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The consumption mode of food products has deeply evolved since decades. It clearly appears an
increase in lipid and polysaccharide contents of the food products, a democratization of the ready-to-
use dishes, an increase in the out-of-home catering industry and an increasing request in practicality
of food preparation.

The changes in food consumption came from our long human history (Figure 1). Since more than 7
million years, during the prehistory, humans acquired their food by picking, hunting or fishing and,
since a few millenniums, by the farming and breeding. The agricultural revolution, followed then by
the industrial revolution had great consequences on the human food consumption. The
consequences of these upheavals were either positive, i.e. development of the biological potential,
higher capacity for work, life longevity, better quality of life, or negative i.e. increase of the
overweight, and in various diseases as cardiovascular risks, diabetes... In the Xviit century, the diets
was not just devoted to nourish population but it took more into account the gourmet point of view,
the food variety and also the esthetics of the meals. These changes were subjected to the hedonic
pleasures in terms of taste, flavor, nutritional contribution and health. From 1789, the taste and the
pleasure to eat became more democratic. At this time, the texture and flavor of food products
became very important for customers. At the end of the 1800s, a healthy aspect was given to the
food. The development of the food conservation occurred with the fridge invention and the canning.
There is an increase in the food product diversity with the development of new and complex
processes of transformation. New functionalities were than looked for many food components, as its
reports by Bauer et al. (2010) for milk proteins. In the XX" century, the ready-to-serve dishes and
easy-to-use products, such as pizzas or fresh milky desserts, were a continued success due to time-

saving and practicality in the meal preparation.
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Consequently, since the 1990s, the households consume more and more ready-to-serve dishes and
transformed products such as cheese (Figure 2). A food product is considered as transformed from
the moment its raw material is modified, either by a process of manufacture or by chemical or

biological modification.
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Figure 2. Source : Evolution of the type of food product consommed in France from 1960 to 2014
(Insee 2015, cinquante ans de consommation alimentaire).

Food is a material constantly changing in shape, size and structure depending on the physical and
biochemical reactions that take place during the technological operations or during the preservation.
Thus, numerous interactions take place between the constituents which deeply modify, in a more or
less irreversible way, the texture of these materials. Therefore, it is essential to understand how
these changes occur to be able to establish a correlation between food constituent and the changes
in the texture of food product. It is also necessary to be able to measure mechanical properties as
rheological or textural properties to rely perception in mouth with mechanical and physical behavior

that can be predictable and finally controlled.

Milk is one example of choice to understand the relation between constituents and their
functionalities. In the 1960s, membrane filtration processes (microfiltration, ultrafiltration) were
developed to separate milk component which could have specific functional properties. It was the
occasion to distinguish every milk components as new individual entities with specific physico-
chemical characteristics. Milk is actually composed by several hundred molecules, including proteins,
lipids, carbohydrates, minerals, oligoelements, vitamins...and an overall composition of the main
constituents is presented in Table I. It rapidly appeared that among the various constituents proteins
and their derived peptides, playing the main role in cheese structure, could be used in other food

products to modify their structuration and texturation. Moreover, the whey recovery gave the

19



General introduction, Objective and Strategy

opportunity to recycle part of proteins with great functional properties like gelation, stabilization of
emulsions or foams for example since the 1980’s (Burgess and Kelly, 1979). These scientific insights
had thus permitted to develop new formulations of numerous products in bakery, meat preparation,
and dairy products with targeted functionalities. From now on, milk is not added anymore as raw
milk in many industrial food product formulations but in the form of specific functional molecules
that can form various nanostructures and in turns change the texture and techno-functional

properties of food products (Barbut, 2007; Crowley et al., 2002).
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Table I. General composition of bovine milk (Fox, 2003; Gaucheron, 2005).
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Composition

Range (g.L'™")

Water

Dry Matter

Fat

Lactose

Caseins

01-casein
B-casein
K-casein
Osr-casein

Y1, Y2, Y3 caseins (B-casein-derived peptides)

Whey proteins

B-lactoglobulin
a-lactalbumin

Bovine serum albumin
Immunoglobulins

Protease peptones (casein-derived peptides)

Non-protein nitrogen (creatin, urea, free amino-

acids)

Minerals

Calcium

Magnesium
Inorganic phosphate
Total phosphore
Citrate

Sodium

Potassium

Chloride

900 - 910
125-135
35-45

47 -52

24 -28
9-11
9-11

3-4

3-4

1-2

5-7

2-4
1-15
0.1-0.4
0.6-1
0.6-18
1.5

8.5-9
1.0-1.3
0.97 - 1.46
1.81-2.19
0.93 - 0.99
1.32-2.08
0.39-0.64
1.21-1.69
0.77-1.21

Besides the key role of proteins in the food backbone and their peculiar functional properties, a

controlled hydrolysis of these proteins can also increase these functionalities according to the nature
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and the quantity of the peptides produced (Betancur-Ancona et al.,, 2014). Due to their intrinsic
physical and chemical characteristics, i.e., sequence, size, charge, structure and their interaction with
each other and other molecules, peptides are actually able to form self-assemblies or aggregates and
to thus develop new functional properties. The aggregation capacity of proteins and peptides may be
either enhanced or impaired when they are present in a heterogeneous and highly concentrated
medium such as that of food products, in the presence of other molecules (polysaccharides, lipids
and other proteins). One of the current way to control the functional properties of hydrolyzed
proteins is to understand the self-assembly mechanisms of proteins and peptides in concentrated
products such as foods and to determine which possibilities are available to product these

assemblies (Purwanti et al., 2010).

The differences between functional properties of model proteins and peptides were studied and
showed that peptides, with amphiphilic characteristics, increased the interfacial properties. This was
studied in model milk systems such as B-casein or B-lactoglobulin (Caessens et al., 1999; Haque and
Sharma, 1997; Turgeon et al.,, 1992). The model hydrolysates were characterized most often
according to a degree of hydrolysis and their functionalities were tested in model systems, in which
the composition and the concentration are far away from concentrated and complex systems like
food products. Moreover, some external factors such as temperature, pH or ionic strength added a
degree of complexity to understand the role of peptides in the modification of the protein functional
properties (Chobert et al., 1987; van der Ven et al., 2002). Then, the relationship between structure
of peptides or proteins and their functionalities is still difficult. It is even harder to establish this
relationship as peptides can be either produced in situ during the transformation process or

reincorporated in the food product as functional ingredients.

Cheese appears as an appropriate example of investigation of the peptide impact on the texture
characteristics as it is a rare transformed food product for which peptides were clearly involved in
the changes of texture and rheological properties (Upadhyay et al., 2004). Some peptides were
clearly identified as responsible of the texture changes, especially the a.;-l1 which is correlated with
the cheese softening (Lucey et al.,, 2003). Recently, a positive correlation between the casein
hydrolysis and a stretchability of cheese was shown (Sadat-Mekmene et al., 2013). This study
highlighted the importance of (i) the peptide production during the cheese ripening and (ii) the

interactions peptides with caseins into the cheese matrix.

22



General introduction, Objective and Strategy

The objective of this thesis was to determine how and to what extent casein-derived peptides are
able to modify the texture, the rheology and the microstructure of highly-concentrated casein

matrices.

Model solutions
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Figure 3. Scheme representing the questions arisen in this thesis.

The aim of this thesis was to establish how defined groups of peptides can induce functional
properties of various protein-peptide systems from model system to complex food system in terms
of impact on the microstructure, the rheological and the textural properties. In order to focus on the
impact of peptides, we chose to reincorporate casein hydrolysates in casein micelle systems of
various concentrations in the first parts of the thesis. In the last part, these hydrolysates were
incorporated in a model cheese matrix, including other components as fat and other peptides

produced by the enzymes already present in milk, added as coagulant or from the microflora.

23




General introduction, Objective and Strategy

Three series of questions were addressed throughout this thesis project:

(i) Would it be possible to relate in silico the physico-chemical characteristics of
peptides and one peculiar techno-functional property of food product? Would it be
possible, in turn, to tailor hydrolysate(s) that can be used to modify texture of a
complex casein matrix?

(ii) What is the impact of the physico-chemical and structural characteristics of these
designed peptides on the rheological and the structural properties of highly
concentrated casein matrices in a liquid or gel form?

(iii) Are the same phenomena found from a model solution to a concentrated matrix

including food products, as exemplified in a cheese model system?

To answer these questions, a strategy in four steps was developed (Figure 4). First, an in silico
approach was realized to link a peptide profile to a functional property in a food product. This was
done from the dataset obtained from the previous work of Sadat-Mekmene et al., (Sadat-Mekmene
et al., 2013), to determine which physico-chemical and structural characteristics of peptides are
involved in cheese stretchability. This step has permitted to select two enzymes able to produce
defined groups of peptides in the second step. Six hydrolysates of sodium caseinate were produced
with the two selected enzymes. This step needed adjustment of the hydrolysis parameters. The third
step was to incorporate the peptides produced indifferent casein systems to highlight the role of
peptides in the modification of the rheological properties, the textural properties and the
microstructure of casein micelles, under three different concentration conditions. The fourth, and
final step, was to incorporate these peptides in a model cheese and to confirm how specific
hydrolysates can modify on their own the overall texture of cheese. This thesis focused on the
techno-functional properties of peptides in a model media which became more and more complex in
terms of concentration and types of molecules involved. This thesis project will permit to have
insights on the relationship between peptides-peptides and peptides-proteins and in fine to have
some levers to be able to orientate the hydrolysis of proteins to generate some targeted

functionalities.
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Figure 4. Strategy used in the thesis that is composed of four sequential steps.

The main scientific and technological fallouts of this project are to control (i) the production of
peptides in situ in terms of quality and quantity and (ii) the interactions between peptides and
proteins that are the basis of functional properties by identifying the involved molecular, physico-
chemical and structural factors. Concerning the economic fallout, industrial plants have to innovate
to be competitive regionally, nationally and internationally. This is particularly a matter of concern of
the food stakes of Brittany that are keeping care about manufacturing new food products to increase
their added value of products coming from various food sectors (milk, meat, fish products and bakery
products). Brittany is the first food-producing region in France. The food-processing companies from
Brittany represent 43% of all plants and third party of the industrial jobs. Six sectors are well
represented: dairy products, meat, bakery products, fruits and vegetables, fish transformation and
ready-to-eat dishes. Among the transformations of food products, milk sector is concentrated in the
west part of France, Britany, Pays de la Loire and Normandy with 50% of the French production

(Lortal and Boudier, 2011).

This thesis project is a partnership between the joined unit INRA Agrocampus-Ouest, Science et
Technologie du Lait et de I'CEuf (STLO, INRA, Rennes) and the Bretagne Biotechnologie Alimentaire
association including the main small and medium-sized SMEs and multinational groups as well as

research unit centers and technical centers devoted to milk sector. The STLO laboratory has a
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research expertise on milk compounds and dairy fermented products. In particular, the “Cheese

Microstructure and Bacteria” team focuses on the in situ ripening mechanisms at the microscopic

scale.

The thesis manuscript includes the following parts:

In the first part of the thesis, we present a review dealing with the functional properties

of peptides, from model solution to food products.

The second part describes the material and methods used in the different parts of this

thesis.

The third part of thesis describes the results and discussion. It is composed of five

chapters.

a)

d)

e)

The first chapter reports on the in silico methods used to establish relationships
between a techno-functional property of dairy products and a peptide profile.
Chapter 2 gives insights on the rheological properties and the microstructure of
milk derived peptides in liquid systems highly concentrated in caseins.

In chapter 3, we investigated how peptide physico-chemical and structural
characteristics affects the textural properties and the microstructure of dairy
gels.

In chapter 4, the impact of protein and peptide concentration on the texture and
appearance of the systems and was evaluated. Which interactions are involved
between casein micelles and peptides at concentrations above 200 g.kg™?

In chapter 5, the impact of peptides on the texture of model cheese was

investigated.

The summarized results and concluding remarks are given in the 4™ part.

The valorizations and formations are presented in the last part of this thesis.
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Introduction Générale, Objectif & Stratégie

Les modes de consommation des aliments sont en constante évolution depuis des décennies qui a eu
pour effet : une forte augmentation du taux de lipides et de sucres dans les produits alimentaires,
une démocratisation des plats préparés et une augmentation des repas pris hors domiciles qui
requierent une praticité de préparation des plats.

Les changements de consommation des aliments proviennent de notre histoire (Figure 1). Depuis
plus de 7 millions d’années, lors de la préhistoire, les humains acquéraient leur nourriture par la
chasse, la péche et la cueillette. La révolution agricole, suivie par la révolution industrielle, ont eu de
grandes conséquences sur la consommation alimentaire humaine. Les conséquences de ces
bouleversements ont été soit positives (développement du potentiel biologique, de la capacité de
travail, de la longévité de la vie, et de la qualité de la vie d’'une maniere générale) ou négatives
(augmentation du surpoids, obésité, diabétes). Au XVIIE™ siécle, les régimes alimentaires ne sont
plus uniguement dévoués a nourrir la population mais tiennent de plus en plus compte de I'aspect
gourmet de la nourriture, de la variété et de I'esthétisme des repas. Ces changements ont été
associés a la notion de plaisirs hédoniques en termes de gout, de flaveur, et a '’émergence des
qualités nutritionnelles et de santé. A partir de 1789, le go(t et les plaisirs de la table se sont
démocratisés. A ce moment, la texture et la flaveur des produits alimentaires sont devenus tres
importants pour les consommateurs. A la fin des années 1980, un fort aspect santé a été donné a
I'aliment. Le développement des méthodes de conservation des aliments est venu avec I'invention
du réfrigérateur et de I'appertisation. Le développement de nouveaux procédés de transformation
alimentaire et I'accroissement de leur complexité a permis de diversifier les types de produits
alimentaires. De nouvelles fonctionnalités ont alors été recherchées pour beaucoup de composants
alimentaires, comme il est reporté par Bauer et al. (2010) pour les protéines laitieres. Au XX sigcle,
les plats préparés et les produits préts a consommer, tels les pizzas ou les desserts au lait frais, ont

connu un grand succes du fait du temps gagné et de la praticité engendrée lors de la préparation des

repas.
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Figure 1. Etapes clés de I'histoire de la science des aliments, de la préhistoire a nos jours (http://www.ania.net/alimevolution).
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Par conséquent, depuis les années 1990, les ménages ont consommé de plus en plus de plats
préparés et de produits transformés notamment dans le secteur laitier avec comme exemple phare
le fromage (Figure 2). Il est ici considéré qu’un produit est transformé a partir du moment une
transformation de la matiére premiere a lieu, soit par le procédé de fabrication soit par une

modification chimique ou biologique.
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Figure 2. Evolution du type de produit alimentaire consommé en France de 1960 a 2014 (Insee 2015).

L’aliment est une matiére subissant des modifications constantes de forme, de taille et de structure,
dépendantes des réactions physiques et biochimiques qui ont lieu lors des opérations technologiques
ou lors de la conservation. Donc, de nombreuses interactions ont lieu entre les divers constituants,
ce qui modifie la texture de ces matieres. Toutefois, il est essentiel de comprendre comment ces
changements ont lieu afin d’étre capable d’établir une corrélation entre les composants de I'aliment
et les changements de texture de I'aliment. Le produit alimentaire est aussi une matiére sur laquelle
il est intéressant de mesurer les propriétés mécaniques telles que rhéologiques ou texturales. Lors de
la préparation, lors de la transformation ou lors de la formulation des matiéres premieres, de
nombreuses techniques ont été utilisées et de nombreuses interactions ont lieu entre les
constituants qui modifient profondément et de maniére plus ou moins irréversible la texture de ces
matiéres. La mesure des propriétés rhéologiques des denrées alimentaires permet de planifier leur
comportement mécanique lors de diverses étapes de |'élaboration des aliments. Les propriétés
rhéologiques sont aussi a I'origine du comportement percu lors de |’évaluation sensorielle de la
texture. Dans le domaine alimentaire, la texture est essentiellement considérée comme une
propriété sensorielle incluant, entre autres, la tendreté, la fermeté ou encore le collant en bouche.

Certains principes fondamentaux de la rhéologie permettent de mieux comprendre le comportement
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mécanique de ces substances, a leur état naturel ou quand elles ont été modifiées par un procédé de
texturation. Il y a d’autres possibilités de modification de la texture d’un produit menant au
développement de nouvelles formulations alimentaires en utilisant les propriétés fonctionnelles de

certains composants tels que la gélification, les propriété épaississantes, I’émulsion ou texturisation.

Le lait est un exemple de choix pour comprendre les relations entre les constituants et leurs
fonctionnalités. Dans les années 1960, la filtration membranaire a été développée afin de séparer les
composants du lait qui pourraient avoir des fonctionnalités spécifiques. Cela a été |'occasion de
découvrir chaque composant laitier en tant qu’entité a part entiére. Le lait est composé de plusieurs
centaines de molécules, incluant des protéines, des lipides, des glucides, des minéraux, des
oligoéléments, des vitamines... (Table I). Il est rapidement apparu que parmi ces nombreux
constituants, les protéines et les peptides dérivés de ces protéines jouent un réle prépondérant dans
la structuration et la texturation de I'aliment. Les protéines et les peptides peuvent étre réincorporés
dans des produits alimentaires pour modifier leur texture et leur structure. De plus, la récupération
du lactosérum a permis de recycler une partie des protéines avec de bonnes propriétés
fonctionnelles telles que la gélification, la stabilisation d’émulsion ou de mousses depuis les années
1980 (BURGESS and KELLY, 1979). Ces avancées scientifiques ont permis de développer de nouvelles
formulations de nombreux produits de boulangerie, de viande ou de produits laitiers avec des
fonctionnalités ciblées. Jusqu’a ce jour, le lait est de plus en plus rarement ajouté tel quel comme
matiere premiére dans les formulations de produits alimentaires mais sous forme de molécules avec

des techno-fonctionnalités spécifiques (Barbut, 2007; Crowley et al., 2002).
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Table I. Composition générale du lait de vache (Fox, 2003; Gaucheron, 2005).

Composition

Concentration (g.L'l)

Eau

Extrait sec

Matiéres grasses

Lactose

Caséines

Caséine asl

Caséine B

Caséine k

Caséine as,

Caséines y1, y2, y3 (peptides

dérivés de la caséine B

Protéines sériques

Azote non protéique (créatine, urée,

B-lactoglobuline
a-lactalbumine

Sérum albumine bovine
Immunoglobuline

Protéases de peptone

acides-aminés)

Mineraux

Calcium

Magnésium

Phosphate inorganique
Phosphore total
Citrate

Sodium

Postassium

Chlorure

900 - 910
125-135
35-45
47-52
24-28
9-11
9-11

3-4

3-4

1-2

5-7

2-4
1-15
0,1-0,4
0,6-1
0,6-1,8
1,5

8,9-9
1,0-1,3
0,97 - 1,46
1,81-2,19
0,93-0,99
1,32 -2,08
0,39-0,64
1,21-1,69
0,77-1,21
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Un controle de I'expression des propriétés fonctionnelles des composants alimentaires, depuis le
début de leur fabrication, devrait permettre de développer des formulations avec des textures
souhaitées. En plus du réle clé des protéines dans la structure des aliments et de leurs propriétés
fonctionnelles particulieres, une hydrolyse contr6lée de ces protéines peut aussi augmenter ces
fonctionnalités selon la nature et la quantité des peptides produits. En raison de leurs
caractéristiques physico-chimiques intrinséques, telle la séquence, la taille, la charge, la structure et
leurs interactions avec d’autres molécules, les peptides peuvent en réalité former des auto-
assemblages ou des agrégats et ainsi développer des nouvelles propriétés fonctionnelles. La capacité
d'agrégation des protéines et des peptides peut étre ou améliorée ou détériorée quand ils sont
présents dans un milieu hétérogeéne et concentré tel un produit alimentaire, en présence d'autres
molécules (polysaccharides, lipides et autres protéines). Un des moyens de controler les
fonctionnalités des protéines hydrolysées est de comprendre les mécanismes d’auto-assemblage des
peptides et protéines dans des produits concentrés tels que les aliments et de déterminer quelles

sont les possibilités pour produire les assemblages (Purwanti et al., 2010).

Les différences entre les propriétés fonctionnelles des protéines modéles et des peptides ont été
étudiées, et ont montrées que les peptides, avec des caractéristiques amphiphiles, augmentaient les
propriétés interfaciales des protéines initiales. Les hydrolysats modéles ont été caractérisés le plus
souvent selon leur degré d’hydrolyse et leurs fonctionnalités ont été testées dans des systémes
modeles dont la composition et la concentration sont fortement éloignées des systémes concentrés
et complexes que sont les aliments (Caessens et al., 1999; Haque and Sharma, 1997; Turgeon et al.,
1992). De plus, certains facteurs externes tels que la température, le pH ou la force ionique en plus
du degré d’hydrolyse apportent une complexité supplémentaire a la compréhension du réle des
peptides dans la modification des propriétés fonctionnelles des protéines (Chobert et al., 1987; van
der Ven et al., 2002). Par conséquent, la relation entre la structure des peptides ou des protéines et
leurs fonctionnalités est toujours difficile a établir. Il est aussi difficile d’établir cette relation puisque
les peptides peuvent étre soit produits in situ lors du procédé de transformation ou isolés et ajoutés

plus tard dans I'aliment en tant qu’ingrédient fonctionnel.

Le fromage apparait comme un exemple approprié d’investigations de I'impact des peptides sur la
texture puisqu’il est un des rares aliments pour lequel les peptides ont été clairement démontrés
comme responsable dans les changements de texture ou de propriétés rhéologiques (Upadhyay et
al., 2004). Certains peptides ont été identifiés comme responsables des changements de texture,
spécifiqguement le peptide a,;-l qui a été corrélé au ramollissement de la pate du fromage (Lucey et

al., 2003). Récemment, une corrélation positive entre I’hydrolyse des caséines et le caractere filant
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du fromage a été montrée (Sadat-Mekmene et al., 2013). Cette étude a mis en évidence I'importance
de (i) la production de peptides lors de I'affinage du fromage et des (ii) interactions peptides-caséines

dans la matrice fromagere.

L’objectif de cette thése est de déterminer comment les peptides sont capables de modifier la

texture, la rhéologie et la microstructure des matrices hautement concentrées en caséines.

Systémes modéles

r A
Hydrolyse partielle b ‘;;t — =
A% o BB
P

‘;__ Interactions:

[ ) ?_Lr -~ - peptides-peptides
e . .
d&- = = - peptides-caséines
—
’%I_-“ =
-
v

Systémes complexes

Caractéristiques Propriétés Texture
structurales rhéologiques

Figure 3. Schéma représentant les questions posées dans cette these.

L'objectif de cette these a été d’établir comment un groupe défini de peptides peut induire diverses
propriétés fonctionnelles, du systéeme modele au systéme complexe, en termes d’impacts sur la
microstructure, la rhéologie et les propriétés de texture (Figure 3). Dans la premiére partie de cette
these, des hydrolysats de caséines ont été incorporés dans des systemes contenant diverses
concentrations de micelles de caséines. Dans la partie finale de cette thése, ces hydrolysats ont été
incorporés dans une matrice fromagere modeéle dans laquelle sont présents d’autres composants tels
la matiére grasse et d’autres peptides produits par les enzymes déja présentes dans le lait, ajoutés

comme coagulant ou a partir de la flore bactérienne.
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Trois séries de questions ont été posées a travers ce projet de these :

(i) Est-il possible de relier, in silico, les caractéristiques physicochimiques de peptides
présents dans un aliment a une propriété techno-fonctionnelle particuliere de cet
aliment? Est-il possible ainsi d’adapter le ou les hydrolysat(s) qui peuvent étre utilisés
pour modifier la texture d'une matrice de caséines complexe?

(ii) Quel est I'impact des caractéristiques physico-chimiques et structurelles de ces peptides
cibles sur la rhéologie et les propriétés structurelles de matrices de caséines hautement
concentrées, sous forme liquide ou de gel?

(iii) Les mémes phénomeénes se produisent-ils dans un systeme modeéle, un systeme

concentré en caséines et dans un fromage modele?

Afin de répondre a ces questions, une stratégie en quatre étapes a été développée (Figure 4).
Premierement, une approche in silico a été réalisée afin de relier un profil de peptides a une
propriété de texture particuliere, le filant d’un fromage. Cette étude a été menée a partir des
données obtenues lors de travaux précédents (Sadat-Mekmene et al.,, 2013) afin de déterminer
quelles caractéristiques physico-chimiques et structurelles de peptides sont impliquées dans le filant
du fromage. Cette étape a permis de sélectionner deux enzymes afin de produire les hydrolysats
spécifiques de la seconde étape. Six hydrolysats ont été produits a partir de trois caséines : la caséine
o1, la caséine B et la caséine as, grace a deux enzymes sélectionnées lors de I'étape in silico. Cette
étape a nécessité un ajustement des parametres d’hydrolyse selon I'échelle de production des
hydrolysats. La troisieme étape a été d’incorporer les peptides produits dans des systémes contenant
trois différentes concentrations a deux pH afin de mettre en évidence le réle des peptides dans la
modification des propriétés rhéologique, de texture et sur la microstructure de ces systemes. La
guatrieme et derniére étape fut d’incorporer ces hydrolysats dans un fromage modéle et d’observer
les modifications de la texture du fromage liées a la présence de ces hydrolysats. Cette these s’est
focalisée sur les propriétés techno-fonctionnelles des peptides en premier lieu sur un milieu modele
qui est a été complexifié au cours de I'’étude en termes de concentration et de type de molécules
mises en jeu. Ce projet de these va permettre d'obtenir des connaissances sur les relations peptides-
peptides et/ou peptides-protéines afin de permettre a terme d’orienter in fine I'hydrolyse des

protéines pour générer des propriétés fonctionnelles ciblées.
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Figure 4. Stratégie de la thése composée de 4 étapes.

Les principales retombées scientifiques et technologiques de ce projet sont: (i) de contrbler la
production des peptides in situ en termes de qualité et de quantité et (ii) de générer des
connaissances sur les interactions entre les peptides et les protéines, a la base des propriétés
fonctionnelles, en identifiant les facteurs moléculaires, physico-chimiques et structuraux impliqués.
Concernant les retombées économiques, les entreprises doivent constamment innover pour
préserver leur compétitivité. Ceci est une des préoccupations des entreprises agroalimentaires de la
Bretagne qui cherchent a fabriquer de nouveaux produits alimentaires afin d’augmenter la valeur
ajoutée des produits venant de secteurs alimentaires divers (lait, produits carnés, produits a base de
poisson et produits et produits de boulangerie). La Bretagne est la premiére région agroalimentaire
de France. Les entreprises agroalimentaires de Bretagne représentent 43% du total des entreprises
et la troisieme partie des emplois industriels. Six secteurs sont représentés : produits laitiers, viande,
produits de boulangerie, fruits et légumes, transformation du poisson et plats préparés. Parmi les
transformations des produits alimentaires, la filiere laitiére est concentrée dans I'ouest de la France,
Bretagne, Pays de la Loire et Normandie avec 50% de la production Frangaise totale (Lortal and

Boudier, 2011).

Ce projet de thése est un partenariat entre le laboratoire de Science et Technologie du Lait et de
I’CEuf (STLO, INRA, Rennes) et I'interprofession laitiere Bretagne Biotechnologie Alimentaire incluant

(SODIAAL, LACTALIS, Bongrain, CF&R, BEL, Coopérative d'lsigny, Laita, Laiterie de Montaigu, SILL,
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Maitres Laitiers du Cotentin, INRA Sciences et technologie du lait et de I'ceuf, INRA Biopolymeéres

interactions assemblages, Laboratoire Universitaire de biodiversité et écologie microbienne, ONIRIS,

Actalia Produits laitiers, Institut de physique de Rennes, Polymeres colloides et interfaces). Le STLO a

une expertise en recherche sur les composants du lait et les produits laitiers fermentés. En

particulier, I'’équipe « Microstructure fromagére et Bactéries » se focalise sur les mécanismes

d’affinage in situ a I’échelle microscopique.

Ce manuscrit de thése inclue les parties suivantes :

Dans la premiere partie de la thése, nous présentons les propriétés fonctionnelles des

peptides, des systémes modeles aux produits alimentaires.

La seconde partie décrit le matériel et méthode utilisé lors de cette these.

La troisieme partie de cette thése décrit les résultats et la discussion. Elle est composée de

cing chapitres.

a)

b)

d)

e)

Le premier chapitre démontre une méthode in silico permettant d’établir une
relation entre un profil de peptides et une propriété techno-fonctionnelle
particuliere d’un fromage.

Le chapitre 2 apporte des connaissances sur les propriétés rhéologiques et la
microstructure des peptides en systémes liquides, a diverses concentrations en
peptides et caséines.

Le chapitre 3 apporte des connaissances sur la texture et la microstructure des
peptides en systemes gélifiés, a diverses concentrations en peptides et caséines.
Dans le chapitre 4, I'impact de la concentration des protéines et des peptides sur
la texture et l'apparence des systémes a été évalué. Quelles interactions sont
impliquées entre les micelles de caséines et les peptides a de trés hautes
concentrations ?

Dans le chapitre 5, I'impact des peptides sur la texture d’'un fromage modele a

été étudié.

La quatriéme partie comprend une discussion générale des résultats.

La derniére partie inclue les valorisations et les formations réalisées au cours de cette these.
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Part | - Bibliographic Review

The first part of the manuscript presents the advances made concerning the ability of peptides to
bestow particular functional properties on various matrices including foods (Figure 1). We focus on
systems ranging from model solutions in which peptides are rationally designed to orient their
structure and to form hydrogels to mixtures of peptides in complex food matrices. In the latter case,
peptides are an integral part of food formulations due to their production in situ or their addition as
an ingredient. Examples of complex matrices such as food products, where mixes of peptides are
present as hydrolysates with various physico-chemical properties, focus on the ability of peptides to
modulate the texture of foods and their functional properties, including solubility, gelation and even
emulsifying and foaming properties. Attempts have been made to establish relationships between
the physico-chemical and structural characteristics of peptides and their functional properties.
, o5D Ala Lev Pro Asu

Ler Gly Pro Thr Kis Ser Lys Glu .
£0 Ma Lou The Ala Val Glu Thr Gly Ald
The Asn Pro Leu Val Pco Ser Asp Thr Val
Gln Tar Arg Bis Val Val Gin His Acy Ser
Arg Ser Glu Ser Ser Ile Glu Ser Phe Phe ‘
Ala Arg Gly Ala Cys Val Thr le Met Thr
Val Asp Asa Pro Ala Ser Thr Thy Asa Lys
20 Lys Leu Phe Ala Val Tzo Lys Ile Thr.

Svs Asp Thr Val Gl Leu Arg Atg L%
She Thz Tyr Ser

Functional
| properties

Secondary Self-assembly

structure or aggregation Microstructure

Sequence

, . I 7 T
: , . — - w Ml N
\\ Knowledge about peptide structuration and functional properties in model solutions i\\ f [ /

? 4 ‘

= e - o ——— —'— — o — j Food pl’OdUCtS : LA
‘ \J BC //'
8 % % N b

Figure 1. Graphical abstract of the bibliographic review.
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Partie | — Revue Bibliographique

La premiere partie de ce manuscrit de thése présente les avancés scientifiques concernant la
capacité des peptides a conférer des propriétés fonctionnelles particulieres a diverses matrices,
incluant les produits alimentaires (Figure 1). Nous nous sommes concentrés sur des systémes
s'étendant de solutions modeles, dans lesquelles les peptides sont rationnellement congus pour
orienter leur structure et former des hydrogels, aux mélanges de peptides dans des matrices
alimentaires plus complexes. Dans le dernier cas, les peptides font partie intégrante des formulations
alimentaires en raison de leur production in situ ou de leur ajout en tant qu’ingrédient. Nous avons
focalisé nos exemples sur la capacité des peptides a moduler la texture des produits alimentaires, ou
les mélanges de peptides sont présents en tant qu’hydrolysats ayant des propriétés physico-
chimiques diverses, et a moduler leurs propriétés fonctionnelles, incluant la solubilité, la gélification
ainsi que leur pouvoir émulsionnant et leurs propriétés moussantes. Certaines tentatives
d’établissement de relations entre les caractéristiques physico-chimiques et structurelles de peptides

et leurs propriétés fonctionnelles ont été réalisées.
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organoleptic properties and health-promoting activities of foods.
Peptides can enhance emulsion or foam formation and stabilize
them by preventing coalescence or flocculation. They can improve
the solubility of proteins, increase the viscosity of a solution, and
make gels under appropriate physico-chemical conditions
(Caessens, De Jongh, Norde, & Gruppen, 1999; Kilara & Panyam,
2003; Saito, Ogasawara, Chikuni, & Shimizu, 1995). They are also
an inherent part of the nutritional value of food through their
contribution to the reduction of allergenicity and their various
bioactivities, as shown in recent reviews (Garcia, Puchalska, Esteve,
& Marina, 2013; Moayedzadeh, Madadlou, & Khosrowshahi asl,
2015; Nongonierma & FitzGerald, 2015).

Due to their intrinsic physical and chemical characteristics, i.e.,
sequence, size, charge, structure and their interaction with each
other and other molecules, peptides are able to form self-
assemblies or aggregates and to thus develop new functional
properties. Recent advances in this field show the ability of these
peptides to form hydrogels, nanotubes and fibers under defined
conditions. In these systems, the peptide sequence is tailored to
satisfy specific needs (Boyle et al., 2012), the types of interactions
involved, the supramolecular structures formed as well as the
properties of the solutions or gels, are highly controlled. The ag-
gregation capacity of proteins and peptides may be either enhanced
or impaired when they are present in a heterogeneous and highly
concentrated medium such as that of food products, in the presence
of other molecules ( polysaccharides, lipids and other proteins). The
concept of melecule confinement, referred to as crowding, has
recently been developed in order to understand the modulation of
the interactions between peptides and proteins in high concen-
trations such as those encountered in cell cytosol, which can reach
300—400 g/l, and that can be found in food products.

It clearly appears that such new advances will help us address
the question in this review of the extent to which peptides can be
an important part of the final functional properties of foed products
and how this occurs. In this paper, we emphasize: (i) the progress
that has been made and existing gaps in our knowledge in order to
establish relationships between the structural and functional
properties conferred by peptides in various matrices including food
products; and (ii} how recent knowledge about the capacity of
peptides to self-assemble or aggregate can help us learn more
about assembly and functional properties of peptides in complex
media such as food.

This review is divided into six sections. Section 1 is devoted to
the production of peptides and the method of characterization;
Section 2 deals with recent knowledge about peptide self-assembly
and their implication in functional properties; Section 3 describes
the role of peptides in functional properties when they are mixed
with other peptides and proteins and with components other than
proteins, ie, in food products, the subject of Section 4; Section 5
focuses on the concept of crowding that has to be considered as
another extrinsic factor capable of exerting deep changes in peptide
functional properties under high concentration conditions; and,
finally, Section 6 presents the conclusion.

Since much discussion about the definitions of “self-assembly”
and “aggregation” exists in the literature, we will consider here that
the self-assembly of peptides represents a spontaneous and
reversible reaction in contrast to aggregation. In the case of self-
assembly, non-covalent bonds such as hydrogen bonds, electro-
static and van der Waals interactions are involved in the peptide
assembly (Bouhallab & Croguennec, 2014; Chen, 2005). Concerning
aggregation, we will consider that it is an irreversible reaction
involving covalent bonds such as disulfide bonds (Bouhallab &
Croguennec, 2014; Bouhallab, Riaublanc, & Croguennec, 2011).

2. Production of single molecules or mixtures of peptides and
the main methods of characterization

Peptides are chains of two to 100 successive amino acids
(Bodanszky, 1988) and of higher amino acid residue numbers for
proteins, which are connected to each other via covalent bonds
between their amino group and their carboxyl group.

Peptides can be chemically synthesized as a single molecule or
produced from the parent proteins by enzymatic hydrolysis as a
mixture of peptides, referred to as hydrolysates. In the former case,
synthesized peptides have a rationally-designed sequence and are
well identified (Kyle, Aggeli, Ingham, & McFPherson, 2009). The
difficulty is the presence of bichazard products that result from
synthesis. In the latter case, peptides can be produced in large
amounts at a much lower cost. Hydrolysates are increasingly used
in food formulations for their particular functional properties. The
composition of the hydrolysate is governed by the enzyme speci-
ficity, the enzyme:protein ratio, the extent of hydrolysis and the
physico-chemical conditions applied (Gauthier, Paquin, Pouliot, &
Turgeon, 1993; Kristinsson & Rasco, 2000), as detailed below.

Hydrolysate composition first depends on the enzyme speci-
ficity, which determines the number and the size of the peptides
produced (Darewicz, Dziuba, & Dziuba, 2006). Commercial en-
zymes with well-known specificities are available, the most com-
mon of which are trypsin, papain, pronase, pepsin, bromelain,
alcalase and chymotrypsin (Kumagai, 2012). The in silico method
based on the known specificity of enzymes now makes it possible
to predict the type and the number of peptides that can be theo-
retically produced from proteins by taking the possible formation
of intermediate and/or end products within the hydrolysate into
account. The second key factor essential for hydrolysis concerns the
protein used as substrate, its nature, its concentration and the
extent of its denaturation. For example, the thermal denaturation of
whey proteins improved the extent of their hydrolysis by exposing
previously inaccessible amino acids in the native protein to cleav-
age and, as a result, changing the type and the number of peptides
produced compared to the native protein {Tavano, 2013). The third
parameter is linked to the conditions in which the hydrolysis is
performed, ie, the enzyme:substrate ratio, the pH, the ionic
strength, the temperature and the reaction time that can impact the
enzyme activity, the accessibility te substrate and eventually
change the final composition of the hydrolysate (Amiza, Kong, &
Faazaz, 2012; Neklyudov, Ivankin, & Berdutina, 2000; Panyam &
Kilara, 1996; Yin et al,, 2010).

Therefore, hydrolysate can contain mixtures of native proteins,
peptides and amino acids in various amounts depending on the
hydrolysis conditions used, which will have a subsequent impact on
the final functional properties (Damrongsakkul,
Ratanathammapan, Komolpis, & Tanthapanichakoon, 2008; Liu
et al,, 2014; Shahidi, Han, & Synowiecki, 1995).

Many different techniques are available to monitor and control
the production of peptides and to provide additional information.
The most frequently used to qualify a hydrolysate is the degree of
hydrolysis of proteins (DH), which refers to the proportion of
cleaved peptide bonds per total number of bonds existing in the
protein, and which varies from 0 to 100% depending on the intact
proteins and the complete conversion of protein into amino acids,
respectively (Liceaga-Gesualdo & Li-Chan, 1999; Mahmoud, 1994;
Panyam & Kilara, 1996). It is usually determined by monitoring the
pH or by quantifying the free NH; groups because of the ease with
which this can be done (Spellman, McEvaoy, O'Cuinn, & FitzGerald,
2003} Most of the time, the higher the DH is, the smaller and the
more soluble the peptides will be (Adler-Nissen, 1976; Ghribi et al.,
2015; Jamdar et al., 2010; Quaglia & Orban, 1987). However, it re-
flects neither the quantity of peptides present in the hydrolysate vs.
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residual parent proteins nor the types of peptides present in the
hydrolysate.

Several other methods exist and are also used. For example,
electrophoresis is used to obtain the profile of the peptides ac-
cording to their apparent molecular mass by SDS-PAGE, or both
their charge and molecular mass by urea-PAGE. It also provides an
overall qualitative profile of the residual proteins present in the
hydrolysates and of their derived-peptides over 2000 Da, peptides
with lower apparent molecular mass are sometimes able to diffuse
out of the gel. Another method to separate proteins and peptides
according to size is the size exclusion chromatographic method, but
separation is not of high resolution. Other chromatographic
methods are also used to selectively separate them according to
their charges by ion exchange, or according to their hydrophobicity
by reverse-phase.

Mass spectrometry (MS) is a tool of choice at this time,
increasingly used to elucidate the mass profile and to identify
peptides in hydrolysates and give their sequence inside the hy-
drolysate and the corresponding parent protein they are derived
from (Aeberscld & Mann, 2003). Depending on the sequence of
peptides obtained, it is possible to calculate the physice-chemical
and structural characteristics of peptides with several types of
software available on ExPAsy.com (Lacou, L&, Pezennec, & Gagnaire,
2015). Quantitative determination can be made by mass spec-
trometry using stable isotope tags (Bantscheff, Lemeer, Savitski, &
Kuster, 2012). However, this quantification is only relative and
based on a comparison of quantity of the same peptide present in
two or more experimental conditions or by using an internal
standard, but its choice must be compatible with several hundred
peptides present within a hydrolysate. Identification of peptides by
mass spectrometry is accurate over five amino acids in the
sequence, and several chemical derivatization techniques have
been developed in order to overcome the difficulty of assigning
sequences for di-and tripeptides (Iwasaki et al., 2011; Santa, 2011).
Nevertheless, it is not possible to detect all of the peptides since
some of them suppress ionization, which makes their detection
impossible. In some other cases, interference between some of the
composites {oxides and carbides} and peptides makes it difficult to
identify them in the hydrolysate.

In order to more finely characterize the peptides in hydrolysates,
a combination of the above-mentioned methods must be under-
taken, which is what has been done to varying degrees so far.

3. How can rationally-designed peptides that are able to self-
assemble or aggregate change the functional properties of
model systems?

In this part of the review, we focus on peptide self-assembly and
the relationships between peptide structure and their functional
properties, preferably in terms of hydrogel formation or their use as
thickeners or gelling agents that can be provided by supramolec-
ular structures such as nanotubes, fibrils or aggregates (Dickinson,
2015}, rather than in terms of the production of bio-nanomaterials
and surfactants used as stabilizers of emulsions and foams already
reviewed by Reches and Gazit (2006} and Dexter and Middelberg
(2008), respectively.

Peptides can spontaneously assemble or aggregate when the
physico-chemical conditions of the solution, i.e., pH, ionic strength
and temperature, become suitable. Even short peptides - from tri-
peptides to hexapeptides - were able to self-assemble and form
fibers in a concentration-dependent manner (Hauser et al., 2011).
These peptides have a peculiar amphiphilic structure with an
aliphatic amino acid tail of decreasing hydrophobicity with
aliphatic nonpolar amino acids (N-terminus) and a hydrophilic
head group of acidic, neutral or basic nonaromatic polar amino

acids (C-terminus). Fiber formation could be accelerated by
changing the type of amino acid in the hydrophobic tail and by
increasing the temperature, leading to the formation of a solid-like
hydrogel (Hauser et al., 2011}. Such a change in the sequence would
enhance or not the attractive or repulsive interactions between
peptides via changes in electrostatic and van der Waals interactions
and even hydrogen and disulfide bonds (Loo, Zhang, & Hauser,
2012).

Hauser et al. (2011) hypothesized that the mechanism of fiber
formation could be divided into three parts: {i} interaction between
two monomers of peptides and the formation of antiparallel pair-
ing with a random coil secondary structure; (ii) transient «-helical
conformation of this peptide pair at a threshold peptide concen-
tration (0.9 g L '), considered to be the critical step; and (iii)
peptide pair assembly leading to fibers that are finally condensed
into fibrils and form a hydrogel. Once the p-turn structure is
formed, fibers remain irreversibly stable {Hauser et al.,, 2011).

Other examples showed that the way the amino acids are
located in the sequence is a key driving force that influences the
ability of peptides to self-assemble or to aggregate (Table 1}. Hence,
the dipeptide Phe—Phe, as well as its analogues with amine and
carboxyl modification, are able to form ordered tubular structures
at the nanometric scale, whereas diphenylglycine self-assembles
into ordered nanospheres (Reches & Gazit, 2006). The tubular
ones were shown to have remarkable chemical and mechanical
properties (Reches & Gazit, 2006), whereas the nanospheres could
be used to encapsulate ligands. Another interesting example is
given by the p-lactoglobulin-derived peptide B-Lg(f1-8) for which
the change in the amino acid residues present at both the N-ter-
minal and the C-terminal extremities greatly modifies its capacity
to self-assemble and to form a hydrogel {Cuy & Voyer, 2012). The
authors showed that an equilibrium has to be maintained between
hydrophobic and charged amine acids in order to improve not only
the peptide self-assembly but the gelation rate at neutral and basic
pH as well. It actually appeared that -sheet formation promotes
peptide self-assembly (Guy & Voyer, 2012) that is differentially
influenced according to the type of amino acid concerned. Thus, the
presence of leucine at the N-terminal extremity clearly increased
the (-sheet formation over the entire pH range (3—11), while
substituting the C-terminal lysine with alanine only favored the -
sheet formation in strongly acidic or basic environments. However,
knowledge of the peptide sequence, its secondary structure and the
fiber morphologies observed by TEM is not necessarily an indica-
tion of the gelation capacity obtained.

Environmental conditions, namely pH, are therefore crucial to
favor or not the acquisition of functional properties by peptides.
Since peptides are polyelectrolytes, their charges are minimized at
their pl, peptide—peptide interactions are favered over peptide-
water interactions, and their solubility is generally low at this pH
value (Klompong, Benjakul, Kantachote, & Shahidi, 2007;
Mahmoud, 1994). At pH values far from the pl, ionizable groups
of peptides that are negatively or positively charged either promote
electrostatic repulsions between peptides that favor their solubility
or promote electrostatic attractions between peptides that faver
macremolecular formation. The example of caseinomacropeptide
(CMP), either glycated with sialic acid or not, well illustrates the
impact of the acidic pH in gel formation (Farias, Martinez, & Pilosof,
2010). Gel formation was enhanced at acidic pH when both CMP
and glycated CMP were present because of the low pKa of sialic acid
that made the presence of local negative charges possible on the
glycated CMP dimers that can interact with the main positive
charge of the CMP dimers. The kinetics of the CMP self-assembly
was characterized in the pH range of 6.5 to 3. The first stage con-
sisted of self-assembly by hydrophobic interactions to form dimers
for both types of CMP, whereas the second stage involved
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Table 1
Relationships between the sequence of rationally-designed peptides, their secondary structure and their supramolecular structure.
Peptide Secondary structure Supramolecular structure Functional References
property
K170L30 o- helix A Hydrogel Deming
et al., 2005
K160L40 a-helix Hydrogel
AEAEAKAKAEAEAKAK = Hong et al.,
2005
NHa-((D-1-Nal)-(D-1-Nal}-COOH Anti-parallel p-sheets + z-helix - Reches et
motifs Gazit, 2006
NHa-(p-nitro-Phe)-(p-nitro-Phe }-COOH Anti-parallel p -sheets -
KIKALKYEIAALEQEIAALEQKIAALKQ a-helical ceiled coil structure - Gribbon
et al,, 2008

KIAALKYEIAALEQEIAALEQKIAALKQ
KIEALKYEIAALEQEIAALEQKIAALKQ
KINALKYEIAALEQEIAALEQKIAALKQ
KIKALKQEIAALEQEIAALEQKIAALKQ

GGGGGGDD

Ac-FKFEEKEF-CONH,

a-helical coiled coil structure
a-helical coiled coil structure
a-helical coiled coil structure
a-helical coiled coil structure

No fiber —

No fiber -

No fiber -

Fiber thinner than —
KIKALKYEIAALEQEIAALEQKIAALKQ

Nanotubes and - Zhao, Pan, &

. Lu, 2008
nanovesicules

Evolution according to the time of Evolution according to the time of —

solubilization:

solubilization:
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Table 1 (continued )
Peptide Secondary structure Supramolecular structure Functional References
property
-a few minutes after the -a few minutes after the
preparation of the peptide preparation of the peptide
solution: B-sheets solution: left side
-in the later stage: anti-parallel - -in the later stage: fibrillar
sheet. structures and networks
RN -
(VGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGVPG)g — Gels such as coacervates - Kyle, Aggeli,
Ingham, &
McPherson,
2009
QQRFQWQFEQQ f-sheet Fibrils -
QQRFEWEFEQQ B-sheet Fibrils -
RADARADARADARADAE - Nanofibres -
EVHHQKLVFFAEDVG - Amyloid fibrils -
AAVVLLLWEE - Vesicule -
EIKALEQETAALKQKIAWLKQ —— GN —— KIKALQEIAALKQEIAYLEQ Predominantly «-helical - Boyle et al.,
Decrease of the helicities of the 2012
peptides
. ,A‘; et 715
EIKALEQETAALKQKIAWLKQ —GNGN — KIKALKQEIAALKQEIAYLEQ Large assemblies -
LIVTQTMK B-sheet at basic pH GelatpH Guy &
10 Voyer, 2012
GIVTIQTMK “Random coil” over a wide range No gel over
of pH = >self-assembling wide pH
inhibited range
LLIVTQTMK B-sheet over wide range of pH Gel at
pH<6

(continued on next page)
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Table 1 (continued )

Peptide Secondary structure Supramolecular structure Functional References

property
LIVTQTMA fB-sheet at low and strong pH pHI10 Gel over

1 - wide pH
! range
LIVTQTKK No B-sheet = >electrostatic No gel over
repulsions wide pH

range
LLIVTQTKK B-sheet at basic pH Gel at pH

10
LIVTQTMR p-sheet at pH > 10 Gel at pH

10
LIVTQTME [-sheet at pH 2 Gel at

pH<6
AcLIVTQTMK B-sheet over wide range of pH Gel at

pH=>6

electrostatic interactions between the dimers produced in the first
stage (Farias et al,, 2010).

The aggregation and gelation behavior of peptides can be
changed or even reinforced when they are mixed with residual
native protein (Kosters, Wierenga, de Vries, & Gruppen, 2013)
through their amphipathic nature or their charges. Thus, two [-
lactoglobulin-derived  peptides,  [(-Lg(f135-158) and -
Lg(f135—162)-SH, were able to bind with each other and aggregate
as well as with the native [-lactoglobulin in a concentration-
dependent manner and at an optimum concentration of 5 mgfml
at pH 7 for both, whereas no interaction with peptides occurs below
the pl of B-lactoglobulin {del Olmo, Calzada, Gaya, & Nunez, 2013;
Kosters et al., 2013). The peptide sequence also plays a key role in
gel strength since the peptide p-Lg(f135—162)-SH with a free sulf-
hydryl group induced a 10-fold increase in the amount of aggre-
gation of B-lactoglobulin compared to the f-lactoglobulin alone
upon heating, and an increase in gel strength in contrast to the
peptide B-Lg(f135-158) for which a decrease in gel strength was
observed. The question still remains as to which part of the protein
both peptides interacted with, but sulfhydryl bonding would be a

likely choice. Electrostatic interactions were the basis of hydrogels
that spontaneously formed with two undecapeptides designed to
have opposite charges and a palindromic sequence (acetyl-
KWKAKAKAKWK-amide  and  acetyl-EWEAEAEAEWE-amide)
(Hyland, Taraban, Feng, Hammouda, & Yu, 2012). In order to rein-
force electrostatic interactions and in turn the viscoelasticity of the
gel, these peptides were mixed with a network of polysaccharides
of various sizes and charges composed of chitosan (50—190 kDa,
positively charged), alginate {350—450 kDa, negatively charged)
and chondroitin (~20 kDa, negatively charged). The resulting
hydrogels formed were more resistant to deformation compared to
those obtained from the peptides and the polysaccharides alone
(Hyland et al., 2012). The peptides changed the morphology of the
polysaccharide network, rendering the fibers structurally closer to
those formed in pure peptide hydrogel, but with less stiff gels
because the mesh size of the mixed hydrogel was greatly increased.

Finally, a complex mixture of peptides is also able to induce gel
formation, as in the case of z-lactalbumin-derived peptides (Ipsen
& Oftte, 2007) through the initial nanotube formation. Thus, a
minimum concentration of above 30 g L™! of a-lactalbumin is
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required to form nanotubes after hydrolysis by Bacillus ficheniformis
protease. Under these conditions, a mixture of peptides ranging
between 11.2 and 11.6 kDa was obtained, providing the major
building block of the nanotubes. At concentrations below 30 gL |,
the hydrolysis kinetics leads to the formation of smaller peptides,
and only linear fibrils were observed from peptides of 8 kDa pro-
duced. Many facters, including the concentration, physice-chemical
and structural characteristics of the peptides involved, affect the
type of supramolecular structure that can be formed and have an
impact on their subsequent functional properties.

Peptides are also a prerequisite to induce formation of heat-
induced p-lactoglobulin nanofibrils at pH 2 (Akkermans, Venema,
van de Goot, & Gruppen, et al,, 2008). As peptides formed under
these physico-chemical conditions mainly contained Asp at the N
terminal end of the peptides, enzymatic hydrolysis of -lactoglob-
ulin by AspN endoproteinase was found efficient to produce pep-
tides that were able to form nanofibrils after incubation at pH 2
(Akkermans, Venema, Goot, Boom, & Linden, 2008). This two-step
fibrillisation was supposed to be entropy driven and reversible for
the first step whereas the second one would render the phenom-
enon irreversible through collective inter-f sheet formation (van
der Linden, 2012). Other proteases trypsin, protease A, pepsin and
protease M (Gao, Xu, Ju, & Zhao, 2013} and Corolase N
(Mohammadian & Madadlou, 2016) were used to selectively hy-
drolyze whey proteins. All were able to form nanofibrils at acid pH,
having various morphologies. Trypsin hydrolysates led to a faster
formatien of fibrils that look like those obtained with the native
whey proteins compared to the other proteases used (Gac et al.,
2013). Capabilities of Corolase N peptides to induce foam overrun
and foam stability (Mohammadian & Madadlou, 2016) was lower
than that observed with the fibrils produced under heating and pH
2 incubation (Oboroceanu, Wang, Magner, & Auty, 2014).

4. How are mixtures of peptides able to change the functional
properties of complex systems?

Through the previous examples, we illustrated that interactions
between one or two peptides with each other or with other mol-
ecules (proteins, polysaccharides) were able to provide particular
functional properties by choosing suitable conditions of pH, ionic
strength and temperature. The question then arises as to whether a
mixture of peptides produced through enzymatic hydrolysis is still
able to maintain these properties or to reinforce or lose them in
model systems, including complex systems involving foods. In that
sense, the ability to form nanotubes via a-lactalbumin hydrolysate
{(Ipsen & Otte, 2007} and not via B-lactoglobulin hydrolysate (Ipsen,
Otte, & Qvist, 2001} although both systems lead to gel formation,
illustrates the complexity that researchers have to face in order to
understand how groups of peptides compete with each other or
interact together to implement specific interactions and generate
functional properties.

4.1. Functional properties of hydrolysates

4.1.1. Solubility and water-holding capacity

Among the functional properties resulting from peptides, solu-
bility is one of the most important. In most cases, the degradation
of proteins to smaller peptides leads to more soluble products,
notably at a greater extent of hydrolysis over a wide range of pH
(Chobert, Bertrand-Harb, & Nicolas, 1988; Gbogouri, Linder, Fanni,
& Parmentier, 2004; Klompong et al., 2007; Linder, Fanni, & Par-
mentier, 1996). However, not all peptides can have good selubility
and solvation ability since it depends on the overall hydrophobicity
and the charges of the peptides, which is not feasibly predictable in
a hydrolysate containing several hundred peptides. For example

(Shahidi et al,, 1995), showed that Alcalase was more efficient than
Neutrase for increasing the solubility of capelin protein. The in-
crease in solubility is due to the exposure of ionizable groups
{amino and carboxyl groups} to the solvent revealed by an increase
in zeta potential (Liu et al, 2014), which leads to repulsive elec-
trostatic interactions between peptides as well as to hydrogen bond
formation between peptides and water molecules (Mahmoud,
1994; Neklyudov et al, 2000; Tavano, 2013). In the above-
mentioned examples, only the extent of hydrolysis was used as a
criterion to optimize the functional properties. However, the
absence of knowledge about the peptide distribution implied in the
functional properties makes it impossible to predict the type of
interactions required and which extrinsic and intrinsic factors of
hydrolysis should be emphasized and, finally, how to intenticnally
orient the production of interesting peptides.

4.1.2. Emuisifying and foaming properties

Peptides are able to increase foam and emulsion formation and
stability compared to native proteins, up to a limited extent of
hydrolysis beyond which these capabilities decrease (Chabanon,
Chevalot, Framboisier, Chenu, & Marc, 2007; Hrckova, Rusnakova,
& Zemanovic, 2002; Klompong et al,, 2007; Kristinsson & Rasco,
2000; Pacheco-Aguilar, Mazorra-Manzano, & Ramirez-Sudrez,
2008). The benefits of peptides vs. proteins lie (i) in their capability
to diffuse more rapidly to the interface through their enhanced
solubility and, in turn, to adserb more rapidly at the airjwater or
lipid/water interface (Davis, Doucet, & Foegeding, 2005); (ii} in the
fact that hydrophebic domains initially buried in the proteins are
already available in the solution and do not require prior partial
denaturation to recover the droplet surface for emulsion or bubbles
for foam; and (iii) in the presence of sulfhydryl groups in certain
peptides that can form disulfide bonds able to stabilize the interface
and to interconnect peptides covalently. Hydrolysates with a low
extent of hydrolysis therefore form a more stable emulsion in
contrast to hydrolysate with a greater extent of hydrolysis in which
peptides are too small to sufficiently reduce the interfacial tension
to ensure optimal emulsifying capabilities and to form an interfa-
cal viscoelastic film at the interface to prevent coalescence
(Pacheco-Aguilar et al, 2008; van der Ven, Gruppen, de Bont, &
Voragen, 2002). Moreover, when environmental conditions
change, the surface hydrophobicity of peptides present in the hy-
drolysate may be modified and may displace other peptides or
proteins at the interface, consequently modifying the initial
emulsifying or foaming properties like other small surfactant
molecules (ie., tweens, SDS} with proteins (Lam & Nickerson,
2013). The destabilization of emulsion or foam is particularly
evident when electrostatic repulsions are reduced, i.e,, close to the
pl or in the presence of high ionic strength er when the hydrolysate
is heat-treated and favors excessive hydrophobic bonding and ag-
gregations that can have dramatic consequences depending on the
peptide composition of the hydrolysates in terms of coalescence
and creaming of the emulsion {Lam & Nickerson, 2013}. This is
generally concomitant with a weak solubility of the hydrolysates
under the above-menticned cenditions (Klomklao, Benjakul, &
Kishimura, 2013; Klempong et al., 2007).

Improved emulsifying properties have been attributed to a
particular peptide or group of peptides in the hydrolysate from
peptides arising from {3-casein and from p-lactoglebulin. Thus, the
amphiphilic p-casein-derived peptide B-CN{f114—169} purified
from tryptic hydrolysis of -casein present at the interfacial area of
the emulsion droplets showed remarkable surface activity and was
able to form elastic film at the triolein-water interface (Girardet
et al,, 2000). Two peptides identified from f-lactoglobulin hydro-
lysis by trypsin 3-Lg{f21—40)} and p-Lg(f41—60) were shown to have
good interfacial properties due to the clustering of hydrophilic and
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hydrophobic peptides into distinct zones peptides (Turgeon,
Gauthier, Mollé, & Léonil, 1992). The peptide p-Lg(f41—60) was
identified as also participating in the aggregation process with
peptides B-Lg(f 1-8) and p-Lg{f 15—20} (Groleau, Morin, Gauthier,
& Pouliot, 2003). Other types of peptides from @-lactoglobulin
produced after hydrolysis by B. licheniformis protease revealed the
ability to aggregate with molecular weights ranging from 1700 to
4000 Da. Four of them were identified: B-Lg(f75—89), (-
Lg(f75—108), B-Lg(f135—157) and (-Lg(f135—158), the latter being
the most significant one (Otte, Lomholt, Halkier, & Qvist, 2000).

4.1.3. Gelling properties

Another well-studied functionality is the gelation capacity of
peptides derived from: (i} whey proteins {Ju, Otte, Madsen, & Qvist,
1995); (ii) meat {Damrongsakkul et al.,, 2008); (iii) wheat (Anjum
et al, 2007); (iv) fish (Amiza, Ow, & Faazaz, 2013); and (v) soy
{Hrckova et al., 2002}. These experiments demonstrated thatonly a
limited hydrolysis improved the gelling properties of the products,
whereas the greater extent of hydrolysis tended to decrease the
viscosity of the solution (Diniz & Martin, 1997). This can be
attributed to protein—protein interactions that are stronger than
both peptide-water and peptide—peptide interactions. Nonethe-
less, exceptions were observed: (i} when the peptide chains
maintained the appropriate size to successfully form a network
with enhanced viscosity and further a gel according to specific
environmental parameters (Damrongsaklul et al.,, 2008; Ju et al.,
1995); and (ii} when peptides are highly concentrated, as in the
case of whey protein isolate at 20% (w/v} hydrolyzed by Alcalase
{Doucet, Gauthier, Otter, & Foegeding, 2003). Heat-treatment of
hydrolysate can also modify the rheological properties, resulting in
the doubling of the viscosity of the solution without leading to the
formation of a gel (Kotlar, Ponce, & Roura, 2013},

The presence of calcium in the hydrolysate could also act as a
stabilizing agent through the formation of Ca>* bridges between
peptides, thus enhancing gelation, which is rarely taken into ac-
count. This was shown with the partial hydrolysis of «¢-lactalbumin
by the proteinase of B. licheniformis (Ipsen et al., 2001).

pH changes are also crucial for modifying gelling properties that
favor the occurrence of various interactions depending on the
charges exhibited at the acidic or basic pH scale. At 80 °C and pH 3,
the partial hydrolysis of whey proteins by Neutrase at a DH < 3.4%
induced a stronger gel than the gel produced by native whey pro-
teins {Ju et al,, 1995). At the pl of sodium caseinate, the gel obtained
from Protamex hydrolysates heated at 80 °C and with a DH < 5.3%
had a higher apparent viscosity than unheated sodium caseinate
{Flanagan & FitzCerald, 2002). However, when the production of
peptides induced an increase in charge repulsion between peptides
and a decrease in protein—protein, protein—peptide and pepti-
de—peptide interactions, the functional properties were negatively
affected, resulting in (i) a reduction of gel-forming ability (Lamsal,
Jung, & Johnson, 2007), or (ii) a gel weaker than the gel produced
by native proteins {Banach, Lin, & Lamsal, 2013}. However, the
improvement or decrease of the gelation properties could not be
attributed to either the peptides or to the interactions between
peptides and native proteins alone (Giardina, Pelizzola, Avalli,
lametti, & Cattaneo, 2004).

Regardless of the functional properties studied, it is still difficult
and sometimes even impossible to conclude that changes in func-
tional properties are only due to either (i) the nature of the peptides
produced and the way they interact together, or (ii) to the presence
of both residual native proteins and peptides and to their respective
interactions in the hydrolysate. Experiments with a hydrolysate
containing only peptides compared to a hydrolysate containing
both peptides and native proteins would provide useful informa-
tion. In that sense, the absence of unhydrolyzed @-lactoglobulin

protein in hydrolysates produced after the action of Alcalase,
trypsin and pepsin revealed that the foaming and interfacial
properties of the hydrolysates were only due to the presence of
peptides (Davis et al, 2005). Tsumura et al. {2005) set up an
interesting strategy to produce hydrolysate with an equal degree of
hydrolysis of soy protein isclate (SPI) in which either the glycinin or
the B-conglycinin fractions were selectively hydrolyzed by pepsin
and papain, respectively, under definite soy protein denaturation
conditions. Comparing various functional properties of both hy-
drolysates vs. the control SPI, the authors clearly showed that p-
conglycinin was implied in the apparent viscosity and the emulsi-
fying property, while glycinin together with the presence of pep-
tides increased the gel-forming ability in the presence of a meat
protein. In agreement with the above-mentioned B-lactoglobulin
hydrolysate, the foaming properties were greatly increased in both
hydrolysates compared to the SPI control, highlighting the role of
the peptides more than that of the proteins. On the basis of these
two examples that are rare in the literature, the key role of one or
the other protein in establishing certain functional properties can
be emphasized, as well as the extent to which the peptides play a
strong role, especially in acquiring foaming properties.

4.2. Advances achieved to link peptides to their functional
properties in food products

Peptides in foods are either directly added to the food product as
an ingredient, as in the case of prepared sauces, processed meats,
beverages and bakery preducts, or they are produced in situ by
hydrolysis of the proteins by various proteolytic enzymes present in
fermented products such as cheese, yogurt and dry-cured ham.
Two levels of complexity should be taken into account to under-
stand how and to what extent peptides can impact the functional
properties of foods. First, food products have a complex structure
and distribution of various macromelecules, including proteins,
lipids and polysaccharides, as well as their derived products, and
other components such as minerals, organic acids, etc. with which
peptides can interact and, in turn, adversely affect or not the
functional properties. Second, environmental conditions vary
throughout the manufacturing process and storage, depending on
whether the products are formulated or fermented.

Thanks to the high diversity of hydrolysates that can be pro-
duced, it should be easier to rationally adapt the type of hydrolysate
in formulated products to obtain the required functional properties.
Thus, the hydrolysates containing small and highly soluble peptides
that are able to easily diffuse in a matrix are actually suitable for
preparing sauces, juices and other beverages. Notably, when the
protein hydrolysates are acid-soluble, peptides may thus contribute
to the fortification of acidic beverages, including caramelized soft
drinks and cola-based beverages (Neklyudov et al,, 2000). Hydro-
lysates with enhanced whippability could be used as egg white
substitutes, while those with low viscosity and high gelling ability
could be preferable for meat products, as previously shown for soy
protein hydrolysates (Tsumura et al., 2005).

To have an acceptable texture for consumers, meat must remain
firm during cooking to reduce less when cooked. Barbut (2007}
reported that whey protein hydrolysates made it possible (i) to
lower the cooking loss compared to a control meat, (ii) to favor
interactions between hydrolysates and meat, and (iii} to increase
the water-binding capacity with a specific degree of hydrolysis
beyond which adverse effects were observed. The softness and
pastiness of hams have been associated with intense proteolysis. It
was demenstrated that a specific peptide profile is linked to certain
texture properties. At nine months of dry-curing, a ham containing
higher concentrations of hydrophobic peptides presented both a
weaker shear force and a weaker cutting force than a ham
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containing a higher concentration of hydrophilic peptides (del
Olmo et al., 2013).

Most studies conducted so far have highlighted the amphiphilic
nature of the peptides for most of the functional properties in
model hydrolysates, even if the peptides were small and the
distinct hydrophobic and hydrophilic zones reduced. Size should be
the most important criterion in food in order to make the in-
teractions between peptides and between peptides and other
components that are present in food more effective. Wang, Zhao,
and Jiang (2007) reported that molecular mass distribution of
peptides in gluten hydrolysate with a molecular mass of more than
50 kDa improved the viscoelastic characteristics of wheat dough
and decreased the crumb firmness of bread compared to bread
produced by gluten protein (Wang et al, 2007). However, the
effective capacity of hydrolysates observed under in vitro condi-
tions is questionable in food. Crowley et al. (2002) had a disap-
pointing experience with caseinate hydrolysate used as a functional
ingredient in doughs and baking applications. Under in vitro con-
ditions, one of the casein hydrolysates produced with Neutrase
exhibited low drainage values at all of the pH tested, high foam
expansion and efficient water-binding activity, compatible with the
required functional properties of bread. Nevertheless, none of these
properties were transferred to the bread, probably due to unex-
pected interactions between casein-derived peptides and wheat
flour components.

In yogurt, texture is usually fortified by adding milk powder to
enrich the final protein content. Depending on the DH of the pro-
teins used and the concentration of the peptides added to yogurt,
the addition of hydrolysates can result in various types of textural
properties. In some cases, they can decrease both its viscosity and
granularity (Sodini, Lucas, Oliveira, Remeuf, & Corrien, 2002;
Sodini, Lucas, Tissier, & Corrieu, 2005). In other cases, they can
improve adhesiveness, beneficial to thickness and stability in
yogurt, notably due te peptides lower than 1 kDa compared to
larger ones present in hydrolysates obtained from lower DH (Zhao,
Wang, Zhao, Jiang, & Chun, 2006). They can also have no effect
whatscever (Dave & Shah, 1998) in terms of firmness, elasticity,
cohesiveness, chewiness and resilience (Zhao et al, 2006). The
differences between these studies can be explained by (i) differ-
ences between enzyme specificity used to produce hydrolysates
and, consequently, the size and physico-chemical characteristics of
the peptides present, (ii) the bacterial strains used, and (iii) dif-
ferences between the manufacturing conditions of the yogurt. The
question thus arises as to whether the lactic acid bacteria strains
used in these studies were able or not to produce exopoly-
saccharides, which could strongly induce changes in both viscosity
and firmness in yogurt, regardless of the peptides present. Addi-
tienally, peptides could also have indirectly acted on the texture
since they can be used as nutrients for bacterial growth, increasing
the acidification rate and decreasing the fermentation time of
yogurt (Zhao et al, 2006). This consumption of peptides in fer-
mented products {dairy or meat} could therefore impede the
overall capability of incorporated peptides to change the functional
properties at the same level as the one previously determined
under in vitro conditions. The initial distribution of peptides would
not be the same since the bacteria can selectively import some
peptides within the bacterial cells and/or the final peptide con-
centration would be decreased enough to lose some degree of its
initial capability.

Among the food products in which peptides are directly pro-
duced, cheeses allow greater insights into the relationship between
peptides and functional properties, altheugh this knowledge is not
yet complete. This aspect will be dealt with in more detail below.
Proteolysis is indeed a continuous process during cheese ripening.
The role of peptides has been explored in terms of their textural,

organoleptic and health aspects for decades, with considerable
progress. Former research primarily dealt with the way that pep-
tides influence textural and techno-functional properties such as
melting and stretching when cheeses are heated. Obviously, the
final functional properties of a cheese are also dependent on other
components such as fat, but we will focus mainly on peptides here.
The extent of proteolysis influences the textural properties of
cheese during aging because it modifies the nature, the number and
the strength of casein interactions and involves proteinases and
peptidases from different sources: milk (plasmin), coagulants
added during processing {chymosin} and microorganisms {lactic
acid bacteria and other ripening flora) (Lucey, Johnson, & Horne,
2003). The composition of peptides in various types of cheeses
has been extensively characterized and numerous peptides have
been identified by tandem mass spectrometry in Cheddar (Singh,
Fox, & Healy, 1995; Singh, Fox, & Healy, 1997}, in Grana Padano
(Fernandez, Singh, & Fox, 1998; Ferranti et al,, 1997}, in Emmental
(Gagnaire, Mollé, Herrouin, & Léonil, 2001), in Ragusano (Gagnaire
etal, 2011} and in Serra (Sousa & Malcata, 1998), and quantified for
some of them as well. The first step of processing is hydrolytic and
has been extensively studied and reviewed (Upadhyay, McSweeney,
Magboul, & Fox, 2004). It induces the gelation of caseins present in
milk, forming supramolecular structures known as casein micelles.
Specific hydrolysis by chymosin of the Phejgs-Metgg bond of «-
casein, casein mainly located at the micellar surface, removes its
hydrophilic C-terminal part {caseinomacropeptide or CMP) that
interacts well with water and that protrudes 5—10 nm from the
surface of the micelle. The hydrophobic counterpart of the casein
micelles is then destabilized and a smooth gel is formed (Dalgleish,
2011). Chymosin can act on the other types of caseins such as as-
casein, whose proportion is associated with hardness, adhesive-
ness, fracturability and elasticity in various cheeses and notably in
Cheddar (Borsting et al, 2012; Brickley, Auty, Piraino, &
McSweeney, 2007; Creamer & Olson, 1982). When the peptide
t51-(F24—199), also referred to as ag; -1, is produced after chymosin
action, a softening of the cheese is observed because this hydro-
philic peptide can interact with water and trap it (Hynes, Delacroix-
Buchet, & Zalazar, 2001). This peptide is used as a marker of soft-
ening in various types of cheeses such as soft cheeses (Camembert),
semi-hard and hard-type cheeses (Cheddar, Raclette, Emmental).
As an added protease, changes in chymosin specificities have been
used to vary proteolysis and, in turn, cheese texture. Thus, cheeses
produced with bovine chymosin are softer, smoother, and have a
more cohesive texture than cheeses made with camel chymosin.
Moreover, a smooth coating was observed on cheese produced by
bovine chymosin (Bansal et al, 2009). Borsting et al (2012}
confirmed these results and added that as-casein hydrolysis and
f-casein hydrolysis of Cheddar with bovine chymosin leads to a
higher amount of the following peptides: 3-CN(f193—209), tsi-
CN(f24-199), 5-CN(f1-9), o5-CN{f1—13), a51-CN(f1-14), dg1-
CN(f1-17), as1-CN(f10—16) and os1-CN(f17—23). The last six pep-
tides were produced through the hydrolysis of the N-terminal part
of the ¢4 -casein by the cell envelope proteases of lactic acid bac-
teria used as starter. These proteases with large substrate speci-
ficities as well as numerous peptidases that are released after the
death of bacteria in the cheese during ripening are able to give a
specific peptide fingerprint per type of cheese (Sadat-Mekmene
et al, 2013 ). These bacterial proteclytic enzymes are another link
in the casein chain hydrolysis throughout ripening that can impact
the final functional properties of cheeses. Differences between the
proteases of Lactobacillus delbrueckii spp. bulgaricus and Lactoba-
cillus helveticus strains were shown to influence functicnal prop-
erties such as hardness, cohesiveness, melting strength and even
stretching quality (Oommen, McMahon, Oberg, Broadbent, &
Strickland, 2002). Additionally, soluble peptides derived from the
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cleavage of as1-CN(f1—-23} by different strains of Lactobacilli posi-
tively correlate with meltability and the stretching characteristics
of cheeses made with those strains. Cheeses made with Lactobacilli
were both more hydrolyzed and softer than the control cheese
made using Streptococa alone (Oommen et al., 2002}, Richoux,
Aubert, Roset, and Kerjean (2009) and, more recently, Sadat-
Mekmene et al. (2013) confirmed these results. They showed that
L. helveticus led to good stretchability and that L. hefveticus ITGLH77
{containing prtH3 protease), in particular, was a key factor in
imparting stretchability to Swiss-type cheeses. The number of
peptides identified by MS/MS containing more than 20 AA was 1.3
times higher in ITGLH77 cheeses, and the peptides containing more
than 20 amino acid residues arising from ag-and «-caseins were
enly present in ITGLH77 cheeses. These experiments made it
possible to assume that peptides with more than 20 amino acids,
preferably hydrophobic, increased the elasticity of cheeses and
improved their viscoelastic properties under cooking conditions. It
was therefore assumed that hydrophobic peptides were involved in
the formation of fibers via hydrophobic bonds between native ca-
seins and peptides (Richoux et al., 2009). More recently, an in sifico
methed to establish relationships between a techno-functionality
property of cheese and a peptide profile was published by our
team and showed that not only the size of peptides but their
physico-chemical and structural characteristics as well are involved
in cheese stretchability (Lacou et al,, 2015).

The reduction in elasticity and the decrease in stress at fracture
chserved in many cheeses are mainly due to a decrease in in-
teractions between native caseins (Creamer & Olson, 1982; Richoux
et al, 2009). During ripening, the stress at fracture, the strain at
fracture and the deformability modulus decrease in cheeses such as
Feta. Strain at fracture and the deformability modulus are low when
the number of hydrolyzed bonds is high (Borsting et al., 2012; Hou,
Hannon, McSweeney, Beresford, & Guinee, 2014; Wium,
Kristiansen, & Qvist, 1998). The higher the level of proteoclysis is,
the higher the cheese meltability will be. However, excessive pro-
teolysis in cheese is generally associated with defects in texture
such as splits and cracks of the cheese paste (Brickley et al., 2007;
Giardina et al,, 2004). Therefore, the challenge is to strike the
right balance between a desirable conversion of proteins into
peptides and the production of desired peptides, in order to be able
to crient peptide production and to enhance functional properties
as much as possible (Fig. 1}. This would provide the opportunity to
adapt cheese production to the required functionality and to pro-
vide clues for other fermented products.

5. The concept of crowded media as a new way to approach
peptide assembly and functional properties in complex
systems

The concept of “crowded solutions” recently emerged to study
the effect of confined environments on molecule self-assembly and
aggregation. At high concentrations of more than 300 gfkg, mac-
romolecules take up a large proportion of the volume of the solu-
tion, which reduces the volume of solvent that is available for other
macromolecules. This excluded volume effect increases the effec-
tive concentration of macromolecules (increasing their chemical
activity), which then alters the way they interact together and the
enzymatic reactions that can take place. This concept, initially
applied in the area of pharmaceutical research to understand
cellular phenomena (Saluja & Kalonia, 2008) could also be
extended to foed. The crowded envirenment in food may actually
affect protein and peptide stability and aggregation, considering
that they are present in a heterogeneous and highly concentrated
medium. Such an approach will help provide insights into how
proteins and peptides can interact and form supramolecular

structures within food products or how peptides, through their
increase in concentration, can impede protein interactions and can
provoke the opposite reaction between in vitro hydrolysates and
peptide reincorporation in food, depending on the concentration
used.

The crowded environment is experimentally produced in the
presence of a crowding agent (dextran 70, PEG, Ficoll), or macro-
molecules such as proteins or peptides at elevated concentrations
(example: >80gL T for bovine serum albumin, Rivas, Fernandez, &
Minton, 1999) that are largely encountered in food products such as
cheeses, meat or at the interface of bubbles in foam, for example. In
such crowded environments, intermolecular interactions between
protein molecules and protein rheological behavior are extensively
modified (Saluja & Kalonia, 2008} and can lead to ordered poly-
peptide aggregates such as amyloid fibrils {White, Buell, Knowles,
Welland, & Dobson, 2010). Crowding also impacts the solvation of
proteins and peptides, which has a considerable impact on the
aggregation of peptides as well {Rivera, Straub, & Thirumalai,
2009). Thus, this can be considered as a new extrinsic parameter
to be taken inte account in food, in addition to temperature, pH and
ionic strength. The aggregation of the peptide hIAPP is a good
example. The peptide hIAPP is a 37-amino-acid peptide that pos-
sesses a hydrophobic core and that is surrounded by polar un-
charged residues. This peptide forms a stable f-sheet via
interactions between residues of the hydrophobic core (residue
F23CAIL27) at low and at high concentrations. Under confined
conditions, the peptide hIAPP is more likely to form p-sheet
nucleation than the peptides with a polar N-terminus and a non-
polar C-terminus. The crowded environment results in decreasing
solvation and increasing peptide aggregation due to the rein-
forcement of their secondary structure. Hydrophobic interactions
are the driving forces involved in the association of the (3-sheet to
form fibers.

Confinement appears to be sufficient to induce a change in the
viscosity of the aqueous solution without changing the compaosition
and the temperature of the solvent {(Pavone, Crescenzi, Tancredi, &
Termnussi, 2002). At high concentrations of proteins or peptides,
macromoelecular crowding increases the interactions among
themselves and changes the physico-chemical properties of the
environment such as the local viscosity {Magno, Caflisch, & Pellarin,
2010; Munishkina, Cooper, Uversky, & Fink, 2004; Pastore,
Salvadori, & Temussi, 2007). Thus, gelation was observed during
extensive hydrolysis of whey protein isolate {(WPI) with Alcalase
2.41 at high solid content (20% w{v} (Doucet, Gauthier, & Foegeding,
2001). This phenomenon was unexpected and the types of in-
teractions subsequently studied by Doucet et al. {2003) showed
that the gelation was mainly driven by hydrophobic interactions,
whereas hydrogen bonding and electrestatic interactions played a
minor role. Identification of peptides will help us to understand
which peptides mainly contributed to the gelation and how. Such a
gelation, which was stable over a wide pH and temperature range,
has points in common with another reaction, known as plastein as
shown by Doucet et al. (2003}, in which an enzymatic synthesis can
occur at a concentration of 30—50% total solids to form a high-
molecular-weight protein-like substance by transpeptidation and
condensation (Watanabe & Arai, 1992; Yamashita, Arai, Kokubo,
Aso, & Fujimaki, 1974).

Even short peptides, dictated by their charges, can have strong
interactions with proteins under confined environments (Wang &
Woodbury, 2014). This can explain why they can have adverse ef-
fects in food, as previously shown. Moreover, as a multi-component
system, more or less compartmentalized food would be a subject of
choice to transfer the concept of crowded media to help us un-
derstand the interactions between proteins and peptides.
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Fig. 1. State of the art of the current knowledge about the relationships between peptides and their functional properties in model solutions and in food products.

6. Concluding remarks

Food texture remains an important determinant of consumer
acceptability. Control of the peptide and protein self-assembly
mechanism is therefore essential to identify the levers that deter-
mine the texture of food products. Enzyme specificity is the key
parameter to orient the types of peptides produced with specific
sizes and physico-chemical characteristics and, in turn, has an
impact on the functional properties of a food product. Even though
the use of protein hydrolysates, composed of a mixture of peptides
and of native proteins, improves protein functional property
mechanisms, the induction of peptide functional properties
generated by enzymatic hydrolysis is still only partially understood
in food products.

Studies of the relationship between peptide structures and
peptide functional properties have been carried out in food prod-
ucts, but often in terms of the global DH of protein. Since hydro-
lysates contain a mixture of peptides of different sizes and different
characteristics as well as a part of the remaining native proteins, the
agents responsible for the specific functional properties are defined
for only a few of them. Progress in the characterization of peptides
by mass spectrometry has led to a new comprehensive perspective
on groups of peptides present and which of them are actually
involved in the functional properties, either in vitro in model hy-
drolysate or in situ in food. Nevertheless, extrapolation of the re-
sults obtained from the model to food products is still difficult
because unspecific interactions as well as the confinement of
peptides and proteins in food impede our actual overall under-
standing of the acquisition of functional properties. Research on
more concentrated systems such as crowded media will help to
bridge this gap. The next steps will be to control (i) how the pep-
tides are produced and interact with the other components, and (ii)
the quantity of peptides necessary to obtain optimal functional
properties.
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Sodium caseinate preparation

Sodium caseinate (NaCas) powder (Armor-Protéines, France) contained 87% (w/w) of proteins,
determined by both Kjeldhal method and UV spectrophotometry (UVmc2, Monaco SAFA, France) at A
= 280 nm using extinction coefficient of 0.81ml. mg'l. cm™ (Oliva et al., 2001; Schmidt, 1979),
including only minor amount of whey proteins as shown by SDS-PAGE electrophoresis (protocol
described in the part “Protein profile by electrophoresis: Tris-Tricine/SDS-PAGE and Urea-page
Analysis” of this manuscript). This powder was dispersed in milliQ water using motor agitation in

order to obtain a solution at 10 g of caseins.kg™.

o;-and B-casein purification

Caseins were prepared from raw milk that was skimmed and precipitated to pH 4.6 by adding
dropwise 1M HCI in order to remove whey proteins. The pellet was centrifuged at 4 000 x g during
15 minutes at ambient temperature. The obtained pellet was suspended in MilliQ water with an
ultra-turrax. Three washing steps were realized by increasing pH to 7 with 1M NaOH and decreasing
itto pH 4.6.

The first step of purification consisted of remove the k-casein by precipitation according to the
method of Zittle and Cutter (Zittle and Custer, 1963). The freezed pellet, with approximatively 50 g of
total caseins, was diluted in 500 ml of 6.6 M urea in order to obtain a protein concentration of 10%.
After dissolution, 7N sulfuric acid was added to adjust pH to 1.5. The mix was diluted with MilliQ
water to a concentration of 2.2 M urea. After the precipitation, the mix was centrifuged at 5 000 x g
for 30 minutes at ambient temperature. The pellet was dissolved in 500 ml of 6.6 M urea and the pH
was adjusted to 4.6 with 10 M NaOH. The urea was diluted with MilliQ water to attain a
concentration of 3.3 M urea. The precipitate was centrifuged at 5 000 x g for 30 minutes at ambient
temperature.

Purification of ay;-casein: the pellet was dissolved in 200 ml of 6.6 M urea and the pH was adjusted to
7 with NaOH 1M and then dialyzed overnight. The pH of the dialyzed solution was adjusted to pH 7.2
with ammoniac (Brignon et al., 1976). This dialyzed solution was diluted with an equal volume of
absolute ethanol and with a solution of 2 M ammonium acetate until the formation of a precipitate.
The supernatant was evaporated to remove the ethanol, dialyzed and freeze-dried.

Purification of B-casein: The supernatant obtained was diluted with MilliQ water to 1.7 M urea and

the pH was adjusted to 4.9. The mix was heated at 20°C and the precipitate was centrifuged at 3 000
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xg during 20 minutes. The pellet was dissolved in a minimal volume of MilliQ water and the pH was
adjusted to 7 with NaOH 1 M before dialysis and freeze-drying.
This powder was dispersed in MilliQ water using motor agitation in order to obtain a solution which

will be hydrolyzed by Trypsin and Glu-C.

Determination of hydrolysis conditions

NaCas, as;- and B-caseins were hydrolyzed by trypsin and Staphylococcus aureus V-8 protease in
immobilized form. We chose both enzymes in order to obtain peptides with very different size and

sequences and consequently different physico-chemical and structural characteristics (Figure 1).

(i) Tosyl-phenylalanine-chloromethyl-ketone (TPCK) — treated trypsin was cross linked on
4% beaded agarose (Thermo Fisher Scientific, France) This serine protease (EC 3.4.21.4),
has a pH optimum ranging between 7.5 and 9 and is highly selective. Trypsin cleaves only
peptide bonds in which the carboxyl group is composed by a lysine or an arginine
residue, regardless of the length or amino acid sequence of the chain.

(ii) Staphylococcus aureus V-8 protease (EC 3.4.21.19), also referred as to endoproteinase
Glu-C (Thermo Fisher Scientific, USA) was crosslinked by covalent bonds on 6% beaded
agarose.V-8 protease cleaves the protein at glutamic acid residues or cleavage at
glutamic and aspartic acid residues (Drapeau et al., 1972). The endoproteinase Glu-C, has
two pH optima, one at pH 4.0 and the other at pH 7.8, and it is specific for cleavage at
the carboxyl terminal end of glutamic acid and aspartic acid residues. The protease is
further specific for only glutamic digestion in buffers which do not contain phosphate at
either pH optimum. S. aureus V-8 protease is very stable. The native structure of the
protease is stabilized mainly by electrostatic interactions, and not by hydrogen bonding

and B-structures.

Immobilized TPCK Trypsin and Glu-C were preferentially used instead of the free form of the enzymes
because immobilization, even if it can lead to partial denaturation of the enzymes during cross-
linkage on beads minimizes autolysis, allows control of the hydrolysis by removing the enzyme-linked
to the beads physically by filtration and avoid further contamination of the sample by the protease.
Finally immobilized enzymes are also more stable against heat-induced and physico-chemical
denaturation, resulting in keeping activity for a longer period of time and are reusable. For that

purpose, enzymes were washed after each hydrolysis period by various washing steps i) with 4M
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urea for both enzymes, and with 1% Triton X100 only for Glu-C, ii) Phosphate Buffer Saline 1X and iii)

MilliQ water.

Prior to each hydrolysis, the activity of the Trypsin was measured by spectrophotometry at 247 nm
using 0.01 M 4-toluene-sulphoyk-arginine-methyl-ester, TAME (Sigma Aldrich, France), according to
the method of Worthington Laboratories, using the UV-mc2 spectrophotometer (Monaco-SAFAS,
France). The activity of Glu-C was measured by the pH-stat method using sodium caseinate (NaCas)
(Armor-Protéines, France) as substrate with a ratio of 100 pl immobilized enzyme / 0.2 g of NaCas.
Activity control was made for both enzymes to check that both no enzyme was released from the

beads during treatments and activity was the same than the initial.
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Figure 1. Theoretical cleavage sites of Glu-C and Trypsin on the four caseins. Large arrows represent
the sites cleaved more often. Glu-C cleaves peptide bonds C-terminal to aspartic acid residues (D) at
a rate 100-300 times faster than at glutamic acid residues (E). Trypsin cleaves peptide chains mainly
at the carboxyl side of the amino acids lysine (K) or arginine (R), except when one of this amino acid
residue is followed by a proline.
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In order to determine the conditions of casein hydrolysis, some experimental developments
were necessary. We have chosen to hydrolyze separately ag;- and B-caseins to show the
impact of peptides derived from these caseins on the rheological properties of high

concentrated matrices.

Many enzyme:substrate ratios were tested to select the optimal conditions to hydrolyze a;-
casein, B-casein and NaCas by Trypsin and Glu-C. These tests were realized on 40 ml of
protein solution at 5 g.L'l. The hydrolysis was followed by the pH-stat method at 37°C, using
0.01 M NaOH as titrating agent to keep pH to 7 throughout hydrolysis time. For Trypsin, the
ratio 9.6 U / 0.2 g of caseins was selected whereas for Glu-C it was of 720 ul / 0.2 g of

caseins.

SDS-PAGE and Urea-PAGE (see the part “Protein profile by electrophoresis”) were realized in
order to show, respectively, the apparition of peptides and the degradation of caseins

according to the hydrolysis time.
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The three times of hydrolysis chosen for the hydrolysis of B-casein with Trypsin were (Figure 2):
- T1 (hydrolysate 1 with Trypsin) = 1500 sec : around 70% of caseins and 30 % of peptides
- T2 (hydrolysate 2 with Trypsin) = 2500 sec: around 50% of caseins and 50% of peptides
- T3 (hydrolysate 3 with Trypsin) = 5000 sec: around 20% of caseins and 80% of peptides
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Figure 2. Kinetics of B-casein hydrolysis by Trypsin. (A) The degree of hydrolysis was determined
based on pH-stat method (n = 2: hydrolysis 1 and hydrolysis 2). (B) The evolution of degradation of B-
casein according to the time of hydrolysis determined by SDS-PAGE. (C) The evolution of peptides
production according to the time of hydrolysis determined by SDS-PAGE. T1 represents the
hydrolysate 1; T2 represents the hydrolysate 2; T3 represents the hydrolysate 3.
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The three times of hydrolysis chosen for the hydrolysis of asl1-casein with Trypsin are (Figure 3):
- T1=1500 sec : around 70% of caseins and 30 % of peptides
- T2 =2500 sec: around 50% of caseins and 50% of peptides
- T3 =5000 sec: around 20% of caseins and 80% of peptides

w

(=]
T1
T2
T3

)
w

o
o

=
o

% of native ay-casein

e Hydrolysis 1

Degree of hydrolysis(%)
=
w

w

Hydrolysis 2

o

0 5000 10000 15000 20000 25000 10000 15000
Time (sec) Time (sec)
20.1 kDa < peptides < 30 kDa peptides < 20.1 kDa C

Mw
(Da)

20,1

—
-
S . - %
-

14,4

SDS-PAGE

Figure 3. Kinetics of ay;-casein hydrolysis by Trypsin. (A) The degree of hydrolysis was determined
based on pH-stat method (n = 2: hydrolysis 1 and hydrolysis 2). (B) The evolution of degradation of
a,;-casein according to the time of hydrolysis determined by SDS-PAGE. (C) The evolution of peptides
production according to the time of hydrolysis determined by SDS-PAGE. T1 represents the
hydrolysate 1; T2 represents the hydrolysate 2; T3 represents the hydrolysate 3.
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The three times of hydrolysis chosen for the hydrolysis of NaCas with Trypsin are (Figure 4):

% native casein

% native casein
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© = N W A 0O N 0V

- T1=1000 sec: around 70% of caseins and 30 % of peptides

- T2 =2500 sec: around 50% of caseins and 50% of peptides

- T3 =5000 sec: around 20% of caseins and 80% of peptides
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Figure 4. Kinetics of NaCas hydrolysis by Trypsin. (A) The degree of hydrolysis was determined based
on pH-stat method (n = 2: hydrolysis 1 and hydrolysis 2). (B) The evolution of degradation of k, as;,
as; and B-caseins according to the time of hydrolysis determined by Urea-PAGE. (C) The evolution of
peptides production according to the time of hydrolysis determined by SDS-PAGE. T1 represents the
hydrolysate 1; T2 represents the hydrolysate 2; T3 represents the hydrolysate 3.
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The three times of hydrolysis chosen for the hydrolysis of B-casein with Glu-C are (Figure 5):
- G1 (hydrolysate 1 with Glu-C) = 1000 sec : around 70% of caseins and 30 % of peptides
- G2 (hydrolysate 2 with Glu-C) = 9000 sec: around 40% of caseins and 60% of peptides
- @G3 (hydrolysate 3 with Glu-C) = 17000 sec:Aaround 30% of caseins and 70% of peptides
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Figure 5. Kinetics of B-casein hydrolysis by Glu-C. (A) The degree of hydrolysis was determined based
on pH-stat method (n = 2: hydrolysis 1 and hydrolysis 2). (B) The evolution of degradation of B-casein
according to the time of hydrolysis determined by SDS-PAGE. (C) The evolution of peptides
production according to the time of hydrolysis determined by SDS-PAGE. G1 represents the
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The three times of hydrolysis chosen for the hydrolysis of as1-casein with Glu-C are (Figure 6):
- T1=1000 sec : around 70% of caseins and 30 % of peptides
- T2 =5000 sec: around 50% of caseins and 50% of peptides
- T3 =10000 sec: around 30% of caseins and 70% of peptides
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Figure 6. Kinetics of ag-casein hydrolysis by Glu-C. (A) The degree of hydrolysis was determined
based on pH-stat method (n = 2: hydrolysis 1 and hydrolysis 2). (B) The evolution of degradation of
a,;-casein according to the time of hydrolysis determined by SDS-PAGE. (C) The evolution of peptides
production according to the time of hydrolysis determined by SDS-PAGE. G1 represents the
hydrolysate 1; G2 represents the hydrolysate 2; G3 represents the hydrolysate 3.

The three times of hydrolysis chosen for the hydrolysis of NaCas with Glu-C are (Figure 7):
- T1=1000 sec : around 60% of caseins and 40 % of peptides
- T2 =5000 sec: around 40% of caseins and 60% of peptides
- T3 =10000 sec: around 10% of caseins and 90% of peptides
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Figure 7. Kinetics of NaCas hydrolysis by Glu-C. (A) The degree of hydrolysis was determined based on
pH-stat method (n = 2: hydrolysis 1 and hydrolysis 2). (B) The evolution of degradation of k, as;, o
and B-caseins according to the time of hydrolysis determined by Urea-PAGE. (C) The evolution of
peptides production according to the time of hydrolysis determined by SDS-PAGE. G1 represents the
hydrolysate 1; G2 represents the hydrolysate 2; G3 represents the hydrolysate 3.
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The hydrolysis were stopped by centrifugation 3 minutes at 14 000 g.

When the conditions of hydrolysis were well determined, the conditions of the hydrolysate
production in larger volume had to be adjusted. The hydrolysates were produced in liters (2.9 L of
NaCas at 10 g.L* for the hydrolysis with Trypsin and 1.45 L of NaCas at 10 g.L™ for the hydrolysis with
Glu-C).

Firstly, the hydrolysis was stopped by centrifugation as in small samples. The centrifugation did not
permit an immediate stop of the reaction that was continued during the 10 minutes of centrifugation

(Figure 8). Moreover, many beads were lost with this method.
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Figure 8. Hydrolysis stopped by centrifugation. SDS-PAGE and Urea-PAGE of the three groups of
hydrolysates T1, T2 and T3, produced by hydrolysis of NaCas with Trypsin. T1: hydrolysate 1
produced by Trypsin; T2: hydrolysate 2 produced by Trypsin; T3: hydrolysate 3 produced by Trypsin;
LMW: Low Molecular Weight.
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To solve this problem, the hydrolysis was stopped by filtration as shown in Figure 9.
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Figure 9. Hydrolysis stopped by filtration. SDS-PAGE and Urea-PAGE of the three groups of
hydrolysates T1, T2 and T3, produced by hydrolysis of NaCas with Trypsin. T1: hydrolysate 1
produced by Trypsin; T2: hydrolysate 2 produced by Trypsin; T3: hydrolysate 3 produced by Trypsin;

LMW: Low Molecular Weight.

By this way, the scale-up of hydrolysate production was effective (Figure 10).
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Figure 10. Comparison of peptide profile and casein degradation in small groups and in large
hydrolysates, determined respectively by SDS-PAGE and Urea-PAGE. The example is given for the

hydrolysis of NaCas by Trypsin.
Production of trypsin and Glu-C hydrolysates at a larger scale

Because of time limitation, only NaCas was hydrolyzed in large volume with Trypsin and Glu-C and

the peptides produced were further used to be reincorporated into various casein matrices.
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NaCas at 10 g.kg™ was heated to 37°C before the enzyme was added. The ratios used were: 1398
U/29 g of NaCas for Trypsin and 34.8 mL of immobilized Glu-C/14.5 g NaCas (see part “Determination
of hydrolysis conditions”). The pH was maintained at 7, using the pH-stat (Mettler Toledo, France)

and NaOH at 1M as titrating agent.

The degree of hydrolysis (DH) of each hydrolysate was determined according to the pH-stat method
(Spellman et al., 2003).

/g =1+ 1077

29
Pk = 7.8+ S X 2400

B= volume of NaOH

Nb= NaOH molarity

mp = protein mass

heot= 8,2 meq.g ™ for casein

T = temperature (Kelvin)

The hydrolysis reaction was stopped by filtration at three defined times corresponding to different
compositions both in peptides and in native caseins: (i) around 70% caseins + 25% peptides, (ii)
around 50% caseins + 50% peptides and (iii) around 5% caseins + 95% peptides. They were referred

respectively as T1, T2 and T3 for hydrolysis with Trypsin and G1, G2, and G3 for hydrolysis with Glu-C.

Freeze-drying

A thin layer of hydrolyzed peptide solution was poured into stainless steel trays and covered with
tissue paper to prevent dust contamination. The solution was then freeze at -20°C and lyophilized
(S.G.D.-SERAIL type CS 10-0.8, Argenteuil France). The layer of dried sample obtained was crushed in
order to have a homogeneous powder, which was then vacuum sealed and stored in darkness, at

ambient temperature, until further use.

Preparation of maleate-CaCl, buffer

A maleate-CaCl,-thimerosal buffer of pH 7.1 at ionic strength of 80 mM, corresponding to that

encountered in milk was prepared using 25 mM Maleic acid (Sigma-Aldrich, France), 2 mM calcium
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Chloride.2H,0 (AnalaR, France) and MilliQ water, with 0.02% (w/v) of Thimerosal or sodium azide as
bacteriostatic agent (Sigma-Aldrich, France). 2 M NaOH was used for pH adjustments. This buffer was

used for all hydrolysates, mix and casein resuspension solutions.

Preparation of Hydrolysate Suspension (HS)

The lyophilized peptide powder was then dispersed in maleate buffer to make peptide stock
solutions of 50 g.kg™*, 100 g.kg™* and 200 g.kg. The dispersion was then stirred with a magnetic
stirrer overnight (12h) at ambient temperature, before being transferred to a 50°C water bath for

another 3 h of mixing to allow for complete rehydration.

Preparation of Casein Micelle Suspension (CMS)

Native phosphocaseinate powder (Promilk 825B, Ingredia, France) was dissolved in maleate-CaCl,
buffer at pH 7.1 (80 mM ionic strength corresponding to that of milk aqueous phase) at room
temperature at different concentrations (w/w) in presence of 3 mM sodium azide (NaN;) as
bacteriostatic agent during 24 hours with a weak stirring. Then, this solution was heated at 50°C
during 3 hours and continues to be mixed during the last 21 hours. To check the complete
rehydration of the powder, an analysis of the particle size was determined by dynamic light
scattering using a Mastersizer (Malvern Instrument, United-Kingdom) which was equipped with a
He/Na laser working at 633 nm and an attenuator that automatically adjusts the laser intensity to the
specific range for scattered light detection. Protein samples were diluted in MilliQ water. Intensity of
scattering is detected at 173° (backscatter detection) to reduce multiple scattering. The
hydrodynamic diameter of the aggregates was calculated using Stockes-Einstein equation, taking the
calculated diffusion coefficient from the fit of the correlation curve. The samples were measured in
triplicate. The measure of particle size was realized in function of both the number of the particles
and the volume of particles in order to detect the presence of aggregates. The solution was kept at

4°C during one week.

We chose to prepare solutions of CMS and HS at 50 g.kg™, 100 g.kg™* and 200 g.kg™ in order to:
- 50 g.kg: to be higher than the protein concentration in milk and be close to some milk
products concentration.
- 100 g.kg™: to double the basic concentration.

- 200 g.kg™: To be close to the concentration of proteins in cheese.
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Mixtures NaCas:CMS and hydrolysates:CMS

Casein micelle suspension (CMS) and NaCas and hydrolysates solutions (in maleate buffer pH 7
containing 25 mM Maleic acid (Sigma-Aldrich, France), 2 mM calcium Chloride.2H,0 (AnalaR, France)
and 3mM sodium azide as bacteriostatic agent (Sigma-Aldrich, France) in order to reach the 80 mM
ionic strength of milk)) were mixed at a mass ratios hydrolysate:CMS of 1:4 (25 % of hydrolysate), 1:1
(50 % hydrolysate), 3:4 (75 % hydrolysate) and 4:0 (100% hydrolysate) at 20°C. The same ratios were
used for the control NaCas:CMS suspensions. All suspensions were prepared by gently rotating the
tube to mix well, without introducing too much air bubbles. The mixtures were conserved at 20°C

during maximum 48h.

The Figure 11 summarized the experiments realized.
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Figure 11. Experimental design from the production of hydrolysates to the rheological and
microscopic study. CMS, Casein Micelle Suspension, HS, Hydrolysate Suspension.
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Concentration by osmotic stress technique

Prior to the equilibration process, equal masses of casein micelle suspension and the peptide
solutions were weighed into a plastic tube, and this 1:1 mixture was prepared by gently rotating the
tube to mix well, without introducing too much air bubbles.

From previous trials, it has been determined that peptide samples and casein samples of
concentrations over 200 g.kg™ will not be achievable from the dispersion of powder into a solvent.
The strategy to obtain highly concentrated samples was therefore through the use of the osmotic
stress technique, as described by (Bouchoux et al., 2009), where water is forced out of the sample,
through a semi-permeable membrane into a solution of higher osmotic pressure, m.

The stock solution of 50 g.kg™ peptide or mixture or casein suspension was placed in a dialysis bag,
which was then submerged in a reservoir containing solutions of polyethylene glycol (PEG) that fixed
the osmotic pressure of the solution at concentrations that correspond to the required osmotic
pressure. Over time, the chemical potential of water across the membrane reaches equilibrium and

thus the osmotic pressure of the sample equals the osmotic pressure of the polymer solution.

Determination of protein concentration

The samples of CMS were centrifuged at 10 000 xg for 15 min. The supernatants were kept and the
pellets were removed on. The final protein concentration of the supernatants was measured by a
UV-visible spectrophotometer (UVmc2, Monaco SAFAS, France). The protein concentration (g.L™)
was determined from the absorbance of the solution measured at 280 nm (A280nm) in cuves with a

width L, using an extinction molecular coefficient of 0.81 ml.mg*.cm™ (Oliva et al., 2001):

_ A280nm
e XL

Protein profile by electrophoresis: Tris-Tricine/SDS-PAGE and Urea-page Analysis

The extent of casein degradation was evaluated by Urea-PAGE from the insoluble pH 4.6 nitrogen
fractions according to Collin et al. (1987). The peptide pattern was analyzed by SDS-PAGE/Tris-Tricine
buffer as described by Schagger and von Jagow (Schagger and von Jagow, 1987) using Protean Il
system (16 x 16 x 0.1 cm; BioRad, Marnes-la-Coquette, France) with SDS/Tris/Tricine buffer and a
concentration gradient from 12 to 18% of acrylamide used according to Sadat-Mekmene et al.

(Sadat-Mekmene et al., 2011).
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SDS-PAGE was performed using a Mini Protean Il system (Bio-Rad Laboratories, A Technologies,
Dublin, Ireland) as described by Laemmli (Laemmli, 1970) using 14% acrylamide separating gels and
4% concentration gels. Protein samples were diluted 10 folds with the denaturing buffer (77.975%
0.08M Tris-HCI pH 6.8; 20% glycerol; 2% SDS; 0.025% bromophenol blue) under reducing conditions
(with DTT and 5 min at 100°C). Samples were loaded in the sample slots and were separated at 150V
for around 90 min. Gels were stained with Coomassie Brillant Blue G250. A low molecular weight
marker kit (LMW 14.4-94 kg/mol, GE Healthcare, France) was used for molecular weight (MW)
calibration. The gels were scanned by LabScan (GE Healthcare, France) and analyzed by ImageQuant

software (GE Healthcare), band intensities were estimated by the net volume parameter.

Analysis of peptides by nano-RPLC coupled on-line to tandem mass spectrometry
(ESI/MS/MS)

Mass spectrometry (MS) experiments were performed using a nanoRSLC Dionex U3000 system fitted
to a Q Exactive mass spectrometer (Thermo Scientific, USA) equipped with a nanoelectrospray ion
source. A preliminary sample concentration step was performed on a nanotrap PepMap 100 (C18, 3
um Inner Diameter 5ID) x 20 mm Length (L)) (Dionex, Netherlands). Separation was performed on a
reverse-phase column PepMap RSLC C18 3 pm, 100 A (75 pm ID, 150 mm L) (Dionex, Netherlands) at
35°C, using solvent A (2 % v/v acetonitrile, 0.08 % v/v formic acid and 0.01 % TFA in deionized water)
and solvent B (95 % v/v acetonitrile, 0.08 % v/v formic acid and 0.01 % v/v TFA in deionized water). 5
—35% of solvent B in 67 min and 35 — 8 % in 2 min was applied as separation gradient at a flow rate
of 0.3 pL.min-1. 3 pL were injected onto the column corresponding approximately to 60 ng of
peptides. Eluted peptides were directly electrosprayed into the mass spectrometer operated in
positive mode and a voltage of 2 kV with the help of a Proxeon Nanospray Flex ion source (Thermo
Scientific, USA). Spectra were recorded in full MS mode and selected in a mass rage 250-2000 m/z
for MS spectra with a resolution of 70.000 at m/z 200. For each scan, the ten more intense ions were
selected for fragmentation. MS/MS spectra were recorded with a resolution of 17.500 at m/z 200
and the parent ion was subsequently excluded of the analysis dringl5 sec. The instrument was
externally calibrated according to the supplier’s procedure. To identify peptides, all data (MS and
MS/MS) were submitted to X! Tandem using the X! Tandem pipeline developped by PAPPSO
(Plateforme  d’Analyse  Protéomique de Paris Sud-Ouest, INRA-Jouy-en-Josas, France,
htp://pappso.inra.fr). The search was performed against a database composed of a homemade
database named STLO containing milk and egg proteins and cRAP database allowing excluding list of
proteins such a human keratin for example. Database search parameters were specified as follows:

unknown enzyme cleavage was used with one missed cleavage and the peptide mass tolerance was
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set to 10 ppm for MS and 0.05Da fo MS/MS. As caseins are phosphorylated, phosphorylation
(corresponding o mass adduct of 79.96633 Da) were chosen as variable modification as well as
oxidation of methionine (corresponding to mass adduct of 15.99494 Da). For each peptide identified,
a minimum score corresponding to an e-value below 0.05 was considered as a prerequisite for
peptide validation. Only peptides containing more than 5 amino-acid residues and less than 5 500 Da

can be identified by this methodology.

Physicochemical characteristics of the identified peptides

A number of physico-chemical characteristics of the quantified peptides were considered, including:
the number of positive and negative charges at pH 7, the size, the isoelectric point (pl) and the
hydrophobic index (GRAVY). The isoelectric point was predicted using ExPASy “Compute pl/Mw” tool
(Artimo et al., 2012). The number of positive and negative charges was calculated with Python
software from EMBOSS software suite (http://emboss.sourceforge.net). The GRAVY was calculated

according to the method of Kyte and Doolittle (Kyte and Doolittle, 1982).

Size exclusion chromatography

Tryptic and GIuC peptides were suspended at 5 g.L-1 in 50 mM phosphate buffer and 150 mM
sodium chloride, pH 7.2 and 50 pl samples were injected onto a Superdex Peptide 10/300 GL column
(GE healthcare, VWR, France). Isocratic elution was performed at 0.5 ml/min in the same buffer at
room temperature and detection was performed at 214 nm. For the molecular mass calibration, B-
casein (23 960 Da, 5 mg.mL-1 phosphate buffer pH7.2) was used to determine the exclusion volume
of the column and synthetic peptides were used as standards: lysine (146.2 Da) , bradykinin (1060.2
Da), Ala-Pro-Gly (243.3 Da), Gly-Leu-Leu-Gly (406.48 Da), polypeptides standard (BioRad, France)
containing triose phosphate isomerase (26 626 Da), myoglobin (16 950 Da), @-lactalbumin (14 437
Da), aprotinin (6512 Da), insulin B chain oxidized (3496 Da) and bacitracin (1423 Da).

Turbidity

The turbidity of the mix at 50 g.kg was analyzed by spectrophotometry (UVmc2, Monaco SAFA,
France) at A = 685 nm. The measurements were expressed as optic density. Series of dilutions were
realized until that samples have a maximal absorbance of 1.

The relationship between absorbance and turbidity (t) is expressed as:
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It
Io

T = transmittance
lp = intensity of the incident light

l; = intensity of the transmitted light

It
Abs = logz = —logT

Abs
T= ln(lO) X T

| = length of the cell

T = turbidity

Secondary and tertiary structures: Circular dichroism & Fourier Transform Infrared
Spectroscopy

The overall tertiary and secondary structures of hydrolysates were examined using far- (190 — 250)
and near-UV circular dichroism (CD) spectroscopy (250 — 350 nm) with a Jasco J-810 automatic
recording circular dichroism spectropolarimeter fitted with a xenon lamp (Jasco, France) using casein
solutions prepared to reach a maximum of absorbance of 0,8 at 280 nm. Spectra were recorded in
the wavelength interval 185-260 nm (optical pathway of 2 mm) and 250-360 nm (optical pathway of
10 mm), respectively, using a quartz cuvette STARNA (Starna Scientific, England) of path length 2 mm
and 10 mm, respectively. The scan parameters were: 100 nm/min scan rate, 1 nm bandwidth and 2 s
averaging time. Spectra shown are averages of 3 accumulations for each sample, corrected by

subtracting the baseline scan of the appropriate buffer and subjected to noise reduction.

Fourier Transform Infrared spectroscopy (FITR) was used to elucidate the conformational changes in
protein and peptide structure upon the different hydrolysate:CMS ratios. Infrared light absorbance
spectrum of each protein/peptide sample was measured in the attenuated total reflection (ATR)
mode between 4 000 cm-1 and 850 cm-1, with a resolution of 4 cm-1, using the Tensor 27
spectrophotometer (Bruker, France), equipped with a Germanium ATR crystal (mono-reflection) and
a mercury-cadmium-telluride detector cooled with liquid nitrogen, and controlled by the OPUS
software. Background spectra were recorded for the maleate buffer used to prepare protein
solutions. Each spectrum was reported form the average result of 256 scans. The protein solutions
were at 30 g of caseins.kg-1. Before implementing the multivariate statistical analysis, spectra were

corrected in automatic way contributions of the atmospheric steam and by some liquid water. To
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focus on conformational changes, the differences in overall infrared absorbance due to differences in
concentration between samples needed to be compensated. In addition, a major drawback of using
IR spectroscopy on aqueous solution is that H — O — H bending vibration of liquid water absorbs
strongly around 1643 cm-1, which interferes with the amide | band (Giiler et al., 2011). Since the
background spectra were recorded using buffer, differences in sample protein concentration resulted
in differences in contribution of this liquid water absorption, which also needed to be compensated.
The Extended Multiplicative Scatter Correction (EMSC) was used for these automatic compensations
(Martens and Stark, 1991). EMSC consists in calculating a mean spectrum and in expressing each
sample spectrum as a linear combination of the mean spectrum and of the liquid water
“interference” spectrum. The coefficients estimated b linear regression then allow the water
contribution to be subtracted and the overall absorbance to be normalized. The spectral variability
among corrected spectra was then analyzed using principal component analysis (PCA). Spectral

corrections and statistical computations were performed using the R software (Team, 2005).

Gelation

The lyophilized hydrolysates were resuspended in maleate buffer pH 7 containing 25 mM Maleic acid
(Sigma-Aldrich, France), 2 mM calcium Chloride.2H20 (AnalaR, France) and 3mM sodium azide as
bacteriostatic agent (Sigma-Aldrich, France) in order to reach the 80 mM ionic strength of milk. The
solution was stirred during 12h at 20°C. Then, this peptide solution was heated at 50°C for 3 hours in
a water bath. The casein micelle suspension (CMS) was added at several concentrations (w/w) to the
hydrolysate solution (HS) and the mix was stirred during 12h. To reach a pH of 4.6, GDL (Merck,
France) was then added to the mix. On addition of GDL to native phosphocaseinate solutions, the
mixture was stirred vigorously for approximatively 2 minutes before to put in a water bath at 20°C
during around 24h to reach pH 4.6. After acidification, gels were conserved at 4°C until rheological

measurements.

Ultracentrifugation of gels

Gels at 200 g.kg-1 including 50% or 100% of hydrolysates were ultracentrifuged at 100 000 g for 1h
using a Sorvall Discovery 90 Ultracentrifuge (Hitachi Koki, France). Under these conditions, all
undissociated caseins were pelleted. The peptide pattern of the supernatants was analyzed by SDS-

PAGE.
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Rheological properties

Flow measurements were performed with a Low Shear 400 (Lamy Rheology, France) for dispersions
with low viscosity (< 1000 Pa.s). This instrument was operated with Couette geometry using the
system MS-LS 2T-2T Titan with inner and outer radii of 5.5 and 6 mm respectively. The
measurements were realized at 20°C, by using a shear rate gradient from 1 to 100 s™'. Measurements
were repeated twice or three times showing very good reproducibility (error rate of 5%).

Flow measurements were performed with the MCR301 rheometer (Anton-Paar France S.A.S., France)
for dispersions with viscosity > 1 000 Pa.s. These measurements were operated with cone plate
geometry. The measurements were realized at 20°C with a shear rate gradient from 0.01 s-1 to 1 000
s-1. Measurements were repeated twice or three times showing very good reproducibility (error rate
of 2%).

Oscillatory shear measurements were performed using the MCR301 rheometer (Anton-Paar France
S.A.S., France). A cone-plate geometry was used. The mix hydrolysate:CMS was prepared and then
quickly transferred onto the plate, and the upper plate was gently lowered until the sample filled the
gap of a constant normal force was reached (about 0.7 N). The storage modulus (G’) and loss
modulus (G”’) were first measured as function of time at a frequency of 1Hz. The frequency-
dependent response was then measured from 0.001 Hz to 100 Hz at a strain of 0.01, % within the
region of linear response. All rheological experiments were performed at a fixed temperature of
20°C. The measuring system was carefully regulated to the measuring temperature before each
measurement. The solution was also kept for 10 minutes in the rheometer prior to performing the
measurements. To prevent evaporation from the sample, a closed cover setup was used and the
surface of the sample was covered with low-viscosity paraffin oil. Measurements were repeated two

or three times, showing very good reproducibility (error rate of 3%).

Microstructure

The microstructure of the fourteen dairy system studied (NaCas:CMS, 6 hydrolysates:CMS x 2 pH)
was characterized by transmission electron microscopy (TEM) (Figure 12).

The prepared concentrated casein suspensions and gels were frozen using a Leica EM PACT2 high-
pressure freezer (Leica Microsystems, Austria). The sample carriers, cellulose microcapillary tubes or
flat gold-plated specimen carriers, were pre-coated with 1% phosphatidylcholine (Sigma Aldrich Ltd.,
France) diluted in chloroform to avoid sample sticking. No cryo-protecting agent was added to the
samples. For the freeze-substitution step, Leica EM AFS2 freeze substitution machine (Leica
Microsystems, Austria) was used. The frozen samples were transferred in liquid nitrogen to a

processing container equipped with a flat spacer (Leica Microsystems, Austria). The frozen samples
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were freeze-substituted in 2% osmium tetroxide diluted in anhydrous acetone. After an initial
incubation of 8 h at 90 C the temperature was gradually (5 C/h) rose to 30°C and samples were then
left for another 8 h at this temperature. The solvent fixative solution was replaced with pre-chilled
mix of ethanol 3:1 resin (epon-araldite mix; Sigma Aldrich Ltd). The temperature was then gradually
brought up to room temperature and further ethanol: resin substitutions were done following the
resin manufacturer instructions. Thin sections (90 nm) of embedded samples were cut with a
diamond knife using a Reichert ultramicrotome. The sections were contrasted with 4% aqueous
solution of uranyl acetate and observed using a JEM-1400 Transmission Electron Microscope (JEOL
Ltd., Tokyo, Japan) operated at 120 kV accelerating voltage. Digital images were acquired using the
Gatan SC1000 Orius® CCD camera (4008 x 2672), set up with the imaging software Gatan
DigitalMicrograph™ (Gatan, USA).

Flat gold-plated
specimen

Sample

Wet paper to
avoid drying

Figure 12. Preparation of samples for the Cryo-MET.

The microstructure of the seven samples of 100% hydrolysates studied (native NaCas, T1, T2, T3, G1,
G2, G3) was characterized by transmission electron microscopy (TEM) by negative coloration. Drops
of 0.005 mM protein suspensions were deposited onto glow-discharged carbon-coated microscopy
grids. The liquid in excess was blotted with filter paper and a drop of distilled water was deposited on
the preparation in order to rinse out the residual glucose and buffer salts. The water in excess was
blotted and, prior to drying, the preparations were negatively stained with 2% (w/v) uranyl acetate.

The samples were observed using a JEOL JEM 1400 microscope operating at 120 kV. Images were
recorded on camera Gatan Orius SC 1000 at Microscopy Imaging Center platform (MRic), situated in
Rennes, France. The microstructure of the twelve (6 hydrolysates x 2 pH) dairy systems studied was
observed by transmission electron microscopy (TEM). The prepared concentrated hydrolysate

suspensions and gels were frozen using a Leica EM PACT2 high-pressure freezer (Leica Microsystems,
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Austria). The sample carriers, cellulose microcapillary tubes or flat gold-plated specimen carriers,
were pre-coated with 1% phosphatidylcholine (Sigma Aldrich Ltd, France) diluted in chloroform to
avoid sample sticking. No cryo-protecting agent was added to the samples. For the freeze-
substitution step, Leica EM AFS2 freeze substitution machine (Leica Microsystems, Austria) was used.
The frozen samples were transferred in liquid nitrogen to a processing container equipped with a flat
spacer (Leica Microsystems, Austria). The frozen samples were freeze-substituted in 2% osmium
tetroxide diluted in anhydrous acetone. After an initial incubation of 8h at —90 °C the temperature
was gradually (5 °C.h-1) rose to -30 °C and samples were then left for another 8 h at this
temperature. The solvent-fixative solution was replaced with pre-chilled mix of ethanol 3:1 resin
(epon-araldite mix; Sigma Aldrich Ltd, France). The temperature was then gradually brought up to
room temperature and further ethanol:resin substitutions were done following the resin
manufacturer instructions. Thin sections (90 nm) of embedded samples were cut with a diamond
knife using a Reichert ultramicrotome. The sections were contrasted with 4% aqueous solution of
uranyl acetate and observed using a JEM-1400 Transmission Electron Microscope (JEOL Ltd., Tokyo,
Japan) operated at 120 kV accelerating voltage. Digital images were acquired using the Gatan SC1000
Orius® CCD camera (4008 x 2672), set up with the imaging software GatanDigitalMicrograph™
(Gatan, USA).

Several TEM micrographs were taken on different parts of two independent samples of each of the
twelve dairy systems. The resulting images showed the microstructure of the samples at a
magnification of x20000. Images were saved as 32-bit grayscale .dm3 images of 4008 x 2670 pixels

(where 1 pixel = 2.5 nm).

Cheese making

Two cheese-making experiments were carried out following the MMV process (Maubois et al., 1969)
(Figure 13). The raw milk was pasteurized at 72°C during 20 secondes, skimmed and microfiltered on
a membrane with pore size of 1.4 um. The fat:protein (1:1) content was standardized by adding heat-
treated cream (120°C for 20 s).The standardized pasteurized skim milk was than ultrafiltrated on a
mineral membrane with pore size of 0.02 um, a surface of 1.8 m? (Membralox, Pall Exekia, France) at
50°C during 2.5 hours (1 hour up to a concentration factor of 3 and diafiltered with 1 diavolume
during 1.5 hours up to a concentration factor of 6). The protein content of the milk retentate was
concentrated six times compared to the original milk protein content and the lactose was partly
removed by diafiltration. The lactose was removed in order to have a cell lysis of Lactococcus lactis to
liberate the internal enzymes and to mimic the conditions of real cheeses. In this case, only the

peptides which were eat and internalized by the bacterial cells did not participate to the modification
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of cheese texture. Then, 1.5% of NaCl was added or not to the milk retentate at 50°C. 15% of
hydrolysate or NaCas (w/w), suspended in ultrafiltrate permeate, were added to this retentate kept
at 50°C. After, the mix was cooled at 30°C and both Lactococcus lactis starter (MM100, Danisco®,
France) and chymosin (CHY-MAX Plus, Chr. Hansen A/S, Denmark) were added to the mix. This mix
was incubated at 30°C until both coagulation and lactic fermentation were complete (around 20
hours). Cheeses were vacuum-packed and were ripened at 12°C and withdrawn for further analyses

at3 days (D3), 13 days (D13) and 23 days (D23).

Standardization:

- Fatcontent Dialfiltration for NaCas
- Protein content lactose

- Dry extract standardization \ /

Standardized milk UF retentate Hydrolysate
(RUF) Solubilization at
180g.kg*in UF
permeate

&.‘1 + starter
" + Rennet
+/- NaCl (1,5%)

MMV cheeses

3 times of ripening ‘ “‘ ‘ ‘\‘ }‘ A“ “ “

(vaccum-packed):

D3
D13 15% NaCas 15% NaCas 15%T 15% T 15% G 15% G 100% RUF 100% RUF
d23 +85% RUF +85% RUF +85% RUF +85% RUF + 85% RUF + 85% RUF - NaCl + NacCl
- NaCl + NaCl -NaCl + NaCl - Nacl + NaCl
Rippening
at 12°C

48 cheeses
(n=2)

Figure 13. Manufacture of MMV cheeses with addition of hydrolysates (Tryptic or Glu-C hydrolysates)
or sodium caseinate (NaCas).

Hereafter, the cheeses manufactured using only retentate, or with addition of caseinate, tryptic
hydrolysate and Glu-C hydrolysate are designated R, C, T, and G cheeses respectively. Moreover the

salting of the cheeses are noted + with NaCl and — without.

Cheese Analysis

pH was measured directly in the middle of cheeses using a pH meter (WTW pH 197i, Geotech, USA).
MMV cheeses were analyzed for moisture (IDF ISO 5537:2004, 2004), fat content (Heiss, 1961) and
dry matter (DM) (ISO 2920:2004 IDF 58: 2004).
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Lactococcus lactis enumeration

Under a sterile atmosphere, one gram of grated MMV cheese at D3, D13 and D23 was dispersed in10
mL of sterile sodium citrate 20g.L™" in a bag and crushed in a pendular blender Mixwel® (Awel, France)
for 120 s. From this suspension, the enumeration of the Lactococcus Lactis flora cell counts was
made extemporaneously, by successive series of dilution in tryptone water in microwells according
the method of Baron et al. (2006) and plate count on M17 medium (Terzaghi and Sandine, 1975) at

30°C for 48h . The citrate suspension was then frozen and conserved at -20°C until used.

o-phthaldialdehyde (OPA)

Proteolysis was measured in triplicates using the OPA method of Church et al. (Church et al., 1983)
with methionine as a standard and adapted to microplate by Darrouzet-Nardi et al. (Darrouzet-Nardi
et al.,, 2013). Citrate suspension of cheeses were thawed in a water bath at 30°C for 15 min,
precipitated with HCl 1N at pH 4.6 or with trichloroacetic acid 12 % (w/v) final concentration. Then,
samples were centrifuged at 3500 g for 10 min at 25°C before the supernatants were diluted at a
ratio 1:5 with sodium tetraborate 0.1 M pH 9.5 for each sampling except initial time samples (ratio

1:2). The results were expressed as mmol methionine equivalent. L.

Texture Profile Analysis (TPA)

Textures of gels and cheeses were analysed by Texture Profile Analysis.

Gels and cheeses were equilibrated at 20°C for at least 1 hour prior to testing. MMV cheeses were
cut into cylindrical samples (20 mm thick and 20 mm dia.) using a cookie cutter and a wire cutter. A
two-bite compression test was performed using the texturometer Lloyd instrument (Ametek, France)
with a 5 kN (for gels) and a 100 kN (for cheeses) load cell. A 50% compression was used and
crosshead speed was 10 mm.min™ (for gels) or 60 mm.min™ (for cheeses).

Data collection was done using the Nexigen Plus software and TPA parameters (hardness 1 for the
first compression, hardness 2 for the second compression, cohesiveness, adhesiveness, stickiness,
adhesive force, elasticity and gumminess) were determined in duplicate or triplicate from the texture

profile curve as described by Bourne (1978).

Cheese Stretchability

Cheese stretchability was assayed by a method involving vertical traction of the cheese melted at
82°C according to Richoux et al. (2001). The length (mm) of strands of heated cheese was measured

at the breaking point of the stretched strand.
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Chapter 1: An in silico approach to establish a relationship between
a techno-functional property of a dairy-matrix and a peptide profile.

Food products are complex matrices. They contain molecules from several families, proteins, lipids,
carbohydrates that interact with each other to generate specific structures and new functionalities.
Among these molecules, proteins were shown to have a key role in the structuration of the network

that composed the food products (Foegeding and Davis, 2011).

Peptides resulting from protein hydrolysis can also be an integrated part of the structure and
functional properties as do the proteins (Lacou et al., 2014). However, it is still difficult to establish a
clear relationship between a mix of peptides and their techno-functionalities such as emulsifying,
foaming, gelling or even texture properties within a complex matrix. Nevertheless, advances in mass
spectrometry methods and their application to food products characterization have made possible

the identification of peptides present in food products and namely in cheeses.

To have crucial information on the type of peptides present may help understand how they can be
implied in the physical characteristics of food. Thus, Sadat-Mekmene et al., (2013) showed that one
typical techno-functionality criterion of Swiss-type cheese, i.e. stretchability, was correlated with
peculiar groups of peptides, which at a first glance were hydrophobic and composed of 20 amino acid
residues. The production of the peptides implied in the stretchability was also dependent of the
proteolytic enzymes present in the cheese and notably the proteases arising from the lactic acid
bacteria. As the access to the peptide sequence can give information on the size, charge, hydropathy
index and isoelectric point of the peptide, as well as on their potential secondary structure, it would
be possible to try to correlate physico-chemical and structural characteristics of the identified
peptides and the techno-functional properties of the cheese observed using the workflow shown in

the Figure 1.
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Proteolytic enzymes
of bacteria

Highlighting a peptide profile
that relates to macroscopic
Identification of property of cheese
peptides in cheese

Statistical methods

Cheese
= casein network

Figure 1. Workflow to determine the relationships between a peptide profile and the cheese
stretchability.

Therefore, we aimed, from the dataset obtained from the previous work of Sadat-Mekmene et al.,
(2013), to determine which physico-chemical and structural characteristics of peptides are involved
in the cheese stretchability. The methodology used was based on Principal Component Analysis and

Correspondence Analysis.

The results are presented in this chapter under the form of an article, which has been published in
2015 in Colloids and Surfaces A: Physicochemical and Engineering Aspects’. This article showed that
the peptides predominantly involved in cheese stretchability were a mixture of both hydrophobic
and hydrophilic peptides and that they are large enough to interact with each other and with native
proteins. This approach could be further applied to better understand the impact of peptides on

various food matrices and food techno-functionalities.

From this study, we were able to distinguish peptides that were potentially implied in the techno-
functional properties of a food product. They were produced from the various proteolytic enzymes
that are active during cheese manufacture and ripening. In order to demonstrate the implication of

such peptides on the microstructure, rheology and texture of simplified milk matrices and as it was

* Lacou, L. et al. (2015), An in silico approach to highlight relationships between a techno-functional
property of a dairy matrix and a peptide profile. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, 475, 44-54, http://dx.doi.org/10.1016/j.colsurfa.2014.10.052.
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not possible to extract them from cheeses and to reincorporate them into various matrices, we
chose to produce peptides with proteolytic enzymes of known specificity and to design hydrolysate
with defined physico-chemical characteristics that were likely close to those encountered in cheese.

This approach is described in the second part of the chapter

As a summary, the main aims of this chapter are to:

- Link a peptide profile to a macroscopic property of a food product,
- Select enzymes with known specificities to produce peptides with defined characteristics.

81




Part Ill — Results and Discussion: Chapter 1 — In silico study

Chapitre 1 : Approche in silico afin d’établir une relation entre une
propriété techno-fonctionnelle d’une matrice laitiere et un profil de
peptides.

L’aliment est une matrice complexe. Il contient des molécules provenant de différentes familles telles
les protéines, les polysaccharides ou encore les lipides qui interagissent entre elles pour générer des
structures particuliéres et de nouvelles fonctionnalités. Parmi ces molécules, les protéines ont été
démontrées pour avoir un réle prépondérant dans la structuration du réseau qui compose le produit

alimentaire (Foegeding and Davis, 2011).

Les peptides résultant de I'hydrolyse des protéines peuvent aussi faire partie des éléments clés de
I'aliment et contribuer au développement de nouvelles fonctionnalités (Lacou et al., 2016).
Cependant, il est encore difficile d’établir un lien clair entre un ensemble de peptides et leurs techno-
fonctionnalités comme les propriétés émulsifiantes, moussantes, de gélification ou encore de texture
dans un systéeme complexe. Néanmoins, des avancées dans les méthodes d’analyse par
spectrométrie de masse et leur application a a la caractérisation des produits alimentaires rend
désormais possible I'identification des peptides présent dans les produits alimentaires et notamment

dans les fromages.

Avoir des informations sur le type de peptides présent peut aider de maniére cruciale a comprendre
comment les peptides sont impliqués dans les caractéristiques physiques des aliments. Sadat-
Mekmene et al. (2013) ont montré qu’un des criteres typiques du fromage type Emmental, le filant,
était corrélé avec un groupe particulier de peptides, qui a premiere vue étaient hydrophobes et
composés de 20 acides aminés. La production des peptides impliqués dans le filant du fromage était
aussi dépendante du type d’enzyme présente dans le fromage et notamment des protéases des
bactéries lactiques. Comme l'accés a la séquence d’un peptide donne des informations sur sa taille,
sa charge, son hydrophobicité, sur son pH isoélectrique aussi bien que sur sa structure secondaire
potentielle, il serait possible de tenter de corréler les caractéristiques physico-chimiques et
structurelles des peptides identifiés aux propriétés techno-fonctionnelles du fromage observées en

utilisant la stratégie montrée dans la Figure 1.
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Figure 1. Stratégie pour déterminer les relations entre un profil de peptide et le filant du fromage.

Notre objectif a été, a partir des données obtenues lors du travail de Sadat-Mekmene et al. (2013),
de déterminer quelles caractéristiques physico-chimiques et structurelles de peptides sont
impliquées dans le filant du fromage. La méthodologie utilisée est basée sur une analyse en

composantes principales et une analyse des correspondances.

Les résultats sont présentés dans ce chapitre sous forme d’article publié en 2015 dans le journal
Colloids and Surfaces A: Physicochemical and Engineering Aspects®. Cet article a montré que les
peptides majoritairement impliqués dans le filant du fromage sont un mixte de peptides
hydrophobes et de peptides hydrophiles et qui sont suffisamment larges pour interagir les uns avec
les autres ou avec les protéines natives. Cette approche peut étre ensuite utilisée pour une meilleure
compréhension de Iimpact des peptides sur diverses techno-fonctionnalités de matrices

alimentaires.

* Lacou, L. et al. (2015), An in silico approach to highlight relationships between a techno-functional
property of a dairy matrix and a peptide profile. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, 475, 44-54, http://dx.doi.org/10.1016/j.colsurfa.2014.10.052.

83



Part Il — Results and Discussion: Chapter 1 — In silico study

A partir de cette étude, nous sommes capables de distinguer les peptides qui sont potentiellement
impliqués dans les propriétés techno-fonctionnelles d’'un aliment. Ils ont été produits via des
enzymes protéolytiques diverses actives pendant la fabrication de fromage et son affinage. Afin de
démontrer l'implication de tels peptides sur la texture et la rhéologie de matrices alimentaires
simplifiées et puisqu’il n'était pas possible d’extraire les peptides de fromages et de les réincorporer
dans d’autres matrices, nous avons produit des peptides avec les enzymes protéolytiques de
spécificité connue et congu des hydrolysats avec les caractéristiques physico-chimiques définies,
proches de celles rencontrées dans le fromage. Cette approche est décrite dans la deuxieme partie

du chapitre.

Pour résumer, les principaux objectifs de ce chapitre sont de :

- Lier un profil de peptides a une propriété macroscopique d’un aliment,
- Sélectionner des enzymes avec des spécificités connues pour produire des peptides avec
des caractéristiques définies.
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each other to generate specific structures and functionalities. These molecules may include proteins and
peptides resulting from protein hydrolysis, eg. in cheese. It is still difficult to establish a clear relation-
ship between a poal of peptides and their techno-functionalities such as emulsifying, foaming, gelling
or even texture properties within a complex matrix. Among the data usually known, there is the degree
of hydrolysis that provides information about the average size of the peptides formed. A high degree of
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can be calculated on the basis of the peptide sequence. The aim of this study was to determine which
physicochemical and structural characteristics of peptides are involved in the cheese stretchability. This
work is a re-evaluation, using multivariate exploratory analysis, of the experimental data obtained from
a former study (Sadat-Mekmene et al., 2013) in which one typical functionality criterion of Swiss-type
cheese (stretchability) was measured and peptides were identified. This methodology, based on Principal
Component Analysis and Correspondence Analysis, is one way to establish a relationship between pep-
tide characteristics and their techno-functional property within a complex dairy matrix. This statistical
approach showed that the peptides predominantly involved in cheese stretchability were a mixture of
both hydrophobic and hydrophilic peptides and that they are large enough to interact with each other
and with native proteins. This approach could be applied to better understand the impact of peptides on
various food matrices and food techno-functionalities.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Food products have a complex composition that includes vari-
ous types of molecules such as proteins, lipids and carbohydrates
as well as different types of minerals. Over time and depending to
the process used, this composition may change, giving a specific
final quality to a product in terms of texture and flavour. Among
the main food components, proteins play an essential role in the
structuring of food products and other types of matrices [1,2]. In
some cases, the hydrolysis of proteins enhances their functional
properties, e.g. solubility, foam or emulsion stability, gelling capac-
ity and even texture properties [3-5]. Until now, relationships
have mainly been established between the degree of hydrolysis
(DH) of proteins and the enhancement of their functional prop-
erties in the final food product [6,7]. The DH includes not only
the peptides produced but the residual native proteins as well.
In relation to foam or emulsion capacity and similar interfacial
related properties, many other parameters should also be taken
into account, including peptide composition, which was deter-
mined in order to link the peptide composition to the emulsion
and foam properties in dilute solutions [8,9]. Since peptides are
poorly identified in food products, it is still difficult to establish
a clear relationship between a peptide profile and the enhance-
ment of a defined functional property or to know what types
of peptides lead to a specific functionality, especially in complex
matrices.

Stretchability, a parameter of texture quality increasingly
demanded by the consumer, is one of the techno-functionalities
of dairy products. Stretchability concerns cheeses such as Emmen-
tal, Mozzarella and Cheddar. The cheese stretchability depends on
its gross composition, pH, mineralization and proteolysis. Stretch-
ability wvaries between cheeses depending on cheese-making
processes, cheese composition and the ripening conditions used
[10].

In silico methods are tools that can be used to analyze pro-
tein structure—functional property relationships, among other
things. They involve computer simulations that provide knowledge
about how peptide or protein structures impact their function-
alities. Such a computer simulation is a way to analyze some
experimental results without carrying out additional experiments.
Moreover, the functional property of one precise component in
complex matrix can be studied in more depth and specifically
extracted using certain software [11]. In silico methods can be
used for preliminary studies andjor as a validation tool. As far
as we know, the relationships between the resulting fragments
of protein hydrolysis and the structural and mechanical prop-
erties of food systems have not yet been explored to the same
extent.

This work is a re-examination, using multivariate statisti-
cal methods, of the experimental data obtained from a former
study [12]| and some other parameters calculated for the pep-
tides. In a previous study, stretchable cheeses were manufactured
and peptides were identified in the aqueous extract of each
cheese. The aim of the present study was to understand which
physicochemical and structural characteristics of peptides could
be involved in cheese stretchability. To fulfil this purpose, a
methodology based on statistical methods was developed to
establish the relationships between the physicochemical and
structural characteristics of peptides produced during processing,
and cheese stretchability. The characteristics of peptides iden-
tified in the cheese aqueous extract were then calculated.
A combination of multivariate exploratory analyses such as
Principal Component Analysis (PCA) and Correspondence Anal-
ysis (CA) was then used in order to link the typology of
the peptides with the cheese composition and stretchabil-

ity.

2. Methodology
2.1. Cheese making and cheese analyses

The data used here were collected from a former study [12] and
are summarized in Fig. 1. Some proteolysis measurements were
made on cheeses based on standard protocols used in the dairy
sector. They include the percentage of residual caseins and nitro-
gen fractions that give a general idea of the size of the peptides:
(i) the amount of total nitrogen (TN}, which includes the amount
of protein nitrogen and the amount of non-protein nitrogen; (ii)
the non-casein nitrogen/ftotal nitrogen ratio (NCN) in the cheese,
which represents the percentage of soluble nitrogen [13]: (iii) the
non-protein nitrogen/total nitrogen ratio (NPN) which represents
the small soluble peptides and the amino acids [ 14] and (iv) the per-
centage of non-protein nitrogen that is soluble ((NCN-NPN)/NCN),
which represents the small peptides and soluble amino acids.

2.2. Cheese stretchability

The stretchability of each cheese was measured at various
periods of ripening. Cheese stretchability was assayed by a method
involving vertical traction of the cheese melted at 82 °C, according
to Richoux et al. [15]. The length of strands of heated cheese was
measured at the breaking point of the stretched strand.

2.3. Peptide extraction and peptide identification

Peptides were extracted from cheeses with water at day 1(D1),
day 13 (D13), day 27 (D27)and day 41 (D41). The peptides present
in the cheeses were separated by reversed-phase HPLC for both the
first (F1) and the second (F2) cheese batches. Three fractions were
collected as a function of the elution time. Peptides were eluted
from the most hydrophilic to the most hydrophobic: (i) fraction A
was collected from 2 to 22 min and contains peptides from 9 to 20
amino acids with a mean of 13 amino acids; (ii) fraction B was col-
lected from 22 to 42 min and contains peptides from 6 to 45 amino
acids with a mean of 15 amino-acids; (iii) fraction C was collected
from 42 to 65min and contains peptides from 6 to 44 amino acids
with a mean of 19 amino-acids. These fractions were quantified
according to their respective peak areas on the chromatographic
graph.

For F1, peptides from the three fractions were identified by
MS/MS at three crucial points of cheese ripening: D1 (at the
beginning of the cheese ripening), D13 (when the stretchability is
minimal)and D41 (when stretchabilityis the greatest). All together,
30 peptides were identified in the fraction A, 406 peptides in the
fraction B and 139 peptides in the fraction C.

Throughout the text, LH1 refers to Lactobacillus helveticus
ITGLH1 and LH77 refers to L helveticus ITGLH77. The cheeses
are designated according to the following combination: “name of
the starter strain — day of peptide quantification andfor peptide
identification™ LH1-D1, LH1-D13, LH1-D27, LH1-D41, LH77-D1,
LH77-D13, LH77-D27 and LH77-D41.

2.4. Physicochemical and structural characteristics of peptides

Peptide characteristics such as size, hydropathy index, isoelec-
tric point {pl) and number of positive and negative charges at
neutral pH were calculated on the basis of the peptide sequence
using the ProtParam method of Gasteiger et al. [16], available from
the ExPASy website [17].

The isoelectric point represents the pH at which the peptide
net charge is null. The number of both positive charges and nega-
tive charges was calculated at pH 7. The hydropathy index of the
peptide is the sum of the hydropathy index of each amino acid
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Fig. 1. Schematic representation of the manufacture of Swiss-type cheeses and analyses performed in the study of Sadat et al. [12].

constituting the peptide, divided by the total number of amino acids
inthe sequence. All these parameters describe the physicochemical
characteristics of the peptide. The peptide secondary structure was
predicted using the GORIV method [ 18] from the peptide sequence.

2.5. Statistical analyses

To link cheese stretchability to a specific pool of peptides, a
methodology based on multivariate exploratory analyses, such as
Principal Component Analysis and Correspondence Analysis, was
performed using FactoMineR, an R package [19]. None of these
analyses requires a validity condition.

The aim of PCA is to synthesize the information involved in
a large number of quantitative variables. To do so, variables are
linearly combined into what is usually referred to as “principal
components” (PC). These PC are uncorrelated and are such that the
variance of the statistical individuals projected on each PCis as high
as possible. In other words, the first PC has the largest variance and
each successive PC, in turn, has the next highest variance. These PCs
are extracted in order to best represent the variables, on the one
hand, and the individuals, on the other. For this representation, two
variables are close if they are linearly correlated; two individuals
are close if they take the same values regarding the variables in the
dataset.

Two PCAs were successively performed to distribute the cheeses
according to: (i) their biochemical analyses and (ii) both their bio-
chemical analyses and the peptide chromatographic fractions. For
these two PCAs, the first two PCs were retained as the totality of the
inertia explained by both of them, which represents a large part of
the total inertia. For both PCAs, the stretchability was projected as
supplementary information, in order to have a better understand-
ing of the results.

PCA and CA are multivariate statistical technique whose aimis to
summarize information through orthogonal components. Whereas
PCA deals with quantitative variables, CA analyses the relationship
between two qualitative variables and is applied on a contingency
table, with rows representing the categories of one of the two qual-
itative variables, and columns representing the categories of the
other one. CAdefines a specific distance adapted to qualitative vari-
ables, referred to as the “chi-2" distance. In our study, CA was used
to observe the distribution of cheeses according to their peptide
composition. The data were placed in a contingency table that sum-
marizes the peptides in the cheeses. Rows represent cheeses and
columns represent the different peptides.

Since the highest stretchability is obtained at D41 for both
cheese manufactured with LH1 and cheese manufactured with
LH77, several histograms of peptide characteristics were carried
out to determine which physicochemical and structural charac-
teristics of the peptides that could belong to both LH1-D41 and
LH77-D41 in fractions B and C are predominant on the CA factor
map.

3. Results and discussion

Among the lactic acid bacteria used in dairy products, L. hel-
veticus is one of the species with the highest proteolytic activity
and that hydrolyses caseins during cheese ripening. The cheeses
produced had different levels of stretchability depending on the
strains used and the level of casein proteolysis obtained, gener-
ating different types of peptides within the cheese. A statistical
approach was developed in this study to establish the relation-
ships between the proteolysis parameters, either quantitatively
for biochemical analyses or qualitatively for the type of peptides
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Fig. 2. (A) Biochemical characteristics of cheeses, for both strains LH1 and LH77
at D1, D13, D27 and D41, represented on a principal component analysis vari-
ables factor map. o - and [3-caseins are quantitative variables that represent the
percentage of residual native caseins. o -1 casein: relative percentage of peptide
oig1-CN(24-199) derived from the hydrolysis of o, -casein by chymosin; y-casein:
relative percentage of peptides y-casein derived from the hydrolysis of B-casein
by plasmin; NPN: percentage of non-protein nitrogen; NT: amount of total nitro-
gen; (NCN-NPN)/NCN: percentage of residual native proteins. Stretchability is not
included as a variable but is projected as a supplementary data on the PCA. (B) Dis-
tribution of cheeses according to their biochemical characteristics on a Principal
Component Analysis individual factors map. F1: cheese manufacture 1; F2: cheese
manufacture 2; LH1: Lactebacillus helveticus ITGLH1; LH77: Lactobacillus helvericus
ITGLH77; D1:day 1; D13:day 13; 027: day 27; D41: day 41. Ingrey: the LH1 cheeses;
inblack: the LH77 cheeses,

produced, in addition to cheese stretchability. Firstly, the bio-
chemical characteristics of cheeses were explored by PCA in order
to extract the links between the cheese stretchability and some
proteolysis parameters. Secondly, cheese distribution was stud-
ied using a CA on which the peptide composition was projected
for each cheese, This shows which poals of peptides are linked to
the highest cheese stretchability. Finally, the physicochemical and
structural characteristics of peptides, i.e., their isoelectric point,
their size, charge and hydropathy index, included in these pools
were explored, in order to establish which peptide characteristics
were related to the cheese stretchability.

3.1. The strand length of cheese depends on the peptide profile

3.1.1. Most of the cheese variability is related to proteolysis
As shown in Fig. 2, the first two components resulting
from PCA account for 89.03% of the total variability., The
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Fig. 3. Evolution of the hydrolysis of o, -casein, and B-casein and production of
vy-caseins according to the day of ripening. The percentages of native caseins repre-
sent the mean of the data for F1 and F2.

biochemical characteristics of cheeses, such as the amount of: (i)
residual native og-and [3- caseins; (ii) both y-caseins and o -
CN(24-199) (also referred to as «s1-I casein); (iii) total nitrogen
(TN); (iv) the percentage of non-protein nitrogen (NPN); (v) the
percentage of non-casein nitrogen (NCN) and (vi) the percentage
of non-protein nitrogen that is soluble (NCN-NPN)/NCN, at days 1,
13, 27 and 41 were represented on the so-called correlation circle
of the variables (Fig. 2a), The quantities of whey proteins were not
represented because they are not quite hydrolysed in cheese due
to their globular structure [20], The first component explains most
of the variation (78.02%) and is related to the proteolysis (Fig. 2a).
As shown in Fig. 2b, the young cheeses are located on the negative
side of the first component. The combined interpretation of Fig. 2a
and b allows us to deduce that young cheeses are generally char-
acterized by a high amount of native caseins, whereas old cheeses
are instead characterized by a low amount of native caseins. Fig. 3
confirms that the native o - and [3-caseins were degraded accord-
ing to the ripening time. At the end of ripening for both bacterial
strains, more than half of the a5 -casein was hydrolyzed; «g;-casein
was completely degraded [ 12] whereas around 40% of the [3-casein
was hydrolyzed. At the end of ripening time, LH77 cheeses were
associated with the highest amount of y-caseins. When stretching
values are projected as supplementary information, a positive cor-
relationis observed betweenstretching and y-caseins in agreement
with the composition of LH77 cheeses. However, the stretchability
was inversely correlated with both the residual - and g -caseins
(Fig. 2a). Moreover, the stretchability was correlated with the pres-
ence of the peptide g -CN(24-199) that is known to have particular
functional properties such as softening properties and that could be
involved in stretchability as well [21-23],

The evolution of stretchability was the same for bath cheeses
according to the ripening time [12], As of D20, the stretchability
of bath cheeses increased and was higher for the cheese produced
from L. helveticus ITGLH77 than for the cheese produced from L.
helveticus ITGLH1. The highest stretchability was obtained on D41
for both cheeses. The highest stretchability of cheese manufactured
using L. helveticus ITGLH77, compared to the cheese manufactured
using L. helveticus ITGLH1, was attributed to the least overall pro-
teolytic activity of this bacterial strain [12]. L. helveticus ITGLH1
is more proteolytic than L. helveticus ITGLH77 since LH1 has four
proteases whereas L. helveticus ITHGLH77 has only one [24]. More-
over, LH1 lyses more rapidly than LH77 and, consequently, releases
internal peptidases that contribute to the overall proteolysis in the
cheese, Proteinases of both bacterial strains have some common
and some different splitting sites. Consequently, the degradation
profiles of o - and B-caseins by L. helveticus ITGLH1 and L. hiel-
veticus ITGLH77 are different [25], as are the peptide profiles. The
representation of the cheese analyses on the PCA variable factor
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map confirms that cheese stretchability was strongly correlated
with the proteolysis parameters [26]. However, a moderated pro-
teolysis promotes cheese stretchability. Since both cheeses were
manufactured using the same milk, the only difference found
between them concerned their composition in peptides. Itis there-
fore crucial to determine the peptides that are closely related to
stretchability from among all the peptides produced in cheese in
order to be able to further orient proteolysis. These peptides could
actually be the key factors in maintaining the structure of the cheese
matrix with the residual native caseins and could consequently
modulate the stretchability of these cheeses.

According to the specificity and activity of the proteolytic
enzymes found in cheese arising from L helveticus as well as from
the other microflora or endogenous enzymes from milk, the pep-
tide profiles in cheese were modified on the shorter or longer
term during ripening time. For both LH1 and LH77 cheeses, some
peptides were significantly different between D1, D13 and D41
(Table 1). Since proteolysis is a continuous process, one peptide
can be present in cheese during various period of ripening. How-
ever, this depends on whether this peptide is a primary product of
hydrolysis of the caseins, which can be further degraded, or a final
one. Therefore, such a complex mix of peptides makes it difficult to
find a simple way to establish the relationship between a pool of
peptides and the cheese stretchability.

3.1.2. The chromatographic peptide fraction C is strongly
correlated with the stretchability

Chromatography analysis is the main way to quantify peptides,
as already shown in dairy products [20,27], in which peptides
were identified. The area intensities of three fractions, A, B and
C, collected for peptide identification, were measured using the
reversed-phase chromatographic profiles. These variables were
added to the previous data set and were submitted to PCA in order
to show the impact of the peptide identification on the cheese dis-
tribution. For this second PCA, the first component (PC1) explains
most of the variation (77.96%) whereas the second component
(PC2) explains 9.39% of the variability. The overall PCA analysis was
verysimilar to the previous one (Fig. 2 ) showing that PC1 was again
related to the proteolysis whereas PC2 may reflect the difference
between the type of bacterial proteinases and consequently the
change in the peptide composition (Fig. 4a). The main change com-
pared to Fig. 2 is that LH77 cheeses were associated not only with
the highest content of both «y-caseins, but also with fractions B and C
at the end of cheese ripening, whereas LH1 cheeses were related to
fraction A(Fig. 4b). When stretching values were projected as asup-
plementary data, a positive correlation was observed between this
data and both vy-caseins and fractions B and C, in agreement with
the composition of LH77 cheeses ( Fig. 4a). Fraction Cis strongly cor-
related with stretchability, butit is possible that part of the peptides
present in fraction B contributes to cheese stretchability as well.
Since fraction B contains numerous peptides there is certainly only
one part of them that is involved in cheese stretchability.

The addition of the chromatographic fractions in the PCA also
induced changes in cheese distribution on the individual factor
map (Fig. 4b). Thus, as of D 27, the distance between the indi-
vidual cheeses was enlarged on the PCA map, according to the
bacterial strain. This means that peptides present in the aqueous
extract of cheese represent valuable information linked to cheese
stretchability and especially those peptides present in fractions
B and C. This PCA also suggested that both the type of proteases
from each lactobacilli strain and the overall proteolysis rate affect
cheese stretchability. Consequently, the type and the number of
proteases, as well as the capability of the lactobacilli strains to die
and to release other intracellular enzymes [12] clearly affect the

Variables factor map (PCA) (A)
a
o "
o (NCN-! Fraction G, asein (%)
Stretchaill
Zar
£ B-casein (%)
2 5
@ o |l T
o~ (=]
E
[a]
it -
9
= -
' T T T T T
10 05 00 05 10
Dim 1 (77.96%)
Individuals factor map (PCA) (B)
«©
F2_LH77_D41
o) -
F1_LH77_D41
- FA_LH77_D27 3
g FHT DM d
3 F2LH77 D13 * F2_LHF7_D27
S o .
E F1_LH77_D13
F2_LH77_D1
ol
4 2 0 2 4 [

Dim 1 (77.96%)

Fig. 4. (A) Biochemical characteristics of cheeses, for both strains LH1 and LH77
at D1, D13, D27 and D41, and the chromatographic peptide fractions represented
on a principal component analysis variables factor map. o1- and B-caseins are
quantitative variables that represent the amount of residual native caseins. ot1-1
casein: relative percentage of peptide o,;1-(f24-199) derived from the hydrolysis of
051 -casein by chymosin; y-casein: relative percentage of peptides y-casein derived
from the hydrolysis of B-casein by plasmin; NPN: percentage of non-protein nitro-
gen; NT: amount of total nitrogen; (NCN-NPN)/NCN: percentage of residual large
peptides; Fraction A: total area of the first fraction of the HPLC chromatography;
Fraction B: total area of the second fraction of the HPLC chromatography; Fraction
C: total area of the third fraction of the HPLC chromatography. The stretchability
is not included as a variable but is projected as a supplementary data on the PCA.
(B) Distribution of cheeses according to their biochemical characteristics and their
chromatographic peptide fractions on a Principal Component Analysis individual
factors map. F1: cheese manufacture 1; F2: cheese manufacture 2; LH1: Lactobacil-
Ius helveticus ITGLH1; LH77: Lactebacillus hetveticits ITGLH77; D1: day 1; D13: day
13; D27: day 27; D41: day 41; ingrey: the LH1 cheeses; inblack: the LH77 cheeses.

distribution of cheeses on the PCA individual factor map, thus
impacting stretchability.

3.2. A specific peptide profile is related to each cheese

Numerous peptides were identified (30 peptides in fraction A,
406 peptides in fraction B, and 139 peptides in fraction C) in the
cheeses using chromatographic fractions. To determine those that
are really implicated in stretchability, a correspondence analysis
representing the distribution of cheeses according to their peptide
composition was used (Fig. 5). Whey proteins are not quite hydrol-
ysed in cheese due to their globular structure [20], which is the
reason why they were not identified and cannot be included in the
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Table 1

List of peptides present or absent at each time of ripening.
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Day of ripening

Day 1 Day 13 Day 41
Names of peptides B-CN(194-208) 1 B-CN(80-90) 1 B-CN(74-88) 1
B-CN(185-192) 1 B-CN(47-52) 1 B-CN(74-81) 1
B-CN(84-93) 0 B-CN(32-58) 1 B-CN(30-72) 1
B-CN(74-82) 0 B-CN(195-207) 1 B-CN(191-206) 1
B-CN(53-72) 0 B-CN(195-202) 1 B-CN(190-209) 1
B-CN(35-52) 0 B-CN(194-207) 1 B-CN(107-119) 1
B-CN(32-52) 0 B-CN(194-206) 1 B-CN(129-141) 0
B-CN(30-52) 0 B-CN(167-176) 1 a-CN(197-203) 1
B-CN(29-52) 0 B-CN(135-141) 1 0o-CN(176-182) 1
B-CN(195-206) 0 B-CN(126-133) 1 ao-CN(153-163) 1
B-CN(111-119) 0 ag-CN(101-115) 1 ao-CN(151-161) 1
B-CN(103-113) 0 . -CN(181-189) 1 a-CN(150-161) 1
a-CN(101-114) 0 0t -CN(10-23) 0 0o -CN(105-114) 1
Qe1-CN(24-30) 0 ao-CN(100-115) 1
Q-CN(17-23) 0 g -CN(9-23) 1
g -CN(9-22) 1
a1 -CN(9-16) 1
g -CN(8-23) 1
a1 -CN(8-21) 1
a1 -CN(8-17) 1
a1 -CN(8-16) 1
a1 -CN(27-34) 1
a1 -CN(25-36) 1
a1 -CN(25-34) 1
0 -CN(24-37) 1
a1 -CN(24-34) 1
a5 -.CN(16-23) 1
s -CN(15-23) 1
a1 -CN(14-22) 1
a1 -CN(13-23) 1
s -CN(11-23) 1
a1 -CN(1-13) 0

1: presence only at this time; 0: absence only at this time.
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Fig. 5. Distribution of cheeses according to their peptide composition on a Correspondence Analysis factor map. LH1: Lactobacilius helveticus ITGLH1; LH77: Lactobacilius
helveticus ITGLH77; D1: day 1; D13: day 13; D27: day 27; D41: day 41. As1: peptides derived from o, -casein; As2: peptides derived from o -casein; B: peptides derived
from (3-casein; peptides in black: peptides present in the cheeses; peptides in blue: peptides in fraction B; peptides in red: peptides in fraction C, which is strongly correlated
with stretchability; peptides in green: peptides of both fraction B and C. Peptides surrounded by a green circle are peptides that are found mainly for each cheese LH77-D41

and LH1-D41.
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list of peptides related to stretchability. Moreover, it is not very
probable that the native whey proteins that are entrapped in the
cheese interact with peptides since whey protein-casein interac-
tions are not favoured because of their globular form.

The CA summarizes the link between two qualitative variables
through a representation of the categories associated with each
qualitative variable. In our case, CA provides a representation of
the cheeses and the peptides as function of the presencefabsence of
each peptide in each cheese. In Fig. 5, the two dimensions account
together for 49.42% of the total variability. The first axis explains
25.52% of the total variability and is related to the proteolysis; the
second axis represents 23.9% of the total variability and isrelated to
the difference between the two types of bacterial proteases (Fig. 5).
Cheeses were distributed according to their degree of proteolysis
on the first axis, on which cheeses at D1 and D13 were negatively
scored and cheeses at D41 were positively scored. Cheeses were
also distributed according to the bacterial strains used, on the sec-
ond axis, on which the LH1 cheeses were negatively scored and the
LH77 cheeses were positively scored. Fig. 5 reveals that a pool of
peptides was representative of each cheese.

Peptides belonging tothe LH1-D41 cheeseand LH77-D41 cheese
on this CA factor map had heterogeneous physicochemical and
structural characteristics, both in the same cheese and between
both cheeses (Fig. A and Table A in the supplementary data). Some
of them were derived from «2-casein. The peptides derived from
ois3-casein and present in LH77-D41 cheese are larger than pep-
tides derived from «2-casein that are present in LH1-D41 cheese.
Since atgy-casein is able to form specific supramolecular structures,
such as amyloid fibrils under defined conditions [28,29], it could be
assumed that peptides derived from this casein are able to inter-
act with each other or with native residual casein to give specific
functionalities to the matrix, such as stretchability. Moreover, this
CA factor map showed that LH77-D41 cheese had more peptides
derived from aq-casein than LH1-D41 (Fig. A and Table A in the
supplementary data). For both cheeses, most of the peptides have
more than ten amino acid residues, in agreement with the fact that
large peptides (in most cases, with more than twenty amino acids)
have been shown to enhance the functional properties of proteins
[20,26,27,30-35].

3.3. When they are large enough, both hydrophilic and
hydrophobic peptides are predominantly involved in the
stretchability of cheeses at D41

Since stretchability was the highest at D41 for both cheeses
manufactured using L helveticus ITGLH1 and L helveticus ITGLH7,
the characteristics of the peptides identified only at this ripen-
ing time were studied in more depth in terms of: (i) size; (ii)
pl; (iii) hydropathy index; (iv) number of positive charges: (v)
number of negative charges (Fig. 6a) and (vi) their secondary struc-
tures (Fig. 6b). Actually, the amino acid nature [36], the size of the
sequence [35-40], the charge and the periodicity of the hydropho-
bic/hydrophilic amino acids in the sequence [38,41-43] determine
the secondary structure of the peptides. According to their sec-
ondary structures and both the peptide concentration and the
environmental conditions, peptides interact with each other via
electrostatic and van der Waals interactions and even hydrogen
and disulphide bonds to form supramolecular structures [44]. It
has been demonstrated that even short peptides (3-6 amino acids)
have a secondary structure and are able to self-assemble [39].

In this study, for both cheeses, peptides only present at D41
(Table 1)had similar physicochemical and structural characteristics
(Fig. 6a), except for the peptide B-CN(30-72) found inboth LH1-D41
cheese and LH77-D41 cheese. They were small (less than twenty
amino acids), had few charges (less than four) and had a plclose to
5close to that of the native caseins. Most of them were hydrophilic.

Fig. 6b shows that these peptides predominantly formed c-helix or
random-coil structures. These peptides certainly play a key role in
cheese stretchability and may be able to interact with each other
and with the native caseins to form macroscopic strands during
cheese stretching.

When the peptides present in fraction C of LH1-D41 cheese and
LH77-D41 cheese were analyzed more deeply (Fig. 7), peptides
derived from ag - casein were found in smaller amounts in frac-
tion C of the aqueous extract than peptides derived from 3-casein.
Generally speaking, 51 - and atgp-caseins were less hydrolysed than
B-caseins by both bacterial strains. This was in agreement with a
lower accessibility of the proteases to the caseins in dairy matrices
compared to pure caseins in solution [12,25]. The physicochemi-
cal and structural characteristics of peptides were very different,
both between peptides present in the same cheese and between
peptides present in the two cheeses (Figs. 7a and b). Both LH1-
D41 cheese and LH77-D41 cheese had a high stretchability. Since
the two cheeses were manufactured using two bacterial strains
from the same species with different proteolytic activities, the pep-
tides produced may be more or less common between cheeses.
Hence, their physicochemical characteristics appear to be similar to
induce cheese stretchability. Nevertheless, the predicted secondary
structure was quite different between both pools of peptides
(Fig. 7b). Peptides in LH1-D41 cheese had more random coils than
other structures whereas peptides in LH77-D41 had as many o-
helixes as random coils. This supports the hypothesis that peptides
with particular structures self-assemble to form supramolec-
ular structure such as fibrils [28,45-47] and lead to specific
functionalities.

While fraction C was strongly correlated with stretchability
fraction B was also correlated with this macroscopic property of
cheese and it is therefore assumed that part of peptides included
in this fraction are also involved in the stretchability. The pep-
tides of fraction B, which are located close to the points LH77-D41
and LH1-D41 in Fig. 5, revealed varied characteristics (Fig. B in
the supplementary data). On average, peptides produced by both
bacterial strains are weakly charged, are large enough to inter-
act with proteins (more than ten amino acids), are hydrophilic
and form more random coils than «-helices or B-strands. More-
over, three peptides found in LH77-D41 cheese are commons to
both fractions B and C: atg1-CN(7-23), B-CN(29-56) and R-CN(29-
72). They are large (17, 28 and 34 amino acids, respectively) and
are hydrophilic. Moreover, peptides 3-CN(29-56) and B-CN(29-72)
are monophosphorylated. Since caseins are phosphorylated pro-
teins, their hydrolysis produces several phosphorylated peptides
(Table C in the supplementary data). Some secondary structures
could be involved for some functionalities, implying mineral inter-
actions that could unfortunately not be taken into account by
ProtParam software. Consequently, the phosphoryl residues should
confer particular physicochemical properties to peptides especially
in terms of their cation binding ability. The different ionization
states of peptides lead to different affinities towards cations [48].
For example, the higher the number of phoshoseryl residues is,
the stronger the interaction strength with colloidal calcium phos-
phate will be [49]. Consequently, in a mineralized medium such
as cheese, the phosphorylated peptides can interact more easily
and could induce particular functional properties. Thirteen phos-
phorylated peptides were identified close to the LH77-D41 point
in Fig. 5, including two peptides derived from o;-casein hydrol-
ysis, three peptides derived from «;;-casein hydrolysis and eight
peptides derived from B-casein hydrolysis. There are fewer pep-
tides with phosphorylations close to the LH1-D41 point in Fig. 5,
than close to the LH77-D41 point. Two of them are derived from
g1 -casein hydrolysis and four of them are derived from B-casein
hydrolysis. Since phosphorylated peptides are more numerous in
LH77-D41 than in LH1-D41, this could mean that phosphorylations
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found in both LH1-D41 cheese and LH77-D41 cheeses on the CA factor map (Fig. 5) and in the chromatographic fraction C. In black: the -helix: in dark grey: the B-strand:

peptides; (d) the size of peptides. Onthe left, peptides from LH77 cheese at day 41; on the right, peptides form LH1 cheese at day 41. (B) Structural characteristics of peptides
in light grey: the random coil.
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could play a key role in the increase of stretchability at the end of
cheese ripening.

In this case, to induce cheese stretchability, peptides are
assumed to be large enough (more than fifteen amino acids) to
interact with native residual caseins and to maintain a structure in
the cheese thread. Peptides could also have phosphorylation, could
be weakly charged at neutral pH, and some could be hydrophilic,
whereas others could be hydrophobic. Nevertheless, no informa-
tion is available about the charge distribution that could have an
impact on peptide-peptide interactions. It is also not excluded that
some peptides such as phosphorylated ones have charges that are
more present in one domain than in another. The presence of such
charged peptides could lead to electrostatic interactions, and the
presence of both hydrophilic and hydrophobic peptides could tend
to form a-helices, which was shown in LH77 cheeses, with greater
stretchability properties. Moreover, specific secondary structures,
such as random coil structures could favour the flexibility of the
peptide chain and increase the probability of interactions with
other peptides or proteins to form the strands.

4. Conclusion and perspectives

On the basis of the quantification of proteolysis parameters
such as casein degradation, the percentage of appearance of both
v-casein and agq-l-casein, and the intensity of each peptide’s
chromatographic fractions, the relationships between a pool of
peptides, their characteristics and the techno-functionality of the
food matrix could be established.

A more complete view of the peptide profile that may be
involved in a techno-functional property of a food product, such
as the stretchability of cheese shown in this study, was obtained
by a combination of multivariate analysis on both the biochem-
ical analysis of cheese and the peptide physicochemical and
structural characteristics of the peptide. This method showed
that a profile of peptides is linked to a macroscopic property
rather than to one particular peptide. The pool of peptides that
is predominantly involved in cheese stretchability has peptides
with heterogeneous physicochemical and structural characteris-
tics. Nonetheless, certain characteristics are common to these
peptides: they all have more than fifteen amino acids, are either
hydrophilic or hydrophobic and form w«-helix and random coil
structures.

The implication of these peptides, with such physicochemical
and structural characteristics, has to be confirmed in situ. This
will be the next step, given that there are also other parameters
involved in stretchability, such as the amount of residual caseins or
the cheese physico-chemical environmental conditions. It should
be noted that, whereas a clear correlation between two factors is
established, it cannot assure that there is a cause and effect rela-
tionship between the two.

This method can be applied to other types of peptides and other
food techno-functionalities in other food matrices.
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Part Ill — Results and Discussion: Chapter 1 — In silico study

Fig. A: Physico-chemical characteristics of peptides belonging to LH1-D41 cheese and LH77-D41
cheese on the CA factor map (Fig. 4). (a) the isoelectric point (pl) of peptides; (b) the number of
positive charges of peptides calculated at pH7; (c) the number of negative charges of peptides
calculated at pH7; (d) the hydropathy index of peptides; (e) the size of peptides; (f) the secondary
structure of peptides: in black: the a-helix; in dark grey: the B-strand; in clear grey: the random coil.
One peptide is represented by one number as in Table A of the supplementary data.
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Part Ill — Results and Discussion: Chapter 1 — In silico study

Table A. Peptides belonging to LH1-D41 cheese and LH77-D41 cheese on the CA factor map (Fig. 3).
One number is linked to one peptide for the representation on the Fig. A of the supplementary data.

Cheese

Number of peptides
on the supplementary

data

Name of peptide

LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41
LH1-D41

OO NOOTULE, WN -

A DD WWWWWWWWWWNNNNNNNNNNRRPRREPRPRRRPRP R
NP OWOVWOOMNOUDNWNRPRPOOVOONOOTUTDNWNRPOWOVONOOOULD WNLERO

0s1-CN(102-110)
0s1-CN(110-121)
0s1.CN(111-121)
0s1-CN(131-142)
0s1-CN(24-35)
a1-CN(24-38)
0s1-CN(25-35)
a1-CN(25-38)
s1-CN(27-35)
s1-CN(32-40)
a1-CN(83-92)
a1-CN(83-93)
a1-CN(83-98)
asl-CN(9-17)
a-CN(146-162)
a-CN(151-164)
a,-CN(151-165)
a-CN(152-164)
a,-CN(153-164)
a,-CN(154-165)
0s,-CN(155-164)
a-CN(166-174)
B-CN(109-119)
B-CN(113-119)
B-CN(134-139)
B-CN(164-175)
B-CN(164-190)
B-CN(164-191)
B-CN(166-175)
B-CN(166-191)
B-CN(166-192)
B-CN(166-209)
B-CN(177-189)
B-CN(183-209)
B-CN(192-206)
B-CN(193-207)
B-CN(196-209)
B-CN(199-207)
B-CN(30-56)
B-CN(31-46)
B-CN(32-47)
B-CN(32-68)
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LH1-D41

LH1-D41

LH1-D41

LH1-D41

LH1-D41

LH1-D41

LH1-D41

LH1-D41

LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

B-CN(32-72)
B-CN(53-68)
B-CN(57-72)
B-CN(57-77)
B-CN(74-87)
B-CN(82-91)
B-CN(83-91)
B-CN(84-91)
0s1-CN(103-124)
0s1-CN(106-124)
0s1-CN(13-21)
0s1-CN(13-22)
0s1-CN(14-23)
0s1-CN(15-22)
0s1-CN(16-21)
0s1-CN(178-199)
0s1-CN(24-36)
0s1-CN(24-42)
0s1-CN(25-32)
0s1-CN(25-37)
0s1-CN(26-34)
0s1-CN(28-34)
0s1-CN(29-34)
0s1-CN(31-42)
0s1-CN(4-16)
s1-CN(41-63)
s1-CN(6-23)
1-CN(7-16)
s1-CN(7-23)
0s1-CN(8-18)
as1-CN(81-93)
01.CN(8-20)
s1-CN(8-22)
s1-CN(9-19)
0s>-CN(129-149)
0s,-CN(137-149)
0s,-CN(137-150)
0s,-CN(148-161)
0s,-CN(187-199)
0s,-CN(191-196)
0s,-CN(191-198)
0s,-CN(194-202)
B-CN(106-125)
B-CN(107-115)
B-CN(178-189)
B-CN(28-48)
B-CN(29-53)
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LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
LH77-D41
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90
91
92
93
94
95
96
97
98
99
100
101

B-CN(29-56)
B-CN(29-57)
B-CN(29-72)
B-CN(31-48)
B-CN(31-56)
B-CN(33-58)
B-CN(70-82)
B-CN(70-93)
B-CN(78-101)
B-CN(78-107)
B-CN(83-105)
B-CN(93-105)
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Part Ill — Results and Discussion: Chapter 1 — In silico study

Fig. B. Physicochemical and structural characteristics of peptides found in both LH1-D41 cheese and
LH77-D41 cheese on the CA factor map (Fig. 5) and in the chromatographic fraction B. (a) the
isoelectric point (pl) of peptides; (b) the number of both positive (in grey) and negative (in black)
charges calculated at pH7 of peptides; (c) the size of peptides; (d) the hydropathy index of peptides;
(e) structural characteristics of peptides. On the left, peptides from LH77 cheese at day 41; on the
right, peptides form LH1 cheese at day 41.

104



Appendix C. Supplementary data

Part Ill — Results and Discussion: Chapter 1 — In silico study

Table C. List of phosphorylated peptides identified in fractions A, B and C during cheese ripening. P:

one phosphorylation; 2P: two phosphorylations; 3P: three phosphorylations.

Basf:aeirrl]al Day of ripening Fraction Peptide sequence Phosphorylations
LH1 13 A B-CN(32-46) P
LH1 41 A B -CN(32-46) P
LH77 13 A B -CN(33-48) P
LH77 13 A as-CN(14-24) P
LH77 13 A 0s>-CN(123-142) P
LH77 41 A B -CN(33-48) P
LH1 41 B os1-CN(111-121) P
LH1 41 B os1-CN(110-121) P
LH1 13 B 0s,-CN(141-150) P
LH1 41 B 0s,-CN(141-150) P
LH1 41 B B -CN(31-46) P
LH1 13 B B -CN(33-52) P
LH1 13 B B -CN(30-46) P
LH1 13 B B -CN(30-52) P
LH1 13 B B -CN(32-52) P
LH1 13 B B -CN(32-56) P
LH1 13 B B-CN(32-58) P
LH1 13 B B-CN(29-46) P
LH1 13 B B-CN(29-52) P
LH1 13 B B-CN(28-46) P
LH1 13 B B-CN(35-52) P
LH1 13 B B-CN(35-56) P
LH1 41 B B-CN(30-46) P
LH1 41 B B-CN(30-52) P
LH1 41 B B-CN(30-56) P
LH1 41 B B-CN(30-58) P
LH1 41 B B-CN(30-72) P
LH1 41 B B-CN(32-46) P
LH1 41 B B-CN(32-47) P
LH1 41 B B-CN(32-52) P
LH1 41 B B-CN(32-56) P
LH1 41 B B-CN(32-72) p
LH1 41 B B-CN(32-68) P
LH1 41 B B-CN(29-46) P
LH1 41 B B-CN(29-48) P
LH1 41 B B-CN(29-52) p
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Part Ill — Results and Discussion: Chapter 1 — In silico study

Epilogue

This study showed that there was a correlation between the nature of peptides produced and the
techno-functional property of the cheese. It has permitted to select a profile of peptides: mix of large

peptides (more than fifteen amino acids) hydrophilic and hydrophobic.

In order to be able to produce hydrolysates with similar profiles, we chose first to use in silico
hydrolysis of the caseins by proteolytic enzymes with known specificities. This allows having direct
information on the sequence of peptides that could be theoretically produced with intermediate
and/or end-products depending on the parameters used in the software. Thus, knowing the
sequence of the four types of caseins, oy, o, B and k-caseins, we were able to hydrolyze them by 9
enzymes with known cutting sites (Table 2) according to PeptideMass software on ExPASy website
(http://www.expasy.org). We compared with the same statistical tools the peptides produced in

order to select the enzymes the most appropriate to produce peptide with the corresponding profile.
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Part Ill — Results and Discussion: Chapter 1 — In silico study

Table 2. Cleavage rules for PeptideMass program.

Enzyme or Reagent Cleaves where? Exceptions

Trypsin C-terminal side of Kor R if Pis C-termto Kor R

Trypsin (C-term to K/R, C-terminal side of Kor R

even before P)

Trypsin (higher specificity) C-terminal side of Kor R if P is C-term to K or R; after Kin

CKY, DKD, CKH, CKD, KKR; after R
in RRH, RRR, CRK, DRD, RRF, KRR

Lys C C-terminal side of K

Lys N N-terminal side of K

Arg C C-terminal side of R if PisC-termtoR

Asp N N-terminal side of D

AspN /LysC N-terminal side of D, C-terminal side

of K

Asp N + N-terminal Glu N-terminal side of D or E

AspN/GluC N-terminal side of D, C-terminal side

(bicarbonate) of E

Glu C (bicarbonate) C-terminal side of E if PisC-termto E, orif Eis C-
termtoE

Glu C (phosphate) C-terminal side of Dor E if PisC-termtoDorE,orifEis
CtermtoDorE

Glu C (phosphate) + LysC  C-terminal side of D, E and K if PisC-termtoDorE,orifEis
CtermtoDorE

Microwave-assisted C-terminal side of D

formic acid hydrolysis (C-

term to D)

Chymotrypsin (C-term to C-terminal side of F, L, M, W, Y if PisC-termtoF, L, M, W,Y, ifP

F/Y/W/M/L, not before P, is N-term to Y

not after Y if P is C-term to

Y)

Chymotrypsin (C-term to C-terminal side of F, Y, W if PisC-termtoF, Y, W, if Pis N-

F/Y/W/, not before P, not termtoY

after Yif Pis C-termto Y)

Trypsin/Chymotrypsin (C-  C-terminal side of K, R, F, Y, W ifPisC-termtoK,R,F, Y, W,if P

term to K/R/F/Y/W, not is N-termto Y

before P, not after Yif P is

C-termto )

Pepsin (pH 1.3) C-terminal side of F, L

Pepsin (pH > 2) C-terminal side of F, L, W, Y, A, E, Q

Proteinase K C-terminal side of A,F, Y, W, L, I,V

Thermolysin N-terminal side of A, F, I, L, M, V if Dor Eis N-termto A, F, I, L, M,

Vv

From the various in silico hydrolysis conditions (different types of enzymes and different buffers to
obtain different pH of hydrolysis), a list of various peptides was obtained from each casein and each

enzyme (data not shown). Their physico-chemical characteristics, such as molecular weight (MW),
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Part Ill — Results and Discussion: Chapter 1 — In silico study

isoelectric point (pl), hydrophobic index (GRAVY), Aliphatic Index (Al), number of positive and
negative charges and their size were calculated using ProtParam software on ExPASy website and
compared to those present in the cheeses. Two enzymes, commercially available, were able to
produce peptides with physico-chemical characteristics sufficiently close to the characteristics of the
targeted peptides: (i) Trypsin and (i) Glu-C (Table 3). It appears that the ratio enzyme/substrate has
to be low enough to favor the presence of intermediate, i.e large, peptides instead of final peptides,
smaller ones. The cleavage specificities of both these enzymes are presented in the Table 3. The
Figure 9 shows that the cleavage sites of Trypsin and Glu-C are very different. Glu-C cleaves more the

C-term of a,;-casein and k-casein than Glu-C.

Table 3. Main characteristics of the selected enzymes

Enzyme EC Reasons to choose this enzyme Conditions Remarks
Glu-C EC - Production of large peptides (with Optimal pH  Synonym: V8
3.4.21.19 miss cleavages >1) =4.0-9.0 Protease
- Hydrophobic peptides: Exceptions if P is C-
(-1.4< GRAVY <0) termto Dor E or if
- Several amphiphilic peptides Eis C-termto D or
- large peptides are produced near E

the N-terminal of B-casein

Trypsin  EC - Production of large peptides (with Optimal pH  Small ratio
3.4.21.4 miss cleavages >3) =79 enzyme/substrate
- hydrophobic and hydrophilic to increase the
peptides ( -1.6<GRAVY<0.4) miss cleavages
- large peptides are produced near Exceptions if P is C-
the N-terminal of k- and a,;-casein termto KorR
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Part Ill — Results and Discussion: Chapter 1 — In silico study
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Figure 9. Cleavage sites of Glu-C and Trypsin on ag, 05 B and  «k-caseins
(www.uniprot.org/uniprot/P02662; P02663; P02666 and P02668, respectively). Endoproteinase GluC
cleaves selectively peptide bonds C-terminal to glutamic acid residues (large arrow). Endoproteinase
GluC also cleaves at aspartic acid residues at a rate 100-300 times slower than at glutamic acid
residues (small arrow).

Specific conditions of hydrolysis were available on the PeptideMass program (ExPasy), particularly
the pH. For example, Glu-C, in presence of bicarbonate buffer at pH 7.8 or ammonium acetate buffer
at pH 4, cleaves caseins at the carboxyl side of glutamic acid whereas, in presence of phosphate
buffer pH 7.8, Glu-C cleaves caseins at the glutamic acid and at the aspartic acid sides (Figure 9).
Endoproteinase Glu-C is active over the pH range of 3.5 to 9.5 and exhibits maximal activity from pH
4.0 to 7.8. The enzyme exhibits an optimal activity at pH of 7.8 with casein as substrate. On the
contrary, Trypsin cleaves proteins at the carboxyl side of lysine and arginine, regardless of the pH

used.

To determine the physico-chemical profile of the mix of peptides obtained for each casein and for
the two enzymes and to determine the differences between all these mix of peptides, PCA were

realized, using peptides as individuals and their characteristics as variables.
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Part Ill — Results and Discussion: Chapter 1 — In silico study

The peptides produced from Glu-C, in presence of phosphate buffer, were mostly hydrophobic
(mean of GRAVY near -0.847), as their sequence contains many hydrophobic amino-acids such as
glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan or proline. Their
sizes were very heterogeneous from 2 to 109 amino-acids, depending on the number of missed
cleavages, with a mean of 28 amino-acids. With a missed cleavage more than 4, the size of peptides
varied from 27 to 65 amino-acids for a,;-casein, 36 to 81 for a,,-casein and from 54 to 109 amino-
acids for B -casein. The peptides produced from Glu-C, in presence of phosphate buffer, were mostly
hydrophobic (mean of GRAVY near -0.837), as their sequence contains many hydrophobic amino-
acids such as glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan or
proline. Their sizes were very heterogeneous from 2 to 165 amino-acids, depending on the number
of missed cleavages, with a mean of 34 amino-acids. Three peptides were larger with the hydrolysis
by Glu-C in bicarbonate buffer conditions compared to in phosphate buffer conditions (a,,-CN(85-
207), B-CN(45-209) and B-CN(92-209)). With a missed cleavage more than 4, the size of peptides
varied from 34 to 93 amino-acids for o,;-casein, 49 to 123 for o,,-casein and from 60 to 165 amino-
acids for B-casein. To summarize, there was very few differences between the physico-chemical
characteristics of peptides produced from Glu-C with phosphate or bicarbonate buffer (Figure 10).
The common point between these conditions was the pH. Both the hydrolysis were realized at pH

7.8, pH which we used to produce our casein hydrolysates with Glu-C.

For the casein hydrolysis with Trypsin, the sizes of peptide sequence varied from 1 to 121. The size of
peptides varied from 4 to 94 amino-acids for ag;-casein, 1 to 72 for ag,-casein and from 1 to 121

amino-acids for B-casein.

Peptides issued form the casein hydrolysis with Trypsin were more hydrophobic (mean of GRAVY of -
0.9) than peptides issued from the casein hydrolysis with Glu-C. Moreover, the biggest peptides
issued from the hydrolysis with Glu-C were principally issued from a,,- and B-casein whereas with

Trypsin, they came from a,;- and a,,-casein (Figure 11).

As for Trypsin as for Glu-C, with a small ratio enzyme/substrate, the miss cleavages increase and

peptides could be large.
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Figure 10. Repartition of peptides, obtained from the hydrolysis of as:-, a,,-, B- and k-caseins with Glu-C, on a PCA according to their physico-chemical
characteristics, size, molecular weight (MW), isoelectric point (pl), hydropathy index (GRAVY), Aliphatic Index (Al), number of positive and negative charges.
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Part Il — Results and Discussion: Chapter 1 — In silico study

A, in condition of bicarbonate buffer at pH 7.8 or pH 4; B, in condition of phosphate buffer at pH 7.8. Al: variables factor map of the two first dimensions,
PC1 represents 56.34% and PC2 represents 26.8% of the total variability. A2: individual factor map. B1, variables factor map of the two first dimensions, PC1
represents 54.11% and PC2 represents 26.2% of the total variability. B2: individual factor map.
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Figure 11. Repartition of peptides, obtained from the hydrolysis of a,:-, as,-, B- and k-caseins with Trypsin, on a PCA according to their physico-chemical
characteristics, size, molecular weight (MW), isoelectric point (pl), hydropathy index (GRAVY), Aliphatic Index (Al), number of positive and negative charges.
A: variables factor map of the two first dimensions, PC1 represents 52.92% and PC2 represents 27.6% of the total variability. B: individuals factor map.
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There were more peptides with the hydrolysis by Trypsin (447 peptides) than by Glu-C in presence of
phosphate buffer (369 peptides) and in presence of bicarbonate buffer (285 peptides). Glu-C
hydrolyzed preferably as;-casein (165 peptides in presence of phosphate buffer and 123 peptides in
presence of bicarbonate buffer), a,,-casein (111 peptides in presence of phosphate buffer and 87
peptides in presence of bicarbonate buffer) and then B-casein (93 peptides in presence of phosphate
buffer and 75 peptides in presence of bicarbonate buffer). Contrariwise, Trypsin hydrolyzed more B-
casein (185 peptides), as,-casein (165 peptides) and then ay;-casein (97 peptides). Consequently, the
main difference between the peptide profiles of these two enzymes came from the nature of casein

hydrolyzed, more than the physico-chemical characteristics of the peptides.

This work had permitted to select two enzymes: Trypsin and Glu-C in order to obtain large peptides
rather hydrophobic. Moreover, these enzymes are marketable as immobilized enzymes, so easy to
use for this thesis. The conditions of casein hydrolysis were developed in the part Il - Materials and

Methods of this manuscript.

Following this study, peptides were produced and added in casein micelle suspensions in order to
study their biochemical, rheological and textural properties. In order to ensure the well
understanding of the impact of protein hydrolysis on the microstructure, the textural and rheological

properties of the protein network, we had simplified the matrix in which peptides were incorporated.
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Chapter 2: Properties of milk peptides in liquid casein matrices

We showed in the foregoing chapters, in the bibliographic part and the chapter 1, that the peptide
nature impacts the rheological and the textural properties of food products. Nevertheless, we do not
know which peptide characteristics and how many peptides are needed to influence the rheological
properties of dairy systems. Moreover, it will be interesting to determine if the chapter 1 conclusions
can be applied to other milk systems than a real cheese. We do not known also whether some
general rules can be put forward or not to explain the building-up of the interactions between
several peptides and between peptides and caseins and the subsequent reorganization of the dairy

system that has to be done to induce new or modified functional properties in various dairy matrices.

The aim of this chapter was to explore the rheological behavior modifications of model systems
containing casein micelle with the hydrolysate incorporation at different ratios hydrolysates:casein
micelle suspensions (HS:CMS). Particular focus was paid on the hydrolysate nature (6 hydrolysates

with various degrees of hydrolysis T1, T2, T3, G1, G2, G3 and a control sodium caseinate), the
secondary structure of the peptides and the changes observed in terms of casein micelle

organization at microscopic scale and in rheological measurements.

The study presented in this chapter was performed on model dairy systems of different

concentrations, from 50 to 200 g of total proteins.kg™, at neutral pH and 20°C.

We chose to study the microstructure, the viscosity, the viscoelasticity and the gelation capacity of
these several model systems. The ratios HS:CMS selected included 25%, 50%, 75% and 100%. On the
contrary to the literature, where the impact of hydrolysates was studied on the texture or rheology
of model or real food systems according to the degree of hydrolysis as a sole criterion of
characterization of the hydrolysates, we chose to work with well-known hydrolysates in controlled
dairy systems.

In this study, we adapted a method of preparation of samples for the transmission electronic
microscopy (TEM), the cryo-fixation coupled to a step of cryo-substitution. This method was recently
developed in cellular imaging as it allows preserving the native structure of cell tissue compared to
the classical methods of dehydration and substitution. The preparation of samples and the image
acquisition by TEM were realized in collaboration with Irinia Kolotuev (Plateform MRic-TEM of

Rennes) and Chantal Cauty (STLO).
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Moreover, prior to measuring the impact of hydrolysates on the rheological properties of CMS at pH
7, these tests were realized in milliQ water condition with variations of pH values in order to:
(i) Validate the protocol of solubilization of hydrolysates and casein micelle powder at high

concentrations;

(i) Observe the impact of pH variation on the microstructure and rheological properties of the

dairy systems containing hydrolysates.

This chapter is presented under the form of an article which is in preparation for Journal of

Agricultural and Food Chemistry’.

> Lacou, L. et al. Peptide-casein interactions. Part |- Changes in rheological behavior and structural
properties of high-concentrated casein matrices. In preparation for Journal of Agricultural and Food

Chemistry.
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Chapitre 2 : Propriétés des peptides laitiers en matrices liquides

concentrées en caséines

Nous avons précédemment montré, dans la partie bibliographique et dans le chapitre 1, que la
nature des peptides impacte les propriétés rhéologiques et texturales des produits alimentaires.
Néanmoins, nous ne savons toujours pas quelles caractéristiques et quelle teneur en peptides sont
nécessaires pour influencer les propriétés rhéologiques des systemes laitiers. De plus, il serait
intéressant de déterminer si les conclusions du premier chapitre peuvent étre validées et applicables
a des systémes laitiers autres qu’un fromage. Nous ne savons pas non plus si les regles générales
peuvent étre proposées ou expliquer autrement les interactions existantes entre plusieurs peptides
ou entre des peptides et la caséine et la réorganisation ultérieure du systéme laitier qui doit induire

de nouvelles propriétés fonctionnelles dans diverses matrices laitieres.

L’objectif de ce chapitre a été d’explorer la modification du comportement rhéologique de
systémes modeéles contenant des micelles de caséines par I'ajout d’hydrolysats a différents ratios.
Une attention particuliére a été donnée sur la nature des hydrolysats (6 hydrolysats avec divers
degrés d’hydrolyse T1, T2, T3, G1, G2, G3 et un témoin caséinate de sodium), la structure
secondaire des peptides et les changements observés en terme d’organisation des micelles de

caséines a I’échelle microscopique et au mesures rhéologiques.

L'étude présentée dans ce chapitre a été menée sur des systemes laitiers modeles de différentes

concentrations, variant de 50 a 200 g de protéines totales.kg™ a pH neutre et a 20°C.

Nous avons choisi d’étudier la microstructure, la turbidité, la viscosité, la viscoélasticité et les
capacités gélifiantes de ces systémes modeles. Les ratios hydrolysats :micelles de caséine
sélectionnés comprennent 25%, 50%, 75% et 100%. Contrairement a la littérature, ou I'impact des
hydrolysats a été étudié sur la texture et la rhéologie des aliments modeles ou réels seulement en
utilisant le degré d’hydrolyse comme critere de caractérisation des hydrolysats, nous avons ici choisi
de travailler avec des hydrolysats connus dans un systeme laitier controélé.

Dans cette étude, nous avons adapté une méthode de préparation des échantillons pour la
microscopie électronique a transmission (MET), la cryo-fixation couplée a une étape de cryo-
substitution. Cette méthode a récemment été développée en imagerie cellulaire dans le domaine

biomédical car elle permet de mieux préserver la structure native des tissus ou objets par rapport
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aux méthodes classiques de déshydratation et de substitution. La préparation des échantillons et
I'acquisition des images ont été réalisées en collaboration avec Irinia Kolotuev (Plateform MRic-TEM

of Rennes) et Chantal Cauty (STLO).

De plus, avant de mesurer l'impact de I'ajout d’hydrolysats sur les propriétés rhéologiques des
suspensions de micelles de caséines a pH 7, ces tests ont été réalisés dans de I'eau avec un pH
dérivant afin de:
(i) Valider le protocole de solubilisation des hydrolysats et des poudres de micelles de
caséine a hautes concentrations ;
(ii) Observer l'impact de la variation de pH sur la microstructure et les propriétés

rhéologiques des systémes laitiers contenant des hydrolysats.

Ce chapitre est présenté sous forme d’article qui est en cours d’écriture pour soumission dans

Journal of Agricultural and Food Chemistry®.

® Lacou, L. et al. Peptide-casein interactions. Part |- Changes in rheological behavior and structural
properties of high-concentrated casein matrices. En préparation pour Journal of Agricultural and

Food Chemistry.
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Abstract

Hydrolysis of proteins into peptides during food processes or storage can enhance the functional
properties of food products. It is difficult to determine how, and to which extent peptides can modify
the functional properties of proteins. Hence, we produced various groups of peptides by hydrolysis
of sodium caseinate with Trypsin and endoproteinase Glu-C. Three peptide groups quantitatively and
qualitatively different were obtained per enzyme. Controlled amount of these peptides were
incorporated into high-concentrated casein matrices at pH 7 and 20°C, on which flow and oscillatory
shear measurements were applied and microstructure was determined by TEM, FTIR and circular
dichroism. The nature of the peptides produced clearly influenced the rheological properties and the
microstructure of the different matrices. However, the changes in rheological behaviors were also
dependent on the proportion of the peptides incorporated, showing complex interactions that could

lead to adverse rheological behaviors.

Keywords

Peptide, protein, hydrolysis, identification, sequence, secondary structure, functional properties, gel,

dilute solution, complex system, rheology, microstructure
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Introduction

Incorporation of milk proteins or their protein-derived peptides as hydrolysates in various food
products, i.e. dairy, meat and bakery products, are increasingly used in human diets due to their
large contribution to the final texture, organoleptic properties and health-promoting activities (1, 2).

Actually, protein hydrolysates, containing native proteins and a mix of peptides, were shown to
improve functional properties such as interfacial activity, gelation and solubility, which ultimately
impact food texture (1, 3-6). Such an improvement can be related to the fact that some peptides can
bind specifically to proteins through non-covalent hydrophobic interactions, as shown for whey
protein hydrolysates obtained by Alcalase (7-9) or glycinin hydrolysates, obtained by hydrolysis with
subtilisin Carlsberg, chymotrypsin, bromelain, and papain (10). Nevertheless, the specificity of the
enzyme, as in the case of trypsin, can change the ability of the protein to form gel or not, depending
on the protein used as substrate (7, 10) and consequently the peptide produced and the way they
are able to interact with each other and with the residual native proteins. Therefore, some studies
used defined peptides to determine how the amino acid sequence can affect functionality and to
what extent (11). The authors showed that an equilibrium has to be maintained between
hydrophobic and charged amino acids in order to improve not only the peptide self-assembly but the
gelation rate, notably at neutral and basic pH.

However, when hydrolysates are used, most of the time the peptide sequence is unknown.
Therefore, it is difficult to relate the change in functional properties with the overall physico-
chemical characteristics of the peptide, such as size, pl, charges and hydropathy index, their
secondary and tertiary structure depending on both their sequence and the environmental
conditions used. This is magnified in some food products, as fermented ones, when the production of
peptides takes place in situ through various enzyme activities which gives the final expected texture
to the food product.

Peptides are produced during manufacture and conservation of dairy products. Actually caseins,
representing 80% of the total protein content in cow milk, are usually the network backbone of
numerous dairy products. Casein-derived peptides, produced during cheese making or cheese
ripening, were already shown to induce softening of cheese matrix during aging (12) for example or
to enhance stretching properties in hard type cheeses. However, the amount and the type of
peptides needed to influence the rheological and the textural properties of milk systems are still
under question. Moreover, it is difficult to establish whether some general rules can be put forward
or not to explain the building-up of the interactions between peptides themselves and between

peptides and caseins. Consequently, it is still difficult to understand the subsequent reorganization of
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the dairy system that has to be done to induce new or modified functional properties in various dairy
matrices as gelation in the present case.

In the present study, we investigated how both the casein networks and the rheological properties of
casein micelles can be changed in the presence of various concentrations of peptides, in three
systems from liquid to gel, containing (i) 50 g.kg™, (ii) 100 g.kg™ and (iii) 200 g.kg™* under neutral pH
conditions and at 20°C. Peptides were produced from the hydrolysis of caseins by two enzymes: (i)
Trypsin and (ii) Staphylococcus aureus V8-protease also referred as endoproteinase Glu-C. The
peptides were identified, physico-chemically and structurally characterized. Particular focus was paid
on the hydrolysate nature, the secondary structure of the peptides and the changes observed in
terms of turbidity, casein micelles organization at microscopic scale and in rheological

measurements.

Materials and methods

Protein samples: sodium caseinate and casein micelles

Sodium caseinate (NaCas) powder (Armor-Protéines, France) contained 87% (w/w) of proteins,
determined by both Kjeldhal method and UV spectrophotometry (UVmc2, Monaco SAFA, France) at A
= 280 nm using extinction coefficient of 0.81ml. mg™. cm™ (13), including only minor amount of whey
proteins as shown by SDS PAGE electrophoresis (protocol described in “Protein profile by
electrophoresis: Tris-Tricine/SDS-PAGE and Urea-page Analysis”). This powder was dispersed in milliQ
water using motor agitation in order to obtain a solution at 10 g.kg™ of caseins.

Native phosphocaseinate powder, Promilk 825B (IDI SAS, France) that contained 80% (w/w) of native
casein micelles determined by Kjeldhal method was dissolved at 50, 100 and 200 g.kg™” of caseinsin
maleate buffer (80 mM of maleate, 25 mM of CaCl,) pH 7.1 at 20°C in presence of sodium azide
(NaNs;, 3mM) as bacteriostatic agent under a weak stirring during 24 hours. Then, these suspensions
were heated at 50°C for 3 hours and continuous stirring was kept for the further 21 hours for
complete rehydration at ambient temperature. The complete solubilization of the powder was
checked by analyzing particle size with the Mastersizer (Malvern Instruments, France) according to
both the number and the volume of the particles in order to detect the presence of insoluble

aggregates. Solutions were conserved at 4°C maximum during two weeks.

Enzyme digestion
NaCas was hydrolyzed by two immobilized enzymes with different specificities: (i) Tosyl-
phenylalanine-chloromethyl-ketone (TPCK) - treated trypsin cross-linked on 4% beaded agarose

(Thermo Fisher Scientific, France) that cleaves proteins at the carboxyl side of arginine and lysine
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residues and (ii) Staphylococcus aureus V-8 protease, also referred as endoproteinase Glu-C (Thermo
Fisher Scientific, USA), cross-linked by covalent bonds on 6% beaded agarose that cleaves proteins
after glutamic acid residues or at glutamic and aspartic acid residues (14). Inmobilized enzymes were
selected to easier separate the enzyme from the hydrolysate by filtration to be reusable. For that
purpose, enzymes were washed after each hydrolysis period by various washing steps i) with 4M
urea for both enzymes, and with 1% Triton X100 only for Glu-C, ii) Phosphate Buffer Saline 1X and iii)
MilliQ water.

Prior to each hydrolysis, the activity of the Trypsin was measured by spectrophotometry at 247 nm
using 0.01 M 4-toluene-sulphonyl-arginine-methyl-ester, TAME (Sigma Aldrich, France), according to
the method of Worthington Laboratories, using the UV-mc2 spectrophotometer (Monaco-SAFAS,
France). The activity of Glu-C was measured by the pH-stat method using sodium caseinate (NaCas)
(Armor-Protéines, France) as substrate with a ratio of 100 ul immobilized enzyme / 0.2 g of NaCas.
Activity control was made for both enzymes to check any of the enzymes was released from the
beads during treatments and that activity not changed.

Next, the solution a NaCas at 10 g.kg™ was preheated to 37°C. The ratios enzyme:substrate used
were: 1049 U/29 g of NaCas for Trypsin and 34.8 mL of commercial Glu-C/14.5 g NaCas. The reaction
was performed at 37°C at a constant pH value of 7.1, using the pH-stat (Mettler Toledo, France) and
1M NaOH as a titrating agent. The hydrolysis reaction was stopped at three defined times
corresponding to different compositions both in peptides and in native caseins: (i) 70% caseins + 25%
peptides, (ii) 50% caseins + 50% peptides and (iii) 5% caseins + 95% peptides. They were referred
respectively as to T1, T2 and T3 for hydrolysis with trypsin and G1, G2, and G3 for hydrolysis with
Glu-C. The solution was freezed at -20°C, lyophilized (S.G.D. — SERAIL type CS 10-0.8, France) and
stored under vacuum at 20°C under darkness until further use.

The degree of hydrolysis of each hydrolysate was determined according to the pH-stat method (15).

DH=BxNbx1/,x 1/mp X 1/htot x 100

1/q =1+ 1077

29
pk =78+ 298—XT X 2400

B= volume of NaOH

Nb= NaOH molarity

mp = protein mass

ht= 8,2 meq.g™ for casein

T = temperature (Kelvin)
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Protein profile by electrophoresis: Tris-Tricine/SDS-PAGE and Urea-page Analysis

The extent of casein degradation was evaluated by Urea-PAGE of the insoluble pH 4.6 nitrogen
fractions. The peptide pattern was analyzed by SDS-PAGE as described by Schagger and von Jagow
(16) using Protean Il system (16 x 16 x 0.1 cm; BioRad, Marnes-la-Coquette, France) with
SDS/Tris/Tricine buffer and a concentration gradient from 12 to 18% of acrylamide used according to
Sadat-Mekmene et al. (17). The gels were scanned by the Image scanner lll fitted with the LabScan
software (GE Healthcare, France) and analyzed by ImageQuant software (GE Healthcare, France),

band intensities were estimated by the net volume parameter.

Analysis of peptides by nano-RPLC coupled online to tandem mass spectrometry (ESI/MS/MS)
Mass spectrometry (MS) experiments were performed using a nanoRSLC Dionex U3000 system fitted
to a Q Exactive mass spectrometer (Thermo Scientific, USA) equipped with a nanoelectrospray ion
source. A preliminary sample concentration step was performed on a nanotrap PepMap 100 (C18, 3
pum Inner Diameter 5ID) x 20 mm Length (L)) (Dionex, Netherlands). Separation was performed on a
reverse-phase column PepMap RSLC C18 3 pm, 100 A (75 pm ID, 150 mm L) (Dionex, Netherlands) at
35°C, using solvent A (2 % v/v acetonitrile, 0.08 % v/v formic acid and 0.01 % TFA in deionized water)
and solvent B (95 % v/v acetonitrile, 0.08 % v/v formic acid and 0.01 % v/v TFA in deionized water). 5
—35% of solvent B in 67 min and 35 — 8 % in 2 min was applied as separation gradient at a flow rate
of 0.3 pL.min™. 3 pL were injected onto the column corresponding approximately to 60 ng of
peptides. Eluted peptides were directly electrosprayed into the mass spectrometer operated in
positive mode and a voltage of 2 kV with the help of a Proxeon Nanospray Flex ion source (Thermo
Scientific, USA). Spectra were recorded in full MS mode and selected in a mass range 250-2000 m/z
for MS spectra with a resolution of 70.000 at m/z 200. For each scan, the ten more intense ions were
selected for fragmentation. MS/MS spectra were recorded with a resolution of 17.500 at m/z 200
and the parent ion was subsequently excluded of the analysis during 15 sec. The instrument was
externally calibrated according to the supplier’s procedure. To identify peptides, all data (MS and
MS/MS) were submitted to X! Tandem using the X! Tandem pipeline developped by PAPPSO
(Plateforme  d’Analyse Protéomique de Paris Sud-Ouest, INRA-Jouy-en-Josas, France,
htp://pappso.inra.fr). The search was performed against a database composed of a homemade
database named STLO containing milk and egg proteins and cRAP database allowing excluding list of
proteins such a human keratin for example. Database search parameters were specified as follows:
unknown enzyme cleavage was used with one missed cleavage and the peptide mass tolerance was
set to 10 ppm for MS and 0.05Da for MS/MS. As caseins are phosphorylated, phosphorylation
(corresponding to mass adduct of 79.96633 Da) were chosen as variable modification as well as

oxidation of methionine (corresponding to mass adduct of 15.99494 Da). For each peptide identified,
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a minimum score corresponding to an e-value below 0.05 was considered as a prerequisite for
peptide validation. Only peptides containing more than 5 amino-acid residues and less than 5 500 Da

can be identified by this methodology.

Physicochemical characteristics of the identified peptides

Physico-chemical characteristics of each quantified peptide were considered, including: the number
of positive and negative charges at pH 7, the size, the isoelectric point (pl) and the hydrophobic index
(GRAVY). The isoelectric point was predicted using ExPASy “Compute pl/Mw” tool (18). The number
of positive and negative charges was calculated with Python software from EMBOSS software suite
(http://emboss.sourceforge.net). The GRAVY was calculated according to the method of Kyte and
Doolittle (19).

Size exclusion chromatography

Tryptic and GluC peptides were suspended at 5 g.L™" in 50 mM phosphate buffer and 150 mM sodium
chloride, pH 7.2 and 50 pl samples were injected onto a Superdex Peptide 10/300 GL column (GE
healthcare, VWR, France). Isocratic elution was performed at 0.5 ml/min in the same buffer at room
temperature and detection was performed at 214 nm. For the molecular mass calibration, B-casein
(23 960 Da, 5 mg.mL™" phosphate buffer pH7.2) was used to determine the exclusion volume of the
column and synthetic peptides were used as standards: lysine (146.2 Da) , bradykinin (1060.2 Da),
Ala-Pro-Gly (243.3 Da), Gly-Leu-Leu-Gly (406.48 Da), polypeptides standard (BioRad, France)
containing triose phosphate isomerase (26 626 Da), myoglobin (16 950 Da), a-lactaloumin (14 437
Da), aprotinin (6512 Da), insulin B chain oxidized (3496 Da) and bacitracin (1423 Da).

Mixtures NaCas:CMS and hydrolysates:CMS

Casein micelle suspension (CMS) and NaCas and hydrolysates solutions (in maleate buffer pH 7
containing 25 mM Maleic acid (Sigma-Aldrich, France), 2 mM calcium Chloride.2H,0 (AnalaR, France)
and 3mM sodium azide as bacteriostatic agent (Sigma-Aldrich, France) in order to reach the 80 mM
ionic strength of milk)) were mixed at a mass ratios hydrolysate:CMS of 1:3 (w/w) (25 % of
hydrolysate), 1:1 (w/w) (50 % hydrolysate), 3:1 (w/w) (75 % hydrolysate) and 1:0 (w/w) (100%
hydrolysate) at 20°C. The same ratios were used for the control NaCas:CMS suspensions. All
suspensions were prepared by gently rotating the tube to mix well, without introducing too much air

bubbles. The mixtures were conserved at 20°C during maximum 48h.
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Secondary and tertiary structures: Circular dichroism & Fourier Transform Infrared
Spectroscopy

The overall tertiary and secondary structures of hydrolysates were examined using far- (190 — 250)
and near-UV circular dichroism (CD) spectroscopy (250 — 350 nm) with a Jasco J-810 automatic
recording circular dichroism spectropolarimeter fitted with a xenon lamp (Jasco, France) using casein
solutions prepared to reach a maximum of absorbance of 0,8 at 280 nm. Spectra were recorded in
the wavelength interval 185-260 nm (optical pathway of 2 mm) and 250-360 nm (optical pathway of
10 mm), respectively, using a quartz cuvette STARNA (Starna Scientific, England) of path length 2 mm
and 10 mm, respectively. The scan parameters were: 100 nm/min scan rate, 1 nm bandwidth and 2 s
averaging time. Spectra shown are averages of 3 accumulations for each sample, corrected by

subtracting the baseline scan of the appropriate buffer and subjected to noise reduction.

Fourier Transform Infrared spectroscopy (FITR) was used to elucidate the conformational
changes in protein and peptide structure upon the different hydrolysate:CMS ratios. Infrared light
absorbance spectrum of each protein/peptide sample was measured in the attenuated total
reflection (ATR) mode between 4 000 cm™ and 850 cm™, with a resolution of 4 cm™, using the Tensor
27 spectrophotometer (Bruker, France), equipped with a Germanium ATR crystal (mono-reflection)
and a mercury-cadmium-telluride detector cooled with liquid nitrogen, and controlled by the OPUS
software. Background spectra were recorded for the maleate buffer used to prepare protein
solutions. Each spectrum was reported form the average result of 256 scans. The protein solutions
were at ~30 g of caseins.kg™. Before implementing the multivariate statistical analysis, spectra were
corrected in automatic way contributions of the atmospheric steam and by some liquid water. To
focus on conformational changes, the differences in overall infrared absorbance due to differences in
concentration between samples needed to be compensated. In addition, a major drawback of using
IR spectroscopy on aqueous solution is that H — O — H bending vibration of liquid water absorbs
strongly around 1643 cm™, which interferes with the amide | band (20). Since the background
spectra were recorded using buffer, differences in sample protein concentration resulted in
differences in contribution of this liquid water absorption, which also needed to be compensated.
The Extended Multiplicative Scatter Correction (EMSC) was used for these automatic compensations
(21). EMSC consists in calculating a mean spectrum and in expressing each sample spectrum as a
linear combination of the mean spectrum and of the liquid water “interference” spectrum. The
coefficients estimated b linear regression then allow the water contribution to be subtracted and the

overall absorbance to be normalized. The spectral variability among corrected spectra was then
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analyzed using principal component analysis (PCA). Spectral corrections and statistical computations

were performed using the R software (22).

Rheological measurements

Flow measurements were performed with a Low Shear 400 (Lamy Rheology, France) for dispersions
with low viscosity (< 1000 Pa.s). This instrument was operated with Couette geometry using the
system MS-LS 2T-2T Titan with inner and outer radii of 5.5 and 6 mm respectively. The
measurements were realized at 20°C, by using a shear rate gradient from 1 to 100 s™. Measurements
were repeated twice or three times showing very good reproducibility (error rate of 5%).

Flow measurements were performed with the MCR301 rheometer (Anton-Paar France S.A.S., France)
for dispersions with viscosity > 1 000 Pa.s. These measurements were operated with cone plate
geometry. The measurements were realized at 20°C with a shear rate gradient from 0.01 s™ to 1 000
s’ Measurements were repeated two or three times showing very good reproducibility (error rate of
2%).

Oscillatory shear measurements were performed using the MCR301 rheometer (Anton-Paar France
S.A.S., France). A cone-plate geometry was used. The mix hydrolysate:CMS was prepared and then
quickly transferred onto the plate, and the upper plate was gently lowered until the sample filled the
gap of a constant normal force was reached (about 0.7 N). The storage modulus (G’) and loss
modulus (G”) were first measured as function of time at a frequency of 1Hz. The frequency-
dependent response was then measured from 0.001 Hz to 100 Hz at a strain of 0.01, % within the
region of linear response. All rheological experiments were performed at a fixed temperature of
20°C. The measuring system was carefully regulated to the measuring temperature before each
measurement. The solution was also kept for 10 minutes in the rheometer prior to performing the
measurements. To prevent evaporation from the sample, a closed cover setup was used and the
surface of the sample was covered with low-viscosity paraffin oil. Measurements were repeated two

or three times, showing very good reproducibility (error rate of 3%).

Microstructure

The microstructure dairy systems of the seven (NaCas:CMS + six hydrolysates:CMS) studied was
characterized from transmission electron microscopy (TEM) micrographs.

The prepared concentrated casein-hydrolysate suspensions and the hydrolysate suspension were
frozen using a Leica EM PACT2 high-pressure freezer (Leica Microsystems, Austria). The sample

carriers, cellulose microcapillary tubes or flat gold-plated specimen carriers;~were pre-coated with 1%
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phosphatidylcholine (Sigma Aldrich Ltd., France) diluted in chloroform to avoid sample sticking. No
cryo-protecting agent was added to the samples. For the freeze-substitution step, Leica EM AFS2
freeze substitution machine (Leica Microsystems, Austria) was used. The frozen samples were
transferred in liquid nitrogen to a processing container equipped with a flat spacer (Leica
Microsystems, Austria). The frozen samples were freeze-substituted in 2% osmium tetroxide diluted
in anhydrous acetone. After an initial incubation of 8 h at 90 C the temperature was gradually (5 C/h)
rose to 30°C and samples were then left for another 8 h at this temperature. The solvent fixative
solution was replaced with pre-chilled mix of ethanol 3:1 resin (epon-araldite mix; Sigma Aldrich Ltd).
The temperature was then gradually brought up to room temperature and further ethanol: resin
substitutions were done following the resin manufacturer instructions. Thin sections (90 nm) of
embedded samples were cut with a diamond knife using a Reichert ultramicrotome. The sections
were contrasted with 4% aqueous solution of uranyl acetate.

Hydrolysates were also analyzed by negative coloration.

The support is a TEM copper grid recovered with polymer film formvar glow-discharged is flipped
over a droplet of 0.005 mM protein suspensions and followed of the contrast agent- aqueous
solution of 2% uranyl acetate.

All the samples casein suspensions and gels and the hydrolysates were observed using a JEM-1400
Transmission Electron Microscope (JEOL Ltd., Tokyo, Japan) operating at 120 kV accelerating voltage.
Digital images were acquired using the Gatan SC1000 Orius® CCD camera (4008 x 2672), set up with
the imaging software Gatan DigitalMicrograph™ (Gatan, USA) at Microscopy Imaging Center platform
(MRic), situated in Rennes.

Several TEM micrographs were taken on different parts of two independent samples of each of the

seven dairy systems.

Statistical analysis

To represent the heatmaps of the quantities of peptides according to the nature of enzyme and the
time of hydrolysis, the relative quantification of peptides were normalized. For each hydrolysate, the
mean of relative quantity of each peptide was calculated. This value was divided by the maximal
mean value of each peptide. Then, Log+1 of this normalized value was included in the process of
heatmap construction. The agglomerative hierarchical clustering with the "hclust" function was used
to cluster treatment depending on the quantification of peptides in each hydrolysate. ANOVA,
followed by a t-test were realized taking into account the mean in category and the mean overall of

each physico-chemical characteristic (for all the clusters).
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To differentiate the suspensions according to their secondary structure, a methodology based on
multivariate exploratory analyses, such as Principal Component Analysis was performed using
spectroutils, an R package (internally designed in the STLO by Stéphane Pezennec). The first two PCs
were retained as the totality of the inertia explained by both of them, represented a large part of the
total inertia. Then, ANOVA was realized on the PC1 scores of secondary structures taking account the

nature of hydrolysate, the ratio HS:CMS, the time of hydrolysis and their interactions of order 2.

Results and Discussion

The hydrolysis of sodium caseinate by Trypsin and Glu-C generate peptides with different
physico-chemical characteristics

Each hydrolysate was produced from NaCas which contains all types of caseins, i.e. a,;-, os,-, B- and
K-caseins not linked together by calcium phosphate bonds in contrast to casein micelles present in
the CMS suspensions. Trypsin and Glu-C were chosen because their specificities are well-known and
in order to obtain peptides with very different sizes and sequences, and consequently different
physico-chemical and structural characteristics. The hydrolysis conditions of 37°C and pH 7 were
chosen as they were optimal temperature and pH for both enzymes. The six hydrolysates, with
different degrees of hydrolysis (Table 1), presented different quantities of residual native caseins
(Table 1) and peptides having different molecular weights (Table I) and charges (Figure 1A). The
appropriate enzyme-to-substrate (E/S) ratios were chosen to produce a plateau at 7.5% DH for the
hydrolysis with Trypsin and 3% DH for the hydrolysis with Glu-C. The hydrolysis reactions progressed
rapidly for the first 2 500 sec with Trypsin and 5 000 sec for Glu-C and then were relatively slowly
over time reaching a plateau (data not shown). These exponential reactions were typical of protease

hydrolysis (23).

Table I. Degree of hydrolysis (DH) of each hydrolysate, corresponding profile of proteins and peptides
by Tris-tricine/SDS-PAGE and the microstructure observed by TEM. al, a2, b and c represent bands of
peptides that are different between the samples.
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Hydrolysate DH (%) as2-casein (%) asi-casein (%) B-casein (%) k-casein (%) Tris-Tricine/SDS-PAGE TEM (X 200 000)

26.8
201
16.9
14.4

6.5
3.4

~
s 8

wn o
- o

T1 2.5 100 70 95 100

JIN
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™ as 70 20 T e
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T3 7.5 60 5 10 80
G1 0.5 95 90 95 100
G2 2 70 55 40 100
G3 3 5 5 5 85
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Figure 1. Degradation of caseins and apparition of peptides for each enzyme, according to the time of
hydrolysis. (A) Urea-PAGE of NaCas and hydrolysates; (B) Percentage of casein degradation according
to the enzyme and the time of hydrolysis, quantified by Urea-PAGE; (C) Rates of degradation of a,;-
casein compared to the speed of degradation of B-casein according to both the time of hydrolysis
and the type of enzyme. CN is the abbreviation for casein.

As seen in the Table | and Figure 1, a;-, as,- and B-caseins were hydrolyzed both by Trypsin and Glu-
C. Trypsin was able to degrade more quickly as;-casein compared to Glu-C (Figure 1B and Figure 1C)
whereas Glu-C did not have preferential substrates since the rate of degradation of as;- and B-caseins
were equivalent for the two last times of hydrolysis (Figure 1). On the contrary, at G1 the rate of
degradation of B-casein was largely higher than the rate of degradation of a,;-casein (Figure 1). ag;-
casein was more hydrolyzed by Trypsin than by Glu-C. The degradation of B-casein was more
pronounced with Glu-C at the beginning of the hydrolysis and was similar for the other times.

As expected, the peptide profiles were different between the hydrolysis of NaCas by Trypsin and the
hydrolysis of NaCas by Glu-C. There were more peptides under 14.4 kDa in T hydrolysates than in G
hydrolysates (Table 1). This was confirmed by the size exclusion chromatographic profile of the
hydrolysates (Figure 2) that shows a distribution of the peptides ranging from 50 to 10 000 Da for
peptides present at the end of hydrolysis time for Trypsin and from 180 to 20 000 Da for those arising
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from Glu-C hydrolysis. Moreover, it clearly appears that small peptides were formed early in the
hydrolysis by Trypsin whereas small peptides were only visible on the chromatogram from the
hydrolysis time G2. The change in the profile was also different according to the type of enzyme. The
profile is the same for Glu C hydrolysate throughout hydrolysis time suggesting a continuous

hydrolysis of the same bonds.
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Figure 2. Size exclusion chromatography of (A) Trypsin hydrolysates and (B) Glu-C hydrolysates.

Regarding the type of peptides with high molecular weight that were produced and visible on the
SDS tris tricine gels (Table 1), it appears that some bands were specifically present in T or G
hydrolysates. This was the case of the band a2 (Table 1) which was present only in T hydrolysates and
decreased according to the time of hydrolysis. G hydrolysates had some bands more intense than T
hydrolysates in the region b (Table 1) and more numerous in the region c (Table I). Moreover, the
molecular weight observed was higher for the peptides produced with Glu-C in agreement with the
chromatographic profile (Figure 2).

To deeply characterize the hydrolysates, peptides were identified by tandem mass spectrometry and
their intensity determined. This identification/quantification was rarely realized. In several studies,
the authors linked a degree of hydrolysis to a functional property of proteins but did not quantify the
peptides produced. 352 peptides were identified for Trypsin and 283 peptides were identified for
Glu-C. Most of them were intermediate peptides containing at least two or more amino acid residues

corresponding to the specificity of Trypsin and GIuC, i.e. Lys / Arg and Glu / Asp respectively showing

133



Part Il — Results and Discussion: Chapter 2 — Properties of milk peptides in liquid casein matrices

that the hydrolysis was not extensive with both enzymes. Presumably some sites were less accessible
to the enzymes than theoretically predicted as shown in the figure 1 of supplementary material. It is
also possible that the time of hydrolysis was not sufficient to produce mainly final peptides or that
some of the final peptides that have sequence less than five amino acids were not identified by the
mass spectrometer analysis.

For the NaCas hydrolysis by Trypsin, 37% of the peptides were present in T1, 29% in T2 and 34% in
T3. T1 (129 peptides) included 40% of peptides derived from a;-casein, 34% from a,,-casein, 20%
from B-casein and 6% from k-casein. T2 (103 peptides) included 35% of peptides derived from a,;-
casein, 36% from a,,-casein, 23% from B-casein and 6% from k-casein. T3 (120 peptides) included
40% of peptides derived from as;-casein, 33% from as,-casein, 21% from B-casein and 7% from «x-
casein. G1 (94 peptides) included 53% of peptides derived from as; casein, 13% from oj,-casein and
20% from B -casein. G2 (92 peptides) included 50% of peptides derived from a,;-casein, 14% from
0,,-casein and 20% from B-casein. G3 (97 peptides) included 52% of peptides derived from as;-casein,
15% from as-casein and 22% from [-casein. The identified peptides were, for most of them,
produced as early as T1 and G1 as shown in the overview of the peptides (Figure 2). All caseins
exhibited series of highly and weakly hydrolyzed regions all along their sequence and these series of
alternated regions were relatively well-conserved at all sampling times, including peptides that are

phosphorylated.
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Figure 3. Heat maps representing relative quantification of peptides contained for each hydrolysates
T1, T2, T3 (A) and G1, G2, G3 (B). Green bands represent small amount of peptide; red bands
represent high amount of peptide and black bands represent the intermediary amount of peptide.
On the heatmap, the y axis represents the peptides and the x axis represents the hydrolysates. A
dendrogram was added to the left side to show the clusters of peptides. Each cluster was
represented on graphics (on the right of the Figure) where the quantity of peptides was represented
on the y axis and the time of hydrolysis on the x axis.

Peptides were also quantified, as shown on the heat maps of the Figure 3. From these results we can
have explanation of the chromatographic profiles shown above. Actually, peptides were grouped on
the heat maps according to the kinetics of peptide production. Clusters of peptides with the same
kinetics were formed. Then, it clearly appears that the numbers of clusters was higher in the case of
Trypsin hydrolysis than in the case of Glu-C, with 6 clusters (Tc1, Tc2, Tc3, Tc4, Tc5, Tc6) against 3
(Gel, Ge2, Ge3) respectively. The same bonds were hydrolyzed by Glu-C and gradually released the
same peptides. It was also showed by the majority of the peptides present in the cluster Gcl,
compared to the other two clusters that contained intermediate peptides in the cluster Ge3 further
hydrolyzed into final ones in cluster Gcl and Gc2. In the case of Trypsin, the mode of action of the
enzyme can be related to the “zipper” mode in which all the molecules of caseins are simultaneously
degraded, leading to the concomitant formation of intermediate and final peptides in the reaction
mixture (25). The way that the intermediate peptides were gradually degraded was represented in
four different clusters Tcl, Tc2, Tc3 and Tc6 while the peptides that continuously increased are
represented in clusters Tc4 and Tc5, even if some peptides were also intermediate ones that maybe
have a rate of production higher than the rate of degradation.

Thanks to the knowledge of the sequence of all identified peptides, it was possible to calculate their
physico-chemical characteristics in terms of size, negative and positive charges at pH 7, pl, molecular
weight, number of aromatic amino-acids and average hydropathy scores (GRAVY) which indicated
whether a peptide is hydrophilic (negative values) or hydrophobic (positive values) (19). Such an
approach is rarely done in the literature, as thin characterization of the peptides present in
hydrolysates by tandem mass spectrometry is usually not performed.

From the heat maps we found that hydrolysates were separated into various clusters according to
the kinetics of production. A t-test was performed to highlight the main physico-chemical traits
related to each cluster and in turn to characterize each type of hydrolysates according to the

hydrolysis time.

Table 1l: Main physico-chemical characteristics of peptides ranging by cluster. GRAVY represents
grand average hydropathy score; pl represents isoelectric point; MW represents molecular weight.
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Cluster Hydrolysate Characteristics Meanin Mean SDin SD p value
category overall category overall

Tcl T1 pl 7.50 6.75 2.05 2.06  2.68E-09
GRAVY -0.65 -0.78 0.75 0.62  8.09E-04
Aliphatic index 78.17 73.78 3241 32.01 2.65E-02
Number of negative 2.58 3.22 1.36 1.43 3.37E-13
charges at pH 7

Tc2 T1 Number of 3.34 2.11 2.63 1.85 1.27E-07
aromatic amino-
acids
MW (Da) 2405.34 1927.68 1051.59 853.11 9.36E-06
Size (number of 20.25 16.42 9.41 7.54  5.65E-05
amino-acids)

Tc3 T1-T2 Aliphatic index 89.20 73.78  36.01 32.01 1.95E-02
Number of positive 2.11 3.18 0.34 1.17  7.80E-06
charges at pH 7
pl 4.73 6.75 0.76 2.06  2.22E-06

Tca T3 Number of 3.14 211 2.10 1.85  8.19E-03
aromatic amino-
acids
MW (Da) 2300.27 1927.68 1104.10 853.11 3.84E-02
GRAVY -0.52 -0.78 0.52 0.62  4.42E-02
pl 5.80 6.75 1.82 2.06  2.95E-02

Tc5 T3 GRAVY -0.34 -0.78 0.80 0.62  1.76E-02
Number of positive 2.43 3.18 0.64 1.17  3.10E-02
charges at pH 7

Gcl G3 Number of negative 3.35 3.22 1.35 1.43  5.49E-03
charges at pH 7
Number of 1.79 211 1.68 1.85  4.71E-08
aromatic amino-
acids
Size (number of 15.09 16.42  6.89 7.54  1.05E-08
amino-acids)
Aliphatic index 67.75 73.78 27.01 32.01 1.01E-09
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MW (Da) 1766.88 1927.68 773.09 853.11 1.00E-09
GRAVY -0.91 -0.78 0.51 0.62 2.55E-12
Gc2 G1-G3 Number of negative 3.95 3.22 1.60 1.43 3.49E-07

charges at pH 7

Aliphatic index 86.24 73.78 43.23 32.01 9.94E-05

MW (Da) 2222.00 1927.68 947.30 853.11 5.60E-04

Size (number of 18.74 16.42 8.11 7.54 2.11E-03

amino-acids)

Number of 2.67 2.11 2.36 1.85 2.25E-03

aromatic amino-

acids

Number of positive 2.81 3.18 0.85 1.17 1.56E-03

charges at pH 7

pl 5.84 6.75 2.23 2.06  1.11E-05
Gc3 G1 Size (number of 21.32 16.42 5.72 7.54  4.74E-08

amino-acids)

MW (Da) 2459.50 1927.68 658.69 853.11 1.62E-07

Number of positive 3.85 3.18 1.50 1.17 1.77E-06

charges at pH 7

GRAVY -0.49 -0.78 0.89 0.62 7.75E-05

Number of 2.68 2.11 1.36 1.85  8.83E-03

aromatic amino-

acids

pl 7.23 6.75 1.39 2.06  4.77E-02

Among the parameters tested (pl, GRAVY, number of positive charges, size, Aliphatic index, number
of aromatic amino-acids, molecular weight), only some of them were highlighted as predominant for
each cluster and are presented in the Table Il.

The hydrolysis of NaCas by Trypsin involved the production of hydrophobic peptides with few
negative charges at pH 7 and a high pl value as shown for T1 that mainly contains the clusters Tc1,
Tc2 and Tc3. This peptide profile was kept throughout the hydrolysis time except that the average
size of the peptides decreased and the pl tends to more acid values as shown by the predominance
of the clusters Tc5 and Tc6 in the T3 hydrolysate.Tcl and Tc2 contained intermediate peptides which

were hydrolyzed later but in peptides that kept the same overall characteristics.
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In contrast, the peptide profile greatly changed during caseinate hydrolysis by Glu-C. G1 contains
predominantly cluster Gec3 that generated hydrophobic peptides whereas G3 mainly contained
hydrophilic peptides and G2 will have specific behavior since it contains few amount of peptides from
the different clusters rendering it atypical (7-10). The size of peptides decreased with the time of
hydrolysis, as expected (26). Consequently, specific interactions depending on the hydrolysates used
can be expected to occur when the peptides will be reincorporated into the various casein micelle

suspensions (11).

Peptide secondary and tertiary structures changes in the presence of casein micelles
suspension

In order to highlight which and how hydrolysates can impact the structuration of the casein micelle
suspensions, circular dichroism (Figure 4) alone and in combination with Fourier Transform Infrared
spectroscopy (Figure 5) were performed as a way to characterize the main differences between
secondary and tertiary structures of peptides, caseins with different organizations as caseinate and
casein micelles, and mixture of peptides and casein micelles.

Considering the near-UV CD spectra, there were no significant modification of the CMS spectra in
presence of hydrolysates (data not shsown). This was not surprising as caseins had few tertiary
structures (27). Considering the far-UV CD soectra, some differences between the spectra were
observed when hydrolysates were added to the CMS. As expected, the changes in conformation of
the caseins is low comparatively to that could be observed for globular proteins that contain well-
defined a-helices with negative minima at 208 and 222 nm, B-sheets and random coils with positive
band in the 185-190 nm range (28). However, Figure 4A shows distinct shapes of the ellipticity for the
samples regarding whether they contained or not casein hydrolysates T and G in the 190-250 nm
range. Such spectral changes indicated conversion of random coil conformations into more ordered
secondary structural elements (29, 30) mainly for the peptides. In order to highlight the differences
between samples and to find the main parameters that drive these changes, PCA was performed on
the different spectra, colored according to the time of hydrolysis (Figure 4B and Figure 5D), tha
quantity of native caseins (Figure 4B and Figure 5D) or the ratio hydrolysate:CMS (Figure 4E and
Figure 5B). Figure 4F and Figure 5F represent the coordinates of PC1 and PC2 according to the
wavelength. Thus, when the loadings on the two main principal components PC1 and PC2 were
reported as a function of the wavelengths (Figure 4F), we showed the PC1 had a shape
corresponding to a protein with two negative minimums at 206 and 217, corresponding to a-helix
conformation and the maximum at 195 nm, while PC2 had a negative minimum at 195, and an
overall shape corresponding to random coil (28). Consequently, high coordinates on PC1 were

correlated with the formation of a-helices. Regarding the distribution of the different samples, we

139



Part Il — Results and Discussion: Chapter 2 — Properties of milk peptides in liquid casein matrices

confirmed a distinct separation on PC1 (84.47% of the variation) into two groups. Nevertheless, it
was not so clear what are the main parameters that led to such a separation: the time of hydrolysis
(Figure 4B), the type of hydrolysate (Figure 4C), the percentage of peptides into the casein micelle
suspension (Figure 5E), the residual percentage of the native caseins in the different suspensions
(Figure 5F) and likely interactions between all. It appears that only the presence of the peptides from
T and G hydrolysates induced changes of the conformational states of the casein micelles
suspensions since the addition of caseinate did not change the spectrum of the casein micelle
suspensions (Figure 4B). However, the impact of the peptides was not a linear effect, as confirmed by
another statistical treatment of the PC1 score by ANOVA (Figure 6). It shows that for each enzyme,
the impact of the hydrolysate proportion is strongly dependent on the time of hydrolysis. In a
general way, when caseins were hydrolyzed, a-helices were formed except when time of hydrolysis is
excessive as T3. Consequently, hydrolysis of caseins produced large peptides which were able to
structure each other and to change also the structure of the caseins when they were reincorporated
into the casein micelles suspension. However, the quantity of peptides sufficient to induce
conformational changes in mixed matrices was not the same regarding the type of hydrolysates, 25
% of Tl was sufficient to form a-helices whereas 75 % of G1 was needed to induce such
conformational changes. In contrast incorporation of 75 % T3 and 75 % G3 led to adverse behaviors,
with formation of a-helices with G3 and no more with T3. Moreover, for the T hydrolysates, there
was a continuous decrease in the ability of forming a-helices that can be related to the evolution of
the peptide composition throughout hydrolysis time, in that sense, the overall physico-chemical
characteristics were kept except that the size of the peptide diminished rendering more difficult
conformational changes to occur. In contrast, G1 had a complete different behavior than the other
also shown on the ANOVA, highlighting the deep changes in the peptide composition that occurred
during hydrolysis. This was shown by significant minima observed for intermediate ratios, which was
changing with the time of hydrolysis and for Glu-C these minima were moving closer to the values
observed for the weak ratio HS:CMS.

Considering the near-UV CD spectra there were only minor changes observed that were not
considered to be reliable indicator of alterations in their tertiary packing (data not shown).
Hydrolysates reincorporated or not in the casein micelles suspension were also analyzed for their
secondary structural parameters by FTIR spectra. The analysis by Fourier transformed infrared
spectroscopy was coupled to the analysis by circular dichroism (Figure 6). The spectra were so close
that loadings on the PC had to be multiplied by a 10 times standard deviation factor to highlight
differences in the FTIR spectra (Figure 6A). Some bands were visible with specific wavelengths as
1400 that was close to values corresponding to free carboxylates, and related to the increase in

peptides in the casein micelles suspensions. The bands 206 and 217 were specific wavelength of a-
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helix close to values determined in the literature (31). However, the complexity of the sample with
huge number of peptides actually led to extensive overlap of bands arising from the different
structure rendering difficult the interpretation of FTIR spectra (32) even as a sole analysis (data not
shown). It was also apparent that the type of enzyme used to hydrolyze NaCas, the time of hydrolysis
and the interactions of CMS with casein hydrolysates cause some supplement but subtle
conformational changes. Only few hydrolysates were clearly separated from the other samples 100 %

G125%T2,50% T1, 100 % G3 and 50% G1.
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Figure 4. Far-UV CD spectra of hydrolysates T and G in presence of different ratios hydrolysate:CMS.
The hydrolysates were scanned from 190 to 250 nm. (A) represents the Far-UV CD spectra according
to the type of hydrolysate; (B) represents the individuals according to the time of hydrolysis; (C)
represents the individuals according to the type of hydrolysate and casein suspension; (D) represents
the individuals according to the quantity of native caseins in the different samples; (E) represents the
individuals according to the quantity of hydrolysate; (F) represents the coordinates of PC1 (green)
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Figure 5. Far-UV CD spectra of hydrolysates T and G in presence of different ratios hydrolysate:CMS
coupled with Fourier transformed infrared spectroscopy. (A) represents the individuals according to
the type of hydrolysate; (B) represents the individuals of the spectra according to the quantity of
hydrolysate; (C) represents the PCA of the spectra according to the time of hydrolysis; (D) represents
the individuals of the spectra according to the quantity of native caseins; (E) represents the FTIR part
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circles are, the most the individuals were represented.
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Figure 6. ANOVA on the PC1 scores of secondary structures measured by circular dichroism taking
account the nature of hydrolysate, the ratio HS:CMS, the time of hydrolysis and their interactions of
second order.

The microstructure of casein micelle network is modified in presence of hydrolysates

Micrographs of nanostructures formed at pH 7 by CMS with 50% of hydrolysates were captured by
transmission electron microscopy (TEM) (Table Ill). At pH 7, individual caseins were associated in
well-defined casein micelles. The calcium phosphate nanoclusters were intact as shown on the
micrographs of CMS sample in Table Il in agreement with micrographs of casein micelles (33, 34). The

addition of 50% NaCas to the 50% CMS induced the formation of a denser and more compact
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network. Nevertheless, the size of the micelles seemed unchanged. The addition of 50% hydrolysates
T1 and G1 did not lead to a change in the casein micelle structure but these mixes were different
from the mix 50% CMS:50% NaCas. These hydrolysates contained few quantities of peptides and
were mainly composed by caseins. However, the hydrolysis of caseins in these hydrolysates was
nonetheless sufficient to form a less dense network than that observed for the mix CMS:NaCas. With
the addition of T3 and G3, micelles were bigger than the control CMS: NaCas. This phenomenon was
amplified when the casein micelles and the hydrolysates were resuspended in milliQ water, without
a monitored pH(data not shown). This could be due to the entrance of small peptides in the casein
micelles that is a well-known porous structure, in an easier way than the caseins. As peptides were
charged and can be considered as polyelectrolytes, they could act as counter-ions and increase
repulsive interactions inside the casein micelles favoring the expansion of the casein micelle volume
up to a limit. Actually, the presence of phosphate nanocluster warrants the structuration of caseins
as micelles. This was clearly shown with the hydrolysates T2, T3 and G3, for which the casein micelles
seemed to be denser than the control sample. The backgrounds of the micrographs, corresponding
to these samples, were darker because of the presence of several particles. The sample containing
G2:CMS was particularly different from both the control and the other samples. In this sample, the
casein micelles were aggregated and were more condensed than the other samples probably
because peptides stabilize the structure of casein micelles via ionic or hydrophobic interactions.
Peptides could also avoid the interactions between casein micelles as it was known for the

interactions between the B-lactoglobulin and the surface of casein micelles in milk (35).

Table Ill. Electronic microscopy scanning micrographs of mix 50% CMS - 50 % hydrolysates at pH 7.
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Sample X 20000 X 200 000
CMS

CMS:NaCa

CMS:T1

CMS:T2
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CMS:T3

CMS:G1

CMS:G2

CMS:G3
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These TEM results first demonstrate that changing the type of hydrolysates added to the CMS leads
to the formation of quite different nanostructures. Indeed, nearly identical peptides, differing by only
their quantity, had significantly different impacts on the casein micelle morphologies. This
observation reinforces the idea that peptide physico-chemical characteristics and their interactions
were driving force to change the microstructure of the casein micelles. Nevertheless, no good
relationship between microstructure and rheological properties of a peptide solution, such as gel
capacity, was well established. Guy and Voyer (11) showed that peptides with different structures
self-assembled into different nanostructures to form different network which led to gel formation of

not. However, in this study, it was shown that different nanostructures can induce a gel formation.

Up to a critical concentration, peculiar hydrolysates and mixes were able to form gel

In the previous parts of the paper we showed that hydrolysates T and G were able to differentially
induce secondary structural changes of casein micelles suspension. The question is now to evaluate
how these hydrolysates were able to modify the rheological behavior of the casein micelle
suspension. For that purpose, three concentrations of casein micelle suspensions were tested to
modify the rheological behavior of the casein micelle suspsensions: 50, 100 and 200 g.kg™ in which
peptides from T and G hydrolysates, and caseinate were reincorporated at various HS:CMS ratios.

At 50 and 100 g.kg", 100% NaCas, pure CMS, pure hydrolysates and all mixes CMS-hydrolysates or
CMS-NaCas were under liquid form (data not shown). Under a concentration of 100 g.kg™, no gel
appeared. At 200 g.kg, the behaviors of the NaCas, the CMS, the hydrolysates and the mixes were
drastically different from the samples at 100 g.kg™ and led to gel formation for most peptides- CMS
mixtures (Figure 7).

At 200 g.kg™", the CMS was a very viscous liquid, and looks like a gel, which was instable during the
time (Figure 7). Bouchoux et al., (38) showed that at a concentration of 178 g.L"' of caseins the
dispersion behaved as a viscoelastic gels in which the micelles were forced to deform and deswell as
under confinement conditions. At this concentration, casein micelles were connected themselves
with bonds. The hydrolysates alone were present as a viscous liquid except T2 that already formed a
gel. The behavior of the casein micelles suspensions drastically changed when the hydrolysates or
the caseinate were reincorporated into the CMS. As early as 25 % of peptides gels were observed and
the gelation was kept at 50% but decreased for 75 % peptides showing that there was a limit of the
amount of peptides useful to induce visible changes and to build up new interactions between
peptides and caseins, beyond which the adverse effects were observed leading to a destabilization of
the gels. This structuration of the gel was also due to the presence of native casein in the

hydrolysates and evidenced by the fact that the caseinate control was also able to form gel when
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added to the CMS. However, the gels formed at 50 and 75 % were apparently less stable than those

formed with hydrolysates.

Trypsin hydrolysates had a behavior different than that observed with the G hydrolysates. It was
particularly notable for T2 and T3. Under its original form, T2 was a sticky viscous liquid. The T2
sample contained peptides with a molecular weight under 14.4 kDa which could interact to give a
very viscous liquid. This viscosity was reinforced by the presence of CMS in the mixes up to 75 % of
peptides. Although T3 was initially liquid, it was also able to form a viscous liquid up to 75 %
reincorporation. It could be due to the presence of hydrophobic interactions between hydrophobic
peptides of T3 and casein micelles. Moreover, T3 contains many peptides (120) which could link
casein micelles between them. Consequently, the addition of hydrolysates increased the viscosity of
CMS at a concentration of 200 g.kg™". Nevertheless, more hydrolysates added were, less the viscosity

of the liquid was.
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Figure 7. Influence of the ratio hydrolysate:CMS on the appearance and the functional
properties of the suspensions at 200 g.kg'l, at 20°C and pH 7. NaCas: sodium caseinate; T1,
T2 and T3: casein-derived hydrolysates from Trypsin; G1, G2 and G3: casein-derived
hydrolysates from Glu-C and CMS: casein micelle suspensions.
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The rheological properties of casein micelles were differentially affected by the presence of
hydrolysates

Rheology represents the mechanical properties of both solid and liquid foods and is an important
monitor of quality control in dairy processing and in scientific research and was used to estimate the
strength of the gel formed and their viscoelastic properties. Milk caseins are mainly responsible for
the rheological and textural properties of dairy products such as gelation, stretchability and fracture
(39). Rheology of fluid is largely influenced by its viscosity. The dynamic viscosity n is a physical
property of a fluid to resist to its flow or to pour (40). In normal fluid milk, the viscosity is affected by
the state and concentrations of fat, protein, temperature, pH and age of the milk. Under most
conditions, milk behaves as a Newtonian liquid, meaning the shear stress is proportional to the shear
rate (41). Average milk viscosity has been determined at 1.7 mPa.s for cow milk at 20°C (Park, 2001).
At 50 g.kg!, CMS, hydrolysates and mix hydrolysates-CMS had actually a Newtonian behavior (data
not shown) with a viscosity ranged from 1.5 to 4 mPa.s. The viscosity did not vary according to the
ratio hydrolysate:CMS (Figure 8). The viscosity of NaCas at 50 g.kg™* was divided by 25 compared to
the viscosity of NaCas at 100 g.kg™*. Consequently, the protein content was mainly responsible for the

viscosity value of the solution.
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Figure 8. Shear rate dependence of the viscosity (n) of casein micelles with/without peptides at 50
g.kg™ at 20°C and pH 7. The viscosity was measured at a shear rate of 1 s™.

At 100g.kg™, a distinction can be drawn for the samples containing 100% hydrolysates: (i) the non-
hydrolyzed NaCas had a viscosity higher than hydrolysates and (ii) the viscosity of 100% hydrolysates
decreased when the time of hydrolysis increased. The viscosity of the hydrolysates, the mixes, the

CMS and the NaCas ranged from 2 to 100 mPas (Figure 9). The samples at 100% and 75% of NaCas
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had a rheofluidifiant behavior, since a shear rate of 20 s and 30 s™ respectively, whereas the
hydrolysates had Newtonian behavior. From these shear rates limits, the samples at 100% and 75%
of NaCas became rheofluidifiant. When the ratio hydrolysate:CMS decreased, the viscosity value of
the mix tended to be near the viscosity value of 100% CMS. Except (i) at 25% of hydrolysate, the mix
NaCas:CMS had a viscosity much higher than the mix with hydrolysates and (ii) at 100% and 75% of
hydrolysate. Only for 100% and 75% of G1, the mix G1:CMS had a viscosity much higher than the
other mixes with hydrolysates. The shear thinning behavior which implies a decrease in viscosity over
a range of shear rates was exhibited by most polymeric solutions and melts (42) as by a large number

of colloidal systems (43). The sample showed Newtonian behavior at low shear rates and at a critical

shear rate (;:"c) the viscosity of the sample decreased. Thus, at low shear rates the viscosity attained
a constant value, the zero-shear viscosity near 100 mPa.s for 100% CMS, 35 mPa.s for 75% CMS and
ranged from 4 mPa.s to 20 mPa.s for the other samples.

For the hydrolysates alone and for both Trypsin and Glu-C hydrolysates, the viscosity decreased with
the time of hydrolysis. These results were in agreement with the results of Tsumura et al. (44) who
reported that the apparent viscosity of soy protein-derived papain hydrolysate was lower than the
viscosity of unhydrolyzed soy protein. In general, lower apparent viscosity is observed when proteins
are hydrolyzed as their molecular mass is reduced by proteolysis. Peptide profiles were dramatically
altered after hydrolysis, as discussed earlier, and can explain the changes in viscosities. As previously
reported (45, 46), the observed decrease in viscosity after hydrolysis can be attributed in part to
increased protein solubility. Increasing the degree of hydrolysis steadily decreased both interfacial

shear elasticity and viscosity values as compared to the unhydrolyzed control (47).
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At 200 g.kg, the 100% NaCas had a Newtonian behavior and became rheofluidifiant at a shear rate
around 20 s, whereas T1. G2 and G3 had a Newtonian behavior along the entire shear rate tested
(Figure 10). G1 followed the same behavior of NaCas, firstly Newtonian and finally rheofluidifiant. T2,
T3 and CMS had a Newtonian behavior since a shear rate of 0.01 s™. The more CMS was added to the
NaCas or hydrolysate samples, the more the behavior of each sample followed the Newtonian
behavior of CMS. Only 25% of CMS (w/w) was sufficient enough to change the behavior of the
hydrolysates and to the NaCas. Effectively, the NaCas became rheofluidifiant at around 0.3 s™*. G1 at
around 1 s* whereas G2 and G3 became rheofluidifiant from 0.01 to 1 s* and T1 became
rheofluidifiant on the entire shear rate. The rheological properties of native casein micelles and
hydrolysate dispersions have been examined over a wide range of concentrations from dilute liquid-
like dispersion (50 g.kg™) to dense gel-like dispersions (200 g.kg™). CMS, NaCas and hydrolysates had
a rheofluidifiant behavior at high concentration whereas they had a Newtonian behavior at low
concentration over a wide range of shear rate. Peptides were charged and could have the same role
of than the NaCl in several studies where the viscosity of NaCas suspensions showed a tendency to

increase when NaCl was added, in high concentrated systems (48-51). As shown on the TEM images
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(Table 111), the peptides migrated into the native casein micelles and these micelles were expanded.
Bouchoux et al. (38) had shown that at a regime below around 170 g.kg™ and at low-shear rates, the
casein micelle dispersions behave qualitatively and quantitatively as a polydisperse hard-sphere fluid.
At a high shear rates, a slight deviation from the hard-sphere fluid behavior was observed,
presumably caused by deformations of the micelles in the flow. The micelles are well separated from
each other and interact through excluded volume effects only (38). Interactions were presumably
presented between the CMS and NaCas because a strong gel appeared when CMS was mixed with
NaCas, a stronger gel than NaCas alone. The viscosity of NaCas solutions increases strongly with
increasing protein concentration above about 100 g.L-1, because the particles become close packed
(52). The presence of charged peptides can strongly influence the properties of casein micelle
suspensions. The caseins can specifically bind peptides reducing the net charge of the proteins and

thus the repulsive electrostatic interactions between the particles (53-55).
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Figure 10. Shear rate dependence of apparent viscosity (n) for 100% CMS and NaCas and
hydrolysates at different ratios, at 200g.kg™ - strain=0.1% and 20°C. a: trypsin hydrolysates; b: Glu-C
hydrolysates.

Dynamic magnitudes had to be used, such as modulus and phase angle, to describe the consistency
and character of each sample. Viscoelastic measurements were also useful for characterizing changes
like melting, crystallization and gel formation. The moduli of all samples varied dramatically with
frequency. When the loss modulus which describes the viscous properties was much higher than the
storage modulus, the sample behaved like a viscous liquid. When the storage modulus became much
higher than the loss modulus, the sample had an elastic behavior. Storage modulus (G’) and loss
modulus (G"”) were the two viscoelastic parameters indicating gel strength (46). According to the
time, at a frequency of 1 Hz, the more hydrolysates were added, the more different were the
behaviors of hydrolysates. The results showed on the Figure 11 confirmed the results of the visual
tests (Figure 7). NaCas had a gel behavior at 25%, 50% and 75%. T1 had a gel behavior at 25% was
liquid and became a gel from 5000 sec at 50% and was as liquid at 75%. T2 became a viscous fluid like
a gel when a minimal of 50% of CMS was added. T3 was also like a gel in presence of CMS. The
behavior of G1 seems to be identical to what was observed for NaCas, excepted at 25 and 75% where
a stransition solution-gelation was observed. This could be related to the fact that a high content in
native caseinate is still present in this hydrolysate and consequently the amount of peptides is too
low to change the rheological properties. G2 and G3 had close values and behaviors too.

Nevertheless, G3 had a weaker G’ and G” values than G2 for each ratio hydrolysate:CMS, as for the
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iscosity values. Actually, when the concentration of peptides was increased in the CMS, the behavior
was able to change as shown by G1 that was a gel at 75% In some other cases, time is needed to
induce gelation as in the case of G2 that initially was a liquid and became a gel from 2000 sec at 50%
and at 6000 sec for 75%. In contrast G3 that looks like a gel in visual test but kept a liquid behavior
according to the time and the quantity of CMS added throughout rheological measurements. Once

again, these examples showed the non-linearity of the phenomena.
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Figure 11. Time dependence of the elastic G' and loss G" moduli for CMS. NaCas and hydrolysates at
different ratios, at 200g.kg™ - frequency = 1Hz. strain=0.1% and 20°C.

At concentrations 200 g.kg™, CMS, NaCas and hydrolysate suspensions began to show some elastic
properties. This viscoelastic behavior was characterized through the response to harmonic stresses.
Figure 12 shows the frequency dependence of the elastic modulus G and loss modulus G’ of CMS
dispersions with or without addition of NaCas and hydrolysates at a concentration of 200 g.kg™. At
the lowest concentration of hydrolysates (25%), the dispersions (excepted 25% NaCas) behaved as
viscoelastic fluids, like 100% CMS, with G and G’ scaling from 10 to 100 Pa. The strong frequency
dependence persisted at the other concentrations 50%, 75% and 100% of NaCas or hydrolysates.
Then, viscoelastic modulus of the hydrolysates and the mixes hydrolysate-CMS were strongly

dependent of the frequency used in the experiments. At 50% of NaCas, T1, T2, T3, G1 and G2, there
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was a cross-over of G and G’ at frequencies just below 0.01 Hz, indicating a transition to another

regime. At this frequency, all these samples became liquid fluids whereas G3 became a liquid fluid

only at frequency of 10 Hz. At the concentration of 75% hydrolysates, G’ varied only slightly on

frequency. T2, T3 and G3 had the behavior of liquid fluids whereas T1 was a viscoelastic fluid. NaCas,

T1 and G2 were subjected to a transition to another regime. NaCas and T1 became a liquid fluid at

around 0.01 Hz and 1Hz, respectively whereas at around 1 Hz G clearly dominated G’ of 75% G2,

meaning that the dispersion behaved primarily as liquid and became a viscoelastic fluid. At 100%,

CMS, NaCas and G1 became liquids at around 0.01 Hz, 7Hz and 10 Hz respectively whereas T1 was

viscoelastic regardless of the frequency and T2, T3, G2 and G3 became viscoelastic at around 0.1 Hz.

The changes of behaviors of molecules with the hydrolysis were shown on the study of Doublier and

Wood (56) showing that at high frequency, the viscoelastic behavior of hydrolyzed oat gum was

similar to that of the unhydrolyzed sample, but at low frequency, the system was behaving as a gel as

a result of intermolecular interactions.
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Figure 12. Frequency dependence of the elastic G' and loss G" moduli for CMS. NaCas and
hydrolysates at 200g.kg™ - strain=0.1% and 20°C .
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Overall, the investigation of gel formation first demonstrates that slightly modifying the time of
hydrolysis of peptides or the nature of peptides produced leads to an important diversification of the
rheological properties. Indeed, some Trypsin and Glu-C hydrolysates can form gel under neutral
conditions, while many analogs underwent gelation either in presence of CMS depending on the
nature of peptides and the ratio hydrolysate:CMS used. Additionally, it was highlighted that simple
modification on the quantity of peptides in the hydrolysate also substantially impacts the
microstructure and the gel formation rates. Indeed, some hydrolysates produced with the same
enzyme can form gels in presence of casein micelles instantly, whereas others will form hydrogels
later at a lower ratio hydrolysate:CMS.

This resulted in a high implication of the peptides in the reinforcement of the structuration of the
matrices up to a limit beyond which the rheological properties were worsened depending i) on the
types of peptides produced, involving mainly hydrophobic peptides, and peptides that were able to
form o helices; ii) their proportion in the hydrolysate and hence in the matrices; and iii) the overall
concentration of the dairy systems in which hydrolysates were added. Such an unexpected non-
linearity of the phenomena could explain some adversely evolutions of the rheological properties of
the casein systems observed.

This innovative approach gives new ways to study the relationship between physico-chemical and
structural characteristics of peptides and their functional properties in matrices. To control the
properties of mixed protein-peptide systems, it is important to further identify which peculiar
peptides among the hydrolysates are strongly implied in the conformational and textural changes
and on which parts of the caseins the interactions occur. The next step would be to select the

peptides able to bind to proteins under such concentration and pH conditions.
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Supplementary data
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Figure 1. Cleavage sites of Glu-C and Trypsin for ay;. as,. B and k-caseins.
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Figure 2. Peptide sequences. Number and location of cleavage sites of Trypsin and Glu-C through
time of hydrolysis of a,;- casein, a,- casein, B-casein and k-casein.
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Table I. Main physico-chemical characteristics of peptides ranging by cluster.

Cluster Characteristics Meanin Mean SDin SD p value
category overall category  overall

Gcel Numberof K  1.74 1.58 1.01 1.09 4.93E-06
Numberof D  0.48 0.40 0.85 0.76 3.54E-04
NumberofS  0.79 0.67 1.27 1.15 1.42E-03
Numberof H 0.55 0.48 0.70 0.70 1.65E-03
Number of M 0.54 0.49 0.65 0.65 9.18E-03
Numberof T 0.56 0.50 0.84 0.80 1.61E-02
Numberof C  0.00 0.01 0.00 0.15 1.17E-02
Numberof N 0.66 0.73 0.73 0.83 4.52E-03
Numberof A 0.56 0.64 0.77 0.79 1.52E-03
Number of W 0.08 0.11 0.27 0.31 9.37E-04
Numberof G 0.59 0.68 0.77 0.81 8.50E-05
NumberofY 0.64 0.79 1.03 1.19 5.36E-05
NumberofV  1.04 1.18 0.79 1.01 1.33E-05
Numberof P 1.54 1.82 1.69 1.74 7.35E-08
Number of | 0.65 0.79 0.70 0.79 1.40E-08
Numberof F  0.53 0.73 0.84 0.97 2.57E-11
Numberof R 0.38 0.51 0.52 0.57 6.41E-13
NumberofL  1.00 1.29 1.16 1.28 5.49E-13
Numberof Q  0.90 1.19 0.99 1.28 1.57E-13

Gc2 NumberofQ  2.07 1.19 1.72 1.28 8.54E-12
Numberof G  1.18 0.68 0.78 0.81 1.40E-09
Number of | 1.26 0.79 0.97 0.79 1.76E-09
Numberof E  2.48 1.83 1.76 1.19 3.61E-08
NumberofyY 1.21 0.79 1.46 1.19 4.00E-04
Number of R 0.69 0.51 0.46 0.57 1.14E-03
Number of W 0.21 0.11 0.41 0.31 1.35E-03
Numberof T  0.16 0.50 0.45 0.80 3.52E-05
Numberof K 1.00 1.58 0.63 1.09 8.00E-08

Gce3 Numberof F 1.55 0.73 1.34 0.97 1.14E-12
Numberof V. 2.00 1.18 1.51 1.01 9.62E-12
Numberof P 3.18 1.82 1.64 1.74 6.06E-11
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Tcl

Tc2

Tc3

Number of N
Number of M
Number of K
Number of |

Number of G
Number of A
Number of E
Number of R
Number of D
Number of C
Number of L
Number of F
Number of R
Number of T
Number of D
Number of S
Number of G
Number of M
Number of H
Number of E
Number of Y
Number of L
Number of Q
Number of P
Number of W
Number of G
Number of H
Number of N
Number of M
Number of Q
Number of L
Number of Y
Number of R
Number of T

1.18
0.82
2.09
1.14
1.00
0.91
2.23
0.68
0.05
0.06
1.52
0.89
0.59
0.60
0.26
0.41
0.49
0.32
0.27
1.32
1.53
2.07
1.81
2.61
0.24
1.00
0.69
0.95
0.29
1.96
1.96
1.30
0.74
0.13

0.73
0.49
1.58
0.79
0.68
0.64
1.83
0.51
0.40
0.01
1.29
0.73
0.51
0.50
0.40
0.67
0.68
0.49
0.48
1.83
0.79
1.29
1.19
1.82
0.11
0.68
0.48
0.73
0.49
1.19
1.29
0.79
0.51
0.50

0.98
0.98
1.62
0.92
0.74
0.60
1.00
0.70
0.21
0.33
1.32
0.98
0.60
0.85
0.58
0.82
0.73
0.47
0.61
1.22
2.20
1.48
1.40
1.56
0.46
1.01
0.88
1.05
0.49
1.60
1.00
0.95
0.44
0.34

0.83
0.65
1.09
0.79
0.81
0.79
1.19
0.57
0.76
0.15
1.28
0.97
0.57
0.80
0.76
1.15
0.81
0.65
0.70
1.19
1.19
1.28
1.28
1.74
0.31
0.81
0.70
0.83
0.65
1.28
1.28
1.19
0.57
0.80

5.32E-06
2.13E-05
8.64E-05
2.08E-04
1.09E-03
4.17E-03
4.72E-03
9.91E-03
8.21E-05
1.70E-06
3.48E-03
6.35E-03
2.27E-02
3.59E-02
2.55E-03
1.71E-04
7.25E-05
2.33E-05
1.26E-06
8.46E-12
8.98E-07
1.42E-06
1.22E-04
3.61E-04
1.13E-03
2.09E-03
1.63E-02
3.96E-02
1.30E-02
3.78E-03
1.13E-02
3.51E-02
4.84E-02
2.68E-02
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Tc4d

Tc5

Tcb6

Number of H
Number of K
Number of A
Number of Y
Number of |
Number of R
Number of K
Number of V
Number of P
Number of R
Number of T
Number of K
Number of T

0.00
0.39
1.18
1.55
1.27
0.82
0.86
2.18
3.18
0.91
0.00
0.45
1.67

0.48
1.58
0.64
0.79
0.79
0.51
1.58
1.18
1.82
0.51
0.50
1.58
0.50

0.00
0.49
0.94
1.20
0.69
0.57
0.81
1.19
2.41
0.79
0.00
0.50
1.37

0.70
1.09
0.79
1.19
0.79
0.57
1.09
1.01
1.74
0.57
0.80
1.09
0.80

7.99E-04
1.04E-07
1.10E-03
2.51E-03
3.66E-03
9.78E-03
1.70E-03
9.68E-04
9.45E-03
1.90E-02
3.91E-02
5.36E-04
3.47E-04
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Abbreviations used

CMS: Casein micelle suspension

NaCas: Sodium caseinate

T1: sodium caseinate hydrolyzed by Trypsin at time 1
T2: sodium caseinate hydrolyzed by Trypsin at time 2
T3: sodium caseinate hydrolyzed by Trypsin at time 3
G1: sodium caseinate hydrolyzed by Trypsin at time 1
G2: sodium caseinate hydrolyzed by Trypsin at time 2
G3: sodium caseinate hydrolyzed by Trypsin at time 3
FTIR: Fourier Transform Infrared (spectroscopy)

CD: Circular Dichroism (spectroscopy)

SDS-PAGE: Sodium Dodecyl Sulfate-polyacrylamide gel electrophoresis
Urea-PAGE: Urea Polyacrylmide gel electrophoresis
PC1: Principal Component 1

PC2: Principal Component 2
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Chapter 3: Properties of milk peptides in gel casein matrices

The results presented in the chapter 2 showed that the presence of peptides modified the
microstructure and the rheological properties of matrices differentially, depending on several
parameters interacting to each other: the hydrolysate nature, the time of hydrolysis and the ratio
HS:CMS used. This resulted in a high implication of the peptides in the reinforcement of the matrix
structuration up to a limit beyond which the rheological properties were worsened depending on (i)
the types of peptides produced, (ii) the peptide proportion in the hydrolysate and hence in the
matrices and (iii) the overall concentration of the dairy systems in which hydrolysates were added.
Such an unexpected nonlinearity of the phenomena could explain some adversely evolutions of the
rheological properties of the casein systems observed.

The question remains as to whether such modification of rheological properties observed under
neutral pH and liquid up to viscous suspensions were observed in the case of dairy gels under acid

conditions.

In this context, the aim of this chapter was to explore how incorporation of peptides can modify
the texture and the microstructure of gels formed under acid conditions by varying hydrolysate

nature, the time of hydrolysis, the protein system concentrations and the ratio HS:CMS.

In this study, we chose to get a pH of 4.6 by addition of Glucono-delta-Lactone (GDL) in the various
HS:CMS suspensions to reach the proper acidification conditions. This pH mimics the pH of many

dairy products as yoghurt and cottage cheeses for example.

This chapter is presented under the form of an article in preparation for Journal of Agricultural and

Food Chemistry” and is presented as a second part of the paper of the chapter 2.

’ Lacou, L. et al. Peptide-casein interactions. Part II- Changes in texture and structural properties of
high-concentrated casein matrices under acid gelation conditions. In preparation for Journal of

Agricultural and Food Chemistry.

169




Part Il — Results and Discussion: Chapter 3 — Properties of milk peptides in gel casein matrices

Chapitre 3 : Propriétés des peptides laitiers en gels hautement
concentrés en caséines

Les résultats présentés dans le chapitre 2 ont montré que la présence de peptides modifiait la
microstructure et les propriétés rhéologiques des matrices différemment, selon plusieurs parameétres
en interaction : la nature de I'hydrolysat, le temps d’hydrolyse et le ratio hydrolysat:micelles de
caséines utilisé. Cela résulte en une forte implication des peptides au renforcement de la
structuration de la matrice jusqu’a une limite au-dessus de laquelle les propriétés rhéologiques ont
empiré selon (i) le type de peptides produit, (ii) la proportion de peptides dans I'hydrolysat et donc
dans la matrice concentrée en caséines, (iii) la concentration globale du systéeme laitier dans lequel
sont incorporés les peptides. Une non-linéarité inattendue des phénomeénes pourrait expliquer
certaines évolutions défavorables des propriétés rhéologiques de systémes caséiniques mis en
ceuvre.

Si une telle modification des propriétés rhéologiques a été observée, a pH neutre et en conditions
liguides jusqu'a obtention de suspensions visqueuses, sera-t-elle également observée dans le cas de

gels laitiers en conditions acides?

Le but de ce chapitre a été d'explorer comment l'incorporation de peptides modifie la texture et la
microstructure de gels formés en conditions acides en variant la nature de I'hydrolysat, le temps

d'hydrolyse, les concentrations des systémes protéiques et le ratio HS:CMS.

Dans cette étude, nous avons choisi d’atteindre un pH 4.6 an acidifiant les systémes caséiniques via
la Glucono-delta-Lactone (GDL). Ce pH mime le pH de plusieurs produits laitiers tels le yaourt ou le
fromage blanc par exemple.

Ce chapitre est présenté sous forme d’article qui représente la seconde partie de I'article du chapitre

2, tous deux en préparation pour soumission a Journal of Agricultural and Food Chemistry®.

& Lacou, L. et al. Peptide-casein interactions. Part Il- Changes in texture and structural properties of
high-concentrated casein matrices under acid gelation conditions. En préparation pour Journal of

Agricultural and Food Chemistry.
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Abstract

Gelation of dairy products can be modified by the hydrolysis of the caseins. However, to determine
how, and to which extent, the functional properties of proteins are modified due to protein
hydrolysis is still a matter of questions notably when caseins forms gels under acid pH conditions.
Sodium caseinate was hydrolyzed by Trypsin and Glu-C, to obtain peptides with defined and different
physico-chemical characteristics. Controlled amount of the three hydrolysates obtained per enzyme
were incorporated into high-concentrated casein matrices from 50 to 200 g.kg™. Texture profile
analysis (TPA) and microstructure of these matrices by TEM were studied at 20°C, under acid pH
conditions. A high discrepancy between matrices was observed at the microstructural scale that was
not observed in TPA. Although incorporation of hydrolysates drastically change the casein micelle
texture by decreasing gel hardness regardless of the concentration used, there were few differences

between the type of hydrolysates T and G in changing the texture properties at pH 4.6.

Keywords

Peptide, protein, hydrolysis, texture, identification, sequence, secondary structure, functional

properties, gel
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Introduction

Gelation is one of the most important functional properties of proteins as it provides texture and
structure to the foods and namely to dairy products, in which the main responsible proteins for
gelation are the caseins. Caseins represent 80% of the protein content in cow milk. They are
composed of 4 caseins: o,;-, 05y, B and k-caseins. These molecules are naturally unfolded (1) but in
native milk, they are associated in the form of casein micelles linked themselves by phosphate and
calcium ions. The exact organization of the caseins within these micelles is still unknown but it is

|”

admitted that they are “spherical” with a diameter ranging from 50 to 500 nm (2). Casein micelles
are dynamic structures and their supramolecular organization is the product of a continuous
exchange with the medium. For example, acidification is a possibility to change the structure of the
casein micelles and their interactions by extracting colloidal calcium phosphate (CCP) and water from
the casein micelles (3). This demineralization involved a partial dissociation of casein micelles (4) and
the release of almost all the nanoclusters of calcium phosphate (5) and lead to formation of casein
gels from pH 5.2.

The gel texture can be modified by the hydrolysis of the caseins. In a previous study, Lacou et al. (6)
showed that incorporation of peptides into casein micelle suspensions were able i) to modify the
microstructure of the casein micelle suspension by increasing the voluminosity of the casein micelles,
ii) to induce conformational changes implying formation of more ordered secondary structural
elements as a-helices and iii) to modify the rheological properties of the casein matrices leading to
gel formation under neutral pH conditions, differentially, depending on several parameters
interacting to each other as interactions between the hydrolysate nature, the time of hydrolysis and
the mass ratio hydrolysate:casein micelles used. This resulted in a high implication of the peptides in
the structuration reinforcement of the matrices up to a limit beyond which the rheological properties
were worsened. This depends on the types of peptides produced (hydrophobic or not), their
proportion in the hydrolysate and hence on the overall concentration of the dairy systems in which
hydrolysates were added.

The question remains as to whether such modification of texture observed under neutral pH and
liquid up to viscous suspensions were observed in the case of dairy gels under acid conditions. In the
present study, we investigated how both the casein network organization and the textural properties
of micelle caseins can be changed in the presence of various concentrations of peptides in three
systems containing (i) 50 g.kg™ of proteins, (ii) 100 g.kg-1 and (iii) 200 g.kg-1 under acid pH conditions
and at 20°C. Peptides were produced from the hydrolysis of caseins by two enzymes: (i) Trypsin and
(ii) Staphylococcus aureus V8-protease also referred as endoproteinase Glu-C. The peptides were

identified, physico-chemically and structurally characterized. Particular focus is paid on the
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hydrolysate nature, the secondary structure of the peptides and the changes observed in terms of

casein micelles organization at microscopic scale and in texture profile analyses.

Materials and methods

Hydrolysates

The hydrolysates used for this study were the same than the hydrolysates used in the study of Lacou
et al. (article 2a). Briefly, sodium caseinate at 10 g.kg™, preheated to 37°C was hydrolyzed either by
Trypsin immobilized on agarose beads (Thermo Fisher Scientific, France) at a ratio enzyme:substrate
of 1049 U/29 g of NaCas or by endopeptidase GluC immobilized on agarose beads (Thermo Fisher
Scientific, USA) at a E/S ratio of 34.8 mL of commercial Glu-C/14.5 g NaCas. The reaction was
performed at 37°C and at a constant pH value of 7.1, using the pH-stat (Mettler Toledo, France) and
1M NaOH as a titrating agent. The hydrolysis reaction was stopped by filtration to separate
immobilized enzymes from the hydrolysates and reused them, at three defined times corresponding
to different compositions both in peptides and in native caseins: (i) 70% caseins + 25% peptides, (ii)
50% caseins + 50% peptides and (iii) 5% caseins + 95% peptides. They were referred respectively as
to T1, T2 and T3 for hydrolysis with trypsin and G1, G2, and G3 for hydrolysis with Glu-C. The solution
was freezed at -20°C, lyophilized (S.G.D. — SERAIL type CS 10-0.8, France) and stored under vacuum at
20°C under darkness until further use.

The physico-chemical characteristics of the peptides were estimated from the sequence of the
peptides previously identified by tandem mass spectrometry (6). Only the calculation of the charges
with Python software from EMBOSS software suite (http://emboss.sourceforge.net) were modified
to determine positive and negative charges at pH 4.6 corresponding to the environmental condition

used in this study.

Gelation

The lyophilized hydrolysates were resuspended in maleate buffer pH 7 containing 25 mM Maleic acid
(Sigma-Aldrich, France), 2 mM calcium Chloride.2H,0 (AnalaR, France) and 3mM sodium azide as
bacteriostatic agent (Sigma-Aldrich, France) in order to reach the 80 mM ionic strength of milk. The
solution was stirred during 12h at 20°C. Then, this peptide solution was heated at 50°C for 3 hours in
a water bath. The casein micelle suspension (CMS) was added at several concentrations (w/w) to the
hydrolysate solution (HS) and the mix was stirred during 12h. To reach a pH of 4.6, GDL (Merck,
France) was then added to the mix. On addition of GDL to native phosphocaseinate solutions, the

mixture was stirred vigorously for approximatively 2 minutes before to put in a water bath at 20°C
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during around 24h to reach pH 4.6. After acidification, gels were conserved at 4°C until rheological

measurements.

Protein profile by electrophoresis: Tris-Tricine/SDS-PAGE and Urea-page Analysis

Gels at 200 g.kg" including 50% or 100% of hydrolysates were ultracentrifuged at 100 000 g for 1h
using a Sorvall Discovery 90 Ultracentrifuge (Hitachi Koki, France). Under these conditions, all
undissociated caseins were pelleted. The peptide pattern of the supernatants was analyzed by SDS-
PAGE as described by Schagger and von Jagow (7) using Protean Il system (16 x 16 x 0.1 cm; BioRad,
Marnes-la-Coquette, France) with SDS/Tris/Tricine buffer and a concentration gradient from 12 to
18% of acrylamide used according to Sadat-Mekmene et al. (8). The gels were scanned by the Image
scanner lll fitted with the LabScan (GE Healthcare, France) and analyzed by ImageQuant software (GE

Healthcare, France), band intensities were estimated by the net volume parameter.

Microstructure

The microstructure of the gels was analyzed following the same protocol as described in the article of

Lacou et al. (6).

Instrumental texture profile analysis

The samples were equilibrated at 20°C for at least 1 hour prior to testing. A two-bite compression
test was performed using the Texture Profil Analysis (TPA), described by Henry et al. (1971) and
Bourne (1978), at 20°C with a texturometer Lloyd instrument (Ametek, France) with a 5 N load cell. A
50% compression was used and crosshead speed was 10 mm.min™. Nexigen Plus computer program
was used for data collection and calculations. The samples were axially compressed in two
consecutive cycles at 50% deformation, 30 seconds apart, with a 5 mm diameter cylinder. The
crosshead moved at a constant speed of 10 mm.min™". From the TPA scores, the following textural
parameters were obtained: (i) hardness (force necessary to attain a given deformation) at 50%
deformation, (ii) elasticity (extent to which a deformed material returns to its original condition after
deformation force is removed), (iii) cohesiveness (extent to which scallops could be deformed
without rupturing), (iv) stickiness, (v) gumminess and (vi) rupture strength (9). TPA test was

conducted in triplicate for each of the three replications.

Statistical analysis

The physico-chemical characteristics of the peptides contained in each cluster formed in the study of
Lacou et al., (part 1) were analyzed by ANOVA, following by a t-test that was realized taking account

the mean in category and the mean overall of all the clusters.
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To link cheese texture to a specific hydrolysate, a methodology based on multivariate exploratory
analyses, such as Principal Component Analysis was performed using FactoMineR, an R package (10).
Two PCA were performed, one with all the gels and the other one without the gels made with NaCas
in order to see the differences between the gels only made with hydrolysates. The first two PCs were
retained as the totality of the inertia explained by both of them, represented a large part of the total

inertia.

Results

Physico-chemical characteristics of hydrolysates at pH 4.6

Gelation of dairy products can be modified by the hydrolysis of the caseins. However, to determine
how, and to which extent, the functional properties of proteins are modified due to protein
hydrolysis is still a matter of questions notably when caseins forms gels under acid pH conditions.
Sodium caseinate was hydrolyzed by Trypsin and Glu-C, to obtain peptides with defined and different
physico-chemical characteristics. Controlled amount of the three hydrolysates obtained per enzyme
were incorporated into high-concentrated casein matrices from 50 to 200 g.kg™. Clusters were
formed (citer article part 1) according to the kinetics of peptide apparition in each hydrolysate. A t-
test was performed to highlight the main physico-chemical traits related to each cluster and, in turn,

to characterize each type of hydrolysates according to the time of NaCas hydrolysis (Table ).

Table I. Number of charges of peptides at pH 4.6 ranging by cluster.

Cluster Hydrolysate Number of Mean in Mean SDin SD p value
charges category overall category overall

Tcl T1 Negative 2,13 2,63 1,06 1,12  4,59E-13
Tc2 T1 Positive 4,01 3,57 1,64 1,47 1,88E-02
Tc3 T1-T2 Positive 2,13 3,57 0,34 1,47 2,19E-06
Gcel G3 Negative 2,73 2,63 1,07 1,12 3,90E-03
Gc2 G1-G3 Negative 3,19 2,63 1,22 1,12 5,81E-07
Gc3 Gl Positive 4,18 3,57 1,91 1,47 5,46E-04

Among the parameters tested (pl, GRAVY, number of positive charges, size, Aliphatic index, number
of aromatic amino-acids, molecular weight), only some of them were highlighted as predominant for
each cluster (citer article part 1). Moreover, some differences between the numbers of charges were
highlight according to the pH of the dairy systems. The differences of number of charges at pH 4.6

between the clusters and are presented in the Table |. At pH 7, T1 contained hydrophobic peptides
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with less negative and positive charges than the clusters contained in the other hydrolysates on the
contrary to pH 4.6. The G hydrolysates contained peptides with similar characteristics at pH 4.6 than
at pH 7. To conclude, the pH had a net influence only on the number of charges of peptides

produced at the beginning of the hydrolysis with Trypsin.

Gel formation at pH 4.6

At pH 4.6, each mix of hydrolysates T and G with CMS formed gels regardless of the concentration in
CMS used. The gels had different shapes. Some of them were grainy, especially for gels
manufactured with 100% hydrolysates. The gel made with 100% CMS was softer than the gels made

with hydrolysates as shown for gels at 200 g.kg™* (Figure 1).
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25% 50% 75% 100%
NaCas ,

50% 75%

T

2

3 ([ ﬁ)
75% 100%

G1

G2

G3

Figure 1. Photographs of gels at 200 g.kg” made with NaCas, casein-derived hydrolysates from
Trypsin (T1, T2 and T3) and from Glu-C (G1,G2 and G3)and casein micelles suspensions (CMS) and
various reincorporation levels (from 25 to 100%) of NaCas and hydrolysates T and G in the CMS.

The microstructure of casein micelle network is modified in presence of hydrolysates

The microstructure of gels made with 50% HS and 50% CMS at 200 g.kg™* was analyzed by TEM (Table
I). At pH 4.6, the casein micelles were more compact than at pH 7 (6). Under high magnification
conditions (x 200 000) some particles of colloidal calcium phosphate also referred as calcium
phosphate nanoclusters were visible in our sample in contrast to the study of Marchin et al. (5) in
which they disappeared at pH 4.6. This is due to the pH which could be at higher value than
expected, the very small size of the sample making any direct pH control impossible. When NaCas

was incorporated in the CMS, the network was denser as NaCas contains caseins that can auto
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associate to form particles of 20 nm and they also can penetrate within the casein micelles. The
structure of casein micelle was expanded in presence of T1 hydrolysate, likely because peptides can
enter into the micelles. In presence of T2, the structure of native casein micelle stayed intact in size
but appeared denser than the CMS, phenomenon that was reinforced with T3. G1 has a
microstructure close to that observed with T hydrolysates. However, the gel containing G2 had a very
different microstructure, showing interactions between casein micelles. With the presence of G3,
which contains hydrophilic peptides with many negative charges, the casein micelles seemed to be

exploded.
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Table IlI. Electronic microscopy scanning micrographs of gels made by mix 50% HS and 50% CMS at
200 g.kg™ at pH 4.6.

Sample x 20 000 x 200 000
CMS

NaCas:CM
S

T1:CMS

T2:CMS

180



Part Il — Results and Discussion: Chapter 3 — Properties of milk peptides in gel casein matrices

T3:CMS

G1:CMS

G2:CMS

G3:CMS

The texture profile analysis of casein micelle gel is affected by the presence of hydrolysates

Texture profile analysis (TPA) and microstructure of these matrices by TEM were studied at 20°C,
under acid pH conditions. A high discrepancy between matrices was observed at the microstructural
scale that was not observed in TPA. Although incorporation of hydrolysates drastically change the

casein micelle texture by decreasing gel hardness regardless of the concentration used, there were
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few differences between the type of hydrolysates T and G in changing the texture properties at pH
4.6.

Principal component analysis allowed us to summarize the information related to the changes in
texture profile analysis in two dimensions, accounting 8.16%, 87.6% and 89.31% of the total variation
for all the gels at 50, 100 and 200 g.kg™, respectively.

Figure 2A and 2D represent correlation circle of the variables and Figures 2B, 2C, 2E and 2F represent
the scores of the individuals for the gels prepared at 50g.kg™ under various hydrolysate:CMS ratios.
Principal component 1 explained most of the variation (71.28% for the Figures A to C and 67.07% for
the Figures D to F) and was related to the gumminess, hardness, stickiness and elasticity of the acid
gels (Figure 2A and 2D). The different gels were also separated according to the principal component
2, which represents 16.88% of the total variation for the Figures A to C and 17.84% of the total
variation for the Figures D to F and was related to the cohesiveness. The gels containing NaCas at a
concentration more than 75% (Figure 2B) and the gels made with hydrolysates with a low DH (T1, G1,
G2) (Figure 2C) scored positively on PC1 and were correlated with the hardness, the stickiness and
the gumminess. When the gels contained few quantities of hydrolysates, they scored negatively on
PC1 and were correlated with the elasticity and with a lower hardness value (Figure 2C). The gels
containing 75% of hydrolysates were very dispersed on PC1 (Figure 2C). However, the gels made with
a low DH were correlated with the hardness, stickiness and gumminess (Figure 2C). The Figures D, E
and F represent the PCA without the presence of control gels containing NaCas to deeply explore the
differences between the textures of gels containing only hydrolysates. The gels made with 100% CMS
had a high hardness and a weak elasticity. The gels manufactured with 100% hydrolysates had
specific textures different from the CMS texture. The gels made with G2 and T1 had a good
cohesiveness and the gel made with G1 was firmer (Figure 2D). The presence of T1, G1 and G2 at a
minimum of 25% in the gels increased the cohesiveness of the gel whereas the presence of T2, T3
and G3 at a minimum of 25% increased the elasticity of the CMS (Figure 2E). Regardless of the ratio

hydrolysate:CMS, the gels containing Trypsin hydrolysates were more elastic than the other gels.
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Figure 2. Principal Component Analysis of gels manufactured at 50 g.kg'with sodium caseinate
(NaCas), Trypsin hydrolysates (T1, T2 and T3), Glu-C hydrolysates (G1, G2, G3) at different ratios
hydrolysate:CMS (4:0, 3:1, 2:2, 1:3, 0:4). (A) The texture properties are represented on the Principal
Component Analysis variables factor map (dim 1 = 71.28% of the total variability and dim 2 = 16.88%
of the total variability). (B) Gels are represented according to their texture parameters and are
colored according to the type of hydrolysates used (red: NaCas, green: Trypsin, blue: Glu-C, grey:
CMS). (C) Gels are represented according to their quantity in hydrolysates (black: 100% hydrolysate,
green: 75% hydrolysate, red: 50% hydrolysate, blue: 25% hydrolysate, grey: 100% CMS). (D) The
texture properties are represented on the Principal Component Analysis variables factor map (dim 1
= 67.07% of the total variability and dim 2 = 17.84% of the total variability) without the presence of
NaCas. (E) Gels, except gels made with NaCas, are represented according to their texture parameters
and are colored according to the type of hydrolysates (green: Trypsin, blue: Glu-C, grey: CMS). (F)
Gels, except gels made with NaCas, are represented according to their quantity in hydrolysates
(black: 100% hydrolysate, green: 75% hydrolysate, red: 50% hydrolysate, blue: 25% hydrolysate, grey:
100% CMS).

Figure 3A and 3D represent a correlation circle of the variables and Figures 3B, 3C, 3E and 3F
represent the scores of the individuals for the gels prepared at 100g.kg™ under various
hydrolysate:CMS ratios. Principal component 1 explained most of the variability (73.55% for the
Figures A to C and 64.61% for the Figures D to F) and was related to the gumminess, hardness and
stickiness of the gels (Figure 3A). The different gels were also separated according to the principal
component 2, which represents 14.05% of the total variation % for the Figures A to C and 20.05% of
the total variation for the Figures D to F and was related to the elasticity (Figure 3A) or to the
cohesiveness (Figure 3D). The gels were better separated according to their hardness, stickiness and
gumminess than according to their elasticity (Figures 3B and 3C). Contrary to the gels at 50 g.kg™, the
elasticity was uncorrelated with the hardness of gels (Figure 3A). As at 50 g.kg™, the gels made with
100% hydrolysates had very specific textures. The gels made with 100% G1, G2, T2 and T3 were
firmer than the others whereas the gels manufactured with 100% T1 had a high cohesiveness and the
gel at 100% of G3 was slightly sticky (Figure 3F). As at 50 g.kg™, the presence of hydrolysates in the
gels rendered the gels firmer than the control one (Figure 3E). Moreover, the more the hydrolysates

were present in a high quantity, the more the gels were firm (Figure 3F).
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Figure 3. Principal Component Analysis of gels manufactured at 100 g.kg'with sodium caseinate
(NaCas), hydrolysates of Trypsin (T1, T2 and T3), hydrolysates with Glu-C (G1, G2, G3) at different
ratios hydrolysate:CMS (4:0, 3:1, 2:2, 1:3, 0:4). (A) The texture properties are represented on the
Principal Component Analysis variables factor map (dim 1 = 73.55% of the total variability and dim 2
= 14.05% of the total variability). (B) Gels are represented according to their texture parameters and
are colored according to the type of hydrolysate (red: NaCas, green: Trypsin, blue: Glu-C, black: CMS).
(C) Gels are represented according to their quantity in hydrolysates (black: 100% hydrolysate, green:
75% hydrolysate, red: 50% hydrolysate, blue: 25% hydrolysate). (D) The texture properties are
represented on the Principal Component Analysis variables factor map (dim 1 = 64.61% of the total
variability and dim 2 = 20.05% of the total variability) without the presence of NaCas. (E) Gels, except
gels made with NaCas, are represented according to their texture parameters and are colored
according to the type of hydrolysate (green: Trypsin, blue: Glu-C, grey: CMS). (F) Gels, except gels
made with NaCas, are represented according to their quantity in hydrolysates (black: 100%
hydrolysate, green: 75% hydrolysate, red: 50% hydrolysate, blue: 25% hydrolysate, grey: 100% CMS).

Figure 4A and 4D represent a correlation circle of the variables and Figures 4B, 4C, 4E and 4F
represent the scores of the individuals for the gels prepared at 200 g.kg’ under various
hydrolysate:CMS ratios. Principal component 1 explained most of the variation (73.55% for the
Figures A to C and 74.98% for the Figures D to F) and was related to the gumminess, hardness and
stickiness of the gels (Figure 4A). The different gels were also separated according to the principal
component 2, which represents 15.46% of the total variation for the Figures A to C and 18.46% of the
total variation for the Figures D to F and was related to the cohesiveness. As for gels at 100 g.kg™, the
gels at 200 g.kg™ were better separated according to their hardness, stickiness and gumminess than
according to their elasticity (Figures 4B and 4C). The gels made with 100% of hydrolysates, G1, G2,
T1, T2 and T3 were the firmest (Figure 4E). The gel 100% G3 had, as at 100 g.kg"”, the same properties
than the gel made with CMS. The addition of hydrolysates at a ratio more than 25% to the CMS
increased the hardness and the stickiness of the gels (Figure 4F). At 200 g.kg”, the gels were very
different in terms of texture. Consequently, the firmer gels were well separated rendering the other

gels formed difficult to distinguish one from each other (Figures 4E and 4F).
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Figure 4. Texture profile analysis of gels manufactured at 200 g.kg™* with sodium caseinate (NaCas),
hydrolysates of Trypsin (T1, T2 and T3), hydrolysates with Glu-C (G1, G2, G3) at different ratios
hydrolysate:CMS (4:0, 3:1, 2:2, 1:3, 0:4). (A) The texture properties are represented on the Principal
Component Analysis variables factor map (dim 1 = 73.85% of the total variability and dim 2 = 15.46%
of the total variability). (B) Gels are represented according to their texture parameters and are
colored according to the type of hydrolysate (red: NaCas, green: Trypsin, blue: Glu-C, black: CMS). (C)
Gels are represented according to their quantity in hydrolysates (black: 100% hydrolysate, green:
75% hydrolysate, red: 50% hydrolysate, blue: 25% hydrolysate). (D) The texture properties are
represented on the Principal Component Analysis variables factor map (dim 1 = 74.98% of the total
variability and dim 2 = 18.46% of the total variability) without the presence of NaCas. (E) Gels, except
gels made with NaCas, are represented according to their texture parameters and are colored
according to the type of hydrolysate (green: Trypsin, blue: Glu-C, grey: CMS). (F) Gels, except gels
made with NaCas, are represented according to their quantity in hydrolysates (black: 100%
hydrolysate, green: 75% hydrolysate, red: 50% hydrolysate, blue: 25% hydrolysate, grey: 100% CMS).

The hydrolysate impacted the gel texture according to the concentration of the system. T1, T2, T3
and G3 had a specific texture at 50 g.kg™ that changed drastically at 100 g.kg™ to stay the same at
200 g.kg™’. On the contrary, G1 provides the same texture regardless of the concentration whereas
the texture of G2 hydrolysates changed drastically from 50 to 100 and from 100 to 200 g.kg™ from a

hard to a cohesive and sticky one.

Specific peptides are involved in the gel structure

The gels at 200 g.kg™* were ultracentrifuged in order to extract peptides which were not involved in
the gel structure. The casein micelles and the peptides involved in the gel backbone were trapped in
the pellet whereas the peptides not strongly linked to the gel structure were found in the

supernatant.
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Figure 5. Tris-tricine gel electrophoresis of the hydrolysates before mixing with CMS (100% liquid)
and gel supernatants. Gels were made with 100% CMS, 100% NaCas, 100% hydrolysate, 50% NaCas
or 50% hydrolysate.

The Figure 5 shows that most of the total caseins participated to the structure of the gels and were
present only as traces in the electropherogram of supernatants. Large peptides (MW between 26.6
and 16.9 kDa) or small peptides (MW <6.5 kDa) produced by the hydrolysis with Trypsin whereas only
large peptides (MW >6.5 kDa) produced by the hydrolysis with Glu-C were not involved in the gel
structure. This was shown by bands having apparent molecular size around 16.9 kDa found in each
supernatant containing CMS and referred as band (b). Peptides with molecular weight between 6.5
and 16.9 kDa (c) were found in the supernatants of gels made with 100% hydrolysates of Trypsin.
With Glu-C, peptides with a molecular weight around 3.5 kDa were found in the region (d) in the
supernatant of the gels, excepted for 100% G1 for which caseins, and peptides with molecular weight

from 16.9 to 3.5 kDa were found.

Discussion

Gelation of casein micelles under acid pH conditions has been thoroughly studied and mechanisms
that drive the casein network formation mostly elucidated (11). Thus, acid gelation of casein micelles
occurred near the pl of the proteins favoring their aggregation (12) with little change in their

spherical shape and size likely due to the presence of the k-casein at the particle-particle interface
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that keep part of repulsion between the casein micelles (11). This was already observed by electronic
microscopy (13) and was confirmed in this study by cryo-microscopy of the casein micelles
suspensions (Table Il). The incorporation of caseinate and hydrolysates in the casein micelle
suspensions actually did not change the overall shape of the casein micelles but provide denser and
smaller particles. Acidification decreased part of the negative and positive charges of the peptides
and this concerned notably those present in T hydrolysates whereas the number of charges at pH 4.6
was shown to increase in the G hydrolysate reinforcing the hydrophilic of G3 hydrolysates (Table I).
Such a variety in pl values of the peptides (6), did not inhibit the gel formation at pH 4.6 as shown in
Figure 1. And the denser particles observed are in line with the possibility of caseins and peptides to
penetrate within the casein micelles and to help reduce electrostatic imbalance that can be
provoked, by the complete solubilization of the calcium phosphate nanoclusters on reducing the pH
of milk to 4.6 (3, 14). Actually, peptides are polyelectrolytes that can serve as counter ions replacing
the calcium and phosphate released during acidification, enhancing protein-protein and protein-
peptide repulsion within the gel network, causing a weakening of the gel until charge neutralization
finally occurs and the gel again strengthens (14). But, peptides are also able to interact through
hydrophobic interactions with the caseins inside the casein micelles and even to link the micelles
together as in the case of G2 hydrolysates (Table Il). In this case, the hydrophobic regions can expel
water and render the casein micelles denser to electrons. Such equilibrium between charge repulsion
and hydrophobic attractive force led to various casein micelle network configurations from casein
micelles linked together to destruction of the casein micelle structure depending on the type of
hydrolysates used. From the best of our knowledge, this was never studied in the literature before.
This increase in interactions between peptides and caseins were also reflected in the increase in
cohesiveness observed that is usually related to an increase in internal bonding inside structure (15)
as confirmed by the few amount of peptides released in supernatant after ultracentrifugation (Figure
5).

However, such a discrepancy between hydrolysates at the microstructural scale was not observed in
the texture profile analysis. Although adding caseinate and hydrolysate drastically change the casein
micelle texture regardless of the concentration used from 50 to 200 g.kg”, the predominant factor
impacting the gel texture was the quantity of native caseins present in the caseinate and in the
hydrolysates that contained both peptides and residual caseins. Actually, the higher the amount of
the native caseins in the CMS was, the firmer the gels were. At 50 g.kg™, the presence of hydrolysates
with a high quantity of native caseins such as T1 or G1 increased the hardness of the CMS. Such a fact
was already observed by Lamsal et al. (16) on soy proteins. When the peptides became as the main
components of the hydrolysates (T3) the gels were found more elastic and more cohesive. It was

shown in the literature, on the example of whey proteins, that the hydrolysis provides elastic
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properties to the gel (17). Nevertheless, the authors highlighted that the types and amounts of
aggregating peptides produced are important and research is still needed in this area to better
understand the gelation mechanism. Our results were also confirmed by Lamsal et al. (16), who had
shown that the hydrolysis involved a decrease in the gel hardness, when the degree of hydrolysis
increased. In contrast to previous study (6), there were less differences between the type of
hydrolysates T and G in changing the texture properties at pH 4.6 than at pH 7, maybe due to the
overall decrease in charge during acidification.

The concentration of the CMS had a very high impact on the gel texture with a behavior that is
different at 50 g.kg™* compared to the other two higher concentrations. Actually, the concentration of
casein micelles in presence or not of caseinate and hydrolysate under these conditions of acid pH
looks like to the states of caseins that were observed during compression of casein micelles by
osmotic stress technique (18). The texture of the HS: CMS drastically changed when only 25% of
hydrolysates were added at 50 g.kg™ that can be considered as a dilute system in which caseins do
not interact each other. In contrast at 100 and 200 g.kg™ only percentage above 50% were able to
change the texture from that observed on the CMS alone that can correspond to a regime in which
casein micelles interact with their neighbors as well as the caseinate and the peptides present. The
dispersions then behave as more coherent solids, that was reflected by an increase in hardness. In
that sense, the system became more confined and some crowding effect can be put forward (19).

In this study we showed that limited or controlled enzymatic hydrolysis of caseins could provide
various textural functionalities in agreement with other types of hydrolysates (20, 21). Peptides
produced either by Trypsin and Glu-C can therefore be used as ingredients to form more or less
cohesive gels that can be used in various food products as sauces, yogurts, soups or infant food

formulations that require less viscous product mix and weaker gelling properties.
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Chapter 4: Structural changes of caseins and peptides under a high
concentration

From the previous parts of the thesis, we showed that concentration of casein systems had deep
influence on the interactions between caseins and between casein and peptides. This can lead to
confinement of the proteins and peptides, in such way that could lead to peculiar interactions under
very high concentration conditions as those reached in some food products as cheeses. Actually,
cheeses contain proteins, from 100 g.kg” to 500 g.kg™, such as in Cottage Cheese, Mozzarella,

Cheddar and Parmigiano Reggiano.

However to reach high concentrations, the solubilization of peptides and casein micelles is not
possible by motor agitation, and other techniques have to be used as osmotic pressure technique to
concentrate peptides and casein micelles at concentrations higher than 200 g.kg™, in order to mimic

cheese.

To conduct this study, we chose only one hydrolysate (T3) to study the impact on visual aspects and
on the structural changes of casein and peptides mix at different concentrations. T3 was chosen as it
is the hydrolysate which contains mainly peptides and few native caseins in order to focus on peptide

behavior.

This chapter is presented as a complementary study which permits to get at first sight information

on the behavior or peptides and casein micelles at concentrations higher than 200 g.kg™.

The manipulations were realized by Mabelyn Tan during the training period of her Master 2 and in

collaboration with Stéphane Pezennec.
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Chapitre 4 : Changements structuraux des caséines et des peptides
a hautes concentrations

Dans I'étude précédente nous avons montré que la concentration des systemes caséiniques a une
forte influence sur les interactions entre les caséines et les peptides. Cela peut conduire a un
confinement des protéines et des peptides et a des interactions particulieres a de tres fortes
concentrations telles que celles retrouvées dans quelques aliments comme les fromages.
Généralement, les fromages contiennent des teneurs en protéines de l'ordre de 100 & 500 g.kg™

comme le fromage blanc, la Mozzarella, le Cheddar ou encore le Parmesan.

Cependant, pour atteindre de telles concentrations, la solubilisation des peptides et des micelles de
caséines est impossible par simple agitation moteur. Par conséquent, d’autres techniques ont dii étre
utilisées telle que la technique de concentration par pression osmotique afin d’atteindre des

concentrations supérieures a 200 g.kg™ dans le but de mimer celles d’un fromage.

Afin de mener cette étude, nous avons choisi d’utiliser seulement un des hydrolysats produits : T3.
Nous I'avons choisi car c’est un hydrolysat contenant principalement des peptides et peu de caséines
natives. Nous avons étudié son impact sur I'aspect visuel et sur les changements structuraux des

caséines a différentes concentrations.

Ce chapitre est présenté comme une étude complémentaire qui permet d’obtenir une premiére
étude du comportement des peptides et des caséines a des concentrations supérieures

2200 g.kg™.

Les expériences ont été réalisées par Mabelyn Tan lors de son stage de Master 2 en collaboration

avec Stéphane Pezennec.
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Introduction

The vast variety of textures in food comes from the complex organization of basic components such
as carbohydrates, fats and proteins. Proteins play an important role in food structure, building
networks that form microstructures, peculiar texture and give rise to important classes of foods such
as fermented food, cheeses, yoghurts, sausages, ice cream (Renard et al., 2006).

Texture of food is a major parameter for consumers and can be changed during the process
according to the physico-chemical or biochemical treatments. During fermentation, proteolysis is the
main factor that influences the final texture of various food products such as cheese. These changes
are mainly due to the breakdown of proteins and the peptides produced are expected to play an
important role, since peptides have been shown to have functional properties such as solubility,
water-binding, foaming and emulsifying ability (Banach et al., 2013).

It is important to understand which interactions are involved in the formation of caseins-peptides
network and the signification of these interactions.

High concentrations are similar to conditions in real food systems. We created a simulation of cheese
matrices by examining aqueous casein micelles suspension, peptide solution, as well as a 1:1 mixture
of casein with peptides by mass, at protein concentrations of up to 500 g.kg™, which were obtained
by reducing their water content using high osmotic pressure.

Protein and peptides exist in suspension as charged colloid particles. The interactions between
proteins change according to their concentration. In dilute solutions, electrostatic repulsions and
hydrophobic interactions are dominant whereas in concentrated solutions van der Waals and
hydrogen bonds, repulsive effect and steric hindrance increase (Saluja and Kalonia, 2008). A protein
solution is considered as concentrated when the volume fraction of the solute is at ¢ > 0.1 (Rivas and

Minton, 2004). In concentrated system, there are strong intermolecular interactions.

This study aimed to evaluate:
- The feasibility of concentrating peptides and casein micelles using this technique.
- Whether there is a concentration threshold that induces sol-gel transition of peptides and a
mixture of peptides and caseins.
- The differences of texture and visual aspect between peptides alone, casein micelles (CM)
alone and mix peptides-CM.

- How peptides influence the interactions of casein micelles in a concentrated matrix.
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Materials and methods

Preparation of maleate-CaCl,-thimerosal buffer

A maleate-CaCl,-thimerosal buffer of pH 7.1 at a ionic force of 80mM was prepared using 25 mM
Maleic acid (Sigma-Aldrich, lot no.107K5432), 2 mM Calcium Chloride.2H,0 (AnalaR, lot no.
12J170011) and MilliQ water, with 0.02% (w/v) of Thimerosal as bacteriostatic agent (Sigma-Aldrich,
Lot no. BCBH5232V). 2 M NaOH was used for pH adjustments. This buffer was used for all

hydrolysate, mix and casein resuspension solutions.

Solubilisation of casein micelles

Native phosphocaseinate powder, Promilk 852B (IDI SAS, France) with a protein content of 94%
(w/w) determined via spectrophotometry. Promilk 852B was dispersed in maleate buffer at 53.2%
(w/w) or 10.6% (w/w) to make casein micelle stock solutions of 50 g kg™* or 100 g kg™, respectively.
The dispersion was then agitated with a magnetic stirrer for 3h at ambient temperature, before

transfer into a 50°C water bath for another 3h of stirring to allow for complete rehydration.

Trypsin hydrolysis of sodium caseinate

Trypsin is a digestive enzyme with a narrow specificity. Regardless of size and sequence, trypsin
hydrolyses proteins at the carboxylic end of lysine and arginine, both of which are basic amino acids.
Each tryptic peptide, except the peptide with the carboxyl end of the substrate, should contain either
an arginine or a lysine. Unless the carboxyl terminus of the substrate is an arginine or a lysine, the
number of peptides produced should be one more than the total number of lysine or arginine.
However, there are some factors that modulate the specificity of tryptic action, which leads to
“miscleavages” and resulting in the formation of large peptides, also termed as “tryptic cores”
(Konigsberg and Steinman, 1977). For instance, aliphatic residues are preferred in the first and
second residue extending towards the carboxyl terminus, followed by aromatic and basic residues;
proline and acidic side chains, on the other hand, are much less preferred (Tauzin et al., 2003).
Sodium Caseinate (Armor Protéines, France) was determined to contain 87% (w/w) protein, as
measured by UV spectrophotometry (UVmc2, Monaco SAFAS, France) at A = 280 nm using extinction
coefficient of 0.81 ml mg-1 cm-1 (Oliva et al.,, 2001) for caseins as a reference and by Kjeldahl
method. It was then dispersed at 10 g.L™* into MilliQ water using motor agitation.

Next, tosyl-phenylalanine-chloromethyl-ketone (TPCK) -treated trypsin (Thermo Scientific Pierce),
which is immobilized on agarose beads, was used for the hydrolysis of caseinate to form peptides.
The optimum working conditions are at pH 7.5-9.0 and 37° C. In the immobilized form, the enzyme is

covalently cross-linked to 4% beaded agarose, which allows for the ease of separation from the
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cleavage products, so that the enzyme can be efficiently removed by filtration and the casein
digestion can be stopped without heating or adding trypsin inhibitor.

Before each hydrolysis, the activity of the enzyme was measured by spectrophotometry at 247 nm
using 0.01 M 4-toluene-sulphonyl-arginine-methyl-ester, TAME (Sigma Aldrich, France), according to
the method of Worthington Laboratories, using the UV-mc2 spectrophotometer (Monaco-SAFAS,
Monaco, France). Tris-HCI buffer and TAME were mixed in cuvettes according to Table 2 and
incubated in the spectrophotometer at 25°C for 3-4 min to reach temperature equilibrium and to
establish the blank. Diluted enzyme (100 pg mL-1) was then added and the absorbance at A = 247 nm
(A247) was recorded for 3 min. A247 was determined from the initial linear portion of the curve and
the trypsin activity was determined according to the equation below. One unit (1U) was defined as 1
pmol of TAME hydrolyzed per min per mg of protein, at 25°C and at pH 8.1. The trypsin activity in this
study was 33.1 U.mL™.Units mL™* enzyme gel. Next, 2.9 L of 10 g.L"* sodium caseinate solution was
heated to 37°C before the enzyme was added at 1.157 U.L™, corresponding to the enzyme: substrate
ratio of 336 U g-1. The pH of the hydrolysis was maintained at 7.1, using the pH Stat (Mettler Toledo,
France), which monitors the rate of protein hydrolysis by automatically titrating the hydrogen ions
produced, using NaOH at 1 M as titrant. After 5500 s, the reaction was stopped by filtering the

mixture to remove the immobilized enzyme.

Lyophilisation

A thin layer of hydrolyzed peptide solution was poured into stainless steel trays and covered with
tissue paper to prevent dust contamination. The solution was then freezed at -20°C and lyophilized
(S.G.D. - SERAIL type CS 10-0.8, Argenteuil France). The layer of dried sample obtained was crushed in
order to have a homogeneous powder, which was then vacuum sealed and stored in darkness, at

ambient temperature, until further use.

Solubilization

The lyophilized peptide powder was then dispersed in maleate buffer at 5.75% (w/w) or 11.5% (w/w)
to make peptide stock solutions of 50 g.kg™ or 100 g.kg" respectively. The dispersion was then
agitated with a magnetic stirrer overnight (16 h) at ambient temperature, before it is transferred to a

50°C water bath for another 3 h of mixing to allow for complete rehydration.

Characterization of the tryptic hydrolysate by tandem mass spectrometry

Mass spectrometry (MS) experiments were performed using a nanoRSLC Dionex U3000 system fitted

to a Q Exactive mass spectrometer (Thermo Scientific, San Jose, USA) equipped with a
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nanoelectrospray ion source. A preliminary sample concentration step was performed on a nanotrap
PepMap 100 (C18, 3 um, 75 um Inner Diameter (ID) x 20 mm Length (L)) (Dionex, Amsterdam,
Netherlands). Separation was performed on a reverse-phase column PepMap RSLC C18 3 um, 100 A
(75 um ID, 150 mm L) (Dionex, Amsterdam, Netherlands) at 35°C, using solvent A (2% v/v
acetonitrile, 0.08% v/v formic acid and 0.01% v/v TFA in deionized water) and solvent B (95% v/v
acetonitrile, 0.08% v/v formic acid and 0.01% v/v TFA in deionized water). 5 — 35% of solvent B in 67
min and 35 — 85% in 2 min was applied as separation gradient at a flow rate of 0.3 pL/min. 3 pl were
injected onto the column corresponding approximately to 60 ng of peptides. Eluted peptides were
directly electrosprayed into the mass spectrometer operated in positive mode and a voltage of 2 kV
with the help of a Proxeon Nanospray Flex ion source (Thermo Scientific, San Jose, USA). Spectra
were recorded in full MS mode and selected in a mass range 250-2000 m/z for MS spectra with a
resolution of 70,000 at m/z 200. For each scan, the ten more intense ions were selected for
fragmentation. MS/MS spectra were recorded with a resolution of 17,500 at m/z 200 and the parent
ion was subsequently excluded of the analysis during 15 s. The instrument was externally calibrated
according to the supplier’s procedure.

To identify peptides, all data (MS and MS/MS) were submitted to X! Tandem using the X! Tandem
pipeline developed by PAPPSO (Plateforme d'Analyse Protéomique de Paris Sud-Ouest (PAPPSO),
INRA, Jouy-en-Josas, France, http://pappso.inra.fr).

The search was performed against a database composed of a homemade database named STLO
containing milk and egg proteins and cRAP database allowing excluding list of proteins such a human
keratin for example. Database search parameters were specified as follows: unknown enzyme
cleavage was used with one missed cleavage and the peptide mass tolerance was set to 10 ppm for
MS and 0.05 Da for MS/MS. As caseins are phosphorylated, phosphorylation (corresponding to mass
adduct of 79.96633 Da) were chosen as variable modification as well as oxidation of methionine
(corresponding to mass adduct of 15.99491 Da). Semi-tryptic peptides were allowed during the
“refinement” process of X!ltandem. For each peptide identified, a minimum score corresponding to
an e-value below 0.05 was considered as a prerequisite for peptide validation. Only peptides
containing more than 5 amino acid residues and less than 5500Da can be identified by this
methodology.

From the sequence of the peptides were calculated from the protparam tools (Gasteiger et al., 2005)
of the ExPASy server (http://www.expasy.org/) (Artimo et al., 2012) their theoretical isoelectric
point, their number of positive and negative charges and their hydropathy index according to the

method of Kyte and Doolittle (1982).
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Preparation of 1:1 mixture

Prior to the equilibration process, equal masses of casein micelle suspension and the peptide
solutions were weighed into a plastic tube, and this 1:1 mixture was prepared by gently rotating the

tube to mix well, without introducing too much air bubbles.

Osmotic stress technique

From previous trials, it has been determined that peptide samples and casein samples of
concentrations over 200 g.kg™* will not be achievable from the dispersion of powder into a solvent.
The strategy to obtain highly concentrated samples was therefore through the use of the osmotic
stress technique, as described by Bouchoux et al. (2009), where water is forced out of the sample,
through a semi-permeable membrane into a solution of higher osmotic pressure, it (Figure 1).

The stock solution of 50 g.kg™ peptide or mixture or casein suspension was placed in a dialysis bag,
which was then submerged in a reservoir containing solutions of polyethylene glycol (PEG) that fixed
the osmotic pressure of the solution at concentrations that correspond to the required osmotic
pressure as described in Table 1. Over time, the chemical potential of water across the membrane
reaches equilibrium and thus the osmotic pressure of the sample equals the osmotic pressure of the

polymer solution.

_ Polyethylene glycol (PEG),20,000Da

S .

‘ .,,‘i. @ Proteins/ peptides
= °
. < Water molecules
A
. Ce
kS >
: . . S

Figure 1. Water molecules from a protein-peptide solution is drawn out of the semi-permeable
membrane, into a PEG solution of higher pressure.
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Table 1. Stipulated osmotic pressure required to attain expected casein micelle concentrations.
Values for peptides and 1:1 mixture were to be determined through experimental results.

Osmotic pressure Osmotic PEG concentration % Expected casein
{Pa) pressure (bar) w/iw micelles
concentration™
1000 000 10 24.190 ~500g kg!
500 000 5 17.846 ~450 kgt
150000 1.5 10.350 ~400g kgt
30000 0.3 4780 ~300g kgt
8000 0.08 2.350 ~200g kg?
3 000 0.03 1.288 ~100g kgt

*From Bouchoux et al. (2009)

Figure 2. Set-up dialysis, with duplicate tubes filled with casein-peptide suspensions and placed is a
sealed, transparent plastic box with PEG solution of required osmotic pressure.

Table 2. Dialysis protocol.

Batch Pressure Stock Week O: Week 1: Week 2: Week 3:

(bar) Solution Day0-7 Day 8-14 Day15—-21 Day21-23
(g ke™)

A 10 100 Fill tubes with stock solution. Day 16: Day 23:
1.5 100 To achieve equilibrium against  Change of Remove

B 0.08 50 PEG solution: PEG solution  tubes from
0.03 50 Refill if tubes loses water and for PEG bath

C 1.5% 100 becomes flaccid. Remove equilibration  for analysis.
0.3 50 sample if tubes gain water and

D 5 100 becomes turgid.

*Repeated trial for caseins only (duplicate)
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Preparation of PEG solutions
Polyethylene glycol of 20 000 Da (Fluka, Switzerland, lot no.BCBJO611V) was used to prepare
solutions. The required concentration (% w/v) for a given m (Pa) was calculated according to the

equation below, proposed by (Cohen et al., 2009):

- ) e
my\cy)  \cy

where
- N =number of monomers = 17100/44 (Li, 2014)
- R=ideal gas constant = 8.314 Pa.m>.K*.mol™
- T=temperature = (20+273) K
- M, = molecular mass of monomer = 44 X 10 kg.mol™
-V = partial specific volume of PEG = 0.825 ml.g™
- o =constant=0.49

- Ch=N"/7=10,278 Kg.m?

Solutions of PEG at osmotic pressures as described in Table 3 were prepared by dispersing the PEG in
25mM maleate — 2mM CaCl, — 0.02% thimerosal buffer, pH 7.1, followed by 1 h of stirring at 37°C in
a laboratory shaker (THO 500, Gerhardt-Germany).

Dialysis protocol

Cellulose ester dialysis membrane with the smallest molecular weight cut-off (MWCO) available, 100
— 500 Da, were used (Spectrum Laboratories, USA) to concentrate peptide, mixture or casein
suspensions. This MWCO was chosen to limit the movement of PEG (20 kDa), caseins (>19 kDa,
(Swaisgood, 2003) and especially the small peptides, to a maximum degree, while allowing exchange
of water, ions and lactose. The dialysis membrane (tube of 6.4 mm diameter) were first cut into
lengths of 12-16 cm and washed in deionized water to remove traces of the preservative sodium
azide, before they were filled with stock solution of peptides, casein micelles or the 1:1 mixture of
both. Universal closures (nylon) were used to seal the tubes, which were clips that can be reopened,
allowing for ease of refilling of the tubes (Figure 2), which was conducted according to a protocol
described in Table 2. Subsequently, the PEG solution was filtered through polyethersulfone
membrane with 5000 MWCO (Vivaspin 20, Sartorius, Germany) using centrifugation at 8000 g to
remove as much PEG as possible, then the filtrate was concentrated under vacuum for analysis via

reversed-phase chromatography and SDS PAGE in order to examine whether small peptides were
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able to pass through the membrane. However, due to interference from PEG, the results obtained
were inconclusive.

Despite the relative straightforward concept of the osmotic stress technique, much care was
undertaken to avoid leakage and mixing of the samples with the PEG polymer. The dialysis
membrane was unable to withstand repeated stress due to its brittle nature, hence the refilling of
the bags with sample solution had to be kept to a minimum. This was achieved by using sample stock
solution of higher concentration, 100 g Kg, when higher total solids was expected in the sample at

higher osmotic pressures of 150 000 Pa and 1 000 000 Pa.

Total solids/ Dry matter

The resulting total solids content after equilibration at each osmotic pressure was determined by
drying approximately 2 g of sample, which have been well mixed with sand, in a laboratory oven at
102°C for 15 h. The results were reported as an average of the totals solids measurement of

duplicate samples.

Volume fraction calculation

The volume fraction of the equilibrated samples was calculated using the total solid content.
Let V be the total volume of buffer, V. be the volume of water and V;, ¢; and p; respectively being the
volume, the concentration and the density of each solute i in the buffer solvent (i.e. maleic acid,

calcium chloride dihydrate and thimerosal).

V=V+ ZVi
i
CL'V Ci
v Tnev- 3y (1-
- - Pi l.Pi

The volume fraction of water (¢, ) in the solvent is therefore:

—y. G
. E_V(l zlpi)_l_ “
v 14 — Pj
L
The mass of each solute m; in V volume of solvent is therefore:
cm
m; = Cl'V = =2
bepe

- Where m,, is the mass of water that has evaporated from the sample.

The mass of protein m,, is therefore:

).
m, = m.— Ci
1Y S i
PePe

i

- Where myis the mass of solids remaining in the sample.
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With v,, being the partial specific volume of the protein, its mass concentration ¢, is therefore:

m m

|4 m 5
+ W —pe+ m,v,
ere

Cp

- Where v,, of 0.733 cm® gt was used for both caseins and peptides (Morris et al., 2000), in the
absence of specific literature data for peptides.
The volume fraction of the protein in the sample is therefore:
bp = Cpp
- Where the 7, of 1.377 cm® g™ was used for casein micelles and the 7 of proteins 0.733 cm® g™ was

used for peptides (Bouchoux et al., 2009).

Protein content by micro-Kjeldhal

Total nitrogen analysis was performed by a micro-Kjeldahl method, using a factor of 6.38 to convert
nitrogen concentration to protein concentration in casein equivalents. Mass quantities of 50 — 200
mg were used for the analysis. Sample that were highly concentrated (100 g.kg™ and above) were
diluted 10 times in maleate-CaCl,-thiomersal buffer, in order to keep within the limits of the analysis
method (100-300 ug nitrogen per titration). Results for the equilibrated samples were reported as
the average readings of two duplicate samples, each with duplicate measurements. Results for the

stock solutions were reported as average of duplicate measurements of a single sample.

Protein profile by electrophoresis

SDS-PAGE

The hydrolytic effects of the 23 day long dialysis process was examined by sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE), where the proteins and peptides were incubated in
presence of SDS in order to render them all negatively charged that renders the migration
independent on their intrinsic electric charge and separation based on the molecular weight of the
caseins/peptides.

SDS is an anionic detergent that denatures proteins and binds at a ratio of about 1.4 g SDS per gram
of protein, hence it gives an overall negative charge to the polypeptide in proportion to its length.
SDS also disrupts hydrogen bonds and hydrophobic interactions, causing the protein molecule to
unfold and lose its tertiary and secondary structures. The reducing agent, B-mercaptoethanol was
also added to cleave any disulphide bonds that may be present between cysteine residues.
Therefore, the denatured and reduced polypeptides are in similar rod-like form with uniform

negative charge density. A pore-gradient gel, which has increasingly smaller pores towards the
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bottom of the gel, was used for greater resolution of the wide size range of proteins and peptides on
a single gel (Amersham Biosciences Inc., 1999).

To prepare a 12 — 18% gradient gels, 11 mL of light- and 11mL of heavy-running gradient gel solutions
were prepared according to the Table 5, with 60 pL of ammonium persulphate (10% w/v) mixed into
each, and they were then poured into separate compartments of a gradient maker, placed on a
magnetic stirrer to ensure adequate agitation of the solutions. Next, 18 uL of the catalyst, Temed
(N,N,N',N'-tetramethylethylenediamine), was added into each of the gel solutions to initiate the
polymerization of acrylamide with bis (N,N'-methylenebisacrylamide). With a peristaltic pump, the
heavy gel solution was allowed to fill the bottom 0.5 cm of the mould at 5 ml min™, before the valve
between the heavy and light gels was open, so that the density gradient would form. A layer of
isopropanol (0.5 cm) was added to cover the gel, while polymerization proceeds for the next 30 min.
Once polymerized, the isopropanol was poured out and the top of the gel was rinsed with deionized
water, before adding 6 ml of the 4% stacking gel (with 100 uL of APS and 20 pL of Temed added to 15
ml of 4% stacking gel solution as described in Table 5) was layered on top and the wells were formed
by inserting a plastic mould at an angle to avoid trapping air bubbles. The completed gels were then
loaded into a Protean Il xi Cell (BIO RAD, XBO031).

Samples were dissolved in maleate buffer (as described above) to obtain dilute solutions of 5 g L™.
The solutions were then further diluted to 2.5 mg protein ml™ in a sample denaturation buffer (980
uL Tricine sample buffer, BioRad, with 20 pL of B-mercaptoethanol, Sigma). The denaturation and
unfolding of the proteins was accelerated by heating the diluted samples at 100°C for 5 min. Twenty
pL of denatured samples were loaded into 4% stacking gels and then separated on 12-18% running
gels with electrophoresis at 60 V. Low molecular weight (LMW) protein standards (GE Healthcare)
ranging from 97 to 14.4 kDa were prepared according to the manufacturer’s conditions and
polypeptide SDS-PAGE standards (BioRad, 161-0326) ranging from 1 kDa to 27 kDa, were diluted 1:20
in Tris-Tricine sample buffer. Both were heated for 100°C for 5 min, before being loaded (10 pL each
per gel). Finally, 2 L of Tris-HCI buffer (0.2 M, pH 8.9) was added to the bottom of the tank, and 250
mL of Tris/Tricine/SDS buffer (BIO RAD) was added to the top compartment.

The generator was turned off when the Coomassie Blue dye runs out the bottom of the gel. As
peptides tend to diffuse out of the gels more easily than the proteins, the gels were rinsed with
deionized water, then soaked in a fixative solution (10% v/v acetic acid, 40% v/v ethanol and 50%
deionized water) for 30min. Next, the gels were stained with Coomassie Blue solution for < 2 h
(Biosafe™, BioRad). Next, the gels were de-stained with successive washes of deionized water, every
15 min, to remove all unbound dye in the background until the stained protein bands can be clearly
visible. Coomassie Blue binds to proteins in an approximately stoichiometric manner, quantitative

comparisons of the protein contents in each band could thus be made, using densitometry.
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The gels were kept at 4°C, in a 30% ethanol solution to prevent drying until image scanning was

done.

Urea-PAGE

In order to determine the extent of casein degradation, urea-PAGE was performed with a Mini-
protean Ill electrophoresis unit and a 1000/500 power supply (BIO RAD). An 18 % (w/v) continuous
polyacrylamine gel (size; thickness) was prepared with a 0.33 M Tris-HCl buffer pH 8.9 containing
4.33 M urea. Samples were dissolved at about 2.5 mg.mL™ in a 0.133M Tris-HC| buffer pH 6.8
containing 9 M urea, 5% (w/v) B-mercaptoethanol and 10% (w/v) glycerol. Next, 7ul of each sample
were loaded into the gel slots. A migration buffer containing 0.192 M glycine and 0.025 M Tris was
used to fill the cell unit. The electrophoresis was terminated 30 min after the dye front was eluted.
Proteins were fixed with 10% (v/v) glacial acetic acid and 40% (v/v) ethanol for 20 min and then
stained with Biosafe™ Coomassie stain for 60 min. The gels were then washed with distilled water

and stored in distilled water before being scanned.

Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy (FTIR) is a measurement of wavelength and intensity of the
absorption of IR radiation by molecules due to vibrational resonances of their bonds (Kong and Yu,
2007). We used FTIR to elucidate the changes in protein and peptide structure upon concentration.
The resonance frequency of bond vibrations are affected by the atomic composition, the vibrational
modes, and the low-energy interactions with neighbouring atom groups (Barth, 2007). In proteins,
the periodic organization of the polypeptide backbone in various types of secondary structures,
stabilized by specific hydrogen bonding patterns, gives rise to corresponding specific resonance
frequencies of the backbone amide (CONH) groups. They result in the main mid-infrared absorptions
of proteins (amide bands) (Kong and Yu, 2007). Infrared spectroscopy thus can be used to monitor
conformational changes of proteins. The lateral chains of amino-acid residues also give rise to
specific absorptions owing to their chemical structure.

Infrared light absorbance spectrum of each protein/peptide sample was measured in the attenuated
total reflection (ATR) mode between 4000 cm-1 and 850 cm-1, with a resolution of 4 cm-1, using the
Tensor 27 spectrophotometer (Bruker, France), equipped with a Germanium ATR crystal (mono-
reflection) and a mercury-cadmium-—telluride detector cooled with liquid nitrogen, and controlled by
the OPUS software. Background spectra were recorded for the buffer used to prepare protein stock
solutions. Each spectrum was reported from the average result of 128 scans.

ATR is a sample environment setup that allows absorption spectra to be recorded for small-volume

liquid, solid or powder samples. As the incident ray of IR light passes through the boundary between
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a high-refractive index medium and a low-refractive index medium, the incident ray may achieve
total reflection (no transmission), depending on the wavelength and incidence angle. Due to
continuity conditions of electromagnetic fields at boundaries, there is a small-depth penetration of
the electromagnetic fields in the low-refractive index medium, called an evanescent wave, without
energy transmission. A higher refractive index of the second medium at some wavelength close to
the boundary may give rise to transmission through the boundary and to energy absorption. This
phenomenon is called attenuated total reflection (ATR).The spectra were automatically corrected for
water vapor and carbon dioxide absorptions using the OPUS software. To focus on conformational
changes, the differences in overall infrared absorbance due to differences in concentration between
samples needed to be compensated. In addition, a major drawback of using IR spectroscopy on
aqueous solution is that the H — O — H bending vibration of liquid water absorbs strongly around
1643 cm-1, which interferes with the amide | band (Giiler et al., 2011). Since the background spectra
were recorded using buffer, differences in sample protein concentration resulted in differences in
contribution of this liquid water absorption, which also needed to be compensated. We used
Extended Multiplicative Scatter Correction (EMSC) for these automatic compensations (Martens and
Stark, 1991). EMSC consists in calculating a mean spectrum and then, using linear regression, in
expressing each sample spectrum as a linear combination of this mean spectrum and of the liquid
water “interference” spectrum. The coefficients estimated by linear regression then allow the water
contribution to be subtracted and the overall absorbances to be normalized.

The spectral variability among corrected spectra was then analyzed using principal component
analysis (PCA). PCA allows us to summarize a data set with minimum “information” loss, by
computing new variables consisting in linear combinations of the initial variables (absorbance at
every wavenumbers). These new variables, called principal components, can be represented as
spectral patterns. Each spectrum is characterized by its scores on principal components, which can
be used to draw “maps” of similarity between spectra. By design, principal components maximize the
variances of scores, in such a way that the first few principal components gather the most part of the
overall “information” of the data set.

Spectral corrections and statistical computations were performed using the “R” free software (Team,

2005).
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Results

Three types of samples: casein micelles, hydrolysate (T3) and the mixture of hydrolysate-casein
micelles (T3-CM) suspensions, of an intended ratio of 1:1 (w/w), were subjected to various changes
in osmotic pressure from 0.03 to 10 bars, corresponding to the higher pressure values that would
result in concentration of casein micelles of over 200 g kg™ as determined by Bouchoux et al. (2009).
The aim of this study was to test whether peptides, when added to casein micelles, were able to
modify the ability of casein micelle suspension to form gels or solid under conditions of increasing
concentration, attained due to increasing osmotic pressures. The peptide and the casein micelle

suspension alone were used as controls, subjected to the same osmotic pressures.

Peptide characterization

The peptides produced by trypsin hydrolysis were identified and quantified by tandem mass
spectrometry in order to elucidate information on the peptide sequences and their physico-chemical
characteristics: size, charge, isoelectric point and average hydropathy scores, which indicated
whether a peptide is hydrophilic (negative values) or hydrophobic (positive values).

The sequences of peptides were detected and matched to the casein that they originated from.
However, several atypical peptides were found with cleavage sites that did not fully correspond to
the specific cleavage action by trypsin. Trypsin cleaves peptide bonds after a lysine or arginine
residue. Instead of the trypsin used is TPCK treated, peptides corresponding to the action of
chymotrypsin were therefore identified to be present in the enzyme preparation. Cleavages after
tyrosine, tryptophan, phenylalanine or leucine were found.

The largest peptide identified was from ag;-casein, residue number 152 — 199, with a molecular
weight of 5444 Da. However, there were gaps in the polypeptide peptide chain that were not
identified, which may be due to limitations of the tandem mass spectrometry in the identification of
large peptide fragments with high extent of phosphorylation, as phosphorylated residues were more
difficult to ionize and to identify thereafter. The smallest peptide detected comes from a,, -casein,
residue number 200 — 205, and has 745 Da. Similarly, up to now, the detection of peptides is limited
to chains of more than 5 amino acid residues. There may be smaller peptides produced that were not
detected by this analysis.

From the listed pl values (isoelectric points) and charges, the peptides from k-casein and a,-casein
have stronger basic character and they also tend to be more positively charged. Peptides from as;
casein were more acidic and were mostly negatively charged. Peptides from B-casein were mostly
weakly charged, except for a few highly negatively charged peptides such as the N terminal peptide

B-casein (f 1 — 25), with slightly acidic pl values.
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The GRAVY number of a protein/ peptides was obtained by taking the average hydropathy value of
its constituent amino acid residue as defined by Kyte and Doolittle (1982). This index indicates the
hydrophobicity or hydrophilicity on a hydropathy scale, ranging from -2 to +2 for most proteins, with
the most positively rated proteins being more hydrophobic (Kyte and Doolittle, 1982), (Bio-Rad
Laboratories). B-casein yielded more hydrophobic peptides, which agrees with the observation that it
yielded mostly uncharged peptides, while the peptide produced from as;-, as,- and k-caseins were

mostly hydrophilic and charged.

Texture and appearance of equilibrated samples

The equilibration process of T3, mixture and casein micelle suspensions using the osmotic pressure
technique (Bouchoux et al., 2009) was implemented over a period of three weeks (23 days) for all
samples. This time was essential to achieve equilibrium against the PEG solution that determines the
final osmotic pressure of the suspension, either by refilling or removing sample depending on the
osmotic pressure applied.

The appearance of the samples after 23 days of equilibration showed differences according to
sample composition and pressure, as shown in Figure 3. From 0.03 to 1.5 bars, the samples were in
liquid form, but with further increase in osmotic pressure, the samples solidified. Generally, the
samples tend to be clearer at lower osmotic pressures as they were more dilute, hence turbidity
(data not shown) increased as osmotic pressures increased. This trend applied fully to the peptides.
However, the casein micelle suspensions tend to lose their turbidity from 5 bars onwards and
become clearer as osmotic pressure increased. The mixture behaved in a similar manner as the
caseins, although the mixture started with a clear appearance at 0.03 bar, while the casein
suspension was cloudy.

As the samples were too small to realize rheological measurements, the texture of the samples was
qualitatively appreciated (Figure 4). In terms of apparent texture, at 5 bars, the peptide samples had
a texture similar to a water gel and the mixture samples were a soft gel. At 10 bars, the samples were
much thicker in consistency than at 5 bars. While the peptide samples had a short, non-stringy
texture and did not stick, the mixture samples were sticky, especially at 10 bars. Moreover, duplicate
tubes of caseins that were equilibrated separately at 1.5 bars, resulted in different apparent textures,
which corresponded to their measured protein content (data not shown). At a protein concentration
of 173 g.kg™, the casein sample was a thick, viscous liquid which could be transferred using a pipette,
while at a higher concentration of 187 g.kg™, the sample was a soft gel that looked similar to the
peptide sample at 10 bars, with a protein content of 298 g.kg™. The peptide sample at 5 bars had the
same protein concentration of 187g kg-1, yet the texture was thinner than the casein sample at 1.5

bars. Next at 5 bars, the casein samples formed a solid with a defined form that was much firmer
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than the other samples. Fragments of the broken solid did not stick to one another. At 10 bars the
solid was firmer, more brittle and was surprisingly clear, in comparison to the original stock
suspension of casein micelles, which was milky white. Furthermore, there were color changes in all
samples as the osmotic pressure increased from 5 to 10 bars, as they became increasingly yellow

instead of being clear or white (Figure 3).
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Pressure 0.03 0.08 0.3 1.5 5 10
(Bar)
Phase
Peptides
Mixture
Clear > Opaque <€—— C(lear
- ( I

Cloudy > Opaque €<—— Clear

Figure 3. Visual observation of the peptide, mixture and casein suspensions at various pressure
values inside the membrane 100-500 Da. * Sample form duplicate trial for casein at 1.5 bar.
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Protein concentrations adjustments

As the dialysis membrane was unable to withstand repeated stress due to its brittle nature, the
refilling of the bags with sample solution had to be kept to a minimum. This was achieved by using
sample stock solution of higher concentration, 100 g kg-1, when higher total solids was expected in
the sample at higher osmotic pressures of 1.5 bar and 10 bars, so as to avoid repeated handling of
the fragile tubes.

The stock suspensions were prepared to the required concentrations (50 or 100 g.kg™) according to
the protein contents of the peptides and the casein powders measured via spectrophotometry, as
described in Section 3.2 (Materials and Methods). In order to establish the final concentration of the
various suspensions under various osmotic pressures, the amount in nitrogen was determined by
Kjeldahl analysis and reported as casein equivalent thereafter. This analysis was also applied to the
stock suspensions and revealed that the protein content of the stock suspensions was less than
expected. For 50 g.kg” stock solutions of peptides, mixture and casein suspensions, the measured
protein content were 47.46 + 0.05 g.kg™', 43.86 + 0.01 g.kg™ and 41.02 + 0.05 g.kg respectively and
for the 100 g.kg™* stock solutions of peptides, mixture and casein suspensions, the values were 92.44
+0.19 g.kg?, 87.76 + 0.41 g.kg™ and 81.32 + 0.36 g.kg'respectively. Therefore, instead of being a
mixture of equal masses of peptides and caseins, the mixture a posteriori consisted of peptides and

caseins in a “1 : 0.9” mass ratio.
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Pressure
(Bar) 1.5 5 10
Peptides NA
Light water-gel. Soft gel.
Mixture NA
Soft gel. Sticky gel.
Casein

Soft gel.* Solid. Broken fragments Firm solid. Broken

do not stick. fragments do not stick.

Figure 4. Texture of solid samples at 10 bars and at 5 bars after demolding. * Sample from duplicate
trial for casein at 1.5 bar with protein content of 187 g.kg™.

Equation of state and volume fraction

The equation of state (EoS) for casein micelles has already been described by Bouchoux et al. (2009),

but the EoS of hydrolysate and of a mixture hydrolysate-caseins has yet been defined. Since by van

t'Hoff’s law described below, the osmotic pressure in a dilute system is proportional to the molar

concentration of its solutes, we can hence put forward that the peptides, which are smaller
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molecules than the casein micelles, would exert a higher osmotic pressure inside the membrane, due

to a higher molar concentration at the experimental mass ratio of 1: 0.9.

Il,; = RTc

Where R = universal gas constant, 8.314 Pa.m3.K1.mol™
T = temperature (K)

C = polymer molar concentration (M)

Indeed, the results obtained in Figure 5 confirmed this statement, since peptides equilibrated at a
lower protein concentration than casein micelles when subjected to the same osmotic pressure.
There was an approximately 9 — 14% difference between the concentration by volume calculated
from the total solids data and the concentration by volume calculated from the Kjeldahl analysis that
may be attributed to the presence of non-protein dry matter in the sodium caseinate powder and
the casein micelles powder. Total solids data was used for the expression of the EoS for comparison
with data from Bouchoux et al. (2009). While the van t’Hoff’s model fits well with the experimental
data for peptides, calculated with an estimated average molar mass of 2600 Da, the behaviour of
caseins did not follow the model, calculated with the molar mass of 156 kDa (Bouchoux et al., 2009),
nor did the behavior of the mixture, calculated as a weighted average using the mass ratio of
peptides: casein micelles of 1:0.9.

Furthermore, it was found that at 0.03 bar to 1.5 bars, the osmotic pressure of the peptide stock
solution was greater than that of the PEG solution, hence the sample was being diluted instead of
being concentrated. From 0.03 bar to 0.3 bar, the osmotic pressures of the mixture and casein stock
solutions were also greater than that of the PEG solution, hence they were also being diluted.

At low osmotic pressures, i.e. < 1.5 bar, the EoS of the mixture was closer to the behavior of the
peptides than that of the casein micelles, which was due to the dominant osmotic pressure exerted
by the small peptides. This general trend was in agreement with the relative position of the van
t'Hoff equations, although the data points for the mixture and the caseins differed greatly from the
model, especially at low osmotic pressures of 0.03 and 0.08 bars. As the osmotic pressure increased,
the concentrations of the samples would not be expected to vary linearly according to van t'Hoff’s
law as their protein volume fraction surpassed 0.1 (Rivas and Minton, 2004), where the
concentration of the mixture was observed to approach intermediate values between the
concentrations of the peptides and the casein samples. In this region of higher protein volume

fraction, the intermolecular interactions started to have a significant impact on the osmotic pressure
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of the samples, and this phenomenon could be compared to the hard spheres model, which would
be discussed in Section 5.

For the same osmotic pressure of 1.5 bars the final concentration greatly varied amongst the
samples, from 91 g.kg™ for the peptides to 187 g.kg™ for the casein micelles. In order to reach the
same peptide and casein concentration of ~300 g kg™, an osmotic pressure of 10 bars will be needed

for peptides and only 5 bars for casein micelles.

By comparing the EoS with the texture shown in Section 4.2, we can also see that below a threshold
of 100 g.kg™, the samples were liquid regardless of the composition of the suspensions (peptides,
casein micelles or both), and the samples became a gel or even solid at higher pressures

corresponding to concentration over 300 g.kg’l.
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Figure 5. (A) Equation of state between the osmotic pressure and the protein content of the samples,
calculated using he specific volume of 0.733 ml.g™. At 5 bars and at 10 bars, the samples were
observed as solids, while at 1.5 bars and below, the samples were found to be in liquid form. (B)
Osmotic pressure was also plotted against the volume fraction of the samples, calculated using
specific volume of casein micelles at 1.433 ml.g™, and peptides at 0.733 ml.g™. The volume fraction of
the mixture was taken as a weight average of the peptides and casein, based on the mass ratio of
1:0.9. * A duplicate equilibrated sample was made with caseins at 1.5 bars.
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FTIR

The variation of osmotic pressure and hence the concentration of peptides, mixture and caseins
reflects not only loss of water but can also be due to changes in their secondary structures, which is
related to changes in the interactions between peptides, caseins or both during the equilibration
process. FTIR was thus conducted to measure such changes.

The absorbance of the samples was measured on the FTIR spectrophotometer. In order to have a
more precise analysis of the overall data, certain spectra were observed with atypical peaks and
valleys (outside of the amide | and amide Il band region) that were not usually related to protein
structure, and were likely to be noise due to interference from contaminants or inadequate
background subtractions were removed from the analysis, even though this implied the loss of
spectral data on certain samples, i.e. the samples of casein and mixture equilibrated at 0.03 bars. The
resulting spectra after removal of outliers were shown in Figure 6. In general, all samples gave two
major peaks in the region of the amide | and amide Il bands (1700 — 1600 cm™), which varied in
magnitude along with the sample concentration, as this region corresponds to the wavelengths
where amide linkages absorb IR radiation, due to the C = O stretch vibrations as well as in-plane
bending of the N — H bonds and C — N stretch vibrations (Kong and Yu, 2007). Hence, the higher the
concentration, the larger the amplitude of the peaks would be. For more in-depth interpretation of
the spectra, corrections on the data were needed nullify differences in magnitude, and also to
account for drifts in baseline and interference from water vapor.

Mathematical corrections using extended multiplicative scatter correction (EMSC) were performed,
where intensities of absorbance were normalized by expressing each spectrum as a function of the
mean so that differences in spectral patterns can be analyzed. The spectral patterns of the samples
after EMSC were presented in Figure 7. These minute differences in the form of each spectrum were
then analyzed via principal component analysis (PCA). Fluctuations in the baseline was improved
(Figure 7) but erratic fluctuations due to interference from water were still visible (e.g. 1900 — 1700
cm™), and they were also taken into account in the PCA. Equilibrated samples at 5 bars were not
analyzed on the spectrophotometer due to time limitations.

According to PCA (Figure 8), 85% of the total variance was represented by three main vectors PC1 to
PC33, while PC4 only contributed to 8% of the variance. However, the variance represented by PC1
(38%) was noted to be essentially a correction artifact due to imperfect correction on water
concentration in the samples, resulting in the displacement of the amide | band as observed from its
loading plot (Figure 8A). As loading plots provide information about the contribution of each original
variable to a principal component, the spectral regions corresponding to the protein/peptide

structural differences should be readily identifiable according to the peaks and valleys in the loading
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pattern (van der Ven et al.,, 2002). However, the loading pattern on PCl showed limited
correspondence with the major protein absorption bands (Amide I and Il: 1700 cm™ — 1600 cm™),
except at 1634 cm™, assigned to presence of B-sheets (Barth, 2007; Kong and Yu, 2007). Since loading
patterns on PC1 revealed relatively limited information on peptide/protein structure differences, the

analysis was focused on variance shown on PC2 (28%) and PC3 (19%) only (Figure 8B).

As such, a 2 dimensional PCA map with PC2 and PC3 was plotted (Figure 7C), where the samples
were observed to be segregated by composition (casein, mixture and peptides) and pressure (0.03
bars to 10 bars). The peptide samples tend to have higher scores on PC3, while casein micelle
samples tend to have lower scores. Next, as pressure increases, the scores on PC2 decrease,
therefore the most concentrated samples are on the left side of the map. Hence, we observed that
there is a correlation between variances in spectral data, with sample composition as well as sample
concentration.

To understand on which parameter, e.g. composition or pressure, the different axes PC2 and PC3
could be related, the mean coordinates on PC2 for each sample were plotted against osmotic
pressure or stock suspension concentration as shown in Figure 9A. It was observed that PC2 was
affected by osmotic pressure in a manner that was independent of sample composition, since the
mean coordinates for all samples decreased in a similar manner as osmotic pressure increased.
Similarly, the mean coordinates on PC3 for the different samples were plotted against osmotic
pressure and stock suspension concentration (Figure 9B). It was observed that the coordinates on
PC3 varied according to sample composition, with peptides having high positive scores and caseins
having negative scores. It was also observed for the stock solutions at 50 g.kg™', the mean coordinate
score on PC3 increased after 3 weeks of equilibration.

From the loading plots of PC2 and PC3 in Figure 8B, it was noted that large magnitudes were
observed in spectral regions described in Table 3, which indicates the type of conformational changes
that occurred, due to the effects of PC2 and PC3.

The negative values of the loading on PC2 at 1626 cm-1, with highly negative PC2 coordinates for the
samples at 10 bars indicated a higher proportion of intermolecular B-sheets than in peptide samples.
Hence as osmotic pressure increases, the coordinates on PC2 decreases, which implied there was an
increase of intermolecular B-sheets in the all samples as osmotic pressure increased. However, it was
noted that the PC2 values for the peptides samples was unchanged between 0.03 bars to 0.3 bars.
The positive peak of the loadings on PC3 at 1585 and 1404 cm™, which corresponds to the
absorbance frequency of aspartate residues and free carboxylates (COO-) respectively, implied that
variance on PC3 was associated with exposed aspartate residues and the presence of free C terminal

extremity of peptides; this correspond with the observation that the peptides had high positive
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values on PC3 while caseins had negative values. The increase in the PC3 coordinate values of the
stock suspensions at week O (S) to week 3 (E) as observed in Figure 9B, also implied that more free
peptides were formed as the stock suspension aged over the 3 week incubation period, therefore
indicating that variation on PC3 may be linked to casein hydrolysis. It was also observed that there
was a decrease in the score of PC3 for caseins from 1.5 to 10 bars, which implied that there were less
exposed aspartate residues and free carboxylates present, hence suggesting that caseins were less

hydrolyzed at higher concentration.
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Figure 6. Raw spectra obtained through FTIP spectroscopy on casein, peptide and mixture stock
solutions at 50 g.kg™* and 100 g.kg™, as well as equilibrated samples at different concentrations.
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Figure 7. FTIR spectra after normalization via EMSC.
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Figure 8. PCA analysis of the peptide, mixture and casein suspension at different concentrations of
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Sample compositions were coded by shapes of the coordinate points, while pressure differences
were coded by color. Stock solutions at the start (S) and at the end (E) of the equilibration were also
analyzed. The size of the coordinate shapes implies the fit of its projection on the chosen axes.
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Figure 9. Mean coordinates on (A) PC2 and (B) PC3 axes for peptide, mixture and casein samples
according to increasing osmotic pressures; as well as mean coordinates for 50 g.kg-1 stock solutions
at week 0 (S) and at week 3 (E) and 100 g.kg ™" stock solution at week 3.

Table 3: Frequencies on Figure 13B, corresponding to secondary structures as reported in various

references.

Frequency on

Position on plot

Assignment to Reference

Figure 12B secondary structure
1647 Mean Random 1648 + 2.0 (Kong and Yu, 2007)
1647 Mean Disordered 1642- 1657 (Barth, 2007)
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1647 — 1654 (Shivu et al., 2013)

1549 Mean Amide Il 1480 — 1575 (Kong and Yu, 2007)
1454 Mean Lipids 1464 (Aernouts et al., 2011)
1402 Mean Free carboxylate 1402 + 1.0 (Burgardt et al., 2014)
1246 Mean Random coil 1240 - 1260 (Hu et al., 2008)
1246 Mean Amide IlI 1240 (Aernouts et al., 2011)
1663 PC2 3,, Helix 1663 + 3.0 (Kong and Yu, 2007)
1663 turns 1663 — 1695 (Shivu et al., 2013)
1626 PC2 B-sheet 1623- 1641 (Barth, 2007)

1643 — 1615 (Shivu et al., 2013)
1304 PC2 R-helix 1280 - 1320 (Hu et al., 2008)
1676 PC3 B-Turn 1675 + 1.0 (Kong and Yu, 2007)
1585 PC3 Aspartate side chain 1584 (Venyaminov and Kalnin,

1990)
1404 PC3 Free carboxylate 1406 (Gdiler et al., 2011)

1402 + 1.0 (Burgardt et al., 2014)
1404 PC3 Carboxylate ion Around 1400 (van der Ven et al.,

stretching 2002)

Electrophoresis

In order to check whether the casein micelles underwent hydrolysis during the equilibration process
and to what extent, two types of electrophoresis were performed: i) SDS PAGE in Tris-tricine buffer
to separate proteins and peptides from 200 to 3.5 kDa (Figure 10) and ii) urea PAGE to evaluate
casein degradation (Figure 11).

After running the casein/peptide samples through Tris-tricine SDS PAGE (Figure 10), it was observed
that the protein/peptide band profiles of the peptide samples were largely unchanged compared to
the stock suspension at week 0 (WO0). However, it has been observed that the protein band profile of
the mixture and casein stock suspensions have evolved significantly. Protein bands that were present
at 35, 30, 28, 23 and 22 kDa in Week 0 and correspond to caseins (W0) became weaker in intensity
for the same stock suspension after 23 days of aging (W3). This was also observed in the equilibrated
samples, which showed that hydrolysis has taken place in the mixture and the casein stock solutions
as aell as the equilibrated samples. However, as SDS PAGE analysis is based on apparent molecular
mass, it was impossible to plot casein degradation from this type of analysis, due to co-migration of
casein band with peptides produced during incubation period.

New bands as shown in Figure 15 were observed having different apparent molecular masses at the

6.5 kDa mark that were observed in the mixture and casein samples (W3 and equilibrated samples),
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but were absent from the peptide samples. This revealed that caseins were hydrolyzed and new
peptides were formed over the period of equilibration.

In order to measure the extent of hydrolysis in the samples, urea PAGE was conducted to examine
the quantity of caseins that was lost over time. Since the four caseins, a,, as,, B and k, exist in the
ratio of 4:1:3.5:1.5 (Dalgleish, 2011), the protein bands at week 0 for B- and a,-caseins were more
intense when compared to that of as,- and k-caseins. ag;-casein possesses 5 phosphoserine (PSer)
residues and as;-casein has either 8 or 9 PSer, which is inconsequential to their migration in urea
PAGE. On the other hand, as the a,-caseins are multi-phosphorylated, it exists with different charge
densities due to having 10 to 13 PSer (it is also able to form disulphide bonds but not in this case
where DTT was added for the electrophoresis analysis). Next, despite mainly having just 1 PSer, k-
casein has different extents of glycosylation (Holt and Roginski, 2001). Therefore multiple bands in
the urea PAGE were observed for k-caseins and as,-caseins (Figure 10) since they exist in forms with
varying charge and size.

From Figure 11, it was apparent that the casein bands in the casein micelles and in the mixture
suspensions (gels Il to IV) decreased in intensity over the time of equilibration, as quickly as within
week 1, especially for B-casein; B-casein have been shown to be more easily hydrolyzed by plasmin
than a;- casein (Holt and Roginski, 2001). This enzyme initially present in milk can actually be linked
to the casein micelles through lysine residues and stay within the casein micelle preparation of the
CM powder used in this study.

From the intensity of the bands, the average percentage decrease in each casein (k-, B-, a,- and 0;-)
was calculated and presented in Figure 12. However, due to their small quantities and their multiple
bands, k-casein and a,,-caseins were more difficult to quantify accurately. Moreover, the k-casein
bands were also likely to have been contaminated by peptides that were formed by the hydrolysis of
the caseins, likely the B-casein by plasmin, since the k-casein bands became darker although the
amount of casein could not have increased with time.

In the case of the peptides, there were little caseins remaining in the peptide samples from the
beginning of the incubation, confirming that the tryptic hydrolysis of caseinate used for their
preparation was conducted to more than 90% hydrolysis. However, a lightly colored B-casein band
remained visible in week 0, before it then disappeared in week 2 and 3 samples (Figure 10 — 1) and it
was determined that the B-casein content of the peptides samples dropped to 40% after 3 weeks of
equilibration. This observation corresponded with data from the FTIR spectrophotometry, where

hydrolysis of the peptides was observed in the stock solutions in week 3.
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Figure 10. Tris-Tricine SDS-PAGE electrophoregram with a gradient of 12-18% acrylamide of peptide,
miwture and casein suspensions at A: 50 g.kg™ stock solution (stock 50) and after concentration by
osmotic pressure at 0.03 bar, and B: 100 g.kg™* stock solution (stock 100) and after concentration by
osmotic pressure at 10 bar. T1 and T2 were duplicate tubes of the sample. The unusual migration for
casein sample, 50 g.kg™', W3, was caused by a crack in the glass panel during electrophoresis. Large
narrow represents marked bands originally present on week 0, small narrow represents marked
bands that have disappeared.
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Figure 11. Urea-PAGE electrophoregram at 18% acrylamide of the caseins in the stock solutions and
after 1 to 3 weeks of storage at 20°C in 25 mM maleate 2 mM calcium 0.02% (w/w) thimerosal buffer
pH 7.1. I: 50 g.kg™ peptides (except batch A at 100 g.kg™). Il: 50 g.-kg-1 mixture (except batch A at
100 g.kg™). Ill: 50 g.kg™ casein micelles (except batch A at 100 g.kg™). IV: 100 g.kg™* casein micelles.
Large narrow represents marked bands originally present on week 0, small narrow represents
marked bands that have disappeared.
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Discussion

To the best of our knowledge, there were no prior studies done on peptides under high osmotic
pressure. In this study, peptide suspension have been successfully concentrated to up to 300 g.kg™
using the osmotic stress technique, along with casein micelle suspensions and a 1:0.9 mixture of both
peptides and caseins. This technique made it possible to obtain concentrations above 200 g.kg™,
which was not feasible by dispersing peptide or casein micelle powder in a liquid. While highly
concentrated casein micelles were previously found to form clear solids at 200 g.kg™ (Bouchoux et
al., 2009), it was unprecedented to observe the peptides in the form of a gel at such a concentration.
Thus it was interesting to note that at 10 bars, the texture of the mixture of caseins and peptides
became sticky, while the peptides and caseins alone did not. The apparent texture of the peptides at
10 bars was gel-like, in contrast to the solid texture of the casein sample (Figure 9). These visual
observations are therefore indicative of potential interactions between the casein and the peptides
or change in the swelling properties of the casein micelles in presence of peptides (Lacou et al.,
2016).

While we showed that the osmotic stress technique was effective in removing water from our
peptide stock solution at pressures above 0.3 bars, there was a risk of having small peptides escaping
through the pores of the dialysis membrane that needs to be addressed. Having used a dialysis
membrane with the smallest MWCO available (100 — 500 Da), it was estimated from the total
amount of peptide stock solution added to the dialysis tubes at 10 bars over 23 days, there was
minimal difference in the measured protein content and the calculated protein content after the
equilibration period, which was estimated to be in range of 0-3%. Therefore, most of the peptides
were still contained within the dialysis membrane throughout the equilibration process. Further
attempts in analyzing the filtered PEG solution (10 bars) via reversed phase liquid chromatography
on C18 column and tris tricine SDS PAGE yield inconclusive results on the presence of small peptides
of molecular mass less than 3.5 kDa in the PEG solution.

From the results of this study, we were able to plot for the first time the equation of state for
peptides from 0.03 bar to 10 bars (Figure 10). We have found that, at a final pressure of 0.3 bars and
below, the stock solution of 50 g kg-1 was in fact at a higher osmotic pressure than the PEG solution,
hence the samples were being diluted instead of being concentrated, even though it was indicated
that osmotic pressures of 0.5 bar to 1 bar would be sufficiently high to produce a transition from
liquid to solid phase by Bouchoux et al. (2009), whose experimental data has been plotted in Figure
13 for comparison with our data. The hard sphere model for peptides and caseins, expressed by the

Carnahan Starling equation shown below, were also plotted for comparison.
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where

- n = number density of spheres

- k = Boltzmann constant = 8.314 Pa.m3.K-1.mol-1

- T = temperature = (20+273) K

- ¢, volume fraction was calculated in Section 3.4.1, using the specific volume of peptides

given as 0.73g cm-3 and the specific volume of caseins given as 1.377 g cm™ (Bouchoux et al., 2009).

Besides sample composition and concentration, which are the variables tested in this study, pH,
temperature, as well as solvent composition and ionic strength are other variables that impact non-
covalent molecular interactions, and therefore impact the self-assembly behavior of the caseins and
peptides (Guy and Voyer, 2012). While minor discrepancies in the solvent composition and ionic
strength exist between our data and Bouchoux et al. (2009) (a maleate-calcium chloride-thiomersal
buffer was used in this study, while a UF permeate was used in the study of Bouchoux et al., 2009),
there was a key difference in the MWCO of the dialysis membrane used, which resulted in a major
difference in the composition of the casein sample in each studies after the equilibration period.

According to Bouchoux et al. (2009), hydrolysis of casein was minimal during the dialysis period of 7
days and while longer equilibrium periods of 10 to 50 days were applied to samples at osmotic
pressure > 0.05 bars, enzymatic hydrolysis was limited at these conditions due to lower activity in
viscous liquids and solids. However, we have concluded that extensive hydrolysis that have taken
place in our samples as observed by electrophoresis, although a lower extent of hydrolysis could be
inferred for casein samples at 10 bars in our FTIR spectroscopy data (Figure 8B), which were in solid
form. Our casein samples were in fact already a mixture of casein fragments with some small
peptides of sizes 6.5 kDa and below. Since the casein micelles were no longer intact, thus our
experimental data for caseins fell far away from the Carnahan Starling equation (Figure 13), which
was calculated using the specific volume of 1.377 g cm-3 and the molecular mass of 156 kDa
(Bouchoux et al., 2009). On the other hand, our data was more coherent with the study of Bouchoux
et al. (2009) and also with the Carnahan Starling model at higher osmotic pressure of >5 bars, which
agrees with Bouchoux’s proposition that there was limited hydrolysis due to lower enzyme activity at
higher concentrations. In addition, the data points at 0.03 and 0.08 bars appeared to be outliers that

fell far away from the van t’"Hoff model likely because it was more challenging for the samples at low

230



Part Il — Results and Discussion: Chapter 4 — Structural changes under a high concentration

osmotic pressures to attain equilibrium by dilution, due to the higher osmotic pressure in the stock
solution than the PEG bath, especially while hydrolysis was taking place within the membrane tubes.
Although the equilibration period was longer in our study, i.e. 3 weeks as compared to the 1 week
period (for osmotic pressures< 0.05 bar) employed by Bouchoux et al (2009), we observed a rapid
rate of hydrolysis of the casein suspension within the first week of equilibration, where the a,;-casein
decreased to 34% of its original content at week 0, and the B-casein decreased sharply to 13% of its
original content (Figure 12). After 3 weeks, the casein content in the samples decreased to less than
12.6%, 10.3% and 8.1% of the original content of a. -, as- and of B-caseins respectively. The
observations on our sample may be attributed to the behavior of casein-derived-peptides more than
being attributed to casein micelles alone. This proposition would be supported by the fact that we
used the smallest available MWCO of 100-500 Da to retain as much tryptic peptides as possible
within the dialysis tubes. Since a much larger MWCO of 12 — 14 kDa was used by Bouchoux et al.
(2009), the lower protein concentration attained in this study for the casein micelles at similar
osmotic pressures used, implied that our sample composition was likely to contain more peptides,
while the plasmin-hydrolyzed peptides in the study by Bouchoux et al. (2009) would have escaped
the dialysis membrane. The presence of these peptides exerted a higher osmotic pressure within the
dialysis tubes, therefore resulting in less water diffusing from the sample, into the PEG bath, and
therefore a lower total protein concentration attained at the end of equilibration than expected. In
fact, since the data from Bouchoux et al. (2009) differed from the van t’Hoff’s model at low
concentrations, this suggest that there were significant hydrolysis in the samples, which resulted in
higher molar concentration due to the formation of smaller casein micelles fragments.

Next, from the volume fraction calculated from total solids content (Figure 10B), we now know that
much higher osmotic pressures would be required to attain the maximum concentrations of
peptides, mixture and caseins. The particle volume fraction required to observed crystalline and
glassy states begins from 0.5 (Loveday et al., 2007; Pasquier, 2014). Yet the volume fraction we found
at 1.5 bars for the casein soft gel was at ¢ = 0.18, for a casein concentration of 187 g.kg, and the
most solid-like casein sample at 10 bars had a volume fraction of ¢ = 0.43, casein concentration of
419 g.kg™. Therefore, it would be necessary to evaluate the peptide and casein interactions at higher
osmotic pressure that would result in higher volume fraction, increased interactions due to closer
packing and hence the probable formation of solid peptide and mixture samples.

The liquid-gel transition from 0.03 to 1.5 bars and the gel-solid transition from 5 to 10 bars indicated
a change in intermolecular interactions regardless of the composition of the different suspensions.
This phase change was due to a reduction in water content and an increase in volume fraction, which
made it possible for peptides or casein micelles to come closer together and likely to interact with

each other at higher concentrations. For instance, there may also be interaction between the
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peptides and caseins in the mixture samples as suggested by the peculiar sticky texture only
observed in the mixture.

However, the FTIR spectrophotometry did not reveal evidence of interaction between the peptides
and caseins. Figure 8A showed that the increase in osmotic pressure resulted in a drop in PC2
coordinates, which implied an increase in aggregation, such as through intermolecular B-sheets; this
trend was observed in all 3 samples compositions, hence osmotic pressure resulted in an increased
intermolecular interaction in a manner that was roughly independent of sample composition.
Therefore, samples at osmotic pressures higher than 10 bars would be required in order to observe
whether intermolecular interactions between the casein and peptides can be exerted or not.
Additionally, higher osmotic pressure would be required to obtain peptide and mixture samples with
similarly high concentrations as the casein samples.

However, it was noted that the PC2 coordinates for the peptides remained independent of osmotic
pressure when it was at 0.3 bars and below. This implied that the peptides were too diluted at 0.3
bars and below to be able to interact or aggregate with each other.

FTIR spectrophotometry also confirmed that hydrolysis has taken place in all samples, as seen
through electrophoresis, as sharp decreases in as;, ds, and B- casein content in the mixture and in the
casein samples were observed, including for the peptides even though there were little remaining
caseins to begin with. In the case of peptides the hydrolysis by trypsin was almost complete and only
few caseins remained in the peptide stock solution as expected.

A cocktail of protease inhibitors could have been added to prevent casein hydrolysis by the action of
the difference proteases that may be present, though the effect of the cocktail diminishes over time
as the inhibitors could be degraded. Other types of inhibitor are chelatants such as EDTA may help
inhibit hydrolysis of metalloproteases if present, however due to their small molecular weight, they
would help inhibiting some proteases but it can also deplete casein of its calcium and destabilize the
casein micelle organization.

Another consideration for the lack of evidence of interaction between peptides and caseins may be
the presence of repulsive interaction between the peptides, such as through electrostatic repulsion.
From the hydropathy scores of the peptides identified from tandem mass spectrometry, it was
identified that most of the peptides were hydrophilic and charged, with B-casein yielding several
hydrophobic peptides and there were also a handful of highly hydrophobic peptides that originated
from a,;-casein. og;-casein gave peptides that were mostly net negatively charged, while a,, and k-
casein gave peptides that were mostly net positively charged. The peptides of B-caseins were more
amphiphilic as they are hydrophobic, yet several of them carried a net negative charge, except the
peptides B-CN (f 1-25) that was highly negatively charged. Hence, a large proportion of the peptides

were charged and hydrophilic, there may be significant electrostatic repulsions amongst the
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peptides, resulting in a lack of interaction to form tertiary structure and the level of concentration
after equilibration may be insufficient to counteract them. As hydrophobic interactions is a key
driving force in initiating peptide self-assembly through the formation of B-sheets (Guy and Voyer,
2012), the amount of hydrophobic peptides may be too low in this preparation or the complexity of
the hydrolysate too high to induce sufficient interactions between them in contrast to study
performed ion rationally designed peptides (Guy and Voyer, 2012; Hauser et al., 2011).This could
contribute to explain why the apparent texture of the peptide equilibrated samples was thinner than

that of the mixture and of the casein samples.

Conclusion

Having established the method for the concentration of peptides by osmotic pressure, we are now
able to plot its equation of state and predict the osmotic pressure required to obtain higher
concentrations of peptide samples in the next step of study, where closer packing of the peptides
could reveal its mechanism of molecular self-assembly; the peptides remained too diluted with the
experimental conditions applied in this study, 10 bars and below, and solid structures were not
observable. Only gel peptide samples were observed between the osmotic pressure of 5 — 10 bars.
Using the equation of state obtained in this study, the osmotic stress technique opens new ways to
study peptide interactions in highly concentrated suspensions that can be reached in fermented milk
products such as cheeses.

On the other hand, through electrophoresis, FTIR as well as through van t'Hoff and Carnahan Starling
models, we have found that hydrolysis of casein samples takes place rapidly within the first week of
equilibration, hence it was a challenge to maintain the integrity of the casein micelles in the time
required for the sample to equilibrate to the osmotic pressure required. Furthermore, the casein
derived peptides, produced by the hydrolysis, were contained within the membrane of MWCO of 100
— 500 Da, and had a significant impact on the osmotic pressure of the caseins. A solution would be to
add protease inhibitors; however there are several limitations, one of which would be the possible
degradation of inhibitors over time, which implies that the equilibration duration of the samples may
have to be shortened accordingly, perhaps by reducing sample volume and increasing the surface
area of exchange.

Once the conditions have been optimized to limit the hydrolysis of caseins, another series of
equilibration may be conducted at increased osmotic pressure to attain higher peptide and casein

concentrations for the study of interactions between peptides and caseins.
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Chapter 5: Incorporation of defined peptides in semi-hard model
cheeses

Proteolysis occurs throughout cheese ripening and provides to the cheese its texture and flavor. The
in situ proteolysis is partly controlled by the physico-chemical conditions applied during cheese
making and ripening and by the main proteolytic agents present and added. However, the proteolysis
mechanism is still far from being elucidated to orientate the cheese texture. Consequently, the
addition of hydrolysates directly at the beginning or the cheese manufacture is one way to

investigate the role of targeted peptides on the evolution of cheese texture.

The aim of this study was to determine how and to what extent the presence of defined peptides

changed the texture of model cheeses under different ionic strength conditions.

The hydrolysates T2 and G2 were chosen because of their different behaviors in the complex
matrices (chapters 2 and 3). The liquid preconcentrated cheese method was used to manufacture
cheeses with these hydrolysates in order to keep peptides within the cheese curd without a draining
step and to show the impact of targeted peptides on the model cheese texture. The cheese
fabrication was realized in collaboration with Actalia dairy products that are expert on the

manufacture of cheeses.

This study showed that the addition of Trypsin and Glu-C hydrolysates during the cheese
manufacture impacts the cheese texture until the end of the ripening. Depending on the nature and
quantity of peptides present in the hydrolysates, the cheese texture was deeply changed. Moreover,
changing the ionic strength had also an impact on the interactions peptides-peptides and/or

peptides-caseins involving different textures and techno-functional properties as stretchability.
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This approach is used as a first step to understand the role of peptides on the model cheese texture,

permitting later to appropriately orientate the textural properties of real cheeses.

The highlights of this chapter are:

- The nature of peptides and their quantity impact the texture of cheeses
- The proteolysis and the texture are dependent on the ionic strength
- The addition of hydrolysates at the beginning of the cheese manufacture could be

a way to change texture and to have a more controlled proteolysis during ripening

This chapter is presented under the form of an article which is in preparation for Journal of Dairy

Science®.

? Lacou, L. et al. Changes in textural properties of model cheeses by adding defined milk-derived

peptides in presence or absence of NaCl. In preparation for Journal of Dairy Science.
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Chapitre 5 : Incorporation de peptides dans des fromages modéeles
semi-durs

La protéolyse a lieu au cours de I'affinage du fromage et donne au fromage sa texture et saveur. La
protéolyse in situ est en partie contrélée par les conditions physico-chimiques appliquées lors de la
fabrication et de I'affinage du fromage ainsi que par les principaux agents protéolytiques ajoutés.
Cependant, les mécanismes régissant la protéolyse sont toujours loin d'étre élucidés en vue de
texturer a facon les fromages. Par conséquent, I'addition d'hydrolysats directement au début de la
fabrication du fromage est une facon d'étudier le réle de peptides ciblés sur I'évolution de la texture

du fromage.

Le but de cette étude était de déterminer comment et dans quelle mesure la présence de peptides

connus change la texture de fromages modeéles a des force ioniques différentes.

Les hydrolysats T2 et G2 ont été choisis du fait de leurs comportements différents dans les matrices
complexes (chapitres 2 et 3). La méthode de préconcnetration de fromages liquides a été utilisée
pour fabriquer des fromages avec ajout de ces hydrolysats afin de garder les peptides au sein du
caillé tout en s’affranchissant de I'étape d’égouttage et de démontrer I'impact de peptides ciblés sur
la texture de fromages modeles. La fabrication des fromages a été réalisée en collaboration avec
Actalia produits laitiers qui sont experts qui posséde une grande expertise sur la fabrication de

fromages.

Cette étude a montré que I'ajout d’hydrolysats trypsiques et de Glu-C lors de la fabrication des
fromages a un impact sur leur texture jusqu'a la fin de I'affinage. Selon la nature et la quantité de
peptides présents dans les hydrolysats, la texture des fromages a été profondément modifiée. De
plus, la force ionique a aussi eu un impact sur les interactions peptides-peptides et peptides-caséines

induisant des textures différentes.
Cette approche est utilisée comme premiére étape a la compréhension du réle des peptides sur la

texture des fromages modeles, permettant ensuite d’orienter convenablement les textures de

fromages réels.
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Les points a retenir de ce chapitre sont les suivants:

- Lanature de peptides et leur quantité impactent la texture des fromages
- La protéolyse et la texture dépendent de la force ionique de I'aliment
- L’addition d'hydrolysats en début de fabrication des fromages pourrait étre une facon de

changer la texture et de contréler la protéolyse lors de I'affinage.

Ce chapitre est présenté sous forme d’article in préparation pour soumission a Journal of Dairy

Science™.

% Lacou, L. et al. Changes in textural properties of model cheeses by adding defined milk-derived

peptides in presence or absence of NaCl. En préparation pour Journal of Dairy Science.
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Changes in textural properties of model cheeses by adding defined milk-
derived peptides in presence or absence of NaCl

In preparation for Journal of Dairy Science

Lélia Lacou*t, Romain Richoux#, Lydie Aubert-Frogeraist, Marine Nurdin¥, Jonathan Thévenot*t,

Valérie Gagnaire*+
* INRA, UMR 1253 Science et Technologie du Lait et de I'CEuf, France

Tt Agrocampus-Ouest, UMR1253 Science et Technologie du Lait et de |'ceuf, France
¥ Actalia Dairy Products, BP 50915, 35009, Rennes Cedex, France
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ABSTRACT

Texture is an important characteristic of cheese in determining consumer acceptability and quality.
One of the possibilities to enhance textural properties of cheese is the hydrolysis of caseins. This
study aimed to compare the texture of cheeses manufactured with ultrafiltrate retentate (R), sodium
caseinate (C), trypsin hydrolysate (T) of Glu-C hydrolysate (G). Cheeses were manufactured using a
liguid pre-concentrated cheese according to the microfiltration MMV (Maubois, Mocquot, and
Vassal) process with addition of 15% of sodium caseinate or hydrolysates, in presence or absence of
NaCl. Cheeses were ripened for 23 days at 12°C. Texture characteristics (hardness, cohesiveness,
stickiness, gumminess, elasticity and rupture strength) were determined by Texture Profile Analysis
(TPA). The stretchability was measured at each time of ripening. The present study shows that
texture attributes were influenced by the presence of peptides, the nature of the hydrolysate, the
ionic strength and the time of ripening. The presence of hydrolysate impacted the proteolysis
according to the cheese ripening time and induced formation of cheeses that were firmer and less
elastic than the control. Cheeses without NaCl addition had good stretchability unlike cheeses

containing NaCl which had no stretchability.

ABBREVIATIONS

+: with NaCl addition; -: without NaCl addition; C: Cheese manufactured with sodium caseinate; CFU:
Colony Forming Units; DO: Day 0 of ripening; D3: Day 3 of ripening; D13: Day 13 of ripening; D23: Day
23 of ripening; DH: Degree of Hydrolysis; G: Cheese manufactured with Glu-C; MMV: Maubois,
Mocquot, Vassal; NaCas, sodium caseinate; NaCl: sodium chloride; NaOH: sodium hydroxide; OPA: o-
phthalaldehyde spectrophotometric; PC: Principal Component; PCA: Principal Component Analysis; R:
Cheese manufactured with ultrafiltrate retentate; SDS: Sodium Dodecyl Sulphate; SEM: Standard
Error of the Mean; T: Cheese manufactured with Trypsin; TCA: Trichloroacetic; TPA: Texture Profile

Analysis.

KEYWORDS

Food, stretchability, proteolysis, TPA, salt, hydrolysate, MMV cheese
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INTRODUCTION

An increasing proportion of cheeses is used as an ingredient added on several meals as pizza,
burgers, lasagna or breads. In most of these applications, physical and rheological characteristics of
cheese, such as hardness, elasticity, meltability, stretchability or even color, are important textural
and flavor attributes that are strong criteria of choice for consumers.

The vast variety of taste and textures of cheese arises from the complex organization of components
such as proteins, lipids and carbohydrates and from their evolution during the ripening. Among
them, the caseins, the main milk proteins constitute the backbone of cheese structure and give initial
textural properties that are progressively changed by proteolysis that occurs throughout the ripening
period (Fedrick and Dulley, 1984; Fox et al., 1995; Fox and McSweeney, 1996). Actually, the extent of
proteolysis and the type of peptides produced control and modify the nature and strength of the
casein interactions and the casein and casein-derived peptides which in turn have an impact on the
final cheese texture (Lucey et al., 2003). Proteolysis involves the concomitant and successive action
of proteinases and peptidases from different origins: milk (plasmin), coagulants added during
manufacture (rennet or chymosin) and microorganisms (lactic acid bacteria and other ripening flora)
(Lucey et al., 2003; Upadhyay et al., 2004). Therefore, several hundreds of peptides are produced
throughout ripening time more or less implied in final functional properties of the cheese. Such a
complexity renders difficult the elucidation of the proteolysis mechanisms and the development of
strategies to produce specific hydrolysis of caseins and to orient functional properties such as
meltability, stretchability and firmness.

The texture generally changes markedly in the first weeks of ripening as the hydrolysis of ag;-casein
by the rennet into the a,;-casein derived peptide, ag;-l (f 24-199), results in a general weakening of
the casein network. This proteolytic step was correlated with changes in the rheological properties of
cheese, notably a lower elasticity and a decrease in the force required to fracture the cheese
(creamer, Richardson) and in the melting and stretching properties (Borsting et al., 2012; Brickley et
al., 2007). Thereafter, the changes in texture are determined mainly by the rate of proteolysis and
the other kinds of peptides produced. Thus stretching properties rapidly decreased when level of
proteolysis is increasing throughout ripening time (Sadat-Mekmene et al.,, 2013). However,
stretchability was differentially affected according to the types of peptides produced (Lacou et al.,
2014; Sadat-Mekmene et al., 2013). Therefore, knowing which kinds of peptides can be associated
with defined functional properties will allow orientating the way they are produced and hence
orientate the functional properties.

The aim of this study is to show how incorporation of peptides with peculiar physico-chemical

characteristics can impact the texture of cheese. For this, casein hydrolysates were produced by

242



Part Il — Results and Discussion: Chapter 5 — Peptides in semi-hard model cheeses

using two enzymes with known specificities, Trypsin and protease from Staphylococcus aureus V-8
(endoproteinase Glu-C) and were reincorporated into milk retentate by using the liquid pre-
concentrated cheese method (MMV) (Maubois et al., 1969). MMV cheese making process was used
to promote casein concentration by membrane filtration as well as whey removal before coagulation
step and to avoid the draining step and the withdrawal of the added peptides. The texture,
proteolysis, microbial development and physico-chemical characteristics of cheeses were followed
according to the ripening time. Differences between cheeses could mainly be explained in terms of

the composition and physico-chemical characteristics of the reincorporated peptides.

MATERIALS AND METHODS

Sodium caseinate sample

Sodium caseinate (NaCas) powder (Armor-Protéines, France) contained 87% (w/w) of proteins. The
protein content was determined by both Kjeldhal method and UV spectrophotometry (UVmc2,
Monaco SAFA, France) at A = 280 nm using extinction coefficient of 0.81 ml. mg™. cm™ (Oliva et al.,
2001). The caseinate contained only minor amount of whey proteins as shown by SDS-PAGE
electrophoresis (protocol described in the part “Protein profile by electrophoresis: Tris-Tricine/SDS-
PAGE and Urea-page Analysis” of this article). This powder was dispersed in ultrafiltrate permeate or

in water using motor agitation in order to obtain a solution at 10 g of caseins.kg™.

Enzyme digestion

NaCas was hydrolyzed by two immobilized enzymes with different specificities: Trypsin and Glu-C,
according to the protocol of Lacou et al. (2016). Trypsin (T) and Glu-C (G) hydrolysates present
different degree of hydrolysis (DH): 4.5% with Trypsin and 1.8% with Glu-C.

Cheese making

Two cheese-making experiments were carried out following the MMV process (Fig. 1). The raw milk
was pasteurized at 72°C during 20 secondes, skimmed and microfiltered on a membrane with pore
size of 1.4 um. The fat:protein (1:1) content was standardized by adding heat-treated cream (120°C
for 20 s).The standardized pasteurized skim milk was than ultrafiltrated on a mineral membrane with
pore size of 0.02 um, a surface of 1.8 m? (Membralox, Pall Exekia, France) at 50°C during 2.5 hours (1
hour up to a concentration factor of 3 and diafiltered with 1 diavolume during 1.5 hours up to a

concentration factor of 6). The protein content of the milk retentate was concentrated six times
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compared to the original milk protein content and the lactose was partly removed by diafiltration.
The lactose was removed in order to mimic the conditions of traditional cheeses that have cell lysis
of Lactococcus lactis during ripening due to lactose starvation to liberate the internal proteolytic
enzymes. Then, 1.5% of NaCl was added or not to the milk retentate at 50°C. 15% of hydrolysate or
NaCas (w/w), suspended in ultrafiltrate permeate, were added to this retentate kept at 50°C. After,
the mix was cooled at 30°C and both Lactococcus lactis starter (MM100, Danisco®, France) and
chymosin (CHY-MAX Plus, Chr. Hansen A/S, Denmark) were added to the mix. This mix was incubated
at 30°C until both coagulation and lactic fermentation were complete (around 20 hours). Cheeses
were vacuum-packed and were ripened at 12°C and withdrawn for further analyses at 3 days (D3), 13

days (D13) and 23 days (D23).

Standardization:

- Fatcontent Dialfiltration for NaCas
- Protein content lactose

- Dry extract standardization \ /

Standardized milk UF retentate Hydrolysate
(RUF) Solubilization at
180g.kg*in UF
permeate
Q“) + starter
5 + Rennet
Q“ +/- NaCl (1,5%)
MMV cheeses
3 times of ripening “ ‘ ‘ ‘ ‘ “ ‘ “
(vaccum-packed): \
D3
D13 15% NaCas 15% NaCas 15% T 15% T 15% G 15% G 100% RUF 100% RUF
d23 +85% RUF + 85% RUF +85% RUF + 85% RUF +85% RUF + 85% RUF - Nacl + NaCl
- NaCl + NaCl -Nacl + NaCl - Nacl + Nacl
Rippening
at 12°C

48 cheeses
(n=2)

Fig 1. Manufacture of MMV cheeses with addition of hydrolysates (Tryptic or Glu-C hydrolysates) or
sodium caseinate (NaCas).

Hereafter, the cheeses manufactured using only retentate, or with addition of caseinate, tryptic
hydrolysate and Glu-C hydrolysate that are designated as R, C, T, and G cheeses respectively.

Moreover the salting of the cheeses are noted + with NaCl and — without.
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Cheese Analysis

pH was measured directly in the middle of cheeses using a pH meter (WTW pH 197i, Geotech, USA).
MMV cheeses were analyzed for moisture (IDF ISO 5537:2004, 2004), fat content (Heiss, 1961) and
dry matter (DM) (ISO 2920:2004 IDF 58: 2004).

Lactococcus lactis enumeration

Under a sterile atmosphere, one gram of grated MMV cheese at D3, D13 and D23 was dispersed in10
mL of sterile sodium citrate 20g.L™ in a bag and crushed in a pendular blender Mixwel" (Awel, France)
for 120 s. From this suspension, the enumeration of the Lactococcus Lactis flora cell counts was
made extemporaneously, by successive series of dilution in tryptone water in microwells according
the method of Baron et al. (2006) and plate count on M17 medium (Terzaghi and Sandine, 1975) at

30°C for 48h . The citrate suspension was then frozen and conserved at -20°C until used.

o-phthaldialdehyde (OPA)

Proteolysis was measured in triplicates using the OPA method of Church et al.(1983) with methionine
as a standard and adapted to microplate by Darrouzet-Nardi et al. (2013). Citrate suspension of
cheeses were thawed in a water bath at 30°C for 15 min, precipitated with HCl 1N at pH 4.6 or with
trichloroacetic acid 12 % (w/v) final concentration. Then, samples were centrifuged at 3500 g for 10
min at 25°C before the supernatants were diluted at a ratio 1:5 with sodium tetraborate 0.1 M pH 9.5
for each sampling except initial time samples (ratio 1:2). The results were expressed as mmol

methionine equivalent. L.

Protein profile by electrophoresis: Tris-Tricine/SDS-PAGE and Urea-PAGE Analysis

The extent of casein degradation was evaluated by Urea-PAGE (14% of acrylamide). The pH 4.6
precipitates obtained from the OPA sample preparation were resuspended at the original volume
with urea 8.75 M and condition of electrophoretic migration were used.

The peptide pattern was analyzed by SDS-PAGE as described by Schagger and von Jagow (1987) using
Protean Il system (16 x 16 x 0.1 cm; BioRad, France) with SDS/Tris/Tricine buffer and a concentration
gradient from 12 to 18% of acrylamide according to Sadat-Mekmene et al. (2011). All gels were
scanned by LabScan (GE Healthcare, France) and analyzed by ImageQuant software (GE Healthcare,

France), band volumes were estimated by the net area parameter.

Texture Profile Analysis (TPA)

MMV cheeses were cut into cylindrical samples (20 mm thick and 20 mm diameter) using a cookie

cutter and a wire cutter, and equilibrated at 20°C for at least 1 hour prior to testing. A two-bite
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compression test was performed using the texturometer Lloyd instrument (Ametek, France) with a
100 kN load cell. A 50% compression was used and crosshead speed was 60 mm.min™. Data
collection was done using the Nexigen Plus software and TPA parameters (hardness 1 for the first
compression, hardness 2 for the second compression, cohesiveness, adhesiveness, stickiness,
adhesive force, elasticity and gumminess) were determined in duplicate from the texture profile

curve as described by Bourne (1978).

Cheese Stretchability
Cheese stretchability was assayed by a method involving vertical traction of the cheese melted at
82°C according to Richoux et al. (Richoux et al., 2001). The length (mm) of strands of heated cheese

was measured at the breaking point of the stretched strand.

Statistical analysis

Two independent sets of cheeses were manufactured and, for each data measured, 2 or 3
determinations per sample were done according to the protocol used.

To link cheese stretchability and cheese texture to a specific hydrolysate, a methodology based on
multivariate exploratory analyses, such as Principal Component Analysis was performed using
FactoMineR, an R package (Team, 2005). One PCA was performed to distribute the cheeses according
to their biochemical and microbiological analyses and to their texture parameters. The first two PCs
were retained as the totality of the inertia explained by both of them, represented a large part of the
total inertia.

For all experiments, significant differences in time and hydrolysate type were tested using a
nonparametric analysis of repeated measures with the “f1.1d.f1” function of the package “nparLD”
(Noguchi et al.,, 2012) in R 3.2.2 (Team, 2005). In case of a significant fixed effect, the package
“nparcomp” (Konietschke et al., 2014) was used to test multiple comparisons. To analyze the
interaction effects, a linear mixed effect model with a random intercept on experiments to take into
account the repeated measures was performed and followed by function “difflsmeans” of the

package “ImerTest” (Kuznetsova et al., 2013).

RESULTS

Chemical Analyses and Viability of Starters

The composition of the cheeses (Table 1) fitted well with the data already published on MMV Saint
Paulin — type cheeses (Goudedranche et al., 1986). A slight difference was noted between final

composition of the cheeses made with ultrafiltrate retentate (control R) and the cheeses made with
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NaCas or hydrolysates regarding the following parameters: dry matter (DM), moisture in the non-fat
substance (MNFS), fat in dry matter (FDM) and pH (Table 1). The control cheese had a slightly higher
DM value than the other cheeses (P<0.001). The presence of NaCl involved a decrease in DM of all
the cheeses, both at D3 and D13 (P<0.001). The DM and FDM were higher for R cheeses than for the
others and for cheeses without NaCl than with NaCl whereas these values did not varied according to
the time of ripening (P<0.001). The cultivability of Lactococcus lactis, used as starter, reached ~9.5
logyo colony forming units .g™ cheese (CFU) at D3. The cultivability continuously decreased thereafter
until D23, to reach around 9 logi,, CFU.g" cheese. A significant difference (P<0.05) was shown
according to the ripening time between D3 and D13. A decrease of 90% of the Lactococcus lactis
population was actually observed during this ripening period. Adversely, no significant difference of
Lactococcus lactis cultivability was observed regardless of the types of cheeses containing or not

caseinate and hydrolysates, i.e. R, C, T and G cheeses or the presence or absence of NaCl.

Extent of proteolysis

The proteolysis, including the proteolysis in situ and the peptides added in the cheeses with the
hydrolysates, in all cheeses increased significantly according to the ripening time for soluble nitrogen
compounds at both pH 4.6 and after TCA precipitation (P<0.001) (Table I). With or without NaCl, the
proteolysis in cheeses was higher for cheeses manufactured using tryptic hydrolysates than for the
other cheeses (P<0.001), in agreement with the initial composition of the hydrolysates (Lacou et al.,
2016), regardless of the time of ripening and of the precipitation method used (P<0.001) (Table I).
The NaCl addition weakly changed the overall proteolysis extent in cheeses except for the R and T
cheeses, in which the proteolysis extent of R+ and T+ cheese was significantly higher than that of
respectively R- and T- cheeses (P<0.001) for the pH 4.6 precipitation at each time of ripening whereas
the proteolysis in the T+ was significantly higher than T- for the TCA precipitation (P<0.001) only at
D23. The proteolysis indices were twice higher for soluble pH 4.6 nitrogen compounds compared to
the TCA soluble ones. The precipitation at pH 4.6 led to the precipitation of caseins and large
peptides, as as-1 or y-CN peptides from [-caseins, while the other peptides were present in the
soluble fraction (Upadhyay et al., 2004). In the case of the precipitation with TCA, caseins, whey
proteins and large and medium peptides were precipitated while smaller peptides, from 2 to 20
amino acids, were soluble (Yvon et al., 1989).

From the statistical analysis of data obtained with the precipitation by both pH 4.6 and TCA, the
interactions between the ripening time and the type of cheese were significantly different (P<0.001).
The proteolysis was higher for the cheeses manufactured with Trypsin hydrolysate (with or without
NaCl) than for the other cheeses regardless of neither the time of ripening nor the process of

precipitation (P<0.001) (Table I). Comparing the cheese T- to the cheese T+, the proteolysis in T+ was
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significantly higher than in T- (P<0.001), for the precipitation at pH 4.6 at every times of ripening,
whereas the proteolysis in the T+ was significantly higher than T- for the precipitation with TCA
(P<0.001) only at D23.

The presence of NaCl increased the proteolysis extent of pH 4.6 soluble components (P<0.05) except
for R cheese at D23 and G cheese at D13. For TCA precipitation, the presence of salts influenced
significantly the proteolysis in all cheeses (P<0.05), except for C and T from D3 to D13. Contrary to T
cheeses, the cheeses without NaCl had a higher index of proteolysis in the soluble TCA fraction than
the cheeses with NaCl.

Primary proteolysis of caseins, estimated by urea-PAGE, is also shown in Table I. a;, a,, and B-caseins
were slightly or even not hydrolyzed during the ripening time. No significant difference was observed
between the cheeses, according to the type of added hydrolysates and to the presence or absence of

NaCl.

Table I. Composition and proteolysis of cheese during ripening.
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Cheese R- R+ C- C+ T- T+ G- G+
Dry matter (DM) (%) D3 46.6:00° 44.4., " 43.6400° 41.5,,° 44.2, 5 43.7.0, 44.3,45° 41.4,9,°
D13 44.3,," 45.2,00 43.2,0," 40.7.00" 43.5,04 43.1,0 43.6.00 40.7.04
FDM (%) D3 47.2.0 45.1,9," 43.5,," 40.9,0,° 44.1.05° 42.4., 44,045 4234,
D13 47.4.7° 44.2, " 44.04," 417400 43.7.00"  41.8.6 44.2,0"  41.8,,
MNFS (%) D3 68.49.0°  69.54i00°  69.58.005°  70.46.0,7°  69.33403°  69.10.02°  69.12.04°  71.08:0.4°
D13 70.48.5:°  68.49.00°  88.60is0s” 71.41.00°  69.79005°  69.43.00°  70.09:000°  71.48.008°
pH D3 5.10 5.34 5.22 5.28 5.24 5.30 5.23 5.29
Lactococcus lactis cultivability (log CFU.g" D3 9.85° 9.53.03°  9.6%011°  9.56:01°  9.55.001°  9.47u007°  9.68.014°  9.46°
cheese] D13 9.46.03°  9.05:015"  9.29:007°  9.20:00s"  9.02:033°  8.98.3°  8.74i3°  9.08.04"
D23 93535  8.86:043°  8.96:01°  9.17w00:"  8.93uw010°  8.77sm00°  8.74iw1s”  8.78s005
Proteolysis indices for soluble DO  22.104 5" 18.35.0 46 29.27.975° 24.28.1 0"
components at pH 4.6 (eq. mM of D3  25.68.555  30.39.18:°  24.20.040  26.02.5 351908 38.89.18  28.48.055  26.7:063"
methionine) D13 3320, 5™ 33.93,1,™ 31.92:05° 347840 442800 47.33.05"  34.06407,°  34.97.108
D23 45.00s,7,  43.76:1318"  43.60s006"  47.09:160F 53.26412°  58.96.1¢s  43.33.117  41.68.005°
DO 1.08.0.05 0.66
Proteolysis indices for soluble D3 10.01:1,4° 7571069 8.86:1.08" 7.28:1 65 16.31i0g0°  18.00415°  10.36411,"  7.584175°
components after precipitation with TCA  p13  17.04,,5,°  11.88:06:°  15.1740°  14.22.110"  24.17.155  25.52.08  15.71.155°  12.93.15"
12%(w/w) (eq. mM of methionine) ‘ , ,
D23 23.86.¢7  19.09.158  22.48,168  25.65.155"  30.32.1°  35.23.100" 214354  15.63.4°
Native og;-casein (%) D3 109" 83,° 85,20 73,18 106.,33° 87.11° 106.,° 87.1°
D13 9Ly’ 120" 67" 102.4° 98.41° 98.3,° 8Lsss” 987"
D23 88, 107416 94,..° 98.s° 95,3,° 98.15° 96.35° 98.39°
Native ag,-casein (%) D3 108, 96.1,° 109.,° 95,¢° 100,,0° 93’ 111,° 93,5
D13 96.° 114, 103.3;° 109.¢” 106.,° 1014,4° 99,,4° 107.1,°
D23 109, 113, 114, 116.4:8° 129,,° 114,5° 119, 109,,,°
Native B-casein (%) D3 109, 83,4, 92454 89.5° 100.3," 91446 106.¢° 78.5°
D13 89" 1035 85.25° 101.59° 97.2° 92,3¢° 89;3° 87’

249



Part Il — Results and Discussion: Chapter 5 — Peptides in semi-hard model cheeses

D23 84, 878" 103,5° 94,5° 110,,° 93,,° 105,,° 95,5°

Data shown are the mean value of the two determinations . ctandard deviation

Ripeningtime: D3, day 13; D13, day 13; D23, day 23

DM=Dry matter; FDM = fat-in-DM; MINFS = moisture in nonfat substances

% different letters = significant differences (P<0.05)

(R), control concentrate milk retentate cheese; retentate cheese with (C), sodium caseinate, (G) hydrolysate G or (T), hydrolysate T; (+) with or (-) without
NacCl.
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Peptide profile

The peptides with an apparent molecular weight ranged from 3 to 26 kDa present in water soluble
extract of cheese using ultrafiltrate retentate, sodium caseinate, hydrolysate G or hydrolysate T were
separated by Tris/Tricine SDS-PAGE (Figure 2). The main bands were common to all cheeses, exerting
various intensities. Ripened cheeses present a band “c” at around 15 kDa that was more intense than
that present in the cheeses at DO. Significant differences in peptide profile were shown for the
peptides from 14 to 3 kDa (bands d, e, f, g). These bands were only present for the cheeses made
with added Trypsin and Glu-C hydrolysates. No great differences were observed between the peptide
profiles of the cheeses with or without NaCl except in terms of intensity as exemplified by bands “h”
that were clearly less intense in cheeses ripened without salt.

Regarding the band corresponding to proteins over 25 kDa, we confirmed a slight degradation of the
caseins, bands that are comprised between 35 and 26 kDa due to their migration above their
effective molecular weight when phosphoserine residues are present within the casein sequence.
The bands “a” which is the BSA and “b” have similar intensities in all cheeses. It appears that in T+
and G+ cheeses additional bands were present over 30 kDa reflecting the release of intracellular
bacterial proteins during cell lysis (Gagnaire et al., 2004), in agreement with the higher decrease in

cultivability previously observed.
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Fig. 2. Tris/tricine SDS-PAGE electrophoregrams of water- soluble extract of MMV cheeses manufactured using ultrafiltrate retentate (R), sodium caseinate
(C), hydrolysate G (G) or hydrolysate T (T), with NaCl (+) or not (-). MM = molecular mass marker. 0, 3, 13 and 23 represent the day of ripening. Bands a and
b were highly present in sample G+ and the band c is more intense in the ripened cheeses d, e, f and g band present only in T" G* and T" G cheeses

respectively.
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Syneresis was observed at the surface of all cheeses except for the cheese T- at D23. The profile of
proteins and peptides found in the syneresis were analyzed by Tris-tricine SDS-PAGE and the same
profile of peptides and proteins (whey proteins, a,;- and B- caseins) was found regardless of the type
of hydrolysate added to the cheese and the presence or absence of NaCl (Figure 3). There were more
proteins than peptides between 20 to 3 kDa that were evacuated in the expelled whey and
consequently did not participate to the cheese structure. These peptides were particularly presented
in the syneresis of T and G cheeses compared to the syneresis of R and C cheeses. Therefore, the
presence of these peptides was only due to the presence of the hydrolysates in the cheeses and not

to the in situ proteolysis.

R+ R- C+ C- T+ T- G+ G-
MM RO 3 13 23 31323 C0 3 1323 31323 T0313 23 313 GO 3 1323 313 23

»

97 —=
66 —=

30 —
26.87
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34 —

Fig. 3. Tris/tricine SDS-PAGE electrophoregrams of the syneresis of MMV cheeses manufactured
using ultrafiltrate retentate (R), sodium caseinate (C), hydrolysate G (G) or hydrolysate T (T), with
NaCl (+) or not (-). MM = molecular mass marker. 0, 3, 13 and 23 represent the day of ripening.

Dynamic of stretchability of Cheese during ripening

The stretchability of cheeses according to the time of ripening was shown in Fig. 4. When the cheeses
were salted, no strands were observed (data not shown) in contrast to the non-salted cheeses R-, C-,
T- and G- which showed variable stretchability according to both the time of ripening and the type of
cheese. Thus, at D3, three cheeses, R-, C- and T- formed strands around 100 mm while no strands
were observed for G-. At D13, the stretchability was maximal for all cheeses. The strand length was
around 450 mm for R- and C- cheeses and around 320 mm for T- and G-. The strand length of R- and
C- cheeses decreased at D23 to reach a value of 350 mm, while the strand length of G- cheeses

remained constant and the T- cheeses was not stretchable anymore.
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Fig. 4. Changes in stretchability during ripening of MMV cheese manufactured without NaCl (-) using
ultrafiltrate retentate (R) as a control, and with 15 % (w/w) sodium caseinate (C), hydrolysate G (G)
and hydrolysate T (T).

Texture analysis of cheeses

The parameters of cheese texture, cohesiveness, hardness at the first (hardness 1) and at the second
(hardness 2) compression, stickiness, rupture strength, gumminess and elasticity are shown on the
Figures 5 to 10. From the ANOVA-type test, it was observed that the elasticity, the stickiness and the
hardness at the second compression were dependent from the interaction “type of hydrolysate used
- time of ripening”. Concerning the hardness at the first compression, the gumminess and the
rupture strength, simple effects were detected. These parameters were only dependent of time and
of type of hydrolysate used but no interaction between these conditions existed. The Figures 5 to 10
showed the variations of these texture parameters according to the time of ripening and the type of
hydrolysate used whereas the Table Il presents the statistical analysis results of the comparison of

cheeses with or without NaCl.

The cohesiveness is showed on the Figure 5 and represents the strength of internal bonds making up
the body of the product. The cohesiveness value of around 0.4 showed the weak cohesiveness of all
cheeses whereas no difference exists between the cheese cohesiveness regardless the addition of
hydrolysate or not, the type of hydrolysate used, the presence or not of NaCl or the time of ripening.
This could indicate damage of the internal bonds between caseins and thus a higher tendency to
fracture under stress. Most of cheeses prepared showed weak resistance to disintegration due to
compression. Neither the presence of peptides nor the presence of native individual caseins was

remedied this default.
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Cohesiveness

Fig. 5. Cohesiveness of cheeses at 3 (D3), 13 (D13) and 23 (D23) days of ripening. Cheeses are
manufactured with ultrafiltrate retentate (R), used as a control, and with 15% (w/w) sodium
caseinate (C), Trypsin hydrolysate (T) and Glu-C hydrolysate (G), with (+ in light grey) or without (- in
dark grey) NaCl. The mean and SEM are represented. The photographs show the weak cohesiveness
of the cheeses.

Hardness is defined as the force necessary to attain a given deformation (Szczesniak, 2002; Uprit and
Mishra, 2004). During the ripening time, the hardness 1 decreased significantly (P<0.001) for all
cheeses from D3 to D13 and stayed at the same value from D13 to D23, except for (i) C+ for which
the hardness decreased from D3 to D13 and increased from D13 to D23 and for (ii) G+ for which the
hardness stayed identical during the ripening (Figure 6A). The hardness at the second compression
was weaker than the hardness at the first compression for all cheeses. However, the hardness 2
followed the same pattern than the hardness 1 during the ripening time, except for T+ for which the
hardness 2 stayed at the same value during the ripening time (Figure 6B). The hardness 2 decreased
significantly (P<0.001) for all cheeses except for (i) C+ for which the hardness decreased significantly
from D3 to D13 (P<0.001) and increased significantly from D13 to D23 (P<0.05) and for (ii) G+ and T+
for which the hardness stayed the same during the ripening. The presence of hydrolysate impacted
the hardness of cheeses too. The hardness 1 of cheeses made with hydrolysates was higher than the
hardness of cheese control without NaCl. At D3, the hardness 1 of C- and G- was significantly higher
than the hardness of the control R- (P<0.001). However, at D13 and D23, the hardness 1 was identical
for the control than for C- and G- cheeses. Throughout ripening time, the hardness 1 of T- was
significantly higher than the hardness of the control R- (P<0.001). The only one difference between

C+ cheese and the control R+ cheese was found at D23. At D23, the hardness 1 of C+ was higher than
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the hardness 1 of R+ (P<0.001). No significant difference was found between the hardness 1 of
cheeses manufactured with G+ and R+. For T+, the hardness 1 was higher than for R+ at each time of
ripening. The highest hardness 2 was found for T- and the weaker for R-, at D3. No difference was
shown between the hardness 2 values of the cheeses manufactured with C- and the control R-,
regardless of the ripening time. The hardness 2 was significantly higher for cheese made with G-, T-
and R-, at D3 (P<0.01, 0.01 and 0.05 respectively). However, at D23, no difference was observed
between the hardness 2 of G-, T- and the control R-. The hardness 2 of C+ at D3 was higher than R+
(P<0.01). It was the same phenomenon at D23 (P<0.05) but no difference was established between
these 2 cheeses at D13. The hardness 2 of G+ and T+ cheeses were the same than for R+. The
hardness at the first compression was higher than the hardness at the second compression, in good
correlation with the cohesiveness value which was around 0.4. As the presence of hydrolysate, the
presence of NaCl had an important impact on the cheese texture. At D3, the cheese with NaCas
addition had the same hardness 1 with or without NaCl. The hardness 1 of R cheese increased with
the addition of NaCl whereas the hardness 1 of cheeses with hydrolysates decreased (P<0.001). At
D13, control cheese had the same hardness 1 with or without NaCl whereas the hardness of C, G and
T cheese decreased (P<0.001). At D23, cheeses made with Glu-C and Trypsin hydrolysates had the
same hardness whereas R and C cheeses made with the addition of NaCl had a weaker hardness 1
than cheeses without NaCl (P<0.001). At D3, the control cheeses and the NaCas had the same
hardness 2 with or without NaCl whereas cheeses made with hydrolysates T and G had a sharp
decline of hardness 2 with the addition of NaCl (P<0.01 and P<0.001 respectively). At D13, only
cheeses made with Trypsin hydrolysate had a strong decrease of hardness 2 with the addition of NaCl

(P<0.05). At D23, the hardness 2 of each cheese was the same with or without NacCl.
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Fig. 6. Hardness at the first compression (hardness 1, Figure 6A) and hardness at the second
compression (hardness 2, Figure 6B) of cheeses at 3 (D3), 13 (D13) and 23 (D23) days of ripening.
Cheeses are manufactured with ultrafiltrate retentate (R) used as a control, and with 15% (w/w)
sodium caseinate (C), Trypsin hydrolysate (T) and Glu-C hydrolysate (G), with (+ in light grey) or
without (- in dark grey) NaCl. The mean and SEM are represented; * P<0.05; ** P< 0.01; *** P<0.001.

The stickiness values are presented on the Figure 7. The stickiness of cheese was higher when the
hydrolysates were reincorporated into the cheeses than for the control cheese and the cheese with
NaCas, in absence of NaCl. The stickiness was the same for R- and C- cheeses throughout ripening.
The stickiness was higher for G- and T- cheeses (P<0.05 and 0.001 respectively) than the stickiness of
the control R-, at D3. At D13 and D23, the stickiness was higher than R- only for T- cheese. With NaCl,
the stickiness at D3 was weaker than R+ except for T+, which had the same value than R+. The Figure
7 shows that the stickiness decreased significantly for each cheese (P<0.01) from D3 to D13 and stay
at the same value from D13 to D23, except C+ and G+ for which the stickiness firstly decreases and
then increased significantly (P<0.05). At D13, no difference between the stickiness of all cheeses was
observed. At D23, the stickiness of C+ and G+ cheeses was higher than R+ (P<0.01) whereas it was
the same value for T+. At D3, the control cheese and the cheese made with Trypsin hydrolysate
addition had the same stickiness whereas the cheeses made with NaCas and Glu-C hydrolysate had a
weaker stickiness with NaCl than without NaCl (P<0.05 and 0.001 respectively). At D13, the addition

of NaCl had no impact on the stickiness of the cheese control and the cheese made with NaCas.
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However, the addition of NaCl involved a decrease of the stickiness of T and G cheeses (P<0.001 and

0.05 respectively). At D23, the NaCl had an impact only on the stickiness of cheese made with NaCas.

The stickiness increased with the presence of NaCl.
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Fig. 7. Stickiness of cheeses at 3 (D3), 13 (D13) and 23 (D23) days of ripening. Cheeses are
manufactured with ultrafiltrate retentate (R) used as a control, and with 15% (w/w) sodium caseinate
(C), Trypsin hydrolysate (T) and Glu-C hydrolysate (G), with (+ in light grey) or without (- in dark grey)
NaCl. The mean and SEM are represented; * P<0.05; ** P< 0.01; *** P<0.001.

The rupture strength represents a nominal stress developed in a material at rupture. The rupture
strength followed the same pattern as the hardness according to the ripening time (Figure 8). More
the hardness was more the rupture strength was. The rupture strength was correlated with the
hardness. At D3, control cheese and cheeses made with hydrolysates had a weaker rupture strength
with NaCl than without (P<0.001). At D13, NaCl had no influence on the rupture strength value of the
cheeses. At D23, the R cheese had a lower rupture strength with NaCl than without (P<0.001)
whereas the C cheese had a higher rupture strength with NaCl than without (P<0.001).
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Fig. 8. Rupture strength of cheeses at 3 (D3), 13 (D13) and 23 (D23) days of ripening. Cheeses are
manufactured with ultrafiltrate retentate (R) used as a control, and with 15% (w/w) sodium caseinate
(C), Trypsin hydrolysate (T) and Glu-C hydrolysate (G), with (+ in light grey) or without (- in dark grey)
NaCl. The mean and SEM are represented; * P<0.05; ** P< 0.01; *** P<0.001.

The gumminess depends on the hardness of the product and is the energy required to disintegrate a
semi-solid food product to a state ready for swallowing (Fox et al., 2004). The gumminess values of
each cheese are presented on the Figure 9. The gumminess of all cheeses decreased significantly
(P<0.001) from D3 to D13 and stayed at the same value from D13 to D23, except for the control R-
and R+ for which the gumminess stayed at a value of around 8 kgf. One exception was observable.
The gumminess of the T+ cheese increased significantly (P<0.001) from D3 to D13 and stayed at the
same value from D13 to D23. At D3, the gumminess was higher for the cheeses containing
hydrolysates and NaCas than for the control, regardless the presence or not of NaCl (P<0.05) except
for G+ which has the same value than the control. At D13 and D23, the gumminess of only T- was
higher than R- (P<0.001) but not this of C- and G-. At D13 and in presence of NaCl, the presence of T
hydrolysate led to an increase of the gumminess compared to the control (P<0.001). At D23, this
increase was only valid for T+ (P<0.001) but not for G+. At D3, the gumminess of C increased with the
presence of NaCl (P<0.001) whereas the control stayed at the same value. However, the gumminess
of G and T cheeses decreased with the addition of NaCl. At D13, the cheeses manufactured with

hydrolysates G and the control had a weaker gumminess with NaCl than without (P<0.001) whereas
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the T cheese had a higher gumminess (P<0.001). At D23, the control cheese and the T cheese had a

weaker gumminess with NaCl than without (P<0.001).

Gumminess (kgf)
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Fig. 9. Gumminess of cheeses at 3 (D3), 13 (D13) and 23 (D23) days of ripening. Cheeses are
manufactured with ultrafiltrate retentate (R) used as a control, and with 15% (w/w) sodium caseinate
(C), Trypsin hydrolysate (T) and Glu-C hydrolysate (G), with (+ in light grey) or without (- in dark grey)
NaCl. The mean and SEM are represented; * P<0.05; ** P< 0.01; *** P<0.001.

The elasticity is the rate at which a deformed material returns to its original form after the deforming
force is removed (Civille and Szczesniak, 1973). The elasticity of cheeses increased significantly from
D3 to D13 (P<0.05) and stayed at the same value from D13 to D23, except for: (i) T+ for which the
elasticity had the same value from D3 to D23 (P<0.01), (ii) C+ for which the elasticity increased
significantly from D3 to D13 (P<0.001) and decreased significantly from D13 to D23 (P<0.01) and (iii)
G+ for which the elasticity did not change during the ripening time. Without NaCl, the elasticity
decreased when trypsin hydrolysate was added to the cheese, regardless of the time of hydrolysis
(P<0.05). For the other days of ripening and the other cheeses, there was no difference concerning
their elasticity. With NaCl, the elasticity at the beginning of the ripening was higher than R+ only for
G+. The elasticity of T+ at D13 became weaker than the elasticity of R+ whereas at D23, the elasticity
of all cheeses was weaker than the R+ cheese (P<0.001). At D3 and D13, the elasticity of G cheese

increased with the presence of NaCl (P<0.05).
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Fig. 10. Elasticity of cheeses at 3 (D3), 13 (D13) and 23 (D23) days of ripening. Cheeses are
manufactured with ultrafiltrate retentate (R) used as a control, and with 15% (w/w) sodium caseinate
(C), Trypsin hydrolysate (T) and Glu-C hydrolysate (G), with (+ in light grey) or without (- in dark grey)
NaCl. The mean and SEM are represented; * P<0.05; ** P< 0.01; *** P<0.001.
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Table II: Comparison of cheeses containing NaCl (+) with cheeses without NaCl (-).
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Cheese Hardness 1 Hardness 2 Stickiness Rupture Gumminess Elasticity
+ /- strength (N)
NaCl
D3 D13 D23 D3 D13 D23 D3 D13 D23 D3 D13 D23 D3 D13 D23 D3 D13 D23
C+/- Q *** 0.04* 0.00114%** 0 Q ***
%k %k x
G+/- Q *¥**  Qxkx Q *** 0.0001*** 0.0155* 0 Q *** Q*** 0.012* 0.038*
%k %k %k
R+/- Q *** Q *** 0.0073**  0.0073** 0 0 Q ***
%k %k %k %k %k %k
T+/- Q *¥**  Qxkx* 0.009** 0.019* 0.0001*** 0 Q *** Q***
%k x
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Principal Component Analysis on MMV Cheeses

Principal component analysis allowed us to summarize the information in two dimensions,
accounting 65.65% of the total variation. Figure 11A shows a correlation circle of the variables and
Figure 11B represents the scores of the individuals. Principal component 1 explained most of the
variation (41.66%) and was related to cheese texture (Figure 11B). The different cheeses were
separated according to the principal component 2, which represents 23.93% of the total variation
and was related to the cheese aging (Fig 11B). The young cheeses scored negatively and were
correlated with the cohesiveness (Figure 11B). The old cheeses scored positively and were well
correlated with the proteolysis (Figure 11A). Cheeses made with Trypsin hydrolysate, with or without
NaCl, were well separated from the other cheeses and were correlated with a high proteolysis, a high
gumminess and a high rupture strength. A linear trajectory of cheese evolution was found for T

cheeses whereas for the others the evolution changed during 13 and 23 days of ripening.
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Variables factor map (PCA) Individuals factor map (PCA)
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Fig. 11. Characteristics of cheeses manufactured with retentate (R), sodium caseinate (C),
hydrolysate produced from Trypsin (T) and hydrolysate produced from Glu-C (G), with (+) or without
(-) NaCl at day 3 (D3), day 13 (D13) and day 23 (D23) of ripening. A: The characteristics are
represented on the Principal Component Analysis variables factor map (dim 1 = 41.66% of the total
variability and dim 2 = 23.93% of the total variability). B: Cheeses are represented as individuals and
viability, residual percentage of ag-casein (CNasl), residual percentage of ag-casein (CNas2),
residual percentage of B-casein (CNb), parameters of texture profile analysis proteolysis (OPA_TCA,
OPA_pH4.6) and stretchability.
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DISCUSSION

Cheese is a continuous process of proteolysis involving several enzymes from milk, added as
coagulant and added with the microbial flora. In previous studies, the nature of the peptides
produced has shown to deeply influence the changes in the textural and techno-functional
properties. Thus, hydrolysis of caseins increased softening and melt but decreased stretch of cheese
(Lucey et al., 2003). The case of o,;-casein-derived peptide, o,,-CN(f24-199) is a well-known example
of the cheese softening during ripening of various soft, semi hard and hard cheese varieties
(Upadhyay et al., 2004). The production of hydrophobic peptides of various length were also shown
to participate in stretching properties of Emmental cheeses (Lacou et al., 2014; Richoux et al., 2009;
Sadat-Mekmene et al., 2013).

There is considerable information on proteolysis in several cheese varieties but there is still limited
knowledge on the mechanisms by which enzymatic hydrolysis of casein influences texture (Gagnaire
et al., 2001). Actually, the huge number of peptides produced in cheese throughout ripening still
raises the question of their impact in the texture and techno-functional properties of cheese. As an in
situ hydrolysis is difficult to control, the addition of hydrolysates directly at the beginning of the
cheese making was preferentially used in our study. Therefore, we chose to reincorporate defined
groups of peptides arising from the action of Trypsin and Glu-C on sodium caseinate in order to be
able to control the nature and the quantity of the added peptides. In that sense, the choice of cheese
making type was crucial to keep the peptides within the casein network and that is the reason why
the liquid pre-cheese method (MMV) was selected. The usual draining step was actually replaced by
casein micelles pre-concentration step by membrane filtration prior to cheese making and the
addition of NaCl directly in the cheese milk and not on its surface was possible.

The replacement of 15% of casein by Trypsin and Glu-C hydrolysates in the ultrafiltrate retentate,
was clearly sufficient for modifying the texture of the cheese and the stretching properties. The
addition of casein hydrolysates also differently affects the proteolysis. The DH of Trypsin and Glu-C
hydrolysates was mild and reached 4.5 and 2 % respectively in order to obtain hydrolysates with both
native proteins and mainly large peptides, as it is known that extensive hydrolysis providing a high
content of free amino-acids and oligopeptides led to weaken textural and techno-functional
properties (Singh and Dalgleish, 1998). The hydrolysates produced initially with Trypsin or with Glu-C
were different in terms of both composition and structure (Lacou et al., chapters 2 and 3), due to the
cleavage sites after lysine and arginine residues for Trypsin and after aspartic or glutamic residues for
Glu-C. They provided a different peptide profile of the cheeses as shown by electrophoresis (Figure

2). Among the peptides produced, there were phosphorylated peptides with longer length chain and
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peptides with terminal end positively charged in presence of Trypsin whereas peptides were
negatively charged in presence of Glu-C. Such an exposure of phosphoryl groups renders caseins
more electronegative and can modified functional properties of cheeses (Medina et al.,, 1992) as
observed in terms of hardness, elasticity and stickiness between the T cheeses and G cheeses. This
could also have changed the microstructure of cheese which was already shown different in presence
of native caseins or phosphorylated peptides (Li-Chan and Nakai, 1989). Such a microstructure with
expanded casein micelles was observed on gels in which the Trypsin and Glu-C hydrolysates were
added (Lacou et al., 2016). Caric and Kalab (Caric and Kalab, 1993) also showed that the presence of
peptides disturbed the compact and continuous casein matrix and could explain why the hardness
decreased according to the time of ripening in this study.

As the number of glutamine residues is greater in caseins than that of the lysine and arginine ones,
the size of the peptides would have been smaller in the Glu-C hydrolysates if the activity of the
enzyme were equivalent to that of the Trypsin. However, the content in residual caseins were higher
in Glu-C hydrolysates, explaining partly why the G cheeses were closer to the control and the
caseinate supplemented cheeses. We can also supposed that the proteolytic activity of the starter
was more influenced by the presence of peptides from both hydrolysates and NaCl than from the
caseinate and control, by having a higher lysis of cell during ripening as shown by protein bands of
molecular weight higher than 30 kDa that appears during ripening time in T+ and G+ cheeses and not
in other cheeses. However, the higher initial content in peptides from Trypsin hydrolysates was
sufficient enough to clearly differentiate T cheeses from the G cheeses in terms of proteolysis indices
in the respective cheeses.

MMV cheeses manufactured with Trypsin hydrolysate showed a more intense proteolysis than the
other cheeses in presence or in absence of NaCl, and they were also qualitatively different by
releasing higher large peptides exemplified by twice higher soluble peptides in the pH 4.6 soluble
fraction compared to the 12% TCA soluble one. Doubling the values of pH 4.6 soluble fraction during
ripening was in agreement with previous studies on Saint Paulin-type cheeses (Kfoury et al., 1989).
Peptides originating from the hydrolysis by Trypsin seem to contain higher well-exposed groups
hydrolysable by the starter and the rennet. Moreover, the presence of NaCl changed the ionic
strength of the cheese as the repulsive forces between peptides are diminished and in turn could
have improved the proteolysis. Moreover, the T cheeses had also a complete different texture at the
end of the ripening. Actually, at D3, all cheeses were heterogeneous as shown by their projection on
the PCA map in terms of proteolysis extent and textural properties. Two groups were clearly
distinguishable: the one with cheeses containing Trypsin hydrolysate and the others containing Glu-C

hydrolysate, caseinate or the control cheese. Cheeses made with T, with or without NaCl, had a
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higher proteolysis and were highly sticky, firm and had a high gumminess value whereas they were
relatively inelastic. R, C and G cheeses had lower extent of proteolysis than T cheese and were
correlated with a high elasticity, a weak firmness and a high cohesiveness. Without NaCl addition, the
hardness of cheeses increased when hydrolysates were present compared to the control cheese. This
could be due not only to the increase in peptide content which allowed more peptide-protein or
peptide-peptide interactions and formed a firmer protein network but mainly due to the type of the
peptides present that led to differential texture properties. Such various textural behaviors were also
showed on other studies containing different types of hydrolysates. Thus, addition of whey protein
hydrolysates decreased the hardness of processed cheese (Mihulova et al., 2013) while increase in
proteolysis by exogenous commercial proteases during Cheddar cheese ripening was correlated with
increase in hardness and adhesiveness (Lin et al., 1987) and with a decrease in cohesiveness and
springiness in raw goat cheeses (Delgado et al., 2011). Dave and Shah (1998) showed that the
supplementation of yoghurt with hydrolysate of caseins renders yoghurt as firmer as the control and
with a regular network containing smaller pores than the control. This was due to the generation of
peptides with lower molecular weight than caseins which can penetrate into the matrix, declined its
firmness due to weakening of protein-protein interactions (Dave and Shah, 1998; Dimitreli and
Thomareis, 2007).

Although the behavior of the cheese varied with the addition of NaCl in cheeses, the overall texture
was slightly changed in contrast to the stretching properties that were completely cancelled out in
cheese with NaCl. This can be due to the direct addition of NaCl in retentate prior to cheese making.
Besides changing the ionic strength, NaCl changed mineral balance in the casein micelle network by
replacing the calcium ions that interact both with phosphoserine residues of casein and inorganic
phosphate. Therefore, this weakened the interactions between caseins and phosphate nanoclusters
that are the cross-linker of the casein micelle structure and increased the hydration of the caseins
(Gaucheron, 2005). Neither the addition of caseinate or hydrolysate was able to counteract the
withdrawal of calcium and to keep the caseins linking to each other enough to form strands. This is
quite different with other cheeses for which the salting is performed by brining and the diffusion of
salt progressive in cheeses and that the stretching was not so affected by salting (Guinee, 2004).

The NaCl content also influenced the elasticity only for G cheeses that was increased when salt were
added and gumminess of C, G and T cheeses at D3, R, G and T cheese at D13 and R at D23. The
addition of NaCl increased the gumminess of C and G cheeses at D3 and T cheese at D13. The
addition of NaCl has changed the balance between the electrostatically repulsive forces and the

hydrophobic attractive forces. At low ionic strength, casein molecules were individualized with
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electrostatic repulsions between themselves (HadjSadok et al., 2008). High sodium concentration

leads to a decrease in electrostatic repulsions between caseins, by shielding their negative charges.

CONCLUSION

In this study, we showed that the nature of peptides and their quantity greatly impact the hardness,
the stickiness, the gumminess, the rupture strength and the elasticity of cheeses. This impact was
dependent on the ionic strength and certainly on the way the NaCl is added during cheese making
process. We also underlined the importance of rethinking proteolysis phenomenon according to the
cheese process and the manufacture conditions. In the light of the actual knowledge, the addition of
hydrolysates at the beginning of the cheese manufacture could be a promise and beneficial way to
change texture and to have a more controlled proteolysis during ripening. Varying the content of
peptides would be able to provide information on the limits of proteolysis extent needed to enhance
textural and techno-functional properties of cheeses. Moreover, a sensorial study could be

established in order to get the flavor perception of the peptide production.
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Part IV - General Discussion & Perspectives

Highly concentrated-protein systems are fundamental elements of life encountered in cellular
phenomena since thousands of years that can also be extended to food products and the food
transformation process. Nevertheless, the interest for the fundamental aspects of the interactions
between proteins under high concentration conditions is relatively recent and there is a substantial
increase in the number of published paper on this topic for 10 years. One possible way, developed in
this thesis, to improve some functionalities of proteins in dilute systems as well as in concentrated
ones is the modification of the protein structures by enzymatic hydrolysis that further impacts the

texture and the microstructure of the food systems.

This thesis can be seen as an exploratory study on various scales of dairy matrix complexity. The
objective was to deepen knowledge on how defined groups of peptides were able to modify casein
micelles organization and their textural properties. In a long term view, enlarging the potential use of
peptides as functionalized ingredients is expected. The strategy adopted in this work was to
incorporate targeted peptides in different dairy systems, from dilute and model systems to highly
concentrated and real food product, in order to be able to modulate the rheology, the texture and

the microstructure of all these systems under different pH conditions.

As discussed in the review, peptides are present in food under the form of hydrolysates containing
both peptides and native proteins. Regardless of the functional properties studied, it is still difficult
and sometimes even impossible to conclude that changes in functional properties are only due to
either (i) the nature of the peptides produced and the way they interact together, or (ii) to the
presence of both residual native proteins and peptides and to their respective interactions in the
hydrolysate. And the present work attempted to clarify this point. Actually, it is therefore crucial to
have information on the type of peptides present, their quantity and their physico-chemical
characteristics, in order to be able to know how and to what extent peptides can change the

functional properties of proteins.

The main results of this thesis were summarized in the Table 1.
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Table 1. Highlights of each chapter of this thesis.

Chapters Main results
Chapter 1 - Proteolysis was strongly correlated with the stretchability of
An in silico approach to Emmental cheese.
establish a relationship - The type of protease affected the intensity of the cheese
between a techno- stretchability.
functional property of - Peptide identification explained the modulation of the cheese
a dairy-matrix and a stretchability.
peptide profile. - Agroup of peptide was related to a macroscopic property

rather than a unique peptide.

Chapters 2 & 3 - Slightly modifying the time of hydrolysis of caseins or the
Properties of milk peptides nature of peptides produced led to a great variation and a
in liquid or gel casein high diversification of the rheological properties.
matrices - Modification of the quantity of peptides in the hydrolysate

impacted the microstructure and the gel formation rates.

- High implication of peptides in the reinforcement of the
structuration of the matrices up to a limit beyond which the
rheological properties were worsened depending on:

(i) the type of peptides produced, (ii) their proportion in the
hydrolysate and hence in the matrices and (iii) the overall
concentration of the dairy systems in which hydrolysates
were added.

- A non-linearity of the phenomena was observed as
interactions existed between the nature of peptides, their
proportion and the concentration of the dairy systems used.

- Smaller and denser casein micelles observed at the
microscale.

- Incorporation of hydrolysates drastically change the casein
micelle texture by decreasing gel hardness regardless of the
concentration used.

- There were few differences between the type of hydrolysates
T and G in changing the texture properties at pH 4.6.

- Predominant factor impacting the gel texture was the
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guantity of residual native caseins present in the caseinate.

Chapter 4 - First establishment of the equation of state for peptides and
Structural changes of the mix peptide:casein micelles at ratio 1:1 for one tryptic
caseins and peptides hydrolysate T3.
under a high - Gel peptide samples were observed in the range 5 — 10 bars
concentration of the osmotic pressure.

- The osmotic stress technique permits to study peptide
interactions in highly concentrated suspensions reached in
fermented milk products such as cheeses.

- Hydrolysis of casein samples takes place within the first week
of equilibration, hence it was a challenge to keep the integrity
of the casein micelles during the time required for the sample
to equilibrate to the requested osmotic pressure.

- The equation of state of casein-derived peptides showed that
osmotic pressure of peptides was largely higher than that

observed for the caseins micelles.

Chapter 5 - The nature of peptides and their quantity greatly impacted
Incorporation of defined the hardness, stickiness, gumminess, rupture strength and
peptides in semi-hard elasticity of cheeses.
model cheeses - The presence of NaCl changed the cheese texture and namely

the stretching capability, and increased indirectly the
proteolysis indices by inducing higher bacterial cell lysis and
release of active intracellular peptidases in cheese.

- The addition of hydrolysate at the beginning of the cheese
manufacture could be a promise and beneficial way to
change texture during ripening of pre-concentrated MMV

cheeses.

This thesis projects was a multi-level challenging task. First, it involved multidisciplinary approaches
and at multi-scales from molecular to microscopic and macroscopic experiments and from model
systems to food products. Second, among the issues raised in the introduction section, there were

three main questions that were addressed throughout the different chapters as detailed below.
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First question — part a: would it be possible to relate in silico the physico-chemical characteristics of
peptides and one peculiar techno-functional property of food product?

The in silico approach was actually a relevant tool to link a peptide profile to a textural property of a
cheese. This approach permitted to confirm that the degradation of caseins during the cheese
ripening was responsible for the modulation of the cheese texture (Lucey et al., 2003). This method
showed that a profile of peptides was linked to a macroscopic property rather than to one particular
peptide. The peptides which were selected had very different physico-chemical characteristics and
contained random coils or a-helix structures. The innovative approach was that this work was based
on a food product and not on a model dairy system, in order to face the overall complexity of the
system and to exhibit the most prominent factors influencing the appearance of a specific texture
property, in the present case the stretching property according to the ripening time. Moreover, a
combination of statistical methods and the identification of peptides in the food product, which is
hardly seen in the literature, had permitted to show the direct correlation between some peptide
characteristics and the stretchability of cheese.

This first step helped us finding ways to select peptides that can relate groups of peptides and
peculiar textural properties and such an approach can be applied to other matrices and other kinds
of functional properties.

However, this study had some limits since the mass spectrometry method of identification used to
initially collect the data was based on the presence/absence of the peptide in the sample. Such a
qualitative difference between samples did not permit to put weight on each peptide and to
guantitatively relate peculiar characteristics to the given cheese texture. New methods of
guantification was applied in the analysis of the samples by mass spectrometry performed

thereafter.

First question — part b: would it be possible, in turn, to tailor hydrolysate(s) that can be used to
modify texture of a complex casein matrix?

Following the in silico study, peptides with defined physico-chemical characteristics were selected
and two enzymes were chosen to efficiently produce similar ones. The production step needed to
adapt hydrolysis conditions from small-sized (few milliliters) to scale up the production mode to liters

ans this was successfully obtained.

Second question: what is the impact of the physico-chemical and structural characteristics of these
designed peptides on the rheological and the structural properties of highly concentrated casein

matrices in a liquid or gel form?
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The characterization of these peptides indicated that when caseins were hydrolyzed, a-helices were
formed as shown in the in silico study and in the literature on single peptides experiments as
reviewed in the bibliographic part of the manuscript. Such a a-helix formation was observed in the
hydrolysates alone and they were kept when the peptides were mixed with casein micelles
suspensions conferring slight but significant changes in secondary structure of the overall mixed dairy
system. Consequently, the hydrolysis of unstructured proteins can generate some conformational
reorganization and even a certain structuration of the peptides altogether and in the presence of
other proteins.

These peptides were identified and deeply characterized in terms of distribution of peptides and
residual casein in the hydrolysates and the types of peptides present within; the amount of peptide
reincorporation in the casein micelle suspensions was controlled, contrary to many studies used a
degree of hydrolysis as exemplified in the review. We hypothesized that among the peptides
produced those having predominant characteristics, highlighted in clusters based on their respective
mass spectrometry intensity, corresponded to peptides highly involved in the conformational and /or
textural changes observed. This does not preclude that peptides present in small quantity were able
to change the food system texture. Actually, ionization of peptides in the mass spectrometer is not
always associated with the amount of the peptides present.

The incorporation of these peptides in casein micelles suspensions at different concentrations,
different hydrolysate:casein micelle suspension ratios and different pH generated changes in
rheology and texture of these suspensions in a more or less unexpected manner. In some cases, only
25% of peptides were needed to change the characteristics of the mixed systems whereas in other
cases depending on the nature of hydrolysate and the pH used, more than 75% of peptides were
required.

Interactions were highlighted between the nature of peptides, their quantity, the ratio
hydrolysate:casein micelles and the time of hydrolysis, rendering non-linear the consequences
observed in the rheology or texture of systems under various conditions of concentrations.
Moreover, the systems were complex as they contained a high concentration of hydrolysates, caseins
and many peptides, rendering difficult to find the contribution of one particular factor to the

modification of the rheological properties.

Third question: are the same phenomena found from a model solution to a concentrated matrix
including food products, as exemplified in a cheese model system?
Real cheeses are much more heterogeneous systems than model systems and had very varied

microstructures. It was shown that the impacts observed in model systems were non-linear as for
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real food products. Nevertheless, we showed that only 15% of hydrolysates added at the beginning
of the cheese production were required to induce changes of the final texture. The peptides present
in cheeses seem to change the overall texture profile in a similar way throughout the ripening time
for the T hydrolysates and differentially for the G hydrolysates, providing two completely different

cheeses.

Interest of this work for the academic and industrial plans

The results obtained in this thesis may interest the milk sector but also the domain of food science.
This project contains, at least, two scientific and technological fallouts. Firstly, it permits to
determine what kinds of peptides are of interest and offers clues to control the in situ production of
functional peptides in terms of quality and quantity. This control is however at the present time
difficult to be definitely reached. It can be exerted either by adding specific exogenous enzymes able
to selectively produce the targeted peptides or by using bacterial starters with peculiar proteolytic
equipment. In the first case the cost of the enzyme and the risk of withdrawal of the enzyme is rather
high and in the second case, it is difficult to predict the types of peptides that can be produced as
well as the environmental conditions in the product able to induce lysis and to release desired or not
peptidases Secondly, generic knowledge was obtained on the interactions between peptides and
caseins that are the basis of the techno-functional properties by identification of the molecular,
physico-chemical and structural factors involved in. Focus has been paid on (i) the composition in
caseins and peptides and their organization in milk matrices with different structures and (ii) on the
relationship between the nature of peptides produced during the process of transformation such as
the ripening time and their role in the acquisition of these properties.

On the industrial and technological plans, new technologies of preparation of milk matrices with
specific techno-functional properties would be developed from the results presented here, either

from traditional fabrications of milk products or by creating new ones or new ingredients.

Perspectives

In the next stages of this study, it will be interesting to study more deeply the interactions between
the peptides and the native caseins. By depleting the peptides-casein matrices with various solvents,
chelating and chaotropic agents it would be possible to selectively extract peptides from the matrices
and to determine which peptide preferentially interact with caseins. As an example, the extraction of
peptides trapped in the gels by Ethylenediaminetetraacetic acid (EDTA) or urea could be used. The
EDTA chelates the calcium ions inducing dissociation of casein micelles. Consequently, the peptide-

casein matrices could be mixed with EDTA, centrifuged and the supernatant could be analyzed by
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SDS-PAGE electrophoresis in order to show the electrostatic interactions. Urea or Sodium Dodecyl
Sulfate (SDS) are able to disrupt the hydrophobic interactions. Additionally, it is possible to study the
specific role of hydrophobic interactions by changing the temperature of the system in order to
increase or decrease these interactions. Such an approach can also be used to determine whether
the types of interacting peptides changed according to pH and whether a saturation of certain sites
could be reached that could partly explain the non-linear phenomena observed.

It will be interesting to establish how to orientate the rheology and texture through the peptide
production. In our study, many parameters changed in the systems: the nature of hydrolysate, the
time of hydrolysis, the ratio hydrolysate:casein micelles, the quantity of peptides, the pH and the
concentration of the systems, which interacted themselves rendering difficult the understanding or
the mechanisms involved. Therefore, it will be interesting to simplify the casein-peptide systems and
to select peptides with the same characteristics to show how one characteristic can affect or not the
rheology and texture of the mix peptides:caseins. Such a simplification could be obtained by
separation and purification of peptides according to their size by gel filtration, their charges by ion
exchange chromatography, their hydrophobicity by preparative reverse phase chromatography or
their content in phosphoserine residues by selective precipitation, considering as a non-required
condition to know from which type of casein they came from. Another simplification lies in the casein
part by using purified casein as substrate to produce peptides and to determine whether one type of

casein can preferentially produce peptides of peculiar interest.

Having established for the first time the method for the concentration of peptides by osmotic
pressure, it clearly appeared that higher concentrations of pressure have to be found to reach closer
packing of the peptides that could reveal mechanism of molecular peptide self-assembly under
liquid-solid phase transition. Using the equation of state obtained in this study, the osmotic stress
technique opens new ways to study peptide interactions in highly concentrated suspensions that can

be reached in fermented milk products such as cheeses.

Finally, the hydrolysis should be realized in situ, directly in the model systems and in the food
systems at different concentrations, in order to show if a controlled hydrolysis has the same impact
than the addition of hydrolysates. Moreover, in some food products, as yoghurt, the addition of
hydrolysates is easier than in cheese, in which the addition of hydrolysates is only possible at the
beginning of the production. Consequently, some new concept of cheese manufacture should be

investigated further.
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In the case of the cheese experiments no bitterness was observed when the 15 % hydrolysates were
added (data not shown). However, other studies with sensorial tests have to be done to estimate
which amount of peptides can be incorporated to improve the textural properties while keeping the
appropriate organoleptic quality. In conclusion, to improve the cheese-making properties and final
cheese quality, it is suggested that future research have to go on further towards control of the in

situ hydrolysis.
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Colloids conference, from 13 to 16 April 2014, Karlsruhe (Germany).

Lacou, L., Famelart, M.H., L&, S., Jardin, J., Briard-Bion, V., Pezennec, S., Gagnaire, V.,
Rheological properties of milk derived peptides in concentrated matrix of caseins. The 7th
International Symposium on Food Rheology and Structure(ISFRS 2015), from 7 to 11 June
2015, Zurich (Switzerland).

Poster with 5 minutes of presentation
Lacou, L., Richoux, R., Gagnaire, V., A review on functional properties of peptides: from dilute
solutions to food products. The 17" world congress of food science and technology (IUFoST),

from 17 to 21 August 2014, Montreal (Canada).
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Lacou, L., Famelart, M.H., L&, S., Jardin, J., Briard-Bion, V., Perreira Caldas Silveira, A,
Pezennec, S., Gagnaire, V., Rheological properties of milk derived peptides in concentrated
matrix of caseins. The 12th International Congress on Engineering and Food (ICEF12), from

14 to 18 June 2015, Quebec (Canada).

Lacou, L., Famelart, M.H., L&, S., Jardin, J., Briard-Bion, V., Pezennec, S., Gagnaire, V.,
Rheological properties of milk derived peptides in concentrated matrix of caseins. The
International Dairy Federation World Dairy Summit (FIL-IDF), from 20 to 24 September 2015,
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Lacou, L., L&, S., Pezennec, S., Gagnaire Soumet, V. (2015). An in silico approach to highlight
relationships between a techno-functional property of a dairy matrix and a peptide profile.
Colloids and Surfaces A Physicochemical and Engineering Aspects, 475, 44-54. DOI:
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Lacou, L., Famelart, M.H., Cauty, C., Kolotuev, I., Jardin, J., Briard-Bion, V., L&, S., Pezennec,
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Textural and structural properties of milk peptides in high-concentrated casein matrices.

In writing process.

Lacou, L., Richoux, R., Frogerais, L., Murdin, M., Gagnaire, V., Textural properties of model

cheese containing milk peptides. In writing process.
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solutions  to food products. Food Hydrocolloids, 57, 187-199. DOI:
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Les peptides: quelles caractéristiques physico-chimiques et
structurelles modulent la viscoélasticité des matrices
laitiéres riches en caséines?

Lélia LlACOU Contexte socio-économique Contexte scientifique

* Les protéines possedent des fonctionnalités
particulieres: gélifier, former et stabiliser des
émulsions et/ou des mousses, former des
fibres, etc.

Forte concurrence entre
industriels de la filiére
agroalimentaire

3 * Une hydrolyse limitée des caséines favorise
certaines de ces fonctionnalités selon les
caractéristiques physico-chimiques et

Nécessité d'innover

¥ structurelles des peptides produits.
Développement de
nouvelles formulations * Dans le contexte laitier, une corrélation
3 positive entre la présence de peptides

hydrophobes contenant plus de 20 acides
aminés et le filant de 'emmental (incluant
des propriétés viscoélastiques a chaud) a
été établie.

Maintien des propriétés
texturantes de I'aliment

Question de recherche

Quelles interactions caséines - peptides modulent les propriétés viscoélastiques des
matrices laitiéres?

Approche  mp Production = Validation du role des peptides dans la viscoélasticité
in silico d’hydrolysats contenant des matrices laitieres riches en caséines
les peptides cibles

.. Ajout d’hydrolysats
avec/sans les caséines

Mots-clés intactes ( ‘; ;
. e ' &S
Peptide
Protéine o
S Via 'exemple 3
tructure i —
du filant de Solution de caséines diluée  Caséines concentrées  Gel acide de caséines
Protéolyse I'emmental: 0
sélection de

. Matrices de complexité croissante ,

- Etude rhéologique des matrices (avec ou sans
hydrolysats)

- Etude microscopique des matrices: comprendre
l'organisation des caséines et des peptides

- Etude moléculaire: identifier les interactions entre
peptides et caséines

Viscoélasticité peptides cibles

Résultats attendus

1/ Prédire in silico quels sont les peptides qui participent au filant de 'emmental et
S Financeurs déterminer leurs caractéristiques physico-chimiques et structurelles.

2/ Valider I'étude in silico via la production de ces peptides cibles et leur ajout en matrices
Bba laitiéres riches en caséines.

3/ Comprendre l'organisation des caséines et des peptides et leurs interactions dans
e Collaborateurs chacune des matrices laitieres,

' Perspectives
ACTALIA

* Produire les peptides cibles in situ: dans une matrice laitiére riche en caséines puis dans un
fromage.

* Diriger I'hydrolyse in situ afin d’obtenir la texture alimentaire désirée.

» Identifier le mécanisme d’assemblage des peptides et des protéines qui module la
viscoélasticité d'une matrice.

& STLO
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A review on functional properties of peptides: from dilute solutions to food products

Lélia Lacou'2, Romain Richoux?, Valérie Gagnaire!?
2pgrocampus Ouest, UMR1253 Science et Technologie du Lait et de I'GEuf, F-35042 Rennes, France

SCIENCE & IMPACT

1INRA, UMR1253 Science et Technologie du Lait et de I'CEuf, F-35042 Rennes, France iActalia, BP 50915, F-35009 Rennes, France

BACKROUND AND OBJECTIVES
* Partial hydrolysis improves functional properties of proteins, especially solubility, emulsion

Peptlides

. - Sequence .
and foaming capacity. Retationships peptide Hydrolysis degree of proteins
Secondary structure structure — peptide
N . . . . . functional properties ? . . N
+ Many data explain the relationships between structure and functional properties of peptides Self-assembly or aggregation Multi-component interactions

in dilute solutions. It is difficult to apprehend these relationships in food products (i.e. cheese,

meat, bake products) because:

Functional properties Texture properties

¥ Food products have a complex composition ) th [ Food roducts
¥ Involvement of many interactions and diffusion-limited reactions Dilute solutions ¢, geq produ
¥ The action of proteases and their kinetics are complexes in such concentrated media media
Fig 1. Relati peptides and their products.
+ The challenge of food scientists is to control the peptide production in situ to modulate their This review summarizes the main ways of possible impr to pose the relationship

functional properties in food products. between peptide structure and peptide functional properties from dilute solutions to food products.

PEPTIDES IN FOOD PRODUCTS

Complex and variable compesition changes:
* the macromolecular structure of the matrix
+ the conditions for which the peptides self-
assemble or aggregate, and consequently the

PEPTIDES IN DILUTE SOLUTIONS

<+ Sequence has a key role on the secondary structure of peptides and on their supramolecular
structure but doesn't always explain their final functional properties.

Protein hydrolysates are
either produced in situ or
added as an ingredient in

Structure Il Nano- Gel formation . f nsequer the food product, leading
in dilute solution structure final functionality of the peptides inside the o more or less controlled
food matrix. final properties.
Peptide Acidic Neutral Basic H H H
!E:'::m Modifications o o o pH 10 o
LVTQTMK Orlglna_l milk Random Rand'om P-sheet . N
peptide coil coil Peptide
The enzyme specificity, the protein nature and B There is a huge gap between the knowledge
Increase of the the hydrolysis degree of protein impact the structure - acquired on the seif-assembly of proteins and
LUVTQTMK N terminal B-sheet B-sheet B-sheet + + - functional properties of hydrolysates. function - peptidesin dilute solutions, where mechanisms
hydrophobicity . were well apprehended, and the knowledge in
The studies on food products are more in food food products.
LIVTQTMR Chaf\ge of Rand_om Rand_om B-sheet - - + empirical and less mechanistic than the \_products, R -
chain pKa coil coil studies on dilute solutions. Most of '\\ ! Hydrolysis degree of protein is an insufficient
N terminal publications established relationships - B \ vara::’eler tt; ue:tt.?hllsh ‘ﬁ:lion::iﬁ bEfoE;\
AcLIVTQTMK blocked B-sheet B-sheet B-sheet - + + between: a degree of hydrolysis of protein peptide production and the enhancement of
ocke and their functional properties (Sodini et al., v _ protein functional properties.
- oo & Vorer (2082 2005; Hemantha Kumar et al,, 2001;) Thereis a lack of pe:;l]d;el:ennhcatlon in many

L’ Size, hydrophobicity and charge periodicity of peptides are main characteristics to induce self-assembly (Subbalakshmi
etal., 2012; Chen, 2005; Loo et al., 2012) and to induce i i

PEPTIDES IN DILUTE SOLUTIONS AND IN FOOD PRODUCTS

< If relationships between peptide structure and their functional properties begin to be
established, these relationships are not clearly established in food products yet .

Neutrase casein hydrolysate, with upper functional properties in dilute solutions, is incorporated
into wheat bread as potential functional ingredients.

i - HIr

i i L

g -1 £
f T ] 3 .04 L.
P i PLELY
¢ = H FNE LA £
H H 3 3

Fig 3. Effect of casein hydrolysis on f dr and dill solt Data h by

(2002),

'-o The Neutrase casein hydrolysate, that contains high molecular weight peptides, had worse potential applications in the
development of protein-enriched wheat bread than the control bread.

Few publications established relationships
between peptide profile and texture of a food
product (Sadat-Mekmene et al., 2013, Borsting

etal., 2012; Brickley et al., 2007; Creamer &
Olson, 1982).

What is known in the literature

What is lacking in the literature

Fig 4. Food product i ‘the action of enzys
CONCLUSIONS
+ The knowledge on rel; hips peptide — peptide f | property are blished in

dilute solutions but not in a real food product. Responsible agents of functional properties are
difficult to define in food products so much the composition is complex. Direct correlation between
functional properties in dilute solutions and those observed in the food products is still a challenge.

such as

Research should be developed on more conc
ta close this gap.

medo, GE

Advances in identification and

of in food products will

help (i) to bring a comprehensive view of the food product and (ii) to understand how peptides can

modulate food texture.

lelia.lacou@rennes.inr.
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RHEOLOGICAL AND STRUCTURAL PROPERTIES OF MILK PEPTIDES IN HIGH-CONCENTRATED CASEIN MATRICES
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Partial hydrolysis improves functional properties of proteins. 7 Gel formation at 200 g.kg! S
Luo et al., 2014; Banach et al., 2013; Hitomi et al., 2012

/ T1 T2 G1 G2 G3
= Is it due to peptides ? 100% CMS 100%T2 50%12

= What kind of peptides are involved ?

L XXXR..

H \
H i
! |
: XXX :
+  Most information comes from the study of dilute solutions whose composition and protein | X : o |
concentration differ greatly from most food products. | b H
H |
Peptides are produced | B HS 8xRno SraWe 3KRMe 8RR |
during the milk processing I%cMs ©QRKLE8 oK oNRRE ougR i
Milk g !
products 3 E Fig.1 Diagram of properties of CMS +/- HS at 200 g.kg", pH 7 and 20 gg:ﬂgecxjg;rgmﬂ,w,mg ;
Interactions ' pH7and 20°C. !
! . '

matrice - peptides ? I. = Differences in viscosity of HS - CMS were observed according to the type of hydrolysate used. |
" ‘. = Ahighly viscous fluid appeared in presence of hydrolysates in CMS. )

. > B

25g.kg! ~m-mmm---- > 280-300 g.kg'' Textural changes ? Sl R -7
+  In complex media, peptides are usually not identified, hence and it's difficult to determine how i Mix HS + CMS Rheo"’!‘cal propert1es .
’ \

the functional properties of proteins are changed due to their hydrolysis. ! -
CMCS eTL eTE eTI eSOROMSsSONGL -+ S0NCHS+SONTI

SO CMS + SO T3

! \ i. Does hydrolysis of proteins modify the rheological properties of
highly concentrated dairy suspensions?

'
i ]
i i
i ]
i ]
1 | e 1
; ! S T [ ————
' . What interactions are involved? i . o smamsesonG: |
N .. o ) e
P2 : '
| Fig.3 Shear rate dependence of apparent viscosity for CMS, HS and Fig.4 Time dependence of the elastic (G') and loss (G”) moduli |
| mix CMS-HS at 100 g.kg™ and pH 7. for CMS and CMS + HS at 200 g.kg'and pH 7. ]
Hydrolysis of sodium caseinate Preparation of peptide suspension | = Viscosity of G > viscosity of T = CMS = liquid at 20°C !
followed by pH-stat. in mi i i i i

) Y P and casein micelle suspension | = Viscosity of HS \ as hydrolysis » = T1+CMS = became a gel with time |
—_— } = Viscosity of mix > viscosity HS = T2 + CMS = elastic gel !
1 = Viscosity of mix < viscosity CMS except T2 . G2 =gel B
" ‘= Viscosity of T2 < viscosity of CMS < viscosity of L

] 2009k’ ~T2+ CMS -

100 g.kg' B ~
Trypsin Glu-C ,' Microstructure of casein micelle matrices AN
CMS 50% CMS + 50% T1 \
T T2 G1 G2 G2 Hydrolysate Casein micelle x P
Time of hydrolysis .~ Time of hydrolysis * Suspension (HS) Suspension (CMS)
Quantity of peptides Quantity of peptides .~
Hydrolysates T T2 Gl 62 G3 ﬂ

Degree of hydrolysis 2% 4% 5% 1% 3% 4%

Rheological measurements Mlxlng of peptides and caseins at
different concentrations
= The casein micelles acquired a more expanded structure when peptides were added. '

& s Eg ', = Nanoclusters of calcium phosphate were still visible. LV
.
é @ |l e w0 :
HS *30%| | s
CMS

Electron microscopy
9 7 pH 7 and 20°C = These results showed that peptides modified the microstructure and the rheological behavior of
casein micelle suspension, even at low peptide concentrations.

Nanoclusters of
calcium phosphate

Il
]
'
'
'
'
'
'
'
'
'
'
i
i
'
'
'
'
' Fig. 5 Electron micrograph of CMS and CMS+ T1 at 200 g.kg"", pH 7 and 20°C.
I

'

= Differences of rheological properties were highlighted according to the type of hydrolysate used,
showing that certain peptides interacted with casein micelles leading to gel formation.
This study will be published in Food Hydrocolloids

o - o « Engineering challenges: bridging
= 3 € 5 . . E F ]2 4 sclence and food Innovations
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Background and objectives Results

100% hydrolysates
Turned flasks for 10min

« Partial hydrolysis improves functional properties of proteins.
Luo et al., 2014; Banach et al., 2013; Hitomi et al., 2012

Natas T1 T2 Gl G2

= s it due to the presence of peptides or due
to both proteins and peptides?

= How does the nature of peptides change
the functional properties of proteins ?

50% hydrolysates + 50% CMS 50% hydrolysates + 50% CMS

-
!!!!! ! Spesf b oa”
| ST
m 12 Gl 100%

NaCssT1 T2 Gl G2 100% G2
oms s

/ X Peptides are produced Fig.1 Gel formation by mixing HS and CAIS at different ratio, at 200 g.kg", pH 7 and 20°C.
= 7 : during the milk processing = Differences in viscosity of HS were observed according to the type of
Milk L 4 3 hydrolysate used.
prodticts - interactions = Ahighly viscous fluid appeared in presence of hydrolysates in CMS for both
proteins - peptides ? HS types used.

Wide range of protein concentrations 3 Trypsin

25gkg! ~mmmmmmo > 280-300g.kg" Rheological /
structural changes ?

* In complex media, the concentration of peptides and proteins is higher than in
dilute solutions and it’s difficult to determine how the functional properties of ¥
proteins are changed due to their hydrolysis. sear

Bl Sar

Fig.2 Shear rate dependence of apparent viscosity for CMS, HS and mix CMS-HS at 100 g.kg"* and pH 7.

i. Does hydrolysis of proteins modify the microstructure of
highly concentrated dairy suspensions?

Trypsin

¥

e
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ii. What are the consequences on the rheological properties?

o

Materials and Methods

Hydrolysis of sodium caseinate (NaCas) followed by pH-stat _ Glu-C

) o e e e e e 5
Hydrolysates Degree of hydrolysis o M e
T 2% S [ =

T2 4%
5%

Trypsil Glu-C . 1% \

rypsin v G2 3% Fig.3 Frequency dependence of the elastic (G*) and loss (") moduli for CMS and CMS + HS at 200 g.kg"'and pH 7.
T T2 Gl G2 G3 W&
Time of hydrolysis Time of hydrolysis — = Viscosity of HS \ as hydrolysis time
Quantity of peptides Quantity of peptides = Viscosity of mix > viscosity HS > viscosity of CMS

= Rheological behavior (viscosity, G’ and G”) of CMS is modified with the
l addition of all HS

Preparation of peptide suspension and casein micelle suspension

| 200 g.kg'!
Hydrolysate Casein micelle T 100% CMs 50% T2 + 50% CMS 50% G2 + 50% CMS
Suspension (HS) Suspension (CMS) Fig. 4 Electron micrograph of CMS, CMS + T2 and CMS + G2 at 200 g.kg"", pH 7 and 20°C.
‘ = With T2: the casein micelles acquired a more expanded and disrupted
structure.
= With G2: the casein micelles have a structure more pact and aggregated.

Mixing of HS, NaCas and CMS at different concentrations

Conclusions
50% HS = These results showed that all peptides produced with Trypsin and Glu-C modified the
100% ; 100% 4 ¢ : A :
Hs +50% CMS microstructure and the rheological behavior of casein micelle suspension.
CMS

Differences in rheological properties and in microstructure were highlighted
pH7 and 20°C according to the type of hydrolysate used, showing that certain peptides interacted
with casein micelles leading to various gel formation.
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Abstract

Food products are matrices of complex and varied composition, among which proteins are the main
molecules possessing various functionalities, i.e. foam and emulsion stabilisation, gelation,
solubilisation of some components. They led to various final textural properties of the food products.
Modification of proteins by mild enzymatic hydrolysis, allowed improving some of the functionalities
and in turn changing the structural and rheological properties of the food product. Protein-derived
Peptides derived are present in a huge number of food products either by in situ production or by
incorporation as an ingredient during food formulation. Questions remains i) whether some general
rules can be put forward or not to explain the building-up of the interactions between peptides and
between peptides and proteins and ii) the subsequent reorganization of the food matrices and
namely dairy ones that has to be done to induce new or modified functional properties in various
dairy matrices. The objective of this thesis was to determine how and to what extent casein-derived
peptides are able to modify the texture, the rheology and the microstructure of highly-concentrated
casein matrices.

We showed i) what kinds of structural and textural changes occurred at various scales from
microscopic to macroscopic ones, when we varied the type of peptides produced, their percentage in
the dairy matrices and the concentration of the matrices they were incorporated in; ii) interactions
between peptides and caseins and the non-linearity of the phenomena explaining some adversely
evolutions of the rheological properties of the casein matrices observed.

On the basis of this work, peptides can be considered as building blocks with defined physico-
chemical properties that can be chosen to be reincorporated into various dairy matrices of increasing
composition and complexity.

Keyword: Peptides, caseins, functional properties, texture, hydrolysis, cheese, concentrated systems,
dilute systems

Résumé

Les aliments sont des matrices de composition complexe et variée au sein desquelles les protéines
possedent diverses fonctionnalités, pour stabiliser des mousses ou des émulsions, gélifier, solubiliser
certains composés menant a différentes textures finales du produit. Une modification de ces
protéines par hydrolyse enzymatique ménagée permet d’améliorer certaines de ces fonctionnalités
et donc de changer les propriétés rhéologiques et structurales du produit. Les peptides dérivés des
protéines sont présents dans de nombreux aliments soit par production in situ soit par incorporation
lors de la formulation des produits sous forme d'hydrolysats. Des questions subsistent pour savoir i)
si des regles générales d’assemblage existent ou non pour expliquer comment les peptides et les
protéines interagissent entre eux et ii) et si une réorganisation se fait au sein des matrices ici laitiéeres
pour induire de nouvelles propriétés fonctionnelles ou les modifier. L'objectif de la thése était de
déterminer comment et jusqu’a quel niveau les peptides sont capables de modifier la texture, la
rhéologie et la microstructure des matrices a haute teneur en caséines.

Nous avons ainsi pu montrer i) quels changements de structure et de texture avaient lieu a
différentes échelles en variant le type de peptides produits, leur proportion et la concentration de la
matrice dans laquelle ils étaient ajoutés et ii) les interactions entre peptides et caséines et la non-
linéarité des phénomeénes expliquant les évolutions parfois contradictoires des propriétés de texture
des matrices caséiniques.

Sur la base de ces travaux, on peut considérer les peptides comme des briques élémentaires dont les
propriétés physico-chimiques peuvent étre choisies en vue de les réincorporer dans différentes
matrices laitiéres de composition et de complexité croissante.

Mots clés: Peptides, caséines, propriétés fonctionnelles, texture, hydrolyse, fromage, systéemes
concentrés, systeme dilués
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