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不积跬步，无以至千里；不积小流，无以成江海 

Without accumulating tiny steps, you have no way to go a thousand miles; 

Without accumulating little streams, you have no way to form river or sea. 

                                       —Xunzi (Chinese philosopher, c. 310-c. 235 BC) 
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ABSTRACT 
 

Given rapid advancement of automated driving (AD) technologies in recent years, major car 

makers promise the commercialization of AD vehicles within one decade from now. However, 

how the automation should interact with human drivers remains an open question. The objective 

of this thesis is to design, develop and evaluate interaction principles for AD systems that can 

cooperate with a human driver. Considering the complexity of such a human-machine system, 

this thesis begins with proposing two general cooperation principles and a hierarchical 

cooperative control architecture to lay a common basis for interaction and system design in the 

defined use cases. 

Since the proposed principles address a dynamic driving environment involving manually 

driven vehicles, the AD vehicle needs to understand it and to share its situational awareness 

with the driver for efficient cooperation. This thesis first proposes a representation formalism 

of the driving scene in the Frenet frame to facilitate the creation of the spatial awareness of the 

AD system. An adaptive vehicle longitudinal trajectory prediction method is also presented. 

Based on maneuver detection and jerk estimation, this method yields better prediction accuracy 

than the method based on constant acceleration assumption. 

As case studies, this thesis implements two cooperation principles for two use cases 

respectively. In the first use case of highway merging management, this thesis proposes a 

cooperative longitudinal control framework featuring an ad-hoc maneuver planning function 

and a model predictive control (MPC) based trajectory generation for transient maneuvers. This 

framework can automatically handle a merging vehicle, and at the mean time it offers the driver 

a possibility to change the intention of the system. In another use case concerning highway lane 

positioning and lane changing, a shared steering control problem is formulated in MPC 

framework. By adapting the weight on the stage cost and implementing dynamic constraints 

online, the MPC ensures seamless control transfer between the system and the driver while 

conveying potential hazards through haptic feedback. Both of the designed systems are 

evaluated through user tests on driving simulator. Finally, human factors issue and user’s 

perception on these new interaction paradigms are discussed. 

Key words: human-machine interaction, human-machine cooperation, driver-vehicle 

cooperation, shared control, haptic shared control, model predictive control, automated driving, 



 

vi 

 

autonomous vehicle, situation assessment, trajectory prediction, highway merging 

management, vehicle longitudinal control, vehicle lateral control. 
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RESUME 
 

Face à l’évolution rapide des technologies nécessaires à l’automatisation de la conduite au cours 

de ces dernières années, les grands constructeurs automobiles promettent la commercialisation 

de véhicules autonomes à l’horizon 2020. Cependant, la définition des interactions entre les 

systèmes de conduite automatisée et le conducteur au cours de la tâche de conduite reste une 

question ouverte. L'objectif de cette thèse est de concevoir, développer et évaluer des principes 

de coopération entre le conducteur et les systèmes de conduite automatisée. Compte tenu de la 

complexité d'un tel Système Homme-Machine, la thèse propose, en premier lieu une 

architecture de contrôle coopératif hiérarchique et deux principes de coopération généraux sur 

deux niveaux dans l’architecture qui serviront ensuite de base commune pour la conception des 

systèmes coopératifs développés pour les cas d’usages définis. 

Afin d’assurer une coopération efficace avec le conducteur dans un environnement de conduite 

dynamique, le véhicule autonome a besoin de comprendre la situation et de partager sa 

compréhension de la situation avec le conducteur. Pour cela, cette thèse propose un formalisme 

de représentation de la scène de conduite basé sur le repère de Frenet. Ensuite, une méthode de 

prédiction de trajectoire est également proposée. Sur la base de la détection de manœuvre et de 

l'estimation du jerk, cette méthode permet d’améliorer la précision de la trajectoire prédite 

comparée à celle déterminée par la méthode basée sur une hypothèse d'accélération constante. 

Dans la partie d’études de cas, deux principes de coopération sont mis en œuvre dans deux cas 

d’usage. Dans le premier cas de la gestion d’insertion sur autoroute, un système de contrôle 

longitudinal coopératif est conçu. Il comporte une fonction de planification de manœuvre et de 

génération de trajectoire basée sur la commande prédictive. En fonction du principe de 

coopération, ce système peut à la fois gérer automatiquement l’insertion d’un véhicule et donner 

la possibilité au conducteur de changer la décision du système. Dans le second cas d'usage qui 

concerne le contrôle de trajectoire et le changement de voie sur autoroute, le problème de 

partage du contrôle est formulé comme un problème d’optimisation sous contraintes qui est 

résolu en ligne en utilisant l’approche de la commande prédictive (MPC). Cette approche assure 

le transfert continu de l’autorité du contrôle entre le système et le conducteur en adaptant les 

pondérations dans la fonction de coût et en mettant en œuvre des contraintes dynamiques en 

ligne dans le modèle prédictif, tout en informant le conducteur des dangers potentiels grâce au 
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retour haptique sur le volant. Les deux systèmes sont évalués à l’aide de tests utilisateur sur 

simulateur de conduite. En fonction des résultats des tests, cette thèse discute la question des 

facteurs humains et la perception de l'utilisateur sur les principes de coopération. 

Mots-clés : coopération homme-machine, interaction homme-machine, coopération 

conducteur-véhicule, contrôle partagé, partage haptique du contrôle, commande prédictive, 

conception centrée sur l'utilisateur, conduite automatisée, véhicule autonome, évaluation de la 

situation, prédiction de trajectoire, gestion d’insertion sur l’autoroute, contrôle longitudinal des 

véhicules, contrôle latéral des véhicules. 
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1 INTRODUCTION 

1.1 Background and motivation 

1.1.1 Automated driving 
Technological research and development in driving automation are making continuous 

advances. As a result, driving automation systems are no more limited to assist the driver in the 

driving task, some began to take over part of the driving task (e.g., adaptive cruise control 

(ACC)). Recent demonstrations like DARPA Urban Challenge (Buehler, Iagnemma, and Singh 

2009) and Google Car (Markoff 2010) suggest that it seems to be technically feasible to develop 

motor vehicles that can drive themselves without human intervention in certain situations. 

Along with these demonstrations, automated driving (AD) technology has received increasing 

attention from the automotive industry, research institutes, governments and becomes a popular 

topic in the public. Motivations behind continuous research efforts and massive investments on 

AD technology are the potential benefits offered by this technology—improving road safety; 

providing critical mobility to the elderly and disabled; increasing road capacity; saving fuel, 

and lowering emissions. 

1.1.1.1 Levels of driving automation 

Different terms such as “autonomous”, “self-driving”, “driverless”, “automated” vehicles 

which are used interchangeably in the media create confusions about just what “automated 

driving” really means1. With the goal of providing common terminology for automated driving, 

                                                 
1 It should be noted that the term “autonomous” is commonly used by the communities of robotics and artificial 

intelligence from their disciplinary perspectives. 
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SAE international has developed a taxonomy of levels of driving automation in SAE J3016 

(SAE 2016), as shown in Tab. 1.1.  

Table 1.1 Taxonomy of levels of driving automation of SAE 

  Name 

DDT* 
DDT 

fallback 
ODD** 

Sustained lateral and 
longitudinal vehicle 

motion control 

Monitoring of 
driving 

environment 

0 
No Driving 

Automation 
Driver 

Driver 

Driver 

None 

1 Driver Assistance Driver & system 

Limited 

2 
Partial Driving 

Automation 

System 

3 
Conditional Driving 

Automation 

System 4 
High Driving 

Automation 
System 

5 
Full Driving 

Automation 
Unlimited 

*DDT: dynamic driving task 

**ODD: operational design domain 

To understand this taxonomy, it is necessary to make clear several notions that differentiate the 

levels. The first one concerns the task to be automated—dynamic driving task. Inspired by the 

hierarchy of driving tasks of Michon (1985) 2, the dynamic driving task entails “all of the real-

time operational and tactical functions required to operate a vehicle in on-road traffic, 

excluding the strategic functions such as trip scheduling and selection of destinations and 

waypoints” (SAE 2016, 5). For example, a level 2 driving automation system performs only 

lateral and longitudinal vehicle motion control part of the dynamic driving task, meanwhiles 

the human driver needs to monitor the driving environment, while systems with higher levels 

are capable of performing the entire dynamic driving task. The second important notion is 

operational design domain which defines specific conditions under which a driving automation 

system is designed to function. For example, a level 2 traffic jam assist system is designed to 

function in traffic jams on motorways or motorway similar roads at the speed up to 40 km/h. 

                                                 
2 The hierarchy proposed by Michon will be presented in Chapter 3. 
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The last one is “DDT fallback”, which can be understood as the capability to performing the 

dynamic driving task until to achieve a so-called minimal risk condition, e.g., a safe stop, after 

the occurrence of a system’s failure or upon operational design domain exit. As shown in Tab 

1.1, the division of the role to perform the DDT fallback between the driver and the system is situated 

between level 3 and level 4. 

Based on this taxonomy, SAE uses the term “automated driving system” to describe a level 3, 

4 or 5 driving automation system3. A primary distinction for an AD system is its capability to 

perform the entire dynamic driving task. Therefore, when an AD system is engaged, the driver 

no longer has to monitor the environment or the system continuously. 

1.1.1.2 State-of-the-art of automated driving 

Amid current commercially available driving automation systems, ACC and parking assistance 

with steering system reach level 1 driving automation. Some series vehicles began to offer level 

2 driving automation features. Examples are the Tesla’s “Autopilot” (Quain 2016), the 

Mercedes E-Class’s “Drive Pilot” (Mercedes Benz 2015) and the BMW 7 series’ “Driving 

Assistant Plus” (BMW 2017). These systems assume both longitudinal and lateral control on 

motorways or motorway similar roads. The driver still needs to supervise the system and 

intervene if needed. 

Even though AD systems (level 3, 4 and 5) are not yet ready for commercialization, research 

efforts to design and develop AD technologies have been made for a long time. The European 

project PROMETHEUS which ran from 1987 to 1995 came to a successful conclusion with 

1000 kilometers of mainly autonomous operation in normal traffic on Paris motorways, as well 

as a final demonstration from Munich in Germany to Copenhagen in Denmark (Dickmann, 

Appenrodt, and Brenk 2014). During 1980s and 1990s, the American project PATH focused on 

automated highway scenarios in the scope of intelligent vehicle-highway systems (IVHS) 

(Shladover et al. 1991). Demonstrations of PATH promoted the approach of inter-vehicle 

distance control based on sensors as well as inter-vehicle communications, namely cooperative 

adaptive cruise control (CACC). The approach of PATH has been followed in recent projects 

such as the SARTRE project (2012) and the Grand Cooperative Driving Challenge (GCDC) in 

2011 (Nunen et al. 2012) which focused on automated vehicle platooning. The DARPA Grand 

Challenge in 2004 and 2005 (Iagnemma and Buehler 2006), and the DARPA Urban Challenge 

                                                 
3 In a less strict sense, a level 2 driving automation systems is sometimes referred to as automated driving system 

in the literature. 
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in 2007 demonstrated autonomous ground vehicles capable of following a route to arrive at a 

distant location without hitting obstacles on the way. These two competitions popularized the 

idea of “autonomous driving” and strongly motivated industry groups and universities to 

develop technologies toward full driving automation. In Europe, CityMobil (van Dijke and van 

Schijndel 2012) and its successor CityMobil2 (Alessandrini et al. 2014) implemented 

automated transport systems in the urban environment. The resultant concept “cybercars” (level 

4 driving automation), small-to-medium-sized automated vehicles for individual or collective 

transport of people or goods, is followed by the attempt of Uber (Pritchard and Krisher 2016) 

to apply AD technologies for taxi and ride-sharing services. 

Rather than target level 4 or 5 automated vehicles that technically do not need a driver, several 

projects on automated driving took an incremental approach to address the driver’s changing 

roles as the level of automation increases. Examples are the European project HAVEit (F. 

Flemisch et al. 2010) and the French project ABV (Sentouh et al. 2014). Both projects 

developped AD systems with multiple levels of automation (from level 0 to level 2) to realize 

dynamic driving task allocation between the driver and the AD system. The transitions between 

different levels can be initiated by the driver but also by the system according to the system’s 

operating conditions or the driver’s state (assessed by driver monitoring systems). This 

approach is followed by the European project Adaptive (2016) and the French project 

CoCoVeA (2013) recently. 

With the rapid progression of AD technologies, the automotive industry and consulting 

institutes share an optimistic vision. Automakers consecutively promised the 

commercialization of “autonomous vehicles” or “driverless cars” by 2020-2025 (Behrmann 

2016; Goodwin 2016; Horrell 2017). Due to the ambiguity of the terms “autonomous” and 

“driverless”, the automation level implied by these announcements cannot be stated with 

certainty. Several consulting bodies forecasted more or less similar timelines for possible AD 

implementations with 2020 for the introduction of level 3 automation, 2025 for level 4 

automation and 2030 as a possible milestone for level 5- full automation driving (KPMG 2015; 

Dokic, Müller, and Meyer 2015). 

1.1.2 Need for driver-vehicle cooperation 
Whilst the technical progress of automated driving seems on track, the understanding of the 

interaction between human drivers and AD systems seems much less clear. The taxonomy of 

SAE oversimplifies the interaction between the driver and the system by considering it as an 

“all-or-nothing” function allocation. Within this framework, interaction research in automated 
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driving has focused on the so-called “takeover scenario” where a human driver is required to 

take back the control when a level 3 AD systems reach the limits of operational design domain, 

e.g., due to the change of driving environment or a system failure (Gold et al. 2013; Lorenz, 

Kerschbaum, and Schumann 2014; Blanco et al. 2015; Walch et al. 2015). Indeed, this scenario 

could be safety critical due to human factor issues, e.g., driver’s decreased attention level and 

reduced situational awareness. However, few works explored other interaction paradigms for 

AD systems out of the framework of the taxonomy of SAE. 

The idea of forming a cooperation teamwork between the human operator and the automation 

has been proposed since the introduction of automated systems in various fields of human 

activity (Hoc et al. 1994). This idea was later formalized into the framework of human-machine 

cooperation (Hoc 2001). Following the concept of human-machine cooperation, we intend to 

study an interaction paradigm in which an operating AD system can share the authority on the 

driving task with a human driver in a cooperative manner. We refer to this paradigm as driver-

vehicle cooperation. Driver-vehicle cooperation could bring about the following potential 

benefits to the human driver and the AD system. 

Potential users of the first-generation AD systems, if commercially available in 2020 as 

promised, could be those drivers who have already developed their own driving skills and 

driving styles in manual driving. They may have expectations or judgements on driving 

behaviors performed by AD systems in reference to their own experiences in manual driving. 

Especially considering current complex safety concepts for AD systems (Hörwick and 

Siedersberger 2010), automated vehicles could behave over conservatively in certain situations 

compared to human drivers. A driver that monitors the automation may have needs to intervene 

in AD mode, if he is not satisfied with the current driving behavior of his vehicle. Driver-vehicle 

cooperation enables the AD system to share the authority on the driving task. Instead of 

deactivating the AD system, the driver can directly modify vehicle’s behavior through the 

shared control. In this sense, driver-vehicle cooperation aims at not only reducing the 

interference between the driver and the AD system, but also enhancing the user experience of 

the driver by offering new interaction ways with the AD system. 

From the perspective of the driving performance, driver-vehicle cooperation aims at exploring 

the synergy between humans and machines to improve the performance of the overall system. 

It can be foreseen that automated vehicles will share the current road infrastructure with other 

road users such as conventional vehicles, motorcyclists and pedestrians at the first stage of their 
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deployment4. Human driving activities exhibit strong social patterns, e.g. cues like eye contacts 

and hand gestures, which are difficult for a machine to interpret (Färber 2016). There are also 

culture-related conventions which are not prescribed by traffic rules. Compared with a machine, 

a human driver can detect these patterns easily and make an adequate decision following social 

rules. Therefore, by allowing the human driver to intervene, the AD system can benefit from 

the help of the human driver to better handle interactions with other road users, e.g., human 

driven vehicles, pedestrians and cyclists. 

1.2 Context of this thesis 
The work in this thesis was supported by the CIFRE (French acronym: Convention Industrielle 

de Formation par la Recherche) fellowship between Technocentre Renault and LAMIH UMR 

CNRS 8201 (Laboratory of Industrial and Human Automation control, Mechanical engineering 

and Computer Science) of University of Valenciennes and Hainaut-Cambresis. 

The research described in this thesis was carried out in the academic/industrial research project 

“Localization - Augmented Reality (LAR)” at the Technological Research Institute (IRT) 

SystemX (“LRA | IRT SystemX” 2017). The LAR project has two main research objectives:  

 Study new interactions and interfaces between the driver and the vehicle, notably based 

on augmented reality technology for automated vehicles (automobile part, which was 

considered in this thesis); 

 Study location systems procuring a cost/performance/security breakthrough (railway 

part). 

In its automobile part, LAR addressed the usage of level 3 automated driving in highway 

scenarios. The work of this thesis contributed to Task 3.2 – Driving supervisor of LAR. The 

purpose of this task was to design and simulate a vehicle guidance and control system, namely 

driving supervisor. The driving supervisor had three major roles in the project: 1) to ensure the 

control of a level 3 automated vehicle in the defined use cases, 2) to implement the cooperation 

principles developed in this thesis, and 3) to provide certain information concerning system 

states and driving environment to the HMIs developed in other tasks.  

                                                 
4 It takes a long time for new vehicle features to penetrate the vehicle fleet. For example, electronic stability control 

(ESC) was introduced in the United States in 1995 model year vehicles, but until 2013 ESC was standard or 

optional on only 42% of registered vehicles in the U.S (Highway Loss Data Institute 2016). 
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The work of this thesis was supported by other tasks in LAR. Especially, a catalogue of use 

cases developed in LAR helped us to identify two use cases for cooperation design. Within a 

multidisciplinary team of human factors and designers, we designed the HMIs through which 

drivers can cooperate with the designed system according to a cooperation principle in a use 

case. 

1.3 Objective and proposed approach 

1.3.1 Objective 
The objective of this thesis is to design, develop and evaluate cooperation principles for AD 

systems. At the interaction level, a cooperation principle describes how an AD system shares 

the authority on the driving task with a driver. At the functional level, a cooperation principle 

is used to guide the design of control functions of AD systems in such a way that these systems 

do not perform the driving task in a closed loop but accept and react appropriately to possible 

interventions of the human driver. Therefore, we aim not only to propose cooperation principles 

but also to apply these principles to the design of cooperative control frameworks for AD 

systems. Finally, the designed frameworks shall be prototyped and evaluated in user tests to 

generate insights on how users perceive and interact with these cooperative systems. 

1.3.2 Research assumptions 
The concept of automated driving comes up with a wide variety of possible applications and 

involves a set of sophisticated functionalities (Ibañez-Guzmán et al. 2012), therefore some 

assumptions need to be made to delimit the scope of our research. As the thesis work is carried 

out in the project LAR, most of these assumptions are in line with the requirements of the 

project. 

1) Level of driving automation: it is assumed to be SAE level 35, i.e., the AD system 

performs the entire driving task in its operational design domain and the human driver 

need not monitor the driving environment in AD mode. Except when mentioned 

explicitly with the level of automation, the term “AD system” hereafter refers to level 3 

                                                 
5 Since the project proposal was drafted in 2013, the automation level in LAR was aligned with the level 3 in the 

taxonomy of NHTSA (NHTSA 2013). NHTSA level 3 is equivalent to SAE level 3, hence the level of automation 

is harmonized to be SAE level 3 in this report. 
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AD system in this report. A vehicle equipped with an AD system is referred to as an AD 

vehicle. 

2) Perimeter use cases: Perimeter use cases delimit the perimeter of use of the AD system. 

In this thesis, the perimeter of use concerns automated driving on a multiple-lane 

highway at speeds of up to 130 km/h (road speed limit for highways in France). Totally 

14 perimeter use cases were identified in LAR. A perimeter use case corresponds to a 

situation of use of the AD system. It helps to identify potential user needs for HMI 

contents and potential interferences between the driver and the AD system by taking 

driver’s position in a real driving situation. 

3) Operating conditions: the AD system is assumed to operate in nominal conditions. 

Nominal conditions can be roughly understood as that AD system operates in this 

perimeter of use (perimeter use cases), the information on the external environment 

which is necessary for the system to operate is available (e.g., detectable lane marks) 

and there is no internal system failure. 

4) Perception system: the environment perception is not in the scope of this thesis, and it 

is assumed that the information of the environment is given by a perception system 

based on sensor data, a high-accuracy digital map and vehicle-to-vehicle/infrastructure 

communication. More details on these assumptions are given in Chapter 4. 

1.3.3 Research approach 
As illustrated by Fig. 1.1, the proposed research approach can be divided into two steps. In the 

first step, we propose general principles and a functional control architecture for driver-vehicle 

cooperation design. These general propositions are intended to offer a global view on levels of 

cooperation and possible extensions of plan and control functions relevant to automated driving 

toward driver-vehicle cooperation. Furthermore, these general principles and the functional 

architecture can be used to drive different designs of cooperative systems in different use cases. 

The work in this step is presented in Chapter 3. 

In the second step, we design cooperative control frameworks for AD systems based on the 

proposed principles and the functional architecture. Considering that interactive systems that 

utilize advanced technologies can rarely be completely specified in advance, we adopt the user-

centered design (UCD) approach, an iterative design approach with the active involvement of 

users (Norman and Draper 1986). As shown in Fig.1.1, the UCD approach adapted in this thesis 

consists of four steps: 
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 Use case definition: a use case formalizes the context of the use of the system to be 

designed. It also serves to analyze user needs on cooperation and potential interferences 

between the driver and the system in the driving task. We define use cases based on the 

perimeter use cases provided by LAR. 

 Specification: we implement a cooperation principle in a defined use case, and specify 

the functions to be developed based on the general functional architecture. 

 Development: in each use case, we develop a cooperative control framework to achieve 

the specified functions. In this process, we apply techniques from human supervisory 

control or shared control. The developed framework is then prototyped in the driving 

simulation environment.  

 User study: we conduct a user study on driving simulator to evaluate how users interact 

with the designed system in the driving task. The evaluation results are used to identify 

potential problems of the designed systems so that they can be appropriately rectified in 

the next iterative process. 

         

Figure 1.1  Proposed approach to design cooperative control systems for AD systems  

General proposition

PoV* of interaction Functional PoV

Chapter  3

User centered design Chapter  5 & 6

Hierarchy of the 
driving task

Cooperation
principles
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Dev. of technical 
solutions

User study

Use case 
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* PoV: point of view

Situation 
assessment

Chapter  4
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Chapter 5 and 6 present two case studies in which we implemented UCD to design cooperative 

control functions for AD systems. In these use cases, the AD vehicle operates in a dynamic 

environment involving traffic vehicles. To enable high-level cooperation with the driver on 

driving maneuvers, e.g., to handle the interaction with those traffic vehicles, the AD system 

needs to understand the external environment and to anticipate the evolution of the situation. 

We address this issue by proposing a situation assessment function specific to highway driving 

scenarios (the perimeter of use of the AD system) in Chapter 4. This common function will be 

then used by the two cooperative control frameworks designed in Chapter 5 and 6.  

1.4 Outline of the thesis 
The organization of chapters follows the procedure illustrated in Fig. 1.1.  

Chapter 2 begins with presenting the concepts and methods that support the design of driver-

vehicle cooperation in this thesis. They include the framework of human-machine cooperation, 

the approach of UCD and the shared control scheme. The presentation of theoretical concepts 

is then followed by a review of previous works that explored the concept of driver-vehicle 

cooperation. 

Chapter 3 addresses driver-vehicle cooperation as a whole by proposing a functional 

architecture for cooperative control. Based on this architecture, we discuss how to map planning 

and control functions used in automated driving to different cooperation levels. We also propose 

two cooperation principles at two levels in this architecture. 

Chapter 4 describes a situation assessment function for highway driving scenarios which 

provides information on the driving scene to the control functionalities of the cooperative 

systems in Chapter 5 and 6. This function consists of a representation formalism of the driving 

scene in the Frenet frame and a long-term trajectory prediction component.   

Chapter 5 presents the design of a cooperative longitudinal control framework in a use case of 

highway merging management. This framework features an ad-hoc maneuver planning function 

and a model predictive control (MPC) based trajectory generation for transient maneuvers. 

Following one of the proposed cooperation principle, this framework allows the driver to 

change the maneuver plan of the system during the interaction with a merging vehicle. The 

results of a user study of the designed framework are discussed at the end of this chapter. 

Chapter 6 deals with another use case on highway lane positioning and lane changing. In this 

use case, we present our design of a cooperative steering control framework based on the haptic 

shared control scheme. Through the implemented principle, the driver can take over the steering 
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control without deactivating the system, benefit from the system’s aid during a lane change 

maneuver and receive haptic alarms when his action could cause the danger. Based on the 

results of a preliminary user test, we discuss some design issues at the end. 

Chapter 7 finally concludes by summarizing the thesis, and by providing perspectives for 

further work. 
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2 THEORETICAL FRAMEWORK 
FOR DESIGNING DRIVER-
VEHICLE COOPERATION 

2.1 Introduction 
This chapter gives a brief overview on the concepts and methods that support the designing of 

driver-vehicle cooperation principles in this thesis. It is divided into three parts. 

The first part introduces two important frameworks, the framework of human-machine 

cooperation proposed by J.-M. Hoc (Section 2.2) and the approach of UCD (Section 2.3), 

through which this thesis approaches the design of driver-vehicle cooperation. Human-machine 

cooperation puts human and machine (automation in our case) in a human-machine system and 

views task distribution within the system as an activity of interference management. It is based 

on this interpretation of “cooperation” that we propose principles for driver-vehicle cooperation 

on driving tasks. UCD approach, on the other hand, emphasizes that the purpose of the machine 

is to serve the user by offering him possibility of actions in his flow of experience. Section 2.3 

gives a short introduction of UCD approach. We highlight the concept of use case and the role 

of user test, and how we use them in our design work. 

The second part (Section 2.4) presents two control schemes—shared control and human 

supervisory control—that can serve as technical solutions to develop cooperative systems. The 

last part focuses on previous works that addressed shared authority issue between the driver and 

the automation from a cooperation perspective.  
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2.2 Human-machine cooperation 
In the field of automation, the question of “human-machine cooperation” is raised in design of 

automation in complex control systems which need to be supervised and managed by human 

operators. Instead of taking a machine-centered point of view, i.e., automate whatever can be 

automated, leaving the rest to human (Bainbridge 1983, 775), human-centered automation puts 

the “system” surrounding human and machine, and considers that a task is performed by the 

overall “human-machine system”. In this way, human-centered automation does not isolate the 

design of the automation, but accords specific attention to interactions between the automation 

and the human operator. The concept of human-machine cooperation is developed based on 

human-centered automation, hence this section begins by introducing some important concepts 

of human-centered automation. 

2.2.1 Task allocation and level of automation 
At the core of the human-centered automation design is the task allocation between the 

automation and the human operator, i.e., which tasks should be automated and which tasks 

should remain to be done manually. One of the well-known approach to deal with task 

allocation is to define levels of automation (Sheridan and Verplank 1978). A level of 

automation designates a degree to which a task can be automated. Various levels of automation 

together form a taxonomy of level of automation. Different taxonomies of level of automation 

were proposed in the literature (Sheridan and Verplank 1978; Endsley and Kaber 1999; R. 

Parasuraman, Sheridan, and Wickens 2000). They share the same “pattern” in general. First in 

a vertical direction, those taxonomies cover from a bottom level of manual control to a top level 

of full automation while including several intermediate levels. Second in a traversal direction, 

the tasks are modelled in a “perception-action” circle borrowed from the control theory. For 

instance, Parasuraman (2000) grouped the tasks in four categories: information acquisition, 

information analysis, decision and action selection as well as action implementation. One 

example of the taxonomy of level of automation is shown in table 2.1. As presented in Chapter 

1, the taxonomy defined by SAE for driving automation follows the same pattern. 
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Table 2.1 Taxonomy of level of automation defined by Endsley (1999) 

 Roles 

Level of automation Monitoring Generating Selecting Implementing 

1) Manual control Human Human Human Human 

2) Action support Human/Computer Human Human Human/Computer 

3) Batch processing Human/Computer Human Human Human 

4) Shared control Human/Computer Human/Computer Human Human/Computer 

5) Decision support Human/Computer Human/Computer Human Computer 

6) Blended DM* Human/Computer Human/Computer Human/Computer Computer 

7) Rigid system Human/Computer Computer Human Computer 

8) Automated DM Human/Computer Human/Computer Computer Computer 

9) Supervisory control Human/Computer Computer Computer Computer 

10) Full automation Computer Computer Computer Computer 

*DM : decision making 

2.2.2 Adaptive automation 
If a taxonomy of level of automation reveals possible ways for task allocation, the real difficulty 

lies in choosing a target level. The machine-centered point of view drives the designer to seek 

a level based on the technical capabilities6. Human-centered automation design, in contrast, 

highlights the human operator’s performance in the evaluation criterion for the choice. If the 

potential benefits of automation are often intended, it is those “unintended” negative effects on 

human performance that pose serious challenges to design an effective system (Billings 1997, 

183).  

A main concern of negative effects of automation on human’s performance is the so-called 

“out-of-the-loop” performance problem (Endsley and Kiris 1995). Experiments and human 

factor analysis showed that human’s performance is degraded when the human operator is 

removed from a control loop. This performance degradation is manifested by: attention level 

decrement, complacency (over-trust in automation), loss of situational awareness and skill 

decay in the long term.  

                                                 
6 It seems that the development of AD systems in the automobile industry follows this technical-first perspective, 

i.e., a progress of level of driving automation in the taxonomy of SAE according to the technical advancement. 
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Adaptive automation, also referred to as dynamic function allocation, consists of one of the 

attempts of human-centered automation aiming to overcome the out-of-the-loop performance 

problem (Millot and Kamoun 1988; Inagaki 2003; Kaber and Endsley 2004). The principle of 

adaptive automation is continually adjusting the level of automation in order to keep the 

operator in the loop. For example, if an operator’s workload becomes high and consequently 

his performance drops, the level of automation needs to be enhanced, i.e. the automated system 

takes over the tasks augmenting human workload. On the contrary, if the human operator is 

detected to be drowsy at a high level of automation, some tasks can be distributed to him to 

maintain his attention. How to implement adaptive automation remains a complicated task. A 

main contribution of adaptive automation is the creation a mechanism of dynamic task 

allocation, which is inherited by human-machine cooperation.  

2.2.3 Definition of “human-machine cooperation” 
Human-machine cooperation offers a new perspective to consider the relation between the 

human and the automated system. The concept of the human-machine cooperation emerged in 

the context of automating complex tasks in dynamic situations (industrial process control, air 

traffic control, highly automated aircraft piloting, etc.). In face of the complexity of the 

environment, designers developed automated systems mimicking human-like cognitive 

abilities such as situation assessment and decision-making. Hollnagel and Woods (1999) 

defined such human-machine systems as a type of “joint cognitive system”. A human operator 

tends to show a cooperative attitude towards the automation that behaves like a human 

according to Nass, Fogg, and Moon (1996). Thus, human-machine cooperation was studied 

based on the analogy between human-human and human-machine relations. 

For example, Schmidt (1991) summarized different forms of interaction to help understand the 

cooperative work of human beings: construction and maintenance of a reciprocal awareness, 

orientation of attention of others, and negotiation between the actors. Consequently, these forms 

of interaction change the tasks distributed between each actor and therefore their roles in 

cooperative work. Regarding these statements, particularly the fact that one actor adapts his 

activities in a cooperative work so as to facilitate the tasks of other actors, Hoc (1996, 2001) 

gave the following definition of cooperation: 

Two agents are in a cooperative situation if they meet two minimal conditions. 

1) Each one strives towards goals and can interfere with the other on goals, 

resources, procedures, etc. 
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2) Each one tries to manage the interference to facilitate the individual activities 

and/or the common task when it exists. 

The first condition highlights the crucial role of “interference” in cooperation. Hoc borrowed 

here the physics meaning of “interference” as a metaphor. Two waves can reinforce each other 

if they are in phase or, on the contrary, weaken each other if they are not. The interference 

occurring during the cooperation is due to the interdependence between goals of the actors. 

Positive interference favors the achievement and maintenance of the goals of actors. Negative 

interference may lead to conflicts that affect the performance, augment the workload, and can 

even undermine the operation safety. To manage the interference means to reinforce the positive 

interference while reducing the negative one. The second condition reveals another 

characteristic of cooperation, i.e., each one adapts its activities to facilitate those of others. This 

implicates a minimal symmetry between human and automation in the framework of human-

machine cooperation. If a human operator can be assisted by the automation, the inverse case 

is also true. Under such a symmetry, human-machine cooperation aims to exploit the synergy 

between human and automation. 

Nevertheless, human-machine cooperation cannot be fully symmetric because responsibilities 

cannot be shared. The final authority needs to be explicitly predefined to account for potential 

conflicts. Moreover, “who” is responsible for the overall performance of such a human-machine 

system also needs to be considered. To answer these questions are not trivial in that it 

necessitates comprehensive examinations of technical, economical and legal aspects. 

Starting from this definition, Hoc addressed human-machine cooperation in a cognitive 

approach. One fundamental property of a cognitive system is the use of internal representations 

of the external environment. An efficient cooperation, from a cognitive point of view, relies on 

a shared representation of the task environment maintained by the actors in cooperation. Within 

human-machine system, this shared representation, called common frame of reference 

(COFOR) by Hoc, offers a common ground or common reference for human and automation to 

share goals, plans and intentions to perform cooperative activities.  

In summary, a cognitive perspective of human-machine cooperation leads to the following 

principles for driver-vehicle cooperation design in this thesis: 

1) Human-machine cooperation is an activity of interference management. An efficient 

human-machine cooperation should reinforce the synergy of human and automation 

(positive interference), and at the same time mitigate conflicts of their activities (negative 

interference). 
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2) Who holds the final responsibility should be clearly defined in human-machine 

cooperation. 

3) An efficient human-machine cooperation should generate and maintain shared 

representations on external situation and goals between human and automation. 

2.3 Support from user-centered design approach 
Stemming from human-centered automation, human-machine cooperation integrates human 

and automation into a human-machine system and considers the system performing a task as a 

whole. By formulating the dynamic task allocation between human and automation as the 

cooperative activity, human-machine cooperation aims at enhancing the performance of the 

overall system.  

UCD, on the other hand, views human using technical system as a resource of his action. With 

a user’s perspective, UCD helps find user’s needs and the usability of a system. Its benefits for 

driver-vehicle cooperation design consist in making the cooperative system easy to understand 

and use by human drivers. For this reason, it is worthy making a tour of UCD to see how it can 

support the design of an automated system that interacts with a user. 

2.3.1 User-centered design approach 
UCD concerns how to design effective technical systems that are intended for human use. The 

concept of UCD emerged in the context where technical systems designed solely through a 

technological-driven approach posed problems for users and sometimes could lead to serious 

consequences like accidents (Parasuraman and Riley 1997). The concept of UCD firstly 

proposed by Norman and Draper (1986) highlighted that the design of interactive systems 

should be guided by user needs rather than technological possibilities. Since then, UCD draws 

on multiple sources of knowledge from cognitive and social psychology, human factors and 

ergonomics, and computer sciences to support creating systems that are based on user’s 

characteristics and possible situations of use. Nowadays, the design process based on UCD has 

been normalized in ISO 9210-210 (ISO 2010). In practice, a design process based on UCD has 

the following features:    

 Understanding and formalizing the context of use (including users, tasks and situations 

of use); 

 Involving the user in the design process actively; 
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 Conducting user-centered evaluations of the design solutions and modifying the design 

based on user feedback, thus forming iterative design cycles rather than linear, rigid 

design process. 

Within the scope of UCD, the concepts of use case and user test are used in this thesis. They 

are presented in the following sections. 

2.3.2 Use case 
Use cases are widely employed in both object-oriented software engineering and HMI design. 

However, use case has not a precise definition mainly due to its high adaptability to various 

applications (Constantine and Lockwood 2001). In this thesis, use cases are related with 

situations of use of the designed system. The adoption of this point of view is motivated by the 

contribution from cognitive ergonomics. As a branch of cognitive ergonomics, the theory of 

“structural coupling” assumes that the activity of the user, based on his past experiences and 

the present environment, gives the meaning of the technical systems that he uses (Maturana and 

Varela 1992). His engagement in the situation filters the information that he perceives and 

directs his use of the system. In this sense, the expected function of the technical system depends 

not only on the needs and characteristics of the user but also on the situation in which the system 

is used. From this perspective of cognitive ergonomics, the fundamental idea behind designing 

technical systems is to design future situations of use that will enrich the user’s experience and 

to which the user can adapt easily. 

To find future situations in which the driver would cooperate with the AD system, we start by 

analyzing existing driving situations. We formulate an existing driving situation as a use case 

in which we analyze how a human driver interacts with the driving environment (road 

infrastructure, road conditions, traffic …) in manual driving. Then we identify potential user 

needs emerging in this concrete driving situation. Finally, these needs shall be addressed when 

we design cooperative functions for the AD system. Fig. 2.1 shows an example on how we 

exploit a use case in our design work. This use case deals with highway merging management 

which will be presented in detail in Chapter 5. We begin by analyzing driver’s needs when he 

faces a merging vehicle. The following hypotheses can be made based on empirical 

observations: 

1. He may want to preserve his comfort. Thus, he may expect the AD system to maintain 

a constant speed to pass the merging vehicle.  

2. He may want to show his courtesy or respect to social conventions. He may expect the 

AD system to make a lane change or reduce its speed to yield. 
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3. In ambiguous situations, he may expect the AD system to take an initiative by 

manifesting its intention. 

From this analysis, we can also suppose that a driver may need to know if the system is 

monitoring this merging vehicle and what is the intention of the system. Based on these 

assumptions on user needs, we can sketch a future situation of use for driving-vehicle 

cooperation in which the system shows its intention towards the merging vehicle and the driver 

can indicate his intention in return. Note that there are formal methods in the discipline of 

cognitive ergonomics to perform empirical observations such as the self-confrontation 

interview (Theureau and Jeffroy 1994) and explicitation interview techniques (Vermersch 

1994)7.  

 

Figure 2.1 Example of a use case driven approach  

From a technical standpoint, use cases serve to instantiate general cooperation principles, i.e., 

to specify system functions and HMI contents. Moreover, since this thesis was carried out in a 

project with a team of multidisciplinary competences, use cases served as common framework 

for scenario modelling, functional and HMI design. 

                                                 
7 French-speaking ergonomists have long been familiar with these techniques in the activity analysis. 

1) Existing situation

2) User needs

To preserve my comfort: 
I pass

To show courtesy/respect social rules: 
I yield or change lane

To resolve the ambiguity: 
I make an initiative

3) Future situation of use

Cooperation: 
Pass or yield or lane change ?
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2.3.3 User test 
User test is an essential part of UCD. It allows the designer to evaluate how users interact with 

the designed system in the intended situation of use. Users, through their adaptability and 

creativity, bring transformations of the interaction intended by the designers. They may use 

systems in ways that could never be conceived of by their designers. Particularly in our case, 

we envision a future situation of use for driver-vehicle cooperation which does not exist yet. 

User test could provide evidence for the design choice and assumptions. Lastly, performing 

user tests at an earlier stage of development helps avoid potentially costly mistakes at the final 

stage before the deliverance of the final product. 

Utility and usability are two important dimensions to evaluate a designed system that interacts 

with a human. Utility, also referred to as usefulness, responds to the question “whether the 

functionality of the system in principle can do what is needed” (Nielsen 1994, 25). Utility can 

be quantified in terms of the frequency and the way of the use of the system. It can also be 

measured by subjective evaluations, such as subjective scales on the usefulness. 

Usability has already been a concept standardized by ISO, which defined usability as “the extent 

to which a product can be used by specified users to achieve specified goals with effectiveness, 

efficiency, and satisfaction in a specified context of use” (ISO 2010). In order to make the 

usability of a system quantifiable, Nielsen (1994) defined five usability attributes:  

 Learnability: the degree of being easy to learn, 

 Efficiency: the amount of effort required to complete the task, 

 Memorability: the degree of being easy to remember, 

 Errors: those the user make during the use of the system, 

 Satisfaction: the degree to which the user was happy to use the system. 

During a usability test, the usability is assessed via user’s performance metrics to complete 

tasks based on the system to be evaluated. Common performance metrics are rate of task 

success, time on task, user errors, user workloads, etc. 

2.4 Extensions of control theory towards human-machine cooperation 
While the two precedent sections discussed two theoretical frameworks which provide 

important design guidelines for our design of driver-vehicle cooperation, this section focuses 

on how to develop a cooperative control system from a control perspective. We identify two 

control schemes which consider human’s control in the control-loop of the system. Shared 

control scheme applies to the case where human control action is continuous and enters directly 
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in the control loop, where in human supervisory control the human operators provides symbolic 

commands, e.g., button presses, that can influence the control of the automation. 

2.4.1 Shared control 
Shared control scheme applies conventional control theory to incorporate human’s manual 

control in the control loop. It aims to determine the final command for a plant (usually a process 

or an actuator to be manipulated) when both human and automation control the plant 

simultaneously. Depending on the type of control interface, shared control approaches in the 

literature can be classified into two categories (Abbink and Mulder 2010): blended shared 

control and haptic shared control. 

2.4.1.1 Blended shared control 

Blended shared control scheme is applied to those control interfaces having no direct mechanic 

connection with the controlled plant. This kind of interface is also referred to as by-wire 

systems, e.g., steering-by-wire system and electronic throttle. Since the human’s control is in 

form of electronic signal, it can be augmented or reduced in the automated system, thus making 

the blending formalism highly flexible.  

Various blending formalisms exist in the literature. Among others, blending by weighting is the 

most popular approach. This blending formalism can be expressed by 

 𝑢𝑓𝑖𝑛𝑎𝑙 = (1 − 𝛼)𝑢ℎ + 𝛼𝑢𝑎, (2.1) 

where 𝑢𝑓𝑖𝑛𝑎𝑙, 𝑢ℎ and 𝑢𝑎 designate final control input, controls of the human and the automation 

respectively. The weighting factor 𝛼 , called blending policy (Dragan and Srinivasa 2013), 

determines the shared control authority. Urdiales et al. (2010) designed a blending policy based 

on the “efficiency” of the human’s input in an application for wheelchair’s navigation guidance. 

The “efficiency” is characterized by three factors of human input: “smoothness” (angle between 

the current direction of the robot and the provided motion vector), “directiveness” (angle 

formed by the robot heading and the direction towards the goal), and “safety” (distance to the 

closest obstacle). Anderson et al. (2013) designed a steering controller to support the driver for 

hazard avoidance. The blending policy in the shared control is a piecewise linear function of 

the front tire slip angle, which is a metric of vehicle’s dynamics stability. Sentouh et al (2013) 

developped a cooperative steering assist controller which blends human driver’s control based 

on a metric characterizing the conflicts between the driver and the system. 

Other blending formalisms can be found in the literature as well. Cerone, Milanese, and Regruto 

(2009) developed a feedforward controller that predicts the lateral error of vehicle’s position to 
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the lane center under the influence of driver’s steering torques. The predicted lateral error 

compensates the real lateral position error, hence reducing the control of a feedback lane-

keeping controller. In this way, the driver can take over the control without switching off the 

controller. Chipalkatty and Egerstedt (2010) and Erlien, Fujita, and Gerde (2016) formulated a 

shared control problem in the framework of MPC. A MPC controller seeks to identically match 

the human’s commands if the plant’s states fall within safety constraints. If the controller 

predicts that the human’s commands will steer the plant’s states out of safety zone, it adapts its 

control to guarantee the safety. A logic of blending a part of control to track human’s commands 

with another part to ensures the safety is formulated implicitly in the problem representation of 

MPC. 

The blended shared control scheme benefits from the design flexibility offered by the by-wire 

system. First, the human’s input in form of electrical signal can be adjusted directly at the 

blending level. Second, the desired plant behavior and the force feedback to the human user can 

be designed independently because there is no mechanical link between input and output. 

However, the human operator may not be aware of the automation’s activity, because the 

blending occurs in the controller but not on the physical control interface. To overcome this 

limit, feedback channels, e.g., haptic feedback on control interface, visual feedback, need to be 

added to make automation’s control easy to understand. 

2.4.1.2 Haptic shared control 

One definition of haptic shared control is given by Abbink and Mulder (2010). Haptic shared 

control “… allows both the human and the [automation] to exert forces on a control interface, 

of which its output (its position) remains the direct input to the controlled system.” The core of 

this definition is that human and automation are in physical interaction (by force). This 

characteristic distinguishes haptic shared control from blended shared control. 

Two design perspectives of haptic shared control can be identified in the literature. With the 

first perspective, the computed force is used as a force feedback for a human operator who is 

responsible for controlling the plant. In this sense, the force feedback aims either to provide 

guidance or to convey the information on the environment to the human operator. From this 

perspective, the force feedback is usually computed in the framework of impedance control 

(Hogan 1985). Impedance can be perceived as an ability of a manipulator (e.g., human’s arm) 

to resist the external disturbance. It can be modeled as 

 𝐹𝑖𝑚𝑝 = 𝐾
𝑑(𝐱𝑑 − 𝐱) + 𝐵𝑑(�̇�𝑑 − �̇�), (2.2) 
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where 𝐹𝑖𝑚𝑝 is impedance, 𝐱𝑑  and �̇�𝑑  are desired motion (position and velocity), 𝐱 and �̇� are 

actual motion, and 𝐾𝑑 and 𝐵𝑑 are stiffness and viscosity, constituting the desired impedance 

characteristics. Abbink (2006) and Mulder et al (2011) focused on understanding human’s 

neuromuscular responses to forces. In this manner, they designed haptic controllers that could 

“mirror” the impedance adaptability of human muscle. Takada, Boer, and Sawaragi (2013) 

proposed a framework of shared haptic steering control from a user’s perspective—integrating 

the designed system into driver’s existing cognitive-action-cycle. In a use case of passing 

through narrow paths, they implemented this framework that facilitated driver’s epistemic 

probing activity while communicating the information on lateral deviation and distance to 

obstacles to the driver by force feedback. 

The second design perspective is more oriented to human-centered automation. A more 

sophisticated controller is designed to perform a target task, thereby a major design issue is the 

shared authority between the automatic controller and the human operator. In haptic shared 

control framework, each one can gain/release the control authority by augmenting/reducing the 

force exerted on the interface. Abbink, Mulder, and Boer (2012) provided four guidelines to 

address the shared authority issue. They argued that human should be able to experience 

(haptically adaptive automation) and to initiate (haptically adaptable automation) the smooth 

shift of authority. Saleh et al. (2013) and Soualmi et al. (2014) used human driver model in the 

control synthesis. Consequently, the controller was capable of adapting control output to the 

driver’s actual control. Mörtl et al. (2012) recognized the redundancy of control inputs of 

multiple actors (human and robots). They decomposed the redundant input forces into an 

external force part and an internal force part. The internal forces arise from control mismatch 

between the actors. Therefore, they can be considered as a haptic negotiation channel to 

communicate disagreement and motion intentions. From this perspective, they estimated 

human’s internal force and adapted robots’ efforts to reduce human’s effort. Nguyen, Sentouh, 

and Popieul (2016) modulated the steering torque of an automatic steering controller according 

to the driver’s involvement level and drowsiness state. Thus, the controller increased its control 

when the driver was in underload (prone to be drowsy) and overload conditions. 

A main advantage of haptic shared control is that human can be informed of automation’s 

activity in a direct and intuitive manner (through haptics). Meanwhile, the shift of authority is 

seamless and smooth. Haptic shared control methods proposed in the literature often rely on 

specific paths and therefore need a specific goal or way points. When the human operator has 

a different goal than that of the system, conflicts (negative interference) may arise, thus 

workloads of the human operator increase (Boink et al. 2014). The methods cited above 
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mitigated conflicts in a reactive manner, i.e., the controller reduced its control input when 

conflicts arise. These methods did not consider the intention of the human operator which could 

be different from that of the automation, nor did they consider the risks due to human’s action 

in a dynamic environment. From a human-machine cooperation perspective, haptic shared 

control framework needs to allow the human operator and the automation to share their 

goal/intentions and situational awareness behind their control actions.  

2.4.2 Human supervisory control 
In human supervisory control scheme, the human operator is given a role of supervisor. He 

provides automation specific goals or waypoints prior to or during the operation, while 

automation is responsible for controlling the plant to achieve the designated goals or 

waypoints8. In contrast with shared control scheme where human input is continuous, human 

intermittently intervenes in the control process to give a new goal. In this way, the main task of 

human is to monitor automated tasks instead of directly participating in control activities.  

Human supervisory control has widely been applied for telerobotics, process control (Sheridan 

1992). It began to draw attention in the automotive community along with the progress of 

driving automation. A representative example is the “active lane change assist” application 

which has already been commercially available. Through this application, the driver can initiate 

a lane-change maneuver performed by the driving automation system by switching the turn 

signal (Handelsblatt Global 2015; Quain 2016). Concerning research projects, Geyer et al. 

(2011) proposed and implemented a “Conduct-By-Wire” principle. In this principle, the driver 

assigns maneuver commands via a so-called maneuver interface that enumerates all possible 

maneuvers in the applied use cases (see Fig. 2.2). The automated system then performs the 

selected maneuver automatically. Albert et al. (2015) evaluated four interaction concepts for 

AD vehicles in highway lane change scenarios: “manual lane change”, “trajectory control” (the 

driver instantly triggers maneuvers, same with “active lane change assist”), “maneuver 

planning” (the driver plans a stack of upcoming maneuvers), and “automatic lane change”. The 

user test results suggested the driver’s preference to transfer as many as tasks to the AD system. 

Human supervisory control scheme offers the human operator simple methods to interact with 

the automation when he is not in direct control of the system. In this sense, it is more suitable 

                                                 
8 The scope of human supervisory control discussed here is limited at a higher level than operational level. The 

“control takeover” scenario and the teleoperation application (e.g., object manipulation through teleoperator) 

included in the definition of Sheridan (1992) are not considered here. 
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for AD applications where the driver can do secondary tasks. However, as discussed in Section 

2.2.2, a main issue of human supervisory control is human’s out-of-the-loop performance 

problem. Current research directions to remedy this problem consist of: 1) find effective 

strategies to reengage the driver with the control task, 2) determine the amount of time a normal 

driver needs to regain control and 3) design appropriate interfaces through which a driver can 

quickly rebuild the situational awareness (Blanco et al. 2015). Even if human supervisory 

control scheme offers the convenience for the driver to express directly his intention through 

symbolic command, it cannot address potential user needs to subtly adjust vehicle trajectory as 

a driver does by turning steering wheel or pressing pedals in manual driving. 

 

 

Figure 2.2 Tactile touch display of a maneuver interface  

in the “Conduct-by-wire” project (Franz et al. 2012) 

2.5 Previous works on driver-vehicle cooperation 
This section reviews some previous works on driver-vehicle cooperation. Those works already 

cited in the scope of shared control and human supervisory control are not repeated here. The 

studies reviewed in this section are more oriented to cognitive frameworks or functional 

architectures. For each study, we focus on how it deals with the shared authority between the 

driver and the system in the driving task. 

2.5.1 H-metaphor (Flemisch et al. 2003) 
Flemisch et al. proposed a H(orse)-metaphor in which the relation between the driver and the 

automation is compared to the relation between a rider and a horse. When riding a horse, the 

rider can loosen the reins to give the horse more authority or grip the reins tighter to enforce his 

will. The rider and the horse infer each other’s intention through the reins. The reins are a 

metaphor for a haptic control interface between the driver and the automation. The loose-rein 

control corresponds to a highly automated mode where the automation controls the vehicle in 
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a large part, while the driver is still in the control-loop to accompany the automation. The 

tighten-rein control stands for an assistance mode where the driver assumes most control 

authority. The design philosophy in H-metaphor is followed by haptic shared control scheme. 

Both argue that the human driver should remain in the control loop such as to benefit from 

increased performance and reduced workload. 

2.5.2 Levels and modes of cooperation proposed by Hoc, Young, and 
Blosseville (2009) 
Within the framework of human-machine cooperation, Hoc, Young, and Blosseville 

decomposed the cooperative activity between the driver and the automation into three levels: 

meta-level, planning level and action level. Cooperation in meta-level addresses the use of 

models of the agents (driver and automation) in the design process. The use of driver model in 

the design of automation aims at making the automated system understand driver’s behaviors, 

thus adapting its control to that of the driver. Developing user’s model of system’s operation is 

expected to ensure a proper use of the system by future users. The cooperative activities at the 

planning level aim to maintain a common frame of reference on which the driver and the 

automation share their plans and goals. At the lowest level, the cooperation activity is directly 

related to action and corresponds to a local, concrete and short-term interference management. 

A main contribution of levels of cooperation is the decomposition of the cooperative activity 

(authority management) which could be too complex to be studied as a single entity. Moreover, 

this decomposition was based on cognitive process, i.e., action level corresponding to sub-

symbolic processing, plan level to symbolic processing and meta-level to a kind of long-term 

cognitive effect (experience). At each level, the authors designed multiple cooperation modes 

similar to levels of automation. But these modes were also proposed with the perspective to 

enhance the driver’s cognitive performance rather than simply allocate functions. These modes 

include perception mode (to enhance driver’s perception), mutual control mode (like shared 

control), function delegation mode (equivalent to level 1 automation of SAE) and full 

automation mode (level 2). Finally, the authors advocated the role of cooperation in action in 

the interference management, because the information is transferred through sub-symbolic 

processing, which is less cognitive costly compared to symbolic processing level. 

This cognitive framework has its strength in modelling and analysing the interaction between 

the driver and the automation, e.g., it enables a new classification method for driver assistance 

systems (Navarro, Mars, and Young 2011). However, it is difficult to derive technical solutions 

for driver-vehicle cooperation from this kind of cognitive framework. A more technical-
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oriented functional architecture is still needed. What’s more, transitions between different 

cooperation modes are not discussed in this framework. Finally, this framework views the role 

of the driving automation as to provide temporal intervention in the driving task rather than 

take over the driving task on a sustained basis, thus limiting the application scope of this 

framework. 

Some cooperation modes in this framework were implemented in the project PARTAGE which 

will be presented in the following section. 

2.5.3 Project PARTAGE (Hoc 2012) 
PARTAGE (French word meaning “share”) is a French project (2009-2012) on the cooperation 

between driver and advanced driving assistance system (ADAS). The use case treated in 

PARTAGE was the lane departure avoidance. PARTAGE implemented three cooperation 

modes proposed in the last section. The first mode was based on the shared control scheme in 

which the driver and the ADAS continuously share the control authority. A main contribution 

of PARTAGE to this cooperation mode was the development of a cybernetic driver model that 

integrates human driver’s anticipatory capacity and neuro-muscular dynamics of human arm 

(Sentouh et al. 2009). It was also proved that the shared control law integrating this driver model 

improved the overall performance of the human-machine system. The second mode, namely 

“motor priming mode”, rendered haptic vibrations with discrete levels of amplitudes on the 

steering wheel. The vibrations were triggered based on the risk metrics of lane departure, aiming 

to prompt the driver to correct the trajectory. The third cooperation mode was the “corrective 

mode” in which the system intervenes to correct vehicle trajectories, in case of the lane 

departure or the loss of stability. 

In addition to the contributions in terms of the control aspect, PARTAGE also addressed the 

human factors aspect of driver-vehicle cooperation. These efforts included proposing indicators 

for cooperation performance, analysing the common reference for risk assessment between the 

automation and the driver, and evaluating the acceptability of the different cooperation concepts. 

2.5.4 Project HAVEit (Hoeger et al. 2008) 
The EU funded research project HAVEit (Highly automated vehicles for intelligent transport, 

2008-2011) developed and demonstrated several concepts of highly automated driving. The 

main use case treated in HAVEit was highway automated driving. In HAVEit, the AD system 

is referred to as “co-system”, and was developed within a joint system with the driver. The co-

system in HAVEit had multiple discrete levels of automation, as shown in Fig. 2.3. The H-
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metaphor inspired HAVEit to maintain the driver “meaningfully involved in the driving task”. 

From the point of view of human-centered automation, HAVEit approach underscored the 

dynamic task repartition such that the driver can be relieved in overload and underload 

conditions. Moreover, a driver state assessment module was developed to evaluate if the driver 

is capable to take over the control in case of system’s failure or limits. 

 

Figure 2.3 The automation spectrum in HAVEit and the dynamic task allocation (figure extracted from 

(Flemisch et al. 2010)) 

Glaser et al. (2010) designed a maneuver-based interaction concept for the co-system in 

HAVEit. A key component in this interaction concept is a maneuver grid that enumerates 

possible maneuvers in the context of highway driving. By visualizing this maneuver grid, the 

co-system can recommend maneuvers to the driver. The co-system can also evaluate the 

driver’s maneuver intention with the help of this grid. The driver will be warned by HMI if his 

intention corresponds to a maneuver with high risk in this grid. At the control level, force 

feedback steering wheel and pedals enriched the HMI of the co-system. The pedals can be used 

for speed adaptation up to a certain pedal position when the automation is active. Following the 

principle that the driver has the final authority on driving, transition to manual driving mode 

will be triggered when the driver presses a pedal over this threshold. Meanwhile a vibration 

will be rendered on the pedal to inform the driver. In lateral dimension, the co-system will issue 

a lane change request in the HMI display if it detects a possible lane change maneuver. The 
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driver can validate it by turning on the corresponding indicator or turning in the corresponding 

direction. 

The discrete levels of automation defined in HAVEit have influenced the taxonomies of levels 

of automation such as BASt (Gasser et al. 2009) and SAE definitions. Moreover, the impacts 

of legal safety on AD system design were discussed in details (Vanholme et al. 2013). An 

essential contribution of HAVEit to the safety of automated driving is the notion of “minimum-

risk state (MRS)”9 which was adopted in the taxonomy of SAE later. 

2.5.5 Project ABV (Glaser 2013; Sentouh et al. 2014) 
French project ABV (Acronym in French “Automatisation Basse Vitesse” meaning “Low speed 

automation”, 2009-2012) focused on the use case of driving automation in a congested highway 

traffic (speed inferior to 50 km/h).  

The driving automation system designed in ABV had three discrete levels of automation: 

manual driving mode (level 0), automatic longitudinal control (level 1), and ABV mode 

equivalent to the partial automation (level 2) in the taxonomy of SAE. The transitions between 

different levels of automation can either be initiated by the driver or the automation. Since the 

driver needs to supervise the system (level 2), a driver monitoring system was used to ensure 

that the driver was not drowsy and was aware of the situation. ABV contributed to AD system 

with multiple levels of automation by introducing the concept of “wake-up procedure”. The 

wake-up procedure is a sub-state in each driving mode. If the driver monitoring system detects 

that the driver is distracted, the system will engage the wake-up procedure. The warning signal 

(visual and sound signals) will be issued through HMI. Particularly, if the AD system is in 

automatic longitudinal mode or ABV mode, the AD system will also reduce the vehicle speed, 

and enter a MRS if the driver does not react appropriately after a certain time. 

Another contribution of ABV consisted in exploring shared control scheme in the ABV mode 

to manage the shared authority issue. Contrary to the conventional “override” mechanism 

through which the system suspends its control when the driver intervenes, the automated system 

shares lateral control with the driver in ABV mode if the latter steers.  

                                                 
9 MRS refers to a state the driver or the AD system intends to reach in case the system is no longer capable of 

performing a certain level of automation. Whether the system can automatically achieve a MRS discriminates a 

level 4 system from a level 3 system. 
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Fig. 2.4 shows the shared control architecture of the AD system in ABV. Two levels of 

cooperation can be identified in this architecture. The first one is called low-level cooperation 

(LLC in Fig. 2.4). The low-level cooperation concerns the cooperation in action implemented 

by haptic shared control. High-level cooperation (HLC in Fig. 2.4) corresponds to planning 

cooperation level where the path for the controller to follow is determined by the state of the 

driver and the driving environment state. 

 

Figure 2.4 Shared control architecture implemented in ABV (figure extracted from (Sentouh et al. 2014)) 

2.5.6 Project INTERACTIVE (Alessandretti et al. 2014) 
INTERACTIVE (2010-2013) focused on developing ADAS that provide active interventions 

for accident avoidance from early holistic preventive safety, to automatic collision avoidance, 

and to collision mitigation. Lio et al. (2015) developed a concept of artificial “co-driver”. The 

“co-driver” designates an automated system that is able both to drive similarly like human 

driver and to infer human intentions. The co-driver has a layered architecture, so the complex 

driving activities can be decomposed into each layer. In order to imitate human driving 

behaviors, an internal loop consisting of inverse models and forward emulators was integrated in 

the architecture, as shown in Fig. 2.5. The forward loop (the inverse model) aims at reproducing 

human action plans. In this loop, optimal motion planning technique was employed to generate 

different motion hypotheses. Then the back loop, constituted by forward emulators is 

responsible for matching the motion hypotheses to human actions. Since the effects of human 

action on system future states are predicted in the emulation, “forward” was used in an 

extrapolation sense. The concept of co-driver contributed to solutions for maintaining a 

common of reference between the driver and the automation at the planning level (see Section 

2.5.2).  
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In INTERACTIVE, the co-driver is instantiated by a warning system. The co-driver based its 

warning strategies on the estimation of driver intentions. Driver intention estimation was in turn 

realized by the internal loop of inverse models and forward emulators.  

 

Figure 2.5 Architecture of the “co-driver” (figure extracted from (Lio et al. 2015)) 

2.6 Conclusion 
This chapter has presented some theoretical concepts and methods in the literature which form 

a general theoretical framework in which we study and design driver-vehicle cooperation in 

this thesis. 

Firstly, we presented the concept of human-machine cooperation with its origin and the 

definition of J.-M. Hoc. Human-machine cooperation was proposed to address task distribution 

within the human-machine system. This concept offers important design principles for us to 

manage the shared authority between the driver and the AD system in this thesis. These 

principles include viewing cooperation as an activity of interference management, the final 

authority definition and the role of shared situational awareness and shared goals to enhance 

the overall performance of the human-machine system. 

Then we introduced the UCD approach which provides us a user’s perspective to design driver-

vehicle cooperation. This perspective highlights the role of the automation as a resource for 

facilitating human’s interaction with the environment. The concepts of use cases and user test 

were implemented in our design work in Chapter 5 and 6. 

In the next section, we presented shared control and human supervisory control schemes. By 

analysing some related works in the literature, we showed that both had their interests and limits 

to be applied for driver-vehicle cooperation. This remark motivated us to develop a hierarchical 

control framework which combine these two schemes and in which the shortcoming of each 

can be compensated by the other scheme. This effort will be presented in Chapter 3. 
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This chapter was closed with a review of previous works on driver-vehicle cooperation. In the 

next chapter, we will present how we derived cooperation principles within human-machine 

cooperation framework and mapped shared control and human supervisory control in a 

hierarchical control architecture for AD systems. 
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3 GENERAL ARCHITECTURE AND 
PRINCIPLES FOR DRIVER-
VEHICLE COOPERATION 

3.1 Introduction 
It is well known that human cognitive processes are complex. AD systems, on the other hand, 

tend to be complex too. The complexity of AD systems is mainly due to the need to achieve 

different tasks simultaneously in a challenging dynamic environment. Thus, to design cooperation 

in this complex human-machine system is not trivial. 

Hierarchical model is widely used to represent complex systems. Simon (1996) in his influential 

book “The sciences of the artificial” gave a synthesis of hierarchical models applied for social, 

biological, physical and symbolic systems. A system in this hierarchical representation is 

composed of interrelated subsystems, each of the latter being in turn hierarchical in structure 

until some lowest level of elementary subsystem are reached. The first strength of a hierarchical 

model is that it provides descriptions of a system at different levels of details. Moreover, Simon 

assumed that some hierarchical systems are nearly decomposable. This near decomposability 

is manifested by that linkages between subsystems at a level are stronger than linkages between 

subsystems across levels. Under this assumption, one can study behaviors of subsystems at a 

level while ignoring their interactions with subsystems at other levels. On the other hand, while 

studying interactions between the processes at different levels in a whole system, one can ignore 

the details of subsystems at a level.  
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Hierarchical models have been extensively used to describe human operator’s behaviors in 

human-centered automation. For example, Rasmussen’s model of human behavior (Rasmussen 

1983) which decomposed human behavior into knowledge-based, rule-based and skill-based 

levels has widely been used as a frame of reference to design automated functions that support 

human’s activity. As presented in Chapter 2, Hoc (2001) has decomposed the cooperative 

activity into three levels based on human’s cognitive process. On the machine side, layered 

architectures, one type of hierarchical architecture, which originated from the discipline of 

robotics, are popular system architectures for autonomous vehicles. Given the strength and the 

popularity of hierarchical representation, we aim to decompose driver-vehicle cooperation into 

different levels to reduce the complexity of interaction design.  

This decomposition is based on the common hierarchy between Michon’s hierarchical model 

of the driving task and several planning and control systems used in autonomous vehicles in the 

state-of-the-art. Section 3.2 demonstrates this common hierarchy by presenting Michon’s 

model and planning and control functions of driving automation systems. In Section 3.3, we 

analyze the potential interference between the system and the driver in the driving task at each 

level and propose a possible form of cooperation for each level. Based on these analyses, we 

derive a new cooperative control architecture by integrating new cooperative functions into a 

planning and control architecture of AD system. Finally, we propose two principles for driver-

vehicle cooperation at the tactical level and the operational level respectively in Section 3.4. 

Each principle describes how the driver and the system share authority in the decomposed 

driving task.  

3.2 A common hierarchy to describe driver behavior and functions for 
driving automation 
Michon’s hierarchical model of the driving task (1985) assumed human driver behavior as a 

hierarchically ordered structure of different behavior levels. In this section, we attempt to 

demonstrate that the functions of several automated systems (including AD systems) that 

automate partial or the entire driving task can be organized into the hierarchy of Michon’s 

model. This reveals a kind of mapping between the assumed driver behavior levels and system 

functional levels of AD system. The mapping offers a possibility to design driver-vehicle 

cooperation at each common level. Along with this demonstration, we introduce a layered 

functional architecture of AD systems in which we present principal planning and control 

functions. This architecture serves as a basis for the hierarchical cooperative control 

architecture presented in the next section. 
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3.2.1 Point of departure: Michon’s hierarchical model of the driving task 
In Michon’s model, the driving task was decomposed into the following three levels: 

strategical, tactical and operational levels. These three levels can be distinguished by the 

driving behavior and the time frame involved at each level. The general trip planning, including 

trip goal setting, route plan and modal choice takes place at the strategical level. General trip 

plan can be made in advance of a trip. Specific strategical decisions can generally be done many 

minutes before the execution during the trip. At the tactical level, the driver performs maneuver 

control to ensure a safe navigation in local driving environment during a trip. Decisions on 

maneuvers are considered to take place in seconds, and strongly depend on driver’s situation 

awareness on the surrounding environment. The operational level consists of immediate vehicle 

control and the decisions on control actions require only milliseconds. 

Moreover, interactions exist between the cognitive processes at different levels. Essentially, the 

processes at a higher level provide goals or impose constraints on the processes at a lower level. 

Conversely, the processes at the lower level ascend feedbacks on local task execution towards 

the higher level. The processes at the higher level can then adapt the goals to fit the outcomes 

from the lower level. For example, a driver who leaves for summer vacation may expect to 

drive for leisure on the route. His strategy could be “no rush”, which could engender tactical 

decisions such as prioritizing cruising, avoiding overtaking maneuvers (strategical level). 

However, excessively slow traffic on the road may motivate the driver to accelerate, to pass 

vehicles (tactical level). Eventually, he may either plan another route to or adopt a more 

aggressive driving strategy (strategical level). 

3.2.2 Control function of ACC 
Before discussing the hierarchy of functions for automated driving based on the tri-hierarchy 

of Michon, it is of interest to examine driver assistance systems as an intermediated step. ACC 

is a typical driver assistance system that automates longitudinal vehicle motion control. At the 

tactical level, a standard ACC can realize two maneuvers in the longitudinal dimension: 

cruising—a maneuver that keeps a constant speed and vehicle following—a maneuver that 

maintains a safe time headway with a lead vehicle. The main task at the tactical level hence 

concerns which maneuver to be engaged. A basic mechanism is a “switch” strategy based on 

the target (lead vehicle in the path) detection information (Winner 2012). Bageshwar, Garrard, 

and Rajamani (2004) argued the existence of a so-called transitional maneuver. This 

transitional maneuver is responsible for achieving a smooth transition from a cruising maneuver 

to reach a steady vehicle following maneuver. 
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At the operational level, an ACC performs vehicle longitudinal control to realize cruising or 

following maneuver. From a control perspective, a maneuver needs to be translated to a 

reference for a controller. For cruising maneuver, the reference is a set speed; however, for 

vehicle following, different references have been proposed, including static references like the 

popular constant time headway policy (Ioannou and Chien 1993), and dynamic references 

accounting for multiple performance factors (Martinez and Canudas-de-Wit 2007). Different 

controllers can be used for speed control and distance control respectively (Rajamani 2006). 

An alternative consists of a single controller combined with a transient trajectory generation 

module (Kim 2012). 

Based on the above discussion, we can see that control functions of ACC can be mapped into 

the hierarchy of driver behavior in a straightforward manner. The same is true for a driving 

automation system that performs lateral control, e.g., a lane keeping assistance system with 

active lane change assist function. 

3.2.3 Planning and control functions of AD systems 
The complex nature of an AD system has been analyzed and characterized in several works. 

Following the concept of a rational agent (Russell and Norvig 2009), an AD system can be 

decomposed into three subsystems at the first level: perception, planning (also referred to as 

decision-making) and control subsystems (Taş et al. 2016). In our design work, we focus on 

functions in planning and control subsystems. 

The reports on the autonomous vehicles in DAPRA Urban Challenge serve as an ideal database 

of reference of system architectures (Buehler, Iagnemma, and Singh 2009). Several 

autonomous vehicles adopted similar tri-layered architectures for planning module with the 

decomposition consistent with that in Michon’s model. Tab. 3.1 summarizes these vehicles with 

their planning functions mapped into the three levels of the driving task. As more recent 

examples,  the PRORETA 3 project (Bauer et al. 2012) and PROUD project demonstrators 

(Broggi et al. 2015) and Audi’s A7 concept car (Ulbrich and Maurer 2015) all adopted similar 

layered architectures. 
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Table 3.1 List of the vehicles in DARPA Urban Challenge with tri-layered planning architecture 

Vehicles Strategical level Tactical level Operational level 

Boss 
(Urmson et al. 2009) Mission planning Behavior executive 

(FSM*) Motion planning 

Junior 
(Montemerlo et al. 2009) Global path planner FSM Road navigator 

Odin 
(Reinholtz et al. 2009) Route planner Driving behaviors 

(DAMN**) Motion planner 

Skynet 
(Miller et al. 2009) Route planning Tactical planner 

(State-based reasoning) Path generation 

AnnieWAY 
(Kammel et al. 2009) Mission planning Maneuver planning 

(FSM) Collision avoidance 

Knight Rider 
(Patz et al. 2009) Mission planning Core AI 

(FSM) Path planner 

*FSM: finite state machine; **DAMN: Distributed Architecture for Mobile Navigation 

The control subsystem which controls vehicle actuators belongs to the operational level by its 

nature, thus we incorporate it into the lowest layer in the tri-layered architecture shared by the 

above-cited autonomous vehicles. This reorganized functional architecture with a unified name 

convention is illustrated in Fig. 3.1. Note that the interface with the perception and situation 

assessment subsystem is also partitioned into three abstraction levels to highlight the main 

information on the external environment that the function at each layer requires. 

 

Figure 3.1 A typical functional architecture for AD systems adapted from the architectures cited in Tab. 3.1 (solid-

border blocks for functions, while dash-border blocks for interfaces) 
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Like in-car navigation systems, the function route planning at the strategical level plans a route 

to the destination according to certain criteria such as time-saving, energy economy and 

available time for using the AD mode. The planned route is split and the actual route segment 

is descended to maneuver planning at the tactical level.  

The function maneuver planning at the tactical level is responsible for generating maneuvers 

not only to follow the planned route from the strategical level but also to handle local situations, 

e.g., to overtake a slow vehicle or to yield at an interaction. The methods for maneuver planning 

used by the DARPA autonomous vehicles are indicated in parentheses in the column “Tactical 

level” of Tab. 3.1. They all follow the behavior-based paradigm originating in the field of 

robotics (Matarić and Michaud 2008). Behavior-based paradigm highlights the concept of 

“situated”10, i.e., behaviors emerge from the interactions between the cognitive agent and the 

environment. In this sense, which maneuver to perform by the AD system strongly depends on 

the current driving situation. Consequently, the situation awareness, i.e., the understanding of 

the external environment plays a crucial role for behavior-based systems. 

The approaches for maneuver planning in Tab. 3.1 can be broken down into two steps—

alternative generation and maneuver selection. Alternative generation is responsible for 

generating one or multiple maneuver alternatives to cope with the current situation. In practice, 

basic maneuvers are designed a priori considering the use cases to be addressed and the goal 

to be attained by each behavior (referred to as behavior synthesis, Matarić and Michaud 2008). 

These basic maneuvers can be organized according to different driving situations such as 

intersection, parking lot and lane driving. The second step aims to generate a maneuver among 

multiple alternatives. This decision-making process is formulated as the action-selection 

mechanism (Pirjanian 1999). There are basically two classes of approaches for action 

selection—arbitration which selects one from multiple options and command fusion which 

combines different alternatives. State transitions in a finite state machine are a kind of 

arbitration, whereas DAMN (Distributed Architecture for Mobile Navigation) voting 

(Reinholtz et al. 2009) and fuzzy sets (Naranjo et al. 2008) are typical command fusion 

techniques which have been applied in automated driving. 

The behavior-based paradigm has its inherent advantage for driver-vehicle cooperation, in that 

it emphasizes the role of the context. It is hence possible for both the driver and the automation 

                                                 
10 A similar hypothesis of “situated action” was proposed by Lucy Suchman (1987) to explain human acitivity and 

cognitive process. This hypothesis has influenced interactive system design and practices involved in cognitive 

ergonomics.  
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to share maneuver plans within a same context. This is consistent with the design guideline of 

maintaining a common frame of reference that we drew from the concept of human-machine 

cooperation in Chapter 2. However, behavior-based maneuver planning approaches have the 

limits in managing unforeseen situations and ensuring maneuver feasibility for the lower level 

(Chen et al. 2009). 

The driving task at the operational level is performed by two functions: motion planning and 

vehicle control. Motion planning is responsible for planning a trajectory or a path as a 

realization of a maneuver plan (usually as end vehicle poses or states) generated from the 

tactical level. A recent survey by Paden et al. (2016) reviewed motion planning algorithms for 

automated driving. Vehicle control function aims at controlling relevant vehicle actuators to 

track the reference trajectory while stabilizing the vehicle. Considering the complexity of 

vehicle dynamics, vehicle control is often separated into longitudinal and lateral dimensions. 

Various techniques based on the control theory are applied, covering from the simple PID 

control to advanced control techniques such as optimal, adaptive, predictive, fuzzy control. 

3.3 Proposition of a hierarchical cooperative control architecture (Guo 
et al. 2015) 
The above analysis demonstrates that planning and control functions for automated driving can 

be decomposed into the tri-level hierarchy of Michon’s model. Within this common hierarchy, 

we discuss how the human driver could cooperate with the system’s function at each level. 

Then we extend the planning and control architecture presented above to a new architecture 

with new functions added to realize the suggested cooperation at each level. 

3.3.1 Decomposition of driver-vehicle cooperation  
At the strategical level, the driving task is related to route planning. Possible cooperation forms 

can be inspired from the use of current in-car navigation systems. For example, the driver can 

select a preferred route before or during a trip. The system can also suggest new route 

alternatives to the driver during the trip, e.g., based on the front traffic information via vehicle 

to infrastructure communication. Driver-vehicle cooperation in route planning can be regarded 

as a form of arbitration on multiple route alternatives. In the tri-level hierarchy, route arbitration 

can also be influenced by the cooperation at lower levels. For instance, when the driver 

intervenes at the operational or tactical level to make the vehicle move towards a direction not 

planned by the system at a highway split, the system shall replan a route or ask the driver 

whether he wishes to change to anther destination. In addition, there are other “strategical” 
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issues in driver-vehicle cooperation at the highest level, e.g., transitions of system’s operating 

mode (manual driving mode, automated driving mode, etc.).  

At the tactical level, the driver and the system may have different maneuver plans to handle a 

situation. This interference in maneuver plans could be due to different value criteria of the 

driver and the system in their maneuver decision-making processes. In this hierarchy, two 

means of interaction can be exploited to manage this interference. The first one consists of 

offering the driver a mean to directly indicate his maneuver plan at the tactical level. With the 

second mean, the driver can directly control the vehicle at the operational level and the system 

infers and adapts to driver’s maneuver intention at the tactical level. No matter which mean, 

how to select a maneuver plan between that of the driver and that of the system can be 

formulated as a maneuver arbitration problem. 

At the operational level, the driver may interfere with the system regarding to vehicle’s relative 

positions to the road (e.g., lateral deviation to lane center) or to other vehicles (e.g., gap to a 

lead vehicle). Therefore, he may have needs to act on the vehicle control interface (pedals and 

steering wheel) to subtly control vehicle’s trajectory. Moreover, in some urgent situations, it 

may be more natural for a driver to directly react by turning steering wheel or pressing pedals. 

When the driver exerts control simultaneously with the AD system, how to determine the final 

control input can be formulated as a shared control problem (refer to Section 2.4.1).  

3.3.2 A functional hierarchical architecture for cooperative control 
At each level of the planning and control bloc in the system architecture (Fig. 3.1), we add a 

new function or adapt the original function to realize the cooperation forms proposed above. In 

this way, we derive a new architecture for planning and control function, which is referred to 

as hierarchical cooperative control architecture for AD systems, as shown in Fig. 3.2. The 

driver’s commands or control enter in the architecture via a proper HMI at each level. At the 

strategical level, the route arbitration module arbitrates a route based on possible route 

alternatives and the driver’s route choice and passes it to the tactical level. The tactical level 

cooperation takes place in the maneuver arbitration module. The arbitrated maneuver will be 

executed at the operational level. At the operational level, the cooperation takes the form of 

shared control. The control of the system and that of the driver together influence the vehicle’s 

behavior through the actuator layer. Without the driver’s intervention, the system’s own 

decision and control at each level are passed directly to its subordinate level, i.e., the system 

operates in the same way as in a classical planning and control architecture shown in Fig. 3.1. 
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This architecture offers a generic description of system functions and function interactions 

involved in driver-vehicle cooperation. The process of cooperation, i.e., how the AD system 

and the driver share the authority on each task is described by a cooperation principle. The next 

section will present the proposed cooperation principles. 

 

Figure 3.2 Architecture of the hierarchical cooperative control within an AD system (solid-border blocks for 

functions, while dash-border blocks for interfaces) 

3.4 Proposition of cooperation principles 
The cooperation in the route planning is not in the scope of this thesis. We propose cooperation 

principles for tactical and operational levels respectively. Each principle describes in which 

way system’s functions share the authority with the driver to manage the interference at this 

level. 

3.4.1 Principle for maneuver cooperation 
The central design issue at the tactical level is to manage the interference between the driver 

and the system on a maneuver plan. As discussed above, one possible cooperation method is to 

offer the driver a mean to indicate his maneuver plan, and the cooperation takes form of 

arbitration. Considering that the driver does not need to continuously monitor the environment 

and the system in the AD mode, the cooperation can be initiated by the system, i.e., the system 

invites the driver to participate into the cooperation. From a user’s perspective, showing 

system’s intended maneuver could be beneficial for the driver in terms of increasing his 

situation awareness. Based on these considerations, we intend to explore the “situated” nature 
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of the behavior-based paradigm used in system’s maneuver planning. When the AD system 

encounters a new situation, it generates feasible alternatives. Instead of arbitrating between 

these alternatives in a full autonomous manner, the system shows its intended maneuver as well 

as other alternatives (if there are) to the driver. The driver can select other plausible alternatives. 

Then the system adopts the driver’s selection as its maneuver plan. This principle for maneuver 

cooperation can be briefly stated as follows: 

The system shows its intended maneuver plan and plausible alternatives, while the driver can 

select an alternative if he is not satisfied with system’s plan.  

To implement this principle first requires the system to understand the current situation. 

Moreover, the system needs to predict situation’s evolution to present his intention and 

alternatives in advance, the driver can hence have sufficient time to give his choice. Both 

requirements highlight the role of “situation awareness” of the system which will be a focus in 

Chapter 4. 

3.4.2 Principle for control cooperation 
In the hierarchical cooperative control architecture, driver-vehicle cooperation at the 

operational level is formulated as a shared control problem. As introduced in Section 2.4.1, 

there are two classes of shared control schemes—blended shared control and haptic shared 

control. Haptic shared control has an appealing advantage of incorporating both control 

allocation and activity communication into a unified framework (Abbink, Mulder, and Boer 

2012). Moreover, haptic shared control can be implemented through a conventional actuator 

infrastructure, contrary to blended shared control which usually requires a costly by-wire 

system. For these two reasons, we adopted haptic shared control scheme in the cooperation 

design. 

Traditionally, shared control addresses the case where the human operator always remains in 

the control-loop and continuously interacts with the automation (Abbink, Mulder, and Boer 

2012). For AD applications where the driver for the most of time is not in the control-loop in 

the AD mode, we consider shared control as a mode similar as an override mode, i.e., the system 

adapts its control once the driver’s action is detected in the loop. The advantage of overriding 

is that the driver has the maximum of control freedom. Shared control, on the other hand, has 

the potential of reducing the driver’s workload and enhancing the driver’s performance 

especially in difficult tasks. We intend to propose a cooperation principle that draws advantages 

from both modes. This principle for control cooperation is stated as follows: 
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The driver can quickly and easily regain the control authority when he deems necessary or 

desirable; the system supports the driver if it detects the driver’s intention and renders the 

resistance if his action could undermine the safety.  

The first part of this principle aims to offer an override mode to the driver to meet potential user 

needs, e.g., to temporally correct vehicle trajectories or to adjust the vehicle’s speed with ease. 

The second part takes advantage of shared control scheme. Instead of suspending its control 

like in a classical override mode, the system actively shares the control authority in two aspects. 

In the first aspect, the system can assist the driver by predicting his maneuver intention. In this 

sense, the cooperation at the operational level triggers the cooperative activity at the tactical 

level. Thus, the driver could use traditional vehicle control interface as a maneuver command 

interface. Another aspect of shared control in this principle is that the system can exert the 

control to resist the driver if his action could cause a hazard on the driving safety. This resistance 

is essentially used to warn the driver of potential hazards, e.g., collision risk. This warning 

could be useful, especially considering that the driver’s situation awareness could be decreased 

in the AD mode, as suggested in several human factors studies (Blanco et al. 2015). Moreover, 

haptic feedback can be directly processed in the sensorimotor loop of a human, thus it is more 

efficient in terms of communication than symbolic representation which usually requires the 

driver’s further interpretation (Hoc, Young, and Blosseville 2009). The similar concepts 

inspired from the flight envelope control of the aviation domain (Billings 1997) have been 

implemented in the shared control for driving assistance systems in the work of Itoh and Inagaki 

(2014) and that of Erlien et al. (2016). Whilst the former work discussed a “hard protection” 

mode (the driver’s control can be overridden by the system via by-wire system) and a “soft 

protection” mode (haptic resistance) in a lane-changing collision avoidance scenario, the latter 

designed a by-wire active steering system that can override the driver’s control if the system 

predicts that the vehicle trajectory will violate a safety envelope of vehicle states. 

3.4.3 A brief discussion on the final authority issue 
The principle for maneuver cooperation deals with the shared authority on maneuver decision-

making. In this principle, the system still holds the full control authority. This implies that the 

alternative selected by the driver could be abandoned by the system at the control level in highly 

dynamic situations.  

At the operational level, the driver and the system shares the control authority. In contrast to 

maneuver cooperation, the driver’s control immediately influences the dynamics of the vehicle. 

In the proposed principle, the system can resist the driver to prevent potential danger. The driver 
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and the system may hence enter in conflict situations and a fundamental question needs to be 

answered: who has the final authority? 

The problem of the final authority perhaps is one of the most difficult in the human-automation 

interaction design. This question has already been raised in the field of aviation long before. 

Airbus and Boeing adopt different design philosophies regarding to this issue11. In the field of 

automobile driving, the environment is more dynamic than the flight environment and not all 

the human drivers are as skilful as well-trained pilots faced with the tasks they need to perform. 

In emergency situations, vehicle active safety systems such as ESC (electronic stability control) 

and AEBS (advanced emergency braking system) intervene automatically to avoid accidents 

(loss of stability or front collision). The driver cannot override these systems. However, the 

nature of these intervention systems is quite different with that of AD systems, because the 

former intervene only in close-accident scenarios (assuming that these situations are beyond 

the control of the driver, therefore it is not against the requirements of Vienna’s convention), 

while the latter continuously performs automatic control, or using the term proposed by SAE, 

on a sustained basis (SAE 2016). Under the current legal regulations, the driver has the final 

authority and can always override low-level driving automation systems which performs 

sustained automatic control, e.g., ACC. A level 3 AD system still relies on the driver as a fall-

back in case that it cannot handle the current situation. This implies that the driver still needs 

to guard the system under certain conditions. In this sense, it seems that the driver should have 

the final authority. However, the questions like how a level 3 AD system reacts to close-

accident situations or whether those intervention systems (AEBS) shall be a functionality of the 

AD system or they shall operate separately have not yet conclusive answers. If it is technically 

not yet ready to answer the final authority issue, human factors deliberation is also needed. 

Interested readers are referred to the works of Young, Stanton, and Harris (2007) and Flemisch 

et al. (2012) which discussed the final authority issue from the perspective of cognitive 

ergonomics. 

                                                 
11 The autopilot system in several series aircraft of Airbus incorporates a safe envelope as “hard” constraints which 

the driver cannot override. This means that the pilot can acquire the control authority limited within this envelope 

when the system is active, but the final authority is retained by the system. The pilot can exceed this envelope only 

by turning off portions of flight control. Boeing, on the other hand, gives the pilot the final authority in flight 

control. Boeing's system renders haptic feedback on the yoke to inform the pilot of the envelope limits, but the 

driver can always override the system by exerting more forces. (Billings 1997) 
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Given the complexity of this question, we make the following assumptions: the principle for 

control cooperation between the AD system and the driver is proposed for normal driving 

conditions, i.e., the resistance rendered by the system aims to alarm the driver and to prevent 

potential danger. Therefore, the driver can always override the system. In case of the immediate 

collision danger, we assume that a collision avoidance system like the system in (Brännström, 

Coelingh, and Sjöberg 2013) will intervene to avoid or mitigate the collision. 

3.5 Conclusion 
In this chapter, we identified a common hierarchy between a classical model of the driving task 

and a typical layered architecture of AD system. Based on this hierarchy, we proposed a form 

of cooperation at each level and elaborated a new hierarchical cooperative control architecture. 

At the tactical level, we proposed a principle that exploits the behavior-based paradigm to 

enable the cooperation on maneuver plans, while another principle at the operational level 

describes how the driver and the system share control authority in the haptic shared control 

scheme. The general architecture and cooperation principles are implemented in two use cases 

presented in Chapter 5 and 6 respectively. 

As we highlighted in Section 3.4.1, the “situation awareness” of AD system, i.e., the 

understanding of the current situation and the anticipation of future events, plays a pivotal role 

for the maneuver cooperation. The problem on the creation of the “situation awareness” will be 

addressed in the next Chapter. 
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4 VEHICLE SITUATION 
AWARENESS FOR DRIVER-
VEHICLE COOPERATION 

4.1 Introduction 
AD vehicles operate in a dynamic, partially observable, and sometimes hostile environment. 

Understanding such a difficult environment is crucial for an AD vehicle to generate safe and 

robust driving behaviors. As argued in Chapter 2 and 3, a shared situation representation aids 

the driver and the system to understand the goals and plans of each other during the cooperation. 

The problem of human’s awareness and understanding of what is happening in the vicinity is 

formulated as the problem of situation awareness (SA) in the field of human factors. Endsley 

defined SA as follows: 

Situation awareness is the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the projection 

of their status in the near future. (Endsley 1988) 

In this definition, she distinguished three levels of SA: Level 1 SA—perceiving critical features 

from in the environment, Level 2 SA—understanding the meaning of those features and Level 

3 SA—anticipating what events will happen in the near future. While the SA at each time instant 

can be considered as a “state of knowledge”, the process to create the situational awareness is 

called situation assessment. 
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The similar concept of situation assessment has also been applied in the sensor data processing 

in intelligent vehicles, e.g., Polychronopoulos et al. defined “situation and threat assessment” 

as:  

STA [Situation and Threat Assessment] establishes a view of activities, 

manoeuvres, locations and properties of moving and stationary obstacles and from 

it estimates what is happening or going to happen and the severity which events 

will occur. (Polychronopoulos et al. 2004) 

The analogy between the definition of Endsley and that of Polychronopoulos is obvious. Papp 

(2012, 61–80) directly borrowed the definition of Endsley to describe the equivalent 

functionality of intelligent vehicles. In an AD system, the perception module is responsible for 

creating Level 1 SA through extracting the features through raw sensor data and tracking 

objects; the creation of Level 2 SA corresponds to the creation of an internal representation as 

the system understands the external world: the creation of Level 3 SA is equivalent to the 

prediction of futures states of the dynamic objects in this representation. 

In this Chapter, we deal with Level 2 and 3 SA of AD systems which are needed by the planning 

and control functions involved in driver-vehicle cooperation. Considering the complexity of 

situation understanding and trajectory prediction, we simplify these two problems based on the 

use cases treated in this thesis. The problem of creating SA for the AD system in this chapter is 

hence formulated as developing a situation assessment function including the following two 

modules: 

1) Scene representation (Section 4.3): it is responsible for integrating independently 

perceived features into an associative context. It facilitates the system to interpret 

sensory data and to further analyse the situation. It corresponds to Level 2 SA. 

2) Trajectory prediction (Section 4.4): the prediction of the scene evolution (Level 3 SA) 

is simplified as the prediction of the trajectory for a target vehicle. The predicted 

trajectory is used by the maneuver planning function in Chapter 5. 

Fig. 4.1 shows the internal structure of situation assessment and its relations with the 

cooperative control frameworks developed in Chapter 5 and 6. 
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Figure 4.1 The framework of situation assessment  

4.2 Assumptions on the perception function 
The environment perception (Level 1 SA) is not in the scope of this thesis, therefore the 

following assumptions are made on system’s perception function. 

It is assumed that the AD vehicle contains a sensor system that has a coverage with 150m in 

front and 50m behind. In the lateral dimension, we assume that all the lanes in the carriageway 

of the AD vehicle can be covered. This detection zone illustrated in Fig. 4.2 can be achieved by 

combining different types of sensors like radar, Lidar, and camera. 

 

Figure 4.2 Assumed sensor coverage (constrained by highway bordure)  

It is further assumed that a sensor data fusion layer is available. The output of this fusion layer 

is a list of the detected traffic vehicles. The state vector 𝐱(𝑖) of a traffic vehicle i is defined as  

 𝐱(𝑖) = [𝑥 𝑦 𝜓 𝑣𝑥 𝑎𝑥 �̇� ]T, (4.1) 

where (𝑥, 𝑦, 𝜓) is the vehicle pose in a fixed earth frame Λ𝐸  , 𝑣𝑥 and 𝑎𝑥 are longitudinal velocity 

and acceleration in the vehicle-fixed frame Λ𝑉, and �̇� yaw rate (see Fig. 4.3). The uncertainty 

of the traffic vehicle states is considered in the trajectory prediction. 
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Figure 4.3 Simplified bicycle model for vehicle tracking  

Finally, it is assumed that a localization system and vehicle motion sensors (e.g., odometer, 

velocity encoder, and inertial measurement unit (IMU)) provide the state vector of the ego 

vehicle12 𝐱𝑒𝑔𝑜 which is defined as 

 𝐱𝑒𝑔𝑜 = [𝑥 𝑦 𝜓 𝑣𝑥 𝑣𝑦 𝑎𝑥 𝑎𝑦 �̇�]
T

, (4.2) 

with 𝑣𝑦  and 𝑎𝑦  for lateral velocity and acceleration in the vehicle-fixed frame of the ego 

vehicle. 

4.3 Highway driving scene representation 

4.3.1 Principles of scene representation 
A low-level scene representation focuses on the locations of detected objects and the geometric 

structure of the environment. It primarily consists of metric data. A typical example is the map-

based representation which can be considered as the result of the mapping from the 

measurement space (sensor measurements) to the state space of the objects in the environment 

(Thrun, Burgard, and Fox 2005, 123–24). There are principally two ways of indexing the 

objects in a map, known as feature-based and location-based. In a feature-based map, each 

element of the map specifies the properties and location of one object, whereas the index of 

each element in a location-based map corresponds to a location and the value is the property of 

that specific coordinate. Fig. 4.4 shows two examples of these two kinds of maps. 

                                                 
12 In this report, we use the term “ego vehicle” when we need to take an ego-centric perspective, e.g., when we 

mention the states and parameters of the vehicle which is equipped with the system of our interest. 
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Figure 4.4 Two examples of map-based representation for intelligent vehicles. Left: a feature-based map 

specifying different features (the ego vehicle (green point), tracked traffic vehicles (blue rectangles) and road edge 

(solid lines)), extracted from (Lundquist, Schön, and Gustafsson 2012, 365–96); Right: a location-based map 

(occupancy-grid map) in which each coordinate is associated with the probability of occupancy, extracted from 

(Laugier et al. 2011). 

A high-level scene representation handles the modelling of the driving context so that the 

system can make high-level decisions (in a sense of reasoning). It contains much richer 

information than a low-level scene representation. For example, Ulbrich et al. (2015) defined 

the components of a scene as illustrated in Fig. 4.5. The dynamic elements entail the states and 

attributes of dynamic objects in a scene (e.g., traffic vehicles and pedestrians). The scenery 

subsumes all geo-spatially stationary aspects of the scene, essentially the information on road 

network, e.g., topological information, lanes and lane markings. Digital maps constitute a 

solution for the representation of scenery. They store a priori information on the environments 

and help the AD system acquire the contextual information on a real driving situation (Ibañez-

Guzmán et al. 2012, 1281). Fig. 4.6 shows an example to illustrate the importance of the 

knowledge on road network for understanding the situation. If the AD vehicle assesses the 

situation merely relying on the states of the red vehicle, e.g., relative positions and velocity, 

scene (a) and (b) are the same. However, if the AD system knows that the lane of the red vehicle 

will merge, it can be aware of the higher criticality of scene (a). A self-representation primarily 

contains the states and attributes of the ego vehicle. Finally, the scene representation is 

completed by a semantic representation layer which provides semantic descriptions for the 

entities on the scene, e.g., object classes and relationships among entities. Semantic 

representation is a formalism of knowledge representation which enables the system to infer 
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new knowledge (Sowa 1999). A common method to represent semantic information is ontology 

(Nardi and Brachman 2003, 16–20). 

 

Figure 4.5 Components of a scene defined by Ulbrich et al. (2015) 

Examples of formalized models used for scene representation consist of the “world model” in 

the 4D/RCS architecture for unmanned vehicle systems (Albus et al. 2002) and the “Local 

Dynamic Map” in the project SAFESPOT (Papp, Brown, and Bartels 2008) which was 

constructed through object oriented modelling approach. 

 

Figure 4.6 Illustration of two highway driving scenes sharing the same actual configuration 

Constructing a formal model for scene representation is a very challenging task, because it 

requires a carefully designed data structure and complex processes to maintain and update the 

heterogenous data from different sources. Here we aim to design a simplified model which can 

provide sufficient information for planning and control functions to handle situations in our 

defined use cases. In this model, we address the following components of scene representation: 

 Dynamic entities: we represent vehicle states in the Frenet frame to decouple 

longitudinal and lateral motions; 

 Scenery: we use a digital map to provide necessary road and lane information for 

coordinate transformation, planning and control functions; 

 Semantic representation: we propose a qualitative representation to describe the spatial 

relations of traffic vehicles to the ego vehicle.   
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4.3.2 Map use in scene representation 
High-precision digital maps with high-precision localization solutions have already been 

exploited for vehicle guidance and control in automated vehicles (Ardelt, Coester, and 

Kaempchen 2012; Ziegler et al. 2014). Given that the designed cooperative systems in this 

thesis are implemented in driving simulation environment, we simulate a digital map based on 

RoadXML, a road network format for driving simulation use (Chaplier et al. 2012). This map 

mainly provides the following information: 

 Road geometries for coordinate transformation and for vehicle lateral control (Chapter 6), 

 Lane information for the lane-assignment of the detected vehicles, 

 Road connectivity information (highway entry) for maneuver planning (Chapter 5) 

RoadXML contains much richer information than that is needed for our use. In order to speed 

up data processing, we propose a simplified format for highway road network. Fig. 4.7 shows 

the hierarchy of the proposed map format. In this format, a highway network is composed of 

tracks. Each track corresponds to a mainline roadway or a ramp (with different identifiers). A 

track has two attributes—road geometry and lane segment. The road geometry of a track is 

defined by curves and shape points. The curves of a track are a series of straight lines, circle 

arcs, and clothoids which obey the same curvilinear equations, with null, constant, and linearly 

variable curvatures respectively. As clothoids cannot be evaluated in closed form, they are pre-

sampled and the sampled points are stored in shape points of a track. The shape points of a 

clothoid will be used in the coordinate transformation in Section 4.3.3. A lane segment contains 

the information on lane numbers, lane widths, and the types of lane marks.  

 

Figure 4.7 Hierarchy of the proposed map format for highway road network 

The connectivity of the tracks follows the typology of a highway road network, i.e., ramps join 

a highway mainline via highway entrance terminals (also called highway entry) or exit 

terminals (AASHTO 2010). Fig. 4.8 illustrates a highway entry pattern. The track1 and track 2 
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are linked by the last node of track2 denoted by E1 which signifies the first point to enter the 

mainline. The ID of this node is associated with the curve in track1 which the track2 joins. By 

querying the next mainline curve that is connected with a ramp (associated with a ramp’s end 

node), the AD system is able to calculate the distance to the next entry or exit. 

 

Figure 4.8 A highway entry section to illustrate the connectivity of a mainline track and a ramp track 

This format is inherited from RoadXML, i.e., each attribute in this format has its equivalence 

in RoadXML. Therefore, it is possible to utilize a XML parser to extract features from a map 

of RoadXML. One result is shown in Fig. 4.9. 

We implemented a “point-to-curve” map-matching algorithm in the literature to localize the 

AD vehicle in the map13. Once the AD vehicle is matched with a curve, a local map within the 

same ranges defined by the coverage of sensors is extracted. The state transformations for the 

detected traffic vehicles are then performed within this local map.  

 

Figure 4.9 Visualization of a same map in the proposed map format (a) and RoadXML (b) 

                                                 
13 This algorithm is described and evaluated by White, Bernstein, and Kornhauser (2000). It corresponds to the 

Algorithm 3 in their paper. The main principle of this algorithm is to match the AD vehicle’s pose to the closest 

curve by searching the entire network on the first run of the algorithm. For the following runs, the algorithm only 

queries those arcs which connect the current curve.  

(a) (b) 
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4.3.3 State transformation into the Frenet frame 
The Frenet frame (or Frenet-Serret Frame) is a moving reference frame which is originally used 

for curve analysis (Willmore 2012, 14). In ℝ2, the basis of a Frenet frame is composed of a unit 

tangent vector 𝐭(𝑠) and a unit normal vector 𝐧(𝑠) of a point of a curve 𝐫(𝑠) parameterized by 

its arc length 𝑠, as shown in Fig. 10. The curvature 𝑘(𝑠) of the 𝐫(𝑠) is defined by 

 𝑘(𝑠) =
𝑑𝜓(𝑠)

𝑑𝑠
,  (4.3) 

where 𝜓(𝑠) is the angle between the tangent and the x-axis. 𝑘(𝑠) is a key factor in the Frenet 

frame, because it characterizes the relation between 𝐭(𝑠) and 𝐧(𝑠) through the famous formulas 

of Frenet 

 
𝑑𝐭

𝑑𝑠
= 𝑘𝐧

𝑑𝐧

𝑑𝑠
= −𝑘𝐭

 . (4.4) 

The coordinates of a point in a Frenet frame are given by (𝑠, 𝑑) with s for arc length and 𝑑 the 

offset in the direction of 𝐧(𝑠). We use 𝐱2𝐷 to denote a 2D vector for the coordinates of a point 

in the Cartesian frame. The relation between the Cartesian coordinates (𝑥, 𝑦) and the Frenet 

coordinates (𝑠, 𝑑) is described by  

 𝐱2𝐷(𝑠, 𝑑) = 𝐫(𝑠) + 𝑑𝐧(𝑠).  (4.5) 

 

Figure 4.10 The Frenet frame on a curve 

In the application for vehicle trajectory control, a Frenet frame is attached to a road curve, e.g., 

a lane centreline. In this case, the Frenet frame is called road (fixed) coordinate system. For 

example, Λ𝑅𝐷 in Fig. 4.11 is a road coordinate system. We define the state vector of a detected 

object in Λ𝑅𝐷 as 

 𝐬 = [𝑠 �̇� �̈�  𝑑 �̇� �̈�]
T. (4.6) 
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The transformation from 𝐱 to 𝐬 is given in Appendix 1. By representing vehicle states in the 

Frenet frame, the movement of a vehicle is decoupled into a tangent component [𝑠, �̇�, �̈�] and a 

normal component [𝑑, �̇�, �̈�]. This decoupling facilitates vehicle motion planning and control, 

which is a main reason for the popularity of the Frenet frame in vehicle planning and control 

applications. 

The origin of the Frenet frame 𝑂(𝑠𝑒𝑔𝑜) takes the projected ego vehicle’s position on the road 

curve. In this way, 𝑠(𝑖) of an object i is directly a relative longitudinal position regarding to the 

ego vehicle. Note that the position of 𝑂(𝑠𝑒𝑔𝑜) is obtained during the map matching with an 

updating frequency of 20Hz. 

4.3.4 Qualitative mapping  
Qualitative mapping aims to generate a concise qualitative representation of the traffic scene. 

Spatial representation uses discrete quantity spaces (they can be understood as discrete classes, 

e.g., front, back, left, right and close, far) to describe orientation and distance information of an 

object in a 2D space (Clementini, Felice, and Hernández 1997). We propose a spatial 

representation to describe the relative positions of traffic vehicles with respect to the ego 

vehicle. The final representation form is similar with the matrix-form for the organization of 

the detected vehicles proposed by Bartels et al. (2009).  

 

Figure 4.11 Coordinates of on-road vehicles in a road coordinate system 

Fig. 4.12 illustrates the proposed spatial representation. This representation adopts an 

egocentric point of view and uses Λ𝑅𝐷 as the frame of reference. It contains 16 position classes 

which form a 4×4 matrix. Lateral relations (in the direction of d-axis) are partitioned by lanes. 

Therefore, the qualitative mapping in the lateral dimension is equivalent to lane assignment. 
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Since the d coordinates of lane boundaries can be extracted from the attribute “lane segment” 

in the digital map, the lane assignment process is trivial. Note that we set an on-ramp lane class 

to map the merging vehicles so that the AD vehicle can be aware of the highway merging 

context. 

 

Figure 4.12 Highway qualitative spatial representation 

Longitudinal relations are organized into four classes {leader’s leader, leader, same level, 

follower}. Qualitative mapping of vehicles in the longitudinal dimension is based ordering their 

s coordinates. A same level vehicle is discriminated from a leader and follower if its s 

coordinate falls in the interval [-5, 5] m.  

By mapping tracked vehicles into the cases of this matrix, the AD system can focus on different 

vehicles in decision-making or control process. For instance, if the system intends to perform a 

lane change maneuver, it can directly query same level and follower cases in the target adjacent 

lane to check the feasibility of a lane change. When the AD vehicle is passing a highway entry, 

it is of interest for the AD system to query the cases on ramp to get the information on those 

“on-ramp vehicles” which may merge in front. 

4.4 Adaptive vehicle trajectory prediction (Guo et al. 2016) 

4.4.1 Definition of the trajectory prediction 
Predicting how the current situation evolves in the future allows the AD vehicle to reason and 

act in advance. It is beneficial for the driving safety (e.g., collision prediction) and the riding 

comfort (e.g., soft breaking in advance compared with the last moment hard breaking). In a 

dynamic environment, the prediction task is to compute future states of dynamic objects based 
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on their current states. The predicted future states are called trajectory. In the deterministic 

framework, a predicted trajectory can be expressed by 

 𝐗 = {𝐱(𝑡)|𝑡 ∈ 𝒯}, (4.7) 

where 𝒯 is the prediction horizon 

 𝒯 = [𝑡 , 𝑡𝐻], (4.8) 

with 𝑡  for the epoch time at which the state is defined14 and 𝑡𝐻  for the end time. In the 

probabilistic framework, since exact knowledge of object’s state is not available, 𝐱(𝑡)  is 

replaced by its posterior distribution  (𝐱(𝑡)|𝐱(𝑡 )). Trajectory prediction can also be made in 

the discrete framework. In this case, 𝒯 is discretized by 𝑁 time instants and the state at a time 

instant 𝑘 ∈ [0,𝑁] is predicted. 

4.4.2 Related works 
Trajectory prediction relies on a motion model that represents the motion of a dynamic object. 

Based on the assumption on model’s structure and parameters, trajectory prediction approaches 

can be grouped in two categories: parametric and nonparametric approaches (Lefèvre et al. 

2014).  

4.4.2.1 Parametric approaches 

Parametric approaches use parametric motion models, i.e., the models depend on their internal 

parameters. Parametric motion models are usually defined by a set of linear or nonlinear first-

order differential state equations in the form of 

 �̇�(𝑡) = 𝑓(𝐱, 𝐮,𝐰, 𝑡),   𝑡 ∈ 𝒯,  (4.9) 

where 𝐮 is control input, 𝐰 is process noise characterising the uncertainty on the model. Once 

the model is determined, any state in 𝒯 can be obtained by analytical or numerical integration. 

Table 4.1 lists different typical parametric motion models used for vehicle trajectory prediction. 

  

                                                 
14 In practice, the current time is often adopted as the epoch time 𝑡 .  
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Table 4.1 Typical motion models used for vehicle trajectory prediction 

Category Model Description Use & critics 

Kinematic 

Curvilinear motion 

model  

(Schubert, Richter, and 

Wanielik 2008) 

The vehicle is simplified as a 

mass point, hence its trajectories 

can be represented by curves, 

e.g., segment, circular arc, spiral. 

Examples are constant velocity, 

constant acceleration, constant 

turn rate and acceleration 

(CTRA) models. A survey of this 

kind of models was done by 

Schubert et al. (2008) . 

Curvilinear motion models are 

simple, however, the accuracy 

holds only for short temporal 

horizons ( 𝒯 < 1𝑠) . Therefore, 

they are popular for the filtering 

(one-step prediction) in vehicle 

tracking applications. 

Kinematic bicycle 

model  

(Luca, Oriolo, and 

Samson 1998; Kuwata 

et al. 2008) 

Kinematic bicycle model 

simplifies the vehicle as a two-

wheel bicycle. The geometric 

relationship between the front 

wheel steering angle 𝛿𝑓  is 

assumed to follow the 

Ackermann steering law: 𝛿𝑓 =

𝑙

𝑅
=

𝑙�̇�

𝑣𝑥
 (Mitschke and 

Wallentowitz 2004, 566). 

This model arises from the path 

tracking problem for wheeled 

robots. It can be used for the so-

called closed-loop prediction, i.e., 

formulating the prediction as a 

path tracking control problem. 

Thus, a steering controller needs to 

be integrated in the prediction 

process. The reference path can be 

the road centerline. Nevertheless, 

the closed-loop model is nonlinear 

and its stability is not always 

guaranteed. 

Dynamic 

Dynamic bicycle model  

(Huang and Tan 2006; 

Brannstrom, Coelingh, 

and Sjoberg 2010) 

Dynamic models take into 

account the tire forces that affect 

the motion of a vehicle. For 

vehicle kinematics, dynamic 

bicycle model considers the 

lateral slip at the center of 

gravity caused by lateral tire 

forces.  

Considering external forces on the 

vehicle, dynamic bicycle model 

captures vehicle dynamics much 

better than the two models above. 

However, the internal vehicle 

parameters (e.g., mass, tire 

stiffness, road friction) are not 

observable by exteroceptive 

sensors. Thus, it is often used to 

predict trajectory of the ego 

vehicle.  
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In the probabilistic framework, it is necessary to consider the effect of the uncertainty over the 

prediction horizon. This problem is called uncertainty propagation. The following three 

methods for uncertainty propagation can be found in the literature: 

 Covariance updating: in the Kalman filter, uncertainty is modelled by the covariance of 

the predicted state under the Gaussian assumption. It can be computed by running 

recursively the prediction step in the Kalman filter during the entire prediction horizon: 

  (𝑘 + 1) = 𝐹(𝑘) (𝑘)𝐹(𝑘)′ + 𝑄(𝑘)   𝑘 = 0,… , 𝑁 − 1, (4.10) 

where  (𝑘), 𝐹(𝑘), 𝑄(𝑘) denote state prediction covariance, state transition matrix and 

process noise covariance (Bar-Shalom, Li, and Kirubarajan 2001). 

 Monte-Carlo simulation: it is a sampling based approach. The main idea is to create 

initial state samples randomly according to specified probabilistic distributions. The 

corresponding trajectories are then generated by numerically simulating the model. 

Finally, the trajectories satisfying the predefined criterion will be counted and the 

probability can be derived. In principle, Monte-Carlo simulation technique can only 

approximate the intended probability and its precision depends on the sample size.   

 Stochastic reachable set representation: this method arises from the domain of 

reachability analysis (Althoff 2010). Instead of generating sampled trajectories in a 

finite number of simulation runs, this method intends to approximate all possible 

trajectories by stochastic reachable sets. Reachable sets, in a geometric sense, can be 

represented by polytopes enclosing all the possible states. 

4.4.2.2 Nonparametric approach 

Nonparametric methods treat the driver (intention and controls) and the vehicle (dynamics) as 

a whole system and do not fix the model structure and parameters in advance. Instead, they rely 

on motion databases to build their prediction systems.  

Lefèvre, Vasquez and Laugier (2014) summarized two groups of nonparametric approach. The 

first group is prototype trajectories based. The general idea is to represent maneuvers by so-

called prototype trajectories that need to be learned from database. Two formalisms for 

prototype trajectories exist: cluster and Gaussian process. Once the prototype trajectories 

obtained offline, the prediction can be performed by matching a part of historical trajectories 

of the target to them online. The second group is maneuver intention estimation based. To 

enhance the accuracy of trajectory matching, this group of methods firstly estimates the current 

maneuver being executed then matches the historical trajectory to the prototype trajectories 

corresponding to the estimated maneuver. The maneuver estimation problem is often 
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formulated as a probabilistic inference problem, in which the maneuver transition mechanism 

is modelled by hidden Markov model or dynamic Bayesian network. The transition probabilities 

between the different maneuvers need to be learned from motion databases.  

Nonparametric approach saves efforts in modelling and assumption making. But it heavily 

relies on the training data specific to driving scenarios. Second, the accuracy of probabilistic 

inference based on hidden Markov model or dynamic Bayesian network depends on the number 

of states (maneuver) and the number of features (e.g., velocity, position, context information) 

incorporated in the model. However, the computation complexity is exponential in these 

numbers, thus imposing a challenge for real-time applications. 

4.4.3 Problem of long-term trajectory prediction  
A main challenge for trajectory prediction is to extend the prediction horizon while guarantee 

a prediction accuracy. This problematic is addressed in the framework of long-term trajectory 

prediction. “Long-term” here stands for a horizon around 3-5 seconds. This horizon allows an 

AD vehicle with the speed of 130km/h to forecast a potential collision at 180m far in front. 

To improve the prediction accuracy, it is of importance to examine sources of prediction error. 

According to Huang and Tan (2006), two types of error cause prediction deviation: 

 Type-A prediction error: the initial-condition error, i.e., the error in state estimates; the 

inaccuracy of the motion model; measurement noises; 

 Type-B prediction error: the error due to assumptions on control input. 

While Type-A error is often handled in the phase of state estimation, Type-B error is the target 

error to be reduced in the framework of long-term prediction. Trajectory prediction methods in 

the literature often make constant input assumptions, e.g., the constant velocity, constant 

acceleration and CTRA models in the Table 4.1. Since the driver-vehicle system can be 

characterized as a low frequency system15, constant input assumptions hold for short prediction 

horizons (less than 1s). Nevertheless, the vehicle’s motion pattern is not uniform under certain 

circumstances, e.g., when the driver is carrying out a maneuver like lane changing or in highly 

dynamic situations like stop & go. Thus, the prediction accuracy of these models is quite poor 

in long-term horizon. 

                                                 
15 According to Mitschke and Wallentowitz (2004, 657,673), the crossover frequency 𝑤𝑐

2∗𝜋
 is about 0.3 – 0.5 Hz for 

the lateral dynamics and about 0.06 – 0.12 Hz for the longitudinal ones under the nominal operating conditions. 
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One method to reduce the Type-B error is to adapt the motion model’s structure or parameters 

online. Pandey and Dalbah (2014) used a multiple model approach in which each model 

characterizes the dynamics in a sub-stage during a turning maneuver. The model transition 

logic, however, is determined by heuristics. Houenou et al. (2013) adapted the parameters of a 

quintic polynomial model to a recognized lateral maneuver (lane change or lane keeping). The 

parameters are determined by minimizing a predefined cost function. Nevertheless, the weights 

on different costs remain arbitrary. 

Another method uses driver models to generate control inputs instead of making constant input 

assumption. Lefèvre (2014) employed two driver models originally developed for the traffic 

simulation applications to model driver’s vehicle-following maneuver. Fu et al. (2014) used a 

proportional controller for cruising maneuver and a classical car-following model for following 

maneuver. In the lateral dimension, the human driver’s lane keeping maneuver is modelled by 

a state feedback controller plus a feedforward term compensating for road curvatures in the 

work of Kim and Yi (2014). The prediction accuracy can be enhanced by integrating driver’s 

model, because this method captures the human’s adaptability to the environment (e.g., lead 

vehicle, road curvatures). A difficulty to implement a driver model lies on the determination of 

model’s parameters. 

4.4.4 Contribution to the long-term longitudinal trajectory prediction 

4.4.4.1 Motivation 

Longer prediction horizon could be beneficial for the AD system in terms of more foresighted 

reactions. The predicted trajectories of traffic vehicles can be used by the maneuver planning 

function at the tactical level, e.g., they can serve to assess the risk of each maneuver alternative. 

To address the problematic of long-term trajectory prediction, we adopt the adaptive prediction 

framework proposed by Houenou et al. (2013). This framework blends short-term predicted 

trajectory based on CTRA model and long-term trajectory based on maneuver recognition. Here 

our interest is the long-term prediction part. In this part, Houenou et al. decoupled the 

longitudinal and lateral predictions in the Frenet frame. In each dimension, a quintic polynomial 

motion model is used. In the lateral dimension, the proposed apporach firstly recognizes the 

current maneuver of the target vehicle. Then the parameters of the motion model are adapted 

online to match the recognized maneuver. 

While Houenou et al. applied this adaptive approach for lateral trajectory prediction, they kept 

the constant acceleration assumption for the longitudinal prediction part. Nevertheless, this 

assumption is no more valid in dynamic situations in which vehicles maneuver with strongly 
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varying acceleration, like force-in merging and stop & go in traffic jams. Given that these 

situations often occur in dense traffic on metropolitan beltways, an adaptive longitudinal 

trajectory prediction approach contributes to the robustness of the whole trajectory prediction 

for automated highway driving application. Therefore, we aim to propose a longitudinal 

trajectory prediction method that can adapt itself to dynamic driving maneuvers. Such a method, 

as a counterpart of the lateral trajectory prediction method proposed by Houenou et al. enriches 

the long-term trajectory prediction in Frenet frame. 

4.4.4.2 Framework overview 

 

Figure 4.13 Architecture of the adaptive longitudinal trajectory prediction 

Fig. 4.13 illustrates the architecture of the adaptive longitudinal trajectory prediction 

framework. The scene representation module provides the initial states of a target vehicle. The 

longitudinal maneuver recognition is formulated as a binary maneuver detection problem. If no 

maneuver detection is declared, the constant acceleration model is used to generate longitudinal 

trajectory. If a maneuver is detected, the longitudinal jerk of the maneuvering vehicle is 

estimated. The estimated jerk and context information are integrated in a quintic polynomial 

model used for trajectory generation. The predicted longitudinal trajectory with the lateral 

trajectory will be used to evaluate maneuver alternatives of the AD vehicle in the maneuver 

planning function. 

4.4.4.3 Maneuver detection 

The method for maneuver detection takes place in the domain of maneuvering target tracking 

(Li and Jilkov 2002). The fundamental question for the maneuver detection is: “Is the target 

maneuvering?” Answering this question is a decision problem, which can be formulated as a 

hypothesis testing problem 

H0: The target is not maneuvering; H1: The target is maneuvering. 
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When applied for longitudinal maneuver detection in the context of highway driving, H0 

assumes the constant acceleration or slight acceleration and H1 for strong acceleration 

variation. 

Under H0, longitudinal dynamics of a nonmaneuvering vehicle are represented by the constant 

acceleration model 

 𝐱(𝑘 + 1) = 𝐹𝐱(𝑘) + 𝐰(𝑘), 𝑘 = 0,1,2… , (4.11) 

where 𝐱(𝑘) = [ �̇�(𝑘) �̈�(𝑘) ]𝑇 16 and 𝐹 = [1 𝑇
0 1

] with T denoting time step size. 𝐰(𝑘) is the 

discrete time process white noise whose covariance matrix is 

 𝑄 = [

 

 
𝑇 

 

2
𝑇2

 

2
𝑇2 1

] �̃�  (4.12) 

where a small power spectral density �̃� characterizes small jerks for a nonmaneuvering target. 

The measurement model is 

 𝐳(𝑘) = 𝐡(𝐱(𝑘)) + 𝐯(𝑘) ,  (4.13) 

where 𝐳(𝑘) = [𝑣𝑥 𝑎𝑥]𝑇  is the measurement vector and 𝐯(𝑘)  is the measurement noise 

assumed to be white. The function 𝐡(𝐱(𝑘))  is nonlinear corresponding to the state 

transformation from the Frenet frame to the Cartesian frame (refer to Appendix 1), which is 

expressed as 

 𝐡(𝐱) = [
�̇�

𝑐𝑜𝑠Δ𝜓

�̈�

𝑐𝑜𝑠Δ𝜓
+
tanΔ𝜓�̇��̇�

cosΔ𝜓
−
(2𝜅tanΔ𝜓+𝑐𝑚)�̇�

2

cosΔ𝜓
]
T

, (4.14) 

where Δ𝜓 is the deviation of the target’s yaw angle from that of the road center, 𝜅 is the road 

curvature and 𝑐𝑚 is curvature changing rate. (4.11) and (4.13) form an extended Kalman filter 

ℱ based on the constant acceleration assumption. Note that at each measurement update step, 

(4.14) is linearized at the predicted state �̅� following the first order Taylor expansion, i.e., 

 𝐡(𝐱) = 𝐡(�̅�) + 𝐻(�̅�)(𝐱 − �̅�), (4.15) 

where 𝐻(�̅�) = 𝜕𝐡

𝜕𝐱
|
𝐱=�̅�

 is the Jacobian of 𝐡(�̅�). 

                                                 
16 The reason for not considering the curvilinear abscissa s(k) as a system state is that the origin of the Frenet frame 

moves with the center of gravity of the AD vehicle. Thus s(k) is decided by both the dynamics of the AD vehicle 

and the target vehicle . 
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A maneuver that represents a change of motion pattern manifests itself as a large measurement 

innovation 𝛎(𝑘) = 𝐳(𝑘) − 𝐡(�̅�). The detection of such a jump in the innovation process can be 

done via statistical analysis. One procedure is based on the normalized innovation squared: 

 𝜖𝑣 = 𝛎(𝑘)
𝑇𝑆(𝑘)− 𝛎(𝑘),  (4.16) 

where S(k) is covariance of 𝛎(𝑘). For more details on computing 𝛎(𝑘) and S(k), interested 

readers can refer to manuals on Kalman filter (Bar-Shalom, Li, and Kirubarajan 2001). 

Since the innovation sequence 𝛎(𝑘) is zero mean and white under linear-Gaussian assumption, 

𝜖𝑣 is 𝜒2 distributed with the degrees of freedom equal to the dimension of the measurement. In 

order to reduce the sample variability, the fading-memory sum of  𝜖𝑣 can be used in practice, 

which is defined by 

 𝜖𝑣
𝜌(𝑘) = 𝜌 𝜖𝑣

𝜌(𝑘 − 1) + 𝜖𝑣(𝑘),  (4.17) 

where 0 < 𝜌 < 1. The effective window length 𝑠𝜌 of the fading-memory sum can be obtained 

by 

 𝑠𝜌 = 1 + 𝜌 + 𝜌
2 +⋯ =

 

 −𝜌
 . (4.18) 

Note that 𝜖𝑣
𝜌(𝑘) , weighted sum of Gaussian variables, is not 𝜒2  distributed. By moment-

matching approximation, 𝜖𝑣
𝜌(𝑘)can be approximated as a scaled 𝜒2 distribution described by 

 𝜖𝑣
𝜌(𝑘) ∼

 

 +𝜌
𝜒𝑛𝜌
2  , (4.19) 

where the number of degrees of freedom is 

 𝑛𝜌 =
𝑛𝑧( +𝜌)

 −𝜌
  (4.20) 

with 𝑛𝑧 for the dimension of the measurement z(k).  

Given that 𝜖𝑣
𝜌(𝑘) is approximately 𝜒2 distributed under H0, the test of the hypothesis H0 is a 

𝜒2 test, i.e., H0 is rejected, if  

 𝜖𝑣
𝜌(𝑘) > 𝜆 =

 

 +𝜌
𝜒𝑛𝜌
2 (1 − 𝛼),  (4.21) 

where 𝛼 is the probability of false alarm. 

In summary, 𝜖𝑣
𝜌(𝑘) is a maneuver detector which declares a maneuver detection if (4.21) is 

true. The main advantage of 𝜒2 test based maneuver detector is its simplicity, because only 

innovations of a filter are needed to be monitored. Even if the detection 𝜆  can be chosen 

according to (4.21) to theoretically guarantee a limited false alarm probability (𝛼), it needs to 
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be tuned based on subjective evaluation of the results obtained from offline Monte Carlo 

simulation runs. 

4.4.4.4 Quintic polynomial model and jerk estimation 

When a target is on nonmaneuvering state, the constant acceleration model (4.20) is used for 

trajectory prediction, which is consistent with H0.  

When a maneuver detection is declared, trajectories of the target are predicted based on quintic 

(fifth order) polynomials. Having good characteristics such as time-continuous curvature and 

jerk-optimality 17 , quintic polynomials are widely applied for on-road vehicle trajectory 

prediction and planning (Werling et al. 2010; Lawitzky, Wollherr, and Buss 2012; Houenou et 

al. 2013). A quintic polynomial can be regarded as a realization of a maneuver that transfers 

the vehicle from an initial state to a target state. This target state can be interpreted as a goal to 

be achieved by a maneuver. In case of a lane changing maneuver, the target state can be the 

lateral position of the desired lane center. For a braking maneuver, it can be a desired velocity. 

Just as in the case of maneuver detection, the states used to determine polynomial parameters 

do not contain the curve abscissa s(t). The velocity profile is hence a quartic polynomial: 

 �̇�(𝑡) = 𝑐4𝑡
4 + 𝑐 𝑡

 + 𝑐2𝑡
2 + 𝑐 𝑡 + 𝑐   (4.22) 

We propose an analytical method to determine the coefficients in (4.22). Including the duration 

of the maneuver 𝑡 , there are six undetermined parameters [𝑐 , 𝑐 , … , 𝑐4, 𝑡 ]. The initial state 

vector is defined by [�̇�(0) �̈�(0) 𝑠 (0)]𝑇  and the end state vector is [�̇�(𝑡 ) 0 0]𝑇 . The 

motivations for using such initial and end states are stated as followed: 

 The initial jerk 𝑠 (0) as the initial tangent of acceleration curve depicts the tendency of 

the movement evolution. As shown in Fig. 4.14, the bigger the jerk’s absolute value is, 

the less time is needed to reach final steady state, nevertheless, the stronger the 

acceleration variation is. In this sense, the jerk describes the compromise between the 

comfort and the aggressivity of a maneuver. 

 The end state describes the goal of the maneuver. The value of the only freedom 

�̇�(𝑡 ) — final steady velocity — can be decided according to the driving context. For a 

merging vehicle, �̇�(𝑡 )  can be set to its leader vehicle’s velocity. For an on-ramp 

accelerating vehicle, its target velocity can be assumed to be the ramp speed limit. In 

the highway stop scenario, �̇�(𝑡 ) can be made zero. 

                                                 
17It can be proven that the time-integral of the square of jerk is convex (Takahashi et al. 1989). 
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Figure 4.14 A family of the acceleration curves with different initial jerks. 

Since no exteroceptive sensor can directly measure the jerk of the target vehicle, it needs to be 

estimated. We employ the input estimation approach to estimate the jerk of a maneuvering 

target (Bar-Shalom, Li, and Kirubarajan 2001, 428). The basic idea behind this input estimation 

approach is that large innovations arising in a filter can be compensated by a series of unknown 

inputs. If the supposed unknown input is assumed constant during a sliding window of 

measurements, it can be proved that the filter innovation is a linear measurement of input. Thus, 

the input can be estimated via linear least squares method from the historical innovations. 

In order to estimate the unknown input, the constant acceleration model (4.11) is augmented to 

 𝐱(𝑘 + 1) = 𝐹𝐱(𝑘) + 𝐺𝑢(𝑘) + 𝒘(𝑘),  (4.23) 

where input 𝑢(𝑘) = 𝑠 (𝑘)  and 𝐺 = [ 
2
𝑇2 𝑇]

𝑇

. In contrast to ℱ  assuming constant 

acceleration, (4.23) and (4.13) forms a novel filter ℱ∗ assuming a constant jerk input. If a 

maneuver is detected at time k, given the window size of fading-memory sum 𝑠, the maneuver 

onset time is hence 𝑘 − 𝑠. During the entire maneuvering range, i.e., as long as 𝜖𝑣
𝜌(𝑘) > 𝜆 

holds, the jerk is estimated within a sliding window with the same size of s via the following 

linear regression form: 

 𝐲 = Ψ𝑢 + 𝛜,  (4.24) 

where the “measurement” 𝐲 = [𝛎T(𝑘)… 𝛎T(𝑘 − 𝑠𝜌 + 1)]
𝑇

 is a stacked vector storing the 

innovations of the filter ℱ assuming constant acceleration, Ψ is a stacked matrix: 

 Ψ = [Ψ(𝑘)T…  Ψ(𝑘 − 𝑠𝜌 + 1)
T
]
𝑇

. (4.25) 

Ψ can be obtained through elementary manipulation of the filter ℱ∗. The “noise” 𝛜 is a stacked 

vector storing the innovations of the filter ℱ∗. Since constant input 𝑢 is considered non-random, 
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𝛜 is zero mean and white whose covariance matrix is a block-diagonal covariance matrix 𝑆 =

 iag[𝑆(𝑖)], where 𝑖 = 𝑘, 𝑘 − 1,… , 𝑘 − 𝑠𝜌 + 1, 𝑆(𝑖) is the covariance of 𝐯(𝑖). 

The input estimate can thus be obtained by solving (4.25) via least squares method. The estimate 

is given by: 

 �̂� = (ΨT𝑆− Ψ)− ΨT𝑆− 𝐲   (4.26) 

with the resulting covariance matrix 

 𝐿 = (ΨT𝑆− Ψ)− .  (4.27) 

With the estimated jerk 𝑠 (𝑘) and �̇�(𝑡 ) that can be inferred from the driving context, the initial 

states and the end states provide six equality constraints under which the six parameters can be 

uniquely determined.  

4.5 Implementation and experiments 

4.5.1 Demonstration of the scene representation 
The proposed concept of scene representation was implemented into a Simulink S-function 

(MathWorks 2016) via C-programming. The input interface consists of the ego vehicle state 

vector (4.2) and a list of tracks containing the state vectors of the tracked traffic vehicles (4.3). 

The output interface contains an array of vectors corresponding the matrix in Fig. 4.12. Each 

vector in this array corresponds to a state vector of the traffic vehicle in the Frenet Frame (4.6). 

In addition, a vector holding map-matching information is pre-allocated in the output interface. 

The contents in this vector are flexible according to the downstream functions. 

The S-function “scene representation” was co-simulated with SCANeR Studio (OKTAL 2015), 

a commercial driving simulation software. The SCANeR Studio provides a virtual traffic scene 

and smart sensor models that feed the state vectors of the detected traffic vehicles to “scene 

representation”. Fig. 4.15 illustrated a congested traffic scene and a screenshot of the index 

matrix of traffic vehicles. The AD vehicle is surrounded by a green circle and is indexed by 

“0”. The representation of the relative relations to traffic vehicles into a matrix form is intuitive.  

Fig. 4.16 shows a fluid traffic scene with a mainline roadway and a ramp. The on-ramp vehicle 

with the index of “4” is captured in the ramp matrix (case in orange). 
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Figure 4.15 Illustration of a congested traffic scene and the index matrix of tracked traffic vehicles. (The case 

with “-1” means no vehicle in the corresponding zone.) 

 

Figure 4.16 Illustration of a fluid traffic with a mainline road and a ramp. The ego vehicle is surrounded by a 

green circle. The on-ramp vehicle is highlighted in orange.  

4.5.2 Evaluation of the adaptive trajectory prediction method 

4.5.2.1 Experiment setup 

The proposed adaptive prediction method was evaluated by simulation. We utilized the data 

collected from our previous driving simulator experiments. To investigate the ability of the 

prediction method to deal with dynamic situations, we purposely extracted trajectories 

involving strongly varying vehicle dynamics from a highway merging scenario. In this scenario, 

the target vehicle first accelerates to reach the speed limit of the ramp and then merges in a 

slowly dense mainline traffic. Once merged into the small gap in the mainline, the target vehicle 

needs to decelerate to adapt its speed to the leader. The dataset for this evaluation contains 12 

trajectories realized by human drivers. Each sample in the dataset corresponds to a state vector 

(4.1).  Fig. 4.17 shows the velocity and longitudinal acceleration samples.   



Designing driver-vehicle cooperation principles for automated driving systems 

98   

 

Figure 4.17 Longitudinal acceleration and yaw rate samples in the database 

The samples in the dataset were firstly converted into the Frenet frame following (4.6). Then 

samples were replayed to feed the trajectory prediction algorithm. In order to improve the 

simulation fidelity, process noise and measurement noise were added in the simulation. The 

general stochastic simulation structure is illustrated in Fig. 4.18. 

 

Figure 4.18 Simulation structure 

The parameters used for simulation are summarized in Tab. 4.2. 

Table 4.2 Parameters used in the simulation 

Symbol Description Value [units] 

T Prediction update step 0.05 [s] 

 Fading factor 0.8 

Maneuver 
detection

Recorded 
data

Trajectory 
prediction

Generate 
random initial 

conditions 

Compute 
RMSE

Generate random 
measurement noise

𝐳 𝑘

𝐯(𝑘)

 0

�̅� 0 𝐱 0

Kalman 
filter

Iterate in time
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 Threshold for maneuver detection 18.3 

�̇� Noise on longitudinal velocity 0.2 [m/s] 

�̈� Noise on longitudinal acceleration 0.3 [m/s2] 

q̃ Process noise power spectral density 0.2 [m2/s5] 

4.5.2.2 Results 

We start with a qualitative analysis of the prediction results for a hard braking maneuver in the 

data set. Fig. 4.19 shows the results on state estimation, maneuver detection and jerk estimation. 

The hard braking maneuver is correctly detected. Note that the delay on maneuver termination 

detection is more important than that on maneuver onset detection. This is due to the fact that 

the fading-memory sum needs more time to disperse large innovation accumulation during 

maneuver period. Since there is no jerk sensor in the driving simulation software, the true jerk 

was obtained via the numerical differentiation on the recorded acceleration. It demonstrates that 

the input estimation method can effectively estimate the jerk in this scenario. 

 

Figure 4.19 (a) Maneuver velocity profile with its estimates; (b) Maneuver acceleration profile with its 

estimates; (c) Normalized Innovation Squared (NIS) for maneuver detection; (d) Jerk estimation 

Fig. 4.20 shows the two snapshots of the trajectory prediction for this braking maneuver. The 

prediction based on the constant acceleration model is denoted by “CA prediction, whereas that 

the proposed adaptive prediction method is labelled as “ADV prediction”. The prediction 

horizon in this example is 3.5 s. It is clear to see that the adaptive prediction method successfully 

captures the tendency of the movement by incorporating the jerk. What’s more, the predicted 

trajectory is constrained by the final state inferred from the scenario (the velocity of the lead 

vehicle in this case). 

(a) (c) 

(b) (d) 

Time [s] Time [s] 



Designing driver-vehicle cooperation principles for automated driving systems 

100   

 

Figure 4.20 Exemplary prediction results for a braking maneuver: (a) t= 1.1 s (b) t= 1.65 s 

To give a quantitative evaluation on the prediction performance, we calculated the root mean 

square error (RMSE) between the predicted trajectory and the true trajectory. The RMSE is 

defined as follows: 

 𝑅𝑀𝑆𝐸(𝑝) = √
 

𝑀𝑁
∑ ∑ |𝑝′(𝑖 + 𝑗|𝑖) − 𝑝(𝑖 + 𝑗)|2𝑁

𝑗= 
𝑀
𝑖= , (4.28) 

where M stands for the number of the samples used for the test, N for the number of the samples 

within a prediction horizon 𝑡ℎ, 𝑝′(𝑖 + 𝑗|𝑖) for the predicted value at the (𝑖 + 𝑗)𝑡ℎ time step by 

starting from the true value 𝑝(𝑖) at the 𝑖𝑡ℎ time step. 

We ran tests with the prediction horizons 𝑡ℎ = [1, 2,… , 5] seconds. Moreover, the constant 

acceleration model is used as a reference for the comparison. Based on the results of maneuver 

detection, we compared the prediction results only on the range when maneuver detection was 

declared. Tab. 4.3 shows the test results. For 𝑡ℎ = 1s, the ADV and CA have almost the same 

high performance. It is consistent with the statement that the constant acceleration (CA) model 

performs well for short-term prediction (refer to Section 4.4.3). As the prediction horizon 

increases, the gap of the prediction accuracy between these two methods increases sharply. The 

ADV method yields much better prediction accuracy for long-term prediction horizons. 
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Table 4.3 Error comparison between ADV and CA (constant acceleration) based methods 

𝑡ℎ [s] Method  𝑅𝑀𝑆𝐸(𝑠) [m] 𝑅𝑀𝑆𝐸(�̇�) [m/s] 

1 
ADV 0.45 0.70 

CA 0.43 0.75 

2 
ADV 1.17 1.03 

CA 1.42 1.68 

3 
ADV 2.04 1.29 

CA 3.12 2.72 

4 
ADV 2.91 1.46 

CA 5.53 3.64 

5 
ADV 3.86 1.65 

CA 8.49 4.49 

We are also interested in the performance of the whole adaptive prediction framework using 

the method of Houenou et al. for lateral prediction (refer to Fig. 4.13). We thus tested this 

framework for the entire data set (12 trajectories) and compared the results with the CTRA 

model which is a curvilinear model for planar motion prediction (refer to Tab. 4.1). In this test, 

we calculated the RMSE of the Euclidian distances between the predicted positions and true 

real positions in the Cartesian frame, which is denoted by 𝐷 = ‖𝐱2D′(𝑖 + 𝑗|𝑖) − 𝐱2D(𝑖 + 𝑗)‖. 

Tab. 4.4 listed the results for long-term prediction horizons. The results show that the whole 

framework significantly reduces the long-term prediction errors compared to the CTRA model 

which assumes constant input. 

Table 4.4 Error comparison between ADV (with lateral trajectory prediction) and CTRA based methods 

𝑡ℎ [s] Method  𝑅𝑀𝑆𝐸(𝐷) [m] 

3 
ADV 1.61 

CTRA 4.82 

4 
ADV 2.20 

CTRA 5.24 

5 
ADV 2.99 

CTRA 6.11 
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4.6 Conclusion 
In this chapter, we presented our concept of a situation assessment framework for AD systems. 

We firstly proposed an approach for highway driving scene representation. The resulted matrix-

form scene model serves as an interface between the perception layer and the planning and 

control layer of an AD system. In this scene model, the dynamic states of traffic vehicles are 

transformed into the road-based Frenet frame. In this way, the motion of a traffic vehicle is 

tightly related with road curves, which facilitates the AD system to assess its relative position 

and future motion. The scene representation part ends with a qualitative representation for the 

description of highway traffic scenes. The Frenet coordinates of the traffic vehicles are mapped 

into the symbolic vocabulary based on their relative positions to the ego vehicle. A high-

precision digital map plays a pivotal role in the scene modelling process. 

In the second part of this chapter, we presented an adaptive vehicle longitudinal trajectory 

prediction method. Inspired by the maneuver-based method proposed by Houenou et al. (2013), 

our method adapts the trajectory prediction to vehicle longitudinal maneuvers. While the 

constant acceleration model is used to represent the uniform motion of a nonmaneuvering 

vehicle, a maneuvering vehicle’s trajectory is modelled as a quintic polynomial. In order to 

make a reliable long term prediction, the estimated jerk and context information are integrated 

in the polynomial to characterize the maneuver’s aggressivity and goal respectively. The overall 

method was tested on recorded human driving data from a simulator in a dynamic highway 

merging scenario. The results show the proposed method has higher prediction accuracy than 

the constant acceleration based method in such a dynamic scenario. 

The developed situation assessment function will be used by the two cooperative control 

frameworks in Chapter 5 and 6 respectively.
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5 PRINCIPLE FOR MANEUVER 
COOPERATION: COOPERATIVE 
MANEUVER PLANNING 

5.1 Introduction 
In Chapter 3, we have proposed two principles and a general architecture for driver-vehicle 

cooperation. Chapter 5 and 6 present two case studies in which we design two cooperative 

control systems that implement these two principles. In each case study, we follow the UCD 

process. We design the system in a concrete use case considering potential user needs. We 

develop the system functions based on the hierarchical cooperative control architecture which 

is adapted to the use case. Finally, the developed prototype is evaluated in a user study. 

This chapter presents the implementation of the principle for maneuver cooperation. We define 

highway merging management as a use case for maneuver cooperation, given the multiple 

maneuver alternatives available for the AD vehicle to interact with an on-ramp merging vehicle. 

In this use case, we adapt the hierarchical cooperative control architecture for vehicle 

longitudinal control. At the tactical level, we aim to develop a maneuver planning function 

which allows the driver and the system to share their maneuver plans to handle a merging 

vehicle. The final decided plan shall be executed automatically by the system functions at the 

operational level. 

This chapter is organized as follows. Section 5.2 presents the use case of highway merging 

management. The adaptation of the system architecture for the use case is then addressed in 

Section 5.3. Section 5.4 presents a cooperative maneuver planning function which is modelled 
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as a hierarchical finite state machine (HFSM). Section 5.6 describes the design of HMI for 

maneuver cooperation. Section 5.7 and 5.8 are dedicated to the evaluation. Section 5.7 presents 

a computer simulation study to illustrate the potentials of this principle in managing highway 

merging situations, whereas Section 5.8 presents a user study with 22 participants in which the 

cooperation principle and the designed HMI were evaluated. 

5.2 Use case: highway merging management 
Strong interaction exists among road vehicles at a highway entry section. Constrained by the 

end of acceleration lane, on-ramp vehicles have to merge into the mainline. However, they 

should give way to those vehicles already on the mainline according to traffic regulations. This 

special configuration leads to different interaction patterns between merging vehicles and 

mainline vehicles. As observed in daily life, some merging vehicles filter in by forcing the 

mainline vehicles to decelerate. In an inverse case, some mainline vehicles voluntarily 

decelerate to let merging vehicles in. In some countries, drivers follow the so-called “zipper 

merge” convention in traffic jam. In this convention, vehicles alternate between passing and 

yielding near the lane closure area in a zipper fashion (Cassidy and Ahn 2005). 

These complicated interactions among vehicles motivate us to select highway merging 

management as a use case for driver-vehicle cooperation design. As shown by Fig. 5.1, an AD 

vehicle encounters a merging vehicle at a highway entry section. Multiple possible interaction 

patterns with the merging vehicle could result in the interference between the driver and the 

AD system on maneuver plan (e.g., pass, yield or lane change), thus creating potential user 

needs to intervene. The principle for maneuver cooperation which enables the system and the 

driver to share their maneuver plans may be useful for the driver in this case. Moreover, the AD 

system could benefit from the help from the driver to socially interact with the merging vehicle. 

For instance, the driver in the AD vehicle may detect that the driver in the red vehicle invites 

him to pass while his vehicle wants to yield. By maneuver cooperation, the driver can indicate 

the system to pass and a blocked situation could be avoided. 

 

Figure 5.1. A typical driving scene on highway entry section 
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5.3 System architecture and assumptions 
To simplify the problem, we focused on vehicle longitudinal control in this use case. This 

simplification can be justified by the fact that interactions between mainline vehicles and 

merging vehicles on this zone are mainly influenced by their longitudinal positions and 

dynamics. Therefore, we aim to design a cooperative longitudinal control system to realize the 

maneuver cooperation in this use case. Another strategy to deal with the merging situation—

performing a lane change will be addressed in Chapter 6.  

We recall the hierarchical cooperative control architecture proposed in Chapter 3 in which the 

information flows in maneuver cooperation are highlighted (Fig. 5.2).  

 

Figure 5.2. Information flows in the hierarchical cooperative control architecture (the strategical level is omitted 

for clarity) 

Based on this general architecture, we derive a more specific functional architecture for the 

cooperative longitudinal control system. This architecture is sketched in Fig. 5.3. The 

information flows in Fig. 5.2 indicate the key role of maneuver planning and maneuver 

arbitration functions. In this use case, they are integrated within a function named cooperative 

maneuver planning. This function is responsible for generating maneuver plans, “pass” or 

“yield”, to operational-level functions on the one hand and interacting with the human driver on 

the other hand. The functions at the operational level are realized by an adapted ACC controller. 

In addition to classical cruising and car following functions, the ACC in this architecture can 

perform the maneuver plan generated from the tactical level thanks to a transient trajectory 

generation function. The situation assessment function is the same one developed in Chapter 4.  
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Figure 5.3. Architecture of the cooperative longitudinal control system for the use case 

We assume that the system automatically keeps the vehicle in the rightmost lane. This function 

can be realized by the cooperative steering control system developed in Chapter 6. As for the traffic 

environment, we assume that there is only one merging vehicle on the ramp in the current 

development stage. 

5.4 Cooperative maneuver planning 

5.4.1 Previous works and the design choice 
It is well recognized that congestions arise frequently at highway merging section. In order to 

improve the traffic efficiency, most of research works on highway merging management 

focused on how to coordinate vehicles in this zone, either by optimizing physical infrastructure 

layout or by using emerging vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communication technologies (Scarinci and Heydecker 2014; Rios-Torres and Malikopoulos 

2016). Few works proposed “standalone” control strategies for an AD vehicle to interact with 

manually driven vehicles (without V2V and V2I). Wei, Dolan, and Litkouhi (2013) addressed 

this topic in highway merging scenarios. They developed an optimal motion planning 

framework which planned a velocity profile with the lowest cost as a strategy to handle a 

merging vehicle. The simulation results showed a decrease of the occurrence of unsafe 

situations compared to a standard ACC controller. In the algorithm of optimal motion planning, 

the cost function was a combination of four different costs penalizing long travelled distance, 

large acceleration, small gap and fuel consumption. However, the cost weights are usually 

determined by trial and error tuning. 

As argued in Section 3.2.3, behavior-based maneuver planning fits driver-vehicle cooperation, 

because the situated behavior is easy for the human driver to understand. Moreover, if the AD 
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vehicle behaves as a normal human-driven vehicle in interaction with a merging vehicle, its 

behaviors are expected to be anticipated or understood by the merging vehicle. Therefore, it is 

of interest to view how human drivers interact with each other in the highway merging scenario. 

Several simulation models on human merging and yielding behaviors (Hidas 2005; Choudhury, 

Ramanujam, and Ben-Akiva 2009) decomposed this interaction into two phases. In the first 

phases, the mainline vehicle decides whether to keep its original cruising/car-following state or 

to yield to the merging vehicle by decelerating. At the same time, the merging vehicle checks 

if the gap with the mainline vehicle is safe enough to merge. In this phase, both vehicles 

manifest their intentions by small amounts of acceleration or by social cues. The second phase 

corresponds to the stage when the situation becomes clear and each one engages an action to 

terminate the interaction. Either the merging vehicle initiates the merge and the mainline vehicle 

yields, or the former decelerates to merge behind and the latter passes. 

We use HFSM—a behavior-based formalism to model the maneuver planning strategy in this 

use case. In the HFSM, a maneuver plan can be modelled as a state and the driver’s intervention 

can be integrated as an event for a transition in the HFSM. We design the hierarchy of states 

and the transitions between them according to the human’s driving strategy as introduced above. 

As pointed out by Chen et al (2009), two main limits of HFSM-based behavior generation are 

“its reduced robustness to handle unexpected situations and the lack of ‘creative’ 

solutions/behaviors”. A common solution to mitigate this drawback is to set a specific 

exception-handling mode to bring the vehicle into a known state. 

5.4.2 Overview of the HFSM-based maneuver planning 
Fig. 5.4 depicts the planning strategy modelled as HFSM. Two meta-states highway 

cruising/car-following and highway merging management constitute the first-level 

representation. Before meeting a merging vehicle, the AD system is in highway cruising/car-

following where the function of the AD system in longitudinal dynamic control is the same as 

that of a standard ACC. Once the AD system detects that the presence of a merging vehicle 

could influence its original state, it enters highway merging management and begins to interact 

with the merging vehicle. 

The highway merging management is broken into two phases. The system firstly enters 

intention phase in which the system adjusts the ego vehicle’s distance to the merging vehicle 

according to its intention—intended pass, intended yield and no intention. Decision phase 

corresponds to the phase in which the system engages an action, engaged pass or engaged yield, 

to terminate the interaction with the merging vehicle.  
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Figure 5.4. HFSM-based maneuver planning for highway merging management  

The cooperation occurs in intention phase. When the system has its intended maneuver, e.g., 

intended pass is active, the sub-state corresponding to the alternative maneuver—intended yield 

in this case—is declared as being available to the driver. The driver can trigger the transition 

towards the alternative (D1 or D2 in Fig. 5.4). This alternative hence becomes the system’s 

intended maneuver. No intention is set for congested traffic. With no intention active, both 

intended pass and intended yield are shown available to the driver. The driver can enable either 

the transition D3 or D4 in Fig. 5.4. 

After explaining the general strategy and the state hierarchy, we will present conditions of the 

transitions in the HFSM and system’s behavior in each state. 

5.4.3 Transition conditions 

5.4.3.1 Main factors influencing state transitions  

There are two main factors that influence the state transitions in the HFSM: the gap between 

the merging vehicle and the ego vehicle in the longitudinal dimension and the merging vehicle’s 
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lane change maneuver in the lateral dimension. Let 𝑠𝑚𝑣 denote the gap18. In a merging scenario, 

a merging vehicle can have two locations in the matrix-form scene representation proposed in 

Section 4.3, as shown in Fig. 5.5. It can be either located in one of the cases 12-15 on the ramp 

or in one of the cases 8-11 on the acceleration lane19. 

 

 

Figure 5.5. Two configurations of a merging scene: a merging vehicle is located either in a case on the ramp 

(up) or on the acceleration lane (bottom) 

When the merging vehicle is located on the ramp, the AD system predicts the future gap at the 

instant 𝑡  when the merging vehicle surpasses E1 (Fig 5.5-up), the first possible point to merge. 

In this way, the AD system takes into account the current dynamics of the merging vehicle, 

especially considering that a merging vehicle often accelerates on the ramp. To calculate 

𝑠𝑚𝑣(𝑡 ), the system predicts the trajectory of the merging vehicle and simulates the trajectory 

of the ego vehicle within a prediction horizon 𝒯 . The trajectory of the merging vehicle is 

predicted using the method proposed in Section 4.4. The trajectory of the ego vehicle in the 

same horizon is obtained by iterating the constant acceleration model. If at the time sample 𝑡𝑘 

in the horizon, the predicted position of the merging vehicle begins to exceed E1, then the gap 

𝑠𝑚𝑣(𝑡𝑘) at 𝑡𝑘 is used to approximate 𝑠𝑚𝑣(𝑡 ). This method is illustrated in Fig. 5.6. In summary, 

depending on the merging vehicle’s location in the scene, either the current gap 𝑠𝑚𝑣(𝑡 ) or the 

                                                 
18 Distance gap measures the curvilinear distance between the tail of the lead vehicle and the front bumper of the 

ego vehicle (SAE 2015). In our case, given that the coordinates of the merging vehicle are represented in the Frenet 

frame whose origin is the projection of the ego vehicle’s CoG on the road curve (Section 4.3.3), its longitudinal 

component 𝑠𝑚𝑣 can be directly used as a measure of gap. The car body lengths of two vehicles are compensated 

in the condition thresholds. 
19 To simplify the expression, we index the cases in the matrix rather than use their semantic meanings. 
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future gap 𝑠𝑚𝑣(𝑡 ) is used in the transition conditions. They are uniformly denoted by 𝑠𝑚𝑣(𝑡𝑖) 

with 𝑖 = 0 or 1 hereafter. 

 

Figure 5.6 Illustration of the calculation of 𝑠𝑚𝑣(𝑡 ) 

In the lateral dimension, the system monitors the lateral deviation and the heading error of the 

merging vehicle to the lane centreline. These measurements are used to detect the lane change 

maneuver of the merging vehicle. Fig. 5.7 illustrates how the gap 𝑠𝑚𝑣  and the lane change 

detection are used to enable different sub-states in the HFSM. Details will be explained in the 

following sections. 

 

Figure 5.7. Principle of the state transitions based on the gap and the lane change maneuver of the merging vehicle 
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5.4.3.2 Entry and exit conditions for highway merging management 

The transition from highway cruising/car-following (𝑆ℎ𝑐𝑐) to highway merging management 

(𝑆ℎ𝑚𝑚) is expressed as: 

 T1: 𝑆ℎ𝑐𝑐 → 𝑆ℎ𝑚𝑚,    if  0 ≤ 𝑠𝑚𝑣(𝑡𝑖) ≤ 𝑠𝑟𝑒𝑓,  𝑖 = 0 or 1, (5.1) 

The upper bound 𝑠𝑟𝑒𝑓 is the reference distance the ego vehicle maintains with the lead vehicle 

in car-following mode, which is defined according to the constant time heady policy: 

 𝑠𝑟𝑒𝑓 = ℎ�̇�𝑒𝑔𝑜 + 𝑠 ,  (5.2) 

where �̇�𝑒𝑔𝑜 is ego vehicle’s longitudinal velocity, ℎ is a time constant called time headway and 

𝑠  is a constant distance defined by 

 𝑠 = (𝑙𝑚𝑣 + 𝑙𝑒𝑔𝑜) 2⁄ + 𝑠𝑜𝑓𝑓,  (5.3) 

with 𝑙𝑚𝑣 for the car body length of the merging vehicle, 𝑙𝑒𝑔𝑜 for that of the ego vehicle and 

𝑠𝑜𝑓𝑓 for the safety margin. This condition can be interpreted as that the possible merge of the 

merging vehicle could cut a safe reference distance of the AD vehicle, therefore the AD vehicle 

needs to handle the merging vehicle. 

The transition to exit highway merging management is determined by the following conditions: 

either the merging vehicle is surpassed by the AD vehicle, or it moves beyond 𝑠𝑟𝑒𝑓, or it merges 

into the mainline. These conditions can be compactly expressed as 

 T2: 𝑆ℎ𝑚𝑚 → 𝑆ℎ𝑐𝑐,   if 𝑠𝑚𝑣(𝑡 ) < 0 ∨  𝑠𝑚𝑣(𝑡 ) > 𝑠𝑟𝑒𝑓 ∨ 𝑑𝑚𝑣(𝑡 ) < 𝑑
𝑙𝑎 ,  (5.4) 

where 𝑑𝑚𝑣(𝑡 ) is the normal component of the Frenet coordinates of the merging vehicle and 

𝑑𝑙𝑎 is the coordinate of the lane border the merging vehicle crosses during the merging. 𝑑𝑙𝑎 can 

be directly extracted from the digital map. 

5.4.3.3 Transitions in intention phase 

We address uncongested traffic and congested traffic separately, considering different 

interaction patterns between human drivers in these two kinds of situation. In a high-speed 

uncongested scenario, two vehicles have limited time to negotiate before the merging vehicle 

reaching the end of acceleration lane. Showing AD vehicle’s intention to the merging vehicle 

helps to avoid the ambiguity. For this reason, the system chooses one between intended pass 

and intended yield in intention phase. 

On the contrary, in a low-speed congested traffic, on-road vehicles have more time to 

communicate and negotiate. The intention to pass or to yield of a human driver is more 
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influenced by social factors. He may yield to the merging vehicle by courtesy or by social 

conventions. In other cases, he may temporally reduce the gap ahead in order to avoid being 

passed by everyone. Based on this reflection, we set a no intention state for congested traffic in 

which the choice to pass or yield is left to the driver. 

In the current work, a threshold on the speed of the AD vehicle (30 km/h) is used to distinguish 

between the two traffic situations. In the future works, a more robust scenario classification 

method like the one developed by Reichel et al. (2010) will be studied. We use a flag 𝛾𝑡𝑟𝑎𝑓 to 

discriminate between uncongested (with value of one) and congested traffics (with value of 

null). Hence, the condition for the transition towards no intention (𝑆𝑛𝑖) is straightforward: 

 T3:→ 𝑆𝑛𝑖 ,   if  𝛾𝑡𝑟𝑎𝑓 = 0,  (5.5) 

In the uncongested traffic, we set a threshold 𝑠𝑝 on 𝑠𝑚𝑣(𝑡𝑖) to decide the transition to intended 

pass (𝑆𝑖𝑝) and intended yield (𝑆𝑖𝑦). The decision-making principle is that if the gap is large 

enough for the merging vehicle to accept, the AD vehicle behaves cooperatively by increasing 

the gap to facilitate the merge of the merging vehicle. Otherwise the AD vehicle maintains its 

initial control task—cruising or car-following. We use the minimum acceptable space gap 

model proposed by Hidas (2005) to determine 𝑠𝑝. Thus, 𝑠𝑝 characterizes the minimum gap the 

merging vehicle accepts to merge. It is expressed by 

 𝑠𝑝 = 𝑠 + {
𝑐𝑙(�̇�𝑒𝑔𝑜 − �̇�𝑚𝑣)    if  �̇�𝑒𝑔𝑜 > �̇�𝑚𝑣

0    otherwise
,  (5.6) 

where 𝑐𝑙  is a constant parameter which is similar as the time-to-collision (TTC). The first 

transitions to intended pass (T4) and to intended yield (T5) are modelled as 

 T4:→ 𝑆𝑖𝑝,   if 𝑠𝑚𝑣(𝑡𝑖) <  𝑠𝑝(𝑡𝑖) ∧  𝛾𝑡𝑟𝑎𝑓 = 1, 𝑖 = 0 𝑜𝑟 1,  (5.7) 

 T5:→ 𝑆𝑖𝑦 ,   if 𝑠𝑚𝑣(𝑡𝑖) ≥  𝑠𝑝(𝑡𝑖) ∧  𝛾𝑡𝑟𝑎𝑓 = 1, 𝑖 = 0 𝑜𝑟 1. (5.8) 

The system can switch between 𝑆𝑖𝑝 and 𝑆𝑖𝑦 to account for the changes in the situation due to 

the dynamic behaviors of the merging vehicle. The transitions between them are represented 

by:  

 T6: 𝑆𝑖𝑝 → 𝑆𝑖𝑦,   if 𝑠𝑚𝑣(𝑡𝑖) ≥  𝑠𝑚𝑖𝑛(𝑡𝑖) + Δ𝑠 ∧  𝛾𝑡𝑟𝑎𝑓 = 1 ∧  𝛾𝐸𝑝 = 0, 

                               𝑖 = 0 𝑜𝑟 1,  (5.9) 

 T7: 𝑆𝑖𝑦 → 𝑆𝑖𝑝,   if 𝑠𝑚𝑣(𝑡𝑖) <  𝑠𝑚𝑖𝑛(𝑡𝑖) − Δ𝑠 ∧  𝛾𝑡𝑟𝑎𝑓 = 1, ∧  𝛾𝐸𝑦 = 0, 

                                𝑖 = 0 𝑜𝑟 1,  (5.10) 
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where Δ𝑠 is a constant representing the hysteresis, and 𝛾𝐸𝑝 and 𝛾𝐸𝑦 are two flags that indicate 

whether the driver has already triggered D2 (𝑆𝑖𝑦 → 𝑆𝑖𝑝) and D1 (𝑆𝑖𝑝 → 𝑆𝑖𝑦) respectively. The 

rational is that once the system accepts the transition triggered by the driver, it should not trigger 

the transition backward to its original intention. 

The cooperation with the driver occurs in intention phase. Driver’s commands through a proper 

HMI are modelled as the events to trigger the transitions D1, D2, D3 and D4. 

5.4.3.4 Strategies in decision phase 

While the system communicates its intention to the merging vehicle by adjusting the gap in 

intention phase, the system engages “pass” or “yield” in a definitive way in decision phase. If 

the actual gap with the merging vehicle is sufficiently small and the velocity of the AD vehicle 

is higher than that of the merging vehicle, the system’s state transitions to engaged pass. This 

transition is formulated as 

 T8: 𝑆𝑖𝑛 → 𝑆𝑒𝑝,    if 𝑠𝑚𝑣(𝑡 ) < 𝑠 ∧ �̇�𝑚𝑣(𝑡 ) < �̇�𝑒𝑔𝑜(𝑡 ),  (5.11) 

where 𝑆𝑖𝑛 stands for intention phase and 𝑆𝑒𝑝 for engaged pass. The threshold 𝑠  has already 

been defined in (5.3).  

The transition to engaged yield is triggered if a lane change maneuver of the merging vehicle 

is detected. For lane change detection, the method proposed by Houenou et al. (2013) is 

implemented. The idea is to monitor a metric that measures the lateral and heading deviations 

of the path of the merging vehicle to the lane center within a history window. If this divergence 

metric exceeds a predefined threshold, then the lane change detection is declared. As this 

method is also used to detect the human driver’s lane change intention in the control 

cooperation, we will present the details in Section 6.5.3. The transition to engaged yield (𝑆𝑒𝑦) 

is expressed by 

 T9: 𝑆𝑖𝑛 → 𝑆𝑒𝑦 ,  if 𝐷𝜌(𝑡 ) > 𝐷 ,  (5.12) 

where 𝐷𝜌(𝑡 ) the divergence metric and 𝐷  is a threshold. 

Remark 

It is possible that the merging vehicle cuts in when the AD vehicle is in engaged pass sub-state. 

Given that 𝑠  is small in the reference distance model (leaving a gap of 2-5 m), the cut-in of a 

high-speed merging vehicle with a gap smaller than 𝑠  may result in a collision. We assume 

that this critical situation is handled by a collision avoidance system. 
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5.4.4 System behaviors 
At each sub-state, the system generates a maneuver plan for the ACC controller. This maneuver 

plan is translated into a target velocity (�̇�𝑡𝑎𝑟𝑔) and a target distance (𝑠𝑡𝑎𝑟𝑔) for a “virtual leader” 

in the ACC controller. 

In uncongested traffic, a “pass” maneuver means that the AD vehicle keeps its initial task—

cruising at the road speed limit 𝑣𝑙𝑖𝑚𝑖𝑡 or follows the lead vehicle (�̇�𝑙𝑣, 𝑠𝑙𝑣) if there is one; “yield” 

means that the AD vehicle takes the merging vehicle as the lead vehicle and follows it with the 

reference distance. In congested traffic, considering the limited space for the AD vehicle, the 

system reduces the distance with the lead vehicle by  
4
ℎ�̇�𝑒𝑔𝑜 at intended pass, while it increases 

the distance by  
2
ℎ�̇�𝑒𝑔𝑜 at intended yield. The target velocities and distances at each sub-state 

are summarized in Tab. 5.1. 

Table 5.1. Target velocities and distances at each sub-state in HFSM 

Sub-state 
Uncongested traffic 

Congested traffic 
Without lead vehicle With lead vehicle 

Intended pass / 

engaged pass 

�̇�𝑡𝑎𝑟𝑔 = 𝑣𝑙𝑖𝑚𝑖𝑡  

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑣𝑙* 

�̇�𝑡𝑎𝑟𝑔 = �̇�𝑙𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑙𝑣 

�̇�𝑡𝑎𝑟𝑔 = �̇�𝑙𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑙𝑣 −
1

4
ℎ�̇�𝑒𝑔𝑜 

Intended yield 
�̇�𝑡𝑎𝑟𝑔 = �̇�𝑚𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑚𝑣 

�̇�𝑡𝑎𝑟𝑔 = �̇�𝑚𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑚𝑣 

�̇�𝑡𝑎𝑟𝑔 = �̇�𝑙𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑙𝑣 +
1

2
ℎ�̇�𝑒𝑔𝑜 

Engaged yield 
�̇�𝑡𝑎𝑟𝑔 = �̇�𝑚𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑚𝑣 

�̇�𝑡𝑎𝑟𝑔 = �̇�𝑚𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑚𝑣 

�̇�𝑡𝑎𝑟𝑔 = �̇�𝑚𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑚𝑣 

No intention N. A. N. A. 
�̇�𝑡𝑎𝑟𝑔 = �̇�𝑙𝑣, 

𝑠𝑡𝑎𝑟𝑔 = 𝑠𝑙𝑣 

*𝑠𝑣𝑙 denotes the relative distance to the virtual vehicle. By setting 𝑠𝑡𝑎𝑟𝑔 always equal to 𝑠𝑣𝑙, the virtual leader tracks only the 
target velocity 𝑣𝑙𝑖𝑚𝑖𝑡 in case that there is no actual lead vehicle. We refer the reader to Section 5.5.1 for details of the virtual 
leader scheme. 

5.5 ACC controller 

5.5.1 Virtual leader scheme 
An ACC controller operates in two control modes depending on the presence of a lead vehicle. 

It tracks a desired speed in a “cruising mode” if no lead vehicle is detected. It follows a lead 
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vehicle maintaining a safe distance in a “car-following mode”. One way to implement these 

two modes is to switch between two different controllers (Winner 2012, 620). A main drawback 

of such a mode-switching scheme is the difficulty to control vehicle’s transient behavior when 

the mode is switched from the one to the other (Bageshwar, Garrard, and Rajamani 2004). 

Especially in this use case, the merge of the merging vehicle in front of a “cruising” AD vehicle 

changes the mode to the car-following mode abruptly, which can lead to a strong variation of 

the acceleration of the ego vehicle. To resolve this problem, the ACC in this use case employs 

the virtual leader scheme (see Fig. 5.8). In the cruising mode, the ACC tracks a virtual vehicle 

whose speed is the same with the desired speed. When there is a lead vehicle, the speed and the 

position of the virtual vehicle are set to be those of the actual lead vehicle. In this way, the ACC 

always uses a single control algorithm to follow the virtual lead vehicle, thus making the 

switching between the modes unnecessary. 

         

Figure 5.8. Illustration of the virtual leader scheme. Left: the AD vehicle follows a virtual leader in cruising 

mode; right: the virtual leader merges from the actual lead vehicle to the merging vehicle during the yield 

maneuver of the AD vehicle. 

A central question to implement the virtual leader scheme is how to generate transient 

trajectories for the virtual leader, e.g., from the states of the old lead vehicle to those of the new 

lead vehicle. Nouvelière (2002) used a smooth trajectory generated by a first-order filter, 

whereas Kim (2012) developed a LQ controller to make the virtual lead vehicle move smoothly 

from an initial state to the desired state. In this thesis, the trajectory generation for the virtual 

leader is formulated as an optimization problem in the MPC framework. 

5.5.2 Principles of MPC 
Model predictive control is a finite-horizon optimal control approach that iteratively minimizes 

a cost function defined for a plant model subject to state and input constraints (Camacho and 

Bordons 2007). Thanks to its capability to handle state and input constraints online, MPC is 

well suited for trajectory generation. Subsequent improvements in both computing systems and 

algorithm efficiency have enlarged the range of applications in which real-time MPC can be 

applied (Klančar and Škrjanc 2007; Howard, Green, and Kelly 2010; Houska, Ferreau, and 

Diehl 2011). 

AD

• Virtual leader

AD
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Assuming the plant is modelled in discrete time by 

 �̇�(𝑘 + 1) = 𝑓(𝐱(𝑘), 𝐮(𝑘)), (5.13) 

with the state vector 𝐱(𝑘) and the input vector 𝐮(𝑘), the optimization problem to be solved by 

MPC can be mathematically formulated as:   

Minimize : 𝐽𝑁𝑝(𝐱(0),𝑈(0)) 

Subject to: 

                  �̇�(𝑘 + 1) = 𝑓(𝐱(𝑘), 𝐮(𝑘)),   𝑘 = 0,… , 𝑁𝑝 − 1, 

                     𝐱(𝑘) ∈ 𝒳,    𝑘 = 0,… ,𝑁𝑝 − 1, 

                     𝐱(𝑁𝑝) ∈ 𝑋𝑓 , 

                                               𝐮(𝑘) ∈ 𝒰,   𝑘 = 0,… , 𝑁𝑐 − 1.  (5.14) 

𝐽𝑁𝑝(𝐱(0),𝑈(0)) is called cost function which incorporate objectives of optimization (in most 

cases it handles with multiple objectives). 𝑁𝑝 is called prediction horizon, it is a time span in 

which 𝐽𝑁𝑝  is to be optimized. The first parameter in the cost function is 𝐱(0) denoting the 

current state vector of the model. The second one 𝑈(0) called optimization variable denotes a 

sequence of inputs, i.e., 

 𝑈(0) = [𝐮(0),… , 𝐮(𝑁𝑐 − 1)]
𝑇, (5.15) 

with 𝑁𝑐  called control horizon. The optimization variable 𝑈∗(0) that results in the smallest 

value of the cost function is called optimal solution. The part below “subject to” describes the 

constraints needed to be satisfied during the optimization. 𝒳,𝒳𝑓  and 𝒰 denote the sets on 

states, on terminal states and on input respectively. In practice, we attempt to formulate a 

convex optimization problem because there exist efficient methods for solving this kind of 

problem (Boyd and Vandenberghe 2004). In a convex optimization problem, 𝒳,𝒳𝑓 , 𝒰, 𝐽𝑁𝑝 as 

well as the plant model (5.13) need to be convex. Assuming that the optimization problem 

(5.14) is resolved at 𝑡 , yielding an optimal solution 𝑈∗(0), only the first element 𝐮(0) is 

applied to control the plant. This process will be repeated at the next time step 𝑡 , leading to a 

receding horizon control strategy. 

5.5.3 MPC-based transient trajectory generation 
The goal of the MPC controller is to generate a trajectory for the virtual leader from initial states 

to reach target states provided by the cooperative maneuver planning function (Tab. 5.1). The 

virtual leader is modelled as a double integrator with the acceleration as input: 
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 𝐱𝑣𝑙(𝑘 + 1) = 𝐴𝐱𝑣𝑙(𝑘) + 𝐵𝑢𝑣𝑙,  (5.16) 

where 

 𝐴 = [
1 𝑇
0 1

]    𝐵 = [
 

2
𝑇2

𝑇
], (5.17) 

with T for time sample size. 𝐱𝑣𝑙  is the state vector [𝑠𝑣𝑙(𝑘) �̇�𝑣𝑙(𝑘)]
𝑇  which composes the 

trajectory of the virtual leader. The task of the MPC controller is to make the trajectory converge 

to the reference  𝐫(𝑘) = [𝑠𝑡𝑎𝑟𝑔(𝑘) �̇�𝑡𝑎𝑟𝑔(𝑘)]𝑇. A quadratic cost function over a prediction 

horizon of  𝑁𝑝 time samples is defined as  

𝐽𝑁𝑝(𝐱𝑣𝑙(0), 𝑈(0)) =∑ (𝐱𝑣𝑙(𝑘) − 𝐫(𝑘))
𝑇𝑄(𝐱𝑣𝑙(𝑘) − 𝐫(𝑘))

𝑁𝑝− 

𝑘= 
 

                                                         +𝑢𝑣𝑙
𝑇 (𝑘)𝑅𝑢𝑣𝑙(𝑘) + Δ𝑢𝑣𝑙

𝑇 (𝑘)𝑆Δ𝑢𝑣𝑙(𝑘), (5.18) 

where Q, R, S represent diagonal weighting matrices penalizing the deviation from 𝐱𝑣𝑙(𝑘) =

𝐫(𝑘), 𝑢𝑣𝑙(𝑘) = 0 and Δ𝑢𝑣𝑙𝑇 (𝑘) = 0. The cost function requires a reference 𝐫(𝑘) within the 

entire prediction horizon. The cooperative maneuver planning function generates 𝐫(0) =

[𝑠𝑡𝑎𝑟𝑔(0) �̇�𝑡𝑎𝑟𝑔(0)]𝑇.  If 𝐫(0) is the state vector of the lead vehicle or merging vehicle, the 

reference 𝐫(𝑘) takes the predicted trajectory of the lead vehicle or merging vehicle using the 

method in Section 4.4. In the case of intended pass without lead vehicle, the reference can be 

obtained simply by integrating 𝐫(0) in the prediction horizon. 

Inequality constraints on states and input of the virtual leader are defined as 

0 ≤ �̇�𝑣𝑙(𝑘) ≤ 𝑣𝑙𝑖𝑚𝑖𝑡,  

𝑎𝑚𝑖𝑛 ≤ 𝑢𝑣𝑙(𝑘) ≤  𝑎𝑚𝑎𝑥,  

 𝑗𝑚𝑖𝑛𝑇 ≤ Δ𝑢𝑣𝑙(𝑘) ≤ 𝑗𝑚𝑎𝑥𝑇, 𝑘 = 0,1…𝑁𝑝 − 1,  (5.19) 

where 𝑎𝑚𝑖𝑛  and 𝑎𝑚𝑎𝑥  denote the minimum and maximum acceleration, and 𝑗𝑚𝑖𝑛  and 𝑗𝑚𝑎𝑥 

denote the minimum and maximum jerk. With (5.19), the MPC takes into the constraints of the 

road speed limit, and the riding comfort (acceleration and jerk).  

After linear matrix manipulation, (5.16), (5.18) and (5.19) can be formulated as an online 

quadratic optimization problem. The optimal solution is then solved using conventional 

optimization routines (Bemporad et al. 2002). At each time step, only the first element of the 

optimal solution, denoted by 𝑢𝑣𝑙∗  is applied for (5.16) as the input. This process is repeated at 

subsequent time steps. The resulted trajectory of the state vector 𝐱𝑣𝑙 is the trajectory of the 

virtual leader. 
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Fig. 5.9 shows simulation results of the MPC-based trajectory generation to perform a yield 

maneuver. At the beginning, the AD vehicle is cruising, therefore the virtual leader moved at 

25m/s (Fig. 5.9 (c)). At 4s, the system decides to yield to a merging vehicle which is 20m behind 

the virtual leader (Fig. 5.9-middle (b)). The optimal control 𝑢𝑣𝑙∗  shown in Fig. 5.9 (a) makes the 

virtual vehicle smoothly merge to the merging vehicle, with lead gap and the speed difference 

converging to zero. 

5.5.4 Feedback controller for trajectory tracking 
This section deals with the design of feedback controller to track the optimal trajectory provided 

by the MPC component. The control law used to ensure that the AD vehicle follows a reference 

distance to the virtual leader is similar to that proposed by Ioannou and Chien (1993). This 

reference distance 𝑠𝑟𝑒𝑓 is defined by the constant time headway policy following (5.2). The 

control law is expressed: 

 𝑎𝑑𝑒𝑠 =
 

ℎ
(�̇�𝑣𝑙 − �̇�𝑒𝑔𝑜) +

𝜆

ℎ
(𝑠𝑣𝑙 − 𝑠𝑟𝑒𝑓), (5.20) 

where 𝑎𝑑𝑒𝑠 is the desired acceleration to be tracked by actuator controller and ℎ is the same 

time headway in (5.2). The design parameter 𝜆 should be set positive to make the error to the 

reference distance converge to zero. In the cruising mode, �̇�𝑣𝑙 is set to the road speed limit 𝑣𝑙𝑖𝑚𝑖𝑡 

and the position of the virtual leader is updated by integrating the speed. In the car-following 

mode, �̇�𝑣𝑙 and 𝑠𝑣𝑙 are set to those of the actual lead vehicle. To perform different maneuvers, 

the controller tracks the trajectory of the virtual leader determined by the aforementioned MPC 

approach. 

In the actuator control-loop, the desired acceleration 𝑎𝑑𝑒𝑠 is translated to the throttle angle or 

braking force by an inverse model approach based on a powertrain model and a braking system 

model (Nouvelière 2002).  
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Figure 5.9. Simulation results of the transient trajectory generation for a yield maneuver. (a) Optimal 

acceleration of the virtual leader, (b) lead gap to the merging vehicle, (c) vehicle velocities. 

5.6 Interface design 
In addition to the interaction logic at the system functional level, HMI is another key factor 

enabling efficient cooperation between the driver and the system. The design decisions are 

formulated as the following three HMI goals: 

 Showing the driving context. This principle is consistent with the concept of common 

frame of reference introduced in Section 2.2.3. The driving context serves as a common 

reference on which the driver and the AD system share their intentions. This principle is 

implemented by a representation of merging scene in a windshield Head-Up Display 

(HUD, Fig. 5.10-left) and a yellow semi-transparent rectangle tracking the target merging 

vehicle (Fig. 5.10-upper right). This yellow rectangle is the simulation of augmented 

reality. The appearance and disappearance of these HMI elements are consistent with the 

entry and the exit of highway entry merging management in the HFSM. 

 Showing the intention and available alternative. First, we used triangle to symbolize 

maneuver, with triangle(s) forwards for “pass” and backwards for “yield”. Then we 

designed color codes to distinguish maneuver states. Three blue triangles represent an 

“intended/engaged” maneuver, whereas a single green one represents an “available” 
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alternative. Intention and alternative symbols are shown within the representation of 

merging scene in the HUD (Fig. 5.10-left). 

 Providing a way for the user to choose an alternative. This principle was implemented 

by two capacitive backlit buttons (Fig. 5.10-lower right). The up button means “pass” 

and the down button “yield”. As long as a maneuver is available, the corresponding 

button twinkles in green and remains active. The press on an active button will trigger a 

transition to the alternative in the HFSM (Fig. 5.4). As for an acknowledgement, the 

pressed button will become blue (lasting 2s). If the user presses when the green light is 

off, this button will temporally become red (2s) to signify a refusal. 

Fig. 5.10 shows a synthesis of the HMI prototypes installed on the driving simulator. 

 

Figure 5.10. Designed HMI for the maneuver cooperation principle 

5.7 Simulation study 
A computer simulation of the designed system was conducted in the first place. The objective 

was to demonstrate the capability of the system to deal with the merging situation and potential 

benefits of driver-vehicle cooperation in this use case. 

5.7.1 Setup 

5.7.1.1 Implementation and software environment 

SCANeR Studio served as a simulation platform which provided the virtual driving 

environment (including road network and traffic vehicles), sensor models and the interface with 

Simulink models. We implemented the HFSM of cooperative maneuver planning through 

Stateflow of Simulink (The MathWorks, Inc. 2017b). This Simulink model ran at 20Hz. The 

MPC-based trajectory generation was modelled by Yalmip, an open-source Matlab toolbox for 

optimization problem modelling (Lofberg 2004) and embedded into the Simulink model of 

cooperative maneuver planning. The online optimization problem was solved using the 

HUD HMI: merging context

The HMI indicates:

• Merging scene representation

• AD intended maneuver:
yield (blue triangles)

• Available alternative: pass
(green triangle)

Command
The green-twinkling button
indicates the availability of
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Simulated augmented reality
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mathematical programming solver Gurobi (Gurobi Optimization, Inc. 2017). The feedback 

controller in the ACC was implemented into another Simulink model which ran at 200Hz. 

5.7.1.2 Parameters 

Tab. 5.2 quantifies the parameters involved in the designed functions in precedent sections.  

Table 5.2. List of the parameters used in the vehicle longitudinal control system in this Chapter 

Sysetm Symbol Description Value [units] 

Cooperative 
maneuver 
planning 
(HFSM) 

h Time headway in the reference distance 𝑠𝑟𝑒𝑓 2 [s] 

𝑠𝑜𝑓𝑓 Offset distance in 𝑠𝑟𝑒𝑓 5 [m] 

𝑙𝑚𝑣 Car body length of the merging vehicle 5 [m] 

𝑙𝑒𝑔𝑜 Car body length of the ego vehicle 5 [m] 

𝒯 Horizon for trajectory prediction 3 [s] 

𝑐𝑓 Coeifficent in the minimum acceptable space gap 1.5 [s] 

Δ𝑠 Marginal distance in the hysteresis 1 [m] 

T Time sample size 0.05 [s] 

 Fading memeory factor 0.8 

 
𝐷  Threshold on the divergence mertic 1 

MPC 𝑁𝑝 Time sample number in the prediction horizon 30 

𝑄 Weight matrix on tracking performance [
2 0
0 10

] 

R Weight on control  30 

𝑆 Weight on control rate 800 

𝑣𝑙𝑖𝑚𝑖𝑡 Road speed limit 25 [m/s] 

𝑎𝑚𝑎𝑥 Maximum acceleration 3 [m/s2] 

𝑎𝑚𝑖𝑛 Minimum acceleration -3 [m/s2] 

𝑗𝑚𝑎𝑥 Maximum jerk 5 [m/s3] 

𝑗𝑚𝑖𝑛 Minimum jerk -5 [m/s3] 

ACC 
controller 

𝜆 Parmameter in the feedback control law 0.2 

5.7.1.3 Scenario modeling tool 

Modelling such a highly interactive merging scenario imposes a new challenge: the scenario 

must be interactive and reproducible at the same time. “Interactive” implies that the merging 



Designing driver-vehicle cooperation principles for automated driving systems 

122   

vehicle should naturally adapt its behaviors to the AD vehicle. Nevertheless, the scenario should 

be reproducible in the sense that each participant of the user test (which will be presented in 

Section 5.8) can encounter the same kind of situation. For the chosen use case, a target merging 

vehicle needs to be generated such that it always meets the AD vehicle with a configurable 

relative gap across different test runs. In the meanwhile, its microscopic merging behavior shall 

be controllable. 

To meet this challenge, a generic scenario modelling tool prototype developed in the project 

LAR was used in this study. This tool is based on the traffic and the scenario modules of the 

SCANeR studio software (That and Casas 2011). It has three major functions:  

 Meeting control: to ensure that the target merging vehicle always meets the AD vehicle 

under configurable conditions; 

 Gap control: to control the speed of the target merging vehicle so that it keeps resting 

in proximity in front of the AD vehicle; 

 Lane change control: to control the decision of the target merging vehicle to merge 

behind or in front of the AD vehicle. 

5.7.1.4 Scenarios 

With the scenario modelling tool, we modelled the following three scenarios: 

 S1-nominal merging in fluid traffic: as shown in Fig. 5.11, the AD vehicle drives at the 

road speed limit in right-most lane. The merging vehicle behaves in a deterministic way, 

i.e., it merges in front or behind the AD vehicle according to its relative distance to the 

AD vehicle. The motivation of modelling this scenario is to compare the performance 

of the designed system with that of a standard ACC controller. 

 S2-hesitant merging in fluid traffic: the AD vehicle meets a “hesitant” merging vehicle 

that does not initiate to merge even though the AD vehicle decelerates to enlarge the 

gap. In this scenario, we simulated an input of the driver to change the intention of the 

system. By this, we demonstrated the cooperation principle in uncongested traffic. 

 S3-hesitant merging in congested traffic: the AD vehicle follows its lead vehicle with a 

small gap in a congestion. A merging vehicle arrives in front of the AD vehicle and 

waits the AD vehicle to let it merge into the lane. In this scenario, we simulated a driver 

who made a courtesy yield. 



Chapter 5: Principle for maneuver cooperation: cooperative maneuver planning 

   123 

 

Figure 5.11. Illustration of three test scenarios: S1-nominal merging in uncongested traffic, S2-hesitant merging 

in fluid traffic and S3-hesitant merging in congested traffic 

5.7.2 Results 

5.7.2.1 S1-nominal merging in fluid traffic20 

Within this scenario, we compared our design—cooperative longitudinal control system—to a 

standard ACC. The standard ACC was designed by Rajamani (2006, 153), which had a PID 

controller for speed control in the cruising mode and the same feedback controller (5.20) as our 

system in the car-following mode. This ACC considers only the lead vehicle in the same lane, 

so it does not react to the merging vehicle until the latter crosses the lane border. 

Fig. 5.12 shows the simulation results of these two systems. Since the merging vehicle keeps 

accelerating on the ramp, the AD vehicle with the designed system anticipates that the merging 

vehicle could merge when it enters the acceleration lane according to (5.6). Therefore, the 

system state transitions to intended yield at 35.7s (Fig. 5.12(a)). Meanwhile, it begins to follow 

the merging vehicle by decelerating. Even if the gap 𝑠𝑚𝑣 is small, the controller does not cause 

strong deceleration thanks to the trajectory generated by the MPC. When the merging vehicle 

initiates the merge at 38.6s (Fig. 5.12(c)), the AD vehicle has already followed the merging 

vehicle.  

The AD vehicle equipped with the standard ACC runs under the same initial conditions. After 

entering the acceleration lane, the merging vehicle cuts in at 43.1s (Fig. 5.12(f)). The AD 

vehicle reacts lately at 45.6s (Fig. 5.12(d)) until the merging vehicle enters the same lane. 

                                                 
20  Two videos of the simulation are available at https://youtu.be/PGLCau-Cm5w and 

https://youtu.be/dfbVJQUYuhU. 

S1 S2

S3

https://youtu.be/PGLCau-Cm5w
https://youtu.be/dfbVJQUYuhU
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Moreover, the small relative distance due to the cut-in engenders a braking of the AD vehicle 

which can be quite uncomfortable for on-board passengers.  

 

Figure 5.12. Comparison of the simulation results of the cooperative longitudinal control system and a standard 

ACC in S1 

The simulation results demonstrate two strengths of the designed system: 1) the system can 

anticipate the future scene configuration and thus actively interacts with the merging vehicle 

by manifesting its intention: pass or yield; 2) the MPC generates smooth trajectories to perform 

the maneuver, thereby ensuring vehicle ride comfort.  

5.7.2.2 S2-hesitant merging in fluid traffic21 

Fig. 5.13 shows the simulation results in S2. The AD vehicle intends to yield to the merging 

vehicle at first, as shown in the plot “maneuver states” in Fig. 5.13. At the meantime, the 

alternative “pass” is declared as “available”. However, the hesitant merging vehicle decreases 

its velocity even though it is still higher than that of the AD vehicle. We simulate a driver in 

the AD vehicle who captures the yield intention of the merging vehicle. A transition to intended 

pass is triggered at 39.3s (Fig. 5.13 (d)) by the driver’s press on the “pass” button in the HMI. 

The AD vehicle begins to accelerate to reach the initial velocity again (Fig. 5.13 (a)). At 51.6s, 

                                                 
21 A video of the simulation is available at https://youtu.be/pMhNti_p8SY. 

(1) Results of the cooperative longitudinal control system 

(2) Results of the standard ACC 

https://youtu.be/pMhNti_p8SY
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the AD vehicle surpasses the merging vehicle and the latter merges behind. The simulation 

results show that the cooperation with the driver can help the AD system make an appropriate 

decision. 

 

Figure 5.13. Simulation results with driver-vehicle cooperation in S2 

5.7.2.3 S3-hesitant merging in congested traffic22 

In S3, the AD vehicle drives in a congested traffic with an average speed around 4m/s. A 

merging vehicle arrives from behind and rests in a proximity of the AD vehicle (see Fig. 5.14 

(a) and (b) around 50s). Based on the transition rule, both “pass” and “yield” maneuvers are 

declared “available”. We simulate a driver who selects the “yield” at 51s (Fig. 5.14 (d)). To 

manifest its intention “yield”, the AD vehicle slightly decelerates to increase the gap with the 

lead vehicle. When the lead vehicle detects the intention of the AD vehicle, it accelerates to 

merge in front starting from about 55s (Fig. 5.14 (a), around) without influencing the AD 

vehicle (e.g., forcing it to stop). Through this example, we demonstrate the potential of driver-

vehicle cooperation in managing the social interaction with a human-driven vehicle. 

                                                 
22 A video of the simulation is available at https://youtu.be/gQTG2vMn-RI.  

https://youtu.be/gQTG2vMn-RI
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Figure 5.14. Simulation results with driver-vehicle cooperation in S3 

5.8 User study 
In the previous section, we have implemented the cooperative longitudinal control system in 

the simulation environment and obtained the preliminary results on system’s performance. This 

section presents the evaluation of the principle for maneuver cooperation through a user study. 

This study is oriented to test user experience, hence a main objective of the user study is to 

investigate how future users will perceive the cooperation principle and HMI. What’s more, 

this test examined whether cooperation facilitates the interaction of the AD vehicle with the 

merging vehicle in this use case. 

5.8.1 Objectives 
Within this user study, we intended to evaluate the following three aspects of the proposed 

cooperation principle:  

 Objective 1: to evaluate the intuitiveness of the proposed cooperation principle and its HMI; 

 Objective 2: to assess the user’s performance on cooperation through the HMI; 
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 Objective 3: to assess the effects of cooperation on the interaction between the AD 

vehicle and the merging vehicle. 

5.8.2 Methods 

5.8.2.1 Participants 

Twenty-two participants, average age of 41.3 years (ranging from 24 to 61) took part in the 

experiment. They were employees of Renault Technocentre and IRT SystemX. They have a 

driving license of 22.45 years on average and drove on average 5.8 days/week. 

5.8.2.2 Apparatus 

The driving simulator “Dr SiHMI” of the IRT SystemX (“Dr SiHMI Platform” 2016) was used 

in the experiment. The simulator uses SCANeR Studio as a simulation platform in which are 

integrated different modules such as the AD system, the scenario modelling tool and HMI 

controllers. The visual system of the simulator is composed of three projectors and a curved 

screen that can cover a field of view in horizontal 170° and vertical 40°. The simulator cockpit 

is modular and thus facilitates the prototyping and integration of HMI solutions. 

We adapted two scenarios modelled in the simulation study (Section 5.7.1): hesitant merging 

in fluid traffic (referred to as Fluid) and in congested traffic (referred to as Congestion). 

According to the transition rules in the HFSM, the AD system has its intended maneuver 

(intended pass or intended yield) in Fluid, while in Congestion the AD system is in the no 

intention state. This implies that the subject has an alternative to choose in Fluid but two 

alternatives in Congestion. In both scenarios, the AD mode is active by default so that each 

subject can totally be disengaged from vehicle control. Fig. 5.15 illustrates two scans of driving 

scene in Fluid and Congestion. 

         

Figure 5.15. Baseline scenarios: Fluid (left) and Congestion (right) 

For this type of scenario in which the ego vehicle needs to interact with other traffic vehicles, 

it is of interest to vary behaviors of traffic vehicles. Otherwise, a same merging behavior across 

all the test runs could not only decrease the immersion of subjects but also lead to strong 
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memory effects that may bias the assessment of cooperation performance. As a solution, we 

used a random variable generator to generate random parameters for the scenario modelling 

tool. In this way, based on a baseline scenario (used as a template), different test scenarios can 

be generated automatically. 

5.8.2.3 Procedure and instructions 

Prior to the test drive, the subjects were familiar with the AD system and the driving simulator 

in a training drive. The test drive was divided into two phases. The objective of the Phase 1 was 

to evaluate the intuitiveness of the HMI and the cooperation principle. In this phase, each 

subject participated in three test runs. Each run consisted of a Fluid and a Congestion scenario. 

The first run served as a reference in which none of HMI was activated. Before this run, we 

explained briefly the functionality of the system (full automatic control) and asked the subject 

to observe the driving scene as a new user. In the second run, we added HMI displays (HUD 

and the yellow rectangle). We informed the subject of the new added HMI displays but did not 

explain their meaning. In the third run, we activated the button command interface in addition 

to HMI displays. We simply indicated the driver that he had a new interface allowing him to 

change the intention of the system, however, without any instruction on how to use the buttons. 

As illustrated by the schema in Fig. 5.16, the second run was set to assess how the subjects 

understood the HMI displays whilst the third run was dedicated to evaluate their comprehension 

of the cooperation principle. At the end of Phase 1, the subjects were asked to fill the prepared 

questionnaires. 

 

Figure 5.16. Schema of the procedure in Phase 1 

The Phase 2 aimed to test subject’s performance on cooperation. Therefore, HMI displays and 

the buttons were both active. Each subject participated in four sequences of Fluid and four 

sequences of Congestion in a random order. Before the start of Phase 2, we explained the HMI 

displays and the correct way to use buttons. Furthermore, each subject was instructed to use 

these buttons according to their needs. 

5.8.2.4 Data collection and metrics 

Both quantitative and qualitative data were collected. The quantitative data were collected 

through data log from the simulator and a questionnaire. To obtain the qualitative data, we 

Run 1
Reference

Run 2
+ HMI display

Run 3
++ Cooperation

Comprehension of the 
HMI displays

Comprehension of the 
cooperation principle
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employed “thinking aloud” technique and conducted interviews. Results were principally 

derived from the quantitative analysis, while qualitative data were used to give complementary 

information. 

To evaluate how subjects perceived the cooperation principle and their performance on 

cooperation, we proposed two metrics concerning button use. According to the button state 

when it was pressed, we defined three types of button pressing: 

 Pressing Available Alternative maneuver (PAA): a subject pressed the button 

corresponding to an available alternative. It characterizes a good use. 

 Pressing Intended maneuver (PI): a subject pressed the button corresponding to 

system’s intended maneuver. It can be interpreted that the subject shared the same 

intention with the system. 

 Pressing Pre-Intention (PPI): a subject pressed a button before the system showed its 

intended maneuver (in Fluid) or available alternatives (in Congestion).  

The first metric of button use was the distribution of button press types which indicates the 

successful rate (represented by the ratio of PAA).  

The second metric was related to the time on button use. Within each record of a test run, by 

setting the time when an alternative became available as the origin (t=0), we computed at which 

time a subject pressed a button for the first time. The statistical information on the time of the 

first button press was exploited in different ways in Phase 1 and Phase 2. In Phase 1, this 

information allowed us to assess whether a subject was aware of the time window of an 

alternative’s availability. In Phase 2, given that subjects had known the cooperation principle 

through our explanations, the average time they needed to press the button is a metric of their 

efficiency on cooperation.  

Concerning Objective 3, we queried the data within a time span in which the AD vehicle was 

interacting with the merging vehicle. The time span is delimited by the duration when the state 

highway merging management was active. The selected metrics within this time span are shown 

in Tab. 5.3. The interaction duration is denoted by 𝑡𝑖𝑛𝑡𝑒𝑟. Due to the limited range available for 

the merging vehicle on the acceleration lane, the longer 𝑡𝑖𝑛𝑡𝑒𝑟 is, the more urgent the merge of 

the merging vehicle is, and hence the more critical the situation is for the AD vehicle. The speed 

ratio reflects the ability of the AD system to maintain its initial speed during the interaction. At 

last, the acceleration variation is a metric for comfort. 
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Table 5.3. Metrics used to evaluate the driving performance 

Metrics Description 

𝑡𝑖𝑛𝑡𝑒𝑟 Length of the time span in which the AD vehicle was interacting with the merging vehicle 

𝑣𝑓𝑖𝑛 𝑣 ⁄   Ratio of the end speed of the AD vehicle to the initial speed 

𝑎 Difference between the maximum and the minimum accelerations of the AD vehicle 

5.8.3 Results 

5.8.3.1 Intuitiveness of the HMI and cooperation principle 

Subjective evaluation of the HMI intuitiveness was made based on the results of the 

questionnaire (see Fig. 5.17). Among all the HMI elements, the simulated augmented reality, 

the yellow rectangle tracking the merging vehicle, has received the highest rating (M = 3.68, 

SD = 0.57) in terms of the ease of understanding. The representation of merging context in 

HUD-HMI was rated as “rather easy” (M = 2.95, SD = 0.90). The rather high SD indicates that 

the answers were varied. According to the verbal protocols, several subjects were confused with 

the meaning of arrows. They interpreted the blue arrows as actual accelerations of the ego 

vehicle. Due to the small size of the pictogram limited by the HUD projection area, 12 subjects 

out of 22 reported unaware of the green arrow. As for the button command, while the button 

function was better understood by subjects (M = 3.36, SD = 0.66), the color code of the button 

was worse rated (M = 2.73, SD = 1.03). Owning to the position of the button interface, several 

subjects did not associate the twinkling green state of a button with the appearance of the green 

arrow in the HUD-HMI. Consequently, those subjects were confused with the meaning of the 

green color. 

 

Figure 5.17. Subjective evaluation of the intuitiveness of the HMI 

Very difficult (1) Rather difficult (2) Rather easy (3) Very easy (4)

Merging
context

Yellow 
rectangle

Button
function

Button
color

Was it easy or difficult for you to understand …?
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To assess how users perceived the cooperation principle, we first examined the distribution of 

the types of button pressing in Phase 1. As shown in Fig. 5.18, PAA accounted for only 21% of 

the presses in Fluid. It suggests that subjects did not well understand the logic to change the 

intention of the system. Rather, the high ratio of PI (50%) reveals that subjects expected that 

pressing system’s intention would have effect. Compared to Fluid, the logic in Congestion was 

better perceived by the subjects given the 53% for PAA. 

 

Figure 5.18. Results on button press distribution in Phase 1 (PH1) 

The distribution of the time of the first button presses in Phase 1 is represented in form of the 

histogram in Fig. 5.19. In each histogram, the presses falling within the range of [-SD, SD] 

were counted and shown. The time window of the availability of the alternative was underlined 

in green and its initial time served as the origin of time axis. The average time of the first button 

press as well as the SD were indicated too. It can be clearly seen that the button presses in Fluid 

were more dispersed, whilst the presses in Congestion were more concentrated to the average 

value. In view of the one-third presses falling out of the time window of the “available pass” in 

Fluid, it can be inferred that subjects did not well perceive this time windows in Fluid. 

 

Figure 5.19. Histograms of the time of the first button press in Phase 1with the interval of 1s (left: Fluid; right: 

Congestion). 

5.8.3.2 Cooperation performance 

The overall performance of the subjects on button use was improved in Phase 2, given the 62% 

and the 86% for PAA in Fluid and Congestion respectively in Fig. 5.20. However, PI in Fluid 
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still occupied a non-negligible part (27%) compared with in Congestion. It indicates that several 

subjects had tendency to confirm the system’s intention, even though they were informed of the 

correct button use—to press an available alternative. With a more important part of PAA, the 

performance in Congestion was better than in Fluid. 

 

Figure 5.20. Results on button press distribution in Phase 2 (PH2) 

Fig. 5.21 shows that the distributions of the time of the first button press in both scenarios of 

Phase 2 were more concentrated to the average than in Phase 1. What’s more, most button 

presses fell into the time windows of the alternative’s availability. It means that the subjects 

perceived better this time window and hence understood better the cooperation principle. 

Coincidently, the averages of both two scenarios were equal to 3.87s. 

 

 

Figure 5.21. Histograms of the time of the first button press in Phase 2 with the interval of 1s (left: Fluid; right: 

Congestion). 
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Tab. 5.4 shows the descriptive statistics of the performance metrics of the AD system in 
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cooperation in either Fluid or Congestion consists of nine randomly generated scenarios; the 
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of Fluid or Congestion. An independent-samples t-test was conducted to compare system’s 

performance with and without cooperation (see Tab. 5.5). In Fluid, all the performance metrics 

yielded better results with cooperation than without cooperation, manifested by shorter 

interaction time (𝑡𝑖𝑛𝑡𝑒𝑟, p < 0.03), higher speed-keeping ability (𝑣𝑓𝑖𝑛 𝑣 ⁄ , p < 1.19E-11) and 

smaller acceleration variation (𝑎 , p < 0.04). In Congestion, 𝑡𝑖𝑛𝑡𝑒𝑟  with cooperation was 

significantly reduced (p < 5.56E-04). The ratio of the final speed to the initial speed (𝑣𝑓𝑖𝑛 𝑣 ⁄ ) 

with cooperation was higher, however, without significant difference (p < 0.06). The average 

acceleration variation was stronger with cooperation in Congestion. It can be explained by the 

fact that the AD vehicle manifested its intention to the merging vehicle by small amounts of 

acceleration because of the driver’s intervention. 

Table 5.4. Means and standard deviations for the metrics on the performance of the AD system in Phase 2  

Source Number  Metrics 

  𝑡𝑖𝑛𝑡𝑒𝑟 (s)  𝑣𝑓𝑖𝑛 𝑣 ⁄   (%)  𝑎 (m/s2) 

n  M SD  M SD  M SD 

Fluid – without cooperation 9  20.87 5.52  69.26 5.01  2.05 0.77 

Fluid – cooperation  41  16.04 3.00  98.18 9.04  1.40 0.64 

           

Congestion – without cooperation 9  19.63 7.00  78.70 15.46  0.88 0.29 

Congestion – cooperation  59  7.17 4.04  90.47 20.45  1.28 0.29 

 

Table 5.5. T-test for equality of means (independent samples) 

Scenario Metrics t df p* Mean differences 

Fluid 
 
  

𝑡𝑖𝑛𝑡𝑒𝑟  (s) -2.54 9 0.03 -4.83 

vfin/v0 (%) 13.23 21 1.19E-11 28.92 

a (m/s2) -2.38 11 0.04 -0.65 

      

Congestion 𝑡𝑖𝑛𝑡𝑒𝑟  (s) -5.21 9 5.56E-04 -12.46 

vfin/v0 (%) 2.03 13 0.06 11.77 

a (m/s2) 3.85 11 2.68E-3 0.40 

* Two tails with a 5% alpha level 

5.8.4 Summary and discussion 
We summarize the main results from the user study and give a discussion after each result. 
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Concerning the HMI, the simulated augmented reality in the driving scene—the yellow 

rectangle that tracks the merging vehicle was considered as the one the easiest to understand 

among all the HMI elements. Besides other factors that could influence the intuitiveness of an 

HMI like graphical grammar, we want to highlight the role of the perceptibility, considering 

that the HMI is dispatched into three areas in the field of view of the driver in the current 

configuration. According to our observations, most of the subjects monitored the merging 

vehicle located on the right part of the scene. The verbal protocol suggested that they tended to 

infer the system’s intention from the change of the distance to the merging vehicle. 

Consequently, the HUD-HMI (in the center of the scene) and the back-lit buttons (near the gear 

shift lever) were situated in the peripheral vision of those subjects. The low perceptibility of the 

HUD-HMI and the button interface may influence subject’s average level of understanding on 

the meanings of their contents. Furthermore, subjects needed to switch attention between the 

merging vehicle and the button command (to check whether a button became green). It could 

increase their cognitive demand. Thus, it may be beneficial for the usability of HMI to display 

the essential information in the driving scene, especially in the zone the driver attends to. In our 

case, it is of interest to show the system’s intention and the button’s state near the merging 

vehicle. To achieve this goal, the augmented reality technology is necessary. 

With regard to the cooperation principle, the experiment results indicate that the logic in 

Congestion (being possible to choose any of the alternatives) was easier to understand than 

that in Fluid (being possible to choose an alternative other than the system’s intention). The 

average performance of the subjects on button use in Phase 2 confirms this conclusion too. 

Therefore, it seems better to provide a way for the driver just to indicate his intention, regardless 

of the intention of the system. In case that the driver and the system share the same intention, 

the system can take the input of the driver as a confirmation. This modification of the 

cooperation principle will be tested in the future works. As to the temporal aspect of the 

cooperation performance, the average time needed for the first button press after this button 

became available was about 3.9s. This implies that the system needs to offer a time window 

long enough (at least longer than 3.9s under the current HMI configuration) so that the driver 

has enough time to reason and to give his choice. Of course, time window length depends on 

the behavior of the merging vehicle, but it can be extended if the AD system is able to predict 

the situation’s evolution with a longer look ahead. Therefore, this imposes high requirements 

on the situation assessment function of the AD system. On the other hand, how to design an 

intuitive HMI to reduce the driver’s reaction time, especially when he is engaging in non-

driving tasks, remains another research question of interest. 
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The performance metrics of the AD vehicle in interaction with the merging vehicle suggest that 

the intervention from the driver could be beneficial to the AD system in terms of managing 

merging situations. Nevertheless, it is difficult to generalize the same conclusion to the real 

world for lack of the knowledge of the validity of these simulated scenarios. As argued by Boer 

et al. (2015), to evaluate the interaction of the AD vehicle with other road users constitutes one 

important usage of driving simulators in the AD vehicle design. To achieve this goal, it needs 

to ensure the realism of the behaviors of other road users. One plausible solution is to integrate 

state-of-the-art microscopic traffic simulation models into a scenario modelling tool as the one 

developed in this study. Given that those models are already validated by naturalistic data, they 

can enhance the realism of behaviors of traffic vehicles in the simulation. In the meanwhile, the 

traffic vehicles can interact with the ego vehicle according to the scenario. 

5.9 Conclusion 
In this chapter, we have designed a cooperative longitudinal control framework following the 

principle for maneuver cooperation. This framework was designed in a use case concerning 

highway merging management. At the tactical level, we have developed a HFSM-based 

cooperative maneuver planning function. The states and the transitions in the HFSM were 

designed a priori based on human driving behaviors in the same kind of situation. The HFSM 

adopts different strategies in uncongested and congested traffic flows. In uncongested traffic, 

the system explicitly manifests its intention to pass or yield by assessing the current or future 

gap with the merging vehicle. In congestions, the system can socially interact with the merging 

vehicle through the cooperation with the human driver. In order to execute a maneuver 

generated from the tactical level, we adapted an ACC controller with the virtual leader scheme. 

Particularly, we have proposed a MPC-based trajectory generation method for the virtual leader. 

By formulating trajectory generation as an online optimization problem, this method is capable 

of generating a smooth trajectory towards a target state. 

For the interaction aspect of the design framework, we have designed a set of HMI solutions 

for cooperation at the tactical level. In a user study on driving simulator, we evaluated the 

intuitiveness of the cooperation principle, user’s performance on cooperation and the effects of 

the cooperation on AD vehicle’s interaction with the merging vehicle. Test results show the 

interest of using augmented reality to enhance the perceptibility of HMI. In addition, we 

discussed user’s perception of the proposed cooperation principle and the positive effect of 

driver-vehicle cooperation on AD vehicle’s performance. We also pointed out some future 

directions to improve the principle for maneuver cooperation and the associated HMI. 
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6 PRINCIPLE FOR CONTROL 
COOPERATION: PREDICTIVE 
SHARED STEERING CONTROL 

6.1 Introduction 
In the previous chapter, we designed a cooperative longitudinal control system which allows 

the driver to change system’s maneuver plan at the tactical level. This chapter focuses on the 

problem of control sharing between the driver and the automation at the operational level. This 

problem is addressed by the principle for control cooperation.  

Considering potential interferences between the driver and the automation on vehicle’s lane 

positions or lateral trajectories, we identify highway lane positioning and lane changing as a 

use case for control cooperation. In this use case, we aim to design a cooperative steering control 

system. The system performs automatic lane-keeping control in AD mode. When the human 

driver intervenes in the control-loop, the system shares the control authority with the driver 

following the cooperation principle. While the shared control occurs at the operational level, 

the system adapts the target lane for steering control at the tactical level once the driver’s 

steering intention is detected. 

We begin this chapter by introducing the use case in Section 6.2. The architecture for the 

cooperative steering control system is presented in Section 6.3. Section 6.4 describes how to 

formulate a haptic shared steering control problem in the MPC framework. Section 6.5 presents 

a tactical-level function named active lane-change assist that assists the driver in a lane change 

maneuver by detecting his intention. Section 6.6 presents a simulation study to demonstrate the 
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system’s functions. It is followed by Section 6.7 which reports a preliminary user study 

evaluating the driver’s steering performance during the control transition.  

6.2 Use case: highway lane positioning and lane changing 
Drivers may adjust lane positions of their vehicles for many reasons. For example, it is often 

observed that a car that is passing a large truck purposely deviates from the lane center to 

increase the lateral distance to the truck for the reason of safety. In low-speed traffic in France, 

some drivers tend to adjust their vehicles’ positions towards the road curb when they see a 

motorcycle coming in the middle of the road in their side mirrors. In this case, by adjusting 

their lane positions, the car drivers communicate to the motorist that they are considerate of 

him. In general, lane-keeping control systems keep the vehicle driving in the center of a lane. 

A more advanced approach for vehicle guidance is to use a motion planner whose major 

objective is plan trajectories to avoid collisions in the road. It is difficult, however, to formulate 

these context-based objectives into a single motion planning framework. Therefore, a driver 

may have needs to adjust vehicle’s lane position in some situations if the AD vehicle always 

drives in the center of a lane or occasionally swerves to avoid potential collisions.  

A lane change maneuver can be regarded as a special case of lane positioning, because lane 

change literally means changing the vehicle’s position into another lane. But lane change means 

more than vehicle trajectory control, it also involves decision-making process at the tactical 

level. From the perspective of HMI, it is of interest to study a unified cooperation framework 

through which the driver cannot only control vehicle’s lane position at the operational level but 

also indicate his intention of lane change to the automation. For this reason, we address highway 

lane positioning and lane changing in a single use case. 

Based on field observations, mainline vehicles sometimes make cooperative lane changes to 

facilitate the merging of on-ramp vehicles at highway entry section. The solution proposed for 

this use case can also be applied for the use case “highway merging management” in Chapter 

5. In addition to indicate his intention to pass or yield to a merging vehicle, the driver can initiate 

a lane change through the cooperation principle implemented in this use case. 

6.3 System architecture and assumptions 
In this use case, we focus on vehicle lateral motion control. Our design objective is hence a 

cooperative steering control system. The system architecture stems from the hierarchical 

cooperative control architecture proposed in Chapter 3. The information flows through the 

cooperation principle are highlighted in Fig. 6.1. The purple arrows show that the cooperation 
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arises at the operational level when the driver intervenes through the control interface. 

Following the principle, the cooperation can also ascend to the tactical level when the system 

adapts its maneuver plan to the driver’s control. 

 

Figure 6.1. Information flows in the hierarchical cooperative control architecture. 

Fig. 6.2 shows the architecture of the cooperative steering control system. At the operational 

level, we propose a single predictive shared steering control function that combines motion 

planning and shared control in the MPC framework. The rationale for this proposition is 

twofold. Firstly, the main task of the operational-level functions is to perform lane keeping 

control in this use case. We assume that a high-precision digital map provides information on 

road geometry based on clothoid curves for the controller to track (Section 4.3.2). It is a 

reasonable assumption for highway application in that there is almost no intersection on a 

highway. Secondly, MPC has the potential to merge the trajectory planning and control into a 

unified framework. By formulating a finite horizon constrained optimal problem, one can use 

a MPC controller to keep the vehicle within a safe navigational zone while satisfying input 

constraints, safety constraints, and ride comfort preferences. This concept has been explored in 

the works of Anderson et al. (2010), Erlien, Fujita, and Gerdes (2016) and Suh et al. (2016). 

At the tactical level, an active lane change assist function can automatically perform a lane 

change maneuver if the driver’s lane change intention is detected from his actions on the 

steering wheel23. The lane-keeping or lane change maneuver is translated as a specific lane 

center for predictive shared steering control. The situation assessment function developed in 

Chapter 4 provides the states of traffic vehicles for the active lane change assist to assess the 

                                                 
23  Other methods to initiate a lane change maneuver, e.g., via the turn signal are also compatible with this 

architecture. 

• Traffic rules
• Context information
• Spatial awareness
• Scene evolution prediction

• Road geometries
• object states
• Safe travel field

Plan 
alternatives

Arbitration 
result

Hierarchical cooperative control

Maneuver 
planning

Motion 
planning

Shared 
control

Maneuver 
arbitration

Reference 
trajectory

ACTUATOR 
LAYER

Maneuver plan

Actuator inputs

Replan
request

Driver’s control

System’s control

Cooperation result
SENSOR 
LAYER

Perception 
& situation assessment

DRIVER 

Multimodal 
feedback

Driver 
commands

HMI

Vehicle 
control 

interfaceDriver’s control

Haptics

Maneuver 
intention

Predicted 
trajectory



Designing driver-vehicle cooperation principles for automated driving systems 

140   

feasibility of a lane change maneuver at the tactical level. In the meantime, it sends the road 

information to the predictive shared controller. 

 

Figure 6.2. Architecture of the cooperative steering control system 

The following assumptions are given within the defined use case: 

 The AD vehicle operates in normal driving conditions. Concerning the ego vehicle 

dynamic states, normal conditions imply that they are within a stable handling envelope. 

Thus, those critical conditions, e.g., in evasive maneuvers (large lateral acceleration) 

and low road surface friction are not considered. As to the external environment, normal 

conditions means fluid traffic with steady flux speed. All the traffic vehicles drive within 

their lanes. 

 It is assumed that the AD vehicle’s speed is constant in the prediction horizon of the 

MPC. Even though the open-loop prediction accuracy decreases under this assumption, 

the update of the prediction model based on the current speed measure in the online 

optimization can at some extent compensate the prediction error. As it will be 

demonstrated by the simulation results, the MPC controller is robust to the speed 

variation. 

 All the states of the vehicle model are available and the uncertainty on the states are 

omitted, thus the predictive shared steering control is formulated in a deterministic 

framework. 

 The vehicle longitudinal control framework developed in Chapter 5 is used to ensure 

automatic longitudinal control. During a lane change maneuver, the virtual leader used 

by the ACC controller will join the target front vehicle in the target lane to generate a 

smooth trajectory for longitudinal control. 

Concerning the final authority issue in the control sharing, we follow the assumption made in 
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mode transition rule proposed in the French project “ABV” on vehicle automation (Section 

2.5.5). Following this transition rule, the fact that the driver’s steering torque exceeds a 

threshold reveals a strong disagreement between the driver and the automation. In this case, the 

automation gives all the steering control authority back to the driver by disengaging steering 

control function. Accordingly, the level of the AD system transitions from SAE level 3 to level 

1 where the system assumes only vehicle longitudinal control. The driver shall be notified from 

the HMI of the transition. 

6.4 Predictive shared steering control 

6.4.1 Previous works on MPC for automated driving and shared steering control 
MPC based approaches have been applied both in trajectory planning and tracking for 

automated driving. In trajectory planning applications, a mass point model or a kinematic 

bicycle model is usually used as vehicle model for trajectory prediction (Carvalho et al. 2015). 

A major design concern is how to formulate a safe navigational zone in terms of state 

constraints. To make powerful convex optimization tools applicable, it is desirable to formulate 

a convex navigational zone. Andersen et al. (2010) and Erlien, Fujita, and Gerdes (2016) 

sampled the boundaries of a presumed safety region to generate constraints on lateral 

deviations. Nilsson et al. (2015) approximated a non-convex driving corridor by intersecting 

two polyhedrons. Park et al. (2015) and Qian et al. (2016) incorporated non-convex collision-

free constraints into a mixed-integer programming problem (MIQP). Whereas Park et al. used 

a cell-sequence approach to decompose a non-convex homotopy, Qian et al. combined 

propositional logic with approximated convex zones to formulate a MIQP. 

MPC has also been applied for vehicle steering control to track a reference trajectory. Dynamic 

vehicle models with tire models are mostly used in this kind of application to predict more 

precisely vehicle dynamic responses to control inputs. The complexity of using a dynamic 

model resides in the nonlinear relationship between the tire forces and the vehicle states and 

inputs. Falcone et al. (2007) developed a full nonlinear MPC (NMPC) for active steering 

control, however, this NMPC scheme suffers from high computational burdens. In their later 

works (Falcone et al. 2007), the nonlinear vehicle model was linearized at each current state, 

thus the computational efficiency was improved. With a linear tire model, the model of vehicle 

lateral dynamics can be transformed to a linear-parameter varying (LPV) model where the 

vehicle longitudinal speed 𝑣𝑥  is a time varying parameter. Besselmann and Morari (2009) 

proposed an explicit LPV-MPC approach to exploit this LPV structure. In their approach, the 
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explicit control law was computed via a closed-loop min-max MPC algorithm based on 

dynamic programming.  

As presented in Section 2.4.1, MPC has been explored to accommodate shared control scheme. 

Andersen et al. (2013) blended the MPC’s and driver’s steering commands according to the 

wheel slip angle which is considered as a metric of vehicle’s stability. Erlien et al. (2016) 

defined a safe driving envelope consisting of a stable handling envelope for vehicle’s stability 

and an environment envelope for collision avoidance. A MPC controller seeks to match the 

driver’s commands if the current driver command allows for a vehicle trajectory within the safe 

envelope. It intervenes only if such trajectory does not exist. The MPC controllers proposed in 

these two works controlled steering angles and were implemented in the steering-by-wire 

infrastructure. In order to make the driver aware of system’s activities, haptic feedback was 

rendered separately from the control loop in both works.  

In this thesis, we designed a MPC-based haptic shared control framework. In contrast with the 

works of Andersen et al. and Erlien et al. which controlled steering angle within steering-by-

wire system, the MPC controller in this framework controls steering torque for a conventional 

steering system with mechanical connections. In this way, the driver can directly feel the 

controller’s steering torque from the steering wheel. Furthermore, this framework exploits the 

receding horizon strategy in the MPC scheme to adapt system’s control to driver’s actions. 

Some shared control frameworks (Saleh et al. 2013; Soualmi et al. 2014) formulated a fixed 

optimization objective—a compromising between reference tracking quality and control 

sharing for an infinite horizon and synthetized a control law once offline. The proposed 

framework iteratively resolves an online finite-horizon optimization problem that takes into 

account the driver’s actual control. At the price of not guaranteeing the global optimality of the 

solution, the receding horizon strategy updates the solution based on the actual conditions which 

are usually dynamic. 

6.4.2 Problem formulation 
For convenience, we restate the optimization problem to be solved by a MPC controller: 

 Minimize : 𝐽𝑁𝑝(𝐱(0),𝑈(0))  (6.1a) 

 Subject to:  

 �̇�(𝑘 + 1) = 𝑓(𝐱(𝑘), 𝐮(𝑘)),   𝑘 = 0,… , 𝑁𝑝 − 1,  (6.1b) 

 𝐱(𝑘) ∈ 𝒳,    𝑘 = 0, … ,𝑁𝑝 − 1,  (6.1c) 

 𝐱(𝑁𝑝) ∈ 𝑋𝑓 ,   (6.1d) 
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 𝑢(𝑘) ∈ 𝒰,   𝑘 = 0,… ,𝑁𝑐 − 1.  (6.1e) 

The main design task is to formulate a haptic shared steering control problem in the form of 

(6.1). In practice, the cost function 𝐽𝑁𝑝 (6.1a) is formulated as a compromising between two 

competing objectives—small output deviation and small control efforts (Boyd 2008). This 

compromising can be represented by the following equation: 

 𝐽𝑁𝑝 = 𝜌𝐽𝑜𝑢𝑡 + 𝐽𝑖𝑛,  (6.2) 

where 𝐽𝑜𝑢𝑡  is the cost on the output deviation with small values characterizing “good” 

regulation and control; 𝐽𝑖𝑛 denotes the cost on inputs with small values for “using small control 

authority”; 𝜌 gives the relative weighting between 𝐽𝑜𝑢𝑡 and 𝐽𝑖𝑛. It is clear that 𝜌 determines the 

tradeoff between those two objectives. 

From the point of view of HMI, 𝜌 can be used to leverage the allocation of the control authority 

between the automation and the human driver. The smaller 𝜌 is, the more the MPC controller 

tolerates the deviation from the reference and the more it penalizes using control authority (𝐽𝑖𝑛). 

In the inverse case, when 𝜌 is bigger, the automation will employ more control authority to 

penalize the deviation from its proper reference. Thanks to the online optimization property of 

MPC, we can adapt 𝜌 online such that the automation dynamically shares the control authority 

to the human driver.  

In addition to the weight 𝜌 in the cost function, the constraints in (6.1) can also be exploited in 

the shared control scheme. The constraints can be set on AD vehicle’s lateral positions to define 

a safe navigational zone. If the driver steers the vehicle towards a lane position out of this zone, 

the MPC will enforce its control to constrain the vehicle’s trajectory within this zone. At the 

same time, the driver can feel the increased steering torque from the controller. In this way, we 

tend to achieve a design objective in the proposed principle—to show disagreement if the 

driver’s action could undermine the safety. 

6.4.3 Vehicle model 
This section presents a vehicle model (6.1b) that takes into account vehicle lateral dynamics, 

steering system dynamics and vehicle lane positioning. 

6.4.3.1 Bicycle model of vehicle lateral dynamics 

Bicycle model is a simplified vehicle dynamics model which was firstly reported in the work 

of Riekert and Schunck (1940). Thanks to its good representativeness of vehicle lateral 

dynamics, it is widely used in applications of vehicle lateral control. Since it assumes symmetry 
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dynamic behavior between left and right wheel sides, the structure of vehicle can be simplified 

as a single track with two wheels shown in Fig. 6.3. Assuming that the longitudinal speed 𝑣𝑥 is 

constant, the bicycle model has two degrees of freedom. In the vehicle fixed frame Λ𝑉, vehicle’s 

lateral motion is governed by 

 𝑚𝑎𝑦 +𝑚𝑣𝑥�̇� = 𝐹𝑦𝑓 + 𝐹𝑦𝑟,  (6.3) 

where 𝐹𝑦𝑓  and 𝐹𝑦𝑟  are the total lateral tire forces of the front and rear wheels respectively. 

Moment balance about the CoG yields the equation for the yaw dynamics as 

 𝐼𝑧�̈� = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟, (6.4) 

where 𝐼𝑧 denote the yaw inertia, and 𝑙𝑓 and 𝑙𝑟 are the distances of the front tire and the rear tire 

respectively from the CoG of the vehicle. The lateral tire forces 𝐹𝑦⋆ (⋆∈ {𝑓, 𝑟}) are given by 

 𝐹𝑦⋆ = 𝐶⋆𝛼⋆, (6.5) 

where 𝐶⋆  stands for the tire cornering stiffness, and 𝛼⋆  represents the lateral tire slip angle 

which is obtained using small angle approximations as, 

 𝛼𝑓 = 𝛿𝑓 −
𝑣𝑦+𝑙𝑓�̇�

𝑣𝑥
,  (6.6) 

 𝛼𝑟 =
−𝑣𝑦+𝑙𝑟�̇�

𝑣𝑥
,  (6.7) 

where 𝛿𝑓 is the front steering angle. Experimental results show that the linear relationship 𝐹𝑦⋆ −

𝛼⋆ keeps well when 𝛼⋆ is below 3° (equivalent lateral acceleration 𝑎𝑦  of 0.4g) according to 

Mitschke and Wallentowitz (2004). 

 

Figure 6.3. Bicycle model notion  

6.4.3.2 Steering system model 

Fig. 6.4 shows a mechanical model of an electric power assisted steering (EPAS) system based 

on which we implemented haptic shared control. In manual driving mode, the electric motor 

generates an assist steering torque to aid the driver to perform steering maneuver. In automatic 

steering control, the AD system controls the electric motor to apply an overlay torque command 

𝑙𝑟

CoG

𝐹𝑦𝑓𝐹𝑦𝑟

𝛼𝑟

𝛼𝑓 𝛿𝑓

𝑣𝑦

𝜓 ̇

Λ𝑉

𝑙𝑓

𝑣𝑥



Chapter 6: Principle for control cooperation: predictive shared steering control 

   145 

𝑇𝑐𝑡𝑟𝑙 on the steering column in the place of the driver to steer the vehicle. In case of the driver’s 

intervention, 𝑇𝑐𝑡𝑟𝑙 is superposed to the steering torque of the driver 𝑇𝑑. The steering system 

dynamics in haptic shared control is the same with that in EPAS. To simplify the model, the 

torsion of the steering column and the friction in the steering system are omitted. The dynamics 

of the steering system is modelled as 

 𝐼𝑒𝑞�̈�𝑓 + 𝑐𝑒𝑞�̇�𝑓 = 𝑖𝑠(𝑇𝑑 + 𝑇𝑐𝑡𝑟𝑙) −
𝑇𝑎𝑙

𝑘𝑝
,  (6.8) 

where 𝐼𝑒𝑞  is the equivalent moment of inertia of the steering system, 𝑐𝑒𝑞  is the equivalent 

damping, 𝑖𝑠 is the steering ratio, 𝑇𝑎𝑙 is the total torque of auto-alignment of two front wheels, 

𝑘𝑝 is the steering assist coefficient which is a simplified representation of the electric motor’s 

assistant steering torque. In this study, 𝑘𝑝  is assumed to be constant. The torque of auto-

alignment is mainly due to the tire lateral force 𝐹𝑦𝑓 and therefore can be approximated by 

 𝑇𝑎𝑙 = 𝐹𝑦𝑓𝑛𝑓 = 𝐹𝑦𝑓(𝑛𝑅 + 𝑛𝑘),  (6.9) 

where 𝑛𝑅 is the offset between the lateral force acting point and the center of tire contact patch, 

and 𝑛𝑘 is the offset due to the caster of the steering axis (see Fig. 6.5). The method to calculate 

𝐼𝑒𝑞 and 𝑐𝑒𝑞 is given in Appendix B. 

 

Figure 6.4. Mechanical model of an EPAS system 

Equations (6.3)-(6.9) characterize the lateral vehicle dynamics under the controls of the driver 

and the automation. The state space model of the lateral dynamics based on (6.3)-(6.9) can be 

written as 

 �̇�𝑑𝑦𝑛 = 𝐴𝑑𝑦𝑛𝐱𝑑𝑦𝑛 + 𝐵𝑑𝑦𝑛 ,  (6.10) 

where 𝐱𝑑𝑦𝑛 = [𝑣𝑦 �̇� 𝛿𝑓 �̇�𝑓]
𝑇
 is the state vector,  
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 . (6.12) 

In full automatic control, 𝐮 is the control of the automation, i.e., 𝐮 = 𝑇𝑐𝑡𝑟𝑙, while in shared 

control, 𝐮 is the total control of both the automation and the human driver, i.e., 𝐮 = 𝑇𝑑 + 𝑇𝑐𝑡𝑟𝑙. 

 

Figure 6.5 Schema used to calculate the torque of auto-alignment 

6.4.3.3 Lane positioning 

The main objective of the MPC controller is to track a lane centerline. Since the AD vehicle’s 

position is represented in the Frenet frame Λ𝑅𝐷 in the scene representation, its lateral offset to 

a reference lane center Δ𝑑 and heading error Δ𝜓 can be trivially computed. As shown in Fig. 

6.6, Δ𝑑 and Δ𝜓 can be obtained via 

 {
Δ𝑑 = 𝑑 − 𝑑𝑟𝑒𝑓
Δ𝜓 = 𝜓 − 𝜓𝑟𝑒𝑓

,  (6.13) 

where 𝑑𝑟𝑒𝑓 is the normal coordinate of the reference lane center in the Frenet frame. This 

reference lane is AD vehicle’s current lane (Lane 2 at 𝑡  in Fig. 6.6) in lane-keeping and the 

target lane (Lane 1 at 𝑡2) in a lane change maneuver. 

𝐹𝑦𝑓
𝑛𝑅 𝑛 

Steering axis

Wheel
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Figure 6.6 AD vehicle’s lane position in the local map of the world model developed in Chapter 4 

The derivatives of Δ𝑑 and Δ𝜓 are given by 

 {
Δ�̇� = 𝑣𝑥  in( Δ𝜓) + 𝑣𝑦 co (Δ𝜓)

Δ�̇� = �̇� − 𝜅(𝑠)�̇�
,  (6.14) 

where 𝜅(𝑠) is the curvature of the road and �̇� is the velocity of the projection of the CoG along 

the road curve which is obtained as   

 �̇� =
𝑣𝑥cos (Δ𝜓)

 −𝜅(𝑠)𝑑
,  (6.15) 

Under the small-angle approximation and neglecting the small terms, (6.14) and (6.15) can be 

simplified as  

 Δ�̇� ≈ 𝑣𝑥Δ𝜓 + 𝑣𝑦,  (6.16) 

 �̇� ≈ 𝑣𝑥.  (6.17) 

In a curved road, 𝜅(𝑠) will change as the AD vehicle moves in the prediction horizon. Since 

road geometries in the digital map are composed of straight segments, circle arcs, and clothoids, 

the curvature evolution can be expressed by 

 𝜅(𝑠) = 𝜅 + 𝑐𝑚𝑠, (6.18) 

where 𝜅  is the curvature at vehicle’s current position and 𝑐𝑚 is the curvature changing rate. 

The derivative of 𝜅(𝑠) with time can be computed by 

 �̇� =
𝑑𝜅(𝑠)

𝑑𝑡
= 𝑐𝑚�̇� ≈ 𝑐𝑚𝑣𝑥, (6.19) 

An issue arises when the AD vehicle crosses different curve segments. In this case, 𝑐𝑚 will 

change stepwise and cause discontinuity in (6.19). To solve this problem, an averaging 

curvature model proposed by Dickmanns (1988)  is used. The basic idea is to use a first-order 
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system to filter the steps caused by 𝑐𝑚. The filter parameters can be derived by making the 

lateral deviation of the real road and that of the model equal at a given look ahead distance L. 

This model is expressed as 

 �̇�𝑚 =
 𝑣𝑥

𝐿
(𝑐𝑚 − 𝑐𝑚𝐿), (6.20) 

where 𝑐𝑚  is the average curvature rate, 𝐿 is a look-ahead distance, and 𝑐𝑚𝐿 is the curvature rate at 

𝐿 which can be retrieved from the digital map by range-querying. Interested readers can refer to the 

work of Dickmanns (2007, 219–22) for derivation details. 

The state-space form of the averaging curvature model based on (6.19) and (6.20) is given as 

 �̇�𝑐𝑢𝑟 = 𝐴𝑐𝑢𝑟𝐱𝑐𝑢𝑟,  (6.21) 

with the state vector 𝐱𝑐𝑢𝑟 = [𝜅 𝑐𝑚 𝑐𝑚𝐿]𝑇 and the matrix 

 𝐴𝑐𝑢𝑟 = [

0 𝑣𝑥 0

0 −
 𝑣𝑥

𝐿

 𝑣𝑥

𝐿

0 0 0

].  (6.22) 

6.4.3.4 State-space representation of the whole model 

The state-space model of the plant for the prediction in MPC can be obtained by concatenating 

(6.10) representing the lateral dynamics, (6.14) and (6.16) for lane positioning and (6.22) for 

road curvatures 

 �̇� = 𝐴𝐱 + 𝐵𝐮, (6.23) 

where 𝐱 = [𝑣𝑦 �̇� 𝛿𝑓 �̇�𝑓 Δ𝜓 Δ𝑑 𝜅 𝑐𝑚 𝑐𝑚𝐿]
𝑇
∈ ℝ9 . The state matrix 𝐴 ∈ ℝ9×9 

can be partitioned as 

 𝐴 = [
𝐴  𝐴 2 𝐴  
𝐴2 𝐴22 𝐴2 
𝐴  𝐴 2 𝐴  

],  (6.24) 

with 𝐴  = 𝐴𝑑𝑦𝑛 ∈ ℝ4×4, 𝐴 2 = 𝑶4×2, 𝐴  = 𝑶4× ,  

 [𝐴2 |𝐴22|𝐴2 ] = [
0 1 0 0
−1 0 0 0

|
0 0
−𝑣𝑥 0

|
−𝑣𝑥 0 0
0 0 0

] , 

𝐴  = 𝑶 ×4, 𝐴  = 𝑶 ×2, and 𝐴  = 𝐴𝑐𝑢𝑟 ∈ ℝ × . Note that 𝑶𝑚×𝑛 ∈ ℝ𝑚×𝑛 denotes the null 

matrix. The input matrix 𝐵 is given as 

 𝐵 = [𝑶 × 
𝑖𝑠

𝐼𝑒𝑞
𝑶 ×5]

𝑇

∈ ℝ9. (6.25) 
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The meaning of  is the same as in (6.10). Since the variable 𝑣𝑥 is a parameter of the matrix , 

(6.23) is a non-linear model. Assuming that 𝑣𝑥  remains constant in the prediction horizon, 

(6.23) is a linear time invariant system. Since the MPC is formulated in the discrete time 

framework, (6.23) is discretized using the zero-order hold method.  

6.4.4 Constraints 
We impose the constraints on some vehicle’s states and the control input to meet the design 

specifications in terms of safety and passenger’s riding comfort.  

6.4.4.1 Constraints on AD vehicle’s lateral offset to the lane center 

The AD vehicle’s position needs to be constrained in a safe navigational zone for collision 

avoidance. In this use case, we use lane-based constraints as a simplified form. The outermost 

lane borders are used as default lateral constraints. As illustrated in Fig. 6.7 (a), this placement 

allows the driver to adjust vehicle’s trajectory or change lane in a large space. However, if an 

adjacent lane is occupied by vehicles and merging in this lane may result in collisions with in-

lane vehicles, the constraint is temporally set on the border of the occupied adjacent lane, as 

showed in Fig. 6.7 (b). The decision for constraint placement is made during the assessment of the 

lane change feasibility in the active lane change assist. The corresponding algorithm will be 

presented in Section 6.5.2. 

 

Figure 6.7 Lane-based constraints on vehicle’s lateral offset: (a) the constraints are placed on the outermost lane 

borders to prevent road departure; (b) if the merge in an adjacent lane causes potential dangers, the border to this 

lane is set as constraint. 

The constraints on lateral offset to the lane center are represented as 

 Δ𝑑𝑚𝑖𝑛 − 𝜖 ≤ Δ𝑑(𝑘) ≤ Δ𝑑𝑚𝑎𝑥 + 𝜖,    𝑘 = 0,1,… , 𝑁𝑝 − 1,  (6.26) 

where Δ𝑑𝑚𝑖𝑛 and Δ𝑑𝑚𝑎𝑥 are the lower and upper bounds, 𝜖 is slack variable which “softens” 

the constraints to ensure the feasibility of the optimisation problem. According to the definition 

of the lane-based constraints, Δ𝑑𝑚𝑖𝑛 and Δ𝑑𝑚𝑎𝑥 are given by  

AD AD AD

(a) (b)

AD
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 {
Δ𝑑𝑚𝑖𝑛 = −

𝑤𝑙𝑎−𝑤𝑒𝑔𝑜

2
− (1 − 𝛾𝑟)𝑑𝑟

𝑙𝑎

Δ𝑑𝑚𝑎𝑥 =
𝑤𝑙𝑎−𝑤𝑒𝑔𝑜

2
+ (1 − 𝛾𝑙)𝑑𝑙

𝑙𝑎
, (6.27) 

where 𝑤𝑙𝑎 and 𝑤𝑒𝑔𝑜 are lane width and the ego vehicle’s width, 𝑑𝑟𝑙𝑎 and 𝑑𝑙𝑙𝑎 are the distances 

of the current lane center to the rightmost and leftmost lane center respectively. The two binary 

variables 𝛾𝑟 and 𝛾𝑙 are given by the assessment function for the lane change feasibility at the 

tactical level. For example,  𝛾𝑟 = 0 means a right lane change is feasible, thus the constraint on 

the minimum lateral offset is loosened. In the contrary, 𝛾𝑟 = 1 enforces this constraint. 

Remark 

The lane-based constraints are proposed for the designed use case which assumes that all the 

traffic vehicles drive in their lanes. This method cannot guarantee a collision-free control 

solution in a general highway driving situation, e.g., the avoidance of a stalled obstacle in 

between lanes cannot be handled by setting constraints on the lane border. A generic method is 

first to approximate a safe corridor by using geometries, e.g., using cell decomposition 

techniques (Anderson et al. 2013; Park, Karumanchi, and Iagnemma 2015), then to sample the 

boundaries of the corridor in the prediction horizon (usually assuming constant longitudinal 

speed) to generate two dynamic constraint vectors: 

 {
Δ𝐝𝑚𝑖𝑛(𝑘) = [Δ𝑑𝑚𝑖𝑛(𝑘) Δ𝑑𝑚𝑖𝑛(𝑘 + 1) ⋯ Δ𝑑𝑚𝑖𝑛(𝑘 + 𝑁𝑝 − 1)]

𝑇

Δ𝐝𝑚𝑎𝑥(𝑘) = [Δ𝑑𝑚𝑎𝑥(𝑘) Δ𝑑𝑚𝑎𝑥(𝑘 + 1) ⋯ Δ𝑑𝑚𝑎𝑥(𝑘 + 𝑁𝑝 − 1)]
𝑇. (6.28) 

Evidently, (6.28) can be integrated in our MPC framework to yield a more generic solution. 

6.4.4.2 Constraints on ride comfort  

Normal driving conditions in terms of vehicle dynamics can be characterized by small lateral 

accelerations. Based on field experimental results, Wegschweider and Prokop (2005) identified 

a zone delimited by longitudinal and lateral accelerations in the “g-g graph” to define a normal 

driving type (Fig. 6.8). Based on this zone, we constraint the maximal lateral acceleration as: 

   |𝑎𝑦| = |�̇�𝑣𝑥| ≤ 0.4 , (6.29) 

therefore, 

   |�̇�| ≤ �̇�𝑚𝑎𝑥 =
 .4𝑔

𝑣𝑥
. (6.30) 
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Figure 6.8 “G-g” graph that depicts normal driving conditions (Wegschweider and Prokop 2005) 

6.4.4.3 Constraints on control input 

In steady state corning, the steering torque on the steering column can be computed as  

 𝑇𝑠𝑡𝑟 =
𝑚𝑛𝑓𝑙𝑟

𝑘𝑝𝑖𝑠(𝑙𝑓+𝑙𝑟)
𝑎𝑦. (6.31) 

Given that 𝑎𝑦 is limited by 0.4g in normal driving conditions, the necessary maximum steering 

torque in our case is 

 𝑇𝑠𝑡𝑟 =
𝑚𝑛𝑓𝑙𝑟

𝑘𝑝𝑖𝑠(𝑙𝑓+𝑙𝑟)
(0.4𝑔) ≈ 5.2 ( ). (6.32) 

We thus define the steering torque limit 𝑇𝑚𝑎𝑥 as 6 Nm 

 |𝑇𝑐𝑡𝑟𝑙| ≤ 𝑇𝑚𝑎𝑥. (6.33) 

Note that the steering torque bounded by 𝑇𝑚𝑎𝑥  can always be overruled by a human driver. 

Considering the actuator limit, the increment of 𝑇𝑐𝑡𝑟𝑙 is bounded as 

 |Δ𝑇𝑐𝑡𝑟𝑙| ≤ Δ𝑇𝑚𝑎𝑥. (6.34) 

With the sample size of 0.05 s, Δ𝑇𝑚𝑎𝑥 is set as 0.5 Nm. 

6.4.5 Cost function and shared control policy 
The main control objective of the MPC controller is to track a reference lane center. A 

performance vector for reference tracking is defined as 

 𝐳 = 𝐶𝐱 = [𝑣𝑦 �̇� �̇�𝑓 Δ𝜓 Δ𝑑]
𝑇
, (6.35) 

with 𝐶 = (𝑐𝑖,𝑗) ∈ ℝ5×9 in which the values of 𝑐 , , 𝑐2,2, 𝑐 ,4, 𝑐4,5 and 𝑐5,6 are equal to one and 

the rest is null. Following (6.2), the cost function in this optimization problem is defined as 
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𝐽𝑁𝑝(𝐱(0),𝑈(0), 𝜌) =∑ 𝐳(𝑘)𝑇𝜌𝑄𝐳(𝑘) + 𝐮(𝑘)𝑇𝑅𝑢𝐮(𝑘)
𝑁𝑝− 

𝑘= 
 

 +𝛥𝐮(𝑘)𝑇𝑅Δ𝑢𝛥𝐮(𝑘) + 𝑆𝜖
2,  (6.36) 

where 𝑄 ∈ ℝ5×5 , 𝑅𝑢 ∈ ℝ  and 𝑅Δ𝑢 ∈ ℝ  represent diagonal weighting matrices penalising 

deviations from 𝐳(𝑘) = 𝐮(𝑘) = 𝛥𝐮(𝑘) =  ,  denotes the penalty on constraint violations in 

(6.26), and ∈ [0,1]  is a dynamic weighting factor that leverages the control allocation 

between the controller and the driver. It is referred to as shared control policy hereinafter. 

Based on the cooperation principle, the first objective for the shared control is to ensure that the 

driver can override the automation with ease. Therefore, when the driver’s steering intention is 

detected,  is set to zero. In this way, whenever the vehicle’s lateral trajectory satisfies the 

lateral position constraints (6.26), the MPC controller minimizes its control to give the driver 

the most control authority. When the driver releases the steering wheel,   is set to one. The 

MPC controller then takes over the control to ensure a seamless control transition. The variation 

of  is expressed as: 

 {
𝜌 = 0,   𝑖𝑓  𝛾𝑠𝑤 > 0 ∧  |𝑇𝑑𝑟| > 𝑇𝑡ℎ𝑟𝑒 
𝜌 = 1,   𝑖𝑓 𝛾𝑠𝑤 = 0 ∨  |𝛾𝑚𝑎| = 1

, (6.37) 

where 𝛾𝑠𝑤 is the output of a steering wheel hand position sensing system, 𝑇𝑡ℎ𝑟𝑒 is a positive 

threshold to detect the driver’s steering intention and 𝛾𝑚𝑎 is the maneuver state in the active 

lane change assist function. To detect the driver’s presence in the control-loop, we first employ 

a steering wheel hand position sensing system to detect the driver’s hand contact on the steering 

wheel. 𝛾𝑠𝑤 > 0  means that at least one hand is detected and 𝛾𝑠𝑤 = 0  means hands off. 

However, a driver may put his hands on the steering wheel while loosely following the rotation 

of the steering wheel. In order to detect the steering intention of the driver, a threshold 𝑇𝑡ℎ𝑟𝑒 is 

set on the driver’s steering torque. Enache et al (2010) used a threshold 2 Nm to discriminate 

an “inattentive” driver (|𝑇𝑑𝑟|< 2 Nm) from an “attentive” driver in lane keeping scenarios. In 

our case, we define 𝑇𝑡ℎ𝑟𝑒 as 1 Nm based on the recorded data in a preliminary simulator test. In 

order to hand over the control to the controller, the driver needs to release the steering wheel 

(𝛾𝑠𝑤 = 0). Another case in which the controller actively resumes the control authority is to aid 

the driver to perform a lane change maneuver (|𝛾𝑚𝑎| = 1). This case will be presented in 

Section 6.5. 

The shared policy  is then followed by a first-order filter with time lag 𝑡𝜌 to generate a smooth 

variation between zero and one. 
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6.4.6 MPC formulation 
The following constrained finite-time optimal control problem is formulated based on the 

development in the previous sections: 

  Minimize: 𝐽𝑁𝑝(𝐱(0),𝑈(0), 𝜌) = ∑ 𝐳(𝑘)𝑇𝜌𝑄𝐳(𝑘) +
𝑁𝑝− 

𝑘= 
𝐮(𝑘)𝑇𝑅𝑢 (𝑘) 

 +𝛥𝐮(𝑘)𝑇𝑅Δ𝑢𝛥𝐮(𝑘) + 𝑆𝜖
2 (6.38a) 

 Subject to:  

 �̇�(𝑘) = 𝐴𝐱(𝑘) + 𝐵(𝑘),   𝑘 = 0,… , 𝑁𝑝 − 1,  (6.38b) 

 Δ𝑑𝑚𝑖𝑛 − 𝜖 ≤ Δ𝑑(𝑘) ≤ Δ𝑑𝑚𝑎𝑥 + 𝜖,    𝑘 = 0,1,… , 𝑁𝑝 − 1,  (6.38c) 

 |�̇�(𝑘)| ≤ �̇�𝑚𝑎𝑥,    𝑘 = 0,1,… , 𝑁𝑝 − 1,  (6.38d) 

 |𝑇𝑐𝑡𝑟𝑙(𝑘)| ≤ 𝑇𝑚𝑎𝑥,   𝑘 = 0, … ,𝑁𝑐 − 1 (6.38e) 

 |Δ𝑇𝑐𝑡𝑟𝑙(𝑘)| ≤ Δ𝑇𝑚𝑎𝑥,   𝑘 = 0,… , 𝑁𝑐 − 1.  (6.38f) 

At each time instant, the optimal control problem is solved online based on the current vehicle 

state vector 𝐱(0), the shared control policy , dynamic constraints Δ𝑑𝑚𝑖𝑛 and Δ𝑑𝑚𝑎𝑥. Only the 

first element of the obtained optimal control sequence is applied as 𝑇𝑐𝑡𝑟𝑙 on the steering system. 

6.5 Active lane change assist 

6.5.1 Architecture 
The internal architecture of active lane change assist and the interfaces with other modules are 

shown in Fig. 6.9. It consists of three sub-functions: 

 Lane change feasibility assessment: based on the situation assessment, this module 

assesses feasibilities of left and right lane changes. The results are sent to maneuver 

generation and to predictive shared control (into dynamic lane-based constraints). 

 Driver’s lane change intention detection: this module detects the driver’s lane change 

intention based on the divergence between the AD vehicle’s trajectory and the current 

lane centerline cause by the driver’s steering action. Its outputs are two event variables 

to trigger maneuver state transitions in maneuver generation. 

 Maneuver generation: based on the lane change feasibility and the driver’s intention 

detection, this module updates the reference lane center and the shared control policy 

for predictive shared control. 

The following sections will present these three modules subsequently. 
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Figure 6.9 Architecture of the active lane change assist (ALCA) and its relation with other functions (steering 

interface is omitted for clarity) 

6.5.2 Lane change feasibility assessment 
The method to assess if a lane change is feasible used in this thesis stems from the concept of 

Lane Change Decision Aid Systems (LCDAS) which warn the ego vehicle driver of potential 

collisions with other vehicles in the adjacent lane during lane change maneuvers. Nowadays 

LCDAS are already on market and are specified in the international standard (ISO 17387 2008). 

The matrix form scene representation facilitates this assessment (Fig. 6.10).  

The method is presented in an example of assessing the feasibility of a left lane change 

maneuver. The method begins with checking if an adjacent lane exists in the digital map. If 

positive, the method continues to check the occupancy of “left same level” case (case 2). If this 

case is occupied, i.e., a traffic vehicle exists on the side of the ego vehicle, an immediate lane 

change is declared infeasible. If case 2 is empty, the system examines case 3. If there is a 

rearward vehicle in case 3, the danger of a lane change maneuver is measured by the time-to-

collision (TTC) metric between the ego vehicle and this rearward vehicle. The TTC formula is 

  = 𝑠𝑖
𝑣𝑒𝑔𝑜−𝑣𝑖

, (6.39) 

where 𝑠𝑖 is the relative distance of a vehicle i to the ego vehicle and 𝑣𝑖 is this vehicle’s speed. 

Some studies based on naturalistic lane change data recommended a warning signal threshold 

on TTC between 2 to 6 seconds (Lee, Olsen, and Wierwille 2004; Wakasugi 2005). In our work, 

this threshold is defined as 3 second, i.e., if the TTC with the vehicle in case 3 is smaller than 

3 second, the left lane change is considered infeasible, and the flag 𝛾𝑙 in lane-based constraint 

is set to one. 
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Figure 6.10 Matrix representation for lane change feasibility assessment 

6.5.3 Driver’s lane change intention detection 
Many features can be used in the algorithm for driver’s lane change intention detection, such 

as driver’s behaviour (steering wheel angle, head movement), vehicle state (speed acceleration, 

heading, yaw rate) and environment state (lateral and heading errors to a road, relative distances 

with other traffic vehicles). In order to estimate a relation between the unobservable driver’s 

intention and some observable features, learn-based approaches are often used, e.g., training a 

support vector machine classifier (Mandalia and Salvucci 2005; Kumar et al. 2013) or training 

a hidden Markov model (Berndt, Emmert, and Dietmayer 2008; Kuge et al. 2000). Those 

learned-based approaches were demonstrated to be effective, however, to decide pertinent 

features and to prepare a representative dataset are not trivial.  

We adapted the method proposed by Houenou et al. (2013) to detect the driver’s lane change 

intention. The idea is to monitor the lateral and heading deviations of the position of the AD 

vehicle to the lane center. Since the AD system performs lane keeping control by default, these 

deviations should be small. If these deviations to the lane center surpass a threshold and the 

driver is steering toward the direction to increase this deviation, then the driver’s lane change 

intention detection is declared. The advantage of this method resides in the limited features used 

for the detection and its intuitiveness. A disadvantage of this method is its sensitivity to the 

threshold placed on the detector. In thesis, this method is also applied for the detection of the 

merging vehicle’s lane change maneuver in Chapter 5.  

At each time instant , the following quadratic error function is used to measure the divergence 

between the AD vehicle center position and the lane center: 

 𝐷(𝑘) = 𝑤𝑑Δ𝑑(𝑘)
2 +𝑤𝜓Δ𝜓(𝑘)

2,  (6.40) 
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where 𝑤𝑑 and 𝑤𝜓 are the weights. In the probabilistic framework, the covariance matrices of 

the noises of Δ ( ) and Δ ( ) need to be integrated in (6.40). In order to avoid disturbance due 

to punctual erroneous measurements, the fading memory sum of ( ) is used:  

 𝐷𝜌(𝑘) = 𝜌𝐷𝜌(𝑘 − 1) + 𝐷(𝑘),  (6.41) 

with  denoting fading memory factor.  

The detection of driver’s left or right lane change intention is signified by a flag 𝛿𝑙 or 𝛿𝑟 . 

Driver’s left lane change intention is detected, i.e., 𝛿𝑙 = 1 if  

 (𝛾𝑚𝑎(𝑘) = 0) ∧ (𝐷
𝜌(𝑘) > 𝐷 ) ∧ (𝐷

𝜌(𝑘) > 𝐷𝜌(𝑘 − 1)) ∧ (𝑇𝑑𝑟(𝑘) > 𝑇𝑡ℎ𝑟𝑒 ), (6.42) 

where the condition 𝛾𝑚𝑎( ) = 0 means the system’s current maneuver state is lane keeping. 𝐷  

is a threshold whose value needs to be tuned experimentally. The condition 𝑇𝑑𝑟(𝑘) >

𝑇𝑡ℎ𝑟𝑒 implies that the driver intends to turn the steering wheel to the left. Correspondingly, 

driver’s right lane change intention is detected, i.e., 𝛿𝑟 = 1 if 

 (𝛾𝑚𝑎(𝑘) = 0) ∧ (𝐷
𝜌(𝑘) > 𝐷 ) ∧ (𝐷

𝜌(𝑘) > 𝐷𝜌(𝑘 − 1)) ∧ (𝑇𝑑𝑟(𝑘) < −𝑇𝑡ℎ𝑟𝑒 ). (6.43) 

We tuned the parameters in the above described algorithm based on a dataset collected from 

our previous driving simulator experiments on highway driving. There were totally 36 lane 

change maneuvers in this dataset. The retained parameters are showed in Tab. 6.1.  

Table 6.1 Tuned parameters for driver’s lane change intention detection 

Symbol Description Value [units] 

𝑤𝑑 Weight on lateral deviation  1 

𝑤𝜓 Weight on heading (yaw) angle deivation 3000 

 Fading memeory factor 0.2 

𝐷  Threshold on the divergence mertic 3 

During the parameter tuning, the focus was laid on the threshold 𝐷 . We proposed three metrics 

to evaluate the performance of the algorithm—detection rate, false alarm rate and prediction 

time. The definitions of these metrics are illustrated in Fig. 6.11. The performance metrics with 

different threshold values are listed in Tab. 6.2 in which the selected value is enclosed. 
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Figure 6.11 Illustration of the proposed performance metrics 

Table 6.2 Detection performance metrics under different threshold values 

Threshold value Detection rate False alarm rate Average prediction time 

1 100% 35.3% 2.7 s 

2 100% 10.5% 2.15 s 

3 100% 2.63% 1.65 s 

4 100% 2.63% 1.45 s 

5 89.2% 5.71% 1.2 s 

6 78.3% 0 % 1.05 s 

6.5.4 Maneuver generation 
The maneuver generation function is modelled as a finite state machine which has three lateral 

maneuver states—lane keeping, left and right lane changes. The current maneuver state is 

denoted by a discrete variable 𝛾𝑚𝑎(𝑘) ∈ {−1,0,1}, with “−1” for left lane change, “0” for lane 

keeping and “1” for right lane change. Given the symmetry between the right and the left lane 

changes, here only the transitions between left lane change and lane keeping are presented. The 

transition from lane keeping to left lane change, i.e., 𝛾𝑚𝑎 = 0 → 𝛾𝑚𝑎 = −1, is triggered, if the 

driver’s left lane change intention is detected and in the meanwhile the left lane change is 

considered as feasible. This condition is expressed as 

 𝛿𝑙 = 1 ∧ 𝛾𝑙 = 0. (6.44) 

Once the left lane change state is active, 𝑑𝑟𝑒𝑓 for predictive shared control is updated to the 

lateral offset of the left adjacent lane.  

The transition from left lane change to lane keeping can be triggered under two different 

conditions. The first condition corresponds to a nominal termination of lane change maneuver, 

while the second condition represents that the driver counter steers the steering wheel to cancel 
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the triggered lane change maneuver, e.g., due to a false alarm. These two conditions are 

expressed as: 

 ((𝐷𝜌(𝑘) < 𝐷 ) ∧ (𝐷
𝜌(𝑘) < 𝐷𝜌(𝑘 − 1))) ∨ (𝑇𝑑𝑟 ⋅ 𝑇𝑐𝑡𝑟𝑙 < −𝜆),  (6.45) 

where 𝑇𝑑𝑟 ⋅ 𝑇𝑐𝑡𝑟𝑙 is an indicator of the negative interference between the driver and the system 

which was proposed by Sentouh et al (2013), and  is a positive threshold which is set as 3.5 

𝑁2. 𝑚2. 

As shown in (6.37), when the lane change maneuver is active ( |𝛾𝑚𝑎| = 1), the automation 

resumes the full steering authority. From the viewpoint of HMI, it implies that once the driver 

initiates a lane change, he can release the steering wheel and the automation performs it 

automatically.  

6.6 Simulation study 
This section presents the results of two simulation examples. We firstly performed a computer 

simulation study to demonstrate the performance of the controller for automatic lane keeping 

and lane change maneuvers. The second driver-in-the-loop simulation addressed a scenario in 

which the predictive shared steering controller rendered haptic resistance on the steering wheel 

to warn the driver of the danger of a lane change maneuver. 

The MPC problem (6.38) was modelled by Yalmip (Lofberg 2004) in Matlab and solved by the 

solver Gurobi (Gurobi Optimization, Inc. 2017) at each time step. In the first example, the 

controller was connected in closed loop with a high fidelity nonlinear four-wheel vehicle model 

developed by Renault in Simulink environment. In the second example, the controller was 

integrated in the same driving simulation environment used in a user study (which will be 

presented in details in Section 6.7). In both examples, the MPC controller ran at 20Hz. The 

parameters of the vehicle model and the controller in (6.38) are given in Tab. 6.3. 

Table 6.3 List of the parameters used in the MPC-based shared steering controller 

Sysetm Symbol Description Value [units] 

Vehicle 
model m Total mass of vehicle 2024 [kg] 

𝐼𝑧 Yaw moment of inertia of vehicle 2800 [kg.m2] 

𝑙𝑓 Longitudinal distance from CoG  to front tires 1.29 [m] 

𝑙𝑟 Longitudinal distance from CoG  to rear tires 1.6 [m] 

𝐶𝑓 Cornering stiffness of front tires 85000 [N] 
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𝐶𝑟 Cornering stiffness of rear tires 111380 [N] 

𝑖𝑠 Steering ratio 16.3 

𝑛𝑓 Trail length 0.052 [m] 

𝐼𝑒𝑞 Equivalent moment of inertia of the steering 
system  0.02 [kg.m2] 

 
𝑐𝑒𝑞 Equivalent damping of the steering system 5.79 [N/rad/s] 

 
𝑘𝑝 Ratio of steering assistance 4 

 L Lookahead distance in the averaging curvature 
model 37.5 [m] 

MPC 𝑁𝑝 Time sample number in the prediction horizon 30 

𝑁𝑐 Time sample number in the control horizon 30 

T Time sample size 0.05 [s] 

𝑄 Weight matrix on tracking performance 
[4.5, 500, 5, 

1400, 45] 

𝑅𝑢 Weight on control  0.5 

𝑅Δ𝑢 Weight on control rate 200 

𝑆 Weight on slack variable 10000 

𝑇𝑚𝑎𝑥 Maximum steering torque 6 [N.m] 

Δ𝑇𝑚𝑎𝑥 Maximum steering torque increment 0.5 [N.m] 

6.6.1 Example: automatic steering control 
This simulation example consists of two scenarios. In the first scenario, the predictive shared 

steering controller performed a lane change maneuver at 90km/h. The second scenario was to 

test the lane keeping performance of the controller in a curved road with a minimum radius of 

roughly 330m. To test the robustness of the controller against the speed variation, the AD 

vehicle accelerated and decelerated according to a speed profile during the simulation. 

Fig. 6.12 shows the simulation results of a lane change performed by the controller. The 

simulation results suggest that the MPC is capable to perform a smooth lane change maneuver 

with small control inputs in normal driving situations. 
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Figure 6.12 Simulation results for a lane change maneuver 

Fig. 6.13 and Fig. 6.14 illustrate the performance of the MPC controller to track a curved road 

with the variation of the longitudinal speed. Even though the prediction model assumes a 

constant longitudinal speed in the prediction horizon, the MPC updates the linear prediction 

model based on the new speed measurement at each time instant to compensate prediction 

errors. As shown by the curve of the steering torque of the MPC in Fig. 6.14, the controller 

reduced the control as the speed decreased in the phase P1, maintained the control as the speed 

remained constant in P2, and augmented the control when the vehicle accelerated in P3, and 

finally maintained the control when the speed became stable again. Meanwhile, the controller 

kept a good tracking performance (small lateral offsets and heading errors). 

 

Figure 6.13 Trajectory realized by the MPC controller during the simulation 
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Figure 6.14 Simulation results for lane keeping in a curved road 

6.6.2 Example: haptic feedback to prevent a collision due to a lane change 
maneuver   
As a second example, we modelled a scenario on the driving simulator in which an inattentive 

driver attempted to override the MPC controller to perform a left lane change. In the meanwhile, 

a left rearward traffic vehicle was approaching at a speed 20 km/h faster than that of the AD 

vehicle (70 km/h). Fig. 6.15 shows the evolution of the driving scene. At the beginning of the 

time window of our research ( ∈ [170,177]), the driver had already the full control authority, 

as indicated by the curve of the shared control policy in Fig. 6.16. At 𝑡 = 171.7 , the TTC 

with the rearward vehicle fell below 3s. The system deemed that a left lane change was not 

feasible, thus enforcing the left lane-based constraint. Subject to this lateral constraint, the MPC 

controller resisted the driver’s steering to prevent the AD vehicle from crossing the left lane 

border, as shown by the curve of the steering torque. As both the amplitude and the changing 

rate of the control were constrained in the MPC, the resisting torque arose in a smooth 

maneuver. As a result, the driver could adapt his steering torque to this resistance, thus not 

provoking the oscillation of the steering wheel. Thanks to the haptic feedback of the MPC, the 

P1 P2 P3 

P4 
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driver cancelled the lane change that might result in a collision with the rearward vehicle. 

Meanwhile the MPC reduced its resistance as the driver steered back the vehicle into the lane. 

 

Figure 6.15 Extraction of the trajectories of the AD vehicle (blue one) and the traffic vehicle (red one) in the 

scenario. Both trajectories were sampled with a time step of 0.7 s. Two samples are highlighted: 𝑡 = 171.7 , 

𝑡1 ≈ 3 ; 𝑡 = 174.4 , 𝑡1 ≈ 0 . 

 

Figure 6.16 Simulation results of a scenario in which the system renders haptic resistance to warn the driver of 

the danger of a lane change maneuver 

6.7 Preliminary user study 

6.7.1 Objective 
This section describes a preliminary user study of the cooperative steering system that 

implements the principle for control cooperation. This study aimed to investigate the following 

aspects of the implemented cooperation principle: 

 The ease for the driver to regain the control authority from the operating system and the 

smoothness of control transition; 

t1=171.7 
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 How users interact with the active lane change assist during lane change maneuvers and 

the effect of the active lane change assist on their performance. 

Another aspect of this principle—haptic feedback to convey hazards was not involved in this 

user study. The reflection on how to design and implement an experimental protocol which 

incites subjects to perform risky lane change maneuvers is ongoing. This aspect will be 

evaluated in the future work. 

In this study, we compared four configurations which represented four different steering 

interaction forms. They are listed in Tab. 6.4. By setting the configuration SHC, we created a 

comparison group to SHC_ALCA in order to assess the effect of the active lane change assist 

during lane change maneuvers. FUA represents a type of automatic steering controller that does 

not share the control with the driver. In this configuration, the driver needs to override it with a 

large steering torque (5 Nm in our study). Finally, HAS represents another extremity in terms 

of control sharing, since a small amount of the driver’s steering action can lead to the 

deactivation of the system. 

Table 6.4 Four steering interaction configurations tested in the user study 

Index Name Acronym Description 

1 Shared control with 

active lane change 

assist 

SHC_ALCA It refers to the system designed in this chapter 

following the architecture in Fig. 6.4. This 

configuration features both the “predictive shared 

steering control” and “ALCA” functions. 

2 Shared control SHC This configuration has only the “predictive shared 

steering control” function compared to SC_ALCA. To 

perform lane change, the driver needs to drive 

manually into the target lane, then the AD vehicle stays 

in the new lane. 

3 Full autonomy FUA This configuration fixes the shared control policy at 

one. In this way, the predictive shared steering control 

resumes the full steering authority. It opposed to any 

driver’s control that could cause a deviation to its 

reference. 

4 Haptic switch HAS Whenever the driver’s steering intention is detected, 

the predictive shared steering control is disengaged. 

The driver regains the full steering authority 

immediately. The driver needs to reactivate the 

controller before releasing the steering wheel. 
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6.7.2 Methods 

6.7.2.1 Participants 

Twelve participants, average age of 34.0 years (ranging from 24 to 61) took part in the 

experiment. They came from the University of Valenciennes with three different backgrounds: 

student, engineer and professor. They had between 1 and 37 years of driving experience (mean 

13.5 years ± 13.3). 

6.7.2.2 Apparatus 

A fixed-base driving simulator in a desktop configuration was used in this user study. A LCD 

screen was used for the visual display. The driving simulation was powered by SCANeR Studio. 

The AD functions were implemented in Simulink and compiled to a standalone executable 

which was integrated in the SCANeR platform. A SENSODRIVE SENSO-WheelSD-LC 

(SENSODRIVE 2017) rendered the torque generated by the MPC controller. The driver’s 

steering torque was estimated from the current in the DC motor of the SENSO-Wheel by its 

control unit. 

6.7.2.3 AD system and HMI 

The whole AD system implemented in the driving simulator comprised a mode transition 

module, the situation assessment module developed in Chapter 4, the vehicle longitudinal 

control module developed in Chapter 5 and the cooperative steering control module developed 

in this chapter. The mode transition module allows subjects to switch between a manual driving 

(MD) mode and an AD mode by a “mode button”. Following the discussion in Section 6.3, the 

AD system disengaged the steering control if the absolute value of the driver’s steering torque 

exceeded a predefined threshold. This threshold was set to 1 Nm for HAS and 5 Nm for the 

other three configurations. Once the steering control was disengaged, the AD system entered a 

mode equivalent to SAE level 1 where the system performed only vehicle longitudinal control. 

To reengage the automatic steering control from this mode, subjects needed to press a “steering 

control button”.  

HMI graphics were directly overlaid in the virtual driving scene, as shown in Fig. 6.17. In the 

top-right corner of the screen, the current driving mode was shown. In the top-middle zone, a 

blue arrow was displayed to represent the maneuver state (𝛾𝑚𝑎) of the active lane change assist. 

In the configuration SHC_ALCA, if a participant initiated a lane change maneuver, this arrow 

changed its direction to signify the acknowledgement (Fig. 6.17(c)).  
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6.7.2.4 Test scenarios 

The test course in the simulator was composed by a ramp track and a highway mainline track. 

Each test run was made up of two scenarios. As shown in Fig. 6.18, the starting position of the 

AD vehicle was located on the ramp track. The AD vehicle first entered in Scenario A—passing 

a roadwork zone. In this scenario, subjects needed to adjust the vehicle’s trajectory towards the 

left side to keep a safe distance with the road barriers. After this scenario, the AD vehicle 

merged in a two-lane highway mainline (lane width 3.5 m. The road limit was 90 km/h, but the 

traffic vehicles in the right lane were made purposely drive at 70 km/h to justify our instruction 

on overtaking. The gaps between traffic vehicles on the left lane were large enough to ensure 

that each subject could perform lane change with ease.  

 

Figure 6.17 Visual HMI used in the user test: (a) mode icon for the Full AD mode; (b) mode icon for the Longi 

Control mode; (c) icon for the later maneuver state 

6.7.2.5 Test procedure and instructions 

A within-subject design was employed in this study, i.e., each participant tested all the four 

configurations. We randomized the order of test configurations to minimize the order effect. Prior 

to the test drive, the subjects got accustomed to the AD system and the driving simulator in a 

training course without any traffic. In this phase, we explained the transition rules between 

different driving modes, especially possible deactivations of the automatic steering control in 

different configurations. After this training phase, each subject was instructed to drive the test 

course manually to get familiar with the scenarios. In the meanwhile, each subject was told 

what they should do in the test runs. 

Mode icone: Full AD Mode icone: Longi Control

ALCA: Maneuver state

(a) (b)

(c)
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Figure 6.18 Test course and scenarios 

Before the test runs, we gave a general instruction—use the automatic steering control as long 

as possible for all the configurations. This instruction accounted for deactivations of the 

automatic steering controller which could occur frequently in HAS. If a subject did not 

reactivate the controller, he would remain in manual steering control that could bias the test 

results. Moreover, subjects were asked to put their hands off the steering wheel when they did 

not perform required control tasks. Before the test run of the SHC_ALCA configuration, we 

described the mechanism of the active lane change assist and the meaning of the blue arrow in 

the screen. The main test procedure summarized in Fig. 6.19. 

 

Figure 6.19 Test procedure 

6.7.2.6 Metrics 

We selected two objective metrics to measure driver’s steering performance during the control 

transition. 

The first metric was the root-mean-square of the driver’s steering torque, (𝑇𝑑𝑟) which 

was defined by 

Start

Scenario A: passing a roadwork zone

End

Scenario B: overtaking slow vehicles

Training 
drive

Manual drive
Config. 

SHC_ALCA
Config. SHC Config. FUA Config. HAS

Randomized order
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 𝑅𝑀𝑆(𝑇𝑑𝑟) = √
∫ 𝑇𝑑𝑟

2 𝑑𝑡
𝑡1
𝑡0

𝑡1−𝑡0
, (6.46) 

where 𝑡  and 𝑡  are the start time and the end time of a range of interest in the collected data. 

For the Scenario A (roadwork zone), the range of interest started from the instant when a subject 

began to turn the steering wheel (detected by the sensor on the steering wheel) until the adjusted 

lateral trajectory was stabilized. It is illustrated by Fig. 6.20. For the scenario B (highway 

overtaking), the range of interest was defined as the time window of a lane change maneuver. 

We used the method for driver’s lane change intention detection (Section 6.5) to find the range 

of a lane change maneuver. (𝑇𝑑𝑟) measured the steering effort of a subject to control 

vehicle’s trajectory in the presence of a steering controller. 

 

Figure 6.20 Range of interest in the Scenario A 

As the second objective metric, we measured the number of steering wheel reversals (SWR) in 

a range of interest. According to the definition given by the standard SAE J 2944 (2015), a 

SWR occurs when a steering wheel rotates at least Δ  deg in one direction and then rotates at 

least  deg in the opposite direction within a moving time window . This definition is 

illustrated in Fig. 6.21. We used the method proposed by the AIDE project (Östlund et al. 2005) 

to count SWRs with  equals to 3 deg. The same ROIs used to calculate (𝑇𝑑𝑟) were 

applied here for Scenario A and B as well. SWRs represent large steering corrections, therefore, 

more SWRs means that the control transition is less smooth. 
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Figure 6.21 Steering reversal (extracted from standard SAE J 2944 (2015)) 

Subjective evaluation was based on questionnaires. After each configuration, subjects were 

asked to answer a questionnaire related to their experiences with this configuration. In this 

questionnaire, they were asked to rate their efficiency, feeling of comfort, perceived safety, and 

ease of trajectory control when they took over the control from the system. Each item had a 

four-point scale.  

6.7.3 Results 

6.7.3.1 Results of some typical runs 

This section shows the results of some typical runs to illustrate how a subject interacted with 

the steering controller in different configurations. Fig. 6.22-6.23 show the results for the 

trajectory adjustment in Scenario A by a same subject through SHC and HAS respectively. In 

Fig. 6.23, the predictive shared steering controller smoothly reduced its control to give the full 

authority to the driver according to the change of the shared control policy. As a result, the 

resultant steering wheel angle remained between -2 deg and 2 deg. Thanks to the hand position 

sensor, the controller was aware that the driver held the steering wheel and thus did not exert 

the control to steer the vehicle back to the lane center. This mechanism prevents the intrusion 

of the controller when the driver exerts only slight control, e.g., when a driver maintains an 

offset to a lane center in a straight road. In contrast, abrupt deactivations of the controller 

(system’s mode from “1” to “0”) in HAS caused SWRs of the steering wheel (exceeding 5 deg 

in the first SWR and 10 deg in the second). What’s more, whenever the driver intervened to 

correct the vehicle’s trajectory, he deactivated the controller and he needed to reengage the 

controller to benefit the automatic control. 
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Figure 6.22 Plot of a typical run of configuration SHC in Scenario A 

 

Figure 6.23 Plot of a typical run of configuration HAS in Scenario A 

Fig. 6.24-6.25 illustrate two lane change maneuvers performed by a same subject through SHC 

and SHC_ALCA respectively. In SHC, the subject performed a lane change maneuver with 

little resistance from the controller. When he released the steering wheel, the controller took 

over the control to ensure a seamless control transition. In SHC_ALCA, the beginning of the 

interaction was quite similar as in SHC. When the right lane change intention of the subject was 

detected by the active lane change assist (see the plot “maneuver state” in Fig. 6.25), the 

controller resumed the control authority (see the plot “shared control policy” in Fig. 6.25) to 

perform the lane change maneuver in the place of the subject. Consequently, the subject first 

reduced his control then released the steering wheel about 3 s before the lane change was over. 
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Figure 6.24 Plot of a typical run of configuration SHC in Scenario B 

 

Figure 6.25 Plot of a typical run of configuration SHC_ALCA in Scenario B 

6.7.3.2 Statistical results 

One-way analysis of variance (ANOVA) was used for statistical analysis with a significance 

level of 0.05. Turkey HSD tests were used for post-hoc analysis. 

Fig. 6.26 shows the results of (𝑇𝑑𝑟)  in Scenario A and B. There were statistically 

significant differences in the (𝑇𝑑𝑟) among the four configurations in both Scenario A 

(F(3,44) = 131.77, p < 0.0001) and Scenario B (F(3,61) = 48.22, p < 0.0001). As expected, 

post-hoc Turkey HSD tests showed that the driver’s steering effort was significantly reduced in 

SHC_ALCA, SHC and HAS compared to FUA in both scenarios (p < 0.01). For example, in 
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SHC subjects saved on average 85.2% effort in Scenario A and 62.9% effort in Scenario B 

compared to FUA. However, the post-hoc analysis revealed that there were no significant 

differences in the (𝑇𝑑𝑟) in Scenario B between SHC_ALCA and SHC. This observation 

indicates that the active lane change assist did not reduce the driver’s steering effort in lane 

change maneuvers, though it was intended to support the driver to perform lane change 

maneuver.  

Statistical results of SWR are presented in Fig. 6.27. The ANOVA revealed significant effects 

of the configurations in Scenario A (F(3,42) = 3.9, p < 0.015). Especially, HAS had the highest 

average number of SWRs, i.e., the driver made more steering corrections to adjust the vehicle’s 

trajectory when interacting with the steering controller than in the other three configurations. 

Compared to HAS, SHC significantly reduced the SWRs by 70% (p < 0.05), thus leading to a 

smoother control transition. In Scenario B, there was also a significant difference on the steering 

wheel reversals (F(3,61) = 18.05, p < 0.0001). FUA yielded the highest steering reversals in 

Scenario B. It was mainly due to much stronger resistances a subject received from the steering 

controller during a lane change maneuver. Some subjects even triggered the deactivation of the 

steering controller by exceeding the maximum torque threshold. In contrast, deactivations at 

small steering torques in HAS did not have significant effects on the SWR (with no significant 

difference compared to SHC) during lane change maneuvers. The SWR in SHC_ALCA had 

wide variance between subjects (SD =1.16). It means that some subjects attempted to correct 

controller’s actions rather than follow them. 

 

Figure 6.26 RMS of driver’s steering torque in the different configurations in Scenario A and B 
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Figure 6.27 Steering wheel reversals in the different configurations in Scenario A and B 

Fig. 6.28 shows the mean values of the responses on each item in the questionnaire (standard 

deviations on each item are omitted for figure clarity). There were significant effects of the 

configurations in comfort (F(3,44) = 6.33, p < 0.001) and sense of control (F(3,44) = 6.33, p < 

0.0006). There were no significant differences between the four configurations in efficiency of 

regaining control and safety feeling. Except for the item efficiency, SHC received the highest 

rating in terms of comfort (M=3.42, SD=0.67), safety (M=3.42, SD=0.67) and control (M=3.75, 

SD=0.45). 

 

Figure 6.28 Subjective comparison between the four configurations in terms of efficiency, comfort, safety and 
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6.7.4 Discussion 
Statistical analysis based on objective metrics suggested that with the predictive shared steering 

controller (SHC) users used much less steering efforts to adjust vehicle’s lateral trajectory than 

with an automatic steering controller that did not adapt control to that of the driver (FUA). 

When the driver took over control to adjust lane positions in Scenario A, the predictive shared 

steering controller ensured a smoother control transition than a controller that can be 

deactivated by a small steering torque of the driver (HAS). These two conclusions are also 

confirmed by subjective ratings, as SHC received two highest ratings in terms of sense of control 

and comfort. 

As for the active lane change assist, some subjects benefited from the support of the automation 

during lane change maneuvers, as illustrated by an example in Section 6.7.3.1. However, the 

average steering effort of subjects to perform lane change maneuvers was not reduced with the 

active lane change assist. Meanwhile, the SWR number had large variance between subjects. 

According to our interviews during the test, some subjects reported that they did not have 

confidence on the automation as new users. This may explain why they continued to exert forces 

after the predictive shared steering controller had begun to perform lane change. The second 

plausible cause may be related to the interference on the trajectory of a lane change maneuver 

between subjects and the controller. The trajectories of lane change maneuvers realized by the 

steering controller were strongly influenced by the weights in the cost function in the MPC. 

Subjects with different driving styles may have different accustomed lane change trajectories, 

e.g., a smoother one or a more aggressive one. The deviation between the subject’s expected 

trajectory and that of the steering controller could incite subject’s steering corrections which 

increased SWRs.  

6.8 Conclusions 
This chapter has described the design of a cooperative steering control system that allows the 

driver to override the system’s steering control to adjust lane positions or make lane changes in 

highway driving scenarios. This system consists of two main components. The first one is a 

predictive shared steering controller which was implemented in the MPC framework. By 

adapting the weight on the stage cost and implementing dynamic constraints online, the shared 

steering controller ensures seamless control transfer between the system and the driver while 

conveying potential hazards through haptic feedback. The second function, namely active lane 

change assist, can detect the driver’s lane change intention and assist the driver during the lane 

change maneuver. 
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The capability of the cooperative steering control system to perform lane keeping/lane change 

was first demonstrated in a simulation study. In a second experiment, we simulated a scenario 

in which the system rendered haptic resistance on the steering wheel to prevent a potential 

collision caused by driver override. During a preliminary user test, we compared four different 

steering interaction concepts. The test results suggest that the predictive shared steering control 

developed in this thesis allowed the driver to take over the control with ease and at the same 

time ensured a smooth transition. The test results also exposed interaction issues between 

subjects and the active lane change assist. We made hypotheses on the causes and these 

hypotheses will be studied in the future work. 
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7 GENERAL CONCLUSION AND 
PERSPECTIVE 

7.1 Conclusions 
This thesis addresses the design of cooperation between the human driver and the automated 

driving (AD) system. We applied the theoretical framework of human-machine cooperation and 

implemented the user-centered design (UCD) process to design cooperative control systems. 

Given the multidisciplinary objectives of this research, we present the conclusions from two 

aspects: the aspect of human-machine interaction and the technical aspect. 

7.1.1 Aspect of human-machine interaction 
We firstly decomposed the shared authority involved in driver-vehicle cooperation into three 

levels within a common hierarchy between Michon’s model of the driving task and a layered 

functional architecture for the AD system. We proposed, implemented and evaluated two 

cooperation principles at the tactical level and the operational level respectively. 

At the tactical level, we proposed a principle for maneuver cooperation that allows the driver 

to change system’s maneuver plan. This principle was implemented through the design of a 

cooperative longitudinal control system in a use case of highway merging management. In 

addition to the technical system, we designed a set of interfaces based on head-up display 

(HUD) and augmented reality. User test results suggest that the proposed principle has the 

potential to enhance the performance of the AD system in terms of handling the merging of a 

traffic vehicle in fluid and congested traffics. Results also show that the users tended to confirm 

system’s maneuver intention during the cooperation if they shared the same intention with the 
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system’s. At last, test results imply that the system needs to initiate the cooperation with a 

sufficient time before the engagement of maneuver plan so that the driver has time to assess the 

situation and to participate into the cooperation. Through this conclusion, we emphasized the 

requirement on situation assessment function of the system and the role of HMI in sharing 

situational awareness (SA) with the driver. 

The second principle was proposed for the control cooperation at the operational level. 

Following this principle, the driver can easily override the system’s control while benefiting 

from the support of the system in terms of task assistance and hazard warning. This principle 

was implemented through the design of a cooperative steering control system in a use case of 

highway lane positioning and lane changing. In the framework of haptic shared control, steering 

torques from the driver and the system served as a communication channel of their control 

activities. The results from a preliminary user test show that with the designed system the users 

could easily regain the steering control and enjoyed a smooth control transition. 

7.1.2 Technical aspect 
In this thesis, we also addressed the technical aspects to achieve driver-vehicle cooperation. We 

highlighted the role of the system’s SA in both maneuver planning function and maneuver 

cooperation. We proposed an approach for highway driving scene representation based on a 

digital map. In this scene model, the states of traffic vehicles are represented in the Frenet frame 

on the road curve. A qualitative mapping based on vehicle’s Frenet coordinates creates the 

spatial awareness of the AD system. We further proposed a method for the prediction of 

vehicle’s longitudinal trajectory for maneuver planning. This method uses quintic polynomials 

to model the longitudinal dynamics of a vehicle that is maneuvering. The decision to switch to 

it from the constant acceleration model is formulated as a hypothesis testing problem. 

Incorporating the estimated jerk and context information, this model yields better prediction 

accuracy than the constant acceleration model for dynamic longitudinal maneuvers. 

In the use case of highway merging management, we exploited the behavior-based paradigm 

for maneuver cooperation. To this end, we designed a hierarchical finite state machine (HFSM) 

specific to the highway merging management. A main feature of this HFSM consists of a state 

called intention phase. In this state, the system assesses the actual or future scene configuration 

and thus actively interacts with the merging vehicle by manifesting its intention (pass or yield). 

Moreover, we employed the model predictive control (MPC) framework to generate a smooth 

trajectory of a virtual leader for a low-level controller. In this way, the controller can perform 

a maneuver generated from the HFSM while ensuring the driving comfort. 
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In the use case of highway lane positioning and lane changing, we adapted MPC for haptic 

shared steering control. By changing the relative weight in the cost function online, the steering 

controller minimizes its control when the driver intervenes in the control-loop. By enforcing 

vehicle position constraints at lane borders, the steering controller forces the vehicle’s trajectory 

to remain within a constraint-bounded navigational zone to prevent lane departure or potential 

collisions with traffic vehicles in the adjacent lanes. In this way, when the driver intends to steer 

the vehicle out of this zone, he receives the resistance from the system as a warning signal. We 

also developed an active lane-change assist function at the tactical level. This function actively 

assists the driver during a lane change maneuver if it detects driver’s lane change intention. 

7.2 Perspective 
The following sections provide a summary of perspectives for further work. In Sections 7.2.1-

7.2.3, we discuss specific open questions and directions suggested by the current research 

contributions. In section 7.2.4, we give more general prospects regarding to the system 

integration and the extension of application scenarios. 

7.2.1 Situational awareness of the AD system 
In the proposed framework for vehicle longitudinal trajectory prediction, we formalized the 

maneuver detection problem as a 𝜒2 test based on accumulated measurement residuals over a 

sliding time window. The threshold 𝜆 is determined to achieve a small probability of false 

alarm, however, it provides no information on the probability of detection. Furthermore, the 

window size was tuned by hand in the simulation based on a trade-off between the detection 

time delay and the randomness of 𝜒2 variable. Evidently, the time window size also influences 

the probability of detection and the jerk estimation. In the future work, it would be of interest 

to implement the generalized likelihood ratio test (GLRT, Kay 1998, 200) which is a composite 

hypothesis test based on the maximum likelihood estimates (MLE) of the unknown 

parameters—in our case, the unknown parameter is the jerk. The GLRT offers an appealing 

analytical framework for maneuver detection performance evaluation, since it is based on the 

Neyman-Pearson theorem (Kay 1998, 61). Moreover, as the estimate on jerk by the least square 

method is the best linear unbiased estimate which is equivalent to MLE under the Gaussian 

assumption, the statistical information for jerk estimation can be directly used for the maneuver 

detection. 

Another concern for the maneuver detection and jerk estimation is the coupling of the 

longitudinal and lateral motions as revealed by the measurement model (4.14) in Section 4.4. 
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Consequently, the jerk estimation could be influenced by strong lateral motion, e.g., during a 

lane change maneuver. This scenario needs to be studied more deeply in the future work. 

Finally, the final velocity as an end state of the quintic polynomial motion model is determined 

by a heuristic based on the driving context in the current work. Future research also includes 

using formal methods, such as hidden Markov Model and dynamic Bayesian network to infer 

the end state of a maneuver from the driving context.  

The proposed scene representation was mainly used to support system’s functions in the current 

work. How to share this representation to the driver through HMI could be a future research 

direction from the perspective of human-machine interaction. Inversely, it would be useful to 

enrich the scene representation by considering what information a driver may need to know 

from a certain driving scene. 

7.2.2 Maneuver cooperation 
In the current work, the cooperative maneuver planning was modelled as a HFSM. The rule-

based state transitions lack the ability to deal with the uncertainty of the inputs. Especially some 

transition rules in the intention phase directly use the predicted trajectory of the merging 

vehicle, thus making the system prone to the prediction errors. To propose a probabilistic 

decision-making framework that deals with the uncertainty of traffic vehicle states and the 

uncertainty propagation in the predicted trajectory is an important step towards an application 

for real vehicles. Moreover, the system simulates the ego vehicle’s future motion by the 

constant acceleration model in the intention phase to evaluate “pass” or “yield”. It would be 

desirable to simulate different trajectories representing different maneuver plans (e.g., using 

different accelerations or speed profiles). In this way, new maneuver alternatives, e.g., lane 

change maneuver can be added and be evaluated compared to other alternatives. 

Based on the feedback from the user test in Section 5.8, current interaction logic and HMI could 

be improved in a new design cycle in the UCD process. The current cooperation principle could 

be extended so that the driver cannot only change but also confirm the system’s current 

intention. If the driver confirms the system’s intention, the system can directly engage the 

intended maneuver without showing alternatives. This modification is consistent with the test 

results indicating that subjects tended to confirm system’s intention. Regarding to HMI 

configurations, test results suggest that HMIs dispatched into different zones increased 

attentional demands of users. The HUD and augmented reality techniques constitute efficient 

solutions to address this problem, because they allow overlaying HMI contents (in our case, 
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system’s intention and alternatives) on the part of the real driving scene which the driver pays 

attention to. 

7.2.3 Control cooperation 
The MPC-based haptic shared control framework opens several avenues for future research. 

First, future research should investigate the haptic resistance caused by the state constraint 

(lane-based constraints). When the system’s lateral offset state approaches the constraint under 

the driver’s control, the current controller reacts in an open-loop maneuver, because under the 

shared control policy the single objective of the controller is to minimize its control (as a 

minimum-energy controller). It would be interesting to add some control objectives, e.g., 

penalizing the control changing rate to avoid the brutal torque rise or penalizing the large 

steering angle variation in a sense to increase the steering wheel stiffness. Most significantly, a 

user test is necessary in the future to study how users react to these haptic resistances rendered 

on the steering wheel. The effects of haptic feedbacks on driver's SA and user’s acceptance 

should be examined in scrutiny. 

Second, concerning the shared control policy, the proposed solution to detect the driver’s 

steering intention consists of using a specific sensor for hands-on detection and placing a 

threshold on driver’s steering torque. In the future study, it is worthy of studying a less costly 

solution (without using hands-on detection sensor and torque sensor), e.g., by estimating the 

driver’s steering intention from the steering angle and the angle rate measurements. One may 

borrow the concept of maneuver detection used in the longitudinal trajectory prediction 

framework. The general idea is to set a reference model of steering system dynamics to 

characterize “hands-off” situation and to monitor the deviation between the measurements and 

the prediction of this model. 

Lastly, from the control perspective, the MPC framework used for haptic shared control could 

be improved. Particularly, the assumption on the perfect knowledge of the state measurements 

limits the application of the framework. Moreover, the uncertainty on model parameters and 

the modelling error also need to be considered to ensure the robustness of the framework. As 

such, it is important to formulate a robust MPC problem (Bemporad and Morari 1999) in the 

future work. 

The user test in Section 6.7 exposed the issues on user’s interaction with the active lane change 

assist system. To investigate the hypothesis on user trust, a user study could be conducted in 

the future to verify whether the user’s trust and the performance will increase as they get used 

to the system (similar to assess the learnability of a system by generating a learning curve). 
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Another hypothesis concerns that the user may want to correct the vehicle’s trajectory during a 

lane change maneuver. A future direction is to develop a motion planner that can adapt the 

planned path to the driver’s control. This direction has already been explored by Benloucif et 

al. (2017) and the simulator study showed the positive effect of a such adaptive motion planner 

in reducing the driver’s effort to perform lane change maneuvers. 

7.2.4 General prospects 
We have proposed two cooperative control frameworks separately, the one for maneuver 

cooperation in the longitudinal dimension and the other for control cooperation in the lateral 

dimension. A future direction is to integrate these two frameworks into the proposed 

hierarchical cooperative control architecture. At the tactical level, more maneuver alternatives 

and more driving contexts could enrich the actual HFSM. At the operational level, the MPC-

based shared control framework can be applied for vehicle longitudinal control, and active force 

feedback pedals could serve as a haptic interface. The key to combine control functions in 

longitudinal and lateral dimensions constitutes the motion planning function which was not 

formally addressed in this thesis. Especially, recent works (Bender et al. 2015; Park, 

Karumanchi, and Iagnemma 2015; Gu, Dolan, and Lee 2016) introduced the “maneuver aspect” 

into the motion planning, which may bring new ideas for driver-vehicle cooperation. These 

works decomposed a feasible trajectory space into discrete subspaces each of which can be 

interpreted as a maneuver alternative. In this framework of the trajectory space decomposition, 

the driver can either directly select a maneuver alternative—a trajectory subspace following the 

maneuver cooperation principle. He can also override the system’s control to navigate freely in 

each trajectory subspace using the control cooperation principle. Furthermore, if he controls the 

vehicle’s trajectory into another subspace, a maneuver transition can be triggered at the tactical 

level. 

Another future research direction is to address critical situations in the scope of driver-vehicle 

cooperation. An important use case in this direction is the take-over scenario for a level 3 AD 

system (refer to Section 1.1). When the driver takes over the control following the request of 

the system, instead of immediately transferring all the control to the driver, the system could 

“accompany” the driver via the control interface, e.g., providing a minimum guidance to help 

the driver quickly rebuild the SA.  
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APPENDIX A TRANSFORMATIONS FROM GLOBAL CARTESIAN 
COORDINATES TO THE FRENET COORDINATES 
We present the transformation of the state vector of a detected object from the Earth Cartesian 

frame to the Frenet frame, i.e., 

 [𝑥, 𝑦, 𝜓, 𝑣𝑥, 𝑎𝑥, �̇�]
T
→ [𝑠, �̇�, �̈�, 𝑑, �̇�, �̈�]

T
  (A.1) 

In the digital map we used, the road geometry is represented by three primitive curves: straight 

lines, circle arcs and clothoids. Thus, road curve 𝐫(𝑠) in the map can be uniformly represented 

in the form of the Fresnel’s integrals: 

 𝐫(𝑠) = [∫ co (𝜓(𝑠))𝑑𝑠 + 𝑥 ,
𝑠

 
 ∫  in(𝜓(𝑠)) 𝑑𝑠 + 𝑦 
𝑠

 
],  (A.2) 

 𝜓(𝑠) = ∫ 𝜅(𝑠)𝑑𝑠 + 𝜓 
𝑠

 
,  (A.3) 

 𝜅(𝑠) = 𝜅 + 𝑐𝑚𝑠. (A.4) 

where 𝑥  and 𝑦  are initial coordinates of a curve, 𝜓  is the initial heading angle, 𝜅  is the 

initial curvature and 𝑐𝑚 is the curvature rate. To calculate the Frenet coordinates (s,d) of a point 

𝐱2𝐷, we need to find the projection of 𝐱2𝐷 on the curve 𝐫(𝑠). Let 𝐫(𝑠∗) denote the projection. 

We can calculate 𝑠∗ by inverting (A.2). For a straight line or a circular arc, a closed-form 

solution exists for (A.2). For a clothoid, (A.2) does not have an explicit form, therefore we need 

to resolve the minimization problem by numerical 

 𝑠∗ = argmin
𝜎
 ‖𝐱2𝐷 − 𝐫(𝜎)‖.  (A.5) 

Then we can calculate the d-component of 𝐱2𝐷, denoted by 𝑑∗ via 

 𝑑∗ = (𝐱2𝐷 − 𝐫(𝑠
∗))

𝑇
𝐧(𝑠∗)  (A.6) 

Time derivative of (A.6) yields 

�̇� = (�̇�2𝐷 − �̇�)
𝑇𝐧 + (𝐱2𝐷 − 𝐫)

𝑇�̇�

= 𝑣𝑥𝐭𝑥
𝑇𝐧 − �̇�𝐭𝐧 − 𝜅𝑑�̇�𝐧𝑇𝐭 = 𝑣𝑥𝑠𝑖𝑛Δ𝜓. 

where 𝐭𝑥 is the unit tangent vector associated with the direction of 𝑣𝑥. We rearrange (A.6) as 

 𝐱2𝐷(𝑠, 𝑑) = 𝐫(𝑠) + 𝑑𝐧(𝑠). (A.8) 

Time derivative of (4.5) yields 

�̇�2𝐷 = �̇� + �̇�𝐧 + 𝑑�̇�

= �̇�𝐭 + �̇�𝐧 − 𝜅𝑑�̇�𝐭 = (1 − 𝜅𝑑)�̇�𝐭 + �̇�𝐧. 

(A.7) 

(A.9) 
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Therefore, 𝑣𝑥 can be calculated by 

 𝑣𝑥 = ‖�̇�2𝐷‖2 = √(1 − 𝜅𝑑)2�̇�2 + �̇�2 . (A.10) 

Substituting �̇� by, we can get 

 �̇� =
𝑣𝑥𝑐𝑜𝑠Δ𝜓

 −𝜅𝑑
.  (A.11) 

We calculate the second derivatives of s and d to be 

 �̈� =
𝑎𝑥𝑐𝑜𝑠Δ𝜓

 −𝜅𝑑
+ 𝑣𝑥

−𝑠𝑖𝑛Δ𝜓(�̇�−𝜅�̇�)( −𝜅𝑑)+𝑐𝑜𝑠Δ𝜓(𝑐𝑚�̇�+𝜅�̇�)

( −𝜅𝑑)2
 , (A.12) 

 �̈� = 𝑎𝑥𝑠𝑖𝑛Δ𝜓 + 𝑣𝑥𝑐𝑜𝑠Δ𝜓(�̇� − 𝜅�̇�).  (A.13) 

Given that 𝜅 is very small for highway roads and 𝑑 is also small (since the vehicle is driving 

within a lane), we make the following approximation 1 − 𝜅𝑑 ≈ 1. Therefore, (A.11) and (A.12) 

become 

 �̇� = 𝑣𝑥𝑐𝑜𝑠Δ𝜓,  (A.14) 

 �̈� = 𝑎𝑥𝑐𝑜𝑠Δ𝜓 + 𝑣𝑥(−𝑠𝑖𝑛Δ𝜓(�̇� − 𝜅�̇�) + 𝑐𝑜𝑠Δ𝜓(𝑐𝑚�̇� + 𝜅�̇�)). (A.15) 

At last, we rearrange (A.14) and (A.15) to give the measurement model (4.13) in Section 4.4.4.3 

 𝑣𝑥 =
�̇�

𝑐𝑜𝑠Δ𝜓
,  (A.16) 

 𝑎𝑥 =
�̈�

𝑐𝑜𝑠Δ𝜓
+
tanΔ𝜓�̇��̇�

cosΔ𝜓
−
(2𝜅tanΔ𝜓+𝑐𝑚)�̇�

2

cosΔ𝜓
. (A.17) 
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APPENDIX B STEERING SYSTEM MODELLING 
In this appendix, we show how to derive the equivalent moment of inertia and damping of an 

EPAS system showed in Fig. B.1. 

 

Figure B.1 Mechanical model of an EPAS system 

The dynamics of the steering column is given by 

 (𝐼𝑐 + 𝑖𝑚
2 𝐼𝑚)�̈�𝑝 + (𝑐𝑐 + 𝑖𝑚

2 𝑐𝑚)�̇�𝑝 = 𝑇𝑑 + 𝑖𝑚𝑇𝑚 − 𝑇𝑟𝑝,  (B.1) 

where 𝛿𝑝 is the angle of the pinion, 𝐼𝑐 and 𝐼𝑚 are the moments of inertia of the steering column 

and the electric motor respectively, 𝑐𝑐 and 𝑐𝑚 are their dampings, 𝑖𝑚 is the gear ratio, and 𝑇𝑟𝑝 

is the torque at the rack-pinion. To simplify the notation, 𝑖𝑚𝑇𝑚 is replaced by 𝑇𝑐𝑡𝑟𝑙 to represent 

the control of the automation. 

At the rack-pinion, the force equilibrium yields 

 𝑚𝑒𝑞�̈�𝑟 + 𝑐𝑟�̇�𝑟 =
𝑇𝑟𝑝

𝑅𝑝
− 𝐹𝑟,  (B.2) 

where 𝑚𝑒𝑞  denotes the equivalent mass of the rack and 𝐹𝑟 is the force resulted by the self-

aligning torque of the front wheels. 𝑥𝑟  is the displacement of the rack has the following 

relationship with the pinion angle 

 𝑥𝑟 = 𝛿𝑝𝑅𝑝,  (B.3) 

Substituting (B.2) and (B.3) into (B.1), the equation of steering system dynamics is obtained as 

 (𝐼𝑐 + 𝑖𝑚
2 𝐼𝑚 +𝑚𝑒𝑞𝑅𝑝

2)�̈�𝑝 + (𝑐𝑐 + 𝑖𝑚
2 𝑐𝑚 + 𝑐𝑟𝑅𝑝

2)�̇�𝑝 = 𝑇𝑑 + 𝑇𝑐𝑡𝑟𝑙 − 𝐹𝑟𝑅𝑝.  (B.4) 

𝑇𝑑

Torque sensor

Electric motor

Rack

Pinion

Steering column

Steering wheel

𝑇𝑚

𝑥𝑟

𝛿𝑓

Gear

𝛿𝑠𝑡

𝑇𝑟𝑝
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The relation between the steering angle of the front wheel 𝛿𝑓  and the pinion angle 𝛿𝑝  is 

determined by the geometry of the steering system. In practice, this relation is usually 

approximated by the steering ratio 𝑖𝑠 such that 

 𝛿𝑝 = 𝛿𝑓𝑖𝑠.  (B.5) 

We simplify the electric motor’s assisting torque as a coefficient 𝑘𝑝  applied on the auto-

alignment torque  𝑇𝑎𝑙 from the tire. With this simplification, 𝐹𝑟𝑅𝑝 can be obtained as 

 𝐹𝑟𝑅𝑝 =
𝑇𝑎𝑙
𝑖𝑠𝑘𝑝

.  (B.6) 

Substituting (B.5) and (B.6) into (B.4),  

 𝑖𝑠
2(𝐼𝑐 + 𝑖𝑚

2 𝐼𝑚 +𝑚𝑒𝑞𝑅𝑝
2)�̈�𝑓 + 𝑖𝑠

2(𝑐𝑐 + 𝑖𝑚
2 𝑐𝑚 + 𝑐𝑟𝑅𝑝

2)�̇�𝑓 = 𝑖𝑠(𝑇𝑑 + 𝑇𝑐𝑡𝑟𝑙) −
𝑇𝑎𝑙
𝑘𝑝

  (B.7) 

Thus, the equivalent moment of inertia and damping of the steering system are 

 𝐼𝑒𝑞 = 𝑖𝑠
2(𝐼𝑐 + 𝑖𝑚

2 𝐼𝑚 +𝑚𝑒𝑞𝑅𝑝
2).  (B.8) 

 𝑐𝑒𝑞 = 𝑖𝑠
2(𝑐𝑐 + 𝑖𝑚

2 𝑐𝑚 + 𝑐𝑟𝑅𝑝
2).  (B.9) 
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