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Résumé détaillé 

Les macroinvertébrés benthiques entretiennent un ensemble complexe d’interactions avec 
leur environnement abiotique, leurs ressources et entre eux. Les échelles spatiales et 
temporelles des processus formant la base de ces interactions ont traditionnellement limité 
leur étude empirique et le développement de modèles statistiques. Les modèles mécanistes, 
n’ayant aucune contrainte logistique, offrent un outil alternatif pour étudier de potentiels 
mécanismes d’assemblage des communautés. Leur développement est toutefois limité par un 
manque de connaissances des mécanismes structurant les communautés benthiques. Dans le 
cadre de cette thèse, le premier chapitre du manuscrit tente une revue des outils de 
modélisation statistique et mécaniste utilisés dans l’étude des macroinvertébrés marins 
benthiques. Le but est d’identifier une technique permettant d’étudier la dynamique et le 
comportement de la biodiversité benthique d’une manière spatialement explicite, en utilisant 
des données déjà existantes. 

Même si l’implémentation d’un modèle mécaniste semble s’ajuster aux communautés 
benthiques, son utilisation nécessite la création d’un nombre limité d’entités avec un rôle 
fonctionnel clair. Le second chapitre du manuscrit utilise l’hypothèse des groupes émergents, 
afin de faire ça via une procédure objective et testable. Ce travail combine un jeu de données 
d’abondance de macroinvertébrés benthiques issu de l’estuaire de la Rance et une matrice de 
traits biologiques qui décrit le rôle de 240 espèces dans 7 mécanismes généraux d’assemblage 
des communautés. L’agrégation en 20 groupes fonctionnels est testée face aux postulats de 
l’hypothèse des groupes émergents. Les résultats généralement positifs supportent la capacité 
du groupement à reproduire la diversité fonctionnelle dans l’estuaire de la Rance. Un regard 
rapide sur les groupes renseigne également sur le rôle de quelques mécanismes dans le 
contrôle des communautés benthiques. 

Le manque de connaissances dans l’attribution des relations entre les composantes 
fonctionnelles dérivées précédemment reste important. Le troisième chapitre du manuscrit 
s’inscrit dans ce besoin, basé sur des théories écologiques qui prévoient l’existence de trade-
offs fonctionnels opérant à grande et petite échelle. Les premiers représentent des processus 
de type filtre environnemental, alors que les deuxièmes impliquent des trade-offs dans les 
traits d’histoire de vie. Les associations de traits observées semblent en accord avec ces 
prédictions, appuyant la capacité de ces processus à façonner les communautés benthiques de 
l’estuaire de la Rance. Dans un premier temps, des éléments de théorie écologique sont 
associés à des dires d’experts et incorporées dans 2 modèles qualitatifs des 20 groupes 
fonctionnels. La stabilité de ces modèles illustre leur potentiel à constituer une représentation 
plausible du monde naturel. Leur structure pourrait offrir des indices sur la direction 
potentiellement prise par le système en réponse à des perturbations. 

Malgré l’intérêt du développement et de l’analyse de modèles qualitatifs, le but d’étudier 
la dynamique et le comportement spatialement explicite de la biodiversité ne peut être atteint 
que par un modèle avec ces mêmes caractéristiques. Le quatrième chapitre du manuscrit 
présente l’architecture d’un modèle individu-centré, en mettant l’accent sur le transfert des 
règles d’interactions des modèles qualitatifs vers un cadre dynamique et spatialement 
explicite. C’est la première version d’un modèle qui permet le changement d’échelle du 
niveau de l’individu vers celui de l’estuaire de la Rance. L’analyse de sensibilité des résultats 
de ce modèle permet d’identifier les processus clés qui gouvernent la dynamique spatiale et 
temporelle de la biodiversité benthique. Ces résultats sont discutés du point de vue d’un cadre 
générique de modélisation et de son applicabilité à d’autres sites pour évaluer le 
fonctionnement et la réponse des écosystèmes benthiques à des perturbations. 
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Extended abstract 

Benthic macroinvertebrates are part of a complex network of interactions with their 
abiotic environment, their resources and with each other. The spatial and temporal scales of 
the processes that form the basis for these interactions have traditionally restricted their 
empirical study through the development of statistical models. Mechanistic models, being 
free of logistical limitations, offer an alternative tool for the study of potential community 
assembly mechanisms. Their development is, however, restricted by a lack of knowledge on 
the mechanisms that structure benthic communities. In the context of this thesis, the first 
chapter of the manuscript attempts a review of the statistical and mechanistic modelling tools 
that have been applied to marine benthic macroinvertebrates. The objective is to identify a 
technique that would allow the study of the dynamic behaviour of benthic biodiversity in a 
spatially explicit way based on existing datasets. 

The implementation of a mechanistic modelling framework seems fitting, but it requires 
the derivation of a limited number of model entities with a clear functional role. The second 
chapter of the manuscript employs the emergent group hypothesis in order to do that in a way 
that is objective and testable. It combines an abundance dataset of benthic macroinvertebrate 
species from the Rance estuary collected in 1995 with a matrix of biological traits that 
describe the role of 240 species in 7 general community assembly mechanisms. The resulting 
aggregation into 20 functional groups is tested against the assumptions of the emergent group 
hypothesis. The generally positive results support the ability of the grouping to represent 
functional diversity in the Rance estuary. A first look at the emergent groups also provides 
some insight into the potential role of a few general mechanisms in shaping benthic 
communities. 

The lack of quantitative knowledge for the attribution of relationships among the 
previously derived functional components is still important. The third chapter of the 
manuscript addresses this issue based on ecological theories that predict the existence of 
functional trade-offs operating at both large and small spatial scales. The former represent 
processes of environmental filtering, while the latter involve trade-offs with respect to life 
history characteristics. Observed trait associations appear to agree with these predictions, in 
support of the potential of the respective processes to shape benthic communities in the 
Rance estuary. In a first inception of the system, elements of ecological theory and expert 
knowledge are incorporated in the form of general rules of interaction into 2 qualitative 
models of the 20 functional groups. The general stability of these models illustrates their 
potential to constitute a plausible representation of the natural world. Their structure could 
offer clues to the direction that the system might take in response to perturbations. 

In spite of the interest in developing and analysing qualitative mathematical models, the 
goal of studying the dynamic and spatially explicit behaviour of benthic biodiversity can only 
be reached by a model with the same characteristics. The fourth chapter of the manuscript 
presents the architecture of an individual-based model, primarily transferring the rules of 
interaction from the qualitative models to a dynamic and spatially explicit framework. It is 
the first version of a model that allows the transition from the level of individuals to that of 
the Rance estuary. The sensitivity analysis of the model can identify the key processes 
controlling the spatial and temporal behaviour of benthic biodiversity. These results are 
discussed in the context of the development of a general modelling framework and its 
transferability to other sites with the goal of assessing the functioning and potential response 
of benthic ecosystems to perturbations. 
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Chapter I: Introduction 

I.1 Quantitative models of benthic biodiversity 

Biological communities, at the interface between species populations and ecosystems, are 
linked to some of the greatest challenges facing ecologists today (Sutherland et al., 2013). 
Their study in marine systems of benthic macroinvertebrates has traditionally relied on the 
output of observational or experimental research aimed at revealing the drivers of 
biodiversity (Klok, 2009). The complexity of the processes involved and the spatial and 
temporal scales at which they typically take place have set a limit to their empirical 
investigation and the potential to predict future biodiversity patterns (Cardinale et al., 2012). 
These limitations have made the creation of quantitative models essential for the development 
and evaluation of ecological theories, along with their synthesis toward the reliable prediction 
of the state of marine systems dominated by benthic macroinvertebrates (Constable, 1999). 

I.1.1 Overview of modelling approaches 

Modelling techniques can be primarily differentiated on the basis of their underlying 
assumptions and the generated output. Both elements are characterised by a set of basic 
properties. Central among them is their level of biological organisation, whether that is 
individual, population, community or ecosystem. Typically, a model constitutes a transition 
from assumptions made at a lower level to output generated at a higher level of biological 
organisation. This process involves additional properties of model assumptions and output, 
most notably their scales with respect to space and time. This up-scaling can be achieved in 
the context of a model through various methodological frameworks. Quantitative models can, 
therefore, be distinguished on the basis of the level of biological organisation and the 
spatiotemporal scales of their assumptions and output, along with the modelling methods that 
allow a transition from the one to the other (Fig. I.1). 

Species distribution models (SDMs) are typically developed for key members of benthic 
communities. They are based on the concept of niche, which describes the environmental 
requirements of a species’ individuals (Hutchinson, 1957) and can be considered to include 
elements of both abiotic and biotic nature (Araújo and Guisan, 2006). Observed associations 
between environmental variables and the distribution of organisms are assumed to be a 
demonstration of these requirements (Austin, 1985). Various tools can be employed to 
quantify an organism’s niche within gradients of environmental conditions (ter Braak and 
Prentice, 2004). This knowledge can be then combined with information on the concomitant 
or distinct distribution of the same conditions, interpolating or extrapolating, respectively, the 
distribution of a species’ populations in space or time (Guisan and Zimmermann, 2000). 

The various SDMs that have been developed for the marine benthos mostly differ with 
respect to the tools employed for the quantification of the species’ niche. In order to predict 
the occurrence probability of macrofauna species from a set of abiotic variables in the North 
Sea, Reiss et al. (2011) used 9 different SDM methods. Statistical approaches, including 
generalised linear models (GLM), multivariate adaptive regression splines (MARS), random 
forests (RF), bioclimatic envelope (BIOCLIM) and maximum entropy models (MAXENT), 
were applied alongside machine learning approaches, including genetic algorithms for rule-
set prediction (GARP) and support vector machines (SVM), as well as generalised boosting 
models (GBM) and mixture discriminant analysis (MDA) that combine statistics with 
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machine learning. The performance of most models was good but not constant across species 
while their output differed markedly. 

 

Fig. I.1 General approaches for quantitative modelling of benthic biodiversity, positioned according 
to the level of biological organisation of their assumptions and output. The dashed lines indicate 
frameworks complimenting the main modelling approaches, which are enclosed by solid lines. See 
text for details 

The same conclusion was reached by Bučas et al. (2013), who used generalised additive 
models (GAM), MARS, RF and MAXENT to predict the occurrence and abundance of 
benthic species in the Baltic Sea. Their study demonstrates the dependence of statistical 
modelling approaches on the quality of the available data. Models that are based on machine 
learning are generally more efficient at deriving relationships between environmental 
variables and species distribution from heterogeneous data sets. However, the black-box 
nature of these models can put the causality of relationships into question and limit the 
interpretability of their results. All these approaches are based on correlations and do not 
explicitly represent important community assembly mechanisms. This can limit their 
predictive ability in novel or non-equilibrium contexts and does not help advance 
understanding of biodiversity drivers (Kearney and Porter, 2009). 

The limitations of correlative SDMs have prompted the explicit representation of 
ecophysiological processes through models whose assumptions are made at the sub-
individual level. The law of energy conservation allows the mechanistic derivation of an 
organism’s niche from individual bioenergetics along with data of abiotic conditions and food 
supply. For example, Savina and Ménesguen (2007) combined a biogeochemical model of 
the water column with a bivalve growth model in order to calculate the organism’s scope for 
growth, then used this quantity to study the bivalve’s spatial distribution in the English 
Channel. The main drawback of such approaches lies in the need to develop a bioenergetics 
model for each species, often with case-specific functional forms and parameters. In a similar 
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study, Le Goff et al. (2017) used dynamic energy budget theory for a more generic 
representation of individual bioenergetics. 

Models of population dynamics aim to recreate the evolution of species abundance 
within ecological time scales. Much like SDMs, their output is based on assumptions about 
the behaviour of individual organisms or the metabolic processes that control individual 
behaviour. These assumptions can be expressed in the form of rates representing average 
characteristics of a population. The reproduction of population dynamics is achieved through 
the use of general difference or differential equations, whose parameters describe species-
specific demographic rates (Yodzis and Innes, 1992). The represented population is usually 
not homogeneous, but structured on the basis of age or size, while individual variability can 
also be added to the model’s parameters. Ananthasubramaniam et al. (2010) studied the 
stabilising effect of stochastic variability added to the growth rate of their size-structured 
model of water flea population dynamics. 

Various processes affecting population dynamics can be formulated mathematically and 
included in equation-based models. For example, Roughgarden et al. (1985) represented the 
settlement of larvae in their age-structured model of barnacle population dynamics. Larval 
dispersal, a particularly important aspect of the recruitment of benthic macroinvertebrates, 
has also been the focus of such models. They typically represent it in a spatially implicit 
manner, by modelling distinct populations of a species as a set of meta-populations linked by 
the dispersal of planktonic larvae. Quinn et al. (1993) built a meta-population model of a sea 
urchin, to reveal the importance of harvest refugia for the sustainable exploitation of its 
populations. Whitlatch et al. (1998) further distinguished the colonization potential of three 
life stages of an annelid worm, in order to study the demographic consequences of patchy 
disturbance. 

Published literature, experiments and statistical analysis of observations can be used 
separately or in combination in order to parameterise models of population dynamics. Still, 
data requirements and the need to mathematically formulate diverse ecological processes 
often restrict the development of equation-based models. Instead of this average 
representation, the behaviour of individuals can be modelled separately through simple 
algorithmic rules and then summed to recreate the dynamics of the entire population. 
Individual-based models (IBMs) are very flexible and can explicitly represent stochasticity, 
but are computationally demanding and less tractable than mathematical equations. Similar to 
mechanistic SDMs, the use of principles from the dynamic energy budget theory for the 
derivation of rules of individual behaviour can greatly facilitate the development of IBMs and 
increase their generality (Martin et al., 2012). 

Models of community assembly reproduce important community assembly mechanisms, 
in order to predict the abundance distribution of co-occurring organisms. Assumptions about 
the nature of these mechanisms are made at the level of individuals or populations and have 
been traditionally linked to one of two theoretical frameworks. Niche theory is based on 
differences in the environmental requirements of organisms and their impact on the 
environment (Leibold, 1995), while neutral theory assumes that all members of a community 
are functionally equivalent (Hubbell, 1979). The two frameworks were initially considered to 
be mutually exclusive, but it is now clear that both niche and neutral processes contribute to 
the assembly of biological communities (Leibold and McPeek, 2006). The relative 
importance of stochastic vs. deterministic processes remains a central question of community 
ecology (Sutherland et al., 2013). 

The assumption of trophic niche differences has dominated benthic ecological research 
and has given rise to some of the most widely applied modelling approaches. Food web 
models quantify trophic interactions among members of a community in the form of 



Introduction 

4 

interaction strengths. These quantities can be compiled into a community matrix, whose 
analysis with tools of matrix algebra allows projections of the community’s steady state 
abundance distribution (Levins, 1968). Alternatively, one can abandon the tedious quest for 
interaction strengths and represent only the sign and direction of trophic interactions (Puccia 
and Levins, 1985). This qualitative approach focuses on the structure of the food web and its 
link to basic properties of the system and has proved well-suited to poorly studied marine 
benthos. For example, Ortiz and Wolff (2002a) applied it to a benthic system in Chile in 
order to inform its management strategy. 

Much more commonly, interaction strengths are incorporated in systems of partial 
differential equations that reproduce the population dynamics of the community members. 
The predictive ability of such approaches has made them very popular, particularly for the 
management of marine fisheries. This has led to the development of dedicated modelling 
environments, most notably Ecopath with Ecosim (EwE) (Walters et al., 1997). Dynamic 
simulations performed with EwE are based on a mass-balanced snapshot of the system’s 
trophic structure, represented at the level of species or functional groups. In EwE models of 
fisheries, marine benthos has been at best represented by a few functional groups. On the 
other hand, Ortiz and Wolff (2002b) included 23 species and functional groups in their 
benthic EwE model. Ecospace, the spatially explicit version of EwE, can additionally 
simulate meta-population dynamics (Walters et al., 1999). 

Just like the models of population dynamics that form their basis, dynamic food web 
models need vast amounts of data and biological knowledge in order to get fully determined. 
Time series of community composition could be used to statistically infer parameter values 
that cannot be derived experimentally (Turchin and Taylor, 1992), but most observations 
comprise only snapshots of the investigated systems. Brey (2010) used artificial neural 
networks to estimate respiration rates of benthic macroinvertebrates from their biological 
characteristics and environmental conditions. The use of ecological theories has also shown 
great potential at specifying community properties. Optimal foraging theory has efficiently 
predicted trophic structure (Petchey et al., 2008), while physiological allometries from the 
metabolic theory of ecology have been successful at constraining the parameter space of food 
web models (Hudson and Reuman, 2013). 

Models of biological communities can also take the form of IBMs and OSMOSE is 
another example that is primarily targeted at the management of fisheries (Shin and Cury, 
2001). This spatially explicit framework models the behaviour of age- and size-structured 
groups, whose diets emerge from size-based rules and their relative position in space and 
time. The computational demands of community IBMs can be prohibitive to the inclusion of 
numerous assembly mechanisms. Instead, models of distinct processes can be loosely 
combined, as has been done with the use of Bayesian networks (Borsuk et al., 2004), or 
firmly integrated into hybrid models (Gallien et al., 2010). The former may lack for 
predictive ability, while the amounts of data and knowledge that are typically required by the 
latter can limit hybrid models to the representation of only well-studied species or the 
prediction of coarse diversity patterns (Cheung et al., 2008). 

Models of ecosystem functioning assume a constant community composition or even a 
steady state with respect to the abundance distribution of the community members. They 
represent elements of the ecosystem that are external to benthic communities but can affect 
the system’s functioning. This term refers to “some state or trajectory of the system under 
consideration and to the sum of those processes that sustain the system” (Jax, 2005). Since 
the focus is placed on function, the representation of functional groups is usually preferred 
over taxonomic classifications. Flows of matter and energy, representing trophic relationships 
among these functional components, are assumed to account for the numerous processes that 
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influence the structure of the system. Information about stocks and flows can be collected 
from the field, estimated from experiments or derived from distinct models of the system’s 
components. 

The Ecopath modelling environment allows the development of the static mass-balanced 
food webs that form the basis of EwE models (Christensen and Pauly, 1992). Its combination 
with methods of ecological network analysis can offer insights into many important 
properties of a system (Ulanowicz, 2004). Ecopath has significantly contributed to the 
adoption of an ecosystem approach to fisheries that includes benthic communities (Pauly et 
al., 2000) but it has also been separately applied to the latter to reveal aspects of their 
functioning (Ortiz and Wolff, 2002c). The common lack of data and knowledge for the 
marine benthos has often necessitated the application of inverse analysis for the estimation of 
unknown quantities (Vézina and Platt, 1988). This method has been successfully applied to 
benthic systems from the level of intertidal mudflats (Leguerrier et al., 2003) to that of sea 
basins (Garcia et al., 2011). 

I.1.2 Modelling biotic interactions 

The causality of the correlations that form the basis for statistical and machine learning 
models presents a major challenge to the key issue of representing biotic interactions in a 
rapidly changing world (Guisan and Thuiller, 2005). This is usually tackled by including 
predictor variables that describe the impact of organisms on their environment as a 
component of their niche. Yet, in most data sets the effects of abiotic conditions are 
confounded with those of community members, making inferences about the relative 
importance of jointly fitted predictors problematic, especially in cases where novel 
combinations of organisms are likely to occur (Elith and Leathwick, 2009). Mechanistic 
models have the potential to address this issue by explicitly representing biotic interactions 
(Kearney and Porter, 2009), but they have been characterised by a disproportionate emphasis 
on trophic networks (Ings et al., 2009). 

The inclusion of non-trophic interactions in mechanistic models of community assembly 
is particularly important for marine benthic macroinvertebrates. Many of these organisms can 
alter the physical or chemical properties of their environment in ways that significantly 
impact other members of their communities (Meadows et al., 2012). These effects appear to 
be non-linear and form intricate feedback cycles (Herman et al., 1999), while they can greatly 
vary among different life stages (Pineda et al., 2009). Along with the prevalence of omnivory 
and facultative feeding modes, this has rendered classic groupings of macrofauna irrelevant 
(Snelgrove and Butman, 1994). Moreover, theoretically derived allometries that have 
facilitated the quantification of trophic interactions appear to be less efficient for their non-
trophic counterparts (Berlow et al., 2009; Petchey et al., 2008), in support of a more 
mechanistic representation of the latter. 

Modelling of benthic macroinvertebrate communities has been largely based on the 
assumption that individual growth is limited by space in hard substrates and food in soft ones, 
in spite of evidence that supports a combined role of the two resources in shaping marine 
benthos (Svensson and Marshall, 2015; Tamaki et al., 2008). Apart from predation, marine 
benthic community models have accordingly focused on the representation of competitive 
interactions over space (Benedetti-Cecchi, 2000) and food (Cugier et al., 2010), with the 
notable addition of biogenic habitat modification (Pearson, 2001). Most other biotic 
interactions have, however, been modelled in isolation, with the goal of answering specific 
research questions. Their combination into ecosystem-level models that mechanistically link 
the components of biodiversity has only been attempted within qualitative modelling 
frameworks (Marzloff et al., 2011). 
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The use of biological traits to embed biotic interactions in the organisms’ abiotic 
environment holds great promise for the combination of distinct areas of research and their 
modelling tools (McGill et al., 2006). Trait-based representation of interaction networks has 
been indicated as a “fruitful avenue” for future models of ecological systems (Ings et al., 
2009). Biological traits have been extensively employed in the study of marine benthic 
communities to, primarily, make the link between biodiversity and ecosystem functioning 
(Bremner, 2008) and, to a lesser extent, describe the emergence of biodiversity patterns 
(Rigolet et al., 2014). This is a field where individual-based modelling has shown great 
potential (DeAngelis and Mooij, 2005), by reproducing community assembly mechanisms, in 
order to predict the response of terrestrial plant (Boulangeat et al., 2014) and animal systems 
(Scherer et al., 2016) to environmental change. 

I.1.3 A general framework for models of biodiversity 

The provision of support by more or less hard surfaces is a feature of benthic 
communities with a profound impact on their structure and functioning. It is also a feature 
shared with terrestrial systems, which results in marine benthos having a more similar trophic 
structure with them than with pelagic communities (Brose et al., 2006). Benthic 
macroinvertebrates and terrestrial vegetation are additionally characterised by competition for 
basic resources often taking the form of competition for a limited amount of space. This 
begins with the organisms’ initial settlement and continues, sometimes through shifts in 
competitive hierarchy, over their life cycle. Technical issues involved in the development of 
marine benthic biodiversity models have likely been already addressed in the terrestrial 
environment, either combined or in isolation, through different approaches that may vary in 
their potential to be transferred to the marine benthos. 

The framework developed by Boulangeat et al. (2012; 2014) for models of terrestrial 
plant structure and diversity appears to be well suited to benthic macrofauna systems. It 
specifically addresses the need for a dynamic and spatially explicit modelling approach, 
which represents a system’s primary functional components in interactions and is able to 
account for the main drivers of biodiversity. The use of biological traits allows the 
representation of the organisms’ role in various community assembly mechanisms. 
Theoretical and empirical knowledge on these mechanisms can be flexibly synthesised 
through individual-based modelling. An issue that could hinder the transfer of this framework 
to the marine benthos is the level of understanding with respect to the processes that shape 
marine benthic communities and the quality of the available information regarding biological 
traits and observed patterns of biodiversity. 

The development of models on the basis of general ecological principles can facilitate the 
transfer of conceptual and methodological knowledge across disciplines. It could allow the 
representation of systems and processes whose modelling has been restricted by relatively 
low levels of empirical quantification. Still, readily available datasets remain important, from 
the definition of a model’s entities and the mathematical or algorithmic formulation of its 
interactions, to its analysis and validation. Models of community assembly, whose output is 
the most relevant for the prediction of biodiversity patterns, typically make assumptions at 
the level of populations. Information on species abundance is, therefore, essential to 
quantitative models of biodiversity, along with information on the abiotic and biotic drivers 
of abundance patterns. Models that make assumptions at the individual level would also 
benefit from data on specific biological traits. 

For an effective use in models of community assembly, data of species abundance need to 
clearly illustrate the role of processes that shape marine benthic communities. Ecological 
theory could be employed when data is missing, at the same time increasing model 
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generality, but risking a reduction of its realism. The diversity of the processes that helped 
form the observed abundance patterns would largely dictate the exploratory and predictive 
scope of the model. The extent and resolution of efforts to sample biodiversity and its main 
drivers should be able to reveal the influence of processes that often operate at distinct spatial 
and temporal scales. Biological trait information should adequately represent the complex 
role of organisms in these processes. These requirements to a great extent drove the process 
of selecting a marine benthic site on which a general framework for models of benthic 
biodiversity could be developed. 

I.2 Modelling biodiversity in the Rance estuary 

I.2.1 Objectives of the thesis 

This study aims to develop a general modelling framework that is able to reproduce 
observed spatial and temporal patterns of benthic biodiversity. For this goal to be achieved, a 
system will first have to be aggregated in a functionally informative way. The components of 
this system representation will have to be connected in accordance with available knowledge 
about the processes that control benthic biodiversity. These processes could be driven by 
factors that are internal or external to benthic communities and could operate at various 
spatial and temporal scales. The explicit representation of the stochasticity of the modelled 
processes would increase the framework’s realism along with its exploratory scope. The 
ultimate goal of this approach is the development of modelling tools that will allow the 
generation of reliable predictions about future patterns of biodiversity, especially in response 
to projected scenarios of environmental change. 

Before reliable predictions can be made, the analysis of the generated framework can 
address fundamental issues of ecological research, reducing the need for costly or impractical 
experimental work. These issues include the minimum level of aggregation and complexity 
that is required for an adequate representation of a system’s functioning. The relative 
importance of different biodiversity drivers could be evaluated, along with the degree to 
which communities are shaped by internal vs. external or deterministic vs. stochastic 
processes. Models of different spatiotemporal scales can reveal the level at which a system 
should be averaged to efficiently represent its impact on higher-level systems and the way it 
is, in turn, affected by them. Answering these questions requires a degree of model realism 
that can only be achieved by developing the framework on the basis of data collected from a 
natural system; in this case, the Rance estuary. 

I.2.2 General characteristics of the study site 

The Rance estuary is situated in the southern part of the English Channel, in Brittany, 
France (Fig. I.2). It is a ria-type estuary, flowing into the sea between Dinard and St-Malo. 
The estuary is 20 km long and has a surface of 22 km2. Maximum water depth is 17 m at low 
tide, but the main part is 5–6 m deep. Two areas of different salinity regimes can be 
identified: the marine reservoir, with salinities constantly higher than 30, and the area 
upstream of Port St-Jean with brackish water of varying salinity. The drainage basin is 
dominated by granite geology, except for some calcareous sections downstream. The sea 
floor immediately adjacent to the estuary is mainly exposed bedrock, sand and gravel. The 
average annual temperature in the area is 9.5°C and the rainfall 750 mm, while the average 
river discharge is 7 m3/s. Intensive farming and agro-industrial activities comprise the main 
land uses in the drainage basin (Bernez et al., 2004). 
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Fig. I.2 Map of the Rance estuary basin within Brittany, France (from Kirby and Retière (2009)) 

The most distinctive characteristic of the Rance estuary and one of the reasons for its 
selection as the site of this study is the presence of a tidal power plant close to the estuary 
entrance. The structure, standing on the granite bed of the estuary over a length of 750 m, 
comprises, from the left to the right bank, a lock, the actual power plant with 24 bulb sets, a 
riprap general dam section and a sluiceway dam section with six gates. The bulb sets can 
operate as pumps from the sea to the storage basin, turbines in either flow direction or 
orifices for maximisation of water input or discharge. Operation is planned with the goal of 
maximising profit under variable tides and energy costs (Andre, 1978). The power plant was 
built between 1963 and 1966 by blocking the entrance of the estuary. During this period river 
flow was discharged, but the estuary was transformed into a non-tidal, more or less stagnant 
freshwater system (Kirby and Retière, 2009). 
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The estuary was re-opened in 1966, with its hydrodynamic regime significantly altered 
due to the power plant’s operation (Fig. I.3). Mean water level was raised by 2.5 m, while the 
tidal range was reduced by 40% and the water exchanged with the sea by 30%. Tidal range is 
now 7–8 m on springs and 2.5 m on neaps. The brackish section of the estuary was reduced, 
moving its junction with the marine reservoir 5 km upstream. Similarly, the intertidal zone 
corresponds today to 50% of the total surface of the estuary, compared to 70% before 1963. 
The tidal current regime has become more moderate and benign, except for the immediate 
vicinity of the power plant. Slack water periods have increased significantly, while turbidity 
has decreased to values that do not exceed 10 mg/l. The strength of ebb tides has decreased to 
levels that do not suffice to evacuate sediment brought in by the rising tide (Kirby and 
Retière, 2009). 

 

Fig. I.3 Distribution of salinity (upper panel) and extent of the intertidal and subtidal zones (lower 
panel) in the Rance estuary before (left) and after (right) the construction of the power plant (modified 
from Kirby and Retière (2009)) 
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More or less detailed depictions of sediment distribution in the Rance estuary from 1883 
to 1994 demonstrate the degree to which the riverbed has been altered by the operation of the 
power plant (Bonnot-Courtois, 1997) (Fig. I.4). Big sections of the former intertidal have 
been permanently submerged, thus increasing the diversity of the subtidal zone, which was 
previously dominated by clean sands. The mud content of the sediments has increased in both 
the subtidal and the intertidal. Increased siltation rates have turned large areas with mobile 
sands into much more hydraulically stable muddy sands or sandy muds. Strong currents from 
the gates and bulb sets have eroded parts of the riverbed, replacing sandbanks near the power 
plant with gravel. In general, particle size tends to decrease and mud content to increase from 
downstream to upstream of the estuary, with a similar trend observed from the central 
channel to the banks. 

 

Fig. I.4 Distribution of substrate types in the Rance estuary within 30 years from the construction of 
the power plant (from Kirby and Retière (2009)) 

Very little is known about benthic biodiversity patterns before and immediately after the 
construction of the power plant. It is clear that most marine species were eliminated while the 
estuary was blocked, getting only partially replaced by freshwater organisms. After the 
estuary was re-opened, macrobenthic community composition was sampled semi-
quantitatively in 1971 and quantitatively in 1976 (Retière, 1979) and 1995 (Desroy, 1998). 
The last sampling was spatially more comprehensive, while effort was made to render it 
repetitive with respect to stations previously sampled. These surveys comprise numerous 
samples of the upper sediment layers, each within an area in the order of 10-1 m2, aimed at 
capturing a snapshot of the spatial diversity of macrobenthos throughout the system. Samples 
contain information on the abundance of macroinvertebrate species along with the water 
depth and sediment type of each station. 

It appears that species richness increased quickly after 1966 through the estuary’s re-
colonization by marine organisms. Within ten years, it was more or less stable around levels 
similar to those observed before 1963. Higher diversity of the subtidal environment has led to 
increased biodiversity and abundance in this previously impoverished zone. The introduction 
of the slipper limpet Crepidula fornicata during the 1970’s has also contributed by increasing 
the heterogeneity of the substrate. The carrying capacity of the intertidal zone has 
significantly increased, probably due to the stabilization of the sediment. Benthic productivity 
appears to have increased in general, and now stands higher than adjacent estuaries. A rise in 
nutrient runoff is only partly responsible for that, but has led to higher abundances of green 
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algae. Fish and bird communities have, likewise, benefited from the higher productivity of 
the system (Kirby and Retière, 2009). 

I.2.3 Development of general modelling framework 

The abrupt transformation of the Rance estuary into a freshwater system and its gradual 
transition to its current state constitute a unique natural experiment. The whole process has 
been the subject of continuous research, with the goal of assessing the impact of the 
construction and operation of the tidal power plant on the system’s biological commnunities. 
The estuary appears to have returned to a more or less natural state through a re-colonization 
process that is particularly relevant for marine systems recovering from disturbance. A 
detailed understanding of the processes involved would help anticipate and direct the 
response of benthic communities to many types of potential perturbation. The fact that 
equilibrium has been reached with respect to species richness could indicate that the system is 
also stabilising with respect to species abundance, but the changes caused by the introduction 
of the slipper limpet suggest otherwise. 

The main reason for the selection of the Rance estuary as the site of this study is the 
repeated sampling of its macroinvertebrate communities. With 240 benthic species observed 
in 1995, the Rance estuary is neither extremely rich nor poor, offering a reasonable 
background for the development of the modelling approach. The extent and resolution of 
each system snapshot is expected to efficiently capture the environment’s control over 
community composition. The assessment of this role is facilitated by the availability of 
information of water depth and sediment type along with expert knowledge on the system’s 
species and functioning. Data of biological traits, especially intra-specific trait variability, are 
sure to be lacking at least for some of the species. Still, the western coast of Europe and the 
English Channel, in particular, are among the best studied regions regarding their benthos, 
with collected data being easily accessible. 

Considerable variation in species abundance can be observed both within and among the 
stations sampled in 1995. The former can be explained either by stochastic processes or 
through niche apportionment, but it is difficult to distinguish between the two (McGill et al., 
2007). Part of the latter shows spatial structure, which is only partly explained by 
environmental variables. The predictive power of these variables with respect to community 
composition appears to be very limited. The function of benthic communities would be better 
illustrated by information on the dynamics of species abundance and the distribution of 
organisms within the samples, but such data is rarely collected in samplings of this scale. 
What cannot be explained is often uniformly treated as noise. The assessment of the role of 
stochastic and deterministic processes in shaping communities remains a key challenge of 
ecological research (Sutherland et al., 2013). 

The benthos of the Rance estuary appears not to be limited by the supply of food, while 
the majority of its recruits are expected to originate from its own populations. Other factors, 
such as extremely cold winters or wave action, are expected to have an impact that may vary 
from local to global but is difficult to quantify. The statistical analysis of system snapshots 
(Desroy, 1998) can reveal the role of the abiotic environment in shaping benthic 
communities. A more detailed investigation of important processes, such as recruitment 
(Desroy and Retière, 2001) and predation (Desroy and Retière, 2003), can enhance the 
mechanistic understanding of community assembly. Still, the complexity of ecological 
systems often restricts the predictive potential of large-scale observational and small-scale 
experimental studies. A synthesis of available knowledge within a quantitative framework is 
essential to predict patterns of biodiversity. 
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I.2.4 Work plan 

The first step of the framework (Fig. I.5) consists in defining the principal functional 
components of the system through a rigorous and testable procedure (Chapter II). Next, the 
causal relationships of these components with their environment and with each other are 
specified through a systematic investigation of traits–environment associations. The simplest 
representation of these relationships can be produced by qualitative models, which focus on 
network structure and its impact on fundamental properties of the system (Chapter III). 
Predictions about the response of the system’s components to perturbations can also be 
generated, but their study requires the comparison of model predictions with observed 
patterns of community composition (Annex A). Finally, processes that operate at distinct 
spatiotemporal scales are combined in dynamic and spatially explicit agent-based models of 
benthic biodiversity (Chapter IV). 

 

Fig. I.5 Schematic representation of the four main components of the modelling approach and the 
thesis sections where they are presented. The dotted lines show the central direction that was followed 
in the study. a) Data of species abundance in different stations and information on the species’ traits 
led to the emergence of functional groups with their own trait values. b) Observed associations among 
traits and between traits and abiotic conditions allowed the derivation of a set of functional 
relationships. c) These relationships were expressed in the form of general rules of interaction among 
the functional groups and were incorporated in qualitative models of benthic communities. A novel 
approach was employed for the comparison of predicted responses to press perturbations with 
observed patterns of community composition. d) Agent-based modelling allowed the representation of 
both small- and large-scale processes in a dynamic and spatially explicit model of benthic biodiversity
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Abstract 

The accurate reproduction of the spatial and temporal dynamics of marine benthic 
biodiversity requires the development of mechanistic models, based on the processes that 
shape macroinvertebrate communities. The modelled entities should, accordingly, be able to 
adequately represent the many functional roles that are performed by benthic organisms. With 
this goal in mind, we applied the emergent group hypothesis (EGH), which assumes 
functional equivalence within and functional divergence between groups of species. The first 
step of the grouping involved the selection of 14 biological traits that describe the role of 
benthic macroinvertebrates in 7 important community assembly mechanisms. A matrix of trait 
values for the 240 species that occurred in the Rance estuary (Brittany, France) in 1995 
formed the basis for a hierarchical classification that generated 20 functional groups, each 
with its own trait values. The functional groups were first evaluated based on their ability to 
represent observed patterns of biodiversity. The two main assumptions of the EGH were then 
tested, by assessing the preservation of niche attributes among the groups and the neutrality of 
functional differences within them. The generally positive results give us confidence in the 
ability of the grouping to recreate functional diversity in the Rance estuary. A first look at the 
emergent groups provides insights into the potential role of community assembly mechanisms 
in shaping biodiversity patterns. Our next steps include the derivation of general rules of 
interaction and their incorporation, along with the functional groups, into mechanistic models 
of benthic biodiversity. 

II.1 Introduction 

Biological communities (i.e. sets of co-occurring species) are at the heart of some of the 
most challenging issues currently raised in the field of ecology. These issues include the 
degree to which communities are shaped by stochastic versus deterministic processes, the 
potential for species traits to predict the structure and dynamics of communities and the role 
of environmental variability in space and time (Sutherland et al., 2013). The elucidation of the 
mechanisms of community assembly would not only enhance our fundamental understanding 
of ecological processes. It is also expected to increase our ability to conserve biodiversity and 
ecosystem function. 

Function here refers to the second of the meanings assigned to the term by Jax (2005). It is 
associated with questions, such as “how is the whole sustained” or “what do specific parts 
contribute to this”. Answering these questions is important, because we value the services 
provided by a functioning whole. Yet, in view of the current rate of environmental change and 
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its potential impacts on biodiversity (Bellard et al., 2012), we cannot reliably answer them 
without first addressing the questions that Jax (2005) linked to the functioning of the specific 
parts, such as “which processes occur” or “how do organisms interact with each other and 
with their environment”. 

The effort to answer these questions in the marine benthos has been dominated by 
statistical methods of multivariate analysis (Clarke, 1993; Legendre and Gauthier, 2014). 
These methods rely on data from temporal and/or spatial sampling schemes, aimed at 
capturing the species abundance patterns of a system’s macro-, meio- or microbenthic 
compartment. They often use correlations between environmental variables and community 
composition with the goal of explaining variations in the latter (ter Braak and Prentice, 2004). 
With the addition of tools for the analysis of spatial and temporal patterns (Dray et al., 2006; 
Blanchet et al., 2008) multivariate analysis has become a very efficient exploratory technique. 
However, its correlative nature, along with its difficulty to account for key ecological 
phenomena, has restricted its ability to reveal the role of community shaping processes (James 
and McCulloch, 1990). 

In response to the limitations of statistical modelling, efforts have been made to adopt a 
more mechanistic approach, mostly in the form of dynamic food web models (Yodzis and 
Innes, 1992) and static trophic network analyses (Ulanowicz, 2004). The amounts of data and 
knowledge that are typically required by such approaches, along with issues of model 
complexity and tractability, have set a limit to the number of modelled entities. In spite of 
efforts to address these issues through the application of tools, such as Ecopath with Ecosim 
(Ortiz and Wolff, 2002) or the inverse method (Garcia et al., 2011), mechanistic models tend 
to lack the level of detail that is needed to account for the functioning of benthic communities. 
The host of biotic interactions that are responsible for shaping these systems is hardly limited 
to what can be represented by a food web (Menge, 1995). In spite of recent attempts to 
integrate non-trophic interactions into food web models (Kéfi et al., 2012), the majority of 
community assembly mechanisms are seldom included in models of marine benthos. 

Trait-based approaches have been suggested as an alternative to food web models (Ings et 
al., 2009). Biological traits have been increasingly employed in the analysis of the functional 
composition of benthic communities (Bremner, 2008). The emergence of the concept of 
functional diversity has raised questions, such as “what types of traits”, “which traits” or “how 
many traits” should be considered. Petchey et al. (2006) argue that the answers depend on the 
scope of each study, emphasizing the potential for functional classifications of organisms to 
be nested and the need to treat each classification as a testable hypothesis. Bremner et al. 
(2006b) suggest including as many traits as possible in biological traits analyses, with recent 
studies following suit (e.g. Darr et al., 2014; Jimenez et al., 2016). Trait-based modelling 
approaches have, on the other hand, focused on the most studied processes in the marine 
benthos: feeding behaviour and substrate modification (Pearson, 2001). The representation of 
these mechanisms offers valuable information on the contribution of existing communities to 
the functioning of the system, but it provides very little insight into future trajectories 
following natural or anthropogenic environmental change. 

A variety of ecological theories pertaining to environmental filtering, trophic interactions, 
resource partitioning, life history trade-offs and response to disturbance have been 
successfully employed to explain observations of benthic communities. They could be used to 
generate reliable predictions of benthic biodiversity, if they took the form of mathematical 
formulations linking a system’s primary functional components. The latter should be 
generated through a systematic and testable procedure and possess a clear role in various 
community assembly mechanisms. The framework developed by Boulangeat et al., (2012) for 
communities of terrestrial vegetation is particularly well-suited for this purpose. It employs 
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the emergent group hypothesis (EGH), which assumes functional equivalence within 
(neutrality) and functional divergence between (niche differentiation) groups of species 
(Hérault, 2007). Its application is based on a matrix of species traits that represent their role in 
important community assembly mechanisms. Group emergence results from correlations 
among the traits, which are indicative of adaptive responses and evolutionary constraints 
(Lavorel et al., 1997). 

The aggregation of ecosystems through the construction of functional groups is based on 
the concept of functional redundancy, which is central to theories relating biodiversity 
variations to ecosystem function (Rosenfeld, 2002). Although the exact nature of this 
relationship has been subject to debate (Grime, 1997), its existence is beyond dispute 
(Srivastava and Vellend, 2005). This is why the level of functional redundancy with regard to 
the assembly of communities, the engines of biodiversity, is particularly important for the 
conservation of ecosystem function. This level can be demonstrated as the acceptable level of 
ecological aggregation, i.e. the minimum number of groups that can adequately represent 
community function. It appears to vary in predictable ways (Hairston and Hairston, 1993), but 
its accurate assessment requires a good understanding of assembly mechanisms (Walker, 
1992). 

In spite of recent advances in the quantification of functional redundancy (Muntadas et al., 
2016; van der Linden et al., 2016), its assessment remains highly prone to subjectivity, 
especially with regard to the number of biological traits (Jax, 2005). The framework of 
Boulangeat et al. (2012) addresses this issue, by defining a specific number of important 
community assembly mechanisms that need to be explicitly represented. Trait categorization 
is generally lacking among functional studies of benthic communities. Even when traits are 
explicitly assigned to a set of general functions (e.g. Törnroos and Bonsdorff, 2012), this is 
done in order to rather interpret the results of the study than guide the process of biological 
traits selection. The framework also allows the nesting of finer functional differences within 
broader ones. This is achieved through the separation of organisms into broad groups with a 
common resource base, whose consumption is further differentiated based on finer group 
dissimilarities. Finally, putting the emergent grouping to the test is central to the framework 
and allows defining the acceptable level of ecological aggregation as the minimum number of 
groups for which the assumptions of the EGH are supported by observations. Boulangeat et al. 
(2012) tested the niche constituent of the EGH, by comparing its assumptions with what could 
be observed in their system. Here, we take their approach one step forward, by investigating 
the second constituent of the EGH, concerning the neutral behaviour of species within each 
functional group. 

In this study, we revisit a benthic macroinvertebrates abundance data set from the Rance 
estuary (Brittany, France), previously explored with the use of traditional multivariate 
analyses (Desroy, 1998). We combine it with a matrix of biological traits, with the goal of 
aggregating the system through the construction of functional groups. We investigate both 
niche and neutral attributes of the emergent grouping, gaining insights into the components of 
functional diversity and redundancy in benthic communities. In doing so, we integrate 
statistical tools and ecological mechanisms into a quantitative approach toward defining the 
acceptable level of ecological aggregation. The present study is a first step toward the 
development of models of benthic community assembly mechanisms, with the generated 
functional groups as their entities. The application of this generic modelling approach to the 
Rance estuary is expected to describe the stability characteristics of macroinvertebrate 
communities as well as their responses to well-documented perturbations, such as the 
occurrence of particularly cold winters or the introduction of invasive species (Desroy, 1998). 
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II.2 Methods 

II.2.1 Study site 

The framework for the construction of functional groups was applied to the Rance estuary 
(Brittany, France), in the southern part of the English Channel (Fig. II.1). The site is 
characterized by the presence of a tidal power plant at its mouth, comprising a lock, the 
generating station proper, a rock dike and a 115 m wide removable dam made up of 6 sluice 
gates. The system was fundamentally altered during the construction of the plant (1963-1966), 
after which it was allowed to gradually return to a more natural state (Kirby and Retière, 
2009). 

 

Fig. II.1 Map of the study site. The Rance estuary is situated on the northern coast of Brittany, France. 
Crosses indicate the location of the 113 stations that were sampled in the spring of 1995. The tidal 
power plant is located at the mouth of the estuary, south of the city of St-Malo 
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The operating constraints of the installation impose highly specific “tidal” conditions on 
the estuary: (1) mean water level is elevated by approximately 2.5 m, (2) slack water periods 
are particularly long (up to 5 h), (3) emersion time may be half that of the open sea and (4) the 
tidal range varies between 4.0 m and 5.5 m compared to 9.5 m (mean value) in the open sea, 
depending on which direction the turbines are operating (Retière, 1994). Reduction in tidal 
range is correlated with a reduction in the surface area of the intertidal zone; the exposed zone 
accounts today for 50% of the total surface of the Rance estuary, compared to 70% before the 
construction of the plant. Maximum water depth is 17 m at low tide, but the main part of the 
basin is 5-6 m deep. Two areas of differing salinities can be identified: the marine reservoir, in 
which deep-water salinity remains higher than 30, and the upstream estuary of brackish water 
(Retière, 1994). The junction between brackish and marine waters has moved about 5 km 
upstream since the scheme was built. 

The strong sluice and turbine currents have eroded parts of the riverbed. Sandbanks 
closest to the dam have shifted and the bed is more or less covered with gravel or pebbles 
(Retière, 1994). Meanwhile, long periods of slack water have promoted the deposition of fine 
particles in coves and bays (Bonnot-Courtois and Lafond, 1991). From downstream to 
upstream of the estuary, pebbles and coarse sands are replaced by medium and fine sands, 
muddy sands and finally muds, beyond Port-St-Hubert. A similar sequence is observable from 
the central channel to the banks. Natural silting is presumed to have increased since operation 
of the tidal power plant started. In the upstream part of the estuary, sedimentation rate 
increased from 0.5 cm y-1 before the scheme to 2.7 cm y-1 after (Bonnot-Courtois, Ecole 
Pratique des Hautes Etudes, Dinard, France, personal communication). 

II.2.2 Sampling methods 

A grid of 113 stations was sampled in April 1995, prior to the spring recruitment (Fig. 
II.1). Two replicate samples were collected at each of 103 submerged stations using a 0.1 m2 
Smith Mac-Intyre grab, while 10 emerged stations were sampled using a hand corer (5 
replicates; replicate area of 1/55 m2) to a depth of 20 cm. The number of replicates is assumed 
to be sufficient to characterize the assemblage of species that can be found at each station. 
Although densities of organisms were extrapolated to a standard surface area, some bias was 
unavoidably introduced, due to the different characteristics of the sampling gears. All samples 
were gently washed in situ through a 1 mm sieve and preserved in 4.5% formalin before being 
sorted, identified and counted in the laboratory. Macroinvertebrates retained on the mesh were 
determined at species level when possible. A total of 240 species or higher taxonomic groups 
belonging to 9 phyla were thus identified. 

II.2.3 Design and application 

Our approach draws on the work of Boulangeat et al. (2012), who employed the EGH for 
the classification of terrestrial plant species into groups with similar ecological strategies. 
Much like their approach, our own is divided into five steps (Fig. II.2), with the respective 
ecological assumptions and methodological framework presented below. 

Step 1: selecting biological traits 

The objective of this step was to select species characteristics that describe the role of the 
average individual of each species in the most important community assembly mechanisms. 
The list of mechanisms was mostly adopted from the framework of Boulangeat et al. (2012), 
with a few adjustments, in order to adapt it to the special attributes of estuarine benthic 
systems. The choice of the traits was made based on both the nature of the community 
assembly mechanisms and the quality of the data that could be found for each of the traits. 



Functional groups 

24 

Since community assembly mechanisms include competition for a limited amount of 
resources, we first identified food and space as the basic resources for which benthic 
organisms compete. Space was assumed to be two-dimensional, while food was defined with 
the goal of dividing species into groups with a common resource base. The wide-spread 
adoption of facultative feeding modes only allowed for a distinction between species that feed 
on algae and detritus on the one hand and those characterized as predators and scavengers on 
the other. 

 

Fig. II.2 Schematic representation of the 5 steps that comprise the methodology of functional 
grouping. In step 1, 14 biological traits were selected, representing 7 community assembly 
mechanisms. For details, see Table II.1. In step 2, a matrix of species trait values formed the basis for 
the classification of species into functional groups (solid line). The two matrices, combined with data 
of species abundance, allowed the assignment of trait values to the functional groups (dashed lines). In 
step 3, taxonomic diversity and functional divergence were measured for each station at the level of 
species and functional groups. Measures at the two levels were then compared, in order to evaluate the 
representation of biodiversity by the functional groups. In step 4, community weighted mean trait 
values were calculated for each station at the level of species and functional groups. Calculations at the 
two levels were then compared, in order to assess the preservation of niche attributes by the functional 
groups. In step 5, the independence between species abundance at each station and their trait values 
was tested within each functional group and the rejection proportion for every trait was used as an 
indication of departures from neutrality 
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Table II.1 List of community assembly mechanisms, biological traits that represent the species’ role in 
them, trait values and comments about their assignment to species 

Mechanisms Biological traits Trait values Comments 

Resistance to 
perturbation 

T1. low 
temperature 
tolerance 

eurythermal/stenothermal 
Species that can tolerate continued exposure to single-digit 
temperatures (eurythermal) were distinguished from those that 
cannot (stenothermal) 

T2. early 
development 
mode 

planktonic/laid/brooded 
Trait values should define a gradient of increasing ability to 
cope with perturbations during the early life stages, due to 
increasing investment in early offspring survival 

Dispersal 
potential 

T3. larval 
dispersal 
distance 

short/long 
Species were separated in two groups based on their 
maximum observed dispersal distance, with a distance of 10 
km used as the breaking point 

T4. maximum 
fecundity 

low/high 
Species were separated in two groups, with the number of 
1000 eggs produced by a female of each species per year used 
as the breaking point 

Environmental 
filtering 

T5. tidal 
emersion/low 
salinity tolerance 

emersed/euryhaline/stenohaline 

Soft bottom species that can tolerate long tidal exposure 
should be able to tolerate low salinity (emersed). Immersed 
species either can tolerate salinities that differ greatly from 
those of the open sea (euryhaline) or cannot (stenohaline) 

T6. preferred 
substrate type 

mud/muddy sand/sand/muddy 
gravel/gravel/rock 

The assignment of one value to each species represented its 
greatest substrate affinity, but was often too restrictive 

Competitive 
effect 

T7. maximum 
size 1 cm/2 cm/10 cm/20 cm/40 cm 

Trait values should define a gradient of increasing area that 
can be searched for food or distance from the substrate, which 
enhances food availability (McLean and Lasker, 2013) 

T8. minimum 
space 
requirement 

0.003/0.1/49.5 

(min./median/max.) 

Values do not represent absolute, 
but relative levels 

Species with the lowest trait value should compete best for 
space (Tilman, 1980). Trait values were derived from data on 
body mass (Robinson et al., 2010) and use of an exponent of 
¾ from the metabolic theory of ecology (Jetz et al., 2004) 

Response to 
competition 

T9. preferred 
substrate 
position 

infauna/interface/epifauna 
Living deep in the sediment (infauna), at its upper layer 
(interface) or on its surface (epifauna) should allow species 
co-existence in spite of established competitive hierarchies 

T10. adult 
mobility mobile/sessile 

Differences in the ability of species to move should lead to 
resource partitioning and avoidance of competition 

Population 
dynamics 

T11. population 
growth rate 

0.27/2.14/6.95 

(min./median/max.) 

Values do not represent absolute, 
but relative levels 

Trait values were derived from data on body mass (Robinson 
et al., 2010) and use of an exponent of -¼ from the metabolic 
theory of ecology (Savage et al., 2004) 

T12. maximum 
lifespan 1 yr/2 yr/10 yr/20 yr 

Different trait values should reflect differentiations in species 
population dynamics 

Biogenic habitat 
modification 

T13. role in 
epibiosis 

basibiont/epibiont/neutral 
Species that can grow on other organisms (epibiont) were 
distinguished from those that also provide biotic substrate 
(basibiont). Neutral species do not participate in epibiosis 

T14. role in 
sediment 
engineering 

stabilizer/destabilizer/neutral 
Sediment destabilizing species should inhibit sessile, tube 
building species (stabilizers) and vice versa (Posey, 1987). 
Neutral species do not participate in sediment engineering 
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The rest of the biological traits represent seven community assembly mechanisms. The 
initial goal was for each mechanism to be represented by two traits, so that one set of traits 
could be used for the species classification and the other for the cross-validation of the 
resulting grouping. The lack of redundancy in the content of the two sets of traits obliged us to 
abandon this goal and use all fourteen traits for the classification of the species into groups. 
The seven community assembly mechanisms are: (1) resistance to perturbation, (2) dispersal 
potential, (3) environmental filtering, (4) competitive effect, (5) response to competition, (6) 
population dynamics and (7) biogenic habitat modification. Details about the selected 
biological traits and the assignment of trait values to the system’s species can be found in 
Table II.1. 

The vast majority of the information that was required for the assignment of trait values to 
the species of the system was provided by the following online databases: eol.org, 
genustraithandbook.org.uk, marinespecies.org, marlin.ac.uk and species-identification.org. 
The remainder was acquired from consultation with experts on the field. Very often the lack 
of appropriate information for a particular species obliged us to look for data at higher 
taxonomic levels. The quality of the available information for the ensemble of species and 
biological traits dictated the resolution of the values that were assigned to them (for details, 
see Table B.1 in Annex B). 

Step 2: building functional groups 

This step aims at reducing a community of benthic macroinvertebrates to its principal 
functional components, by identifying emergent groups of species (Hérault, 2007). It was 
applied separately for consumers of algae/detritus and predators/scavengers, because the 
concept of functional equivalence, which is central to the EGH, is defined for trophically 
similar sympatric species (Hubbell, 2005). The first task involved calculating a distance 
matrix for both groups of species, based on the rest of the biological traits. Since our list 
included continuous, ordinal, nominal and binary traits, we opted for the Gower distance 
(Gower, 1971). These matrices formed the basis for the application of an agglomerative 
hierarchical clustering technique, the unweighted pair group method with arithmetic mean 
(Sokal and Michener, 1958). The two generated dendrograms were consecutively pruned at 
0.4 and 0.3 distance levels, without, for practical reasons, allowing the formation of groups 
with only one species. 

In order to be able to treat the newly formed groups as independent functional 
components, we needed to attribute trait values to them. We did that by employing the mass 
ratio hypothesis (Grime, 1998), which predicts that the functional identity of a group of 
species is determined by the trait values of the dominant abundance contributors. We 
measured the abundance contribution of each species in its group, by calculating its median 
abundance at the stations where it was present. For the ordinal, nominal and binary traits, a 
group’s trait value was defined as the dominant value, as far as the abundance contribution of 
its species was concerned. For the continuous traits, a group’s trait value was defined as the 
mean trait value of all the species in the group, weighted by their abundance contribution. 
Each group was, finally, assigned a representative species, which was the one with the highest 
abundance contribution in the group. In case of ties or close calls, the species with the highest 
body mass was chosen to represent the group. 

Step 3: evaluating biodiversity representation 

Once functional groups were built, we had to assess their efficiency at representing natural 
biodiversity patterns. This need stems from the loss of information that is inherent to the 
process of classifying a number of species into a much smaller number of groups. We in fact 
wanted to know if this loss of information lay within acceptable limits, or if, instead, it 
severely impaired the ecological pertinence of the imposed grouping. If we assume that 
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information at the species level provides an adequate representation of biodiversity, we could 
reach our goal by comparing biodiversity measurements at this level with the same 
measurements made at the level of functional groups. Since the role of the groups as 
functional components of the system was what we were especially interested in, we did not 
want to be limited to measures of taxonomic diversity, but we wanted to include measures of 
functional diversity as well. 

One framework that offers this possibility is Rao’s quadratic entropy, Q (Botta-Dukát, 
2005). For an assemblage of T taxa characterized by the relative abundance vector p = (p1, p2, 
..., pT), it is defined as 

 

 
 

where dij is the functional distance between the i-th and j-th taxa (dij = dji and dii = 0). 
Assuming functional equidistance among taxa (dij = 1), it equals the complement of the 
Simpson dominance index, thus expressing the probability that two individuals taken at 
random from an assemblage belong to different taxa. When combined with a functional 
distance matrix for the taxa in question, like the one previously calculated with the help of the 
Gower distance, the same index becomes a measure of functional divergence. In this case, 
Rao’s quadratic entropy expresses the average functional distance between two randomly 
selected individuals of an assemblage. We calculated both versions of the index for all 113 
assemblages. If the species-level measures of diversity showed a high correlation with the 
same measures calculated at the level of functional groups, we could say that the transition 
from the former level to the latter entailed an acceptable amount of information loss. 

Step 4: assessing niche attributes preservation 

Niche theory predicts that the dynamics of species populations are controlled by their 
characteristics (Hutchinson, 1957). Species with divergent trait values exhibit differential 
responses to dissimilar environments, thus generating the observed distribution patterns of not 
only the species, but the respective traits as well. The EGH, through its niche constituent, 
assumes that the same holds true for the emergent groups of species (Hérault, 2007). The 
interaction of the environment with the organisms through the relevant biological traits should 
now take place at the level of functional groups, but the resulting trait distribution should not 
deviate from the one observed at the species level. One way to assess the validity of this 
assumption is by comparing the functional identity of dominant taxa in an assemblage 
measured at the species level, with the same metric measured at the level of functional groups. 

An indicator of the functional identity of dominant taxa in an assemblage is the 
community weighted mean (Garnier et al., 2004), which represents the expected trait value for 
a random community sample. For the ordinal, nominal and binary traits, the community 
weighted mean was defined as the dominant trait value, as far as taxa abundance is concerned. 
For the continuous traits, the same measure was defined as the mean trait value of all the taxa 
in an assemblage, weighted by their relative abundance. The comparison of community 
weighted means calculated at species and group level for the ordinal, nominal and binary traits 
was made by deriving the proportion of the assemblages for which the two calculations 
agreed. For the continuous traits, we examined the correlation between the values calculated 
at the levels of species and functional groups. High proportions of agreement or correlation 
coefficients would indicate that the representation of the system at the level of functional 
groups preserved the niche characteristics of the original one. 
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Step 5: detecting neutral behaviour within groups 

The second major assumption of the EGH is that the organisms that belong to the same 
functional group are ecologically equivalent (Hérault, 2007). This means that any differences 
in trait values that the organisms of a group might exhibit, should be random and, therefore, 
not associated with differences in their abundance (Hubbell, 2005). If this is not the case, the 
dynamics within the groups could not be considered as neutral, but rather controlled by the 
values of the trait. Since we only had information on inter-specific trait variation, we could 
examine this assumption, by checking for high levels of covariation between the abundance of 
a group’s species in an assemblage and the respective trait values. 

For the ordinal, nominal and binary traits, this could be done by performing the Kruskal-
Wallis independence test (Kruskal and Wallis, 1952), while for the continuous traits, we opted 
for Hoeffding’s test (Hoeffding, 1948). They both test for independence between the 
abundance of a group’s species in an assemblage and the respective trait values and were 
repeated for each of the functional groups and assemblages. The proportion of rejection of 
these tests over all groups and assemblages was calculated for each of the traits and was 
considered as a measure of departure from neutrality for the within-group dynamics, with 
regard to the respective trait. A high value for a trait would indicate that high covariation 
between species abundance and trait values occurred more often than expected by chance and 
would thus challenge the assumption of ecological equivalence among the species of a group, 
as far as this particular trait is concerned. 

All analyses were performed using the statistical software R version 3.2.2 (R Core Team, 
2015) with the packages cluster (Maechler et al., 2013), FD (Laliberté et al., 2014), ade4 
(Dray and Dufour, 2007) and Hmisc (Harrell and Dupont, 2015). 

II.3 Results 

II.3.1 Building functional groups 

The dendrograms displaying functional distance among the species of the two feeding 
groups were pruned at 0.4 and 0.3 distance levels, thus allowing the emergence of 7 
intermediate and 20 final groups, respectively. Unlike the transition from 7 to 20 functional 
groups, further classification into 30 groups did not result in improved agreement of 
observations with theoretical assumptions and it was, therefore, dismissed. The abundance 
contribution and the trait values of all 20 groups’ constituent species determined the 
representative species and the values which were assigned to the functional groups for each of 
the 14 biological traits (Table II.2). The trait values of the representative species may not 
always correspond to those of the functional groups, since all of a group’s species contributed 
to the definition of the latter. The representative species for now only serve to communicate 
the results of the grouping to experts with knowledge of the system and its species. 

The emergent functional groups demonstrate a variety of combinations with regard to their 
assigned trait values, with a few conspicuous patterns. 4 groups of algae/detritus feeders, 
represented by an ascidian (h1i), a chiton (h1ii), a barnacle (h1iii) and a slipper limpet (h1iv), 
and 2 groups of predators/scavengers, represented by a sea anemone (c3i) and an errant 
polychaete (c3ii), are considered as members of the epifauna of rocky substrates. They are, 
accordingly, all characterized as epibionts, with the exception of group h1iv, whose members 
can also provide substrate for epibiotic organisms through their living or dead shells. 1 group 
of algae/detritus feeders, represented by a hermit crab (h4iii), and 2 groups of 
predators/scavengers, represented by errant polychaetes (c1i, c2ii), prefer gravelly substrates 
and do not play a prominent role in either epibiosis or sediment engineering. 



 

 

Table II.2 Representative species and biological trait values assigned to functional groups of species. For details about the biological traits, see Table II.1. 

Group names denote the hierarchical classification of species in, successively, consumers of algae/detritus (h) or predators/scavengers (c), 7 intermediate 

groups (numerals) and 20 final groups (roman numerals) 

Groups 
Representative 

species 

T1. 

temperature 

T2. 

development 

T3. 

dispersal 

T4. 

fecundity 

T5. 

tide/salinity 

T6. 

substrate 

T7. 

size (cm) 

T8. 

area 

T9. 

position 

T10. 

mobility 

T11. 

growth rate 

T12. 

lifespan (yr) 

T13. 

epibiosis 

T14. 

engineering 

h1i Morchellium argus eurythermal brooded short low stenohaline rock 3.3 0.1 epifauna sessile 2.6 1.7 epibiont neutral 

h1ii Lepidochitona cinerea stenothermal planktonic short high stenohaline rock 10.8 4.1 epifauna mobile 0.9 11.6 epibiont neutral 

h1iii Balanus crenatus eurythermal planktonic long high euryhaline rock 2.0 0.8 epifauna sessile 2.5 2.0 epibiont neutral 

h1iv Crepidula fornicata stenothermal planktonic long high stenohaline rock 7.6 0.0 epifauna sessile 1.9 11.2 basibiont neutral 

h2i Oligochaeta stenothermal laid short low emersed muddy sand 4.5 5.0 infauna mobile 3.4 2.0 neutral destabilizer 

h2ii Thyasira flexuosa eurythermal planktonic short low stenohaline mud 3.6 0.8 infauna mobile 1.0 10.0 neutral stabilizer 

h2iii Melinna palmata stenothermal brooded short low stenohaline mud 7.5 0.3 interface sessile 2.6 3.6 neutral stabilizer 

h2iv Notomastus latericeus stenothermal brooded short low stenohaline muddy sand 6.0 2.9 interface mobile 2.6 1.9 neutral destabilizer 

h3i Hediste diversicolor eurythermal laid short high emersed muddy sand 12.8 0.2 interface mobile 2.1 3.4 neutral destabilizer 

h3ii 
Malacoceros 

fuliginosus 
eurythermal planktonic long high euryhaline mud 8.5 1.9 interface mobile 2.5 2.7 neutral destabilizer 

h4i Galathowenia oculata eurythermal planktonic long high euryhaline mud 11.1 0.0 interface sessile 2.7 4.4 neutral stabilizer 

h4ii Glycymeris glycymeris stenothermal planktonic short high stenohaline muddy gravel 8.0 1.4 infauna mobile 0.8 15.0 neutral stabilizer 

h4iii 
Anapagurus 

hyndmanni 
stenothermal planktonic long high stenohaline gravel 10.0 0.1 epifauna mobile 0.6 10.0 neutral neutral 

h4iv Cerastoderma edule stenothermal planktonic long high emersed muddy sand 8.6 0.5 interface mobile 0.7 8.9 neutral stabilizer 

c1i Sphaerosyllis bulbosa stenothermal brooded short low stenohaline gravel 1.3 0.5 epifauna mobile 4.7 1.9 neutral neutral 

c2i Marphysa bellii stenothermal planktonic short high stenohaline muddy sand 23.3 0.3 interface mobile 1.1 4.7 neutral neutral 

c2ii Nephtys hombergii stenothermal planktonic long high stenohaline gravel 10.5 0.3 interface mobile 2.2 7.3 neutral neutral 

c2iii Myrianida edwardsi stenothermal planktonic long low stenohaline mud 1.4 3.1 interface mobile 5.8 1.9 neutral neutral 

c3i Urticina felina eurythermal planktonic short high euryhaline rock 16.7 10.3 epifauna sessile 1.1 14.0 epibiont neutral 

c3ii Syllis cornuta stenothermal planktonic long low stenohaline rock 7.4 5.2 epifauna mobile 2.3 2.3 epibiont neutral 
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Finally, the majority of functional groups, 9 of them being algae/detritus feeders and 2 
predators/scavengers, prefer muddy or sandy substrates and can be found in the sediment or at 
the water/sediment interface. The values assigned to them for the qualitative traits show a 
wide variety of combinations and they consistently feature the lowest and highest values for 
all quantitative traits. They are represented by oligochaetes (h2i), bivalves (h2ii, h4ii, h4iv) 
and sedentary (h2iii, h2iv, h3ii, h4i) or errant (h3i, c2i, c2iii) polychaetes, and most of them 
play a distinct engineering role, either as sediment stabilizers or sediment destabilizers. 

II.3.2 Evaluating biodiversity representation 

Taxonomic diversity measured at the species level correlates strongly with the same 
measure calculated at the level of functional groups (Fig. II.3a), an indication of acceptable 
levels of information loss with regard to general biodiversity patterns. A few extreme 
deviations from the expected straight line are positioned well below it. Information on 
functional divergence also appears to be preserved through the transition from species to 
functional groups (Fig. II.3b), denoting an adequate description of the system’s functional 
components by this reduced representation. Deviations from the expected straight line are in 
this case positioned on both of its sides, with extreme outliers being mostly positioned above 
it. 

 

Fig. II.3 Comparison of species-based and functional group-based measurements of a) taxonomic 
diversity and b) functional divergence for all assemblages. Both quantities were measured as Rao’s 
quadratic entropy based on taxa abundance, by assuming functional equidistance among taxa in the 
former case, while employing a functional distance matrix in the latter. Pearson’s correlation 
coefficient was calculated as a measure of the linear correlation between measurements made at the 
two levels of organisation 
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II.3.3 Assessing niche attributes preservation 

The functional identity of assemblages appears in general to be conserved through the 
transition from species to functional groups, as community weighted means for most 
biological traits show high levels of agreement or strong correlations, when calculated at the 
two levels of organisation (Table II.3 and Fig. II.4). Among all biological traits, early 
development mode, maximum fecundity (Table II.3), and maximum size (Fig. II.4a) show the 
lowest levels of agreement or correlation. For maximum size, the transition from one level of 
organisation to the other appears also to be biased, since community weighted means 
calculated at the species level tend to be higher than those calculated at the level of functional 
groups. 

 

Fig. II.4 Comparison of species-based and functional group-based calculations of community 
weighted mean trait values for all assemblages. For details about the biological traits (a-d), see Table 
II.1. Pearson’s correlation coefficient was calculated as a measure of the linear correlation between 
calculations made at the two levels of organisation 

II.3.4 Detecting neutral behaviour within groups 

The proportion at which tests of independence between the abundance of a group’s species 
in an assemblage and the respective trait values were rejected, is less than 0.1 for most 
biological traits (Table II.4), supporting the assumption that trait variation within functional 
groups is mostly random and not associated with observed abundance patterns. The two traits 
for which this limit is exceeded (early development mode and adult mobility), show 
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proportions of rejection of the independence tests just over the value of 0.1. The comparison 
of these results with the results of the same independence tests performed at the levels of 2 
feeding and 7 intermediate groups reveals a strong tendency toward a reduced proportion of 
rejection as the resolution of the grouping increases (see Table II.A in the Appendix). 

Table II.3 Proportion of agreement between species-based and functional group-based calculations of 
community weighted mean trait values for all assemblages. For details about the biological traits, see 
Table II.1 

Biological traits Agreement proportion 

T1. low temperature tolerance 0.81 

T2. early development mode 0.61 

T3. larval dispersal distance 0.96 

T4. maximum fecundity 0.62 

T5. tidal emersion/low salinity tolerance 0.72 

T6. preferred substrate type 0.71 

T9. preferred substrate position 0.98 

T10. adult mobility 0.92 

T13. role in epibiosis 1 

T14. role in sediment engineering 0.87 

Table II.4 Proportion of rejection of independence tests between the abundance of a group’s species in 
an assemblage and the respective trait values over all functional groups and assemblages. Hoeffding’s 
test was performed in the case of continuous biological traits (denoted by an asterisk), while Kruskal-
Wallis independence test was performed in all other cases. For details about the biological traits, see 
Table II.1 

Biological traits Test rejection proportion 

T1. low temperature tolerance 0.02 

T2. early development mode 0.11 

T3. larval dispersal distance 0.02 

T4. maximum fecundity 0.08 

T5. tidal emersion/low salinity tolerance 0.08 

T6. preferred substrate type 0.05 

T7. maximum size 0.08 

T8. minimum space requirement* 0 

T9. preferred substrate position 0.01 

T10. adult mobility 0.12 

T11. population growth rate* 0 

T12. maximum lifespan 0.05 

T13. role in epibiosis 0 

T14. role in sediment engineering 0.07 
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II.4 Discussion 

II.4.1 Selecting biological traits 

The combination of biological trait information describing the functional role of 240 
species in their communities with a conventional species abundance data set from the Rance 
estuary in 1995, led to the emergence of 20 groups of benthic macroinvertebrates. Like 
Boulangeat et al. (2012), we selected our set of traits with the goal of representing the role of 
organisms in the following community assembly mechanisms: resistance to perturbation, 
dispersal potential, environmental filtering, competitive effect, response to competition and 
population dynamics. We added the mechanism of biogenic habitat modification, as this is 
expected to be an important factor shaping benthic communities. Unlike the species 
abundance data set, which is spatially and temporally restricted to the system in question, the 
collected information on the functional role of species is highly general and could be readily 
employed for an application of the approach to a system with similar composition. The 
represented community assembly mechanisms would be probably retained during a transfer of 
the approach, but changes in specific biological traits could be well anticipated. 

The transferability of each biological trait is likely to depend on a system’s similarity to 
the Rance estuary in 1995, regarding its abiotic and biotic environment. In lack of significant 
anthropogenic impacts, following a normalization period in the power plant's operation during 
its first five years, we considered exceptionally cold winters as a source of perturbation. 
Disturbances, however, tend to be case-specific and their nature, whether anthropogenic or 
natural, would dictate the identity of the respective traits. For some systems, oxygen could be 
added to the list of limiting resources (Ferguson et al., 2013), which currently consists of only 
food and space. Different resources, such as irradiance or nutrients, would have to be 
considered as limiting for the members of algae-dominated systems (Alexandridis et al., 
2012). A new set of resources would require a re-evaluation of the traits that represent the 
mechanisms of competitive effect and response to competition. Traits that describe 
allelopathic (Woodin et al., 1993) or symbiotic relationships (Reiss et al., 2003) should also 
be included, if these are mechanisms with an important role in the system. 

We expect the selected mechanisms to largely control processes of community assembly 
but we cannot be certain that the role of each species is defined in its entirety by the selected 
biological traits. The use of two traits for the description of the species' role in each 
mechanism is expected to mitigate the effect of this uncertainty. The lack of cross-validation 
that it entails, precludes a full examination of the methodology’s robustness, which could, 
however, be explored through various re-sampling techniques. The process of testing the main 
assumptions of the EGH provides the ultimate validation of the ecological relevance of each 
biological trait. The replacement or more realistic depiction of the biological traits for which 
the aggregation of the system results in departures from theoretical assumptions will 
eventually lead to the most accurate representation of the selected mechanisms. This process 
is for now limited to the Rance estuary as it was observed in 1995 and it will have to be 
repeated for the ecological aggregation of any different system. After the approach has been 
applied to a sufficient number of systems and once persistent patterns in the traits of the 
emergent groups have been investigated, we will be able to define more general biological 
traits and groups of benthic macroinvertebrates. 

We used 14 biological traits for our functional grouping: 4 binary, 6 nominal, 2 ordinal 
and 2 continuous. We applied the classification procedure separately for the two feeding 
groups, similar to the separation of plants into 3 life form groups that Boulangeat et al. (2012) 
imposed, before building their own functional groups. The resolution of our traits is indicative 
of the uncertainty encountered during the collection of information, with binary traits showing 
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the highest level of uncertainty and ordinal the lowest. Continuous traits are an exception, 
because almost all of the species biomass data from which they were derived were calculated 
from length-weight relationships of questionable generality (Robinson et al., 2010). Trait 
information of better quality would increase their resolution and the grouping’s accuracy, 
keep us from resorting to higher taxonomic levels to attribute trait values to species and allow 
us to use species biomass instead of their abundance for the assignment of trait values to the 
groups. The latter was dismissed at this point, because the abundance data set was considered 
much more reliable. Its detriment is expected to be largely alleviated by the reduced within-
group biomass variation. In what would be a major improvement to the approach, information 
uncertainty could be addressed through the use of fuzzy coding (Chevenet et al., 1994), which 
can also account for spatial and temporal intra-specific trait variability (Cardeccia et al., 
2016). 

II.4.2 Building functional groups 

The EGH is based on the assumption of random dynamics within each group (Hérault, 
2007). The resulting ecological aggregation reduces the system by specifically subtracting an 
important component of what is most of the times uniformly considered as stochastic. The 
assignment of trait values to the emergent groups allows a functional representation of the 
system and an examination of the role of trait-based interactions in the regulation of system 
dynamics. Trophic interactions are central to the emergence of these dynamics and, besides 
the distinction between algae/detritus feeders and predators/scavengers, we expect the relative 
size of organisms to play an important role in their definition (Brose et al., 2006). The position 
of organisms and the mobility of their adults should dictate the partitioning of resources 
through a different use of space (Herman et al., 1999). Well-established ecological theory can 
help us define competitive interactions among functional groups, based on trade-offs in the 
consumption of multiple resources and in their allocation strategies (Tilman, 1990). The 
occurrence of exceptionally cold winters would lead to distinct response patterns, based on the 
low temperature tolerance of each group (Beukema et al., 2000). The representative species 
that were assigned to the emergent groups could play a complementary role, by allowing 
modifications of these interactions on the basis of expert knowledge that is often hard to 
express in terms of biological traits and ecological theories. 

A simple review of the trait values of the emergent functional groups indicates a clear 
distinction among benthic macroinvertebrate organisms. On the one hand, groups that prefer 
rocky substrates along with those that prefer gravelly ones can be considered as representative 
of organisms that belong to the epifauna and depend on the existence of hard structure on the 
sediment surface. Since hard structure of abiotic origin is very restricted in the Rance estuary, 
the occurrence of these groups should, to a large extent, be linked to basibiotic organisms, 
whose living or dead shells provide them with their preferred substrate. On the other hand, 
groups that prefer muddy or sandy substrates represent organisms that are buried deep in the 
sediment or at the water/sediment interface. The larger number of algae/detritus feeding 
groups that can be found in this category compared to the previous one may be associated 
with the higher occurrence of their preferred habitat near and within the Rance estuary. 
Epifaunal organisms are contrarily represented by more groups of predators/scavengers, 
possibly due to the higher structural complexity of their habitat, which in turn allows a larger 
diversification of predatory strategies. 

II.4.3 Evaluating biodiversity representation 

The loss of biodiversity information that the transition from species to functional groups 
entails, appears to be acceptable at both the taxonomic and functional level. In the case of 
taxonomic diversity, there is a clear pattern of departures from the expected straight line that 
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are positioned below it, in agreement with the expected direction of information loss. Points 
that are positioned well below this line represent assemblages that consist of the most species 
rich groups, hence the sharp drop in taxonomic diversity when moving from species to 
functional groups. In the case of functional divergence, deviations can be observed on both 
sides of the expected straight line. This pattern is caused by the unavoidable misrepresentation 
of some species by their functional groups with regard to specific biological traits, which 
results in functional divergence shifting in either direction. The fact that extreme outliers are 
mostly positioned above this line is a direct result of the process of functional grouping. 
Functional divergence is an indicator of niche differentiation (Mason et al., 2005), which is 
expected to be maximized by a process that reduces the number of components based on their 
niche differences (Pavoine et al., 2005). 

II.4.4 Assessing niche attributes preservation 

The functional characteristics of the community, as these can be observed at the species 
level, appear to be preserved in the representation of the system by functional groups. The 
clear tendency of community weighted mean values of maximum size to be lower at the level 
of functional groups than at the level of species is due to the strong negative association of 
this trait with species abundance and the utilization of the latter for the assignment of trait 
values to the groups. The low levels of agreement between community weighted mean values 
of early development mode and maximum fecundity calculated at the level of species and 
functional groups show that these two biological traits are the ones for which species are the 
most misrepresented by their assigned groups. The fact that both traits address aspects of 
reproductive strategy could be a reflection of our low level of understanding with regard to the 
reproduction of most benthic macroinvertebrates (Tyler et al., 2012). Since these traits belong 
to two different community assembly mechanisms, they should be considered along with their 
partner traits for the representation of resistance to perturbation and dispersal potential, 
respectively. 

II.4.5 Detecting neutral behaviour within groups 

In addition to the tests originally performed by Boulangeat et al. (2012), we also 
investigated the second main assumption of the EGH, concerning the neutral behaviour of 
species within each group. This was done by following one of the three approaches 
recommended by Hérault (2007) for the validation of his hypothesis. The fact that within 
group abundance patterns tend to become independent of trait variation as the resolution of 
the grouping increases, is consistent with the assumption for a transition from trait-controlled 
to neutral abundance variation during the emergence of the groups. Early development mode 
is again one of the biological traits for which theoretical assumptions are the least supported 
by the results, calling for a better description of reproductive strategies. Species are also 
occasionally misrepresented by their functional groups with regard to the trait of adult 
mobility. These deviations are still only observed at an acceptably low rate. More frequent 
deviations could be addressed by the application of weighting during the classification 
procedure, aimed at increasing the contribution of the biological traits for which the grouping 
appears to be the most problematic. 

II.5 Conclusions 

The main contribution of the EGH (Hérault, 2007) and the framework developed by 
Boulangeat et al. (2012) to the study of functional redundancy and the aggregation of 
biological communities lies in the mechanistic nature of their approach. Although statistical 
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tools are indispensable to its implementation, they are used in support of decisions made on 
purely mechanistic grounds. Most notably, the acceptable level of ecological aggregation, 
which is a direct reflection of functional redundancy, is defined as the minimum number of 
groups for which the assumptions of the EGH are supported by observations. The crucial 
process of selecting biological traits is constrained by the requirement to produce the best 
possible representation of a list of general community assembly mechanisms. It therefore 
addresses the persisting issue of subjectivity in the assessment of functional redundancy (Jax, 
2005). The empirical testing of the grouping against theoretical assumptions, which lies at the 
heart of the approach, provides a framework for the critical synthesis of mechanisms that 
ecological theory considers as the drivers of community dynamics. 

The approach focuses on the assembly of biological communities, as the driver of benthic 
biodiversity. This is, however, only one of the ways in which ecosystem properties are 
influenced by benthic organisms. Processes associated with energy and elemental cycling, 
habitat/refugia provision and modification of physical properties are among the most widely 
recognised aspects of ecosystem functioning (Frid et al., 2008). Although the approach was 
not designed to address these issues, links with them can be drawn at any stage, either during 
the construction of functional groups or during the development and analysis of models. Most 
of the traits that we assumed to directly represent community assembly mechanisms (with the 
exception of resistance to perturbation and environmental filtering) are commonly used in 
biological traits analyses as indirect indicators of the previously mentioned ecosystem 
functions (Bremner et al., 2006a). Observed trait associations and ecological theory could 
facilitate the collection of information that this approach lacks. 

The consideration of our list of general community assembly mechanisms in conjunction 
with the attributes of the functional groups allowed a mechanistic interpretation of a few 
broad patterns of biodiversity. Our next goal is to employ ecological theory and observed trait 
associations, in order to inform the definition of rules of interaction among functional groups 
or between them and the environment. Similar efforts in the terrestrial environment have led 
to the development of dynamic and spatially explicit trait-based models of plant (Boulangeat 
et al., 2014) and animal communities (Scherer et al., 2015). By reproducing the assembly 
mechanisms of the respective systems, these studies were able to predict biodiversity 
responses to projected climatic and land use change. Our first objective is to answer questions 
regarding the stability of the system and its potential response to perturbations. Ultimately, we 
hope to create modelling tools reproducing the emergence of biodiversity patterns under 
different scenarios of environmental change. By explicitly reproducing the mechanisms that 
are responsible for these patterns, we expect to shed some light on their role in shaping 
communities of benthic macroinvertebrates. 
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II.7 Appendix 

Table II.A Proportion of rejection of independence tests between the abundance of a group's species in an assemblage and the respective trait values over all 

functional groups and assemblages. The tests were first performed at the level of 2 feeding groups, then at the level of 7 intermediate groups and finally at the 

level of 20 final groups. Hoeffding's test was performed in the case of continuous biological traits (denoted by an asterisk), while Kruskal-Wallis 

independence test was performed in all other cases. For details about the biological traits, see Table II.1 

Biological traits 
Test rejection proportion 

within herbivores/carnivores within 7 intermediate groups within 20 final groups 

T1. low temperature tolerance 0.02 0.02 0.02 

T2. early development mode 0.25 0.15 0.11 

T3. larval dispersal distance 0.04 0.01 0.02 

T4. maximum fecundity 0.05 0.11 0.08 

T5. tidal emersion/low salinity tolerance 0.39 0.17 0.08 

T6. preferred substrate type 0.32 0.11 0.05 

T7. maximum size 0.11 0.12 0.08 

T8. minimum space requirement* 0.01 0 0 

T9. preferred substrate position 0.10 0.05 0.01 

T10. adult mobility 0.15 0.15 0.12 

T11. population growth rate* 0.01 0 0 

T12. maximum lifespan 0.16 0.10 0.05 

T13. role in epibiosis 0.02 0.02 0 

T14. role in sediment engineering 0.23 0.20 0.07 
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Abstract 

In order to better understand and predict the dynamics of benthic macroinvertebrate 

communities, we need to first define the functional components of benthic biodiversity and 

then provide a mechanistic description of how they interact with their abiotic environment, 

their basic resources and each other. These interactions are expected to be largely controlled 

by readily available biological traits, thus making trait-based modeling an ideal framework for 

the synthesis of relevant hypotheses from ecological theory and expert knowledge. Here, we 

employ a set of theories that predict the existence of functional trade-offs, operating at both 

large and small spatial scales. The former represent processes of environmental filtering, 

while the latter involve life history trade-offs that are associated with biogenic habitat 

modification and differential efficiencies of resource utilization or patterns of resource 

allocation. Observed trait associations in the Rance estuary (Brittany, France) appear to agree 

with these predictions, in support of the potential of the respective processes to shape benthic 

communities. In a first inception of the system, elements of the aforementioned theories 

together with expert knowledge are incorporated in the form of general rules of interaction 

into qualitative models of a set of benthic functional groups. The general stability of these 

models illustrates their potential to persist in time and to constitute a plausible representation 

of the natural world. Their structure could offer clues to the direction that the system might 

take in response to perturbations and inform the development of quantitative models 
reproducing the spatial and temporal dynamics of benthic biodiversity in the Rance estuary. 

III.1 Introduction 

Reliable prediction of biodiversity responses to environmental change remains a key 

challenge of ecological research (Sutherland et al., 2013). Because it involves combinations of 

species and environmental gradients that have not been observed yet, it requires a mechanistic 

understanding of the processes that shape biological communities (Kearney and Porter, 2009). 

Ecological theory has generated many hypotheses about the maintenance of species diversity 

(Chesson, 2000). However, empirical investigation of these hypotheses has been mostly 

performed by studies of relatively small spatial and temporal scales (Cardinale et al., 2012). 

This has limited the potential of their findings to be extrapolated to larger scales and has 
added uncertainty to projected trends of biodiversity (Pereira et al., 2010). 

In ecological systems where observation and experimentation fall short of fully revealing 

the drivers of biodiversity, the analysis of mechanistic models has been suggested as an 

alternative way of identifying the most likely community assembly mechanisms 
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(Amarasekare, 2003). Since the role of organisms in the functioning of their ecosystems is 

defined by their traits, the development of trait-based modeling approaches has been 

suggested as a fruitful avenue for models of ecological systems (Ings et al., 2009). Limited 

understanding of specific mechanisms should not exclude them from the modeling procedure 

(Queirós et al., 2015). Instead, awareness about the assumptions that are made at each step 

should allow models to test alternative hypotheses, elucidate domains of uncertainty and 

identify critical areas for research. 

The development of mechanistic models of benthic biodiversity can be considered to be 

subject to two principal conditions. First, the functional components of biodiversity need to be 

defined through rigorous and testable procedures (Petchey and Gaston, 2006). Next, a 

mechanistic description of the way these components interact with their environment and 

among themselves is necessary. While there is much information on species traits and general 

theories on how they should be associated, particularly lacking is a systematic procedure of 

attributing functional groupings and inter- or intra-group relationships to communities of 
benthic macroinvertebrates. 

Recent work in the terrestrial environment has led to the development of a framework for 

the construction of functional groups for dynamic models of plant biodiversity (Boulangeat et 

al., 2012). The conceptual and methodological framework was provided by the emergent 

group hypothesis, which assumes functional equivalence within and functional divergence 

among emergent groups of species (Hérault, 2007). The adaptation of this framework to the 

case of marine benthic macroinvertebrates satisfies the first condition for the development of 

mechanistic models of benthic biodiversity (Alexandridis et al., 2017). Here we implement the 

generated functional groups in a demonstration of a systematic procedure for the attribution of 

functional relationships between them. As a first inception of the system, we limit ourselves to 

describing only the qualitative nature of these relationships. 

We chose the Rance estuary (Brittany, France) for our study of benthic 

macroinvertebrates, due to the unique circumstances associated with the construction of a tidal 

power plant at its mouth between 1963 and 1966. The system was fundamentally altered 

during this period, after which it was allowed to gradually return to a more natural state. We 

have a good understanding of specific processes involved in this transition and of present-day 

aspects of the system's functioning. Still, our predictive ability is very restricted. Extensive 

investigation of the site has been conducted on three occasions over the last decades (Kirby 

and Retière, 2009). The most recent one dates back to 1995 and shows high levels of α- 

(local) and β-diversity (regional) (Desroy, 1998). This pattern is indicative of the existence of 

functional trade-offs among the species of the system that operate at both small and large 

spatial scales (Kneitel and Chase, 2004). 

Environmental filtering has been recognized as an important community assembly 

mechanism in the Rance estuary (Desroy, 1998). In principle, it can be manifested in the form 

of associations between species traits and environmental conditions. It represents large-scale 

trade-offs that allow species to coexist regionally, as a result of habitat partitioning (Chase and 

Leibold, 2003), or locally, as a result of source-sink dynamics (Mouquet et al., 2003). Local 

coexistence is, however, most often associated with life history trade-offs that operate at small 

spatial scales (Amarasekare, 2003). One set of heuristically valuable, albeit insufficiently 

tested (Miller et al., 2005), trade-off-related hypotheses, is associated with differential 

efficiencies of resource utilization and patterns of resource allocation (Tilman, 1990). In the 

particular case of soft bottom systems, the mobility-mode hypothesis describes trade-offs that 

are expected to play an important role in the assembly of benthic communities (Posey, 1987). 

The objective of our study is to combine hypotheses from ecological theory and expert 

knowledge into a mechanistic representation of benthic macroinvertebrate communities in the 
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Rance estuary. In a first step, we examined whether the principles that will form the basis for 

this representation are supported by observed trait associations. We started by identifying the 

biological traits that describe the functional role of the system's species (Fig. III.1a). We then 

investigated the spatial distribution of species traits and environmental variables in 1995, 

looking for associations between biological traits and abiotic conditions that are indicative of 

environmental filtering (Fig. III.1b). The existence of life history trade-offs was assessed next. 

Each of the trade-off related hypotheses makes explicit predictions about the species’ role in 

the respective community assembly mechanisms. We proceeded with the investigation of our 

set of species traits, seeking trait associations that are indicative of these roles (Fig. III.1c). 

The second step aimed at the representation of benthic macroinvertebrate communities by 

signed-directed graph (or signed digraph) models (Fig. III.1d). The previously defined groups 

of species represented the functional components of the system and were assigned to sub-

systems based on rules of environmental filtering. In each of these sub-systems, groups were 

linked by rules of interaction derived from ecological theory and expert knowledge. The entire 

procedure was driven by each group's assigned trait values and representative species. The 

feedback analysis of the signed digraph models demonstrated the potential of the respective 

systems to persist in time and, therefore, to 

constitute a plausible representation of the natural 

world. It also gave some information on the 

direction of the system’s response to perturbations 

(Fig. III.1e). Our work serves as a first step toward 

quantitative mechanistic models of benthic 

biodiversity that are able to reproduce its spatial 

and temporal dynamics in the Rance estuary. 

Fig. III.1 Schematic representation of the five steps 

that comprise the methodology for the mechanistic 

representation of marine benthos. a) Seven important 

community assembly mechanisms were selected, each 

represented by two biological traits that describe the 

functional role of macroinvertebrate species. For 

details about the traits, see Table III.1. b) RLQ analysis 

employed a table of environmental variables (R) and a 

table of species traits (Q), with a link expressed by a 

table of species abundances (L), in order to reveal 

environment–traits associations that support rules of 

environmental filtering (dashed lines). c) Hill and 

Smith analysis produced an orthogonal transformation 

of the table of species traits, in order to reveal 

biological traits associations that support rules of life 

history trade-offs (dotted lines). d) The tables of 

species traits (Q) and abundances (L) were previously 

combined to build functional groups of species (solid 

lines). These groups were combined with a set of 

general rules of interaction for the drawing of signed 

digraphs, representing functional relationships among 

benthic organisms. e) The stability analysis of the 

digraphs illustrated their potential to persist in time 

and, thus, represent systems that can be found in 

nature. Further feedback analysis provided insights 

into the direction in which some of the system’s 

components would respond as a result of perturbations 
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III.2 Methods 

III.2.1 Study site 

The Rance estuary (Brittany, France), in the southern part of the English Channel, is 

characterised by the presence of a tidal power plant situated at its mouth (Fig. III.2). The 

operating constraints of the installation have reduced the tidal range in the estuary compared 

to the open sea. The intertidal zone has shifted from 70% of the total surface of the estuary 

before the construction of the power plant, to 50% after. Maximum water depth is 17 m at low 

tide, but the main part of the basin is 5-6 m deep. The sluice and turbine currents from the 

power plant have eroded parts of the riverbed. Sandbanks closest to the dam have shifted and 

the bed is more or less covered with gravel or pebbles (Retière, 1994). At the same time, long 

periods of slack water have promoted the deposition of fine particles in coves and bays 

(Bonnot-Courtois and Lafond, 1991). From downstream to upstream of the estuary, pebbles 

and coarse sands are replaced by medium and fine sands, muddy sands and finally muds, 

upstream, beyond Port-St-Hubert. A similar sequence is observable from the central channel 
to the banks. 

III.2.2 Data collection 

A grid of 113 stations was sampled in April 1995, prior to the spring recruitment (Fig. 

III.2). Sediment samples were washed through a 1 mm sieve and macroinvertebrates retained 

on the mesh were determined at species level, when possible, and counted. A total of 240 

species or higher taxonomic groups belonging to 9 phyla were thus identified (Desroy, 1998). 

Each station sampled in 1995 was associated with a particular sediment type (pure mud, mud, 

silty mud, sandy mud, muddy sand, fine/intermediate sand, intermediate/coarse sand, coarse 

sand, gravel), based on a sedimentary map established in 1994 (Bonnot-Courtois, 1997). The 

depth (or elevation) of each station was measured at low tide during the collection of samples. 

Each station was assigned a salinity regime, depending on which of three sectors of the Rance 

estuary it was situated in. The innermost part of the estuary, up to Pleudihen-sur-Rance, was 

subject to high salinity variation, ranging from 0.5 to 30. Beyond this point, downstream to 

Port-St-Hubert, salinity values ranged between 18 and 30. The rest of the estuary experienced 

more or less constant salinity levels, over the value of 30, similar to those of the open sea 
(Desroy, 1998). 

III.2.3 Biological traits 

The selection of biological traits was made with the goal of identifying characteristics that 

describe the functional role of the average individual of each species in the most important 

community assembly mechanisms. The list of mechanisms was mostly adopted from the 

framework developed by Boulangeat et al. (2012) for the construction of functional groups of 

terrestrial vegetation. A few adjustments were made to the original framework, in order to 
adapt it to the special attributes of estuarine benthic systems (Alexandridis et al., 2017). 

Since resource competition is included in these mechanisms, we identified food and space 

as the basic resources for which benthic organisms compete. Space was assumed to be two-

dimensional, while food was defined with the goal of dividing species into groups with a 

homogeneous resource base. The wide-spread adoption of facultative feeding modes among 

benthic macroinvertebrates only allowed for a distinction between species that feed on algae 

and detritus on the one hand and those characterized as predators and scavengers on the other. 

The remaining 14 traits were divided into 7 categories, each representative of one 

community assembly mechanism: (1) resistance to perturbation, (2) dispersal potential, (3) 

environmental filtering, (4) competitive effect, (5) response to competition, (6) population 
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dynamics and (7) biogenic habitat modification. Details about the selected biological traits 
and the assignment of trait values to the species can be found in Table III.1. 

The vast majority of the biological traits information was provided by the following online 

databases: eol.org, genustraithandbook.org.uk, marinespecies.org, marlin.ac.uk and species-

identification.org. The remainder was acquired from expert knowledge. The quality of the 

available information for all species and biological traits dictated the resolution of the values 

that were assigned to them. Lack of information at the species level often obliged us to 

employ data from higher taxa. The assignment of trait values to the species was done 

independently for each biological trait. Since, however, we often resorted to higher taxonomic 

levels, some phylogenetic autocorrelation in trait values among species was unavoidably 
introduced (for details, see Table B.1 in Annex B). 

 

Fig. III.2 Map of the study site. The Rance estuary is situated on the northern coast of Brittany, 

France. Crosses indicate the location of the 113 stations that were sampled in the spring of 1995. The 

tidal power plant is located at the mouth of the estuary, south of the city of St-Malo 
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Table III.1 List of community assembly mechanisms, biological traits that represent the species’ role 

in them, trait values and comments about their assignment to species 

Mechanisms Biological traits Trait values Comments 

Resistance to 
perturbation 

T1. low 

temperature 
tolerance 

eurythermal/stenothermal 

Species that can tolerate continued exposure to single-digit 

temperatures (eurythermal) were distinguished from those that 
cannot (stenothermal) 

T2. early 

development 
mode 

planktonic/laid/brooded 

Trait values should define a gradient of increasing ability to 

cope with perturbations during the early life stages, due to 
increasing investment in early offspring survival 

Dispersal 

potential 

T3. larval 

dispersal 
distance 

short/long 

Species were separated in two groups based on their 

maximum observed dispersal distance, with a distance of 10 
km used as the breaking point 

T4. maximum 

fecundity 
low/high 

Species were separated in two groups, with the number of 

1000 eggs produced by a female of each species per year used 

as the breaking point 

Environmental 

filtering 

T5. tidal 

emersion/low 
salinity tolerance 

emersed/euryhaline/stenohaline 

Soft bottom species that can tolerate long tidal exposure 

should be able to tolerate low salinity (emersed). Immersed 

species either can tolerate salinities that differ greatly from 
those of the open sea (euryhaline) or cannot (stenohaline) 

T6. preferred 
substrate type 

mud/muddy sand/sand/muddy 
gravel/gravel/rock 

The assignment of one value to each species represented its 
greatest substrate affinity, but was often too restrictive 

Competitive 
effect 

T7. maximum 

size 
1 cm/2 cm/10 cm/20 cm/40 cm 

Trait values should define a gradient of increasing area that 

can be searched for food or distance from the substrate, which 
enhances food availability (McLean and Lasker, 2013) 

T8. minimum 

space 

requirement 

0.003/0.1/49.5 

(min./median/max.) 

Values do not represent absolute, 
but relative levels 

Species with the lowest trait value should compete best for 

space (Tilman, 1980). Trait values were derived from data on 

body mass (Robinson et al., 2010) and use of an exponent of 
¾ from the metabolic theory of ecology (Jetz et al., 2004) 

Response to 

competition 

T9. preferred 

substrate 

position 

infauna/interface/epifauna 

Living deep in the sediment (infauna), at its upper layer 

(interface) or on its surface (epifauna) should allow species 

co-existence in spite of established competitive hierarchies 

T10. adult 

mobility 
mobile/sessile 

Differences in the ability of species to move should lead to 

resource partitioning and avoidance of competition 

Population 

dynamics 

T11. population 

growth rate 

0.27/2.14/6.95 

(min./median/max.) 

Values do not represent absolute, 

but relative levels 

Trait values were derived from data on body mass (Robinson 

et al., 2010) and use of an exponent of -¼ from the metabolic 
theory of ecology (Savage et al., 2004) 

T12. maximum 

lifespan 
1 yr/2 yr/10 yr/20 yr 

Different trait values should reflect differentiations in species 

population dynamics 

Biogenic habitat 
modification 

T13. role in 

epibiosis 
basibiont/epibiont/neutral 

Species that can grow on other organisms (epibiont) were 

distinguished from those that also provide biotic substrate 
(basibiont). Neutral species do not participate in epibiosis 

T14. role in 

sediment 

engineering 

stabilizer/destabilizer/neutral 

Sediment destabilizing species should inhibit sessile, tube 

building species (stabilizers) and vice versa (Posey, 1987). 

Neutral species do not participate in sediment engineering 
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III.2.4 Environmental filtering 

We expect the trait of tolerance to tidal emersion and low salinity levels (T5) along with 

that of preferred substrate type (T6) to adequately represent the most important environmental 

limitations that are faced by the species of the system (Desroy, 1998). If this is indeed the 

case, biological traits that describe species preference for abiotic conditions should show high 

degrees of covariation with the respective environmental variables. Other biological traits that 

might correlate with the traits in question are also expected to show similar patterns of 

covariation. 

RLQ analysis is a statistical technique that can relate the biological traits of organisms to 

the characteristics of the environment in which they live (Dolédec et al., 1996). L refers to a 

table of species abundance at a number of sites and it describes, among other things, the actual 

habitat utilization of different species. R refers to a table of environmental variables measured 

at the same sites as species abundance. Q refers to a table of biological traits for all the species 

that can be found in table L. RLQ analysis starts with the separate ordination of table L. It 

then uses the resulting sites and species weights in the separate ordinations of tables R and Q, 

respectively. This is made possible by the fact that the rows of L correspond to the rows of R 

and the columns of L correspond to the rows of Q. The end result is an ordination of the 
common structure of tables R and Q with a link expressed by table L. 

Since environmental variables and biological traits include both qualitative and 

quantitative information, we opted for Hill and Smith analysis (Hill and Smith, 1976) for the 

separate ordinations of the 113 sites × 3 environmental variables (R) and the 240 species × 14 

biological traits (Q) tables. Correspondence analysis (Legendre and Legendre, 1998) was 

performed for the separate ordination of the 113 sites × 240 species abundance table (L). The 

application of correspondence analysis allows RLQ analysis to maximize the covariance 

between linear combinations of environmental variables and biological traits (Dolédec et al., 

1996). This maximized covariance, projected on orthogonal axes of decreasing contribution to 
the total value, is called co-inertia. 

The comparison of this eigenvalues decomposition (RLQ) with the eigenvalues 

decomposition from the separate ordinations of the environmental variables (R) and biological 

traits (Q) tables can show what part of the variance of the original data sets is represented in 

their common structure. The optimal correlation between sites and species scores from the 

separate ordination of the species abundance table (L) can be compared with the equivalent 

correlation from the RLQ analysis, in order to illustrate how well the original species 

abundance patterns are represented by the associations between environmental variables and 

biological traits. These associations can be best demonstrated by projecting environmental 

variables and biological traits side-by-side on the same dimensions of the common co-inertia 

space. 

III.2.5 Life history trade-offs 

Our set of biological traits allows the representation of life history trade-offs through 

specific combinations of trait values. In the case of a trade-off among benthic 

macroinvertebrates in their utilization efficiency for the two basic resources (food and space) 

(Tilman, 1980), we would expect trait values that confer a competitive advantage for each 

resource (greater size (T7) and lower minimum space requirement (T8)) to be negatively 

associated. A trade-off in the allocation of resources toward early survival versus colonization 

potential (Tilman, 1990) would result in the survival-enhancing brooded early development 

mode (T2) being negatively associated with both dispersal distance (T3) and maximum 

fecundity (T4). Finally, the stabilizers of the mobility-mode hypothesis (Posey, 1987) are 

expected to bind fine particles, thus leading to the creation of muddy sediments, while 
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destabilizers are expected to disrupt the substrate, resulting in more heterogeneous sediment 

types. Since each group is assumed to create sediment conditions that are favorable to its own 

members and detrimental to those of the opposite group, sediment preferences (T6) among 
stabilizers and destabilizers should follow their respective effects on the substrate (T14). 

Because trait values were assigned to species independently for each biological trait, we 

can assess the ecological pertinence of each hypothesis, by inspecting the biological traits data 

set, looking for the respective trait associations. Hill and Smith analysis is a multivariate 

statistical procedure that allows the transformation of the 240 species × 14 biological traits 

table into a set of orthogonal variables that contain decreasing portions of the table’s total 

variance (Hill and Smith, 1976). Depending on the amount of variance that each of these 

variables represents, as indicated by the eigenvalues decomposition that forms the basis of the 

analysis, the projection of the initial variables on the first few axes of the transformed 

multivariate space can provide insights into the most important associations among biological 

traits. 

III.2.6 Signed digraphs 

For the representation of benthic macroinvertebrate communities and their assembly 

mechanisms, we shifted our focus away from species, toward 20 previously built functional 

groups (Alexandridis et al., 2017). These groups of species have been assigned with trait 

values and representative species (Table III.2) and have been found to adequately represent 

biodiversity in the Rance estuary. Our goal was to incorporate them, along with general rules, 

into a mechanistic representation of the system. The general rules represented processes of 

environmental filtering, food consumption, use of space, resource competition and 

partitioning, reproduction and dispersal, epibiosis, sediment engineering and self-inhibition. 

We represented the structure of the system through signed digraphs, in which the 

functional groups and their basic resources were depicted as nodes and the signs of the direct 

effects among them were represented by directed links between the nodes. A link ending in an 

arrow signified a positive direct effect, such as births produced by consumption of prey, 

whereas a link ending in a filled circle signified a negative one, such as deaths from predation. 

A self-effect, as in self-thinning, was depicted as a link that starts and ends at the same node. 

Links were drawn based on the aforementioned general rules and the expected role of each 

functional group in the respective community assembly mechanisms. This role was defined by 

the group's assigned trait values and representative species. 

III.2.7 Stability analysis 

We assessed the potential for stability of the generated models as an indication of the 

likelihood of the respective systems to exist in nature. To this end, we followed the approach 

of Dambacher et al. (2003), who derived two criteria for system stability, classified 

conditionally stable models accordingly and developed metrics of stability for each model 

class. Their work was based on the concept of system feedback, which can be defined at 

different levels of a system, depending on the number of interactions that form a feedback 

cycle (i.e. feedback cycles at level 1 are self effects, at level 2 they result from pair-wise 

interactions such as predator–prey, with the highest level of feedback involving n number of 

links for a model with n variables). In general terms, negative feedback cycles provide 

stability and positive feedback cycles act to destabilize a system (Puccia and Levins, 1985). 

The stability of class I models is jeopardized by positive feedback dominating feedback at the 

highest level of the system. Instability in class II models is characterized by 

overcompensation, which leads to oscillations, due to feedback at higher levels in the system 

overwhelming feedback at lower levels. 



 

 

Table III.2 Functional groups of species with their assigned representative species and biological trait values (Alexandridis et al., 2017). For details about the 

biological traits, see Table III.1. Group names starting with ‘H’ correspond to groups of algae/detritus feeders and those starting with ‘C’ correspond to groups 

of predators/scavengers 

Groups 
Representative 

species 

T1. 

temperature 

T2. 

development 

T3. 

dispersal 

T4. 

fecundity 

T5. 

tide/salinity 

T6. 

substrate 

T7. 

size (cm) 

T8. 

area 

T9. 

position 

T10. 

mobility 

T11. 

growth rate 

T12. 

lifespan (yr) 

T13. 

epibiosis 

T14. 

engineering 

H1 Morchellium argus eurythermal brooded short low stenohaline rock 3.3 0.1 epifauna sessile 2.6 1.7 epibiont neutral 

H2 Lepidochitona cinerea stenothermal planktonic short high stenohaline rock 10.8 4.1 epifauna mobile 0.9 11.6 epibiont neutral 

H3 Balanus crenatus eurythermal planktonic long high euryhaline rock 2.0 0.8 epifauna sessile 2.5 2.0 epibiont neutral 

H4 Crepidula fornicata stenothermal planktonic long high stenohaline rock 7.6 0.0 epifauna sessile 1.9 11.2 basibiont neutral 

H5 Oligochaeta stenothermal laid short low emersed muddy sand 4.5 5.0 infauna mobile 3.4 2.0 neutral destabilizer 

H6 Thyasira flexuosa eurythermal planktonic short low stenohaline mud 3.6 0.8 infauna mobile 1.0 10.0 neutral stabilizer 

H7 Melinna palmata stenothermal brooded short low stenohaline mud 7.5 0.3 interface sessile 2.6 3.6 neutral stabilizer 

H8 Notomastus latericeus stenothermal brooded short low stenohaline muddy sand 6.0 2.9 interface mobile 2.6 1.9 neutral destabilizer 

H9 Hediste diversicolor eurythermal laid short high emersed muddy sand 12.8 0.2 interface mobile 2.1 3.4 neutral destabilizer 

H10 
Malacoceros 

fuliginosus 
eurythermal planktonic long high euryhaline mud 8.5 1.9 interface mobile 2.5 2.7 neutral destabilizer 

H11 Galathowenia oculata eurythermal planktonic long high euryhaline mud 11.1 0.0 interface sessile 2.7 4.4 neutral stabilizer 

H12 Glycymeris glycymeris stenothermal planktonic short high stenohaline muddy gravel 8.0 1.4 infauna mobile 0.8 15.0 neutral stabilizer 

H13 
Anapagurus 

hyndmanni 
stenothermal planktonic long high stenohaline gravel 10.0 0.1 epifauna mobile 0.6 10.0 neutral neutral 

H14 Cerastoderma edule stenothermal planktonic long high emersed muddy sand 8.6 0.5 interface mobile 0.7 8.9 neutral stabilizer 

C1 Sphaerosyllis bulbosa stenothermal brooded short low stenohaline gravel 1.3 0.5 epifauna mobile 4.7 1.9 neutral neutral 

C2 Marphysa bellii stenothermal planktonic short high stenohaline muddy sand 23.3 0.3 interface mobile 1.1 4.7 neutral neutral 

C3 Nephtys hombergii stenothermal planktonic long high stenohaline gravel 10.5 0.3 interface mobile 2.2 7.3 neutral neutral 

C4 Myrianida edwardsi stenothermal planktonic long low stenohaline mud 1.4 3.1 interface mobile 5.8 1.9 neutral neutral 

C5 Urticina felina eurythermal planktonic short high euryhaline rock 16.7 10.3 epifauna sessile 1.1 14.0 epibiont neutral 

C6 Syllis cornuta stenothermal planktonic long low stenohaline rock 7.4 5.2 epifauna mobile 2.3 2.3 epibiont neutral 
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The classification of the models and the calculation of the stability metrics were based on 
qualitatively specified community matrices, which are equivalent to the signed digraphs as a 
representation of the model system. The potential for stability of class I models is determined 
by the maximum weighted feedback, which is calculated by counting all feedback cycles 
(both positive and negative) at the highest level of the system and computing the ratio of their 
net to absolute sums. Stability of class II models is analyzed by assessing the relative balance 
of system feedback at higher versus lower levels. With the help of tools specifically designed 
for the analysis of qualitatively specified community matrices (Dambacher et al., 2002), we 
assigned our models to one of the two classes. Based on this classification, we calculated the 
metric that quantifies each model's potential for stability. 

All analyses of environmental filtering and life history trade-offs were performed using 
the statistical software R version 3.2.2 (R Core Team, 2015) with the package ade4 (Dray and 
Dufour, 2007). Signed digraphs were drawn and from them qualitatively specified community 
matrices were derived using the digraph editor software PowerPlay version 2.0 (Westfahl et 
al., 2002). The stability analysis of the qualitative mathematical models was performed with a 
program for qualitative and symbolic analysis of the community matrix 
(esapubs.org/archive/ecol/E083/022) using the technical computing software Maple version 
18.0 (Maplesoft, 2014). 

III.3 Results 

III.3.1 Environmental filtering 

The eigenvalues decomposition of the RLQ analysis shows that the proportion of the 
common structure between environmental variables and biological traits that is portrayed 
along the first axis (73%) is much larger than the proportion that is portrayed along the second 
one (17%). The first two axes combined represent 90% of the covariance between 
environmental variables and biological traits. The cumulated amount of variance that is 
preserved on the first two axes of the RLQ ordination, compared to the equivalent variance 
from the separate ordinations of the environmental variables (R) and biological traits (Q) 
tables, is just over 85% in both cases. The correlation values between sites and species scores 
along the first and second axes of the RLQ analysis are 76% and 60% of the respective 
correlation values from the separate ordination of the species abundance table (L). 

The side-by-side projection of environmental variables (Fig. III.3a) and biological traits 
(Fig. III.3b) on the first two dimensions of the common co-inertia space reveals one 
conspicuous pattern: coarse sediment types are strongly associated with trait levels that 
represent preference for gravel or rock (T6), no role in sediment engineering (T14), an 
epifaunal position (T9) and the role of basibionts (T13). These trait levels, along with the one 
that identifies epibiotic organisms (T13) and is associated with increasing water depth, are all 
characteristic of benthos that occupies the surface of the seabed, supported by solid elements 
of abiotic or biotic origin. Increasing water depth is further associated with a transition from 
organisms that can sustain tidal exposure to those that can only tolerate high salinity levels 
(T5). 
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Fig. III.3 Projection of a) environmental variables and b) biological traits on the first two dimensions 
of the common co-inertia space of the RLQ analysis. In both graphs the horizontal axis represents the 
first dimension and the vertical the second. In the case of continuous and ordinal variables, the arrows 
indicate the direction of increasing values. In the case of nominal and binary variables, the tips of the 
arrows indicate the position of the centroids for the respective variable values (shown as 
variable.value). Plural in the variable names indicates the representation of multiple values that are 
closely associated. For details about the traits, see Table III.1 

III.3.2 Life history trade-offs 

The eigenvalues decomposition of the separate Hill and Smith analysis of the biological 
traits data set shows that about twice as much variation can be found along each of the first 
two axes (15% and 14% of total variation) compared to each of the two axes that follow (8% 
and 7% of total variation). The first four axes combined represent just over 43% of the total 
variation of biological traits among species of benthic macroinvertebrates. 

The projection of biological traits on the first four dimensions of the transformed 
multivariate space reveals the most important biological trait associations. Along the first axis 
(Fig. III.4a), maximum size (T7) is assumed to define a competitive hierarchy for food. 
Minimum space requirement (T8), in the same direction of the axis, is expected to define an 
inverse competitive hierarchy for space. 

On the positive half of the first axis (Fig. III.4a), high levels of maximum fecundity (T4) 
and dispersal distance (T3) are associated with planktonic early development mode (T2). The 
combination of these trait values is expected to lead to higher colonization potential among 
marine benthos. On the negative half of the same axis, low levels of maximum fecundity (T4) 
and dispersal distance (T3) are associated with brooded early development mode (T2) and 
high population growth rate (T11), thus forming a trait combination that is assumed to 
enhance survival rates. 
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The second axis of the Hill and Smith ordination (Fig. III.4a) mainly serves to distinguish 
organisms with an epifaunal position (T9) and requirement for hard substrates (T6). Trait 
differences among the rest of the organisms, which are mostly associated with soft bottoms 
(T6), are featured along the first (Fig. III.4a) together with the third and fourth axes of the 
ordination (Fig. III.4b). It appears that sessile organisms (T10) that prefer mud (T6), stabilize 
the sediment (T14) and create substrate for epibionts (T13) are distinguished from mobile 
(T10), destabilizing organisms (T14) that have a preference for coarser and mixed sediment 
types (T6). 

 

Fig. III.4 Projection of biological traits on a) the first and second and b) the third and fourth 
dimensions of the transformed multivariate space of the Hill and Smith analysis. In both graphs the 
horizontal axis represents the lower dimension and the vertical the higher. In the case of continuous 
and ordinal traits, the arrows indicate the direction of increasing values. In the case of nominal and 
binary traits, the tips of the arrows indicate the position of the centroids for the respective trait values 
(shown as trait.value). For details about the traits, see Table III.1 

III.3.3 Signed digraphs 

Each node of the signed digraphs represents a functional group, except for the nodes that 
correspond to the two basic resources, food and space. The clear distinction of epifaunal (T9) 
organisms with a preference for rock or gravel (T6) from infaunal or interface-positioned 
organisms (T9) that prefer finer sediment types (T6) (Alexandridis et al., 2017) led us to the 
drawing of two separate signed digraph models for the sub-systems of these two groups of 
organisms, signed digraph 1 (SD1) (Fig. III.5a) and signed digraph 2 (SD2) (Fig. III.6a), 
respectively. Only group C6 is part of both models, because of the high mobility (T10) and 
ambiguous substrate preference (T6) of its species. The two sub-systems might co-occur but 
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the way in which they interact is not addressed here. Fish and bird predation are not included, 
because the former plays a restricted role in the Rance estuary, while the latter is highly 
seasonal and mostly focused on the intertidal zone. 

The first set of interactions is related to food consumption. Algae/detritus feeders along 
with predators/scavengers with the smallest maximum size (T7) among all functional groups 
(groups C1 in SD1 and C4 in SD2) are assumed to consume the basic food resource, either 
from the water column or through deposit feeding. This interaction is represented by a 
negative effect on food and a positive effect on consumers (Fig. III.5b, III.6b). Group H2 in 
SD1 is excluded from the consumption of the basic food resource, because of the grazing 
behavior of its representative species. Their continual disturbance activity, which is expected 
to deprive other organisms of the free use of space (Pascual, 1997), is represented by a 
consumption interaction with this basic resource. 

The majority of predators appear to be larger than their prey, and predator size generally 
increases with the size of prey (Cohen et al., 1993). On the other hand, predator–prey body-
size ratios are generally the lowest, just over 2 on average, for marine invertebrate predators, 
compared to predators of other taxonomic groups and habitat types, with the energetic costs of 
prey capture and consumption possibly setting a limit to the predator–prey size difference 
(Brose et al., 2006a). These general observations led us to assume that groups of 
predators/scavengers (except for the smallest groups C1 and C4) feed on groups that are 
smaller or similar in maximum size (T7), but no smaller than 1/3 of the maximum size of the 
predator/scavenger groups themselves. This interaction is represented by a negative effect on 
prey and a positive effect on predators (Fig. III.5c, III.6c). The predator/scavenger group C5 
in SD1 is represented by a sea anemone and its adult mobility (T10) is restricted, hence, only 
mobile functional groups are considered as its potential prey. Since the position with respect 
to the substrate (T9) of all predator/scavenger groups characterizes them as epifauna or 
interface-related, infaunal functional groups (groups H5, H6 and H12 in SD2) along with 
groups whose representative species are protected by plates (groups H2 and H3 in SD1), 
shells (groups H4, H13 in SD1 and H14 in SD2) or tubes (groups H7 and H11 in SD2) are 
excluded from predator–prey interactions. 

Just like food, space is assumed to be a basic resource that is “consumed” or used by 
groups of algae/detritus feeders. Predators/scavengers are expected to only have their prey as 
their basic resource. In addition to the aforementioned group H2, space in SD1 is also used by 
algae/detritus feeders that are characterized as sessile (T10), since mobile organisms probably 
do not have such a strong interaction with space. In SD2, we expect the role of organisms in 
sediment engineering (T14) to play a central role in their interaction with space, with sediment 
stabilizers being primarily limited by it. Organisms are also assumed to partition space, by 
occupying different positions with respect to the substrate (T9). Since the two-dimensional 
nature of the interface renders space particularly limiting for organisms that occupy this 
position, we set space as a resource only for stabilizing groups of the interface. The 
“consumption” or use of space by these organisms is represented by a negative effect on space 
and a positive effect on its consumers (Fig. III.5d, III.6d). 
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Fig. III.5 Stepwise drawing of signed digraph 1 (SD1). The steps represent processes of a) 
environmental filtering, b) consumption of algae/detritus, c) predation, d) use of space, e) food–space 
reduction efficiency trade-off, f) survival–colonization trade-off, g) epibiosis and h) self-inhibition. 
The nodes represent functional groups (see Table III.2) or the basic resources of food and space. Links 
ending in arrows and filled circles represent positive and negative direct effects, respectively. Dashed 
and dotted lines represent the links that are added or removed, respectively, at each step. See text for 
details 
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Fig. III.6 Stepwise drawing of signed digraph 2 (SD2). The steps represent processes of a) 
environmental filtering, b) consumption of algae/detritus, c) predation, d) use of space, e) food–space 
reduction efficiency trade-off, f) survival–colonization trade-off, g) sediment engineering and h) self-
inhibition. The nodes represent functional groups (see Table III.2) or the basic resources of food and 
space. Links ending in arrows and filled circles represent positive and negative direct effects, 
respectively. Dashed and dotted lines represent the links that are added or removed, respectively, at 
each step. See text for details 
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In order to better represent the differences in the functional role of benthic organisms in a 
way that is consistent with the general trade-offs that are assumed to characterize these 
functional roles, we resort again to the trait of maximum size (T7). Higher levels of this trait 
are expected to confer a competitive advantage over food but a disadvantage in the use of 
space. We, therefore, divide the functional groups of each signed digraph that consume the 
basic food resource in two categories, the small and the big. We do so, by making sure that 
groups with similar sizes are placed in the same category and that there are more small than 
large groups (Blackburn and Gaston, 1994). The members of each category are expected to be 
limited by the resource for which they have a competitive disadvantage, while being able to 
efficiently reduce the levels of the resource for which they are competitively superior. This set 
of interactions is represented by an alteration of the existing resource consumption 
interactions, so that a functional group receives a positive effect from its limiting resource, 
while having a negative effect on the resource that it can efficiently reduce (Fig. III.5e, III.6e). 
This rule does not apply to any groups that would otherwise appear not to be limited by any of 
the basic resources, along with group H2 in SD1, whose relationship with space represents its 
bulldozing effect on macroinvertebrate recruits. 

We use a combination of three traits to represent the trade-off in the allocation of 
resources toward early survival versus colonization potential: early development mode (T2), 
larval dispersal distance (T3) and maximum fecundity (T4). Only functional groups with 
planktonic early development, long dispersal distance and high fecundity are expected to 
effectively interact with space, because of their high dispersal potential. The mobility of group 
H2 in SD1 and its special relationship with space again exclude it from this rule. On the other 
hand, functional groups with brooded early development are expected to be able to resist a 
variety of perturbations and, at least locally, reach high levels of abundance. They are, 
therefore, shown to reduce the basic resource of food, even if their size does not qualify them 
to do so (Fig. III.5f, III.6f). 

The role that organisms play in the phenomenon of epibiosis (T13) is expected to be 
central to the assembly of the community represented by SD1. The provision of essential 
structure by the single functional group that is characterized as basibiont (group H4) is 
represented by a positive effect on all the algae/detritus feeders of the system and the sessile 
predator/scavenger group C5 (Fig. III.5g). For the system represented by SD2, bioturbation 
should constitute the main mechanism of biogenic habitat modification (Meadows et al., 
2012). Due to its high dispersal potential (T2, T3 and T4) and its role in the phenomenon of 
sediment engineering (T14) as a destabilizer, group H10 is expected to be mostly responsible 
for this mechanism. As a result, this functional group is shown to reduce the available space 
for stabilizing organisms of the interface (basic resource of space) and to have a direct 
negative impact on infaunal stabilizers (groups H6 and H12). On the other hand, the resulting 
bioirrigation is expected to create favorable conditions for infaunal destabilizers and is 
represented by a positive effect on group H5 (Fig. III.6g). 

Negative self-effects are added to all the variables of both SD1 and SD2, and represent a 
variety of processes (Fig. III.5h, III.6h). In the case of the two basic resources, negative self-
effects are mostly indicative of the existence of intrinsic limitations in the amounts that are 
available to their consumers. Negative self-effects for the rest of the variables can be the result 
of, among other things, crowding, behavioral inhibition of reproduction, territoriality or 
accumulation of waste products (Levins, 1998). These or similar processes appear to be wide-
spread in ecological systems (Connell, 1983). 

III.3.4 Stability analysis 

The results of the stability analysis for the qualitative mathematical models that 
correspond to SD1 and SD2 are shown in Table III.3. The pattern of increasing weighted 
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feedback with increasing system level in both SD1 and SD2 confirms that they are class I 
models. We, therefore, used maximum weighted feedback as an indication of their potential 
for stability. Both models have values for this metric that are well below 0. Maximum 
weighted feedback equals -0.5 for SD1 and -0.33 for SD2, indicating a high potential for 
stability for the former model system and a moderate potential for stability for the latter 
(Dambacher et al., 2003). 

Table III.3 Results of the stability analysis for the models that correspond to signed digraphs 1 and 2 
(SD1 and SD2). ‘wF’ represents weighted feedback calculated at the system level that is indicated by 
the ensuing number. Both models belong to class I (sensu Dambacher et al. (2003)), so their potential 
for stability is determined by the maximum weighted feedback, i.e. the weighted feedback calculated 
at the highest system level (indicated by an asterisk) 

 wF1 wF2 wF3 wF4 wF5 wF6 wF7 wF8 wF9 wF10 wF11 wF12 wF13 wF14 

SD1 -1 -1 -0.99 -0.97 -0.94 -0.9 -0.83 -0.75 -0.66 -0.57 -0.5* - - - 

SD2 -1 -1 -1 -0.99 -0.98 -0.95 -0.9 -0.84 -0.77 -0.69 -0.6 -0.51 -0.42 -0.33* 

In both SD1 and SD2, the two basic resources are part of positive feedback cycles of 
length four (Fig. III.7). External forces acting on the system through one of the basic 
resources would tend to push the other variables of the cycles in opposite directions (Marzloff 
et al., 2011). In the case of SD1, the positive feedback cycle is formed by group H3 being 
enhanced by food while reducing space. Group H4 has the opposite role in the cycle, i.e. it is 
enhanced by space and reduces food. In the case of SD2, there are two equivalent positive 
feedback cycles. The role of reducing space while being enhanced by food is played by either 
group H10 or H14. In both cycles the opposite role is played by group H11, which is 
enhanced by space and reduces food. 

Fig. III.7 Positive feedback cycles involving the basic 
resources of food and space and a set of big (upper 
side) and small (lower side) functional groups from 
signed digraphs 1 (SD1) and 2 (SD2) 



Functional relationships 

60 

III.4 Discussion 

III.4.1 Environmental filtering 

The common structure between environmental variables and biological traits represents a 
considerable portion of their independent structures, in support of the importance of observed 
variable associations across the two data sets. However, the comparison of correlation values 
between sites and species scores from the RLQ analysis with the same values from the 
correspondence analysis of the species abundance table shows that a considerable portion of 
biodiversity patterns remains unexplained by traits–environment associations. These 
observations are in accordance with the results of statistical analyses of benthic biodiversity 
previously performed in the Rance estuary, which showed that the assignment of 
macroinvertebrate species to distinct communities can be a statistically significant but not 
particularly effective predictor of their spatial distribution (Desroy, 1998). 

It appears that niche differences among macroinvertebrate species in the Rance estuary are 
mostly related to characteristics of the seabed. A similar conclusion was reached by the 
assignment of these species to functional groups, which clearly distinguished between 
organisms that occupy the sediment surface supported by hard structures and those that are 
buried deep in the sediment or at the water/sediment interface (Alexandridis et al., 2017). The 
occurrence of the former groups was mainly attributed to the living or dead shells of basibiotic 
organisms, but source-sink dynamics (Mouquet et al., 2003) within the Rance estuary or the 
southern part of the English Channel should not be excluded. Contrary to expectations, 
salinity does not appear to play a significant role as an environmental filter, but tidal exposure 
does, even if only secondary to substrate type. 

III.4.2 Life history trade-offs 

The proportion of total variation in species traits that is represented by the first four axes 
of the Hill and Smith analysis is rather small. It should be noted, however, that traits were 
selected and their values attributed with the goal of representing the role of 240 species in a 
variety of community assembly mechanisms. To reduce this level of variability to four 
independent variables is especially difficult, unless we have some idea about the relative 
importance of each represented mechanism, which would allow the application of weights to 
the respective biological traits. This is, however, not the case, which is also why we opted for 
a qualitative modeling approach. 

The observed association between traits conferring a competitive advantage for food and a 
competitive disadvantage for space indicates the existence of a trade-off among benthic 
organisms in their ability to compete over limited amounts of these two resources (Tilman, 
1980). Food (Ingels et al., 2014) and space (Lord and Whitlatch, 2015) have been shown to 
play a central role in competitive interactions within the marine benthos. Recent work 
suggests that their combined representation as limiting resources can significantly increase our 
understanding and predictability of marine benthic systems (Svensson and Marshall, 2015). 

The negative association between biological traits linked to high survival rates on the one 
hand and high colonization potential on the other suggests that a survival–colonization trade-
off is effective among benthic organisms (Tilman, 1990). Resistance to disturbance 
(Schratzberger and Larcombe, 2014) and colonization potential (Limberger and Wickham, 
2011) have been involved in trade-offs with competitive ability in the marine benthos. Our 
results support both scenarios, while the deconstruction of competitive ability into two 
constituents, one for each of the limiting resources, might be able to explain inconsistencies in 
previous studies. 
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The survival–colonization trade-off represents community assembly mechanisms that 
operate during the early life stages of benthic macroinvertebrates. The previous functional 
grouping of the same species indicated that reproductive strategies might be under-represented 
in our set of biological traits, due to the lack of information for most of the organisms 
(Alexandridis et al., 2017). A more detailed representation of recruitment-related mechanisms 
would allow the evaluation and modeling of trade-offs that have been shown to play a 
significant role in the assembly of benthic communities (Lindquist and Hay, 1996; Marshall 
and Steinberg, 2014). 

The clear distinction of organisms that occupy the sediment surface supported by solid 
structures is a reiteration of the main findings of the RLQ analysis. It represents the benefits 
involved in an epibiotic life cycle (Wahl, 1989), regardless of whether the basibiotic 
organisms are still alive or not (Wahl and Mark, 1999). Among the rest of the species, their 
substrate preferences appear to match their effect on the sediment, thus supporting the 
separation of benthic macroinvertebrates into groups of sediment stabilizers and destabilizers 
(Posey, 1987). This tenet of the mobility-mode hypothesis has been empirically upheld and 
shown to have cascading and long-lasting effects on marine benthic communities (Volkenborn 
et al., 2009). 

III.4.3 Signed digraphs 

The fact that assemblages of organisms that occupy the surface of the sediment and those 
that are buried in it are adequately divergent in function, to the point of being independently 
represented in studies of marine benthos, has been previously recognized (Reiss et al., 2010). 
The trait values of epibenthic organisms indicate their preference for settlement on hard 
substrate. In a site like the Rance estuary, where soft bottoms dominate, their system, 
represented by SD1, should at least in part owe its existence to the phenomenon of epibiosis. 
The shared group C6 is an obvious but probably not the only way in which the two systems 
might interact. 

Benthic species were separated in two feeding groups in order to preserve the 
homogeneity of their resource base (Alexandridis et al., 2017). It is a requirement of the 
neutral constituent of the emergent group hypothesis, which formed the basis for their 
functional grouping (Hérault, 2007). This choice might appear to ignore important 
differentiations in the feeding habits of these organisms. It has been, however, shown that 
feeding behavior in the marine benthos is highly facultative and categorizations, like the one 
between suspension- and deposit-feeders, are not always valid (Snelgrove and Butman, 1994). 

Instead, modifications of the basic network of trophic interactions through expert 
knowledge are expected to increase its realism, while the use of allometric scaling should 
enhance the systems' stability (Brose et al., 2006b). The role of recruitment in the assembly of 
benthic communities could still be under-represented. Biological traits related to species' 
reproductive strategies were found to deviate the most from the theoretical assumptions that 
allowed the construction of functional groups (Alexandridis et al., 2017). We tried to address 
this issue by employing three different traits for the representation of the survival–
colonization trade-off. 

Qualitative mathematical modeling is characterized by its ability to represent and combine 
interactions of sometimes disparate nature. This is obvious in the simultaneous representation 
of the use of food and space along with biogenic habitat modification, which would be 
particularly challenging in a quantitative framework (but see Kéfi et al. (2012)). Epibiosis has 
increased in significance in the Rance estuary since the introduction in the 1970's of the 
slipper limpet, Crepidula fornicata, whose living and dead shells can alter the characteristics 
of the seabed (Desroy, 1998). Sediment engineering should also play an important role, but 
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this might be contingent on the density of engineering organisms reaching some threshold 
values (Posey, 1987). 

III.4.4 Stability analysis 

The qualitative mathematical models developed in this work have a moderate to high 
potential for stability, which accords well with the view that benthic communities in the 
Rance estuary have been more or less stable since the end of the 1970's (Desroy, 1998). These 
results demonstrate the potential of the models to represent systems that actually exist in 
nature. 

Populations of benthic macroinvertebrates in the Rance estuary are still expected to 
respond to forces external to the system, but in a way that could be attributed to the structure 
of the respective model. For instance, the participation of the basic resource of food in 
positive feedback cycles in both SD1 and SD2 allows the formulation of predictions about the 
direction in which the other variables in these cycles would respond to a potential system-
wide change in algae or detritus. Within these cycles, which constitute a qualitative 
representation of Tilman's (1980) concentration reduction hypothesis, a decrease in the 
amount of available food is expected, in general, to lead to less smaller and more larger 
individuals, with a concomitant increase of the available space. Similar patterns have been 
observed as a result of bathymetric decreases in nutrient input (Rex and Etter, 1998) and can 
have profound impacts on the functioning of ecological systems (Woodward et al., 2005). 

III.5 Conclusions 

Qualitative mathematical modeling has been successfully employed for the study of both 
soft- (Ortiz and Wolff, 2002) and hard-bottom (Marzloff et al., 2011) marine communities. Its 
properties make it particularly well-suited for the integration of ecological and socio-
economic systems (Dambacher et al., 2007). Benthic macroinvertebrates are often represented 
by a few nodes in qualitatively specified food-web models, in which only a few species of 
interest are explicitly depicted, while all other are lumped based on simplifying assumptions 
that might restrict the generality of the generated conclusions (e.g. Carey et al., 2014; Reum et 
al., 2015). 

Our approach primarily differs from previous work in the way organisms are represented 
and interactions are attributed between them. The functional groups that comprise the core of 
our models were built with the goal of efficiently reproducing functional diversity in the 
Rance estuary and were rigorously assessed against that goal (Alexandridis et al., 2017). The 
wide functional scope of the biological traits that formed the basis for this grouping and the 
multivariate analyses hereby performed, allowed us to represent not just trophic interactions, 
but the majority of the mechanisms that are expected to shape marine benthic communities in 
many parts of the world. This was done through a systematic procedure that can be readily 
applied to similar systems, where empirical investigation and the mechanistic understanding 
that comes with it have been traditionally restricted. 

One of the main advantages of qualitative mathematical models lies in their ability to 
change with minimum time cost. When there is uncertainty in the model components or 
interactions, alternative model configurations can be generated and assessed with respect to 
the system's functioning. We plan to use this property of qualitative mathematical modeling, 
in order to inform the structure of dynamic and spatially explicit models of the same systems. 
Their quantification should help us produce precise predictions about both short- and long-
term changes of benthic biodiversity in the Rance estuary in response to potential 
perturbations. 
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Chapter IV:  Agent-based modelling of the multi-scale dynamics 

of marine benthic communities 

Abstract 

Modelling marine benthic biodiversity for exploratory or predictive purposes requires the 
representation of community assembly mechanisms that operate at distinct spatial and 
temporal scales. Analytical research has offered insights into the nature of these processes. 
However, their synthesis in a quantitative framework cannot be easily achieved through 
traditional modelling techniques. Previous work in the Rance estuary (Brittany, France) 
revealed the principal functional components of its benthic macroinvertebrate communities 
and derived a set of relationships of the organisms with their environment and with each 
other. These elements are combined here for the development of a dynamic and spatially 
explicit agent-based model that operates at two spatial scales. At the small scale, the model 
represents trophic and non-trophic interactions among individual organisms. The large scale 
model uses information on community composition and abiotic conditions to reproduce the 
organisms’ dispersal and the filtering effect of their environment. The dynamic integration of 
the two models recreates the combined effect of disparate processes on both local and regional 
patterns of benthic biodiversity. The predictive scope of the model is restricted by the lack of 
detailed information on important biological traits, but the approach shows potential for the 
investigation of fundamental ecological questions. 

IV.1 Introduction 

The investigation and, ultimately, prediction of biodiversity patterns in the marine benthos 
can be greatly facilitated by the development of mechanistic models of community assembly. 
Abundance patterns in communities of marine benthic macroinvertebrates result from the 
interplay of many mechanisms. Some of them, like environmental filtering, may operate at 
time scales that render them practically constant for the external observer. Other mechanisms, 
like disturbance due to extreme weather events, may have similar effects throughout a 
system’s spatial extent. Modelling these mechanisms of community assembly would require 
the reproduction only of their spatial or temporal characteristics. However, most of the 
mechanisms of community assembly involve processes that may vary both in space and in 
time, the same holding true for the ways in which they interact. Mechanistic modelling of 
marine benthic macroinvertebrates would, accordingly, have to be implemented in a dynamic 
and spatially explicit framework, if it was to reveal the role of these mechanisms in shaping 
marine benthic communities. 

The modelled entities of this framework would ideally represent individual organisms, 
since this is the level at which biotic interactions that lie behind community assembly 
mechanisms naturally take place. The role of these entities in the selected mechanisms of 
community assembly is expected to be largely controlled by biological traits that have been 
long collected and studied for species of benthic macroinvertebrates. Representing individuals 
of different species in a way that is consistent with known inter-specific trait differences 
appears, therefore, to be a suitable framework for a dynamic model of marine benthic 
communities. The observed levels of species richness would render the development of such a 
model particularly demanding and itself analytically intractable. The use, instead, of only a 
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few dominant or representative species could solve this problem, but it might restrict the 
generality of the generated conclusions. 

Similar concerns in the development of mechanistic models of terrestrial vegetation led to 
the development of a framework for the construction of plant functional groups (Boulangeat et 
al., 2012) on the conceptual basis of the emergent group hypothesis (Hérault, 2007). The 
emergence of the groups is the result of correlations among biological traits that represent the 
species’ role in a set of important community assembly mechanisms. The adaptation of this 
framework to communities of marine benthic macroinvertebrates and the assessment of its 
assumptions against observations from the Rance estuary (Brittany, France) in 1995 allowed 
the definition of the system’s principal functional components (Alexandridis et al., 2017). The 
trait values that were assigned to the functional groups during this systematic and testable 
procedure are expected to effectively represent their role in the selected set of community 
assembly mechanisms. 

Competition for a limited amount of resources is central among these mechanisms, with 
food and space as two obvious candidates (Ingels et al., 2014; Lord and Whitlatch, 2015). 
Benthic macroinvertebrates in the Rance estuary appear to be differentiated with regard to 
their use of space between those that are buried in the sediment and those that occupy its 
surface supported by hard substrate (Chapter III). The dominance of soft bottoms indicates 
that the latter, at least partly, occur due to the phenomenon of epibiosis. Trophic groupings 
like the one between suspension- and deposit-feeders seem invalid in view of the highly 
facultative feeding behaviour of benthic organisms (Snelgrove and Butman, 1994). The 
requirement for a grouping that preserves the homogeneity of the groups’ trophic base 
(Hubbell, 2005) justifies the separation of benthic organisms into algae/detritus feeders and 
predators/scavengers. The generated basic network of trophic interactions can be modified 
through expert knowledge and theoretically anticipated allometries, thus increasing its realism 
and its potential for stability (Brose et al., 2006b). 

The majority of predators appear to be larger than their prey and predator size tends to 
increase with prey size (Cohen et al., 1993). On the other hand, predator–prey body-size ratios 
are generally the lowest, just over 2 on average, for marine invertebrates, compared to other 
taxonomic groups and habitat types. It is possible that the energetic costs of prey capture and 
consumption set a limit to predator–prey size gaps (Brose et al., 2006a). In the Rance estuary, 
fish predation of benthic macroinvertebrates is rather restricted and predation by birds is 
highly seasonal and mostly focused on the intertidal zone (Nicolas Desroy, personal 

communication). The mortality that is caused by predatory macroinvertebrates, although very 
difficult to estimate, appears likewise to be limited in magnitude, as far as adult prey is 
concerned. This is due partly to the greater impact of predation on juvenile individuals and 
partly to the partial ingestion of adults and the regenerative properties of many 
macroinvertebrate species. The predation rate that is experienced by a species appears to be 
dictated by its relative abundance (Desroy, 1998). 

Post-settlement mortality of juvenile individuals is one of the many abiotic and biotic 
factors that influence the recruitment of benthic macroinvertebrates (Olafsson et al., 1994). It 
shows high levels of both intra- and inter-specific variation (Hunt and Scheibling, 1997). 
Information at the former level indicates that small initial increments in body size lead to 
significant increases in survival rates in the face of predation (Gosselin and Qian, 1997). 

The supply of larvae and the settlement of juveniles are still prerequisites for post-
settlement processes to occur, but their complexity often makes simplifications particularly 
difficult (Pineda et al., 2009). The settlement probabilities of different species are expected to 
be influenced by the traits of fecundity, dispersal distance and early development mode, which 
form trait combinations indicative of trade-offs between early survival and colonization 
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potential (Kupriyanova et al., 2001). The abiotic environment is also expected to influence the 
successful settlement of juveniles. Apart from the direct effect of environmental filtering due 
to tidal exposure or the existence of suitable substrate, benthic organisms are also known to 
modify their habitat through sediment stabilization and destabilization, thus modulating the 
settlement probabilities of new recruits (Posey, 1987). 

Large year-to-year fluctuations of adult abundances of a polychaete species in the English 
channel were found not to be related to larval supply, an indication of the significance of post-
settlement processes (Ellien et al., 2000). Besides juvenile and adult predation mortality, 
competition for food and space is expected to be central among them. The effect of these two 
resources on benthic macroinvertebrates can be quite variable, depending on abiotic factors 
and the life stage of organisms, and can be additionally confounded by potential resource 
interactions (Svensson and Marshall, 2015). In general, it appears that the trait of adult body 
size plays a crucial role in the definition of competitive hierarchies. Smaller species are 
expected to show higher growth rates and to be better competitors for limited amounts of 
space, while larger species can occupy larger areas and should be competitively superior in 
face of food limitation (Chapter III). Intra-specific competition for food and space can also 
affect individual growth rates (Côté et al., 1994). 

The spatial scales at which pre- and post-settlement processes take place are not expected 
to overlap, as pre-settlement processes should operate at much larger scales than post-
settlement ones (Fraschetti et al., 2002). Exchanges across scales are mainly the result of 
larval dispersal; immigration and emigration of adults can in most cases be considered as 
unimportant for the population dynamics of benthic species (Eckman, 1996). 

This set of ecological principles provided the conceptual and methodological framework 
for the construction of a dynamic and spatially explicit agent-based model (ABM) of benthic 
macroinvertebrates in the Rance estuary. The model combines two spatial scales, one at the 
level of a sampling area and one at the level of the whole system. The former, small-scale 
model represents processes of sediment engineering, epibiosis, settlement of juveniles, post-
settlement mortality, competition for food and space, predation and mortality due to ageing. 
Its entities are juvenile and adult individuals that belong to one of 20 functional groups. Their 
role in the aforementioned processes was defined by their set of biological traits. The latter, 
large-scale model represents processes of environmental filtering due to tidal exposure and 
larval dispersal and employs the output of the small-scale model in each time step of one year. 
Its output, along with information on the tidal regime, is in turn used as input by the small-
scale model during each year’s representation of juveniles’ settlement. The goal is to explore, 
through the process of model verification, the feasibility of representing a system of benthic 
macroinvertebrates within the specified conceptual and methodological framework. The 
modelling effort is far from being concluded, as there remain many possibilities for 
refinement and expansion. 

IV.2 Methods 

The model consists of two spatially nested sub-models (Fig. IV.1). The small-scale model 
represents the level of a sampling area and the large-scale model represents the Rance estuary. 
In both models space is two-dimensional and each time step corresponds to one year. The 
small-scale model represents space occupation by individual macroinvertebrates that belong 
to one of 20 functional groups (Alexandridis et al., 2017). These individuals start as juvenile 
settlers and grow into adults, with the goal of avoiding death due to competition and predation 
and reaching their full lifespan. The rules that define the interaction of individuals with their 
environment represent important elements of their life history and are dictated by the trait 
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values of the functional group to which each individual belongs (Table IV.1). The 
combination of these trait values among the functional groups is representative of large-scale 
(environmental filtering) and small-scale (life history) trade-offs that are expected to control 
the assembly of marine benthic communities (Chapter III). The large-scale model represents 
the distinction between the subtidal and the intertidal zone and the interaction of 
metapopulations of the 20 functional groups through larval dispersal. Each spatial entity of the 
large-scale model is represented by one realization of the small-scale model. These 
realizations are separated into those of the subtidal and the intertidal zone, each category 
being represented by a distinct small-scale model. All model realizations interact in space and 
time through the large-scale model. 

Agent-based modelling allows the emergence of intricate patterns from simple rules of 
interaction, providing an intuitive framework for the representation of complex ecological 
systems (DeAngelis and Mooij, 2005). However, it is these characteristics that often render 
model analysis particularly burdensome. Difficulties in the evaluation of ABMs due to their 
documentation motivated the development of the ODD (Overview, Design concepts and 
Details) protocol (Grimm et al., 2006). The authors proposed a standard structure for the 
documentation of ABMs, with the goal of facilitating reading and writing model descriptions 
(Grimm et al., 2010). The description of the small-scale model, which is relatively complex, 
follows the ODD protocol, while the much simpler large-scale model is described in short. 

 

Fig. IV.1 Graphical representation of the large-scale model of the Rance estuary, divided into the 
subtidal and the intertidal zone. Each patch of the two tidal zones is represented by one realization of 
the respective small-scale model. This model has approximately the dimensions of a sampling area and 
represents the space that is occupied by individuals of different functional groups (illustrated as 
squares of different sizes and colours). The realizations of the small-scale model interact in each time 
step through local larval dispersal. During this process, the contribution of each functional group to the 
spawner pool that is employed in each small-scale model is defined as the relative abundances of the 
groups within the area comprised of the respective patch of the large-scale model and its 8 immediate 
neighbours (cross hatched square) 



 

 

Table IV.1 Functional groups of species with their assigned representative species and biological trait values (Alexandridis et al., 2017). Group names starting 

with ‘FG’ and ‘FGP’ correspond to algae/detritus feeders and predators/scavengers, respectively 

Groups 
Representative 

species 
Temperature Development Dispersal Fecundity Tide/salinity Substrate Size (cm) Area Position Mobility Growth rate Lifespan (yr) Epibiosis Engineering 

FG1 
Myrianida 

edwardsi 
stenothermal planktonic long low stenohaline mud 1.4 3.1 interface mobile 5.8 1.9 neutral neutral 

FG2 
Thyasira 

flexuosa 
eurythermal planktonic short low stenohaline mud 3.6 0.8 infauna mobile 1.0 10.0 neutral stabilizer 

FG3 Oligochaeta stenothermal laid short low emersed muddy sand 4.5 5.0 infauna mobile 3.4 2.0 neutral destabilizer 

FG4 
Notomastus 

latericeus 
stenothermal brooded short low stenohaline muddy sand 6.0 2.9 interface mobile 2.6 1.9 neutral destabilizer 

FG5 
Melinna 

palmata 
stenothermal brooded short low stenohaline mud 7.5 0.3 interface sessile 2.6 3.6 neutral stabilizer 

FG6 
Glycymeris 

glycymeris 
stenothermal planktonic short high stenohaline muddy gravel 8.0 1.4 infauna mobile 0.8 15.0 neutral stabilizer 

FG7 
Malacoceros 

fuliginosus 
eurythermal planktonic long high euryhaline mud 8.5 1.9 interface mobile 2.5 2.7 neutral destabilizer 

FG8 
Cerastoderma 

edule 
stenothermal planktonic long high emersed muddy sand 8.6 0.5 interface mobile 0.7 8.9 neutral stabilizer 

FG9 
Crepidula 

fornicata 
stenothermal planktonic long high stenohaline rock 7.6 0.0 epifauna sessile 1.9 11.2 basibiont neutral 

FG10 
Galathowenia 

oculata 
eurythermal planktonic long high euryhaline mud 11.1 0.0 interface sessile 2.7 4.4 neutral stabilizer 

FG11 
Hediste 

diversicolor 
eurythermal laid short high emersed muddy sand 12.8 0.2 interface mobile 2.1 3.4 neutral destabilizer 

FG12 
Sphaerosyllis 

bulbosa 
stenothermal brooded short low stenohaline gravel 1.3 0.5 epifauna mobile 4.7 1.9 neutral neutral 

FG13 
Balanus 

crenatus 
eurythermal planktonic long high euryhaline rock 2.0 0.8 epifauna sessile 2.5 2.0 epibiont neutral 

FG14 
Morchellium 

argus 
eurythermal brooded short low stenohaline rock 3.3 0.1 epifauna sessile 2.6 1.7 epibiont neutral 

FG15 
Anapagurus 

hyndmanni 
stenothermal planktonic long high stenohaline gravel 10.0 0.1 epifauna mobile 0.6 10.0 neutral neutral 

FG16 
Lepidochitona 

cinerea 
stenothermal planktonic short high stenohaline rock 10.8 4.1 epifauna mobile 0.9 11.6 epibiont neutral 

FGP1 
Syllis 

cornuta 
stenothermal planktonic long low stenohaline rock 7.4 5.2 epifauna mobile 2.3 2.3 epibiont neutral 

FGP2 
Marphysa 

bellii 
stenothermal planktonic short high stenohaline muddy sand 23.3 0.3 interface mobile 1.1 4.7 neutral neutral 

FGP3 
Nephtys 

hombergii 
stenothermal planktonic long high stenohaline gravel 10.5 0.3 interface mobile 2.2 7.3 neutral neutral 

FGP4 
Urticina 

felina 
eurythermal planktonic short high euryhaline rock 16.7 10.3 epifauna sessile 1.1 14.0 epibiont neutral 



Dynamic model 

72 

IV.2.1 Small-scale model 

IV.2.1.1 Purpose 

The model was designed to explore the potential of reproducing observed patterns of 

abundance distribution for functional groups of benthic macroinvertebrates, using simple rules 

related to inter- and intra-group competition for food and space, sediment engineering and 

epibiosis. It is in this sense a model of α-diversity and a general framework that can 

incorporate many additional community assembly mechanisms and a quantitatively more 

realistic representation of the system. 

IV.2.1.2 Entities, state variables and scales 

The model's only entities, its patches, make up a square grid, with dimensions of 60 × 60 

patches. In order to avoid edge effects, the grid wraps both horizontally and vertically into a 

torus. Each patch has two sets of state variables, one for the infauna and one for the epifauna. 

One variable in each set indicates whether a patch is occupied and by a member of which 

functional group (sp/ep). There are twenty functional groups. Ten of them belong to the 

infauna (FG1-8, FG10-11), five groups belong to the epifauna (FG12-16), one can be part of 

both the infauna and the epifauna (FG9) and four groups represent predator/scavenger 

organisms (FGP1-4). The infauna consists of four small groups (FG1-4), which can occupy 

one patch, five intermediate groups (FG5-9), which start at one patch and can occupy its eight 

immediate neighbours during their growth, and two large groups (FG10-11), which can, 

through the same procedure, occupy one patch and its twenty-four closest neighbours. The 

infaunal group that also belongs to the epifauna (FG9) represents basibiotic organisms that are 

intermediate in size. It is on patches occupied by this group that epifauna, including 

individuals of the same group but staying small in size, can settle and grow. In total, the 

epifauna consists of four small groups (FG9, FG12-14), which can occupy one patch, and two 

intermediate groups (FG15-16), which start at one patch and can occupy its eight immediate 

neighbours during their growth. The other two variables of each set are used for the central 

patch of individuals (g/a, h/ag). The first one identifies those among the individuals of 

intermediate and large groups that grow in spite of competition and the second one gives the 

age of the individuals of all groups that survive at the end of each year. One global variable 

for each functional group of the infauna and the epifauna describes the respective group 

abundances (g1-16). One additional variable gives the same number only for the infaunal 

individuals of the basibiotic functional group (ba). One global variable for each functional 

group of the infauna and the epifauna represents the contribution of each group to the 

respective spawner pool, for use in the recruitment process at the start of each year (fg1-16). 

Two global variables give the number of sediment stabilizing and destabilizing individuals 

(es, ed), while another one gives the x and y coordinates of the site (xy), employed during 

exporting and importing the model's current status. Five more variables keep track of the 

central patches of the individuals of small, intermediate and large infaunal and epifaunal 

groups that survive at the end of each year (s/m/l, sm/la). Finally, one global variable for each 

predator/scavenger group describes their respective abundance at the end of each year (p1-4). 

Patch size corresponds to the area exclusively occupied by an individual that belongs to one of 

the small functional groups. The dimensions of the grid represent an arbitrary sampling area 

of the real system. One time step corresponds to one year, starting right before the spring 
dispersal. 
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IV.2.1.3 Process overview and scheduling 

Every time step starts by moving time one step forward. The first of the model's actions 

represents the process of recruitment. First, the contribution of each group of the infauna and 

the epifauna to the respective spawner pool is defined as the group’s contribution to the total 

abundance of the respective set of groups during the previous time step within an area defined 

in the large-scale model. Then juveniles of the eleven infaunal groups settle randomly on 

empty patches, with settlement probabilities defined by the contribution of each group to the 

spawner pool, their fecundity, dispersal distance, early development mode, role in sediment 

engineering and position in the sediment and the relative abundance of sediment stabilizing 

and destabilizing functional groups during the previous time step. The juveniles experience 

post-settlement mortality with rates that are dictated by each group's adult size and those that 

die are removed from the system. Next, juveniles of the six epifaunal groups settle randomly 

on patches that are occupied by infaunal adults of the basibiotic functional group and are 

empty of any epibiotic groups, with settlement probabilities defined by the contribution of 

each group to the spawner pool, their fecundity, dispersal distance and early development 

mode. The juveniles experience post-settlement mortality with rates that are dictated by each 

group's adult size and those that die are removed from the system. The second action 

represents the growth in terms of occupied patches of individuals of intermediate and large 

size and the process of inter- and intra-group competition that it entails. First, the newly 

settled individuals of intermediate infaunal groups, then the infaunal individuals of the 

basibiotic group and finally the individuals of large infaunal groups grow in random order to 

their final size based on the competition submodel. The individuals of the two intermediate 

epifaunal groups are the next to grow, first those of the group that is associated with hard 

substrate and then those of the group that is associated with gravel. The third action represents 

the process of ageing by one year of all individuals that survived the previous time step. 

During the fourth and final action, all individuals that could not grow to their full predefined 

size or were overgrown, those that reached their lifespan during the current time step or were 

epibionts of deceased basibionts, die and vacate their previously occupied patches. Basibiotic 

individuals that die of ageing and have epibionts of the same group, take the age of their 

oldest epibiotic basibiont and retain the rest of their epibionts. Individuals of the prey groups 

die and are removed in decreasing order of their predators' size. This process starts with each 

predator's most abundant prey and, if this is less abundant than the selected number, 

individuals from its next most abundant prey are removed, until the total of removed 

individuals is the closest possible to the selected number. Finally, all global variables and the 
model's grid display are updated and functional group abundances are printed out. 

IV.2.1.4 Design concepts 

Basic principles 

The model aims to reproduce the mechanisms of inter- and intra-group competition 

assumed to take place primarily for food and space within benthic macroinvertebrate 

communities. It also includes a very basic representation of predator–prey relationships and 

the mechanisms of sediment engineering and epibiosis. The last two mechanisms are 

represented through the process of recruitment. The former is expressed by the effect of the 

dominance of stabilizing or destabilizing groups on each group's settlement probability and 

the latter by the settlement of epifaunal groups on space occupied by the basibiotic functional 

group. Only intermediate and large groups are assumed to contribute to the pools of sediment 

destabilizers and stabilizers. The benefits of epibiosis are illustrated by the fact that 

individuals do not need to occupy as much space in order to survive, so large groups are 

treated as intermediate and intermediate as small. Small groups retain their original space 

occupation. After the random settlement of juveniles, competition is demonstrated through the 
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process of somatic growth toward each group's predefined body size, assuming that bigger 

individuals occupy more space. Competition between members of different functional groups 

is characterized by trade-offs, associated with their main attribute, their body size. Individuals 

with small size do not need to grow at all to occupy their space. Individuals with intermediate 

size are better competitors for food, so they can grow over small individuals. Individuals with 

large size are assumed to grow slower, so they are the last to do so, but are better competitors 

for food. They can, therefore, grow over both small and intermediate individuals. A 

competitive advantage of purely infaunal groups over the basibiotic group, on the one hand, 

and the groups associated with rock over those associated with gravel, on the other, is 

expressed by the fact that individuals of the latter groups are in both cases the last to grow. 

The special requirements of the basibiotic functional group is expressed by the fact that its 

members can only grow if their potential occupied area neighbours that of adult members of 

the group. Individuals that do not grow to their predefined size or are even partially 

overgrown, are assumed to be the most susceptible to mortality caused by a number of factors 

and are removed from the system. Post-settlement mortality is also assumed to be controlled 

by adult body size, with intermediate groups suffering from higher mortality than large groups 

and lower mortality than small groups. The body size of groups also dictates the existence of 

predator–prey interactions, additionally influenced by the predators' mobility and the preys' 

defensive mechanisms and position in the sediment. Among their prey groups, predators start 

with those that are the most abundant, with prey individuals being removed from the system 

in decreasing order of their predators' size. 

Emergence 

The main output of the model consists of the abundance distribution of functional groups 

over time. Differences among the groups can be attributed to their different settlement 

substrates, fecundity, dispersal distance, early development mode, role in sediment 

engineering, position in the sediment, post-settlement mortality, the order and manner in 

which their members grow after their successful settlement and their differential mortality due 

to restricted growth, overgrowth by larger individuals, ageing, loss of basibiotic substrate and 

susceptibility to predation. 

Adaptation 

Individuals adapt their settlement, growth and lifespan to their biotic environment, 

namely, the contribution of their functional group to the spawner pool, the dominance of 

sediment stabilizers or destibilizers, the availability of suitable substrate, the individuals in 

their potential occupation area, their basibionts or epibionts, the relative abundance of their 

group compared to the abundance of other prey groups and the abundance of their predator 
groups, as shaped by the system's history. 

Objectives 

The rules of recruitment, competition and mortality are derived from ecological theory and 

expert knowledge, so objectives are not explicitly modelled. It is, however, implied that the 

ability to outgrow other individuals and reach the maximum lifespan conveys fitness to each 

phenotype. 

Prediction 

Because outgrowing other individuals and reaching the maximum lifespan are assumed a 
priori to be the objectives of individual organisms, prediction is not modelled. 

Sensing 

There is no sensing in the model. Interactions among individuals are controlled by rules of 

recruitment, competition and mortality representing processes of inter- and intra-group 
competition for food and space, sediment engineering and epibiosis. 
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Interaction 

One set of interactions among individuals is based on processes of exploitative 

competition for space and food. The former is modelled explicitly, with individuals competing 

for a limited number of patches, while the latter is implied in the modelled functional trade-

offs that lead to the death of individuals that do not grow to their predefined size. Space 

competition among infaunal and epifaunal individuals is first demonstrated during the 

settlement of juveniles on unoccupied patches. Intra-group competition for space and food 

takes place among members of not only the same functional group but also different groups 

with the same size, by keeping them from growing over each other. Inter-group competition 

for the same resources takes place among individuals of different sizes and involves taking 

over patches that were previously occupied by other individuals. Another set of interactions is 

associated with the phenomenon of epibiosis. Individuals of the basibiotic functional group 

provide the patches on which individuals of epifaunal groups can settle. Additionally, the 

oldest epifaunal basibiont of an infaunal basibiont that dies of ageing, takes its place as 

infaunal basibiont. Adult infaunal basibionts also allow the growth of infaunal basibiotic 

juveniles in their immediate neighbourhood. Apart from these direct interactions, individuals 

also interact indirectly, through their contribution to the spawner pool, the pools of sediment 

stabilizers and destabilizers and the relative abundance of prey groups. 

Stochasticity 

Settlement of juveniles during recruitment is represented by a stochastic process, in which 

each empty patch is randomly attributed a juvenile that belongs to one of the potential settling 

groups. Settlement probabilities are determined by each group's fecundity, dispersal distance, 

early development mode, role in sediment engineering, position in the sediment and 

contribution to the spawner pool along with the relative abundance of sediment stabilizing and 

destabilizing functional groups during the previous step. Post-settlement mortality is also 

stochastic, as the identity of the juveniles to be removed is selected at random and based on 

the adult body size of each functional group. Stochasticity is added to the process of 

competition through the order in which individuals of the same competitive ability grow. 

Finally, the process by which prey individuals among each predator's preferred prey groups 

are removed from the system is random. 

Collectives 

The formation of collectives is imposed on the model through the assignment of values for 

the functional group variables to each empty patch during the recruitment process. The 

behaviour of members of different functional groups is differentiated through their initial 

settlement probabilities, their post-settlement mortality rates, the order and manner in which 

individuals of different groups grow, through their lifespan, their role in the phenomena of 
sediment engineering and epibiosis and their role as potential prey of the predator groups. 

Observation 

The contribution of infaunal and epifaunal functional groups to the respective spawner 

pools are printed out after their definition for testing purposes. The output that is most 

relevant to the purpose of the model is the abundance distribution of the functional groups at 

the end of each time step. For this to be derived, the area covered by each functional group is 

divided by the number of patches that corresponds to the occupied area of an individual of 

each group. This is done separately for the infaunal and epifaunal individuals of the basibiotic 

group, as the two differ in size. The former is assigned to a separate variable and then the two 

numbers are added to produce the group's total abundance. The abundance of the predator 

groups is derived from the abundance of their potential prey. All this output is printed out at 

the end of each time step. It is also plotted at the beginning of each step in the form of a 
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histogram of functional group abundances and a new point in a graph that illustrates their 
evolution through time. 

IV.2.1.5 Initialization 

The model's initialization starts by randomly attributing a value that corresponds to one of 

the eleven infaunal functional groups to the respective variable of every patch on the grid, 

thus representing the settlement of infaunal juveniles. In this process, the chances for the 

juveniles of each group to be attributed to a patch are defined by the fecundity, dispersal 

distance and early development mode of the group. Newly settled juveniles experience 

mortality with rates defined by each group’s body size and those that die are removed from 

the system. Patches occupied by purely infaunal groups of intermediate size in random order 

turn the functional group variable of their eight immediate neighbours into their own value, 

unless any of their neighbours is occupied by a functional group of the same size, in which 

case nothing happens. The process is repeated for patches occupied by the basibiotic 

functional group, on the additional condition that at least another patch within each patch's 

twenty-four closest neighbours is occupied by a member of the same group. Patches occupied 

by groups of large size in random order turn the functional group variable of their twenty-four 

immediate neighbours into their own value, unless any of these neighbours is occupied by a 

functional group of the same size, in which case nothing happens. Patches occupied by small 

groups that were not overgrown, along with those occupied by intermediate and large groups 

that grew to their full predefined size and were also not overgrown are attributed to the 

respective set of patches and their age is set to one year. These patches and the patches into 

which they grew are then excluded from a process that changes the infaunal functional group 

variable of all other patches into a value that signifies that they are not occupied. Patches that 

are occupied by infaunal individuals of the basibiotic functional group are randomly attributed 

a value that corresponds to one of the six epifaunal groups, thus representing the settlement of 

epifaunal juveniles. The chances of the groups to be attributed to each patch are defined by the 

fecundity, dispersal distance and early development mode of each group. Newly settled 

juveniles experience mortality with rates defined by each group’s body size and those that die 

are removed from the system. First, patches occupied by intermediate groups associated with 

rock and then those occupied by intermediate groups associated with gravel in random order 

turn the functional group variable of their eight immediate neighbours into their own value, 

unless any of their neighbours is occupied by an epifaunal individual of the same size, in 

which case nothing happens (epifaunal basibiotic individuals do not participate, since they 

stay small in size). Patches occupied by small groups that were not overgrown, along with 

those occupied by intermediate groups that grew to their full predefined size, are attributed to 

the respective set of patches and their age is set to one year. These patches and the patches 

into which they grew are then excluded from a process that changes the epifaunal functional 

group variable of all other patches into a value that signifies that they are not occupied. 

Finally, the variables that calculate the abundance of each functional group, along with those 

calculating the abundance of sediment stabilizers and destabilizers, are updated, colours are 

given to the patches based, first, on their infaunal and then on their epifaunal variables of 

functional group occupation and the count of time steps is reset, thus also updating the graph 
areas. 

IV.2.1.6 Input data 

The abiotic environment is assumed to be constant in space and time. The contribution of 

each group of the infauna and the epifauna to the respective spawner pool is imported in each 

time step from the large-scale model. 
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IV.2.1.7 Submodels 

The recruitment submodel starts by defining the contribution of infaunal and epifaunal 

functional groups to the respective spawner pool as each group’s contribution to the total 

abundance of the respective set of groups during the previous time step within an area defined 

in the large-scale model. In a process representing the settlement of infaunal juveniles, the 

variable of infaunal group occupation of every patch that is not occupied by an infaunal group 

is randomly attributed a value that corresponds to one of the eleven infaunal groups. In this 

process, the chances of each group's juveniles to be attributed to an empty patch are defined 

by the relative abundance of sediment stabilizing and destabilizing groups, along with the 

fecundity, dispersal distance, early development mode, role in sediment engineering, position 

in the sediment and contribution of each group to the infaunal spawner pool. Newly settled 

juveniles experience mortality with rates defined by each group’s body size and those that die 

are removed from the system. In a process representing the settlement of epifaunal juveniles, 

the variable of epifaunal group occupation of patches that are occupied by adult infaunal 

individuals of the basibiotic functional group and are empty of epifaunal groups, are randomly 

attributed a value that corresponds to one of the six epifaunal groups. In this process, the 

chances of each group's juveniles to be attributed to an empty patch are defined by the 

fecundity, dispersal distance, early development mode and contribution of each group to the 

epifaunal spawner pool. Newly settled juveniles experience mortality with rates defined by 

each group’s body size and those that die are removed from the system. 

The competition submodel starts with the growth of the newly settled infaunal individuals. 

Patches occupied by juveniles of purely infaunal groups of intermediate size, in random order 

turn the functional group variable of their eight immediate neighbours into their own value, 

unless any of their neighbours is occupied by a functional group of the same size or an adult 

of a large group, in which case nothing happens. The process is repeated for patches occupied 

by juveniles of the basibiotic group, on the additional condition that at least another patch 

within each patch's twenty-four closest neighbours is occupied by an adult member of the 

same group. Patches occupied by juveniles of large groups in random order turn the functional 

group variable of their twenty-four immediate neighbours into their own value, unless any of 

these neighbours is occupied by a functional group of the same size, in which case nothing 

happens. The growth of newly settled epifaunal individuals comes next. Patches occupied by 

juveniles of, first, intermediate groups associated with rock and then intermediate groups 

associated with gravel, in random order turn the functional group variable of their eight 

immediate neighbours into their own value, unless any of their neighbours is occupied by an 

epifaunal individual of the same size, in which case nothing happens (epifaunal basibiotic 
individuals do not participate, since they stay small in size). 

The ageing submodel adds one year to the age of individuals that survived the previous 

time step. 

The mortality submodel starts with infaunal individuals. Juveniles of small groups that 

were not overgrown are attributed to the respective set and their age is set to one year. The 

same is applied to juveniles of intermediate groups that grew to their full predefined size and 

were not overgrown, along with juveniles of large groups that grew to their full predefined 

size and adults of intermediate groups that were not overgrown, except that the latter retain 

their age. All individuals that did not grow to their full predefined size or were even partially 

overgrown are then removed from the system. The same happens to individuals of purely 

infaunal small and intermediate groups that reached their lifespan. Juveniles of small 

epifaunal groups have their age set to one year, while adults of the same groups that reached 

their lifespan are removed from the system. Infaunal individuals of the basibiotic functional 

group that reached their lifespan are removed from the system, along with their epibiotic 
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individuals, unless any of the epibionts is member of their group, in which case the older 

among them takes their place and keeps the rest of the epibionts. Juveniles of intermediate 

epifaunal groups that grew to their full predefined size, have their age set to one year, while 

those that did not, along with adults of the same groups that reached their lifespan are 

removed from the system. Large infaunal individuals that reached their lifespan are the last to 

be removed. In a process representing predation, the largest predator starts with the most 

abundant group among its potential prey and removes individuals at random, until the selected 

number has been removed (all abundances calculated at the end of the previous time step). If 

this number is not reached, it moves to the next group of its potential prey and repeats the 

process. The same is applied to the second and third largest predators. Individuals of large, 

intermediate and small groups that survived are attributed to the respective sets. The 

abundance of the predators is derived from the abundance of their potential prey groups. 

Finally, the variables that calculate the abundance of each functional group, along with those 

calculating the abundance of sediment stabilizers and destabilizers, are updated, colours are 

given to the patches based, first, on their infaunal and then on their epifaunal variables of 
functional group occupation and the abundances of all functional groups are printed out. 

IV.2.2 Large-scale model 

The grid of the large-scale model represents the Rance estuary, with patch size 

corresponding to an area of approximately 0.2 km
2
. The model starts by attributing a sediment 

type to each patch, based on a sedimentary map of the Rance estuary from 1994 (Bonnot-

Courtois, 1997). The patches are then assigned to the subtidal or intertidal zone, based on their 

sediment type. Areas covered by gravel, coarse sand, intermediate/coarse sand, 

fine/intermediate sand, muddy sand and sandy mud are assigned to the subtidal zone. Areas 

covered by silty mud, mud, pure mud and salt marshes are assigned to the intertidal zone. The 

small-scale model of the subtidal is then loaded and the patches of the subtidal zone, in 

random order, ask it to initialize and export the generated instance in a file named after their 

own x and y coordinates. At the same time, the patches of the subtidal zone are attributed with 

the generated group abundances, which are printed out, and a colour on the grid, which 

indicates whether these abundances are dominated by sediment stabilizers or destabilizers. 

The same procedure is then applied to the small-scale model of the intertidal and the patches 
of the intertidal zone. 

One time step corresponds to one year, starting right before spring dispersal. First, the 

patches of the subtidal zone in random order ask the small-scale model of the subtidal to 

import the model instance that was generated for them during the previous time step and set 

each infaunal and epifaunal functional group’s contribution to the respective spawner pool 

equal to the median abundance of each group within the patches themselves and their eight 

immediate neighbours that are part of the system. Within the same procedure, the patches ask 

the small-scale model to move one step forward and export the generated instance in a file 

named after their own x and y coordinates. At the same time the patches are attributed with 

the generated group abundances, which are printed out, and a colour on the grid, which 

indicates whether the generated group abundances are dominated by sediment stabilizers or 

destabilizers. The same procedure is then applied to the patches of the intertidal zone and the 

respective small-scale model. 
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IV.2.3 Parameterization 

An overview of the model’s parameterization is given in Table IV.2. 

IV.2.3.1 Settlement probability 

Small-scale model of the subtidal 

The settlement probabilities of all infaunal and epifaunal functional groups that are 

employed during the model’s initialization are defined by each group’s fecundity, dispersal 

distance and early development mode. Specifically, groups with brooded early development 

mode (FG4, FG5, FG12, FG14) and groups with long dispersal distance and high fecundity 

(FG7, FG8, FG9, FG10, FG13, FG15), along with groups with any of these trait levels and a 

laid early development mode (FG11) have settlement probabilities that are three times as high 

as the settlement probabilities of groups with none of the aforementioned trait levels (FG2). 

The latter have settlement probabilities that are half the settlement probabilities of functional 

groups with planktonic early development mode and either long dispersal distance (FG1) or 

high fecundity (FG6, FG16) along with groups with short dispersal distance, low fecundity 
and laid early development mode (FG3). 

The settlement probabilities of epifaunal functional groups that are employed during the 

model’s recruitment submodel are derived from the settlement probabilities that are employed 

during the model’s initialization, by making them proportional to each group’s contribution to 

the epifaunal spawner pool. The settlement probabilities of infaunal functional groups are 

additionally determined by each group’s role in sediment engineering and position in the 

sediment, along with the relative abundance of sediment stabilizing and destabilizing groups, 

before each group’s contribution to the infaunal spawner pool is factored in, following the 

same procedure as above. The former elements represent the mechanism of sediment 

engineering, which is imposed by first dividing the settlement probabilities of mobile 

stabilizers and groups that live deep in the sediment (FG2, FG3, FG6, FG8) by 2. The rest of 

the rules apply only on the remaining infaunal groups. If the effective sediment stabilizers 

(intermediate and large sessile stabilizers FG5 and FG10) outnumber the effective 

destabilizers (intermediate and large destabilizers FG7 and FG11), the settlement probabilities 

of the stabilizers (FG5, FG10) and the basibiotic group FG9 are multiplied by 2 and those of 

the destabilizers (FG4, FG7, FG11) are divided by 2. Otherwise, the settlement probabilities 

of the stabilizers (FG5, FG10) and the basibiotic group FG9 are divided by 2 and those of the 

destabilizers (FG4, FG7, FG11) are multiplied by 2. The infaunal group that is neutral with 

respect to both epibiosis and sediment engineering (FG1) does not have its settlement 
probability modified during this process. 

Small-scale model of the intertidal 

The settlement probabilities of all infaunal and epifaunal functional groups that are 

employed during the model’s initialization are defined by each group’s fecundity, dispersal 

distance, early development mode and tolerance to low salinity/tidal exposure. The three 

former processes are represented by using the same settlement probabilities as those employed 

in the initialization of the small-scale model of the subtidal. The latter process of 

environmental filtering is imposed by altering these settlement probabilities. Specifically, the 

settlement probabilities of all stenohaline groups (FG1, FG2, FG4, FG5, FG6, FG9, FG12, 

FG14, FG15, FG16) are divided by 2. 

The settlement probabilities of epifaunal functional groups that are employed during the 

model’s recruitment submodel are derived from the settlement probabilities that are employed 

during the model’s initialization, by making them proportional to each group’s contribution to 

the epifaunal spawner pool. The settlement probabilities of infaunal functional groups are 

additionally determined by each group’s role in sediment engineering and the relative 
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abundance of sediment stabilizing and destabilizing groups, before each group’s contribution 

to the infaunal spawner pool is factored in, following the same procedure as above. The 

former elements represent the mechanism of sediment engineering, which is imposed by 

altering the settlement probabilities of all euryhaline and emersed groups (FG3, FG7, FG8, 

FG10, FG11). If the effective sediment stabilizers (intermediate and large stabilizers FG8 and 

FG10) outnumber the effective destabilizers (intermediate and large destabilizers FG7 and 

FG11), the settlement probabilities of stabilizer groups (FG8, FG10) are multiplied by 2 and 

those of destabilizer groups (FG3, FG7, FG11) are divided by 2. Otherwise, the settlement 

probabilities of the stabilizers (FG8, FG10) are divided by 2 and those of the destabilizers 
(FG3, FG7, FG11) are multiplied by 2. 

IV.2.3.2 Post-settlement mortality 

The mortality rates experienced by juveniles of all functional groups after their settlement 

on the seabed is assumed to be controlled by each group’s body size, with values representing 

extreme and intermediate levels observed in nature. 90% of juveniles of small functional 

groups, 50% of intermediate groups and 10% of juveniles of large groups are removed from 

the system following their settlement. 

IV.2.3.3 Predation 

The potential prey of the predator groups consists of groups that are smaller or similar in 

size but no smaller than 1/3 of their own size, are not buried deep in the sediment and their 

representative species are not protected by plates, shells or tubes. Specifically, FGP1 has 

groups FG4 and FG7 as its potential prey, while the potential prey of FGP2 consists of FG7 

and FG11. The sessile predator group FGP4 is additionally limited to mobile epifaunal 

organisms and can, therefore, feed on groups FGP1 and FGP3. The availability of precise 

information on the diet of the representative species of predator group FGP3 in the Rance 

estuary allows the assignment of groups FG4 and FG5 as its potential prey. The abundance of 

predator groups at each time step in the subtidal and intertidal models is assumed to be equal 

to 1/10 of the total abundance of their potential prey and 1/10 of the abundance of the most 

abundant group among the potential prey, respectively, during the previous time step. The 

number of individuals of the potential prey groups that die due to predation and are removed 
from the system at each time step is equal to the abundance of their respective predators. 

IV.2.4 Model analysis 

The lack of detailed knowledge on a number of important ecological processes allowed 

only their very basic, often semi-quantitative, representation. Accordingly, the model’s 

analysis focused on its structural characteristics and theoretical background, rather than its 

parameterization. The goal was to explore the potential of developing a dynamic and spatially 

explicit model of benthic macroinvertebrates within the specified conceptual and 
methodological framework, so no attempts were made at model validation. 

First, a 10-year simulation of the standard version of the model was replicated 3 times. 

The choice of 10 years was made because the possibility of all sites in the Rance estuary to 

stay undisturbed and evolve concurrently should decrease significantly as the number of time 

steps increases. The number of replicates was chosen for practical reasons. The simulation 

that resulted in the higher level of beta diversity (see below) was singled out (hereafter, the 

“benchmark simulation”) and the abundances of all functional groups in each patch of the 
large-scale model were mapped for each of the 10 time steps. 



 

 

Table IV.2 Parameterization of the subtidal and the intertidal small-scale models during their initialization and their subsequent simulation in the case that 

they are dominated by sediment stabilizing or destabilizing functional groups 

Groups Size 
Position in 

substrate 

Subtidal 

initial 

settlement 

probability 

multiplier 

Intertidal 

initial 

settlement 

probability 

multiplier 

Subtidal 

stabilizer-

dominated 

settlement 

probability 

multiplier 

Subtidal 

destabilizer-

dominated 

settlement 

probability 

multiplier 

Intertidal 

stabilizer-

dominated 

settlement 

probability 

multiplier 

Intertidal 

destabilizer-

dominated 

settlement 

probability 

multiplier 

Post-

settlement 

mortality 

rate (%) 

Potential 

prey groups 

Subtidal 

habitat 

modification 

role 

Intertidal 

habitat 

modification 

role 

FG1 S infauna 2/3 1/3 1 1 1 1 90 - - - 

FG2 S infauna 1/3 1/6 1/2 1/2 1 1 90 - - - 

FG3 S infauna 2/3 2/3 1/2 1/2 1/2 2 90 - - - 

FG4 S infauna 1 1/2 1/2 2 1 1 90 - - - 

FG5 M infauna 1 1/2 2 1/2 1 1 50 - stabilizer - 

FG6 M infauna 2/3 1/3 1/2 1/2 1 1 50 - - - 

FG7 M infauna 1 1 1/2 2 1/2 2 50 - destabilizer destabilizer 

FG8 M infauna 1 1 1/2 1/2 2 1/2 50 - - stabilizer 

FG9 M infauna/epifauna 1 1/2 2 1/2 1 1 50 - basibiont basibiont 

FG10 L infauna 1 1 2 1/2 2 1/2 10 - stabilizer stabilizer 

FG11 L infauna 1 1 1/2 2 1/2 2 10 - destabilizer destabilizer 

FG12 S epifauna 1 1/2 - - - - 90 - - - 

FG13 S epifauna 1 1 - - - - 90 - - - 

FG14 S epifauna 1 1/2 - - - - 90 - - - 

FG15 L epifauna 1 1/2 - - - - 10 - - - 

FG16 L epifauna 2/3 1/3 - - - - 10 - - - 

FGP1 - - - - - - - - - FG4, FG7 - - 

FGP2 - - - - - - - - - FG7, FG11 - - 

FGP3 - - - - - - - - - FG4, FG5 - - 

FGP4 - - - - - - - - - FGP1, FGP3 - - 
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IV.2.4.1 Spatial resolution 

The influence of spatial resolution on the model’s behaviour was investigated by 

separately increasing the resolution of the large- and the small-scale models. The resolution of 

the small-scale models was set to 120 × 120 patches and the area represented by a patch of the 

large-scale model to approximately 0.05 km
2
. In the latter, the calculation of each infaunal and 

epifaunal group’s contribution to the respective spawner pool in a patch of the large-scale 

model was based on the patch and its 24 closest neighbours that are part of the system. The 
goal was to conserve the dispersal distance of the low-resolution model. 

This high-resolution version of the large-scale model was first combined with the low-

resolution version of the small-scale models (HL-LS configuration). Then the low-resolution 

version of the large-scale model was combined with the high-resolution version of the small-

scale models (LL-HS configuration). A 10-year simulation of each model configuration 

(standard, HL-LS, LL-HS) was replicated 3 times. The output of interest consisted in the 

evolution through time of the minimum, median and maximum number of functional groups 

per patch of the large-scale model over all of its patches. The goal was to illustrate the rate at 

which the system moves toward equilibrium, following an initial state where all functional 
groups are present in most patches of the system. 

IV.2.4.2 Sensitivity analysis 

Sensitivity analysis was performed on the basis of the low-resolution version of both the 

small- and the large-scale model. First, the role of the dispersal distance was examined by 

using all of the system’s patches for the calculation of each infaunal and epifaunal group’s 

contribution to the respective spawner pool in each patch of the large-scale model. Then the 

role of post-settlement mortality was examined by completely removing it from the small-

scale models. The role of sediment engineering was examined by removing its effect on the 

settlement probabilities of the small-scale model. Finally, the role of predation was examined 

by removing predation mortality from the small-scale model. Each model configuration was 

simulated for 10 years and replicated 3 times. 

The effect on the model’s behaviour was investigated by demonstrating the evolution of 

beta diversity through time and comparing it with the levels that were observed at the level of 

functional groups in the Rance estuary in 1995. Beta diversity was in all cases quantified as 

the variance of the Hellinger-transformed table of group abundances in different sites 

(Legendre and De Cáceres, 2013). In the case of the observations, this table consisted of 

functional group abundances in the 113 sites (71 subtidal, 42 intertidal) that were sampled in 

the Rance estuary in 1995. In the case of the output of the different model configurations, the 

table consisted of functional group abundances in 113 patches (71 subtidal, 42 intertidal) that 

were selected out of the 230 patches of the large-scale model, in order to represent the areas of 
the Rance estuary that were sampled in 1995. 

IV.2.4.3 Group accumulation 

Group accumulation curves illustrate the accumulation of functional groups as the number 

of sites increases. At samples consisting of one site, they depict the average number of groups 

per site and, as the number of sites increases, the curves can be extrapolated to produce an 

estimate of the total number of groups in an area larger than the one sampled. The combined 

depiction of the confidence interval (± 2 standard errors) demonstrates the degree of variation. 

The group accumulation curves and their variance were calculated by using an analytical 

expression (Ugland et al., 2003). Curves were produced for the 113 macroinvertebrate 

samples from the Rance estuary in 1995 and for 113 patches that were selected as described 

above out of the 230 patches of the large-scale model output in the 1
st
, 2

nd
, 3

rd
 and 10

th
 year of 
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the benchmark simulation. These years were selected because it is when the qualitatively 
biggest changes were observed. 

IV.2.4.4 Spatial correlation 

Mantel correlograms were used to assess the level of spatial correlation in the multivariate 

domain of functional group abundances. They consist of the normalized Mantel statistic 

between a multivariate dissimilarity matrix among sites and an equivalent dissimilarity matrix 

derived by attributing the value 0 to pairs of sites that belong to the same distance class and 

the value 1 to all other pairs of sites. The process is repeated for each distance class and each 

value of the Mantel statistic can be tested by permutations. Mantel correlograms were 

produced for the 113 macroinvertebrate samples from the Rance estuary in 1995 and for 113 

patches that were selected as described above out of the 230 patches of the large-scale model 

output in the 1
st
, 2

nd
, 3

rd
 and 10

th
 year of the benchmark simulation. Distances for the model 

output were calculated between the centres of symmetry of each patch of the large-scale 

model, by assuming patch dimensions of 450 m × 450 m. The tables of functional group 

abundances were Hellinger-transformed and Holm’s correction for multiple testing was 

applied to the permutation tests. The number of distance classes was calculated using Sturge’s 

rule and the correlograms were limited to distance classes that include all sites (Borcard et al., 

2011). 

IV.2.4.5 Correspondence analysis 

Correspondence analysis (Legendre and Legendre, 1998) was first performed on the table 

of functional group abundances in the 113 sites that were sampled in the Rance estuary in 

1995. It was then performed on the table of functional group abundances in 113 out of the 230 

patches of the large-scale model output in the 1
st
, 2

nd
, 3

rd
 and 10

th
 year of the benchmark 

simulation. The patches correspond to the areas of the Rance estuary that were sampled in 

1995, while these years are the time steps when the qualitatively biggest changes were 

observed. The goal was to compare patterns in the relative frequencies of functional groups 

along the different sites, so scaling 2 was selected for the projection of groups on the first two 
axes of the reduced multivariate space (Borcard et al., 2011). 

IV.2.5 Software 

Simulations of both the small- and the large-scale models were implemented in the multi-

agent modelling environment NetLogo version 5.3.1 (Wilensky, 1999). Interactions between 

the two scales were realized through the NetLogo extension LevelSpace (Hjorth et al., 2015). 

The source code of the subtidal/intertidal small-scale models and the large-scale model can be 

found in Annex C. All model analyses were performed using the statistical software R version 

3.2.2 (R Core Team, 2015) with the packages vegan (Oksanen et al., 2015) and raster 

(Hijmans, 2016) and the function beta.div (Legendre and De Cáceres, 2013, Appendix S4). 

IV.3 Results 

A common pattern of all model simulations was the initial presence of all functional 

groups in most patches of the large-scale model and the gradual dominance of some of them 

in some patches and others in some other patches (see Fig. IV.A-IV.J in the Appendix). The 

general trend was for the whole system to be covered by stabilizer-dominated patches. 

Pockets of resistance to this trend were, however, formed by destabilizer-dominated patches 

of the subtidal and the intertidal, within which the opposite trend could be observed. The 

small-scale models can also be run independently, by setting each group’s contribution to the 
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spawner pool equal to its abundance in the same models. The output depends on the model’s 
initialization but otherwise appears to be constant. 

If at the model’s initialization the subtidal model is dominated by stabilizers, groups FG2, 

FG5 and FG10 persist along with the predators FGP3 and FGP4 (see Fig. IV.K in the 

Appendix), whereas the dominance of stabilizers in the intertidal model leads to the 

persistence of groups FG2, FG8 and FG10 (see Fig. IV.L in the Appendix). In both cases, 

besides being characterised by random noise, the functional group abundances appear to 

follow periodic orbits. The dominance of destabilizers at the model’s initialization results in 

the persistence of groups FG4, FG7 and FG11 in the subtidal (see Fig. IV.M in the Appendix) 

and groups FG3, FG7 and FG11 in the intertidal model (see Fig. IV.N in the Appendix). All 

four predator groups persist in the former case, while predators FGP1, FGP2 and FGP4 persist 

in the latter. An equilibrium point, featuring stochastic variability, is reached in both cases. 

IV.3.1 Spatial resolution 

The shift of the model’s large- and small-scale components to a higher spatial resolution 

(HL-LS and LL-HS configurations, respectively) generated output that was qualitatively 

similar to that of the standard model. The analysis of these high-resolution configurations was, 

therefore, focused on the rate at which the system moved away from its initial conditions (Fig. 

IV.2). The maximum number of groups per patch of the large-scale model moved from 20 at 

initialization to 16 or 17 after 10 years of simulation in all model configurations. The rate of 

decrease of the minimum number of groups was, likewise, the same in all three model 

configurations. It started at 17 and reached the value of 4 after 10 years in the standard and the 

HL-LS model configurations. The use of the high-resolution small-scale models (LL-HS) 

generally increased the minimum number of groups, which started at 19 and reached the value 

of 6 after 10 years. The median number of groups appears to decrease slower in the HL-LS 

and LL-HS model configurations, reaching the value of 12 or 13 after 10 years, compared to 
11 groups in the standard model. 

IV.3.2 Sensitivity analysis 

The evolution of beta diversity during 10-year simulations of the standard model shows a 

clear increasing trend during the first nine years, followed by a slight decrease (Fig. IV.3a). 

The levels reached in the ninth year were, at least in one of the three replicates (0.35), quite 

close to those observed in the Rance estuary (0.38). The replacement of the neighbourhood 

dispersal by its global counterpart drastically changed beta diversity in the modelled system 

(Fig. IV.3b). The generated values remained rather stable just under 0.1 throughout most of 

the 10 year simulations, showing a slight decrease at the end. The removal of post-settlement 

mortality also influenced the levels of beta diversity, which reached their peak (just under 0.3) 

in the sixth year and had a general declining tendency afterwards (Fig. IV.3c). The effect on 

beta diversity of removing the role of sediment engineering in defining the groups’ settlement 

probabilities was two-fold (Fig. IV.3d). First, variability among the three simulations was 

reduced to a minimum. Additionally, levels of beta diversity increased very slowly, reaching 

values just over 0.1 in the tenth year. The removal of predation mortality had a minimal effect 

on beta diversity (Fig. IV.3e). The levels that were reached in all three simulations were 

similar to those of the standard model, except for the lack of any decline toward the end. 



 

 

 

Fig. IV.2 Evolution of the minimum (dashed line), median (solid line) and maximum (dotted line) number of functional groups per patch of the large-scale 

model in three 10-year simulations of a) the standard model configuration, b) the one with the high-resolution large-scale model (HL-LS) and c) the one with 

the high-resolution small-scale models (LL-HS) 

 



 

 

 

Fig. IV.3 Evolution of beta diversity in three 10-year simulations of a) the standard model configuration, b) the one with global dispersal, c) the one without 

post-settlement mortality, d) the one without sediment engineering and e) the one without predation mortality. The dotted line indicates the observed level of 

beta diversity in the Rance estuary in 1995 
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IV.3.3 Group accumulation 

The group accumulation curve from the sampling of the Rance stuary illustrates high 
variation at small samples that gradually goes down as the sample increases (Fig. IV.4a). It 
appears that the average number of groups per site is about 11. The evolution of the group 
accumulation curve over a 10-year simulation of the standard model (Fig. IV.4b-e) started 
with almost all sites having all 20 functional groups. Some of them were gradually excluded 
from some sites and others from all of them, leading to increased variation and a total number 
of 17 functional groups in the 10th year. The average number of groups per site appears to 
drop through to the 10th year, when it reached levels similar to those of the observations. Still, 
variation was below the levels that were observed in the Rance estuary. 

 

Fig. IV.4 Group accumulation curves with confidence intervals illustrated as shaded areas for a) the 
113 sites that were sampled in the Rance estuary in 1995 and 113 sites selected from b) the 1st, c) the 
2nd, d) the 3rd and e) the 10th year of the benchmark simulation 
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IV.3.4 Spatial correlation 

The Mantel correlogram of the observed functional group abundances shows a 
significantly positive spatial correlation just over 0.1 and 0.05 in the first two distance classes 
(0.5 km and 1.5 km) and a significantly negative correlation of about -0.05 in the fourth (3.5 
km) and eighth (7.5 km) distance classes (Fig. IV.5a). Spatial correlation in the 1st year of the 
model output was demonstrated as statistically significant values -0.06 and -0.04 in the fifth 
and sixth distance classes (5 km and 6 km) (Fig. IV.5b). Significantly negative spatial 
correlation of the same magnitude occurred in the third and fourth distance classes (3 km and 
4 km) in the 2nd (Fig. IV.5c) and the 3rd year (Fig. IV.5d), accompanied by the same level of 
significantly positive correlation in the first distance class (1 km). The latter was retained in 
the 10th year (Fig. IV.5e), when it reached values just under 0.15, along with a significant 
spatial correlation of almost -0.1 in the third distance class (3000 m). Significantly negative 
correlations of similar magnitude occurred also in the seventh and eighth distance classes (7 
km and 8 km) of the 10th year. 

 

Fig. IV.5 Correlograms of the Mantel statistic in different distance classes for a) the observations from 
the Rance estuary in 1995 and the model output in b) the 1st, c) the 2nd, d) the 3rd and e) the 10th year of 
the benchmark simulation. Filled squares indicate statistically significant values at 0.05 level 
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IV.3.5 Correspondence analysis 

The relative position of functional groups as they are projected on the first two axes of the 
reduced multivariate space illustrates their similarity with regard to their relative frequencies 
along the sites (Fig. IV.6). It should be noted that the first two axes of the correspondence 
analysis that is performed on the observed group abundances represent only about 32% of the 
total variation, whereas the same value for the output of the 1st, the 2nd, the 3rd and the 10th 
simulated year is equal to 72%, 84%, 79% and 73%, respectively. 

 

Fig. IV.6 Projection of functional groups on the first two axes of the correspondence analysis of group 
abundances a) from the Rance estuary in 1995 and b) from the 1st, c) the 2nd, d) the 3rd and e) the 10th 
year of the benchmark simulation 

Some of the patterns that can be seen in the observed group associations are also evident 
in the results of the simulations. The observed separation of groups FG12 and FG1 can be 
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seen after the 1st year of the simulation. The same holds true for the separation of group FG3 
along with groups FG8 and FG13. Groups FG12 and FG13 gradually get eliminated and 
group FG8 converges toward the majority of the groups but the separation of group FG3 
remains a constant pattern through time. The association between groups FG4, FGP2, FGP3 
and FGP4 is also a common pattern of the observations and the entire simulation period after 
the initialization, whereas their initial association with groups FG5 and FG2 quickly recedes. 
The close and constant association of groups FG7 and FG11 throughout the simulation period 
can to some extent also be seen in the observations. In the 10th year of the simulation groups 
FG3, FG4, FG7 and FG11 are clearly separated from the rest of the groups along the first axis, 
themselves being separated along the second one. Predatory groups FGP1, FGP3 and FGP4 
on the one hand and FGP2 on the other are also separated from the majority of the groups and 
to a lesser degree among themselves, as the former are mostly associated with group FG4 and 
the latter with groups FG7 and FG11. 

IV.4 Discussion 

The output of the model represents the dynamics of functional diversity in benthic 
macroinvertebrate communities at two spatial scales. The first one corresponds to the output 
of the small-scale model and can be considered to represent α-diversity. Abundance patterns 
at this scale were characterised by the gradual dominance of a few functional groups. This is 
an inherent property of the small-scale model and represents the process of competitive 
exclusion. Abundance patterns at the level of the large-scale model were complicated by the 
diversity among its patches and the process of local dispersal. The turnover of functional 
group abundance in the large-scale model can be considered to represent β-diversity. The 
generated abundance patterns were largely controlled by the distinction between the subtidal 
and the intertidal zone and the dominance of sediment stabilizers or destabilizers in each 
patch. The few areas of destabilizer-dominated patches that were left after 10 years of 
simulation did not seem able to resist the general trend of patches becoming dominated by 
sediment stabilizers. This trend could be the result of overestimating the effect of sediment 
engineering, particularly sediment stabilization, which might be contingent on the respective 
functional groups reaching certain density levels. 

IV.4.1 Spatial resolution 

The evolution of the minimum, median and maximum number of functional groups per 
patch of the large-scale model illustrates the rate at which the model moves away from its 
initial conditions. All three model configurations started with a small gap between the 
minimum and maximum values, which then increased as patches diverged in their community 
composition. This gap was constantly smaller in the configuration with the high-resolution 
small-scale model. This is the result of lower levels of stochastic variability in the small-scale 
model, although there is no reason to believe that this is more realistic than the other model 
configurations. An important consequence of lower levels of stochastic variability was slower 
competitive exclusion, which is expected to slow down the model’s evolution toward a state 
of equilibrium. This state should be characterised by a reduction of the gap between the 
minimum and maximum values, probably at the level of 3 and 5 functional groups per patch, 
based on the output of the independent simulations of the intertidal and subtidal small-scale 
models, respectively. The general trend thus appears to be one of initially high α-diversity and 
low β-diversity, followed by a decrease in α-diversity and an increase in β-diversity, before 
both α- and β-diversity stabilize at their lowest levels. 
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IV.4.2 Sensitivity analysis 

The model was able to generate levels of β-diversity that were not far from those observed 
in the Rance estuary in 1995, but would probably fail at sustaining them. The results of the 
sensitivity analysis identify local dispersal and sediment engineering as the most important 
drivers of β-diversity. No clusters of patches that were dominated by sediment stabilizers or 
destabilizers were formed in the case of global dispersal. The low levels of β-diversity that 
were reached are the result of stochasticity in the small-scale model’s initialization and the 
distinction between the subtidal and the intertidal zone; they themselves decreased toward the 
end of the simulation. Without sediment engineering this initialization effect was removed, so 
that all three simulations had almost identical output. β-diversity increased at a very slow rate, 
as differences in community composition were gradually amplified through local dispersal, 
but did not really take off during the 10-year simulations. The removal of post-settlement 
mortality allowed small functional groups to overwhelmingly dominate the small-scale 
models. This accelerated the model’s evolution and restricted the potential for differentiation. 
The small impact of removing predation mortality is in line with the limited role that was 
attributed to it in the small-scale models. 

IV.4.3 Group accumulation 

The evolution of the accumulation curve illustrates the transition from a rather 
homogeneous system to a more heterogeneous one. During this transition, three obligate 
epibiotic functional groups (FG12-14) were eliminated from the system. This could indicate 
that epibiosis cannot by itself sustain observed levels of epifaunal diversity, making the 
representation of different substrate types necessary. In the 10th year of the simulation the 
average number of functional groups per site was similar to what could be observed in the 
Rance estuary but the variation around this value was lower. This becomes evident as the 
sample size increases and variation in the model output becomes zero, compared to its 
sustained high levels in the observations. The latter appears to be akin to the picture seen in 
the 3rd year of the simulation, when the soon-to-disappear epibiotic functional groups became 
particularly rare. The rareness of functional groups appears to be an element of the 
observations that is underrepresented in the model output of the 10th year. It could be an 
inherent property of the sampling scheme that was applied to the Rance estuary, requiring a 
large-scale model of a much higher resolution for its recreation. Still, it could also be 
recreated by a collection of sites that are at different stages of ecological evolution. 

IV.4.4 Spatial correlation 

Mantel correlograms, like the one constructed for the observations from the Rance estuary 
in 1995, typically constitute a representation of environmental filtering. They demonstrate 
significantly positive correlation in small distance classes, due to habitat similarity that drives 
similar community composition, and significantly negative correlation in large distance 
classes, where habitat and community composition become increasingly dissimilar. The 
distances represented by each class and the specific patterns of spatial correlation are 
characteristic of each ecological system. The similarity of the correlogram that was generated 
for the 10th year of the benchmark simulation with the one that was generated for the 
observations from the Rance estuary, demonstrates the potential of the model to recreate 
observed patterns of multivariate spatial correlation based primarily on local dispersal and 
sediment engineering. The spatial patterns in the model output appear in general to lag behind 
in distance compared to the respective patterns in the observations. This trend might be 
associated with the particularly localised representation of dispersal. It is not clear to which 
degree the observed spatial patterns are caused by abiotic environmental filtering or biogenic 
habitat modification or how the two can interact. 
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IV.4.5 Correspondence analysis 

The results of the correspondence analysis that was separately performed on the observed 
group abundances and the model output shows that the first two axes of the former represent a 
much smaller proportion of the total variation compared to the first two axes of the latter. This 
is not surprising, since the model aims to reproduce only a fraction of the ecological processes 
that are expected to take place. The fact that some of the observed functional group 
associations can also be seen in the correspondence analysis of the model output indicates that 
some of the most important processes were represented efficiently and others less so. The 
separation of functional groups that are associated with the intertidal zone in the fourth 
quadrant of the observed group projection is more or less visible in the group projection of the 
model output throughout the simulated period. The same holds true for the association of 
group FG4 with the majority of predatory groups in the second quadrant of the observed 
group projection. The placement of the basibiotic group FG9 in the third quadrant of the 
projections that correspond to the initial time steps, before epibiosis is largely eliminated, 
corresponds well with its placement in the observed group projection, along with the gravel-
associated groups FG6, FG12 and FG15. 

IV.4.6 Limitations and potential improvements 

Among the many assumptions made during the development of the model, those 
associated with the representation of space are central and could significantly affect its 
potential to recreate observed patterns of benthic biodiversity. Although epibiosis can be seen 
as a third dimension of the small-scale model and the impact of sediment engineering is 
defined by considering each functional group’s preferred position in the sediment, the 
representation of space occupation in the model is 2-dimensional, both for the infauna and the 
epifauna. The transition from the small-scale to the large-scale model is based on the 
assumption that each patch of the latter can be represented by a realization of the former. The 
validity of this assumption depends on the ability of the large-scale model’s resolution to 
represent spatial variability in the Rance estuary. Patterns of spatial correlation in the model 
output were similar to observations and increased model resolution led to qualitatively similar 
results, supporting the transition between scales, at least for the scales of interest. Still, it 
appears that model resolution could affect temporal patterns, with increased resolution, 
especially of the small-scale model, increasing the rate at which the model moves away from 
its initial conditions and toward equilibrium. 

The representation of time in the model is likewise limited to the reproduction of annual 
patterns of benthic biodiversity, ignoring any seasonal variability. Differences among 
functional groups regarding the order in which they grow constitute an implicit representation 
of differences in competitive ability rather than sequential processes in time. Furthermore, all 
patches of the large-scale model are assumed to initialize together and run concurrently over 
the simulated period. This assumption should become increasingly unrealistic as the number 
of time steps increases, since disturbances, such as extremely low temperatures or sediment 
destabilization, impacting all or a subset of the patches are expected to be common. The 
addition of a realistic disturbance regime could additionally prevent the model from reaching 
a state of equilibrium and allow it to sustain high diversity levels. Simulations of 10 years 
were not long enough for the model to reach such a state, but the model’s behaviour makes it 
possible to guess what it might look like. It is reasonable to assume that subtidal and intertidal 
patches of the large-scale model would eventually be dominated by stabilizing functional 
groups, possibly the same that dominate in the independent simulations of the subtidal and the 
intertidal small-scale models, respectively. 

The ability of the 20 functional groups to represent functional diversity as observed in the 
Rance estuary in 1995 (Alexandridis et al., 2017) supports the pertinence of the applied level 
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of ecological aggregation and the assigned values of biological traits. This does not rule out 
any potential benefits of a more detailed representation of the existing functional roles or the 
inclusion of new ones. In this regard, the common food resource of algae/detritus could be 
differentiated based on the nutritional value of its main constituents. This distinction along 
with the explicit representation of individuals’ mobility and position in the sediment could 
allow the consideration of biogeochemical processes that are expected to play a central role in 
the assembly of marine benthic communities (Herman et al., 1999). The explicit 
representation of movement would also be a prerequisite for a more realistic reproduction of 
predation. Dispersal, on the other hand, would probably increase in realism if its distance was 
not kept constant for all functional groups, but differed based on each group’s maximum 
dispersal distance. Furthermore, the model could include some general information on 
patterns of water movement or even be coupled to a hydrodynamic model of the Rance 
estuary, thus significantly improving the representation of larval dispersal. 

The addition of information on the hydrodynamics of the Rance estuary would create new 
opportunities for the representation of food availability for individual organisms. Food has 
been shown to become less available within the boundary layer as distance from its main 
sources increases (Fréchette et al., 1989), while renewal rate from the water column depends 
on flow velocity and turbulent mixing (Butman et al., 1994). Differences in food availability 
in different parts of the Rance estuary could be represented by adjusting the space that is 
required for the survival of individual organisms in the respective small-scale models. 
Another form of large-scale environmental variability that could significantly increase the 
ecological pertinence of the model is the distinction of different substrate types, as the 
characteristics of the seabed are known to shape benthic macroinvertebrate communities in 
the Rance estuary (Desroy, 1998). The model’s representation of sediment engineering could 
to a large extent mimic the actual environmental filtering effect of substrate, although how the 
two might interact is not clear. Sediment engineering was thus able to generate realistic 
patterns of diversity but could probably not sustain them, a task at which more or less 
permanent environmental filtering could be much more effective. 
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IV.6 Appendix 

 

Fig. IV.A Functional group abundances in the 1st year of the benchmark simulation 

 

Fig. IV.B Functional group abundances in the 2nd year of the benchmark simulation 
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Fig. IV.C Functional group abundances in the 3rd year of the benchmark simulation 

 

. Fig. IV.D Functional group abundances in the 4th year of the benchmark simulation 
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Fig. IV.E Functional group abundances in the 5th year of the benchmark simulation 

 

Fig. IV.F Functional group abundances in the 6th year of the benchmark simulation 
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Fig. IV.G Functional group abundances in the 7th year of the benchmark simulation 

 

Fig. IV.H Functional group abundances in the 8th year of the benchmark simulation 
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Fig. IV.I Functional group abundances in the 9th year of the benchmark simulation 

 

. Fig. IV.J Functional group abundances in the 10th year of the benchmark simulation 
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Fig. IV.K Evolution of functional group abundances in an independent simulation of the subtidal 
small-scale model that is dominated by sediment stabilizers 

 

Fig. IV.L Evolution of functional group abundances in an independent simulation of the intertidal 
small-scale model that is dominated by sediment stabilizers 
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Fig. IV.M Evolution of functional group abundances in an independent simulation of the subtidal 
small-scale model that is dominated by sediment destabilizers 

 

Fig. IV.N Evolution of functional group abundances in an independent simulation of the intertidal 
small-scale model that is dominated by sediment destabilizers 
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Chapter V: Conclusions 

V.1 Study site 

The Rance estuary occupies a central place in the studies presented here, as it provided the 
data set from which the system’s primary functional components were derived (Alexandridis 
et al., 2017). The grouping procedure confirmed that both niche and neutral processes are at 
play, shaping benthic communities in the Rance estuary. Among the former, the filtering role 
of substrate type, its biogenic modification and the organisms’ trophic behaviour stand out in 
their impact on the functional characteristics of the groups. The evaluation of the grouping 
against its theoretical assumptions made it clear that processes linked to divergent 
reproductive strategies could not be adequately represented, due to the quality of the available 
trait information. Still, the resulting level of ecological aggregation provides an objective and 
testable measure of the level of functional redundancy in benthic communities of the Rance 
estuary. 

The primary data contained information on spatial patterns of community composition, 
which along with the ecological context in which they were collected (Desroy, 1998) allowed 
the use of the theoretical frameworks that formed the basis of the two modelling approaches 
(Chapter III, IV). The generated models may not be adequately validated for the formulation 
of reliable predictions about the Rance estuary, but they appear to highlight the role of 
disturbance in shaping its benthic communities. However, this work is not so much about the 
Rance estuary as it is about the first principles that were used for the formation of functional 
groups and their incorporation in models of community assembly. Specifically, the work 
explores the feasibility of a dynamic and spatially explicit representation of macroinvertebrate 
diversity, based on a snapshot of the system and a set of theoretical assumptions. 

V.2 Empirical research 

V.2.1 Single scale 

Data sets like the one employed here, constituting no more than a snapshot of the system’s 
biotic component and information on a few important abiotic variables, are not a rare 
occurrence among coastal benthic systems. They are typically analysed with the use of an 
array of multivariate statistical techniques that can reveal spatial patterns of community 
composition and relate them to a set of abiotic conditions (Borcard et al., 2011). Little 
information beyond abiotic niche requirements and potential drivers of spatial autocorrelation 
can be offered by this approach. Specifically, only guesses can be made about the dynamic 
behaviour of the system that led to the observed biodiversity patterns or its temporal and 
spatial response to a perturbation. Data on the organisms’ biological traits can provide a more 
mechanistic understanding of biodiversity patterns (Dray et al., 2014), but does not 
significantly improve their predictability. 

The use of long-term monitoring data can reveal some aspects of the dynamics that 
underlie the biodiversity patterns usually observed in a system snapshot. Observations of the 
abundance of 3 polychaete species collected over a period of 3 decades in the Wadden Sea 
revealed top-down cascading effects of severe winters, along with recovery cycles over the 
following years (Beukema et al., 2000). Monitoring efforts of this scale are, however, very 
rare, while the effects of perturbations may be much weaker and somewhat confounded by 
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their propagation through feedback cycles connecting the community members of more 
diverse systems. The short-term investigation of spatial and temporal patterns of 11 
macrobenthic species conducted in the Schelde estuary in the same period detected the spatial 
effect of environmental variables, but showed little evidence of temporal structure (Ysebaert 
and Herman, 2002). 

V.2.2 Multiple scales 

The study of Ysebaert and Herman (2002) was very effective at revealing the spatial 
scales of macroinvertebrate diversity patterns, along with important factors that lie behind 
them. Most of the differences in species abundance were observed at the scale of 102 m and 
half of the spatial structure could be explained by environmental variables, namely salinity, 
mud content, chlorophyll a and bed level height. However, some species showed significantly 
different abundance levels at distances over 103 m. This pattern could not be explained by 
environmental factors but had a significant component that interacted with the factor year, 
indicating synchronous development driven by the short-distance dispersal of adults or larvae. 
The large proportion of unexplained spatial structure demonstrates the limitations of studies 
focused on large-scale niche differences as the main mechanism of community assembly 
(Amarasekare, 2003). 

The combination of large-scale (102 m) observations of abundance patterns with small-
scale (100 m) experiments on adult–juvenile interactions in Manukau Harbour revealed the 
combined role of large-scale abiotic variability and small-scale biotic interactions in shaping 
observed biodiversity patterns (Thrush et al., 1997). Dauwe et al. (1998) used a diagenetic 
model to represent the small-scale effect of bioturbation on the vertical distribution of food. 
By combining the output of this model with information on the relative quality of organic 
matter in distant sites of the North Sea, they were able to explain the trophic structure of their 
benthic communities. The experimental investigation of a community’s composition during 
its recovery from hypoxia in the Westerschelde estuary revealed complex successional 
dynamics, related to resource availability, natural variation and a host of biological traits (Van 
Colen et al., 2008). 

This small sample of studies combining the output of observational, experimental and 
modelling research illustrates the potential of investigating benthic biodiversity patterns 
across spatial and temporal scales. It also serves as a demonstration of the challenges involved 
in any attempt to model the wide array of mechanisms that shape benthic communities at 
different scales. Constable (1999) remarked on the extreme complexity of the processes that 
would need to be included in such a model. He indicated recruitment, environmental filtering, 
biogenic habitat modification, competition for food and space, predation, extrinsic 
perturbations and natural variability in space and time as the main elements that would need to 
be represented. He also identified the emergence of large-scale diversity patterns from 
processes at the level of individual organisms as the factor presenting the greatest 
methodological challenges. 

V.3 Modelling macrobenthos 

V.3.1 Functional groups 

Faced with the multitude and complexity of the processes that can shape benthic 
macroinvertebrate communities, most modelling efforts have either concentrated on single or 
related species or represented one or two mechanisms that are expected to primarily control 
community assembly at a single scale. The first step taken here toward a more comprehensive 
model of macrobenthos aimed at the reduction of its components through a systematic and 
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testable procedure that retains sufficient information on their role in the most important 
community assembly mechanisms (Alexandridis et al., 2017). 20 functional groups were 
found to efficiently represent taxonomic and functional diversity patterns observed at the level 
of their 240 constituent species. This process of ecological aggregation preserves trait-
controlled abundance patterns, by building groups of species with neutral variation of trait 
values (Hérault, 2007). 

The transition from species to functional groups was essential for the development of the 
following modelling approaches. A reduction of the number of modelled entities can lead to 
lower complexity and higher tractability, significantly facilitating model analysis. The 
practice of representing only common or representative species usually ignores the rarest 
members of a community, in spite of evidence for their significant contribution to ecosystem 
functioning (Lyons et al., 2005). This contribution can be disproportionate to their abundance, 
as species with the most distinct combinations of traits have been shown to be rarer than 
expected by chance (Mouillot et al., 2013). The grouping procedure that was employed here 
uses a wide array of biological traits, putting the emphasis on the species’ functional role 
instead of their abundance, which is used only secondarily for the assignment of trait values to 
each functional group. 

V.3.2 Functional relationships 

The evaluation of the functional grouping against its theoretical assumptions suggested 
that, for most biological traits, species abundances depend, at least to some extent, on the trait 
values that were assigned to the species (Alexandridis et al., 2017). The nature of this 
relationship was further elucidated through the investigation of associations of biological traits 
with environmental variables and among themselves (Chapter III). The former indicated 
substrate type and tidal exposure as the factors that mostly influence community composition 
based on large-scale trade-offs among species caused by environmental filtering. The latter 
indicated the existence of small-scale trade-offs due to different efficiencies of food and space 
utilization, differences in survival rates and colonization potential or differences in the 
species’ impact and response with regard to biogenic habitat modification. 

These results allowed the application of the respective theoretical frameworks for the 
definition of functional relationships of the previously built groups with their basic resources 
and with each other (Chapter III). Each of the community assembly mechanisms that are 
represented by these relationships encompasses a variety of processes that could potentially be 
represented in a more detailed way. Similar to the assignment of trait values to each species, 
where the available information with the lowest resolution dictated the resolution of each 
biological trait, the level at which each mechanism was represented was restricted by the 
available trait and environmental information. Hence, biological traits were used as proxies 
for the role of functional groups in a set of theoretically expected community assembly 
mechanisms that were represented at a relatively high level of biological organization. 

For instance, the biogeochemical nature of sediment engineering was not explicitly 
addressed, as the distinction between sediment stabilizers and destabilizers (Posey, 1987) was 
the best that could be done with the available information at the species level. Still, the 
ecological relevance of representing biogenic habitat modification at this level has been 
experimentally upheld (Volkenborn et al., 2009). Similarly, the complex set of processes that 
comprise the phenomenon of competition was only represented through the use of each 
group’s body size in the context of the concentration reduction hypothesis for space and food 
(Tilman, 1980). Space limitation due to adult–juvenile interactions and exploitative 
competition for food were found to play a central role in the successional dynamics of benthic 
communities, with the functional role of organisms being largely defined by their adult body 
size (Van Colen et al., 2008). 
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V.3.3 Qualitative models 

Ecological theories that predict the existence of functional trade-offs were combined with 
expert knowledge on the functioning of benthic communities for the construction of 
qualitative models of the system in the Rance estuary (Chapter III). This allowed quantifying 
the system’s potential for stability and predicting the direction of its components’ response to 
press perturbations. Initial results regarding the system’s response to altered food input and 
the effect of severe winters appear to agree with empirical evidence from similar systems. The 
approach for the comparison of model predictions with abundance observations allows the use 
of a single snapshot of the system for the elucidation of the ecological processes that can 
shape it through time. It, therefore, addresses a common issue of the statistical approaches that 
have been traditionally employed for the analysis of data sets of this nature. 

Qualitative models sacrifice the element of precision, in order to produce a general and 
realistic representation of the causal relationships that shape a system (Levins, 1966). Their 
flexibility allows the rapid assessment of alternative assumptions about system structure, 
based on their impact on the generated model predictions (Dambacher et al., 2002). They can, 
therefore, direct the initial steps of more quantitative modelling approaches, before investment 
in model development has rendered structural changes too costly. Still, the distinct role of 
processes that take place at different spatial scales cannot be explicitly represented by 
qualitative models, which limits their understanding and the potential to make predictions 
about spatially structured drivers. Transient dynamics can, likewise, not be easily addressed; 
they are, however, known to be a common feature of marine benthic systems (Beukema et al., 
2000). 

V.3.4 Agent-based models 

V.3.4.1 Scales of mechanisms 

The need for a spatially and temporally explicit representation of marine benthic 
communities led to the development of a modelling approach on the basis of the 
aforementioned ecological principles (Chapter IV). Among them, environmental filtering and 
differences in dispersal potential appear to operate at relatively large spatial scales (Ysebaert 
and Herman, 2002). On the other hand, biotic interactions, characterised by trade-offs in the 
efficiency of food and space utilization, differences in early survival rate and the effects of 
biogenic habitat modification, can be considered to take place at much smaller spatial scales 
(Van Colen et al., 2008). Community assembly mechanisms operating at different scales are 
very common in ecological systems and are typically demonstrated as high levels of both 
local and regional diversity (Kneitel and Chase, 2004), similar to patterns observed in the 
Rance estuary. 

The distinction between small- and large-scale community assembly mechanisms led to 
the adoption of a multi-scale modelling approach. Biotic interactions were represented at the 
level of individuals, forming spatially distinct assemblages, whose composition drove patterns 
of larval dispersal and was shaped by the effect of tidal regime. The representation of biotic 
interactions at the individual level allows the combination of various ecological processes that 
have not yet or could not have been adequately analysed to permit their representation through 
mathematical formulations. In spite of recent attempts to address this issue by integrating non-
trophic interactions into food web models (Kéfi et al., 2012), most biotic interactions are still 
significantly underrepresented. First principles about the way individuals interact can, instead, 
be derived from ecological theory or expert knowledge and represented by simple algorithms. 
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V.3.4.2 Individual-based models 

The explicit representation of individual variation is an important advantage of individual-
based models (IBMs) compared to differential or difference equation approaches (DeAngelis 
and Mooij, 2005). Combined with the confirmed removal of functionally equivalent 
variability that resulted from the process of species grouping, this characteristic of IBMs 
allowed the explicit representation of the role of stochastic but functionally consequential 
system variation. On the other hand, the taxing procedure of statistical analysis that IBMs 
typically have to undergo illustrates the benefits of analytically tractable mathematical 
formulations. Still, the amount of data and knowledge that are required by the latter, very 
often forces classical modelling approaches to rely on potentially unrealistic assumptions 
about the dynamics of the system, most notably their proximity to steady state or transition to 
it at a rate that is adequately low compared to the rates of the modelled processes (Jean, 1994). 

IBMs are themselves not free of assumptions, but these do not involve the dynamics of the 
modelled system, as patterns emerge from how individuals interact with their environment 
and with each other. Ideally, the rules of interaction are formulated in terms of fitness 
maximization by individual organisms, providing a basis for predictions that is more general 
and reliable than commonly applied empirical relationships (Stillman et al., 2015). The use of 
ecophysiological models can significantly facilitate this task. Martin et al. (2013) used 
dynamic energy budget theory, in order to represent evolved metabolic trade-offs within 
individual organisms and reproduce the population dynamics of a water flea. In cases where 
the members of entire communities and their complex webs of interactions need to be 
represented, the required load of information and the level of model complexity are 
prohibitive to the application of such approaches. 

IBMs in the marine benthos have been mostly employed with the goal of reproducing 
small-scale distribution patterns of one or two related species, driven by the availability of 
basic resources and the colonization of empty space. Special focus has been placed on the 
most well-studied benthic organisms, with coralline (Sleeman et al., 2005), macroalgal 
(Yñiguez et al., 2008) and bivalve growth and dispersal (Liu et al., 2014) successfully 
represented at the individual level. The development of IBMs of biological communities or 
entire ecosystems and the associated array of ecological processes still lags significantly 
behind the level that has been reached in the terrestrial environment. The explicit 
representation of terrestrial plant (Boulangeat et al., 2014) and animal community assembly 
mechanisms (Scherer et al., 2016) has improved predictions about biodiversity responses to 
projected climatic and land use change. 

In order to recreate the dynamics of biological communities, IBMs have had to settle for 
an implicit representation of fitness maximization, since this is not explicitly modelled as the 
goal of individual organisms. The rules of interaction are, instead, phenomenological, 
representing the role of individuals in empirically derived community assembly mechanisms. 
The latter may take the form of ecological theories that use fitness maximization as a first 
principle, but do not allow behaviours to directly emerge from it. This has rendered IBMs an 
ideal framework for not only the synthesis but also the assessment and advancement of 
classical ecological theory (Evans et al., 2013). Also, expert knowledge on the way individual 
organisms interact, which is widely available but hard to formulate mathematically, can be 
used to complement or modify algorithms that describe theoretically expected biotic 
interactions. 

In the small-scale IBM, the – common among trophic models – principle of mass 
conservation was replaced by the conservation of total space. The representation of pre-
emptive competition for space is explicit, while exploitative competition for food is implicit in 
the represented overgrowth competition. The body size of each functional group is central to 
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the definition of its individuals’ role in competition, additionally controlling predatory 
interactions and the post-settlement mortality of juveniles. Settlement probabilities are 
controlled primarily by the groups’ trait values with respect to reproductive strategies and 
secondarily by the traits of sediment position and mobility. Epibiosis is modelled through the 
settlement of organisms on basibionts, while sediment engineering is governed by the relative 
abundance of stabilizers and destabilizers and the modification of settlement probabilities 
based on each group’s preferences. 

The way that the control of biological traits over the individuals’ role in the respective 
ecological processes was translated into algorithmic rules of interaction is of highly 
qualitative nature, in the sense that it often represents the extreme cases of a continuum of 
potential options. The large-scale representation of tidal regime and larval dispersal is much 
simpler in its essence but maintains the same characteristics. Better quantification of the 
modelled processes would be essential, if the goal was to make predictions about the Rance 
estuary. Since, however, this work is limited to exploring the potential of a dynamic and 
spatially explicit representation of benthic biodiversity, aspects of model structure and 
function are much more pertinent. Among those, the concurrent representation of community 
assembly mechanisms at different spatial scales appears to be conceptually and 
methodologically the most challenging issue. 

V.3.4.3 Inter-scale modelling 

One way of representing spatially structured processes that take place at distinct scales is 
the reduction of the small-scale component to a mean-field representation, which is then 
integrated into the large-scale model. This technique is very common among cases where both 
scales are represented through mathematical formulations of system dynamics and many 
methods have been developed to accommodate various ecological assumptions (Morozov and 
Poggiale, 2012). Less often, analytic representations have been combined with agent-based 
simulations in a variety of model configurations (Swinerd and McNaught, 2012). In those 
closer to the case of multi-scale modelling with large-scale patterns emerging from biotic 
interactions that occur at the level of individual organisms, analytic models are used to bound 
an aggregate measure of agent-based models or the latter is used to influence a parameter of 
analytic models. 

The transfer of knowledge from the level of individual organisms, where most 
experiments are performed and theories are developed, to the level at which biodiversity 
patterns are typically observed is one of the central problems in ecology (Denny and 
Benedetti-Cecchi, 2012). However, the issue of up-scaling IBMs in order to combine them 
with agent-based models of large-scale processes has not been adequately addressed. The 
nonparametric up-scaling approach of Cipriotti et al. (2015) was designed to fill this gap. The 
important state variables of the small-scale model define a state space, which is divided into a 
finite number of discrete states. Simulation runs of the small-scale model, covering the entire 
range of pertinent initial conditions, states and external drivers, define transition matrices that 
are used by the large-scale model. This link is not dynamic and its conclusions are restricted 
to the range of the simulations. 

The representation of the dynamic link between processes that operate at different scales is 
important for the reproduction of the effects of cross-scale interactions. Those include 
nonlinear dynamics with thresholds that result from pattern–process relationships changing 
across scales (Peters et al., 2007). This study identified transfer processes and spatial 
heterogeneity at intermediate scales as important components of the link between small- and 
large-scale patterns and processes. Similar to these conclusions, the model presented here 
consists of two spatially distinct representations that are dynamically linked by larval 
dispersal and sediment engineering. This link is formed at the level of biological assemblages 
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that represent larger areas assumed to have homogeneous composition. It is implemented 
through aggregate community measures fed into the ecosystem model, whose spatial patterns 
influence assembly parameters. 

V.3.4.4 Model validation 

This multi-scale agent-based modelling approach appears to be well-suited for the 
evaluation of alternative hypotheses about community assembly mechanisms operating at 
different spatial scales. Before the model can be safely applied for this purpose, it has to be 
thoroughly validated. Kubicek et al. (2015) developed a validation approach specifically 
aimed at ecological IBMs. The whole process is organised in relation to the hierarchical 
structure of the model and is oriented toward its context. A variety of techniques can assist its 
application to this model, including expert knowledge about the model’s assumptions, visual 
inspection of small-scale abundance distributions or large-scale spatial patterns, statistical 
comparison of model output with comparable but independent observations, comparison of 
aggregated model results with patterns observed at higher system levels or experimental 
evaluation of model-generated hypotheses. 

V.3.4.5 Data sets 

It is obvious that the model’s validation would benefit from the use of independent data of 
benthic macroinvertebrates abundance from the Rance estuary. This role could be played by 
the available data sets of ’71 and ’76, with the former possibly used for the model’s 
initialisation. Due to the model’s stochastic nature, the analysis of aggregated temporal and 
spatial properties, akin to the Mantel correlogram, would probably constitute the most 
effective use of such data in the context of the aforementioned validation approach. These 
data sets could also be used for the assessment of the consistency of the functional grouping 
over time or for the formation of new, more consistent groups. If, however, the goal is the 
derivation of general functional groups of marine benthic macroinvertebrates, data from other 
sites would be much more useful, with the range of sampled systems dictating the generality 
of the groups. 

V.3.4.6 Minor adjustments 

The transition to more general functional groups would require considering not only a new 
set of species but also new ecological processes, along with the respective biological traits. 
Yet, at this stage, improving the representation of community assembly mechanisms in the 
Rance estuary is probably more important than making the functional groups and the model 
more general. The addition of two elements is expected to significantly increase the model’s 
realism. First, spatial heterogeneity with regard to substrate type is known to control 
community composition in the Rance estuary (Desroy, 1998). Second, physical disturbance in 
the form of substrate destabilization or severe winters can be reasonably assumed to be a 
shaping factor of most estuarine benthic systems. These two factors can be added to the 
current version of the model through small adjustments to its large-scale spatial features and 
small-scale rules of interaction. 

Minor improvements to the model, such as those mentioned above, might change its 
dynamic behaviour in important ways. Most notably, they could help sustain high levels of β-
diversity, by either increasing spatial variability of the abiotic environment or keeping the 
system away from an equilibrium point. If the latter took the form of a constant initialisation 
of a subset of the sites, it could also promote the persistence of rare functional groups. 
However, if the model fails at reproducing important aspects of observed biodiversity 
patterns, changes should be made to the basic assumptions on which it was built. First, 
simplifications that were employed for the representation of community assembly 
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mechanisms at a specific level of biological organisation could be revised toward a more 
detailed description. Second, fundamental elements of the way space and time are depicted 
could be altered to become more realistic. 

V.3.4.7 Major changes 

Community assembly mechanisms 

Improving the representation of community assembly mechanisms should probably centre 
on trophic interactions. At this point, predation is implicitly considered to contribute to the 
mortality of individuals that are left most vulnerable due to overgrowth competition. Explicit 
predation mortality plays only a minor role. The distinct depiction of mortality due to lack of 
resources would allow predation mortality to be modelled explicitly in its entirety. The former 
could be achieved by translating known relations between community structure and organic 
fluxes (Herman et al., 1999) into IBM-oriented rules of interaction. This task would require 
further differentiation of trophic strategies, e.g. by distinguishing between suspension and 
deposit feeders. The use of fuzzy coding is expected to greatly facilitate the assignment of 
ambiguous trait values. Data of hydrodynamics and primary production would help define 
organic matter deposition fluxes. 

Information regarding the abiotic and biotic characteristics of the water column could be 
derived from observations of the system or the output of models. Its incorporation into the 
IBM could be achieved by adjusting the minimum space that is required by individual 
organisms. Data of hydrodynamics in the Rance estuary would also allow a more explicit 
representation of larval dispersal, especially if it was combined with a distinct contribution of 
each functional group based on their fecundity and dispersal potential. If necessary, the 
representation of space and time could be altered more fundamentally. Instead of implicitly 
letting the organisms’ position influence their functional role, at least two layers of sediment 
could be distinguished, with space occupation represented separately. Likewise, time steps 
could be reduced below the current level of one year. This would allow the seasonal depiction 
of productivity, reproduction and disturbance. 

Ecosystem functions 

Modelling marine benthic diversity largely owes its importance to the well-established but 
only poorly understood link between biodiversity and ecosystem functioning (Srivastava and 
Vellend, 2005). The study of this link requires biodiversity patterns to be explicitly associated 
with ecosystem functions, such as energy and elemental cycling, the provision of habitat or 
the modification of physical properties of the system (Frid et al., 2008). These functions have 
long been the subject of statistical analyses based on many of the biological traits that are here 
assumed to represent the organisms’ role in community assembly mechanisms (Bremner et 
al., 2006). The use of these traits as indicators of ecosystem functions can be extended to 
associate the latter with modelled biodiversity. This task can be assisted by theoretically 
(Brown et al., 2004) and empirically (Brey, 2010) derived links between traits and ecosystem 
functions. 

Modelling tools 

As new features are added and the complexity of the model increases, the use of Netlogo 
(Wilensky, 1999) as the programming environment may soon become restrictive. It is the 
highest-level among widely used agent-based modelling platforms, placing special emphasis 
on ease of learning, using and sharing. The result is a tool that favours rapid model 
development at the expense of direct control and customizability. Execution speed is not its 
strong point, but it appears to be on a par with similar platforms (Railsback et al., 2006). 
Repast (North et al., 2013) may be the tool of choice, if speed is a high priority, but its 
extensive use is hampered by the lack of generic yet simple tools (Drogoul et al., 2013). 
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GAMA (Grignard et al., 2013), on the other hand, appears to be well-positioned along the 
usability–performance continuum. Its advanced environment representations and dynamic 
multi-level support make it ideal for this approach. 

V.3.4.8 Model generalisation 

The changes mentioned above have the immediate goal of improving the representation of 
community assembly mechanisms in the Rance estuary. Still, their nature is also expected to 
make the transfer of the modelling approach to other systems easier. This would result from 
representing the modelled processes even more explicitly. Changes to the model aiming at its 
application to similar systems would mostly involve subtracting elements that are not relevant 
or modifying them, by changing a few parameters. This should be facilitated by the suggested 
changes, since the model’s elements would be more directly linked to the respective 
mechanisms. It appears that the greatest challenge with respect to the transfer of the approach 
to other sites is presented by the collection of reliable data of community composition, 
biological traits and important environmental variables over a considerable extent of space 
and time. 

The best strategy for a long-term investment in this approach would probably start with its 
transfer to a few sites, whose differences from the Rance estuary would be dictated by the 
envisioned modelling scope. The sites should be chosen based on the availability of species 
abundance data sets that are representative of the system’s spatial and, if possible, temporal 
variability. The same holds true for the environmental conditions of tidal regime and substrate 
type, along with any variables that might be selected for addition to the framework. The 
availability of databases of biological traits for the system’s species is also a prerequisite, 
along with some degree of expert knowledge on its functioning. The definition of general 
functional groups of marine benthic macroinvertebrates should follow, based on the sum of 
community assembly mechanisms that are employed for the application of the approach in the 
selected sites. 
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Annex A: Comparing qualitative predictions of benthic responses 

to perturbations with observed patterns of functional diversity 

A.1 Introduction 

Understanding functional aspects of biodiversity often relies on a limited number of 
observations, offering no more than a snapshot of the investigated system. The Rance estuary 
(Brittany, France) is a typical example, with only two comprehensive samplings of benthic 
macroinvertebrate abundance (1976, 1995), separated by almost twenty years (Kirby and 
Retiere, 2009). The result is a high degree of difficulty in understanding the dynamics that 
have structured these communities. All the more so, when the ultimate goal is to provide 
testable predictions about the system’s response to potential perturbations. 

Qualitative mathematical models can generate rigorous predictions, albeit sacrificing the 
element of precision (Levins, 1998). Still, testing these predictions against observations of the 
previously described nature is not easy. Samples of community composition are often 
collected after a perturbation, without much knowledge on the prior state of the system. This 
holds true for the 1995 macroinvertebrate sampling of the Rance estuary, restricting the 
testability of qualitative models (Chapter III) that were built around a set of previously formed 
functional groups (Alexandridis et al., 2017). 

This study presents an approach that allows the comparison of qualitative modelling 
predictions with post-perturbation biodiversity patterns. The approach employs a matrix of 
observed functional group abundances and a matrix that describes the system's predicted 
response to potential perturbations affecting at least one of its components. It was applied to 
data of macroinvertebrate community composition collected after the extremely cold winter of 
1994 (Desroy, 1998) and the predictions of qualitative mathematical models that are expected 
to represent the mechanisms that shape benthic communities in this system. 

A.2 Methods 

A.2.1 Community composition 

Samples of the upper sediment layers were collected in 113 sites of the subtidal and the 
intertidal zone in April 1995, prior to the spring recruitment. Invertebrate organisms larger 
than 1 mm were counted and determined at species level, when possible (Desroy, 1998). A set 
of 14 biological traits describing the role of the 240 macroinvertebrate species in 7 important 
community assembly mechanisms allowed the application of the emergent group hypothesis 
(Hérault, 2007) for the construction of 20 functional groups. The groups were assigned their 
own trait values and were found to adequately represent functional diversity in the Rance 
estuary (Alexandridis et al., 2017). Two separate matrices of functional community 
composition in the 113 sampled sites, C1 and C2, were produced for the epifaunal and the 
infaunal groups, respectively. 

A.2.2 Qualitative models 

Observed trait associations at the species level were found to agree with ecological 
theories that predict the existence of functional trade-offs among benthic organisms. Elements 
of these theories along with expert knowledge were incorporated in the form of general rules 
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of interaction into two signed-directed graph (or signed digraph) models of the previously 
built functional groups, one for epifaunal organisms with a preference for rock or gravel (SD1) 
and one for infaunal or interface-positioned organisms that prefer finer sediment types (SD2) 
(Fig. A.1). Qualitatively specified community matrices A1 and A2 were produced as an 
equivalent representation of SD1 and SD2, respectively (Dambacher and Rossignol, 2001). 
The stability analysis of the two models revealed a moderate to high potential for stability 
(Chapter III). 

 

Fig. A.1 Signed digraphs a) SD1 and b) SD2, representing the mechanisms that shape epifaunal and 
infaunal benthic macroinvertebrate communities, respectively. The nodes represent functional groups 
or the basic resources of food and space. Links ending in arrows and filled circles represent positive 
and negative direct effects, respectively. For details, see Chapter III 

A.2.3 Qualitative predictions 

Assuming that the modelled system is stable, the adjoint of the negative community 
matrix predicts the direction of the equilibrium response of community members following a 
press perturbation to the system (Dambacher et al., 2002). It represents the relative strength of 
complementary feedback contributing to each member’s response to sustained input and it 
was found to correspond well with quantitative predictions of response strength (Dambacher 
et al., 2003). The adjoint was calculated for both A1 and A2, producing matrices B1 and B2, 
respectively. The rows of each matrix describe the predicted response of each model’s 
functional groups. The groups’ response to positive input to a group or one of the food/space 
resources can be read along each matrix’s columns. The response of the two basic resources 
was removed as impertinent. 

A.2.4 Theoretical framework 

Given a community matrix A, Eq. 1 predicts the difference between the community 
member i’s equilibrium abundance (Ni*) before and after sustained input to parameter h (ph) 
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of community member j’s growth rate function (fj). The sign of this difference is defined by 
the first term of the expression, as the other two terms constitute a positive scalar in stable 
systems. This property of the adjoint matrix can be employed in predicting the direction of the 
system’s response to press perturbations, if the community matrix is only qualitatively 
specified. If the pre-perturbation abundance distribution of each community member is 
unknown, the assumption that it shows random variation within an adequately small range 
would allow the comparison of post-perturbation patterns of relative abundance with the 
predictions of the adjoint matrix. 

(1) 

 

A.2.5 General assumptions 

The comparison of observations with model predictions is based on the assumption that 
the system is near or has reached a new equilibrium following a perturbation. The processes 
represented in the models should occur at spatial and temporal scales that would allow this 
state to be reached within the spatial resolution of the sampling and within the time since the 
perturbation. If this is the case, the epifauna and the infauna that were sampled in each site can 
be considered to be an independent realization of the respective qualitative model. If it is 
further assumed that perturbation is demonstrated throughout the system as varying input to 
mainly one of its variables, patterns of predicted response of the community’s members along 
the respective column of the adjoint matrix should agree with observed patterns of relative 
abundance distribution. 

A.2.6 Data transformation 

In order to standardize functional group abundances by site productivity and group 
dominance level, the values of matrices C1 and C2 were divided first by each site’s total 
abundance and then by each group’s maximum frequency. Square root transformation was 
applied to the results, in order to reduce the importance of observations with very high values. 
Euclidean distances between the functional groups were derived from the output of the 
transformation. They are expected to quantify the groups’ dissimilarity with respect to their 
relative abundance distribution. Euclidean distances between the functional groups were also 
derived from each column of matrices B1 and B2. These are expected to quantify the groups’ 
dissimilarity with respect to their predicted response to input added to the system through the 
respective model variable. 

A.2.7 Congruence analysis 

The agreement between patterns of relative abundance distribution and predicted 
responses to press perturbation was evaluated by comparing the respective functional group 
distance matrices. Those that were derived from the transformed C1 and C2 were compared in 
turn with those that were derived from each column of B1 and B2, respectively. The agreement 
between each pair was quantified by calculating Kendall’s W coefficient of concordance and 
testing its significance through a permutation test (9999 permutations with Holm correction 
for multiple testing) (Campbell et al., 2009). The extremely cold winter of 1994 is expected to 
have affected all sites, albeit with varying intensity. Functional groups should also differ with 
regard to their sensitivity to perturbation and their potential impact on community dynamics. 
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A.3 Results 

The permutation tests of Kendall’s W assigned statistical significance to the two highest 
coefficients of concordance (Table A.1). The observed patterns of relative abundance 
distribution appear to agree with the predicted response to input added through group C3 in 
the epifaunal (SD1) system (W = 0.76) and group H7 in the infaunal (SD2) system (W = 0.67). 
This means that sustained positive or negative change to these two functional groups is 
predicted to result in response patterns that are significantly consistent with the observed 
patterns of relative abundance in their respective systems. 

Table A.1 Kendall’s W coefficient of concordance between functional group distance matrices derived 
from the transformed C1 (C2) matrix and a column of the B1 (B2) matrix that corresponds to one of the 
SD1 (SD2) variables. Subscripts 1 and 2 indicate members of epifaunal and infaunal communities, 
respectively. The transformed C1 and C2 matrices represent observed patterns of functional group 
abundance distribution. Each column of the B1 and B2 matrices represents the predicted response of 
functional groups to sustained input added to the system through the respective system variable. 
Coefficients of concordance that are statistically significant at 0.05 level are indicated with an asterisk 

SD1 variable Kendall’s W SD2 variable Kendall’s W 

Food 0.41 Food 0.49 

Space 0.49 Space 0.49 

H1 0.37 H5 0.57 

H2 0.46 H6 0.48 

H3 0.57 H7   0.67 * 

H4 0.56 H8 0.56 

H13 0.31 H9 0.64 

C1 0.38 H10 0.58 

C3   0.76 * H11 0.49 

C5 0.65 H12 0.44 

C6 0.40 H14 0.45 

- - C2 0.51 

- - C4 0.44 

- - C6 0.43 

A.4 Discussion 

Predictions of qualitative models have been previously compared with observations of 
systems where the responses of community members strongly correlate with alternative states, 
leading to well-documented regime shifts (Dambacher and Ramos-Jiliberto, 2007; Marzloff et 
al., 2011). This approach has the potential to reveal the impact of perturbations in cases 
where, like most ecological systems, predictions are ambiguous and responses are confounded 
by complex networks of interaction, while observations are at best limited. 

It is very likely that the Rance estuary system, as represented by the community 
composition dataset and the two qualitative models, fails to meet all the assumptions of this 
approach. It is not, however, clear to what degree that happens or how robust the approach 
might be to violations of each assumption. This application should, therefore, be viewed as 
demonstrative rather than an attempt to validate the two qualitative models. 
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The cold winter of 1994 is expected to have shaped benthic macroinvertebrate 
communities, as they were observed in 1995 (Desroy, 1998). Functional groups C3 and H7 
were both assigned a stenothermal trait value, meaning that they would be negatively affected 
by single-digit temperatures (Alexandridis et al., 2017). They are not the only groups to be 
assigned this trait value, but they are among the most dominant groups in terms of abundance. 
This would make their impact on community dynamics stronger compared to other groups 
that might have been affected in a similar way (Grime, 1998). 

In this application, all sites were assumed to have been more or less affected by the same 
perturbation. If it is, instead, expected that sites would be affected in different ways, they 
should be grouped and analysed separately. It was also assumed that perturbation is 
demonstrated as input through primarily one variable of the system. This allowed each 
column of the adjoint matrix to be independently compared with the observed patterns of 
relative abundance distribution. If community members are known to be affected in a similar 
way, the system’s response to their combined input can be used instead, by adding or 
subtracting the respective columns of the adjoint matrix (Dambacher et al., 2002). 
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Annex B: Species traits and functional groups 

Table B.1 List of benthic macroinvertebrate species that were found in the Rance estuary in 1995 along with the functional group to which they belong and 

the value that was assigned to them for each of the 14 biological traits. Group names correspond to the alternative nomenclatures employed in Chapters II/III 

Groups Species T1. temperature T2. development T3. dispersal T4. fecundity T5. tide/salinity T6. substrate T7. size (cm) T8. area T9. position T10. mobility T11. growth rate T12. lifespan (yr) T13. epibiosis T14. engineering 
h2iv/H8 Abludomelita gladiosa eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h2iv/H8 Abludomelita obtusata eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h3ii/H10 Abra alba stenothermal planktonic long high exposed muddy sand 2 0.5 interface mobile 1.3 2 neutral destabilizer 
h3ii/H10 Abra nitida eurythermal planktonic long high euryhaline mud 2 0.5 interface mobile 1.2 2 neutral destabilizer 
h3ii/H10 Abra prismatica stenothermal planktonic long high stenohaline sand 2 0.3 interface mobile 1.5 2 neutral destabilizer 
h3ii/H10 Abra tenuis stenothermal planktonic long high exposed mud 2 0.6 interface mobile 1.2 2 neutral destabilizer 
h4iv/H14 Acanthocardia tuberculata stenothermal planktonic long high stenohaline muddy sand 10 6.0 interface mobile 0.5 20 neutral stabilizer 
h1ii/H2 Acanthochitona discrepans stenothermal planktonic short high stenohaline rock 2 0.5 epifauna mobile 1.2 10 epibiont neutral 
c3ii/C6 Achelia echinata stenothermal planktonic short low stenohaline rock 1 0.2 epifauna mobile 1.7 2 epibiont neutral 

h4iv/H14 Acrocnida brachiata stenothermal planktonic long high stenohaline sand 2 0.8 interface mobile 1.1 10 neutral stabilizer 
h2iii/H7 Ampelisca brevicornis stenothermal brooded short low stenohaline muddy sand 2 0.1 interface sessile 2.1 2 neutral stabilizer 
h2iii/H7 Ampelisca diadema stenothermal brooded short low euryhaline muddy gravel 1 0.0 interface sessile 3.5 2 neutral stabilizer 
h2iv/H8 Ampelisca tenuicornis stenothermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h2iv/H8 Ampelisca typica eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h3i/H9 Ampharete acutifrons eurythermal laid short high exposed muddy sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h4i/H11 Amphicteis gunneri eurythermal planktonic short high stenohaline muddy sand 10 0.1 interface sessile 2.4 10 neutral stabilizer 
h4i/H11 Amphiglena mediterranea stenothermal planktonic short high stenohaline muddy sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h2iv/H8 Amphilochus spencebatei stenothermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h2ii/H6 Amphipholis squamata eurythermal brooded short low stenohaline gravel 10 3.5 interface mobile 0.7 10 neutral stabilizer 

h4iii/H13 Anapagurus hyndmanni stenothermal planktonic long high stenohaline gravel 10 20.0 epifauna mobile 0.4 10 neutral neutral 
h2iv/H8 Animoceradocus semiserratus stenothermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 1 neutral destabilizer 
c2i/C2 Antalis vulgaris stenothermal planktonic short high stenohaline muddy sand 10 0.7 infauna mobile 1.1 2 neutral destabilizer 

h2iii/H7 Aonides oxycephala stenothermal planktonic short low stenohaline gravel 10 0.1 interface sessile 2.4 1 neutral stabilizer 
h2iii/H7 Aora typica stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 2 neutral stabilizer 
h3i/H9 Aphelochaeta marioni eurythermal laid short high euryhaline muddy sand 10 0.1 interface mobile 2.4 10 neutral destabilizer 
c1i/C1 Apherusa bispinosa eurythermal brooded short low euryhaline muddy sand 1 0.0 epifauna mobile 3.5 2 neutral neutral 



 

 

c2i/C2 Aphrodita aculeata eurythermal planktonic short high stenohaline muddy sand 20 49.5 interface mobile 0.3 10 neutral neutral 
h4i/H11 Aponuphis bilineata stenothermal planktonic long high stenohaline sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h2iii/H7 Apseudopsis latreillii stenothermal brooded short low exposed muddy sand 1 0.0 interface sessile 4.4 2 neutral stabilizer 
h3i/H9 Arenicola marina eurythermal laid short high exposed muddy sand 20 0.9 interface mobile 1.1 10 neutral destabilizer 
h3i/H9 Aricidea (Acmira) cerrutii eurythermal laid short high stenohaline sand 10 0.1 interface mobile 2.4 10 neutral destabilizer 
h2iv/H8 Astacilla longicornis eurythermal brooded short low stenohaline muddy sand 2 0.0 epifauna mobile 3.0 2 neutral neutral 
h1iii/H3 Balanus crenatus eurythermal planktonic long high euryhaline rock 2 0.4 epifauna sessile 1.4 2 epibiont neutral 
c2ii/C3 Bela nebula stenothermal planktonic long high stenohaline sand 10 1.6 epifauna mobile 0.9 20 neutral neutral 

h4ii/H12 Calliostoma zizyphinum stenothermal laid short high stenohaline muddy gravel 2 1.0 epifauna mobile 1.0 10 neutral neutral 
c3ii/C6 Callipallene emaciata stenothermal planktonic short low stenohaline rock 1 0.2 epifauna mobile 1.7 2 epibiont neutral 
h1ii/H2 Calyptraea chinensis stenothermal laid short high euryhaline rock 2 0.8 epifauna sessile 1.1 10 epibiont neutral 
h3i/H9 Capitella capitata eurythermal laid short high exposed muddy sand 10 0.1 interface mobile 2.4 2 neutral destabilizer 
c3ii/C6 Carcinus maenas stenothermal planktonic long high exposed rock 10 6.2 epifauna mobile 0.5 10 epibiont neutral 
h2iii/H7 Caulleriella alata stenothermal brooded short high stenohaline mud 2 0.0 interface sessile 3.8 10 neutral stabilizer 
h4iv/H14 Cerastoderma edule stenothermal planktonic long high exposed muddy sand 10 6.0 interface mobile 0.5 10 neutral stabilizer 
h4iv/H14 Cerastoderma glaucum stenothermal planktonic long high exposed muddy sand 10 6.0 interface mobile 0.5 10 neutral stabilizer 
h1ii/H2 Cereus pedunculatus stenothermal brooded short high stenohaline rock 20 7.5 epifauna sessile 0.5 20 epibiont neutral 
c2ii/C3 Cerianthus lloydii eurythermal planktonic long high euryhaline mud 20 7.5 interface sessile 0.5 20 neutral stabilizer 
h3i/H9 Chaetozone setosa eurythermal laid short high euryhaline muddy gravel 2 0.0 interface mobile 3.8 2 neutral destabilizer 
h2iv/H8 Cheirocratus intermedius stenothermal brooded short low stenohaline sand 2 0.1 interface mobile 2.1 1 neutral destabilizer 
h2iv/H8 Cheirocratus sundevalli stenothermal brooded short low stenohaline gravel 2 0.1 interface mobile 2.1 1 neutral destabilizer 
h3i/H9 Cirratulus cirratus eurythermal laid short high euryhaline muddy gravel 40 3.3 interface mobile 0.7 10 neutral destabilizer 

h3ii/H10 Cirriformia tentaculata stenothermal planktonic long high stenohaline muddy gravel 20 0.9 interface mobile 1.1 10 neutral destabilizer 
h2iv/H8 Corophium volutator stenothermal brooded short low exposed muddy sand 2 0.1 interface mobile 2.1 1 neutral destabilizer 
c2ii/C3 Crangon crangon stenothermal planktonic long high exposed muddy sand 10 0.6 epifauna mobile 1.2 10 neutral neutral 
h1iv/H4 Crepidula fornicata stenothermal planktonic long high exposed rock 10 3.6 epifauna sessile 0.7 10 basibiont neutral 
c1i/C1 Cyathura carinata stenothermal brooded short low exposed muddy sand 2 0.3 epifauna mobile 1.5 2 neutral neutral 
c1i/C1 Cymodoce truncata stenothermal brooded short low stenohaline muddy sand 2 0.3 epifauna mobile 1.5 2 neutral neutral 

h2iv/H8 Deflexilodes tuberculatus eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h1i/H1 Dendrodoa grossularia eurythermal planktonic short low euryhaline rock 2 0.4 epifauna sessile 1.4 2 epibiont neutral 
h2iv/H8 Dexamine spinosa stenothermal brooded short low euryhaline muddy sand 2 0.1 interface mobile 2.1 2 neutral neutral 
h2iv/H8 Diastylis bradyi eurythermal brooded short low stenohaline muddy sand 2 0.3 epifauna mobile 1.5 1 neutral neutral 
h1ii/H2 Diodora graeca stenothermal laid short high stenohaline rock 10 7.1 epifauna mobile 0.5 20 epibiont neutral 
h3ii/H10 Diplocirrus glaucus eurythermal planktonic long high stenohaline muddy sand 2 0.0 interface mobile 3.8 2 neutral destabilizer 
h1iv/H4 Dodecaceria concharum stenothermal planktonic long high stenohaline rock 10 0.1 epifauna sessile 2.4 10 epibiont neutral 
c2ii/C3 Ebalia tuberosa stenothermal planktonic long high stenohaline gravel 2 1.2 interface mobile 0.9 2 neutral neutral 



 

 

c2ii/C3 Edwardsia claparedii stenothermal planktonic long high stenohaline mud 10 0.3 interface mobile 1.5 10 neutral stabilizer 
h2iii/H7 Ericthonius punctatus stenothermal brooded short low stenohaline muddy sand 2 0.1 interface sessile 2.1 1 neutral stabilizer 
c2ii/C3 Eteone longa eurythermal planktonic long high euryhaline muddy gravel 10 0.1 interface mobile 2.4 2 neutral neutral 
h2iii/H7 Euclymene oerstedi stenothermal brooded short low stenohaline muddy sand 10 0.1 interface sessile 2.4 10 neutral stabilizer 
h2iv/H8 Eudorella truncatula eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 4.4 2 neutral neutral 
c3ii/C6 Eulalia viridis eurythermal planktonic long low euryhaline rock 10 0.1 epifauna mobile 2.4 10 epibiont neutral 
c2ii/C3 Eumida punctifera stenothermal planktonic long high stenohaline gravel 10 0.1 interface mobile 2.4 2 neutral neutral 
c2ii/C3 Eumida sanguinea stenothermal planktonic long high stenohaline gravel 10 0.1 interface mobile 2.4 2 neutral neutral 
h4i/H11 Eunereis longissima eurythermal planktonic long high euryhaline muddy sand 40 3.3 interface sessile 0.7 2 neutral stabilizer 
h4i/H11 Eupolymnia nebulosa eurythermal planktonic short high stenohaline gravel 20 0.9 interface sessile 1.1 2 neutral stabilizer 
c2ii/C3 Eurysyllis tuberculata stenothermal planktonic long high stenohaline muddy gravel 1 0.0 interface mobile 7.0 2 neutral neutral 
c3ii/C6 Eusyllis blomstrandi eurythermal planktonic short high stenohaline rock 2 0.0 interface mobile 3.8 1 epibiont neutral 
c1i/C1 Exogone (Exogone) naidina eurythermal brooded short low stenohaline gravel 1 0.0 epifauna mobile 7.0 2 neutral neutral 

h4iii/H13 Galathea intermedia stenothermal brooded long low stenohaline gravel 10 2.6 epifauna mobile 0.7 10 neutral neutral 
h4i/H11 Galathowenia oculata eurythermal planktonic long high euryhaline mud 10 0.1 interface sessile 2.4 10 neutral stabilizer 
h2iv/H8 Gammarus locusta eurythermal brooded short low euryhaline muddy gravel 2 0.1 epifauna mobile 2.1 1 neutral neutral 
h2iv/H8 Gammarus salinus stenothermal brooded short low exposed muddy gravel 2 0.1 epifauna mobile 2.1 1 neutral neutral 
h4ii/H12 Gibbula magus stenothermal planktonic short high stenohaline muddy gravel 10 7.1 interface mobile 0.5 10 neutral neutral 
c2ii/C3 Glycera alba stenothermal planktonic long high euryhaline muddy sand 10 0.1 interface mobile 2.4 10 neutral neutral 
c2ii/C3 Glycera tridactyla stenothermal planktonic long high stenohaline muddy sand 10 0.1 interface mobile 2.4 10 neutral neutral 

h4ii/H12 Glycymeris glycymeris stenothermal planktonic short high stenohaline muddy gravel 10 2.1 infauna mobile 0.8 20 neutral stabilizer 
h2i/H5 Golfingia (Golfingia) vulgaris vulgaris eurythermal planktonic long low stenohaline muddy sand 10 0.1 infauna mobile 2.4 2 neutral destabilizer 
c2ii/C3 Goniada emerita stenothermal planktonic long high stenohaline sand 10 0.1 interface mobile 2.4 2 neutral neutral 

h4iv/H14 Goodallia triangularis stenothermal planktonic short high stenohaline sand 1 0.1 interface mobile 2.1 10 neutral stabilizer 
c2ii/C3 Haminoea navicula stenothermal planktonic long high stenohaline muddy sand 10 6.8 interface mobile 0.5 10 neutral neutral 
c3ii/C6 Haplosyllis spongicola stenothermal laid short low stenohaline rock 2 0.0 epifauna mobile 3.8 2 epibiont neutral 
h3i/H9 Hediste diversicolor stenothermal laid short high exposed muddy sand 20 0.9 interface mobile 1.1 2 neutral destabilizer 
c2iii/C4 Hesionura elongata stenothermal planktonic long low stenohaline sand 2 0.0 infauna mobile 3.8 1 neutral destabilizer 
h4i/H11 Heteromastus filiformis eurythermal planktonic long low exposed muddy sand 20 0.9 interface sessile 1.1 2 neutral stabilizer 
c2i/C2 Hilbigneris gracilis eurythermal laid short low stenohaline muddy sand 10 0.1 interface mobile 2.4 10 neutral neutral 

h3ii/H10 Holothuriidae eurythermal planktonic long high stenohaline sand 40 15.7 interface mobile 0.4 10 neutral destabilizer 
h1i/H1 Idotea granulosa stenothermal brooded short low stenohaline rock 2 0.3 epifauna mobile 1.5 2 epibiont neutral 
c3ii/C6 Iphimedia obesa stenothermal brooded short low stenohaline rock 2 0.3 epifauna mobile 1.5 1 epibiont neutral 
h2iv/H8 Iphinoe tenella stenothermal planktonic short low euryhaline muddy sand 2 0.3 interface mobile 1.5 2 neutral destabilizer 
h1i/H1 Janira maculosa eurythermal brooded short low stenohaline rock 1 0.0 epifauna mobile 4.4 2 epibiont neutral 
h1i/H1 Jasmineira elegans eurythermal planktonic short low stenohaline rock 2 0.0 epifauna sessile 3.8 2 epibiont neutral 



 

 

h1i/H1 Jassa falcata eurythermal brooded short low stenohaline rock 2 0.1 epifauna sessile 2.1 1 epibiont neutral 
h4iv/H14 Kurtiella bidentata stenothermal planktonic long low euryhaline muddy sand 2 0.5 infauna mobile 1.2 10 neutral stabilizer 
h4i/H11 Lanice conchilega eurythermal planktonic long high euryhaline mud 40 3.3 interface sessile 0.7 2 neutral stabilizer 
h4i/H11 Leiochone leiopygos eurythermal planktonic long high stenohaline mud 20 0.9 interface sessile 1.1 2 neutral stabilizer 
h4i/H11 Leonnates glauca eurythermal planktonic long high stenohaline muddy sand 10 0.1 interface sessile 2.4 10 neutral stabilizer 
h1ii/H2 Lepidochitona (Lepidochitona) cinerea stenothermal planktonic short high stenohaline rock 2 0.5 epifauna mobile 1.2 10 epibiont neutral 
c2ii/C3 Lepidonotus squamatus eurythermal planktonic long high euryhaline gravel 10 0.1 epifauna mobile 2.4 2 neutral neutral 
h2iv/H8 Leptocheirus hirsutimanus stenothermal brooded short low stenohaline gravel 1 0.0 interface mobile 3.5 1 neutral destabilizer 
h2iii/H7 Leptochelia dubia stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 4.4 2 neutral stabilizer 
h1i/H1 Leucothoe incisa stenothermal brooded short low stenohaline rock 1 0.0 epifauna mobile 3.5 1 epibiont neutral 
h1i/H1 Leucothoe spinicarpa eurythermal brooded short low stenohaline rock 2 0.1 epifauna mobile 2.1 1 epibiont neutral 

h2iii/H7 Liljeborgia pallida eurythermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 
c2ii/C3 Liocarcinus navigator stenothermal planktonic long high euryhaline muddy sand 10 5.7 interface mobile 0.6 10 neutral neutral 

h4iv/H14 Lucinoma borealis stenothermal planktonic long high stenohaline sand 10 7.6 interface mobile 0.5 10 neutral stabilizer 
c2i/C2 Lumbrineris japonica stenothermal laid short low stenohaline gravel 40 3.3 interface mobile 0.7 10 neutral neutral 

h4iv/H14 Lyonsia norwegica stenothermal planktonic long low stenohaline sand 10 5.2 interface mobile 0.6 10 neutral stabilizer 
c3ii/C6 Lysianassa ceratina stenothermal brooded short low stenohaline rock 2 0.1 interface mobile 2.1 1 epibiont neutral 
c3ii/C6 Lysianassa insperata eurythermal brooded short low stenohaline rock 2 0.1 interface mobile 2.1 1 epibiont neutral 
c2i/C2 Lysidice ninetta stenothermal laid short high stenohaline muddy sand 20 0.9 interface mobile 1.1 2 neutral neutral 
c2i/C2 Lysidice unicornis stenothermal laid short high stenohaline muddy sand 20 0.9 interface mobile 1.1 2 neutral neutral 

h4iv/H14 Macoma balthica eurythermal planktonic long high exposed mud 2 0.5 infauna mobile 1.2 10 neutral stabilizer 
c3ii/C6 Macropodia rostrata stenothermal planktonic long low stenohaline rock 2 1.9 epifauna mobile 0.8 10 epibiont neutral 
h2iii/H7 Maera grossimana stenothermal brooded short low stenohaline muddy sand 2 0.1 interface sessile 2.1 2 neutral stabilizer 
h3ii/H10 Malacoceros fuliginosus eurythermal planktonic long high euryhaline mud 10 0.1 interface mobile 2.4 2 neutral destabilizer 
c3ii/C6 Malmgreniella ljungmani stenothermal planktonic long low stenohaline rock 2 0.0 interface mobile 3.8 2 epibiont neutral 
c3ii/C6 Malmgreniella lunulata stenothermal planktonic long low stenohaline rock 2 0.0 interface mobile 3.8 2 epibiont neutral 
h4i/H11 Manayunkia aestuarina stenothermal planktonic long high exposed mud 1 0.0 interface sessile 7.0 2 neutral stabilizer 
c2i/C2 Marphysa bellii stenothermal planktonic short high stenohaline muddy sand 20 0.9 interface mobile 1.1 2 neutral neutral 
c2i/C2 Marphysa sanguinea stenothermal planktonic short high stenohaline muddy sand 40 3.3 interface mobile 0.7 2 neutral neutral 
h2i/H5 Mediomastus fragilis stenothermal planktonic short low exposed mud 10 0.1 infauna mobile 2.4 2 neutral destabilizer 

h2iii/H7 Megalomma vesiculosum stenothermal planktonic short low stenohaline mud 20 0.9 interface sessile 1.1 2 neutral stabilizer 
h2iii/H7 Melinna palmata stenothermal laid short high stenohaline mud 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h2iii/H7 Microdeutopus anomalus stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 
h2iii/H7 Microdeutopus damnoniensis stenothermal brooded short low euryhaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 
h2iii/H7 Microdeutopus gryllotalpa stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 
h2iii/H7 Microdeutopus versiculatus stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 



 

 

h1iv/H4 Mimachlamys varia eurythermal planktonic long high stenohaline rock 10 4.1 epifauna sessile 0.6 10 basibiont neutral 
h2iii/H7 Monocorophium acherusicum stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 
h2iii/H7 Monocorophium sextonae stenothermal brooded short low stenohaline muddy sand 1 0.0 interface sessile 3.5 1 neutral stabilizer 
c1i/C1 Monoculodes carinatus stenothermal brooded short low stenohaline sand 1 0.0 interface mobile 3.5 1 neutral neutral 
h1i/H1 Morchellium argus stenothermal planktonic short low euryhaline rock 10 1.3 epifauna sessile 0.9 2 epibiont neutral 
h2iv/H8 Munnidae eurythermal brooded short low stenohaline gravel 1 0.0 interface mobile 4.4 2 neutral destabilizer 
c2iii/C4 Myrianida edwardsi stenothermal planktonic long low stenohaline gravel 2 0.0 epifauna mobile 3.8 2 neutral neutral 
h2iv/H8 Mysidae eurythermal brooded short low euryhaline muddy sand 2 0.3 epifauna mobile 1.5 1 neutral neutral 
h1iv/H4 Mytilus edulis eurythermal planktonic long high exposed rock 10 3.9 epifauna sessile 0.6 20 basibiont neutral 
h4i/H11 Myxicola infundibulum eurythermal planktonic short high euryhaline muddy sand 20 0.9 interface sessile 1.1 2 neutral stabilizer 
c2ii/C3 Nassarius pygmaeus stenothermal planktonic long high stenohaline muddy sand 2 0.8 interface mobile 1.1 20 neutral neutral 
c2ii/C3 Nassarius reticulatus stenothermal planktonic long high euryhaline muddy gravel 10 4.2 interface mobile 0.6 20 neutral neutral 
c2i/C2 Nemertea stenothermal planktonic short low stenohaline mud 20 0.9 interface mobile 1.1 2 neutral neutral 
c2ii/C3 Nephtys caeca eurythermal planktonic long high euryhaline muddy sand 20 0.9 interface mobile 1.1 10 neutral neutral 
c2ii/C3 Nephtys cirrosa stenothermal planktonic long high exposed sand 10 0.1 interface mobile 2.4 10 neutral neutral 
c2ii/C3 Nephtys hombergii stenothermal planktonic long high exposed mud 20 0.9 interface mobile 1.1 10 neutral neutral 
h4i/H11 Nicolea venustula stenothermal planktonic long high stenohaline muddy gravel 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h2iv/H8 Notomastus latericeus eurythermal planktonic short low euryhaline muddy sand 40 3.3 interface mobile 0.7 2 neutral destabilizer 
h2iv/H8 Nototropis vedlomensis eurythermal brooded short low stenohaline sand 1 0.0 interface mobile 3.5 1 neutral destabilizer 
h2iv/H8 Nucula nucleus stenothermal planktonic short low stenohaline sand 2 1.0 interface mobile 1.0 10 neutral destabilizer 
h2iv/H8 Nucula turgida stenothermal planktonic short low stenohaline muddy sand 2 1.0 interface mobile 1.0 10 neutral destabilizer 
c3ii/C6 Nudibranchia stenothermal laid short low stenohaline rock 10 3.1 epifauna mobile 0.7 1 epibiont neutral 
c3ii/C6 Nymphon brevirostre eurythermal planktonic short low stenohaline rock 1 0.2 epifauna mobile 1.7 2 epibiont neutral 
c3ii/C6 Odontosyllis ctenostoma stenothermal planktonic short high stenohaline rock 2 0.0 interface mobile 3.8 2 epibiont neutral 
c3ii/C6 Odontosyllis gibba stenothermal planktonic short high stenohaline rock 2 0.0 interface mobile 3.8 2 epibiont neutral 
h2i/H5 Oligochaeta stenothermal laid short low exposed muddy sand 2 0.0 infauna mobile 3.8 2 neutral destabilizer 
h2iv/H8 Ophelina acuminata eurythermal planktonic short low euryhaline muddy sand 10 0.1 infauna mobile 2.4 2 neutral destabilizer 
h3ii/H10 Orbinia sertulata eurythermal planktonic short high stenohaline muddy sand 40 3.3 interface mobile 0.7 2 neutral destabilizer 
h1i/H1 Oridia armandi stenothermal planktonic short low stenohaline rock 1 0.0 epifauna sessile 7.0 2 epibiont neutral 
h1iv/H4 Ostrea edulis stenothermal planktonic long high euryhaline rock 10 2.5 epifauna sessile 0.7 10 basibiont neutral 
h2iv/H8 Othomaera othonis stenothermal brooded short low stenohaline muddy sand 2 0.1 interface mobile 2.1 1 neutral destabilizer 
c2ii/C3 Oxydromus flexuosus stenothermal planktonic long high stenohaline muddy sand 10 0.1 epifauna mobile 2.4 2 neutral neutral 

h4iii/H13 Pagurus bernhardus stenothermal planktonic long high euryhaline sand 10 2.6 epifauna mobile 0.7 10 neutral neutral 
c3ii/C6 Palaemon serratus stenothermal planktonic long high exposed rock 10 0.5 epifauna mobile 1.2 10 epibiont neutral 

h4iv/H14 Pandora albida eurythermal planktonic long low euryhaline sand 10 5.2 interface mobile 0.6 10 neutral stabilizer 
h3ii/H10 Paradoneis armata stenothermal planktonic short high stenohaline sand 10 0.1 interface mobile 2.4 2 neutral destabilizer 



 

 

h3ii/H10 Paradoneis lyra eurythermal planktonic short high stenohaline mud 2 0.0 interface mobile 3.8 2 neutral destabilizer 
h2iv/H8 Pariambus typicus stenothermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 1 neutral destabilizer 
h4iv/H14 Parvicardium exiguum stenothermal planktonic long high euryhaline muddy sand 2 0.9 interface mobile 1.0 10 neutral stabilizer 
h4iv/H14 Parvicardium scabrum stenothermal planktonic long high stenohaline sand 2 0.9 interface mobile 1.0 10 neutral stabilizer 
c3ii/C6 Perinereis cultrifera stenothermal planktonic long high stenohaline rock 20 0.9 interface mobile 1.1 2 epibiont neutral 

h3ii/H10 Peringia ulvae stenothermal planktonic long low exposed mud 1 0.1 interface mobile 2.3 2 neutral destabilizer 
h2iv/H8 Perioculodes longimanus eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 1 neutral destabilizer 
h2iv/H8 Phascolion (Phascolion) strombus strombus eurythermal planktonic short low euryhaline muddy sand 10 0.1 interface mobile 2.4 2 neutral destabilizer 
c2ii/C3 Pholoe minuta eurythermal planktonic long high euryhaline muddy sand 2 0.0 interface mobile 3.8 10 neutral neutral 
h2iii/H7 Phoronis psammophila stenothermal planktonic short low stenohaline sand 10 0.3 interface sessile 1.5 2 neutral stabilizer 
c3ii/C6 Phtisica marina stenothermal brooded short low euryhaline rock 2 0.1 epifauna mobile 2.1 1 epibiont neutral 
c3ii/C6 Phyllodoce laminosa stenothermal planktonic long high stenohaline rock 40 3.3 interface mobile 0.7 2 epibiont neutral 
c2ii/C3 Phyllodoce longipes eurythermal planktonic long high stenohaline gravel 10 0.1 interface mobile 2.4 2 neutral neutral 
c2ii/C3 Phyllodoce mucosa eurythermal planktonic long high euryhaline muddy sand 20 0.9 interface mobile 1.1 2 neutral neutral 
h1ii/H2 Pisidia longicornis stenothermal planktonic long low stenohaline rock 2 1.9 epifauna mobile 0.8 10 epibiont neutral 
h4i/H11 Pista cristata eurythermal planktonic short high euryhaline muddy sand 10 0.1 interface sessile 2.4 10 neutral stabilizer 
c3i/C5 Platynereis dumerilii stenothermal planktonic short high euryhaline rock 10 0.1 epifauna sessile 2.4 2 epibiont neutral 

h4i/H11 Poecilochaetus serpens stenothermal planktonic long high stenohaline muddy sand 10 0.1 interface sessile 2.4 10 neutral stabilizer 
h4iv/H14 Polititapes aureus stenothermal planktonic long high exposed muddy sand 10 8.9 interface mobile 0.5 10 neutral stabilizer 
h4iv/H14 Polititapes rhomboides stenothermal planktonic long high stenohaline sand 10 8.9 interface mobile 0.5 10 neutral stabilizer 
h1iv/H4 Polycirrus aurantiacus stenothermal planktonic short low euryhaline rock 10 0.1 interface sessile 2.4 10 epibiont stabilizer 
h1iii/H3 Polydora ciliata eurythermal planktonic long high euryhaline rock 2 0.0 interface sessile 3.8 2 epibiont stabilizer 
h2iv/H8 Pontocrates arenarius stenothermal brooded short low stenohaline sand 1 0.0 interface mobile 3.5 1 neutral destabilizer 
h1i/H1 Potamilla torelli stenothermal planktonic short low stenohaline rock 10 0.1 epifauna sessile 2.4 2 epibiont neutral 
h4i/H11 Prionospio fallax eurythermal planktonic long low stenohaline mud 10 0.1 interface sessile 2.4 2 neutral stabilizer 
c3ii/C6 Proceraea aurantiaca stenothermal planktonic long low euryhaline rock 2 0.0 interface mobile 3.8 2 epibiont neutral 
c2ii/C3 Protodorvillea kefersteini eurythermal planktonic long high stenohaline gravel 2 0.0 interface mobile 3.8 2 neutral neutral 
h2iv/H8 Pseudocuma (Pseudocuma) longicorne stenothermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 4.4 2 neutral destabilizer 
h4i/H11 Pseudopolydora antennata eurythermal planktonic long high stenohaline muddy sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h4i/H11 Pseudopolydora pulchra stenothermal planktonic long high stenohaline muddy sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
c3ii/C6 Pseudoprotella phasma stenothermal brooded short low stenohaline rock 2 0.1 epifauna mobile 2.1 1 epibiont neutral 
h4i/H11 Pygospio elegans stenothermal planktonic long high exposed mud 2 0.0 interface sessile 3.8 2 neutral stabilizer 
h1ii/H2 Sabella pavonina stenothermal planktonic short high exposed rock 40 3.3 epifauna sessile 0.7 2 epibiont neutral 
h3ii/H10 Saccocirrus papillocercus stenothermal planktonic short high stenohaline gravel 2 0.0 interface mobile 3.8 2 neutral destabilizer 
h2iv/H8 Scalibregma celticum stenothermal planktonic short low euryhaline muddy sand 2 0.0 interface mobile 3.8 1 neutral destabilizer 
h3i/H9 Scoloplos (Scoloplos) armiger eurythermal laid short high euryhaline muddy sand 20 0.9 interface mobile 1.1 10 neutral destabilizer 



 

 

h4iv/H14 Scrobicularia plana stenothermal planktonic long high exposed mud 10 4.6 infauna mobile 0.6 2 neutral stabilizer 
h4iv/H14 Solen marginatus stenothermal planktonic long high stenohaline sand 20 20.2 infauna mobile 0.4 10 neutral stabilizer 

c1i/C1 Sphaerosyllis bulbosa stenothermal brooded short low stenohaline gravel 1 0.0 interface mobile 7.0 2 neutral neutral 
c1i/C1 Sphaerosyllis hystrix eurythermal brooded short low stenohaline gravel 1 0.0 interface mobile 7.0 2 neutral neutral 

h4i/H11 Spio filicornis eurythermal planktonic long low euryhaline muddy sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h4i/H11 Spio martinensis stenothermal planktonic long high stenohaline sand 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h1iv/H4 Spirobranchus lamarcki stenothermal planktonic long low stenohaline rock 2 0.0 epifauna sessile 3.8 10 basibiont neutral 
h4iv/H14 Spisula elliptica eurythermal planktonic long high euryhaline muddy sand 10 4.6 infauna mobile 0.6 10 neutral stabilizer 
h4iv/H14 Spisula solida stenothermal planktonic long high euryhaline sand 10 3.2 infauna mobile 0.7 10 neutral stabilizer 
c2ii/C3 Sthenelais boa eurythermal planktonic long high stenohaline muddy sand 20 0.9 interface mobile 1.1 10 neutral neutral 
h4i/H11 Streblospio shrubsolii stenothermal planktonic short high euryhaline mud 1 0.0 interface sessile 7.0 2 neutral stabilizer 
c2iii/C4 Streptodonta pterochaeta stenothermal planktonic long low stenohaline mud 1 0.0 interface mobile 7.0 2 neutral neutral 
c2iii/C4 Syllides longocirratus stenothermal planktonic long low stenohaline muddy sand 1 0.0 interface mobile 7.0 2 neutral neutral 
c2iii/C4 Syllidia armata eurythermal planktonic long low stenohaline muddy sand 1 0.0 interface mobile 7.0 2 neutral neutral 
c3ii/C6 Syllis armillaris eurythermal planktonic long high stenohaline rock 10 0.1 epifauna mobile 2.4 2 epibiont neutral 
c3ii/C6 Syllis cornuta eurythermal planktonic long high stenohaline rock 10 0.1 epifauna mobile 2.4 2 epibiont neutral 
c3ii/C6 Syllis gracilis stenothermal planktonic long high stenohaline rock 10 0.1 epifauna mobile 2.4 2 epibiont neutral 
c3ii/C6 Syllis hyalina eurythermal planktonic long high stenohaline rock 10 0.1 epifauna mobile 2.4 2 epibiont neutral 
c3ii/C6 Syllis prolifera stenothermal planktonic long high stenohaline rock 10 0.1 epifauna mobile 2.4 2 epibiont neutral 
c3ii/C6 Syllis variegata eurythermal planktonic long high stenohaline rock 10 0.1 epifauna mobile 2.4 2 epibiont neutral 
h1ii/H2 Tectura virginea stenothermal planktonic long high stenohaline rock 2 1.0 interface mobile 1.0 10 epibiont neutral 
h4i/H11 Terebellides stroemii eurythermal planktonic short high euryhaline mud 10 0.1 interface sessile 2.4 2 neutral stabilizer 
h3i/H9 Tharyx sp eurythermal laid short low euryhaline muddy sand 10 0.1 interface mobile 2.4 10 neutral destabilizer 
c2ii/C3 Thia scutellata stenothermal planktonic long high stenohaline sand 2 1.3 interface mobile 0.9 10 neutral neutral 
h2ii/H6 Thyasira flexuosa eurythermal planktonic short low stenohaline mud 2 0.8 infauna mobile 1.1 10 neutral stabilizer 
h1ii/H2 Tricolia pullus stenothermal planktonic short high stenohaline rock 2 1.0 epifauna mobile 1.0 10 epibiont neutral 
c3ii/C6 Trypanosyllis (Trypanosyllis) coeliaca stenothermal planktonic short low stenohaline rock 2 0.0 epifauna mobile 3.8 2 epibiont neutral 
c2i/C2 Tubulanus polymorphus stenothermal planktonic short low stenohaline sand 40 3.3 interface mobile 0.7 2 neutral neutral 

h4iv/H14 Upogebia deltaura stenothermal planktonic long high stenohaline muddy sand 10 0.7 infauna mobile 1.1 10 neutral stabilizer 
h2iv/H8 Urothoe elegans eurythermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
h2iv/H8 Urothoe pulchella stenothermal brooded short low stenohaline muddy sand 1 0.0 interface mobile 3.5 2 neutral destabilizer 
c3i/C5 Urticina felina eurythermal planktonic short high euryhaline rock 20 7.5 epifauna sessile 0.5 20 epibiont neutral 

h4iv/H14 Venerupis corrugata stenothermal planktonic long high euryhaline muddy gravel 10 8.9 infauna mobile 0.5 10 neutral stabilizer 
h4iv/H14 Venus verrucosa stenothermal planktonic long high stenohaline gravel 10 8.9 infauna mobile 0.5 10 neutral stabilizer 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Annex C: Source code of NetLogo models 

C.1 Subtidal small-scale model 

globals [es ed s m l sm la xy n p1 p2 p3 p4 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 ba fg1 fg2 fg3 fg4 fg5 fg6 fg7 fg8 fg9 fg10 fg11 fg12 fg13 fg14 fg15 
fg16] ; define variables of abundances of sediment stabilizing (es) and destabilizing (ed) groups, central patches of the individuals of small (s), intermediate (m), large (l) 
infaunal and small (sm), intermediate (la) epifaunal groups that survive at the end of each year, IBM name according to x-y coordinates of respective Rance patch (xy), 

number of functional groups in the system (n), abundances of 4 predatory groups (p1-p4), abundances of 16 infaunal/epifaunal groups (g1-g16), abundance of infaunal 
individuals of basibiotic group (ba) and contributions of infaunal/epifaunal groups to the respective spawner pool (fg1-fg16) 
patches-own [sp ep g h a ag] ; define patch variables of infaunal (sp) and epifaunal (ep) group occupation, central patches of intermediate and large infaunal (g) and 
intermediate epifaunal (h) individuals that grow in spite of competition and age of infaunal (a) and epifaunal (ag) individuals that survive at the end of a year 

 
to make-movie ; make movie of model interface during initialization plus 9 time steps 
  user-message "First, save your new movie file (choose a name ending with .mov)" 
  let path user-new-file 
  if not is-string? path [ stop ] 

  setup 
  movie-start path 
  movie-set-frame-rate 1 
  movie-grab-interface 

  while [ ticks < 10 ] 
  [go 
    movie-grab-interface ] 
  movie-close 

  user-message (word "Exported movie to " path) 
end 
 
to export ; export all model entities and output to an external file named after the value of the xy variable 
  export-world (word xy ".csv") 

end 
 
to import ; import all model entities and output from an external file named after the value of the xy variable 
  import-world (word xy ".csv") 

end 
 
to setup ; initialize the model 
  clear-all ; clear all model entities and output 

  set s no-patches ; set variable s to an empty patch agentset 
  set m no-patches ; set variable m to an empty patch agentset 
  set l no-patches ; set variable l to an empty patch agentset 
  set sm no-patches ; set variable sm to an empty patch agentset 



 

 

  set la no-patches ; set variable la to an empty patch agentset 
  ask patches [set sp one-of (list 45 45 55 65 65 75 75 75 85 85 85 95 95 105 105 105 115 115 115 125 125 125 135 135 135 145 145 145)] ; randomly attribute an infaunal 
group to the infaunal group occupation variable of each patch/the chances of each group to be attributed are defined by its fecundity, dispersal distance and early 

development mode 
  ask n-of ( 0.9 * count patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] ) patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] [ set sp 35 ] ; randomly remove a 
subset of newly settled infaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 
  ask n-of ( 0.5 * count patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125 ] ) patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125 ] [ set 

sp 35 ] 
  ask n-of ( 0.1 * count patches with [ sp = 135 or sp = 145 ] ) patches with [ sp = 135 or sp = 145 ] [ set sp 35 ] 
  ask patches with [sp > 80 and sp < 120] [ ; in random order expand patch occupation of surviving juveniles of purely infaunal intermediate groups to 8 immediate 
neighbors, unless any of them is occupied by an infaunal individual of the same size 

    if map [? < 85 or ? > 125] [sp] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set sp [sp] of myself] 
      set g -3 ; assign the value -3 to the central patches variable of purely infaunal intermediate individuals that grew in spite of competition 
      ] 
    ] 

  ask patches with [sp = 125] [ ; in random order expand patch occupation of surviving juveniles of the basibiotic group to 8 immediate neighbors, unless any of them is 
occupied by an infaunal individual of the same size and provided that at least one patch within each patch's 24 closest neighbors is occupied by an individual of the same 
group 
    if map [? < 85 or ? > 125] [sp] of neighbors = [true true true true true true true true] and count patches in-radius 2.9 with [sp = 125] > 1 [ 

      ask neighbors [set sp [sp] of myself] 
      set g -3 ; assign the value -3 to the central patches variable of basibiotic intermediate individuals that grew in spite of competition 
      ] 
    ] 

  ask patches with [sp > 130] [ ; in random order expand patch occupation of surviving juveniles of infaunal large groups to 24 closest neighbors, unless any of them is 
occupied by an infaunal individual of the same size 
    if map [? < 135] [sp] of other patches in-radius 2.9 = [true true true true true true true true true true true true true true true true true true true true true true true true] [ 
      ask patches in-radius 2.9 [set sp [sp] of myself] 

      set g -5 ; assign the value -5 to the central patches variable of large infaunal individuals that grew in spite of competition 
      ] 
    ] 
  ask patches with [sp > 40 and sp < 80] [set sp (sp - 35) / 10 set g -11 set a 0] ; assign the value -11 to the central patches variable of small infaunal individuals that were 
not overgrown and set their age to 1 year 

  set s (patch-set patches with [g = -11]) ; assign the central patches of small infaunal individuals that were not overgrown to the respective patch set 
  ask patches with [g = -3 and sp < 130 and length (filter [? = sp] [sp] of patches in-radius 1.9) = 9] [ask patches in-radius 1.9 [set sp (sp - 35) / 10] set g -7 set a 0] ; assign 
the value -7 to the central patches variable of intermediate infaunal individuals that grew and were not overgrown and set their age to 1 year 
  set m (patch-set patches with [g = -7]) ; assign the central patches of intermediate infaunal individuals that grew and were not overgrown to the respective patch set 

  ask patches with [g = -5 and length (filter [? = sp] [sp] of patches in-radius 2.9) = 25] [ask patches in-radius 2.9 [set sp (sp - 35) / 10] set g -9 set a 0] ; assign the value -9 
to the central patches variable of large infaunal individuals that grew and were not overgrown and set their age to 1 year 
  set l (patch-set patches with [g = -9]) ; assign the central patches of large infaunal individuals that grew and were not overgrown to the respective patch set 
  ask patches with [sp > 11] [set sp 35] ; clear the infaunal group occupation variable of patches occupied by infaunal individuals that did not grow or were overgrown 

 
  ask patches with [sp = 9] [set ep one-of (list 165 165 165 175 175 175 185 185 185 195 195 195 205 205 205 215 215)] ; randomly attribute an epifaunal group to the 
epifaunal group occupation variable of patches occupied by infaunal individuals of the basibiotic group/the chances of each group to be attributed are defined by its 
fecundity, dispersal distance and early development mode 

  ask n-of ( 0.9 * count patches with [ ep = 165 or ep = 175 or ep = 185 ] ) patches with [ ep = 165 or ep = 175 or ep = 185 ] [ set ep 0 ] ; randomly remove a subset of newly 
settled epifaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 



 

 

  ask n-of ( 0.5 * count patches with [ ep = 195 ] ) patches with [ ep = 195 ] [ set ep 0 ] 
  ask n-of ( 0.1 * count patches with [ ep = 205 or ep = 215 ] ) patches with [ ep = 205 or ep = 215 ] [ set ep 0 ] 
  ask patches with [ep = 215] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with rock to 8 immediate 

neighbors, unless any of them is occupied by an epifaunal individual of the same size 
    if map [? < 200] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 
      set h 3 ; assign the value 3 to the central patches variable of epifaunal intermediate individuals associated with rock that grew in spite of competition 

      ] 
    ] 
  ask patches with [ep = 205] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with gravel to 8 immediate 
neighbors, unless any of them is occupied by an epifaunal individual of the same size 

    if map [? < 200] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 
      set h 3 ; assign the value 3 to the central patches variable of epifaunal intermediate individuals associated with gravel that grew in spite of competition 
      ] 
    ] 

  ask patches with [ep > 160 and ep < 200] [set ep (ep - 35) / 10 set h 5 set ag 0] ; assign the value 5 to the central patches variable of small epifaunal individuals that were 
not overgrown and set their age to 1 year 
  set sm (patch-set patches with [h = 5]) ; assign the central patches of small epifaunal individuals that were not overgrown to the respective patch set 
  ask patches with [h = 3 and length (filter [? = ep] [ep] of patches in-radius 1.9) = 9] [ask patches in-radius 1.9 [set ep (ep - 35) / 10] set h 7 set ag 0] ; assign the value 7 

to the central patches variable of intermediate epifaunal individuals that grew and were not overgrown and set their age to 1 year 
  set la (patch-set patches with [h = 7]) ; assign the central patches of intermediate epifaunal individuals that grew and were not overgrown to the respective patch set 
  ask patches with [ep > 18] [set ep 0] ; clear the epifaunal group occupation variable of patches occupied by epifaunal individuals that did not grow 
 

  set g1 count patches with [ sp = 1 ] ; give the small infaunal groups abundance variables values equal to the number of patches occupied by each group 
  set g2 count patches with [ sp = 2 ] 
  set g3 count patches with [ sp = 3 ] 
  set g4 count patches with [ sp = 4 ] 

  set g5 count patches with [ sp = 5 ] / 9 ; give the intermediate infaunal groups abundance variables values equal to the number of patches occupied by each group divided 
by the individually occupied number of patches 
  set g6 count patches with [ sp = 6 ] / 9 
  set g7 count patches with [ sp = 7 ] / 9 
  set g8 count patches with [ sp = 8 ] / 9 

  set g9 count patches with [ sp = 9 ] / 9 
  set ba g9 ; give the infaunal basibionts abundance variable a value equal to the infaunal abundance of the basibiotic group 
  set g10 count patches with [ sp = 10 ] / 25 ; give the large infaunal groups abundance variables values equal to the number of patches occupied by each group divided by 
the individually occupied number of patches 

  set g11 count patches with [ sp = 11 ] / 25 
  set p1 round ((g4 + g7) / 10) ; give the predatory groups abundance variables values equal to the sum of their prey groups abundance divided by 10 
  set p3 round ((g4 + g5) / 10) 
  set p2 round ((g7 + g11) / 10) 

  set p4 round ((p1 + p3) / 10) 
  set es (g5 + g10) ; give the sediment stabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large sessile stabilizers 
  set ed (g7 + g11) ; give the sediment destabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large destabilizers 
  ask patches [set pcolor sp] ; color patches according to their infaunal group occupation variable 

 
  set g12 count patches with [ ep = 13 ] ; give the small epifaunal groups abundance variables values equal to the number of patches occupied by each group 



 

 

  set g13 count patches with [ ep = 14 ] 
  set g14 count patches with [ ep = 15 ] 
  set g9 g9 + count patches with [ ep = 16 ] ; give the basibiotic group abundance variable a value equal to the sum of the abundances of the infaunal and epifaunal 

individuals of the group 
  set g15 count patches with [ ep = 17 ] / 9 ; give the intermediate epifaunal groups abundance variables values equal to the number of patches occupied by each group 
divided by the individually occupied number of patches 
  set g16 count patches with [ ep = 18 ] / 9 

  ask patches with [ ep > 0 ] [ set pcolor ep ] ; color patches occupied by epifaunal individuals according to their epifaunal group occupation variable 
 
  set n length filter [? > 0] (list g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 p1 p2 p3 p4) ; give the variable of number of functional groups in the system a value 
equal to the number of groups with abundances larger than 0 

  reset-ticks ; set tick counter to zero, set up and update all plots 
end 
 
to go ; move the model one step forward 
  set-current-plot "Functional group abundance" ; clear the histogram of functional group abundances 

  clear-plot 
  tick ; advance the tick counter by one and update all plots 
  do-recruitment ; run the recruitment submodel 
  do-competition ; run the competition submodel 

  do-ageing ; run the ageing submodel 
  do-mortality ; run the mortality submodel 
end 
 

to do-recruitment ; run the recruitment submodel 
  output-print " " output-type "f " output-type fg1 output-type " " output-type fg2 output-type " " output-type fg3 output-type " " output-type fg4 output-type " " output-type 
fg5 output-type " " output-type fg6 output-type " " output-type fg7 output-type " " output-type fg8 output-type " " output-type fg9 output-type " " output-type fg10 output-
type " " output-type fg11 output-type " " output-type fg12 output-type " " output-type fg13 output-type " " output-type fg14 output-type " " output-type fg15 output-type " " 

output-print fg16 ; print out the values of infaunal/epifaunal groups contribution to the respective spawner pool 
  let fg ( fg1 + fg2 + fg3 + fg4 + fg5 + fg6 + fg7 + fg8 + fg9 + fg10 + fg11 ) ; define the contribution of infaunal groups to the respective spawner pool as the contribution of 
each group to the total abundance of the respective set of groups during the previous time step 
  ifelse es > ed ; randomly attribute an infaunal group to the infaunal group occupation variable of patches that are not occupied by infauna/the chances of each group to be 
attributed are defined by its fecundity, dispersal distance, early development mode, role in sediment engineering, position in the sediment, contribution to the infaunal 

spawner pool and the relative abundance of sediment stabilizing and destabilizing groups 
  [ ask patches with [sp = 35] [ set sp one-of (se n-values ((fg1 / fg) * 200) [45] n-values ((fg2 / fg) * 50) [55] n-values ((fg3 / fg) * 100) [65] n-values ((fg4 / fg) * 150) 
[75] n-values ((fg5 / fg) * 600) [85] n-values ((fg6 / fg) * 100) [95] n-values ((fg7 / fg) * 150) [105] n-values ((fg8 / fg) * 150) [115] n-values ((fg9 / fg) * 600) [125] n-
values ((fg10 / fg) * 600) [135] n-values ((fg11 / fg) * 150) [145]) ] ] 

  [ ask patches with [sp = 35] [ set sp one-of (se n-values ((fg1 / fg) * 200) [45] n-values ((fg2 / fg) * 50) [55] n-values ((fg3 / fg) * 100) [65] n-values ((fg4 / fg) * 600) 
[75] n-values ((fg5 / fg) * 150) [85] n-values ((fg6 / fg) * 100) [95] n-values ((fg7 / fg) * 600) [105] n-values ((fg8 / fg) * 150) [115] n-values ((fg9 / fg) * 150) [125] n-
values ((fg10 / fg) * 150) [135] n-values ((fg11 / fg) * 600) [145]) ] ] 
  ask n-of ( 0.9 * count patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] ) patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] [ set sp 35 ] ; randomly remove a 

subset of newly settled infaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 
  ask n-of ( 0.5 * count patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125 ] ) patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125 ] [ set 
sp 35 ] 
  ask n-of ( 0.1 * count patches with [ sp = 135 or sp = 145 ] ) patches with [ sp = 135 or sp = 145 ] [ set sp 35 ] 

 
let fge ( fg9 + fg12 + fg13 + fg14 + fg15 + fg16 ) ; define the contribution of epifaunal groups to the respective spawner pool as the contribution of each group to the total 



 

 

abundance of the respective set of groups during the previous time step 
  ask patches with [sp = 9 and ep = 0] [ set ep one-of (se n-values ((fg9 / fge) * 300) [195] n-values ((fg12 / fge) * 300) [165] n-values ((fg13 / fge) * 300) [175] n-values 
((fg14 / fge) * 300) [185] n-values ((fg15 / fge) * 300) [205] n-values ((fg16 / fg) * 200) [215] ) ] ; randomly attribute an epifaunal group to the epifaunal group occupation 

variable of patches occupied by infaunal individuals of the basibiotic group that are not occupied by epifauna/the chances of each group to be attributed are defined by its 
fecundity, dispersal distance, early development mode and contribution to the infaunal spawner pool 
  ask n-of ( 0.9 * count patches with [ ep = 165 or ep = 175 or ep = 185 ] ) patches with [ ep = 165 or ep = 175 or ep = 185 ] [ set ep 0 ] ; randomly remove a subset of newly 
settled epifaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 

  ask n-of ( 0.5 * count patches with [ ep = 195 ] ) patches with [ ep = 195 ] [ set ep 0 ] 
  ask n-of ( 0.1 * count patches with [ ep = 205 or ep = 215 ] ) patches with [ ep = 205 or ep = 215 ] [ set ep 0 ] 
end 
 

to do-competition ; run the competition submodel 
  ask patches with [sp > 80 and sp < 120] [ ; in random order expand patch occupation of surviving juveniles of purely infaunal intermediate groups to 8 immediate 
neighbors, unless any of them is occupied by an infaunal individual of the same size 
    if map [(? < 5 or ? > 11) and (? < 85 or ? > 125)] [sp] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set sp [sp] of myself] 

      set g 1 / ticks ; assign the value 1/time step to the central patches variable of purely infaunal intermediate individuals that grew in spite of competition 
      ] 
    ] 
  ask patches with [sp = 125] [ ; in random order expand patch occupation of surviving juveniles of the basibiotic group to 8 immediate neighbors, unless any of them is 

occupied by an infaunal individual of the same size and provided that at least one patch within each patch's 24 closest neighbors is occupied by an individual of the same 
group 
    if map [(? < 5 or ? > 11) and (? < 85 or ? > 125)] [sp] of neighbors = [true true true true true true true true] and count patches in-radius 2.9 with [sp = 9] > 0 [ 
      ask neighbors [set sp [sp] of myself] 

      set g 1 / ticks ; assign the value 1/time step to the central patches variable of basibiotic intermediate individuals that grew in spite of competition 
      ] 
    ] 
  ask patches with [sp > 130] [ ; in random order expand patch occupation of surviving juveniles of infaunal large groups to 24 closest neighbors, unless any of them is 

occupied by an infaunal individual of the same size 
    if map [(? < 10 or ? > 11) and ? < 135] [sp] of other patches in-radius 2.9 = [true true true true true true true true true true true true true true true true true true true true 
true true true true] [ 
      ask patches in-radius 2.9 [set sp [sp] of myself] 
      set g 2 * ticks ; assign the value 2xtime step to the central patches variable of large infaunal individuals that grew in spite of competition 

      ] 
    ] 
 
  ask patches with [ep = 215] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with rock to 8 immediate 

neighbors, unless any of them is occupied by an epifaunal individual of the same size 
    if map [(? < 17 or ? > 18) and ? < 205] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 
      set h 2 * ticks ; assign the value 2xtime step to the central patches variable of epifaunal intermediate individuals associated with rock that grew in spite of competition 

      ] 
    ] 
  ask patches with [ep = 205] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with gravel to 8 immediate 
neighbors, unless any of them is occupied by an epifaunal individual of the same size 

    if map [(? < 17 or ? > 18) and ? < 205] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 



 

 

      set h 2 * ticks ; assign the value 2xtime step to the central patches variable of epifaunal intermediate individuals associated with gravel that grew in spite of competition 
      ] 
    ] 

end 
 
to do-ageing ; run the ageing submodel 
  ask s [set a a + 1] ; add one year to the age of small infaunal individuals that survived from the previous time step 

  ask m [set a a + 1] ; add one year to the age of intermediate infaunal individuals that survived from the previous time step 
  ask l [set a a + 1] ; add one year to the age of large infaunal individuals that survived from the previous time step 
 
  ask sm [set ag ag + 1] ; add one year to the age of small epifaunal individuals that survived from the previous time step 

  ask la [set ag ag + 1] ; add one year to the age of intermediate epifaunal individuals that survived from the previous time step 
end 
 
to do-mortality ; run the mortality submodel 
  ask patches with [sp > 40 and sp < 80] [set sp (sp - 35) / 10 set a 0] ; set the age of newly settled small infaunal individuals that were not overgrown to 1 year and 

  set s patches with [sp < 5] ; add them to the respective patch set 
  ask m with [length (filter [? = sp] [sp] of patches in-radius 1.9) != 9 or sp > 9] [ask patches in-radius 1.9 with [sp < 130] [set sp 35] ask la in-radius 1.9 [set ep 0] ask 
patches in-radius 1.9 with [ep < 17 or (ep > 160 and ep < 200) or h = 2 * ticks] [set ep 0]] ; clear the infaunal and epifaunal group occupation variable of patches occupied 
by intermediate infaunal individuals that were overgrown 

  set m m with [sp < 10] ; remove the central patches of intermediate infaunal individuals that were overgrown from the respective patch set of individuals that survive at the 
end of the year 
  ask patches with [g = 1 / ticks and sp > 80 and sp < 130 and length (filter [? = sp] [sp] of patches in-radius 1.9) = 9] [ask patches in-radius 1.9 [set sp (sp - 35) / 10] set g 
-1 / ticks set a 0] ; assign the value -1/time step to the central patches variable of intermediate infaunal individuals that grew and were not overgrown and set their age to 1 

year 
  set m (patch-set m patches with [g = -1 / ticks]) ; add the central patches of intermediate infaunal individuals that grew and were not overgrown to the respective patch 
set 
  ask patches with [g = 2 * ticks] [ask patches in-radius 2.9 [set sp (sp - 35) / 10] set a 0] ; set the age of newly settled large infaunal individuals that grew to 1 year and 

  set l (patch-set l patches with [g = 2 * ticks]) ; add them to the respective patch set 
  ask patches with [sp > 11] [set sp 35] ; clear the infaunal group occupation variable of patches occupied by newly settled infaunal individuals that did not grow or were 
overgrown 
  ask s with [sp = 1 and a > 0] [set sp 35] ; clear the infaunal group occupation variable of patches occupied by small infaunal individuals that reached their lifespan 
  ask s with [sp = 2 and a > 8] [set sp 35] 

  ask s with [sp = 3 and a > 0] [set sp 35] 
  ask s with [sp = 4 and a > 0] [set sp 35] 
  ask m with [sp = 5 and a > 2] [ask patches in-radius 1.9 [set sp 35]] ; clear the infaunal group occupation variable of patches occupied by intermediate infaunal individuals 
that reached their lifespan 

  ask m with [sp = 6 and a > 13] [ask patches in-radius 1.9 [set sp 35]] 
  ask m with [sp = 7 and a > 1] [ask patches in-radius 1.9 [set sp 35]] 
  ask m with [sp = 8 and a > 7] [ask patches in-radius 1.9 [set sp 35]] 
 

  ask patches with [ep > 160 and ep < 200] [set ep (ep - 35) / 10 set ag 0] ; set the age of newly settled small epifaunal individuals that were not overgrown to 1 year 
  ask sm with [ep = 13 and ag > 0] [set ep 0] ; clear the epifaunal group occupation variable of patches occupied by small epifaunal individuals that reached their lifespan 
  ask sm with [ep = 14 and ag > 0] [set ep 0] 
  ask sm with [ep = 15 and ag > 0] [set ep 0] 

  ask sm with [ep = 16 and ag > 9] [set ep 0] 
  ask m with [sp = 9 and a > 9] [ ; ask infaunal individuals of the basibiotic group that reached their lifespan 



 

 

    ifelse length (filter [? = 16] [ep] of patches in-radius 1.9) > 0 ; if they have any epibiotic individuals of the same group 
    [set a max [ag] of patches in-radius 1.9 with [ep = 16] ask max-one-of patches in-radius 1.9 with [ep = 16] [ag] [set ep 0]] ; to take the age of the oldest one and remove 
it from the epibionts 

    [ask patches in-radius 1.9 [set sp 35 set ep 0]]] ; otherwise clear the infaunal and epifaunal group occupation variable of patches occupied by them 
  set sm patches with [ep > 0 and ep < 17] ; add newly settled small epifaunal individuals that were not overgrown to the respective patch set 
  ask la with [length (filter [? = ep] [ep] of patches in-radius 1.9) != 9] [ask patches in-radius 1.9 [set ep 0]] ; clear the epifaunal group occupation variable of patches 
occupied by intermediate epifaunal individuals that are no more epibionts 

  ask patches with [h = 2 * ticks and ep > 200] [ask patches in-radius 1.9 [set ep (ep - 35) / 10] set h -2 * ticks set ag 0] ; set the age of newly settled intermediate epifaunal 
individuals that grew to 1 year and 
  set la (patch-set la with [ep > 0] patches with [h = -2 * ticks]) ; add them to the respective patch set 
  ask patches with [ep > 18] [set ep 0] ; clear the epifaunal group occupation variable of patches occupied by intermediate epifaunal individuals that did not grow 

  ask la with [ep = 17 and ag > 8] [ask patches in-radius 1.9 [set ep 0]] ; clear the epifaunal group occupation variable of patches occupied by intermediate epifaunal 
individuals that reached their lifespan 
  ask la with [ep = 18 and ag > 10] [ask patches in-radius 1.9 [set ep 0]] 
  set sm sm with [(ep = 13 and ag < 1) or (ep = 14 and ag < 1) or (ep = 15 and ag < 1) or (ep = 16 and ag < 10)] ; update the patch set of small epifaunal individuals 
  set la la with [(ep = 17 and ag < 9) or (ep = 18 and ag < 11)] ; update the patch set of intermediate epifaunal individuals 

 
  ask l with [sp = 10 and a > 2] [ask patches in-radius 2.9 [set sp 35]] ; clear the infaunal group occupation variable of patches occupied by large infaunal individuals that 
reached their lifespan 
  ask l with [sp = 11 and a > 1] [ask patches in-radius 2.9 [set sp 35]] 

  let pr4 count s with [sp = 4] ; assign the abundances of prey groups to the potential prey variables 
  let pr5 count m with [sp = 5] 
  let pr7 count m with [sp = 7] 
  let pr11 count l with [sp = 11] 

  ifelse pr11 >= pr7 ; if larger prey was more or equally abundant to smaller prey 
  [ask n-of min list p2 count l with [sp = 11 and a < 2] l with [sp = 11 and a < 2] [ask patches in-radius 2.9 [set sp 35]]] ; randomly remove as many larger prey individuals as 
there were large predators 
  [ask n-of min list max list 0 (p2 - count m with [sp = 7 and a < 2]) count l with [sp = 11 and a < 2] l with [sp = 11 and a < 2] [ask patches in-radius 2.9 [set sp 35]]] ; 

otherwise randomly remove as many larger prey individuals as there were large predators minus the abundance of the smaller prey 
  set l l with [(sp = 10 and a < 3) or (sp = 11 and a < 2)] ; update the patch set of large epifaunal individuals 
  ifelse pr7 > pr11 ; if smaller prey was more abundant than larger prey 
  [ask n-of min list p2 count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; randomly remove as many smaller prey individuals 
as there were large predators 

  [ask n-of min list max list 0 (p2 - count l with [sp = 11 and a < 2]) count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; 
otherwise randomly remove as many smaller prey individuals as there were large predators minus the abundance of the larger prey 
  ifelse pr5 >= pr4 ; if larger prey was more or equally abundant to smaller prey 
  [ask n-of min list p3 count m with [sp = 5 and a < 3] m with [sp = 5 and a < 3] [ask patches in-radius 1.9 [set sp 35]]] ; randomly remove as many larger prey individuals as 

there were intermediate predators 
  [ask n-of min list max list 0 (p3 - count s with [sp = 4 and a < 1]) count m with [sp = 5 and a < 3] m with [sp = 5 and a < 3] [ask patches in-radius 1.9 [set sp 35]]] ; 
otherwise randomly remove as many larger prey individuals as there were intermediate predators minus the abundance of the smaller prey 
  ifelse pr7 >= pr4 ; if larger prey was more or equally abundant to smaller prey 

  [ask n-of min list p1 count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; randomly remove as many larger prey individuals as 
there were small predators 
  [ask n-of min list max list 0 (p1 - count s with [sp = 4 and a < 1]) count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; 
otherwise randomly remove as many larger prey individuals as there were small predators minus the abundance of the smaller prey 

  set m m with [(sp = 5 and a < 3) or (sp = 6 and a < 14) or (sp = 7 and a < 2) or (sp = 8 and a < 8) or (sp = 9 and a < 10)] ; update the patch set of intermediate epifaunal 
individuals 



 

 

  ifelse pr4 > pr5 ; if smaller prey was more abundant than larger prey 
  [ask n-of min list p3 count s with [sp = 4] s with [sp = 4] [set sp 35]] ; randomly remove as many smaller prey individuals as there were intermediate predators 
  [ask n-of min list max list 0 (p3 - count m with [sp = 5]) count s with [sp = 4] s with [sp = 4] [set sp 35]] ; otherwise randomly remove as many smaller prey individuals as 

there were small predators minus the abundance of the larger prey 
  ifelse pr4 > pr7 ; if smaller prey was more abundant than larger prey 
  [ask n-of min list p1 count s with [sp = 4] s with [sp = 4] [set sp 35]] ; randomly remove as many smaller prey individuals as there were small predators 
  [ask n-of min list max list 0 (p1 - count m with [sp = 7]) count s with [sp = 4] s with [sp = 4] [set sp 35]] ; otherwise randomly remove as many smaller prey individuals as 

there were small predators minus the abundance of the larger prey 
  set s s with [(sp = 1 and a < 1) or (sp = 2 and a < 9) or (sp = 3 and a < 1) or (sp = 4 and a < 1)] ; update the patch set of small epifaunal individuals 
  set g1 count patches with [ sp = 1 ] ; give the small infaunal groups abundance variables values equal to the number of patches occupied by each group 
  set g2 count patches with [ sp = 2 ] 

  set g3 count patches with [ sp = 3 ] 
  set g4 count patches with [ sp = 4 ] 
  set g5 count patches with [ sp = 5 ] / 9 ; give the intermediate infaunal groups abundance variables values equal to the number of patches occupied by each group divided 
by the individually occupied number of patches 
  set g6 count patches with [ sp = 6 ] / 9 

  set g7 count patches with [ sp = 7 ] / 9 
  set g8 count patches with [ sp = 8 ] / 9 
  set g9 count patches with [ sp = 9 ] / 9 
  set ba g9 ; give the infaunal basibionts abundance variable a value equal to the infaunal abundance of the basibiotic group 

  set g10 count patches with [ sp = 10 ] / 25 ; give the large infaunal groups abundance variables values equal to the number of patches occupied by each group divided by 
the individually occupied number of patches 
  set g11 count patches with [ sp = 11 ] / 25 
  set p1 round ((g4 + g7) / 10) ; give the predatory groups abundance variables values equal to the sum of their prey groups abundance divided by 10 

  set p3 round ((g4 + g5) / 10) 
  set p2 round ((g7 + g11) / 10) 
  set p4 round ((p1 + p3) / 10) 
  set es (g5 + g10) ; give the sediment stabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large sessile stabilizers 

  set ed (g7 + g11) ; give the sediment destabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large destabilizers 
  ask patches [set pcolor sp] ; color patches according to their infaunal group occupation variable 
 
  set g12 count patches with [ ep = 13 ] ; give the small epifaunal groups abundance variables values equal to the number of patches occupied by each group 
  set g13 count patches with [ ep = 14 ] 

  set g14 count patches with [ ep = 15 ] 
  set g9 g9 + count patches with [ ep = 16 ] ; give the basibiotic group abundance variable a value equal to the sum of the abundances of the infaunal and epifaunal 
individuals of the group 
  set g15 count patches with [ ep = 17 ] / 9 ; give the intermediate epifaunal groups abundance variables values equal to the number of patches occupied by each group 

divided by the individually occupied number of patches 
  set g16 count patches with [ ep = 18 ] / 9 
  ask patches with [ ep > 0 ] [ set pcolor ep ] ; color patches occupied by epifaunal individuals according to their epifaunal group occupation variable 
 

  output-type "g " output-type g1 output-type " " output-type g2 output-type " " output-type g3 output-type " " output-type g4 output-type " " output-type g5 output-type " " 
output-type g6 output-type " " output-type g7 output-type " " output-type g8 output-type " " output-type g9 output-type " " output-type g10 output-type " " output-type g11 
output-type " " output-type g12 output-type " " output-type g13 output-type " " output-type g14 output-type " " output-type g15 output-type " " output-type g16 output-
type " " output-type p1 output-type " " output-type p2 output-type " " output-type p3 output-type " " output-print p4 ; print out the values of infaunal/epifaunal and 

predatory groups abundance 
  set n length filter [? > 0] (list g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 p1 p2 p3 p4) ; give the variable of number of functional groups in the system a value 



 

 

equal to the number of groups with abundances larger than 0 
end 

C.2 Intertidal small-scale model 

globals [es ed s m l sm la xy n p1 p2 p3 p4 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 ba fg1 fg2 fg3 fg4 fg5 fg6 fg7 fg8 fg9 fg10 fg11 fg12 fg13 fg14 fg15 
fg16] ; define variables of abundances of sediment stabilizing (es) and destabilizing (ed) groups, central patches of the individuals of small (s), intermediate (m), large (l) 
infaunal and small (sm), intermediate (la) epifaunal groups that survive at the end of each year, IBM name according to x-y coordinates of respective Rance patch (xy), 

number of functional groups in the system (n), abundances of 4 predatory groups (p1-p4), abundances of 16 infaunal/epifaunal groups (g1-g16), abundance of infaunal 
individuals of basibiotic group (ba) and contributions of infaunal/epifaunal groups to the respective spawner pool (fg1-fg16) 
patches-own [sp ep g h a ag] ; define patch variables of infaunal (sp) and epifaunal (ep) group occupation, central patches of intermediate and large infaunal (g) and 
intermediate epifaunal (h) individuals that grow in spite of competition and age of infaunal (a) and epifaunal (ag) individuals that survive at the end of a year 

 
to make-movie ; make movie of model interface during initialization plus 9 time steps 
  user-message "First, save your new movie file (choose a name ending with .mov)" 
  let path user-new-file 

  if not is-string? path [ stop ] 
  setup 
  movie-start path 
  movie-set-frame-rate 1 

  movie-grab-interface 
  while [ ticks < 10 ] 
  [go 
    movie-grab-interface ] 
  movie-close 

  user-message (word "Exported movie to " path) 
end 
 
to export ; export all model entities and output to an external file named after the value of the xy variable 

  export-world (word xy ".csv") 
end 
 
to import ; import all model entities and output from an external file named after the value of the xy variable 

  import-world (word xy ".csv") 
end 
 
to setup ; initialize the model 

  clear-all ; clear all model entities and output 
  set s no-patches ; set variable s to an empty patch agentset 
  set m no-patches ; set variable m to an empty patch agentset 
  set l no-patches ; set variable l to an empty patch agentset 
  set sm no-patches ; set variable sm to an empty patch agentset 

  set la no-patches ; set variable la to an empty patch agentset 
  ask patches [set sp one-of (list 45 45 55 65 65 65 65 75 75 75 85 85 85 95 95 105 105 105 105 105 105 115 115 115 115 115 115 125 125 125 135 135 135 135 135 135 



 

 

145 145 145 145 145 145)] ; randomly attribute an infaunal group to the infaunal group occupation variable of each patch/the chances of each group to be attributed are 
defined by its tolerance of tidal exposure, fecundity, dispersal distance and early development mode 
  ask n-of ( 0.9 * count patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] ) patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] [ set sp 35 ] ; randomly remove a 

subset of newly settled infaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 
  ask n-of ( 0.5 * count patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125] ) patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125] [ set 
sp 35 ] 
  ask n-of ( 0.1 * count patches with [ sp = 135 or sp = 145 ] ) patches with [ sp = 135 or sp = 145 ] [ set sp 35 ] 

  ask patches with [sp > 80 and sp < 120] [ ; in random order expand patch occupation of surviving juveniles of purely infaunal intermediate groups to 8 immediate 
neighbors, unless any of them is occupied by an infaunal individual of the same size 
    if map [? < 85 or ? > 125] [sp] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set sp [sp] of myself] 

      set g -3 ; assign the value -3 to the central patches variable of purely infaunal intermediate individuals that grew in spite of competition 
      ] 
    ] 
  ask patches with [sp = 125] [ ; in random order expand patch occupation of surviving juveniles of the basibiotic group to 8 immediate neighbors, unless any of them is 
occupied by an infaunal individual of the same size and provided that at least one patch within each patch's 24 closest neighbors is occupied by an individual of the same 

group 
    if map [? < 85 or ? > 125] [sp] of neighbors = [true true true true true true true true] and count patches in-radius 2.9 with [sp = 125] > 1 [ 
      ask neighbors [set sp [sp] of myself] 
      set g -3 ; assign the value -3 to the central patches variable of basibiotic intermediate individuals that grew in spite of competition 

      ] 
    ] 
  ask patches with [sp > 130] [ ; in random order expand patch occupation of surviving juveniles of infaunal large groups to 24 closest neighbors, unless any of them is 
occupied by an infaunal individual of the same size 

    if map [? < 135] [sp] of other patches in-radius 2.9 = [true true true true true true true true true true true true true true true true true true true true true true true true] [ 
      ask patches in-radius 2.9 [set sp [sp] of myself] 
      set g -5 ; assign the value -5 to the central patches variable of large infaunal individuals that grew in spite of competition 
      ] 

    ] 
  ask patches with [sp > 40 and sp < 80] [set sp (sp - 35) / 10 set g -11 set a 0] ; assign the value -11 to the central patches variable of small infaunal individuals that were 
not overgrown and set their age to 1 year 
  set s (patch-set patches with [g = -11]) ; assign the central patches of small infaunal individuals that were not overgrown to the respective patch set 
  ask patches with [g = -3 and sp < 130 and length (filter [? = sp] [sp] of patches in-radius 1.9) = 9] [ask patches in-radius 1.9 [set sp (sp - 35) / 10] set g -7 set a 0] ; assign 

the value -7 to the central patches variable of intermediate infaunal individuals that grew and were not overgrown and set their age to 1 year 
  set m (patch-set patches with [g = -7]) ; assign the central patches of intermediate infaunal individuals that grew and were not overgrown to the respective patch set 
  ask patches with [g = -5 and length (filter [? = sp] [sp] of patches in-radius 2.9) = 25] [ask patches in-radius 2.9 [set sp (sp - 35) / 10] set g -9 set a 0] ; assign the value -9 
to the central patches variable of large infaunal individuals that grew and were not overgrown and set their age to 1 year 

  set l (patch-set patches with [g = -9]) ; assign the central patches of large infaunal individuals that grew and were not overgrown to the respective patch set 
  ask patches with [sp > 11] [set sp 35] ; clear the infaunal group occupation variable of patches occupied by infaunal individuals that did not grow or were overgrown 
 
  ask patches with [sp = 9] [set ep one-of (list 165 165 165 175 175 175 175 175 175 185 185 185 195 195 195 205 205 205 215 215)] ; randomly attribute an epifaunal 

group to the epifaunal group occupation variable of patches occupied by infaunal individuals of the basibiotic group/the chances of each group to be attributed are defined by 
its tolerance of tidal exposure, fecundity, dispersal distance and early development mode 
  ask n-of ( 0.9 * count patches with [ ep = 165 or ep = 175 or ep = 185 ] ) patches with [ ep = 165 or ep = 175 or ep = 185 ] [ set ep 0 ] ; randomly remove a subset of newly 
settled epifaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 

  ask n-of ( 0.5 * count patches with [ ep = 195 ] ) patches with [ ep = 195 ] [ set ep 0 ] 
  ask n-of ( 0.1 * count patches with [ ep = 205 or ep = 215 ] ) patches with [ ep = 205 or ep = 215 ] [ set ep 0 ] 



 

 

  ask patches with [ep = 215] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with rock to 8 immediate 
neighbors, unless any of them is occupied by an epifaunal individual of the same size 
    if map [? < 200] [ep] of neighbors = [true true true true true true true true] [ 

      ask neighbors [set ep [ep] of myself] 
      set h 3 ; assign the value 3 to the central patches variable of epifaunal intermediate individuals associated with rock that grew in spite of competition 
      ] 
    ] 

  ask patches with [ep = 205] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with gravel to 8 immediate 
neighbors, unless any of them is occupied by an epifaunal individual of the same size 
    if map [? < 200] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 

      set h 3 ; assign the value 3 to the central patches variable of epifaunal intermediate individuals associated with gravel that grew in spite of competition 
      ] 
    ] 
  ask patches with [ep > 160 and ep < 200] [set ep (ep - 35) / 10 set h 5 set ag 0] ; assign the value 5 to the central patches variable of small epifaunal individuals that were 
not overgrown and set their age to 1 year 

  set sm (patch-set patches with [h = 5]) ; assign the central patches of small epifaunal individuals that were not overgrown to the respective patch set 
  ask patches with [h = 3 and length (filter [? = ep] [ep] of patches in-radius 1.9) = 9] [ask patches in-radius 1.9 [set ep (ep - 35) / 10] set h 7 set ag 0] ; assign the value 7 
to the central patches variable of intermediate epifaunal individuals that grew and were not overgrown and set their age to 1 year 
  set la (patch-set patches with [h = 7]) ; assign the central patches of intermediate epifaunal individuals that grew and were not overgrown to the respective patch set 

  ask patches with [ep > 18] [set ep 0] ; clear the epifaunal group occupation variable of patches occupied by epifaunal individuals that did not grow 
 
  set g1 count patches with [ sp = 1 ] ; give the small infaunal groups abundance variables values equal to the number of patches occupied by each group 
  set g2 count patches with [ sp = 2 ] 

  set g3 count patches with [ sp = 3 ] 
  set g4 count patches with [ sp = 4 ] 
  set g5 count patches with [ sp = 5 ] / 9 ; give the intermediate infaunal groups abundance variables values equal to the number of patches occupied by each group divided 
by the individually occupied number of patches 

  set g6 count patches with [ sp = 6 ] / 9 
  set g7 count patches with [ sp = 7 ] / 9 
  set g8 count patches with [ sp = 8 ] / 9 
  set g9 count patches with [ sp = 9 ] / 9 
  set ba g9 ; give the infaunal basibionts abundance variable a value equal to the infaunal abundance of the basibiotic group 

  set g10 count patches with [ sp = 10 ] / 25 ; give the large infaunal groups abundance variables values equal to the number of patches occupied by each group divided by 
the individually occupied number of patches 
  set g11 count patches with [ sp = 11 ] / 25 
  set p1 round ((max list g4 g7) / 10) ; give the predatory groups abundance variables values equal to those of the most abundant of their prey groups divided by 10 

  set p3 round ((max list g4 g5) / 10) 
  set p2 round ((max list g7 g11) / 10) 
  set p4 round ((max list p1 p3) / 10) 
  set es (g8 + g10) ; give the sediment stabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large sessile stabilizers that 

tolerate tidal exposure 
  set ed (g7 + g11) ; give the sediment destabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large destabilizers that 
tolerate tidal exposure 
  ask patches [set pcolor sp] ; color patches according to their infaunal group occupation variable 

 
  set g12 count patches with [ ep = 13 ] ; give the small epifaunal groups abundance variables values equal to the number of patches occupied by each group 



 

 

  set g13 count patches with [ ep = 14 ] 
  set g14 count patches with [ ep = 15 ] 
  set g9 g9 + count patches with [ ep = 16 ] ; give the basibiotic group abundance variable a value equal to the sum of the abundances of the infaunal and epifaunal 

individuals of the group 
  set g15 count patches with [ ep = 17 ] / 9 ; give the intermediate epifaunal groups abundance variables values equal to the number of patches occupied by each group 
divided by the individually occupied number of patches 
  set g16 count patches with [ ep = 18 ] / 9 

  ask patches with [ ep > 0 ] [ set pcolor ep ] ; color patches occupied by epifaunal individuals according to their epifaunal group occupation variable 
 
  set n length filter [? > 0] (list g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 p1 p2 p3 p4) ; give the variable of number of functional groups in the system a value 
equal to the number of groups with abundances larger than 0 

  reset-ticks ; set tick counter to zero, set up and update all plots 
end 
 
to go ; move the model one step forward 
  set-current-plot "Functional group abundance" ; clear the histogram of functional group abundances 

  clear-plot 
  tick ; advance the tick counter by one and update all plots 
  do-recruitment ; run the recruitment submodel 
  do-competition ; run the competition submodel 

  do-ageing ; run the ageing submodel 
  do-mortality ; run the mortality submodel 
end 
 

to do-recruitment ; run the recruitment submodel 
  output-print " " output-type "f " output-type fg1 output-type " " output-type fg2 output-type " " output-type fg3 output-type " " output-type fg4 output-type " " output-type 
fg5 output-type " " output-type fg6 output-type " " output-type fg7 output-type " " output-type fg8 output-type " " output-type fg9 output-type " " output-type fg10 output-
type " " output-type fg11 output-type " " output-type fg12 output-type " " output-type fg13 output-type " " output-type fg14 output-type " " output-type fg15 output-type " " 

output-print fg16 ; print out the values of infaunal/epifaunal groups contribution to the respective spawner pool 
  let fg ( fg1 + fg2 + fg3 + fg4 + fg5 + fg6 + fg7 + fg8 + fg9 + fg10 + fg11 ) ; define the contribution of infaunal groups to the respective spawner pool as the contribution of 
each group to the total abundance of the respective set of groups during the previous time step 
  ifelse es > ed ; randomly attribute an infaunal group to the infaunal group occupation variable of patches that are not occupied by infauna/the chances of each group to be 
attributed are defined by its tolerance of tidal exposure, fecundity, dispersal distance, early development mode, role in sediment engineering, position in the sediment, 

contribution to the infaunal spawner pool and the relative abundance of sediment stabilizing and destabilizing groups 
  [ ask patches with [sp = 35] [ set sp one-of (se n-values ((fg1 / fg) * 100) [45] n-values ((fg2 / fg) * 50) [55] n-values ((fg3 / fg) * 100) [65] n-values ((fg4 / fg) * 150) 
[75] n-values ((fg5 / fg) * 150) [85] n-values ((fg6 / fg) * 100) [95] n-values ((fg7 / fg) * 150) [105] n-values ((fg8 / fg) * 600) [115] n-values ((fg9 / fg) * 150) [125] n-
values ((fg10 / fg) * 600) [135] n-values ((fg11 / fg) * 150) [145]) ] ] 

  [ ask patches with [sp = 35] [ set sp one-of (se n-values ((fg1 / fg) * 100) [45] n-values ((fg2 / fg) * 50) [55] n-values ((fg3 / fg) * 400) [65] n-values ((fg4 / fg) * 150) 
[75] n-values ((fg5 / fg) * 150) [85] n-values ((fg6 / fg) * 100) [95] n-values ((fg7 / fg) * 600) [105] n-values ((fg8 / fg) * 150) [115] n-values ((fg9 / fg) * 150) [125] n-
values ((fg10 / fg) * 150) [135] n-values ((fg11 / fg) * 600) [145]) ] ] 
  ask n-of ( 0.9 * count patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] ) patches with [ sp = 45 or sp = 55 or sp = 65 or sp = 75 ] [ set sp 35 ] ; randomly remove a 

subset of newly settled infaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 
  ask n-of ( 0.5 * count patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125 ] ) patches with [ sp = 85 or sp = 95 or sp = 105 or sp = 115 or sp = 125 ] [ set 
sp 35 ] 
  ask n-of ( 0.1 * count patches with [ sp = 135 or sp = 145 ] ) patches with [ sp = 135 or sp = 145 ] [ set sp 35 ] 

 
let fge ( fg9 + fg12 + fg13 + fg14 + fg15 + fg16 ) ; define the contribution of epifaunal groups to the respective spawner pool as the contribution of each group to the total 



 

 

abundance of the respective set of groups during the previous time step 
  ask patches with [sp = 9 and ep = 0] [ set ep one-of (se n-values ((fg9 / fge) * 300) [195] n-values ((fg12 / fge) * 300) [165] n-values ((fg13 / fge) * 600) [175] n-values 
((fg14 / fge) * 300) [185] n-values ((fg15 / fge) * 300) [205] n-values ((fg16 / fg) * 200) [215] ) ] ; randomly attribute an epifaunal group to the epifaunal group occupation 

variable of patches occupied by infaunal individuals of the basibiotic group that are not occupied by epifauna/the chances of each group to be attributed are defined by its 
tolerance of tidal exposure, fecundity, dispersal distance, early development mode and contribution to the infaunal spawner pool 
  ask n-of ( 0.9 * count patches with [ ep = 165 or ep = 175 or ep = 185 ] ) patches with [ ep = 165 or ep = 175 or ep = 185 ] [ set ep 0 ] ; randomly remove a subset of newly 
settled epifaunal juveniles of each group from the system/juvenile mortality rates are defined by the body size of each group 

  ask n-of ( 0.5 * count patches with [ ep = 195 ] ) patches with [ ep = 195 ] [ set ep 0 ] 
  ask n-of ( 0.1 * count patches with [ ep = 205 or ep = 215 ] ) patches with [ ep = 205 or ep = 215 ] [ set ep 0 ] 
end 
 

to do-competition ; run the competition submodel 
  ask patches with [sp > 80 and sp < 120] [ ; in random order expand patch occupation of surviving juveniles of purely infaunal intermediate groups to 8 immediate 
neighbors, unless any of them is occupied by an infaunal individual of the same size 
    if map [(? < 5 or ? > 11) and (? < 85 or ? > 125)] [sp] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set sp [sp] of myself] 

      set g 1 / ticks ; assign the value 1/time step to the central patches variable of purely infaunal intermediate individuals that grew in spite of competition 
      ] 
    ] 
  ask patches with [sp = 125] [ ; in random order expand patch occupation of surviving juveniles of the basibiotic group to 8 immediate neighbors, unless any of them is 

occupied by an infaunal individual of the same size and provided that at least one patch within each patch's 24 closest neighbors is occupied by an individual of the same 
group 
    if map [(? < 5 or ? > 11) and (? < 85 or ? > 125)] [sp] of neighbors = [true true true true true true true true] and count patches in-radius 2.9 with [sp = 9] > 0 [ 
      ask neighbors [set sp [sp] of myself] 

      set g 1 / ticks ; assign the value 1/time step to the central patches variable of basibiotic intermediate individuals that grew in spite of competition 
      ] 
    ] 
  ask patches with [sp > 130] [ ; in random order expand patch occupation of surviving juveniles of infaunal large groups to 24 closest neighbors, unless any of them is 

occupied by an infaunal individual of the same size 
    if map [(? < 10 or ? > 11) and ? < 135] [sp] of other patches in-radius 2.9 = [true true true true true true true true true true true true true true true true true true true true 
true true true true] [ 
      ask patches in-radius 2.9 [set sp [sp] of myself] 
      set g 2 * ticks ; assign the value 2xtime step to the central patches variable of large infaunal individuals that grew in spite of competition 

      ] 
    ] 
 
  ask patches with [ep = 215] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with rock to 8 immediate 

neighbors, unless any of them is occupied by an epifaunal individual of the same size 
    if map [(? < 17 or ? > 18) and ? < 205] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 
      set h 2 * ticks ; assign the value 2xtime step to the central patches variable of epifaunal intermediate individuals associated with rock that grew in spite of competition 

      ] 
    ] 
  ask patches with [ep = 205] [ ; in random order expand patch occupation of surviving juveniles of epifaunal intermediate groups associated with gravel to 8 immediate 
neighbors, unless any of them is occupied by an epifaunal individual of the same size 

    if map [(? < 17 or ? > 18) and ? < 205] [ep] of neighbors = [true true true true true true true true] [ 
      ask neighbors [set ep [ep] of myself] 



 

 

      set h 2 * ticks ; assign the value 2xtime step to the central patches variable of epifaunal intermediate individuals associated with gravel that grew in spite of competition 
      ] 
    ] 

end 
 
to do-ageing ; run the ageing submodel 
  ask s [set a a + 1] ; add one year to the age of small infaunal individuals that survived from the previous time step 

  ask m [set a a + 1] ; add one year to the age of intermediate infaunal individuals that survived from the previous time step 
  ask l [set a a + 1] ; add one year to the age of large infaunal individuals that survived from the previous time step 
 
  ask sm [set ag ag + 1] ; add one year to the age of small epifaunal individuals that survived from the previous time step 

  ask la [set ag ag + 1] ; add one year to the age of intermediate epifaunal individuals that survived from the previous time step 
end 
 
to do-mortality ; run the mortality submodel 
  ask patches with [sp > 40 and sp < 80] [set sp (sp - 35) / 10 set a 0] ; set the age of newly settled small infaunal individuals that were not overgrown to 1 year and 

  set s patches with [sp < 5] ; add them to the respective patch set 
  ask m with [length (filter [? = sp] [sp] of patches in-radius 1.9) != 9 or sp > 9] [ask patches in-radius 1.9 with [sp < 130] [set sp 35] ask la in-radius 1.9 [set ep 0] ask 
patches in-radius 1.9 with [ep < 17 or (ep > 160 and ep < 200) or h = 2 * ticks] [set ep 0]] ; clear the infaunal and epifaunal group occupation variable of patches occupied 
by intermediate infaunal individuals that were overgrown 

  set m m with [sp < 10] ; remove the central patches of intermediate infaunal individuals that were overgrown from the respective patch set of individuals that survive at the 
end of the year 
  ask patches with [g = 1 / ticks and sp > 80 and sp < 130 and length (filter [? = sp] [sp] of patches in-radius 1.9) = 9] [ask patches in-radius 1.9 [set sp (sp - 35) / 10] set g 
-1 / ticks set a 0] ; assign the value -1/time step to the central patches variable of intermediate infaunal individuals that grew and were not overgrown and set their age to 1 

year 
  set m (patch-set m patches with [g = -1 / ticks]) ; add the central patches of intermediate infaunal individuals that grew and were not overgrown to the respective patch 
set 
  ask patches with [g = 2 * ticks] [ask patches in-radius 2.9 [set sp (sp - 35) / 10] set a 0] ; set the age of newly settled large infaunal individuals that grew to 1 year and 

  set l (patch-set l patches with [g = 2 * ticks]) ; add them to the respective patch set 
  ask patches with [sp > 11] [set sp 35] ; clear the infaunal group occupation variable of patches occupied by newly settled infaunal individuals that did not grow or were 
overgrown 
  ask s with [sp = 1 and a > 0] [set sp 35] ; clear the infaunal group occupation variable of patches occupied by small infaunal individuals that reached their lifespan 
  ask s with [sp = 2 and a > 8] [set sp 35] 

  ask s with [sp = 3 and a > 0] [set sp 35] 
  ask s with [sp = 4 and a > 0] [set sp 35] 
  ask m with [sp = 5 and a > 2] [ask patches in-radius 1.9 [set sp 35]] ; clear the infaunal group occupation variable of patches occupied by intermediate infaunal individuals 
that reached their lifespan 

  ask m with [sp = 6 and a > 13] [ask patches in-radius 1.9 [set sp 35]] 
  ask m with [sp = 7 and a > 1] [ask patches in-radius 1.9 [set sp 35]] 
  ask m with [sp = 8 and a > 7] [ask patches in-radius 1.9 [set sp 35]] 
 

  ask patches with [ep > 160 and ep < 200] [set ep (ep - 35) / 10 set ag 0] ; set the age of newly settled small epifaunal individuals that were not overgrown to 1 year 
  ask sm with [ep = 13 and ag > 0] [set ep 0] ; clear the epifaunal group occupation variable of patches occupied by small epifaunal individuals that reached their lifespan 
  ask sm with [ep = 14 and ag > 0] [set ep 0] 
  ask sm with [ep = 15 and ag > 0] [set ep 0] 

  ask sm with [ep = 16 and ag > 9] [set ep 0] 
  ask m with [sp = 9 and a > 9] [ ; ask infaunal individuals of the basibiotic group that reached their lifespan 



 

 

    ifelse length (filter [? = 16] [ep] of patches in-radius 1.9) > 0 ; if they have any epibiotic individuals of the same group 
    [set a max [ag] of patches in-radius 1.9 with [ep = 16] ask max-one-of patches in-radius 1.9 with [ep = 16] [ag] [set ep 0]] ; to take the age of the oldest one and remove 
it from the epibionts 

    [ask patches in-radius 1.9 [set sp 35 set ep 0]]] ; otherwise clear the infaunal and epifaunal group occupation variable of patches occupied by them 
  set sm patches with [ep > 0 and ep < 17] ; add newly settled small epifaunal individuals that were not overgrown to the respective patch set 
  ask la with [length (filter [? = ep] [ep] of patches in-radius 1.9) != 9] [ask patches in-radius 1.9 [set ep 0]] ; clear the epifaunal group occupation variable of patches 
occupied by intermediate epifaunal individuals that are no more epibionts 

  ask patches with [h = 2 * ticks and ep > 200] [ask patches in-radius 1.9 [set ep (ep - 35) / 10] set h -2 * ticks set ag 0] ; set the age of newly settled intermediate epifaunal 
individuals that grew to 1 year and 
  set la (patch-set la with [ep > 0] patches with [h = -2 * ticks]) ; add them to the respective patch set 
  ask patches with [ep > 18] [set ep 0] ; clear the epifaunal group occupation variable of patches occupied by intermediate epifaunal individuals that did not grow 

  ask la with [ep = 17 and ag > 8] [ask patches in-radius 1.9 [set ep 0]] ; clear the epifaunal group occupation variable of patches occupied by intermediate epifaunal 
individuals that reached their lifespan 
  ask la with [ep = 18 and ag > 10] [ask patches in-radius 1.9 [set ep 0]] 
  set sm sm with [(ep = 13 and ag < 1) or (ep = 14 and ag < 1) or (ep = 15 and ag < 1) or (ep = 16 and ag < 10)] ; update the patch set of small epifaunal individuals 
  set la la with [(ep = 17 and ag < 9) or (ep = 18 and ag < 11)] ; update the patch set of intermediate epifaunal individuals 

 
  ask l with [sp = 10 and a > 2] [ask patches in-radius 2.9 [set sp 35]] ; clear the infaunal group occupation variable of patches occupied by large infaunal individuals that 
reached their lifespan 
  ask l with [sp = 11 and a > 1] [ask patches in-radius 2.9 [set sp 35]] 

  let pr4 count s with [sp = 4] ; assign the abundances of prey groups to the potential prey variables 
  let pr5 count m with [sp = 5] 
  let pr7 count m with [sp = 7] 
  let pr11 count l with [sp = 11] 

  ifelse pr11 >= pr7 ; if larger prey was more or equally abundant to smaller prey 
  [ask n-of min list p2 count l with [sp = 11 and a < 2] l with [sp = 11 and a < 2] [ask patches in-radius 2.9 [set sp 35]]] ; randomly remove as many larger prey individuals as 
there were large predators 
  [ask n-of min list max list 0 (p2 - count m with [sp = 7 and a < 2]) count l with [sp = 11 and a < 2] l with [sp = 11 and a < 2] [ask patches in-radius 2.9 [set sp 35]]] ; 

otherwise randomly remove as many larger prey individuals as there were large predators minus the abundance of the smaller prey 
  set l l with [(sp = 10 and a < 3) or (sp = 11 and a < 2)] ; update the patch set of large epifaunal individuals 
  ifelse pr7 > pr11 ; if smaller prey was more abundant than larger prey 
  [ask n-of min list p2 count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; randomly remove as many smaller prey individuals 
as there were large predators 

  [ask n-of min list max list 0 (p2 - count l with [sp = 11 and a < 2]) count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; 
otherwise randomly remove as many smaller prey individuals as there were large predators minus the abundance of the larger prey 
  ifelse pr5 >= pr4 ; if larger prey was more or equally abundant to smaller prey 
  [ask n-of min list p3 count m with [sp = 5 and a < 3] m with [sp = 5 and a < 3] [ask patches in-radius 1.9 [set sp 35]]] ; randomly remove as many larger prey individuals as 

there were intermediate predators 
  [ask n-of min list max list 0 (p3 - count s with [sp = 4 and a < 1]) count m with [sp = 5 and a < 3] m with [sp = 5 and a < 3] [ask patches in-radius 1.9 [set sp 35]]] ; 
otherwise randomly remove as many larger prey individuals as there were intermediate predators minus the abundance of the smaller prey 
  ifelse pr7 >= pr4 ; if larger prey was more or equally abundant to smaller prey 

  [ask n-of min list p1 count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; randomly remove as many larger prey individuals as 
there were small predators 
  [ask n-of min list max list 0 (p1 - count s with [sp = 4 and a < 1]) count m with [sp = 7 and a < 2] m with [sp = 7 and a < 2] [ask patches in-radius 1.9 [set sp 35]]] ; 
otherwise randomly remove as many larger prey individuals as there were small predators minus the abundance of the smaller prey 

  set m m with [(sp = 5 and a < 3) or (sp = 6 and a < 14) or (sp = 7 and a < 2) or (sp = 8 and a < 8) or (sp = 9 and a < 10)] ; update the patch set of intermediate epifaunal 
individuals 



 

 

  ifelse pr4 > pr5 ; if smaller prey was more abundant than larger prey 
  [ask n-of min list p3 count s with [sp = 4] s with [sp = 4] [set sp 35]] ; randomly remove as many smaller prey individuals as there were intermediate predators 
  [ask n-of min list max list 0 (p3 - count m with [sp = 5]) count s with [sp = 4] s with [sp = 4] [set sp 35]] ; otherwise randomly remove as many smaller prey individuals as 

there were small predators minus the abundance of the larger prey 
  ifelse pr4 > pr7 ; if smaller prey was more abundant than larger prey 
  [ask n-of min list p1 count s with [sp = 4] s with [sp = 4] [set sp 35]] ; randomly remove as many smaller prey individuals as there were small predators 
  [ask n-of min list max list 0 (p1 - count m with [sp = 7]) count s with [sp = 4] s with [sp = 4] [set sp 35]] ; otherwise randomly remove as many smaller prey individuals as 

there were small predators minus the abundance of the larger prey 
  set s s with [(sp = 1 and a < 1) or (sp = 2 and a < 9) or (sp = 3 and a < 1) or (sp = 4 and a < 1)] ; update the patch set of small epifaunal individuals 
  set g1 count patches with [ sp = 1 ] ; give the small infaunal groups abundance variables values equal to the number of patches occupied by each group 
  set g2 count patches with [ sp = 2 ] 

  set g3 count patches with [ sp = 3 ] 
  set g4 count patches with [ sp = 4 ] 
  set g5 count patches with [ sp = 5 ] / 9 ; give the intermediate infaunal groups abundance variables values equal to the number of patches occupied by each group divided 
by the individually occupied number of patches 
  set g6 count patches with [ sp = 6 ] / 9 

  set g7 count patches with [ sp = 7 ] / 9 
  set g8 count patches with [ sp = 8 ] / 9 
  set g9 count patches with [ sp = 9 ] / 9 
  set ba g9 ; give the infaunal basibionts abundance variable a value equal to the infaunal abundance of the basibiotic group 

  set g10 count patches with [ sp = 10 ] / 25 ; give the large infaunal groups abundance variables values equal to the number of patches occupied by each group divided by 
the individually occupied number of patches 
  set g11 count patches with [ sp = 11 ] / 25 
  set p1 round ((max list g4 g7) / 10) ; give the predatory groups abundance variables values equal to those of the most abundant of their prey groups divided by 10 

  set p3 round ((max list g4 g5) / 10) 
  set p2 round ((max list g7 g11) / 10) 
  set p4 round ((max list p1 p3) / 10) 
  set es (g8 + g10) ; give the sediment stabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large sessile stabilizers that 

tolerate tidal exposure 
  set ed (g7 + g11) ; give the sediment destabilizing groups abundance variable a value equal to the sum of the abundances of intermediate and large destabilizers that 
tolerate tidal exposure 
  ask patches [set pcolor sp] ; color patches according to their infaunal group occupation variable 
 

  set g12 count patches with [ ep = 13 ] ; give the small epifaunal groups abundance variables values equal to the number of patches occupied by each group 
  set g13 count patches with [ ep = 14 ] 
  set g14 count patches with [ ep = 15 ] 
  set g9 g9 + count patches with [ ep = 16 ] ; give the basibiotic group abundance variable a value equal to the sum of the abundances of the infaunal and epifaunal 

individuals of the group 
  set g15 count patches with [ ep = 17 ] / 9 ; give the intermediate epifaunal groups abundance variables values equal to the number of patches occupied by each group 
divided by the individually occupied number of patches 
  set g16 count patches with [ ep = 18 ] / 9 

  ask patches with [ ep > 0 ] [ set pcolor ep ] ; color patches occupied by epifaunal individuals according to their epifaunal group occupation variable 
 
  output-type "g " output-type g1 output-type " " output-type g2 output-type " " output-type g3 output-type " " output-type g4 output-type " " output-type g5 output-type " " 
output-type g6 output-type " " output-type g7 output-type " " output-type g8 output-type " " output-type g9 output-type " " output-type g10 output-type " " output-type g11 

output-type " " output-type g12 output-type " " output-type g13 output-type " " output-type g14 output-type " " output-type g15 output-type " " output-type g16 output-
type " " output-type p1 output-type " " output-type p2 output-type " " output-type p3 output-type " " output-print p4 ; print out the values of infaunal/epifaunal and 



 

 

predatory groups abundance 
  set n length filter [? > 0] (list g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 p1 p2 p3 p4) ; give the variable of number of functional groups in the system a value 
equal to the number of groups with abundances larger than 0 

end 

C.3 Large-scale model 

extensions [ ls gis ] ; load LevelSpace (ls) and GIS (gis) extensions 

 
globals [ Rance ] ; define Rance GIS dataset 
 
patches-own [ sediment sys sp p1 p2 p3 p4 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 fg1 fg2 fg3 fg4 fg5 fg6 fg7 fg8 fg9 fg10 fg11 fg12 fg13 fg14 fg15 fg16 

ba ] ; define patch variables of sediment type (sediment), tidal zone (sys), number of functional groups (sp), abundances of 4 predatory groups (p1-p4), abundances of 16 
infaunal/epifaunal groups (g1-g16), interim abundances of 16 infaunal/epifaunal groups (fg1-fg16), abundance of infaunal individuals of basibiotic group (ba) 
 
to setup ; initialize the model 

  ca ; clear all model entities and output 
  ls:reset ; close down all child models 
  set Rance gis:load-dataset <give path and name of ".shp" file> ; load Rance GIS dataset 
  gis:apply-coverage Rance "LEG_ORIG" sediment ; copy sediment values from Rance GIS dataset to patch variable of sediment type 

  display-sediment ; color Rance patches according to their sediment type 
  display-system ; assign Rance patches to the subtidal or intertidal zone and color them accordingly 
  ls:load-gui-model <give path and name of ".nlogo" file for the subtidal small-scale nodel> ; load subtidal IBM 
  ask patches with [ sys = 1 ] [ ; ask patches of the subtidal zone to 
    let pxy (word pxcor "-" pycor) ; take a name according to their x-y coordinates 

    ls:ask 0 "setup" ; ask the subtidal IBM to initialize 
    (ls:ask 0 "set xy ?" pxy) ; ask the subtidal IBM to take their name 
    ls:ask 0 "export" ; ask the subtidal IBM to export all entities and output to an external file with this name 
      ifelse "es" ls:of 0 > "ed" ls:of 0 ; take a color according to the dominance in the subtidal IBM of 

      [ set pcolor cyan ] ; sediment stabilizers 
      [ set pcolor pink ] ; or destabilizers 
    set g1 "g1" ls:of 0 ; give the variables of group abundances and number of functional groups the values of the respective variables of the subtidal IBM 
    set g2 "g2" ls:of 0 

    set g3 "g3" ls:of 0 
    set g4 "g4" ls:of 0 
    set g5 "g5" ls:of 0 
    set g6 "g6" ls:of 0 

    set g7 "g7" ls:of 0 
    set g8 "g8" ls:of 0 
    set g9 "g9" ls:of 0 
    set ba "ba" ls:of 0 
    set g10 "g10" ls:of 0 

    set g11 "g11" ls:of 0 
    set g12 "g12" ls:of 0 



 

 

    set g13 "g13" ls:of 0 
    set g14 "g14" ls:of 0 
    set g15 "g15" ls:of 0 

    set g16 "g16" ls:of 0 
    set p1 "p1" ls:of 0 
    set p2 "p2" ls:of 0 
    set p3 "p3" ls:of 0 

    set p4 "p4" ls:of 0 
    set sp "n" ls:of 0 
    output-type sys output-type " " output-type pxcor output-type " " output-type pycor output-type " " output-type g1 output-type " " output-type g2 output-type " " output-
type g3 output-type " " output-type g4 output-type " " output-type g5 output-type " " output-type g6 output-type " " output-type g7 output-type " " output-type g8 output-

type " " output-type g9 output-type " " output-type g10 output-type " " output-type g11 output-type " " output-type g12 output-type " " output-type g13 output-type " " 
output-type g14 output-type " " output-type g15 output-type " " output-type g16 output-type " " output-type p1 output-type " " output-type p2 output-type " " output-type 
p3 output-type " " output-type p4 output-type " " output-print ba ; print out the values of tidal zone, x-y coordinates and group abundances variables 
  ] 
  ls:load-gui-model <give path and name of ".nlogo" file for the intertidal small-scale nodel> ; load intertidal IBM 

  ask patches with [ sys = 2 ] [ ; ask patches of the intertidal zone to 
    let pxy (word pxcor "-" pycor) ; take a name according to their x-y coordinates 
    ls:ask 1 "setup" ; ask the intertidal IBM to initialize 
    (ls:ask 1 "set xy ?" pxy) ; ask the intertidal IBM to take their name 

    ls:ask 1 "export" ; ask the intertidal IBM to export all entities and output to an external file with this name 
      ifelse "es" ls:of 1 > "ed" ls:of 1 ; take a color according to the dominance in the intertidal IBM of 
      [ set pcolor sky ] ; sediment stabilizers 
      [ set pcolor magenta ] ; or destabilizers 

    set g1 "g1" ls:of 1 ; give the variables of group abundances and number of functional groups the values of the respective variables of the intertidal IBM 
    set g2 "g2" ls:of 1 
    set g3 "g3" ls:of 1 
    set g4 "g4" ls:of 1 

    set g5 "g5" ls:of 1 
    set g6 "g6" ls:of 1 
    set g7 "g7" ls:of 1 
    set g8 "g8" ls:of 1 
    set g9 "g9" ls:of 1 

    set ba "ba" ls:of 1 
    set g10 "g10" ls:of 1 
    set g11 "g11" ls:of 1 
    set g12 "g12" ls:of 1 

    set g13 "g13" ls:of 1 
    set g14 "g14" ls:of 1 
    set g15 "g15" ls:of 1 
    set g16 "g16" ls:of 1 

    set p1 "p1" ls:of 1 
    set p2 "p2" ls:of 1 
    set p3 "p3" ls:of 1 
    set p4 "p4" ls:of 1 

    set sp "n" ls:of 1 
    output-type sys output-type " " output-type pxcor output-type " " output-type pycor output-type " " output-type g1 output-type " " output-type g2 output-type " " output-



 

 

type g3 output-type " " output-type g4 output-type " " output-type g5 output-type " " output-type g6 output-type " " output-type g7 output-type " " output-type g8 output-
type " " output-type g9 output-type " " output-type g10 output-type " " output-type g11 output-type " " output-type g12 output-type " " output-type g13 output-type " " 
output-type g14 output-type " " output-type g15 output-type " " output-type g16 output-type " " output-type p1 output-type " " output-type p2 output-type " " output-type 

p3 output-type " " output-type p4 output-type " " output-print ba ; print out the values of tidal zone, x-y coordinates and group abundances variables 
  ] 
  reset-ticks ; set tick counter to zero, set up and update all plots 
end 

 
to go ; move the model one step forward 
  set-current-plot "Subtidal functional group abundance" ; clear the plot of subtidal groups abundances 
  clear-plot 

  set-current-plot "Intertidal functional group abundance" ; clear the plot of intertidal groups abundances 
  clear-plot 
  tick ; advance the tick counter by one and update all plots 
  if ticks > 9 [ stop ] ; stop the model after initialization plus 9 time steps 
  ask patches with [ sys = 1 ] [ ; ask patches of the subtidal zone to 

    let pxy (word pxcor "-" pycor) ; take a name according to their x-y coordinates 
    let f1 median [g1] of patches in-radius 1.9 with [ pcolor > 0 ] ; define the infaunal/epifaunal groups contribution to the respective IBM spawner pool as the median 
abundance of each group within the patch and its eight immediate neighbors that are part of the system 
    let f2 median [g2] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f3 median [g3] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f4 median [g4] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f5 median [g5] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f6 median [g6] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f7 median [g7] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f8 median [g8] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f9 median [g9] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f10 median [g10] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f11 median [g11] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f12 median [g12] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f13 median [g13] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f14 median [g14] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f15 median [g15] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f16 median [g16] of patches in-radius 1.9 with [ pcolor > 0 ] 
    (ls:ask 0 "set xy ?" pxy) ; ask the subtidal IBM to take their name 
    ls:ask 0 "import" ; ask the subtidal IBM to import all entities and output from an external file with this name 
    (ls:ask 0 "set fg1 ?1 set fg2 ?2 set fg3 ?3 set fg4 ?4 set fg5 ?5 set fg6 ?6 set fg7 ?7 set fg8 ?8 set fg9 ?9 set fg10 ?10 set fg11 ?11 set fg12 ?12 set fg13 ?13 set fg14 ?14 

set fg15 ?15 set fg16 ?16" f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16) ; give the values of the variables of the infaunal/epifaunal groups contribution to the 
respective spawner pool to the respective variables of the subtidal IBM 
    ls:ask 0 "go" ; ask the subtidal IBM to move one step forward 
    ls:ask 0 "export" ; ask the subtidal IBM to export all entities and output to an external file with this name 

    ifelse "es" ls:of 0 > "ed" ls:of 0 ; take a color according to the dominance in the subtidal IBM of 
      [ set pcolor yellow ] ; sediment stabilizers 
      [ set pcolor red ] ; or destabilizers 
    set sp "n" ls:of 0 ; give the variables of number of functional groups and interim infaunal/epifaunal and predatory group abundances the values of the respective variables 

of the subtidal IBM 
    set fg1 "g1" ls:of 0 



 

 

    set fg2 "g2" ls:of 0 
    set fg3 "g3" ls:of 0 
    set fg4 "g4" ls:of 0 

    set fg5 "g5" ls:of 0 
    set fg6 "g6" ls:of 0 
    set fg7 "g7" ls:of 0 
    set fg8 "g8" ls:of 0 

    set fg9 "g9" ls:of 0 
    set fg10 "g10" ls:of 0 
    set fg11 "g11" ls:of 0 
    set fg12 "g12" ls:of 0 

    set fg13 "g13" ls:of 0 
    set fg14 "g14" ls:of 0 
    set fg15 "g15" ls:of 0 
    set fg16 "g16" ls:of 0 
    set p1 "p1" ls:of 0 

    set p2 "p2" ls:of 0 
    set p3 "p3" ls:of 0 
    set p4 "p4" ls:of 0 
    output-type sys output-type " " output-type pxcor output-type " " output-type pycor output-type " " output-type fg1 output-type " " output-type fg2 output-type " " 

output-type fg3 output-type " " output-type fg4 output-type " " output-type fg5 output-type " " output-type fg6 output-type " " output-type fg7 output-type " " output-type 
fg8 output-type " " output-type fg9 output-type " " output-type fg10 output-type " " output-type fg11 output-type " " output-type fg12 output-type " " output-type fg13 
output-type " " output-type fg14 output-type " " output-type fg15 output-type " " output-type fg16 output-type " " output-type p1 output-type " " output-type p2 output-
type " " output-type p3 output-type " " output-type p4 output-type " " output-print ba ; print out the values of tidal zone, x-y coordinates and group abundances variables 

  ] 
  ask patches with [ sys = 1 ] [ ; ask patches of the subtidal zone to give the infaunal/epifaunal group abundances variables the values of the interim infaunal/epifaunal group 
abundances variables 
    set g1 fg1 

    set g2 fg2 
    set g3 fg3 
    set g4 fg4 
    set g5 fg5 
    set g6 fg6 

    set g7 fg7 
    set g8 fg8 
    set g9 fg9 
    set g10 fg10 

    set g11 fg11 
    set g12 fg12 
    set g13 fg13 
    set g14 fg14 

    set g15 fg15 
    set g16 fg16 
] 
  ask patches with [ sys = 2 ] [ ; ask patches of the intertidal zone to 

    let pxy (word pxcor "-" pycor) ; take a name according to their x-y coordinates 
    let f1 median [g1] of patches in-radius 1.9 with [ pcolor > 0 ] ; define the infaunal/epifaunal groups contribution to the respective IBM spawner pool as the median 



 

 

abundance of each group within the patch and its eight immediate neighbors that are part of the system 
    let f2 median [g2] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f3 median [g3] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f4 median [g4] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f5 median [g5] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f6 median [g6] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f7 median [g7] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f8 median [g8] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f9 median [g9] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f10 median [g10] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f11 median [g11] of patches in-radius 1.9 with [ pcolor > 0 ] 

    let f12 median [g12] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f13 median [g13] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f14 median [g14] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f15 median [g15] of patches in-radius 1.9 with [ pcolor > 0 ] 
    let f16 median [g16] of patches in-radius 1.9 with [ pcolor > 0 ] 

    (ls:ask 1 "set xy ?" pxy) ; ask the intertidal IBM to take their name 
    ls:ask 1 "import" ; ask the intertidal IBM to import all entities and output from an external file with this name 
    (ls:ask 1 "set fg1 ?1 set fg2 ?2 set fg3 ?3 set fg4 ?4 set fg5 ?5 set fg6 ?6 set fg7 ?7 set fg8 ?8 set fg9 ?9 set fg10 ?10 set fg11 ?11 set fg12 ?12 set fg13 ?13 set fg14 ?14 
set fg15 ?15 set fg16 ?16" f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16) ; give the values of the variables of the infaunal/epifaunal groups contribution to the 

respective spawner pool to the respective variables of the intertidal IBM 
    ls:ask 1 "go" ; ask the intertidal IBM to move one step forward 
    ls:ask 1 "export" ; ask the intertidal IBM to export all entities and output to an external file with this name 
    ifelse "es" ls:of 1 > "ed" ls:of 1 ; take a color according to the dominance in the intertidal IBM of 

      [ set pcolor green ] ; sediment stabilizers 
      [ set pcolor orange ] ; or destabilizers 
    set sp "n" ls:of 1 ; give the variables of number of functional groups and interim infaunal/epifaunal and predatory group abundances the values of the respective variables 
of the intertidal IBM 

    set fg1 "g1" ls:of 1 
    set fg2 "g2" ls:of 1 
    set fg3 "g3" ls:of 1 
    set fg4 "g4" ls:of 1 
    set fg5 "g5" ls:of 1 

    set fg6 "g6" ls:of 1 
    set fg7 "g7" ls:of 1 
    set fg8 "g8" ls:of 1 
    set fg9 "g9" ls:of 1 

    set fg10 "g10" ls:of 1 
    set fg11 "g11" ls:of 1 
    set fg12 "g12" ls:of 1 
    set fg13 "g13" ls:of 1 

    set fg14 "g14" ls:of 1 
    set fg15 "g15" ls:of 1 
    set fg16 "g16" ls:of 1 
    set p1 "p1" ls:of 1 

    set p2 "p2" ls:of 1 
    set p3 "p3" ls:of 1 



 

 

    set p4 "p4" ls:of 1 
    output-type sys output-type " " output-type pxcor output-type " " output-type pycor output-type " " output-type fg1 output-type " " output-type fg2 output-type " " 
output-type fg3 output-type " " output-type fg4 output-type " " output-type fg5 output-type " " output-type fg6 output-type " " output-type fg7 output-type " " output-type 

fg8 output-type " " output-type fg9 output-type " " output-type fg10 output-type " " output-type fg11 output-type " " output-type fg12 output-type " " output-type fg13 
output-type " " output-type fg14 output-type " " output-type fg15 output-type " " output-type fg16 output-type " " output-type p1 output-type " " output-type p2 output-
type " " output-type p3 output-type " " output-type p4 output-type " " output-print ba ; print out the values of tidal zone, x-y coordinates and group abundances variables 
  ] 

  ask patches with [ sys = 2 ] [ ; ask patches of the intertidal zone to give the infaunal/epifaunal group abundances variables the values of the interim infaunal/epifaunal 
group abundances variables 
    set g1 fg1 
    set g2 fg2 

    set g3 fg3 
    set g4 fg4 
    set g5 fg5 
    set g6 fg6 
    set g7 fg7 

    set g8 fg8 
    set g9 fg9 
    set g10 fg10 
    set g11 fg11 

    set g12 fg12 
    set g13 fg13 
    set g14 fg14 
    set g15 fg15 

    set g16 fg16 
] 
end 
 

to display-sediment ; color Rance patches according to their sediment type and all other patches black 
ask patches 
  [ ifelse ( is-string? sediment ) 
    [ set pcolor read-from-string sediment ] 
    [ set pcolor black ] ] 

end 
 
to display-system ; assign Rance patches to one of two tidal zones according to their sediment type, subtidal (gravel, coarse sand, intermediate/coarse sand, 
fine/intermediate sand, muddy sand, sandy mud) or intertidal (silty mud, mud, pure mud, salt marshes) and color them accordingly 

  ask patches with [pcolor > 10 and pcolor < 90] [set pcolor 15 set sys 1] 
  ask patches with [pcolor > 90 and pcolor < 140] [set pcolor 45 set sys 2] 
end 

 

 

 

 



 

 

Modélisations des mécanismes généraux d'assemblage des 

communautés pour simuler la dynamique spatio-temporelle de la 

biodiversité benthique 

Résumé 

Les macroinvertébrés benthiques entretiennent un ensemble complexe d’interactions. Les 

échelles spatiales et temporelles des processus formant la base de ces interactions ont 

traditionnellement limité leur étude empirique. Le premier chapitre du manuscrit tente une 
revue des outils de modélisation utilisés dans l’étude du benthos marin. 

Même si l’implémentation d’un modèle mécaniste semble s’ajuster aux communautés 

benthiques, son utilisation nécessite la création d’un nombre limité d’entités avec un rôle 

fonctionnel clair. Le second chapitre du manuscrit utilise l’hypothèse des groupes émergents, 

afin de faire cela via une procédure objective et testable. Le groupement est testé face aux 

postulats théoriques et les résultats supportent sa capacité à reproduire la diversité 

fonctionnelle dans l’estuaire de la Rance. 

Le manque de connaissances dans l’attribution des relations entre les composantes 

fonctionnelles reste important. Le troisième chapitre du manuscrit s’inscrit dans ce besoin, 

basé sur des théories écologiques qui prévoient l’existence de trade-offs fonctionnels opérant 

à grande et petite échelle. Dans un premier temps, ces éléments sont incorporées dans des 

modèles qualitatifs des groupes fonctionnels. 

Malgré l’intérêt du développement et de l’analyse de modèles qualitatifs, le but d’étudier 

la dynamique et le comportement spatialement explicite de la biodiversité ne peut être atteint 

que par un modèle avec ces mêmes caractéristiques. Le quatrième chapitre du manuscrit 

présente l’architecture d’un modèle individu-centré, en mettant l’accent sur le transfert des 

règles d’interactions des modèles qualitatifs vers un cadre dynamique et spatialement 
explicite. 

 

Mots-clés: assemblage des communautés, estuaire de la Rance, groupes fonctionnels, 

macrofaune benthique, modélisation de la biodiversité, modélisation orientée agent, 
modélisation qualitative, trade-offs fonctionnels, traits biologiques 



 

 

Models of general community assembly mechanisms simulating 

the spatial and temporal dynamics of benthic biodiversity 

Abstract 

Benthic macroinvertebrates are part of a complex network of interactions. The spatial and 

temporal scales of the processes that form the basis for these interactions have traditionally 

restricted their empirical investigation. The first chapter of the manuscript attempts a review 

of the modelling tools that have been employed for the study of the marine benthos. 

The implementation of a mechanistic modelling framework seems fitting, but it requires 

the derivation of a few model entities with a clear functional role. The second chapter of the 

manuscript employs the emergent group hypothesis to do that in a way that is objective and 

testable. The resulting grouping is tested against theoretical expectations and the results 
support its ability to represent functional diversity in the Rance estuary. 

The lack of knowledge for the attribution of relationships among functional components is 

still important. The third chapter of the manuscript addresses this issue based on ecological 

theories that predict the existence of functional trade-offs operating at both large and small 

spatial scales. In a first inception of the system, these elements are incorporated in the form of 
general rules of interaction into qualitative models of the functional groups. 

In spite of the interest in developing and analysing qualitative models, the goal of studying 

the dynamic and spatially explicit behaviour of benthic biodiversity can only be reached by a 

model with the same characteristics. The fourth chapter of the manuscript presents the 

architecture of an individual-based model, primarily transferring the rules of interaction from 
the qualitative models to a dynamic and spatially explicit framework. 

 

Key-words: agent-based modelling, benthic macrofauna, biodiversity model, biological traits, 

community assembly, functional groups, functional trade-offs, qualitative modelling, Rance 
estuary 


