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Abstract

Ionic electroactive polymer based artificial muscles are promising alternative to tradi-
tional actuators, especially where compliant muscle-like response is desirable. Among
them, conducting polymer actuators (CPAs) are most promising for biomedical ap-
plications, where biocompatibility, compactness and accurate positioning is essential.
Nevertheless, development of applicable devices is hold down by their low efficiency
and fast performance deterioration. The absence of a tactile, force or position feed-back
is another feature limiting the development of functional devices. The goal of this thesis
is to develop a fabrication technique for conducting polymer based actuators that could
be up-scalable and enable facile integration of sensory feedback.

Inkjet printing is key technology in the field of defined polymer deposition as well as
in fabrication of strain sensors. It is also one of the most promising alternatives to
prevalent fabrication of conducting polymer actuators. Nevertheless, inkjet printed
actuators were not yet realized due to rheological properties of conducting polymer
solutions that challenge jetting and the complex solution - membrane interactions, that
lead to poor adhesion or uncontrolled infiltration.

In order to enable this fabrication method, hybrid ion-storing membranes were devel-
oped. Argon plasma induced grafting-to of hydrophilic macromonomer with limited-in-
depth deposition was used to obtain polyvinylidene fluoride (PVDF) membranes with hy-
drophilic upper surfaces and hydrophobic centre. Functionalized PVDF membranes were
shown to withhold good adhesion to the conducting polymer films and preserve electri-
cally insulating layer in between them. Hybrid membranes were demonstrated to be
advantageous in fabrication of CPAs by drop casting and enable production of actuators
with various morphologies. Furthermore, fabricated poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS) based actuators demonstrated long lifetime with
no signs of delamination as well as large strain of more than 0.6%.

In addition, the complex nature of the physico-chemical mechanisms of the interactions
between the polymer film and the porous membrane was better understood during
this work. The conditions necessary in order to ensure strong adhesion as well as
circumstances leading to uncontrolled infiltration were partially identified. These were
used to set up limits to membrane preparation and polymer solution composition.
Combining obtained knowledge with known requirements for inkjet printable solutions
lead to the realization of the first inkjet printed PEDOT:PSS based ionic actuators.
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Résumé

Les actionneurs à base de polymères électroactifs ioniques constituent une alternative
prometteuse par rapport aux actionneurs conventionnels, en particulier lorsqu’une
réponse comparable à celle d’un muscle naturel est recherché. Parmi eux, les actionneurs
à base de polymères conducteurs constituent une voie prometteuse pour des applications
biomédicale où la biocompatibilité, la compacité et un positionnement précis sont requis.
Néanmoins, l’essor de dispositifs fonctionnels est fortement ralenti en raison de la faible
efficacité d’actionnement et de la rapide dégradation des performances de ce type
d’actionneurs. L’absence de rétroaction sur la force ou sur la position est également un
autre aspect limitant le développement de cette approche. L’objectif de cette thèse est de
proposer une technique de fabrication à grande échelle pour l’élaboration d’actionneurs
à base de polymères électroactifs ioniques et permettant également l’intégration de
capteurs pour un contrôle rétroactif.

L’impression par jet d’encre est une technologie clé pour le dépôt de polymères et
une des plus alternatives les plus prometteuses pour la production d’actionneurs à
base de polymères conducteurs. Cependant, la fabrication d’actionneurs par technique
jet d’encre n’est pas encore totalement maîtrisée à cause des propriétés rhéologiques
des solutions de polymères conducteurs qui rendent difficile le contrôle de l’éjection
de gouttes mais également en raison de la nature complexe des interactions entre la
solution et l’échantillon qui peut conduire à une faible adhésion et un mauvais contrôle
de l’infiltration de l’encre.

Pour optimiser cette méthode de fabrication, des membranes hybrides contenant des
ions ont été développées. Le greffage d’un monomère hydrophile par plasma argon
avec un dépôt contrôlé en profondeur a été utilisé pour obtenir des membranes en
polyfluorure de vinylidène (PVDF) avec des surfaces hydrophiles tout en conservant
une zone centrale hydrophobe. Ces membranes hybrides ont permis d’obtenir, par
dépôt de gouttes, des actionneurs de morphologies très variées à base de polymères
conducteurs. En outre, la durée de vie d’actionneurs obtenus avec une solution con-
ductrice de poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) a été
sensiblement augmentée avec des déformations de plus de 0.6% sans qu’aucun signe de
délamination ne soit perceptible.

Enfin, la nature complexe des mécanismes physico-chimiques à l’origine des interactions
entre le film polymère et la membrane poreuse a été mieux appréhendée durant
ce travail. Les conditions nécessaires pour assurer une forte adhésion et les effets
conduisant à un mauvais contrôle de l’infiltration ont été partiellement identifiés. Ces
résultats ont permis de définir les paramètres clés concernant la préparation de la
membrane et la composition de la solution polymère. En associant l’ensemble de
ces résultats avec les exigences liées à l’utilisation de l’impression de solutions par
jet d’encre, nous avons réalisé, en utilisant cette technique de dépôt, les premiers
actionneurs ioniques à base de PEDOT:PSS.
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SDS sodium dodecyl sulfate

Created abbreviations for used materials
EG-PEDOT PEDOT:PSS with ethylene glycol as secondary dopant

G-PEDOT PEDOT:PSS with glycerol as secondary dopant

PEG-PEDOT PEDOT:PSS with PEG as secondary dopant

mPVDF PVDF-graft-PEGMA membrane

pPVDF pristine PVDF membrane
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Characterization techniques
AFM atomic force microscopy

ATRP atom transfer radical polymerisation

CV cyclic voltammetry

EDX Energy-dispersive X-ray spectroscopy

FT-IR Fourier transform infrared spectroscopy

IR infrared

RF radio frequency

SEM scanning electron microscopy

UV ultraviolet

WCA water contact angle

XPS X-ray photoelectron spectroscopy

Other
CPAs conducting polymer actuators

CPs conducting polymers

DEAs dielectric elastomers

EAPs electroactive polymers

ILs ionic liquids

IPMCs ionic polymer-metal composites

IPNs interpenetrated polymer networks

GD grafting density

MD mixing depth

SD spraying density

SE spraying efficiency

SMA shape-memory alloy
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1Introduction

Contents
1.1 Artificial muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Pneumatic actuation . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Thermal actuation . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Electric field actuation . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Ion-based actuation . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Other or combined actuation mechanisms . . . . . . . . . . 7

1.2 Applications of EAP based actuators . . . . . . . . . . . . . . . . . . 8

1.3 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

There is a growing interest in robots working with or in close vicinity of humans.
Making them compliant is one of the biggest challenges. For the next generation
robots, adapted control strategies will need to be combined with lightweight materials,
actuators, sensors and power sources. For example, traditional actuators have low
power density, power-to-mass ratio and efficiency. These and other properties are
limiting the creation of the dynamic micro-robots. Furthermore, their cost, bulkiness
and the lack of integrated tactile or force feedback are limiting their applications in
medicine.

Even though very limited at the moment, electroactive polymers (EAPs) have a potential
of replacing prevalent actuators, where compliant muscle-like response is desirable.
In addition, EAPs provide fabrication flexibility and could potentially be used for
applications in medical devices (minimally invasive surgical and diagnostic tools) [131,
324, 381], prosthesis (hands and arms), robotics (as grippers and manipulators) [60,
149, 377], toys etc.

1.1 Artificial muscles
Artificial muscle is a generic term used for materials or devices that can generate
reversible contraction, expansion, or rotation within one body due to an external
stimulus (voltage, current, pressure, temperature, etc.) [270]. Based on the stimulus,
they can be divided into (1) pneumatic, (2) thermal, (3) electric field and (4) ionic
actuators. The comparison of the currently investigated artificial muscles is shown
in Fig. 1.1. Their performance is often compared to the human skeletal muscle and
some artificial muscles could produce larger strain (electric field driven actuators) or
stress (ionic actuators). Nevertheless, the combination of the efficiency (40 %), strain
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rate (50 %/s) and specific power (284 W/kg) of a human muscle are hard to match
(Fig. 1.1b). The current state-of-the-art tendencies and challenges of prevalent artificial
muscles are discussed in the following sections.

1.1.1 Pneumatic actuation

In pneumatic actuators the contractile and linear motion is generated by inflating and
deflating an elastomer. They are extremely lightweight and compliant and are already
widely used [74, 81, 149, 417]. Well-known McKibben-type actuators are being further
developed in order to improve their lifetime and control [260, 378, 417]. In addition,
new inflatable materials are being suggested such as the pneumatically-driven flexible
microactuators (FMAs) [128, 129] or the embedded pneumatic networks of channels
in elastomer (PneuNets) [149]. They generate more complex motions with the single
source of pressure; gripping, bending, crawling motions can be created by simply
changing their configuration and the size [256, 275, 278, 337]. Furthermore, stiffer
and durable elastomers can be used in order to fabricate soft robots that are resistant
to temperature, pressure and mechanical damage [256, 375].

Pneumatic artificial muscles rely on the air-producing equipment. Therefore, if damaged,
they are likely to rupture and leak. Furthermore, their force is determined by both
the pressure and the state of inflation, making them non-linear and difficult to control.
This limits their applications where the delicate and precise movement is required.
Therefore, as an alternative to the pneumatic actuation, other types of artificial muscles
are being extensively studied.

1.1.2 Thermal actuation

Shape-memory alloy (SMA) materials such as Nitinol are the most well known lightweight
solid-state alternative to conventional actuators. They undergo a phase and shape
change with temperature or stress and for actuation purposes they are usually heated
by running current through them (reviewed by [182]). Nevertheless, as most of the
solid-state materials, SMAs fail after long cycling due to the microstructural crack prop-
agation and fracture. Furthermore, cooling of the actuator is significantly slower than
heating and causes a response asymmetry. Shape memory polymers (SMPs), actuated
analogously, are promising alternatives to SMAs. They are low cost and are able to pro-
duce larger strains of up to 700% [200] (typical strain of SMAs is 0.1%). Furthermore,
due to easier processing and synthesis flexibility, SMPs could be tailored to required
applications (reviewed by [28, 360]).

Recently, a well known phenomenon of thermal expansion was used for the actuation of
the twisted yarns of metals [270], carbon nanotubes (CNTs) [233], nylon or polyester
[134]. The first actuators of this kind were produced by twist-spinning multiwall carbon
nanotubes (MWCNTs) into a yarn and then overtwisting them until coiling [414]. When
the length of the yarn is kept constant during heating, the yarn untwists and its diameter
increases. Alternatively, when the change in the twist is restrained, during the actuation
yarn contracts in length and its diameter increases. Twisting MWCNTs were shown
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(a)

(b)

Fig. 1.1. (a) Stress versus strain and (b) work density versus strain rate of typical artificial muscles
(defined by lines) and some state-of-the-art actuators (stars). Types of actuations: blue - electric,
orange - ionic, green - thermal, red - CNTs, gray - others, black - mammal skeletal muscle.
Adopted from [249, 269] and other sources mentioned in the text.
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to increase their strength (up to 300 MPa), while coiling and wax-filling1 amplifies
the tensile stroke (from 0.7% to about 10%) and the work capacity. Even though
MWCNTs yarns have remarkable electrical and mechanical properties, their fabrication
is complicated and expensive. This encourages development of the artificial muscles,
based on the twisted metal nanowires [270].

Recently, it was shown that much cheaper materials, such as nylon or polyester can be
twisted, coiled and used as torsional muscles [134]. These actuators are able to contract
by 49% and does not require the infiltration with the guest material. They can also be
used for millions of cycles and produce mechanical work of 5.3 kW/kg. In comparison
to CNTs, lower temperature is needed to drive these muscles. Therefore, they could be
powered by changes in ambient temperatures or be woven into the smart textiles [134,
233]. Nevertheless, further work is needed to increase their electrothermal energy
conversion efficiency that is currently only about 1 − 2%.

1.1.3 Electric field actuation
Piezoelectric ceramics are one of the materials that are able to produce mechanical stress
because of the electric field and are used as actuators. Similarly, there are polymers
that respond to electric field. For example, ferroelectric polymers, i.e. polyvinylidene
fluoride (PVDF), can generate large strains (5%) due to the field-driven alignment of
their polar groups. The main advantages of such polymers are low heat dissipation and
fast response (ms). Therefore, actuators based on them can be used for applications
such as varifocal microlenses [63]. Nevertheless, their actuation requires high voltages
(150 MV/m), they are sensitive to defects and difficult to mass produce2 [249, 269].

Dielectric elastomers

The most studied electroactive polymer actuators are based on dielectric elastomers
(DEAs). They are typically made of a passive elastomer film that is sandwiched in
between two compliant electrodes. When a voltage is applied, the electrostatic pressure
between the electrodes (Maxwell Stress), arising due to the Coulomb forces, compresses
the thickness and expands the area of the elastomer in between. Most of the actuator
properties, i.e. the produced strain, force and specific energy density, depends on
the generated electric field and, therefore, properties of the dielectric, i.e. relative
permittivity and stiffness [37]. Most widely used dielectrics are silicone, polyurethane
[307, 306] and polyacrylate [201, 157]. Typically, DEAs produce large strain3 (Fig. 1.1a)
that presents one of their challenges, that is flexible and stretchable electrodes. For now,
prevalent electrodes are based on the carbon powder, grease, rubber and metallic thin
films (reviewed by [323]), but CNTs [355], metal ion implantation [93] and platinum
salts [83] were suggested as an alternative.

1The volume expansion of CNTs itself is very low, therefore infiltration with a guest material, i.e. wax,
that has higher volume expansion was suggested [233].

2 Electrostrictive graft elastomers based on PVDF copolymers, in which polar groups are attached as the
side chains [395], require lower voltages (1.5 MV/m), but they also produce lower strains (4 %) and
are relatively slower (< 133 Hz)

3 Polyacrylate based DEAs produce highest strains (200 − 380 % in area in experiments, 20 % - com-
mercially viable) and pressures (7.2 MP a). They are also known for the highest energy densities
(> 0, 75 J/g) [37, 34] and efficiency (90%).
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Overall, fabrication of DEAs requires low-cost, lightweight and conformable materials
making them an excellent choice for actuators [37] and energy-harvesters [207].
Nevertheless, DEAs require high electric fields (150 MV/m) and, consequently, voltages
up to 5 kV , therefore their applications in medicine, biosciences and other fields that
require contact with humans is very limited [249, 269].

Carbon nanotubes

Carbon materials can also be used as the electric field driven actuators. Thin, low
density CNTs sheets can be produced from the MWCNTs forests and are capable of fast
expansion in thickness (more than 200 % with a rate of 3.7 ∗ 104 %/s) making them
faster than piezoelectrics. Nevertheless, as other electrically driven actuations, high
voltages (> 1 kV ) are required limiting their applications [7].

1.1.4 Ion-based actuation
When actuation is required in vicinity of the human beings, in medicine or biosciences,
it is essential to have low-voltage devices. The ion-based actuation relies on the mass
transport of ions within the polymer and their uneven distribution that subsequently
causes the volume or shape change. In this way, mechanical stress or strain of several
percent can be produced with only 1 − 3 V . Several types of ionic EAPs are being
investigated for applications as artificial muscles: ionic gels [252], ionic polymer-metal
composites (IPMCs) [162, 374], conducting polymer actuators (CPAs) [24] and, more
recently, carbon nanomaterial based composites [23, 204].

Ionic gels

Active hydrogels are three-dimensional polymer networks in which voids are filled with
water. They can undergo a volume change as a response to an environmental stimulus
and already have various applications [91] in biotechnology and medicine [25, 38].
As an emerging artificial muscles, ionic gels could potentially match the force and the
energy density of a skeletal muscle at low voltages. In active ion gels, the reversible
volume or shape change is a response to a chemical reaction, e.g. pH oscillations [125,
252], diffusion of a reactive substrate into the gel [212]. Because the flow of the solvent
into the gel matrix is a diffusion controlled process, the response time of ionic gel is
limited to several seconds. Nevertheless, fast gels could be made of thin films at a cost
of a force4 [284]. In order to make the active gels more practical, the speed of their
stimuli responsiveness and weak mechanical properties need to be improved [22, 151].
Furthermore, the robust electroding techniques need to be developed, that would not
damage gel surface, e.g. the use of silver nanowires [2].

Ionic polymer-metal composites

Ionic polymer-metal composites (IPMCs) are made of a semipermeable polymer mem-
brane sandwiched between metal electrodes. Semipermeable membranes are usually
the ion-conducting polyelectrolytes, having a backbone chain of perfluorinated alkane
terminated with ionic groups (e.g. SO –

3 for Nafion®, COO– for Flemion®). These ion

4 The response time depends on the surface area to volume ratio while the force is proportional to the
volume of the gel.
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groups form hydrophilic cluster networks, where the solvent and the mobile counter-
ions accumulate. Once an electric field is applied, cations along with the solvent move
towards one of the electrodes, cause swelling and fast bending motion (more sophisti-
cated actuation mechanisms are reported by [144, 240, 286, 287]). Factors influencing
the electrochemomechanical response of the actuators, such as (1) the chemical compo-
sition and structure of the polymer [162, 189], (2) the morphology of the electrodes
[374], (3) the nature of the mobile ions [29, 189, 288], (4) the solvent saturation [199]
etc. are rather well understood and are extensively reviewed [80, 188, 336]. Due to the
low actuation voltage and relatively large bending, IPMCs have potential applications
in the underwater robotics (e.g. grippers [109], swimming devices [53, 185, 300]) and
medicine (e.g. microgrippers [103], steerable catheters [324]).

One of their drawbacks is a back-relaxation - the actuation is followed by a slow
relaxation due to the water diffusion out from the cation-rich area. In addition, IPMCs
are sensitive to dehydration, hydrolysis above 1.23 V and tend to drift in the position or
get permanently deformed when the direct current is applied. Furthermore, the lifetime
of IPMCs is rather limited [313], primarily because of:

• Gradual water evaporation during cycling [196, 303]. The evaporation of water
in air could be avoided if ionic liquids are used as electrolytes [29] but at a cost
of the response speed and strain. Alternatively, devices could be encapsulated in
e.g. parylene [192, 223], polydimethylsiloxane (PDMS) [382], other materials [4,
19]. Nevertheless, as a consequence of encapsulation, actuator stiffness increases
and leads to a decrease of the deflection amplitude.

• Poor adhesion of metal electrodes to the membrane. In order to ensure sufficient
adhesion between the membrane and the electroplated metals5, expensive and
time consuming surface roughening techniques are required [43, 191]. Therefore,
alternative adhesion improvement methods, e.g. polymer coating [41, 187],
nano-powder casting [66] are being suggested.

• Damage of the electrode surface [303, 404]. In order to decrease the electrode
cracking and degradation during bending cycles [41, 301] development of fabri-
cation techniques, e.g. introducing novel electrodes [138, 186], is necessary.

Conducting polymers

Replacing metal electrodes with less rigid and brittle materials could solve several
IPMCs limitations. Using conducting polymers (CPs) as electrodes is one of the alterna-
tives. First of all, CPs provide electrical conductivity and ensure IPMCs-like behaviour.
Secondly, the charge induced during the oxidation or reduction of the polymer is com-
pensated by the ion ingress and egress. That subsequently causes a volume change of
the polymer that is considered to be the primary factor leading to the actuation. The
main advantages of CPAs are low voltage required for actuation and their biocompat-
ibility making them the most promising candidates for applications in medicine and
implantable devices. Furthermore, compared to their weight, they are able to induce a
relatively large force and only small currents6 are needed to hold constant strain at DC

5 Metal salt reduction on the surface of the polymer.
6 Charge is dissipated because of the discharge through the electrolyte or electrochemical reactions.
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voltage [154, 345]. On the other hand, fatigue, deterioration under cycling and slow
response (< 40 Hz) still needs to be improved. Conducting polymer actuators, their
fabrication techniques and applications will be further discussed in Chapter 4.

Carbon nanotubes

The most recent ionic actuator type is based on carbon nanotubes (CNTs) and their
composites suspended in the electrolytes [23] or ionic liquids (ILs) [18]. When the
voltage is applied (1−4 V ), the CNTs surface is charged and electrolytes form an electric
double layer around them. The electrostatic repulsion of the charges on the nanotubes
causes the elongation of the carbon-carbon bonds, that consequently elongates the
nanotube [23]. Due to their stiffness, networks of entangled nanotubes or yarns are
needed to cause macroscopic deformations and even then, strain smaller than 1% are
achievable [23]. On the other hand, due to the porosity and fast ion diffusion the
strain rate of the CNTs actuators can reach 19 %/s (< 10 ms response time) [248].
Furthermore, their high elastic modulus (640 GPa) leads to huge work densities of
108 J/m3.

Discovery of the ’bucky gel’7 [115] was followed by their applications as actuators
[114]. ’Bucky gel’ actuators have similar to the IPMC trilayer structure: the polymer
impregnated with the ionic liquid in between two electrodes. Nevertheless, the motion
is caused by the CNTs charging and subsequently the ion transport within and to the
gel. The main advantages of the ’bucky-gel’ actuators are their facile fabrication (layer-
by-layer casting) and fast actuation times (respond to up to 100 Hz). Nevertheless, just
as CNTs actuators, they are difficult and expensive to mass produce [217, 224, 383].
As a cheaper alternative, carbon black and carbon fiber mixtures with ILs are being
investigated [371].

Composite materials

IPMCs suffer from the disadvantages caused by the rigidity of the electrodes, the con-
ductive polymers are limited by their relatively low conductivity and the slow response
and carbon nanotube actuators are expensive and energy inefficient. Therefore, there is
growing interest in composite material electrodes that would combine advantages and
reduce disadvantages of each type, e.g. carbon - conducting polymer composites [379,
362], CNTs mixtures with nanoparticles [370].

1.1.5 Other or combined actuation mechanisms
One of the limitations of DEAs is the low produced actuation pressure. In order to
achieve stiffer actuated shapes, materials that combine properties of shape-memory
polymers and dielectric elastomers can be used. Such materials are called bistable
electroactive polymers (BSEPs), e.g. thermoplastic poly(tert-butyl acrylate) (PTBA)
suggested by [409]. Bistable electroactive polymers are rigid at ambient temperature
(below their glass transition temperature (Tg)) and can be actuated electrically as DEAs
above Tg. Once cooled, actuated shape becomes and remains rigid with or without the
electric field and until heated again. More rigid shape can support higher mechanical

7 Single walled carbon nanotube and ionic liquid gel-like composite.
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loads at large strains. New BSEPs with better elasticity, transition temperature window
and stability at high strains are being investigated [290, 321].

The multilayer structure of ionic polymer actuators that enables the bending deforma-
tion due to the expansion or contraction of one of the layers, can also be used for the
electrothermal actuators. In this case, whaving significantly different thermal expansion
coefficients and excellent adhesion are needed. One of the reported examples of such
actuators are PDMS deposited on a large-area conducting CNTs paper [226]. Due to
the two magnitude higher thermal expansion coefficient of PDMS, once the bilayer is
electrically heated it bends towards the electrode. With the relatively low currents
(hundrends of mA) and temperatures (40 − 120°C) high strains are achieved (bending
angles of 200°).

Similarly, the hygroscopic nature of conducting polymers can be exploited [292, 294,
364]. In this case, the actuation could be controlled by (1) varying environments
humidity, because of the absorption and desorption of the water vapour, or (2) electric
field as water is being expelled from the polymer films due to Joule heating. Linear and
rotor actuators using folded polypyrrole (PPy) films [294] and bending actuators of
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on PDMS [364]
were so far reported.

Just as Faradic or non-Faradic charging causes conductive polymer expansion or con-
traction, nanoporous metallic materials were also shown to be able to produce a voltage
induced reversible strain [398]. Nanoporous platinum [398], gold [33, 86], silver [87],
their alloys [160] and nanohoneycomb nickel [56] produce strain larger than 0.1% with
voltages lower than 1 V . During actuation, change of the surface properties8 of porous
metal network causes volume expansion that is proportional to the surface-to-volume
ratio. Nanoporous metals are stiffer and stronger compared to the polymer artificial
muscles, and produce 10 times higher strain than conventional piezoelectrics with 1000
times lower voltage.

Recently, ’Onion artificial muscles’ were reported [48], that could be considered a
combination of the pneumatic PneuNets and the electric actuations. Micro-actuators
that can both elongate and bend were produced by depositing gold electrodes on
the acid-treated onion epidermal cell monolayer. The electrostatic forces deform
cells (’inflate’ or ’deflate’) and due to stiff walls between them, cell actuator bends or
elongates depending on applied voltage.

1.2 Applications of EAP based actuators
For now, the fastest approaching application of the electroactive polymer based actuators
are electronic devices haptic feedback, Braille displays, headphones etc. Nevertheless,
their lightweight and the low power consumption are also advantageous for actuation

8 In case of Pt and Au, the strain results from the double-layer charging, that consequently leads to the
redistribution of the surface atoms and change of the interatomic distances (similar to CNTs actuators)
[159]. On the other hand, the strain in the nanohoneycomb nickel is most likely induced by the
difference of a lattice structure of the charged redox reaction products [56].
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in space, robotics and medical devices. The choice of the type of the actuator needs to
be made based on the specificity of the application.

Actuators in space

The need to reduce the mass and the power consumption of space travel vehicles is
evident. Furthermore, space is a challenging environment, that requires materials that
are stable at extreme temperatures, pressure, radiation, etc. Prevalent actuation tech-
nologies are based on piezoceramics or on hydraulic, pneumatic and electromagnetic
devices and are failing to match these requirements. They could be possibly replaced
by electroactive polymers. EAPs actuators are being investigated for performing or
assisting tasks such as deployment of solar panels or antennae, haptics and telerobotics,
walking or sliding robots etc.

Piezoelectric polymer based actuators are closest to the applications in spacecrafts
for e.g. the control of orientation of surface mirror [77]. Nevertheless, mechanical
amplification of displacement is still required and other artificial muscles are considered.
One of the option is dielectric elastomer based artificial muscles, that were already
investigated for control of large and lightweight mirrors [206] and as deployable
microsatellite grippers [12]. Finally, ionic electroactive polymer based actuators have
been tested for long term performance in space conditions. They were shown to be
able to perform when irradiated or at low temperatures (if ionic liquids are used as
electrolyte) [312] but their realisation as devices are still in an embryonic state.

Actuators in robotics

Due to their low power density, efficiency and power-to-mass ratio, traditional actuators
are one of the key elements limiting the creation of dynamic micro-robots. Depending
on the type of locomotion, strain, force and power requirement, artificial muscles of
different types can be used: DEAs for walking [305], IPMCs and CPAs for swimming
[55, 259] and crawling [280], piezoelectric ceramics for flying [245], etc. Large scale
robots require large strain and force capabilities and good static and dynamic response.
Each technology is being investigated and many actuators were presented to meet these
needs (as discussed previously). Nevertheless only few of them can be implemented
with a reasonable amount of control action [190, 269, 377]. One example is DEAs,
that can be antagonistically configured for linear actuation and were implemented in
inchworm microrobots as well as for multi-degrees of freedom motors [190, 65, 253].

The produced strain and force are the main limitations of EAP actuators for locomotion.
On the other hand, their application as grippers are closer to realisation. Prototype
conformable grippers based on DEAs were shown to be able to lift up weights 60
times heavier than their own weight [12, 338]. Unfortunately, the nonlinearity and
time-variant dynamics of DEAs require advanced control algorithms, limiting their
applications. Due to bending motion of ionic EAPs, micro-grippers are one of their main
applications and prototype devices are being continuously reported [155, 179, 244].
In the case of ionic actuators, large time constants, unknown systems dynamics and
positional drifts are main control challenges, but closed-loop [102] and feedforward
[163] control strategies were suggested. The closed-loop control usually requires laser
displacement or other sensors that are bulky and troublesome to implement. The
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environment dependent behaviour [313] is challenging for feedforward controllers.
Therefore possibilities of self-sensing actuators is one of the main current research axis
[208].

Active smart textiles

Textiles could be considered smart if they consist of basic elements for sensing, activation
and programming capability. The conducting polymers and carbon nanotubes can be
easily integrated into the textile fabrics for creating electrically active areas. These
areas would then allow change of textile structure depending on the stimuli [354].
Conventional polymer based actuators require electrolyte and produce the bending
motion that complicates their integration in wearable textiles. As an alternative,
thermoresponsive polymers and their yarns (discussed previously) were shown to be
easily woven into the textile. The incorporated actuators could provide the exoskeleton
functionality that would complement the biological muscles or could change the textile
structure providing adaptive mass and heat transfer [134, 233].

Biomedical applications

Just as in the space, actuators used for biomedical devices have particular requirements,
i.e. biocompatibility, compactness, accurate positioning, reasonable speed and strength
[345]. Devices such as artificial sphincters, i.e. for treating the urinary incontinence, [20,
397], microsurgical instruments, especially for non-invasive surgery [271], implants
for e.g. restoration of the facial movements [216] or blood vessel binders [150],
catheters [218, 324] and endoscopes [405] are needed and have been suggested. Even
though still in the early development state, conducting polymer based actuators are
most promising for these applications. Their advantages include biocompatibility and
biodegradability, relatively large strain and positioning at intermediate states, low
required voltages, facile microfabrication, mechanical properties etc. Furthermore,
their drawbacks limiting their applications in other areas, i.e. slow speed, dependence
on electrolyte and creep are not critical for biomedical applications (less than 1 Hz

actuation rate is satisfactory, large loads causing creep are not present and devices are
usually required in liquid environment) [345].

In addition to mentioned applications, actuators could also be used in biosciences as cell
manipulators [153] and mechanostimulators for controlling their growth, proliferation
and differentiation [123, 363]. They can also be used to study the effect of mechanical
stress on cells [3, 11]. Finally, the performance of conducting polymer based actuators
was also investigated in cerebral physiological conditions for potential applications
in guiding and positioning neural probes [76]. Despite the enormous potential, the
efficiency needs to be significantly improved (CPAs < 1%) in order to realise any of
these devices.

1.3 Motivation and Problem Statement
The goal of this thesis is to develop ionic electroactive polymer based actuators, that
could be used for applications in robotics. For this purpose fast, robust and up-scalable
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fabrication technology is needed. Furthermore, for most of the applications, closed-
loop control of the actuators is necessary that require sensory feed-back. Prevalent
sensors, i.e. laser displacement, are bulky and hardly integrative, demanding alternative
solutions. Inkjet printing is a key technology in the field of defined polymer deposition
[120] and one of the most promising for production of soft electroactive polymer based
actuators. Furthermore, it could also be used to fabricate and integrate strain sensors
[8, 40, 69, 330, 325]. Nevertheless, there are several challenges limiting potential
of inkjet printing: (1) solubility of conductive polymers and the availability of inks;
(2) viscosity and surface tension of polymer solutions and jetting stabilization; (3)
adhesion between ion-storing membrane and conductive polymer film; (4) diffusion
of the ink through the pores of the membrane. These challenges are mostly related
to the chemical nature of both, the conducting polymer solution and the ion storing
membrane. Conducting polymer solution needs to fulfil requirements as printable ink,
e.g. rheological properties, as well as an active layer of the actuators, e.g. good electrical
and ionic conductivity, mechanical flexibility, ageing resistance. The membrane needs
to provide volume for ion-storing as well as good ionic conductivity, excellent adhesion
to conductive polymer and electrically insulating layer between two electrodes. In this
work, we discuss these challenges in more details and suggest solutions, leading to the
possibility to have first ever reported inkjet printed ionic conductive polymer based
actuators.

1.4 Thesis Structure
Chapter 2

In a following chapter, we present hybrid ion-storing membranes, that have both upper
surfaces hydrophilic and hydrophobic bulk. Hybrid membranes were developed in order
to achieve good adhesion strength between the membrane and the electrodes while
retaining electrically insulating layer in between. We start this chapter with an overview
on the state-of-art of PVDF surface functionalization and plasma induced grafting of
membranes. Then we introduce our fabrication method and finally, the characterisation
of hybrid PVDF/PVDF-graft-PEGMA membranes.

Chapter 3

In Chapter 3 we discuss in more details mechanisms of adhesion between two polymer
materials and a special case when good adhesion needs to be ensured between the
membrane and the solvent casted polymer. Theoretical background of adhesion between
polymers will be followed by a discussion concerning joining PEDOT:PSS and PVDF in
a context of producing conducting polymer based actuators. In this case, interface must
not only be strong and stable once actuators are put into the ionic liquid, it also must
be able to sustain large strain of several percent during the long lifetime.

Chapter 4

Further on, we will use previously discussed materials for fabrication of conducting
polymer based actuators by drop-casting. This simple technique allows fast fabrica-
tion of devices with various geometries and compositions that can be used for better
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understanding the working mechanisms of PEDOT:PSS, PVDF and ionic liquid based
actuators. Even though these materials were used before, most of the publications
were dealing with fabrication alternatives and fundamental understanding of working
principles were rarely discussed. We will discuss performance of our devices in a context
of known PEDOT:PSS/PVDF as well as state-of-the-art polypyrrole actuators. Finally,
since efficiency of conducting polymer based actuators is rather low compared to other
soft actuators [249, 269, 326], several ideas to improve the performance will also be
discussed. We will introduce the preliminary results of post-treatment of PEDOT:PSS
electrodes with surfactants,and carbon nanotube carpets.

Chapter 5

Finally, having hybrid PVDF membranes that ensure good adhesion between the mem-
brane and the polymer, gives way to considering alternative fabrication techniques.
One of them is ink-jet printing. After a short discussion on the challenges regarding
printing conducting polymers on porous substrate, we demonstrate first ink-jet printed
actuators, with strong interface. Potential of inkjet printing and possibilities of how to
improve the process will also be discussed.

Chapter 6

Even if we were able to improve actuators performance to generate strain of up to
0.6%, performance of PEDOT:PSS actuators is still behind most of the state-of-the art
electropolymerized devices. Together with overview of the main achievements done
during the time of this thesis, we will discuss the possibilities to further improve the
process.
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A good insulating layer between two electrodes in conducting polymer actuators (CPAs)
have to satisfy several requirements. First of all, it needs to provide sufficient softness
and flexibility in order to obtain strains of several percent. This could be achieved
by using very thin materials or membranes. Membranes are more advantageous
especially because they can store electrolyte and therefore, actuators can be operated
in air. In this case, a large available free volume is needed as well as a chemical
stability and a good ionic conductivity. When the conducting polymer is synthesized
electrochemically, the membrane should also provide the initial conducting layer. Finally,
a good adhesion between the insulating layer and the conducting polymer is crucial for
actuator lifetime.

The most widely used insulator for CPAs so far is probably PVDF ultrafiltration mem-
branes. They are commercially available and have excellent mechanical properties
and chemical resistance. In order to provide a conducting substrate, metal deposition
or chemical synthesis are often used (Section 4.2.1), and a good adhesion is ensured
by the interfacial layer created during the electropolymerization. Nevertheless, if the
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution is used
for the fabrication by solvent-casting, PEDOT:PSS and PVDF do not adhere. This leads
to a partial separation of layers while handling and a complete delamination once
actuator is immersed in a liquid (discussed in more details in Chapter 3). Therefore
mainly hydrophilic membranes, i.e. polyurethane [295], cellulose [193] filled with
ionic liquid were used. Hydrophilicity of the membranes ensures a good adhesion with
PEDOT:PSS while ionic liquid blocks the pores preventing infiltration and occasional
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connections between the electrodes. Nevertheless, the fabrication of such actuators is
done one-by-one and is hardly up-scalable.

One of the possible properties causing the poor adhesion between PEDOT:PSS and PVDF
is the chemical nature of materials: the hydrophobicity of PVDF and the hydrophilicity
of the aqueous PEDOT:PSS solution. The contact angle between these materials is
larger than 130°. Nevertheless, if hydrophilic PVDF is being used, PEDOT:PSS is imme-
diately absorbed and in case where a trilayer configuration is needed - causes partial
connections between the two electrodes. Therefore, the improvement of the adhesion is
needed but the hydrophilic membranes cannot be used. Ikushima et al solved this issue
by ultraviolet (UV) induced poly(ethylene glycol) methyl ether methacrylate (PEGMA)
grafting on the surface of the PVDF membrane [148]. Inspired by their approach, we
have developed technique for the partial functionalization of the membranes. Thus,
hybrid membranes, that have hydrophilic pores to a certain depth are created.

In this chapter we shortly introduce the various available methods used to improve
the PVDF membrane wettability, i.e. the plasma induced grafting. We also discuss in
more details mechanisms of plasma diffusion, the interaction with the porous substrate
and known factors that influence the morphology of the grafted polymers. Later we
suggest a grafting-to method that allows functionalization of the membrane to a certain
depth.

2.1 Introduction
PVDF membranes are not only used for the fabrication of CPAs, they are also often
chosen for filtration, distillation, separation etc. The are preferred due to their mechan-
ical strength, their good chemical resistance, thermal stability and ageing resistance.
Nevertheless, their hydrophobicity causes wetting problems, that subsequently leads to
a poor adhesion and fouling. Therefore, various surface functionalization methods are
suggested in order to improve the hydrophilicity of membranes (recently reviewed by
[175, 238, 319]).

2.1.1 Functionalization of PVDF membranes
Hydrophilic PVDF membranes can be obtained is three ways: (1) during the preparation
of the membrane by blending; (2) by covalent and (3) non-covalent surface modification
of existing membranes.

PVDF is not compatible with most of the hydrophilic polymers and direct blending is
hard to achieve. Therefore, rather complicated synthesis methods are often needed
[32, 39, 225, 318, 412]. Poly(vinylpyrrolidone) (PVP), polyethylene glycol (PEG)
and poly(methyl methacrylate) (PMMA) are the most common hydrophilic polymers
used for blending, but amphiphilic1 block-copolymers, containing hydrophobic and
hydrophilic parts are emerging as an alternative [358]. During the phase separation
these kinds of additives arrange themselves so that the hydrophilic polymer chains

1 having an affinity for two different types of environments
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are exposed to the pore surface, while the hydrophobic part is entangled in the bulk.
In a similar way, the incorporation of nanoparticles was also reported to improve the
hydrophilicity of the membrane [272]. Unfortunately, successful blending methods do
not only require rather complicated synthesis procedure, they also modify the bulk of
the membrane, potentially altering their mechanical and thermal properties.

Alternatively, there exist several methods for the modification of already made PVDF
membranes. One of them is a non-covalent coating, i.e. physisorption on the membrane
surface with hydrophilic polymers or other molecules. Various oily liquids, amphiphiles
and surfactants have a low water contact angle (WCA) with hydrophobic surfaces. They
readily adsorb and flow through the pores of the membranes. This property is also
used industrially for oil/water separation [424] or lubrication [222]. Nevertheless, the
mechanisms of the process are still debatable [130, 353] and will be shortly discussed
in Chapter 3.4. One of the drawbacks of the surface coating with amphiphilic molecules,
is the instability of the layer (it can be easily washed away). In order to stabilize it,
post-deposition treatments, i.e. cross-linking, polymerization, are needed (reviewed by
Kang et al) [175]. In addition to the lack of long-term stability, the functionalization by
adsorption also leads to the decrease of the membrane pore size, the water flux and
even the pore clogging. Using them for soft actuators, could have a negative impact on
the ionic conductivity and could decrease the free-volume available for ion-storing.

Finally, PVDF can also be functionalized by covalent modification. In this case only the
surface of the membrane is modified, the bulk physical properties of the polymer are
preserved and the pore size is rather unaltered. Furthermore, the functionalization is
permanent and more stable than physisorption.

Covalent functionalisation of PVDF membranes

UV, O3/O2, electron beam, plasma and other high energy irradiation is necessary in
order to activate the PVDF surface. That usually leads to the defluorination, dehydro-
genation or cleavage in the backbone of the PVDF and, subsequently, to the generation
of radicals. Therefore, polymers with active moieties can be ’grafted-to’ or ’grafted-from’
PVDF backbone. The initiated radicals are relatively stable and the reaction precursor
does not necessarily need to be in contact with the surface during the activation, i.e.
the chemical reaction could be performed several minutes (or even hours) after the
activation. The ’grafting-to’ method, when the previously synthesized polymer is grafted
on the surface, leads to the graft-polymer with a well known structure. Nevertheless,
due to the low reactivity2, the grafting density and homogeneity are hard to control.
The ’grafting-from’ method, where the monomer is grafted and the synthesis of the
polymer follows, allows easier control of the grafting density and the length of the
graft-polymer. Nevertheless, an insufficient control could lead to formation of long
chains of the polymer that could reduce or even clog the pores.

PVDF is resistant to UV irradiation and a photo-initiator, e.g. benzophenon or its deriva-
tives, is usually required. Radicals from the benzophenon are transferred to PVDF
by dehydrogenation reaction as shown in Fig. 2.1a (more sophisticated mechanisms

2 access of the functional groups might be hindered by polymer itself
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reviewed by [84]). That is followed by a surface-initiated free radical graft copolymeri-
sation of e.g. acrylate functional group [31, 317]. Photo-induced functionalization was
shown to significantly increase the hydrophilicity of PVDF membrane surface (from
130° to 66°) and improve its antifouling properties [31, 148, 317].

(a)

(b)

Fig. 2.1. Scheme and example of the grafting-to reaction of acrylate to PVDF membrane by (a) UV
irradiation and (b) atom transfer radical polymerisation

Another way to activate PVDF membrane is irradiation with high energy electron beam
[67]. During the γ-irradiation more stable main chain carbon-carbon or carbon-fluorine
bonds are cleaved allowing post-activation grafting. Since monomers are not exposed
to radiation, less branched graft polymers can be achieved. Furthermore, UV activation
that may require several hours to achieve homogeneous grafting and γ-irradiation
decreases surface contact angle to 0° in less than 30 seconds [78]. Nevertheless, that
fast reaction might be difficult to control, and in case of ’grafting-from’ method, leads
to fast pore clogging. Furthermore, high energy irradiation does not only affects the
bulk of the membrane. The polymer mobility at the cristalline-amorphous interphase
regions is increased by chain-scissions that could degrade PVDF mechanical properties
[238].

Plasma activation is an efficient way to activate PVDF. Due to its lower reactivity, the
effect is also limited to only the surface of the polymer. Depending on the plasma
power, active gas, distance, pressure and other parameters, surface dehydrogenation,
defluorination and dehydrofluorination reactions may occur [304]. Oxidation reactions
can also take place, when the oxygen plasma is used or when the activated surface is
exposed to the ambient environment. Plasma on its own decreases water contact angle
of the PVDF membranes, but it can also be used for the surface initiated grafting. A
more detailed discussion on the plasma induced grafting is provided in Section 2.1.2.

Finally, the atom transfer radical polymerisation (ATRP), also called the ’living’ poly-
merisation expands the choice of the monomers that are capable of the reaction. The
reaction can be easily induced thermally after O3/O2 treatment [45, 46] or by using
bromination [46]. More recently, methods involving activators generated by electron
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transfer (AGET) were also shown to improve hydrophilicity [262]. A simplified reaction
scheme for ATRP is shown in Fig. 2.1b. Even though grafting weight by ATRP is limited,
PEGMA grafted on PVDF was shown to decrease water contact angle to 60°and leads to
uniform and smooth surface coverage [46].

2.1.2 Polymer functionalization by gas plasma
’Cold’ gas plasma3 is a partially ionised gas, consisting of reactive species such as
electrons, ions, radicals, photons and passive gas molecules. It is a fast and possibly
a solvent-free process, that allows functionalization of the surface without affecting
the mechanical properties of the bulk. RF gas plasma4 can affect and modify polymer
surface in different ways by: (1) plasma-enhanced chemical vapour deposition; (2)
plasma etching and (3) surface activation and functionalization of polymers.

Plasma induced polymerization

Plasma-enhanced chemical vapour deposition refers to the excitation of an organic
monomer gas (usually hydrocarbon CH4, S2H6, C2F4 etc.), subsequent deposition and
polymerization of it on the substrate (simplified scheme of the processes during plasma
polymerisation is shown in Fig. 2.2a and are more explicitly reviewed by [211, 265,
266]). It usually creates amorphous, exceptionally branched and cross-linked polymer
films with no obvious repeat unit. Due to the easy control over plasma parameters
plasma polymerization can be used to synthesize very thin films (10 − 1000 Å) on
various substrates of complex shapes. Nevertheless, plasma polymerization competes
with polymer ablation and etching. Therefore, similar polymerization process can
also occur after fragments and molecules are removed from the surface by heavy ion
bombardment. Activated molecules could then be redeposited and reincorporated in
the polymer surface. Plasma ablation is largely polymer dependent and is unlikely
when PVDF is used.

Plasma etching of polymers

Plasma etching is often used in order to remove material from the surface. It is usually
characterised by etching rate, anisotropy5 and selectivity6. The etching rate depends
on: (1) plasma discharge parameters, e.g. type of gas, gas flow rate, plasma power,
pressure, time (2) polymer chemical and physical properties. Depending on these
parameters, surface could be etched by (1) chemical reactions, (2) ion bombardment
and sputtering of the substrate and (3) UV irradiation and generation of free radicals,
polymer backbone cleavage and subsequent reactions when exposed to oxygen.

Due to the reaction of atomic oxygen with the polymer surface, oxygen plasma is one of
the most reactive etchants. Usually etching is initiated by the abstraction of hydrogens

3 Non equilibrium plasma, where ions and neutral molecules are at lower temperature (room temperature)
than electrons. ’Hot’ or equilibrium plasma - fully ionised and in thermal equilibrium as all reactive
species are at the same temperature (usually 4000 K to 20000 K) is less practical.

4 Several plasma generation methods exists, i.e. direct current (DC), low-frequency (corona), microwave
(GHz range) discharges, but for laboratory purposed and polymer treatment radio-frequency (RF)
discharge plasma is most common.

5 A = 1 − al/av, where al and av are lateral and vertical etch rates respectively
6 S = a1/a2, where a1 and a2 are etch rates of two different materials
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(a) (b)

Fig. 2.2. (a) Scheme of the processes during plasma induced polymerization: (1) Monomer activation
with reactive plasma species; (2) plasma state polymerization forming polymer-forming inter-
mediates; (3) reactive monomer polymerization on the substrate; (4) polymerization of the
polymer-forming intermediates on the surface; (5) ablation. (b) Scheme of the processes during
plasma etching: (1) Activation of plasma gas creating cations; (2) damage of the polymer
backbone by an impact with accelerated heavy ions; (3) generation of radicals on the polymer
caused by UV irradiation; (3) ablation of the volatile impact products.

creating radicals or unsaturated moieties. These can subsequently be functionalized by
molecular oxygen creating peroxides and weakening C−C bonds. Depending on the
polymer, autoxidation can lead to chain scission and removal of the volatile etching
products. Other gas plasma (especially Ar) has significantly smaller chemical etching
rates, but can damage the polymer surface by sputtering. Usually ion bombardment is
a slow process and its rate can be increased by the biasing of the electrode where the
substrate is. A simplified scheme of the etching process is shown in Fig. 2.2b.

The change of the plasma parameters can significantly alter the etching rate. Type of
used gas is one important factor and ions could be ranked as Ar<CF4<CO2<air<O2,
where Ar is the least reactive and O2 the most. Increasing the density of the plasma
reactive species or their speed (power, temperature and bias) also accelerates etching
but usually, the properties of the polymer are playing the major role. For example,
polymers containing no oxygen and no halogen (other than fluorine) are the most
resistant to etching and aromatic side groups could further increase the resistance
[367]. Semi-crystalline polymers are more resistant to etching than amorphous ones,
as diffusion of reaction particles into a polymer is impeded. Thus, high power (200 W )
and bias (20 W ) as well as mixtures of reactive gas (40% CF4 and 60% O2) are required
to successfully etch polymers such as PVDF [158, 267]

Surface activation and functionalization of polymers

Plasma is also an efficient way to introduce the reactive chemical groups to the oth-
erwise non-reactive polymeric surfaces. The activated surfaces can then be used for
increasing adhesion between polymers, their wettability and for further chemical reac-
tions e.g. in order to improve the biocompatibility and immobilization of biomolecules.
Amine, carboxy, hydroxy and aldehyde groups can be anchored by reactive gas plasma,
i.e. oxygen, ammonia, carbon dioxide, hydrogen and nitrogen mixture, alkyl alcohol,
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(b)

Fig. 2.3. (a) (1) Generation of radicals on the surface of the polymer film by plasma irradiation; (2)
activation of the polymer surface with oxygen moieties during the exposure to the air; (3)
incubation of the activated polymer in the solution containing polymer-to-be-grafted monomer
or macromonomer. (b) (1) Immobilization of the monomer or macromonomer on the surface of
the substrate; (2) activation of both: the polymer surface and monomer precursor by plasma
creating radicals on both; (3) simultaneous reaction between active species: anchoring of the
reaction precursor to the substrate and cross-polymerization.

acrylic acid etc (reviewed by [291, 341]). In a special case, when very hydrophobic
surfaces are needed, fluorine plasma can be used to form fluorinated groups [70, 220].
Unfortunately, due to oxidation and recombination reactions, most of the activated sur-
faces have relatively short life-time, therefore their application or subsequent covalent
reactions should follow immediately.

In addition to possible reactions with plasma reactive species, radicals generated
on the surface could cause cleavage of polymer chains. This could influence their
mechanical properties if chain mobility is increased or cross-linking of the polymer
increases its molecular weight [132]. Nevertheless, surface radicals can also be used
for subsequent chemical reactions, similarly to γ-irradiation [45, 64, 177, 420] or
molecules-to-be-grafted can be deposited on the surface and anchored during irradiation
[44, 46, 390]. In both cases, monomers can be used as reaction precursors for induced
polymerization [64, 177, 420] or already synthesized polymers with functional groups
can be grafted [44, 45]. Simplified reaction mechanisms for post-irradiation grafting
and functionalization during irradiation are depicted in Fig. 2.3a and 2.3b respectively.

During irradiation, radicals can be produced on both, the polymer-to-be-grafted and
the substrate, leading to the competing reactions of: (1) the substrate and the polymer,
(2) cross-linking of polymers and (3) cross-linking of the substrate [390]. Depending
on the plasma conditions various structures, such as brush-like or network-like, can be
obtained [44]. Furthermore, the grafting weight can be controlled by irradiation time,
plasma power and amount of the precursor. Nevertheless, etching and degradation
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compete with the polymerization after longer grafting times[30, 390]. Finally, plasma
irradiation creates very thin functionalized layers (in order of 7.5 nm) that do not
change the porosity of the membrane and do not affect their mechanical and thermal
properties [46, 390]. Etching is less likely if post-irradiation grafting is used and both
monomers [420] and macromonomers [45, 177] can be polymerized. In this way much
thicker grafting layers are achieved, that could lead to the complete surface coverage
and, if porous materials are used, significant decrease in the pore size [45, 177].

Surface grafting is a powerful technique in order to increase surface wettability (to
20° in less than 100 s) and biocompatibility, that is essential for microfiltration [44, 45,
64, 177, 420] and other applications in medicine and biotechnology [58, 108, 126,
408]. Furthermore, it was also shown to be promising in enhancing adhesion between
polymers [148, 366] and can be used in order to improve the adhesion between
PEDOT:PSS and PVDF.

2.2 Surface modification during irradiation:
PVDF-graft-PEGMA by Ar plasma
Surface modificiations of PVDF and other fluoropolymers have been studied by many
researchers. Like for other polymers, defluorination and oxidation reactions are most
common and treatment in N2, O2, H2 and Ar plasmas increases its hydrophilicity. Never-
theless, fluoropolymers seem to be more resistant to oxygen plasma (dehydrogenation
rather than defluorination is dominant) and are heavily damaged only by argon [94,
304, 384]. Therefore in order to realize grafting during or after irradiation, Ar plasma
is usually used. Due to the experimental work-flow, post-irradiation grafting leads to an
increased asymmetry of the membranes. The surface of the membrane that is being
exposed to the plasma is usually more active and is subsequently more densely covered
[64, 177, 420]. Furthermore, the control of the plasma activation in the pores of the
materials is difficult and often the functionalization of all the membrane pores cannot
be avoided. Finally, for our applications very thin grafting layers are needed, so that
porosity of the membranes and their ion-storage volume remain maximum. Therefore,
grafting during irradiation, was considered to be a more suitable method.

Due to its availability and versatility PEG is often used as a grafting polymer, especially
when hydrophilicity and biocompatibility need to be improved. PEG functionalized
with methacrylate at the end is more reactive and can be grafted on PVDF membrane
by various means, e.g. ATRP [45, 46], UV activation [31, 317], plasma [44, 46]. The
chemical structure of both, PVDF and PEGMA, as well as their reaction product is shown
in Fig. 2.4a. The Fourier transform infrared spectroscopy (FT-IR) spectra (Fig. 2.4b-2.4c)
show the change in their IR signatures during the covalent reaction. It can be used
for characterization of the surface coverage after functionalization (detailed method is
provided in Section A.2). Small shift from 1727 cm−1 to 1715 cm−1 for conjugated OCO
stretching vibration of methacrylate group and OCO in esters respectively is the main
signature of the covalent reaction. If compared to only PVDF membrane, CH stretch at
2900 cm−1 appears, that shows presence of alkyl CH vibrations from PEGMA backbone.
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(a)

(b) (c)

Fig. 2.4. (a) Chemical structure of PVDF, PEGMA and PVDF-graft-PEGMA and their IR signatures between
(b) 1300 − 1800 cm−1] and (c) 2700 − 3100 cm−1]

For the characterization of the grafting density and the surface coverage, the ratio of
the integrated areas of the peak around 1400 cm−1 signifying CF bond and OCO ester
stretch will be used (the range used for integration is shown in Fig. 2.5b).

2.2.1 Influence of plasma parameters

The grafting of a hydrophilic polymer by direct irradiation was first realized by Wang et
al [390]. They immobilized PEG (Mn − 1000) by dipping PVDF membranes (porosity
of 0.65 μm) in its solution for 5 minutes and irradiated dried membranes with low-
pressure Ar plasma (100 Pa pressure, gas flow rate of 20 sccm). They showed that
radio frequency (RF) power higher than 15 W and for duration longer than 60 s causes
etching and degradation of the PVDF membrane. We observed the same tendency
for larger grafting times, as mass-loss was observed for minutes long irradiations.
Therefore, only the grafting performed at low power (10 W ) and short times up
to 30 s (experimental details provided in Section A.2.1) will be further discussed.
Fig. 2.5a shows that the surface coverage is smoothest after only 20 seconds. The
significant increase in the roughness (from 188 nm to 435 nm) is observed for the
longer grafting times. Nevertheless, the increase in roughness due to the etching is
unlikely. FT-IR measurements show increase in OCO−CF ratio (Fig. 2.5c) and after
30 s grafting CF signal is nearly gone. This means a very dense surface coverage with
PEGMA, that is thick enough to prevent IR wavelength from reaching PVDF. Therefore,
increasing roughness could be an indication of the faster polymerization of PEGMA on
the uppermost areas of the membrane.
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Fig. 2.5. (a) atomic force microscopy (AFM) surface scans of PVDF membranes after PEGMA grafting
with different plasma irradiation times. Measured average roughness is indicated below. (b)
FT-IR spectra of the same membranes and (c) Ratio of integrated OCO−CF FT-IR peaks (blue
�) and measured water contact angle (red) �

Water contact angle dependence on the grafting time is also shown in Fig. 2.5c. In
agreement with FT-IR results, even 15 seconds are sufficient to decrease WCA from
130 to 40°. The deviation of the measurement value is also very small throughout the
membrane indicating homogeneous coverage. Moreover, WCA does not change when
increasing irradiation time, suggesting that hydrophilic coverage does not degrade and
remains homogeneous.

One of the differences of our experiment in comparison to the previously published, is
a lower plasma pressure (40 mTorr). It has two competing effects on polymerization
and etching. At higher pressures more reactive plasma species are available, but it also
increases the density of molecules, leading to smaller free path (λ7) , more collisions
between molecules and less with the surface of the membrane. Therefore an optimal
pressure exists, as was demonstrated by [64]. For a given free path, the diameter of
the pores of the membrane will determine the transport mechanism of the plasma
and therefore the activation depth. For example, in pores larger than 10 μm viscous
flow occurs, meaning that gas collide with each other rather than with the membrane.
Nevertheless, in our case the ultrafiltration membranes are used at low pressures and

7 average distance travelled between collisions, λ = kT/(πd2P
√

2), d - diameter of the molecule and P
is the pressure
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the free path of the molecule is much larger than the diameter of the pores8. Therefore,
once exposed to plasma gas, membranes are permeated with gas in a fraction of a
millisecond9 and collisions occur with mostly the membrane pores. Therefore in most
of the previously reported cases, even when atmospheric pressure plasma was used
(λAr − 0.25 μm and pore size of 0.1 μm [44]), pores of the membrane were activated
leading to grafting [44, 46, 64, 177, 390, 420].

Controversially, Choi et al reported that at 20 W Ar plasma power and at 5 Pa pressure,
less than 30 μm of membrane thickness is being activated for membranes with 0.1 μm

pore diameter. Our experiments show similar results. During plasma grafting at
40 mTorr, 5 W , for 15 − 30 s on 0.1 μm PVDF membranes with PEGMA immobilized
by dipping, grafting was not detectable with FT-IR on the other side of the membrane
(even though slight decrease in the water contact angle was observed from 130° ± 1.7 to
about 108.7° ± 7.4). This indicates a partial penetration-through. Nevertheless, grafting
at even lower powers (down to 1.6 W ) or higher pressures (up tp 60 mTorr) on both
sides of the membrane leads to full functionalization showing that plasma penetrates to
at least half of the membrane thickness10.

2.2.2 Limiting grafting depth
Once the aqueous solution of PEDOT:PSS is deposited on the hydrophilic membrane,
it penetrates through it, creating connections between electrodes. Therefore, the
hydrophilic membranes are not applicable for the fabrication of actuators. We concluded
that controlling the activation depth of the membrane, by varying plasma parameters
is not effective and two adjustments to the process were considered: (1) limiting the
activation by plasma depth by blocking the pores of the membrane and (2) limiting the
deposition of the precursor to a certain thickness (Fig. 2.6c).

Gas diffusion through liquids is at least 10000 times slower than in gases [72]. Therefore,
if the pores of the membrane are filled with liquid, the permeability of the membrane
will be determined mainly by the solubility of the gas in this liquid. At room tempera-
ture, PEGMA is a viscous liquid (9 m2s−1). Just like PEG, it possesses some hydrophobic
characters that lead to its fast adsorption on the surface and pores of hydrophobic mem-
branes [152]. Therefore, once immersed in pure PEGMA, PVDF pores are completely
filled with the liquid, and their interaction is sufficiently strong to form solid state
composite11. The filled membrane can be considered as a non-porous one. Therefore,
during irradiation by plasma, reactive ion species will most likely be neutralised as
soon as liquid phase is encountered leading to grafting on only the top surface of the
membrane (Fig. 2.6b).

8 in our case, λAr − 1.2 mm and the pore size 0.1 μm) leading to Knudsen flow, where mass flux per unit

area depends only on the density gradient of the gas: J = Dk
φ
τ

MW
RT

ΔP
ΔL

, where Dk = 0.66r
√

8RT
πMW

, φ
τ

are membrane obstruction factor where φ and τ are porosity and tortuosity and l its thickness, r - pore
radius, MW - molecular weight of the gases, Δp - pressure difference across the membrane

9 assuming initially empty cylindrical pores, gas flux is 0.21 kgm−2s−1 and subsequently permeation
time is 0.8 μs

10 The penetration through the pores of the membrane was observed after PEDOT:PSS deposition. This
can occur only if membrane is hydrophilic as will be discussed in Chapter 3.

11 there is no significant liquid flow from the membrane in air
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Fig. 2.6. Schemes showing three different precursor deposition strategies and subsequent plasma mem-
brane interactions: (a) deposition by dipping in diluted solution leading to precursor adsorption
on the surface of the membrane and subsequently activation and grafting by plasma throughout
the thickness; (b) deposition by dipping in viscous liquid that prevents plasma gas diffusion and
activation to the pores; (c) deposition by spraying that limits precursor deposition to a certain
depth.

Alternatively, the functionalization will also be localized if the availability of the reaction
precursor is limited (Fig. 2.6c). Due to its hydrophobic interaction with PVDF, PEGMA
immediately adsorbs on its walls. Therefore, a method to deposit very small quantities
of PEGMA is needed. One possibility is using compressed air spray coating [133]. The
spray is produced when the compressed air stream is mixed with the solution. The
ejected droplet size as well as their speed depends on many parameters (discussed
later in Section 2.2.3), but optimised process leads to the deposition of small quantities
of materials in nearly solvent-free state. Lateral surface diffusion rate for PEG on
hydrophobic surface, depends on its molecular weight, adsorbed surface concentration,
presence of solvent etc., but in general, for concentrated thicker layers it is < 0.5 μm2s−1

and for monolayer < 5.0 μm2s−1 (for comparison, in solution > 10 μm2s−1) [418].
Theoretical studies of the nature of the polymer adsorption and surface kinetics is still
a large challenge in the field [236], but we assume that once a small PEGMA droplet
reaches the surface of the membrane, it is adsorbed, and only the presence of the
residual solvent drives lateral diffusion [344].

As shown in Fig. 2.7 both methods, filling (dip) and spraying lead to the functional-
ization of the PVDF membranes. Dipping in diluted PEGMA solutions (as in Section
2.2.1 and shown in Fig. 2.6a) leads to grafting mass of about 3.4 ng/mm2 after 15 s

irradiation. In comparison, ’filled’ and ’spray’ functionalization lead to a significantly
lower grafting, 0.12 ng/mm2 and 0.08 ng/mm2 respectively. Furthermore, during these
experiments, samples were slightly biased (1 W ) therefore grafting depth is not limited
by plasma diffusion. The comparison of obtained results is shown in Fig. 2.7. In both
cases the WCA successfully decreased to less than 40° and OCO−CF ratio increases to
more than 0.6 showing successful functionalization and surface coverage. Interestingly,
even though ’filled’ membranes have a larger OCO−CF ratio, indicating better sur-
face coverage, the water contact angle for sprayed membranes is significantly smaller:
32.1° ± 6.3 and < 10° respectively. In fact, WCA of the membranes prepared by spraying,
could not be precisely measured due to the fast spreading and adsorption of the droplet
to the pores of the membrane. This already suggests possible differences in grafting
depths.
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Fig. 2.7. Comparison of membranes prepared by filling the pores (dip) and spray coating (spray): (a)
grafting density; (b) water contact angle; (c) integrated FT-IR OCO−CF ratio; (d) roughness of
the membranes. Filled and empty bars indicate measurements on two sides of the membranes.

Another important aspect that is shown in Fig. 2.7 is that there is a difference in the
grafting for the two sides of the membrane. It could be caused by the initial asymmetry
of the membranes that is a consequence of the fabrication by phase-inversion. The
AFM images of both sides of the pristine PVDF membrane on two sides are shown in
Fig. 2.8. The surface roughness is 333 ± 24 nm and 182 ± 2 nm respectively. First
of all, the difference in the surface roughness can explain the variation in the WCA.
For the pristine membranes, WCA is 130° and 110° for the rough and smooth side
respectively. As described by Wenzel, rough and chemically hydrophobic surfaces are
more hydrophobic and the rough hydrophilic surfaces are more hydrophilic [399].
Therefore, the WCA decreases more for the rough side of the membrane: from 130° to
about 10° on the rough side and from 110° to about 30° for the smooth side (Fig. 2.7).

In comparison to the initial roughness difference, plasma does not significantly change
it (Fig. 2.8). Especially the morphology of the smooth side of the membrane remains
unchanged whatever the PEGMA deposition method is used. Nevertheless, the morphol-
ogy changes due to PEGMA grafting are visible on the rough side. The large grafting
mass (by dipping in diluted solution) leads to a visible surface coverage (Fig. 2.5a). Sim-
ilarly, irradiation of the membrane with filled pores leads to a dense surface coverage
(OCO−CF ratio 0.98) but also to a very homogeneous grafting (Rq − 307 nm). While
for the membranes with small amount of PEGMA sprayed, reaction tends to be localized
on the higher parts of the membrane further increasing roughness of the surface to
372 nm.

Surface morphology, grafting mass and FT-IR results agree with the assumption that
the active plasma species are being stopped by the liquid in the pores of PVDF. As
it can penetrate only several angstroms, only the upper surface, to the depth of the
order of its roughness (several micrometers) can be modified. Nevertheless, but due to
the vast availability of the reaction precursor it leads to a very dense coverage (larger
grafting mass and OCO−CF ratio). Furthermore, since the pores of the membrane are
not modified, the WCA is higher than for membranes prepared by spraying PEGMA and
does not lead to infiltration. During spray coating large amount of the precursor will
be deposited on the uppermost part of the membrane. However, due to the velocity
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Fig. 2.8. AFM surface scans of the two sides of the pristine and functionalized membranes. PEGMA
deposition method is indicated above.

of the droplets or the presence of the residual solvent, PEGMA might as well diffuse
to a certain extent into the pores. Nevertheless, in comparison to ’filling’, smaller
amount will be available for grafting leading to less functionalization but, likely, in
larger depth.

Grafting depth

In order to confirm these observations, PEDOT:PSS water solution was deposited by
drop casting on both sides of the membrane (as in Appendix A.4.1). To estimate the
reaction depth and the thickness of the hydrophilic PVDF, we used Energy-dispersive X-
ray spectroscopy (EDX) sulphur scan of PVDF/PEDOT:PSS sandwich. We observed that
hydrophilic PVDF membranes of the same porosity lead to diffusion of PEDOT:PSS (with
1 vol% poly(ethylene glycol) of Mr−400 (PEG400)) through the membrane but does not
infiltrate into the hydrophobic PVDF membranes. Therefore we assume that PEDOT:PSS
would penetrate into the PVDF membrane only down to the functionalization depth.
Fig. 2.9a-2.9b show EDX line scans along the cross-section for sulphur (that is only
present in PEDOT:PSS) and fluorine (only in PVDF membrane). The region where both
signals are present (mixing depth (MD)), corresponds to the width of the grafting layer.

In both cases, the grafting depth was limited. Therefore the hybrid hydrophobic-
hydrophilic PVDF membranes were made retaining the hydrophobic PVDF center of
the membrane (along the cross-section at least 50 μm in the middle are hydrophobic
(Fig. 2.9a and 2.9b)). Nevertheless, the grafting profiles along the cross-section are very
different. When the plasma diffusion is limited by filling the pores with a viscous liquid,
fast and gradual decline of PEDOT:PSS in the PVDF membrane is observed. On the
other hand, the spraying of the precursor leads to a step-like PEDOT:PSS penetration
profile. In this case, we can assume that relatively dense functionalization of the pores
up to 20 μm in depth is achieved and it leads to filling of pores with PEDOT:PSS. As can
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Fig. 2.9. EDX sulphur (blue) and fluorine (red) line scans across the cross-section of the
PEDOT:PSS/PVDF-graft-PEGMA/PEDOT:PSS trilayers, where PEGMA was deposited on PVDF
by (a) dipping and filling the pores, (b) spray coating.

be seen in Fig. 2.9b, for 20 μm on each side of the membrane, PEDOT:PSS EDX count is
roughly 30% smaller than for PEDOT:PSS on the surface. It corresponds to 70% porosity
of the membrane. Fast decline of sulphur amount follows to about 10, that is a noise
level12 of the measurement. On the other hand, it seems that only the surface was well
activated and functionalized for the ’filled’ membranes. Nevertheless, small amount
of PEDOT:PSS can be detected for about 18 μm in depth and could be an indication of
small plasma diffusion through the liquid or PEDOT:PSS infiltration through the pores
of the hydrophobic membrane.

To sum up, both methods are suitable for limiting the depth of the plasma grafting by
direct irradiation. Nevertheless, filling the pores with the grafting precursor leads to a
very dense polymerization. That could consequently block the pores of the membrane
on its surface and have a negative impact on the ionic conductivity of the electrolytes
stored in the membrane. In addition, in this case, polymerization is sensitive to the
preparation of the membrane. The excess of liquid on the surface (in our case, it
was removed by placing membranes on filtration paper) could prevent irradiation of
PVDF backbone, making the process hard to control. Finally, as a certain amount of
precursor was infiltrating into the pores of the membrane, the control of the spray
coating parameters could allow tuning of the mixing depth.

2.2.3 Controlling grafting depth
Spray coating

The spray coating process depends on many spray-gun parameters, e.g. the nozzle size,
pressure, the chemical nature of the precursor and the solvent, the spraying environment
and the substrate (experimental details are provided in Appendix A.2.1). Therefore
spraying efficiency (SE)13) and homogeneity of the film are hardly predictable. If low
boiling point solvent is used, such as ethanol, it evaporates on-flight before reaching the

12 level of the fluorine trace outside the PVDF membrane
13 fraction of the mass of the precursor deposited to the mass of the precursor sprayed
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Fig. 2.10. Spray efficiency of PEGMA in ethanol/water solution on PVDF membranes with different spray
parameters

substrate and completely dry precursor leads to the less homogeneous films[1]. It can
be seen in Fig. 2.10a, that even in the 50% azeotropic ethanol and water mixture, the
variation in SE is larger than when PEGMA aqueous solution is sprayed. Nevertheless,
if water is used as a solvent, larger droplets are reaching the surface of membrane
and large amounts of the residual solvent could cause PEGMA infiltration into the
membrane.

The flight time determines the amount of residual solvent, therefore, the distance of the
spray gun from the membrane is one of the key parameters determining the spraying
efficiency (Fig. 2.10a-2.10b). Valve opening14 leads to the control of the size of the
ejected droplet and the cone angle of the spray and is also affecting the amount of
precursor deposited (Fig. 2.10c). Nevertheless, it also affects the spray time, therefore
an optimum half turn position was maintained during further experiments. Air pressure
determines the ejection speed of the droplet and is another key parameter. The velocity
of the drop will subsequently determine its evaporation rate as well as an impact force
(full optimization was not performed). Finally, the morphology of the surface on which
PEGMA is sprayed might also affect the deposited mass as shown in Fig. 2.10b. It
is likely that roughness influences the surface diffusion rate of PEGMA as smoother
surfaces would lead to larger surface concentrations [62, 418, 419]. Nevertheless,
observed differences are too small and within the measurement error and therefore will
not be further considered.

In our case PEGMA solution in 10 vol% ethanol/water azeotropic mixture, 2kgf/cm2

pressure, half-turn valve opening, was used as it was shown to lead to the most
homogeneous deposition. By changing the distance of the spray gun to the membrane
from 35 cm to 20 cm (i.e. the size of the droplet that reaches the membrane is changed)
large spectrum of spray and graft densities were obtained as shown in Fig. 2.11. Even
small amounts of PEGMA sprayed (spraying density (SD) and grafting density (GD)
indicated in the legend) lead to reaction on the surface and its full coverage as suggested

14 Defined as a screw position in number of quarter turns
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Fig. 2.11. Grafting density versus density of PEGMA sprayed on the rough (blue) and smooth side (red) at
different conditions. Black stars - sprayed on both side and averaged.

by saturation of the OCO−CF ratio of the membranes grafted on the smooth side
(Fig. 2.12a). As the roughness of the surface further increases for the grafting on the
rough side (Fig. 2.12c and 2.13), larger OCO−CF ratio could be explained as a result
of decreased accessibility of the membrane to infrared (IR) wavelength. Interestingly,
large amounts of PEGMA deposited (SD - 0.47 ng/mm2) lead to relatively low grafting
densities (GD - 0.058 ng/mm2). That is also an indication of the fast and dense surface
coverage, that might prevent plasma from reaching the precursor in the pores.

Fig. 2.12b shows the WCA dependence on surface roughness and chemical composition.
For pristine membranes, WCA is 130° and 110° for the smooth and rough side respec-
tively. Surface roughness influences wetting in the sense that the WCA on the rough
chemically hydrophobic surfaces is larger and WCA on the rough hydrophilic surfaces is
even lower.[399] Therefore, the water contact angle decreases much faster to about
20° when the rough side is functionalized. Grafting on the smooth side leads to a
decreases to about 40°. It is also worth noting that even though small grafting densities
(> 0.06 ng/mm2 that correspond to SD of about 0.12 ng/mm2 and OCO−CF ratio
before saturation) lead to WCA lower than 100°, surface coverage is less homogeneous
as suggested by high WCA measurement error. Therefore, for fabrication of membranes
we suggest using a grafting density of at least 0.07 ng/mm2.

In summary, the surface roughness of the substrate seems to influence PEGMA grafting
behaviour. When grafting on the rough side, slightly larger grafting efficiency can be
expected as shown in Fig. 2.11. Our results suggest that reaction might be faster on the
uppermost areas of the membrane, further increasing its roughness (Fig. 2.11 and B.1).
Surface coverage seems to be more homogeneous (no significant roughness change)
on the smooth side. Finally, surface area of the membrane (measured by Krypton
adsorption and Brunauer–Emmett–Teller (BET) theory) does not change significantly
with functionalization (5.19 ± 0.33 m2/g for pristine and functionalized membranes)

2.2 Surface modification during irradiation: PVDF-graft-PEGMA by Ar plasma 29



(a) (b)

(c)

Fig. 2.12. (a) Ratio of integrated OCO and CF peaks of pristine (indicated with an arrow) and functional-
ized PVDF membranes versus sprayed amount of precursor (PEGMA) (blue � - rough side, red
� - smooth side) and (b) Water contact angle of pristine PVDF (grafting density = 0 ng/mm2)
and PVDF-graft-PEGMA membranes at different grafting densities. (c) TopographicAFM mea-
surements of the cross-sectional profiles of membranes with different grafting densities for the
two sides.
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suggesting that except the upper surface of the membrane, reaction is mostly restricted
to a very thin layer.

Grafting depth

Even though increasing SD and GD does not seem to significantly influence the morphol-
ogy of the membrane (especially on the smooth side) nor the wettability, the grafting
density is still slightly increasing above > 0.07ng/mm2. PEG and PEGMA are good
wetting agents and are immediately adsorbed on PVDF membrane. Compared to water,
their aqueous solutions spread easier (WCA are 53.3 ± 2.3° and 39.3 ± 2.8° for 10 vol%
solution on rough and smooth sides of PVDF) and are infiltrated in its pores. Therefore,
if during spraying PEGMA reaches the surface with a small amount of residual solvent
it is likely to diffuse to a certain depth. Since Ar plasma fills the pores of the membrane
and is even further accelerated by biasing, the depth of the plasma induced graft
polymerization will be influenced by spraying parameters.

Different grafting densities were obtained by varying the distance of the spray coater
and the volume of the sprayed PEGMA solution. The functionalization depth, estimated
by EDX, versus grafting density is shown in Fig. 2.13. The thickness of the grafting
depth is increasing with GD up to about 30 μm. However, at higher grafting densities
(> 0.16 ng/mm2) it seems to reach the saturation level and after 0.18 ng/mm2 even
starts to decrease. This corroborates with our earlier assumption that due to a fast
PEGMA polymerisation on the outer surface of the membrane, plasma diffusion deeper
into PVDF pores is restricted. Furthermore, a small difference might be observed for
the mixing depth on the rough and smooth sides of the membrane - on the smooth side,
it saturates at a lower depth. This again agrees with our assumption of the influence of
the coverage on plasma diffusion, i.e. a smoother surface means a smaller surface area
and a higher actual grafting density for the same amount of PEGMA. Subsequently this
could lead to a faster reduction of the pore size.

Based on these results we suggest that two mechanisms compete during Ar plasma in-
duced graft polymerization: (1) plasma diffusion in PVDF, that results in a large grafting
depth and thin PVDF-graft-PEGMA layers along the pores and (2) cross-polymerisation
of PEGMA on the upper surface, that may cause a dense coverage and limit the plasma
diffusion to smaller depths.

2.3 Conclusion
In summary, we demonstrated a technique for the fabrication of hybrid hydrophilic-
hydrophobic-hydrophilic PVDF membranes using argon plasma induced surface func-
tionalisation with PEGMA. We showed that the membrane functionalization could be
limited by both: (1) blocking the pore accessibility to plasma by filling the pores with
viscous liquid and (2) depositing the reaction precursor on only the surface. The later
one can be achieved by the optimized deposition of the PEGMA aqueous solution. The
simplified fabrication scheme is summarized in Fig. 2.14.

We also showed that even a small grafting density leads to a fast coverage of the upper
surface and a significant decrease of the water contact angle from 130° to about 20°.
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Fig. 2.13. (Bottom) EDX line scans for sulphur (blue full line) and fluorine (red dashed line) along
the cross-sections of PEDOT:PSS/PVDF-graft-PEGMA with the GD indicated with the arrows.
(Centre) The length of the depth of mixing versus the grafting density (GD) plotted separately
for PEDOT:PSS deposited on the smooth side (blue �) and the rough side (red ♦) of PVDF-
graft-PEGMA. (Top) AFM images of the rough and smooth surfaces of the PVDF-graft-PEGMA
membranes with different grafting densities (GD). Grafting density and the roughness are
indicated in the legends.
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The grafting efficiency is slightly influenced by the morphology of the substrate as
smoother surfaces lead to smaller grafting densities. This could be a consequence of
a very fast reaction, leading to a fast polymerization on the surface that subsequently
could block the membrane pores to plasma penetration. Finally, the deposition depth
of the reaction precursor can be tuned by varying spray coating parameters. We show
that by changing the spray gun distance or the volume of the precursor, hybrid PVDF
membranes of various hydrophilic layer thicknesses (ranging from 5 μm to 40 μm) can
be obtained.

Fig. 2.14. Functionalization of PVDF membranes: deposition of reaction precursor (PEGMA) by spray
coating only on the surface of the membrane and argon plasma induced grafting to PVDF
backbone leading to hybrid hydrophilic-hydrophobic membranes.

2.3.1 Future work
• The exact mechanism explaining the impact of spray coating parameters on the

deposition depth was not investigated. Due to complexity of both: spray coating
and polymer diffusion in porous media, rather complicated models are needed.
PEGMA could diffuse into the pores until mono-layer coverage is formed, as well
as its amount could be gradually decreasing. In any case it leads to a sufficient
decrease in the water contact angle that allows PEDOT:PSS infiltration in the
pores, leading to a sharp interface.

• It is possible to obtain thicker interfaces, by changing spray coating parameters.
A larger spraying distance, leads to significantly larger interfacial layers up to
60 μm in thickness (not discussed in the chapter). This is probably related to
PEGMA diffusion phenomena during spray coating, that is difficult to predict and
is worth further investigations.

• The polymerization kinetics is another challenging topic. Even though we ob-
served competition between etching, degradation and polymerization at larger
grafting times (from minutes to hours), neither etching nor polymerization rates
were studied. As etching and degradation are slower processes, by decreasing the
polymerization time these effects were minimized in our study. Nevertheless, 15 s

is a short time for plasma process, leading to relatively unstable irradiation. This
subsequently might cause irregularities between different batches. In our case,
spray coating was most difficult to reproduce (due to the use ofa basic spray-gun)
and was causing largest deviations for the same conditions (as can be seen in
Fig. 2.11: black diamonds represent the same spray coating conditions), but in
case of an automated spray, increased plasma times might be necessary to assure
reproducibility.
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• The functionalization depth was measured by indirect method (EDX) and results
might be influenced by diffusion of PEDOT:PSS and its composition (will be
discussed in Chapter 3). Therefore more direct observations of chemical structure
across the thickness, e.g. X-ray photoelectron spectroscopy (XPS) analysis, would
be interesting in order to confirm our previous statements.

• Hybrid membranes were fabricated with potential application in conducting
polymer actuators. Nevertheless, essential mechanical characterizations were not
performed in order to ensure that grafting does not change mechanical properties.
Even though plasma irradiation is usually limited to several angstroms and should
not damage bulk PVDF, densely cross-linked PEGMA on its surface could restrict
its flexibility. Furthermore, functionalization can also influence ionic conductivity
of the membrane that has not been measured either.
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The reliability of ionic polymer based actuators is one of the features limiting their
use as devices. Not only are they hardly reproducible in identical manner [241], their
performance is also largely influenced by the environment conditions, the degradation
of the membrane and the electrodes, the evaporation or leakage of the electrolyte,
the poor interface etc. As earlier works on ionic artificial muscles were mainly limited
to actuation in liquid electrolyte, the influence of temperature and humidity had a
minor role on actuation performance. Nevertheless, newer devices are being developed
for applications in ambient environment and information regarding temperature and
humidity conditions of testing is still missing. Only recently more detailed studies
addressing this issue were reported [281, 313, 314, 388]. If actuators are operating
in air, evaporation of the solvent is another challenge. A major breakthrough in the
development of actuators was the discovery of ionic liquids used as an electrolyte. Ionic
liquids prolong the lifetime of the actuators by several orders of magnitude but at the
expense of decreased performances [29, 369]. Due to their larger electrochemical
window, reactions degrading polymers are also less likely, further extending the lifetime
of conducting polymer based actuators [29, 241].
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Both, the influence of the environment and the solvent evaporation could be alter-
natively solved by the encapsulation of the device. Various coatings were tested for
this purpose [192, 223, 382], but coatings increase the passive stiffness of the ma-
terial and furthermore, add another layer in the device that often deteriorate due to
delamination. Delamination of layers constituting an actuator is a common problem in
ionic polymer-metal composites (IPMCs) [314]. Conducting polymer actuators can be
made by electro-polymerization on the chemically synthesized substrate that creates an
interfacial layer between the membrane and the electrode. Layers remain adhered for
thousands of cycles, but adverse percolations between the electrodes are often created
[104, 368, 369]. Alternatively, the actuators are electropolymerized on gold used as a
substrate. Unfortunately, 50% of such actuators were shown to completely delaminate
after less than 3000 cycles [241] and surface roughening methods are required to
prevent it.

We developed hybrid PVDF-graft-PEGMA membranes in order to improve adhesion
between the PEDOT:PSS electrodes and the PVDF membrane. Nevertheless, having
similar chemical nature is not always sufficient to make two polymers adhere to each
other. In this chapter we discuss interactions between polymer materials that influence
their interface strength. As required for our application, we are mostly concerned with
the special case when one of the materials is a polymer membrane and the other one is
a solvent-casted polymer film. As infiltration to the membrane is also mostly dependent
on the chemical nature of materials, the implications of these processes will also be
shortly discussed. Finally, we suggest several rules that need to be followed in order
to achieve a strong interface between PEDOT:PSS and PVDF and to avoid partial short
circuits.

3.1 Introduction

Adhesion is a process of the attachment of a substance to the surface of the another
substance. It can also be defined as a force that is required to separate two surfaces.
The inter-atomic and intermolecular interactions causing adhesion cannot be explained
with one unifying mechanism. Nevertheless, understanding it is of growing importance,
especially for the applications in the automotive and aerospace industries as well as in
the field of the biomedical engineering. Mechanisms that resist the separation of two
solids were reviewed by Jon et al as follows [161].

• Van der Waals - the weak interactions between permanent or induced dipoles.
They are rarely observed in the macroscopic solids as they require a large area of
intimate contact.

• Covalent - stronger connections, but as for the physical van der Waals bonds, it
requires the proximity and the reactivity of solids that is unlikely in macro-scale.

• Capillary bridge formed by the liquid in between can also be used to join two
solids.
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• Direct mechanical interlocking - the connection formed by inserting a screw in
between two solids. Hook-and-loop, Velcro type of adhesives as well as pressure
based adhesion when particular shape slides and gets locked in the gaps are also
considered as a direct interlocking.

• Suction or vacuum gripping is an adhesion resulting from the pressure difference
of a hermetically sealed volume with respect to the surroundings.

• Electrostatic adhesion is based on Coulomb attraction of opposite charges. It is
limited to solids in which charges can be induced.

• Magnetic forces is another mechanism that is a characteristic of a material.

• (Inter)diffusion mechanism is possible between two polymers with the mobile
backbone chains. It will be discussed in more details later in the chapter.

3.1.1 Adhesion between polymers
Rarely, a single mechanism plays role in the adhesion. Furthermore, only few of the
mechanisms mentioned above are playing role in joining two polymers. The most
important of them are: (1) covalent bonding (Fig. 3.1a), (2) thermodynamic interac-
tions (Fig. 3.1b), (3) (inter)diffusion of polymer chains (Fig. 3.1c) and (4) mechanical
interlocking (Fig. 3.1d). In our case, the later one does not only deal with the impact of
roughness but is also important for explaining the adhesion in porous materials.

Chemical bonding

The formation of covalent bonds1 (Fig. 3.1a) between two polymers could lead to
a very strong adhesion. It requires the surface activation, that could be provided by
plasma or chemical treatments as well as the intimate contact between two surfaces. For
example, covalent bonding is often used in order to connect two polydimethylsiloxane
(PDMS) films. Activated surfaces are being cross-linked by siloxane bonds (Si−O−Si)
that lead to adhesion strength of up to 700 kPa [96]. Nevertheless there are several
drawbacks of the chemical bonding. It needs a close contact and the activation that is
usually unstable and therefore two materials need to be brought together immediately.
Furthermore, the choice of the materials that could form bonds is also relatively limited.
Finally, excessive chemical bonding could lead to a change in the mechanical properties
of polymers that consequently decrease the adhesion strength [15].

Physisorption

Adhesion by van der Waals forces also requires a close contact with a gap of around
1 nm. Ensuring this proximity in macro-scale is difficult due to surface defects, cracks,
dust, roughness, etc. Nevertheless, van der Waals forces are playing a key role in
understanding adhesion between liquid and solids. It is also important for spontaneous
adsorption from the solution as well as for ensuring wetting when one of the polymers
is deposited in a liquid state. These circumstances will be further discussed later in the
chapter.

1 153 − 614 kJmol−1 for single or double bonds
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(a) (b) (c) (d)

Fig. 3.1. Illustration of different mechanisms playing important role in the adhesion of two polymer
solids: (a) formation of a covalent bond, (b) van der Waals interactions, (c) interdiffusion of
the polymer chains during welding, (d) direct mechanical interlocking.

Interdiffusion of polymers

The second strongest interface that could be formed in between two polymers is their
interdiffusion. When materials are pressed against each other in a melted state, the
boundary between them could be removed Fig. 3.1c. For joining two polymer solids, the
welding2 is usually required and the miscibility and mobility of the polymers determine
the diffusion rate. Unfortunately, most of the polymers are incompatible in nature
and would display repulsive interactions, unless e.g. hydrogen bonding, reduces them.
Even then diffusion requires solutions, melts, or temperatures above the polymer glass
transition3.

Many studies linked the width of the interdiffusion with the mechanical strength of
the interface [251, 68]. The width of the interdiffusion, determined by the mobil-
ity of the polymer chains, depends on their chain length, entanglement (degree of
polymerization), side groups, etc. [71, 197, 251, 276]. Therefore, surface damage
by plasma, as well as polymer chain scission and polymer grafted are often used as
adhesion enhancers [71, 251, 276]. The interfacial entanglement was shown to be
another important factor determining the adhesion strength [68, 122]. In both, the
miscibility of the polymer is an essential requirement.

When immiscible polymers are joined, the interfacial tension leads to some interdiffu-
sion, usually in order of up to 30 Å [166]. For comparison, entanglements in a polymer
bulk are of the order of 90 Å. Therefore, low interdiffusion with small interfacial entan-
glements leads to low interfacial fracture energy4 (about 20 Jm−2) and the interface
fails through chain pullout [122].

Substantially larger interdiffusion widths and entanglements can be achieved for the
miscible polymers. They are proportional to the fourth root of contact time therefore the
annealing time is an important parameter determining interface strength. Depending
on the polymers used, the formed interface could exceed the mechanical strength of
the polymer itself. Therefore, tensile failure could be caused by (1) chain pullout for
weak interfaces, (2) crazing5 and (3) chain scissions [122].

2 melting surfaces of the material, joining them and cooling down. Surface can be melted by heating,
friction during rubbing at high frequency and ultrasound.

3 for amorphous polymers, a temperature region where the polymer transitions from a hard, glassy
material to a soft, rubbery material

4 the amount of external work per unit area required to propagate a crack across the interface
5 formation of an interpenetrating microvoids and small fibrils that elongate and break when tensile load

is applied
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Mechanical interlocking

Surface roughness should normally decrease the adhesion strength as it prevents close
contact between polymers. Nevertheless, if materials that can be easily contoured are
used (rubber-like, liquid materials that solidify afterwards, etc.), the adhesion strength
is often improved. Two mechanisms are often used to explain this phenomenon. First
of all it could be a consequence of a higher contact area and a stronger chemical or
physical bonding. On the other hand, microscopic features can be pushed into the
gaps of the other material. This would subsequently serve for the direct mechanical
interlocking and could increase the adhesion [15, 161].

Good contour-ability or viscoelasticity needs to be ensured in order to lock materials by
mechanical coupling. Nevertheless, when a material is being deposited in a liquid state,
the interlocking due to the surface roughness is more likely. In this case, a close contact
between the liquid and the solid needs to be ensured thus the wettability of the surface
plays a crucial role. Another specific case relevant for our application is a deposition of
a liquid that subsequently solidifies in the pores of the membrane. After solidification,
the hook-and-loop system of two interconnected solids is created and the adhesion
strength is dependent on the breakdown strength of the materials themselves.

3.1.2 Polymer adsorption on the surface out of solution

So far we have mostly introduced the adhesion mechanisms between two solid polymers.
Nevertheless, for many practical applications (protective coatings, glues, paints, etc.), a
coating layer is being deposited from a diluted solution on the solid surface. Therefore,
deposition method and subsequently interactions between the solution, adsorbed layer
and solid surface may influence adhesion strength.

A polymer from the dilute solution is often adsorbed on even weakly attractive sur-
faces. The adsorbed and the polymer in the solution are in equilibrium (continuous
adsorption and relaxation) when sticking forces (such as hydrogen, ionic bonding etc)
are not available. Nevertheless, if a free surface area is available, even for a weak
attractive forces adsorption of polymer chains is often faster than equilibration [332].
That subsequently leads to the formation of a monolayer and a full surface coverage.
Constrained mobility of polymer chains in a monolayer produces essentially irreversible
structures.

In general, adsorption on a surface proceeds in the following steps. (1) First, the
polymer is transported to the surface, usually by diffusion. Then as a result of surface-
polymer interactions (2) adsorption to random free surface areas takes place. This is
followed by (3) reorientation and spreading of the polymer leading to even stronger
interaction and irreversibility. Finally, once the surface is covered, (4) multilayers start
to be formed, whose strength depends on the polymer-polymer and polymer-solvent
interactions. Adsorption from solution is often used for building polyelectrolyte films by
layer-by-layer deposition [51] but in general is limited to the formation of monolayers.
Nevertheless, the interaction of it with surface is important in determining the overall
adhesion between films fabricated by solution-casting, spraying, spin-coating, etc.
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Fig. 3.2. Measured (for PEDOT:PSS and water) or reported (for PVDF) surface tension and pictures of
the contact angle measurements between water, PEDOT:PSS and PVDF.

3.2 Adhesion between PEDOT:PSS and PVDF
In this chapter we present the results of our study concerning the adhesion between
the PVDF membrane and the PEDOT:PSS films deposited by solvent casting. The
combination of adhesion and failure mechanisms will be discussed simultaneously in
order to explain the observed occurrences, i.e. hook-and-loop mechanical interlocking
due to infiltration and film formation in the pores of the membrane; polymer adsorption
from the solution and interactions with hydrophobic and mobile grafted hydrophilic
surfaces; mechanical properties of the polymer causing interface failure etc.

In our case, initial stage of an interaction of the materials is the deposition of the diluted
polymer solution on the membrane surface. Many adhesion mechanisms require an
intimate contact between materials, i.e. good wetting. The surface tension of the liquid
(γL) and its contact angle (with a perfectly flat substrate) can be used to estimate the
spreading coefficient using Young-Dupré equation:

S = γL(cosΘ − 1) (3.1)

Positive wetting parameter S means complete, while negative - partial wetting. Initial
contact angle does not necessarily represent the adhesion strength between a subse-
quently formed polymer film and the substrate. Nevertheless, it is an indicator of a poor
wetting and immiscibility of the polymers that subsequently lead to small interdiffusion
width.

PVDF is one of the polymers with the lowest surface energy of 25 mN m−1. Its
hydrophobicity is mainly determined by the fluorocarbons on the surface leading to
fewer van der Waals interaction sites (in comparison to hydrocarbons) [75]. Therefore,
water contact angle (WCA) on PVDF is close to 130° as shown in Fig. 3.2. PEDOT:PSS
aqueous solutions have a high surface tension of 70.2 mN m−1 that is similar to the
one of pure water (at 25°C). High surface tension and large water contact angle in
both cases lead to negative spreading coefficient. The condition of the intimate contact
between materials is not satisfied and interdiffusion of polymer chains is highly unlikely.
Therefore, poor adhesion can be expected.

3.2.1 Adhesion evaluation method
Several quantitative methods could be used in order to determine the adhesion strength
between materials. Including but not limited to (1) peeling tests, when a force is

40 Chapter 3 PEDOT:PSS and PVDF membrane: adhesion versus infiltration



measured during the peeling off two solids from one another under a fixed peeling
angle and rate; (2) torque test allowing calculations of shear stress; (3) scratch or
nanoindentation test, when a fine tip is dragged on the surface under an increasing
load, leading to information on delamination force, etc. [15, 215]. Nevertheless,
plastic deformation of the membrane, its porosity as well as mechanical properties of
PEDOT:PSS films make these methods inapplicable, especially in a quantitative matter.
Therefore, for characterization of adhesion, qualitative cross-cut Scotch™tape peeling
test (similar to ISO 2409 : 2013 recommendations) was performed.

3 ml of PEDOT:PSS solution with various compositions were deposited on PVDF mem-
branes by solvent casting and dried overnight or as indicated. A PEDOT:PSS film
(10 − 50 μm depending on the infiltration depth and the density of the film) was
formed. Then two series of parallel cuts cross-angled to each other in order to obtain
a pattern of 25 similar squares were cut on the surface using a surgical scalpel. The
cutting force was controlled so that grid is cut through the PEDOT:PSS film but does
not slice thePVDFmembrane. The membrane was then attached to a more solid surface
and a Scotch™tape (with adhesion indicator 6) was adhered. Then the adhesive tape
was slowly removed by hand, pulling the adhesive tape up at 90° angle. PEDOT:PSS
remaining on the adhesive tape as well as on the PVDF membrane were then evaluated.
Tests were performed on several cut grids and in the following pictures the worse
adhesion case is shown. This ’pass-fail’ evaluation procedure was previously used and
validated by Liu at al. [241, 193]. More detailed sample preparation is described in
Appendix A.3.1.

3.2.2 Adhesion between pristine PVDF and PEDOT:PSS
Due to the low free surface energy PVDF and PEDOT:PSS are known for their weak
adhesion with other materials [140, 95, 9]. In aqueous solutions, PEDOT:PSS forms
core/shell structure where polystyrene sulfonate (PSS) insulating layer is outside and
conducting poly(3,4-ethylenedioxythiophene) (PEDOT) chains are inside the nanopar-
ticle [215]. This causes low conductivity of as-prepared films [298]. Furthermore,
the PSS insulating layer is highly hydrated and a water boundary is created not only
between PEDOT:PSS particles but also in between PVDF surface and PEDOT:PSS as
illustrated in Fig. 3.4a [238]. This has two implications: (1) the films formed from

6 the color of a Scotch™tape changes from white to translucent when tape is well adhered

Fig. 3.3. Steps of adhesion evaluation process (from left to right): grid of 25 squares cut on the
PEDOT:PSS surface until PVDF membrane; Scotch™applied on the grid and indication of good
adhesion; picture of the Scotch™tape after it was removed from the film; picture of the PVDF
membrane and the remaining PEDOT:PSS film after adhesive tape was removed.

3.2 Adhesion between PEDOT:PSS and PVDF 41



(a)

(b)

Fig. 3.4. (a) Illustration of PEDOT:PSS core/shell structured nanoparticles in aqueous solution with
PEDOT chains in the core (blue) and PSS around (yellow). The hydration shell on PSS presum-
ably prevents the polymer adsorption on the PVDF(grey) surface. (b) Pictures of the remaining
PEDOT:PSS films (black) on the PVDF membrane (white) surface (rough and smooth) after
adhesion tests. The annealing condition and the number of tests performed before taking the
picture is indicated above.

such dispersions are brittle and fragile at low humidity due to the lack of entanglement
of the polymers7 [215]; (2) hydration shell is also likely to prevent the spontaneous
polymer adsorption on the PVDF surface thus high annealing temperatures might be
needed in order to make it evaporate.

In order to prove this assumption, the influence of humidity and residual water on
the adhesion was investigated. Adhesion tests were performed on PEDOT:PSS films
after each drying step: (1) at room temperature for 24 hours (no annealing), (2) in
the oven at 70°C for 2 hours and (3) after a thermal annealing step of 15 minutes at
120°C. Even though at 120°C most of the water is removed from the PEDOT:PSS film,
its hygroscopic nature causes immediate reabsorption as soon as the film is exposed to
the air and room temperature8. Nevertheless we assume that annealing causes smaller
amounts of residual water in the film and even less of it at the interface between PVDF
and PEDOT:PSS.

The results of the adhesion tests indicating the influence of the residual water in
the PEDOT:PSS film on the adhesion to pristine PVDF membrane (pPVDF) are shown
in Fig. 3.4b. Due to the difference of roughness of the two sides of the membrane
(Section 2.2.2) adhesion was tested on both sides and the effect of roughness was
also considered. Nevertheless, if high amounts of residual water are present (no
annealing), PEDOT:PSS layer is completely removed from the pPVDF with only two
applications of the adhesive tape test. In this case the adhesion strength is independent

7 This was also observed in our experiments as PEDOT:PSS film forms multiple cracks during thermal
annealing.

8 This can be observed with a simple experiment as follows. Once exposed to 120°C due to evaporation
of water PEDOT:PSS film contracts and causes the rolling of the PEDOT:PSS-PVDF bilayer into a tube
like structure. Nevertheless, immediately after the exposure to room temperature and humidity the
tube un-rolls forming slightly stressed (bended) bilayer. If the bilayer is flattened by hand, PEDOT:PSS
film cracks.
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on the film roughness. This is in corroboration with the previous assumption that the
hydration shell is not removed during drying at room temperature and possibly remains
in between PEDOT:PSS and PVDF.

Nevertheless, after annealing at relatively low temperature (70°C) the interfacial water
layer seems to be removed. Not only adhesion improves (significantly larger amount
of PEDOT:PSS remains on the pPVDF) but the influence of the surface roughness starts
to play a role. More of PEDOT:PSS is removed from the smooth side of the membrane.
The effect of the roughness is even more visible after thermal annealing at 120°C -
significantly larger area of the PEDOT:PSS film remains on the rough side of the pPVDF.
As the influence on adhesion due to the surface roughness is debatable (Section 3.1.1)
it could be both, due to an increased area of interaction and a larger number of van
der Waals bonds between two materials or due to mechanical interlocking in the more
frequent and deep corrugations of the membrane surface.

Adhesion between pPVDF and PEG-PEDOT

It was shown that even after solution casting of PEDOT:PSS films, its core/shell structure
remains intact, and often leads to the brittleness of the film [215]. Therefore pristine
PEDOT:PSS films are rarely used. Furthermore, PSS is an insulating polymer and
the core/shell structure in the shell leads to larger distances between conducting
PEDOT grains. This consequently leads to a low conductivity of the film. Various
secondary doping and post-treatment methods were suggested in order to destroy
nanoparticle structure, improve the connectivity of the PEDOT cores and subsequently
the conductivity of the PEDOT:PSS film [5, 90, 146, 264, 298, 402]. The most common
additives are polar organic solvents with high boiling point. It is thought that polar
molecules bind to PSS and force PEDOT to rearrange [264, 298]. Furthermore, these
kinds of additives often decrease the surface tension of the aqueous solutions leading to
an increased wetting of the hydrophobic substrates [140]. Both, destroyed core/shell
structure and better wetting could be advantageous as it could lead to adsorption of
PEDOT:PSS and adhesion to PVDF.

In most of our experiments we use poly(ethylene glycol) of Mr − 400 (PEG400)
as a secondary dopant to PEDOT:PSS (PEDOT:PSS with PEG as secondary dopant
(PEG-PEDOT)). Small amounts of PEG400 (up to 2 vol%) increase the conductiv-
ity of PEDOT thin films from 0.3 S/cm to about 800 S/cm. This effect is attributed
to the breaking of PEDOT:PSS core/shell structure [264]. Secondary dopants that
have similar core/shell structure breaking effect, were also reported to decrease the
elastic modulus and increase the elongation at break of PEDOT:PSS films [47, 148, 228,
329]. Therefore, 1 vol% PEG400 does not only increase conductivity of PEDOT:PSS
(as discussed in Section 5.2.2), it also lead to formation of continuous unbroken film
even after thermal annealing. The illustration showing likely PEG-PEDOT structure in
solution is shown in Fig. 3.5a.

The effect of PEG400 on adhesion to pPVDF is shown in Fig. 3.5b. The results are
very similar to the ones obtained with pristine PEDOT:PSS. The PEG-PEDOT film is
easily removed in case of a large quantity of residual water (no annealing) and the
influence of the surface roughness is even more pronounced after thermal annealing (at
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Fig. 3.5. (a) Illustration of the likely PEDOT:PSS structure in the aqueous solution with PEG400 as an
additive. PEG400 (pink) forms hydrogen bonds with both PEDOT (blue) and PSS (yellow)
partially removing the nanoparticle organisation. Presumably adsorption of polymer chains is
more likely in this configuration. (b) Pictures of the remaining PEG-PEDOT films (black) on the
pPVDF membrane (white) surface (rough and smooth) after the adhesion tests. The annealing
condition and the number of tests performed before taking the picture is indicated above.

120°C). Nearly no PEG-PEDOT is removed from the rough side of the PVDF membrane.
The reasons behind the apparently better adhesion of PEDOT:PSS on the smooth side
of the PVDF after annealing at 70°C are harder to interpret and were not further
investigated.

PEDOT:PSS/PVDF adhesion needs to be strong enough to sustain a certain amount of
stress induced at their interface, especially during mechanical cycling or actuation [241].
Furthermore, during actuation, the electrolyte will be moving from one material to the
other therefore the interface needs to be strong enough to allow the presence of the
liquid. Finally, due to the absorption of the ionic liquid, PVDF membrane might expand
inducing stresses due to different expansion rates. As shown in Fig. 3.6a (Test II), once
the membrane and PEG-PEDOT sandwich is put into the ionic liquid, PEG-PEDOT is
completely removed even from the rough side of the membrane. If the film was not
washed away during incubation, only one adhesion test was needed to remove it.

To sum up, aqueous solutions of PEDOT:PSS or PEG-PEDOT have high surface tension
leading to a low wetting and weak interactions with hydrophobic pPVDF. Large contact
angle also prevents the penetration of the solution into the pores of the PVDF membrane
and the film is formed only on the upper part of the membrane (Fig. 3.6b). This allowed
us to observe the influence of the surface morphology on the adhesion. As we showed,
a rougher surface leads to slightly better adhesion, especially when the core/shell
structure of PEDOT:PSS is broken. On the other hand, the residual water in the
PEDOT:PSS film is likely to form a barrier layer between PVDF and the polymer film
and the incomplete drying was shown to drastically reduce the adhesion.

In order to use the PVDF/PEDOT:PSS sandwich for the fabrication of actuators, signifi-
cantly stronger adhesion needs to be ensured. Several adhesion improvement methods
could be considered such as: (1) improving the wetting of PVDF by decreasing the
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Fig. 3.6. (a) Pictures of the remaining PEG-PEDOT films (black) on the pPVDF membrane (white) surface
(rough and smooth) after the adhesion test in a dry state (test I) and after incubation in ionic
liquid for 24 hours (test II). (b) Energy-dispersive X-ray spectroscopy (EDX) scan along the
cross-section of the pegPEDOT/pPVDF/pegPEDOT trilayer. The fluorine trace (signature of
pPVDF) is shown in red (full line) and sulphur trace (signature of PEG-PEDOT) in blue (dashed
line)

surface tension of the PEDOT:PSS solution; (2) modifying the surface of the PVDF
membrane by the oxidation or plasma induced damage in order to improve the mobility
of the PVDF chains; (3) functionalizing PVDF with the hydrophilic moieties in order to
create hydrogen bonding interactions and possibly allow interdiffusion with the more
mobile grafted chains.

3.2.3 Effect of the infiltration on the PEDOT:PSS-membrane adhesion

Not only polyethylene glycol (PEG) and other polar high boiling point solvents are used
to enhance conductivity of PEDOT:PSS films. Surfactants such as Triton-X100 [372],
Zonyl fluorosurfactant [329], etc. [229, 329, 416] have similar effect. Furthermore,
surfactants significantly reduce surface tension of aqueous solution. Sufficiently low
surface tension (γLc) of a casted solution causes the wetting of the membrane and
penetration of it through the pores [111]. If infiltrated, PEDOT:PSS film would be
formed in the pores of the membrane and outside. That could cause a direct mechan-
ical interlocking. Two experiments were used to test the importance of mechanical
interlocking on the adhesion.

The critical surface tension value (γLc) for pPVDF (pore size of 100 nm, porosity 70%)
was estimated by the ’penetrating drop method’ (Appendix A.3.2) and is about 35 mN/m

[111]. We used a small amount (1 vol%) of nonionic surfactant Triton X-100 to decrease
the surface tension of PEDOT:PSS to 18.8mN/m leading to a contact angle of a few
degrees and a nearly immediate infiltration of PEDOT:PSS in the pores of the membrane.
The infiltrated PEDOT:PSS can be seen on the back side of the membrane in Fig. 3.7a.
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Fig. 3.7. (a) Pictures of PEDOT:PSS (with 1 vol% Triton X − 100) film deposited by solvent casting on
pPVDF. Top: front and back sides after deposition and drying, bottom: adhesive tape after one
adhesion test showing that most of PEDOT:PSS remained on the tape and the from side of the
PVDF membrane after several application of adhesive tape showing that only at areas where
PEDOT:PSS penetrated through the membrane adhesion is strong. (b) Adhesion test with a
cutted grid: Test I - after 5 applications of adhesive tape in a dry state; Test II - after incubation
in ionic liquid for 24 hours and another 5 applications of adhesive tape. (c) Equivalent test
performed on PVDF-PEDOT:PSS (diluted with 10vol% of i-butanol) sandwich showing that only
at the penetration through area adhesion is strong.

As shown in Fig. 3.7a-3.7b, only good wetting and partial infiltration do not improve
adhesion between PEDOT:PSS and the membrane. PEDOT:PSS film is easily removed
with one Scotch™tape from nearly all areas of the membrane. Darker areas on the
membrane after the test indicate that PEDOT:PSS was infiltrated in the pores to a
certain depth and remained in the pores after the test. On the other hand, interface at
the area where PEDOT:PSS penetrated through (clearly visible on the back side of the
membrane) was sufficiently strong to last 5 Scotch™adhesion tests even after incubation
in ionic liquid for 24 hours (Test I and II in Fig. 3.7b). This is a clear indication of the
effect of mechanical interlocking on adhesion strength. Nevertheless, it seems that
sufficiently deep interface formed by formation of well interconnected PEDOT:PSS film
is necessary for the strong adhesion. The influence of the infiltration is discussed again
in Section 3.4.

Another material that was used to decrease surface tension of PEDOT:PSS solution
was i-butanol. Butanol as other alcohols was also shown to increase conductivity of
PEDOT:PSS films, most likely by washing out excess of PSS [5, 402]. The film formation
and the adhesion results are identical to the ones obtained with the films treated
with Triton X-100 as shown in Fig. 3.7c. Only in the area where PEDOT:PSS is deeply
infiltrated in the membrane the interface is strong (Fig. 3.7c picture in the middle)
while lower infiltration depth leads to the delamination after one test (3rd picture in
Fig. 3.7c). Nevertheless, just as in the case of Triton X-100 after the test, the darker
areas on the membrane were visible, showing that some PEDOT:PSS remains in the
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membrane. The fact that membrane is easily fractured (during handling as shown in
Fig. 3.7c) also suggests that some PEDOT:PSS remains in the pores and that the butanol
is removed from the PEDOT:PSS films leading to its brittleness9.

To sum up, decreasing surface tension of PEDOT:PSS solution, leads to infiltration
of PEDOT:PSS into the pores of the membrane. During evaporation of the solvent,
PEDOT:PSS film is formed, mechanically interlocked in the pores of the membranes.
It seems that if sufficient interlocking area (or volume) is provided, strong interface
can be ensured and the result are similar when the surfactant remains in the film after
drying (boiling point of Triton X-100 is 270°C) or when it is removed (as is likely in the
case of butanol). Nevertheless, forming trilayer films with this strategy is inapplicable
for our purpose as the infiltration area is not homogeneous and its width would be
difficult to control.

3.2.4 Effect of the PVDF surface damage on adhesion

One of the most common adhesion improvement methods is a surface damage by
plasma. Several factors are attributed to the improved adhesion, i.e the increased
surface roughness [194], scission of the polymer backbone and generation of shorter
more mobile layers [71, 251], the addition of hydrophilic moieties and consequent
hydrogen bonding [308]. PVDF is a semi-crystalline polymer, meaning that due to its
highly ordered and dense structure movements of the polymer chains are restricted
even above its glass transition temperature ( −41 °C). Therefore even if proximate
contact is established, interdiffusion of PVDF with another polymer is very unlikely
[238] and is one of the reasons of its weak adhesion with other materials.

Despite its chemical stability, PVDF surface can be damaged and chemically activated
by ultraviolet (UV) and plasma (Section 2.1.1). Induced radicals, oxygen species
or cleavage of PVDF backbone and improved mobility of the chains could therefore
improve the adhesion strength with PEG-PEDOT. Nevertheless, as shown in Fig. 3.8a,
PEG-PEDOT is relatively easily removed from the PVDF surface that was treated by
UV/ozone for 1 hour (exact modification procedure and characterization provided
in Appendix A.3.1). Similar results are obtained by depositing PEG-PEDOT on the
membrane treated for 15 seconds with Ar plasma (Fig. 3.8b) and most of PEDOT:PSS is
removed with one Scotch™ test. Moreover, white traces was visible on the adhesive
tape after the second test in areas where the tape was adhered to the membrane itself as
shown in Fig. 3.8c (dark grey area as pictures are grey-scale). It was previously reported
that plasma damage and creation of mobile layers on the polymer surface may have
negative effects on adhesion, if these layers are too thick [71]. It seems that for clean
PVDF membranes, even 15 seconds of Ar plasma irradiation creates PVDF layer that is
weakly attached to the bulk of the rest of the polymer chains and is easily removed.

9 During drying PEDOT:PSS contracts exerting mechanical stresses on the substrate. Depending on the
substrate it can be compensated by substrates deformation (rolling into the tube if deposited on a
non-fixed PVDF or cracking of the PEDOT:PSS film if it is not supported by secondary dopants) [98]. At
low relative humidity and without additives with plasticization effects, PEDOT:PSS forms very brittle
films. In our experiment, the film was not supported during drying and PVDF was fractured during the
attempt to unroll it
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Fig. 3.8. (a) Pictures of the remaining PEG-PEDOT films (black) on pPVDF membrane (white) surface
(rough and smooth) after the adhesion test in a dry state. Number of performed peeling tests
and PVDF modification methods are indicated above and bellow the picture respectively. (b)
Picture of the adhesive tape taken after the second adhesion test on Ar plasma damaged PVDF.
PEDOT:PSS removed during the test is indicated with the arrow (black). The darker area
indicated with another arrow, shows PVDF membrane layer removed during the test.

3.3 Adhesion between PEDOT:PSS and
PVDF-graft-PEGMA
As discussed in Section 2.1 surface graft polymerization is another way to introduce
short mobile polymer chains on the surface of PVDF. It was reported that introduction
of mobile chains on the smooth hydrophobic surfaces improve adhesion between two
of them, as mobile chains get entangled [49]. Grafting can also add chemically active
moieties that would subsequently adjoin polymers by covalent or ionic bonding [230].
Compared to ionic interactions, mechanical interlocking was shown to contribute little
to adhesion [230]. However, even with no ionic interactions, grafting acrylic acid on
various substrates significantly improve adhesion with materials deposited on them
[366].

The polymerized poly(ethylene glycol) methyl ether methacrylate (PEGMA) on the
PVDF surface provides both, the miscibility due to its hydrophilicity and the mobility
of shorter polymer chains. The improved wetting of PVDF-graft-PEGMA membrane
(mPVDF) by PEDOT:PSS is shown in Fig. 3.9. The adhesion improvement after solvent
evaporation can also be expected due to stronger intermolecular forces (hydrogen
bonding). Moreover, the interdiffusion of PEDOT:PSS with graf-PEGMA can also take
place as graf-PEGMA is mobile and hydrated in aqueous solutions [49, 176, 44]. Finally,
because of the functionalization to certain depth of the membrane, the infiltration of
PEDOT:PSS can be expected. That could possibly add strength to the interface due to
the direct mechanical interlocking.

The adhesion improvement between PEDOT:PSS secondary doped with polyethylene
oxide (PEO) (Mr − 100000) and PVDF modified with PEGMA by photoinduced grafting
was already mentioned by Ikushima et al [148]. They achieved a mixing depth of
several microns that was enough to adjoin the layers for the fabrication of actuators.
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Fig. 3.9. (Table) Measured surface tension of PEG-PEDOT (1 vol%) and (pictures) contact angle measure-
ments of PEG-PEDOT on pristine (pPVDF) and modified (mPVDF) membranes.

(a)
(b)

Fig. 3.10. Qualitative adhesion test of PVDF and PVDF-graft-PEGMA membranes and PEDOT:PSS. Pictures
are taken before, after 5 Scotch™Tape peeling tests (Test I) and 5 more peeling tests after
incubation in ionic liquid for 48 hours (Test II)

Adhesion tests on mPVDF membranes prepared as discussed in Section 2.2.3 are shown
in Fig. 3.10a. Even low density (grafting density (GD) - 0.07 ng/mm2) of mPVDF leads
to significantly improved adhesion strength10. PEDOT:PSS film remains on mPVDF
membrane surface after tests in a dry state (Test I) and is not influenced by initial rough-
ness of the membrane (smooth and rough sides). Furthermore, even after immersion in
ionic liquid for 24 hours and subsequent adhesion tests (Test II) PEDOT:PSS remained
on mPVDF. In fact the time of incubation in ionic liquid does not influence the adhesion
strength, as PEDOT:PSS/mPVDF/PEDOT:PSS trilayers remain intact even after a year in
a liquid. Furthermore, interface did not fail after as produced trilayers were actuated to
strain of 1% for tens of thousands cycles (discussed in Section 4.4.1) and at excessive
strain that was artificially induced[340].

A GD of about 0.07 ng/mm2 creates an interfacial layer of only a few micrometers as
shown in Fig. 3.10b. In fact, the EDX scans of PEDOT:PSS deposited on the pPVDF show
very similar mixing depth profile (Fig. 3.6b). Nevertheless, as PEDOT:PSS wets the
surface of mPVDF and infiltrates in pores, the contact area should be significantly larger.
Moreover, if infiltrated for a few microns, a PEDOT:PSS film is formed in the pores and
outside that could influence adhesion by direct mechanical interlocking. In order to
test the importance of the mechanical interlocking on adhesion, non-porous PVDF films
were functionalized.
10 Adhesion tests of PEG-PEDOT on mPVDF of larger grafting densities and larger mixing depths were also

done and provided identical results in these testing conditions.
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Fig. 3.11. Adhesion tests of PEDOT:PSS (with 1 vol% PEG400) and flat PVDF films in a dry state. Annealing
condition and the number of adhesive tape applications is indicated above each picture. Type of
the film is indicated bellow (mPVDF - functionalized film, pPVDF - pristine film).

3.3.1 Influence of surface roughness
Due to the various factors playing a role in adhesion, exact mechanism cannot be
determined. Nevertheless, the influence of the surface roughness and mechanical
interlocking in the pores can be eliminated by depositing PEDOT:PSS on a smooth PVDF
film. PVDF film was produced by heating pristine PVDF membrane on a hot plate above
its melting point 180°C and cooling it down. PVDF film was then functionalized in the
same way as membranes that leads to a grafting density of 0.04 ± 0.01 ng/mm2 and
subsequently decreased water contact angle from 82.16 ± 7 to 56.3 ± 211 (more detail
fabrication procedure is presented in Appendix A.3.1). Adhesion tests on such pristine
(pPVDF) and modified (mPVDF) films are shown in Fig. 3.11.

Nevertheless, water contact angle on flat PVDF film is lower and smoothness should
improve contact between polymers, adhesion seems to be worse (Fig. 3.11a) and most
of the grid squares are removed with 5 Scotch™tests independent of the annealing
temperature. On the other hand, PVDF grafting seem to lead to better adhesion and
even after 10 tests PEDOT:PSS film remain on mPVDF film. Nevertheless, the adhesion
is slightly worse if the film is not well dried (no annealing) and some grid squares
are removed. The results corroborate with our previous discussion in Section 3.3
that for mPVDF, a large interfacial layer is not necessary since hydrogen bonding and
polymer entanglement are sufficient for strong interface. Furthermore, after immersion
in ionic liquid for 48 hours, most of the PEDOT:PSS film was removed with a single
Scotch™adhesion test as shown in Fig. B.2. Even though hydrogen bonding and polymer
entanglement improve the interfacial strength, certain depth of the mixing depth is still
needed in order to ensure good interface that can withstand electrochemomechanical
cycling.

3.3.2 Influence of coating by physisorption
Due to their slightly hydrophobic nature, materials such as glycerol, ethylene glycol,
PEG readily adsorb on the pore walls of PVDF. They are also used as a modification

11 The lower WCA of the melted PVDF film again shows the importance of the surface roughness on the
contact angle.
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Fig. 3.12. Measured surface tension of PEDOT:PSS solutions with different PEG400 volume concentrations
and their contact angle with pristine PVDF membrane. Contact angle of PEDOT:PSS and PVDF
membrane that was a priori infiltrated with PEG is shown on the right.

method in order to increase the water flux [238, 175]. PEG is not a surfactant and
does not decrease the surface tension below the critical value and the contact angle
with pPVDF remains large as shown in Fig. 3.12. Nevertheless, due its amphiphilic
nature it adsorbs on the surface of the hydrophobic PVDF membranes. Therefore, if
excess of the PEG is present in the PEDOT:PSS solution, part of it will not be forming
hydrogen bonding with PEDOT and PSS and will be freely dissolved in water. According
to Mengistie et al [264] more than 2 vol% of PEG400 in PEDOT:PSS solution does not
influence the conductivity of the thin film and even decreases it. Therefore, we assume
that only up to this amount, PEG400 would be attached to PEDOT and PSS by hydrogen
bonding. Furthermore, the excess of it, is then available for adsorption on the surface.

PEG400 adsorbed on PVDF would hydrophilize the walls of PVDF membrane. This could
then cause PEDOT:PSS infiltration in the membrane to a certain depth. The contact
angle of PEDOT:PSS on the PVDF membrane treated with PEG (by putting a drop of
PEG and letting it adsorb) is shown in Fig. 3.12 confirming this assumption.

3 ml of PEDOT:PSShaving 5 vol% or 3 vol% of PEG400 were deposited on pPVDF and
mPVDF (Appendix A.3.1). The EDX scans along the cross-sections of the trilayers with
pPVDF are shown in Fig. 3.13a-3.13b. Even with 2 vol% PEG the amount of PEDOT:PSS
along the cross-section is above the noise level12. Moreover, 5 vol% lead to nearly
filling of the pores and high sulphur content along the cross-section. The infiltration is
also visible in the membrane pictures after the adhesion test. Due to the pores filled
with PEDOT:PSS the membrane remains black leading to much lower contrast in the
pictures. The infiltration is not so visible in the case of 2 vol% PEG400 and we assume
that PEDOT:PSS only cover the walls of the pores.

Regardless of the amount of the PEG excess, infiltration through the membrane does not
improve the adhesion as shown in Fig. 3.13c-3.13d. PEDOT:PSS film is removed from
membranes with only 2 Scotch™tests. On the other hand, it is not clear if the interface
failure is due to the weakened interactions between the film and the membrane or if
it is a consequence of the altered PEDOT:PSS mechanical properties and a lack of the
entanglement between the polymer chains. As PEDOT:PSS is being removed square by
square and the film does not fall apart at other locations, the first possibility is more
likely.

12 the fluorine signal ’outside’ the membrane
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Fig. 3.13. EDX line scans for fluorine (red) and sulphur (blue) traces along the cross-section of the trilayers
PEDOT:PSS/pPVDF/PEDOT:PSS ((a)-(b)) and adhesion tests of thePEDOT:PSSfilm deposited
on the rough side of the membrane ((c)-(d)). For (a) and (c)PEDOT:PSSis secondary doped
with 2 vol% PEG400, for (b) and (d) with 5 vol% PEG400.

Equivalent results were obtained for mPVDF as shown in Fig. 3.13c-3.13d. Excess of
secondary dopant (PEG) lead to significantly worse adhesion to the film and PEDOT:PSS
is removed with 2 Scotch™tests. The EDX scans show similar results. In case of the
lower PEG concentration (2 vol%) step distribution of the PEDOT:PSS across the cross-
section can be seen as shown in Fig. 3.14a. High PEDOT:PSS content on each outer
side of the membrane (20 μm) corresponds to the PVDF-graft-PEGMA length (GD of
0.103 ± 0.05 ng/mm2). The area in between shows lower but still visible PEDOT:PSS
trace. Just as in case of pPVDF, when larger excess of PEG400 is used, PEDOT:PSS is
homogeneously distributed along the cross-section (Fig. 3.14b) and the hydrophilicity
of the membrane does not matter.

It is likely that the thickness of the layer of PEG adsorbed on the PVDF membrane
is in the same order of magnitude as the thickness of the graft-PEGMA layer. This
would explain the lack of adhesion between PEG-PEDOT and mPVDF with access of
PEG in solution. PEG adsorbs on the membrane before the evaporation of the solvent,
and remains on the surface after the thermal annealing. Therefore during solvent
evaporation PEDOT:PSS settles on the surface of the PEG adsorbed layer and does not
reach the PVDF-graft-PEGMA as illustrated in Fig. C.16. As multilayer of adsorbed PEG
is in a state of a viscous liquid, there is no entanglement of polymers and interface fails
at the level of PEG layer. Nevertheless, these results are based on qualitative tests and
quantitative measurements are needed to confirm this assumption.
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Fig. 3.14. EDX line scans for fluorine (red) and sulphur (blue) traces along the cross-section of the
trilayers PEDOT:PSS/PVDF-graft-PEG/PEDOT:PSS (a)-(b) and adhesion tests of thePEDOT:PSS
film deposited on the rough side of the functionalized membrane (c)-(d)) For (a) and (c)
PEDOT:PSSis secondary doped with 2 vol% PEG400, for (b) and (d) with 5 vol% PEG400.

3.4 Comments on infiltration of PEDOT:PSS

As mentioned previously, sufficiently low surface tension (γLc) of the solution causes
the wetting (WCA of 0°) of the hydrophobic membrane and the liquid penetrates into
the membrane pores [111]. This process is mainly influenced by the pressure difference
across the membrane and can be described by the Laplace equation:

ΔP = −2BγLccosΘ
rmax

(3.2)

where ΔP is a liquid entry pressure (LEP) - maximum liquid feed pressure a membrane
can withstand without getting wet. Θ is a contact angle between the membrane and
the liquid and B and rmax are the pore geometry coefficient (1 for cylindrical pores)
and the maximum pore size respectively. For PVDF membrane (pore size 0.22 μm)
the mean13 wetting surface tension is about 34 mN/m [121]. With the more simple
method (Section A.3.2 we estimated that the critical surface tension of the PVDF
membranes we used (0.1 μm) is also about 35 mN/m. Nevertheless, the value of the
critical surface tension was shown to be largely influenced by the composition of the
solution. It depends on both, the class of organic solutes and on their molecular weight
[111, 121, 184]. For example, a higher critical surface tension was measured for the

13 Calculated using several different water/alcohol solutions. The liquid surface tension was varied by
changing the alcohol-water molar ratio [121]
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carboxylic acid solution in comparison to the water-alcohol mixtures for the same
membranes. Moreover, the molecular weight of the molecule and its concentration also
matter. Larger molecular weights and larger concentrations increase the γLc (or lower
critical entry pressure). The effect of infiltration when surface tension is decreased
was observed when surfactants (discussed later) or butanol were added to solution
(Fig. 3.7).

Surfactants adsorb on the surface only if their concentration in the solution is above
the critical micelles concentration (cmc)14. The dynamics of spreading of the complex
solutions, i.e. with polymers and surfactants, is important for painting and coating
applications but are not yet well studied [35]. The major process determining the
spreading of an aqueous surfactant solution on hydrophobic surface and its penetration
into porous media is the adsorption of surfactant molecules onto a surface in front of
the moving three-phase contact line (solution, solid, air). Subsequently the surface in
front of the drop is partially hydrophilised and causes spontaneous spreading [219,
246]. This phenomenon is known as autophilic effect [210, 268] but exact mechanism
of how a surfactant molecule is transferred in front of the moving three-phase contact
line is debatable. Moreover, the mechanisms behind slow spreading that would follow
autophilization are also under investigation (reviewed by [219, 268]).

The spreading and imbibition of surfactant solution in porous media follows the same
principles [219]. Surfactants such as Tween-20, cover the entire membrane surface
and even when the membrane is previously fouled with proteins [246, 282]. In fact
preferential adsorption of surfactants from the solution was observed when performing
filtration of protein solutions [255, 282] and also during oil/water separation [203]. In
addition to the physiochemical properties of the solid and the surfactant, the process
in this case is also dependent on the pore size [352] and roughness in the meso and
nanoscales [239].

The cmc of Triton-X100 is 0.22 − 0.24 mM . In our experiments much higher concentra-
tion of 17 mM was used, therefore it can be assumed that large amount of surfactant
micelles in solution are available for adsorption. The effect of surfactants on infiltration
of PEDOT:PSS aqueous solutions in the hydrophobic PVDF membranes was shown in
Section 3.2.3. Nevertheless, our study case is more complex than previously reported.
In addition to surfactant, PEDOT:PSS makes the solution a non-Newtonian fluid [140,
141]. Furthermore, the evaporation of the solvent also influences wetting and spreading
[35] rates. Therefore, only a few observations will be presented without an attempt
to provide a consistent explanation. The understanding and modelling of transport
phenomenon of such a complex solutions merits further investigation.

In addition to the penetration of liquids described by Laplace equation and imbibition
driven by surfactant adsorption, a third process needs to be introduced in order to
better understand the infiltration observed in our previous experiments. That is the
capillary flow driven by the hydrophobic interactions. It is mostly studied in the context
of oil/water separation. Separation of solution using porous membranes is a widely

14 cmc is a concentration of surfactants above which micelles form. Addition of surfactant above cmc only
increase the number of micelles and does not significantly change the surface tension.
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(a) (b) (c)

Fig. 3.15. (a) Back side of the membrane 24 hours after deposition of pegPEDOT (with 5 vol%
PEG400). PenetratedPEG400is visible as yellow andPEDOT:PSSas black marks. (b) PE-
DOT:PSS/pPVDF/PEDOT:PSS (with 5 vol% PEG400) trilayer after upperPEDOT:PSSlayer is
removed. The part of thePVDFmembrane filled with mainly PEG400 is visible in yellow,
part infiltrated withPEDOT:PSSis visble as black. (b) PEDOT:PSS/mPVDF/PEDOT:PSS (with
2 vol% PEG400) trilayer after upperPEDOT:PSSlayer is removed. Yellowish surface shows
mainlyPEG400on thePVDF(pores not completely filled - membrane is not translucent), black
areas probably corresponf toPEDOT:PSSinfiltrated mPVDF.

used practice. In most of the cases, water is recovered as a permeate and molecules of
a certain size remain on the surface of the membrane or adsorbed on the pores [299].
Nevertheless, hydrophobic membranes can also be used for selective oil/water emulsion
separation by absorbing hydrophobic liquid [227]. When hydrophobic membrane is
exposed to water/oil mixture, oil droplets attach to the membrane surface. Depending
on the physiochemical properties of both,the membrane and the solution, the droplets
can then de-attach or penetrate into the membrane pores due to capillary forces [203].
If large amounts of oil are accumulated on the surface, their flow can even be described
by Hagen-Poiseuille equation15 [203]:

J = εΔpr2

8τμσ
(3.3)

where J is the permeation flux, Δp is the pressure drop across the membrane, ε, r, τ , σ

are the membrane porosity, largest pore size, tortuosity and thickness respectively. Even
though PEG is not a very hydrophobic molecule, it has amphiphilic properties that drives
its adsorption on hydrophobic surfaces [42, 357, 418]. In a way, hydrophobic capillary
infiltration could be observed when large excess of PEG was used in PEDOT:PSS solu-
tions (5 vol% discussed in Section 3.3.2). Pores could be completely impregnated with
PEG, preventing even PEDOT:PSS to diffuse into. In Fig. 3.15b, taken after PEDOT:PSS
upper layer was removed from the PVDF surface as discussed in Section 3.3.2, the
yellow areas seen on the membrane correspond to mainly PEG in the membrane pores,
while darker areas show presence of PEDOT:PSS. The amount of PEDOT:PSS along
the cross-section at that part was not estimated. Furthermore, larger amount of PEG
penetrated through the membrane is seen in Fig. 3.15a. Images suggest that PEG is
being adsorbed on the surface of the membrane before PEDOT:PSS. The presence of
PEDOT:PSS in the pores filled with PEG could then be the consequence of the solubility
of PEDOT:PSS in PEG.

15 used to determine the pressure drop of a constant viscosity fluid exhibiting laminar flow through a rigid
pipe
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Fig. 3.16. Schematic drawing of differentPVDFfunctionalisation methods and their influence on adhesion
with PEDOT:PSS

3.5 Conclusion
A summary of these results is represented in Fig. C.16. We showed that direct mechanical
interlocking that is a result of infiltrated and solidified PEDOT:PSS film in the pores of
the membrane is one of the ways to ensure good adhesion between those two materials.
Another way to join PEDOT:PSS and PVDF was shown to be hydrophilization of PVDF
surface by graft-PEGMA. Adhesion just by entanglement or hydrogen bonding with
graft-polymer (as was tested on a smooth substrate) is strong enough to pass adhesive
tape test in a dry state. In case of porous substrate, it allows infiltration of PEDOT:PSS in
the pores of the membrane. Furthermore, in this case only a few micrometers of mixing
depth are needed for strong adhesion. We also showed that in both cases, mechanical
interlocking and graft-functionalization, proximate interaction between materials need
to be ensured. Water, or any other mobile coating in between two materials-to-be-
joined lead to facile delamination. In these conditions, neither infiltration through the
membrane nor PVDF-graft-PEGMA aid the adhesion.

Both, adhesion and mass transport through hydrophobic membranes is influenced
by the physiochemical properties of materials. Therefore, both processes need to
be taken into account when designing bilayer or trilayer structures with membranes.
The infiltration of the aqueous polymer solution into the membrane pores occur on
hydrophilic membranes, when surface tension of the solution is low enough or when
oily, hydrophobic materials are used. This limits the choice of the secondary dopants -
surfactants and even slightly hydrophobic molecules are likely to cause infiltration of
PEDOT:PSS.

3.5.1 Future work
• Understanding adhesion between materials as well as wetting and spreading

of solutions is an ongoing research topic with many unanswered questions [35,
161]. Materials that are needed for our purpose bring even larger complexity
to the system. First of all, many factors influencing adhesion, i.e. roughness,
mechanical interlocking, are debatable. It is not surprising, that quantitative data
regarding adhesion on membranes is not yet available. Nevertheless, the growing
membrane technology requires possibilities to strongly attach other materials on
their surface and it becomes essential to better understand the interactions at
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their interface. Therefore, methods to quantify the adhesion on the membrane as
a substrate need to be developed and validated. Then, the influence of surface
morphologies (such as we have in case of pPVDF) could be studied and explained.

• We were using functionalized membranes, whose exact surface structure (branch-
ing of graft-polymer, cross-polymerization etc.) is unknown. Furthermore,
we did not provide the mechanism that would explain improved adhesion be-
tween PEDOT:PSS and graft-PEGMA. Hydrogen bonding, interdiffusion of polymer
chains, entanglement of polymers possibly have a different importance in creating
strong interfaces. Explaining these processes at the interface would be notable
for the choice of the graft-process conditions. By tuning the polymer grafting,
needed morphology could be obtained further improving the adhesion between
the materials.

• It was mentioned that there are several mechanisms for the failure of the interface.
In our case, mostly breakdown of the polymer film, leaving part of PEDOT:PSS in
the pores was observed. When PVDF-graft-PEGMA was used somePEDOT:PSScould
remain on the surface (noticeably darker areas) and in this case, it could be due
to both chain pullout or crazing. Nevertheless, the surfaces of the materials
after the adhesion tests were not investigated thoroughly. Therefore, the failure
mechanisms remain unknown. Understanding the interface failure mechanisms
could be another way to improve the adhesion strength between the materials.

• Another important factor that was not discussed in this chapter is the influence of
the mechanical properties of the PEDOT:PSS on the adhesion. We mentioned that
adding secondary dopants change the mechanical properties. Brittle fracture of
PEDOT:PSS could be observed when butanol, ethylene glycol and PEG400 (after
thermal annealing) was used. Nevertheless, in other cases, removal square-by-
square was observed showing more plastic behaviour. Finally, when excess of
PEG400 was used (5 vol%)PEDOT:PSS film was not well formed and it could be
easily removed by scratching. Conditions separating influence of the mechanical
properties and the additives to PEDOT:PSS was not separated, i.e. it remains
unanswered if having a PEG layer at the interface, but well interconnected and
plastic PEDOT:PSS film mechanically interlocked in the pores of the membrane,
would cause delamination.

• Finally, spreading and wetting of complex liquids such as polymer solution with
surfactants is even a less studied process. Only surfactants in aqueous solution or
only non-Newtonian fluid (such asPEDOT:PSSaqueous solution) already pose a
debate in understanding the mechanism of spreading. Having mixture of both,
makes the system hardly predictable. Here we presented several cases of the
PEDOT:PSS mixtures used on the PVDF membrane. We also shortly discussed
possible mechanisms leading to its spreading and infiltration in the pores. Never-
theless, our observations create more questions than answers. A great extend of
work still needs to be done in order to fully understand the kinetics and dynamics
of the processes causing infiltration sof complex fluids in the membranes. More-
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over, even more research is needed in order to establish methods for controlling
such processes.

58 Chapter 3 PEDOT:PSS and PVDF membrane: adhesion versus infiltration



4PEDOT:PSS/mPVDF/ionic liquid
actuators

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Volume change in the conducting polymer based actuators . 61

4.1.2 PEDOT:PSS in ionic liquid . . . . . . . . . . . . . . . . . . . 64

4.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 PEDOT:PSS/mPVDF/PEDOT:PSS actuators by drop casting . 66

4.3 Characterization of PEDOT:PSS based actuators . . . . . . . . . . . 68

4.3.1 Long time performance . . . . . . . . . . . . . . . . . . . . . 73

4.4 The importance of a good adhesion . . . . . . . . . . . . . . . . . . 76

4.4.1 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Influence of the mixing depth on actuators performance . . . . . . . 79

4.6 Towards actuator performance improvement by altering PEDOT:PSS 83

4.6.1 Post-treatment of PEDOT:PSS . . . . . . . . . . . . . . . . . 84

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Compared to other kinds of artificial muscles, conducting polymer actuators (CPAs)
have fair advantage in biomedical applications or when continuous position control is
needed [345]. Generally, they are fast to respond (in seconds), require low voltages (up
to 2 V ), they are lightweight and compliant. As was shown in Chapter 1 Fig. 1.1a, they
can produce large stain and stress and work in electrolytes or biological fluids [76, 150].
CPAs can be exploited as free-standing (single film submerged in liquid electrolyte) or
bilayer and trilayer actuators. In the free-standing polymer films, volumetric expansion
can be measured directly [261], and out-of-plane strain is usually used to characterize
the process. Nevertheless, for practical applications bending actuators are usually used
that take advantage of much higher in-plane strains1. In order to achieve bending
motion, an electromechanically active conducting polymer is laminated with an inactive
substrate creating bilayer or trilayer structures. During volumetric expansion of the
polymer, stress gradient is generated at the interface subsequently leading to bending.
Bilayer structures are the most often studied, but as their operation requires a counter

1Highest reported CPAs strain (in-plain) of 33.5 % were measured of a free-standing polypyrrole film
immersed in LiTFSI/PC/H2O solution [135, 136]
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electrode, trilayer devices are more suitable for applications2. In our work, only trilayer
CPAs will be discussed.

Actuators performance largely depends on the mechanical properties of the passive
layer in between the electrodes. Various materials could be used for that purpose such
as flexible solid films, porous membranes [117, 171, 368, 369], soft gels or polymer
electrolytes [61, 105, 295, 327, 422]. Another advantage of the trilayer actuator
structures is that the passive support could be used as an electrolyte storing layer
(membranes impregnated with the liquid), that subsequently allows actuation in air3 .
In addition to the mechanical flexibility, the passive layer should provide good adhesion,
good ionic conductivity and prevent percolation of the electrodes. Therefore, the
hybrid membranes developed as described in the previous chapter are expected to have
advantage compared to conventional polyvinylidene fluoride (PVDF) membranes.

In this chapter we will firstly introduce the working principle of the conducting polymer
based actuators. The mechanism of the electro-chemo-mechanical actuation of the
polypyrrole (PPy) based actuators is already extensively studied. That is not the
case for poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based
actuators. Therefore, we will introduce and characterise performance of the CPAs
using the experimental results obtained with PEDOT:PSS trilayer actuators in 1-ethyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide (emimTFSI) ionic liquid. In the
second part of the chapter, we will also show the importance of the good adhesion to
the lifetime and performance of the actuators. Finally, in the last part of the chapter
we will demonstrate the amendment to our fabrication method that could significantly
improve the performance of the actuator in terms of strain, speed and creep.

4.1 Introduction

The use of the polyacetylene and polyaniline (PANi) for actuators, especially having in
mind biomedical applications is rather limited4. Polypyrrole is probably the most used
conducing polymer for applications in CPAs. During oxidation it can produce volumetric
swelling of typically 2 − 3% that can subsequently produce mechanical work. Compared
to others, polypyrrole based actuators produce largest displacements and forces [116,
369] and maximum electrochemical strains of up to 29% [135, 136]. Factors influencing
the performance of PPy based actuators are also well understood. Despite the complexity,
several electro-chemo-mechanical actuation models were developed [92, 289] leading
to sophisticated feed-forward [391, 392] and feed-back [406] based control attempts.

2In trilayer configuration, working-electrode is connected to one side of a film and counter-electrode to
another. The electric potential leads to the simultaneous oxidation and reduction of two sides.

3Due to the solvent evaporation, conventional electrolytes were reported to limit the lifetime of the
devices, therefore more and more often they are being replaced by ionic liquids (ILs) [13, 29, 89, 243,
386]. ILs are the salts of the large, poorly coordinated ions that are in a liquid state below 100°C or at
room temperature. As we are also interested in ’in-air’ applications, all the measurements reported in
this chapter were done using room temperature ionic liquid.

4Conductivity of the polyacetylene is unstable in air and PANi is electroactive in only acidic solutions
[347].

60 Chapter 4 PEDOT:PSS/mPVDF/ionic liquid actuators



Fig. 4.1. Chemical structure of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate
(PSS)

The main disadvantage of polypyrrole as an electrode material is its electrical conduc-
tivity, that decreases by 2 − 3 orders of magnitude in the reduced state. That means
that only small part of the film can be active (as over-reduction is irreversible) and
electrochemical creep during actuation is expectable [171]. Furthermore, PPy films
are usually very rigid leading to low ion diffusion speed and slow actuation rates [296,
369]. Therefore, use of polythiophene derivatives as electrodes is now considered.

The chemical formula of poly(3,4-ethylenedioxythiophene) (PEDOT) and one of its
possible counterions - polystyrene sulfonate (PSS) are shown in Fig. 4.1. The perfor-
mance of the actuators based on PEDOT in comparison to PPy are still hard to make.
Significantly less research is done in order to optimise its synthesis (except [183]) and
doping conditions for applications in CPAs. Nevertheless, similar strains and strain rates
are expected [369]. PEDOT is a well known polymer for its chemical, electrochemical
(in doped state) and thermal stability as well as for its high electrical conductivity that
could reach up to 2000 Scm−1 [263]. Furthermore, when doped with the immobile
anions (DBS, PSS, etc.) its softness and porosity lead to a better ion diffusion and
consequently faster actuation [296, 369, 411]. Therefore, PEDOT could eventually
emerge as an advantageous alternative to conventional CPAs electrodes.

4.1.1 Volume change in the conducting polymer based actuators

The use of the conducting polymers as actuators is based on the linear dimensional
changes during their electrochemical doping and dedoping process, i.e. the change of
the polymer oxidation state is balanced by the flux of ions from the electrolyte leading
to the volume changes. There are several simultaneous and subsequent processes
involved in changing the electrochemical state of the conjugated polymer as illustrated
in Fig. 4.2a. They could be split into: (1) the charge and (2) mass transport (Fig. 4.2a)
and (3) the conformational changes of the polymer (Fig. 4.2b). Nevertheless, the
sequence of the events is convoluted and still debatable. For example the charge
transfer in the polymer happens only if the counter-ion is present to balance it. At
the same time, conformational changes of the polymer, altered by the change in the
electronic structure, are needed in order to create free space for the ion ingress. These
processes will be further discussed assuming that they are non-instantaneous.

Charge transport

In its oxidised state (such as created during the synthesis), PEDOT:PSS is heavily p-
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(a) (b)

Fig. 4.2. (a) Schematic illustration of the basic processes that are taking place during the volumetric
expansion. 1© electrons are removed from the polymer chain; 2© created polarons are prop-
agating along the polymer chains and created polymer conformation changes; 3©- 4© cations
move through the electrolyte, across the interface and between polymer chains and also opens
channels in the polymer, 5© if present, solvent molecules can enter the polymer film as a
solvation shell of the ions or due to the osmotic pressure. (b) The polymer structure in the
oxidized and reduced states. Due to the net charge induced conformation changes and due to
the presence of the ions and the solvent, the reduced state is more open. On the other hand,
oxidized state is more compact, contains less water and impedes ions mobility.

doped5 and the charge is delocalized along the conjugated π bonds (Fig. 4.1) making
the polymer electrically conductive6. Both, the charge in the polymer backbone and
the induced lattice distortion, named polarons or bipolarons7, are participating in the
charge transfer process by both drift (also known as migration, due to an electric field)
and diffusion (due to a concentration gradient) [393] ( 1© in Fig. 4.2a).

The intrinsic conductivity represents the conduction process along a conjugated chain.
Nevertheless, macroscopic charge transport in PEDOT:PSS films requires ’hopping’
between polymer chains that is usually a rate limiting step. Because of this, the compo-
sition and the morphology of the polymer film might have a significant influence on the
charge transfer (will be shortly discussed later in Chapter 5) [97]. Furthermore, as the
electronic structure of the polymer is altered the polymer backbones undergoes confor-
mational changes (Fig. 4.2b) [52, 234, 297] that can also influence the conductivity of
the film.

Mass transport

Ion transport is considered to be the dominant factor responsible for the volume changes

5one positive charge per 3-4 thiophene rings
6The electrical conductivity of the uncharged conductingh polymer is 10 − 12 orders of magnitude lower

than charged, therefore it is important to ensure that the polymer is not over-reduced. When electric
field is applied, the polymer chains become only slightly more or less oxidized, but remain positively
charged. Over-reduction would create irreversibly insulating films.

7Singly charged cation radicals at the polymer chain coupled with local deformations and two charged
defects that usually exist at higher charging levels.
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Fig. 4.3. Illustration of the interrelations between the processes during the actuation. After the synthesis
and deposition, polymers have different mechanical, chemical and electrical properties. These
properties are further altered by the electrical signal and lead to the change of the oxidation
state. This subsequently results in particular strain, stress, expansion speed and efficiency.
Adapted from [316].

in the conducting polymers. During the redox process, ions from the electrolyte or
the ionic liquid cross the interface and drift (dominant process) or diffuse through
the polymer film in order to maintain the charge neutrality (Fig. 4.2a). A more
complete volumetric expansion mechanism needs to take into account the doping of the
conducting polymer, the size and mobility of the anion and cation in the electrolyte and
the solvent [119]. This leads to three expansion possibilities: (1) if the cation is large
and unable to enter polymer film, during oxidation the anion will move to balance the
charge causing expansion. Nevertheless, if (2) polymer is doped with a large immobile
anion, cation will move to balance the charge and the film will expand during reduction.
In case when both ions have a comparable mobility, ’salt draining’ can occur, i.e. the
neutral pairs of ions could form and move out from the polymer, leading to a decrease
of expansion [343].

Ions in the electrolyte are usually solvated and their actual volume and mobility depend
on the solvation shell. Therefore some kind of the solvent can be critical in determining
the mobile species. Furthermore, osmotic effects, that lead to solvent molecules moving
in and out of the polymer ( 5© in Fig. 4.2a) were also shown to play significant role in
actuation [26].

Polymer conformation changes

Finally, even though the flux of ions to and from the material is considered to be the
primary mechanism for producing deformation, conformational changes in the polymer
could also play a role [52]. Those changes are mostly related to the reconfigured
carbon-carbon bond length and angle, electrostatic repulsions between the chains
because of the net charges and the stretch of the polymer chains by inserted ion and
solvent molecules [297, 296].

To sum up, Fig. 4.3 represents some of the relations between the charge, mass transport
and the conformational chain movements. These processes dependent on the material
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Fig. 4.4. Chemical and 3D structures of the ionic liquid 1-Ethyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide (emimTFSI)

properties, actuation and cycling conditions and affect the performance of the actuators
in terms of strain, speed, stress and efficiency in a complex and still not fully understood
way.

4.1.2 PEDOT:PSS in ionic liquid
In our work we are using PEDOT that is doped with large immobile anion (PSS) during
its synthesis (chemical structures are shown in Fig. 4.1). Furthermore, we will only
consider the actuation in air achieved by using ionic liquid (emimTFSI) as the mobile
ions (Fig. 4.4). In this case the ideal process during doping/dedoping cycling is redox
of the PEDOT+ and the ingress and egress of emim+:

PEDOT +PSS− + e− ←→ PEDOT 0PSS− + emim+ (4.1)

Nevertheless, as in the ionic liquid anion and cation and relatively similar in size, i.e.
the volume of the emim and TFSI are 157.66*Å3 and 224.39 Å3 respectively [112] egress
of both ions can occur simultaneously [369]:

PEDOT 0PSS− + emim+ ←→ PEDOT +PSS− + emim+TFSI− + e− (4.2)

The dominant process will eventually depend on the polymer properties, i.e. its material
and structure, geometry, electrolyte, as well as on the cycling conditions, cycling history
and the environment.

4.2 Fabrication

4.2.1 State-of-the-art
Due to the low solubility of the conducting polymers, they have to be synthesized directly
on the substrate in order to produce CPAs8. Only the surfactant-stabilised aqueous
solutions of the polyaniline nanfibers [242] and PEDOT:PSS are feasible. Compared to
the chemical synthesis, electropolymerisation is preferred as it is a better controlled

8The earliest fabrication attempts were mostly developed using lamination or gluing of a free-standing
conducting polymer film to the substrate. Nevertheless, in this case, the strong proximity required for
the strong interface between materials is hard to ensure leading to a lifetime of a few cycles. Gluing
layers create additional barrier at the interface that might drastically increase the resistance of the ion
transfer across the interface
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process that leads to a better quality and conductivity of the polymer. Subsequently,
actuators fabricated with the electropolymerized electrodes were shown to lead to
significantly better actuation strains [116].

Electropolymerization requires a conducting substrate. It can be provided in two ways:
(1) deposition of a thin conductive metal layer, e.g. gold or platinum, on the membrane
([117, 147, 350] etc.) or (2) chemical synthesis of a thin PPy or PEDOT layer on the
membrane [368, 369]. In addition to providing a substrate, the metal layer between the
membrane and conducting polymer also ensures good and stable electrical conductivity
and low voltage drop along the electrode. Nevertheless, the metal - polymer interface
is often very weak and does not sustain mechanical cycling [241]. On the other hand,
during the chemical synthesis of the PPy or PEDOT, an interfacial layer between the
membrane and the polymer is created ensuring the good adhesion. The interaction
between the chemically and electrochemically synthesized layers was also shown to be
stable [369, 411]. Nevertheless, chemical synthesis is harder to control and might lead
to percolation of electrodes and occasional short circuits [104].

Chemically synthesized CPAs were also reported, such as PPy synthesized on polyurethane
[61] or on silk fibroin [322]. Nevertheless, actuators were poorly performing in terms
of the lifetime and strain. The most established technique employing chemically syn-
thesized conducting polymers was suggested by Vidal et al., who used interpenetrated
polymer networks (IPNs) as a matrix for polymerisation reaction. Like that, PEDOT is
gradually distributed along the IPNs leading to the pseudotrilayer actuators that are
stable for millions of cycles [104, 105, 310, 311, 385, 386]. Nevertheless, too large
amounts of conducting polymer lead to large currents between electrodes or even
non-functional devices [104].

PEDOT:PSS

Chemically synthesized PEDOT doped with PSS forms the gelled particles that are
dispersible in water. Therefore, several solution based CPAs fabrication methods were
suggested. The first PEDOT:PSS trilayer bending actuator produced by simple cast-
ing of PEDOT:PSS commercially available solution was reported by Ikushima et al.
[148]. They ensured good adhesion between PVDF and PEDOT:PSS by modifying the
PVDF membrane and using PEO as a secondary dopant. Fabricated micro autofocus
lenses were able to lift weight of 24 mg for millions of cycles. Similarly, Kim et al.,
deposited PEDOT:PSS on freeze-dried bacterial cellulose by dipping and drying [193]
and Okuzaki et al., used polyurethane/ionic liquid composite membranes with sticky
PEDOT:PSS/xylitol to produce actuators by simple drop-casting [228, 295].

Despite the advantages provided by a simple processability of PEDOT:PSS, the maximum
produced strain of casted CPAs is less than 0.3% [295]. This is at least 10 times lower
than that of other conductive polymer based actuators. One of the explanation to this
poor performance could be the electrochemical stability of PEDOT:PSS. In comparison
to PPy actuators that are usually driven by less than 1 V , voltages higher than 1.5 V are
required to observe signs of reduction [295]. Even then, it is suggested that the actua-
tion is based on the double layer charging rather than the redox reaction. On the other
hand, membranes used for such fabrication have significantly lower ionic conductivity
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Fig. 4.5. Illustration of a fabrication process flow for a solvent casted actuators. Hybrid PVDF-graft-PEGMA
(mPVDF) membranes are clamped mechanically in an aluminium holder and PEDOT:PSS aque-
ous solution (secondary doped) is deposited by drop-casting. After drying at room temperature,
the clamp is reversed and the procedure is repeated for the another side of the actuator in order
to produce the trilayer. Membrane with PEDOT:PSS on both sides is then dried in the oven at
70°C for 2 hours. 1.5 mm x 2 cm rectangular actuators are then cut by a laser, actuators are
thermally annealed at 120°C (not shown) and are incubated in ionic liquid for 10 − 120 minutes.

that also influences the performance. For example, the ionic conductivity of emimTFSI
in PVDF is 19.4 mS/cm while in polyurethane is significantly lower, 0.9 μS/cm [295,
369]. Therefore, it is likely that the performance can be significantly improved if PVDF
membranes are used with the same electrodes.

4.2.2 PEDOT:PSS/mPVDF/PEDOT:PSS actuators by drop casting

A schematic illustration of the process that we used for the fabrication of the actuators
with the hybrid PVDF/PVDF-graft-PEGMA membranes is shown in Fig. 4.5. In most
of the cases (unless indicated differently) functionalized PVDF membranes were used
with spraying density (SD) of 0.9 ± 0.1ng/mm2 and grafting density (GD) of 0.14 ±
0.02ng/mm2 produced as specified in Section A.4.1. This corresponds to the width
of an hydrophilic part of about 20 μm and 40 μm for the smooth and the rough side
respectively, as shown in Fig. 4.6. After preparation, membranes were dried and fixed in
a �45 mm aluminium clamp in order to hold the stress caused by drying of PEDOT:PSS.
3 ml of 1.3 wt% aqueous solution of PEDOT:PSS was then drop casted on the membrane.
In order to increase its electrical conductivity and mechanical properties prior to the
deposition, PEDOT:PSS was secondarily doped with 1 vol% poly(ethylene glycol) of
Mr − 400 (PEG400) (unless indicated differently). Membranes with solvent casted
PEDOT:PSS were then dried at clean-room temperature (20°C) and humidity in UV
limited environment for at least 12 hours. This procedure was then repeated for the
other side in order to obtain trialyers. Finally, in order to decrease the amount of
residual water, membranes were then dried for 2 hours at 70°C.

Actuator were cut into 2 mm x 1.5 cm rectangles by CO2 laser and each was thermally
annealed at 120°C for 2 hours. Before each measurement, actuators were kept in
emimTFSI ionic liquid for 3 − 120 minutes. About 20 actuators were cut from one
membrane, 8 from half of the membrane (when post treatment conditions were tested).
One actuator from each batch was taken and broken under liquid nitrogen for mixing
depth measurements, others were used for electrochemical, and electromechanical
characterization (Appendix A.4.2).

Structure of the actuator
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Fig. 4.6. Scheme of the interface and the mixing depth (penetration depth) of PEDOT:PSS and PVDF-
graft-PEGMA and the SEM images of the cross-sections of the PEDOT:PSS/mPVDF/PEDOT:PSS
trialyers before the immersion in the ionic liquid and after the immersion (2 hours). Different
actuators fabricated on the membranes with GD - 0.22 ± 0.03 were used for the measurements.

(a) (b)

Fig. 4.7. (a) Difference of the thickness of the actuators and (b) increase in the actuators weight after
different times of incubation in emimTFSI. Actuators produced on the membranes with GD
0.16 ± 0.003, 0.11 ± 0.002 and 0.046 ± 0.018 ng/mm2 were corresponding to mixing depths
of < 5 μm (green dotted line), 30 μm (blue line) and 25 μm (red dashed line) respectively.
Thickness measurements done after incubation in ILs and 5 mins cycling with 2 V square wave
at 200 mHz are indicated with open markers.

scanning electron microscopy (SEM) images of the cross-sections of a typical actua-
tor before immersion in ionic liquid and after are shown in Fig. 4.6. The thickness
of PEDOT:PSS electrodes outside the membrane depends on the mixing depth and
PEDOT:PSS density and larger mixing depth leads to thinner electrodes. When needed
for calculations, the thickness of the actuators and electrodes in a dry state estimated
from SEM images was used.

Interestingly, once immersed in ionic liquid, the thickness of the trilayer decreases as
shown in Fig. 4.6. A noticeable decrease is also observed for PEDOT:PSS electrodes. A
thickness decrease was also measured by mechanical profilometer (as in Section A.4.2)
as shown in Fig. 4.7a. Even though the error of the measurement is very high, negative
change in the thickness of the actuator is observed in most of the cases.

The amount of the adsorbed ionic liquid is plotted in Fig. 4.7b. Ionic liquid is nearly
immediately absorbed to PVDF and the weight of the actuator increases only slightly
after more than 10 minutes. Adsorption rate seems to be influenced by the trilayer

4.2 Fabrication 67



structure: actuators with larger mixing depth (MD) (blue), adsorb less liquid than
actuators with small MD in the same time. It indicates that ionic liquid is initially being
adsorbed by PVDF membrane and not by PEDOT:PSS that is known to repel ILs [14].
As PEDOT:PSS fills the pores of PVDF, larger MD means smaller free volume of PVDF
that can accommodate emimTFSI.

Nevertheless, it was observed that the thickness of the actuator is increasing after large
incubations (more than 24 hours) as well as when actuators are cycled between the
incubations. This could be explained as partial irreversibility of cycling and permanent
accumulation of the ionic liquid in PEDOT:PSS [261] or as conformational changes of
the PEDOT:PSS structure (also discussed in Section 4.1.1). Unfortunately, the method
for the thickness measurement is not precise enough to draw any sophisticated conclu-
sion.

4.3 Characterization of PEDOT:PSS based actuators

The processes involved in the volume changes in conducting polymers during their
redox reactions are extensively studied. The most common studied polymer in this case
is polypyrrole (PPy) secondarily doped with immobile anion (DBS) during its synthesis.
Nevertheless, the ion transport and volume expansion of the PEDOT:PSS is barely
studied. Even though it is expected to behave in a similar manner, slight differences
might exist due to the different electrical and mechanical properties of the material. In
the subsequent chapter, we will use current understanding of the actuation mechanisms
of PPy(DBS) based actuators in order to explain the behaviour of PEDOT:PSS in ionic
liquid.

Characterization measurements were mostly done with trilayer actuator (PEDOT:PSS/mPVDF/
PEDOT:PSS) clamped at one end. The actuators were cycling by applying a potential
waveform between two electrodes and the response was recorded by recording the
video of the bending or by laser displacement sensor (Section A.4.2)). The change in
the displacement was then extracted from the video and is also shown in Fig. 4.8a. The
transferred current was simultaneously measured and was used for calculations of the
dissipated power (Fig. 4.8b) and transferred charge (Fig. 4.9c).

Strain

Using displacement and curvature in order to characterize the performance of the
actuator is rather trivial as they do not take into account the dimensions of the actuators.
Therefore, the actuators bending is more often expressed as strain. In the context of
artificial muscles, strain is defined as a displacement normalized by the original material
length in the direction of actuation [249]. It can be measured by direct means of free-
standing polymer films9 or indirectly using bending beam theory. Sugino et al. suggested

9Due to their microstructure most of the polymers are anisotropic. Therefore, in-plain and out-of-plain
strains can be used to characterize the expansion. Only in-plain strains cause the bending of the bilayer
or trilayer structures
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(a) (b)

Fig. 4.8. (a) Merged images of the actuator at its extremities during actuation applying square wave
with frequency of 50 mHz and 2.0 V amplitude. Blue and red actuators show its maximum and
minimum displacement position, green dots show the tip position calculated from recorded
videos. Actuator displacement profile in time is shown in the figure below. Actuator is bending
towards the negative electrode. (b) Applied voltage, current and power dissipation measured
during the actuation.

an equation to evaluate the difference in strain (ε) during bending of the actuator [356]:

ε = 2DW

L2 + D2 , (4.3)

where L, W are the length and the thickness of the actuator and D is the measured
displacement. Even though it is based on a simplified geometrical model assuming low
displacements, it is viable for our measurements.

Due to the mechanisms other than ion transport involved in volume expansion, irre-
versible expansion (creeping) is often observed. Irreversible expansion is indicated in
Fig. 4.9a and will be discussed in Section 4.3.1. In our measurements we will mostly
consider the "active strain" as the difference between the maximum peak strain and the
following minimum strain of each voltage cycle (shown in Fig. 4.9a as Δεmax).

Strain rate

Another important characteristic of the actuator is its speed. A strain rate is one of
the ways to express it. As shown in Fig. 4.9a it is the average change in strain per
unit time during an actuator stroke [249]. Nevertheless, the strain rate expressed like
this is highly dependent on the actuation frequency. The speed of the actuation is not
constant and its bending significantly slows down once about 70% of the maximum
strain is reached. Therefore, sometimes for comparison purposes we will be using the
maximum speed of expansion that is calculated at each time interval (δε/δt and shown
in Fig. 4.9b).

PPy based actuators typically have strain rates of approximately 1 %/sec. The strain rate
is mostly limited by how quickly ions can move through the polymer film. Therefore,
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(c) (d)

Fig. 4.9. (a) Actuator bending profile shown as calculated strain versus time. Strain is calculated using
Equation 4.3 for every point detected during video processing. Min to max strain (Δεmax) is
defined as strain difference between extremities during one actuation period (T ), strain rate
is a ratio of (Δεmax) and T/2. (b) The speed of the actuator is calculated at every point as
δε/δt. (c) Transferred charge calculated from the measured current during the actuation. The
measures are equivalent to (a). (d) Strain to charge ratio calculated for each period separately
for a actuator moving towards the positive (’up’) and negative (’down’) electrodes. The ΔεSC

and ΔQSC used for calculation are shown in (a).

size of the ion, the microstructure of the polymer and history of the cycling have large
influence on the speed of actuation [261, 316]. Another implication of the diffusion
model is that it takes more time to diffuse deeper into the film and the full depth might
not be reachable. Nevertheless the training the maximum expansion limit is usually
not observed even for thin polymer films [261]. The strain and speed profiles of the
prolonged actuation at 2 − 10 mHz that exhibit very slow expansion after 10 s are show
in Fig. B.3-B.4b.

Strain-to-charge ratio

In general the volume change of the actuator is directly proportional to the injected
charge [250]:

ε = α
Q

V
, (4.4)

where, ε is the strain, Q is the injected charge, α is the strain-to-charge density ratio
and V is the volume of the polymer. A good CPA has a high strain-to-charge density
ratio, meaning that little energy is needed to produce high strains. Typical values for
strain-to-charge ratio for the polypyrrole are in the order of ±10−10 C/m3. It relates
the specific material properties, i.e. polymer elastic modulus, conductivity, capacitance
anisotropy, ion size, solvent, to actuator performance. Even though it is often used as a
constant, it might be time varying as polymer properties were shown to be cycling and
history dependent.
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Another challenge for determining the strain-to-charge density ratio in practise, is the
estimation of the injected charge within the polymer. The charge calculated as the
integral of the transferred current as shown in Fig. 4.9c is a combination of: (1) a
Faraday current and charge stored in a bulk capacitance, (2) a capacitive current used
for the double-layer capacitance on the polymer surface10, (3) electrochemical reactions
other than polymer charging, conductivity of the electrolyte and the currents between
the electrodes.

Different components contributing to the current can be partly identified in Fig. 4.8b.
The spike of the current once voltage step is applied is probably due to the fast double
layer charging. It will also determine the initial speed of bending as creating an electric
double layer requires redistribution of ions at the solution-surface interface. The fast
charging is then followed by the slower Faraday reactions. Depending on the conditions,
redox reaction can be limited by either: the electrical conductivity of the polymer or
the diffusion rate of the ions. In any case the slow charge/discharge can be considered
to be a signature of the redox process. Finally, the residual current that is not visible in
Fig. 4.8b but is noticeable during the actuation at lower frequencies (Fig. B.4c-B.4d) is a
consequence of the side reactions and leakage currents.

Nevertheless, the ratio of the transferred charge to produced strain can still be used
for comparison of different actuators. In this case, the ratio should not be considered
as a constant as both, the properties of the actuator as well as the transferred charge
depends on cycling history and can be influenced by environment. In addition, in our
case we cannot determine the exact volume of the polymer due to the mixing depth and
unknown density of the films. Therefore, we will use the strain-to-transferred-charge
ratio (STC) calculated as

STC = ΔεSC

ΔQSC
(4.5)

where ΔεSC and ΔQSC are strain and transferred charge difference during 60% of the
cycle as illustrated in Fig. 4.9.

Mechanical and electrical properties of the polymer are different in the oxidised and
reduced states [261, 316] and it can induce asymmetry in expansion and contraction
(further discussed in Section 4.3.1). Therefore, the STC was calculated separately for
upward and downward bending as shown in Fig. 4.9d. In the following sections we will
use STC in order to (1) compare the efficiency of the actuators produced in different
conditions and (2) track and compare the stability of the actuation in time.

Double-layer versus bulk capacitance

As soon as a voltage is applied to the polymer film, a electrochemical double layer at
the polymer surface will be created. If the capacitance is assumed to be independent
of the voltage, the charge accumulated at the interface will be directly proportional to
the applied voltage. Formation of the double-layer is the initial step before diffusion of
ions into (out of) the polymer bulk that subsequently cause its swelling (shrinking). In
most of the cases, the double layer capacitance is negligible compared to the polymer

10usually negligible in comparison to the bulk charge
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(a) (b)

Fig. 4.10. Cyclic voltammograms of the PEDOT:PSS/mPVDF/ILs trialyer actuators in air recorded in two
electrode set-up (100 mV/s scan rate) (a) measured up to different voltages 5 consequent cycles
are shown for cyclic voltammetry (CV) up to 1 V and 2 V showing the stability in time. (b) CV
of the PEDOT:PSS/mPVDF/ILs actuators after different incubation in ionic liquid times.

bulk [249]. Nevertheless, it might play significant role in PEDOT:PSS based actuators
[295].

PEDOT:PSS films do not easily swell in ionic liquid and are in general very compact
compared to PPy [124, 369]. Therefore the ingress of the ions from the double layer
to the polymer bulk, the diffusion in between the polymer chains and subsequently
the redox processes are slow. As reported by Okuzaki et al, and also seen in our CV in
Fig. 4.10a, potentials larger than 1.5 V and slow scan rates are required in order to
notice a redox behaviour.

On the other hand, PEDOT:PSS blended with polyethylene oxide (PEO) was shown
to form more porous and open film and have subsequently lower ionic resistance
[124]. Ikushima et al. also used PEO as a secondary dopant in fabrication of trilayer
actuators [148]. PEG400 that was used throughout our experiments is expected to
have similar effect to PEO. As shown in the CV voltammograms in Fig. B.6a-B.6b, the
pseudocapacitance is significantly larger and the redox peaks are more pronounced
if larger amounts of PEG400 are used. Unfortunately, in our case, the use of PEG400
is restricted to 1vol% in order to ensure good adhesion. Longer incubation in ionic
liquid could also slightly influence the structure of the PEDOT:PSS film. Even though
we have shown that the amount of adsorbed ionic liquid does not change after more
than 3 minutes, redox behaviour is facilitated with longer incubation times as shown in
Fig. B.5a, Fig. 4.10a-4.10b.

Finally, redox reactions and polymer swelling are the main drawbacks of the conducting-
polymer based supercapacitors [349]. First of all, the redox reactions are slow reducing
the power of the device; secondly, they are often partially irreversible and cause the
degradation of the polymer properties (the change in structure due to the ingress and
egress of ions was discussed in Section 4.1.1). This can also be observed in Fig. 4.10a
and B.5a, where cycling at voltages below 1.5 V does not change the capacitance, but it
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is gradually decreasing with every slow cycle above 2 V . The long term implications of
such processes are discussed in the following section.

4.3.1 Long time performance

Lifetime is an important characteristic for many devices. In case of artificial muscles,
lifetime often depends on the frequency of actuation, i.e. strain difference, and could
be, e.g. 105 at 3 Hz, 103 at 1 Hz and even lower at lower frequencies [247]. Two
main processes limiting the lifetime of the conducting polymer actuators are: (1)
degradation of the polymer or decomposition of the electrolyte under electrochemical
cycling and (2) delamination of the electrodes from the membrane due to stresses at
the interface [17, 241]. The higher electrochemical window of ionic liquids reduces the
degradation effect [29, 243]. Furthermore, their non-volatility enable longer actuation
in air [295, 386]. Nevertheless, the delamination of layers constituting an actuator is
still a common problem. When conducting polymers are synthesized directly on the
membrane, the produced interfacial layer prevails for thousands of cycles but adverse
partial connections between electrodes are often created [104, 368, 369]. When the
actuators are electropolymerized on gold as a substrate, surface roughening methods
are required to prevent fast delamination [241]. In most of the cases actuators fail
gradually due to fatigue during the actuation or due to spontaneous self-degradation as
shown in Fig. 4.11b and Fig. 4.11c-4.11d respectively and also reviewed by Punning et
al.[313]. Gradual degradation is observed and reported most often and could be due to
fatigue of the polymer, i.e. change in the mechanical properties, chemical degradation
of the material, receding electrolyte11 or irreversible redox reactions and reduction in
the charge transfer [247, 313, 314, 322, 388].

The ageing of actuators can also occur spontaneously as shown as in Fig. 4.11c-4.11d. In
this case, the actuator was cycled for 6 hours until a stable displacement was achieved
and then left in air for another 20 hours. The significant decrease from 4 mm of min-
to-max displacement to 3 mm can be seen. This could be a consequence of the receded
amount of ionic liquid, degradation of the polymer in air12, influence of the change in
environment etc. The properties of the polymer based electrodes are sensitive to the
environment (mechanical and electrical conductivity) and the influence of humidity and
temperature to the actuation performance can be expected. This case will be discussed
later in the chapter.

11Even though ionic liquids are not volatile, they could leak out from the actuator near the electrodes due
to the mechanical deformations

12It was reported that PEDOT:PSS could irreversibly degrade if exposed to the UV and oxygen or higher
temperature [97, 387]. Therefore, small decay in its conductivity is likely even at ambient environment.
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(a) (b)

(c) (d)

Fig. 4.11. (a) Actuation displacement profile of the PEDOT:PSS/mPVDF/PEDOT:PSS trilayer cycled in air
with 2 V square wave with 100 mHz frequency. Significant creeping (indicated with red arrows)
can be observed after 6 actuation hours. (b) Gradual decrease in the actuators displacement
after 2 hours of actuation. Actuated with 1.5 V voltage sine wave with 50 mHz frequency. (c)
Training effect (red arrows) shown during cycling of the actuator with 2 V square wave with
50 mHz frequency. The actuation profile of the same actuator after 20 hours in a static position
is shown in (d)

Creep

The actuation is largely cycling-history dependent and there are two main effects related
to the actuator itself that can competitively affect the performance: (1) irreversible
expansion and (2) training effect [261, 376].

Irreversible expansion in the beginning of the actuation is shown in Fig. 4.9a and B.7.
It is suggested by Melling et al., that the primary source of irreversible expansion is
solvent swelling that is further increased by cycling [261]. Cycling opens the polymer
matrix so that with each cycle ions diffuse faster and therefore deeper into the film. It
also allows irreversible accommodation of more solvent if present [171, 261, 297, 394].
We observed similar effect during our rough thickness measurements - even though
only incubation in ionic liquid contracts the trilayer, cycling in between immersions has
opposite effect and the film continuously swells (Fig. 4.7a). This might be surprising as
there is no solvent in ionic liquid. Nevertheless, both ionic liquids and PEDOT:PSS are
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hygroscopic materials and could absorb water from the environment. This water could
subsequently accumulate in the polymer film.

Another mechanism possibly contributing to the irreversible expansion is the unbalanced
charging as characterized by Kaneto et al. [172, 171, 376]. Both faster actuation rate
during reduction [261] and during oxidation [346] were previously observed. It is
attributed to the higher electronic conductivity in the oxidised state and to the higher
ion conductivity because of the more expanded, open and swollen polymer. In any case,
if the charges are not balanced by the end of an actuation cycle, this would induce
accumulation of the ions in the films [171].

These effects are mostly relevant for free-standing conducting polymer films and bilayer
actuators. In case of a trilayer structure, both electrodes are reversibly oxidized and
reduced. Therefore the accumulation of ions should be equivalent on both sides.
Nevertheless, if the electrodes are slightly asymmetrical13 this could cause differences
in irreversible expansion and creep-like behaviour in the long term. It could be one of
the explanations of the observed creeping shown in Fig. 4.11a. Another example of the
obvious creeping once one of the electrodes gets damaged is provided in Fig. B.8.

’Kick-in’ effect

Another effect shown in Fig. 4.11c is the improvement of the actuators performance
in time. The change of the structure during the initial cycles, does not only cause
irreversible expansion but also opens the channels between the polymer chains that
facilitates the motion of the ions [261]. Polymer conformational changes as well as
incorporated solvent (adsorbed water) and ions, increase the chain mobility, decrease
the elastic modulus and facilitates the ion conductivity in the film. Therefore the speed
of actuation can increase with each cycle [261]. It would also lead to continuously
increasing the area of the polymer that is more open and to higher strains. Once
maximum open area or ionic conductivity is reached, the actuation should stabilize
(Fig. 4.11c). The time needed for training is mostly dependent on the fabrication and
the environment conditions that could affect the morphology. As shown in Fig. 4.11b
and 4.11c, several cycles or several hours of cycling might be needed. One of the factors
influencing the time needed for the ’kick-in’ is the incubation time in the electrolyte.
Often the electrochemical ’warming-up’ in the electrolyte is performed to make sure
that the film is fully swollen [257, 316].

Hysteresis

As previously mentioned, the oxidation and reduction processes in the conducting
polymer electrodes are not symmetric. Reduced state of the polymer is less electronically
conducting. In addition, if swollen with ions, the polymer morphology is disrupted so
that increased interchain distance reduce the conductivity even further [393]. On the
other hand, the less compact structure allows faster ion motion within the polymer
[261]. It was also observed that the ion expulsion happens more quickly than ion
incorporation [393]. In general the difference in the speed of the actuation creates
hysteresis and is dependent on the morphology of the polymer and cycling conditions.

13In our case, due to asymmetry of the membrane and different grafting depth, mixing depth on both
sides might vary, changing the electrical and electrochemical properties of two electrodes.
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Fig. 4.12. (a) Picture of PEDOT:PSS/pPVDF/PEDOT:PSS actuators just after immersion in ionic liquid:
adhesion is not strong enough and layers separate. If part of the PEDOT:PSS remain on the
membrane, different expansion coeficients of the materials are causing bending and twisting
of the rectangular. (b) Picture of PEDOT:PSS/mPVDF bilayer after immersion in ionic liquid:
adhesion between materials is strong enough and due to difference in expansion of each
material, bilayer roles into a cylinder. Nevertheless, adhesion is strong enough to sustain the
stress at the interface. (c) Merged images of the trilayer actuator with a strong adhesion between
layer at initial position (black) and at extremities during actuation (red and blue). Actuated
with 2 V , 10 mHz square voltage wave.

Hysteresis was observed in most of the cases during characterization of the trilayer
actuators made of PEDOT:PSS/mPVDF/PEDOT:PSS that we were working on. One
example of that can be seen in Fig. 4.9b. As in the case of the creep, the asymmetry
of the actuator is probably playing role in creating hysteresis. Many small differences
might contribute to such behaviour, i.e. the thickness of the electrode, the mixing depth,
electrical conductivity etc. Unfortunately, the electrochemical characterization versus
the inert reference electrode was not performed in our studies and definite reasons
behind this difference cannot be identified.

4.4 The importance of a good adhesion
The difficulties encountered during fabrication of the actuators by solvent casting
PEDOT:PSS were discussed previously (Chapter 3). As reported by Ikushima et al,
PEDOT:PSS deposited on pristine PVDF delaminates nearly immediately. The deforma-
tion of the actuator due to the poor adhesion between layers that can be caused by
simply immersing the structure in ionic liquid is shown in Fig. 4.12a-4.12c. On the
other hand, the functionalized membranes lead to the adhesion that can sustain large
strains as shown in Fig. 4.12b. Moreover, actuators can be made that can be cycled for
more than 104 cycles at 0.1 Hz (more than 150 hours) with no signs of delamination
(Fig. 4.13a).

4.4.1 Lifetime
In Fig. 4.13a, actuators with a large grafting density and large interfacial layer (MD
25μm) (A25), low grafting density and small interfacial layer (MD - 5μm) (A5) and
produced on pristine PVDF membrane (pPVDF) (AP) are compared. In order to fabricate
functional actuators on pristine PVDF, a 5 vol% PEG400 in PEDOT:PSS was used, caus-
ing penetration of PEDOT:PSS through the membrane and resulting in a significantly
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Fig. 4.13. (a) Lifetime measurement of actuators produced with hybrid PVDF-graft-PEGMA (mPVDF) and
pristine membranes (PVDF). The mixing depth between PEDOT:PSS and mPVDF is indicated in
the legend. (b) Amplitude of the displacement for PEDOT:PSS/PVDF-graft-PEG/PEDOT:PSS
with MD of 5μm based actuator in ionic liquid (blue) and the change in the humidity of the
environment (yellow).

higher current between electrodes. The resistance between electrodes of AP is 6 orders
of magnitude lower than for A5 and A25, 0.36 Ω vs 0.16 MΩ, leading to a large power
dissipation during actuation (further discussed in Section 4.5). The penetration through
allowed sufficient adhesion between layers to sustain adsorption of 2.2 mg of emimTFSI
ionic liquid without delamination.

Once a voltage is applied (1.5 V sine wave, 0.1 Hz frequency) the AP actuator displace-
ment amplitude is continuously decreasing and the actuator stops responding after
less than 50 hours of actuation. Meanwhile, actuators with even very small mixing
depth (5 μm) and stronger adhesion, remain active for more than 100 hours with no
significant decrease in displacement amplitude and no signs of delamination.

Small variations of the amplitude can still be observed. As mentioned previously, actua-
tors performance might be influenced by the ambient environment, especially because
PEDOT:PSS and ionic liquids are hygroscopic materials that can easily absorb water.
Displacement and humidity of the environment during actuation of A3 actuator are
shown in Fig. 4.13b. Humidity can influence strain of the actuator in two ways: (1)
water can be absorbed and desorbed due to the passive, i.e. Joule, heating and (2)
adsorbed water can change PEDOT:PSS microstructure and consequently its mechanical
and electrical properties[364, 423]. On the other hand, the actuation was shown to
be humidity dependent even in the actuators that do not use PEDOT:PSS based elec-
trodes[281]. It was explained by the hygroscopicity of the ionic liquids. In agreement
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with results published by Must et al, at relatively low frequency and this humidity range,
actuation amplitude is larger when humidity is higher [281].

Despite the quite significant variation in the actuation amplitude, cycling is reversible
and humidity does not cause permanent damage to actuators. On the other hand, if the
position of the actuator needs to be controlled, the humidity should be monitored and
the control algorithms should be adjusted accordingly14.

4.4.2 Performance
The working mechanism of the conducting polymer based actuators is considered to
be one of the best understood among the artificial muscles. Various electro-chemo-
mechanical models exist explaining the action [92, 144, 178, 339, 392]. Nevertheless,
most of the models are based on approximations such as infinite conductivity of the
electrodes, negligible double layer capacitance, perfect interface etc. In reality the
performance of the actuators often varies significantly among different fabrication
batches [241], is highly dependent on the environment conditions [281, 313, 314, 388]
and can be hardly tuned by just varying one of the parameters.

Performance of ionis EAP artificial muscles depend on a wide range of parameters
that were briefly summarized by Madden et al [249]. Mechanical and electrochemical
properties of electrode material, such as elastic modulus, density, electrical and ionic
conductivity, membranes elastic modulus, porosity, ionic conductivity are only few to
mention. Furthermore, the performance of the actuator is also highly influenced by
the geometry of the device, where thickness of both the electrode and the insulating
membrane play their role [261, 274] and were shown to be influenced by three
dimensional patterning [6].

In order to identify the most crucial parameters affecting the performance of the
actuators various devices were tested. Actuators were fabricated from four membranes
prepared with the same grafting conditions (SD - 0.98 ± 0.2 ng/mm2, GD - 0.06 ±
0.01 ng/mm2). Then half of the each membrane was post-treated (separate cases
of post-treatment will be discussed further in the chapter) leading to eight different
kinds of actuators. The performance of the 2 − 4 actuators of each kind is shown in
Fig. 4.14. Furthermore, the displacement and the current amplitude (distance from
the minimum to maximum per cycle) plotted versus the resistance of the electrodes,
resistance between the electrodes, the weight of the actuator and the amount of the
adsorbed ionic liquid, is provided in Fig. B.10a-B.10f. Even though scattered data
clusters could be identified for the different fabrication batches, no clear influence of
any of the mentioned parameters could be determined.

The main identified reason behind the variation of the performance is shown in
Fig. 4.14c. In order to have functional actuators good interface on both sides of
the membrane and symmetrical actuators are needed. Poor interface between layers or
high asymmetry causes bending, twisting and other deformed shapes once actuators is

14The displacement profile of the same actuator and the humidity shown in Appendix B Fig. B.9 suggest
that creeping of the actuator is much larger problem to control in comparison to the effect of the
environment
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Fig. 4.14. (a) Displacement and (b) current versus time of various actuators made with or without post-
treatment from four different membranes. Actuators made with the equivalent fabrication
procedure are represented by the same colour. Performance versus other parameters of the same
actuators are plotted in Fig. B.10, special cases shown with a thicker line, correspond to the
filled markers. (c) Merged images of the several actuators at the initial (black) and extremities
during actuation (red and blue). All measurements were recorded during actuation by 1.5 V
and 50 mHz square wave.

put into the ionic liquid. Extreme cases of such deformation when PEDOT:PSS is ad-
hered on only one side were also shown in Fig. 4.12a-4.12b. Even though unnoticeable
visually, the observed bending of the actuator in ionic liquid, can be used as an early sign
of the poor interface at least on one side and consequently the poor performance (S3
and S4 shown in Fig. 4.14c). For all the future performance comparison, only actuators
that showed symmetrical structure were used (such as S1 and S2 in Fig. 4.14c).

4.5 Influence of the mixing depth on actuators
performance
Even very small mixing depth is enough for ensuring long term adhesion. Nevertheless,
the morphology of the actuator, and presumably its properties, changes with the mixing
depth. We have already suggested that the slight difference in MD of two electrodes
might influence the performance in a long term as the impact accumulates. It is
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Tab. 4.1. Geometry and electrical properties of actuators

hdry
b, μm hel

d, μm hint
e, μm wact

f , mg wIL
g, mg Rel

h, kΩ
A5 123 ± 3.7 20/19 19/27 3.75 ± 0.21 1.9 ± 0.2 4.9/2.4 ± 0.6
A30 117 ± 5.5 23/19 28/30 3.75 ± 0.22 2.0 ± 0.1 3.7/2.2 ± 0.3
A25 129 ± 3.7 25/20 5-20 3.75 ± 0.15 2.1 ± 0.2 2.5/1.2 ± 0.3
AP 129 ± 17 36/43 - 6.89 ± 1.4 2.25 ± 0.1 0.9/0.8 ± 0.08

b Thickness of dry membrane; d PEDOT:PSS electrode thickness; e Thickness of interfa-
cial layer; f Weight of dry actuator; g Weight of absorbed emimTFSI; h Resistance of the
electrodes.

interesting to try identifying the reasons behind it or at least to determine if large or
small mixing depth is preferable.

The goal of our work was to develop membranes that would allow good adhesion
and will ensure a good insulating layer between the electrodes. Meanwhile, the
actuators with semi-trilayer structure and gradually dispersed conducting material in
the polymer matrix are being successfully used [104, 386]. The differences in the
actuator performance of actuators with MD of 30 μm (A30), 5 μm15 (A5) and actuator
fabricated on pristine PVDF but with excess of the PEG400 (AP) were compared. In
the last case, PEDOT:PSS is present in all the pores of the membrane connecting the
electrodes. The summary of the geometry and electrical properties of these actuators is
shown in Table 4.1.

The first difference among different actuators that can be observed, from the given
electrical properties is the resistance of the electrode. It increases with the length
of the interfacial layer (measured as in Appendix A.4.2). It is likely that PEDOT:PSS
in the pores of the membrane, does not form a good path for electrical conductivity
(discussed further in Section 5.2.2). It would explain the higher resistance for A25
(large interface) in comparison to A5 (small interface), 2.4 ± 0.6 kΩ and 1.2 ± 0.3 kΩ
respectively, and also the difference for the two sides of the actuator, 4.9 kΩ and
2.4 kΩ. As a consequence of a lower resistance, the voltage drop along the electrodes
is probably lower and therefore, the double-layer voltage is higher. As can be seen
in Fig. 4.15b, the peak-to-peak current (corresponding to double-layer charging) is
highest for electrodes with higher conductivity and equivalent tendency is observed for
actuators with different mixing depths as shown in Appendix B Fig. B.11a-B.11b (the
peak-to-peak current is highest for lowest MD and the difference is increasing with the
applied voltage.)

The initial bending of the actuator seems to be driven by the double-layer charging
as shown in the Fig. 4.15c - the higher conductivity of the electrodes leads to the
sharper increase in strain (nearly 0.2 %/s for AP actuator). Alternatively, the faster
bending in actuators with the larger mixing depth might as well be due to the smaller

15The value is just indicative of a small mixing depth. The SEM images of the cross-section showing
that the MD is not homogeneous and in most of the cases hard to measure are shown in Appendix B
Fig. B.12
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Fig. 4.15. (a) Strain and (b) transferred current and (c) bending speed profiles of the actuators having a
different mixing depth (indicated in the legend as a number, AP - semi-trilayer with percolated
electrodes (green dotted line)). 2.0 V square voltage wave at 50 mHz was used for actuation.
(d) Calcualted strain-to-transfered charge ratio for each cycle for different actuators (colors
correspond to the legends in (a)-(c)). The ratio calculated for motion and upwards and
downwards is plotted separatelly as dotted and full lines.
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distance between the electrodes16 that would reduce the ion diffusion path and increase
the speed [258] as well as increase the strain due to the thinner passive layer [6].
Nevertheless, as the double-layer charging is instantaneous, the subsequent bending
and slowly decreasing current is most likely due to the ingress of the ions in the polymer
film as a result of the redox reactions. At this point, the process is not any more
limited by the electrical conductivity of the polymer electrodes and the profiles of the
transferred current and bending speed are very similar for all (A5-30) actuators. In fact,
ingress of ions seem to be slower for the A5 actuator leading to slightly lower maximum
strain at a given frequency (50 mHz). Interestingly, this difference appears only when
higher than 1.5 V is used for actuation as shown in Fig. 4.16a. 1.5 V corresponds to
the appearance of the redox reactions (Fig. 4.10a). It seems that despite the lower
electrical conductivity, the structure of PEDOT:PSS in the pores of the membrane may
favour the electrochemical reactions.

Differently from the actuators with the insulating layer, AP actuator slows down signifi-
cantly after the initial spike and does not reach the strain of A30 or A5. In fact, when
actuated at the lower frequencies, back relaxation is observed after a few seconds as
shown in Fig. B.12a17. Even though the current seems to come back to nearly zero,
it is likely that the charge used at this time is being dissipated due to the conducting
paths in between two electrodes18 and is not used to charge the polymer bulk. Very low
pseudo-capacitance and no redox behaviour is observed in CV voltammograms either
(Fig. B.12b) confirming that the bending is governed by double-layer charging. Overall,
AP, A30 and A5 needs similar amount of power per cycle (44.48, 37.49 and 36.9 mW

respectively) but the STC ratio is significantly smaller for AP actuator as shown in
Fig. 4.15d.

A slightly different behaviour is observed when rather low conductivity PEDOT:PSS
(doped with 1 vol% PEG400) connects the electrodes. This is the case, when PEDOT:PSS
is deposited on the PVDF membrane that is functionalized through all its depth
(Fig. B.12d). Despite the lack of the passive layer, the actuator bends when a volt-
age is applied (Fig. B.12d) and furthermore, the current comes back to nearly zero.
After the study of the semi-interpenetrated networks with different amounts of the
conducting polymer, Festin et al concluded that the conducting polymer percolations
are cut out during the swelling [104]. In our case, membranes do not swell. Lack of the
short circuit between the electrodes could be explained by in general low conductivity
of the PEDOT:PSS in the membrane that should be below 9 S/cm (Chapter 5 Fig. 5.7f).
Also, in contradiction to [104], the electrical resistance decreases when actuators are
put into the ionic liquid (Fig. B.13a) to about 0.2 Ω and very similar resistance value was
obtained along the electrodes (0.3 − 0.5 Ω). The conductivity of the ionic liquid itself

16Assuming that the electrolyte-electrode interface is in the membrane at the end of the mixing depth and
the double layer is forming at that point, the distance between the electrodes would be about 80, 70
and 60 μm for A5, A25 and A30 actuators respectively.

17One of the possible explanation for the back relaxation in our case, could be the ’salt-draining’ at the
polymer-electrolyte interface. As the ions at the double-layer do not ingress into the polymer, large
cation concentration gradient is created along the membrane. In a longer time, the anion could diffuse
to reduce the gradient.

18The measured resistance between AP electrodes in a dry state is 0.4 Ω and in A5-A30 actuators is 6
orders of magnitude higher - 0.2 MΩ
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Fig. 4.16. (a) Peak-to-peak strain and (b) transfered charge for actuators with different mixing depth at
different voltages.

(9 mS/cm [415]) is too low to explain this decrease in resistance. It is possible that
incubation in ionic liquid wash out the PSS and improve the electrical conductivity of
PEDOT. The PEDOT:PSS conductivity could be improved by several orders of magnitude
with addition of imidazolium ionic liquids [16, 90, 237].

To sum up, the influence of the mixing depth on the actuators performance is rather
complex and needs further investigation. First of all, the electrical conductivity in
the pores of the membranes is low and therefore percolations might not necessary
cause a short circuit. On the other hand, large surface area of PEDOT:PSS in the pores
might favour the electrochemical reactions. Furthermore, the larger mixing depth
leads to smaller passive membrane layer that subsequently leads to decreased ion
diffusion distance and faster actuation. On the other hand, we also observed that
having redox reactions lead to the faster degradation of the actuators performance.
Therefore, appropriate fabrication conditions should be chosen if actuators producing
small strain but having a long lifetime (no redox) or actuators with a large strain and
stable position are needed.

4.6 Towards actuator performance improvement by
altering PEDOT:PSS
Using aqueous solution of PEDOT:PSS as the conducting polymer for ionic actuators
is a relatively new idea. Nevertheless, the possibility to produce actuators by sim-
ple drop-casting is interesting as it allows tuning of several parameters. We have
already discussed the influence of the difference mixing depth. We also mentioned that
PEDOT:PSS properties and subsequently actuators morphology and performance change
with different amounts of PEG400. There are dozens of other substitutes that were
reported to influence electrical and mechanical properties of PEDOT:PSS (Section 5.2.2),
i.e. ionic and non-ionic surfactants [416, 229, 101], carbon nanotubes (CNTs) [10,
410, 413], ionic liquids [90], low melting point compounds [194, 285, 264]. Not only
electrical conductivity is improved with secondary doping but also the redox behaviour
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Fig. 4.17. (a) Bending and (b) transferred current profiles of the actuators with PEDOT:PSS electrodes
that were secondary doped with 1 vol% of ethylene glycol (blue full line), gycerol (red dashed
line) and standard PEG400 (green dotted line). 1.5 V square voltage wave at 50 mHz was used
for actuation.

[302]. Simple drop casting based fabrication could be used to tune the mechanical,
electrical and electrochemical properties of PEDOT:PSS electrodes toward the optimized
conditions for applications in mind.

Example of such possibility is shown in Fig. 4.17 where performance of the actuators
secondary doped with 1 vol% of glycerol, 1 vol% ethylene glycol and 1 vol% of PEG400
are compared. The thoughtful investigation of the mechanical, electrical and electro-
chemical properties of such electrodes still need to be conducted, but the significant
differences, especially in the transferred current profile, can be seen. Glycerol doped
PEDOT:PSS is reported to improve the electrical conductivity as well as to lower the
work function that subsequently improves the charge transfer [348]. Improved conduc-
tivity is seen as large current peak corresponding to the double-layer charging and a
relatively large charge transfer after a few seconds that is attributed to polymer bulk
charging. On the other hand, ethylene glycol and polyethylene glycol have similar
effect on the morphology of the PEDOT:PSS [264] and their current transfer profiles are
therefore very similar (the difference in the initial current peak is probably the result of
the conductivity difference as shown in Fig. 5.7e-5.7f). Nevertheless, the PEDOT:PSS
with ethylene glycol as secondary dopant (EG-PEDOT) actuators show largest and
fastest displacement and the smallest transferred current. This is probably due to the
significantly thinner actuators19.

4.6.1 Post-treatment of PEDOT:PSS
Even though numerous, the choice of the secondary dopant in PEDOT:PSS is limited as
discussed in Chapter 3. Alternatively, several post-treatment methods were suggested to
improve PEDOT:PSS properties, i.e. drop-cast or bath treatment with water, methanol,

19The thickness of the actuator depends on the mixing depth and the density of PEDOT:PSS that con-
sequently determines the thickness of PEDOT:PSS electrodes above the membrane. The density of
PEDOT:PSS is largely dependent on its composition and it seems that secondary doping with ethylene
glycol lead to very thin electrodes in comparison to doping with glycerol or PEGs
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Fig. 4.18. (a) Bending and (b) transferred current profiles of the standard (red dashed line) actuators
and actuators treated with sprayed sodium dodecyl sulfate (SDS) (blue full line). 1.5 V square
voltage wave at 50 mHz was used for actuation.

ethanol, ethylene glycol, organic and inorganic acids (reviewed by [359]). Nevertheless,
in most of the cases, post-treatment methods were performed to thin PEDOT:PSS layers
(tens of nanometers) and similar attempts to improve properties of thick PEDOT:PSS
led to the destruction of the film due to cracking20.

Alternatively, post-treatment could be limited to only thin upper part of the electrode
by spray-coating. For example, anionic surfactants such as SDS are used to enhance
PEDOT:PSS conductivity [101]. Nevertheless, if added to the aqueous solution before
drop casting, it would lead to the percolation of the electrodes. The effect of a post-
treatment on the deposited and dried PEDOT:PSS with small amounts of sprayed
surfactant is shown in Fig. 4.3 (fabrication method is provided in Section A.4.3). Post-
treatment with SDS significantly improves the strain and bending speed with nearly the
same amount of the transferred charge. Nevertheless, the amount of SDS needs to be
carefully controlled as it could diffuse from the upper surface through PEDOT:PSS to
the membrane-electrode interface leading to poor adhesion and infiltration as discussed
in Chapter 321.

CNT carpets for creep reduction

Carbon nanotubes have been widely used to increase the conductivity, robustness
and the stiffness of the polymer matrix [110, 273, 373]. In addition, incorporation of
carbon nanomaterials in actuators was shown to increase the accessibility of the Faradaic
capacitance of the conducting polymer, the electrical conductivity and to consequently

20Most of the proposed methods are based on the removal of the insulating PSS layer from the surface of
the polymer film. It is understandable that such action would lead to volume change of the film, that
in our case, caused cracking of the PEDOT:PSS layer. Washing with methanol and ethanol were tested
with our actuators.

21In depth experiments still need to be performed, but the preliminary results suggest that a large
amounts of the sprayed surfactant reached the electrode-membrane interface, and diffused further
into the pores of the membrane. In a longer term this led to the percolation of the electrodes and
delamination as suggested by Energy-dispersive X-ray spectroscopy (EDX) sulphur scan along the
cross-section of PEDOT:PSS/mPVDF/PEDOT:PSS trilayer without and with treatment with CNT/SDS
mixture. Delamination of layers for similar actuators was observed after immersion in ionic liquid a
few weeks after fabrication.
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Fig. 4.19. (a) SEM image of the PEDOT:PSS electrode surface with sprayed CNTs carpet. (b) Displacement
(solid line) and transferred current (dashed line) profiles of the actuators with (blue) and
without (red) carbon nanotube carpet. Actuation with the square voltage wave of ±2V and
10 mHz was used for actuation.

increases actuators stroke and work per cycle [180, 309, 365, 379, 421]. Furthermore,
just as in batteries, incorporation of the CNTs increases the redox reversibility and
significantly reduces creep [99, 110, 365].

Nevertheless, one of the biggest challenges for using these composites is the solubility of
carbon materials [351]. Only small amounts of the more conductive, non-oxidised car-
bon nanotubes or graphene can be homogeneously dispersed in the polymer solutions
[410, 413]. Higher concentrations lead to the formation of aggregates. When incorpo-
rated during the electropolymerization [379], the concentration of carbon nanotubes
is difficult to control. Other fabrication methods, i.e. layer-by-layer deposition [421],
drop casting [365], soaking [309], that would allow to increase the CNTs amount in
the polymer actuators were also suggested, but they also require soluble and easily
processable CNTs. CNTs incorporation methods in PPy are introduced and discussed in
more details in the thesis [309].

We suggest to use spray coating as a carbon nanotube deposition method [27, 168].
In this way, large amounts of CNTs can be deposited only on the upper surface of
the conducting polymer (shown in Fig. 4.19a). Preliminary experiments showed that
such CNTs carpets could significantly improve the actuators performance as shown
in Fig. 4.19b. The electrical conductivity of the electrodes is only slightly improved
(3 S/cm to 3, 5 S/cm without and with CNTs respectively) and as CNTs are present only
on the upper surface, strain increases due to the increasing double layer charge is also
unlikely. Therefore, the performance improvement is most likely due to the increased
accessibility of the Faradaic capacitance of PEDOT:PSS itself - CV voltammograms
showing much larger pseudocapacitance and more pronounced redox peaks are shown
in Fig. B.14.

As reported in previous CNTs-conducting polymer composite studies, improved cycle
reversibility and creep reduction are major advantages of using carbon nanotubes in
actuators. The significance of it is demonstrated in Fig. 4.20a where the time needed to
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Fig. 4.20. (a) The change in the actuation frequency in time for the CNTs (blue) and simple (red) actuators
measured as a time needed to move from/to ±1 mm. ±1.5 V was used to change the direction
of bending as soon as the actuator tip reached set value. For actuator without CNTs the value
was reset to +1.2 − −0.8 mm due to the large creeping (shown as dotted line). (b) Bending
profiles in time for actuators with (blue dotted line) and without (red line) CNTs carpet. The
voltage polarity (±1.5V ) was changed everytime the actuator reach the set ±1 mm value.

reach ±1 mm is plotted in time and the bending profiles are compared in Fig. 4.20b
(Characterization set up is provided in Section A.4.2). The difference in time needed to
move the actuator upwards or downwards appears in Fig. 4.20a as a filled area. Due to
the creep, after about 1500 s it takes about 6 s for the actuator to go one direction and
more than 10 s to move back (at this point the position was set to 0.8 − 1.2mm). On
the other hand, actuators treated with CNTs remained fast (about 2 s per cycle) and
with relatively symmetrical bending profile for more than 2000 cycles. This is a very
promising improvement if actuators were to be used for cyclic positioning.

The effect of CNTs on the actuation performance is similar to previously reported [99,
110, 180, 365, 421]. Nevertheless, in our case, in order to spray CNTs, their suspension
in water is needed that is stabilized by surfactant. Therefore, further work is needed in
order to separate the possible effects of surfactant and CNTs on performance (compared
in Fig. B.15).

4.7 Conclusions
We presented fast, simple and versatile fabrication technique for conducting polymer
based actuators. Drop casting of PEDOT:PSS on modified PVDF-graft-PEGMA mem-
brane (mPVDF) membranes allows fabrication of devices with various properties, i.e.
the length of the mixing depth, thickness of the electrodes, intake of ionic liquid, com-
position of electrode. The use of hybrid PVDF membranes, significantly improves the
adhesion strength allowing large lifetime actuation in air for more than 150 hours and
50000 cycles. Furthermore, the performance was shown to be robust against humidity
in the environment. Actuators were also capable of producing strains higher than 0.6%
(at 2 mHz frequency) (Fig. B.16), that are highest reported for PEDOT:PSS aqueous
solution based actuators [193, 295]. Finally, due to its simplicity, our fabrication method
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could also be a tool to study and better understand important factors influencing actua-
tion. We have also shortly introduced the preliminary results towards improving the
performance of the actuators by spraying single wall carbon nanotubes on PEDOT:PSS
surface. It seems that CNTs could improve the electrochemical activity of PEDOT:PSS
that could further increase the strain (to 0.5% (at 2 V 10 mHz) and significantly reduce
creeping.

4.7.1 Future work

In this chapter the use of hybrid PVDF/PVDF-graft-PEGMA membranes were validated
for fabrication of actuators with PEDOT:PSS conducting polymer electrodes. Even
though some actuators with different structures were compared and possible working
mechanisms were suggested, a extensive work need to be done to better characterize
and understand the performance.

• In order to better understand the influence of the mixing depth on the actu-
ators performance, electrochemical characterization (CV and electrochemical
impedance spectroscopy) of PEDOT:PSS on the membrane should be performed
in three electrode cell set-up. This could lead to better understanding of the
complex charge and mass transport phenomenon at the interfaces formed in the
pores. Understanding of such processes is essential for the electro-mechanical
modelling of the actuation as well as for the optimization of the performance.

• As discussed in Chapter 2, functionalization leads to a slightly asymmetrical
membranes. We showed here that this might cause the difference in the electro-
chemo-mechanical properties of PEDOT:PSS that subsequently affect the actuation
reversibility. Even though in most of the cases, these effects are not observable in
short term, they might accumulate in time. One of the solutions to improve the
long time performance could be the optimization of the grafting. On the other
hand, asymmetrical actuation signal could also be used, if the influence of the
mixing depth on the performance could be accurately estimated.

• In general, the morphology leading to the best actuators performance was not
optimized in our work. In addition to the optimal mixing depth, the thickness
of the electrodes, the incubation in ionic liquid time, the thermal annealing
procedure etc. could be adjusted in order to improve needed parameters, i.e.
speed of actuation, maximum strain, power consumption etc.

• The mechanical properties of PEDOT:PSS electrodes, that influence the ionic
conductivity in the film is probably the most critical parameter. In our case,
when aqueous PEDOT:PSS solution is used, they can be easily tuned by pre-
or post-treatment of the film with secondary dopants and other compounds.
We have shown that PEDOT:PSS composition could alter performance of the
actuator. Nevertheless, much more work needs to be done not only to optimize
the composition of the electrodes, but also to understand the mechanisms behind
it.
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• The main parameter for the actuators used in this work was the strain of the actu-
ator in a trilayer configuration. Nevertheless, the produced stress and force are
equally important for most of the applications. Characterization of the actuators
in terms of blocking force and stress needs to be performed and optimized.

• We have also showed that CNTs could be used to improve the performance of
the actuator. Nevertheless, the fabrication parameters that leads to the improved
performance but that does not affect the adhesion strength of the actuators need
to be found. The use of CNTs could have a tremendous impact on improvement
of the devices and their easier control.

• Finally, for the applications of the conducting polymer actuators better electro-
chemo-mechanical models are needed, that could lead to sophisticated feed-
forward control. On the other hand, integrated sensing could be implemented
that would allow feed-back control without bulky external displacement sensors.
The internal sensing using PEDOT trilayers was already suggested [104], but its
realization is still at the embryonic stage.
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5.1 Introduction
In order to push the technology of soft actuators from the laboratory bench to the
production plant, large scale fabrication methods are needed. One of the most likely
solutions is inkjet printing. Inkjet printing is a non-contact direct printing technique1

that is considered to be one of the key technologies for defined polymer deposition.
Furthermore, it is a low cost, high speed and high precision technique. It also allows
printing of several functional inks in parallel giving way to material and shape pattern-
ing and could be used in linear arrays for high throughput fabrication. This technology
has many promising applications including printing of displays [57, 88], plastic elec-
tronics [21, 173], solar cells [100, 145, 361], soldering [137], biosensors [202], tissue
engineering [73, 328] etc. There are three process steps that need to be understood
in order to achieve full potential of inkjet printing: (1) generation, ejection and flight
of droplet; (2) positioning, impact and interaction of droplet with the substrate; (3)
drying and solidification of the product.

5.1.1 Generation of droplets
Ink-jet printing could be used in 2 modes: continuous or drop-on-demand (DoD) mode.
In the continuous mode the ink is being pumped through the nozzle and due to the
imposed periodic perturbation, uniformly sized and spaced droplets are being generated

1It does not require masks nor stencils
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(a) (b)

Fig. 5.1. (a) Schematic diagram of a drop-on-demand inkjet printer. (b) The schematic cycle of drop ejec-
tion in (above) thermal (rapid expansion and collapse of the bubble) and (below) piezoelectric
(by direct mechanical deformation at typically 1 − 20 kHz) inkjet drop-on-demand printing.

(based on the Rayleigh-Tomotika instability). The unwanted drops are then deflected
by the electric field and, if possible, recycled. Continuous mode is mainly used for
high-speed (drop generation rates 20 − 60 kHz, drop velocity - > 10 ms−1) and low
precision (drop size of approximatelly 100 μm) applications and will not be further
discussed.

Drop-on-demand mode (Fig. 5.1a) has less restrictions on the ink properties and is
superior due to the higher placement accuracy and smaller droplet size (20 − 50 μm).
In this mode, the printer nozzle is manually located above the desired position and
droplets are ejected when needed by using thermally or piezo-electrically generated
pressure pulses (Fig. 5.1b). Even though droplet size is mostly dependent on the size of
the nozzle, controlling pressure pulses allows limited control of its size and ejection
velocity and is a crucial know-how in order to form stable drop ejection [85].

Ink requirements

The crucial aspect of the inkjet printing is the physical properties of the ink, especially
its viscosity, density and surface tension. Appropriate ink composition is required not
only for printability, but also for a good accuracy and resolution. Physics and fluid
mechanics of jetting is a complex process and is usually approximated and characterised
by Fromm equation [113]:

Z = NRe

(NW e)1/2 = (αργ)1/2

η
(5.1)

where NRe = αρν/η is the Reynolds number (ratio of inertial and viscous forces),
NW e = αρν2/γ is the Weber number (ratio between inertial and capillary forces), ρ, γ,
η are the density, surface tension and viscosity of the ink respectively, ν is velocity and
α is the length of the printing orifice. The value of the dimensionless Z number, that
permits printing of the fluid was determined by computational fluid dynamics to be
between 1 and 10 [320]. On the other hand, more recent experimental studies based
on in-situ monitoring of drop formation redefined the printable range to be between
Z = 4 and Z = 14 [156]. It was shown that liquids having low Z values are unable to
form a droplet due to the viscous dissipation. Meanwhile, high Z values lead to the
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Fig. 5.2. (a) Illustration of the range of the fluid properties that allows DoD inkjet printing. (b) Equations
plotted in a coordinate system defined by the Reynolds and Weber numbers. (c) Schematic
illustration of the sequence of the events that occur after droplet impact an a substrate. Reprinted
from [85].

formation of a long-lived filament between the nozzle and the droplet or large number
of satellite drops that degrade printing resolution.

In general, viscosity determines the velocity and the amount of the fluid ejected2. In
order to allow ejection of the droplet it should be bellow 20 mPa s. On the other
hand surface tension is determining the shape of the droplet and in order to obtain
spheroids it should range from 30 mN/m to 350 mN/m [120]. Ejection velocity will
also influence the splashing on the surface and for the flat, smooth surfaces the product
W

1/2
e Re1/4 should remain about 50. All these parameters were summarised by [85]

and are shown in Fig. 5.2a.

Other factors influencing printing performance are wetting of the nozzle by the fluid3

and the particle size in the solution. Intuitively, large particles4 would often cause
clogging. On the other hand, presence of the smaller particles was shown to lead
to the entrapment of the air bubbles in the nozzle and asymmetric jet formations
[167]. Furthermore, particles could also influence formation of satellites and filament
breakup.

Printing polymers

Limited solubility and miscibility and high viscosity make the polymer printing a
challenging task. Therefore only very dilute solutions of long chain polymers and low
volumes of particles are normally printable. Furthermore, polymers in the ink influence
the drop and filament formation. These processes were shown to be dependent on the
polymer rheological properties, i.e. structure, molecular weight, concentration. The
main observed difference in comparison to Newtonian ink is the increased breakup
length, meaning that after the jetting, solution does not break into the drops that remain
connected by long threads. These threads are thinning with increasing distance and

2In order to be ejected, drop needs to overcome fluid/air surface tension at the nozzle that leads to the
minimum ejection velocity [120]: vmin =

( 4γ
ρdn

)1/2

3Too low contact angle would lead to formation of spray.
4Depends on the nozzle diameter, for 30 μm nozzle > 20 μm.
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eventually break, but at much larger distances [127]. The main rheological parameter
characterising this behaviour is elongation viscosity5. Mun et al. showed that in
solutions with similar density, viscosity and surface tension, the breakup behaviour
differed depending on the concentration and molecular weight of the polymer and the
breakup length increases with increasing molecular weight (above MW 300000) and
concentration [279].

5.1.2 Drop-substrate interaction and solidification
For most of the applications, the ejected drop is reaching the substrate in the liquid state
and consequent phase change occurs (by solvent evaporation, chemical reaction etc)
leading to solid final product. The liquid drop will be on the substrate for a finite time,
allowing liquid-solid interaction. Due to the low density, surface tension, diameter and
the length scales (2 − 3 mm) gravitational forces (in order of 10−14 J) can be neglected
and inertial and capillary forces are dominant. Schematic illustration showing sequence
of events occurring after the impact is shown in Fig. 5.2b. Initial events (< 1 μs), such
as impact driven spreading and oscillations are determined by viscosity of the fluid
[331]. At the later stages (0.1 − 1 ms), capillary forces start to dominate and the final
drop size is mostly dependent on its volume and contact angle.

On flat and smooth substrates the contact angle and the volume are determining the
resolution of printing (typically about 30 μm). Nevertheless, if needed, several chemical
[335, 342, 389] or mechanical [139, 254] surface patterning methods were suggested
in order to produce features smaller than 5 μm. If a porous substrate is used, as in
our case, another parameter needs to be taken into account, i.e. infiltration speed.
Factors influencing penetration of liquid through the membrane were more extensively
discussed in Chapter 3.4. Here we will only add, that for small droplets of 30 − 60 μm

and porosities of 0.07 − 0.17 μm infiltration times are in range of 100 − 500 ms. This
means that liquid begins to recede due to infiltration only when the spreading stops
[142] and this process is likely to be dependent on the chemical nature of the porous
substrate.

The last step influencing morphology of the deposited spot is its solidification. In most
of the cases it is based on drying. Formation of a coffee stain, i.e. aggregation of solute
at the initial contact line [82], is one of the well known resolution limitations associated
with inkjet printing. Several methods were used to reduce this effect, such as enhanced
vapour pressure of environment, more complex solvents, phase change flow depletion
etc. [85], but they mostly rely on implying even more limitations on printable ink.

5.1.3 Inkjet of conductive polymers
Inkjet printing of conductive polymers is challenging due to their small solubility and
miscibility. Furthermore, for most of the applications, good conductivity and adherence
to substrate is required that increase requirements for the ink and its rheological
properties. Very often additives to the solvent are used in order to adjust rheological
and surface energy characteristics, same additives can also have beneficial effects

5The resistance of the fluid to stretching motion.
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on solvent-polymer compatibility and interaction. For example, ethylene glycol in
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) does not only
affects viscosity and surface tension, but also significantly increases its conductivity and
changes the water solubility of the film [140, 235].

Even though other conductive polymers such as polyaniline were shown to be possible
to print by synthesizing their nanoparticle dispersions [277], PEDOT:PSS in the only
commercially available conducting polymer that is extensively used in flexible and
printed electronics [21, 174, 221]. The main challenge remains in increasing its
electrical conductivity and various ink formulations were suggested as well as pre- and
post-treatment strategies [100, 195, 221, 232, 400, 403]. The most common additives
are: (1) DMSO [79, 400], that facilitates the charge transport by aligning poly(3,4-
ethylenedioxythiophene) (PEDOT) chains and coarsening of PEDOT:PSS grains; (2)
glycerol [100, 401], that increases conductivity as dimethyl sulfoxide (DMSO) and is
also used to tune the viscosity of the ink and (3) various surfactants [140, 400], usually
used for easier adjustment of the surface tension and elongation viscosity. In addition
to improved conductivity and fluid properties, very often additives are also used to
improve interaction between the printed PEDOT:PSS and the substrate [232].

Interaction between PEDOT:PSS and the substrate is another critical aspect of printed
electronics. Most of the substrates are hydrophobic plastics i.e. polyethylene tereph-
thalate PET [21], polyvinylpyrrolidone (PVP) [221], polyimide [174], or glass [118],
therefore hydrophilic PEDOT:PSS aggregates making it difficult to define patterns. Un-
surprisingly, it also leads to poor adhesion [9]. Therefore, various surface treatments
are often performed before inkjet printing in order to improve pattern resolution [254,
407] and conductivity of the layer.

5.2 Printing PEDOT:PSS on PVDF membrane
Even though printing of PEDOT:PSS is a commonly used technique, the knowledge of
the influence of the additives on drop and film formation is very vague. Even less is
known about inkjet printing of polymers on porous substrate. Angelo et al observed
penetration of PEDOT:PSS based ink into photo paper, that was used as a substrate
and discussed influence of the penetration depth to conductivity [9]. Nevertheless, no
studies regarding mechanisms of this behaviour were yet done and to our knowledge,
printing of PEDOT:PSS on polyvinylidene fluoride (PVDF) filtration membranes was not
yet reported.

5.2.1 Ink-substrate interaction
In addition to the normal model explaining interactions between the ink and the
substrate, that considers only impact and capillary driven spreading, we need to take
into account roughness, porosity and chemical nature of the membrane. Even though
jetted droplets are 50 times larger than the size of the pores (50 μm vs 100 nm), the ink
is a very diluted polymer solution (1.3 wt%) leading to only very thin layer of polymer
being deposited per droplet. This can be observed in atomic force microscopy (AFM)
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(a) (b)

Fig. 5.3. SEM of PEDOT:PSS layer printed on (a) rough and (b) smooth side of the PVDF membrane at
the printing borderline. Inset: AFM surface scan of the PEDOT:PSS printed on each side of the
membrane.

and scanning electron microscopy (SEM) images shown in Fig. 5.3, where PEDOT:PSS
seems to cover roughness of PVDF membrane. The roughness of the membranes only
slightly decreases after printing: from 252 nm to 145 nm (for rough side of PVDF and
PEDOT:PSS printed on PVDF respectively) and from 158 nm to 64 nm on the smooth
side of PVDF.

It can be expected that roughness of the membrane disrupts the conductive paths
between PEDOT:PSS grains. That should lead to lower conductivity in comparison to
the thin films deposited on glass. Assuming thickness of 0.5 μm (as roughly estimated
by AFM (Appendix B Fig. B.17)) conductivity of pristine PEDOT:PSS printed with a 40 x
40 μm printing resolution on hydrophobic membrane are 2.7 Scm−1 and 3.0 Scm−1 for
rough and smooth sides respectively. As the thickness of PEDOT:PSS is very similar to the
roughness of the membrane it cannot be accurately estimated. Therefore, comparison
of conductivities with external sources is hard to make. The influence of the printing
resolution on the measured conductivity is shown in Fig. A.5b. Reported value for lower
resolution printing (50 x 50 μm with 60 μm droplet size leading to 400 nm thickness)
of pristine PEDOT:PSS on glass is 0.1 Scm−1 [403] - 30 times lower than estimated in
our experiments. Because of the approximate thickness, only qualitative comparison
of ink composition to the conductivity of the film will be made. On the other hand,
surface roughness is expected to play minor role on conductivity if more than one layer
of PEDOT:PSS is printed.

Mechanical properties of PEDOT:PSS were reported to be very dependent on the thick-
ness of the film. For example, it was evaluated that the elastic modulus of thin
PEDOT:PSS films (500 nm) might be twice as much as of thicker ones (25 μm) -
6 − 7 GPa - 2.8 GPa respectively [214]. In our case, printing pristine PEDOT:PSS led
to extremely brittle thin films, that formed numerous cracks while handling as shown
in Fig. 5.4a. Furthermore, as discussed in the Chapter 3, adhesion and infiltration of
PEDOT:PSS also need to be taken into account when printing actuators. As shown in
Fig. 5.4b, just as for the drop casted films, a thicker layer of inkjet printed PEDOT:PSS
easily detaches from the membrane, and trilayer actuator delaminates as soon as put in
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(a) (b) (c)

Fig. 5.4. (a) SEM of one pure PEDOT:PSS layer printed on PVDF membrane cracked after drying,
(b) SEM of 10 PEDOT:PSS layer having 10vol% glycerol printed on PVDF membrane show-
ing easy delamination casued by handling and (c) SEM image of the cross-section of PE-
DOT:PSS/PVDF/PEDOT:PSS trilayer, when surfactant (1 vol% Triton-X100) was added to
PEDOT:PSS ink. Inset: EDX line scan along the cross-section, indicating PEDOT:PSS abundance
through the PVDF membrane.

the liquid. Equivalently, if surfactants are being used, i.e. Triton-X100, PEDOT:PSS ink
penetrates through the membrane, percolating the electrodes as shown in Fig. 5.4c.

Therefore, in addition to established requirements for ink that allows good jetting,
secondary dopants need to be used in order to increase the conductivity of the ink and
to improve mechanical properties of the thin films. Furthermore, the surface tension
of the ink needs to be monitored in order to prevent infiltration while assuring good
adhesion. In contrast to previous discussion in Chapter 3, gravitational forces exerted
by a drop are low and the pressure of the ink on the membrane is negligible, therefore
the impact and capillary forces are dominant in ink-substrate interaction.

As water is used as a solvent and printing is done keeping the sample holder at room
temperature, the evaporation of the solvent is slow (for 50 μm water drop on flight
could take several seconds) [143]. Furthermore, interference of two neighbouring
droplets increases evaporation time even further [198] leading to, in our case, still wet
films after tens of minutes of printing. That gives sufficient time window for capillary
forces to drive the outward spreading of the droplet as well as infiltration into the pores
of the membrane. Thus, when PEDOT:PSS is printed on hydrophilic PVDF or surfactants
decreasing surface tension are used (such as Triton-X100 leading to surface tension
lower than 15 mN/m), ink covers all the pores of the membrane (Fig. 5.4c).

Due to low evaporation time and high printing resolution (40 x 40 μm and 50 μm initial
droplet size), evaluation of a single droplet drying is not relevant. In our case, droplets
merge on the surface before drying and form a macroscopic pattern. Initial phase of
impact and capillary driven spreading of the liquid solution can be characterized by the
contact angle between the materials and is mostly dependent on the material properties.
On the other hand final film formation will depend on several other effects that play
role during drying. Such effects include, evaporation of the solvent and the recession
or pinning of the contact line, outward flow of the polymer within the liquid film, that
often creates coffee ring effect (Fig. 5.5a) [82], Marangoni effect6, that leads to films
with flatter profiles (Fig. 5.5b) [170] and, in our case, infiltration rate (Fig. 5.5e).

6the flow towards the centre due to surface tension gradients
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(d) (e) (f)

Fig. 5.5. Schematic illustration of some substrate-ink interactions, when (a)-(b) hydrophobic or (d)-(e)
hydrophilic membrane is used as a substrate. SEM pictures of PEDOT:PSS printed on the (c)
hydrophobic and (f) hydrophilic PVDF membranes.

Detailed analysis of the underlying mechanisms was not carried out in our work, but
several relevant observations can be mentioned. In the case of printing PEDOT:PSS on
the hydrophobic PVDF membrane, the infiltration is negligible and the contact line is
not pinned and is receding when drying. Nevertheless, this behaviour does not lead to
the formation of the coffee ring. Due to the viscosity of PEDOT:PSS receding line leaves
part of the film behind, as previously explained by Kajiya et al [170]. Subsequently,
the thickness of the polymer film is gradually increasing as shown in Fig. 5.5c. The
roughness of the surface seems to play role in this behaviour, as for smooth surface the
formed dried film profile is more gradual than for rough side (shown in Fig. 5.3. If
thicker PEDOT:PSS films are printed on the modified PVDF, infiltration should compete
with recession. The change in thickness on the edge of the printed film is shown in
Fig. 5.5f. Another interesting phenomenon, observed after printing surfactant-free
PEDOT:PSS on the hydrophilic PVDF membranes is the large surface diffusion. Traces
of PEDOT:PSS can be observed few millimetres away from the initial deposition place
as shown in Fig. 5.6a-5.6b. Even more impressive is the formation of two rings with
different quantities of PEDOT:PSS as shown in Fig. 5.6b. Enlarged SEM images of the
membrane surface at different distance from the printed pattern are shown in Fig. 5.6c-
5.6f. PEDOT:PSS covers the pores of PVDF and, at least within the limits of the first ring,
the length of the PEDOT:PSS diffusion into the pores correspond to the functionalization
length of PVDF membrane (Fig. 5.6g): sulphur traces few micrometers in depth are
visible on the surface of the membrane even where it was not printed. Furthermore,
as shown in SEM images, the amount of PEDOT:PSS seems to be quite homogeneous
within a ring - PVDF surface looks very similar close to the printed pattern and further
away (Fig. 5.6c-5.6d).

This phenomenon was not observed neither when PEDOT:PSS was printed on hydropho-
bic PVDF nor when surfactant (Trtiton-X100) was used to facilitate the jetting. Even
though extensive studies were not performed, it is clear that hydrophilic functionaliza-
tion of the surface is causing this behaviour. It would be interesting to link the size of
the rings to the morphology of the functionalized membrane. When Triton-X100 is used
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(g)

Fig. 5.6. (a) Picture of the PEDOT:PSS electrodes printed on PVDF membrane and PEDOT:PSS ’ring’ on
the surface after incubation in the ionic liquid. (b) Picture of the corner of the same actuator
before immersion in ionic liquid showing two rings formed by PEDOT:PSS spreading on the
surface. (c) SEM image of the edge of the printed actuator and the ’ring’ (satellite droplets are
also seen around the actuator (lighter rounds)), (d)-(f) shows enlarged areas of the membrane
and different amounts of PEDOT:PSS on the surface. (e) EDX area and line scans along the
cross-section of 10 layers of PEDOT:PSS printed on PVDF-graft-PEGMA membrane (mPVDF).
Sulphur trace is shown in blue. The approximate place of the line scan is indicated with the
white dashed line.

as a surfactant, functionalization of the membrane does not influence the distribution
of PEDOT:PSS in the membrane Diffusion of PEDOT:PSS in that case seems to be driven
by surfactant and is more anisotropic towards vertical infiltration7. Observed surface
diffusion means that high resolution patterns will not be feasible with our materials.
Nevertheless, it is possible that such a small amount of PEDOT:PSS on only the surface
of the membrane would not significantly influence the behaviour of the actuators. This
and further questions are the subjects of a future study.

5.2.2 Ink composition
Conductivity

Thermal and solvent annealing play important role in determining the conductivity
and mechanical properties of inkjet printed PEDOT:PSS thin films [146, 264, 403].
Nevertheless, secondary additives and temperature annealing do not only effect the

7Nevertheless, the Energy-dispersive X-ray spectroscopy (EDX) area scan at the edge of the pattern
was not taken. The statement is based on the EDX line scan, that does not show larger amount of
PEDOT:PSS in the hydrophilized pores and SEM images at the edge of the printing, where PEDOT:PSS
is not as visible as in Fig. 5.6d.
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morphology of the polymer but might as well influence the polymer-substrate inter-
actions. Study on the conductivity of PEDOT:PSS printed on porous substrates has
not yet been reported. In order to make a good choice for a composition of the
ink, the conductivity of PEDOT:PSS with various secondary dopants was measured
as illustrated in Fig. 5.7a. Lines of PEDOT:PSS with various secondary dopants were
printed in between two sputtered gold electrodes on the pristine or functionalized
PVDF membrane. Conductivity was subsequently calculated from measured resistance
in between the electrodes, assuming that the thickness of the film is the same in all
cases (0.5 μm). (More detailed set-up is provided in Appendix A.5). PEDOT:PSS with
glycerol as secondary dopant (G-PEDOT) [213], PEDOT:PSS with ethylene glycol as
secondary dopant (EG-PEDOT) [195, 293] and PEDOT:PSS with PEG as secondary
dopant (PEG-PEDOT) [264] were tested.

The conductivity of printed films shows similar behaviour as previously reported.
Ethylene glycol is significantly improving conductivity of PEDOT:PSS film at lower
concentration (up to 4 vol%) and conductivity does not significantly change for higher
ethylene glycol concentrations as shown in Fig. 5.7b [195, 396]. Nevertheless, measured
highest conductivity is nearly 20 times lower than reported by Kim et al (700 S/cm

vs 40 S/cm). On the contrary, the conductivity of G-PEDOT increases with increased
concentration of glycerol but thermal annealing is required for the effect to take place
(as shown in Fig. 5.7c). As in case of EG-PEDOT, in comparison to printed on glass thin
films PEDOT:PSS doped with glycerol also shows conductivity several times lower than
reported [403].

One significant difference between previously reported PEDOT:PSS conductivity studies
and our results is the effect of thermal annealing on conductivity. It is commonly
accepted, that conductivity increases after thermal annealing [146, 264, 403, 423].
Nevertheless, in our case, a slight decrease is observed for most of the polymer composi-
tions8 even after short thermal annealing times (30 minutes at 80−100°C) Fig. 5.7b-5.7d.
Furthermore the conductivity is further decreasing with increased annealing time.

The porous substrate used in our conductivity studies is probably the explanation of such
observations. As previously mentioned and shown in Fig. 5.7b the conductivity of the
thin film is dependent on the roughness of the membrane and is generally about 10 S/cm

lower for PEDOT:PSS deposited on the rough side. The infiltration of PEDOT:PSS to the
pores of the membrane is expected to decrease the conductivity of the polymer even
further (also discussed in Section 4.5). Nevertheless, thermally driven infiltration should
be thermodynamically unfavourable due to the immiscibility of PEDOT:PSS and PVDF.
As shown in Fig. 5.7d, thermal annealing has no observable effect on the conductivity of
the pristine PEDOT:PSS film printed on hydrophobic PVDF. Nevertheless, glycerol is an
amphiphilic molecule that can adsorb on hydrophobic surface and subsequently favour
the infiltration of PEDOT:PSS. Infiltration of PEDOT:PSS to the pores of the membrane
when large amounts of glycerol are used could explain the divergence from the reported
conductivity (black dashed line) observed for amounts larger than 10 vol%. Even
though, it should be proven with infiltration studies, 10 vol% of glycerol in PEDOT:PSS
could be the threshold value for formation of interfacial layer.

8Except initial thermal annealing step of thin films of G-PEDOT
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Fig. 5.7. (a) Schematic illustration of the set-up for conductivity measurement. 10 lines of PEDOT:PSS
with 40x40 μm resolution were printed on the PVDF membrane in between two sputtered
gold electrodes. Picture of the printed film on the membrane and the electrode is shown
below. The lines were cut and the resistance of the electrodes was measured. The conductivity
was calculated assuming dimensions of 0.6 mmx5 mmx500 nm. Conductivity of PEDOT:PSS
secondary doped with different amounts of (b) ethylene glycol or (c) glycerol before and after
thermal annealing. Annealing conditions are indicated in the legend. Films were printed on
the smooth side of pristine PVDF membrane (pPVDF) unless indicated differently. Conductivity
of G-PEDOT reported by [403] is plotted as a black dotted line. (d) Summarized influence
of thermal annealing on conductivity of PEDOT (green dotted line) EG-PEDOT (red dashed
line) and G-PEDOT (blue line). (e) EG-PEDOT with 5 vol% of Triton-X100 printed on the
pristine (blue line) and functionalized (red dashed line) PVDF membrane. (f) Conductivity of
PEDOT secondary doped with 1 vol% of PEG of different molecular weigths and printed on
functionalized PVDF membrane. Thermal annealing conditions are indicated in the legend.
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Fig. 5.7e and 5.7f also support the idea that measured conductivity decreases if
PEDOT:PSS is infiltrated into PVDF. Fig 5.7e shows conductivity measurement of
PEDOT:PSS with ethylene glycol and with 5 vol% of surfactant (Triton-X100) printed
on pristine and functionalized PVDF membrane (mPVDF). As estimation of thickness is
difficult due to small amounts9, the thickness of 500 nm was used for calculation for
comparison with previous results. In this case, for the same ethylene glycol concentra-
tion conductivity is 10 times lower than in Fig. 5.7b. This value is further decreased
if a functionalized PVDF membrane is used. Infiltration facilitated by the hydrophilic
PVDF membrane leads to a larger interfacial layer and, in this case, lower conductivity
of the printed polymer layer. Similar conductivity values were obtained for printing
1 vol% of PEG-PEDOT mPVDF membranes. As previously reported, conductivity en-
hancement with polyethylene glycol (PEG) in comparison to ethylene glycol is generally
higher, but when printed on hydrophilic membranes, we obtained 70 times lower than
reported conductivities, 9 S/cm vs 650 S/cm for 1 vol% poly(ethylene glycol) of
Mr − 400 (PEG400) [264].

The conductivity enhancement mechanisms of PEDOT:PSS are not yet fully understood
therefore effect of heating can not be easily explained. The temperature influence
correspond to the reported one in a way that thermal annealing significantly enhance
G-PEDOT conductivity [403], but do not significantly change EG-PEDOT [235]. In our
case, as relatively low temperatures were used the influence of the evaporation of the
additives is negligible10 and the reorganisation of PEDOT and polystyrene sulfonate
(PSS) is also unlikely [423]. Therefore the decrease in conductivity is most likely due
to the infiltration of PEDOT:PSS into PVDF that is facilitated by secondary dopants.
Contrary, the conductivity of PEG-PEDOT printed on mPVDF increases after thermal
annealing. Probably, lower mobility of PEG in comparison to ethylene glycol prevents
it from infiltration in the pores and, therefore, the infiltration depth is limited to
functionalization and is independent of temperature. Thus, slight conductivity increase
after the thermal annealing could be due to the evaporation of residual water from
PEDOT:PSS film [423].

To sum up, the conductivity of PEDOT:PSS thin films printed on porous substrate is tens
of times lower than on flat substrates. We showed that in our case, the infiltration in
the pores of the membrane is the main cause of low conductivity. Therefore, addition
of surfactants, that are often used to improve conductivity, significantly reduce it. Fur-
thermore, thermal annealing can also have double effect on conductivity. If facilitated
by amphiphilic additives, thermal annealing could increase the mixing depth. On the
other hand, if the infiltration is prevented, thermal annealing could help to improve the
conductivity probably by removing residual water from the film.

Liquid properties

One of the parameters determining the jetting stability is the diameter of the nozzle
(see Eq.5.1). The nozzle was changed in between different experiments but once the
possibility to use surfactants was declined due to the risk of percolation, 30 μm was

9The thickness of the printed films is on the same order of magnitude as the roughness of the membrane.
Therefore, it is impossible to detect the edge by AFM or mechanical profilometer.

10boiling point of ethylene glycol and glycerol are 197°Cand 290°Crespectively
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Tab. 5.1. Physical properties of PEDOT:PSS inks

PEDOT:PSS
additive

Density,
g/ml

Surface tension,
mN/m

Viscosity,
mPas

a Zb

pristine 1 66.7 15 2.98
5 vol% EG 1 69.0 8.2 7.16

5 vol% glycerol 1.01 17.5
1 vol% PEG400 1 45.2 12.7 2.90
1 vol% PEG400

+1 vol% Triton-X100
1.01 18.8 12.5 1.91

a Measured at 25°C. a For calculations α value of 30 μm was used. It corresponds to
the diameter of nozzle that was used for printing latest actuators.

chosen as most suitable one. The Z values of different PEDOT:PSS inks are shown in
Table 5.1. Only PEDOT:PSS with ethylene glycol as secondary dopant (EG-PEDOT) has
a Z value larger than 4, that should theoretically lead to stable jetting. In order to print
inks discussed in previous section, larger nozzle or variation of the temperature of the
nozzle were used to adjust viscosity of the ink. For example, if 50 μm nozzle is used, Z

value for pristine PEDOT:PSS is 3.85. It can be further increase to above 5 if temperature
is used to decrease the viscosity. Nevertheless, even if theoretically acceptable, jetting
of pristine PEDOT:PSS is still often unstable. In addition to temperature, the waveform
and driving voltage had to be optimised for each solution. Variation of these parameters
could also have some influence to the quality of the deposited film11 Nevertheless,
probably due to the non-Newtonian fluid properties of PEDOT:PSS as well as its particle-
like tertiary structure in water, stable jetting is a very challenging task.

As printing actuators should be not only be material but also time efficient process,
the ink satisfying previously mentioned requirements and allowing reliable jetting was
chosen. Using ethylene glycol as secondary dopant improves the conductivity and
mechanical properties of the film and does not facilitate the infiltration and subsequent
electrode percolation. Furthermore, it allows relatively stable jetting (Z − 7.16)12.
Therefore, PEDOT:PSS secondary doped with 5 vol% of ethylene glycol was chosen
for further preliminary experiments and actuator fabrication by inkjet printing (unless
specified differently).

5.3 Printing and characterisation of actuators
For characterisation purpose, rectangular actuators were produced by inkjet printing
small 1.5 x 8 mm2 rectangular PEDOT:PSS actuators were printed on PVDF mem-
brane as shown in Fig. 5.8a. Then actuators with a size 2x15 mm2 were cut by
hand (Fig. 5.6a). 2 different actuators with 0.27 ± 0.13 mg13 and 0.42 ± 0.06 mg of

11For example, due to the change of the shape of the waveform used for jetting, PEDOT:PSS film weighting
0.18 mg and 0.36 mg were obtained (10 layers of PEG-PEDOT printed in a pattern of 0.8 x 5 mm on
mPVDF).

12Some satellite drops were still formed during printing EG-PEDOT as can be seen in Fig. 5.6c
13Large error is most likely due to the change of the waveform that was used for jetting.
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(a) (b)

Fig. 5.8. (a) Merged images of the actuator at its initial position and extremities during the actuation
with 1.5 V square wave at 50 mHz. The position of printed PEDOT:PSS is indicated with arrows.
Dimentions of used actuator (2x15 mm) and printed PEDOT:PSS layer (0.8x5 mm) are shown
above. (b) Displacement (blue line) and transfered current (red dashed line) profiles of printed
actuator (10 layers, 0.36 mg) during actuation. The voltage waveform used is shown as black
dotted line.

EG-PEDOT were printed on 3.19 ± 0.006 mg of PVDF membrane. After thermal anneal-
ing PVDF was impregnated with 4.5 ± 0.06 mg of ionic liquid and were immediately
used for characterization (Appendix A.4.1). Notably, PEDOT:PSS does not impede
the adsorption of ionic liquid (0.45 ± 0.09 mg were adsorbed by empty mPVDF mem-
brane of the same size) and more than double amount of 1-ethyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide (emimTFSI) is adsorbed in comparison to drop-
casted actuators (Fig. 4.7b). The amount of adsorbed ionic liquid was suggested to be
the strain limiting factor [104] and possibility to increase the amount of ionic liquid
available could be another advantage of inkjet printing.

Electrical conductivity measurements of dry printed EG-PEDOT are shown in Fig. B.13b.
As mentioned, ethylene glycol does not cause the infiltration of PEDOT:PSS into the
membrane and the resistance between the electrodes of inkjet printed actuators is
higher than 1 GΩ. On the other hand, even relatively small amounts of EG-PEDOT are
printed that are partially infiltrated in the pores of the membrane as shown in Fig. 5.6g
(for 10 layers printed) the conductivity of the electrodes is quite high - 9.4 ± 2.3 S/cm

and 27.0 ± 6.9 S/cm14 .

The displacement and transferred current profiles of printed actuators are shown in
Fig.5.8b15. Significantly smaller actuators of only 0.36 mg are able to produce peak-
to-peak strain of more than 0.6% that subsequently moves much longer impregnated
PVDF membrane of 8.30 mg. Merged images of the maximum displacements during the

14Conductivity calculated assuming 10 μm thickness independently of number of layers printed and
dimensions of 0.8 x 5 mm2. Furthermore, conductivities for both sides were averaged even though
there is a notable difference that is most likely caused by asymmetry of the membranes and infiltration
depth. Finally, the conductivity of the film is proportional to the amount of PEDOT:PSS printed as can
be seen in Fig. B.13b.

15Actuator that showed the best performance is represented - with 10 layers (0.36 mg) of printed
PEDOT:PSS and with 4.6 mg of emimTFSI adsorbed. Total mass of the actuator is 8.15 mg.
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(a) (b) (c)

Fig. 5.9. (a) Fabrication steps for printed actuators: (1) PVDF membrane of wanted shape is cut; (2)
PEDOT:PSS rectangular actuators were printed on each side of the membrane in the place where
actuation was desired; (3) silver paste electrodes are drawn to connect different electrodes; (4)
PVDF is impregnated with ionic liquid. Merged images of two actuation positions (+/ − 2 V at
1 Hz) of dragonfly with (b) printed actuators and (c) actuators produced by drop casting and
cutting.

actuation with 1.5 V square wave at 50 mHz is shown in Fig. 5.8a. Differently from the
actuators described in Chapter 4 bending of the actuators nearly stop after few seconds
(Fig. B.18a). This might be a consequence of the very thin electrodes and their small
volume (< 10 μm) - full film oxidation/reduction of full film might possibly be reached.
As actuators are asymmetrical (as was shown by electrical conductivity measurements),
this could also explain observed rather large electrochemical creep (Fig. B.18b). If large
fraction of the total volume is being irreversibly reduced during each cycle and if this
process is asymmetrical for two electrodes, charge accumulation could happen on one
side, causing only partly reversible cycling. This assumption still needs to be confirmed
with lifetime measurements.

5.4 Conclusion
One of the advantages of inkjet printing for fabrication of soft actuators, is that it can be
used to pattern and actuate various shapes in material efficient manner. Example of this
is shown in Fig. 5.9. The same motion, of moving wings of the 2D dragonfly-shaped
membrane was produced by fabricating device (1) by drop casting (Fig. 5.9c), when all
the shape is used as a trilayer (6 ml of PEDOT:PSS solution required), and (2) by inkjet
printing, where only 0.2 x 1 cm2 actuators were printed for each wing (using less than
0.5 ml of ink). In addition to (1) possibility to actuate various complex shapes, other
possible advantages include: (2) printing complex shapes, such as spirals, U-shape etc;
(3) ink patterning that allows printing parts of the actuator with different mechanical
and electrical properties; (4) printing various other components of the actuators, e.g.
electrodes, connections. Furthermore, inkjet printing can be scalable meaning that
large quantities of identical devices can be easily produced.

In this chapter we introduced challenges that need to be overcome when printing
conducting polymer on porous membranes. First of all, as for all non-Newtonian fluids
and nano-particle solutions, stable satellite-free jetting needs to be obtained. It is
especially challenging as the choice of the additives that are often used to tune fluid
properties is limited by membrane-liquid interactions. Even if the gravitational forces
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of the droplet are neglected, solutions containing surfactant are infiltrated in the pores
of the membrane. Another challenge is the spreading of the ink on the surface of the
hydrophilic membrane. In most of the cases, this phenomenon will limit the printing
resolution of the actuators.

We have also fabricated first inkjet printed conducting polymer based actuators. Even
very thin (10 μm), printed PEDOT:PSS electrodes were able to produce large strains
(0.3%) and subsequently move larger structures. This has huge potential as a low-cost,
material efficient and up-scalable alternative fabrication technique.

5.4.1 Future work
Most of the challenges of inkjet printing were already discussed in this chapter. As
for drop-casted actuators, asymmetry of the functionalization introduces asymmetrical
bending. It seems that for inkjet printed actuators the difference in the reversibility of
the performance is even more pronounced, probably due to the lower polymer volume.
Another specific challenge to inkjet printing is alignment of the electrodes. Even though,
designed non-alignment could possibly allow generation of different than bending
motions (e.g. torque), for most basic bending actuators it might have adverse effects.

In general, inkjet printing is a very promising and powerful fabrication method and
in this thesis we have just demonstrated the proof of concept of using it for printing
actuators. Jetting optimization for stable, satellite-free printing needs to be performed
and a large range of additives needs to be tested in order to optimize the ink composition.
Furthermore, the influence of the geometry of devices (thickness, aspect ratio, etc.)
should be investigated and could also lead to the improvement of performance. In a
later study material patterning could be considered if several suitable ink compositions
were found. In this way, actuators with varying electrical and mechanical properties
could be printed, that could subsequently lead to different motions. Due to availability
of inks, not only actuator itself, but also its connections could be printed (carbon
nanotubes (CNTs), Ag and other metal nanoparticles etc.). Furthermore, it could also be
used for post-treatment in order to enhance the performance of the actuators (instead
of spraying, CNTs can also be printed on the surface of the electrode).

Finally, full characterization of the actuators was not performed. Voltage and frequency
response of actuators should be determined as well as they should be characterized in
terms of the stress and blocking force. That should provide more insights on overall
advantages of the inkjet printed actuators.
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6Summary of scientific contributions
and closing remarks

This thesis work was focused on the development of the fabrication technique for
conducting polymer based actuators. To our best knowledge, the first artificial muscles
based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) con-
ducting polymer inkjet printed on porous polyvinylidene fluoride (PVDF) membrane
were demonstrated. Inkjet printing is a known fabrication method, nevertheless, it
is challenging when complex fluid solutions are concerned. Overcoming technical
challenges brought by the especially complex interactions between the porous mem-
branes and the conducting polymer solution required in-depth understanding of those
interactions. This led to several scientific contributions that are:

• Partly identified requirements for the composition of the polymer solution, mem-
brane surface and fabrication conditions that lead to a strong adhesion between
the formed polymer film and the membrane. Adhesion between materials was
demonstrated to be an essential requirement in order to fabricate the actuators; it
was also shown to play important role in the performance of the device and espe-
cially its lifetime. The work presented here proved that large infiltration into the
membrane area can strongly bond materials that have different chemical nature.
Furthermore, it was also demonstrated that small infiltration depth is sufficient if
graft-polymer of similar chemical nature with short mobile chains is present at
the interface. Several factors influencing this interaction were determined, e.g.
the necessity of a proximate contact that is not hindered by the presence of water
or other mobile molecules at the interface.

• A developed fabrication method for hybrid hydrophilic/hydrophobic/hydrophilic
PVDF ultrafiltration membranes with the possibility to tune the thickness of each
layer. Commercially available hydrophobic membranes were partly functionalized
on their outer surfaces by Ar plasma induced graft-polymerization. In order
to prevent the functionalization in the pores of the membrane, spray coating
was used in a novel way for the deposition of the reaction precursor. The way
to partially control the infiltration of the reaction precursor in the pores of
the membrane was described and hybrid membranes with different levels of
hydrophilization were demonstrated.

• Demonstration of the influence of the surface morphology of commercially avail-
able PVDF membranes on the deposition efficiency of sprayed polymer solution,
consequent grafting reaction and adhesion. As pristine PVDF membranes have dif-
ferent surface roughnesses, the influence of it on membrane - solution interactions
was studied and partly identified.
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• The infiltration of complex polymer solutions in the porous membrane was
discussed in the context of artificial muscles. Even though imbibition in the
porous media is a widely occurring phenomenon, it was never discussed in this
context. Partial explanations were provided that can be used as a guide for
selecting appropriate polymer compositions when infiltration is required or needs
to be avoided.

• Fabrication of conducting polymer based actuators with different areas of the
infiltration in the membrane was developed. Furthermore, up to now highest
produced strain of solvent casted PEDOT:PSS based actuators was demonstrated
with a huge potential for further improvements through PEDOT:PSS composition
optimization and post-treatments.

• Finally, PEDOT:PSS composition that allows stable jetting and strong membrane-
polymer interaction was identified and used for inkjet printing prototype soft
actuators. The possibility of low cost and material efficient fabrication of actuators
operating in air was demonstrated.

6.1 Future Work
Using PEDOT:PSS aqueous solution for fabrication of conducting polymer actuators
(CPAs) is a relatively new idea. It provides a wide range of possibilities for tuning
electrical and mechanical properties of conducting polymer that could push further
the understanding of electro-chemo-mechanical actuation. Furthermore, it could po-
tentially increase currently very low efficiency of CPAs. Therefore, actuators using
PEDOT:PSS pre- or post-treated with various secondary dopants and additives merit
further investigation. Furthermore, the possibility to tune the infiltration depth of the
conducting polymer in the membrane allows fabrication of actuators with different
morphologies. That subsequently provides means to study the influence of the mixing
depth on the performance of the actuators. In our work, these questions were only
shortly introduced, but a thorough electrochemical characterization is needed in order
to provide a sophisticated conclusion. In general, performance of the actuators was very
poorly characterized in our work. In addition to electrochemical, extensive mechanical
characterization needs to be performed. In this way performance of the actuators could
be optimized not only for displacement, but also for produced stress.

Investigation of the performance enhancement by post-treatment of the actuators by
carbon based nanomaterials, i.e. carbon nanotubes (CNTs), is also being carried out
in our group. In this thesis, only preliminary results of this work were presented and
process optimization and thorough characterization needs to be performed. Creep
reduction and improved redox reversibility by CNTs were already reported [99, 110,
365] and some explanations to improved actuator performance were provided [309].
Versatility of fabrication by drop-casting as well as spray coating allows variation
of many electro-chemo-mechanical properties of actuators that could bring further
understanding of the actuation processes. CNTs are only one of many nanomaterials
that are used to enhance properties of polymer composites [209, 351]. The use of
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nanoporous carbide-derived carbon [379] and graphene [231] was already reported
for applications in actuators. As spray coating bypasses the solubility in the polymer
limitation, deposition of various other CNTs and graphene derivatives could be tested.
Finally, it was also reported that the orientation and alignment of carbon nanotubes
could influence performance of artificial muscles [421]. Deposition of CNTs by spray
coating creates carpet of a randomly oriented CNTs. Even though spray coating is simple
and versatile fabrication technique, other CNTs deposition and, potentially, alignment
methods should be tested.

The goal of this thesis was to enable the fabrication of conducting polymer actuators
by inkjet printing. Nevertheless only prototype actuators were fabricated providing
only the proof-of-concept of such fabrication alternative. Optimization of the process
and complete electro-chemo-mechanical characterization of inkjet printed actuators
still need to be done. In addition to being a material efficient process, inkjet printing
also allows material and shape patterning. Once optimized, actuators of various shapes
could be produced and used for generation of the complex motions. Furthermore, wide
range of materials could possibly be printed producing various functional devices or
their components. Therefore, printing the conducting polymer is only the first step and
the process could be further expanded by adding post-treatment of printed actuator, e.g.
printing CNTs [50, 205, 333, 380], printing electrical wires and connections between
the electrodes, e.g. silver nanowires [106, 169, 283], or printing strain gauges [8,
40, 59, 69, 325, 330]. The later possibility is especially interesting as it could allow
one step fabrication of the actuator and the integrated sensor for closed-loop control.
Several inkjet printed strain sensors, including sensors based on PEDOT:PSS [40, 69,
325], were reported and could be potentially adopted.

Having actuators with integrated strain or force feed-back possibility has been a goal for
many research groups [54, 103, 104, 164, 315]. Nevertheless, thorough investigation of
the dynamic behaviour of the actuator needs to be characterized using reliable external
sensory feed-back before integrated sensors are implemented. Extensive modeling,
simulation and control studies were already performed for polypyrrole (PPy) based
actuators (detailed in PhD thesis of [250], [36] and [165]) [102, 391, 406]. We are
currently working on the identification of the empirical transfer function models of
PEDOT:PSS based actuators. As PEDOT:PSS actuators are nearly not electrochemically
active at low voltages and are mostly driven by double layer charging, deviations from
PPy based models might exist. Finally, significant change in actuators behaviour in
time was presented in this thesis. Means to predict and estimate long term response
should be studied and the control algorithms that could efficiently compensate the
deterioration in performance developed.
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AAppendix 1: materials and
experimental methods
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A.1 Materials
Millipore VVHP04700 Durapore Membrane Filter (hydrophobic, pore diameter of
0.1 μm, thickness of 125 μm and 47 mm in diameter) were bought from Merck Milipore
Corp. PEDOT:PSS 1.3 wt% conductivity grade dispersion in water (483095 ALDRICH),
having PEDOT and PSS ratio of 1:2.5 was bought from Sigma Aldrich. poly(ethylene
glycol) of Mr − 400 (PEG400) (202398 ALDRICH) as well as polyethylene glycol (PEG)
with average Mn − 300 and Mn − 3000 were used as a secondary dopant for
PEDOT:PSS.. 1 vol% of PEG400 in PEDOT:PSS solution was prepared and kept at
4 °C before use. poly(ethylene glycol) methyl ether methacrylate (PEGMA) (average
Mn − 526) were also purchased from Sigma–Aldrich Inc. 10 vol% PEGMA solution in
10 vol% ethanol and water mixture was prepared and kept at room temperature before
use. 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (emimTFSI) ionic
liquid was bought from Solvionics (Im0208a). Other chemicals such as Triton X-100,
i-butanol, ethylene glycol, glycerol, sodium dodecyl sulfate (SDS) were also received
from Sigma Aldrich.
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Double walled CNTs were synthesized in Cirimat-CNRS as reported in [107] and
provided in water/SDS suspension. CNTs samples contained 77% of double walled
CNTs, 18% of single-walled CNTs and 5% of triple-walled CNTs that have a length
ranging between 1 and 10 μm and a diameter of 1.2 − 3.2 nm. They were shown to
exhibit a metallic electrical behaviour [334].

A.1.1 Solutions
For preparing PEDOT:PSS inks and solutions for casting, required amounts of PEDOT:PSS
water suspension and additives were mixed on the mechanical shaker at 300rpm for at
least 3 hours. If not used immediately, solutions were kept at 4°C.

For spraying 10 vol% PEGMA solution in azeotropic ethanol/water mixture (10 vol%
unless indicated differently) was used. It was mixed on the mechanical shaker for 3
hours and kept in a dark place at room temperature until use.

0.1 wt% of CNTs and 1 wt% of SDS were dispersed in deionised water and separated
using 150 W ultrasound (VibraCell 75042, Bioblock Scientific) in an ice bath for 30 mins.
The suspension was then centrifuged (16000 rpm, 10 mins) and the supernatant was
collected and the supernatant was collected. Prior to spray coating, all the suspensions
were dispersed using pulsed ultrasound (5 sec on and 5 secs off) for 10min at 150 W .
For spraying SDS, its 1 wt% solution was prepared in deionised water.

A.2 Chapter 2: Hybrid PVDF/PVDF-graft-PEGMA
membranes

A.2.1 PEGMA deposition
Section 2.2.1. For immobilization of PEGMA on the pores of the PVDF membrane, a
pristine membrane was immersed into 10 vol% PEGMA in isopropanol solution and kept
for 15 minutes (gently moving the dish in rotating motion by hand). 28.97 ± 2.7mg of
PEGMA per membrane were deposited. Membranes were drying in air for few minutes,
until signs of the solvent were not visible and then in the oven for 1 hour at 70°C
to remove residual isopropanol (keeping the side of the membrane that will be later
exposed to plasma on top). The membranes were then cut in half and different sides of
a half-membrane were used.

Section 2.2.2. For filling the pores of the membrane with PEGMA, the membrane was
agitated at 300 rpm in a 100% PEGMA for 5 hours at room temperature. For deposition
by spray coating (detailed procedure is explained further in the section), 30 drops of
5 vol% of PEGMA solution in water were sprayed keeping the minimum droplet size
(nearly closed valve). The second side of the membrane was treated in the same way.

Section 2.2.3. 5 − 10 vol% PEGMA solution in water, ethanol or 10 vol% ethanol
and water mixture was prepared by mixing solution on the mechanical shaker for at
least 3 hours before use and kept at room temperature if needed to use later. PVDF
membranes were dried at 70 °C for at least 1 hour and weighted. Spray coating was

144 Chapter A Appendix 1: materials and experimental methods



done under the fume hood and in the glovebox (Captair Pyramid Glovebox) in order
to prevent influence of air flow on spray direction. PVDF membranes were stick on
metallic holder by adhesion or were stabilized by airflow from the spray-gun. PEGMA
solution (5 − 10% in water, ethanol or water-ethanol mixtures) was spray coated on
the surface of PVDF by Mecafer Ag4 airbrush (0.4 μm needle). Three valve position
were set for droplet size control: ′1′, ′2′, ′3′, where ′3′ corresponds to approximately
half a turn (no precise control of drop size is possible but the valve opening was
maintained the same throughout different experiments). The membrane and the gun
were fixed in one line and gun was slightly moved during the spray while keeping the
distance constant. Optimization experiments were performed by changing distance,
valve opening, pressure and solvent, spraying 0.5, 1.0 and 2 ml of PEGMA solution for
each condition and calculating spraying efficiency (SE):

SE = wspray − wini

Vsolφiρ
(A.1)

where, wini and wspray are weight of the pristine and dried membrane with sprayed
PEGMA respectively, Vsol, φi and ρ are volume of sprayed solution and volume concen-
tration of PEGMA in solution and density of PEGMA.

After optimization experiments the valve opening controlling the droplet size was fixed
at ′2′ valve position and 2 kgf/cm3 pressure was used. In order to achieve different
grafting densities the spray gun distance to the membrane was changed from 25 to
35 cm or different amounts (0.5-2.0 ml) were sprayed at 30 cm. For functionalization
on both sides, membranes were kept in air for several minutes in between sprays. PVDF
membranes were then dried in oven at 70 °C for 1 hour and weighted for spray density
calculations (SD):

SD = wspray − wini

2πr2 (A.2)

where, wini and wspray are weight of the pristine and dried membrane with sprayed
PEGMA respectively, r is radius of the membrane (23.5 mm).

A.2.2 Plasma irradiation

Membranes coated with a dried PEGMA monomer layer were then treated by low-
pressure plasma with argon flow rate of 5 sccm, input power of 10 W and 1 W bias
(measured power of 5 W and 0.2 W bias), controlled by a 13.56 MHz RF generator
(Aviza Technology Inc. OMEGA201). The low-pressure plasma treatment was operated
at 50 mTorr after 1 min given for gas stabilization. If functionalization were needed on
both sides, membranes were reversed and procedure repeated. After plasma treatment,
the PEGylated PVDF membrane was kept in air for at least 72 hours to neutralise radicals
on PVDF backbone. The non-reacted PEGMA monomer was removed by washing
membranes in ultrasonic bath in water, ethanol and again in water for 1 hour each. The
remaining solvent was removed by drying membranes in the oven of 70 °C for 2 hours.
The membranes were weighted again for grafting density calculations:

GD = wgraft − wini

2πr2 (A.3)
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where, wini and wgraft are weight of the pristine and functionalized membranes
respectively, r is radius of the membrane (23.5 mm).

Different plasma irradiation parameters were used in Section 2.2.1. The membranes
were then functionalized by Ar plasma irradiation for 15-30 s with these plasma pa-
rameters: 5 W RF power, 0 bias power, pressure of 1 mTorr, Ar flow of 10 sccm.
Furthermore, membranes were washed immediately after grafting in the ultrasound
bath: 1 hour in water, 1 hour in methanol and 1 hour in water.

A.2.3 Characterization of PVDF membrane
Fourier transform infrared spectrophotometry (FT-IR) spectrophotometry in at-
tenuated total reflectance ATR mode with GaSn crystal as reflection element (VER-
TEX 70, Bruker Optics) was done for surface chemical characterization. 64 scans at
a resolution of 4 cm−1 were averaged. The obtained spectrum were further used for
numerical integration of peaks corresponding to OCO and CF bond vibrations from
1700 cm−1 to 1750 cm−1 and 1390 cm−1 to 1420 cm−1 respectively. The ratio of inte-
grated peaks was used to characterise surface coverage by PVDF-graft-PEGMA of the
membranes.

Water contact angle as well as contact angle measurements of various PEDOT:PSS
solutions were performed at 25 °C temperature with Digidrop GBX Contact Angle Meter.
At leas 5 different measurements were performed for each side of the membrane and
averaged.

Atomic force microscopy (AFM) of functionalized and pristine membranes was per-
formed with Veeco-Dimension Icon AFM (Veeco) in a tapping mode using RTESP-300
AFM probes (resonance frequency of about 300 kHz) and the averaged roughness was
calculated using the NanoScope Analysis software (Veeco).

Energy-dispersive X-ray spectroscopy (EDX) was performed on modified PVDF -
PEDOT:PSS bilayers for the estimation of the mixing depth and subsequently the
grafting depth. Modified PVDF membranes were fixed in a �45 mm aluminium clamp
and 3 ml of PEDOT:PSS solution with 1 vol% PEG400 were drop casted. Then they
were dried for 24 hours in air and 2 hours at 70 °C. Membranes were fractured in liquid
N2 in order to obtain clean cross-section. The distribution of sulphur (signature of
PEDOT:PSS) and fluorine (signature of PVDF) were mapped by Energy-dispersive X-ray
spectroscopy (EDX) spectrometer (Helios NanoLab 600i, accelerating voltage 5 kV ,
working distance 6 mm) in linear scan and map scan modes. The approximate length
of the overlap of both signals was estimated visually.

A.3 Chapter 3: Adhesion

A.3.1 Fabrication of PVDF/PEDOT:PSS bilayers
For fabrication of PVDF/PEDOT:PSS bilayers needed for the adhesion testing, pristine
or modified PVDF membranes were fixed in a �45 mm aluminium clamp. Then 3 ml of
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PEDOT:PSS solution secondary doped with 1 vol% of PEG400 was used for drop casting
unless indicated differently. PEDOT:PSS was dried at room temperature for about 24
hours and for 2 hours at 70°C unless indicated differently. Variations of the fabrication
procedure for each experiment are provided below.

Section 3.2.3. The PEDOT:PSS solutions were prepared as in Section A.1 but with
1 vol% of Triton X-100 surfactant or with 10 vol% of i-butanol. PEDOT:PSS was then
deposited on pristine PVDF.

Section 3.2.4. For damaging the surface of the PVDF membrane by Ar plasma, pristine
PVDF membranes were exposed to irradiation as for grafting (Section A.2.1). Plasma
irradiation did not significantly change the WCA that remained 113.2±2.1 and 129.3±
1.9 for smooth and rough sides respectively. Also, as sputtering time (15 s) is low, the
mass decrease was not observed either. Oppositely, slight increase was measures (about
0.1 mg) for both sides that could be due to the oxidation of the PVDF. UV/ozone is
expected to be less effective in damaging PV DF than Ar plasma. In order to ensure the
effect, pristine PVDF membranes were irradiated for 1 hour. PEDOT:PSS was deposited
immediately and other membranes were used for WCA and weight measurements.
After the treatment WCA remained 111.3 ± 1.5 and 121.9 ± 0.2 for smooth and rough
sides respectively, but the weight decreased for about 0.42 and 0.26 mg for smooth and
rough sides respectively.

Section 3.3.1. In order to produce flat PVDF film it was placed on the silicon wafer and
on the hot plate heated to 170°C. In order to avoid the formation of air bubbles between
the film and the wafer, a metal cylinder was used to apply pressure on the membrane
while heating (several seconds). After melting, transparent PVDF film was formed. The
silicon wafer was then removed from the hot plate and cooled down. The side of the
PVDF film that was facing the wafer was used for functionalization in the same way as
membranes (optimized spray coating, plasma grafting and washing). Grafting density
of 0.04±0.01 ng/mm2 was obtained and water contact angle (acsWCA) decreased from
82.16 ± 7 to 56.3 ± 2.

Section 3.3.2. The PEDOT:PSS solutions were prepared as in Section A.1 but with
2 vol% or 5 vol% of PEG as a secondary dopant. The PEDOT:PSS was then deposited
on both sides of the pPVDF membrane and on mPVDF (functionalized on both sides)
as in Section A.4.1. GD of mPVDF used was 0.103 ± 0.05 ng/mm2. Surface tension of
PEDOT:PSS solutions was measured as in Section A.5.1. For the water contact angle
measurements shown in Fig. 3.12, the drop of PEG400 was deposited on the pPVDF
and allowed to adsorb. After the adsorption, the membrane became translucent. The
excess of the PEG was removed from the surface of PVDF with filtration paper. The drop
of pristine PEDOT:PSS was added and the contact angle was measured as for WCA.

A.3.2 Penetrating drop method
Critical surface tension was measures by penetrating drop method as varified by [111].
Water-ethanol azeotropic solutions with various ethanol ratios and consequently having
surface tension varying from 72.10 mN/m to 22.00 mN/m [181] were used. A droplet
of 4 muL was put on the pristine PVDF membrane and let to drain. The behaviour of
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(a) (b) (c)

Fig. A.1. Pictures of drops of ethanol-water mixtures with different ratios (indicated next to the drop in
red) on pristine PVDF membrane. (a) 1 − 3 vol%, (b) 2 − 3 vol%, (c) same as (b) but picture
taken from below.

the droplet was observed in order to determine the minimum surface tension, at which
the droplet did not spread nor penetrated in the membrane. Results of the experiment
are shown in Fig. A.1.

A.4 Chapter 4: PEDOT:PSS/mPVDF/ionic liquid
actuators

A.4.1 Fabrication of actuators
For the fabrication of actuators with different mixing depths, functionalized membranes
were fabricated by spraying 2, 1.0 and 0.5 ml of PEGMA resulting in GD of approxi-
mately 0.15, 0.10 ng/mm2 and 0.03 ng/mm2 (GD of membranes used for fabrication
of actuators are provided in labels of the figures). After drying they were fixed in a
�45 mm aluminium clamp and 3 ml of PEDOT:PSS, secondary doped with 1 vol% of
PEG400, were drop-casted (if different, composition of PEDOT : PSS is provided
in the text). Membranes were then dried in air in UV-reduced environment for at
least 20 hours. The other side of the membrane was processed in the same way. Then
membranes were thermally annealed in oven for 2 hours at 70 °C. 2 mm x 1.5 cm strips
were cut by CO2 laser (45 W power, 100 cm/s speed, 1000 Hz, Trotec FineMarker
Hybrid). Each actuator was then weighted and its thickness measured. They were
kept in emimTFSI for 1.5 hour before lifetime measurement experiments or 24 hours for
strain characterisation. After soaking their weight and thickness were measured again.

A.4.2 Characterization of actuators
The thickness of dry and soaked actuators was measured by digimatic indicator (Mitu-
toyo Absolute) and also estimated from the scanning electron microscopy (SEM) pic-
tures. SEM images of membranes and actuators were obtained using a Hitachi S − 4800
field emission scanning electron microscope (acceleration voltage 800 V , working
distance of about 5 mm).

Resistance and conductivity of PEDOT:PSS was measured between two extremities of
each electrode and between two electrodes, by applying 0.1−0.5 V voltage (with 0.01 V
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Fig. A.2. Pictures of the main fabrication steps of PEDOT:PSS/mPVDF/PEDOT:PSS actuators. Function-
alized as in Section A.2 PVDF membranes were used. Membrane was then fixed in a metal
mechanical clamp and 3 ml of PEDOT:PSS solution was drop casted on one side. After drying
in air for about 24 hours, PEDOT:PSS was deposited and dried on the opposite side of the
membrane. Then membrane with PEDOT:PSS on both sides was dried in oven at 70°C for 2
hours, occasionally reversing the clamp. After drying rectangular shaped actuators were cut
with CO2 laser. Actuators were immersed in ionic liquid before characterization (not shown).

increment) and measuring current, using Suss PA200 probe station and Agilent 4142B
tester. Conductivity was then calculated assuming dimensions of 2 mm x 1.5 cm and the
thickness measured by SEM not taking into account the PEDOT:PSS in the membrane
as in Equation A.5.1.

For all bending characterization measurements, actuators were placed between two
copper electrodes clamped at 1 − 2 mm from one end of the actuator. For bending
measurements actuators were placed under Leica MZ-12 microscope (Leica Microsys-
tems) with Digital Sight camera system (Nikon) as shown in Fig. A.3a. The square
voltage wave with various amplitudes and frequencies was generated with Keithley
2450 sourcemeter. Bending was recorded at 100 frames per second, 640x480 resolution.
After recording it was converted from raw to 5 frames per second ’mpeg4’ encoded
video in order to reduce its size. Videos there processed using Matlab Image processing
toolbox to track the displacement of actuators tip. The strain was then calculated from
tip displacement using formulas proposed by Sugino et al [356]:

ε = 2hd

L2 + d2 × 100% (A.4)

where ε is strain in %, h, L and d are thickness, free length and displacement of
the actuator respectively. Thickness of dry actuator, estimated by SEM, was used for
calculations.

Cyclic voltammetry (CV) measurements were performed using Autolab potentiostat
PGSTAT30 (Metrohm Autolab) coupled with NOVA 1.8 Software at room temperature
(23 ± 1°C). Two electrode configuration was adopted (equivalent to the one used
for bending characterization), in which two surfaces of PEDOT:PSS were working and
reference electrodes. cyclic voltammetry (CV) measurements were performed at various
voltages and scan rates as indicated in the labels of the figures.

Actuator bending for lifetime measurements was recorded by laser displacement
sensor (optoNCDT 1302, MicroEpsilon) at the position of about 2 mm from the end of
the actuator. All measurements were performed in the room temperature and humidity
that were slightly varying. Actuation voltage was generated by Keithley 6221 waveform
generator. For results shown in Fig. 4.11 the signal used for actuation is indicated in
the label. For results discussed at Section 4.4.1 actuation with 1.5 V sine wave with
0.1 Hz frequency was performed.
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(a) (b)

Fig. A.3. Picture of the experimental set-up used for bending characterization (a) by recording the bend-
ing and tracking the possition of the tip and (b) by tracking bending using laser displacement
meter.

For bending characterization shown in Fig. 4.20, laser displacement sensor (optoNCDT
1700, MicroEpsilon) was used connected to Ni-DAQmx card as shown in Fig. A.3b. Ni-
DAQmx was also used for signal generation and current measurements. Displacement
measured by laser was used as a feed-back in order to switch actuators position to
1 mm above or below the initial by changing polarity of applied voltage (±1.5 V ). The
time needed to reach the set position was calculated for each cycle.

A.4.3 Post-treatment of actuators

For post-treatment of actuators with CNTs or SDS, functionalized PVDF membranes with
grafting density (GD) of 0.14±0.02 were used. PEDOT:PSS doped with 1 vol% of PEG400
was drop-casted on both sides of the membrane as previously described. Trilayers were
then cut in half and weighted. One half was used for further treatment and another
used as a reference. The trilayer was attached on the glass slide, next to the silver
electrodes as shown in Fig. A.4a. Silver electrodes were connected to the ohmmeter
and the resistance between the electrodes was monitored during spraying. CNTs and
SDS were sprayed using similar set-up as described in Section A.2.1 (Fig. A.4b) with
following parameters: nozzle of 0.2 mm and associate needle, pressure - 1.5 kgf/m2,
valve opening - 1.5 turn, distance - about 30 cm. Laser pointer was used for targeting
and in order to ensure homogeneous spraying. CNTs were sprayed until the resistance
between silver electrodes decreased to about 5 kΩ (for experiments in Fig. 4.19) or to
10 kΩ (for experiments in Fig. 4.20) corresponding to approximately 8 ml and 6 ml of
CNTs solution respectively. After spray on one side, the membrane was dried under the
fume hood at room temperature for 1 − 2 hours to make sure the surface of the trilayer
is dry. The other side of the trilayer was treated in the same way. Actuators were cut
and annealed as previously described in Section A.4.1.

For post-treatment with surfactant, SDS solution in water was sprayed. 6 ml of SDS
were sprayed and actuators were fabricated in same conditions as CNTs.
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(a) (b)

Fig. A.4. (a) Picture of PEDOT:PSS/mPVDF/PEDOT:PSS trilayer attached on the glass slides next to silver
electrodes. (b) Picture of the set-up used for spraying carbon nanotubes.

A.5 Chapter 5: Towards inkjet printed artificial muscles

A.5.1 Ink preparation, printing and characterization

Inks were prepared by mixing PEDOT:PSS in a quantities provided in the text and
mixing on mechanical shaker at 300 rpm for at least 3 hours. Before printing solutions
were filtered with 5 μm polytetrafluoroethylene PTFE syringe filter. If needed prepared
inks were stored in the fridge at 4°C.

Surface tension of the ink was measured by pendant drop test using Digidrop GBX
Contact Angle Meter. Viscosity was measured using Anton Paar AMVn rolling ball
viscometer. Contact angle was also measured using Digidrop GBX Contact Angle
Meter.

The ink-jet printing was carried out using a Altadrop inkjet system (Altatech) with
MicroFab electronics and software. Droplet ejection was first optimised to eliminate
any satellites or deviation. The fluid were jetted at 21 − 25°C in DoD mode from a
single-nozzle piezoelectric print-head (MicroFab) with a nominal exit diameter of 30 μm

(unless indicated differently). The print-head was driven by a uni or bi-polar waveforms
(the waveform was optimised for each printing and ink-composition in order to obtain
stable jetting) with a range of driving voltages (20 V to 75 V ), which resulted in drop
speeds of about 5 m/s. Images of jets were formed with a CCD camera, using an
automated stroboscopic illumination and data capture system.

For measuring conductivity of printed PEDOT:PSS with different additives, gold elec-
trodes (300 nm) were deposited by sputtering on pristine and functionalized (GD −
0.15 ng/mm2) PVDF membranes using shadow masks. Then PEDOT:PSS wide lines
were printed with both ends being on the electrodes. Then membrane was cut with
scissors so that only one rectangular is per piece. Resistance between two probes was
then measured using Suss PA200 probe station and Agilent 4142B tester by applying
0 − 1 V voltage between two electrodes and measuring current. It was initially tested
that measured resistance does not depend on the placement of the probes as long as
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(a)
(b)

Fig. A.5. (a) Illustration of the setup used for the electrical conductivity measurements of inkjet printed
lines and example of well and badly printed rectangulars. (b) Influence of the width of the line
on calculated conductivity of printed PEDOT:PSS as well as the influence of printing resolution
(indicated in legend).

they are placed on the area of the electrode (placing it on PEDOT:PSS or on gold does
not change measured value). The conductivity was then calculated using:

σ = L

R ∗ W ∗ h
(A.5)

where R is measured resistance, L, W and h are length (5 mm), width (0.6 mm)
and thickness (0.5 μm) of the printed rectangular. Measured resistance for different
width of the rectangular (as numbers of dots) are shown in Fig. 5.7a. As can be seen,
conductivity measurement value seems to be dependent on the width of the printed
line (Fig. A.5b), making this type of measurement condition dependent. Therefore for
comparison of different inks, 150 dots length and 15 dots width and printing was done
at lower resolution (40x40) in order to keep the symmetry. Several samples of each ink
composition were printed and only well defined films were used for measurements. At
least 2 good samples were used for measurements.

A.5.2 Printing and characterization of actuators

The ink-jet printing was carried out as previously described with following parameters:
10 or 20 layers of 125 x 25 drops of 30 μm diameter with 40x40 um resolution (leading
to dimensions of 5 x 0.8 mm) ejected at 24°C. The print-head was driven by a bi-polar
waveform (2 μs rise time, 10 μs dwell time, 5 μm fall time, 7 μs dwell time) with a
driving voltages of 20 V and −22 V and frequency of 2000 Hz. PEDOT:PSS doped
with 5 vol% ethylene glycol was used as ink. PEDOT:PSS was dried per night in the
oven at 80°C and printed on the other side of the membrane in the same conditions.
Printed actuators was again dried at at 80°C. Printed actuators were kept in clean-room
conditions for 3 months. Rectangulars of 15 x 2 mm were cut from the membrane
using scalpel and keeping the actuator at one side of the rectangular as shown in
Fig. 5.8a. Actuators were then immersed in ionic liquid for 3 hours. The displacement
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of the actuator was measured from videos obtained during the actuation as previously
explained in Section A.4.2.

Actuators on a dragon-fly shaped membrane were printed using PEDOT:PSS secondary
doped with 1 vol% of PEG400 and 1 vol% Triton-X100. 10 layers of 500x25 or 250x25
drops of 50 μm diameter with 40 x 40 um resolution were printed at 25°C. The print-
head was driven by a uni-polar waveform (2 μs rise time, 25 μs dwell time, 2 μm fall
time, 3 μs dwell time) with a driving voltages of 30 V and 3000 Hz frequency. Printing
3 actuators on both sides of the membrane took 10 days, various parts were printed per
day and the membrane was kept in the printer per night. After printing, membrane was
kept in oven at 70°C for 2 hours. For electrical connections to the actuators, silver paste
EPO-TEK®H20E (Epoxy Technology) was used and actuators were again annealed at
80°C for 3 hours for each side to cure it. Before actuation, membrane was immersed in
ionic liquid until became translucent. For comparison, dragon-fly shape was cut from
the trilayer fabricated as in Section A.4.1.
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BAppendix 2: additional figures

Fig. B.1. AFM surface scans of membranes functionalized with different amount of PEGMA. Measured
surface roughness and the spray and graft densities are indicated below.

Fig. B.2. Adhesion test of PEDOT:PSS (with 1 vol% PEG400) and flat PVDF films after incubation in ionic
liquid for 48 hours. Picture of the film before the test (left), after 1 Scotch™test (center) and the
Scotch™after 1 test (right) are shown.
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Fig. B.3. Trilayer actuator bending profiles during actuation with low frequency (2 mHz) voltage square
wave. The voltage used is indicated in the legend.

(a) (b)

(c) (d)

Fig. B.4. (a) Strain, (b) strain rate, (c) transsfered current and (d) dissipated power profiles in time of a
trilayer actuator, actuated with 2 V square voltage wave at 10 mHz.
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(a) (b)

Fig. B.5. Cyclic voltammograms of the trilayer PEDOT:PSS/mPVDF/PEDOT:PSS actuators obtained with
100 mV/s scan rates and different voltages indicated in the legend. The actuators were kept in
the ionic liquid for (a) 3 minutes or (b) 24 hours.

(a) (b)

Fig. B.6. Cyclic voltammograms of the trilayer PEDOT:PSS/mPVDF/PEDOT:PSS actuators obtained with
100 mV/s scan rates and different voltages indicated in the legend. PEDOT:PSS was secondary
doped with (a) 1 vol% or (b) 2 vol% of PEG400.

Fig. B.7. Bending profile of a trilayer actuator in time at different frequencies (indicated in the legend).
Square voltage wave of 2 V was used for actuation. The level of the irreversible expansion
causing creep is indicated with arrows.
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(a) (b)

(c) (d)

Fig. B.8. Displacement ((a)-(b)) and transferred current ((c)-(d)) profiles of the same actuator after 5
(blue) and 15 (red) minutes in the ionic liquid. (a,c) Both PEDOT:PSS layers are fine, (b,d) one
of the PEDOT:PSS electrodes damaged during handling making the electrode very asymmetrical
for the second measurement. 2 V square voltage wave was used for actuation at 50 mHz

.

Fig. B.9. Displacement profile of the actuator during long time actuation. The ambient humidity is plotted
as blue line. Square voltage wave of 1.5 V and 100 mHz frequency was used for actuation and
the position was tracked with laser displacement sensor.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.10. In order to identify factors affecting performance of the actuators, 4 PVDF membranes were
functionalized in the equivalent way. Half of each membrane was then secondarily treated
in order to create variety of resistances along the electrode and in between the electrodes as
explained in Section A.4.3 (different amount of CNT , Ag nanowires, SDS were deposited by
spray-coating on the surface). Peak-to-peak displacement ((a), (c)-(f)) and transferred current
((b), (d)) is plotted versus measured resistance along the electrode ((a)-(b)) and between the
electrodes ((c)-(d)), weight of the actuator ((e)) and the amount of the adsorbed ionic liquid
((f)). Different batches are indicated in different colours. Filled markers represent the coloured
displacement profiles and images of the actuators in the Fig. 4.14.

159



(a) (b)

Fig. B.11. (a) Transferred current profiles of the actuators with different mixing depth during actuation
with 2 V square wave at 50 mHz frequency and (b) peak-to-peak transferred current of the
same actuators at different voltages.

(a) (b)

(c) (d)

Fig. B.12. Displacement (blue) and transferred current (red) profiles of the (a) trilayer actuator made
with PEDOT:PSS doped with 5 vol% PEG400 electrodes (infiltrated through and percolated), (c)
A5 actuator and (d) trilayer actuator made on completely hydrophilized PVDF membrane (also
infiltrated though and percolated). 2 V square wave at 10 mHz was used for actuation. (d) CV
voltammograms of the actuator with the percolated electrodes (with 5 vol% PEG400) obtained
during scans at 100 mV/s until different voltages.
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(a) (b)

Fig. B.13. (a) Resistance between the electrodes before (green) and after incubation in ionic liquid
for 5 (red) or 15 minutes of actuators fabricated by drop casting. (b) Electrical resistance
measurements of printed PEDOT:PSS actuators. Resistance along the electrodes is shown in blue
(different shades of blue indicate the conductivities measured on different sides), resistance in
between the electrodes is shown in red.

(a) (b)

Fig. B.14. Cyclic voltammograms of actuators with (a) and (b) without post treatment with CNT. Scans
were obtained at different scan rates indiated in the legend.

(a) (b)

Fig. B.15. Displacement (a) and transferred current (b) profile of the actuators treated with CNT (blue)
and with SDS (red). 1.5 V square voltage wave was used for actuation at 50 mHz.

161



(a) (b)

Fig. B.16. (a) Strain profile at different voltages and (b) frequency response of probably the best trilayer
PEDOT:PSS/mPVDF/PEDOT:PSS actuator fabricated during our study.

(a) (b)

Fig. B.17. (a) SEM image of the PEDOT:PSS layer printed on the PVDF membrane (tilted) and (b) AFM
image of the crack on the surface of printed PEDOT:PSS and the height profile.

(a) (b)

Fig. B.18. (a) Strain rate profile of printed actuator (10 layers on each side resulting in 3.35 mg of printed
PEDOT:PSS. Actuated with 1.5 V , 50 mHz square voltage wave.). (b) Strain and transferred
charge profiles of the same actuator.
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C.1 Introduction
L’étude de robots en interaction directe avec l’homme suscite un intérêt croissant depuis
plusieurs années. Un des grands défis actuellement est de leur conférer une compliance
proche de celle de muscles naturels. Pour la nouvelle génération de robots, des stratégies
adaptées de contrôle devront être combinées avec des matériaux, des actionneurs, des
capteurs et des sources d’énergies toujours plus légers. Par exemple, jusqu’à aujourd’hui,
les faibles densités d’énergie générées, les rapports masse/puissance défavorables ou
encore les efficacités d’actionnement médiocres ont fortement limité le développement
de micro-robots dynamiques. En outre, leur coût, leur encombrement et l’absence de
contrôle intégré par rétroaction sur la force ou sur la position constituent également
d’autres aspects limitant leur développement pour des applications dans le domaine
médical.

C.1.1 Muscles artificiels: état de l’art
L’expression «Muscle artificiel» est un terme générique utilisé pour les matériaux ou
les dispositifs pouvant générer de manière réversible une contraction, une dilatation
ou encore une rotation d’un corps grâce à un stimulus externe (tension, courant,
température, etc.) [270]. Même si leur développement est encore limité actuellement,
les polymères électroactifs (ElectroActive Polymers EAPs en anglais) pourraient à terme
remplacer les actionneurs actuels dans un contexte où une réponse comparable à un
muscle naturel est désirable. De plus, les EAPs offrent une flexibilité de fabrication
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(a)

Fig. C.1. Contrainte en fonction de la déformation pour différents types de muscles artificiels et
d’actionneurs. Types d’actionnement : bleu-électrique, orange-ionique, vert-thermique, rouge-
nanotubes de carbone, gris-autres, noir-muscles naturels de mammifères. Adapté de [249, 269]
et d’autres références citées dans le texte.

et peuvent potentiellement être utilisés dans des dispositifs médicaux (chirurgie peu
invasive et outils de diagnostic) [131, 324, 381], prothèses (mains et bras), robotique
(préhenseurs, manipulateurs) [60, 149, 377], jouets, etc.

Une classification des différents types de muscles artificiels peut être envisagée en
considérant la nature du stimulus : pneumatique, thermique, électrique et ionique.
La comparaison en termes de déformation (c’est-à-dire le déplacement normalisé par
rapport à la longueur initiale de l’actionneur [249]) et la contrainte (c’est-à-dire la force
par unité de surface, homogène à une pression [249]) des différents types de muscles
artificiels est présentée sur la Fig. C.1.

En ce qui concerne les actionneurs pneumatiques, un mouvement de contraction
est généré par gonflement et dégonflement d’un élastomère. Ces actionneurs sont
légers, d’une grande compliance et sont très utilisés [74, 81, 149, 417]. Cependant,
leur fonctionnement repose sur l’utilisation d’un équipement produisant une pression
fluidique qui est souvent sujette à des ruptures, des fuites avec des temps de réponse
importants. De plus, la force générée est déterminée à la fois par la pression et l’état de
gonflement ce qui rend ces actionneurs non linéaires et difficiles à contrôler. Cela limite
leurs domaines d’applications notamment ceux pour lesquels un mouvement précis et
délicat est nécessaire.

Les muscles artificiels thermiques à base d’alliages à mémoire de forme subissent un
changement de forme avec la température. Ces matériaux bas coût sont capables de
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produire d’importantes déformations jusqu’à 700% [200]. De plus, ils sont simples à
produire et peuvent être élaborés de manière à répondre à des applications spécifiques
[28, 360]. La dilatation thermique peut être également utilisée pour l’actionnement.
Des métaux [270], des nanotubes de carbone [233], des fibres en nylon ou en polyester
[134] peuvent être enroulés sous forme de tresses pour augmenter l’effet de dilatation
et être ainsi utilisés comme muscles artificiels en torsion. Ces actionneurs sont capables
de produire des contractions de l’ordre de 49% en produisant un travail mécanique
de l’ordre de 5, 3 kW/kg et peuvent supporter des millions de cycles thermiques [134,
233]. Néanmoins, des études sont encore nécessaires pour améliorer leur efficacité de
conversion énergétique électrothermique qui reste de l’ordre de 1 à 2%.

Les polymères peuvent voir leur forme modifiée sous l’effet d’un champ électrique
comme c’est le cas pour les polymères ferroélectriques. Leurs principaux avantages
ont trait à la faible dissipation de chaleur et leur temps de réponse très court [249,
269]. Cependant, leur actionnement nécessite l’application de champs électriques
très importants (environ 150 MV/m). Ils sont par ailleurs sensibles aux défauts et
difficiles à produire en masse. Les actionneurs électriques les plus étudiés sont les
élastomères diélectriques. Ils se présentent sous la forme d’un film élastomère et de
deux électrodes souples positionnées de part et d’autre du film. Quand une tension
est appliquée, la pression électrostatique entre les deux électrodes due aux forces de
Coulomb comprime le film élastomère dans son épaisseur et conduit à une dilatation
de sa surface. Typiquement, les élastomères diélectriques produisent de grandes
déformations et pressions. Ils sont aussi connus pour générer de fortes densités d’énergie
(> 0, 75 J/g) avec une grande efficacité de conversion (90%) [37, 34]. De plus,
la fabrication de ces élastomères est peu coûteuse ; ils sont légers et très souples.
Les tensions nécessaires pour l’actionnement (jusqu’à 5 kV ) les rendent cependant
difficilement utilisables pour des applications dans le domaine biomédical ou lorsque
des interactions avec le corps humain sont nécessaires [249, 269].

Dans ce cas, il est essentiel d’avoir des dispositifs fonctionnant à basse tension. Les
actionnements à base d’ions reposent sur le transport de ces derniers à l’intérieur
d’un polymère sous l’effet d’un champ électrique et leur distribution non uniforme
conduit à un changement de volume ou de forme. De cette façon, une contrainte
mécanique ou une déformation de quelques pourcents peut être obtenue en appliquant
une tension de quelques volts. Plusieurs types de polymères électroactifs ioniques
ont été étudiés pour fabriquer des muscles artificiels : gels ioniques [252], composites
polymère ionique-métal [162, 374], actionneurs à base de polymères conducteurs [24]
et plus récemment des composites à base de nanomatériaux carbonés [23, 204].

Les gels ioniques sont des arrangements polymériques en trois dimensions qui peuvent
subir un changement de volume en réponse à un stimulus environnemental. Il s’agit
d’un processus contrôlé par la diffusion ce qui limite le temps de réponse des gels
ioniques à quelques secondes [22, 151]. Les composites polymère ionique-métal
(Ionic Polymer Metal Composite, IPMC en anglais) sont constitués d’une membrane
en polymère synthétique imprégnée d’un électrolyte et placée entre deux électrodes
métalliques. Quand un champ électrique est appliqué, les cations dans le solvant se
déplacent vers une des électrodes et les anions vers l’électrode opposée causant ainsi un
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(a) (b)

Fig. C.2. (a) Illustrations schématique du processus qui entre en jeu lors de la dilatation volumique 1©
les électrons sont supprimés de la chaîne polymère 2© les polarons créés se propagent le long
des chaines polymères et engendrent un changement de conformation du polymère 3©- 4© les
cations se déplacent vers l’électrolyte à travers l’interface et entre le chaines polymères et ainsi
ouvrent des canaux au sein du polymère 5© si elles sont présentes, les molécules du solvant
peuvent pénétrer le film polymère. (b) Structure du polymère dans son état oxydé et réduit. A
cause de la charge nette induite par le changement de conformation du polymère et due à la
présence des ions et du solvant, l’état réduit est plus ouvert. D’un autre côté, l’état oxydé est
plus compact et contient moins de molécules d’eau et réduit fortement la mobilité des ions.

gonflement et une déformation en flexion [144, 240, 286, 287]. Même si les IPMC ont
un fort potentiel applicatif dans le domaine de la robotique sous-marine (préhenseurs,
dispositifs « nageurs ») [109, 53, 185, 300], en médecine (micropréhenseurs, cathéters)
[103, 324], leur durée de vie est limitée par l’évaporation graduelle de l’électrolyte
durant l’utilisation [196, 303], la faible adhésion des électrodes métalliques sur la
membrane en polymère et l’endommagement de la surface des électrodes [303, 404].

Le remplacement des électrodes métalliques par des matériaux conducteurs plus souples
et moins fragiles peut apporter des solutions aux limitations des IMPC. Utiliser des
polymères conducteurs comme électrodes est une des alternatives notamment grâce à
la charge induite par l’oxydation et la réduction du polymère qui est compensée par le
mouvement des ions. Cela cause un changement de volume du polymère qui peut être
considéré comme le facteur prépondérant conduisant à l’actionnement comme illustré
en Fig. C.2.

Les principaux avantages des polymères conducteurs sont les faibles tensions requises
pour l’actionnement et leur biocompatibilité ce qui en fait des candidats prometteurs
pour des applications médicales en particulier pour les dispositifs implantables. De plus,
en comparaison de leur masse, ils peuvent générer des forces relativement importantes
et de faibles courants sont nécessaires pour maintenir une déformation constante
sous tension continue [154, 345]. D’un autre côté, la fatigue mécanique, la rapide
détérioration de leurs propriétés sous cyclage électrique et leur temps de réponse
important (< 40 Hz) nécessite des améliorations notables.
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Les propriétés des polymères conducteurs peuvent être exploitées sous forme d’un film
monolithique (immergé dans ce cas dans un électrolyte) ou sous forme d’actionneurs
bicouches ou tricouches. Ces deux derniers types d’actionneurs sont en général priv-
ilégiés pour tirer avantage de leur déformation plus importante dans le plan. Dans notre
travail, seuls les actionneurs tricouches ont été considérés. Dans cette configuration,
l’électrode de travail est connectée à une face du film et la contre-électrode à la face
opposée. Une différence de potentiel appliquée entre les deux faces du film conduit
simultanément à une oxydation et une réduction de celles-ci. Durant la dilatation volu-
mique du polymère, un gradient de contrainte est généré à l’interface ce qui conduit à
la flexion de l’actionneur tricouche.

C.1.2 Materials

Pour obtenir un mouvement en flexion, un polymère conducteur électromécaniquement
actif est laminé sur un substrat passif. Les performances de l’actionneur dépendent
largement des propriétés mécaniques de la couche passive entre les deux électrodes
ainsi que des propriétés mécaniques et électriques du polymère conducteur et de
l’électrolyte.

Polymère conducteur

Pour guider le développement de la technologie des muscles artificiels à base de
polymères conducteurs vers des approches automatisées de fabrication haut débit,
des techniques de fabrication simples et bas coût en utilisant des matériaux commer-
ciaux sont nécessaires. Le poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) (Fig. C.3a) est le seul polymère conducteur disponible commercialement
qui est très largement utilisé dans le domaine de l’électronique souple imprimée [21,
174, 221]. Le poly(3,4-ethylenedioxythiophene) (PEDOT) synthétisé chimiquement et
dopé avec du polystyrene sulfonate (PSS) forme des nanoparticules qui sont solubles
dans l’eau. Ces particules ont une structure cœur/coquille : une couche de PSS constitue
la coquille isolante et les chaînes conductrices de PEDOT le cœur de la particule [215].
Cette structuration a pour conséquence une faible conductivité électrique des solutions
de PEDOT:PSS [298]. De plus, la couche isolante PSS est fortement hydratée et une
barrière de molécules d’eau est créée non seulement entre les particules de PEDOT :PSS
mais également entre n’importe quelle surface et le PEDOT :PSS [238]. Ceci a deux
conséquences : (1) les films obtenus à partir de ces suspensions sont fragiles et cassants
à faible taux d’humidité à cause du manque d’interpénétration des polymères [215]
; (2) la couche d’hydratation constituée de molécules d’eau peut gêner l’adsorption
spontanée du polymère sur une surface, des recuits thermiques peuvent être nécessaires
pour faire évaporer la couche d’eau.

Mais le plus problème le plus important reste la faible conductivité électrique du
PEDOT :PSS. Diverses formulations de solutions ainsi que des stratégies de pré- et
post-traitements ont été suggérées [100, 195, 221, 232, 400, 403]. Les additifs les plus
communs sont : (1) le DMSO qui facilite le transport de charges en alignant les chaines
de PEDOT et en épaississant les particules de PEDOT :PSS [79, 400]; (2) le glycérol
qui augmente la conductivité comme le DMSO [100, 401] et (3) divers surfactants
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(a) (b) (c)

Fig. C.3. (a) Structure chimique du PEDOT :PSS et illustration schématique de la structure cœur/coquille
dans une solution aqueuse (b) sans et (c) avec des additifs secondaires.

[140, 400]. Dans la plupart de nos expériences, nous avons utilisé le poly(éthylène
glycol) (PEG) de masse molaire 400 comme dopant secondaire dans la solution de
PEDOT :PSS. De faibles quantités de PEG400 (jusqu’à 2 % en volume) accroissent la
conductivité de couches minces de PEDOT :PSS de 0, 3 S/cm à 800 S/cm. Cet effet
est attribué à la rupture de la structure cœur/coquille du PEDOT :PSS. Des dopants
secondaires ayant un effet similaire sur la destruction de la structure cœur/coquille
ont également pour effet de réduire le module élastique et d’accroître l’élongation
des films de PEDOT :PSS à la rupture [47, 148, 228, 329]. Ainsi, 1% en volume de
PEG400 accroît significativement non seulement la conductivité électrique mais conduit
également à la formation de films continus sans détérioration même après un recuit
thermique. La Fig. C.3c illustre la structure probable du PEDOT :PSS en présence du
PEG comme dopant secondaire.

Membrane de stockage des ions

Une couche de bonne qualité isolante entre les deux électrodes constituées d’un
polymère conducteur doit satisfaire plusieurs critères. Tout d’abord, elle doit être
suffisamment flexible pour permettre d’obtenir des déformations de plusieurs pourcents.
Ceci est possible en utilisant des couches ou membranes très fines. Les membranes
sont plus avantageuses parce qu’elles permettent de stocker l’électrolyte et ainsi, les
actionneurs peuvent être utilisés à l’air ambiant. Dans ce cas, un important volume libre
est nécessaire ainsi qu’une grande stabilité chimique et une bonne conductivité ionique.
Lorsque le polymère conducteur est synthétisé électrochimiquement, la membrane doit
jouer également le rôle de couche conductrice initiale. Enfin, une bonne adhésion
entre la couche isolante et le polymère conducteur est cruciale pour la durée de vie de
l’actionneur.

L’isolant le plus utilisé pour les actionneurs à base de polymères conducteurs est
probablement le polyvinylidene fluoride (PVDF). Il est utilisé comme membrane de
filtration. Ces membranes sont commerciales et elles ont d’excellentes propriétés
mécaniques (module d’Young de l’ordre de 260 MPa, déformation à la rupture de
28 %) et une excellente résistance chimique. Les membranes utilisées dans ce travail
ont une porosité de 70% et un diamètre des pores de 100 nm ce qui permet d’obtenir
une grande capacité de stockage.

Electrolyte
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Fig. C.4. Chemical and 3D structures of the ionic liquid 1-Ethyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide (emimTFSI)

(a) (b) (c)

Fig. C.5. (a) Illustration schématique d’actionneurs PEDOT: PSS / PVDF / PEDOT: PSS avec un liquide
ionique avec une défaillance potentielle dans la zone d’adhésion entre les couches (ligne
pointillée rouge). (b) Image par microscopie à balayage (MEB) d’une coupe transversale de
l’actionneur tricouches où l’on peut observer très clairement la délamination de la couche de
PEDOT: PSS de la membrane PVDF (c) Actionneurs avec une mauvaise adhésion interfaciale
après immersion dans un liquide ionique.

A cause de l’évaporation du solvant, les électrolytes conventionnels limitent la durée de
vie des dispositifs, c’est la raison pour laquelle ils ont été remplacés progressivement
par des liquides ioniques (Ionic Liquids ILs en anglais) [13, 29, 89, 243, 386]. Les
liquides ioniques sont des sels constitués d’ions à faible coordination, ils sont liquides
à une température inférieure à 100°C et même pour certains à température ambiante.
Durant cette étude, le 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
(emimTFSI) a été utilisé comme liquide ionique (Fig. C.4).

C.1.3 Contexte et positionnement du problème

L’objectif de cette thèse est de développer des actionneurs électroactifs ioniques pour des
applications dans le domaine de la robotique. A cette fin, une technologie de fabrication
robuste, rapide et à grande échelle est nécessaire. L’impression jet d’encre est une
technologie clé pour le dépôt de polymères [120] et une des plus prometteuses pour
la production d’actionneurs électroactifs ioniques. De plus, elle peut être utilisée pour
fabriquer et intégrer des capteurs de déformation [8, 40, 69, 330, 325]. Néanmoins,
plusieurs verrous limitent le potentiel d’application de cette technique: (1) solubilité
du polymère conducteur et disponibilité d’encres adéquates; (2) viscosité et tension de
surface des solutions contenant les polymères conducteurs et stabilité de l’éjection;(3)
adhésion entre la membrane de stockage des ions et le film de polymère conducteur; (4)
diffusion de l’encre à travers les pores de la membrane. Ces verrous sont principalement
liés à la nature chimique de la solution de polymère conducteur et de la membrane
poreuse. La solution de polymère conducteur doit répondre à un certain nombre
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(a) (b) (c)

Fig. C.6. (a) Représentation schématique d’un actionneur PEDOT: PSS / PVDF / PEDOT: PSS avec des
électrodes percolées (lignes bleues). (b) Image SEM d’une coupe transversale de l’actionneur
tricouches avec du PEDOT: PSS dans la membrane PVDF (c) Spectres EDX le long de la coupe
transversale faisant apparaître clairement des traces de soufre (PEDOT: PSS) en bleu et de fluor
(PVDF) en rouge. Les traces de soufre significativement plus élevées que zéro traduisent un
phénomène de percolation dans la membrane.

de prérequis pour être utilisable en technologie jet d’encre; c’est-à-dire d’un point
de vue rhéologique, mais également en tant que couche active pour les actionneurs,
c’est-à-dire avoir de bonnes propriétés électriques et ioniques, une bonne flexibilité
mécanique et une grande résistance au vieillissement. La membrane, quant à elle,
doit permettre de contenir un volume important d’électrolyte et présenter de très
bonnes propriétés de conduction ionique ainsi qu’une excellente adhésion avec la
couche conductrice en polymère tout en jouant le rôle d’isolant électrique entre les
deux électrodes conductrices. Durant cette thèse, ces verrous sont discutés en détail et
des solutions sont proposées ce qui a permis de développer les premiers actionneurs
électroactifs ioniques réalisés par technologie jet d’encre.

Si une solution de PEDOT:PSS est utilisée pour la fabrication par dépôt de goutte,
l’adhésion entre le PEDOT: PSS et le PVDF est mauvaise. Cela conduit à une séparation
partielle des couches lors de la manipulation et une délamination complète une fois
que l’actionneur est immergé dans un liquide comme représenté sur la Fig. C.5. Par
conséquent, l’utilisation de membranes hydrophiles, à base de polyuréthane [295]
par exemple ou de cellulose [193], remplies de liquide ionique a été récemment
décrite. Le caractère hydrophile des membranes assure une bonne adhésion entre le
PEDOT:PSS tandis que le liquide ionique bloque les pores empêchant les infiltrations
et les connexions éventuelles entre les électrodes. Néanmoins, la fabrication de tels
actionneurs se fait à l’unité et est difficilement exploitable à grande échelle. En outre, les
membranes utilisées pour ce type de fabrication doivent avoir une conductivité ionique
significativement plus faible ce qui influence aussi leur performance. Par exemple, la
conductivité ionique de emimTFSI dans le PVDF est de 19, 4 mS/cm alors que dans
le polyuréthane, elle est beaucoup plus faible, de l’ordre 0, 9 mS/cm [295, 369]. Par
conséquent, il est fort probable que le rendement peut être considérablement amélioré
si des membranes en PVDF sont utilisées avec les mêmes électrodes.

Une des causes possibles à l’origine de la mauvaise adhésion entre le PEDOT: PSS et
le PVDF est la nature chimique des matériaux, en particulier le caractère hydrophobe
du PVDF et hydrophile du PEDOT :PSS en solution aqueuse. L’angle de contact entre
ces matériaux est supérieur à 130°. Néanmoins, si un PVDF hydrophile est utilisé,
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Fig. C.7. Illustration schématique d’un greffage lors de l’irradiation plasma : (1) Immobilisation du
monomère ou macromonomère à la surface du substrat; (2) activation des deux: la surface
du polymère et le précurseur du monomère par plasma en créant des radicaux sur chacun;
(3) Réaction simultanée entre les espèces actives conduisant à la réticulation du polymère et
du substrat. Si on utilise du PEGMA comme précurseur de la réaction et le PVDF en tant que
substrat, cette procédure conduit à une hydrophilisation de la surface du PVDF en surface.

le PEDOT: PSS est immédiatement absorbé et dans le cas où une configuration à
trois couches est nécessaire, cela provoque des connexions partielles entre les deux
électrodes. Une illustration schématique de tels phénomènes ainsi que des images
MEB d’actionneurs avec un phénomène de percolation des électrodes ainsi que des
caractérisations par EDX le long d’une coupe transversale sont présentées sur la Fig.C.6.
L’amélioration de l’adhésion est donc nécessaire mais des membranes hydrophiles ne
peuvent pas être utilisées. En s’inspirant de l’approche proposée par Ikushima et al
[148], nous avons développé une technique permettant la fonctionnalisation partielle
des membranes. Ainsi, des membranes hybrides ayant des pores hydrophiles jusqu’à
une certaine profondeur de la membrane et un centre hydrophobe ont été élaborées.

C.2 Membranes hybrides PVDF/PVDF-PEGMA
La modification de surface du PVDF et d’autres polymères fluorés a été étudiée par de
nombreux chercheurs. Comme pour d’autres polymères, la défluoration et les réactions
de réduction sont plus commune et des traitements sous plasmas N2, O2, H2 et Ar
augmentent ses propriétés hydrophiles. Néanmoins, les polymères fluorés semblent être
plus résistants à un plasma d’oxygène et sont fortement endommagés uniquement par
l’argon [94, 304, 384]. Par conséquent, afin de réaliser un greffage pendant ou après
irradiation, un plasma Ar est généralement utilisé. En outre, le contrôle de l’activation
par plasma dans les pores de la membrane est souvent difficile et la fonctionnalisation
de l’ensemble des pores de la membrane ne peut pas être évitée. Pour nos applications,
de très minces couches de greffage ont été nécessaires, de sorte que la porosité des
membranes et leur volume de stockage d’ions est resté maximal. Par conséquent,
le greffage par irradiation a été considéré comme un procédé plus approprié. Une
illustration schématique d’un greffage induit par plasma Ar est représentée sur la
Fig. C.7.

En raison de sa disponibilité et de sa polyvalence, le polyéthylène glycol (PEG) est
souvent utilisé en tant que polymère de greffage, en particulier lorsque les propriétés
hydrophiles et la biocompatibilité doivent être améliorées. Le PEG fonctionnalisé avec
du méthacrylate en fin de chaîne est plus réactif et peut être greffé sur une membrane
en PVDF par divers moyens, par exemple, une polymérisation radicalaire par transfert
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(b) (c)

Fig. C.8. (a) Structure chimique du PVDF, du PEGMA et du PVDF-PEGMA et leur signature entre (b)
1300 − 1800 cm−1] et (c) 2700 − 3100 cm−1]

d’atomes (ATRP) [45, 46], une activation par rayons ultraviolets (UV) [31, 317], un
plasma [44, 46]. La structure chimique des deux, le PVDF et le poly (éthylène glycol)
méthyl éther méthacrylate (PEGMA), ainsi que leur produit de réaction est représentée
sur la Fig. C.8a. Les spectres obtenus par spectroscopie infrarouge par transformée
de Fourier (FTIR) (Fig. C.8b-C.8c) montrent le changement dans leurs signatures IR
pendant la réaction covalente.

Si le précurseur de la réaction (PEGMA) est déposé sur la surface du PVDF par une
méthode de trempage, durant le traitement plasma, la surface des pores de la membrane
est fonctionnalisée sur toute l’épaisseur de la membrane PVDF tel qu’illustré sur la
Fig. C.9a. Cela conduit à la création de membranes PVDF hydrophiles et à la percolation
du PEDOT: PSS entre les électrodes lorsque celui-ci est déposé sur la surface du PVDF.

Nous avons conclu que faire varier les paramètres du plasma n’est pas efficace pour
contrôler la profondeur d’activation de la membrane. Par conséquent, deux ajustements
du processus ont été considérés: (1) limiter la profondeur d’activation par plasma en
bloquant les pores de la membrane (C.9b) et (2) limiter le dépôt du précurseur sur une
certaine épaisseur Fig. C.9c. Les deux procédés se sont avérés adaptés pour limiter la
profondeur du greffage par irradiation directe sous plasma. Néanmoins, en remplissant
les pores avec les précurseurs de greffage conduit à une polymérisation très dense. Cela
pourrait par conséquent bloquer les pores en surface de la membrane et avoir un impact
négatif sur la conductivité ionique des électrolytes stockés dans la membrane. En outre,
dans ce cas, la polymérisation est sensible à la préparation de la membrane. Un excès
de liquide sur la surface (dans notre cas, il a été supprimé en plaçant les membranes
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(a) (b) (c)

Fig. C.9. Schémas illustrant trois stratégies différentes de dépôt de précurseur et l’interaction du plasma
à la surface de la membrane: (a) dle dépôt par trempage dans une solution diluée contenant le
précurseur et conduisant à son adsorption sur la surface de la membrane suivi de l’activation du
greffage par plasma sur toute l’épaisseur; (b) le dépôt par immersion dans un liquide visqueux
qui empêche la pénétration du plasma et l’activation des pores; (c) le dépôt par pulvérisation
qui limite le dépôt du précurseur à une certaine profondeur.

de filtration sur du papier absorbant) pourrait empêcher l’irradiation du PVDF, ce qui
rend le processus difficile à contrôler. Par conséquent, limiter la quantité du précurseur
de réaction à une certaine profondeur a été étudié durant ce travail de thèse. Pour
déposer de faibles quantités et limiter l’infiltration du précurseur dans les pores de la
membrane, le dépôt de PEGMA a été effectué par pulvérisation.

C.2.1 Contrôle de la profondeur de pénétration
Le PEG et le PEGMA sont de bons agents mouillants et sont immédiatement adsorbés
sur la membrane PVDF. Par rapport à l’eau, leurs solutions aqueuses se propagent
plus facilement (angles de contact respectifs de 53.3 ± 2.3° et 39.3 ± 2.8° pour une
solution à 10 vol% en volume déposée sur la surface rugueuse et lisse du PVDF) et
s’infiltrent dans ses pores. Ainsi, si au cours de la pulvérisation, le PEGMA atteint
la surface avec une petite quantité de solvant résiduel, il est susceptible de diffuser
à une certaine profondeur. Le processus de revêtement par pulvérisation dépend de
nombreux paramètres : taille de la buse, pression, nature chimique du précurseur et
du solvant, environnement de pulvérisation et substrat. L’efficacité de pulvérisation
(SE) 1) et l’homogénéité du film sont donc difficilement prédictibles. Le temps de
vol détermine la quantité de solvant résiduel, par conséquent, la distance entre le
pistolet de pulvérisation et la membrane est l’un des paramètres essentiels déterminant
l’efficacité de pulvérisation comme le montre la Fig. C.10a.

Comme illustré sur la Fig. C.10b, la densité de PEGMA greffé sur la surface du PVDF
(GD : défini comme l’augmentation de la masse par rapport à la surface plane externe)
dépend du dépôt par pulvérisation (SD). Le GD augmente quasi linéairement avec la
densité du précurseur vaporisé pour SD inférieur à 1 ng/mm2 mais pour SD supérieur à
2 ng/mm2, le taux de greffage diminue. Des effets de gravure lors du plasma pourraient
être l’une des explications de ce phénomène. Néanmoins, c’est peu probable avec un
traitement plasma d’une durée de l’ordre de 15s [200]. La baisse du rendement de
greffage peut aussi être expliquée par une contre-polymérisation rapide du PEGMA sur
la surface extérieure. Cette couverture dense de la surface peut empêcher l’activation
de pores de la membrane PVDF. La rugosité de surface du substrat semble également
influencer le processus de greffage du PEGMA. Lorsque le greffage s’effectue sur la face
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(a) (b)

Fig. C.10. (a) Spray efficiency of poly(ethylene glycol) methyl ether methacrylate (PEGMA) in
ethanol/water solution on polyvinylidene fluoride (PVDF) membranes with different spray
distance, (b) Grafting density versus density of PEGMA sprayed on the rough (blue) and smooth
side (red) at different conditions. Black stars - sprayed on both side and averaged.

(a) (b) (c) (d)

Fig. C.11. AFM and SEM images of surfaces of the pristine PVDF membrane. (a)-(b) - rough side (Rq -
351 nm) (c)-(d) - smooth side (Rq - 182 nm)

rugueuse (Fig. C.11a-C.11b), une efficacité de greffage légèrement plus importante peut
être obtenue comme indiqué sur la Fig. C.10b. Nos résultats suggèrent que la réaction
peut être plus rapide sur les zones topographiques les plus prononcées de la membrane
ce qui augmente encore plus sa rugosité (Fig. C.12). Le dépôt sur la surface lisse semble
être plus homogène (pas de changement de rugosité significative). Enfin, l’aire totale
de la surface des pores de la membrane (mesurée par adsorption de krypton et estimée
avec la théorie Brunauer-Emmett-Teller (BET)) ne change pas de façon significative avec
la fonctionnalisation (5.19 ± 0.33 m2/g pour les membranes vierges et fonctionnalisées)
ce qui traduit le fait que, à l’exception de la surface supérieure de la membrane, la
réaction est le plus souvent limitée à une couche très mince.

Même si la densité croissante de pulvérisation (SD) et la densité de greffage (GD) ne
semblent pas influencer de manière significative la morphologie de la membrane (en
particulier sur la face lisse), ni la mouillabilité (même de petites densités de greffage
de <0.05 ng/mm2 diminuent l’angle de contact de l’eau à moins de <30°), la densité
de greffage augmente toujours légèrement au-dessus de > 0.07ng/mm2. Ceci suggère
que la surface des pores de la membrane peut être fonctionnalisée et la profondeur
affectée de la membrane (dans l’épaisseur) peut être influencée par les paramètres de
pulvérisation.
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La profondeur de fonctionnalisation, estimée par spectroscopie à rayons X à dispersion
d’énergie (EDX), en fonction de la densité de greffage est représentée sur la Fig. C.12.
L’épaisseur de greffage augmente avec GD jusqu’à environ 30 μm. Cependant, à plus
forte densité de greffage, elle semble atteindre un niveau de saturation et au-delà de
0.18 ng/mm2, elle commence à diminuer. Cela corrobore notre hypothèse précédente
qu’en raison d’une polymérisation rapide du PEGMA sur la surface externe de la
membrane, la diffusion de plasma en profondeur dans les pores de PVDF est limitée.

En considérant ces résultats, nous suggérons que les deux mécanismes en compétition
lors de la polymérisation par greffage sous plasma Ar sont : (1) la diffusion du plasma
dans la membrane en PVDF ce qui se traduit par une grande profondeur de greffage et
de fines couches de PEGMA greffées le long des pores et (2) la polymérisation croisée
du PEGMA sur la surface supérieure, qui peut provoquer un dépôt dense et limiter la
diffusion du plasma à de petites profondeurs.

C.3 PEDOT :PSS et membrane en PVDF : adhésion
versus infiltration
Nous avons développé des membranes hybrides en PVDF avec un greffage PEGMA
afin d’améliorer l’adhésion entre les électrodes en PEDOT: PSS et la membrane en
PVDF. Néanmoins, une même nature chimique ne suffit pas toujours à faire adhérer
deux polymères. Les principaux mécanismes jouant un rôle dans l’adhésion entre
deux matériaux polymères sont (1) les liaisons covalentes, (2) les interactions ther-
modynamiques, (3) l’interdiffusion de chaînes polymères et (4) l’ancrage mécanique
[161]. Dans notre cas, l’ancrage mécanique est non seulement lié à la rugosité, mais
il est également important pour expliquer l’adhésion d’un polymère à des matériaux
poreux.

L’étape initiale dans le processus d’interaction des matériaux est le dépôt du polymère
dilué en solution sur la surface de la membrane. Beaucoup de mécanismes d’adhésion
reposent sur un contact intime entre les matériaux, à savoir un bon mouillage. La
tension de surface du liquide (γL) et son angle de contact (Θ) (avec un substrat
parfaitement plan) peuvent être utilisés pour estimer le coefficient d’étalement en
utilisant l’équation Young-Dupré:

S = γL(cosΘ − 1) (C.1)

Un paramètre S positif traduit un mouillage complet, tandis qu’un paramètre négatif
signifie un mouillage partiel. L’angle de contact initial n’augure pas nécessairement de
l’intensité de la force d’adhésion entre un substrat et un film polymère. Néanmoins, il
est un bon indicateur d’un mauvais mouillage et d’une immiscibilité des polymères qui
mènent ensuite à une faible épaisseur d’interdiffusion.

Le PVDF est un des polymères ayant la plus faible énergie de surface (25 mN m−1).
Ainsi, le WCA sur du PVDF est proche de 130° comme représenté sur la Fig. C.13. Des
solutions aqueuses de PEDOT: PSS ont une tension superficielle élevée de 70.2 mN m−1
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Fig. C.12. (Bas) Spectres EDX pour le soufre (bleu trait plein) et le fluor (rouge ligne pointillée) le long
des sections transversales du PEDOT: PSS / PVDF avec greffage PEGMA. La densité de greffage
(GD) est indiquée par les flèches. (Centre) Profondeurs de greffage par rapport à la densité de
greffage (GD) tracées séparément pour du PEDOT: PSS déposé sur le côté rugueux (� bleu) et
le côté lisse (♦ rouge) de la membrane PVDF avec greffage PEGMA. (Haut) Images obtenues
par microscopie à force atomique (AFM) des surfaces lisses et rugueuses de membranes PVDF
avec greffage PEGMA pour différentes densités de greffage (GD). La densité de greffage et la
rugosité sont indiquées dans les légendes.
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Fig. C.13. Tensions de surface mesurées (PEDOT :PSS et eau) et publiée (PVDF). Photographies de mesures
d’angle de contact entre l’eau, le PEDOT :PSS et le PVDF

Fig. C.14. Étapes du processus d’évaluation d’adhésion (de gauche à droite): grille de 25 cases découpées
sur le PEDOT: PSS jusqu’à la membrane de PVDF; Un ruban adhésif de type Scotch™est appliqué
sur la grille pour effectuer le test d’adhésion ; image du ruban adhésif après qu’il a été retiré
du film; image de la membrane PVDF et du PEDOT :PSS restant sur la membrane après que le
ruban adhésif a été retiré

qui est similaire à celle de l’eau pure (à 25°C). La tension de surface élevée et l’important
angle de contact avec l’eau dans les deux cas conduit à un coefficient d’étalement négatif.
L’état de contact intime entre les matériaux n’est donc pas satisfait et l’interdiffusion
des chaînes de polymère est hautement improbable. Par conséquent, il en résulte une
mauvaise adhésion.

Afin d’estimer la force d’adhésion entre des membranes sans greffage PEGMA (pPVDF)
et avec greffage PEGMA (mPVDF) et les films de PEDOT :PSS déposés par goutte, le
test du ruban adhésif a été utilisé (test conforme aux recommandations ISO 2409:2013
et validé par Liu et al. et Kim et al.) [241, 193]. Deux séries de découpes parallèles
et orthogonales pour obtenir 25 carrés similaires ont été effectuées sur la surface du
PEDOT: PSS sans découper la membrane (étapes indiquées sur la Fig. C.14). Ensuite,
le ruban adhésif a été appliqué et lentement retiré. La procédure a été répétée 5 fois
(essai I). En fonction de la qualité de l’adhésion, le PEDOT: PSS reste sur la membrane
en PVDF ou est supprimé avec le ruban adhésif. Nous tenons à souligner que ce sont
des tests qualitatifs qui ne fournissent aucune information quantitative sur la valeur de
la force d’adhésion.

Les résultats des essais d’adhésion sur des membranes PVDF avec et sans greffage
PEGMA sont représentés sur la Fig. C.15. Une plus grande rugosité de surface semble
avoir une influence positive sur la force d’adhésion du PEDOT: PSS sur la membrane.
Une surface significativement plus grande de PEDOT: PSS reste sur le côté rugueux de
la membrane PVDF après le test de décollement. L’influence de la rugosité de surface
sur l’adhésion est discutable, mais dans ce cas il est néanmoins plus probable en raison
de l’ancrage physique du polymère sur les aspérités plus marquées et plus fréquentes
sur la surface rugueuse [15]. Cependant, l’adhésion n’est pas assez importante pour
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Fig. C.15. Test d’adhésion du PVDF et de membranes PVDF avec un greffage PEGMA (blanc) et PEDOT:
PSS (noir). Les photos sont prises après que la grille a été découpée (avant le test), après 5 tests
consécutifs de décollement (test I) et de nouveau après une incubation de la bicouche dans le
liquide ionique pour 24 heures et 5 tests supplémentaires de décollement (test II).

supporter la contrainte induite à l’interface une fois que la membrane est placée dans le
liquide ionique (Test II). Ainsi, le PEDOT: PSS qui est resté sur la membrane pPVDF
après le test I a complètement disparu après cinq tests en présence de liquide ionique.

D’autre part, même de faibles densités de greffage PEGMA (GD - 0.07 ng/mm2) con-
duisent à une résistance de l’adhésion améliorée de façon significative. Le PEDOT: PSS
reste sur la surface de la membrane mPVDF après des tests dans un milieu sec et après
immersion dans liquide ionique (Fig. C.15). Trois mécanismes pourraient expliquer
cette interaction plus forte: (1) des liaisons hydrogène entre le PEGMA et le polymère
PEDOT ou le PSS; (2) l’enchevêtrement du PEDOT et du PSS avec la couche de PEGMA
greffée sur le PVDF; (3) l’infiltration et l’ancrage mécanique de la couche de PEDOT:
PSS dans les pores de la membrane.

Avoir une forte adhésion nécessite un contact intime entre la surface du PVDF sur
laquelle sont greffés le PEGMA et le PEDOT: PSS. Plusieurs facteurs pourraient entraver
cette interaction. Il a été montré que l’eau résiduelle dans le film de PEDOT: PSS
est susceptible de former une couche barrière entre le PVDF et le film polymère. Par
conséquent, un séchage incomplet réduit considérablement l’adhésion. Il a également
été montré que l’adsorption de PEG ou d’un autre matériau hydrophile peut inhiber
l’adhésion. Nous suggérons que dans le cas d’un excès de PEG dans la solution de
PEDOT: PSS, il s’adsorbe sur la membrane avant évaporation du solvant, et reste à la
surface après le recuit thermique. Par conséquent, au cours de l’évaporation du solvant,
le PEDOT: PSS se dépose sur la surface où la couche de PEG a été adsorbée et n’atteint
pas le PVDF à la surface duquel le PEGMA a été greffé.
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Fig. C.16. Représentation schématique de différentes méthodes de fonctionnalisation du PVDF et leur
influence sur l’adhésion avec du PEDOT :PSS.

C.3.1 Conclusion
Un résumé de ces résultats est représenté sur la Fig. C.16. Nous avons montré que
l’ancrage mécanique direct, qui est le résultat de l’infiltration et de la solidification
du film de PEDOT: PSS dans les pores de la membrane, est l’un des moyens les plus
efficaces pour assurer une bonne adhésion entre ces deux matériaux. Une autre façon
d’ancrer le PEDOT: PSS et le PVDF est de rendre la surface du PVDF hydrophile grâce à
un greffage de PEGMA.

L’adhésion par simple enchevêtrement ou grâce à des liaisons hydrogène avec un
greffage polymère (comme cela a été testé sur un substrat lisse) est assez robuste pour
passer le test de ruban adhésif dans un état sec. Dans le cas de substrats poreux, il
permet l’infiltration de PEDOT: PSS dans les pores de la membrane. En outre, dans ce
cas seulement, quelques micromètres de profondeur sont nécessaires pour obtenir une
forte adhésion. Nous avons également montré que dans les deux cas, ancrage mécanique
et fonctionnalisation par greffage, un contact intime entre les matériaux doit être assuré
pour obtenir une bonne adhésion. L’eau, ou tout autre revêtement hydrophile présent
entre deux matériaux, conduit irrémédiablement à une délamination.

L’adhésion et le transport de masse à travers des membranes hydrophobes sont influ-
encés par les propriétés physico-chimiques des matériaux. Par conséquent, ces deux
processus doivent être pris en considération lors de la conception de structures bi-
couches ou tricouches. L’infiltration d’une solution aqueuse de polymère dans les pores
de la membrane se produit sur des membranes hydrophiles, lorsque la tension super-
ficielle de la solution est suffisamment faible ou lorsque des matériaux hydrophobes
sont utilisés. Ceci limite le choix des dopants secondaires ; des tensioactifs et même des
molécules légèrement hydrophobes sont susceptibles de provoquer des infiltrations de
PEDOT: PSS.

C.4 Actionneurs ioniques PEDOT :PSS /mPVDF
L’utilisation de membranes PVDF hybrides est pertinente seulement si la plus grande
partie de la membrane est maintenue hydrophobe. C’est le cas pour les actionneurs
souples qui sont fabriqués en déposant deux électrodes constituées de polymères
conducteurs sur les deux faces de la membrane. Une connexion partielle de ces
électrodes à l’intérieur de la membrane aurait des effets néfastes sur leur performance
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Fig. C.17. Illustration d’un procédé de fabrication d’un actionneur par dépôt en goutte de solvant. Une
membrane hybride (PVDF avec greffage PEGMA) est fixée mécaniquement à un support en
aluminium et une goutte de PEDOT: PSS en solution aqueuse (avec un dopage secondaire) est
déposée sur la surface de la membrane. Après séchage à température ambiante, le support
est inversé et le processus est répété pour l’autre côté de la membrane afin de produire un
actionneur tricouches. La membrane avec du PEDOT: PSS sur les deux côtés est ensuite séchée
à l’étuve à 70°C pendant deux heures. Des actionneurs rectangulaires de 1.5 mm par 2 cm sont
ensuite découpés par laser, les actionneurs sont thermiquement recuits à 120°C (non représenté
ici) et sont incubés dans un liquide ionique pendant 10 à 120 minutes.

[104]. Pour démontrer les bénéfices de membranes hybrides avec différentes densités
de greffage, plusieurs types d’actionneurs ont été fabriqués par dépôt en goutte.

Une illustration schématique du procédé que nous avons utilisé pour la fabrication des
actionneurs avec les membranes PVDF hybride / PVDF greffé PEGMA est représentée sur
la Fig. C.17. Dans la plupart des cas (sauf indication contraire) des membranes en PVDF
ont été fonctionnalisées avec un SD de 0.9±0.1ng/mm2 et un GD de 0.14±0.02ng/mm2.
Ceci correspond à une profondeur hydrophile d’environ 20 μm à la fois pour le côté
rugueux et le côté lisse comme le montre la Fig. C.18b.

Les membranes sont ensuite séchées et fixées dans un support en aluminium d’un
diamètre de �45 mm afin de compenser la contrainte mécanique causée par le séchage
de PEDOT: PSS. 3 ml de solution aqueuse de 1.3 wt% en masse de PEDOT: PSS ont
ensuite été déposés sur la membrane. Afin d’augmenter sa conductivité électrique et
ses propriétés mécaniques avant dépôt, le PEDOT: PSS a été dopé avec 1% en volume
de PEG400. Les membranes avec le dépôt de solvant PEDOT: PSS sont ensuite séchées
à température ambiante (20°C) et humidité contrôlée pendant au moins 12 heures.
Cette procédure a ensuite été répétée pour l’autre face, afin d’obtenir un actionneur
tricouches. Enfin, afin de diminuer la quantité d’eau résiduelle, les membranes ont
ensuite séchées pendant deux heures à 70°C. Les actionneurs ont été découpés en
rectangles de 2 mm par 1.5 cm par laser CO2 et recuits thermiquement à 70°C pendant
deux heures. Avant chaque mesure, les actionneurs ont été maintenus dans un liquide
ionique (emimTFSI) pour 3 à 120 minutes.

Les mesures de caractérisation ont été principalement effectuées avec des action-
neurs tricouches (PEDOT: PSS / mPVDF / PEDOT: PSS) fixés à une extrémité. La
réponse mécanique des actionneurs a été enregistrée par mesure laser du déplace-
ment de l’extrémité lorsqu’une tension cyclique était appliquée sur les deux faces de
l’actionneur. Le courant est simultanément mesuré et a permis d’estimer la charge trans-
férée. La réponse des actionneurs pour différentes tensions électriques et fréquences
d’actionnement est représentée sur la Fig. C.19a et la Fig. C.19b.
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(a) (b) (c)

Fig. C.18. Images AFM et MEB de la surface d’une membrane PVDF sans greffage PEGMA. (a)-(b) Face
rugueuse (Rq – 351 nm) (c)-(d) Face lisse (Rq – 182 nm)

(a) (b)

Fig. C.19. (a) Réponse d’actionneurs PEDOT: PSS / PVDF greffé PEGMA / PEDOT: PSS pour différentes
tensions d’actionnement et (b) Amplitude de déplacement de ces mêmes actionneurs pour
différentes fréquences.
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C.4.1 Durée de vie
La durée de vie est une caractéristique importante pour de nombreux dispositifs.
Dans le cas des muscles artificiels, la durée de vie dépend souvent de la fréquence
d’actionnement, à savoir la différence de déformation, qui peut varier, par exemple, de
105 à 3 Hz, 103 à 1 Hz et être même inférieure à des fréquences plus faibles [247]. Les
deux principaux phénomènes qui limitent la durée de vie des actionneurs polymères
conducteurs sont les suivants: (1) la dégradation du polymère ou la décomposition
de l’électrolyte sous cyclage électrochimique et (2) la délamination des électrodes
de la membrane en raison des contraintes mécaniques à l’interface [17, 241]. La
fenêtre électrochimique plus large des liquides ioniques permet de réduire l’effet de la
dégradation [63, 291]. En outre, la non-volatilité des liquides ioniques rend possible
un actionnement dans l’air [295, 386]. Néanmoins, la délamination des couches
constituant l’actionneur reste un problème.

Sur la Fig. C.20, des actionneurs avec une grande densité de greffage et une importante
couche interfaciale (profondeur de mélange (MD) 25μm) (A25), et une densité de
greffage faible et une fine couche interfaciale (MD - 5μm) (A5) obtenus sur une mem-
brane de PVDF vierge (pPVDF) (AP) sont comparées. Pour fabriquer des actionneurs
fonctionnels à partir de membranes vierges en PVDF, Une solution de PEDOT: PSS avec
5% en volume de PEG400 a été utilisée ce qui provoque la pénétration du PEDOT: PSS
à travers la membrane avec pour conséquence une augmentation sensible du courant
mesuré entre les électrodes. La résistance entre les électrodes de membranes AP est
de 6 ordres de grandeur plus faibles que pour A5 et A25 (0.36 Ω vs 0.16 MΩ) ce qui
conduit à une grande dissipation d’énergie lors de l’actionnement. Une fois qu’une
tension est appliquée (1, 5 V en signal sinusoïdal, fréquence de 0, 1 Hz) l’amplitude
de déplacement de l’actionneur AP décroît continuellement et l’actionneur n’est plus
fonctionnel après moins de 50 heures d’actionnement. A l’opposé, même avec une très
petite profondeur de pénétration (5 μm) et une adhésion plus forte, les actionneurs
restent actifs, , pendant plus de 100 heures sans aucune diminution significative de
l’amplitude de déplacement et aucun signe de délamination.

De petites variations de l’amplitude peuvent cependant être observées. Les performances
des actionneurs pourraient être influencées par le milieu ambiant, en particulier parce
que le PEDOT: PSS et les liquides ioniques sont des matériaux hygroscopiques qui
peuvent facilement absorber l’eau. Le déplacement et la variation de l’humidité de
l’environnement lors de l’actionnement du dispositif A3 sont présentés sur la Fig. C.20b.
L’humidité peut influencer la déformation de l’actionneur de deux façons: (1) l’eau peut
être absorbée et désorbée à cause de l’échauffement par effet Joule lors de l’application
de la tension d’actionnement et (2) l’eau absorbée peut modifier la structuration du
PEDOT: PSS et par conséquent ses propriétés mécaniques et électriques [364, 423].
D’autre part, il a été démontré que l’actionnement est dépendant de l’humidité même
pour les actionneurs qui n’utilisent pas de PEDOT: PSS comme électrodes [281]. Ce
phénomène est attribué à l’hygroscopicité des liquides ioniques.

Malgré la variation assez importante dans l’amplitude d’actionnement, le cyclage
électrique est réversible et l’humidité ne cause pas de dommages permanents aux
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(a)

(b)

Fig. C.20. (a) Mesure de la durée de vie d’actionneurs hybrides PVDF greffé PEGMA (mPVDF) et de
membranes vierges (PVDF). La profondeur d’interaction entre le PEDOT: PSS et la mPVDF
est indiquée dans la légende. (b) Amplitude du déplacement d’un actionneur PEDOT: PSS
/ PVDF-greffage PEG / PEDOT: PSS avec un MD de 5 μm dans un liquide ionique (bleu) et
changement de l’humidité de l’environnement (jaune)

actionneurs. D’autre part, si un contrôle de la position de l’actionneur est nécessaire,
l’humidité doit être mesurée et les algorithmes de contrôle doivent être ajustés en
conséquence.

C.4.2 Vers des muscles artificiels fabriqués par technologie jet
d’encre

Afin de pousser la technologie des actionneurs souples vers une production en masse, des
procédés de fabrication à grande échelle sont nécessaires. Une des solutions possibles
est l’impression jet d’encre. Il s’agit d’une technique de dépôt directe sans contact qui est
considérée comme l’une des technologies clés pour le dépôt de polymères en solution.
En outre, elle est bas coût, rapide et précise. Elle permet également l’impression de
plusieurs encres fonctionnelles de manière parallélisée. Une représentation schématique
de l’impression jet d’encre de polymères conducteurs est proposée sur la Fig. C.21a. Des
images SEM et AFM d’une couche de PEDOT: PSS imprimée sur une membrane de PVDF
vierge sont présentées sur la Fig. C.21b. Comme l’encre utilisée pour l’impression doit
satisfaire à plusieurs exigences, en particulier sa viscosité, sa densité et sa tension de
surface, plusieurs dopants secondaires ont été testés pour en modifier les propriétés. En
outre, les agents tensio-actifs ne peuvent pas être utilisés pour éviter des phénomènes
de percolation entre les électrodes conductrices en polymères. Nous avons montré
que l’éthylène glycol comme dopant secondaire améliore les propriétés mécaniques
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(a) (b)

Fig. C.21. Illustration schématique d’une impression jet d’encre piézo-électrique: une tension électrique
est utilisée pour déformer le matériau piézo-électrique et générer une impulsion de pression
dans le fluide, qui éjecte ensuite une gouttelette d’encre (PEDOT: PSS) à partir de la buse; un
motif est généré par le déplacement de la tête d’impression par rapport au substrat (membrane
de PVDF) en deux dimensions. En médaillon: Photo prise avec un microscope optique après
l’impression de 20 couches de PEDOT: PSS.

et de conductivité électrique du film sans pour autant accentuer les phénomènes
d’infiltration.

Des actionneurs de forme rectangulaire (1.5 x 8 mm2) ont été obtenus par impression jet
d’encre de PEDOT: PSS sur des membranes de PVDF comme représenté sur la Fig. C.22a.
Pour assurer un volume et une conductivité suffisants, 10 couches de PEDOT:PSS ont
été imprimées ce qui conduit à une masse d’environ 0.27 ± 0.13 mg. Le poids de la
membrane de PVDF est de 3.19 ± 0.006 mg. Après recuit thermique, le PVDF a été
imprégnée avec 4.5 ± 0.06 mg de liquide ionique et a été immédiatement utilisé pour la
caractérisation.

Le profil de la déformation de l’actionneur ainsi que le courant transféré sont tracés
sur la Fig. C.22b. L’un des avantages de l’impression jet d’encre pour la fabrication
d’actionneurs souples réside dans la grande flexibilité d’utilisation pour obtenir des
motifs variés avec différentes solutions. Un exemple est montré sur la Fig. C.23. Des
ailes mobiles d’un dispositif 2D en forme de libellule ont pu être obtenues par (1)
dépôt de gouttes avec 6 ml d’une solution de PEDOT :PSS déposée sur toute la surface
de la membrane (Fig. C.23c), et (2) par impression jet d’encre, où seulement une
surface de 0.2 x 1 cm2 a été imprimée pour chaque aile (à l’aide de moins de 0, 5 ml

d’encre). Plusieurs avantages peuvent être mis en avant, notamment la possibilité de
dessiner des motifs de forme très variée (spirale, forme en U, etc.) ou encore de déposer
localement des électrodes sur un dispositif pour en modifier les propriétés électriques
et mécaniques. Enfin, l’impression jet d’encre permet d’envisager la fabrication de
dispositifs identiques à grande échelle.
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(a) (b)

Fig. C.22. (a) Images fusionnées de l’actionneur dans sa position initiale et de ses extrémités lors de
l’actionnement avec un signal carré de 1.5 V à 50 mHz. La position de la couche de PEDOT
:PSS imprimée est indiquée par des flèches. Les dimensions de l’actionneur utilisé (2x15 mm) et
couche de PEDOT: PSS imprimée (0.8x5 mm) sont indiqués ci-dessus. (b) Déplacement (ligne
bleue) et courant transféré (ligne pointillée rouge) pour des actionneurs imprimés (10 couches,
0.36 mg) lors de l’actionnement. La forme du signal de tension utilisé est indiquée en pointillé
noir.

(a) (b) (c)

Fig. C.23. (a) Etapes de fabrication pour des actionneurs imprimés: (1) une membrane de PVDF est
découpée à la forme désirée;(2) les actionneurs rectangulaires de PEDOT: PSS ont été imprimés
sur chaque côté de la membrane dans la zone où l’actionnement est souhaité; (3) des zones en
pâte d’argent sont déposées pour connecter les différentes électrodes; (4) la membrane PVDF
est imprégnée avec le liquide ionique. Images fusionnées de deux positions d’actionnement
(± 2 V à 1 Hz) d’une libellule avec des actionneurs (b) imprimés et (c) actionneurs obtenus
dépôt de goutte et découpe.
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