X̃ → X is well-known: the dual graph isv v v v· · ·

where there are (d − 1) vertices and each vertex has weight 2. Moreover, KX̃ = π∗KX (see
[Re]), so we have

DCIr,d = 0, DCIIr,d = d− 1,

hence
DMYr,d = 3(d− 1),

and
Er,d = (d− 1)(r − 1)(3− r) +DMYr,d = 4(d− 1). �

Note that when r = 2 and d = rp + 1 for p ≥ 1, the resolution given in Theorem 6.5.2 is
not minimal. Indeed, the central curve E0 is a (−1)-curve, as can be seen as follows: we have

gcd(r, d) = 1, α = d, b′ = 2,

and hence, by Formula (6.5.1)

g(E0) =
1

2
(r − 2)(gcd(r, d)− 1) = 0,

namely, E0 is a rational curve; moreover, since 0 < β < α is chosen so that b′β ≡ −1 modα
and by assumption α = b′p+ 1, we have

β = p.

Thus,

b =
gcd(r, d)(b′β + 1)

α
= 1,
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i.e., E2
0 = −1. That is, E0 is a (−1)-curve.

On the other hand, in this case,

α/β = d/p = (2p+ 1)/p,

considering the continued fraction decomposition in Theorem 6.5.2, we have n1 = 3; hence by
blowing down the (−1)-curve E0, we still have a smooth surface by Castelnuovo contraction
theorem, and the resulting surface still gives a minimal resolution: in fact, the dual graph is
obtained from that given in Theorem 6.5.2 by deleting the central vertex and replacing n1 by
n1 − 1.

In general, if r ≥ 3 and E0 is a (−1)-curve and n1 ≥ 3, after blowing down E0, we still
get a resolution surface of X. But now the dual graph is

@
@

�
� v

. . .

v
. .
.

vv v · · ·v· · · v vvv n′1n′1 n2n2

nq−1 nqnq−1nq

where n′1 = n1 − 1 and there is no central vertex, meaning that for the r exceptional curves

E1
1 , · · · , Er

1 corresponding to the vertices of weight n′1, we have Ej
1 · E

j′

1 = 1 for j 6= j′. In
particular, the new exceptional divisor does not have normal crossings.

Now assume r ≥ 3. We illustrate when the resolution in Theorem 6.5.2 is not minimal.
This is the case only if E0 is a (−1)-curve, since other exceptional irreducible curves all have
self-intersection ≤ −2. Therefore, we have g(E0) = 0 and b = 1, namely,{

0 = g(E0) = 1
2
(r − 2)(gcd(r, d)− 1)

1 = b = gcd(r, d)(b′β + 1)/α

hence we have gcd(r, d) = 1 and b′β + 1 = α. Now from gcd(r, d) = 1, we have by definition
α = d/ gcd(r, d) = d and b′ = r/ gcd(r, d) = r, so d = rβ + 1 with 0 < β < d.

Consequently, if d cannot be written as d = rp + 1 for some p ≥ 1, the resolution given
in Theorem 6.5.2 is already minimal. If, on the other hand, d = rp + 1 for some p ≥ 1, the
resolution given in Theorem 6.5.2 is not minimal and E0 is a (−1)-curve. By blowing down E0,

we get another resolution X̃ ′ of X, and moreover, since in this case α = b′β + 1 = rβ + 1, by
performing the continued fraction decomposition of α/β = (rβ+1)/β, we have n1 = r+1 ≥ 4,

hence X̃ ′ is a minimal resolution of X. In addition, note that the way to obtain the dual
graph for the resolution X̃ ′ → X has been discussed above.

In the sequel, by abuse of notation, we will not distinguish X̃ and X̃ ′ and always denote
X̃ the minimal resolution of X obtained, by blowing down the central curve E0 if necessary,
from the resolution given in Theorem 6.5.2.

Example 6.6.2. Let r ≥ 3 and d = rp, p ≥ 1. Then the resolution π : X̃ → X in Theorem
6.5.2 is minimal. So we immediately have

DCIIr,d = −1 + χ(E0) + rq, (6.6.1)

and if

KX̃ = π∗KX +

q∑
k=0

akEk,
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we have

DCIr,d =

( q∑
k=0

akEk

)2

. (6.6.2)

According to Theorem 6.5.2, we have

g(E0) = 1/2(r − 2)(gcd(r, d)− 1) = 1/2(r − 2)(r − 1);

moreover,
α = d/ gcd(r, d) = p, b′ = r/ gcd(r, d) = 1;

since β is chosen so that 0 < β < α satisfying b′β ≡ −1 modα, we have β = α− 1, therefore,

b = gcd(r, d)(b′β + 1)/α = r;

meanwhile, if α > 1,
α/β = p/(p− 1) = 2− (p− 2)/(p− 1)

performing the continued fraction decomposition as in Theorem 6.5.2, we have

q = p− 1

and
n1 = n2 = · · · = nq = 2.

Hence, by Formula (6.6.1),

DCIIr,d = rq − 1 + χ(E0) = r(p− 1)− 1 + r(3− r) = −1 + r(p+ 2− r).

By applying the equation (6.5.3), we obtain

−ra0 + ra1 = (r − 2)(r − 1)− 2 + r

−2a1 + (a0 + a2) = 0

−2a2 + (a1 + a3) = 0
...

−2aq + aq−1 = 0

therefore, by considering from bottom equation to the second top one, we have

aq−1 = 2aq, aq−2 = 3aq, · · · , a2 = (q − 1)aq, a1 = aq, a0 = (q + 1)aq,

and hence from the first equation, we get aq = −(r − 2). So if α > 1, i.e., q + 1 = p > 1, we
have

KX̃ = π∗KX − (r − 2)(Ep−1 + 2Ep−2 + · · ·+ (p− 1)E1 + pE0).

Similarly, if p = 1, we get q = 0, and

KX̃ = π∗KX − (r − 2)E0.

Thus, whether p > 1 or p = 1, we always have

KX̃ = π∗KX − (r − 2)(Ep−1 + 2Ep−2 + · · ·+ (p− 1)E1 + pE0).
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Recall that E2
0 = −b = −r and E2

k = −rnk = −2r; in addition, Ek ·Ek′ = r for k′ = k± 1,
=0 otherwise. Therefore, by Formula 6.6.2,

DCIr,d = (r − 2)2
(
Ep−1 + 2Ep−2 + · · ·+ (p− 1)E1 + pE0

)2

= (r − 2)2
( p∑
i=1

i2E2
p−i +

p−1∑
i=1

i(i+ 1)Ep−i · Ep−i−1
)

= (r − 2)2
(
−2r

p−1∑
i=1

i2 − rp2 + 2r

p−1∑
i=1

i(i+ 1)

)
= (r − 2)2(−rp)
= −d(r − 2)2

So

DMYr,d = 3DCIIr,d −DCIr,d
= 3(−1 + r(p+ 2− r)) + d(r − 2)2

= −3 + 3r(p+ 2− r) + d(r − 2)2.

Furthermore,

Er,d = DMYr,d + (d− 1)(r − 1)(3− r)
= −3 + 3r(p+ 2− r) + d(r − 2)2 + (d− 1)(r − 1)(3− r)

= −3− 3r(r − 2) + 3d+ d(r − 2)2 − (d− 1)

(
(r − 2)2 − 1

)
= −3− 3r(r − 2) + 3d+ (d− 1) + (r − 2)2

= 4(d− 1) + (r − 2)(r − 2− 3r)

= 4(d− 1)− 2(r − 2)(r + 1)

= 4(d− 1)− 2(r2 − r − 2)

= 4d− 2r(r − 1). �

Example 6.6.3. Let r ≥ 3 and d = rp+ 1, p ≥ 1. Then according to Theorem 6.5.2, we have

i) gcd(r, d) = 1, and hence by Formula (6.5.1),

g(E0) = 1/2(r − 2)(gcd(r, d)− 1) = 0,

so E0 is a rational curve.

ii) α = d/ gcd(r, d) = d and b′ = r/ gcd(r, d) = r, so

α = b′p+ 1;

since 0 < β < α is chosen so that b′β ≡ −1 modα, we have β = p, and thus

b = gcd(r, d)(b′β + 1)/α = 1,

therefore, E0 is a (−1)-curve. Blow it down, we get the minimal resolution π : X̃ → X.
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The canonical divisor KX̃ has the following form

KX̃ = π∗KX +

q∑
k=1

akEk,

where, different from Example 6.6.2, E1 = E1
1 + · · ·+Er

1 such that (El
1)

2 = −n′1 = −(n1 − 1)
and El

1 · El′
1 = 1 for l < l′.

iii) We have
α/β = (rp+ 1)/p,

so considering the continued fraction decomposition, we have

q = p,

and
n1 = r + 1, n2 = n3 = · · · = nq = 2.

Now taking the intersection product of KX̃ with El
k’s and applying the adjunction formula

and projection formula, we have

−n′1a1 + a2 + (r − 1)a1 = −2 + n′1
−n2a2 + (a1 + a3) = −2 + n2

−n3a2 + (a2 + a4) = −2 + n3

...

−nq−1aq−1 + (aq−2 + aq) = −2 + nq−1

−nqaq + aq−1 = −2 + nq

that is, 

−ra1 + a2 + (r − 1)a1 = −2 + r

−2a2 + (a1 + a3) = 0

−2a2 + (a2 + a4) = 0
...

−2aq−1 + (aq−2 + aq) = 0

−2aq + aq−1 = 0.

Just as in Example 6.6.2, we have

aq = −(r − 2); ak = (q + 1− k)aq, k = 1, · · · , q − 1.

Therefore, we have

KX̃ = π∗KX − (r − 2)(Ep + 2Ep−1 + · · ·+ pE1),

and thus,
DCIr,d = (r − 2)2(Ep + 2Ep−1 + · · ·+ pE1)

2.
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Note that E2
k = −rnk = −2r for k > 1 and

E2
1 = (E1

1 + · · ·+ Er
1)2

=
r∑
l=1

(El
1)

2 + 2
∑
l<l′

El
1 · El′

1

= r(−r) + 2 · r(r − 1)/2

= −r;

moreover, Ek ·Ek′ = r for k′ = k±1, =0 otherwise, hence a similar computation as in Example
6.6.2 gives

DCIr,d = (r − 2)2(Ep + 2Ep−1 + · · ·+ pE1)
2

= −(r − 2)2rp

= −(d− 1)(r − 2)2.

Clearly, we have
DCIIr,d = rq = rp = d− 1,

and thus

DMYr,d = 3DCIIr,d −DCIr,d
= 3(d− 1) + (d− 1)(r − 2)2.

Consequently,

Er,d = DMYr,d + (d− 1)(r − 1)(3− r)
= 3(d− 1) + (d− 1)(r − 2)2 + (d− 1)(r − 1)(3− r)
= 3(d− 1) + (d− 1)

= 4(d− 1). �

6.7 Numerical invariants for minimal resolutions: gen-

eral case

Now we consider the general case for Theorem 6.5.2. Although our method applies for
more general situations, we assume r ≥ 3 and d 6≡ 0, 1 mod r, since otherwise we are done by
Example 6.6.1, Example 6.6.2 and Example 6.6.3. In particular, the resolution π : X̃ → X
given in Theorem 6.5.2 is a minimal resolution.

6.7.1 Continued fraction decomposition

In order to apply Theorem 6.5.2, we first deal with the continued fraction decomposition

α

β
= n1 −

1

n2 − 1
···− 1

nq

.

Recall that β is chosen such that b′β ≡ −1 modα, hence gcd(α, β) = 1. Let

α0, α1, · · · , αq−1, αq = 1, αq+1 = 0
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be a sequence of natural numbers such that gcd(αi, αi+1) = 1 for i = 0, 1, · · · , q and

αi
αi+1

= ni+1 −
1

ni+2 − 1
···− 1

nq

, i = 0, 1, · · · , q − 1. (6.7.1)

Clearly, the numbers αi’s are uniquely determined by the continued fraction decomposition
above, and αi > 0 for i < q + 1.

Moreover, we have by definition (6.7.1)

αi−1
αi

= ni −
1

αi/αi+1

=
niαi − αi+1

αi
,

hence
αi−1 = niαi − αi+1,

or in another more convenient formulation(
αi−1
αi

)
=

(
ni −1
1 0

)(
αi
αi+1

)
. (6.7.2)

Set for i = 1, · · · , q,

Gi =

(
ni −1
1 0

)
(6.7.3)

be a 2× 2 matrix. Then the relation (6.7.2) can be formulated as(
αi−1
αi

)
= Gi

(
αi
αi+1

)
.

Thus, we have (
αi−1
αi

)
= GiGi+1 · · ·Gq

(
αq
αq+1

)
= GiGi+1 · · ·Gq

(
1
0

)
(6.7.4)

for all i ≥ 1.
Note also that by definition (6.7.1) and our conventions, α0 = α and α1 = β.
Let

G = G1G2 · · ·Gq,

then by (6.7.4), we have (
α
β

)
=

(
α0

α1

)
= G

(
1
0

)
.

So G is of the form

G =

(
α γ
β δ

)
for some integers γ, δ. In fact, we have the following more precise result.

Proposition 6.7.2. With the notations as above and in Theorem 6.5.2, we have

G =

(
α b′ − α
β 1+b′β

α
− β

)
,

namely, γ = b′ − α and δ = −β + (1 + b′β)/α.
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Proof. First, we show

Claim 6.7.3. −α < γ ≤ 0 and −β < δ ≤ 0.

Assuming the claim, note that by definition,

det G = αδ − βγ = 1,

hence βγ ≡ −1 modα. Recall also the b′β ≡ −1 modα, so we have γ = b′−α since γ, b′−α ∈
(−α, 0] and the equation βx ≡ −1 modα admits a unique solution satisfying x ∈ (−α, 0]. In
addition,

δ =
1 + βγ

α
=

1 + β(b′ − α)

α
=

1 + b′β

α
− β.

Proof of Claim 6.7.3: For i ≥ 1, let(
ξi γi
ηi δi

)
= G1G2 · · ·Gi,

then ξi, ηi, γi, δi are all integers. It suffices to show the following:

(i) ξi, ηi > 0 for all i.

(ii) γi ∈ (−ξi, 0] and δi ∈ (−ηi, 0] for all i.

We prove this by induction on i. When i = 1, then we have(
ξ1 γ1
η1 δ1

)
= G1 =

(
n1 −1
1 0

)
,

and the conclusion obviously holds. Now assuming the validity of the result for i, we have(
ξi+1 γi+1

ηi+1 δi+1

)
=

(
ξi γi
ηi δi

)
Gi+1 =

(
ξi γi
ηi δi

)(
ni+1 −1

1 0

)
.

Therefore,

i) ξi+1 = ni+1ξi + γi > 2ξi − ξi > 0 since ni+1 ≥ 2 and by inductive hypothesis, ξi > 0 and
γi ∈ (−ξi, 0]. Similarly, ηi+1 = ni+1ηi + γi > 0 by the inductive hypothesis ηi > 0 and
γi ∈ (−ηi, 0].

ii) γi+1 = −ξi < 0 since ξi > 0; in addition,

γi+1 + ξi+1 = −ξi + (ni+1ξi + γi) > (ni+1 − 2)ξi ≥ 0,

since ni+1 ≥ 2 and γi > −ξi by the inductive hypothesis. Similarly, δi+1 = −ηi < 0 and

δi+1 + ηi+1 = −ηi + (ni+1ηi + δi) > (ni+1 − 2)ηi ≥ 0.

We are done.
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6.7.4 Formulae about canonical divisor

As before, we assume

KX̃ = π∗KX +

q∑
i=0

aiEi.

Therefore,

DCIr,d =

( q∑
i=0

aiEi

)2

=

q∑
i=0

a2iE
2
i + 2

q−1∑
i=0

aiai+1Ei · Ei+1.

Recall that E2
0 = −b and E2

i = −rni for i > 0. In addition, Ei · Ei′ = r for i′ = i ± 1, =0
otherwise. Hence, we have

DCIr,d = −ba20 − r
q∑
i=1

a2ini + 2r

q−1∑
i=0

aiai+1

= −ba20 − r
q∑
i=1

nia
2
i + 2r

q∑
i=1

aiai−1

= −ba20 + r

q∑
i=1

ai(2ai−1 − niai).

By (6.5.3), we have −niai + ai−1 + ai+1 = −2 + ni, so

DCIr,d = −ba20 + r

q∑
i=1

ai(ai−1 − ai+1 + ni − 2)

= −ba20 + r

q∑
i=1

(ni − 2)ai + r

( q∑
i=1

aiai−1 −
q∑
i=1

aiai+1

)

= −ba20 + r

( q∑
i=1

niai − 2

q∑
i=1

ai

)
+ r

( q−1∑
i=0

aiai+1 −
q∑
i=1

aiai+1

)

= −ba20 + r

( q∑
i=1

niai − 2

q∑
i=1

ai

)
+ ra0a1

= a0(−ba0 + ra1) + r

( q∑
i=1

niai − 2

q∑
i=1

ai

)
(6.7.5)
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By (6.5.3), we have −ba0+ra1 = (r−2)(gcd(r, d)−1)−2+b and −niai+ai−1+ai+1 = −2+ni,
so

q∑
i=1

niai − 2

q∑
i=1

ai =

q∑
i=1

(ai−1 + ai+1 − (ni − 2))− 2

q∑
i=1

ai

= −
q∑
i=1

(ni − 2) +

q∑
i=1

(ai−1 − ai)−
q∑
i=1

(ai − ai+1)

= −
q∑
i=1

(ni − 2) +

q−1∑
i=0

(ai − ai+1)−
q∑
i=1

(ai − ai+1)

= −
q∑
i=1

(ni − 2) + (a0 − a1 − aq);

consequently, by (6.7.5), we get

DCIr,d = a0((r − 2)(gcd(r, d)− 1)− 2 + b)− r
q∑
i=1

(ni − 2) + r(a0 − a1 − aq)

= a0

(
gcd(r, d)(r − 2) + b− r

)
− r

q∑
i=1

(ni − 2)

+r(a0 − a1 − aq). (6.7.6)

Now we are to compute a0, a1 and aq. By equation (6.5.3), we have

−ba0 + ra1 = (r − 2)(gcd(r, d)− 1)− 2 + b

−n1a1 + (a0 + a2) = −2 + n1

−n2a2 + (a1 + a3) = −2 + n2

...

−nq−1aq−1 + (aq−2 + aq) = −2 + nq−1

−nqaq + aq−1 = −2 + nq.

Let a∗i = ai + 1 for i = 0, 1, · · · , q + 1. Recall also that aq+1 = 0. Then the above equations
can be reformulated into a more convenient form:

−ba∗0 + ra∗1 = gcd(r, d)(r − 2)

−n1a
∗
1 + (a∗0 + a∗2) = 0

−n2a
∗
2 + (a∗1 + a∗3) = 0
...

−nq−1a∗q−1 + (a∗q−2 + a∗q) = 0

−nqa∗q + (a∗q−1 + n∗q+1) = 0.

With the help of the matrices Gi defined in (6.7.3), we have(
a∗i−1
a∗i

)
= Gi

(
a∗i
a∗i+1

)
,
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hence (
a∗0
a∗1

)
= G1 · · ·Gq

(
a∗q
a∗q+1

)
= G

(
a∗q
1

)
.

By Proposition 6.7.2, we thus have{
a∗0 = αa∗q + (b′ − α) = αaq + b′

a∗1 = βa∗q + (1+b
′β

α
− β) = βaq + (1 + b′β)/α,

(6.7.7)

so

−ba∗0 + ra∗1 = −bαaq − bb′ + rβaq + r(1 + b′β)/α

= (rβ − bα)aq +

(
−bb′ + r(1 + b′β)/α

)
.

Recall that b = gcd(r, d)(1 + b′β)/α and b′ = r/ gcd(r, d), we have

rβ − bα = rβ − gcd(r, d)(1 + b′β) = − gcd(r, d),

and

−bb′ + r(1 + b′β)

α
= −gcd(r, d)(1 + b′β)

α
· r

gcd(r, d)
+
r(1 + b′β)

α
= 0;

therefore, −ba∗0 + ra∗1 = − gcd(r, d)aq.
From the equation −ba∗0 + ra∗1 = gcd(r, d)(r − 2), we thus get

aq = −(r − 2).

Recall that a∗i = ai + 1, by (6.7.7), we obtain{
a0 = (2− r)α + b′ − 1,

a1 = (2− r)β + 1+b′β
α
− 1.

As a conclusion, by (6.7.6), we get

DCIr,d = ((2− r)α + b′ − 1)(gcd(r, d)(r − 2) + b− r)− r
q∑
i=1

(ni − 2)

+r

(
(2− r)(α− β) + b′ − 1 + b′β

α

)
+ r(r − 2)

= −(r − 2)2α gcd(r, d)− r
q∑
i=1

(ni − 2)

+

(
(b′ − 1)(b− r) + r(b′ − 1 + b′β

α
)

)
+(r − 2)

(
−α(b− r) + gcd(r, d)(b′ − 1)− r(α− β) + r

)
.

Recall that α = d/ gcd(r, d), so α gcd(r, d) = d. Recall also that b = gcd(r, d)(1 + b′β)/α and
b′ = r/ gcd(r, d), so

(b′ − 1)(b− r) =
r − gcd(r, d)

gcd(r, d)
·
(

gcd(r, d)(1 + b′β)

α
− gcd(r, d)b′

)
= (r − gcd(r, d))

(
1 + b′β

α
− b′

)
,
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and thus,

(b′ − 1)(b− r) + r

(
b′ − 1 + b′β

α

)
= gcd(r, d)

(
b′ − 1 + b′β

α

)
= r − b.

Moreover, we have

−α(b− r) + gcd(r, d)(b′ − 1)− r(α− β) + r

= −α
(

gcd(r, d)(1 + b′β)

α
− r
)

+ (r − gcd(r, d))− r(α− β) + r

= 2r − 2 gcd(r, d) + (rβ − gcd(r, d)b′β)

= 2r − 2 gcd(r, d).

Therefore, putting all these together, we have

DCIr,d = −d(r − 2)2 − r
q∑
i=1

(ni − 2) + 2(r − 2)(r − gcd(r, d)) + (r − b). (6.7.8)

It is clear, in the above formula, that the first term −d(r− 2)2 is obviously negative, and also
−r
∑q

i=1(ni − 2) ≤ 0 since ni ≥ 2. We can see that the remaining two terms are positive,
and in fact we need to estimate them carefully later. Indeed, 2(r− 2)(r− gcd(r, d)) ≥ 0 since
r ≥ 3 and r ≥ gcd(r, d) always; also

r − b = gcd(r, d)

(
b′ − 1 + b′β

α

)
=

gcd(r, d)

α
(b′(α− β)− 1)

is also nonnegative since α− β > 0 and b′ ≥ 1.

6.7.5 Estimations of the Miyaoka-Yau numbers

We continue to consider the Miyaoka-Yau number of the minimal resolution π : F̃ → F .
As for Formula (6.7.8), we also need the formula for DCIIr,d; but this is easy. In fact, we
have

DCIIr,d = −1 + χ(E0) + rq = 1 + rq − (r − 2)(gcd(r, d)− 1). (6.7.9)

Hence, by definition,

DMYr,d = 3DCIIr,d −DCIr,d

= 3(1 + rq)− 3(r − 2)(gcd(r, d)− 1) + d(r − 2)2 + r

q∑
i=1

(ni − 2)

−2(r − 2)(r − gcd(r, d))− (r − b)

=

(
3(1 + rq) + r

q∑
i=1

(ni − 2)

)
+ d(r − 2)2

−
(

(r − 2)(gcd(r, d) + 2r − 3) + (r − b)
)
,

=

(
3(1 + rq) + r

q∑
i=1

(ni − 2)

)
+ (d− 1)(r − 2)2

−
(

(r − 2)(gcd(r, d) + r − 1) + (r − b)
)
,
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hence,

Er,d = DMYr,d + (d− 1)(r − 1)(3− r)

= DMYr,d − (d− 1)

(
(r − 2)2 − 1

)
=

(
3(1 + rq) + r

q∑
i=1

(ni − 2)

)
+ (d− 1)

−
(

(r − 2)(gcd(r, d) + r − 1) + (r − b)
)

=

(
r

q∑
i=1

(ni + 1)

)
+ (d+ 2)

−
(

(r − 2)(gcd(r, d) + r − 1) + (r − b)
)
. (6.7.10)

Now we begin to estimate Er,d. First, we have

(r − 2)(gcd(r, d) + r − 1) + (r − b)
≤ (r − 2)(2r − 1) + r

= 2r(r − 2) + 2

= 2(r − 1)2,

so the following hold:

Er,d ≥
(
r

q∑
i=1

(ni + 1)

)
+ (d+ 2)− 2(r − 1)2

≥ −2(r − 1)2

> −2r(r − 1). (6.7.11)

Remark 6.7.6. 1. The above estimate is also true when d ≡ 1 mod r by Example 6.6.3
and when r|d by Example 6.6.2.

2. The above estimate is far from optimal, as one can easily see. However, it turns out
this is enough for our purpose.

As an application of the above calculations, we give a new example of computing Er,d by
directly using Formula (6.7.10).

Example 6.7.7. Let r ≥ 3 and d = r(p − 1) + (r − 1) = rp − 1 for p ≥ 2. Then in view of
Formula (6.7.10), we have

(i) gcd(r, d) = 1, so α = d/ gcd(r, d) = d and b′ = r/ gcd(r, d) = r. Since α = b′p − 1
and by assumption β is chosen so that 0 ≤ β < α satisfying b′β ≡ −1 modα, we have
β = α− p = p(r − 1)− 1.

(ii) We get

b =
gcd(r, d)(1 + b′β)

α
= r − 1.
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(iii) We have
α

β
=

d

r(p− 1)− 1
=

rp− 1

r(p− 1)− 1
,

doing the continued fraction decomposition, we see that

q = p+ r − 3,

and
n1 = · · · = np−2 = 2, np−1 = 3, np = np+1 = · · · = np+r−3 = 2.

Therefore,

r

q∑
i=1

(ni + 1) = r(3q + 1) = 3r(p+ r)− 8r = 3(d+ 1) + 3r2 − 8r.

(iv) Eventually, by (6.7.8), we have

DCIr,d = −d(r − 2)2 − r + 2(r − 2)(r − 1) + (r − (r − 1))

= −d(r − 2)2 + (2r − 5)(r − 1);

by (6.7.9), we have

DCIIr,d = 1 + rq − (r − 2)(gcd(r, d)− 1)

= 1 + r(p+ r − 3)

= d+ (r − 1)(r − 2);

by (6.7.10), we obtain

Er,d =

(
3(d+ 1) + 3r2 − 8r

)
+ (d+ 2)−

(
r(r − 2) + 1

)
= 4(d+ 1) + 2r(r − 3).

Consequently, when r = 3, we have the following:

(1) when 3|d, we have E3,d = 4d− 12 by Example 6.6.2;

(2) when d ≡ 1 mod 3, we have E3,d = 4(d− 1) by Example 6.6.3;

(3) when d ≡ 2 mod 3, we have E3,d = 4(d+ 1) by the results above.

In particular, when d ≥ 4, it is always true that E3,d ≥ 4(d− 3).

6.8 The minimal resolution is not a ball quotient

Let π : F̃ → F be the minimal resolution obtained in previous sections. Then we have
the following.

Theorem 6.8.1. Assume d = |A| ≥ 2 and that for d = 3, A is not a pencil. Then MY (F̃ ) 6=
0.

In particular, F̃ is not a ball quotient.
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Proof. The proof will be divided into three cases with respect to the values of td and td−1.

i) When the lines in A form a pencil, namely, td = 1, we have, d 6= 3 by the assumption of
Theorem 6.8.1; moreover, by Example 6.6.1, Example 6.6.2 and Formula (6.4.6),

MY (F̃ ) = Ed,d
= 4d− 2d(d− 1)

= 2d(3− d)

6= 0.

ii) If td = 0 while td−1 6= 0, then we have td−1 = 1 and t2 = d − 1 (if d = 3, t2 = d = 3).
Moreover, by Example 6.6.1 and Example 6.6.3, in view of (6.4.6), we have

MY (F̃ ) =
∑
r

trEr,d

= t2E2,d + td−1Er,d

= (d− 1)

(
4(d− 1)

)
+ 4(d− 1)

= 4d(d− 1) > 0.

iii) Now we consider the case td = 0, td−1 = 0. Then by the estimation (6.7.11), we have

MY (F̃ ) =
∑
r

trEr,d

= t2E2,d + t3E3,d +
∑
r≥4

trEr,d

≥ t2E2,d + t3E3,d − 2
∑
r≥4

trr(r − 1)

=

(
t2(E2,d + 4) + t3(E3,d + 12)

)
− 2

∑
r

trr(r − 1).

From Remark 6.3.6, we have
∑

r trr(r − 1) = d(d − 1); moreover, from Example 6.6.1
and the end of Example 6.7.7, we deduce that

MY (F̃ ) ≥ 4d(t2 + t3)− 2d(d− 1)

= 2d

(
2(t2 + t3)− (d− 1)

)
. (6.8.1)

Now we use the celebrated inequality in the second remark added in proof of [Hi], which
states that

t2 +
3

4
t3 ≥ d+

∑
r≥5

(r − 4)tr,

see also [Sa] or Appendix A of [Tr]. In particular, t2 + t3 ≥ d. It follows immediately, by
(6.8.1), that

MY (F̃ ) > 0.

The proof now is complete.
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Remark 6.8.2. When d = |A| = 3 andA is a pencil, i.e., t3 = 1, thenMY (F̃ ) = 0. Moreover,
using Formula (6.7.8), a similar computation as in Example 6.6.2 gives DCI3,3 = −3. Hence,
by Example 6.3.5, we have

c21(F̃ ) = K2
F̃

= K2
F

+DCI3,3 = 3× (3− 4)2 − 3 = 0.

Moreover, c2(F̃ ) = 0 since MY (F̃ ) = 3c2(F̃ )− c21(F̃ ) = 0.
Since c2 > 0 for a smooth projective surface of general type (see [BHPV], Chapter VII),

it follows that F̃ is not of general type. In particular, F̃ is not a ball quotient.

Remark 6.8.3. Note that a ball quotient cannot admits any rational curves. In fact, for
any smooth projective curve surface X, any given morphism f : P1 → X lifts to a morphism
f̃ : P1 → X̃ since P1 is simply connected, where X̃ is the universal cover of X. If X is a ball
quotient or equivalently X̃ is biholomorphic to a ball, then f̃ and hence f must be constant.

When the line arrangement A is not a pencil, from Theorem 6.5.2, F̃ clearly contains
rational curves in the exceptional divisors; it follows immediately that F̃ is not a ball quotient.
However, we have showed above that MY (F̃ ) > 0 whenA is not a pencil; this is much stronger
than the non-ball-quotient property.



7
Surfaces of general type associated to line

arrangements

Let A be a line arrangement in P2. It remains an interesting question whether the as-
sociated F̃ is of general type. In fact, as we have shown in the proof of Theorem 6.8.1,
MY (F̃ ) > 0 when A is not a pencil, hence this equation is quite natural in view of the
Miyaoka-Yau inequality.

7.1 General type criteria

Recall that the smooth projective surface X is said to be of general type if KX is big.
Moreover, X is of general type if and only if its minimal model X ′ is; in addition, if X is of
general type, then X ′ is unique and KX′ is big and nef.

From the Enriques-Kodaira classification of compact smooth surfaces (see [BHPV], Chap-
ter VI), we see that the condition K2

X > 0 is a very restrictive condition for a minimal
surface X. Indeed, if X is a smooth minimal projective surface and K2

X > 0, then either
X is of general type or X is birationally isomorphic to P2 with the additional property that
K2
X = 9, c2(X) = 3 or K2

X = 8, c2(X) = 4.
In fact, we have the following criteria for a smooth projective surface to be of general type.

Proposition 7.1.1. Let X be a smooth projective surface. If c21(X) > 9, then X is of general
type.

Proof. Let X ′ be a minimal model of X. Then X ′ is obtained by successively blowing down
(−1)-curves. Note that once we blow down a (−1)-curve, c21 increases by 1, so c21(X) ≥
c21(X) > 9, hence by the Enriques-Kodaira classification of surfaces (see [BHPV], Chapter
VI), X ′ is of general type, and thus so is X.

A similar proof gives the following more useful criterion.

Proposition 7.1.2. Let X be a smooth projective surface. If c21(X) ≥ k > 0 and 3c2(X) −
c21(X) > 4(9− k), then X is of general type.

Proof. We may assume k ≤ 9, otherwise just apply Proposition 7.1.1.
Let X ′ be a minimal model of X. Then X ′ is obtained by successively blowing down

(−1)-curves. Note also that once we blow down a (−1)-curve, c21 increases by 1 and c2(X)
decreases by 1, so 3c2 − c21 decreases by 4. In addition, we have c21(X

′) ≥ k > 0.



7.1. General type criteria 101

By the Enriques-Kodaira classification of surfaces (see [BHPV], Chapter VI), if X ′ is not
of general type, then c21(X

′)2 = 9, c2(X
′) = 3 or c21(X

′) = 8, c2(X
′) = 4. So we consider the

following cases:

(i) if c21(X
′)2 = 9, c2(X

′) = 3, then by considering the change of c21, we need 9−c21(X) ≤ 9−k
blow-downs to obtain X ′ from X, hence

3c2(X
′)− c21(X ′) = (3c2(X)− c21(X))− 4(9− c21(X))

> 4(9− k)− 4(9− k)

= 0,

while we known explicitly that c21(X
′)2 = 9, c2(X

′) = 3. So we get a contraction.

(ii) if c21(X
′) = 8, c2(X

′) = 4, then proceeding as in the first case, we get

4 = 3c2(X
′)− c21(X ′)

= (3c2(X)− c21(X))− 4(8− c21(X))

> 4(9− k)− 4(8− k)

= 4,

contradiction.

For a generic line arrangement, V (Q) has only nodes as singularities, and by Example
6.6.1, DCI2,d = 0, and hence, by Example 6.3.5

K2
F̃

= K2
F

= d(d− 4)2 > 9

for d ≥ 6, hence F̃ is of general type by Proposition 7.1.1. On the other hand, if the line
arrangement A is a pencil, i.e., td = 1, then by Example 6.6.2, we have

MY (F̃ ) = 2d(3− d) < 0

for d ≥ 4, thus F̃ is not of general type in view of the Miyaoka-Yau inequality.
Moreover, inspired by [Hi], it is natural to conjecture that F̃ is of general type if A is not

too singular, i.e., tr = 0 for r large compared with d.
Now we give an example before we proceed to investigate in detail. We will continue to

apply, without mentioning again, the notations in the previous chapter.

Example 7.1.3. Let A1 : (x − y)(x − 2y)(x − 3y)(x − 4y) = 0. Then A1 is a pencil in P2

consisting of 4 lines. Now add two more generic lines to A1, we get a line arrangement A
containing 6 lines with t2 = 9, t4 = 1 and tr = 0 for other r’s. Let F = F (A), F be the

compactification of F and π : F̃ → F be the minimal resolution given by Theorem 6.5.2.
Step 1: Resolutions of singular points with r = 4, d = 6
Let p be the only singular point of F of multiplicity 4. Then according to Theorem 6.5.2,

we have

(i) r = 4, d = 6, hence gcd(r, d) = 2 and

g(E0) = 1/2(r − 2)(gcd(r, d)− 1) = 1.

(ii) α = d/ gcd(r, d) = 3, b′ = r/ gcd(r, d) = 2, hence β = 1 and thus,

b = gcd(r, d)(b′β + 1)/α = 2.
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(iii) α/β = 3, hence q = 1 and n1 = 3.

By (6.7.8), we have

DCI4,6 = −d(r − 2)2 − r
q∑
i=1

(ni − 2) + 2(r − 2)(r − gcd(r, d)) + (r − b)

= −6× 4− 4× 1 + 2× 2× (4− 2) + (4− 2)

= −18;

and by (6.7.9)

DCII4,6 = 1 + rq − (r − 2)(gcd(r, d)− 1)

= 1 + 4× 1− 2× (2− 1)

= 3;

and by (6.7.10),

E4,6 = r

q∑
i=1

(ni + 1) + (d+ 2)−
(

(r − 2)(gcd(r, d) + r − 1) + (r − b)
)

= 4× 4 + 8− (2× 5 + 2)

= 12.

Step 2: Miyaoka–Yau number of F̃
By Example 6.6.1, we have E2,6 = 4(d− 1) = 20. Therefore,

MY (F̃ ) = t2E2,6 + t4E4,6 = 9× 20 + 1× 12 = 192.

Hence, as we have shown in Theorem 6.8.1, F̃ is not a ball quotient.
Step 3: Is F̃ of general type?
Note that possibly F̃ is not a minimal surface, namely, it may contain a curve of self-

intersection −1. Recall that even if F̃ is a minimal resolution, hence no exceptional rational
curve has self-intersection -1, it can still happen that there exists a rational (−1)-curve C on

F̃ such that C is not exceptional, i.e., C is not contracted by π.
By Example 6.6.1, DCI2,6 = 0, hence

K2
F̃

= K2
F

+ t4 ·DCI4,6 = 6× (6− 4)2 + (−18) = 6 > 0;

and we also have MY (F̃ ) = 192 > 4(9 −K2
F̃

), so F̃ is of general type by Proposition 7.1.2.
�

Note that for a smooth projective surface X, we have

(3c2(X)− c1(X))− 4(9− c21(X)) = 3(c21(X) + c2(X)− 12).

hence by Proposition 7.1.2, X is of general type if c21(X) > 0 and c21(X) + c2(X) > 12.

Remark 7.1.4. By Noether’s formula (see [BHPV]), when X is a smooth projective surface,
we have

χ(X,OX) =
1

12
(c21(X) + c2(X)),

so c21(X) + c2(X) > 12 means exactly that χ(X,OX) > 1.
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7.2 Surfaces associated to line arrangements with only

nodes and triple points

In the sequel, we consider surfaces associated to line arrangements such that tr = 0
whenever r ≥ 4.

For r = 2, by Example 6.6.1, we have

DCI2,d = 0.

When r = 3, we have

(i) If 3|d, DCI3,d = −d,DCII3,d = d− 4 by Example 6.6.2;

(ii) If d ≡ 1 mod 3, DCI3,d = −(d− 1), DCII3,d = d− 1 by Example 6.6.3;

(iii) If d ≡ 2 mod 3, we have DCI3,d = −(d− 2), DCIIr,d = d+ 2 by Example 6.7.7

7.2.1 Case 3|d
When d = 3p with p ≥ 2, we have as above that DCI3,d = −d. Hence the first Chern

number of F̃ is

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d

= d(d− 4)2 − t3d
= d((d− 4)2 − t3).

By Remark 6.3.6, we have 2t2 +6t3 = d(d−1), hence t3 ≤ d(d−1)/6 and when d = 3p ≥ 9

(d− 4)2 − t3 ≥
1

6
(5d2 − 47d+ 96) ≥ 1

6
(5 · 92 − 47 · 9 + 96) = 13.

When d = 3p = 6, where exists a line arrangement containing 6 lines such that t3 ≥ 4, so
a direct computation gives c21(F̃ ) ≤ 0. Therefore, to apply Proposition 7.1.1 or Proposition
7.1.2, we assume d = 3p ≥ 9.

Then as is shown above (d− 4)2 − t3 ≥ 3, thus

c21(F̃ ) = d((d− 4)2 − t3) ≥ 9 · 13 > 9.

Therefore F̃ is of general type by Proposition 7.1.1.
In addition, by (6.3.3),

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d = d(d2 − 4d+ 6)− 3t3d.

Hence
c21(F̃ )

c2(F̃ )
=

(d− 4)2 − t3
d2 − 4d+ 6− 3t3

=
1

3

(
1 +

2(d− 3)(d− 7)

d2 − 4d+ 6− 3t3

)
.
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Example 7.2.2. As in [Art], there are two line arrangements A1 and A2 in P2 such that

b1(F (A1)) = 10, b1(F (A2)) = 8

while A1,A2 have the same number of multiple points, namely, for each of them,

d = 9, t2 = 9, t3 = 9, tr = 0, r ≥ 4.

Let F̃ (Ai) be the surfaces associated to Ai for i = 1, 2. Then they are of general type by the
discussion above.

Note also that F̃ (Ai) can be seen as a smooth compactification of F (Ai), hence by Theorem
2.1.9

dimW1H
1(F (Ai)) ' dimH1(F̃ (Ai) = b1(F̃ (Ai)), i = 1, 2.

See also the derivations of Formula (7.3.5) in the next Chapter. Moreover, note that for each
i, H1(F (Ai)) has two weights 1, 2 and GrW2 H

1(F (Ai)) ' H1(M(Ai)), hence

dimGrW2 H
1(F (Ai)) = dimH1(M(Ai)) = |Ai| − 1 = 8.

Consequently, b1(F̃ (A1)) = 2 while b1(F (A2)) = 0. In particular, they have very different
topology.

Note that the Chern numbers of F̃ (Ai), i = 1, 2 are uniquely determined by the number
of multiple points of Ai, hence they are the same. Therefore, this example gives explicit
smooth projective surfaces with the same Chern numbers but different first Betti numbers.
Since the first Betti number is a birational invariant, we conclude that F̃ (Ai), i = 1, 2 are not
birationally equivalent.

7.2.3 Case d ≡ 1 mod 3

When d = 3p + 1 with p ≥ 1, we have that DCI3,d = −(d − 1). Hence the first Chern

number of F̃ is

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d

= d(d− 4)2 − t3(d− 1).

Since 2t2 + 6t3 = d(d− 1), we have t3 ≤ d(d− 1)/6 so, when p ≥ 2 or equivalently d ≥ 7

c21(F̃ ) ≥ d(d− 4)2 − 1

6
d(d− 1)2

=
1

6
d(5d2 − 46d+ 95)

≥ 1

6
· 7 · (5 · 72 − 46 · 7 + 95)

= 21 > 9,

hence, F̃ is of general type by Proposition 7.1.1.
In addition,

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d = d(d2 − 4d+ 6)− 3(d− 1)t3.

Hence,

c21(F̃ )

c2(F̃ )
=

d(d− 4)2 − (d− 1)t3
d(d2 − 4d+ 6)− 3(d− 1)t3

=
1

3

(
1 +

2d(d− 3)(d− 7)

d(d2 − 4d+ 6)− 3(d− 1)t3

)
.
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7.2.4 Case d ≡ 2 mod 3

When d = 3p+ 2 with p ≥ 1, we have that DCI3,d = −(d− 2). So the first Chern number

of F̃ is

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d

= d(d− 4)2 − t3(d− 2).

Since 2t2 + 6t3 = d(d− 1), we have t3 ≤ d(d− 1)/6 so, when p ≥ 2 or equivalently d ≥ 8

c21(F̃ ) ≥ d(d− 4)2 − 1

6
d(d− 1)(d− 2)

=
1

6
d(5d2 − 45d+ 94)

≥ 1

6
· 8 · (5 · 82 − 45 · 8 + 94)

= 72 > 9,

hence, F̃ is of general type by Proposition 7.1.1. In addition,

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d = d(d2 − 4d+ 6)− 3(d− 2)t3.

hence,

c21(F̃ )

c2(F̃ )
=

d(d− 4)2 − (d− 2)t3
d(d2 − 4d+ 6)− 3(d− 2)t3

=
1

3

(
1 +

2d(d− 3)(d− 7)

d(d2 − 4d+ 6)− 3(d− 2)t3

)
.

We have the following.

Theorem 7.2.5. Let A be a line arrangement of P2 containing d ≥ 7 lines such that tr = 0
for r ≥ 4. Then the associated surface F̃ is of general type.

All the Hodge numbers of F̃ are determined by the combinatorics of A. In addition,
b1(F̃ ) ≤ 4.

Proof. The first statement follows from the discussions above.
The last claim follows the fact that b1(F̃ ) = 2β3(A), see Section 7.3 below, where β3(A) is

the Papadima-Suciu invariant introduced in [PaS], where the authors show that 0 ≤ β3(A) ≤ 2
for any line arrangement satisfying tr = 0 for r ≥ 4.

Remark 7.2.6. 1. The Theorem above cannot be extended to the case d = 6.

2. In any case,
c21(F̃ )

c2(F̃ )
is an increasing function in t3 with fixed d ≥ 7. As t3 ≤ d(d − 1)/6,

it follows that

1 ≤ lim inf
d→∞

c21(F̃ )

c2(F̃ )
≤ lim sup

d→∞

c21(F̃ )

c2(F̃ )
≤ 5

3
.
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7.3 Hodge numbers and Chern numbers

One of motivation of our work is to understand whether the Hodge numbers of F̃ are
combinatorially determined, one of the main open question in the theory of line arrangements,
see [PaS]. As is explained below, we have the following formulae

h0,0(X) = h2,2(X) = 1,

h0,1(X) = h1,0(X) = h1,2(X) = h2,1(X) = q(X),

h0,2(X) = h2,0(X) = 1
12

(c21(X) + c2(X))− (1− q(X)),

h1,1(X) = −1
6
c21 + 5

6
c2 + 2q(X).

where hp,q(X)’s denote the Hodge numbers for a given smooth projective surfaceX, c21(X), c2(X)

denote the Chern numbers and q(X) the irregularity. For the associated surface F̃ , the Chern

numbers c21(F̃ ), c2(F̃ ) are determined by the combinatorics of A. On the other hand, it fol-

lows from [DP11] that 2q(F̃ ) = dimH1(F )6=1, which is known for many line arrangements,
see [CS95]. In fact, in [PaS], a combinatorial formula for q is given when A has only double

or triple points; more examples are given in [Su1] where q(F̃ ) is computed. [Su14] is a good
and recent survey on the monodromy computations and in a recent preprint [DStenMF], an

effective algorithm to compute q(F̃ ) is provided.

To illustrate more numerical properties of the surface F̃ , we give some examples in which
we compute all the Hodge numbers of F̃ . We also compute the Chern ratio. This numerical
invariant is of special interest for algebraic surfaces, see for instance [MP],[MPP],[Naie],[Rou].

In [Hi], some line arrangements are given so that they give ball quotients through the
construction via Kummer covers; such arrangements include the Hesse arrangement and the
arrangement A(2, 2, 3) : (x2−y2)(y2−z2)(z2−x2) = 0. By Theorem 6.8.1, these arrangements
do not give ball quotient through our approach. Instead, we compute the Hodge numbers of
the associated surfaces.

7.3.1 Relations between Hodge numbers and Chern numbers

In this section, we shall fix a smooth projective surface X. Denote q(X) = h0,1(X) its
irregularity and p(X) = h0,2(X) its geometric genus. Denote also bi(X), i = 1, 2, 3, 4 the Betti
numbers of X and c21(X), c2(X) the Chern numbers, as well as hp,q(X) the Hodge numbers.

Then by from Noether’s formula (see [BHPV]), we first have

1− q(X) + p(X) =
1

12
(c21(X) + c2(X)); (7.3.1)

second, from the formula for Euler characteristic, we have

2− 2b1(X) + b2(X) = c2(X). (7.3.2)

Moreover, from Hodge decomposition and Serre duality, we have
b1(X) = 2q(X),

b2(X) = h0,2(X) + h2,0(X) + h1,1(X)

hp,q(X) = hq,p(X) = h2−p,2−q(X), p, q = 0, 1, 2.

(7.3.3)
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We may see the equalities (7.3.1), (7.3.2),(7.3.3) as equations for the Hodge numbers hp,q(X)’s,
with knowns c1(X), c2(X), q(X), and we have the following solution:

h0,0(X) = h2,2(X) = 1,

h0,1(X) = h1,0(X) = h1,2(X) = h2,1(X) = q(X),

h0,2(X) = h2,0(X) = 1
12

(c21(X) + c2(X))− (1− q(X)),

h1,1(X) = −1
6
c21 + 5

6
c2 + 2q(X).

(7.3.4)

7.3.2 First Betti number for surfaces associated to line arrange-
ments

As we have illustrated in Example 7.2.2, the first Betti number b1(F̃ ) can be computed

from that of F . More precisely, F̃ can clearly be seen as a smooth compactification of F , and
let j : F ↪→ F̃ be the identified inclusion, then from Theorem 2.1.9, we have

W1H
1(F ) = j∗H1(F̃ ).

But the induced morphism between the fundamental groups j∗ : π1(F )→ π1(F̃ ) is surjective

because F is identified via j with a Zariski open subset of F̃ , so j∗ : H1(F̃ ) → H1(F ) is
injective. Therefore, we have

W1H
1(F ) ' H1(F̃ ). (7.3.5)

Let M = M(A) be the complement of the arrangement A and h∗ : H1(F ) → H1(F ) be the
monodromy morphism. Then as is shown in [DP11], we have

W1H
1(F ) = H1(F )6=1, GrW2 H

1(F ) = H1(F )1 = ker(h∗ − Id) (7.3.6)

where H1(F )6=1 = ⊕a6=1 ker(h∗ − aId).
So from (7.3.5) and (7.3.6), we get that

b1(F̃ ) = dimH1(F )6=1.

For interesting line arrangements, the latter dimension is known explicitly, see Section 2.3.10
in the end of Chapter 1. Thus for these line arrangements, q(F̃ ) = 1

2
b1(F̃ ) can be obtained.

Note also that we can also compute the Chern numbers c21(F̃ ), c2(F̃ ), hence all the Hodge

numbers hp,q(F̃ ) can be calculated by Formula (7.3.4).

7.3.3 Computing Hodge numbers via Chern numbers and mon-
odromy

In this section, we let A denote a line arrangement in P2 and F̃ be the associated surface.
We first give the formulae for the Chern numbers of F : by Example 6.3.5, we have

K2
F

= d(d− 4)2

and
χ(F ) = d(d2 − 4d+ 6)− (d− 1)

∑
r

tr(r − 1)2.

In the examples below, tr 6= 0 only if r|d. By example 6.6.2, we have

DCIr,d = −d(r − 2)2, DCIIr,d = d− (r − 1)2.

The irregularity q is closely related to the monodromy of h∗ : H1(F ) → H1(F ), which are
given in Section 2.3.10.
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Example 7.3.4. (Hesse arrangement) The Hesse arrangement is defined by

Q = xyz((x3 + y3 + z3)3 − 27x3y3z3)

with d = 12 and ξ = exp(2π
√
−1/12). V (Q) has 12 double points and 9 points of multiplicity

4. Moreover, we have dimH1(F )a = 2 for a = ξ3, ξ6, ξ9, so q(F̃ ) = 3.
For the Chern numbers, we first have

K2
F

= d(d− 4)2 = 12 · 82 = 768.

Since DCI2,12 = 0 and DCI4,12 = −48, we have

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d

= 768− 9 · 48

= 336.

So by Proposition 7.1.1, F̃ is of general type. Moreover,

χ(F ) = d(d2 − 4d+ 6)− (d− 1)
∑
r

tr(r − 1)2

= 12 · (144− 48 + 6)− 11 · (12 · 1 + 9 · 9)

= 201.

Since DCII2,12 = 11 and DCII4,12 = 3, so

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d

= 201 + (12× 11 + 9× 3)

= 360.

Finally, by Formula (7.3.4), we obtain
h0,0(F̃ ) = h2,2(F̃ ) = 1,

h0,1(F̃ ) = h1,0(F̃ ) = h1,2(F̃ ) = h2,1(F̃ ) = q(F̃ ) = 3,

h0,2(F̃ ) = h2,0(F̃ ) = 1
12

(c21(F̃ ) + c2(F̃ ))− (1− q(F̃ )) = 60,

h1,1(F̃ ) = −1
6
c21(F̃ ) + 5

6
c2(F̃ ) + 2q(F̃ ) = 250.

Example 7.3.5. Consider the arrangement A(m,m, 3) defined by

Q = (xm − ym)(ym − zm)(zm − xm) = 0.

Then if m = 3, we have t3 = 12 and for m 6= 3, we have t3 = m2, tm = 3. In addition, set
θ = exp(2π

√
−1/3), then we have two cases:

(i) If m ≡ 0 mod 3, then dimH1(F )θ = dimH1(F )θ2 = 2, so q(F̃ ) = 2;

(ii) If m 6≡ 0 mod 3, then dimH1(F )θ = dimH1(F )θ2 = 1, so q(F̃ ) = 1.
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Moreover, by Example 6.6.2, the following hold:

DCI3,d = −d = −3m, DCII3,d = d− 4 = 3m− 4

and

DCIm,d = −d(m− 2)2 = −3m(m− 2)2, DCIIm,d = d− (m− 1)2 = 3m− (m− 1)2.

Therefore,

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d

= d(d− 4)2 −m2 · (3m)− 3 · (3m(m− 2)2)

= 3m(3m− 4)2 − 3m3 − 9m(m− 2)2

= 3m(m− 2)(5m− 2). (7.3.7)

and

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d

= d · (d2 − 4d+ 6)− (d− 1)(m2 · 22 + 3 · (m− 1)2)

+(m2 · (3m− 4) + 3 · (3m− (m− 1)2))

= 3m(9m2 − 12m+ 6)− (3m− 1)(4m2 + 3(m− 1)2)

+(m2(3m− 4) + 9m− 3(m− 1)2)

= 9m(m2 − 2m+ 2). (7.3.8)

(1) First consider the case where m = 2. Then q(F̃ ) = 1 and we have from (7.3.7)

c21(F̃ ) = 0

and from (7.3.8),

c2(F̃ ) = 36.

Therefore, by Formula (7.3.4), we have
h0,0(F̃ ) = h2,2(F̃ ) = 1,

h0,1(F̃ ) = h1,0(F̃ ) = h1,2(F̃ ) = h2,1(F̃ ) = q(F̃ ) = 1,

h0,2(F̃ ) = h2,0(F̃ ) = 1
12

(c21(F̃ ) + c2(F̃ ))− (1− q(F̃ )) = 3,

h1,1(F̃ ) = −1
6
c21(F̃ ) + 5

6
c2(F̃ ) + 2q(F̃ ) = 32.

Note that in this case, if F̃ is a minimal surface, then by the classification of surfaces
(see [BHPV], Chapter VI), F̃ has Kodaira dimension 1 and is a minimal properly elliptic

surface, since we have c21(F̃ ) = 0 and c22(F̃ ) = 36 > 24. Otherwise, let F̃ ′ be a minimal

model of F̃ , then
c21(F̃

′) > c21(F̃ ) = 0,

and
c21(F̃

′) + c2(F̃
′) = c21(F̃ ) + c2(F̃ ) = 36 > 12,

it follows that F̃ ′and hence F̃ is of general type by Proposition 7.1.2.
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(2) Second, consider the case where m = 3, then q(F̃ ) = 2 and we have from (7.3.7) that

c21(F̃ ) = 117

implying that F̃ is of general type by Proposition 7.1.1 and from (7.3.8),

c2(F̃ ) = 135.

Therefore, by Formula (7.3.4), we have
h0,0(F̃ ) = h2,2(F̃ ) = 1,

h0,1(F̃ ) = h1,0(F̃ ) = h1,2(F̃ ) = h2,1(F̃ ) = q(F̃ ) = 1,

h0,2(F̃ ) = h2,0(F̃ ) = 1
12

(c21(F̃ ) + c2(F̃ ))− (1− q(F̃ )) = 22,

h1,1(F̃ ) = −1
6
c21(F̃ ) + 5

6
c2(F̃ ) + 2q(F̃ ) = 97.

(3) Consider the case where m > 3 and m 6≡ 0 mod 3. Then q(F̃ ) = 1. From (7.3.7), we get

c21(F̃ ) = 3m(m−2)(5m−2). Note that in our situation m ≥ 4, hence c21(F̃ ) ≥ 3 ·4 ·2 ·18 =

432 > 9, hence F̃ is of general type by Proposition 7.1.1. In addition, from (7.3.8) we

have c2(F̃ ) = 9m(m2 − 2m+ 2). Therefore, by Formula (7.3.4), we have

h0,0(F̃ ) = h2,2(F̃ ) = 1,

h0,1(F̃ ) = h1,0(F̃ ) = h1,2(F̃ ) = h2,1(F̃ ) = q(F̃ ) = 1,

h0,2(F̃ ) = h2,0(F̃ ) = 1
12

(c21(F̃ ) + c2(F̃ ))− (1− q(F̃ ))

= 1
2
m(m− 1)(4m− 5)

h1,1(F̃ ) = −1
6
c21(F̃ ) + 5

6
c2(F̃ ) + 2q(F̃ )

= 5m3 − 9m2 + 13m+ 2

(4) Finally, we consider the case where m > 3 and m ≡ 0 mod 3. Then q(F̃ ) = 2 and form
(7.3.7), we have

c21(F̃ ) = 3m(m− 2)(5m− 2) ≥ 3 · 6 · (6− 2) · (5 · 6− 2) > 9,

hence F̃ is of general type by Proposition 7.1.1. Moreover, from (7.3.8), we have c2(F̃ ) =
9m(m2 − 2m+ 2), hence by Formula (7.3.4), we have

h0,0(F̃ ) = h2,2(F̃ ) = 1,

h0,1(F̃ ) = h1,0(F̃ ) = h1,2(F̃ ) = h2,1(F̃ ) = q(F̃ ) = 1,

h0,2(F̃ ) = h2,0(F̃ ) = 1
12

(c21(F̃ ) + c2(F̃ ))− (1− q(F̃ ))

= 1
2
m(m− 1)(4m− 5) + 1

h1,1(F̃ ) = −1
6
c21(F̃ ) + 5

6
c2(F̃ ) + 2q(F̃ )

= 5m3 − 9m2 + 13m+ 4

Conclusion, for m ≥ 3, the surface F̃ is of general type. Furthermore, as m → ∞, one can
show that h0,2, h1,1 →∞ while other Hodge numbers remains 1 or 2. In addition, the Chern
ration

c21(F̃ )

c2(F̃ )
=

3m(m− 2)(5m− 2)

9m(m2 − 2m+ 2)
→ 5

3
as m→∞.
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Note that we can also consider the signature τ(F̃ ) of F̃ which depends only on the Chern
numbers (see [BHPV], p.140)

τ(F̃ ) =
1

3
(c21(F̃ )− 2c2(F̃ )).

By (7.3.7) and (7.3.8), we have

τ(F̃ ) = −m3 − 8m,

hence τ(F̃ ) is always negative.

Example 7.3.6. Now we consider line arrangements which arise from restriction of higher
dimensional hyperplane arrangements. The braid arrangement in Pn is given by

Bn :
∏

0≤i<j≤n

(xi − xj) = 0,

consisting of
(
n+1
2

)
hyperplanes. Let E ⊆ Pn be a generic projective plane and let An = Bn|E

the restriction of Bn to E. Then An is a line arrangements in the projective plane with only
nodes and triple points such that

d =

(
n+ 1

2

)
=
n(n+ 1)

2

and

t3 =

(
n+ 1

3

)
.

Indeed, any triple points of An corresponds to the intersection of exactly three hyperplanes
in Bn, which is thus of the form {xi1 = xi2 = xi3} for some i1 < i2 < i3. Hence

t3 = #{(i1, i2, i3) : i1, i2, i3 ∈ [0, n], i1 < i2 < i3} =

(
n+ 1

3

)
.

From Remark 6.3.6, we have

2t2 + 6t3 = d(d− 1) =

(
n+ 1

2

)((
n+ 1

2

)
− 1

)
,

hence

t2 =
d(d− 1)

2
− 3t3 =

n2(n2 − 1)

4
.

Note that if n ≡ 1 mod 3, then d ≡ 1 mod 3, otherwise 3|d, so we consider the following two
cases:

(i) If n 6≡ 1 mod 3, we have 3|d. Moreover, if n = 2, 3, then q(F̃ ) = 1, otherwise q(F̃ ) = 0
by [MP]. In addition,

DCI2,d = 0, DCII2,d = d− 1

and
DCII3,d = −d, DCII3,d = d− 4.
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Hence,

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d =
1

24
n(n+ 1)(n− 2)(n− 3)(3n2 + 19n+ 32),

so if n ≥ 4, c21(F̃ ) > 9 and thus F̃ is of general type by Proposition 7.1.1. Moreover,

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d =
1

8
n(n+ 1)(n− 2)(n3 + 2n2 − 3n− 12).

(ii) If n ≡ 1 mod 3, then d ≡ 1 mod 3 and q(F̃ ) = 0 by [MP]. In addition,

DCI2,d = 0, DCII2,d = d− 1

and by Example 6.6.3, we have

DCII3,d = −(d− 1), DCII3,d = d− 1.

Thus,

c21(F̃ ) = K2
F

+
∑
r

trDCIr,d

=
1

24
n(n+ 1)

(
3n2(n2 − 15) + 2n(2n2 − 21) + 188

)
so if n ≥ 4, c21(F̃ ) > 9 and thus F̃ is of general type by Proposition 7.1.1. Moreover,

c2(F̃ ) = χ(F ) +
∑
r

trDCIIr,d =
1

8
n(n+ 1)(n4 − 7n2 − 2n+ 20).

The concrete formulae for the Hodge numbers by applying (7.3.4) are left to the reader. The
monodromy is described for instance in [MP]. For the Chern ratio, we have

lim
n→∞

c21(F̃ )

c2(F̃ )
= 1.

7.4 Extensions of irrational pencils of the Milnor fiber

As we have mentioned above, F̃ can be seen as a compactification of the Milnor fiber F .
In Chapter 5, we have extensively investigated the topological and geometric properties of F ,
especially the cohomology jump loci as well as the irrational pencils. Recall also that some
of the irrational pencils of F appearing are of the following form (see Proposition 5.2.4):

g : F → H, with H ⊆ C2 is defined by H : G(u, v) =
∏k

i=1(αiu + βiv) = 1, where k ≥ 3
and (αi, βi), i = 1, · · · , k are k distinct points in P1.

Let H : G(u, v) + tk = 0 in P2 be the smooth compactification of H, we ask whether g can

be extended to a morphism g : F̃ → H.
Clearly, H is a smooth complete curve of genus g(H) = 1

2
(k−1)(k−2) ≥ 1, so the universal

cover of H is either C or the unit disk D = {z ∈ C : |z| < 1}. Moreover, the morphism g can

be seen as a rational map g : F̃ 99K H, for which the indeterminacy locus has codimension
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at least 2, since H is complete. Thus, g : F̃ 99K H is defined except at finitely many points.
Resolving the indeterminacies via successive blowups, we get a morphism g∗ : F̃ ∗ → H,
where F̃ ∗ is obtained by successive blowups of F̃ . Just as the discussions in the proof of
Theorem 4.1.1, we can show that the blowups are not needed, and hence g : F̃ → H is
already a morphism. Indeed, we also apply Hartog’s theorem to prove this result: locally
g is a holomorphic map g : B \ {0} → H, where B is a small ball in C2, which lifts to a
holomorphic map g′ : B \ {0} → D since B \ {0} is simply connected. Hence by Hartog’s
theorem, g′ and thus g extends to all of B.

Note also that a general fiber of g : F̃ → H is connected since this is so for g : F → H. So
g is an irrational pencil of F̃ if and only if g(H) > 1, namely, k > 3. Recall also that always,

k = 3, 4, it follows that g : F̃ → H is an irrational pencil if and only if k = 4.
The only known case with k = 4 is the Hesse arrangement given in Section 2.3.10. It is

an open question whether this is indeed the only line arrangement giving a pencil with k = 4
totally reducible fibers.

7.5 Curve arrangements

Some discussions about line arrangements in this Chapter as well as the previous one can
be extended to curve arrangements in P2, namely, a finite number of projective plane curves.
Algebraic surfaces associated to curves arrangements have also been extensively studied, see
for instance [Rou] and [Ur]. We make such an exploration by giving some examples concerning
the Chern numbers.

To avoid any confusion, we first fix notations. We denote a curve arrangement by C:

C = {C1, · · · , Cs},

where Ci : Fi(x, y, z) = 0 is a projective plane curve. Denote

Q = F1F2 · · ·Fs

the defining equation for C and V (Q) ⊆ P2 is the union of curves in C. Moreover, the Milnor
fiber of C is

F : Q = 1

in C3. A natural compactification F ′ of F in P3 is given by

F ′ : Q(x, y, z) + tdegQ = 0,

Moreover, we can also consider other compactifications of F in some weighted projective space
P(w) where w = (w0, w1, w2, w3) is a sequence of weights. In order to get some ball quotients,
making compactifications in weighted projective spaces is essential, since we need to avoid
the appearance of rational curves, see Theorem 6.5.2, Remark 6.8.3 and Remark 7.5.3 below.
For definitions and some basic properties of weighted projective varieties, we refer to [Dim92],
Appendix B or [Dol] for a relatively complete treatment. In addition, weighted projective
spaces are simplicial complete toric varieties, thus they share interesting properties as toric
varieties, for instance, any Weil divisor is Q-Cartier, see [CLS].

Denote F be a compactification of F in some weighted projective space P(w) such that
F has only isolated singularities. As in the case of line arrangements, we also need to resolve
the singularities of F , for instance using Theorem 6.5.2, which we have used many times in
Chapter 6 and will continue to use below.
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Let π : F̃ → F be a minimal resolution of F . Then F̃ is a smooth projective surface.
We will do the same things for F̃ as for the surfaces associated to line arrangements, e.g.,
computing the Chern numbers and Hodge numbers. To achieve this goal, some singularity
theory is indispensable.

Consider a plane curve germ with isolated singularity

(C, 0) : g(u, v) = gr(u, v) + gr+1(u, v) + · · ·+ gl(u, v)

where (u, v) are local coordinates in C2 around 0 and gi is a homogeneous polynomial of
degree i for i = r, · · · , l. Moreover, r ≥ 1 and gr 6= 0. We say that 0 is an ordinary r-multiple
point if C has exactly r branches at 0 (necessarily smooth) with distinct tangent lines. By
Hensel’s Lemma, see [Dim87], p.172, this is equivalent to gr being a product of distinct r
linear forms. Typical examples are curves of the form V (Q) ⊆ P2, where Q is the defining
equation of a line arrangement.

We say that (C, 0) is a strict ordinary r-multiple point if there is a local change of local
coordinates, say (u, v) 7→ (u′, v′), at the origin of C2 such that the equation of (C, 0) be-
comes g′(u′, v′) = 0 for some homogeneous polynomial g′. It is clear that the results obtained
in Chapter 6 about the computations of Chern numbers extend from line arrangements to
curves in P2 having only strict ordinary r-multiple points for any r. In fact, a strict ordinary
r-multiple point is an ordinary r-multiple point which is in the same time weighted homoge-
neous. Note also that one can resolve any strict ordinary r-multiple point by using Theorem
6.5.2.

Using [Dim87], Proposition 7.38, p.116-117, it follows that for r = 2, 3, 4, any ordinary
r-multiple point is in fact a strict ordinary r-multiple point. For r = 5, this is no longer true,
for instance g(u, v) = u5 + v5 +u3v3 is an ordinary 5-multiple point, but not a strict ordinary
5-multiple point.

Nevertheless, if PP,Q = {λP + µQ : (λ, µ) ∈ P1} is a pencil of degree e plane curves,
such that the base locus V (P,Q) ⊆ P2 consists of exactly e2 points, namely, V (P ) and V (Q)
intersect transversely only at smooth points, then at any intersection point p ∈ V (P,Q), a
union of r curves λiP + µiQ in PP,Q will produce a strict ordinary r-multiple point for any
r > 0. Indeed, at such a point, the functions germs corresponding P and Q can be taken as
the good coordinates u′, v′ in the above definition. The polynomial g′(u′, v′) is just a product
of linear forms λiu

′ + µiv
′.

As in Chapter 6, when considering Chern numbers, we denote DCIr,d, DCIIr,d for the
differences of Chern numbers after resolving a strict ordinary r-multiple point.

Example 7.5.1. Consider the curve arrangements consisting of all of singular curves in
Section 2.3.10 (9). Namely,

C = {C1, C2, C3, C4, C5}

where 

C1 : Q1 = 0

C2 : Q2 = 0

C3 : Q1 −Q2 = 0

C4 : Q1 − t1Q2 = 0

C5 : Q1 − t2Q2 = 0

and Q1 = 3xyz + y3 + z3, Q2 = 3xyz + x3 + z3 and t1, t2 are the two roots of t2 − 3t+ 1 = 0.
Let

Q = Q1Q2(Q1 −Q2)(Q1 − t1Q2)(Q1 − t2Q2)
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be the defining equation of C and F : Q = 1 be the Milnor fiber in C3.
Let

F : Q(x, y, z) + t15 = 0

be the compactification of F in P3.
Note that C1, C2 are two nodal cubics intersecting transversely in 9 points, C3 is a union

of three concurrent lines and each C4, C5 is a union of three lines with 3 nodes. Thus V (Q)
is a union of 2 nodal cubics and 9 lines. In addition, the line arrangement defined by (Q1 −
Q2)(Q1 − t1Q2)(Q1 − t2Q2) = 0 has 10 triple points and 6 nodes. See also [Bai16].

Let tr be the number of singular points of multiplicity r. Then

t2 = 8, t3 = 1, t5 = 9

and tr = 0 for other r’s. Moreover, all r-multiple points are strict ordinary r-multiple points
as discussed above. Therefore, using Theorem 6.5.2, we get a minimal resolution

π : F̃ → F .

To be consistent with the discussions in Chapter 6, set d = 15.
We divide our discussion into several steps:

1. Compute Chern numbers of F . By (6.3.2) and (6.3.3) we have

K2
F = d(d− 4)2 = 1815,

and
χ(F) = d(d2 − 4d+ 6)− (d− 1)

∑
r

tr(r − 1)2 = 381.

2. By Example 6.6.1, we have

DCI2,15 = 0, DCII2,15 = d− 1 = 14.

By Example 6.6.2, we have

DCI3,15 = −15(3− 2)2 = −15, DCII3,15 = −1 + 3(5 + 2− 3) = 11

and

DCI5,15 = −15(5− 2)2 = −135, DCII5,15 = −1 + 5(3 + 2− 5) = −1.

Thus,

c21(F̃) = K2
F + t2 ·DCI2,15 + t3 ·DCI3,15 + t5 ·DCI5,15

= 1815− 15− 9 · 135

= 585

and

c2(F̃) = χ(F) + t2 ·DCII2,15 + t3 ·DCII3,15 + t5 ·DCII5,15
= 381 + 8 · 14 + 11 + 9 · (−1)

= 495.

We see that F̃ is of general type by proposition 7.1.1.
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3. By the monodromy computed in [Bai16], we have

q(F̃) = 6.

Thus, applying Formula (7.3.4), we obtain

h0,0(F̃) = h2,2(F̃) = 1,

h0,1(F̃) = h1,0(F̃) = h1,2(F̃) = h2,1(F̃) = q(F̃) = 6,

h0,2(F̃) = h2,0(F̃) = 1
12

(c21(F̃) + c2(F̃))− (1− q(F̃))

= 95,

h1,1(F̃) = −1
6
c21(F̃) + 5

6
c2(F̃) + 2q(F̃)

= 327.

This example is of some interest since b1(F̃) = 12, which is larger than the first Betti numbers
of known surfaces associated to line arrangements. See also Section 2.3.10 for the monodromy
of line arrangements.

In a similar fashion, one can consider the curve arrangement in Section 2.3.10 (10).
By Theorem 6.8.1, we cannot get any ball quotient from line arrangements; a deeper

reason for such a failure is discussed in Remark 6.8.3. Our hope is that by considering curve
arrangements and avoiding the appearance of rational curves during the desingularization
process, some ball quotients can be obtained.

Example 7.5.2. Let C : Q = 0 be a curve arrangement in P2, with

Q = (x3 + y3 + z3)(x3 + y3 + z3 + xyz)(x3 + y3 + z3 − xyz).

Then C consists of 3 curves in the pencil

P = {λ(x3 + y3 + z3) + µ(x3 + y3 + z3 + xyz) : (λ, µ) ∈ P1}.

The Milnor fiber is given by
F : Q = 1.

Let
F : Q(x, y, z) + w3 = 0

be a compactification of F in the weighted projective space P = P(1, 1, 1, 3), namely, deg x =
deg y = deg z = 1 and degw = 3. Let

π : F̃ → F .

be the minimal resolution.
Note that P has only one singular point (0, 0, 0, 1) which does not belong to F , hence F

has 9 singular points all of which are strict ordinary triple points, namely, t3 = 9 and tr = 0
for other r’s.

By applying Theorem 6.5.2, one sees easily that the exceptional fiber of a singular point
is an elliptic curve (corresponding to r = 3, d = 3) with self-intersection −3, see also Example
6.6.2. Recall also that

DCI3,3 = −3, DCII3,3 = −1

To compute the Chern numbers of F̃ , we still need to compute K2
F and χ(F).
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First, we need to show that K2
F makes sense. Indeed, P is a simplicial toric variety, hence

any Weil divisor is Q-Cartier, namely, some positive multiple of it is Cartier; moreover, F
and P are both normal varieties and the adjunction formula holds, i.e.,

KF = (KP + F)|F .

because this equality holds on the smooth locus of F . Since KP and F are both Q-Cartier
divisors on P, KF is Q-Cartier on F , thus K2

F makes sense in the following way: if A > 0 is

a positive integer such that AKF is a Cartier divisor on F , then

K2
F =

1

A2
(AKF)2.

Now we continue to compute the Chern numbers. Let p : P3 → P = P(1, 1, 1, 3) be the
natural ramified covering given by

(x, y, z, t) 7→ (x, y, z, w = t3).

Then S = p−1(F) is given by
S : Q(x, y, z) + t9 = 0

in P3. Moreover, p has degree 3 branched over B = {w = 0} ∩ F . Let

R = p−1(B) = {t = 0} ∩ S.

Then we have
KS = p∗KF + 2R.

Note that p∗KF is a Q-Cartier divisor on S since KF is a Q-Cartier divisor on F ; in addition,
R is a Cartier divisor on S since R = H|S where H = {t = 0} ⊆ P3 is a hyperplane which is
a Cartier divisor on P3. Since KS ∼ (9− 4)H|S = 5H|S and R ∼ H|S, it follows that

p∗KF = KS − 2R ∼ 3H|S.

hence by the projection formula

3K2
F = (deg p)K2

F = p∗K2
F = 9H ·H · S = 81,

i.e.,
K2
F = 27.

Recall that p is branched over B and B can be identified with the plane curve V (Q) in
P2. Thus,

χ(S) = 3χ(F)− 2χ(V (Q)),

so

χ(F) =
1

3
(χ(S) + 2χ(V (Q))).

By the computations in Example 6.3.5, we obtain

χ(S) = 9(92 − 4 · 9 + 6)− (9− 1) · 9 · (3− 1)2 = 171,

and
χ(V (Q)) = 9(3− 9) + 9 · (3− 1)2 = −18,
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therefore,

χ(F) =
1

3
(171− 2 · 18) = 45.

It follows that

c21(F̃) = K2
F + t3 ·DCI3,3

= 27 + 9 · (−3)

= 0.

Moreover,

c2(F̃) = χ(F) + t3 ·DCII3,3
= 45 + 9 · (−1)

= 36.

Therefore, F̃ is not a ball quotient. In fact, we cannot even determine whether F̃ is of general
type.

Remark 7.5.3. Note that in the above example, all the exceptional curves in the resolution
π : F̃ → F are elliptic curves. It turns out a ball quotient cannot contain any elliptic
curves, hence we are doomed to fail to obtain a ball quotient from the beginning. Indeed,
any morphism from an elliptic curve to a ball quotient lifts to a morphism from C to a ball,
hence constant. Compare Remark 6.8.3.

However, the above example illustrates a process to compute the Chern numbers for a
hypersurface in a weighted projective space, which can be applied to other situations where
the exceptional curves are neither rational curves nor elliptic curves. Note also in order to
avoid rational curves or elliptic curves being exceptional curves, it is necessary, in the example
below, to compactify the Milnor fiber in a weighted projective space, rather than the usual
projective space P3.

Example 7.5.4. Let P1, P2 ∈ C[x, y, z] be two homogeneous polynomials of degree e ≥ 4
such that V (P1), V (P2) are smooth curves in P2, intersecting transversely at e2 points. In
particular, a generic fiber in the pencil PP1,P2 = {λP1 + µP2 : (λ, µ) ∈ P1} is smooth. Choose
(e− 2) generic fibers P3, · · · , Pe in PP1,P2 and let

Q = P1P2 · · ·Pe.

Then Q = 0 gives an arrangement of e curves in the pencil PP1,P2 . The Milnor fiber is given
by

F : Q = 1.

Let
F : Q(x, y, z) + we = 0

be a compactification of F in the weighted projective space P(1, 1, 1, e), namely, deg x =
deg y = deg z = 1 and degw = e. Let

π : F̃ → F .

be the minimal resolution given by Theorem 6.5.2. In this case, the exceptional fiber over a
singular point of F is a smooth curve of genus 1/2(e− 1)(e− 2) > 1, and therefore, rational
curves and elliptic curves are avoided.
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Just as in Example 7.5.2, let p : P3 → P(1, 1, 1, e) be the natural ramified covering given
by

(x, y, z, t) 7→ (x, y, z, w = te).

Then S = p−1(F) is given by

S : Q(x, y, z) + te
2

= 0

in P3. Moreover, p has degree e branched over B = {w = 0} ∩ F . Let

R = p−1(B) = {t = 0} ∩ S.

Then we have
KS = p∗KF + (e− 1)R.

Therefore, by the projection formula,

eK2
F = (deg p)K2

F
= p∗K2

F
= (KS − (e− 1)R)2.

Note that KS ∼ (e2 − 4)H|S and R ∼ H|S where H is a hyperplane section of P3. Hence,

eK2
F = (KS − (e− 1)R)2

= (e2 − e− 3)2H|2S
= (e2 − e− 3)2H ·H · S
= e2(e2 − e− 3)2.

It follows that
K2
F = e(e2 − e− 3)2.

Note that V (Q) has e2 singular points of multiplicity e, namely, te = e2 and tr = 0 for
other r’s. Therefore, for the Euler characteristic, similar to the computations in Example
7.5.2, we have

χ(S) = e2(e4 − 4e2 + 6)− (e2 − 1) · e2 · (e− 1)2 = e2(2e3 − 4e2 − 2e+ 7).

In addition,
χ(V (Q)) = e2(3− e2) + e2(e− 1)2 = 2e2(2− e).

It follows from χ(S) = eχ(F)− (e− 1)χ(V (Q)) that

χ(F) =
1

e

(
χ(S) + (e− 1)χ(V (Q))

)
= e(2e3 − 6e2 + 4e+ 3).

By Example 6.6.2, we have

DCIe,e = −e(e− 2)2, DCIIe,e = −1 + e(3− e).

It follows that

c21(F̃) = K2
F + t3 ·DCI3,3

= e(e2 − e− 3)2 − e3(e− 2)2

= e(2e3 − 9e2 + 6e+ 9)

= e(e− 3)(2e2 − 3e− 3).
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Hence, when e ≥ 4, c21(F̃) ≥ 68 > 9, hence F̃ is of general type by Proposition 7.1.1.
Moreover,

c2(F̃) = χ(F) + t3 ·DCII3,3
= e(2e3 − 6e2 + 4e+ 3) + e2(−1 + e(3− e))
= e(e3 − 3e2 + 3e+ 3).

Therefore, the Miyaoka-Yau number is

MY (F̃) = 3c2(F̃)− c21(F̃)

= e(e3 + 3e) > 0.

It follows from Miyaoka-Yau inequality that F̃ can never be a ball quotient!

Remark 7.5.5. Note that Example 7.5.4 can also be extended in the following way: let PP1,P2

be a pencil consisting of degree e projective plane curves such that V (P1), V (P2) intersect
transversely at e2 smooth points of each. Then we choose k general fibers P1, P2, · · · , Pk in
PP1,P2 and give a similar construction for Q = P1P2 · · ·Pk in which the compactification is
given by Q(x, y, z) + wk = 0 in P(1, 1, 1, e). Here k can be different from e and in addition,
V (P1), V (P2) can be singular.

Recall also that a net structure on a line arrangement A in some sense make A split into
product of k ≥ 3 fibers in a pencil PQ1,Q2 ; see Chapter 5 of this thesis. Thus our construction
mentioned above can also be seen as a generalization of net structures on line arrangements.

However, since we try to get ball quotients here and to this end, rational curves and elliptic
curves should be avoided during the desingularization process. Therefore, some restrictive
conditions must be put on P1 and P2 if they are singular. To get rid of such complicity, we
just consider the case V (P1), V (P2) are smooth curves in the example below.

Example 7.5.6. Let P1, P2 ∈ C[x, y, z] be two homogeneous polynomials of degree e ≥ 2
such that V (P1), V (P2) are smooth curves in P2, intersecting transversely at e2 points. In
particular, a generic fiber in the pencil PP1,P2 = {λP1 + µP2 : (λ, µ) ∈ P1} is smooth. Choose
k − 2 ≥ 2 generic fibers P3, · · · , Pk in PP1,P2 and let

Q = P1P2 · · ·Pk.

Then Q = 0 gives an arrangement of e curves in the pencil PP1,P2 . The Milnor fiber is given
by

F : Q = 1.

Let
F : Q(x, y, z) + wk = 0

be a compactification of F in the weighted projective space P(1, 1, 1, e), namely, deg x =
deg y = deg z = 1 and degw = e. Let

π : F̃ → F .

be the minimal resolution given by Theorem 6.5.2. In this case, the exceptional fiber over a
singular point of F is a smooth curve of genus 1/2(k−1)(k−2) > 1, and therefore, appearance
rational curves and elliptic curves will not occur.
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The computations below are analogues as those in Example 7.5.4, what is why we will
omit some details below. Let p : P3 → P(1, 1, 1, e) be the natural ramified covering given by

(x, y, z, t) 7→ (x, y, z, w = te).

Then S = p−1(F) is given by
S : Q(x, y, z) + tke = 0

in P3. Moreover, p has degree e branched over B = {w = 0} ∩ F . Let

R = p−1(B) = {t = 0} ∩ S.

Then we have
KS = p∗KF + (e− 1)R.

Therefore, by the projection formula,

eK2
F = p∗K2

F = (KS − (e− 1)R)2.

Note that KS ∼ (ke− 4)H|S and R ∼ H|S where H is a hyperplane section of P3. Hence,

eK2
F = (KS − (e− 1)R)2 = ke(ke− e− 3)2.

It follows that
K2
F = k(ke− e− 3)2.

Note that V (Q) has e2 singular points of multiplicity k, namely, tk = e2 and tr = 0 for
other r’s. Therefore, for the Euler characteristic, similar to the computations in Example
7.5.2, we have

χ(S) = ke(k2e2 − 4ke+ 6)− (ke− 1) · e2 · (k − 1)2

= e(2k2e2 − ke2 − 3k2e− 2ke+ 6k + e).

In addition,

χ(V (Q)) = ke(3− ke) + e2(k − 1)2 = 2e2(2− e) = e(−2ke+ 3k + e).

It follows from χ(S) = eχ(F)− (e− 1)χ(V (Q)) that

χ(F) =
1

e

(
χ(S) + (e− 1)χ(V (Q))

)
= 2k2e2 − 3ke2 − 3k2e+ 3ke+ e2 + 3k.

By Example 6.6.2, we have

DCIk,k = −k(k − 2)2, DCIIk,k = −1 + k(3− k).

It follows that

c21(F̃) = K2
F + t3 ·DCI3,3

= k(ke− e− 3)2 − e2k(k − 2)2

= k(e− 3)(2ke− 3e− 3).
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Hence, when e ≥ 4 and k ≥ 4, c21(F̃) ≥ 68 > 9, hence F̃ is of general type by Proposition
7.1.1. Moreover,

c2(F̃) = χ(F) + t3 ·DCII3,3
= 2k2e2 − 3ke2 − 3k2e+ 3ke+ e2 + 3k + e2(−1 + k(3− k))

= k2e2 − 3k2e+ 3ke+ 3k.

Therefore, the Miyaoka-Yau number is

MY (F̃) = 3c2(F̃)− c21(F̃)

= ke(ke− 3k + 3e+ 3)

= ke

(
(e− 3)k + 3e+ 3

)
> 0

for k ≥ 4. It follows from Miyaoka-Yau inequality that F̃ can never be a ball quotient!
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