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General introduction 

With the development of communication and wireless applications, analog and radio frequency (RF) 

functions have become an essential part of electronic systems. With the efforts of the last decades, 

we today benefit from solutions that allow design and fabrication of these analog functions with 

interesting features concerning size, power and operating frequency. As to answer the mass market 

demand, the main challenge to which semiconductor founders are confronted is the production cost 

of these circuits. The cost not only includes the cost of fabrication of the circuit but the cost of testing 

as well. Indeed this step of the process is essential to guarantee the quality of devices delivered to 

the client. This context has motivated the study on which focuses this thesis: test cost reduction for 

analog/RF circuits. 

This thesis is a collaboration between the LIRMM (Laboratory of Computer science, Robotics and 

electronics of Montpellier) and NXP Semiconductors, one of the world leading manufacturers of 

analog/RF integrated circuits. More precisely the study focuses on complex RF devices, such as silicon 

tuners, on which a lot of time-consuming RF tests should be performed to check the functionality and 

the specifications of the device. One of the most important tests is checking the phase noise of the 

analog/RF output signal. This specification parameter is linked to the product sensitivity, specifically 

at low reception levels. Measuring phase noise requires expensive digitizers to capture the analog 

signal and then perform signal analysis (FFT). Moreover the quantity of digitizers is limited per 

industrial tester, so multi-site efficiency is reduced. 

The approach here is to use cheaper digital resources instead of expensive high-performance RF 

channels of the automatic test equipment (ATE). These digital resources can either be provided by 

the test equipment or can be integrated on-chip. The main idea is to perform a binary capture of the 

analog signal under test using the simple comparator available in a standard digital tester channel. 

Signal characteristics are then computed from this binary vector using specifically developed 

algorithms, in particular the phase noise level of the signal under test. 

The first chapter describes the constraints associated with industrial testing in high volume and 

introduces several options to reduce the cost of phase noise measurement in the context of 

production testing with a state of the art of proposed solutions. The approach taken in this thesis is 

then justified. 

The second chapter presents a mathematical model of phase noise. This model is implemented in 

simulation and is compared to hardware measurements. A hardware solution to synthesize a signal 

with a controlled phase noise level is also presented. 

A first solution for phase noise evaluation based on 1-bit capture is presented in chapter three. This 

solution relies on instantaneous frequency estimation and analysis of the deviation of instantaneous 

frequency estimates. The technique is validated in simulation and an on-chip implementation is 

proposed. Hardware experiments are also presented, which demonstrate the validity of the 

proposed approach but also reveal a limitation in case of very low phase noise level due to the 

sensitivity of the technique to amplitude noise. An additional filtering step is then designed in order 
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to discriminate deviations induced by amplitude noise from deviations induced by phase noise. This 

permits to extend the valid measurement range, but imposes specific constraints on the sampling 

process.  

A second algorithm for phase noise evaluation based on 1-bit capture is proposed in chapter four. It 

relies on instantaneous phase reconstruction rather than instantaneous frequency estimation. This 

solution is much more robust to amplitude noise and does not suffer from the specific constraints on 

the sampling process encountered in the previous chapter. Moreover this new technique not only 

permits to measure the phase noise level at a specific frequency offset, but it also gives access to the 

frequency-domain characteristics of phase noise. Simulation results as well as a stochastic model and 

hardware measurements are presented. 

The fifth chapter presents an on-chip implementation of this last solution. This built-in self-test 

solution permits to lower even more the test cost because the digital channel of the automatic test 

equipment does not have to be as performant as when performing the acquisition. It also allows to 

measure phase noise during the life cycle of the chip, opening up new possibilities for chip designers. 

Finally in the conclusion, the main contributions of this thesis are summarized and perspectives for 

future work are presented. 
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Chapter 1. Context and state of the art 

1.1 Industrial testing 

1.1.1 Generalities 

Test of microelectronic circuits is an essential step in the fabrication process and marketing of new 

technology products. It aims in guaranteeing the good operation of the system. The test affects two 

main phases of the fabrication cycle of the integrated circuit: the characterization test of the device, 

in order to produce its datasheet, and the production test that is performed on every single product 

in order to guaranty its performance. The two objectives of these tests are quite different. 

The characterization test is made on the first samples of the product, coming out of foundry. It 

validates the conception of the circuit for its operations and specifications. A whole battery of tests is 

applied to the circuit in different conditions to identify the limits of the product and compare them to 

the specifications. This characterization test can necessitate high performance equipment and the 

time of testing is not a primary constraint. 

Once the characterization is done, the production of the circuit at high volume begins. Each circuit 

out of the production line has to be tested to guarantee it is correctly operational. Because of the 

very high number of fabricated devices, typically several millions a year, and the competitive 

environment, the time and cost of test is a primary constraint. Effective production test flow has to 

be cheap, fast and reliable to detect faulty circuits  

Test is actually involved in different stages all along the production line of a system. The circuit is first 

tested at the wafer-level then it is tested once packaged. Once the circuit shipped to the client the 

system is tested with the circuits mounted on a PCB board. It is important to limit the impact of 

losses on the global cost. Table 1.1 is an illustration of the replacement cost at each stage of the 

system integration [1]. 

Detection level Replacement cost 

On wafer 0.1 

Packaged circuit 1 

PCB board 10 

System in production line 100 

Shipped system 1000 
Table 1.1 Replacement cost with detection level in the integration process 

In the end, the cost of testing represents a large part, up to 50%, of the production cost. It is 

important to develop solutions to limit the testing cost. The solutions for cost reduction are generally 

focused over 3 targets: 

· Test time reduction 

· Cheap instrumentation 

· Parallelization of testing 
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Over years, efficient solutions have been developed for digital circuits thanks to structural test 

approaches, design for test (DFT) and built in self-testability (BIST). This is not the case for analog and 

RF circuits. 

1.1.2 Case of analog/RF circuits 

Analog/RF circuits are usually tested with a specification-oriented approach, which consists in 

measuring the circuit performances and comparing the measured values with specification tolerance 

limits. This approach offers good test quality but suffers from very high test cost. Several factors 

contribute to this cost.  

First testing time is a critical issue. Indeed, there are usually a high number of specifications to verify 

which often require different specific test configurations. Measurements are therefore performed 

sequentially, resulting in long test times. As an example in [2], the test time for analog/RF blocks 

represents 57% of the total test time, while the test time for memory and digital blocks only 

represent 2% and 11% respectively.  

Second the measurement of analog/RF performances necessitates the use of an Automatic Test 

Equipment (ATE) equipped with specific dedicated resources. Ranked from the most expensive to the 

cheapest ones, we find: 

· RF resources 

· Mixed-signal resources 

· Analog resources 

· DC measurements 

· Digital resources 

RF/MS options constitute around 55% of tester cost. A digital channel costs 50 times less than a RF 

channel. It is clear that the use of specific dedicated resources is a major contributor of the overall 

test cost. As an example in [3], the test of RF functions represents more than 40% of the testing cost 

of the SOC, mainly because of the required dedicated resources.  

Finally it should be highlighted that due to their high cost, analog/RF resources are usually available 

in small quantity, limiting the possibility to reduce the testing cost through multi-site testing.  

In this context, there is therefore a strong demand in developing test solutions for analog and RF 

circuits applicable with low-cost test equipment and compatible with multi-site test implementation. 

1.2 Phase noise testing 

1.2.1 Phase noise definition 

Phase noise is a key element in many RF and radio-communication systems as it can significantly 

affect the performance of systems. For radio receivers, phase noise on the local oscillators within the 

system can affect specifications such as reciprocal mixing and the noise floor. For transmitters, it can 

affect the wideband noise levels that are transmitted. Additionally it can affect the bit error rate on 

systems using phase modulation. Phase noise is also important for many other systems including RF 
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signal generators, where very clean signals are required to enable the generator to be used as a 

reference source.  

Phase noise refers to random short term fluctuations that affect the nominal frequency of a periodic 

signal. Note that phase noise and timing jitter are both ways of describing the same parameter. 

Phase noise describes the performance in the frequency domain, whereas jitter describes the 

performance in the time domain.  

In the frequency domain, phase fluctuations manifest themselves as sidebands that appear on either 

side of the fundamental tone in the signal power spectrum, as illustrated in figure 1.1a. The phase 

noise may be specified in a number of ways, but the most common one is to look at the noise level at 

a given point. Phase noise is typically measured in dBc/Hz and corresponds to the noise power 

contained in a 1 Hz bandwidth located at a given offset from the carrier, relative to the carrier power. 

 

a) Signal power spectrum 

 

b) Phase noise spectrum 

Figure 1.1 Frequency-domain representations of phase noise  

For a complete phase noise specification, several points will be measured to give an indication of the 

frequency domain characteristics. This leads to the phase noise spectrum illustrated in figure 1.1.b, in 

which the phase noise level is plotted as a function of the frequency offset from the carrier. Different 

phase noise sources can be identified on this spectrum, looking at the asymptotic behavior.  

f

Phase 
Noise

Signal
Power

foffset

1Hz 
bandwitdth

Noise
Power

Freq (Hz)

S
ig

n
a

l 
P

o
w

e
r 

(d
B

c)

Frequency offset from the carrier (Hz)

P
h

a
se

 N
o

is
e

 (d
B

c/
H

z)



12 

 

Indeed there are various origins for phase noise, and therefore various phase noises with 

corresponding power laws. Each phase noise has its response in the frequency domain. Each one can 

be identified by the slope !" of its phase spectrum or by the slope !# of its frequency spectrum. 

In the total noise power, the frequency spectrum corresponds to the sum of the different noises 

contributions, weighted with their power coefficient: 

 !# = $ %&'&()
&*+) ! (1)!

 

,-./0 ,1./0 Noise type Origin %+)'+) 2+3'+3 Random walk FM Environment %+4'+4 2+5'+5 Flicker FM Resonator %6 2+)'+) White FM Thermal noise %4' 2+4'+4 Flicker Phase 

modulation 

Electronic noise 

%)') 26 White PM External white noise 

Table 1.2 Phase noise power law response 

Table 1.2 summarizes the origins of the main noises sources classically encountered in electronic 

systems [4]. 

 

1.2.2 Prior work on phase noise testing  

Traditionally, phase noise measurement relies on analog methods in order to evaluate the frequency-

domain characteristics of phase noise, using spectrum analyzers or dedicated analog measurement 

systems [5-7]. Several methods are available for measuring phase noise, including the direct 

spectrum method, phase lock loop (PLL) method, delay-line discriminator method, and cross-

correlation method. These methods differ from one to another in measurement principle, 

performance and measurement frequency range. Note that the usual goal for measuring phase noise 

in an R&D environment is to achieve the lowest measurement noise floor possible. However in a 

production environment, the objective is fast throughput for product phase noise performance 

testing. Traditional methods are therefore not necessarily appropriate for this specific context.  

With the advances in technology and the availability of high-performance data acquisition systems, 

digital signal processing approaches have been proposed in order to derive the frequency domain 

characteristics of phase noise from digitized time-domain waveforms. 

In [8-11], digital signal processing methods are developed based on oversampled capture of the input 

signal and optimized quadrature demodulation scheme. As illustrated in figure 1.2, the signal is 

directly digitized with a fast analog to digital converter. A pre-processing consisting in low-pass 

filtering and decimation is applied to have a better resolution of the signal. A quadrature 

demodulation scheme is then used to recover the phase. The phase can then be used to compute 

phase noise with the help of a Fourier transform or Allan deviation. This method has been validated 

for signals with frequencies around 1MHz.  
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Figure 1.2 Block diagram of the method proposed in [8] 

Similarly in [12], the input RF signal and a reference signal are digitized by fast analog-to-digital 

converters in order to perform direct-digital phase noise measurements. Down-conversion and phase 

detection functions are then implemented by digital signal processing. The principle of the method is 

illustrated in figure 1.3. 

 

a) The RF signals are immediately converted to digital samples in order to perform direct -

digital phase-noise measurements  
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b) A local oscillator synthesized from the internal clock down-converts the input to base-band 

where the samples are used to compute the phase difference between the LO and the input 

 

c) After down-conversion, the phase differences are scaled, subtracted, and Fourier analyzed to 

determine the frequency content 

Figure 1.3 Direct-digital phase noise measurement method proposed in [12] 

Current phase noise analysis techniques also include all-digital methods for acquiring time-domain 

data such as waveform crossing points. In particular, Time Interval Analyzers (TIAs) are used in 

[13,14] to record the zero-crossing times of the analyzed signal. Figure 1.4 show a simplified block 

diagram of the system including the zero-crossing measurement machine, frequency 76 estimator, 

phase calculation and numerical signal processing. The zero-crossing times are processed to compute 

phase deviation, with the reference frequency specified as a numerical value or derived from the 

times themselves. Phase digitizing can be applied even in the presence of modulation, as the 

underlying clock can be reconstructed in software to fit the data. Measurements derived from this 

phase data such as phase noise, jitter analysis, Allan variance (AVAR), maximum time interval error 

(MTIE), and time deviation (TDEV) can be applied. 
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Figure 1.4 Block diagram of the proposed method in [13] 

The same approach is adopted in [15] in order to characterize phase noise in a spin torque oscillator 

from time-domain measurements.  

Another all-digital method is presented in [16], which relies on the use of a time-to-digital converter 

(TDC) to obtain digitized waveform zero-crossing. This technique is directed towards the detection of 

sinusoidal phase noise components located at particular frequencies. As illustrated in figure 1.5, the 

classical analog sampling is replaced by a time-to-digital converter, and an infinite-impulse response 

(IIR) filter is used as a replacement for conventional FFT. This eliminates the need for storing the 

entire waveform before calculations can begin, and the need for making calculations to evaluate 

frequencies which are not relevant. 

  

Figure 1.5 IIR extraction technique proposed in [16] for the detection of sinusoidal phase noise at a particular frequency  

Finally in order to reduce the testing costs, another approach is to develop Built-In Self-Test (BIST) 

solutions, where the required test resources are integrated within the circuit itself. While many 

works can be found in the literature regarding BIST solutions for jitter measurement [17-35], only 

few deal with BIST solutions for phase noise measurement. 

In [36], an on-chip spectrum analyzer using switched-capacitor techniques is proposed. The main 

characteristic of the system is the inherent synchronization. Both, frequency of the sinewave 

generator and filter center frequency follow the main clock frequency, making the system self-

synchronized and allowing a simple way to perform a frequency characterization. The resolution of 

this on-chip spectrum analyzer is limited to 8 bits. 
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In [37], authors propose an analog BIST circuitry for Go/No-Go testing of synthesizer phase noise. The 

paper exploits the fact that there is a relation between the output noise of the PLL and the amplitude 

noise on the control voltage of the VCO. They therefore design a BIST circuit that measures the band-

limited, low frequency noise power at the input of the voltage controlled oscillator (VCO). The block 

diagram of the noise measurement system is illustrated in figure 1.6, which comprises a linear 

preamplifier, a squarer that takes the time-domain square of the noise signal, and an integrator that 

accumulates the squared noise signal, effectively calculating its energy over a given time window.  

 

Figure 1.6 Block diagram of the noise power measuring system proposed in [37] for go/no-go testing of synthesizer phase 

noise  

In [38], an on-chip phase noise measurement circuit is proposed, based on a delay-line discriminator 

architecture. As illustrates in figure 1.7, the proposed circuit uses a low-noise voltage-controlled 

delay-line (VCDL) and mixer-based frequency discriminator to extract the phase-noise fluctuations at 

baseband. A self-calibration circuit is used to operate the measurement circuit at its highest 

sensitivity point. This circuit is intended to measure phase noise of clock signals.  

 

Figure 1.7 Circuit architecture of the phase-noise measurement module proposed in [38] 

Finally in [39], authors use an all-digital on-chip 89-frequency discriminator to compute the 

instantaneous frequency which they can compare to a reference frequency. The result of the 

comparison produces a noise shaped digital bit stream whose average value is proportional to the 

frequency error between the DUT signal and the reference signal. Thanks to phase domain model of 

the 89-frequency discriminator, this technique can trace the phase noise asymptotic behavior. This 

technique is intended to be integrated as part of a BIST scheme for PLL-based clock synthesizers. 
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Figure 1.8 Phase noise characterization scheme proposed in [39] 

1.2.3 Current practice for industrial phase noise testing 

In a standard production test, phase noise is extracted from a spectral analysis of the signal. As 

illustrated in figure 1.9, the signal is first digitized by means of ATE analog/RF capture resources (a 

N-bit high-performance Analog-to-Digital-Converter) and stored in the ATE memory. FFT is then 

performed on the recorded digital data to compute the resulting signal power spectrum. As 

introduced in section 1.2.1, the widening of the spectral content around the fundamental tone can 

be associated with phase noise.  

Practically, the phase noise value expressed in dBc/Hz is computed by subtracting the signal level to 

the noise level, where the noise level is measured by integrating noise over a specific bandwidth :;<>? on both sides of the signal tone and applying a correcting factor for 1Hz bandwidth 

normalization. Note that spectral averaging is often implemented using data captured in several time 

window frames in order to reduce measurement variability. A Blackman window has also to be 

applied to the signal if the capture is not synchronous. 

 

 

a) Industrial setup 

Analog
Signal

High-Perf.
Digitizer

N-bit digitized samples

3 1 52 4 5 5 62 5

Sampling Clock (fs)

Analog/RF Tester Channel

ATE
Memory
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FFT



18 

 

 

b) Signal power spectrum with phase noise 

Figure 1.9 Current industrial practice for industrial phase noise testing 

1.3 Thesis objective and positioning 

The main objective of this thesis is to reduce the phase noise testing cost for complex RF devices. 

Indeed in the market of analog and RF integrated circuits, complex RF devices are gaining more and 

more importance in modern communication and multimedia applications. An example of such 

devices is silicon tuners, which have found use in set-top boxes for satellite and cable for nearly more 

than a decade. Now, thanks to their high performance, broad frequency coverage, compactness, and 

universality, they are making inroads into phones, service gateways, automobiles, personal 

computers, and even televisions. In this very competitive market, cost is a crucial factor, and in 

particular the testing costs which become the dominant part of the total manufacturing cost for this 

type of devices. 

Phase noise is an essential characteristic of RF complex devices. In such devices, phase noise is 

usually measured on the analog output signal delivered at Intermediate Frequency (IF) and 

corresponds to the accumulated phase noise contribution of the various elements present along the 

signal path. The conventional practice for phase noise production testing relies on an analysis in the 

frequency domain, by taking time-domain data on the IF analog output and computing the Fast 

Fourier Transform (FFT). This approach requires the use of industrial testers equipped with expensive 

analog/RF resources, in particular high-performance digitizers to perform the signal capture, as well 

as computing power for the FFT. Moreover because such expensive resources are available in small 

quantity, the possibility to reduce the testing cost through multi-site testing is limited. 

In order to reduce the testing cost, the strategy we have chosen to explore is this thesis relies on the 

use of digital test resources to perform phase noise measurement. Note that this work is the 

continuation of a previous thesis defended at LIRMM in 2011 by Nicolas Pous [40], which laid the 

foundations of the analysis of analog/RF signals using solely the test resources available in a standard 

digital tester channel. In particular, the analysis of FM-, AM- and QAM-modulated signals has been 
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investigated [41-43], as well as SNR estimation of analog sine-wave signals [44]. The same strategy of 

using a digital ATE for the analysis of analog signals has also been investigated in [45], in case of 

triangular waveform signals.  

The general idea of this strategy is to perform oversampled 1-bit signal acquisition of the analog/RF 

signal with a standard digital channel, and to analyze the resulting bit stream with a dedicated digital 

processing algorithm. Indeed as illustrated in figure 1.10, the comparator included in the digital 

tester channel realizes a level-crossing operation which converts the amplitude and/or frequency 

information contained in the analog signal into a timing information in the resulting bit stream. In 

other words, the sequence of 0 and 1 stored in the ATE memory is somehow representative of some 

characteristics of the analog signal. It is then the role of the post-processing algorithm to retrieve this 

information and extract the desired signal characteristics. 

 

Figure 1.10 General idea of analog/RF signal analysis using digital test resources 

For a general point of view, this strategy relies on the assumption that it should be possible to 

retrieve the characteristics of an analog signal using the data resulting from level-crossing operation. 

The literature actually provides a number of elements that support this assumption. Indeed the 

concept of level-crossing has been used for many years for signal reconstruction in various fields such 

as image processing, speech recognition... [46-48] In the microelectronics domain, this concept is at 

the origin of digital FM demodulator architectures [49-61] proposed from beginning of 90’s, and 

more recently of asynchronous analog-to-digital converter architectures [62-67]. The principle of this 

new class of converters is to perform sampling in the voltage domain followed by voltage-to-time 

conversion. The idea is actually to exploit the current trend of technology scaling, which permits to 

design circuits operating at lower supply voltages but with ever higher frequencies. These circuits 

therefore undergo a degraded voltage resolution whereas they benefit from an improved time 

resolution [68]. The same trend is exploited in [13-16] for phase noise testing based on timing 

measurements. However, proposed methods rely on the use of precise timing measurement 

instrumentation such as TIAs or TDCs. Our objective in this thesis is to develop a solution that does 

not require this precise timing measurement instrumentation, but rely only on the standard 

resources available on a digital ATE channel, so that we can have a very low-cost production test 

solution. 
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Chapter 2. A phase noise model 

Because new ideas are best first explored using mathematical and computer simulations, the first 

step in the study of phase noise measurement was to setup a correct simulation environment. In 

particular, we need to define a phase noise model that permits to perform realistic phase noise 

injection in the time-domain in an analog signal.  

In this thesis, we target phase noise evaluation for complex RF devices such as silicon tuners for 

instance. For those kind of products, the total phase noise evaluated on the IF analog output involves 

the contribution of the various elements present along the signal path. The total phase noise 

measured on the IF output typically corresponds to white FM phase noise, with @A') characteristics. 

Our objective is therefore to define a model that permits a time-domain generation of such @A') 

noise.  

Further away in the development of the thesis we will specify how other phase noise types can be 

measured, but for this simulation model sole white FM is considered first. Later on, other noises such 

as amplitude noise and jitter, which corresponds to white PM in table 1.2, will also be considered. 

2.1 Phase noise as a Brownian motion 

2.1.1 Phase fluctuation model 

Let us consider an analog sinusoidal signal B.C0 = DE F BGHIJ.C0K affected with phase noise and 

sampled at frequency rateE'?. The resulting signal B.HL?0 is expressed by:  

 B.HL?0 = D F BGHIMN'HL? O P6 O P.HL?0K! (2)!

where D and ' are nominal values of the amplitude and signal frequency respectively, L? (L? = @A'?) 

is the sampling period, P6 is the initial signal phase, and P.HL?0 is the time-varying phase instability 

corresponding to phase noise.  

In order to control phase noise, we need to define the phase fluctuation P.HL?0. A simple way to 

generate phase noise with @A') characteristics is to consider a one-dimension Brownian motion [69]. 

The phase noise model considered here is therefore represented by:  

 P.HL?0 = MNL? F$ 2 F EQRS
R*6 E! (3)!

where QR are random variables associated with a centered normal distribution TIUV WX)K and 2 is a 

standardizing factor explained in the next section. This model allows to control the phase noise level 

injected in the time-domain signal by adjusting the value of WX, which is a standard deviation, in Hertz 

unit.  

Figure 2.1 gives an example of a time-domain phase fluctuation generated using this model. 
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Figure 2.1 Example of time-domain phase fluctuation generated using a one-dimension Brownian motion 

2.1.2 Standardizing factor 2 = Y'?A' = ZH is a standardizing factor that ensures independence of the noise level with respect 

to the sampling frequency. Indeed, we want to have the same deviation over 1 signal period, 

whatever the sampling frequency. There are H = X[X  samples in one period. Since the variation of a 

Brownian motion is: 

 \]Q ^MNL? F$ 2 F EQRS
R*6 _ = `N)'? 2)HWX) = `N)') WX)E! (4)!

So the standard deviation is: 

 BCa ^MNL? F$ 2 F EQRS
R*6 _ = MN' WX E! (5)!

2.1.3 Hertz: a unit amongst others 

The input of the model is therefore WX in hertz. Note that it could be any of the four following 

variables since it is equivalent to consider any of the standard deviations WV WX V Wb or W)c. 

 W = WX' = W)cMN = WbL E! (6)!

The choice to useWX with hertz as unit is consequently arbitrary. 

Taking the previous equation: 

 BCa ^MNL? F$ 2 F EQRS
R*6 _ = MN' WX = W)cE! (7)!

We thus always have the same standard deviation over 1 unit of time: the signal period. 

2.1.4 Validation of model in Matlab® 

To validate this model, Matlab® simulations were performed. In figure 2.2, the spectrum of a 

simulated noisy @Edef signal is calculated for various sampling frequencies. The obtained spectrums 
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perfectly overlap as expected. The simulated signal thus has the same behavior whatever the 

sampling frequency thanks to the 2 coefficient. On this simulation gh<ijkl? = @UUU and WX =MUUUef. 

 

Figure 2.2 Spectrum comparison between simulated signal with injected phase noise for different sampling frequencies 

Figure 2.3 reports the phase noise value measured on the spectrum at a frequency offset of 10kHz, 

for different values of the sampling frequency between 10MHz and 1GHz. Here we compute the 

spectrum using 10 000 periods to reduce the dispersion; both ' and WX were kept constant, as 

previously. As desired, the phase noise value measured on the spectrum does not depend on the 

sampling frequency.  

 

Figure 2.3 Phase noise measurement on simulation model for different sampling frequencies 
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Figure 2.4 demonstrates the ability to control the phase noise level present in the simulated signal by 

adjusting the value of WX. The exact relationship between the two phase noise representations will be 

addressed later on. 

 

Figure 2.4 Phase noise measurement for different values of injected phase noise level m/  

2.2 Phase noise on hardware signals 

2.2.1 Experimental setup 

In order to perform measurement on physical signals, we also setup an experimental environment. 

Test signals are obtained through frequency modulation of a “pure” RF sinusoidal signal with a white 

noise signal. More precisely, an Agilent 33120A Arbitrary Waveform Generator (AWG) is used to 

generate a white noise signal. The output of this generator is connected to the FM input of an Agilent 

E4425B RF signal generator. The output of this RF generator is therefore a sinusoidal signal affected 

by phase fluctuations, which corresponds to the Signal Under Test (SUT). The phase noise level 

present in the synthetized signal can be adjusted by means of the modulation depth 'n on the RF 

generator. 

In order to evaluate the phase noise level, acquisition of the synthetized signal capture is realized 

using a Yokogawa DLM2054 Mixed-Signal Oscilloscope and the signal spectrum is obtained through 

FFT computation. Classical phase noise measurement is then performed on this spectrum. The 

complete setup is illustrated in figure 2.5. 
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Figure 2.5 Experimental setup for phase noise measurement on a synthetized signal affected with phase noise 

2.2.1.1 White noise analysis 

The generation of white noise is accomplished by the arbitrary waveform generator. We arbitrarily 

set \oo = M\, which doesn’t mean much when generating Gaussian voltage noise. Figure 2.6 shows a 

short sequence of the output of the AWG captured at pMqrdef. 

 

Figure 2.6 White noise from arbitrary waveform generator 

1 2 3 4 5 6 7 8

x 10
-6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time (s)

A
m

p
lit

u
d
e
 (

V
)



25 

 

We measured the generated signal to determine the white noise level. Figure 2.7 provides a 

histogram of the captured samples. As expected, the sample distribution is a Gaussian distribution 

with zero mean; its standard deviation is: 

 W.\stu0 = UVMMv\! (8)!

 

Figure 2.7 Histogram of white noise signal captured on AWG output  

Figure 2.8 represents the Fourier transform of the so-obtained white noise. All the frequencies up to 

approximately 10MHz have the same power. Having a constant power over all the frequency range is 

expected to suit the model. This spectrum is equivalent to !# in the table 1.2. 
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Figure 2.8 Spectrum of white noise signal captured on AWG output 

2.2.1.2 Synthetized signal analysis 

The synthesized signal is to be an analog/RF sinusoidal signal affected with phase noise. For this, we 

use the RF source to generate a sinusoidal signal, which is modulated in frequency by the white noise 

signal generated by the AWG. The resulting signal is therefore given by: 

 w.C0 = D F xyB ^MNz '.{0a{|
6 _! (9)!

With '.{0 = '} O 'n~;.C0 where '} is the frequency of the sinusoidal signal generated by the RF 

source, 'n is the modulation depth and ~;.C0E is the white noise signal generated by the AWG, we 

obtain: 

 w.C0 = D F xyB ^MN'}C O MN'� z ~;.{0a{|
6 _! (10)!

So the phase fluctuation P.C0 is: 

 P.C0 = MN'� z ~;.{0a{|
6 ! (11)!P.C0 corresponds to a Brownian motion if ~; is Gaussian. 

As an illustration, figure 2.9 shows the spectrum a synthetized signal generated with '} = @Edef and 'n = @@MUUEef. The spectrum of a simulated @Edef signal with WX = MUUef is also reported for 

comparison (the noise level of the simulated signal has been manually tuned to fit the spectrum of 

the captured synthetized signal). Both spectrums exhibit the same shape, which demonstrates that 

both methods generate a signal affected by similar phase noise. Still, one can notice that the physical 

signal exhibits slightly higher noise level at both ends of the plot (i.e. far from the fundamental tone). 

This is due to amplitude noise, which exists in the real world but which is not represented in the 

model so far. 
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Figure 2.9 Spectrum of simulated and synthesized 1MHz signals affected by phase noise 

Figure 2.10 reports the phase noise level measured on the spectrum of the synthetized signal at a 

frequency offset '�XX?<| = Mr�ef according to the value of the modulation depth 'n programmed 

on the RF signal generator. This figure clearly demonstrates that the phase noise level present in the 

synthetized signal can be adjusted on a large range by changing the modulation depth. However in 

case of very low phase noise level, i.e. low values of the modulation depth 'n, some other noise 

sources (amplitude, jitter) take over and we observe a saturation of the phase noise level measured 

on the spectrum. 

 

Figure 2.10 Phase noise measurement of a 1MHz synthesized signal for different values of the modulation depth 
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2.2.2 Validation on practical devices 

It is important to verify that both simulated and synthetized signals exhibit the same characteristics 

(regarding phase noise) as signals obtained from real industrial devices to be tested. NXP provided us 

with one golden device and 10 faulty devices of their TDA18260 silicon tuners. It goes without saying 

that the faulty devices solely failed for phase noise reason. 

NXP usually do a phase noise test on the IF output of the device. This is what we did here. In order to 

setup test conditions, the device has to be provided with a 1004MHz input signal and have particular 

configuration of its gain control chain. Figure 2.11 illustrates the experimental setup. 

  

Figure 2.11  Experimental setup for phase noise measurement on industrial chip 

The spectrum of the captured signal is compared to the spectrum of a simulated signal in figure 2.12. 

Both spectrums exhibit a similar shape, demonstrating the validity of the proposed model to perform 

realistic time-domain phase noise injection for complex RF devices.  
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Figure 2.12 Comparison of spectrum of simulated signal with signal from industrial chip 
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2.3 Relationship between injected PN in time domain and measured 

PN in frequency domain 

Using the previously proposed model, we need to establish the relationship between the phase noise 

level injected in the time domain and the phase noise level measured in the frequency domain, 

which corresponds to the reference phase noise. To do that, we performed several simulations 

varying the noise level injected in the time domain, under different signal and measurement 

conditions.  

Illustrative results are given in figures 2.13 and 2.14 which report the phase noise measured on the 

spectrum (�g) as a function of the injected phase noise level (WX) for different signal frequencies ('), 

and for two values of the measurement frequency offset ('kXX?<| ). These simulations reveal two 

distinct behaviors depending on the level of noise. For low values of WX we observe a linear 

relationship with a slope of about +20dB/decade, while for high values of WX we still have a linear 

relationship but with a slope of about +40dB/decade. Note that in both cases, the slope neither 

depends on the signal frequency nor on the frequency offset. Only the vertical location varies with 

these parameters.  

 

 

Figure 2.13 PN measured in frequency domain vs. PN injected in time domain, for different values of the signal frequency 

with /�//��� = ����� 
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Figure 2.14 PN measured in frequency domain vs. PN injected in time domain, for different values of the signal frequency 

with /�//��� = ������ 

These relationships can be expressed with: 

! �g4 = MU �y�46IWXK O �4! (12) 

! �g) = MU �y�46IWX)K O �)! (13)!

where Eq.(13) corresponds to the formulation for low level of injected time-domain phase noise, and 

Eq.(14) to the formulation for high level of injected noise. 

The following step is to model, for both cases, the relation that links the intercept coefficient � to the 

signal frequency '6 and the measurement frequency offset 'kXX?<|. For this we considered a fixed 

level of noise for both cases (WX = @�ef for low noise level and WX = rU�ef for high noise level) and 

we performed simulations varying the signal frequency ('0 for different values of the frequency 

offset ('kXX?<| ). Results are shown in figure 2.15 and 2.16 for the two noise levels. 
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Figure 2.15 PN measured in frequency domain vs. signal frequency, for different values of the measurement frequency 

offset with m/ = ���� (low phase noise level)  

 

Figure 2.16 PN measured in frequency domain vs. signal frequency, for different values of the measurement frequency 

offset with m/ = ����� (high phase noise level) 

We observe a linear relation on log-lin scale with a slope of about -10dB/decade for low noise level, 

which corresponds to �4 varying with a �@U �y�46.'0 function. A slope of about -30dB/decade is 

observed high noises, which corresponds to �) varying with a �vU �y�46.'0 function. In both cases, 

the slope does not depend on the frequency offset, only the vertical intercept term. Consequently, 
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 �g4 = MU �y�46 ^ WX'4 )� _ O �4! (14)!

 �g) = MU �y�46 ^ WX)'5 )� _ O �)! (15)!

Figures 2.17 and 2.18 report the evolution of �g with respect to the frequency offset for different 

values of the signal frequency, in case of low and high noise levels respectively. In both cases, we 

observe a straight line with a slope of about -20dB/decade, leading to: 

 �g4 = MU �y�46 � WX]4'4 )� '�XX?<|�! (16)!

 �g) = MU �y�46 � WX)])'5 )� '�XX?<|�! (17)!

 

 

Figure 2.17 PN measured in frequency domain vs. measurement frequency offset for different values of the signal 

frequency with m/ = ���� (low phase noise level)  

10
4

10
5

10
6

-115

-110

-105

-100

-95

-90

-85

-80

-75

fOffset (Hz)

P
N

 (
d
B

c
/H

z
)

 

 

f = 500 kHz

f = 1 MHz

f = 2 MHz

f = 5 MHz



34 

 

 

Figure 2.18 PN measured in frequency domain vs. measurement frequency offset for different values of the signal 

frequency with m/ = ����� (high phase noise level) 

The terms ]4 and ]) are then computed from best fit curve regression for the different values 

ofE'kXX?<|. Analytical expressions corresponding to low and high levels of injected phase noise can 

then be obtained: 

 �g4 = MU �y�46 ^ WXUq�@ F '4A) F 'kXX?<|_! (18)!

 �g) = MU �y�46 ^ WX)`qM�E@U+5 F '5A) F 'kXX?<|_! (19)!

 

Finally, the analytical relation between the noise injected in the time domain and the noise measured 

in the frequency domain is simply given by the maximum the two expressions above: 

 �g = �]~E.�g4V �g)0! (20)!

 

Figures 2.19 and 2.20 compare the phase noise value computed using this analytical expression to 

the phase noise value measured on the spectrum, for different values of the signal frequency ('), and 

for two values of the measurement frequency offset ('kXX?<|). In all cases, a good agreement is 

observed.  
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Figure 2.19 PN computed with analytical formulation vs. PN measured through FFT computation, /�//��� = ����� 

 

Figure 2.20 PN computed with analytical formulation vs. PN measured through FFT computation, /�//��� = ������ 
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2.4 Conclusion 

In this chapter, we have introduced a phase noise model based on a one-dimensional Brownian 

motion that permits phase noise injection in a time-domain signal. This model corresponds to phase 

noise with @A') characteristics, which is typical of complex RF products that are the target of this 

thesis. The level of injected phase noise can be controlled by means of the standard deviation WX of 

the random variables involved in the Brownian motion. The validity of this model has been checked 

against a real device fabricated by NXP and an experimental setup allowing to synthetize a physical 

signal affected by phase noise has been developed. Finally, an analytical relationship between the 

phase noise level injected in the time domain and the phase noise level measured in the frequency 

domain has been established through a comprehensive simulation study.  
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Chapter 3. First method: phase noise estimation 

based on instantaneous frequency estimation 

This chapter presents the first approach developed in this thesis in order to measure phase noise by 

means of a simple 1-bit capture. In a first part, background on frequency estimation from 1-bit 

capture is recalled. The principle of phase noise estimation based on an analysis of instantaneous 

frequency deviation is introduced in the second part. Then, integration of a measurement module is 

proposed as a solution toward Built-In Self-Test (BIST). Primary experiments are presented in the 

fourth part and limitations of the proposed technique are highlighted. An improved version of the 

technique that includes an additional filtering step is then developed and validated through 

experimental measurements on hardware signals.  

3.1 Background on frequency estimation 

3.1.1 Frequency estimation from 1-bit capture 

The object of previous work [40] was to analyze RF signals with solely digital resources. One of the 

main contributions was the ability to recover frequency and amplitude of complex modulated signals 

using a simple 1 bit capture. Basics of frequency estimation are recalled here.  

The analog signal B.C0 to be analyzed is first oversampled ('?, sampling frequency) and converted to 

a digital signal by means of the comparator and the latch comprised in the digital tester channel. The 

resulting signal is therefore a binary vector \�H� expressed with: 

 \.H0 = �E @EEEG'EEEB.HL?0 � UEUEEE��B�EEEEEEEEEEEEEEEEEEEEE EEEEEH = @�g (21)!

where L? = @A'? is the sampling clock period, and g is the total number of captured samples. This 

binary vector stored in the ATE memory is then processed in order to retrieve the analog signal 

characteristics. 

One can exploit the transitions of the captured binary vector \�H� that correspond to the zero-

crossings of the analog signal B.C0 in order to compute an estimation of the instantaneous period L�.�0. This estimation can be simply obtained by counting the number of samples between 

successive transitions of the binary vector, which corresponds to the signal half-period:  

 

xy�HC.�0 =  g2¡B]�¢��B£ CQ]HBGCGyH.� O @0
CQ]HBGCGyH.�0  

L�.�0 = MEL?Exy�HC.�0EEEEEEEEEEEEE� = @�M.g¢�Q � @0 

(22)!

where g¢�Q is the number of captured signal periods.  

This is illustrated in figure 3.1 where the analog signal is represented in blue and \�H� is represented 

by red dots. The zero-crossing times of the analog signal can be inferred from the knowledge of rise 

and fall transition times of the binary vector. 
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Figure 3.1 1-bit acquisition of the signal under test. The transitions of the binary vector are used to estimate the 

instantaneous period. 

The instantaneous frequency is then simply given by: 

 '¤.�0 = @MEL? Exy�HC.�0 (23)!

With this process, we obtain M.g¢�Q � @0 values of the instantaneous frequency. Note that an 

estimation of the signal frequency can be computed as the arithmetic mean of instantaneous 

frequency estimations:  

 '¥ = @d $ @MEL? Exy�HC.�0¦
;*4  (24)!

3.1.2 Discretization quantum 

The sampling process of the analog signal B.C0 introduces a quantization of the estimated values for 

the instantaneous period or frequency. Indeed as expressed by eq.(22), estimated values of the 

instantaneous period can take only even integer multiple values of the sampling period. The 

quantization step of the instantaneous period L�.�0 is therefore: 

 §b = MEL? (25)!

The quantization step of the instantaneous frequency '¤.�0 can be calculated with a differentiation 

of ' = @AL: 

 a' = �aLL)  (26)!

So the quantization step of '¤.�0 is: 

 §X = ¨�§bL)¨ = MEL?L) = ME')'?  (27)!



39 

 

3.1.3 Running average filtering  

Practically, the signal is noisy in amplitude. In case of high amplitude noise level, the binary vector 

could be affected by multiple transitions in the zero crossing neighborhoods as illustrated in figure 

3.2. In order to get rid of these potential perturbation areas, basic filtering is implemented [40]. 

 

Figure 3.2 Amplitude noise may cause perturbation in the binary vector near transitions 

A simple running average over the binary vector does the job. The running average is performed over 

a window of g>©ª samples:  

 \«�H� = @g>©ª $ \�G�S
j*S+¬®¯

 (28)!

The result of this averaging is compared to Uqr in order to locate zero-crossing events and obtain 

another binary vector \4�H� that presents a single transition associated to each zero-crossing event. 

 

Figure 3.3 Perturbation in the binary vector can be filtered with a running average 
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Figure 3.3 illustrates how the binary vector computed from the running average isolates one single 

transition from the perturbation area where there was multiple transitions. This algorithm is robust 

and proven to be well functioning for g>©ª around 
X[3X as a rule of thumb.  

3.1.4 Error on threshold level 

In practice we want to be robust to any error on the threshold voltage of the comparator that 

performs 1-bit quantization. A simple solution is to consider time of extremums rather than 

transition time stamps: 

 C<°|i±.G0 = C|i>S?± .G0 O C|i>S?± .G � @0M  (29)!

This way, any offset error on the comparator threshold will be cancelled by the sum between two 

successive C|i>S? . Then we have: 

 xy�HC.�0 =  g2¡B]�¢��B£ C<°|i.� O @0
C<°|i.�0  (30)!

for the instantaneous frequency estimations in eq.(22). 

Note that this is equivalent to distinguish rising and falling transitions and separately count the 

number of samples between successive rising events xy�HC².�0 and successive falling events xy�HC³.�0, which directly corresponds to the signal period. In this case, the instantaneous 

frequency is given by: 

 '¤.�0 = @L?Exy�HC².�0 V '¤.�0 = @L?Exy�HC³.�0E (31)!

and quantization step of the instantaneous frequency §X changes since the frequency is estimated 

over one whole period to: 

 §X = ')'?  (32)!

3.2 Statistical dispersion on instantaneous frequency estimations 

From the oversampled 1-bit acquisition of an analog signal, we have established in the previous 

section how to compute the instantaneous frequency, with two estimations per signal period. In case 

of an ideal sinusoidal signal with no phase noise, the instantaneous frequency should exhibit the 

same value at each period of the signal, while in case of a sinusoidal signal affected with phase 

fluctuation, we expect a dispersion on the computed values. It is therefore our objective to analyze 

the distribution of the instantaneous frequency in order to derive an estimation of the phase noise 

affecting the analog signal. 

3.2.1 Standard deviation 

The first natural idea to analyze the distribution of the estimated instantaneous frequency is to 

compute its standard deviation. Standard deviation is indeed a very commonly-used measure of 

statistical dispersion. This standard deviation is defined by: 
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 WI'¤K = ´ @Mg¢�Q � v $ I'¤.�0 � '¥K)).¬h<i+40
;*4  (33)!

where '¥ is the mean of the instantaneous frequency estimations. 

Figure 3.4 gives the evolution of the instantaneous frequency standard deviation WI'¤K according to 

the injected phase noise level WX for different values of the oversampling ratio '?A', in case of a @Edef signal. Analyzing these results reveals that there is a direct correlation between WI'¤K and WX 

for high level of injected phase noise and high oversampling ratio. For instance with an oversampling 

ratio of 400, there is a perfect match with an ideal straight line for noise level higher than 2 000Hz. In 

this region, we can directly estimate the phase noise level injected in the time-domain signal with: 

 WµX = WI'¤K (34)!

However validity of this simple correlation is lost when decreasing the oversampling ratio. For 

instance with an oversampling ratio of 50, Eq.(34) is valid only for noise level higher than 10 000Hz. 

 

Figure 3.4 Standard deviation of estimated instantaneous frequency vs. injected phase noise level, for different values of 

the oversampling ratio 

This phenomenon comes from the quantization of the estimated instantaneous frequency 

introduced by the sampling process, with a quantization step equal to §X = ')A'?. As a result, the 

distribution of the estimated instantaneous frequency is a discrete distribution. Figure 3.5 illustrates 

this distribution for 3 different values of the oversampling ratio, with a 1% phase noise level injected 

in a 1MHz signal (WX = @U�ef). In case of a low oversampling ratio of 25, the quantization step is 

large (§X = `U�ef0 and the discrete distribution is evaluated with a low resolution. In contrast with 

a larger oversampling ratio of 400, the quantization step is small (§X = Mqr�ef0 and the discrete 

distribution is obtained with a fine resolution. Direct evaluation of the phase noise level can be 

achieved using the standard deviation only if the resolution is sufficient, i.e. if the quantization step is 

smaller than the phase noise level to be estimated. Practical use of standard deviation for phase 

noise evaluation is therefore limited. For instance, the correct evaluation of -90dBc/Hz phase noise at 
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25kHz frequency offset on a 1MHz signal (WX = p`Uef from Eq.(18)) would require a sampling 

frequency higher than 1.56GHz, which exceeds the capabilities of a standard digital tester channel. 

 

Figure 3.5 Effect of frequency quantization on distribution of estimated instantaneous frequency 

3.2.2 Mean Absolute Deviation (MAD) 

In this context, we have looked for another estimator that can apply to our specific case of discrete 

distribution evaluated with low resolution. Other than the standard deviation, many different 

measures of statistical dispersion exist, such as the interquartile range, the mean difference, the 

median absolute deviation, the mean absolute deviation, the distance standard deviation… Among 

these classical measures, we have identified that the Mean Absolute Deviation (MAD) is a measure 

that can be easily computed and that permits robust estimation in our specific context. 

The Mean Absolute Deviation (MAD) is defined as the mean of the absolute deviations of a set of 

data measured apart from the data mean value. In our case, we have: 

 dD¶I'¤K = @M.g¢�Q � @0 $ ·'¤.�0 � '¥·).¬h<i+40
;*4  (35)!

In case of a normal distribution, the MAD is related to the standard deviation with: 

 dD¶I'¤K = ¸MN F WI'¤K (36)!

Consequently, we propose to estimate the phase noise injected in the time-domain signal with: 

 WµX = ¹NM F dD¶I'¤K (37)!

Replacing '¤ by its expression and rearranging the equation, we obtain: 

 WµX = ¹NM F §XM.g¢�Q � @0 $ ºxy�HC.�0 � Hº).¬h<i+40
;*4  (38)!
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where §X = ')A'? is the frequency quantization step, g¢�Q is the number of captured signal 

periods, H = '?A' is the oversampling ratio, and xy�HC.�0 is the number of samples between 

successive extremums. 

Note that this analytical relationship has been derived based on an intuitive use of the MAD function. 

The same expression can be established based on a stochastic model of the measurement process, as 

detailed in Annex A.  

Figure 3.6 reports the estimated phase noise level WµX vs. the injected phase noise level WX, for 

different values of the oversampling ratio '?A'. It can be observed that all curves obtained with an 

integer oversampling ratio perfectly match the ideal straight line, whatever the integer value. In case 

the oversampling ratio is not exactly an integer, curves deviate from the ideal straight line for low 

level of injected phase noise. These results clearly indicate that the proposed estimator has the 

potential to achieve correct phase noise even for low level of noise and low oversampling ratio, 

provided that the sampling frequency is a perfect multiple of the signal frequency.  

 

Figure 3.6 Estimation of PN level based on Mean Absolute Deviation of estimated instantaneous frequency 

3.2.3 Considerations for sampling ratio setting 

The proposed technique relies on the use on an integer oversampling ratio = X[X  . This ratio should 

preferably be chosen odd. The reason for this is illustrated in figure 3.7. 
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Figure 3.7 The maximum distance between a zero-crossing event and the closest sampling point is reduced by choosing 

an odd oversampling ratio » 

Considering an ideal sinewave, there are two zero-crossing events per period, one corresponding to 

the falling slope of the other to the rising slope of the analog signal. The maximum distance between 

the actual location of these crossing events and the closest sampling points actually depends on the 

choice of the sampling ratio as odd or even. In case of an even number, this maximum distance is 

equal to 
b[)  while in case of an odd number, it cannot exceed 

b[3 . This means that with the same phase 

noise, represented as a Gaussian distribution in green, the signal is much more likely to be detected 

when H is odd.  

To illustrate this point, we have simulated a @def signal affected with phase noise (WX = @�ef) and 

sampled using either an even (H = MUU) or odd (H = @¼¼) ratio. In both cases, the phase noise level WµX present in the signal has been estimated using eq.(38). The experiment has been repeated 500 

times and we have computed the standard error on the estimated phase noise values !½IWµXK. 

Results are summarized in figure 3.8 which reports the distribution of estimated values. It clearly 

appears that correct estimation is achieved in both cases with a distribution well-centered on the 

expected value of @�ef. However the dispersion is lower in case the oversampling ratio is odd rather 

than even, which corresponds to a reduced measurement uncertainty.  

       

Figure 3.8 Distributions of  m¾/ estimations obtained in simulation with » = ��� and » = �¿¿ 
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Finally, we have evaluated the impact of inaccuracy on the setting of the oversampling ratio. The 

number of instantaneous frequency deviations due to an inaccurate oversampling ratio HÁ = X[(nX[X  

should obviously be much smaller than the number of instantaneous frequency deviations generated 

by phase noise in order to not disturb the estimation. We have established that the sampling 

frequency error 9'? should respect the following constraint: 

 9'? ÂE HZMNEWX·|>iª<|  (39)!

where H is the ideal integer oversampling ratio and W'·C]Q��C is the typical phase noise level to be 

measured on the signal under test. 

3.2.4 Summary of proposed digital technique 

The proposed technique relies on the 1-bit acquisition of the signal to be analyzed with a sampling 

frequency that is an integer multiple of the signal frequency, associated with simple digital 

processing to compute the mean absolute deviation of the estimated instantaneous frequency. The 

technique therefore requires that the signal frequency is known with a good accuracy.  

If necessary, the practical implementation many include a preliminary phase dedicated to the 

determination of the signal frequency before the phase noise test phase, as illustrated in figure 3.9. 

   

Figure 3.9 Block diagram of the proposed digital technique based on instantaneous frequency estimation  

In the preliminary phase, 1-bit acquisition of the signal is performed with a sampling frequency that 

is not necessarily an integer multiple of the signal frequency. From this acquisition, the signal 

frequency is computed as the arithmetic mean of the instantaneous frequency estimations using 

eq.(28).  

In the testing phase, a novel 1-bit acquisition of the signal is performed with the sampling frequency 

adjusted at an integer multiple of the computed signal frequency '? = H F '¥. From this acquisition, we 

compute the estimated value of the phase noise level WµX using eq.(38). The final estimation of the 

phase noise value �gÃ  expressed in dBc/Hz is then obtained from eq.(20). 
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3.3 Integrated module 

3.3.1 Integrated module overview and principle 

We investigated ways to integrate this technique on chip, in order to perform phase noise 

measurement directly within the Device Under Test (DUT). The objective is to develop an Embedded 

Test Instrument (ETI) that delivers a digital signature directly related to the phase noise level present 

in the analog output signal of the DUT, as shown in Fig.3.10.a. However the direct integration of the 

method described in previous section is not feasible since it requires excessive area with respect to 

the area occupied by the DUT itself. Indeed, although the 1-bit digitizer can be implemented with 

small area using a comparator for instance, the computation of the phase noise level necessitates the 

integration of both important memory resources and DSP to perform the required arithmetic 

operations. Our purpose is therefore to redefine the post-processing algorithm in order to 

implement the computation of the digital signature using a limited number of memory resources and 

only simple binary operators, as illustrated in Fig.3.10.b. 

(a) (b)  

Figure 3.10 Embedded Test Instrument for phase noise measurement 

In order to identify an appropriate digital signature, let us first define a�Ä.�0 = xy�HC.�0 � H as 

the deviation from the ideal count at each estimated value of the instantaneous frequency, where xy�HC.�0 corresponds to the number of samples between successive transitions of same type 

(either rising or falling transitions). The phase noise estimator defined in eq.(38) can then be 

expressed with:  

 WµX = ¹NM F §XM.g¢�Q � @0 F $ ºa�Ä.�0º).¬h<i+40
;*4  (40)!

This equation clearly indicates that the basic operation to be performed for on-chip implementation 

is a sum of absolute deviations, which can be considered as the digital signature of phase noise level 

present in the analog signal: 

 a�Ä¡xy�HC = $ Eºa�Ä.�0º).¬h<i+40
;*4  (41)!

In order to perform the computation of this digital signature with minimal hardware resources, the 

key idea is to implement on-the-fly processing of the 1-bit signal delivered at the output of the 

comparator. In particular, the idea is to generate a pulse train signal whose pulse durations 

correspond to differences between the actual period duration and a reference based on the ideal 
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period length. The digital signature related to the phase noise level can then be computed with a 

simple accumulation of these deviations over a number of signal periods. 

The main principle for generating such pulse train is based on the XOR-comparison between 

dedicated signals triggered by specific SUT transitions. As depicted in figure.3.11, it involves: 

· The generation of a signal BG�H]�¡Å, that toggles at every rising zero-crossing of the SUT, 

· The generation of : 

o a first reference signal Å¡CQG�¡Q�'¡BG�H]�¡Å whose rising transition is triggered by 

the rising transition of ÆÇÈÉÊË¡Ì and duration at high level is equal to the ideal signal 

period, 

o a second reference signal Í¡CQG�¡Q�'¡BG�H]�¡Å whose falling transition is triggered 

by the falling transition of BG�H]�¡Å and duration at low level is equal to the ideal 

signal period, 

· The XOR-comparison between 

o BG�H]�¡Å and Å¡CQG�¡Q�'¡BG�H]�¡Å  

o BG�H]�¡Å and Í¡CQG�¡Q�'¡BG�H]�¡Å, 

· The logic OR of the two XOR-comparison results. 

The result of the logic OR is then a pulse signal a�Ä¡BG�H]�¡Å whose pulse durations correspond to 

deviations between SUT rise-to-rise transitions and the ideal period. 

 

Figure 3.11 Principe of deviation signal generation (associated with SUT rise-to-rise transitions) 
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In the same way we can define a pulse signal a�Ä¡BG�H]�¡Í whose pulse durations correspond to 

deviations between SUT fall-to-fall transitions and the ideal period, based on the generation of a 

signal BG�H]�¡Í whose toggling is triggered by successive falling transitions of the SUT. 

The deviation signal a�Ä¡BG�H]� that includes all types of period deviations is then simply the result 

of a logic OR between the two pulse signals a�Ä¡BG�H]�¡Å and ¡BG�H]�¡Í . The digital signature a�Ä¡xy�HC can be computed with a simple accumulation ofEa�Ä¡BG�H]� high states over a number 

of signal periods.  

The general architecture of such an Embedded Test Instrument is given in figure 3.12. It comprises 

two “Divide-by-2” blocks, one directly connected to the digital SUT and the other to the inverted 

digital SUT, which deliver BG�H]�¡Å and BG�H]�¡Í respectively. Each one of these two signals is fed 

to two reference signal generators, one triggered on the positive edge and the other on the negative 

edge. The deviation signal a�Ä¡BG�H]� is then generated through simple combinational gates, and 

accumulated by the “Cum_Sum” block to deliver the digital signature a�Ä¡xy�HC.  

 

Figure 3.12 General architecture of the proposed ETI 

3.3.2 Implementation 

Several ways of implementing the general architecture of the proposed ETI are obviously possible. 

This section describes a simple implementation that leads to small silicon area.  

Figure 3.13 gives a detailed block diagram of the proposed implementation of the processing unit 

together with the functional timing sequence. The module inputs and output are: 
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· BG�H]�¡GH is the digitized input signal, taken at the output of the comparator, corresponding 

to the 1-bit conversion of the analog signal to be measured. 

· x�yx� is a reference clock with a frequency '? that is an integer multiple H of the signal 

frequency '. 

· Q�'¡Ä]���¡GH is a configuration value to be provided to the module by mean of a pre-loaded 

register for instance. It should be equal to the oversampling ratioEH = '?A' and controls the 

duration of the reference signals. 

· C�BC¡xyHCQy� is a test input to enable the measure for a specific period of time. 

· a�Ä¡xy�HC is the digital signature correlated to the phase noise to be measured; it can be 

read from a register. 

 

 

 

Figure 3.13 Block diagram of the processing unit 
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Note that the “Divide-by-2” block is simply implemented using a D-FlipFlop (DFF) with a feedback 

loop between the inverted output §Î  and the data input ¶. Also note that delay elements are inserted 

to ensure appropriate synchronization between signals delivered by the reference generators and 

signals delivered by the “Divide-by-2” blocks, with respect to the subsequent XOR-comparison. 

Figure 3.14 shows the implementation of the “edge detector” block and its functional timing 

diagram. It simply consists of 2 DFFs, 2 inverters and 2 AND gates. Two instances of this block are 

used to generate triggering signals .Å¡a�C�xC and Í¡a�C�xC0 for the reference generators. 

 

Figure 3.14 “egde_detector” block 

Figure 3.15 shows the implementation of “ref_signal_generator” block and its functional timing 

diagram. It is based on a free-running counter (count enable input Ï½ tied to “1”) and a data 

comparator .ÐL = "1"EEEÇÑEEEED Ò :0q Signal generation is triggered by the reset input Å of the counter 

(connected to ÅAÍ¡a�C�xC coming from the “edge detector” block) and the duration at high level is 

determined by the configuration value Q�'¡Ä]���¡GH .Q�'?jªS>Ó = "1"EEEÔÕÇËÖEEExy�HC©>Ó×< ÒQ�'¡Ä]���¡GH0. Four instances of this block are used to generate Å¡CQG�¡Q�'¡BG�H]�¡ÅV Í¡CQG�¡Q�'¡BG�H]�¡ÅV Å¡CQG�¡Q�'¡BG�H]�¡Í and Í¡CQG�¡Q�'¡BG�H]�¡Í. In case of reference signals 

triggered by falling transitions and with duration at low level equal to the ideal signal period, the 

output of the “ref_signal_generator” block is inverted. 

 

Figure 3.15 “ref_signal_generator” block 

Figure 3.16 shows the implementation of the “cum_adder” block and its functional timing diagram. 

Its role is to count the number of high levels contained in the deviation signal a�Ä¡BG�H]� over a 

given number of signal periods. It is based on a counter with control of the count enable input Ï½, 

i.e. the counter is incremented if both C�BC¡xyHCQy� and GH are at high level, otherwise it maintains 

the current value. Therefore, the duration of the cumulative sum computation is determined by C�BC¡xyHCQy�. In addition, a reset of the counter is performed at the beginning of the computation 

with the rising edge of C�BC¡xyHCQy�V and the counter value is maintained at the end of the 
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computation with C�BC¡xyHØÙÚË at low level. This value directly corresponds to the digital signature a�Ä¡xy�HC. One instance of this block is used, with its input connected to a�Ä¡BG�H]� and its output 

to a�Ä¡xy�HC. 

 

Figure 3.16 “cum_adder” block 

Table 3.17 summarizes the required hardware resources in terms of sequential and combinational 

elements, assuming a 10-bit counter for the “ref_signal_generator” blocks (oversampling ratio H 

from 1 up to 512), and a 16-bit counter for the “cum_adder” block (digital signature a�Ä¡xy�HC from 

0 up 65,536). Overall, the processing unit comprises about 70 FFs and about 400 combinational 

gates, which corresponds to a very small silicon area.  

Block Number of instances 
Number of  

FFs 
Number of gates 

Edge_detector 

Ref_signal_generator 

Cum_adder 

Other elements 

2 

4 

1 

1 

2 

10 

20 

6 

4 

84 

52 

12 

Total  70 408 

 

Table 3.1 Hardware resources involved in Processing Unit 

Structural VHDL simulations have been run to verify the correct behavior of the module. An example 

is given in figure.3.17. The proposed ETI has then been implemented within a test chip using a CMOS 

140nm technology. The module occupies only 7,885µm2, which a represents negligible area of the 

test chip as illustrated in figure 3.18. 
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Figure 3.17 VHDH simulation example  

 

Figure 3.18 Layout of the test chip with embedded test instrument 

This prototype has been taped out and we have tried to perform measurements. Unfortunately, the 

device is not functional, possibly due to a design error on the bus that addresses the configuration 

register storing Q�'¡Ä]���.  

3.4 Preliminary experimental results 

The measurement technique has been furthered explored by performing measurements on a 

physically. The signal is generated and captured as previously explained. Both the conventional 

method (i.e. FFT based) and the proposed digital technique have been applied on this signal for 

different noise levels.  

3.4.1 Experimental setup 

In order to compare simulation results with actual measurements and explore the valid 

measurement range of the technique, the test bench depicted in figure 3.19 has been developed. As 

already described in section 2.2.1, the generation of synthesized signal with tunable phase noise is 

accomplished using an RF source, FM-modulated with white noise. Phase noise level can be adjusted 

by means of the modulation depth parameter.  

The capture of the SUT is realized using a Yokogawa DLM2054 Mixed-Signal Oscilloscope (MSO). In 

the context of an industrial production test, capture would be done with an analog/RF tester channel 
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for the conventional method, and with a standard digital tester channel for the digital technique. 

Here, the MSO replaces the digitizer of the analog/RF tester channel, and 1-bit acquisition normally 

performed by the digital ATE is done through software 1-bit quantization on the digitized samples 

provided by the MSO. 

Two distinct post-processing procedures are then implemented in Matlab. The first one corresponds 

to the conventional method, i.e. FFT is applied on the digitized samples and the phase noise value �g is measured on the resulting spectrum. The second one corresponds to the digital technique, i.e. 

the dedicated post-processing algorithm is applied on the binary vector to compute the estimated 

phase noise value �gÃ . 

  
Figure 3.19 Experimental setup for hardware measurements 

3.4.2 Results 

Results are summarized in figure 3.20 that reports the phase noise level estimated by the digital 

method with respect to the phase noise level measured by the conventional method. The case study 

corresponds to a vqU`�Ûdef signal sampled at @Mrdef (oversampling ratio H = `@), with analysis 

of vUV`�Û signal periods and phase noise evaluation at a frequency offset 'kXX?<| = Ûr�ef. Different 

levels of phase noise were injected varying the modulation depth 'n of the RF source from @�ef up 

to @def. A good correlation between the digital technique and the conventional method can be 

observed over a large range of phase noise values, from -`Ua:xAef down to -�Ua:xAef, which 

validates the theoretical developments and demonstrates the viability of the proposed technique 

However for phase noise values below -�Ua:xAef the digital technique diverges from the 

conventional method. Note that this phenomenon is not observed in simulation since results 

correctly fit the ideal correlation line on the complete range of injected phase noise. 
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Figure 3.20 Comparison of ÜÝ measured with proposed technique and conventional method 

3.5 Additional Filtering 

3.5.1 Origin of Digital Technique Limitation 

Additional experiments have been performed in order to understand phenomenon leading to the 

saturation observed in case of low phase noise level. In particular, we have applied the digital 

technique on a sinusoidal signal without phase noise, i.e. a signal directly delivered by an RF 

generator without frequency modulation. Ideally the number of samples between successive 

rising/falling transitions should be constant and exactly equal to the oversampling ratio, which means 

that the deviation count should be equal to zero whatever the analyzed period of the signal: 

 ÞE� ß à@V � VM.g¢�Q � @0áâEEEa�Ä.�0 = U (42)!

 
Figure 3.21 Deviation of the estimated instantaneous frequency in case of a sinusoidal signal without phase noise. 

Regions with multiple unwanted deviations are observed at regular time intervals. 

In practice, we observe a different situation, as illustrated in figure 3.21 obtained with a vqU`�Ûdef 

signal sampled atE@Mrdef. There are indeed some moments where deviations remain null, but 

there are also moments where deviations toggle between {-1, 0, +1}. Obviously, these unwanted 

deviations are considered to be phase noise related, and therefore produce overestimation. These 

deviations are responsible of the saturation phenomenon observed in case of low phase noise level. 

These unwanted deviations may come from non-idealities of either the input signal or the acquisition 

process. Further investigations have been carried out in simulation.  
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First we have simulated the effect of non-idealities in the acquisition process, such as imperfect 

setting of the oversampling ratio due to RF generator inaccuracy (as described in section 3.2.3) and 

jitter in the sampling clock.  

Figure 3.22 reports simulation results in case of an imperfect setting of the oversampling ratio H = '?A.' � ã'0E with ã' = @Uef. It can be observed that unwanted deviations are generated at 

regular time intervals. In this case however, only single deviations are recorded instead of a burst of 

deviations as observed in the hardware experiment. Note that the time interval between unwanted 

deviations is directly related to frequency inaccuracy with: 

 ãL = @MH F ã' (43)!

 
Figure 3.22 Deviation of the estimated instantaneous frequency in case of a simulated sinusoidal signal without phase 

noise and imperfect setting of the oversampling ratio (ä/ = ����). Single unwanted deviations are observed at regular 

time intervals 

Figure 3.23 reports simulation results in case of an imperfect setting of the oversampling ratio with ã' = @Uef and Random Jitter (RJ) in the sampling clock with W²å = vrU¢B. The behavior in this case 

is very similar to the one observed in the hardware experiment, i.e. regions with multiple unwanted 

deviations that occur at regular time intervals. 

 
Figure 3.23 Deviation of the estimated instantaneous frequency in case of a simulated sinusoidal signal without phase 

noise, imperfect setting of the oversampling ratio (ä/ = ����) and jitter in the sampling clock (mæç = è��é�). Regions 

with multiple unwanted deviations are observed at regular time intervals. 

Then we have simulated the effect of non-idealities in the signal to be analyzed and in particular we 

have investigated the influence of voltage noise, in case of an imperfect setting of the oversampling 

ratio. Here again, the behavior is very similar to the one observed in the hardware experiment, as 

illustrated in figure 3.24 for a sine-wave signal with 0.7% amplitude noise (WsSkj?< = UqUUÛ ê D). 
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Figure 3.24 Deviation of the estimated instantaneous frequency in case of a simulated sinusoidal signal without phase 

noise, with voltage noise (më»�ì�� = �q ��í ê ë0 and imperfect setting of the oversampling ratio (Δf=10Hz). Regions with 

multiple unwanted deviations are observed at regular time intervals 

From these experiments, we can guess the origin of the limitation of the digital technique at low 

phase noise level. Unwanted deviations result from the combination of imperfect setting of the 

oversampling ratio and either jitter in the sampling clock or voltage noise in the analog signal (or 

both, as likely it is in practice). These parasitic deviations occur in distinct regions located at regular 

time intervals, and these moments actually correspond to time where crossing events fall at the close 

vicinity of sampling points.  

 
Figure 3.25 A didactic example to illustrate the influence of jitter and voltage noise on the conversion of the analog 

signal: (a) crossing event in the middle between sampling points and, (b) crossing event close to the sampling point 

Indeed as illustrated on the didactic example of figure 3.25, when the crossing event falls in the 

middle between two consecutive sampling, the signal voltage at the sampling points is far enough 

from the switching threshold so that the signal is correctly converted into a logic “0” or logic “1”. In 

contrast when the crossing event falls close to a sampling point, the signal voltage at the sampling 

point is close to the switching threshold and uncertainty in the sampling time or in the signal 

amplitude may result in an erroneous conversion of the signal.  
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3.5.2 Jitter or voltage noise? 

Further investigations have been driven in order to discriminate contributions of jitter and voltage 

noise. In particular we have evaluated the sensitivity of the phase noise estimation to jitter and 

voltage noise for various signal frequencies. Basically the proposed technique relies on voltage-to-

time conversion using level-crossings, i.e. the voltage information contained in the analog signal is 

converted into timing information in the binary signal. Voltage noise affecting the analog signal 

therefore produces timing noise in the binary signal. A weak voltage noise îï Â ð will cause a timing 

noise îØ approximately given by: 

 ñCE ò E ó©)csFX = ó©)csX[ H with H = X[X  (44)!

This equation indicates that the timing noise in the binary signal depends not only on the voltage 

noise in the analog signal but also on the signal frequency. In other words it means for the same 

value of voltage noise ñÄ, a signal with low frequency produce a timing noise larger than a signal 

with high frequency, and therefore is more susceptible to generate unwanted deviations.  

On the other hand, it is clear that the timing noise induced by jitter does not depend on the signal 

characteristics but just on the value of the sampling clock jitter. 

We can therefore distinguish between the two types of noise by studying effects of the signal 

frequency. In case of jitter, we expect that the number of unwanted deviations remain constant 

whatever the signal frequency while in case of amplitude noise, the number of unwanted deviations 

should increase for signal with a lower frequency. 

 
Figure 3.26 Number of deviations w.r.t. signal frequency for 1-bit acquisition at /� = ���ô�� of a sinusoidal signal 

without phase noise. 

Measures have been done, considering a sinusoidal signal without phase noise, both in simulation 

and experimentally. More specifically we have performed 1-bit signal acquisition with a fixed 

sampling rate '? = @Mrdef and we have computed the total number of deviations observed on 

20,000 periods, for different values of the signal frequency from @qM¼def up to `qv@def. Results 

are summarized in figure 3.26. As expected, the number of deviations is roughly constant for the 

simulation of the sinusoidal signal with clock jitter, and decreases with the signal frequency in the 

presence of amplitude noise. Hardware measurement fits the case of voltage noise, revealing the 

predominance of this type of noise in the experimental setup. 
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3.5.3 Improved Digital Technique  

In the previous section, we have established that the limitation of the proposed digital technique in 

case of low phase noise level comes from imperfect setting of the oversampling ratio and unwanted 

deviations of the instantaneous frequency generated by voltage noise in the analog signal. One 

approach to alleviate this limitation is to modify the post-processing algorithm in order to 

discriminate deviations induced by amplitude noise from deviations induced by phase noise. 

The objective is therefore to develop a filter mechanism that removes unwanted deviations while 

preserving the information related to phase noise. For this, we have analyzed the evolution over time 

of deviations generated by either voltage noise or phase noise. Simulations have been performed 

considering the phase noise model described in chapter 2, which relies on a one-dimension Brownian 

motion. 

As an illustration, figure 3.27.a reports an example of deviations observed in case of a simulated 

sinusoidal signal affected by 0.7% voltage noise and figure 3.27.b reports an example of deviations 

observed in case of a simulated sinusoidal signal affected by 1.4% phase noise (WA' = UqU@`). Note 

that results are displayed with a zoom on a small portion of the sequence to allow detailed analysis.  

A number of distinctive features can be highlighted for deviations generated by amplitude noise: 

· deviations only take +1, 0 or -1 values, 

· a non-zero deviation is systematically followed by a zero deviation, 

· consecutive non-zero deviations systematically exhibit opposite signs. 

 (a)  

(b)  

Figure 3.27 Example of deviations observed in case of (a) a simulated sinusoidal signal affected by 0.7% voltage noise, 

and (b) a simulated sinusoidal signal affected by 1.4% phase noise 

In contrast, deviations generated by phase noise do not exhibit any of these features. The idea is 

therefore to develop a filter that exploits this distinctive behavior. More specifically, we have 

implemented an algorithmic filter that removes consecutive non-zero deviations having different 

signs and keep only non-zero deviations having the same sign or deviations with amplitude higher 

than 1. We denote a�Äõ .�0 the deviations obtained after application of the filter.  
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deviation

-1 deviation 
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Results are illustrated in figure 3.28 for a sequence of 10,000 periods. The efficiency of the filter to 

remove unwanted deviations generated by voltage noise is clearly demonstrated, while a large 

number of deviations induced by phase noise are still present after the filtering operation. We 

therefore expect that the information related to phase noise is preserved. 

(a)  

(b)  

Figure 3.28 Filter operation in case of (a) a simulated sinusoidal signal affected by 0.7% voltage noise, and (b) a simulated 

sinusoidal signal affected by 1.4% phase noise 

This assumption can actually be verified by looking at the cumulative sum of deviations, which gives 

an image of the Brownian motion corresponding to the input signal phase fluctuations. Figure 3.29 

gives the evolution over time of this cumulative sum (zoom on a small portion of the sequence), in 

case of the simulated sinusoidal signal affected by phase noise, before and after application of the 

filter. We observe that both curves follow a similar trend, indicating that the proposed filter 

preserves the essential characteristics of phase noise. However it is clear that some of the deviations 

induced by phase noise are removed by the filter; this has to be taken into account in the post-

processing algorithm. 
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Figure 3.29 Evolution over time of the cumulative sum of deviations 

Additional simulations have been carried out to evaluate filter impact. Results are summarized in 

figure 3.30 which reports the sum of absolute deviations after application of the filter ö·a�Äõ .�0· 
with respect to the phase noise level WXA' injected in the analog signal (without any voltage noise).  

 
Figure 3.30 Sum of absolute deviations after application of the filter w.r.t. phase noise level injected in the analog signal 

(without voltage noise). 

On this log-log graph, we can observe that the behavior slightly differs depending on the injected 

phase noise level: 

· in case of low phase noise level, the relationship between the sum of absolute deviations and 

the phase noise level can be approximated by a straight line with a slope of about 1.8, 

· in case of high phase noise level, the relationship between the sum of absolute deviations 

and the phase noise level can be approximated by a straight line with a slope of about 1.3. 

Consequently, the idea is to propose two fitting models corresponding to low and high phase noise 

levels, using monomial equations of the form ö·a�Äõ .�0· = � IWXA'K÷.  

Note that the curve presented in figure 3.30 corresponds to a specific set of acquisition parameters àHV g¢�Qá. In case of different values of these parameters, the shape of the curve remains the same 

but its vertical location varies. A number of simulations have been performed varying these 

parameters in order to analyze their influence. 

Low Level High Level
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From these simulations, it comes out that the sum of absolute deviations after application of the 

filter is obviously proportional to the number of periods. The influence of the oversampling ratio is 

more complex because it has a different impact in case of low and high phase noise levels: the sum of 

absolute deviations is directly proportional to the oversampling ratio in case of high phase noise level 

and proportional to the square of the oversampling ratio in case of low phase noise level.  

Taking into account all these observations, we propose to use two fitting models corresponding to 

low and high phase noise levels: 

 
ö·a�Äõ .�0·�) F g¢�Q E= �øo¬ ùWX' ú÷ûüý  (45)!

 
ö·a�Äõ .�0·� F g¢�Q E= �þo¬ ùWX' ú÷ÿüý

 (46) 

Using least-squares regression, we obtain: 

 �øo¬ = @qUÛV EEE�øo¬ = @q�U 

 �þo¬ = vqU`V EEE�þo¬ = @qM� 

Figure 3.31 compares the sum of absolute deviations computed using the proposed models with the 

sum of absolute deviations observed in simulation. The case study is a vqU`�Ûdef signal sampled at @Mrdef with analysis of vUV`�Û signal periods. A very good agreement is observed for both models 

in their validity region.  

We can now use these models to address the influence of the filter on the number recorded 

deviations. In particular solving Eq.(12) and (13), we have:  

 WX¾ = '6 F  ö·l<©õ .;0·&ûüýF!"F¬h<i#4A÷ûüý for 
ö·l<©õ .;0·!F¬h<i Ò UqUU` (47)!

 WX¾ = '6 F  ö·l<©õ .;0·&ÿüýF!F¬h<i#4A÷ÿüý
 for 

ö·l<©õ .;0·!F¬h<i > UqUU` (48) 

Note that we switched between models atEö·a�Äõ .�0· A�q g¢�Q = UqUU`. It actually corresponds to 

a phase noise level WXA' of about 0.6%.  

(a)  
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(b)  

Figure 3.31 Validation of the fitting models that relate the sum of absolute deviations observed after application of the 

filter to the phase noise level present in the analog signal: (a) low phase noise level and (b) high phase noise 

This novel estimator has been validated in simulation considering the case study of figure 3.20, i.e. a vqU`�Ûdef signal sampled at @Mrdef with analysis of vUV`�Û signal periods. Note that a voltage 

noise of 0.7% has been included in the simulation. Results are summarized in figure 3.32 which 

reports the phase noise value estimated by the digital method (both the original technique and the 

new one), with respect to the phase noise value measured by the conventional method. The superior 

performance of the new post-processing algorithm is clearly highlighted since it does not suffer from 

the saturation effect observed with the original algorithm and permits correct estimation of the 

phase noise level on a large range of injected noise from -`Ua:xAef down to -@@Ua:xAef. 

 
Figure 3.32 PN estimation with digital technique vs. PN measurement with conventional method, for a simulated 

3.0487MHz signal sampled at 125MHz with 0.7% voltage noise 

For practical implementation, the improved digital technique relies on the same setup than the one 

used with the original technique, i.e. 1-bit signal acquisition with a sampling frequency that is an odd 

multiple of the signal frequency using a standard digital tester channel. Only the post-processing 
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algorithm is modified. As illustrated in figure 3.33, an additional filtering step is inserted in order to 

remove unwanted deviations generated by voltage noise and a new estimator is used to address the 

influence of the filter on the deviations induced by phase noise; all other steps remains the same. 

 
Figure 3.33 Novel post-processing algorithm for phase noise estimation from digital capture 

3.6 Experimental results 

In order to validate simulation results, experiments have been performed using the same setup as 

the one introduced in section 3.4.1. 

3.6.1 Filter validation 

The purpose of the first experiment was to verify the correct operation of the filter in the case of a 

sinusoidal signal without phase noise. To do this, we have considered the same case study than in 

figure 3.21, i.e. a vqU`�Ûdef signal delivered by the RF generator without frequency modulation 

and sampled at @Mrdef by the mixed-signal oscilloscope. 

Results are illustrated in figure 3.34 which gives the deviations observed before and after application 

of the filter. These results clearly demonstrate the efficiency of the filter which permits to remove 

the unwanted deviations generated by voltage noise. 

 
Figure 3.34 Filter operation for a $q �è%íô�� signal without phase noise delivered by the RF generator without 

frequency modulation, and acquisition with an oversampling ratio » = è�.!

Further experiments have been performed to verify the correct operation of the filter for different 

oversampling ratios. More specifically, we have analyzed signals with different frequencies while 

maintaining the same sampling frequency '? = @Mrdef (maximum value for this equipment). 
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Results are summarized in figure 3.35 which reports the sum of absolute deviations after filtering 

according to the oversampling ratio.  

 
Figure 3.35 Sum of absolute deviation after filtering vs. oversampling ratio.!

From the results, it appears that there is actually a limitation on the value of the oversampling ratio 

ensuring correct operation of the filter. Indeed the sum of absolute deviations remains very low in 

case of an oversampling ratio below 45, revealing efficient filtering of unwanted deviations. 

However, it drastically increases with the oversampling ratio for values above 45, indicating that the 

filter is not functional in such situations. 

As an illustration, figure 3.36 shows the operation of the filter in case of a MqÛÛdef signal sampled 

at @Mrdef, which corresponds to an oversampling ratio H = `r. We observe that regions with 

unwanted deviations are larger than the ones seen in figure 3.34 and often overlap in time. 

Obviously, the distinctive features we have identified in case of deviations induced by voltage noise 

are not preserved in these overlapping regions, resulting in filter malfunction. 

 
Figure 3.36 Filter operation for a �q ííô�� signal without phase noise delivered by the RF generator without frequency 

modulation, and acquisition with an oversampling ratio » = è�!
A necessary condition for the correct operation of the filter is therefore that there is no overlap 

between regions with unwanted deviations, which imposes a limitation on the value of the 

oversampling ratio. This limitation does not prevent from the use of the technique, but it has an 

impact on the measurement variability. Indeed as demonstrated in the annex concerning the 
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stochastic model, the measurement variability reduces when increasing the oversampling ratio 

and/or the number of captured periods. The consequence of a limited oversampling ratio can 

therefore be compensated by increasing the number of captured periods, thus increasing test time. 

Note that the maximum value of the oversampling ratio ensuring correct operation of the filter 

should be evaluated for each case since it depends not only on the signal characteristics (voltage 

noise amplitude, signal frequency) but also on the performance of the test equipment (frequency 

inaccuracy). 

3.6.2 PN Hardware Measurements 

PN measurements were performed on a sinusoidal signal affected with phase fluctuations using a 

previous case study (figure 3.20) based on a vqU`�Ûdef signal sampled at @Mrdef. Different levels 

of phase noise were injected varying the modulation depth '� of the RF source from @�ef up to @def. Results are summarized in figure 3.37 which reports the phase noise value estimated by the 

digital method (both the original technique and the new one), with respect to the phase noise value 

measured by the conventional method. For the sake of comparison, simulation results are also 

reported.  

 
Figure 3.37 Hardware validation: comparison between PN estimation with digital technique and PN measurement with 

conventional method for a $q �è%íô�� signal sampled at ���ô��!
Experimental results present a very good agreement with simulation and confirm the superior 

performance of the filtered digital technique that permits to remove the saturation effect initially 

observed.  

3.7 Conclusion 

In this chapter, we have demonstrated that the analysis of the distribution of the instantaneous 

frequency estimated from an 1-bit acquisition of the signal under test can be used to perform phase 

noise evaluation, provided that the sampling frequency is an integer multiple of the signal frequency. 

More specifically, the mean absolute deviation of the estimated instantaneous frequency has been 
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identified as a robust estimator and we have established an analytical expression that permits 

compute the phase noise level present in the analog signal from simple operations on the binary 

vector. An integrated module with very small silicon area has then been defined.  

Hardware experiments have demonstrated the validity of the proposed approach, but also revealed 

that amplitude noise is a limiting factor in case of low phase noise level. An additional filtering step 

has been proposed which permits to extend the valid measurement range, but imposes to keep the 

oversampling ratio at relatively low values.  

To summarize, the technique proposed in this chapter offers a low-cost solution for measuring phase 

noise using only digital test resources, but suffers from two main constraints: 

· the technique requires the ATE sampling frequency to be an exact integer multiple of the 

signal frequency, which means that the signal frequency has to be known with a good 

accuracy prior to the application of the digital phase noise test, 

· the technique undergoes sensitivity to amplitude noise, which limits the oversampling ratio 

that can be used.  

In this context, we have looked another way to perform phase noise measurement based on a 

different paradigm. As a starting point, let us observe in figure 3.38 that the density of deviations, 

even caused by amplitude noise, still carries information on actual phase shift of the analog signal. 

 

Figure 3.38 Deviations visualized with their density and image of the time-domain phase shift on hardware capture with 

oversampling ratio » = è�!
Indeed, high deviation densities are representative of zero crossing times located in the vicinity of a 

sampling point. On the other hand, low deviation density means that the signal is far from zero 

crossings at sampling points. A representation of the actual phase shift can be obtained by 

integrating the deviation density, which basically corresponds to the cumulative sum of raw 

deviations. The process is illustrated in figure 3.38 and figure 3.39 in case of oversampling ratio H = `@ and H = `r respectively. Opportunely, such reconstitution of the phase shift is robust to 

higher sampling ratios. 
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Figure 3.39 Deviations visualized with their density and image of the time-domain phase shift on hardware capture with 

oversampling ratio » = è� 

This idea of phase shift reconstruction is the foundation of a second method for measuring phase 

noise, which is developed in next chapter.   
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Chapter 4. Second method: phase noise estimation 

based on phase fluctuation reconstruction 

This chapter presents a second approach for measuring phase noise which uses the same digital 

resources than the previous technique but that is robust to amplitude noise. Indeed, instead of 

considering instantaneous frequency estimation, we consider reconstruction of time-domain phase 

fluctuation. The constraint on the sampling frequency is also released. 

In the first part of this chapter, we introduce the theoretical background for estimation of phase 

noise level from the analysis of phase fluctuation, under the assumption of a Brownian motion phase 

noise model. Based on this principle, different implementations of the post-processing algorithms are 

explored in the second part. Then a stochastic model of the measurement process is described in the 

third part, allowing to establish guidelines for the practical setting of measurement parameters. 

Finally experimental results are presented, obtained both in laboratory and production contexts. 

4.1 Theoretical background 

Let us consider the phase noise model introduced in chapter 2, where time-domain fluctuation P.HL?0 is defined as a cumulative sum of random variables QR associated with a centered normal 

distribution TIUV WX)K (cf. eq.(3)). The standard deviation WX of the random variables actually 

corresponds to the phase noise level present in the analog signal. 

This model can be related to a standard one-dimensional Brownian motion : = à:.C0â C � Uá with:  

 P.HL?0 = MNWXY'?' F :.CS0EEE&GC%EEECS = HL? (49)!

Such a process is characterized by three properties [69]: 

1. :.U0 = U 

2. The function C ' :.C0 is almost surely everywhere continuous 

3. : has independent increments with :.C O %L0 � :.C0E~ET.UV %0  
The last property means that the Brownian motion increments, i.e. the differences between two 

values separated by a given time interval, have a normal probability distribution with zero mean and 

variance equal to the length of the time interval. The idea is to exploit this property to recover the 

phase noise level WX from phase fluctuationEP.HL?0.  

Indeed let us define ã!" as the difference between 2 values of the phase fluctuation separated from � samples: 

 ã!".H0 = PI.H O @0�L?K � P.H�L?0 (50)!
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From equation (49) and property 3, an estimation WµX of the phase noise level can be computed with: 

 WµX = Y'MN F @Y�L? F WIã!"K (51)!

where WIã!"K is the standard deviation defined of phase fluctuation increments by: 

 WIã!"K = ´@d$Iã!".G0 � ã!"ÎÎÎÎÎK)¦
j*4  (52)!

As an illustration, figure 4.1 shows an example of time-domain phase fluctuation P.HL?0 observed 

for a @qv@Mrdef signal sampled at '? = MUUdef in case of WX = `�ef, and the resulting histogram 

of ã!" differences computed from values separated by MU signal periods (� = MU F X[X ). It can be 

observed that the distribution is well-centered on zero and good agreement is obtained between the 

estimated phase noise level WµX = `qUM�ef computed from Eq. (51) and the injected one.  

 

Figure 4.1 Recovering m/ from (.»)�0 phase fluctuation 

4.2 Algorithm 

4.2.1 Phase fluctuation reconstruction 

As established in the previous section, the phase noise level present in a signal B.C0 = DE F BGHIJ.C0K 

can be estimated through an appropriate analysis of phase fluctuations increments. The first step of 

the algorithm is therefore to process the binary vector captured by a digital ATE channel in order to 

perform reconstruction of phase fluctuation.  

Practically, we implement a discrete reconstruction exploiting the fact that the signal phase *.C0 is 

incremented by ON at each signal extremums as illustrated in figure 4.2. In particular, the transitions 

of the binary vector \�H� are processed to compute:  
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 C<°|i.G0 = C|i>S?j|jkS.G0 O C|i>S?j|jkS.G O @0M  

J�.G0 = GN 

(53)!

With this process, we obtain M.gh<i � @0 values for the extremum times and signal phase estimate, 

one value at each half-period LAM of the signal. 

 

Figure 4.2 1-bit acquisition of the signal under test. The transitions of the binary vector are used to determine extremums 

and estimate the phase 

Reconstructed phase fluctuation can then be computed by subtracting the ideal linear phase at the 

estimated extremum time to the signal phase estimate: 

 Pµ ùG LMú = J�.G0 � MN'C<°|i.G0 (54)!

Note that we choose to perform phase fluctuation reconstruction from the date of extremums rather 

than from the date of transitions in order to get rid of any potential offset error in the comparator 

that performs the zero-crossing.  

Figure 4.3 gives an illustration of the phase fluctuation reconstruction process for a @qv@Mrdef 

signal sampled at '? = MUUdef in case of WX = `�ef. The reconstructed phase fluctuation appears 

as a good image of the input one. Still, it can be observed that it is a discrete signal, not only in time 

with only two values per signal period, but also in amplitude. Indeed the sampling process used 

during 1-bit conversion introduces a quantization of the reconstructed phase fluctuation, with a 

quantization step directly related to the oversampling ratio H = '?A': the higher the oversampling 

ratio, the lower the quantization noise. 
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Figure 4.3 Reconstruction of phase fluctuation from 1-bit digital capture 

4.2.2 Standard deviation of phase fluctuation increments 

The next step of the processing algorithm is then to compute the phase noise level from phase 

fluctuation increments, as established by eq.(51).  

Practically, we propose to perform under-sampling on the reconstructed phase fluctuation Pµ  in order 

to collect values separated from + signal half-periods. Increments ã,"¾  of the reconstructed phase 

fluctuation are then computed as the difference between successive under-samples. Finally, the 

estimated phase noise level is determined by: 

 WµX = 'MN F @Y+AM F WIã,"¾K (55)!

where WIã,"¾K is the standard deviation of the reconstructed phase fluctuation increments.  
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Figure 4.4 Under-sampling of phase fluctuation and distribution of ä-(¾  increments for two values of injected phase noise 

Figure 4.4 illustrates this process for a @qv@Mrdef signal sampled at '? = MUUdef considering two 

different level of injected phase noise WXSkj?< = `�ef and WXSkj?< = rUUefV and performing under-

sampling on + = `U signal half-periods. For the sake of comparison, both the input and 

reconstructed phase fluctuations are reported. In case of high noise level, correct estimation is 

achieved by processing the reconstructed phase fluctuation while in case of low noise level, the 

computed phase noise level is significantly overestimated. This phenomenon is related to the 

quantization of the reconstructed phase fluctuation. In case of low injected noise, the quantization 

noise does not permit to evaluate the distribution with a sufficient resolution to yield correct phase 

noise estimation.  

To solve this issue, we propose to reduce the quantization noise by filtering the reconstructed phase 

fluctuation with a running average: 

 P. ùG L6M ú = @/ F $ Pµ ù0 L6M új(t+4
R*j  (56)!

where W is the window size for the running average. 
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This filtered reconstructed phase fluctuation is then under-sampled and increments ã,"1  are 

computed as the difference between successive under-samples: 

 ã,"1.G0 = P. ^.G O +0 L6M _ � P. ùG L6M ú (57)!

Figure 4.5 shows the time-domain phase fluctuation and the histogram of increments obtained with / = MU and E+ = `U, in case of low phase noise level EWX = rUUef. It can be observed that input 

and reconstructed filtered phase fluctuations are very close, yielding similar histograms. However it 

should be noticed that the computed phase noise level is actually under-estimated.  

  

Figure 4.5 Filtering phase fluctuation with running average 

This under-estimation comes from running average filtering that affects the increments distribution 

and introduces a bias in the computed standard deviation WIã,"K.To illustrate this point, figure 4.6 

compare the histogram of increments obtained with and without the running average filtering, 

considering the input phase fluctuation. Both distributions are well-centered on zero and appear very 

similar, however the distribution of ã," increments computed on filtered input has a smaller 

dispersion than the one obtained with the original input phase fluctuation.  
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Figure 4.6 Input phase fluctuation and resulting histogram of ä-( increments with and without running average filtering 

The bias introduced by running average filtering can actually be calculated algebraically. Indeed let us 

consider an academic Brownian motion: 

 ~! = $Ewj!
j*4 EEE&GC%EEEw~T.2V W)0 (58)!

and the filtered Brownian motion with running average: 

 ~.! = @/ F $ E~j!
j*!+t(4  (59)!

By definition, we know that W.~!(, � ~!0 = Z+ F WE and we want to computeEW.~.!(, � ~.!0. For 

this, the difference ~.!(, � ~.! is reorganized as a linear combination of non-overlapping sums: 

 

~.!(, � ~.! = @/ F 3 $ I/ � .� � 0 O @0KEwR!
R*!+t() � $ / F EwR!(,+t(4

R*!(4
O $ .� O + � 0 O @0EwR!(,

R*!(,+t() 4 

(60)!

Since each term corresponds to an independent variable, the variance \]Q.~.!(, � ~.!0 can be 

computed as the sum of the variance of each term and we obtain: 

 \]Q.~.!(, � ~.!0 = + F W) F ^@ � @v+ ù/ � @/ú_ (61)!

From this equation, we identify the bias introduced by the running average on the computed 

standard deviation of the filtered Brownian motion increments as: 

 2G]B = ¸@ � @v+ ù/ � @/ú (62)!
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Consequently, the estimated phase noise level obtained with the filtered reconstructed phase 

fluctuation can be corrected using this bias. The final expression of the estimated phase noise level is 

given by: 

 WµX = @2G]B F 'MN F @Y+AM F WIã,"1K (63)!

where WIã,"1K is the standard deviation of the filtered reconstructed phase fluctuation increments.  

This expression permits to evaluate the phase noise level present in the time domain signal using 

only information from 1-bit signal acquisition. 

4.2.3 Allan deviation of phase fluctuation increments 

The previous section focused on the estimation of the phase noise level WX by computing the 

standard deviation of reconstructed phase fluctuation increments ã,"1 . This technique can be 

implemented on a standard digital ATE, however it requires the storage of the entire sequence 

before calculations can begin. Indeed, it is necessary to compute the mean ã!"1ÎÎÎÎÎ before beginning the 

computation of the standard deviation. The method therefore requires consequent memory 

resources and involves additional post-processing time after the acquisition of test data. In order to 

alleviate these drawbacks, we have investigated another solution inspired from the Allan Variance, 

which is a classical measure used for frequency stability analysis in clocks, oscillators and amplifiers 

[4]. The response of the Allan variance to different noises is a well-known topic. 

The Allan variance is a measure of the variability of the average frequency of a periodic signal 

between two adjacent measurement intervals. It is defined by:  

 W#).{0 = @M Ò .wÎj(4 � wÎj0) >E= @Md$.wÎj(4 � wÎj0)¦
j*4  (64)!

where w5G is the G|6 fractional frequency average over the observation time {. 

The Allan variance is actually a special case of the M-sample variance WwM.dVLV {0, considering 1st 

differences (d = M) and no dead time between measurements (L = {). The interest of the Allan 

variance is that it removes the need of the mean computation on the entire sequence, and so it is 

cheap in memory usage and well adapted for on the fly computation. 

In this context, our proposal is to estimate the phase noise level present in the analog signal from the 

Allan deviation of reconstructed phase fluctuation increments:  

 WµX = @2G]B7 F 'MN F @Z+´@d$  ã,"1.MG O @0 � ã,"1.MG0#)¦
j*4  (65)!

with d = 8¬9:;<=?[, @ the number of differentiated increments ãã,"1 .G0 =  ã,"1 .MG O @0 � ã,"1 .MG0#. 

Here we took care of not accounting twice the same increments ã,"1 .G0 for independency. That is 

why we only divide by d and not Md as well as have the 2 coefficient on the index for the 

computation of ãã,"1 . The calculation of the bias due to the running average changes for the Allan 

deviation . Still, the calculation process is similar as the one presented in the previous section for 

standard deviation.  
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Considering the Brownian motion ~! defined in eq.(58), we know that the mean .~!(), E� ~!(,0 � .~!(, E� ~!0EÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ = 0 since we deal with a Brownian motion hypothesis. This is the 

also case for the filtered Brownian motion: .~.!(), E� ~.!(,0 � .~.!(, E� ~.!0EÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ = U. 

So: 

 

D��]H\]Q.~.! E0 = @Md$I.~.!(), E� ~.!(,0 � .~.!(, � ~.! E0K)¦
j*4= @Md$  .~.!(), E� ~.!(,0 � .~.!(, � ~.! E0¦

j*4� .~.!(), E� ~.!(,0 � .~.!(, E� ~.!0EÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ#)= @M\]QI.~.!(), E� ~.!0 � .~.!(, � ~.! E0K 

(66)!

We can reorganize this as non-overlapping sums: 

 

.~.!(), E� ~.!(,0 � .~.!(, � ~.! E0
= @/3 $ I.� � 0 O @0 �/KwR!

R*!+t() � $ /wR!(,+t(4
R*!(4

O $ I/ � M.� O + � 0 O @0KwR!(,
R*!(,+t()

O $ /wR!(),+t(4
R*!(,(4 O $ .� O M+ � 0 O @0wR!(),

R*!(),+t() 4 

(67)!

And compute the variance of each term so that: 

 \]QI.~.!(),E� ~.!(,0 � .~.!(, � ~.! E0K = M+W) ^@ � @M+ ù/ � @/ú_ (68)!

The bias is then: 

 2G]B7 = ¸^@ � @M+ ù/ � @/ú_ (69)!

Note that with this expression, we can choose to set the parameters + and / at different values. 

The parameter + is used in the under-sampling process and determines the time interval between 

successive phase fluctuation measurements. This parameter should be set according to the 

frequency offset ÑABBCDE at which phase noise has to be evaluated. More precisely, the Allan deviation 

is computed using phase fluctuation increments separated by MK signal half-periods, which 

corresponds to an observation time = MK F F) = KT. In order to evaluate phase noise level at a 

frequency offset ÑABBCDE, the observation time should be set at = @AÑABBCDE, which means that the 

parameter K should be set at: 

 + = ''kXX?<|  (70)!

The parameter / corresponds to the size of the window for running average filtering and controls 

the low-pass cut-off frequency: the larger the window size, the lower the cut-off frequency. This 

parameter should be set as high as possible for efficient filtering of the quantization noise. However 

as it can be observed from eq.(71), 
4Gj>?Á diverges for M+ =  / � 4t# ò /. The choice of / = + 
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actually appears as a good compromise between this diverging zone and sensitivity of quantization 

noise.  

As an illustration, figure 4.7 shows the result of phase noise estimation using eq.(65) according to the 

size of the running average window, in case of a simulated signal with injected phase noise WX = rUUef. This graph clearly shows that the phase noise level is overestimated when / decreases 

towards U due to the quantization noise that isn’t filtered, and when / approaches M+ due to the 

divergence of the @A2G]B7 correcting factor. Correct estimation is obtained with / = +.  

 

Figure 4.7 Phase noise estimation m¾/ based on Allan deviation with bias correction vs. running average window size H, 

for 3 different values of - (injected phase noise level m/ = �����0 
To summarize, the block diagram of the processing algorithm for phase noise estimation based on 

Allan deviation of phase fluctuation increments is given in figure 4.8. Note that correct operation of 

this algorithm does not require an integer oversampling ratio. Moreover, the algorithm is expected 

to be more robust to amplitude noise than the previous solution based on the mean absolute 

deviation of the instantaneous frequency. 

 

Figure 4.8 Block diagram of processing algorithm for phase noise estimation based on Allan deviation of phase 

fluctuation increments 

Another remark has to be made regarding the running average as a quantization noise filter. One 

could choose other filters. The advantage of the running average is that the bias is easily algebraically 

calculable. 
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Finally it should be mentioned that the processing algorithm can also be modified to take into the 

account all the samples that have been discarded during the under sampling. In this case, estimation 

is based on an overlapping Allan deviation and offers less dispersion thus requiring fewer periods. 

However one has to be careful that, after filtering through the running average, the under samples 

are not independent when not sufficiently spaced in time. 

4.2.4 Other approaches 

Once the signal phase J�.G0 is recovered, other approaches different from standard deviation or Allan 

deviation on phase fluctuation increments can also be envisaged for measuring phase noise. For 

instance, the signal phase estimate can be used to compute a virtual signal BI.G0, corresponding to an 

image of the noisy analog sine-wave: 

 BI.G0 = ÆÇÉ  J�.G0# (71)!

The idea is then to apply FFT computation on this virtual signal and perform the classical phase noise 

measurement on the computed spectrum. However at this stage, we have a discrete estimation of 

the signal phase with only two samples per signal period, which is not sufficient to compute accurate 

spectrum. In addition, samples are non-uniformly distributed in times, introducing distortion in the 

computed spectrum. To palliate these limitations, we propose to compute a continuous-time 

estimation of the signal phase J�.C0 based on linear interpolation: 

 J�.C0 = J�.G0 O J�.G O @0 � J�.G0L.G O @0 � L.G0 .C � L.G00! (72)!

The continuous-time virtual signal is then obtained by applying a sine function to the interpolated 

phase: 

 BI.C0 = ÆÇÉ  J�.C0#! (73)!

Finally, this continuous-time signal can be sampled at any desired frequency rate in order to compute 

the signal power spectrum through FFT calculation. 

This was experimentally tested with the setup described in section 3.4.1. Figure 4.9 shows the signal 

spectrum resulting from a full capture with the mixed-signal oscilloscope as well as the signal 

spectrum resulting from 1-bit capture. A very good agreement is observed between both spectrums. 

PN measurements were carried out on these spectrums, and repeated a number of times in order to 

compare both techniques in terms of variability. Results demonstrated that accurate measurements 

can be achieved with the proposed technique, with a mean estimation error lower than 0.7dBc/Hz 

and a standard error in the same range than the conventional industrial technique. 
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Figure 4.9 Signal spectrums computed with FFT on full signal capture and on virtual signal recovered from 1-bit capture  

One could also choose to work on the reconstructed phase fluctuation Pµ.G0. In particular, the phase 

noise spectrum may be obtained by directly applying a FFT on the reconstructed phase fluctuation. 

This approach was applied on an industrial device, i.e. a JN5168 wireless microcontroller fabricated 

by NXP. The @qv@Mrdef sinusoidal signal delivered at the transceiver output was captured using 

both a PS1600 digital channel (MVp�� periods captured at vMdef sampling frequency) and a MBAV8 

analog channel (rMVrUU periods captured at MUUdef sampling frequency) of Advantest 93K ATE. 

The digital capture was processed to reconstruct phase fluctuation and FFT applied on reconstructed 

data. The analog capture was processed through FFT and phase noise measurements performed on 

the resulting spectrum for different values of the measurement frequency offset. Results are 

summarized in figure 4.10 that reports the phase noise spectrum obtained by both methods. Here 

again a very good agreement is observed between both spectrums. 

 

Figure 4.10 Fourier transform of the full signal and the reconstructed signal from phase estimation 

These two methods were not deeper investigated because they necessitate the storage of the entire 

sequence and powerful processing resources for FFT calculation. 
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4.3 Performance of the measurement process based on Allan 

deviation 

In this section, we analyze the performance of the measurement process based on Allan deviation. In 

the first part, we derive a model that allows the evaluation of the minimum phase noise level that 

can be measured according to given signal and test conditions. In the second part, we evaluate the 

measurement variability through a stochastic model of the measurement process.  

4.3.1 Minimum phase noise level measurable 

Simulations were performed to validate the phase noise estimator based on the Allan variance 

defined by eq.(65). As an illustration, figure 4.11 reports the estimated phase noise level WµX with 

respect to the injected phase noise level WX, for ' = @qv@Mrdef, '? = MUUdef, gh<ijkl? = @MrUU 

and + = / = `U. On this log-log plot, we observe a good agreement on a large range of injected 

phase noise from @UUef to @UU�ef. However we observe that there is a measurement floor, 

indicating that the process is not able to measure too small noises. 

 

Figure 4.11 Estimated phase noise level m¾/ vs. injected phase noise level m/ 

It is important to characterize W;jS the minimum phase noise level that can be measured and how it 

depends on the signal and test conditions. This has been done through a series of simulations and fit 

over different parameters, considering a sine-wave without phase noise (WX = Uef). The parameters 

studied where: 

· The sampling frequency '? 

· The signal frequency ' 

· The under-sampling ratio + 

· The running average window / 

· The number of periods gh<ijkl? 
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· The relative amplitude noise : 

· And jitter in the sampling clock J 
Let us start with the sampling frequency. 

 

Figure 4.12 Estimated phase noise level m¾/ vs. sampling frequency /� on a sine-wave without phase noise (m/ = ���) 

Figure 4.12 shows the results of the simulation with different '? as well as a fit of these results. We 

have a fit of the form: 

 W;jS = :6E'?ELM E (74)!

Here :4 = @. 

We can do that with the other parameters: 'V/V+. And we obtain: 

 W;jS = Uq@ ')+6qN'?/6q3 (75)!

We checked that W;jS does not depend on the number of periods.  

The fit identified for amplitude noise is different. As illustrate in figure 4.13, W;jS measured is of the 

form: 

 W;jS = :6I@ O :4YD�¢�GC�a�EgyGB�KE (76)!

With :4 = �U. 
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Figure 4.13 Estimated phase noise level m¾/ vs. YëOéPì�QR�EÝ�ì�� on a sine-wave without phase noise (m/ = ���) 

The jitter, in seconds unit, can be considered as amplitude noise as well, with the slope coefficient at 

the zero crossing of MN'. 

 W;jS = :6I@ O :4Y0GCC�Q S MN'KE (77)!

 

Finally combining together all these influences, the expression of the minimum phase noise level that 

can be measured under given conditions of signal and test parameters is: 

 W;jS = Uq@ ')+6qN'?/6q3 I@ O �UY0GCC�Q S MN' O :K (78)!

where : is the relative amplitude noise (no units). 

This expression has been validated through simulation under different conditions of signal and test 

parameters. These simulations have revealed that the sampling ratio also has also an influence on W;jS. Figure 4.14 illustrates one case, where only the sampling ratio is varied all other parameters 

being set at fixed values. The large majority of points are in accordance with the minimum 

measurable phase noise level computed with eq.(78). Results only diverge from W;jS when the 

sampling ratio H is close to even integers. Indeed in this case, the quantization noise is at its 

maximum and can hardly be reduced. Obviously this situation should be avoided, for instance by 

imposing ·I.H O @0UMK � @· > Uq@. 
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Figure 4.14 Estimated phase noise level m¾/ vs. sampling ratioE» on a sine-wave without phase noise (m/ = ���) 

The robustness of the W;jS formula was evaluated by running a number of simulations with random 

parameter values. Even though +E and / are different parameters, we here fix + = / as advised in 

section 4.2.3. Results are summarized in figure 4.15 that plots the ratio between the phase noise 

level evaluated in simulation using the Allan deviation and the computed value of W;jS for the 

different random runs. Good agreement is observed, and the only values that significantly diverge 

from the computed W;jS correspond to a sampling ratio close to an even integer. 

 

Figure 4.15 Random simulation runs of a sine-wave without phase noise  
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These results fully validate the analytical expression of W;jS established in eq.(78).This expression is 

very useful because it permits to verify whether a new product can be tested on a standard digital 

ATE. Indeed each application is characterized by a given signal frequency and a typical phase noise 

level to be measured at a given offset frequency. The signal to be analyzed may include amplitude 

noise. On the other side, the test equipment is characterized by its maximum operating frequency 

and sampling jitter. Knowing all these parameters, one can verify that the minimum phase noise that 

can be measured is smaller than the typical phase noise level for the product under consideration. If 

not, it also permits to specify what would be the required ATE performances to allow such 

measurement.  

4.3.2 Measurement variability  

A stochastic model has been developed to describe the behavior of the measurement process based 

on the Allan deviation in presence of phase noise modeled as a Brownian motion. The main idea 

behind the stochastic model development, is the ability to predict measurement variability according 

to given signal and test conditions. This study can be carried out with the help of the V) (pronounced 

chi-squared) probability density function. This function describes the probability density of a sum of 

squared Gaussian variable.  

Let us define the sum of squares § of the Gaussian variable Xj  described by T.2j V Wj0.or the 

normalized Gaussian variables Yj   
 § = $Yj)!

j*4 = $ùXj � 2jWj ú)!
j*4 ! (79)!§ is then described by the density probability function : 

 'Z".~V �0 = ~!)+4
[  �M# M!) E �~¢  �~M#! (80)!

Where [ is the gamma function. How does that relate to our measurement? Well, the square of the 

measurement we proposed is:  

 WµX) = ù @2G]B 'MNú) @d$^ãã,"1.G0Z+ _)¦
j*6 ! (81)!

with d = 8¬9:;<=?[, @ the number of differentiated increments ãã,"1 .G0 = IP..+.MG O M00 �P..+.MG O @00K � IP..+.MG O @00 � P..+MG0KEthe double difference of the phase fluctuation samples 

spaced of +. 

Since we are in the hypothesis of a Brownian motion we can assume that ãã,"1ÎÎÎÎÎÎÎ = 2 = U. We 

recognize Xj = X)cGj>? ��\]1 .j0Z¦,  following T.UV ^_Z¦0. This would permit the change of variable from: 

 WµX) = $^ 'MN2G]B ãã,"1.G0Zd+ _)¦
j*6 ! (82)!

To 

 § = $^Zd XjWX_)¦
j*4 ! (83)!
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Since § follows the probability density 'Z".~Vd0, we conclude that WµX) follows the probability 

density 'Z" ùd °̂_" V dú with ~ in ef). 

The expected value of § is d, so the expected value of WµX) is: 

 ½�WµX)� = WX) (84)!

And its variance: 

 \]Q`WµX)a = MWX3d  (85)!

However we are not interested in WµX) but rather in . WµX = ¹EWµX). WµX will thus follow a V probability 

law. Both cumulative distribution function of each law are related by :  

 ÍZ.~0 = ÍZ".~)0 (86)!

Since their density probability functions are defined as 

 
aÍZ.~0a~ = 'Z.~0E]HaE aÍZ".~0a~ = 'Z".~0 (87)!

We have the relation between the probability density functions: 

 'Z.~0 = aÍZ.~0a~ = aÍZ".~)0a~ = a~)a~ aÍZ".~)0a~) = M~'Z".~)0 (88)!

Our measurement WµX will thus follow the probability density function: 

 'Z ^Zd ~WX V d_ = M~ZdWX 'Z" ^d ~)WX) V d_ (89)!

Here ~ is in ef. 

The expected value of the measurement is then: 

 ½`WµXa = E½ b¹WµX)c d ¹½`WµX)a = WX (90)!

And its standard deviation can be calculated with identification. Let us compute: 

 ¸½`WµX)a ± ¹\]QIWµX)K = W´@ ±¸Md = WX 3@±¸Md4
4)
 

(91)!

Developed with a Taylor series: 

 ¸½`WµX)a ± ¹\]QIWµX)K d WX 3@ ± @M¸Md4 = WX ù@ ± @ZMdú (92)!
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We can identify this last expression to: 

 ½`WµXa ±¹\]QIWµXK (93)!

Then it comes: 

 e \]QIWµXK d WX)Md (94)!

 

These calculations can be verified by simulation with a Monte-Carlo process. We made 500 

simulations of the measurement process with parameters, ' = @qv@Mrdef, '? = MUUdef, gh<ijkl? = @MrUU, + = / = `U and an input WX = `UUUef. Figure 4.15 compares the obtained 

histogram to the stochastic model. We can see that the stochastic model agrees with the histogram. 

  

Figure 4.16 Validation of stochastic model for m/ = è����� 

This calculation can be repeated over several values of WX. Figure 4.16 shows the color graph of the 

stochastic model density. Overlaid are some simulations. We see that the measurements of the 

simulations do indeed occur inside the most probable areas, validating the stochastic model. 
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Figure 4.17 Validation of stochastic model 

The interest of this development is that we now have an analytical expression for the variance of our 

phase noise estimator. Therefore, we can relate the standard error of the measurement !½IWµXK to 

the signal and test conditions: 

 !½IWµXK = ¹\]QIWµXK = WXZMd = ¸ +MEgh<ijkl? F WX (95)!

This expression can be used by the test engineer to choose the appropriate test parameters for a 

given application. More specifically considering a given value of the phase noise level to be measured WX·|#h and a desired measurement uncertainty 9f, the targeted standard error can be defined with:  

 !½IWµXK·|>iª<| = º9fºH EEE'yQ �Q'IHAZMK xyH'Ga�Hx�E��Ä�� (96)!

The minimum number of signal periods to capture in order to satisfy this constraint is therefore given 

by: 

 gh<ijkl?·;jS =E+ F WX·|#hMM F  H9f#) 
(97)!

We can also differentiate equation (18) to consider the standard deviation in dBc/Hz: 

 a�g = MUaWXWXËÉE.@U0 (98)!

So the same result can be obtained from the standard error in dBc/Hz : 

 gh<ijkl?·;jS =E+M ^ MUËÉE.@U0_) ^ H9fºlL}Aþg_)
 (99)!
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4.4 Experimental results 

4.4.1 On synthesized signals 

Hardware measurements in the lab have been performed to validate the proposed technique using 

the experimental setup described in figure 4.18. As introduced in section 2.2.1, generation of a Signal 

Under Test (SUT) featuring phase noise is accomplished through FM-modulation with white noise of 

a sinusoidal signal using an AWG and an RF generator. The phase noise level can be adjusted by 

means of the modulation depth 'n. This signal is then analyzed through two distinct flows. The first 

one corresponds to the conventional phase noise measurement, where a Mixed-Signal Oscilloscope 

(MSO) is used to capture digitized samples of the SUT and phase noise is measured on the signal 

spectrum computed through FFT. The second one corresponds to the proposed technique, where a 

Verigy 93K digital channel is used to perform 1-bit acquisition of the SUT and post-processing 

algorithm is applied to estimate phase noise from the captured binary vector. For the sake of 

comparison, we have also implemented the post-processing algorithm developed in chapter 3 that 

performs phase noise estimation from the analysis of instantaneous frequency distribution. 

 

Figure 4.18 Experimental setup for hardware measurements on synthesized signals 

Figure 4.19 summarizes measurement results obtained on a @def signal sampled at MUUdef with 

analysis of MUVUUU signal periods and phase noise evaluation at a frequency offset 'kXX?<| =@Mqr�ef, so close to the signal carrier. Different levels of phase noise were injected varying the 

modulation depth '� of the RF source from 100Hz up to 1MHz. These results show that both the 

previous digital technique and the new one have a good correlation with the conventional 

measurement on a large range of phase noise values from -`Ua:xAef to -�Ua:xAef. However 

while the previous technique diverges from conventional method for phase noise level below 

-�Ua:xAef, the new technique permits to achieve accurate evaluation down to -¼ra:xAefV which 

clearly demonstrates the superiority of the new technique.  
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Figure 4.19 Comparison between PN estimation from digital capture and PN measurement on signal spectrum 

4.4.2 On industrial devices 

The proposed technique has also been evaluated in NXP’s development lab in Caen on an industrial 

device, a JN5168 wireless microcontroller. As illustrated in figure 4.19, both the conventional method 

and the new technique are implemented on Advantest 93K ATE using either an RF channel (with vMdef sampling frequency of on MVp�� periods) or a digital channel (with MUUdef sampling 

frequency on rMVrUU periods). Phase noise measurements were performed on the @qv@Mrdef 

sinusoidal signal delivered on the transceiver output for different values of the measurement 

frequency offset. 

 

Figure 4.20 Experimental setup for industrial measurements 
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Results are summarized in figure 4.21 which reports the measured phase noise value with respect to 

the frequency offset. A very good agreement is observed between the digital technique and the 

conventional method on the complete range of frequency offset. Moreover it should be highlighted 

that the technique permits correct evaluation of frequency-domain phase noise characteristics, even 

when it differs from @A') characteristics. This is a welcomed characteristic of the Allan deviation 

which permits identifying phase noise type from the slope of the phase noise level function to the 

frequency offset, or in case of the Allan deviation, to the observation interval { = +L.  

 

Figure 4.21 Comparison between PN estimation from digital capture and PN measurement on signal spectrum with 

different /h//��� on an industrial device 

4.4.3 On industrial production line 

With the help of NXP, the proposed method has been applied on @UV@rU JN5168 devices out of the 

fab production line, by adding a new test method to the existing complete test flow. The 

measurement was done with the parameters: ' = @qv@Mrdef, g¢�QGyaB = rMVrUU and + = @r, 

which corresponds to a measurement frequency offset 'kXX?<| = �Ûqr�ef. All the calculations were 

carried out in the fab. Capture data were discarded, and only the final results were kept. 

Obtained results are displayed in figure 4.22. A good correlation is obtained, with a Pearson 

correlation coefficient of 0.94846. The results show virtually no test escape but they show some 

possible yield loss. Concerning the test escape, no circuit were diagnosed with a 9�g = �g³³b ��g<?|j;>|<l Ò �Ma:xAef and only one was diagnosed with 9�g Ò �@a:ÏAef. 
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Figure 4.22 Results of measurements with classical technique versus proposed technique for 10 000 devices 

Concerning yield loss, it has been noted that the power level of the signal is strongly correlated to the 

accuracy of the measurement as shown in figures 4.23. 

 

Figure 4.23 Pearson correlation coefficient and number of device with good measurement accuracy function of power 

The devices with a measurement delta superior to ã�gE > ra:xAef were taken apart for further 

investigations in the NXP’s lab. 64 devices over the 10150 evaluated fulfilled this criterion (0.6%). 

Based on additional measurements, it turned out that 60 to 80% percent of these devices would 

have been detected faulty by other tests. 

Out of the remaining devices, with conflicting test results, a majority had instable (i.e. non 

repeatable) measures with the digital measurement technique. This instability has been resolved by 

truncating the first 5000 binary samples of the digital acquisition. 
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A minority of these devices still exhibit conflicting repeatable measurements. The reason of this 

conflict has been identified as an overestimation of the phase noise when measuring with an offset 

frequency between MU�ef and @UU�ef as illustrated in figure 4.23. The reason for this over 

estimation (the bump observed around `U�ef) could not be explained. 

 

Figure 4.24 PN measurement on spectrum compared to PN estimated with proposed technique on a device with 

conflicting results 

This issue, that concerns a very small percentage of the tested devices, can be solved using another 

value of 'kXX?<| for measurement. Unfortunately no other production run was planned to validate 

this statement. It would have been wiser to choose an 'kXX?<| in the @A') slope section where the 

Brownian motion hypothesis for the noise holds. 

Still, obtained results are very promising, and mostly validate the global approach with a real-scale 

experiment in production test conditions. 

4.5 Conclusion 

As a conclusion to this chapter, let us remind the main benefits of this new implementation in 

comparison to the previous one: 

· The sampling frequency doesn’t have to be a multiple of the signal frequency anymore 

· The algorithm is robust whatever the sampling frequency and the amplitude noise 

· One can identify the type of noise 

The results are rather encouraging as less than 5 devices out of 10 000 tested devices exhibited an 

unexplained disagreement in the measurement. Moreover this disagreement might have been 

resolved by choosing better parameters and it involves yield loss which isn’t as critical as test escape. 
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Chapter 5. On chip implementation 

As mentioned in chapter 1, literature reports several attempts to move the required test resource 

from expensive ATE to embedded on-chip modules. In this chapter, we focus on the development of 

a digital BIST circuitry for on-chip phase noise evaluation of analog/RF signals. The proposed 

embedded test instrument relies on the phase noise measurement technique introduced chapter 4, 

i.e. the second proposed method based on Allan deviation. 

Taking the form of an on-chip instrument, the measurement technique offer additional advantages 

compared to ATE implementation: 

· The digital channels’ performance and cost can be minimized since the measurement and 

process occurs on chip. 

· The process can run in parallel on all the chips on the wafer 

· Phase noise measurement can be done during the life time of the chip for aging control or 

parameter adjustments. 

5.1 On chip algorithm 

5.1.1 Processing only integers 

In order to define an on-chip test instrument with small silicon area, we need to transform the 

measurement algorithm into a process that minimizes both algorithmic and memory resources. 

Regarding algorithmic resources, digital architecture implementation is actually made easier by using 

only integer numbers. Our objective is therefore to define a digital signature related to the phase 

noise level that can be computed using only integer numbers.  

The starting point of the original post-processing algorithm is the detection of transitions in the 

binary vector, which occur at integer values of the sampling period L?:  

 C|i>S?j|jkS.G0 = 0|i>S?j|jkS.G0 F L? (100)!

where 0|i>S?j|jkS.G0 is the sample index at the transitions of the binary vector \.H0. 

Times of extremum C<°|i.G0 are then computed from these transitions according to eq.(53). Instead 

of working directly on the times of extremums, the idea is to work on integer values representative 

of these times. For this, we consider an index value 0<°|i.G0 defined by:  

 0<°|i.G0 = 0|i>S?j|jkS.G0 O 0|i>S?j|jkS.G � @0 (101)!0<°|i.G0 can take only integer values. All the processing steps of the algorithm are then developed 

based on these indexes. Note that an interesting feature of the Allan deviation is that it is robust to 

bad estimation of the signal frequency '; hence the computation of the phase fluctuation Pµ  G b)# is 

not necessary and operations can be directly effectuated on 0<°|i as detailed hereafter.  
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First, we filter index values 0<°|i.G0 with a moving sum on W values:  

 ij<°|i.G0 = $ 0<°|i.�0j(t+4
!*j  (102)!

Then we compute increments between consecutive under-samples separated from K values: 

 ã,kj:lm;.00 = ij<°|i.0+0 � ij<°|i..0 � @0+0 (103)!

Then we compute the difference between successive non-overlapping increments: 

 ãã,kj:lm;.00 = ã,kj:lm;.M00 � ã,kj:lm;.M0 � @0 (104)!

And finally we compute the digital signature as the sum of squared differences: 

 !no = $ãã,kj:lm;.00)¦
R*4  (105)!

where d corresponds to the number of computed differences between successive non-overlapping 

increments. This number can be an output of the processing algorithm, or simply estimated using:  

 d = pghkjS|?+ ''?q! (106)!

The signature !no can be related to the phase noise estimator WµX defined by eq.(65) in the previous 

chapter with:  

 !no = ù'?') F M/Zd+ F 2G]B7 F WµXú)! (107)!

5.1.2 Semi-pipelined implementation 

In order to minimize the required memory resources, the key idea is to implement on-the-fly 

processing of the 1-bit signal delivered at the output of the comparator. For this, we have chosen a 

pipelined implementation of the algorithm, where only a limited number of memory resources are 

required at each stage. 

Here, the computation flow can be arranged in a semi-pipelined architecture. The word “semi” 

stands for all operations not occurring at every clock cycle. A possible implementation of the data 

flow is illustrated in Fig. 5.1. 
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Figure 5.1 Example of semi-pipelined implementation for on-the-fly processing 

Note that in addition of memory resource optimization, common benefit of pipelined architectures is 

also the increase of data throughput by making operations serial and thus minimizing delays of 

critical paths. Let us remark that latency produced by such implementation as no effect in this study. 

5.1.3 Modular arithmetic 

5.1.3.1 Limiting the number of bits 

Limiting the data size (i.e. number of bits) is important to restrain both operator’s silicon area, and 

internal delays.  
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Our technique for phase noise measurement relies on the oversampled acquisition of a large number 

of signal periods. 0|i>S?j|jkS stores indexes of sampled points corresponding to the transition times. 

Given the capture length and the oversampling rate, this register would reach millions, thus requiring 

30 to 40 bits to hold data without overloading. Subsequent operators and memory blocks would then 

be expensive in terms of delays and area. 

Since the Allan deviation is based on differences, most significant bits (MSB) are most often being 

subtracted. We can then discard them by using a modular arithmetic approach, suitable with all the 

operations used in the proposed algorithm. In order to successfully implement modular arithmetic, a 

fixed width g2GCB is chosen for all registers in the data processing, until last operators (squaring and 

sum). Using modular arithmetic, all operations are done modulo EM¬Gj|?. Practically, this is simply 

done by discarding register overflows.  

5.1.3.2 Computation limit 

The drawback of using modular arithmetic is that too large phase noise can’t be computed correctly 

because most significant bits are discarded.  

More precisely, if W.99rij<°|i0 Â M¬Gj|? then the digital signature !no will be correctly computed. 

On the other hand, if W.99rij<°|i0 s M¬Gj|?, we have a register overflow and the truncated values of 99rij<°|i are almost uniformly distributed between t�M¬Gj|?+4V M¬Gj|?+4 � @u ò t�M¬Gj|?+4V M¬Gj|?+4u. The variance of a uniformly distributed variable 

on this range is 
)"ýv<m[4) . Thus the maximum value of !no that can be measured is given by: 

 !no?×h = M)¬Gj|?@M d! (108)!

This expression can be used to determine the appropriate register sizing ensuring that faulty chips 

will be correctly classified. For this, !no?×h should be chosen such that the maximum value Wµ?×h of 

computed phase noise is sufficiently far from the Pass/Fail limit, as illustrated in figure 5.2. Indeed in 

this case, no matter whether the computed digital signature !no corresponds to the actual device 

phase noise or to embedded instrument overload, the device will be correctly classified as a faulty 

one. 

  

Figure 5.2 Choice of ,wx�Qé 
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Given the maximum value Wµ?×h of phase noise level to be correctly measured by the embedded 

instrument, the required number of bits for registers of the data processing is defined by: 

 M)¬Gj|? = @M ù'?') q M/Z+q 2G]BÁq Wµ?×hú)! (109)!

5.1.4 From digital signature to PN value 

The output of the embedded instrument is a digital integer representation of the phase noise. In the 

context of production test, the digital signature can be directly compared to established pass/fail 

limit. Still, it is possible to recover physical PN in terms of dBc/Hz using: 

 WµX = ')'? F @M/Zd+ F @2G]B7 F Z!no! (110)!

and eq. (18) to (20) established in chapter 2, which relate the phase noise level WX measured in the 

time domain to the phase noise value �g measured in the frequency domain. 

Also note that as established in the previous chapter, the frequency offset of the measurement can 

be adjusted by setting the parameter + = 'A'kXX?<|.  

5.1.5 Area estimation 

In order to provide a rough understanding of the module complexity, an example of FPGA synthesis 

report is summarized in table 5.1. in terms of required hardware resources. 

Qty operator Size of operators 

1 MAC 13x13 to 48 bits 

13 Adders/Subtractors From 4 to 13 bits 

4 Counters From 11 to 41 bits 

232 Registers and flip flops  

12 Comparators From 1 to 41 bits 

Table 5.1 Hardware resources involved in Processing Unit 

The module has been entirely described using behavioral Verilog language and synthetized in a 65nm 

CMOS technology, under a frequency constraint of 200MHz. The resulting module area is found to be 

34,000µm². For a device of about 9mm² in size, the embedded instrument would represent an 

overhead of approximately 0.3%.  



98 

 

5.2 FPGA implementation 

In order to first validate above ideas, we have used a field-programmable gate array (FPGA) to 

implement the complete processing module. For availability reasons, the retained platform is a 

Digilent Nexys 3® board, featuring a Xilinx Spartan 6® FPGA. Architecture is written using Verilog 

language, and synthesized using Xilinx ISE® toolchain. For first experiments, registers have been 

arbitrarily sized to gGj|? = @v. This achieves a good compromise between module dynamic range 

and maximum operating frequency. The main clock source is set at 125MHz by means of available 

phase locked loop. An UART interface is also implemented to control the instrument, and retrieve 

results.  

The analog signal to be analyzed is interfaced to an FPGA digital input using a simple passive circuit 

that handles bias issue. Indeed FPGA only accepts input signals between y\ and \ll = vqv\. 

Moreover, the input buffer of the digital pin has probably a switching threshold around 
zllE) . A very 

basic RC network has been designed to ensure the correct adaptation of levels, as illustrated in 

figure 5.3. This network suppresses the DC component of the analog signal and adds a 
z??)  offset to 

the signal. It therefore ensures that the signal applied to the FPGA digital input is centered on the 

switching threshold of the input buffer. 

 

Figure 5.3 RC network for adaptation of voltage levels 

Finally note that the input buffer that realizes the conversion of the analog signal into a binary signal 

may work asynchronously; it is therefore advisable to implement a latch register right after the input 

stage, in order to hold the converted data so that processing unit sees a stable input during a whole 

clock period. 

5.3 Experimental results 

5.3.1 Measurements on synthesized signal 

First validations were performed on a synthesized signal affected with phase noise. The experimental 

setup is illustrated in figure 5.4. The signal under test is analyzed by two distinct flows. The first one 

corresponds to the conventional phase noise measurement. A Mixed-Signal Oscilloscope is used to 

capture digitized samples of the signal under test; FFT is then applied on these samples and phase 

noise is measured on the resulting spectrum. The second flow corresponds to the proposed 

technique where the digital test instrument is integrated on the FPGA of the Digilent Nexys 3® board. 

The test instrument delivers a digital signature !no representative of the phase noise level present in 

the analog signal under test, which is converted into a phase noise value �gÃ  in a:xAef (cf. section 

5.1.4) for comparison with the conventional phase noise measurement. 
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Figure 5.4 Experimental setup for measurements on synthesized signal  

Measurements were performed on an arbitrary signal under test of v{ peak-to-peak amplitude and @|}� frequency, for different phase noise levels corresponding to different values of the modulation 

depth Ñn from 100Hz up to 1MHz. We set parameters W = K = @r, equivalent to a measurement 

frequency offset Ñ�BBCDE = pÛ�}�. The sampling frequency of the oscilloscope matches the one of the 

FPGA at @Mr|}�. The number of sampling point is the same in both flows, equal to @qMr million, 
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corresponding to @UVUUU signal periods.

 

Figure 5.5 Hardware measurements on synthesized signal for different phase noise levels  

Results are summarized in figure 5.5 that plots the �g value estimated using the digital test 

instrument according to the �g value measured using the classical technique. There is a good 

correlation on a very large range of injected phase noise. The classical technique is only better for a 

few a:xAef when measuring phase noise levels below �@UUa:xAef. 

Figure 5.6 investigates effects of the running average window W. Results are produced by the 

integrated instrument only, for different values of the modulation depth '� and +E = E/. In case of 

high modulation depth ('� > @U�ef), the estimated phase noise level WµX is quite insensitive to the 

size of the running average window /, provided that is / not too large. Indeed as expressed by 

eq.(106), the maximum phase noise level that can be measured with this implementation depends 

on the register size (g2GCB). 

Note that there is a perfect agreement between the theoretical value Wµ?×hE of the maximum phase 

noise level that can be measured and the observed one. In case of low modulation depth, we 

observe a saturation of the phase noise level that can be measured; the larger / and the lower the 

phase noise level that can be measured. Practically, / and + should be set according to the desired 'kXX?<| (cf. eq.(70)).  
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Figure 5.6 Hardware measurements on synthesized signal varying parameter H 

5.3.2 Measurement on NXP silicon tuner 

Next, we have evaluated the capability of the embedded instrument on NXP TDA18260 silicon 

tuners. In particular, we have tested a set of 10 faulty devices and 1 good device. The signal under 

test is the IF output signal from the silicon tuner with a frequency of @def and a magnitude of rUU�\. Phase noise measurement is performed using either the integrated instrument or the 

classical technique, as illustrated is figure 5.7. 

  

Figure 5.7 Experimental setup for measurements NXP silicon tuner 
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First we have investigated whether the proposed method permits to recover the frequency-domain 

characteristics of phase noise, i.e. the phase noise spectrum. For this, data have been processed for 

different values of / = +, corresponding to different values of '�XX?<|. Results are reported in 

figure 5.8, which plots measured phase noise values with respect to the frequency offset. A very 

good agreement is observed between the proposed integrated digital measurement and the 

conventional one, both techniques revealing a @A'² phase noise characteristic for this product. 

 

Figure 5.8 Hardware results for PN frequency domain characteristics on a faulty silicon tuner  

Then we have investigated whether the proposed method permits to correctly sort the 11 available 

devices provided by NXP (1 golden device and 10 faulty devices). For this, we have set '�XX?<| =vv�ef (+ = / = vv) and we have analyzed @UUVUUU signal periods. Acquisition with the FPGA 

prototype is performed with E'}Ó! = @Mrdef and g?>;hÓ<? = @MqrE�G��GyH, while acquisition with 

the oscilloscope is performed with '? = @Mqrdef and g?>;hÓ<? = @qMrE�G��GyH. The digital 

measurement with the FPGA is repeated 10 times in order to evaluate measurement variability. The 

conventional measurement is performed only once because of the long time required for 

transferring 1.25 million data. 

Results are summarized in figure 5.9 that plots the �g value estimated using the digital test 

instrument according to the �g value measured using the classical technique. These results show 

that the integrated test instrument is able to clearly differentiate faulty devices from the good one. 

Again the classical method and the proposed technique show a strong correlation. The two 

approaches differ in results by only a few a:xAef. This may be due to aliasing phenomenon, 

occurring with the classical method, where data are sampled at lower rate. 

The variability of results obtained with the FPGA is about Uqra:xAef which is perfectly suitable with 

industrial requirements. 
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Figure 5.9 Measurements on several silicon tuner devices 

5.4  Conclusion 

In this chapter, we have developed an embedded instrument that enables on-chip phase noise 

measurement on analog/IF signals. This instrument relies on purely digital circuitry in order to 

minimize silicon area and maximize robustness to process variation. Moreover it is designed with a 

semi-pipeline architecture and processes only integers using modular arithmetic operators, which 

permits to minimize both algorithmic and memory resources.  

The proposed instrument has been validated through a hardware FPGA implementation. 

Measurements have been performed, both on a synthesized signal and on manufactured devices. 

Results are very promising, in accordance with industrial requirements. In addition, the instrument is 

tuned by a simple set of parameters (/,+) and is tolerant to miscalibration. 
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General conclusion 

The work presented in this thesis addresses the general need of test cost reduction in the context of 

analog and radio frequency signals. Indeed radiofrequency signals are everywhere, from your phone 

to your car remote control to ADSL and television signals. The spread of these devices lead industrials 

to look for new solutions to reduce cost of production for competition purposes. One of the main 

factors to be taken into account in the global fabrication cost is the cost of testing, especially in case 

of analog/RF circuits which usually necessitate the use of industrial testers equipped with dedicated 

and expensive resources in order to measure the device performances. An important performance to 

be verified for complex RF products is phase noise and this thesis proposes a new technique that 

permits phase noise measurement using only digital test resources. Essentially, these digital 

resources are used to perform 1-bit acquisition of the analog signal and dedicated post-processing 

algorithms have been developed in order to retrieve phase noise characteristics from simple 

processing of the captured binary vector.  

In the first chapter, we have realized a brief overview of solutions proposed in the literature 

regarding phase noise testing. The objective of this work has then been defined and the proposed 

approach motivated with respect to the state of the art. It is concluded that few have tried 

characterizing phase noise through a binary capture. This thesis’ positioning is to take advantage of 

the evolution of micro-electronic components. As transistors become smaller in size they allow 

higher working frequencies to the detriment of lower voltage resolution. We suggest exploiting the 

timing information from the zero-crossings to evaluate phase noise rather than measuring it in the 

frequency domain. 

As a starting point for theoretical and simulation studies, a model that permits phase noise injection 

in a time-domain signal has been presented in the second chapter. This model relies on a one-

dimension Brownian motion and corresponds to @A') phase noise characteristics, which is typical of 

complex RF products that are the target of this thesis. The level of injected phase noise can be 

controlled by means of the standard deviation WX of the random variables involved in the Brownian 

motion. The validity of this model has been checked against a real device fabricated by NXP and an 

experimental setup allowing to synthetize a physical signal affected by phase noise has been 

developed. Finally, an analytical relationship between the phase noise level injected in the time 

domain and the phase noise level measured in the frequency domain has been established through a 

comprehensive simulation study.  

In the third chapter, a first solution for measuring phase noise using only digital resources has been 

presented. 1-bit signal acquisition is performed with a sampling frequency that is an integer multiple 

of the signal frequency and the resulting binary vector is processed to derive instantaneous 

frequency estimates. Estimation of phase noise level is then accomplished by computing the mean 

absolute deviation of instantaneous frequency estimates. An integrated module allowing on-chip 

measurement has also been defined. Hardware measurements have demonstrated the validity of the 

approach but also unwanted sensitivity to amplitude noise. A refinement of the technique has been 

proposed that permits to extend the valid measurement range but constraints the oversampling 

ratio. 
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In the fourth chapter, a second solution has been presented, based on a different paradigm. This 

solution relies on phase fluctuation reconstruction instead of instantaneous frequency estimation. 

Estimation of phase noise level is then accomplished by computing the 2-sample deviation of phase 

fluctuation increments. As demonstrated from hardware measurements, this method presents 

several benefits from the previous one: it is robust to amplitude noise; the sampling frequency 

doesn’t need to be a multiple integer of the signal frequency; and no fundamental limit on the 

sampling ratio is exhibited. 

Finally in the last chapter, an embedded test instrument has been presented that allows on-chip 

phase noise measurement. This instrument relies on the phase noise estimator based on Allan 

deviation of phase fluctuation increments; however the processing algorithm has been redesigned in 

order to minimize the required memory and algorithmic resources. The module has been 

implemented on a FPGA and experimental results validate its ability to distinguish faulty devices from 

a golden one. This BIST solution permits even lower cost test equipment for testing the device as well 

as phase noise measurement during the life cycle of the chip. 

To sum up, during this thesis, methods for measuring phase noise using only digital resources were 

proposed, thoroughly simulated, stochastically studied, redesigned for on-chip implementation, and 

experimentally validated in the lab and in the fab. The main benefit of the proposed methods resides 

in the dramatic reduction in the required test equipment since it can be implemented on a standard 

digital ATE and therefore permits to get rid of the expensive analog/RF tester resources required for 

the conventional method. Moreover because digital channels are usually available in a large number 

on a standard ATE, it also offers the possibility to implement multi-site testing in order to further 

reduce the testing costs. However it should be mentioned that since the proposed solution relies on 

an oversampled acquisition, it is not directed towards the analysis of signals with very high frequency 

above the gigahertz but targets products with an output in the intermediate frequency range. 

This work opens interesting perspectives concerning low cost phase noise testing for analog and RF 

integrated circuits. Further investigations may be conducted to enlarge the application range of 

proposed methods towards circuits operating at higher frequency. One possibility is to exploit 

multiple level-crossings in order to decrease the quantization noise and therefore reduce the value of 

the required oversampling ratio. Another direction is to explore whether phase noise could be 

estimated from 1-bit coherent undersampled acquisition of the analog/RF signal. In this case, it 

would be possible to test circuits with operating frequency up to several GHz since current ATE can 

be equipped by digital test channels with data rate up to 8Gbps (for instance, Advantest Pin Scale 9G 

Digital Card). 

Finally another interesting perspective is related to the possibility of performing on-chip 

measurement. Indeed the primary objective of a BIST solution is clearly the reduction of testing cost, 

but it can also be useful in a design context for calibration purpose. The availability of on-chip 

measurement facilities offers new options for designers and constitutes the first step towards the 

development of self-calibration and/or self-adaptation solutions. 
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Annex 

1. Stochastic model 
In this annex, we present a stochastic model of the measurement technique described in chapter 3. 

This stochastic model helps understanding the profound behavior of the measurement process, 

which can help seeing potential improvements. It also permits to compute algebraically the expected 

value of the phase noise estimator and to determine its probability distribution. These informations 

can then be used by the test engineer to parametrize the capture for a desired measurement 

precision. This annex is organized in four parts: first we describe the general behavior of the 

Brownian motion in the context of a sampled sinusoid signal, then we develop the stochastic model 

for three different cases corresponding to high phase noise level, low phase noise level without filter 

and low phase noise level with filter. 

1.1. General Behavior 

The signal to be analyzed is a sine wave affected by phase noise 

 BG�H]� = BGH.J.00 O J60 (111)!

with *6 a random initial phase and the assumption that the phase noise is a one dimension Brownian 

motion. 

 J.H0 = MNELB$I' O 2EQRKS
R*6  (112)!

Where QR are random values following a centered normal distribution T.UV W)0 and 2 = ZH is a 

standardizing factor (cf chapter 2). 

Since Ù� � T.UV�)0, at each simulation sample, the Brownian motion is incremented of a step 

following T.UV .M��TC�0)0. Instantaneous frequencies are estimated every period. At the scale of a 

period T, the Brownian motion gets incremented by a step following T  UV IM��TC�ZÉK)# =T.UV .M�T�0)0. Indeed the variance of a Brownian motion step is proportional to the time. 

As illustrated in figure a.1, we have a change in the estimation of the instantaneous frequency each 

time the signal phase is  
)�� , that is, from the formula of the phase (112): 

 MNL? $2EQR;
R*6 = MNH  (113)!
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Figure a.1 Deviations occur when the signal triggers (or un-triggers) a captured bit that wouldn’t have been there with an 

ideal signal 

We can thus represent the Brownian motion as being in a corridor with barriers distant of 
)�� q Or, 

because the detection occur only every period, we could rather represent the Brownian motion as 

being in a field with gates 
)��  wide and distant of T. 

Over a periodET, it is the same as studying a Brownian motion with an increment following T.UV .T�0)0 with gates distant of 
4� or an increment following T.UV�)0 with gates distant of �B = B�. 

One can represent the Brownian motion versus time as illustrated figure a.2. Points where the 

comparator is able to detect a change in the instantaneous frequency can be represented as gates. 

The integer multiple between '? and ' is preferred odd. This way, rising edge gates and falling edge 

gates aren’t aligned with each other. This offers more accuracy and less redundancy. 

 
Figure a.2 Phase shift vs time representation 

The measurement process exhibits distinct behaviors depending whether noise level is high or low. 

Let us first consider high noise levels. For high noise level, the same stochastic model applies with 

and without filtering, but this is not the case at low noise level. 

At high noise level the Brownian motion is likely to trigger one or more detections at each period. 

The number of detections can be counted with an integer. The model for high noise level behavior is 

a discrete model based on a Markov chain. In this model the two gates behave independently. 

 

Phase shift 

time 

Rising edge gates 

Falling edge gates 

Phase shift 
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Figure a.3 a discrete model is used for high level noise regime 

For low level of phase noise, behaviors differ with and without filter. Without filter, a discrete time 

Markov chain is used to analyze the path of the Brownian motion at each period. With filter a 

continuous time model is used instead. Discrete gates thus become continuous corridors. The 

stopping times of a Brownian motion in a corridor are calculated first and then we use renewal 

process to compute the detected number of deviations. 

 
Figure a.4 a discrete model is used for low level noise regime without filter but a continuous model is used for the 

process with filter 

1.2. High level noise 

At high level of phase noise, i.e. high values of W, for example over @UE§X, every measurement is 

considered independent. For every measurement, the Brownian motion is just exiting the previous 

gate. As illustrated figure a.2, it has several possible outcomes: either it is entering into the gate right 

in front, or it’s going to deviate (up or down on figure a.2) into a gate just on its side or into a gate 

further away. This model applies for both cases: process with or without filter. Indeed the filter only 

acts when the deviation is of just 0 or 1 unit; at high level noise this is unlikely to happen, deviations 

are the more often greater than 1. 

We can now build a stochastic model based on a score number !. If the Brownian motion hits the 

gate right in front, it doesn’t score any points, if it hits a gate just on its side, it scores 1 point. If it hits 

a gate further away it scores 2, 3 or more points depending on the distance. The points � add up with 

each measurement to give the score !. This constitutes a Markov chain illustrated in figure a.5 

 
Figure a.5 Markov chain 
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Once we have the structure of the stochastic model, we need to compute the probabilities ¢�Ó  for 

each transition. This can be done knowing that the Brownian motion’s increments follow a normal 

distribution of standard deviation ZãCW. 

We also have to consider the Brownian motion can be anywhere into the gate of the previous 

measurement ranging from � �_)  to 
�_) . These two considerations are illustrated in figure a.6. 

 
Figure a.6 Illustration of the probability density construction for the increments of the Brownian Motion 

Let the index Ç indicates the ÇE� measurement, happening at the ÇE�E period. Considering the 

probability of the Brownian motion being � away from its departure point 

 �.�� = �0 = @�EZM�E Ö�� ^� �)M�)_ (114) 

and the probability of the position of its departure point  : 

 �.�� = �0 = � @�B EÑÚÙE� ß ���BM V�BM �UEÚØÕÖÙÔÇÆÖ  (115) 

we can compute the probability of the arrival point being inside ��  Ë O 4)#�BV  Ë O 4)#�B� with a 

double integral (the convolution is transparent here).  

 

�� = zz @�EZM�E M�B Ö�� ^� �)M�)_�� �� 

ÇÉØÖÈÙÊØÇÉÈEÚÉEØÕÖEÊÙÖÊEÆ��ÕEØÕÊØ 
º� O �º Ò ùË O @Mú�BEÊÉ�º�º Ò �ÑM  

(116) 

That is : 
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�� = .Ë O @0 ÖÙÑ ^.Ë O @0�B�ZM _ � Ë ÖÙÑ ù Ë�B�ZMú
O ZM�EZ�E @�B �Ö���� I.Ë O @0�BK)M�) �
� Ö�� ^� .Ë�B0)M�) _� 

(117) 

With this expression, we can compute the probability for the Brownian motion to stay in the same 

state from one measurement to the next as the probability p0 of the arrival point to be in the interval ����) V ��) �: 
 �6 = ÖÙÑ ù �B�ZMú � ZM�E�BZ�E F 3@ � Ö��^�B)M�)_4 (118) 

Similarly, we can compute the probability for the Brownian motion to step from one measurement to 

the next into an interval which is ËE away, as the probability of the arrival point to be in the interval ��  Ë O 4)#�BV �  .Ë � @0 O 4)#�B� or � .Ë � @0 O 4)#�BV  Ë O 4)#�B�, which corresponds to �� � ��+4. 

Finally knowing all these probabilities, can then compute the expected value �.�0 of the score at the 

end of the measurement process, which is given by: 

 �.�0 = $.�� � ��+40MË� D¡�A¢C
£+4
�*4 = � M� D¡�A¢C�B ¸M� (119) 

Replacing �� and ��+4 by their expression and using appropriate mathematical transformations, we 

finally obtain a simple analytical expression for the expected value of the score S at the end of the 

measurement process: 

 �.�0 = � M� D¡�A¢C�B ¸M� (120) 

This expression relates the expected value of the score number � at the end of the measurement 

process to the level of phase noise s present in the analog input signal. Note that this expression is in 

agreement with the analytical expression established in chapter 3 based on the MAD function, 

considering that the score � corresponds to the sum of absolute deviations from the ideal count 

computed from 1-bit acquisition. 

The model can also be used to determine the probability distribution of the score � at the end of the 

measurement process. More precisely, the stochastic model is characterized by the following 

transition matrix ¤:  
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 ¤ =
¥¦¦
¦¦§
�6 �4 � �6 �) � �4 ¨ �£+4 � �£+) @ � �£+4U �6 �4 � �6 ¨ �£+) � �£+5 @ � �£+)© ª ª ª © E ©U U U �6 �4 � �6 @ � �4U U U U �6 @ � �6U U U U U @E «¬¬

¬¬ (121) 

with an initial distribution vector �6 = �@EU�U� corresponding to a score number � = U at the 

beginning of the measurement process and � an arbitrarily chosen size of matrix, for example M�.�0. 
The Markov matrix is applied at each measurement to the previous distribution vector. Since it is 

always the same, the distribution vector �£ D¡�A¢C at the end of the measurement process can be 

computed with:  

 �£ D¡�A¢C = �6¤£®¯°³´µ¶ (122) 

Finally since the two gates work independently but identically, the probability distribution of the 

score �, is the result of a convolution: 

 �.�0 = $�£ D¡�A¢C.� � Ç0·
�*6 �£ D¡�A¢C.Ç0 (123) 

Note that efficient computation of ¤£ D¡+4 can be implemented taking into account the specific 

properties of the transition matrix ¤ which is a triangular superior Toeplitz matrix. Indeed since ¤� 

shares the same properties asE¤ for all É, only the first row is to be defined to know all the matrix. 

Let us denote: 

 �¤� = `���.É0a (124) 

From the properties just described: 

 �4�.MÉ0 = $ �4¸.É0�¸�.É0£
¸*4 = $ �4¸.É0�¸�.É0�

¸*4  (125) 

 �4�.MÉ0 = $ �4¸.É0�4V�+¸(4.É0�
¸*4  (126) 

And the first row at the MÉ iteration equates to: 

 Ù.MÉ0 = Ù.É0 S Ù.É0 (127) 

We can validate the above calculation by comparing the probability distribution computed using the 

stochastic model to the one observed with a Monte Carlo simulation of the digital post-process (4000 

runs). Results are reported in figures a.7 and a.8 in for two different values of phase noise 

corresponding to high and low noise level respectively.  
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Figure a.7 Probability distribution of deviations with m = �����V / = èô��V /� = ��èô��VÝé�¹ì�R� = è�¿º 

 
Figure a.8 Probability distribution of deviations with m = ����V / = èô��V /� = ��èô��VÝé�¹ì�R� = è�¿º 

In case of the higher noise level, there is a perfect match between Monte-Carlo simulation and the 

stochastic model. However for the lower noise level, the dispersion predicted by the stochastic 

model is smaller than the observed one. This may be explained by the fact that for low noise level, 

the assumption of independent variables for the departure and the arrival points of the Brownian 

motion between two successive steps of the measurement process is not valid. Despite this 

divergence regarding dispersion, it is important to note that even for low phase noise, the validity of 

the phase noise estimator is preserved, since both probability distributions exhibit the same mean 

value which corresponds to the expected value of score !. 

This is also visible on the graph of figure a.9. Indeed it can be observed that, on the complete range 

of injected phase noise, values obtained with simulations follow the linear trend defined by the 

expected value of the score ! obtained with the stochastic model. Regarding dispersion, a good 

agreement is obtained between the plotted simulation results and the stochastic model for phase 

noise levels higher than �BA@U, with all values obtained by simulation that fall in the region of high 

probability defined by the stochastic model. In case of lower level of noise, the dispersion observed 

with simulation appears higher than the one predicted by the stochastic model. 
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Figure annex.9 Comparison between simulations of the digital post-process and the stochastic model for different levels 

of noise Probability distribution for deviationwith / = èô��V /� = ��èô��VÝé�¹ì�R� = è�¿º 

1.3. Low level noise without filter 

For lower noise another model can be developed. It implies that the Brownian motion can only score 

0 or 1 point. At these levels of noise, the position at the previous measurement influences if the 

Brownian motion is going to cross or not a gate. Thus we want to track with care how the Brownian 

motion behaves in between two measurements. 

So we are going to consider the position of the Brownian motion between two measured deviations. 

The space in which the Brownian motion evolves is broken up in discrete areas. This way the 

probability of the position of the Brownian motion can be computed at each discrete time, half 

periods, corresponding to a measurement. A discrete time representation is more realistic than a 

continuous one in our case because measurements are discrete. 

The probability space is thus broken up in » areas called transition states where the Brownian motion 

is not detected and 2 areas representing one absorbing state as illustrated in figure a.10. The 

absorbing state is on the outside of the transition states. In the following calculations » is chosen to 

be 200. 

 
Figure a.10 The Brownian motion evolves in the transition states until it reaches an absorbing state. 
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Once the Brownian motion reaches an absorbing state, it stays there. So this can be modeled as a 

Markov chain in figure a.11. 

 
Figure a.11 Markov chain representation and probabilities associated with each transition 

With a Markov matrix : 

 ¤ = � ��� ��¼U¨ U @ � (128) 

With 

 ��� = @M3ÖÙÑ3 ½O
@M � Ç# �B»ZM�) 4� ÖÙÑ3 ½� @M � Ç# �B»ZM�) 44 (129) 

 ��¼ = @ � @M3ÖÙÑ3�BM � Ç�B»ZM�) 4� ÖÙÑ3��BM � Ç�B»ZM�) 44 (130) 

Naming the initial vector {.U0 at the very start of the measurement or W.U0 after a detection has 

happened, the distribution vector at the � step will be: 

 {.Ç0 = {.U0¤� or W.Ç0 = W.U0¤� (131) 

Indeed there are two cases for computing {.Ç0 or W.Ç0. Either the Brownian motion is at the 

beginning of the capture; in this case, the probability distribution over the » transition states is 

uniform : 

 {.U0 = @�B �@¨ @E U� (132) 

Or the Brownian motion has just triggered a deviation. We make the hypothesis that the probability 

of crossing a deviation detection line is uniform over time as illustrated figure a.12. 
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Figure a.12 The Brownian motion can cross a horizontal at a position ¾ between two measurements with ¾ following a 

uniform distribution between 0 and 1 

So we can integrate over time 

 

.W.ï(0 = �0 = z M�YM�.@ � ï0 Ö�� ^� �)M�).@ � ï0_�ï4
6
= E MZMZ�� Ö�� ^� �)M�)_ O M��) ùÖÙÑ ù ��ZMú � @ú 

(133) 

And the other initial vector W.U0 will be : 

 W.U0 = @�B �� ù¿|.ï(0 = Ç�B» ú U� (134) 

We are only interested in the last element of {.Ç0 or W.Ç0 (but we need all of them to compute it). 

These last elements {¼.Ç0 or W¼.Ç0 represent the density probability function over time for the 

Brownian motion to generate a deviation. 

We are interested in the number of deviations that are generated during the time of capture. A 

renewal process can help us with that. 

 
Figure a.13 Illustration for a renewal process 

Let À4 follow the probability distribution defined by {¼ and àÀ¸V� � Má follow W¼ ant lets define the 

sum: 

 �� = $À¸
�

¸*4  (135) 

What is the probability of having É deviations before the end of the time of capture Ø? 

 �CÁ .É0 = �.�� Â Ø0 (136) 
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This renewal process problem solves its self with a convolution. 

 �.�� = ï0 = `�6 S �4S.�+40a�6VÃ�.ï0 (137) 

 ¤.�� Â Ø0 = z �.�� = ï0�ïE
6  (138) 

Just as in the previous high noise case, since the two gates work independently but identically, the 

probability of having a score � as the sum of both types of gates is the result of a convolution. 

 �.�0 = $�£ é¡�A¢DC.� � Ç0·
�*6 �£ é¡�A¢DC.Ç0 (139) 

The first case, no deviation detected at all, is better estimated with the probability which is the 

hitting time for Brownian motion in a corridor [70]: 

 

¤à�6 Ò Øá = M � @� � ÊÄÅ
Æ $ MùÇ O @Mú�BÖÙÑ3 Ç O @M# �B�ZMØ 4(Ç

�*+Ç
� MÇ�BÖÙÑ ù Ç�B�ZMØú
O M�¸M� ØE

Ä
ÅÆÖ��È�  Ç O @M#) �B)MØ�) É

� Ö�� ^� Ç)�B)MØ�) _ÊË
Ì
Ê
ËÌ 

(140) 

With Ê = U and � = ��)  

The results have a good general figure but amplitudes of probability density function don’t quite 

match. 

 
Figure annex.14 Probability distribution of deviationfor the low level noise stochastic model case m = ����V / =èô��V /� = ��èô��VÝé�¹ì�R� = è�¿º!
Anyhow, these results have to be taken with great care as jitter or amplitude noise is not taken in 

account. Such noises can have a great impact in the count of deviations particularly in the low level of 
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noise case. It is for this purpose that a filter has been developed as described in 3.6. The behavior of 

the process with this filter at low level noise is analyzed in the next paragraph. 

1.4. Low phase noise level with filter 

For lower noise another model can be developed. It also implies that the Brownian motion can only 

trigger 0 or 1 deviations. The Brownian motion has increments distributed according to a Gaussian 

distribution T.UV .M�TC��0)0. The Brownian motion is described in a continuous time manor; that is 

with a corridor representation rather than gates. The deviations are triggered when the Brownian 

motion travels 
)�)� on one side or the other: that is when the Brownian motion hits one wall of the 

corridor. The corridor is thus 
)�� EÙÊ� wide. 

Over a time 
F) the Brownian motion has an increment distributed as T^UV ùM�TC¹�) ��ú)_ with = B¶B . 

This is equal to T�UV ^M�TC¹4)É�_)� still with a corridor 
)�� EÙÊ�Ewide. 

Dividing by M�TCÉ, this is equivalent to a Brownian motion following T�UV ^�¹4)_)� with a corridor 

of width : 
)��)�F¶� = 4�F = BB¶AB = �B 

When the Brownian motion hits a side of the corridor, it triggers a deviation. Once the deviation is 

triggered the process restarts. We seek the number of deviations that are triggered during the time 

of the measurement. 

In figure a.15 bellow, the Brownian motion is represented by the orange line. When the orange line 

crosses a blue dotted line, a deviation detection is triggered. The Brownian motion can’t trigger two 

consecutive deviation detections from the same line because of the filter design. The consecutive 

detections by the same blue line are discarded because their stopping time is not relevant to the 

Brownian motion’s characteristics. So the blue lines are separated by 
��)  but the corridor is �B wide.  

 
Figure a.15 Illustration of Brownian motion with threshold of detections which can be modeled as corridors.!

The hitting times can be calculated knowing that they follow the density probability [70] : 

 �ÍàÎ = Øá = ÆÆE.� � �V �� Ê0 O ÆÆE.� � ÊV �� Ê0 (141) 

With : 
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 ÆÆÃ.ÏV Ð0 = @� ZM�ï5 $ I.MÇ O @0Ð � ÏK Ö����I.MÇ O @0Ð � ÏK)Mï� ) �(Ç
�*+Ç  (142) 

Setting � = �B) À Ê = � �B) À and �  = ¹4) E�B 

 
Figure a.16 Stochastic probability density compared to histograms on academic and simulated Process Monte Carlo!

The times between detection have been recorded during a measurement simulation and an 

academic setup for Brownian motion. A histogram has been set up for both sets of results. We can 

see in the figure a.16 above that the stochastic formula matches the histograms. 

From the density probability of hitting time, we can use a renewal process to count the number of 

detections during the time of experiment. 

 
Figure a.17 Illustration of renewal process!
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Let us denote À¸ the hitting time for the �E� detection triggered for which the probability density has 

been described just above. They are all identical. 

 �.À¸ = Ø0 = �6àÎ = Øá (143) 

�� is the sum of the hitting times of É first transitions. 

 �� = $À¸
�

¸*4  (144) 

The renewal process, illustrated in figure 6.17, tells us that the density probability of �� is described 

by a É convolutions over �.À¸ = Ø0. 

 �.�� = Ø0 = �S�.Ø0 (145) 

Note that the probability of having at least É deviations detected in the time of measurement ØÑDÒC 

is the integral of the probability density over the time : 

 ¤.�� Â ØÑDÒC0 = z �.�� = Ø0�ØEÓ¯Ô¶
6  (146) 

We seek the number of transition that happened during the time of measurement: 

 �.ØÑDÒC0 = Æ��àÉEâ �� Â ØÑDÒCá (147) 

The probability of �.ØÑDÒC0 is then described by the probability of having exactly É deviations during 

the time of measurement ØÑDÒC: 

 ¤.�.ØÑDÒC0 = É0 = ¤.�� Â ØÑDÒC0 � ¤.��+4 Â ØÑDÒC0 (148) 

 
Figure a.18 Stochastic model compared to histograms of simulated process and academic Brownian motion!
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The process as well as an academic Brownian motion have been run in simulation for � = @rUU}�, ÑC = MrU|}�V Ñ = ÑCA¼¼ over a time of measurement corresponding to rUUU periods in figure 6.18. 

We can see that the stochastic model has the same shape as the histograms of the simulated 

process. However the stochastic model has a positive offset relative to the Monte-Carlo results. This 

could be expected as the model is in continuous time whereas the simulation process is discrete. 

Indeed, detection can only happen every period in simulation whereas the model considers them as 

continuous hitting time process. 

The expected value of the hitting time mechanism is provided in [70] 

 ÕÍ.TS0 = .� � Ê0.� � �0 (149) 

In our case �Ê = � = ��)  et � = U 

So we have 

 Õ.T0 = ù�BM ú) (150) 

In [70] the formula is normalized so, in our case the expected value is : 

 Õ.T0 = Ä
Æ �BM�¹@M EEÊ

Ì)
 (151) 

The expected value of the renewal process is then : 

 Õ.�éÖÒ¡ECEB��E¡éC0 = ØÑDÒCÕ.T0 = `� é¡�A¢DC�)�B)  (152) 

To sum up, we run a calculation over several values of � of the stochastic model and the expected 

value as well as the simulation to validate the model. 
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Figure a.19 Stochastic model compared simulated process for different inputs of m/»�ì��!
The same remark apply in figure a.19, the expected value is overestimated due to the continuous 

time model which differ from the simulated process. 
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2. Algorithms 

2.1. Signal Generation In simulation in Matlab 
function Signal = SignalGeneration(fs,f,Nperiods,sigmaf) 
%================================= 
%Signal Generation 
%================================= 
%................................. 
% Paramereters 
%................................. 
L=floor(Nperiods*fs/f); 
Ts=1/fs; 
w=2*pi*f; 

 
%................................. 
% standardizing coefficient 
%................................. 
b=sqrt(fs/f); 

 
%................................. 
% Gaussian random variables 
%................................. 
va=randn(L,1)*sigmaf; 

 
%................................. 
% Frequency noise 
%................................. 
GaussianFrequencyNoise=va*2*pi()*b; 

 
%--------------------------------- 
% Integration of frequency noise 
%--------------------------------- 
%................................. 
% Integration 
%................................. 
t=(1:L)*Ts; 
t0=t; 
PhaseNoiseBrownian=Ts*cumsum(GaussianFrequencyNoise); 
phase=w*t0'; 
NoisyPhase=phase+PhaseNoiseBrownian; 

  
%................................. 
% Initial phase 
%................................. 
InitialPhase=2*pi()*(rand-0.5); 

  
%................................. 
% Signal affected with phase noise 
%................................. 
Signal=sin(NoisyPhase+InitialPhase); 
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2.2. Allan Variance Measurement In simulation in Matlab 
 function [EstimatedSigmaf]= AllanDevMeasurement(Signal,fs,f,Navg,K) 

  
Ts=1/fs; 
%================================= 
%Comparator 
%================================= 
%................................. 
% Comparator threshold 
%................................. 
S = 0; 
%................................. 
% Comparison 
%................................. 
BinaryVector=NaN(size(Signal)); 
BinaryVector(Signal>=S)=1; 
BinaryVector(Signal<S)=0; 
%................................. 
% Running average on binary vector 
%................................. 
RunAvgBinaryVect=tsmovavg(BinaryVector','s',Navg); 
RunAvgBinaryVect=[RunAvgBinaryVect(round(Navg/2):end) NaN(1,round(Navg/2)-

1)]; 
%................................. 
% Clean binary vector 
%................................. 
BinaryVector(RunAvgBinaryVect>0.5)=1; 
BinaryVector(RunAvgBinaryVect<0.5)=0; 
BinaryVector(RunAvgBinaryVect==0.5)=BinaryVector(find(RunAvgBinaryVect==0.5

)-1); 
%================================= 
% Extremums' position 
%================================= 
%................................. 
% Zero crossing identification 
%................................. 
StateChangeIdentification=diff(BinaryVector); 
StateChangePosition=find(StateChangeIdentification); 
%................................. 
% Extremum position 
%................................. 
ExtremumsPosition=tsmovavg(StateChangePosition,'s',2,1)'; 

  
%================================= 
% Allan Deviation computation  
%================================= 
W=K; 
%--------------------------------- 
% Reconstruction 
%--------------------------------- 
%................................. 
% Pase shift reconstruction 
%................................. 
EstimatedPhase=pi()*(0:length(ExtremumsPosition)); 
EstimatedPhaseShift=EstimatedPhase(3:end)-

ExtremumsPosition(2:end)*Ts*2*pi()*f; 

  
%................................. 
% Running average on phase shift 
%................................. 
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MovAvgEstimatedPhaseShift=tsmovavg(EstimatedPhaseShift,'s',W); 
MovAvgEstimatedPhaseShift1=MovAvgEstimatedPhaseShift((W+1+floor(rand()*K)):

K:end); 

  
%................................. 
% Increments 
%................................. 
DeltaDeltaMovAvgEstimatedPhaseShift=diff(diff(MovAvgEstimatedPhaseShift1)); 
DeltaDeltaMovAvgEstimatedPhaseShift=DeltaDeltaMovAvgEstimatedPhaseShift(1:2

:end); 
M=length(DeltaDeltaMovAvgEstimatedPhaseShift); 

  
%................................. 
% Standard/Allan deviation 
%................................. 
EstimatedSigmaf=sqrt(sum(DeltaDeltaMovAvgEstimatedPhaseShift.^2)/(M)); 
bias=1-1/(2*K)*(W-1/W); 

  
bias(bias<=0)=NaN; 
EstimatedSigmaf=f/(2*pi())*EstimatedSigmaf/sqrt(K*bias); 

  
end 

 

2.3. Simulation Example in Matlab 

Signal = SignalGeneration(200e6,1.3125e6,15000,500); 
EstimatedSigmaf = AllanDevMeasurement(Signal,200e6,1.3125e6,5,30); 

  
disp(EstimatedSigmaf) 

 

2.4. Integrated module in Verilog 

module SigmaEstimation( 
 //// output 
varEstimatedraw, finished, FlagRavg, M, 

// Debug outputs 
 op1, op2, op3, op4, op5, unknownValDetected, signalintest, 
N, W, // param input 
signal,  // signal Input 
reset, 
activate, 
clk       // clock Input 
); 

  
//------------Input Ports--------------  
    input signal, reset, activate, clk; 
    input [7:0] W; 
    input [7:0] N; 

  
    wire [7:0] K = W[7:0]; 
//------------Parameters-------------- 
   parameter Navg = 5; // up to 15 
    parameter Nbits = 12; 
    parameter Nclkbase = 625000; //6550;// 

     

  

     
//------------ Outputs and variables --------------   
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    reg [8:0] K2 = 30; //2*K 
    reg [40:0] Nclk = 1 * Nclkbase;      

     
    reg [40:0]  counterclk=0; 
    output reg finished=0; 

     

     
    reg [3:0] Ravg =0 ; 
    reg [4:0] Ravg2 =0 ; 
    reg [(Navg-1):0] memNavg = 0; 
    reg FlagRavgPrev = 0; 
    output reg FlagRavg = 0; 
    output reg op1 = 0; 
    output reg op2 = 0; 
    output reg op3 = 0; 
    output reg op4 = 0; 
    output reg op5 = 0; 
    output reg unknownValDetected = 0; 
    output reg signalintest=0; 
    reg signalVerfied=0; 
    reg signalPrev=0; 
    reg [3:0] iAvg = 0; 
    reg [Nbits:0] t = 0; 
    reg [Nbits:0] ttransitionprev = 0; 
    reg [Nbits:0] textremum2 = 0; 
    reg [Nbits:0] RunSumPhaseShift = 0; 
    reg [Nbits:0] RunSumPhaseShiftTemp = 0; 
    reg [10:0] iW = 0; 
    reg [10:0] PhaseCount=0; 
    reg [Nbits:0] MemPhaseShift [256:0]; 
    reg [Nbits:0] MemPhaseShiftTemp = 0; 
    reg [Nbits:0] PhaseShift0 = 0; 
    reg [Nbits:0] PhaseShiftK = 0; 
    reg signed [Nbits:0] DeltaK = 0; 
    reg signed [Nbits:0] Delta2K = 0; 
    reg signed [Nbits:0] DeltaDeltaPhaseShift = 0; 
    reg [(Nbits*2):0] DeltaDeltaPhaseShiftSquared = 0; 
    output reg [23:0] M = 0; 
    reg [10:0] jK = 0; 
    reg FlagjK = 0; 
    reg FlagPhaseCount=0; 
    reg cond0=0; 
    reg cond1=0; 
    reg cond2=0; 
    reg cond3=0; 
    output reg [47:0] varEstimatedraw = 0; 

  

  
//-------------Code Starts Here-------  
always @ (posedge clk) 

  
//----------------------------------------  
// Reset all variables 
//----------------------------------------  
if (reset) begin 
    counterclk<=0; 
    signalVerfied<=0; 
    signalPrev<=0; 
    finished<=0; 
    Ravg <=0 ; 
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    Ravg2 <=0 ; 
    memNavg <= 0; 
    FlagRavgPrev <= 0; 
    FlagRavg <= 0; 
   op1 <= 0; 
    op2 <= 0; 
    op3 <= 0; 
    op4 <= 0; 
    op5 <= 0; 
    unknownValDetected <= 0; 
    signalintest<=0; 
    iAvg <= 0; 
    t <= 0; 
    ttransitionprev <= 0; 
    textremum2 <= 0; 
    PhaseCount <= 0; 
    RunSumPhaseShift <= 0; 
    MemPhaseShiftTemp <=0; 
    RunSumPhaseShiftTemp <= 0; 
    iW <= 0; 
    PhaseShift0 <= 0; 
    PhaseShiftK <= 0; 
    DeltaK <= 0; 
    Delta2K <= 0; 
    K2 <= K*2; 
    Nclk <= N * Nclkbase; 
    DeltaDeltaPhaseShift <= 0; 
    DeltaDeltaPhaseShiftSquared <= 0; 
    M <= 0; 
    jK <= 0; 
    FlagjK <= 0; 
    FlagPhaseCount<=0; 
    varEstimatedraw <= 0; 
    cond0<=1; 
    cond1<=0; 
    cond2<=0; 
    cond3<=0; 

  
// If the clock counter is still inferior to the number of specified in 

Nclk and the process is being asked to be activated 
end else if (cond0 && activate) begin 
    // then the process hasn't finished yet 
    finished<=0; 
    // we increment th clock counter 
    counterclk<=counterclk+1; 
    cond0 <= counterclk < Nclk; 
    // Buffer signal 
    signalPrev<=signal; 
    // Verfication of signal integrity 
    if (signalPrev===1'b1 || signalPrev===1'b0) begin 
        signalVerfied<=signalPrev; 
        unknownValDetected <= 0; 
    end else begin 
        unknownValDetected <= 1; 
    end 
    // Output for debugging 
    signalintest<=signalPrev; 

     
    // Running average 
    Ravg <= Ravg + signalVerfied - memNavg[iAvg]; 
    Ravg2 <= 2*Ravg; 
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    // the signal is kept in memory 
    memNavg[iAvg] <= signalVerfied; 

     
    // then the memory index is incremented 
    if ((iAvg+1)==Navg) begin 
        iAvg <= 0; 
    end else begin 
        iAvg  <= iAvg +1; 
    end 
    // time is incremented 
    t<=t+1; 

     
    // Running average is compared to Navg 
    if (Ravg2<Navg) begin 
        FlagRavg <= 0; 
    end else if (Ravg2>Navg) begin  
        FlagRavg <= 1; 
    end 
    // If state change then count a new semi-period and record time 
    FlagRavgPrev<=FlagRavg; 
    if (FlagRavgPrev!==FlagRavg) begin 
        ttransitionprev <= t; 
        PhaseCount <= PhaseCount+1; 
        // Compute time of extremum 
        textremum2 <= t+ttransitionprev;                            //coef 

2, this should be divided by 2; t is time of transition (also actual time), 

ttransitionprev is the time of previous transition 
        // Indicate operation 1 is finished 
        op1 <= 1; 
    end 
    // if operation 1 is finished, move on to next operation 
    if (op1) begin 
        // reset op1 
        op1 <= 0; 

         
        // three conditions : 
        // phase count hasn't reached window length (FlagPhaseCount is for 

modular arithmetic on phase count) 
        cond1 <= PhaseCount > 2 && PhaseCount < (W+3) && ~FlagPhaseCount; 
        // phase count has just reached window length 
        cond2 <= PhaseCount == (W+3) && ~FlagPhaseCount; 
        // phase count has reached window length 
        cond3 <= PhaseCount >= (W+4) || FlagPhaseCount; 
        // Sum useful for running average on phase shift 
        RunSumPhaseShiftTemp <= RunSumPhaseShift + textremum2; 
        // get from memory for running average 
        MemPhaseShiftTemp <= -MemPhaseShift[iW]; 
        // indicate operation 2 has finisher 
        op2 <= 1; 
    end 
    // if operation 2 has finished move on to next operation 
    if (op2) begin 
        // reset op2 
        op2 <= 0; 
        // sote in memory for running average 
        MemPhaseShift[iW] <= textremum2; 
        // counter for running average and memory index 
        if ((iW+1)==W) begin 
        iW <= 0; 
        end else begin 
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        iW  <= iW + 1; 
        end 

         
        // RUNNING AVERAGE ON PHASE SHIFT 
        // if phase count hasn't reached window length 
        if (cond1) begin 
        // just sum (sum is done in op1) 
            RunSumPhaseShift <= RunSumPhaseShiftTemp; 
        // if phase count has just reached window length 
        end else if (cond2) begin 
        //sum and substract with value in memory 
            RunSumPhaseShift <= RunSumPhaseShiftTemp + MemPhaseShiftTemp; 
        // if phase count has reached window length 
        end else if (cond3) begin 
            //sum and substract with value in memory 
            RunSumPhaseShift <= RunSumPhaseShiftTemp + MemPhaseShiftTemp; 
            // raise flag that we have reached W phase count at laest once 
            FlagPhaseCount<=1; 
            // jK is index for Allan variance increment count 
            // if equal to 0 or K then store the value 
            if (jK==K) begin 
                PhaseShiftK <= RunSumPhaseShift; 
            end else if (jK==0) begin 
                // FlagjK is raised the very first time we come through 

here, for not to get confused relative to 0 = 2K 
                if (FlagjK) begin  
                    // compute increments 
                    Delta2K <= RunSumPhaseShift - PhaseShiftK; 
                    DeltaK <= PhaseShiftK - PhaseShift0; 
                    // indicate operation 3 has finished 
                    op3 <= 1; 
                end 
                FlagjK <= 1; 
                PhaseShift0 <= RunSumPhaseShift; 
            end 
            // counter for increments separated by K for Allan variance 
            if ((jK+1)==(K2)) begin 
                jK <= 0; 
            end else begin 
                jK <= jK +1; 
            end 
        end 
    end 
    // if operation 3 has finished 
    if (op3) begin 
    // reset op3 
    op3 <= 0; 
    // Difference between increments 
    DeltaDeltaPhaseShift <= Delta2K - DeltaK; 
    op4 <= 1; 
    end 
    // if operation 4 has finished 
    if (op4) begin 
    op4 <= 0; 
    // square 
    DeltaDeltaPhaseShiftSquared <= 

DeltaDeltaPhaseShift*DeltaDeltaPhaseShift; 
    op5 <= 1; 
    end 
    // if operation 5 has finished 
    if (op5) begin 
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    op5 <= 0; 
    // Allan variance result = SIG, relative to Eq 110 
    varEstimatedraw <= DeltaDeltaPhaseShiftSquared + varEstimatedraw; 
    M <= M+1; 
    end 
end else begin 
    finished<=1; 
end 

  
endmodule 
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Abstract 

In recent decades, the microelectronics industry has experienced a wide democratization of the use of telecommunication 

applications. The improved process design and manufacturing have produced complex and high performance analog, mixed 

and radio frequency circuits for these applications. However, the test cost of these integrated circuits still represents a large 

part of the manufacturing cost. Indeed, very often, analog testing is not just a functional test but needs measurements for 

specification validations. These measurements require the use of dedicated instruments expensive resources on standard 

industrial test equipment. 

One of the essential but costly specifications to validate in RF circuitry is the phase noise level. The currently used industrial 

technique consists in capturing the signal from the circuit under test using an RF tester channel equipped with a high 

performance analog to digital converter; a Fourier transform is then applied to the digitized signal and the phase noise is 

measured on the resulting spectrum. 

The approach proposed in this thesis is to achieve the phase noise measurement using solely digital low-cost resources. The 

basic idea is to perform 1-bit capture of the analog signal with a standard digital channel and develop post-processing 

algorithms dedicated for phase noise evaluation from the zero-crossings of the signal. 

Two methods are presented. The first method is based on an estimate of the instantaneous signal frequency and an 

analysis of their dispersion induced by phase noise. This method imposes a strong constraint on the sampling frequency to 

be used and proved to be sensitive to noise amplitude, limiting the range of possible measures. A second method is then 

proposed to overcome these limitations. From the binary capture of the analog signal, a reconstruction of the 

instantaneous phase of the signal is carried out, then filtered and characterized by a common tool of frequency stability 

assessment: the Allan variance. This technique, robust to amplitude noise and jitter, can be parametrized and enables 

efficient characterization of phase noise without fundamental constraint. 

In addition to the simulations, these techniques are subject to a stochastic study and are validated experimentally on 

different types of signals to be measured - artificially generated or from chips on the market - and with different measuring 

instruments - on oscilloscope or industrial tester, in laboratory and on a production line-. An On-chip implementation is also 

proposed and validated with a FPGA prototype. 

 

Keywords: Analog and radio frequency integrated circuits, Phase noise test, Allan Variance, Built-in-self-test 

 

Résumé 

Au cours des dernières décennies, l’industrie de la micro-électronique a connu une large démocratisation de l’utilisation des 

applications de télécommunication. L’amélioration continue des procédés de conception et de fabrication ont permis de 

produire des circuits analogiques, mixtes et radiofréquences complexes et haute performances pour ces applications. 

Toutefois, le coût de production de ces circuits intégrés est dominé par le coût de leur test en fin de chaine. En effet très 

souvent tester des fonctions analogique ne se résume pas à un test fonctionnel mais signifie mesurer les spécifications du 

circuit. 

Une des spécifications essentielle mais couteuse à caractériser pour les circuits RF est son niveau de bruit de phase. En effet 

les mesures des paramètres analogiques et radiofréquences nécessitent généralement des instruments couteux et 

sophistiqués. La technique actuellement utilisée en industrie consiste à capturer le signal à l’aide des ressources 

analogiques onéreuses de l’équipement de test automatisé. Celui-ci est équipé de convertisseurs analogique-digital hautes 

performances qui permettent d’évaluer le bruit de phase sur la transformée de Fourier du signal. 

La solution proposée dans cette thèse n’utilise que des ressources digitales faibles coût. Le travail présenté montre qu’une 

évaluation des temps de passages à zéro du signal dans le domaine temporel grâce à un simple comparateur permet une 

mesure du bruit de phase. 

Deux méthodes sont présentées. La première méthode est basée sur l’évaluation de l’écart absolu moyen d’une population 

de mesures de la fréquence instantanée du signal. Bien que validée en simulation, la méthode présente une contrainte 

forte quant à la fréquence d’échantillonnage à utiliser et s’est révélée ne pas être robuste au bruit d’amplitude lors de 

l’évaluation expérimentale. 

Une seconde méthode est alors proposée afin d’en résoudre. La phase du signal est reconstituée grâce la capture du 

vecteur binaire avant d’être filtrée puis caractérisée grâce à un outil usuel d’évaluation de stabilité fréquentiel : la variance 

d’Allan. Cette technique, robuste au bruit d’amplitude et au jitter, peut être paramétrée et permet de caractériser les 

signaux analogiques efficacement et sans contrainte fondamentales. 

En plus des simulations cette technique fait l‘objet d’une étude stochastique et est validée expérimentalement en plusieurs 

configurations : avec différents types de signaux à mesurer – généré artificiellement ou provenant de puces sur le marché – 

ou avec différentes conditions mesures – sur oscilloscope ou sur testeur, en laboratoire et en production –. Une 

implémentation sur puce est aussi proposée avec une validation avec un prototype FPGA. 

 

Mots clés : Circuits analogiques et radio fréquence, Test du bruit de phase, Variance d’Allan, Test sur puce 


