
HAL Id: tel-01591614
https://theses.hal.science/tel-01591614v1

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust and comprehensive joint image-text
representations
Thi Quynh Nhi Tran

To cite this version:
Thi Quynh Nhi Tran. Robust and comprehensive joint image-text representations. Image Processing
[eess.IV]. Conservatoire national des arts et metiers - CNAM, 2017. English. �NNT : 2017CNAM1096�.
�tel-01591614�

https://theses.hal.science/tel-01591614v1
https://hal.archives-ouvertes.fr


École doctorale Informatique, Télécommunications et Électronique (Paris)

Centre d’Études et de Recherche en Informatique et Communications

THÈSE DE DOCTORAT

présentée par : Thi Quynh Nhi TRAN

soutenue le : 3 mai 2017

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Spécialité : Informatique

Robust and comprehensive
joint image-text representations

THÈSE dirigée par
M. CRUCIANU Michel Professeur des Universités, CEDRIC-CNAM, Paris

RAPPORTEURS
M. GRAVIER Guillaume Directeur de Recherche, CNRS-IRISA & INRIA, Rennes
M. QUÉNOT Geogre Directeur de Recherche, CNRS-LIG, Grenoble

PRÉSIDENT

Mme. HUDELOT Céline Professeur des Universités, MICS-Centrale Supélec, Paris

EXAMINATEURS
M. GREFENSTETTE Gregory Docteur, Florida Institute for Human & Machine Cognition
M. BERRANI Sid-Ahmed Docteur, Algérie Télécom, Alger
M. LE BORGNE Hervé Docteur, CEA-LIST, Saclay





Abstract

This thesis investigates the joint modeling of visual and textual content of multimedia

documents to address cross-modal problems. Such tasks require the ability to match

information across modalities. A common representation space, obtained by e.g. Kernel

Canonical Correlation Analysis, on which images and text can be both represented and

directly compared is a generally adopted solution. Nevertheless, such a joint space still

suffers from several deficiencies that may hinder the performance of cross-modal tasks. An

important contribution of this thesis is therefore to identify two major limitations of such a

space. The first limitation concerns information that is poorly represented on the common

space yet very significant for a retrieval task. The second limitation consists in a separation

between modalities on the common space, which leads to coarse cross-modal matching.

To deal with the first limitation concerning poorly-represented data, we put forward

a model which first identifies such information and then finds ways to combine it with

data that is relatively well-represented on the joint space. Evaluations on text illustration

tasks show that by appropriately identifying and taking such information into account, the

results of cross-modal retrieval can be strongly improved. The major work in this thesis

aims to cope with the separation between modalities on the joint space to enhance the

performance of cross-modal tasks. We propose two representation methods for bi-modal

or uni-modal documents that aggregate information from both the visual and textual

modalities projected on the joint space. Specifically, for uni-modal documents we suggest a

completion process relying on an auxiliary dataset to find the corresponding information in

the absent modality and then use such information to build a final bi-modal representation

for a uni-modal document. Evaluations show that our approaches achieve state-of-the-art

results on several standard and challenging datasets for cross-modal retrieval or bi-modal

and cross-modal classification.

Keywords : common representation, cross-modal retrieval, cross-modal classification,

(kernel) canonical correlation analysis, multi-modal representation, image and text.
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Résumé
La présente thèse étudie la modélisation conjointe des contenus visuels et textuels extraits

à partir des documents multimédia pour résoudre les problèmes intermodaux. Ces tâches

exigent la capacité de « traduire » l’information d’une modalité vers une autre. Un espace

de représentation commun, par exemple obtenu par l’Analyse Canonique des Corrélations

ou son extension à noyaux est la solution généralement adoptée. Sur cet espace, images et

textes peuvent être représentés par des vecteurs de même type sur lesquels la comparaison

intermodale peut se faire directement. Néanmoins, un tel espace commun souffre de

plusieurs insuffisances qui peuvent diminuer la performance des ces tâches. La première

concerne les informations très importantes dans le contexte de la recherche intermodale

mais qui sont mal représentées sur cet espace appris. La deuxième insuffisance porte sur

la séparation entre les projections des différentes modalités sur l’espace commun, ce qui

conduit à une qualité de traduction peu satisfaisante entre modalités.

Pour faire face au problème concernant les données mal représentées, nous avons

proposé un modèle qui identifie tout d’abord ces informations et les combine ensuite avec

des données relativement bien représentées sur l’espace commun. Les évaluations sur une

tâche d’illustration de texte montrent que la prise en compte de ces informations améliore

fortement les résultats de la recherche intermodale. La contribution majeure de la thèse se

concentre sur le problème de la séparation entre les modalités sur l’espace commun, afin

d’améliorer les performances dans les tâches intermodales. Nous mettons en avant deux

méthodes de représentation pour les documents bi-modaux ou uni-modaux qui regroupent

à la fois des informations visuelles et textuelles projetées sur l’espace commun. Pour les

documents uni-modaux, nous proposons un processus de complétion basé sur un ensemble

de données auxiliaires pour trouver les informations correspondantes dans la modalité

absente. Ces informations complémentaires sont ensuite employées pour construire une

représentation bi-modale d’un document uni-modal. Nos approches permettent d’améliorer

l’état de l’art pour la recherche intermodale ou la classification bi-modale et intermodale.

Mots clés: espace commun de représentation, analyse canonique des corrélations, recherche

intermodale, classification intermodale, représentation multimodale, image et texte.
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RÉSUMÉ

Au cours des années passées, l’explosion des données multimédia est devenue plus

importante que jamais avec l’apparition des sites de médias sociaux comme Facebook,

Twitter et des sites de partage de contenu comme YouTube, FlickR, Wikipedia, etc.

Différentes collections de grande quantité de données multimédias ont été générées à partir

de ces sites. Cela exige des méthodes pour stocker, organiser et traiter efficacement de ces

grands volumes de données multimédias.

Dans ce contexte, la recherche et la classification des données multimédia ont reçu la plus

grande attention de la communauté multimédia en raison de leurs intérêts pratiques. Ces

deux technologies sont au cœur de diverses applications multimédias telles que l’annotation

d’image, l’illustration automatique de texte, la détection d’événements ou la catégorisation

de documents, etc.

Cette thèse se concentre sur deux modalités de données: modalité visuelle représentée

par des images et modalité textuelle représentée par des mots-clés, des étiquettes ou

des phrases du langage naturel, etc. Normalement, ces contenus visuels et textuels sont

transformés en représentations vectorielles, qui sont après utilisées pour la recherche ou la

classification. Initialement, la recherche d’image ou la recherche de document textuel se

base sur l’exploration des caractéristiques distinctes de chaque modalité individuelle, c’est

à dire soit la modalité visuelle, soit la modalité textuelle. Néanmoins, le contenu visuelle

et le contenu textuelle apparaissent souvent ensemble dans des collections multimédia et

munissent des informations complémentaires l’une à l’autre. Par exemple, des photos sur

FlickR sont souvent caractérisée par des descriptions et/ou des étiquettes fournies par

des utilisateurs; ou des articles Wikipedia sont généralement illustré par une ou plusieurs

images. Par conséquent, la modélisation conjointe de contenu visuel et son contenu textuel

associé peut potentiellement améliorer les performances des systèmes de recherche ou de

classification des données multimédia.

Le travail principal de cette thèse considère la modélisation conjointe de l’image et

du texte pour résoudre des problèmes intermodales, un paradigme plus récent de la

recherche d’informations. Les systèmes intermodaux supportent l’interactivité entre les

modalités. Par exemple, une recherche intermodale retrouve des images en réponse à une

requête textuelle ou des documents textuels en réponse à une requête visuelle. Ces tâches
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RÉSUMÉ

sont essentielles à de nombreuses applications d’intérêt pratique, telles que l’illustration

automatique de texte, le sous-titrage automatique d’image, etc. Cependant, la modélisation

intermodale efficace et efficiente reste encore un défi. La raison principale est le “fossé

sémantique”, qui est connu comme la différence, du point de vue de la compréhension

humaine, entre la représentation visuelle d’image et celle textuelle. Autrement dit, le “fossé

sémantique” est considéré comme le manque de coïncidence entre les informations que l’on

peut extraire à partir des données visuelles et l’interprétation que les mêmes données ont

pour un utilisateur dans une situation donnée. Le fait de réduire le “fossé sémantique”

entre les représentations visuelles et les représentations textuelles reste un défi majeur dans

la modélisation des systèmes multimédia. En outre, ces systèmes souffrent également de

l’hétérogénéité entre différentes modalités. Cela se réfère au fait que les modalités visuelles

et textuelles sont habituellement décrites selon des schémas totalement différents et ils

résident habituellement dans différents espaces de représentation.

Dans cette thèse, nous adressons le problème susmentionné de la modélisation con-

jointe de contenu visuel et contenu textuel par le développement d’un espace commun de

représentation pour ces deux modalité. Un tel espace latent est principalement considéré

pour les tâches intermodales car les images et le texte peuvent être représentés dans cet

espace sans aucune distinction. Par exemple la recherche intermodale peut se faire sur des

représentations communes en les comparant directement. Aussi, cet espace commun peut

être utilisé pour traiter diverses tâches bimodales centrées sur la sémantique.

L’espace commun de représentation pour image et texte peut être servi dans plusieurs

tâches intermodales. La performance de ces tâches dépendent fortement de la qualité de

cet espace. Ce dernier se reflète dans la qualité de mise en correspondance de données entre

deux modalités. Pour cela, le modèle doit rapprocher les images et les textes associées

sur son espace commun. Jusqu’à présent, la plupart des travaux existants basés sur des

espaces communs de représentation se concentrent sur l’étude de représentations complètes

des données dans chaque modalité individuelle et ensuite les utilisent pour construire un

modèle robuste. Malgré leurs succès relatifs, cela semble insuffisante pour réduire les fossés

entre les modalités visuelles et textuelles en raison de plusieurs limitations de cet espace

conjoint. En outre, l’intérêt pratique de tel approche relie au montant de ressources utilisés
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RÉSUMÉ

pour apprendre les représentations communes. Il est évidemment une grande importance

dans la pratique, car l’utilisation d’une très grande quantité de données peut conduire à un

calcul insoluble, ou au moins un coût trop élevé pour être intéressant.

La motivation de cette thèse est triple.

• Représentation robuste sur l’espace conjointe. Un tel espace de représentation

commun souffre de plusieurs limitations qu’on identifie dans la thèse. Une utilisation

directe de ces projections se traduit par une qualité limitée de mise en correspondance

des données entre les deux modalités. Par conséquent, cela diminue la performance

des tâches intermodales ou bimodales. Notre motivation consiste à proposer des

représentations plus robustes pour image et texte et puis les utiliser pour adresser

ces tâches.

• Espace commun comme ressource universelle. Nous espérons développer un

espace commun de représentation en tant que ressource universelle, à partir d’un

grand ensemble de données bi-modales génériques. Ce dernier peut être servi à traiter

des problèmes spécifiques telles que la recherche ou la classification d’information

venant du même domaine ou d’une autre domaine de cette ressource. L’intérêt de

la ressource universelle est d’éviter de réapprendre un espace commun pour chaque

problème à partir d’un ensemble de données spécifiques liées aux problèmes.

• Modèle conceptuel de plus haut niveau sémantique. Au-delà de la recherche

intermodale de type “un à un” des documents multimédia (par exemple la comparaison

d’une image à une autre image ou d’une image à un texte, etc) sur l’espace commun,

nous désirons faire aussi la comparaison de type “un à plusieurs” sur cet espace. C’est

à dire nous voulons estimer combien une image (ou un texte) est similaire à un groupe

de textes (ou des images). Pour cela, un modèle multimédia devrait être en mesure

de faire correspondre un document donné aux concepts plus généraux détectés dans

un ensemble d’autres documents. En pratique, la première étape consiste simplement

à apprendre un concept général à partir de données venant d’une seule modalité,

ensuite le tester sur une autre modalité.

Notre but principale est d’étudier des représentations jointes des images et textes qui
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RÉSUMÉ

sont plus robustes et complètes afin d’adresser des tâches intermodales. Pour cela, notre

approche repose sur le développement d’un espace de représentation commun pour la

modalité visuelle et textuelle. Généralement, cet espace est obtenu par apprentissage,

conjointement à partir des représentations visuelles et ses représentations textuelles associées.

Différent principes ont été proposés dans la littérature pour apprendre un tel espace. Nous

avons choisi de construire un espace commun de représentation résultant d’une maximisation

de la relation entre la modalité visuelle et textuelle. Dans cette direction, notre approche

est basé sur le technique de l’analyse canonique des corrélations (ACC) et de son extension

en utilisant un noyau. En principe, l’ACC recherche un sous-espace commun des deux

espaces qui maximise la corrélation des points projetés à partir des données d’origine.

Néanmoins, nous avons identifié deux limitations de cet espace commun.

• La première limitation concerne les données mal représentées sur l’espace commun.

Les données sont projetées sur l’espace commun de représentation avec des qualités

de représentation différentes. Certaines données sont représentées moins bien que

les autres. Malheureusement, ces informations mal représentées peuvent être très

importantes dans un contexte de la tâche de recherche d’information. Le fait de ne

pas prendre en compte ces informations peut réduire considérablement l’efficacité de

l’espace commun de représentation.

• La deuxième insuffisance de cet espace commun porte sur la séparation entre les

projections des différentes modalités sur l’espace commun. C’est à dire sur l’espace

commun, la projection visuelle et textuelle d’un document donné sont éloignées.

Ces projections ont tendance à être regroupées par modalité plutôt que par leur

sémantique sur cet espace (voir Figure 1). Cela conduit à une qualité de traduction

peu satisfaisante entre deux modalités. La performance des tâches intermodales est

donc limitée.

Dans cette thèse, nous proposons trois méthodes de représentation jointe des images

et textes dans le but de réduire les imperfections susmentionnées sur l’espace commun de

représentation.

Première contribution. Une première contribution traite de la limitation concernant

9



RÉSUMÉ

Figure 1: La séparation entre la modalité visuelle et textuelle sur l’espace commun de
représentation.

les données pertinentes mais mal représentées sur l’espace commun des images et des textes.

Ceci est dû au fait que le développement d’un tel espace commun de représentation basé sur

l’ACC repose sur l’extraction de régularités statistiques à partir d’une grande quantité de

données d’apprentissage. Les données ayant peu d’occurrences ou des relations très faibles

avec d’autres données dans l’ensemble d’apprentissage sont donc ignorées dans cet espace

commun. Nous étudions cette limitation de l’espace commun particulièrement dans le

contexte de la tâche de recherche d’information. Pour cette tâche, nous disposons une base

de références dans laquelle nous cherchons des résultats pertinents pour chaque requête.

Ces données de références et des requêtes sont tous projetées sur un espace commun de

représentation pour faciliter la recherche. Cet espace est souvent appris à partir d’une base

d’apprentissage. Dans des cas pratiques, cette base d’apprentissage est souvent différente

de la base de références destinée à la recherche. Notre contribution porte sur la différence
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RÉSUMÉ

Figure 2: Une première contribution de la thèse concentre sur la différence entre la
base d’apprentissage et la base de référence dans le contexte de la tâche de recherche
d’information. Cette portion contient potentiellement des données mal représentées sur
l’espace commun de représentation appris sur les données d’apprentissage.

entre ces deux bases de données (voir Figure 2). Précisément, nous constatons que des

données rares dans la base d’apprentissage ou même nouvelles dans la base de références,

telles que noms ou marques, peuvent être très importantes pour sélectionner des résultats

pertinents dans une tâche de recherche d’information. Néanmoins, ces informations sont

souvent ignorées sur l’espace jointe de représentation. Si nous comptons seulement sur cet

espace, nous ne pouvons pas exploiter ces information. Pour faire face à cette limitation,

nous proposons dans une première contribution de cette thèse un modèle qui identifie tout

d’abord des informations mal représentées sur l’espace commun et les combine ensuite avec

des données relativement bien représentées sur l’espace commun. Concrètement, au lieu de

faire la recherche basée seulement sur l’espace commun de représentation, nous la combine

avec la recherche sur l’espace initial de représentation. Dans ce travail, nous ne traitons

que des informations mal représenté venant de la modalité textuelle.

Nous examinons dans cette contribution comment le modèle proposé est appliqué afin

d’adresser la tâche d’illustration automatique de texte. L’illustration de texte consiste

à trouver une image appropriée pour illustrer le contenu d’un document textuel donné.

Cette tâche a donc la nature de la recherche intermodale entre la modalité visuelle et la
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modalité textuelle. Nous montrons que, en identifiant adéquatement des information mal

représentées sur l’espace commun de représentation et les prenant en compte, les résultats

de la recherche intermodale peuvent être fortement améliorés. Les expériences sont menées

sur les trois bases de données différentes: BBC News, Wikipedia2010 et ImageCLEF13.

Nous avons montré l’intérêt de notre modèle pour la tâche d’illustration de texte dans

différent contextes où la base d’apprentissage utilisée pour apprendre l’espace commun et la

base de test pour la recherche d’information sont extraites à partir d’une même collection

ou dans un cas plus difficile mais plus réaliste, à partir des collections totalement différentes.

Dans le tableau 1, il est intéressant de noter que plus le nombre de mots textuels mal

représentés que le modèle prend en compte, plus l’amélioration du modèle proposé par

rapport à l’approche basique basé seulement sur l’espace commun de représentation (appris

par l’ACC) est élevée. Par exemple, dans l’évaluation sur des données de Wikipedia2010 où

2,868 mots potentiellement mal représentés sont identifiés, l’amélioration de notre modèle

est de +39,1 par rapport à la recherche basée seulement sur l’espace commun appris par

l’ACC.

données espace commun nombre de mots amélioration
de test appris sur mal représentés p.r.à l’ACC

BBC News BBC News 41 +4.1
BBC News ImageCLEF13 208 +18.0

Wikipedia2010 Wikipedia2010 2868 +39.1

Table 1: Comparaison de performance de l’illustration automatique de texte entre notre
méthode proposé et l’approche basique basé seulement sur l’espace commun de représen-
tation appris par l’ACC. La base d’apprentissage et la base de références sont extraites
à partir d’une même collection ou à partir des collections différentes. Plus la tâche est
difficile (en termes de nombre de données potentiellement mal représentées), plus notre
méthode est utile.

Deuxième contribution. Une deuxième contribution de la thèse aborde partic-

ulièrement la classification intermodale. Cette tâche consiste à apprendre des modèles

de classification à partir des données venant d’une modalité et les tester sur des données

appartenant d’une autre modalité (voir Figure 3). De cette manière, la tâche de clas-

sification intermodale exige les données d’apprentissage uni-modales labellisées dans la

première modalité et les données de test uni-modales dans l’autre modalité. Dans le cadre
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Figure 3: Un exemple de la tâche de classification intermodale. Des classificateurs visuels
sont appris à partir des images avec ses étiquettes et sont appliqués pour prédire une
requête textuelle.

de cette thèse, nous étudions le problème de classification intermodale pour les contenus

visuels et textuels. Cette tâche n’a pas été largement étudiée dans la littérature de la

communauté multimédia. Cela est dû au fait que les textes et les images ne sont pas décrits

avec les mêmes caractéristiques, et ils ne résident même pas dans le même espace vectoriel,

rendant donc la classification intermodale assez incongrue. Cependant, au-delà d’un intérêt

académique, nous croyons que cette tâche a également un intérêt pratique. Supposons,

par exemple, que les classificateurs pour de nombreux concepts ont pu être appris à partir

des données textuelles en raison de la disponibilité massive de telles données labellisées.

Nous pourrons souhaiter détecter ces concepts sur un contenu correspondant à une autre

modalité, par exemple images, même si les étiquettes de classe (labels) ne sont pas encore

disponibles pour ce contenu. Une telle situation peut devenir plus courante avec l’évolution

actuelle du micro-blogging, qui passe du contenu purement textuel (Twitter historique) au

contenu multimodal (Twitter actuel) ou au contenu purement visuel (Instagram). L’étude

de cette tâche de classification intermodale nous permet d’examiner un modèle conceptuel

de plus haut niveau sémantique, ce qui est une des motivations de cette thèse.

Afin d’adresser le problème de classification intermodale, un espace commun de représen-
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tation de la modalité visuelle et textuelle est une solution appropriée pour surmonter le

problème d’incompatibilité entre ces deux modalités. Dans cet espace commun, les infor-

mations visuelles et textuelles ont des représentations similaires et deviennent directement

comparables. Par conséquent, il est parfaitement concevable d’apprendre un classificateur,

par exemple textuel, utilisant les descripteurs qui sont des projections de caractéristiques

textuelles et de prédire une image qui est représentée par sa projection sur cet espace

commun. Un tel espace commun a été largement examiné dans la littérature récente de la

recherche intermodale d’information textuelle et visuelle. Ce sujet est aussi étudié avec

beaucoup d’attention dans les contributions présentées dans cette thèse. Cependant, au

mieux de notre connaissance, aucune tentative n’a été faite pour employer des classificateurs

intermodaux comme ce que nous avons suggéré.

Dans cette contribution, nous cherchons à faire la classification intermodale à partir des

projections des données textuelles et visuelles sur l’espace commun. Pour cela, une approche

basique est de projeter des données visuelles et textuelles sur cet espace, puis d’apprendre

et tester les classificateurs intermodales en utilisant ces projections. La performance

de la classification intermodale obtenue avec une telle utilisation directe des projections

n’est pas trop faible. Néanmoins, comme identifié précédemment, un tel espace commun

de représentation (par exemple appris par l’ACC) présente encore certains limites. Par

conséquent, la qualité des projections intermodales n’est pas suffisante pour obtenir une

“traduction” robuste entre les deux modalités. Nous croyons donc que la performance de la

classification intermodale peut être améliorée une fois que les limites de l’espace commun

sont gérées.

Notre but est de proposer des représentations plus robustes et complètes à partir des

projections directes sur l’espace commun pour adresser plus efficacement à la tâche de

classification intermodale. Dans ce but, nous proposons une méthode de représentation

permettant à gérer l’insuffisance de l’espace commun concernant la séparation entre les deux

modalités mentionnée précédemment dans la Figure 1. Notre approche consiste à apprendre

une représentation bi-modale dans l’espace commun pour toute donnée initialement uni-

modale, en faisant la complétion d’une projection uni-modale par un point virtuel dans

l’autre modalité. L’idée générale de la complétion est de compter sur un ensemble additif
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de données bi-modales, appelé ensemble de données auxiliaires, pour transformer un point

de projection d’un document uni-modal en une représentation plus robuste qui prend en

compte les deux modalités. Un tel ensemble de données auxiliaires contient des images

avec ses textes associés et ses données n’ont pas besoin d’être labellisées. Cet ensemble

auxiliaire sert d’ensemble de connexions entre images et textes permettant de relier les

modalités visuelle et textuelle dans l’espace commun.

Le problème central de notre approche est de déterminer une représentation complé-

mentaire pertinente de la modalité manquante d’un document uni-modal étudié. Ce dernier

est représenté par un point virtuel obtenu à travers l’ensemble des projections des données

auxiliaires sur l’espace commun. La représentation bi-modale finale, appelée “Weighted

Completion with Averaging” (WCA), est obtenue en faisant la moyenne de ces deux points

(la projection uni-modale réelle et le point virtuel associé). L’identification d’un tel point

virtuel pertinent est le cœur de notre méthode. Pour cela, nous mentionnons une approche

“naïve” et ensuite proposons un schéma légèrement plus sophistiqué pour identifier des

informations complémentaires, permettant d’obtenir des résultats nettement meilleurs (voir

Figure 4) Dans une approche directe mais “naïve”, le virtuel point est obtenu à partir

des voisins les plus proches de la projection uni-modale à compléter parmi les projections

de données auxiliaires dans la modalité manquante. Par exemple, pour compléter une

projection du document initialement textuel, nous cherchons les plus proches voisins de

ce point dans l’ensemble de projections visuelles des données auxiliaire. Pour aller plus

loin à une telle approche, nous devons considérer les propriétés de l’espace commun. Bien

que ce dernier résulte d’une maximisation globale de la relation entre les deux modalités,

les projections du contenu textuel et visuel d’un même document sur cet espace ne sont

pas nécessairement très proches. Ce fait est également montrée par une des insuffisances

concernant la séparation entre les deux modalités sur l’espace commun. Donc, pour une

représentation uni-modale donnée, ses voisins directs les plus proches de l’autre modalité ne

sont pas le meilleure choix pour compléter la modalité manquante de cette représentation

uni-modale. Cependant, nous pensons que les documents ayant un contenu similaire dans

une modalité soient susceptibles d’avoir un contenu assez similaire dans l’autre modalité.

Nous proposons donc de rechercher tout d’abord les voisins les plus proches de la projection
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Figure 4: Deux approches pour déterminer des informations complémentaires dans la
modalité manquante pour la complétion.
Les carrés et les cercles sont respectivement des projections textuelles et visuelles. Les
carrés rouges et les cercles rouges sont les projections textuelles et visuelles des documents
de l’ensemble auxiliaire sur l’espace commun. Nous cherchons à compléter une projection
visuel représentée par le cercle bleu par des informations dans la modalité textuelle. Des
informations identifiées par chaque approche sont marquées par des étoiles dans la figure.
Les flèches noires indiques les voisins les plus proches d’un point examiné.

uni-modale parmi les projections des données auxiliaires dans la modalité disponible et

ensuite d’utiliser les projections correspondant à ces voisins dans l’autre modalité pour la

complétion. Dans ces deux approches, le virtuel point est défini par le barycentre de tous

les points complémentaires précédemment retrouvés. Enfin, notre méthode WCA comprend

une étape qui agrège en faisant la moyenne du vecteur original issu de la projection d’un

document uni-modal examiné avec l’information complémentaire représenté par le point

virtuel identifié pour synthétiser un vecteur de représentation unique du document. Cette

nouvelle représentation WCA englobe à la fois les informations visuelles et textuelles. Nous

proposons ensuite à faire la classification intermodale en utilisant une telle représentation

WCA. Pour cela, nous utilisons un ensemble de données bi-modal auxiliaires pour compléter

systématiquement des données uni-modales, tant dans l’ensemble d’apprentissage que dans

l’ensemble de test, ce qui entraîne des représentations WCA bi-modales plus complètes.

Les classificateurs sont appris et testés en utilisant ces représentations.

Pour l’évaluation, nous menons plusieurs expériences sur des ensembles de données

publiquement disponibles selon des protocoles expérimentaux standard afin d’adresser
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la tâche de classification intermodale. La performance de la tâche est mesurée par une

moyenne de deux mAPs (mean Average Precision) correspondant respectivement à la

classification Image-Texte (modèles appris sur des images et testés sur des textes) et à

la classification Texte-Image (modèles appris sur des textes et testés sur des images).

Les résultats (voire Figure 5) montrent que notre méthode WCA améliore l’utilisation

directe des projections brutes sur l’espace commun appris par l’ACC. Aussi, l’approche de

complétion que nous proposons est plus pertinent que l’approche naïve.

Figure 5: Résultats de la classification intermodale sur trois corpus de données Pascal
VOC07, Nus Wide et Nus Wide 10K. Nous comparons la performance de l’approche
basique (basée seulement sur l’espace commun en utilisant ses projections brutes) avec
deux approches de complétions mentionnées. Pour chaque problème, l’espace commun est
appris sur les données d’apprentissage du corpus correspondant et les classificateurs sont
appris et testé respectivement sur des données d’apprentissage et de test du problème.

Par ailleurs, nous étudions également l’influence des principaux composants de notre

méthode WCA sur la performance de la classification intermodale, à savoir le processus de

complétion et la méthode d’agrégation sur la performance de WCA. Particulièrement, nous

rappelons qu’une des motivations de cette thèse est de développer un espace commun de

représentation comme une “ressource” générique, à partir d’un volume suffisamment grand

de données bi-modales, puis d’aborder différents problèmes de classification intermodale

utilisant cette ressource. Cela permet d’éviter de réapprendre un espace commun pour
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chaque problème spécifique en utilisant ses propres données. Les projections sur une telle

ressource bénéficient des relations texte-image génériques obtenues à partir de données

utilisées pour apprendre l’espace commun. En outre, un ensemble de données bi-modales

différent, potentiellement plus relié au problème cible peut alors être utilisé pour la

complétion de la représentation uni-modale, en prenant ainsi en compte les liens spécifiques

entre le contenu visuelle et textuelle du problème cible dans la représentation agrégée. Pour

Figure 6: Résultats de la classification intermodale des données Pascal VOC07.
Différent espaces communs de représentation sont appris sur des données de différent corpus
comme 12,000 données de Nus WIDE (12K Nus WIDE), 23,000 données de Nus Wide
(23K Nus WIDE) ou 5,000 données de Pascal VOC07. Différent ensemble auxiliaire (Nus
WIDE ou Pascal VOC07) sont utilisés pour la complétion.

explorer cette idée, nous examinons donc la relation entre les deux ensembles de données

utilisés pour la fabrication de la représentation WCA: l’ensemble de données auxiliaires et

l’ensemble de données utilisées pour apprendre l’espace commun de représentation. A cette

fin, nous étudions l’impact de l’utilisation de différentes collections de données pour obtenir

l’espace commun et sur chaque espace, différents ensembles de données auxiliaires pour

compléter les représentations uni-modales. Les résultats montrent que la performance de
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WCA dépend à la fois de la taille de l’ensemble de données auxiliaire et de l’accord entre des

données de cet ensemble auxiliaire et le problème spécifique considéré. Quelques résultats de

la classification intermodale des données du corpus cible Pascal VOC07 sont décrits dans la

Figure 6. La performance est améliorée si nous augmentons la taille de l’ensemble auxiliaire

(résultats avec différent sous-ensembles de données Nus WIDE). Pourtant, l’utilisation

des données du problème cible (seulement 5,000 données de Pascal VOC07) comme des

données auxiliaires donne des meilleures performance.

Classification Pascal VOC07 Nus-WIDE Nus-WIDE 10K
Uni-modale (Image) 86.10 50.38 78.53
Uni-modale (Texte) 82.50 46.57 70.20

Bi-modale (Image+Texte) 86.16 50.87 82.89
Intermodale (Texte-Image) 85.49 37.80 79.53
Intermodale (Image-Texte) 83.38 34.02 79.15

Table 2: Comparaison en termes de mAP (%) entre différent scénarios de classification
telle que la classification uni-modale, bi-modale et la classification intermodale proposée.

Enfin, nous également comparons la classification intermodale avec les différent tâches

de l’état de l’art telles que la classification uni-modale et bi-modale, qui sont des tâches

plus classiques et moins difficiles que la tâche intermodale proposé dans cette thèse. Les

résultats obtenus pour la classification intermodale sont relativement proches de ceux

obtenus pour la classification uni-modale ou bi-modale (voire Tableau 2). Un tel niveau

de performance rend notre approche de la classification intermodale un choix convaincant

pour les applications réelles, telles que l’apprentissage des classificateurs à partir d’une

grande quantité de données textuelles annotées disponibles et leur application au contenu

visuel, pour annoter des images par exemple.

Troisième contribution. Cette contribution présente une autre méthode de représen-

tation conjointe des modalité texte et image, appelée «agrégation de composantes multimé-

dia corrélées» (MACC), pour les documents bi-modaux ou uni-modaux. Comme WCA,

cette méthode cherche à réduire la séparation de la modalité visuelle et textuelle sur leur

espace commun de représentation. De la même façon que WCA, la représentation MACC

regroupe à la fois des informations visuelles et textuelles projetées sur l’espace commun

pour fabriquer une représentation bi-modale unique de donnée. La différence est sur la
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Figure 7: L’illustration de la méthode MACC.
Les contenus visuels et textuels d’un document sont projetés sur un espace commun
précédemment quantifié. Les deux projections, correspondant au même document, sont
encodées selon un vocabulaire commun avant leur agrégation.

quantification de l’espace commun en plusieurs contextes multimédia et la représentation

des données selon ces contextes (Figure 7). Concrètement, pour un ensemble de documents

multimédia, nous construisons d’abord l’espace commun de représentation (par exemple

par l’ACC) et ensuite apprenons un vocabulaire (obtenu par exemple par k − means

clustering) à partir de toutes les projections visuelles et textuelles de ces documents sur

leur espace commun. Pour chaque document bi-modal, ses caractéristiques visuelles et

textuelles sont projetées sur cet espace commun et puis chaque projection (visuelle et

textuelle) est codée par un vecteur des différences entre cette projection et les centres des

clusters. Enfin, ces deux vecteurs de différences sont agrégées en un seul vecteur MACC

qui est la représentation multimédia du document. Particulièrement, dans le cas d’un

document uni-modal où une seule modalité est disponible, nous suggérons également de

compléter la modalité absente en utilisant les données d’un ensemble de données auxiliaires
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Figure 8: Les performances de la classification intermodale sur les données de Pascal
VOC07.

suite à la procédure de complétion décrite dans la méthode précédente WCA. Par la suite,

nous combinons les descripteurs de deux modalités pour construire la représentation MACC

du document initialement uni-modal.

La méthode est évaluée sur les collections VOC 20017, FlickR8K et FlickR30K, en

classification bi-modale, en classification intermodale et en recherche d’image. Dans les

trois cas, la performance observée est au niveau de celle de l’état de l’art ou plus élevée.

Une expérience importante porte sur la comparaison entre différent types de représentation

basé sur l’espace commun de représentation telles que les projections (ACC) brutes, la

WCA et la MACC (Figure 8). Pour cela, nous évaluons la performance de la tâche de

la classification intermodale sur la collection Pascal VOC07. Le résultat montre que la

MACC et la WCA améliorent l’utilisation directe des projections sur l’espace commun.

De plus, les meilleures performances sont obtenues avec la représentation MACC. Pour la

tâche de recherche d’image sur les données de FlickR 8K, la représentation MACC améliore

légèrement la performance des résultats actuels de l’état de l’art (Figure 9). D’ailleurs, de

nombreuse expériences sont également menées afin d’étudier l’impact des paramètres de la

MACC telles que la méthode de codage, la taille du vocabulaire et l’ensemble auxiliaire

21



RÉSUMÉ

Figure 9: Comparaison avec l’état de l’art de la recherche d’image sur les données de FlickR
8K.

utilisé pour la complétion sur la performance des tâches intermodales.

Enfin, pour terminer la présente thèse, nous discutons éventuellement des points qui

peuvent être inspirés par les problèmes de recherche présentés. En particulier, nous

considérons l’extension de nos contributions au cas des espaces communs fondé sur d’autres

principes que la maximisation de la corrélation.
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CHAPTER 1. INTRODUCTION

During the past decade, the explosion of multimedia data has become more important

than ever with the rise of social media sites like Facebook, Twitter and content-sharing

sites like YouTube, FlickR, Wikipedia, etc. Issued from this, a lot of huge yet increasing

public collections of multimedia content have been generated. This has led to a surge of

research activity in how to store, organize, access and search these immense multimedia

resources.

In this context, multimedia retrieval and classification have been receiving most atten-

tion of the multimedia community due to their practical interests. These latter are the core

of various real-world multimedia applications such as image annotation, automatic text

illustration, hot topic detection, event detection, document categorization, etc. The efforts

of the multimedia community have become increasingly widespread, due in part to the

introduction of large-scale research and evaluation benchmarks such as TRECVID [Smeaton

et al. 2006] and ImageCLEF [Müller et al. 2010] involving datasets that span multiple

modalities.

This thesis focuses on two popular modalities of data, namely visual modality represented

by e.g. images and textual modality represented by e.g. tags, keywords, natural language

phrases, etc. Earlier research such as image retrieval or document retrieval focused

on exploring the distinct characteristics of each individual modality e.g. image or text.

Nevertheless, image and text usually appear together in multimedia collections and provide

complementary information to each other. For example, the visual content of a FlickR

photo is characterized by user-provided descriptions and tags or the content of a Wikipedia

article is usually illustrated by one or several images. Therefore, jointly modeling visual and

the associated textual content can potentially improve the performance of many multimedia

retrieval and classification systems.

The research on multimedia retrieval and classification has been very active in the

past decades. However, the latter is still a very challenging problem yet to be solved due

to the “semantic gap” [Smeulders et al. 2000] between features and semantics. Images

are made of pixels and represented by low-level features e.g. color, shape, texture, etc.

Textual content consists of keywords, concepts or natural language phrases representing

higher-level semantics of images. Bridging the “semantic gap” between the image low-
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level features and high-level semantics remains a major challenge in modeling multimedia

systems. Furthermore, these systems also suffer from the “heterogeneity gap” across

different modalities. This refers to the fact that visual and textual modalities are usually

described according to totally different schemes, and usually reside in different feature

spaces.

The main work of this thesis considers the joint modeling of image and text to address

cross-modal problems, a more recent paradigm of information retrieval. Cross-modal

systems support interactivity across modalities. For instance, a cross-modal retrieval task

finds images in response to a query text, or text documents in response to a query image.

These tasks are central to many applications of practical interest, such as finding on the

web the picture that best illustrates a given text e.g. in automatic text illustration, finding

the texts that best describe a given picture e.g. in image captioning task, etc. Furthermore,

the availability of rich information pertaining to various modalities makes users expect to

have a free choice of which content modality they submit as query and which one they

want to receive. In this context, a cross-modal system is considered as a natural way of

searching multimedia content and becomes increasingly important. Meanwhile, effective

and efficient cross-modal modeling remains a challenge, due to the heterogeneity gap across

different modalities and the semantic gap between low-level features and semantics.

Recently, jointly modeling image and text for cross-modal systems has continuously

attracted much attention in the multimedia community. Since images and text reside

in different feature spaces, one core issue of cross-modal models is how to reduce the

differences between these heterogeneous features. This can be accomplished through

the development of a common representation space resulting from a maximization of the

relatedness between the different modalities. Such a joint space typically relies on Canonical

Correlation Analysis (CCA) or its kernel extension [Hardoon et al. 2004; Costa Pereira

et al. 2014; Hwang and Grauman 2012a; Gong et al. 2014] that seek a common subspace

of both feature spaces that maximises the correlation of the projected points from the

original datasets. Several alternatives based on deep learning also exist [Ngiam et al. 2011;

Srivastava and Salakhutdinov 2012; Frome et al. 2013; Feng et al. 2014; Karpathy and

Fei-Fei 2015; Wang et al. 2015], that usually retain a different criterion to create the
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common space. In this space, both modalities are described similarly, with regards to new

latent variables whose definitions depend on the approach employed. Such a latent space is

mainly considered for cross-modal tasks as both images and text can be represented in

this space without any distinction. Meanwhile, it can be used to address various bi-modal

tasks that focus on semantics.

Since both modalities are homogeneous when projected onto the joint space, various

cross-modal tasks can be addressed, such as image or text retrieval [Hardoon et al. 2004;

Hwang and Grauman 2012a; Gong et al. 2014], social event detection [Ahsan and Essa

2014] or image classification [Costa Pereira et al. 2014]. The performance of such tasks

thus highly depends on the quality of the common representation space. The choice of the

method to build a common space is driven by two main considerations:

• The first is the core problem in designing cross-modal models and deals with the

quality of “matching” across modalities. The models aim to bring text and images

close together for a high quality of “matching” of information across modalities. Also,

common representation spaces need to favor inter-related information that usually

highlights semantics and discounts modality-specific information. Until now, most of

the existing work based on common representation spaces focuses on investigating

complete representations of data in each individual modality for building a robust

common space. Despite their relative successes, the resulting common representation

seems to be insufficient to narrow the gap between visual and textual modalities due

to several limitations of this joint space.

• The second consideration relates to the amount of resources used to learn a robust

common representation. It has of course a great importance in practice since the use

of a very large amount of data can lead to intractable computation, or at least a cost

that is too high to be interesting.

1.1 Motivations

The motivation of this thesis is three-fold.

First, we aim to obtain a robust representation of multimedia documents on the
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common representation space. A robust representation of data is a key to success in

several multimedia tasks such as classification, cross-modal retrieval, etc. As mentioned

above, multimedia documents are often described by image and text content which might

belong to the same semantics. Information extracted from these different modalities

are often semantically related and complementary. This multi-modal aspect is thus an

opportunity to learn a better representation of data by simultaneously analyzing these

modalities. The representation of data on the common latent space accounts for the

relatedness between images and text and further reduces semantic and heterogeneity gaps

betweens these two modalities. However, such a common representation space suffers from

several limitations. A direct use of these projections results in a limited quality of matching

between modalities and consequently hampers performance in cross-modal or bi-modal

tasks. Our motivation is to propose a robust common representation method that relates

visual and textual modalities more closely on their joint space. Another aspect of this

motivation is that a common representation should not only support cross-modal problems,

but remain appropriate for uni-modal (image or text only) and bi-modal (both image and

text) problems. In other words, we desire a representation that is robust for cross-modal

problems and at least “agnostic” (i.e. lead to equal or better results) for uni-modal and

bi-modal problems.

The second motivation relates to the development of a universal resource for different

specific problems. We expect to develop a common representation space as a generic

resource, from a large and general bi-modal dataset, then address specific retrieval or

classification problems using this resource. The interest of the “universal resource” is to

avoid re-learning a common space for each problem from a specific problem-related dataset.

The third motivation concerns the design of a conceptual multimedia model that allows

to attain a higher semantic level. Going beyond the one-to-one matching of multimedia

documents on the common space, a multimedia model is expected to be able to match

a given document to “more general concepts” that result from a set of other documents.

In practice, the first step would simply consists in learning a “general concept” from one

modality only, while being able to test it on another modality. This motivation is supported

by an increasing practical interest for this type of tasks. We assume that many concepts
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have the massive availability of corresponding labeled data in one modality such as text.

However, this is not always the case in other modalities such as image. In this case, it is not

possible to test a visual content against these concepts because of the missing labeled visual

information for learning. An ideal multimedia model allows one to detect these concepts on

visual content even if class labels are not (yet) available for this content (or only available

for a very limited amount of this content). In such a context, our motivation is to take

advantage of the high-level semantics of the textual resource in order to apply it on the

visual content. In particular, such a situation may become more common with the current

trends in micro-blogging, that evolves from purely textual content (e.g. historical Twitter)

to multi-modal content (e.g. current Twitter) or purely visual content (e.g. Instagram).

1.2 Goals

In this thesis, our objective is to propose methods that address bi-modal and cross-

modal problems by effectively and efficiently combining, simultaneously, visual and textual

information. More precisely, we address the following issues:

• Building a latent common representation space for images and text that supports

the “matching” of information from one modality to another to address cross-modal

problems.

• Identifying the limitations of the method used to build the common space in terms

of quality of “matching” between visual and textual modalities. Each “matching

deficiency” on the latent common representation space might hamper the performance

in multimedia tasks.

• Proposing methods to exploit heterogeneous visual and textual content in order to

enrich the multimedia document representation and thus enhance the performance of

retrieval and classification tasks.

• Designing efficient multimedia systems that use as few resources as possible.
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1.3 Contributions

This thesis investigates the problem of learning robust representations of multimedia

document to address the challenging cross-modal tasks. Our research relies on a common

representation space for visual and textual modalities. While the main work focuses on

cross-modal tasks, several parts of this thesis consider bi-modal tasks.

In practice, all the methods proposed in this thesis have been evaluated on the joint

spaces built using Canonical Correlation Analysis (CCA) or its kernelised version Kernel

Canonical Correlation Analysis (KCCA). Indeed, three reasons motivated this choice of

a common representation learning method. First, the CCA has been introduced quite

a long time ago by Hotelling [1936] and its theoretical foundations are well understood.

Besides, when I began my thesis, several significant works in the multimedia community were

revisiting and broadly investigating with success this method for cross-modal tasks [Hardoon

et al. 2004; Hwang and Grauman 2012a; Costa Pereira et al. 2014; Gong et al. 2014].

The last motivation concerns the objective of our research. Actually, the thesis is not

particularly interested in the method of building the common representation space for

image and text. Instead, our aim is to make use of such a joint space to develop robust

representations allowing to enhance the performance in cross-modal problems. In such

a context, basing our work on a method like (K)CCA that maximizes the correlation

between original modalities, is a reasonable solution. Furthermore, this is a sufficiently

“minimal hypothesis” to expect that the generic proposed methods would still be relevant

with more complex common representation space learning approaches. These motivations

of our choice are discussed in greater detail in Section 3.2. Also, a discussion of the choice

of the joint space learning approach is provided as one of our perspectives presented in

Section 7.2.

Deciding to approach cross-modal problems by developing a common representation

space for image and text, we identify the two major limitations of such a space as follows.

• Poorly-represented data on the common space

The first limitation relates to poorly-represented data on the common space. The

development of such a latent common space relies on extracting statistical regularities
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from a large amount of training data. Any fragment of textual data, e.g. words,

having very few occurrences or weak relations to other data is thus ignored in the

joint model. However, the poorly represented information can be very significant in a

retrieval context. Disregarding such information may strongly reduce the effectiveness

of the joint representation space.

• Separation between textual and visual modalites on the common space

For any given multi-modal document, the projections of its visual and respectively

textual features fall far apart. These projections tend to be grouped by modality

rather than according to their semantic on the common representation space. A

direct use of these projections results in a limited quality of “translation” between

modalities.

Our following contributions consider these two limitations in order to improve the

performance on cross-modal and/or bi-modal tasks. Our first contribution introduced in

Chapter 4 addresses the problem of ill-represented data on the joint space. Then, two

other contributions detailed in Chapter 5 and Chapter 6 deal with the separation between

image and text modalities. A summary of these contributions is given below, each of them

corresponding to an article published during the thesis.

Combining generic and specific information for cross-modal retrieval. In the

first contribution, originally published in Tran et al. [2015], we propose a joint model that is

able to include “non regular but likely to be relevant” information, for the textual modality

in particular. The proposed model first identifies such information (mainly words that

are rare in the dataset used to learn the common space) and distinguishes it from noise.

Then, it finds ways to combine it with the evidence provided by the joint representation

model. We examine how the proposed model is applied to address text-illustration, a typical

problem of cross-modal retrieval. This task consists in finding an appropriate image to

illustrate the content of a given textual document. By appropriately identifying and taking

such information into account, the results of cross-modal retrieval can be strongly improved.

The proposed approach is compared to others on a previously published benchmark [Feng

and Lapata 2010] and shown to produce better results.
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Uni-modal data completion with the missing modality. In the second contri-

bution, originally published in Tran et al. [2016b], we consider cross-modal classification, a

task that was not widely investigated in the multimedia community. It consists in training

models on data from one modality and applying them to predict data from another modality.

To address this specific problem, we proposed a method relying on a text-image common

representation space, called Weighted Completion with Averaging (WCA). A key aspect of

this contribution is the use of a bi-modal dataset, called auxiliary dataset, that acts as a

set of connections between the modalities within the joint space. We suggest to rely on

this auxiliary dataset to find the complementary information in the missing modality of a

uni-modal document. Once this complement has been identified, a more complete bi-modal

representation of any uni-modal data can be built from information in both modalities.

Experiments have been conducted on well-known datasets including the Pascal VOC07

image collection with tags collected by the work of Hwang and Grauman [2012a] and the

NUS Wide dataset [Chua et al. 2009]. The evaluation shows that the WCA representation

method significantly improves the results compared to the use of a latent space alone. Also,

the level of performance achieved with respect to classical tasks e.g. bi-modal classification

and cross-modal retrieval, makes cross-modal classification a convincing choice for real

applications.

Aggregating Image and Text Quantized Correlated Components. In the

third contribution, originally published in Tran et al. [2016a], we put forward a robust

representation method, called Multimedia Aggregated Correlated Components (MACC)

that aggregates information provided by the projections of both visual and textual modalities

on their joint subspaces. MACC representations aim to reduce the separation between the

projections of visual and textual features by embedding them in a local context reflecting the

data distribution in the common space. More precisely, a “unified vocabulary” (codebook)

is obtained by quantizing the projection space. Both visual and textual projections of a

document are then encoded with respect to one or several codewords and sum pooled to

get the final MACC representation. This representation can be employed for bi-modal

and uni-modal documents. In the case of uni-modal documents, the uni-modal completion

process relying on an auxiliary dataset (introduced in the second contribution) is performed
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to provide the corresponding complementary information in the missing modality of the

document. Extensive experimental evaluations have been conducted on three challenging

datasets including Pascal VOC07 with tags collected in the work of Hwang and Grauman

[2012b] for bi-modal and cross-modal classification, FlickR 8K [Rashtchian et al. 2010]

and FlickR 30K [Young et al. 2014] for cross-modal image retrieval. Obtained results

show that our proposed MACC representation allows to reach state-of-the-art performance

in various multimedia tasks such as bi-modal and cross-modal classification and image

retrieval.

1.4 Organization of the thesis

The rest of this dissertation is divided into six chapters.

In Chapter 2, we review some of the most indicative work on the joint modeling of

the image and text modalities for multimedia retrieval and classification, especially in a

cross-modal context. A main part of this chapter presents a thorough survey on common

representation learning for image and text. We end up the chapter by giving an overview

of the datasets of the state-of-the-art employed to evaluate models proposed in this thesis.

In Chapter 3, we study the characteristics of Kernel Canonical Correlation Analysis

method on which we rely to build common representation space. Thereafter, in this first

contribution, we identify two limitations of such a joint space, that are highlighted through

several experiments. The results of these experiments allow to better understand the

organization of the modalities within the common space, and consequently the reason why

cross-modal and bi-modal tasks are not “fully solved” by such an approach. Hence, this

chapter constitutes a kind of initial experimental motivation for proposing solutions to the

identified limitations, that are further developed in the three next chapters.

Chapter 4 describes our second contribution in which we address the limitation

concerning ill-represented data on the common representation space. For this purpose, we

put forward a method to combine poorly-represented information with other relatively

well-represented information in order to enhance the performance of cross-modal retrieval.

Our proposal is evaluated in the context of a challenging text illustration task.
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Chapter 5 describes our third contribution in which we introduce the cross-modal

classification problem. We then propose the WCA representation to address this task.

Relying on a bi-modal auxiliary dataset, WCA completes a uni-modal document and then

builds a more comprehensive bi-modal representation for this document. Experimental

evaluations show that the bi-modal WCA representation significantly improves the “trans-

lation” between modalities and consequently the performance in cross-modal classification

compared to the direct use of the original common representations.

Chapter 6 describes our fourth contribution. With the aim to reduce the separation

between text and image on the joint space, we introduce in this chapter the bi-modal

MACC representation. We propose a method to build this representation for bi-modal

documents and uni-modal documents. Finally, extensive experiments are conducted for

image retrieval and various (bi-modal and cross-modal) classification tasks, showing the

effectiveness of our proposed MACC representation.

Chapter 7 concludes this dissertation. We first summarize the motivations and the

contributions of this thesis. We eventually discuss the perspectives that can be inspired by

the presented research problems. In particular, we consider the extension of our contribution

to the case of common spaces built on other principles than correlation maximization.
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2.1 Introduction

This chapter reviews some of the most indicative work in the literature of multimedia

retrieval and classification in the context of social media. We consider two modalities of

data: the visual modality represented by images and the textual modality represented by

tags or descriptions associated to each image.

We start by reviewing various techniques of single-media content representation, respec-

tively for visual and textual modality in Section 2.2. Afterwards, we briefly overview different

multimedia information retrieval and classification problems covering uni-modal 2.3.1, multi-

modal 2.3.2 and cross-modal 2.3.3 paradigms. For each of these problems, we introduce

several relevant related work that were proposed over the last few years. We center around

those involved in classification, retrieval and annotation tasks for visual and textual data.

Our main research focuses on the problem of cross-modal between image and text

modalities. The recent literature in computer vision and multimedia has shown that

learning a common representation to these two modalities is a relevant solution to address

such a problem. We thus continue this chapter by proposing a brief state-of-the-art of

joint embedding approaches for image and text modalities in Section 2.4. In general, these

approaches aim to learn a mapping from the original visual or textual space to a common

representation that preserves the relatedness of data between the different modalities.

According to the fundamental principle of the resulting common space, we further classify

these approaches into three categories: correlation learning (Section 2.4.1), topic modeling

(Section 2.4.2) and rank-based approaches (Section 2.4.3). Our considerable attention has

been paid to those relying on correlation learning scheme.

Lastly, we conclude the chapter by a summary on various multi-modal datasets including

BBC News, Wikipedia articles, Pascal VOC07, Nus WIDE and FlickR 8K/30K databases

in Section 2.5. They are treated in our contribution for different multimedia problems such

as text illustration, cross-modal image retrieval or cross-modal classification.
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2.2 Single-media representation

Feature extraction and representation is a crucial stage in multimedia processing. We

briefly review several visual and textual representations which have been successfully used

in multimedia retrieval over the last few years.

2.2.1 Visual Features

Bag-of-Visual-Words. A standard approach to describe an image is to extract a set of

local patch descriptors, encode them into a high dimensional vector and then pool them into

an image-level signature. The most common patch encoding strategy consists in quantifying

the local descriptors into a finite set of prototypical elements (called codebook). This leads

to the popular Bag-of-Visual-Words(BoVW) representation [Sivic and Zisserman 2003;

Csurka et al. 2004a]. Before the rise of convolutional neural networks, BoVW has been

the dominant feature trend for image representation in many computer applications e.g.

TRECVID video retrieval [Over et al. 2014] and has been seen as one of the state-of-the-art

representation for visual content. BoVW was inspired by the traditional Bag-of-Words

(BoW) method proposed by Salton and McGill [1986]. While BoW represents a textual

document by a vector of the occurrences of each word in the document, BoVW aggregates

local descriptors extracted from interest points (image patches) into a fixed-size vector

that describes the global properties of the image. An example of these local features is the

well-known dense SIFT descriptors [Lowe 2004].

The pipeline of BoVW is described as follows (see Figure 2.1).

Codebook learning. From every image in a training dataset, local features are extracted.

BoVW learns a codebook for example by performing a k-means algorithm on these local

features. Each cluster is treated as a discrete visual word.

Coding. For each image, local features are mapped to visual words into compact

descriptors during the coding step. Different coding methods have been investigated in the

literature. In the original BoVW model, hard coding [Csurka et al. 2004b] maps the local

feature to its nearest visual word. However, this coding often introduces large quantization

errors. van Gemert et al. [2010] proposed soft coding method that assigns a local feature
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Figure 2.1: The flowchart of the Bag-of-Visual-Words (BoVW) generation scheme including
three steps of codebook learning, local features coding and pooling. Figure extracted
from [Znaidia 2014].

to all codewords, according to the similarity between this local feature and each codeword.

While the quantization errors has been reduced, no proof showed that the use of the entire

codebook is optimal. Wang et al. [2010] proposed an efficient locality constrained linear

coding (LLC) by mapping the local feature to only the L-nearest codewords. This promising

image representation has shown its computational advantage and yielded good performance

for image classification [Wang et al. 2010; Liu et al. 2011].

Pooling. In the pooling step, these local descriptors are aggregated into a unique

image-level representation using a pooling function. The latter can be the average, the

sum [Lazebnik et al. 2006] or the maximum function [Yang et al. 2009] of all local

descriptors (component by component) of an image. The sum-pooling is the sum of the

coding coefficients obtained on local features while the average-pooling is its normalized form.
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Several work [Boureau et al. 2010; Wang et al. 2010; Yang et al. 2009; Liu et al. 2011]

indicate that max-pooling that chooses the largest coefficient for a visual word can improve

the performance of classification and recognition task. Recently, an extension of pooling

scheme, called BossaNova, was proposed by Avila et al. [2013] in order to enhance image

representation. The technique keeps a histogram of distances between the local descriptors

of the image and those in the codebook and hence preserves important information about

the distribution of the local descriptors around each codeword. BossaNova produces a

distance distribution instead of compacting all information concerning a codeword into a

single scalar.

Spatial Pyramid Matching. Since the classic BOVW is an orderless signature that

disregards the location of the visual words in the image, the spatial pyramid matching

(SPM) [Lazebnik et al. 2006] is an interesting way to incorporate some global spatial

contextual information into the signature. SPM consists in partitioning an image into

sub-regions in different manners. For each partition, BoVW is computed for each sub-region.

A pooling operator is then conducted on these region-relative BoVWs to build a unique

representation of image relying on this division. The final representation of image is a

concatenation of all representations resulting from different image partition. SPM shows

significantly improved performance on several multimedia tasks such as the challenging

scene categorization [Lazebnik et al. 2006] or image classification [Bosch et al. 2007].

Fisher Vector. The Fisher Vector (FV) extends the BoVW by going beyond counting,

i.e. 0-order statistics, to encode second order statistics. The FV representation is computed

by characterizing local descriptors by their corresponding deviations from an “universal”

generative Gaussian Mixture Model (GMM) of the loglikelihood of the problem. The GMM

model can thus be seen as a “probabilistic visual vocabulary”. The deviation is measured by

computing the gradient of the sample log-likelihood with respect to the model parameters.

Originally designed for classification, Perronnin et al. [2010b] further greatly improved the

retrieval performance of FV by applying a set of normalization strategies e.g. L2 or power

normalization to FV and combining this representation with the spatial pyramids. The

FV representation shows many advantages in comparison to the BoVW such as its lower
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computational cost by using much smaller vocabularies or its higher performance even with

simple linear classifiers. However, while the BoVW is quite sparse, the FV is almost dense.

Vector of Locally Aggregated Descriptors. Jégou et al. [2010] proposed a simple

efficient way of aggregating local image descriptors into a vector of limited dimension for

large-scale applications, called Vector of Locally Aggregated Descriptors (VLAD). VLAD

can be seen as a simplified version of the Fisher vector representation, that uses a (quite

small) codebook in place to the GMM of the log-likelihood to represent the “universal

vocabulary”, and replace the gradient by a simple point-wise difference of the local vector

and the codewords.

Assuming c1, c2, .., ck a codebook learned using k-means. Each local descriptor xt

(d−dimensional) is associated to its nearest visual words NN(xt) in the codebook. For

each codeword ci, the differences xt − ci of the vectors xt assigned to ci are accumulated

vi =


xt such that NN(xt)=ci

(xt − ci) (2.1)

The VLAD representation v is the concatenation of the d−dimensional vectors vi and has

D = d × k dimensions.

By employing an asymmetric product quantization scheme for the vector compression

part, Jegou et al. [2012] jointly optimized the dimensionality reduction and compression

of VLAD representation. This image representation can be reduced to a few dozen bytes

while preserving high accuracy. Searching a 100 million image dataset takes about 250 ms

on one processor core. However, while improving scalability, this aggressive compression

significantly decreases accuracy compared to the use of full FV.

CNN-based deep visual features. Before the rise of the convolutional neural networks

(CNNs), Fisher Vector and Vector of Locally Aggregated Descriptors have been powerful

shallow representations for image retrieval and classification, particularly on the PASCAL

VOC 2007, Caltech101 [Chatfield et al. 2011, 2014] and on the renowned ImageNet

dataset [Russakovsky et al. 2015]. Since 2011, CNNs significantly improved the state of

the art in many computer vision tasks. CNN networks which are trained for classification
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Figure 2.2: The CNN-based features brought a significative breakthrough in image classifi-
cation task on ImageNet dataset (from [Russakovsky et al. 2015])

on ILSVRC have been used as feature extractors by removing the output layer (thus

using the output of the last fully connected layer as image representation), then used in a

transfer learning scheme on other classification benchmarks. Several CNN-based deep visual

features extracted from these pre-trained networks have been proposed to the computer

vision community [Jia et al. 2014]. These deep features have shown to perform excellently

over standard classification and detection benchmarks [He et al. 2015a; Simonyan and

Zisserman 2014; Szegedy et al. 2015; Ioffe and Szegedy 2015; He et al. 2016].

Concretely, both powerful performance and revolution of the CNNs features has been

clearly shown through image classification task on the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [Russakovsky et al. 2015] (see Figure 2.2). In ILSVRC

2011 challenge, Fisher Vector reached the state-of-the-art with a top-5 classification error of

25.8%. Afterward, variants of CNN models have achieved increasingly better performance

by bringing down the classification error to 16.4% with AlexNet [Krizhevsky et al. 2012],

11.7% with Clarifai [Zeiler and Fergus 2013], 7.3% with VGG [Simonyan and Zisserman

2014], 6.7% with GoogLeNet [Szegedy et al. 2015], 4.9% with PReLU-net [He et al. 2015a]
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and recently 3.6% with ResNet [He et al. 2016]. The humain expert for this task is 5.1%.

Also, the classification performance evolution on PASCAL VOC datasets has been

exploited in the work of Chatfield et al. [2014]. On the Pascal VOC 07 benchmark, using

shallow visual features, the mean Average Precision (mAP) was 54.48% for the BoVW in

2008 and 61.7% for the improved Fisher Vector in 2010 [Perronnin et al. 2010b]. Recently,

the use of CNN-based features has further increased the mAP score to 82.4 [Chatfield et al.

2014], 85.2 [Wei et al. 2014], 86.1 [Simonyan and Zisserman 2014], 88.2 [Tammazousti

et al. 2016].

Above image classification, Pepik et al. [2015] has indicated that a direct usage of the

CNN-trained features can yield top performing results on tasks such as object detection [Gir-

shick et al. 2013], pose estimation [Chen and Yuille 2014], face recognition [Schroff et al.

2015], object tracking [Li et al. 2014], keypoint matching [Fischer et al. 2014], stereo

matching [Zbontar and LeCun 2015], optical flow [Dosovitskiy et al. 2015], boundary

estimation [Xie and Tu 2015], and semantic labeling [Long et al. 2015].

Beside the performance obtained, another advantage of CNN-based features is that

their extractors were publicly released. In other words, we can extract and use CNN-

based features without requiring the knowledge or computing infrastructure for training a

convolutional neural network from scratch. OverFeat [Sermanet et al. 2013], Caffe [Jia

et al. 2014] and VGG [Simonyan and Zisserman 2014] were the first CNN off-the-shelf

features. These CNNs are both trained using ImageNet data associated to 1,000 concepts

(classes) of the ILSVRC challenge.

The typical architecture of a CNN is composed of three cascaded stages: convolution,

non-linearity and pooling [Krizhevsky et al. 2012]. The convolutional layers output feature

maps, each element of which is obtained by computing a dot product between the local

region it is connected to in the input feature maps and a set of weights (filters). In general,

an elementwise non-linear activation function is applied to these feature maps. One of

the most used is the rectified linear unit (ReLU) that implement f(x) = max(0, x). The

pooling layers perform a downsampling operation along the spatial dimensions of feature

maps via computing the maximum on a local region. The fully-connected (FC) layers

finally follow several stacked convolutional and pooling layers, and the last fully-connected
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Figure 2.3: CNN-based feature extracted from pre-trained CNN model

layer is a Softmax layer that computes the scores for each defined class. CNNs transform

the input image from original pixel values to the final class scores through the network in

a feedforward manner. The parameters of CNNs (i.e., the weights in convolutional and FC

layers) are trained with classic stochastic gradient descent1 and uses the backpropagation

algorithm [Williams and Hinton 1986] to efficiently compute the gradient. Most of CNNs

such as AlexNet [Krizhevsky et al. 2012], CaffeNet [Jia et al. 2014], VGG-Net [Simonyan

and Zisserman 2014] and [Zhou et al. 2014] have this architecture.

In this dissertation, we do not get into the technical details on how CNNs models are

trained in each stage. We are more interested in the direct use of the CNN features for

computer vision tasks. The internal layers of a CNN can act as a generic extractor of image

representations, regardless on the architecture of networks (e.g the number of convolutional

of fully-connected layers, the size of the sliding window used for the convolution operation,

the image transformations or the regularization used), see Figure 2.3. Most of current

1Actually, instead of using only one sample, the gradient is computing by averaging several samples,
grouped into a so-called minibatch
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CNN-based visual feature extractors are trained on 1,2 million images from 1,000 concepts

of the ImageNet dataset. The network presented in the Figure 2.3 is a simplified view

of AlexNet proposed by Krizhevsky et al. [2012]. The size of the parameter vectors (the

number of neurons) is respectively 290400 for the first layer C1, 186624 for C2, 64896 for

C3 and C4, 43264 for C5, 4096 for the full-connected layers fc6 and fc7. The last fully

full connected layer fc8 (size of 1000) offers predictions for the 1000 ImageNet classes on

which the CNN was trained. In our work, we use the deep visual features extracted from

OverFeat and VGG network. While these CNNs are designed in different manner, the

feature extraction procedure is the same as described above.

2.2.2 Textual Features

Bag-of-Words. Bag-of-Words (BoW) model [Salton and McGill 1986] is the most basic

but nevertheless widely employed technique for text representation. This representation has

been applied in various textual tasks such as retrieval or classification. The Bag-of-Words

first obtains a textual vocabulary from all of the available documents. Several preliminary

steps are usually required for vocabulary learning such as reducing inflectional forms and

sometimes derivationally related forms of a word to a common base form e.g. stemming

and lemmatization, removing words that are known to be usefulness to discriminate, such

as articles and determinants, some adverbs, etc. A document is modeled by a vector where

each component is a function of the frequency of appearance of a word of the dictionary in

this document, followed by a L2-normalization. For instance, this function can be term

frequency (TF), term frequency–inverse document frequency (TF-IDF) or BM25.

As in the basic BoW model, this function is term frequency (TF) referring to how many

times a dictionary’s word is present in the document. Another way than to judge the topic

of an document by the words it contains consists on Term frequency–inverse document

frequency weighting (TF-IDF). This measure reflects how important each word is to a

document in a collection or corpus. The importance increases proportionally to the number

of times a words appears in the document but is offset by the frequency of the word in

the corpus. TF-IDF weights are designed to give more importance to terms frequent in

the document while penalizing words appearing in too many documents. Other weighting
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method e.g. BM25 [Robertson et al. 2009] can yield better performance than TF-IDF.

These representations have been successfully used in many applications such as document

retrieval, classification, topic modeling or image annotation, etc. Specially, Hwang

and Grauman [2012a] integrated the order of image tags provided by user in the BoW

representation to leverage the “relative importance” of objects in the scene.

Applying BoW model for text representation, two documents (or a query and a

document) are considered similar if they are exactly composed of the same words by

computing a cosine similarity between two representations. However, the vector space

representation suffers from the classics problems of natural languages: synonymy and

polysemy. Synonymy refers to a case where certain topic can be expressed with different

words, e.g. car and automobile. Polysemy on the other hand refers to the case where a

given word can be used in totally different context.

Probabilistic topic models. These models attempt to take into account the links

between words in order to address the shortcomings of the classical vector representation.

Topic-based representation methods have been successfully applied to many text mining

tasks such as retrieval, summarization, categorization and topic models.

Among topic models, Latent Semantic Analysis (LSA) [Deerwester et al. 1990] is a

well-known method for text representation. LSA represents the documents with respect

to latent topics identified from the correlations between the occurrences of terms in the

vocabulary. LSA maps the standard vector space representation of a document to a lower

dimension latent space where each dimension can be seen as a topic. For this purpose,

one first determines the document-term matrix which describes the frequency of terms

occurring in a collection of documents. In such matrix, rows correspond to documents in

the collection and columns correspond to terms. There are various schemes e.g. TF-IDF for

determining the value that each entry in the matrix should take. LSA consists in applying

a Singular Value Decomposition (SVD) to obtain a lower-dimensional approximation of

this documents-terms matrix.

The idea of identifying a number of latent topics from the set of terms in a vocabulary

learnt from a corpus or collection of documents has been subsequently developed by using
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other techniques such as Probabilistic Latent Semantic Analysis (pLSA) [Hofmann 2001]

or Latent Dirichlet Allocation (LDA) [Blei et al. 2003]

Explicit Semantic Analysis. The mentioned textual representation methods are based

on purely statistical techniques that did not make use of a priori world knowledge. To

improve text representation with massive amounts of world knowledge, Gabrilovich and

Markovitch [2007] proposed a novel textual representation method, called Explicit Semantic

Analysis (ESA). ESA represents a text (document) as a weighted mixture of a predetermined

set of natural concepts derived from Wikipedia, the largest encyclopedia in existence. In

this way, the meaning of a text fragment is thus interpreted in terms of its affinity with

a host of Wikipedia concepts. This semantic analysis technique is explicit in the sense

that it manipulates explicit concepts grounded in human cognition, rather than “‘latent

concepts”’ used by LSA, pLSA or LDA.

Word2Vec: a neural probabilistic language model. The previous representation

methods consist in describing a document (text) using the set of words (terms) that it

contains. It is worth that information relying on the context of words is ignored in such a

representations. However, the context of a word in a sentence allows characterizing quite

well the word on both syntactic and semantic sides. Therefore, such information is useful

to improve the textual representation.

The idea of word’s context modeling is employed in Word2Vec [Mikolov et al. 2013], a

recent word embedding trained from two-layer neural network. Word2Vec takes as input

a large corpus of text and produces a high-dimensional vector space, typically of several

hundred dimensions. Using Word2Vec, each unique word in the corpus is assigned to a

corresponding vector in the space. These words vectors are positioned in the vector space

such that words that share common contexts in the corpus are located in close proximity

to one another in the space. With the proposed Skip-gram model, the goal of Word2Vec

consists in finding representations that allow to predict the best possible context of input

word.

The Word2Vec representation can be developed not only for individual words but
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also for a short sentence containing several words. In such cases (e.g. phrase, list of

tags), a possible representation can be computed as the center of gravity of Word2Vec

representations of words in the document.

A Word2Vec model pre-trained on part of Google News dataset of about 100 billions

words has been publicly released [Mikolov et al. 2013]. Using this model, each word is

modeled by a 300-dimensional vector. Unlike the basic representations such as TF-IDF or

ESA, the Word2Vec representation is fairly low-dimensional (e.g. 300) and dense.

Recently, an effective textual representation based on the original Word2Vec representa-

tions have been proposed in the work of Klein et al. [2015]; Wang et al. [2016b]. The novel

technique aims to use the Fisher Vector [Perronnin et al. 2010b] to represent sentences by

pooling the Word2Vec embedding of each word in the sentence.
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2.3 Multimedia information retrieval and classification

In this section, we review work on multimedia information retrieval and classification

for image and text, concerning uni-modal, multi-modal and cross-modal problems.

2.3.1 Uni-modal problems

Many extensive researches have been conducted on the problems of image and text

retrieval in the fields of information retrieval, computer vision and multimedia. In the early

years of these domains, the emphasis has been placed on uni-modal approaches.

Uni-modal retrieval is a classical problem in multimedia retrieval [Salton and McGill

1986; Smeulders et al. 2000; Shen et al. 2000; Srihari et al. 2000; Vasconcelos 2004; Datta

et al. 2008] where query and retrieved documents in the reference base are represented

according to the same modality. Text-based and content-based retrieval are the popular

uni-modal problems which were introduced in the early years of image retrieval. For

example, in [Shen et al. 2000] a query text and in [Vasconcelos 2004] a query image is

used to retrieve respectively similar text documents and images. An example of uni-modal

problem is illustrated in Figure 2.4.

Figure 2.4: Illustration of a content-based image retrieval (CBIR) system

The first contributions in image retrieval centered around the text-based (keyword-

based) retrieval systems which used keywords as descriptors to index an image [Salton and
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McGill 1986; Shen et al. 2000; Srihari et al. 2000]. The keywords are extracted from the

texts surrounding image such as image title, image caption or content of article containing

image. For instance, Shen et al. [2000] explored the context of web pages as potential

annotations for the images in the same pages. Srihari et al. [2000] proposed to extract

named entities from the surrounding text to index images. Afterward, the semantic of an

image is represented by a textual representation, for instant using TF-IDF [Salton and

McGill 1986], Word2Vec [Mikolov et al. 2013], from these relevant keywords. During the

retrieval stage, the system evaluates the similarity between textual representations of query

text and retrieved images. The major constraint of text-based image retrieval methods

is that it requires high-quality text information of image, e.g. annotation quality and

completeness. In many situation, this requirement may not be satisfied. Having humans

manually annotated images by entering keywords or metadata in a large database can be

time consuming and may not capture the keywords desired to describe the actual content

of the image.

A few years later, content-based image retrieval (CBIR) has been employed as an

alternative to text-based image retrieval. CBIR concentrates on the contents of image

rather than the metadata e.g. keywords, tags, descriptions associated with the image which

are used in text-based approaches. More particularly, it regards information extracted from

image itself such as colors, shapes, textures, etc. Hence, such paradigm allows the ability

to query by example, which means that users express their queries by providing examples,

e.g. images, of what they are looking for, and items, e.g. images, in reference database are

retrieved by similarity to these user-provided examples. Various types of visual features

including low-level and high-level features have been investigated in CBIR. At early years,

low-level features such as color, texture, shape, spatial relations or combination of above

features were used. A comprehensive survey on these approaches is given by Liu et al.

[2007]. More recently, advanced features such as Fisher Vector [Perronnin and Dance 2007]

or those extracted from a neural network [Jia et al. 2014; Simonyan and Zisserman 2014]

have efficiently improved the performance of CBIR systems.

Despite these advantages, it is important to recognize the shortcomings which make

CBIR not effective for all multimedia search problems. One problem with most CBIR
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Figure 2.5: Semantic gap between low-level visual features offered by CBIR systems and
semantic concepts identified by users

approaches is the reliance of visual similarity to judge semantic similarity. This fact

may be problematic due to the well-known “semantic gap” between low-level content and

higher-level concepts. In a review of the early years of CBIR, Smeulders et al. [2000] defined

the latter as “the lack of coincidence between the information that one can extract from the

visual data and the interpretation that the same data have for a user in a given situation”.

The latter remains a major problem in CBIR and severely hampers the performance of

uni-modal image retrieval systems.

The semantic gap manifests typically between the image semantic that a user requires

and the low-level features that CBIR systems offer (Figure 2.5). While humans interpret

images at different levels, both in low-level features (color, texture, shape, spatial layout)

and high-level features (keywords, text descriptors), a machine is only able to interpret

images based on low-level image features. Extensive experiments on CBIR show that

low-level image features often fail to describe the high-level semantic concepts in user’s

mind [Zhou and Huang 2000]. On the other hand, while CBIR systems index images

using low-level features, humans prefer to express their information needs as queries at the

high-level semantic of human natural language instead of the level of preliminary image

features. For instance, users’ queries may be “find an image of sunset” rather than “find an

image contains red and yellow colors”. Recently, CNN-based feature is a hope for bridging

the semantic gap in CBIR by an embedding from low-level feature extracted from images

to concepts of higher level of semantics.
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2.3.2 Multi-modal problems

Over the last decades, with the advance of computer network and multimedia technolo-

gies, large amounts of different types of media data, including images, texts and videos have

been rapidly generated, shared and accessed on social networks such as FlickR, Twitter,

YouTube and Wikipedia. It is common that different types of data are used to describe the

same events or topics. For example, a web page usually contains not only textual document

but also images or videos used to illustrate the article’s content. Such different types of

data are referred as multi-modal data, which exhibit heterogeneous properties.

In multi-modal problems, queries and entries in the reference base combines multiple

content modalities. For example, text and image of a news article are both used to retrieve

entries with the same combination of modalities (e.g. text and image) of documents in the

reference base. Many applications for multi-modal data have been introduced and exploited

in the multimedia community such as hot topic detection, personalized recommendation,

video retrieval or event detection. These efforts of multi-modal approaches have become

increasingly widespread, due in part to large-scale research and evaluation benchmarks

such as TRECVID [Smeaton et al. 2006] and ImageCLEF [Müller et al. 2010], involving

datasets that span multiple data modalities.

Classical uni-modal approaches are not able to deal with multi-modal problem because

they only perform similarity search of the same media type, such as text-based retrieval or

content-based retrieval, etc. Multi-modal approaches aim to integrate the use of data from

multiple modalities so that they can support the similarity search for multi-modal data.

Since there exists correlative and complementary relations between different modalities

of data such as image and text, a fusion of data from these modalities can improve the

performance of a uni-modal model. Various attempts have already been proposed in the

literature to fuse multiple modalities for multi-modal tasks [Li et al. 2009; Barnard et al.

2003; Wang et al. 2009; Liu et al. 2013]. The approaches are categorized into two distinct

multi-modal fusion schemes: early fusion and late fusion [Snoek et al. 2005]. In early

fusion methods, fusion is performed by combining the low-level features of multimedia

object and then using the fused features for further processing e.g. classification or retrieval.
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On the other hand, in late fusion methods, individual uni-modal learning methods are first

used in each modality separately and their high-level results and decisions are then fused.

Early fusion

Early fusion is performed at the feature level (Figure 2.6). The approach first extracts

uni-modal features for image and text and then combines these features into a single

multimedia representation. Classification or retrieval task can be performed on these

multimedia representations.

Figure 2.6: Multi-modal approach based on early fusion.

A simple and widely employed method to combine the single-media representations in

the early fusion is to concatenate these representations. Li et al. [2009] learned support

vector machine (SVM) models for landmark classification using the concatenation of visual

and tag features. The classification performance showed the early fusion of text and image

leaded to significant improvements compared to uni-modal classification on textual or visual

features. However, such a simple concatenation only allows to exploit the complementary

relation between text and image and ignores the correlation that can exist between these

two modalities.

Other early fusion approaches attempted to take into account the correlation between

image and text. Barnard et al. [2003] introduced multi-modal models which learn the
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joint distribution of image regions and words. The models were used to predict words

associated with whole images (annotation) and corresponding to particular image regions

(region naming).

Despite the simplicity of the early fusion approaches, one of their disadvantages is

the large size of the representations issued from a concatenation operator of single-media

features. The induced curse of dimensionality becomes a bottleneck for the learning task.

Another disadvantage of such approaches is the difficulty in combining features of different

natures (e.g. image and text) into a common homogeneous representation since each

dimension of the resulting vector does not correspond to the same underlying type of

information. For instance, one dimension can correspond to a quantity of “green color”

while another can be a normalized weight of the word “leaves”. Minkowsky normalization

e.g. dividing by the Euclidean norm of each vector before concatenation can at least make

the range of the dimension relatively similar.

Late fusion

Figure 2.7: Multi-modal approach based on late fusion.

Late fusion approaches are competitive alternatives to overcome the drawbacks of

early fusion. While early fusion is performed at the feature level, late fusion is performed

at decision level (Figure 2.7). The late fusion scheme consists in integrating the scores

predicted by individual classifiers of different modalities through a fusion operator. The

fusion can be made from a statistical rule (such as sum, average, max, min, majority

voting) or a classification-based approach. The late fusion approaches not only provide a

trade-off between preservation of information and computational efficiency but also perform
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favorably compared to early fusion methods in several comparative studies, for instant on

visual concept detection in video sequences [Snoek et al. 2005; Liu et al. 2013] or on

video retrieval [Amir et al. 2004].

Wang et al. [2009] proposed to build a textual feature for an untagged image and then

merge both textual and visual content for object image classification task (see Figure 2.8).

The textual feature is built using an auxiliary dataset of images annotated with tags e.g.

downloaded from FlickR. For each image, the model extracts visual features and finds its

nearest neighbor images from the auxiliary set. Text associated with these near neighbor

internet images is used to build the textual features. For image classification task, the model

train two classifiers corresponding to concepts separately, one for image and the other one

for text. In the fusion step, a third classifier is trained to combine the classification scores

of the two initial classifiers into a final prediction. This classifier uses logistic regression

and is learned on a validation set.

Figure 2.8: The framework of the approach proposed by Wang et al. [2009].
For each image, the model extracts its visual features and finds the most similar images from
auxiliary dataset. The text associated with these near neighbor auxiliary images is summarized to
build the textual features. Textual and visual classifiers are separately trained and their scores are
fused to perform the final classification.

Liu et al. [2013] proposed a fusion scheme for visual concept recognition, called Selective

Weighted Late Fusion (SWLF). SWLF automatically selects and weights the scores from

the best features among a set of textual and visual features according to the concept to

be classified. Concretely, this approach includes a training stage and a testing stage. The

training stage trains models using SVM on training data for each pair of concept and type

of features. The SWLF is learned by optimizing the overall mean average precision of these
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models on validation data in order to selectively choose the best classifiers applied for an

testing data. In the testing stage, the approach extracts various types of features of the

input image and then applies the corresponding fusion scheme proposed by SWLF for each

concept to deliver a recognition decision.

2.3.3 Cross-modal problems

Recently, the research attention in multimedia community has largely focused on cross-

modal problems. In cross-modal model, query from one type (modality) of data can be

matched to entries from other types of data in the reference base. That is, in the context

of image and text, given a text document, it can find the most related images ; or given an

image, it finds the words (sentence) that best describe the image. These tasks are central

to many applications of practical interest, such as finding the picture that best illustrates a

given text (e.g., to automatically illustrate a page of a story book), finding the texts that

best match a given picture (e.g., to automatically generate a caption or a description of a

picture), or furthermore searching using a combination of text and images. The general

scheme of cross-modal retrieval problem is illustrated in Figure 2.9.

Cross-modal model is more flexible than uni-modal and multi-modal models, since by

submitting either one or multiple media objects in cross-modal model, we can obtain all of

the related media objects of different media types. Furthermore, since different types of

media provide complementary information, a cross-modal model can help to search in a

more natural way. For instance, given a query image of the Eiffel tower, besides retrieving

the images of Eiffel tower, cross-modal model can also suggest the related media contents

of different media types such as text description, e.g. the travel guide about this site.

Besides, cross-modal is still a difficult problem in defining how to measure the content

similarity between different types (modalities) of data. In terms of images and texts, cross-

modal model directly addresses the well-known problem of “semantic gap” [Smeulders et al.

2000] which is described in Section 2.3.1, and refers to the interpretation inconsistency

between the high-level semantic description of visual content and the extracted low-level

image descriptors. Cross-modal model requires cross-media relation modeling to bridge

the “semantic gap” so that users can retrieve what they want by submitting what they
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Figure 2.9: Cross-modal retrieval problem.
Queries and retrieved items in reference base belong to different modalities.

have [Wang et al. 2016a].

Another important requirement for cross-modal model is to reduce the heterogeneity

gap across modalities. This gap refers to the fact that modalities are usually described

according totally different scheme and that they usually do not even lie in the same vectorial

space. In fact, images live in a continuous feature space whereas text (e.g. tags, sentences,

keywords) are discrete.

To reduces these gaps existing across different modalities, recent studies have concen-

trated on learning a common space jointly for image and text on which data from these

modalities have unique representations. One popular solution is to learn view-specific pro-

jection directions using paired samples from different views (modalities) to project samples

from different views into a common latent space. In this procedure, feature extraction for

multi-modal data is considered as the first step to represent various modalities of data.

Based on these representations of multi-modal data, cross-modal correlation modeling is

performed to learn common representations for various modalities of data. On the joint
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representation space, the learned features can be directly measured between modalities and

preserve the correlation across modalities. Therefore, the common representations enable

the cross-modal problems such as cross-modal retrieval, cross-modal classification, etc. The

details of such approaches are presented in the following Section 2.4
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2.4 Common representation for text and image

Recently, various cross-modal applications such as text illustration, image captioning, or

visual question answering have attracted considerable research attention. A core problem

of these applications is how to measure the semantic similarity between visual data, e.g.

image or regions, and text data, e.g. a sentence or tags. The most popular solution aims

to learn a joint embedding space where text and image modalities can be both represented

and directly compared. More precisely, these approaches learn view-specific projections

using paired samples from different modalities e.g. text and image, to project samples

from these views into a common latent space. Feature extraction for multi-modal data

is considered as the first step to represent various modalities of data. Based on these

representations of multi-modal data, cross-modal relation modeling is performed to learn

common representations for various modalities. The embedding space is usually of low

dimension and is very suitable for cross-modal tasks.

Figure 2.10: Different categories of common representation learning approaches for text
and image.
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According to the fundamental principle of the resulting common space, we catego-

rize common representation learning approaches into three groups: correlation learning

approaches, topic modeling approaches, and rank-based approaches. In what follows, we

describe significant work for each category. Our particular interest lies on the correlation

learning approaches for visual and textual content.

2.4.1 Correlation learning approaches

Subspace learning consists of the most popular methods for cross-modal problem. Such

approaches aim to learn a common subspace shared by different modalities of data on

which the similarity between these modalities can be directly measured. Subspace learning

methods enforce pair-wise closeness between different modalities in the common subspace.

Canonical correlation analysis (CCA) is one of the most popular unsupervised subspace

learning method for establishing inter-modal relationships between data from various

modalities. CCA learns common representation subspace between two sets of data (e.g.

data from two modalities) where the correlation between these two sets is maximized.

CCA and its extensions, e.g. Kernel CCA (KCCA), have been widely used for cross-modal

retrieval between image and text [Hardoon et al. 2004; Hwang and Grauman 2012a; Gong

et al. 2014; Costa Pereira et al. 2014], cross-lingual retrieval [Udupa and Khapra 2010]

and other vision problems such as automatic face recognition [Li et al. 2011].

A review on the principle of CCA and its kernelized version KCCA for common

representation space learning is further described in 3.2. In this section, we review

significant work that employ (K)CCA to build a joint space to address the cross-modal

problem between image and text. These approaches can be either unsupervised [Hardoon

et al. 2004; Hwang and Grauman 2012a; Hodosh et al. 2013; Yao et al. 2015] or

supervised using the label information of data [Gong et al. 2014; Costa Pereira et al.

2014; Rasiwasia et al. 2014; Sharma et al. 2012].

CCA and its kernelised version KCCA were first introduced in cross modal retrieval

problem in the seminal work of [Hardoon et al. 2004]. The principle is to compute

a common latent space from both visual and textual features such that the correlation

between the projections of both modalities for a given bi-modal dataset is maximized. All
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the documents of a reference database are then projected onto the common latent subspace.

When a query is processed, it is also projected onto this space and its nearest neighbors can

be found directly, independently of their original modality (visual or textual), according to

their similarity in the latent space.

A refinement was proposed by [Hwang and Grauman 2012a] to take into account the

objects present in a scene with their relative significance within that scene. This is modeled

by the rank of the tags used by an “ordinary user” to describe the scene. Then, KCCA

is employed with an average kernel over three features to describe the visual aspect and

three other features for the textual aspect, including the relative and absolute tag rank.

Hodosh et al. [2013] evaluated the performance of the (K)CCA on the much more

stringent task of image description. The task consists in associating images with sentences,

that describe what is depicted in them, from a large predefined pool of image descriptions.

The authors proposed to map both images and sentences into the same space learned by

(K)CCA and then frame the image description as the task of ranking the given pool of

captions on the common space. The work compares a number of text kernels that capture

different linguistic features as the input for learning the common space between image

and text. For example, their final models extend beyond the standard basic bag-of-words

representation of the captions by utilizing subsequence kernels and kernels that capture

semantic similarity to increase the quality of the induced space. Experimental results

demonstrate the importance of robust textual representations that consider the semantic

similarity of words, and hence take the linguistic diversity of the different captions associated

with each image into account. They also test the model with a number of relatively simple

image description systems.

Recently, Yao et al. [2015] proposed a ranking canonical correlation analysis (RCCA) for

learning query (text or image) and image similarities. The goal of RCCA is to improve the

performance of a real image search engine by taking into account click-through data which

is served as a reliable and implicit feedback for understanding both the query and the user’s

intent for image search. RCCA initially finds a CCA common subspace between queries

and corresponding images clicked by user from a real image search engine. Furthermore,

RCCA simultaneously learns a bi-linear query-image similarity function and adjusts the
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subspace to preserve the preference relations implicit in the click-through data. Once the

subspace is finalized, query-image similarity can be computed by the bi-linear similarity

function on their mapping in this subspace. RCCA has been shown to be powerful for

image search with superior performance over several state-of-the-art methods on both

text-to-image and image-to-image retrieval tasks.

While (K)CCA has been popular for its simplicity and efficiency, it has several drawbacks.

First and foremost is the inability of the classic (K)CCA to account for additional high-level

semantic information such as the class label (concept) of the data. Recently, several work

have successfully addressed this shortcoming by proposing alternatives and extensions of

CCA to account for label information [Gong et al. 2014; Rasiwasia et al. 2014; Sharma

et al. 2012; Ranjan et al. 2015]. These approaches aim to learn a more discriminative

subspace which is better suited for cross-modal problem. These attempts have been made

to enforce different-class samples to be mapped far apart while the same-class samples lie

as close as possible on the learning subspace.

Sharma et al. [2012] showed that the classical CCA method only cares about pair-wise

closeness in the common subspace so they are not well suited for classification or retrieval.

Especially, when within-class variance is large, these methods are bound to perform poorly

for classification/retrieval because classification and retrieval both require that within-class

samples are united. The authors proposed instead a supervised extension of CCA, called

Generalized Multiview Analysis (GMA) to address cross-modal problems. GMA formulates

the problem of finding correlated subspaces as that of jointly optimizing covariance between

sets and separating the classes in the respective feature spaces. The proposed approach

is general and has the potential to replace CCA whenever cross-modal problem is the

purpose and label information is available. In particular, this work investigated cross-modal

classification by using a k-NN classification scheme for pose-invariant face recognition. It

consists in classifying a sample by a majority vote of its neighbors, with the case being

assigned to the class most common among its k nearest neighbors measured by a distance

function. In this work, the parameter k is set to 1 (1-NN) which means simply to assign

the sample to the class of its nearest neighbor on the latent space using the normalized

correlation score as a metric.

77



CHAPTER 2. STATE-OF-THE-ART

In Semantic Correlation Matching (SCM) [Costa Pereira et al. 2014], the image and

text features projected onto a KCCA space are used to build semantic features (Figure 2.11).

It means that a document is represented as a set of supervised classifiers learned from

projections on the common latent space. It is worth to note that these classifiers are only

employed to represent a uni-modal document and the contribution addresses cross-modal

retrieval alone. The authors demonstrate that the SCM model satisfies two hypotheses of a

joint representation space: correlation and abstraction. The correlation hypothesis is that

explicit modeling of low-level correlations between the different modalities is important

for the success of the joint models. The abstraction hypothesis is that model benefits

from semantic abstraction, i.e. the representation of images and text in terms of semantic

(rather than low level) descriptors.

Figure 2.11: Semantic Correlation Matching model [Costa Pereira et al. 2014]

Another extension of CCA taking account label information of data is cluster-CCA

proposed by Rasiwasia et al. [2014]. The proposed cluster-CCA learns discriminant

low-dimensional subspaces that maximize the correlation between two modalities while

segrageting the different classes on the learnt subspaces. Cluster-CCA introduces corre-

spondence between each sample from any class in the first modality to all the same class

sample in the second modality. Once this correspondence is established, the standard CCA

is used to learn the projections onto the common subspaces.

An important extension to the standard CCA method of [Hardoon et al. 2004] was put

forward in [Gong et al. 2014], where a third view (modality) was added to the traditional
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two-view algorithm. Above the visual and textual view, semantic classes are also considered.

In a supervised scenario, they are derived from the ground-truth annotations (labels), the

search keywords used to download the images. However, in most realistic situations, the

ground-truth annotations and keywords for the third view are very noisy or are absent

completely. In such an unsupervised scenario, the authors demonstrate that the third view

can be derived by a set of clusters obtained from the tags. KCCA is reformulated as a linear

CCA applied to the kernel space, following the idea of approximate kernel maps [Perronnin

et al. 2010a].

However, the strategies proposed in [Gong et al. 2014; Rasiwasia et al. 2014; Sharma

et al. 2012] assume that the data is annotated with a single label. Ranjan et al. [2015]

introduced an approach, called multi-label canonical correlation analysis (ml-CCA), that

accounts for multi-label images. Unlike the standard CCA or the multi-view CCA [Gong

et al. 2014] that require correspondence information across the modalities, ml-CCA does

not rely on explicit pairings between modalities. Instead, it uses the multi-label information

to establish correspondences. They also present fast-ml-CCA, a computationally efficient

version of ml-CCA which is able to handle large scale dataset.

Feng et al. [2014] addresses cross-modal retrieval by training a “correspondence”

auto-encoder, called Corr-AE, between visual and textual features. Most of cross-modal

strategies such as [Costa Pereira et al. 2014; Rasiwasia and Vasconcelos 2009; Gong

et al. 2014] involves a two-stage framework: feature extraction (or feature learning) and

common representation learning. While such approaches separate correlation learning from

representation learning, the proposed Corr-AE is more effective by incorporating these

two stages into a single process (see Figure 2.12). For this, the authors introduced a loss

function including the reconstruction losses of different auto-encoders for all modalities

and the correlation loss between different modalities. Corr-AE is furthermore extended

to two correspondence models: Corr-Cross-AE by replacing the basic auto-encoder by

cross-modal auto-encoder and Corr-Full-AE using a combination of a basic auto-encoder

and cross-modal auto-encoder.

Inspired by representation learning using deep networks, Andrew et al. [2013] presented

Deep Canonical Correlation Analysis (DCCA), a nonlinear extension of the linear CCA. It
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Figure 2.12: Difference between two-stage methods and Corr-AE: Corr-AE incorporates
representation learning and correlation learning into a single process while two-stage
methods separate the two processes [Feng et al. 2014]

is an alternative to the non-parametric KCCA for learning correlated non-linear transforma-

tions. The approach is closely related to [Ngiam et al. 2011; Srivastava and Salakhutdinov

2012]. The key difference is that DCCA learns two separate deep networks, with the

objective that the output layers (topmost layer of each network) are maximally correlated.

Experimental results show that DCCA learns representations with significantly higher

correlation than those learned by CCA and KCCA. However, the high dimensionality of

the input features introduces a great challenge in terms of memory and speed complexity

of DCCA framework. To address this issue, Yan and Mikolajczyk [2015] presented an

alternative end-to-end learning scheme to make DCCA applicable to high dimensional

image and text representations and large datasets by resolving non-trivial complexity and

overfitting issues. They proposed a GPU implementation with CUDA libraries, which the

efficiency is several orders of magnitude higher than CPU implementations. The proposed

approach is successfully employed for image-caption matching task.
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Figure 2.13: Difference between Corr-AE [Feng et al. 2014] and DCCA [Andrew et al.
2013]. Corr-AE correlates hidden representations of a pair of auto-encoder while DCCA
correlates output layers of two deep networks describing visual and textual modalities.

2.4.2 Topic modeling approaches

This category consists of probabilistic approaches in which topic modeling is a well-

known method. The topic modeling approaches, also called topic-based approaches, has

been widely applied to solve different cross-modal problems such as image annotation or

text illustration [Blei and Jordan 2003; Putthividhy et al. 2010; Feng and Lapata 2010].

Topic modeling was originally investigated and widely used in the literature of natural

language processing [Blei et al. 2003; Hofmann 1999]. Topic modeling approaches

assume that each data point result from multiple hidden “topics”. The key idea of such

approaches is to map high-dimensional representation space, e.g. issued from term frequency

vectors arising in the vector space representation of text documents [Salton and McGill

1986], to a lower-dimensional semantic representation space defined by the hidden topics.

In comparison with classical representations like bag of words, representations on this

latent semantic space are more robust to the problems of polysemy that a single word

may represent different content and synonym that different words may represent the

same content. Moreover, the resulting lower-dimensional latent space speeds up learning

computation (e.g. SVM) on these topic-based representations.

Latent Dirichlet Allocation (LDA) [Blei et al. 2003] and probabilistic Latent Semantic

Analysis (pLSA) [Hofmann 1999] are the popular techniques in this direction. LDA and
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pLSA both consider a document as a mixture of various “hidden” topics which are detected

from data. The difference is that LDA assumes topic distribution having a Dirichlet prior.

Recently, LDA and pLSA techniques have been extended to learn the joint distribution

of multi-modal data to capture the correlation between images and text [Blei and Jordan

2003; Putthividhy et al. 2010; Feng and Lapata 2010; Monay and Gatica-Perez 2007].

Corr-LDA [Blei and Jordan 2003] uses a set of shared latent variables to represent

the underlying causes of cross-correlations in multi-modal data. In this model, the visual

modality drives the definition of the latent space to which the textual modality is linked.

Concretely, the model first generates a set of hidden variables (topics) that generate

the regions of an image, decomposing an image into a mixture of latent variables. A

subset of these latent topics is then selected to generate the text caption, which intuitively

corresponds to the natural process of image annotation. Consequently, Corr-LDA can

model the joint distribution of an image and its caption, the conditional distribution of

words given an image or an particular region of an image. It has been successfully employed

in different multimedia tasks such as automatic image annotation, automatic image region

annotation and text-based image retrieval.

While Corr-LDA shares a set of latent topics between the textual and visual modalities,

Tr-mm-LDA [Putthividhy et al. 2010] learns two separate sets of hidden topics, respectively

for image and text. The number of topics in the two modalities can be different. A regression

module is then introduced to correlate these two sets. As a result, one set of topics can be

linearly predicted from the other. Tr-mm-LDA has shown its power in the task of image

and video annotation. This model outperformed the Corr-LDA approach.

Monay and Gatica-Perez [2007] proposed a new dependence between words and image

regions based on pLSA method [Hofmann 1999]. This approach learns a pLSA model from

a set of concatenated representations of the textual and visual modalities of annotated

images. Using such concatenated representations, this approach attempts to simultaneously

model visual and textual modalities. Furthermore, in this model, visual and textual features

can have equal importance or one of the two modalities can dominate in defining the latent

space. Contrary to the Corr-LDA model in which textual features are linked in the latent

space learned from visual features, the authors demonstrated that the textual modality is
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more appropriate to learn a semantically meaningful latent space, which translates into

improved image retrieval and annotation performance.

In the same direction, Feng and Lapata [2010] proposed a probabilistic image annotation

model, called Mix-LDA that learns to automatically label images despite the noisy nature

of data. Mix-LDA model exploits the redundancy inherent in multi-modal documents

(e.g. news articles, Wikipedia articles) by assuming that images and their surrounding

text are generated by a shared set of latent topics. Concretely, Feng and Lapata [2010]

described documents and images by a common multi-modal vocabulary consisting of textual

and visual words. Then, using LDA, the model represents visual and textual meaning

jointly as a probability distribution over a set of topics. The Mix-LDA model brought

improvements over competitive models such as the previously presented Corr-LDA, pLSA

in image annotation and text illustration tasks. The Mix-LDA has been seen as the first

multimodal distributional semantic model. The idea of this approach was recaptured in a

more general manner in a recent work proposed by Bruni et al. [2014].

Furthermore, Jia et al. [2011] proposed a new probabilistic representation for image and

text, called Multi-modal Document Random Field (MDRF). While Corr-LDA requires a full

correspondence between modalities and Tr-mm-LDA assumes that an image is associated

with a text description, MDRF tackles more realistic scenarios where a narrative text is

only loosely related to an image and where only a few image-text pairs are available. MDRF

learns a set of shared topics across the modalities. The model defines a Markov random

field on the document level which allows modeling more flexible document similarities. The

effectiveness of MDRF was evaluated in image retrieval from a loosely related text.

Rasiwasia and Vasconcelos [2008] also introduced an intermediate space based on a low

dimensional semantic “topics” image representation. The overall proposed representation

is similar to a topic model, but where topics are explicitly defined instead of being learnt

in an unsupervised manner (e.g. using LDA or pLSA) from the features representations.

An image is annotated with a subset of the topics that it actually contains. The number

of semantic topics used defines the dimensionality of the intermediate space, henceforth

referred to as “semantic space”. Each topic induces a probability density on the space of

low-level features, and the image is represented as the vector of posterior topics probabilities.
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The scene classification results show that the proposed low-dimensional representation

correlates well with human scene understanding, outperforms the unsupervised latent-space

approaches and achieves performance close to the state-of-the-art method which uses a

much higher dimensional image representation.

However, this representation on the semantic space suffers from a certain amount

of contextual noise, due to the inherent ambiguity of classifying image patches. Hence,

Rasiwasia and Vasconcelos [2009] introduced a second level of representation that operates

in the semantic space. The proposed model enables robust inference in the presence of this

noise by modeling the distribution of each concept in the semantic space. This distribution

is referred to as the contextual model for the concept. Image are the represented by their

posterior probabilities with respect to a set of contextual models. Evaluations on scene

classification and image annotation showed that besides quite simple to compute, the

proposed context models attained superior performance than state-of-the-art systems in

both tasks.

Recently, Wang et al. [2014] proposed a multi-modal mutual topic reinforce modeling

(M3R) approach, which seeks to learn correlated but discriminative latent representations

for multi-modal data by introducing of topic interaction and label information. M3R

learns separately modality-specific topics from multi-modal documents, e.g. textual-specific

topics and image-visual topics and then detects sharing cross-modal topics by multi-modal

reinforcement modeling. The cross-modal topics means the topics are simultaneously

remarked by images and texts within the same multi-modal documents. The proposed M3R

encourages these mutually consistent cross-modal topics with a relatively high priority,

while discourages but still preserves the remaining modality-specific topics. M3R gains

interpretable latent representations for multi-modal retrieval and is effective for cross-modal

retrieval.

2.4.3 Rank-based approaches

As an alternative of correlation learning method, this category approaches the cross-

modal problems by learning a joint representation space with a ranking loss. Depending

on the objective defined in the ranking function, such approaches can be regrouped in
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two categorized: single-directional and bi-directional. The single-directional models aim

to ensure that correct texts for each training image get ranked above incorrect ones. In

addition to this criteria, the bi-directional approaches also ensures that for each text, the

image described by that text gets ranked above ones described by other texts. Most of

the ranked-based approaches involve deep learning architectures. These models have been

successfully used in a wide range of practical applications such as image annotation, image

captioning, visual question answering, etc.

Single-directional approaches. The first approaches of ranked-based aim to learn

linear transformations of visual and textual features to a joint representation space using

single-directional ranking loss [Weston et al. 2011; Frome et al. 2013]. These approaches

apply a margin-based penalty to incorrect annotations that get ranked higher than correct

ones for each training image.

Weston et al. [2011] introduced a model, called WSABIE , for image annotation. The

approach attempts to represent images and annotations jointly in a low-dimensional

embedding space and to optimize precision at the top of the ranked list of annotations for

a given image. The model is trained with Weighted Approximate-Rank Pairwise (WARP)

loss function. This was the first data analysis of image annotation that reported results on

a larger scale than ever previously reported (10 million training examples and 100 thousand

annotations).

Figure 2.14: DeViSe model (center) initialized with parameters pre-trained at the lower
layers of a visual object categorization network with a softmax output layer (left) and a
skip-gram language model (right) [Frome et al. 2013]
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While WSABIE is a shallow embedding method, DeViSe model [Frome et al. 2013] is

inspired by the progress of deep learning to learn embedding space of images and words.

The objective of DeViSe is to leverage semantic knowledge learned in the text domain,

and transfer it to a model trained for visual object recognition. The authors pre-train a

simple neural language model well-suited for learning semantically-meaningful, dense vector

representations of words [Mikolov et al. 2013]. In parallel, they pre-train a state-of-the-art

deep neural network for visual object recognition [Krizhevsky et al. 2012], complete with

a traditional softmax output layer. The DeViSe model is constructed by taking the lower

layers of the pre-trained visual object recognition network and re-training them to predict

the vector representation of the image label as learnt by the language model ( Figure 2.14).

The model is applied to visual object classifiers and especially it leverages visual and

semantic similarity to correctly predict object category labels for unseen categories, i.e.

“zero-shot” classification.

Bi-directional approaches. As a more powerful objective function, other recent

work have proposed a bi-directional ranking loss [Karpathy et al. 2014; Karpathy and

Fei-Fei 2015; Socher et al. 2014; Chen and Zitnick 2015; Wang et al. 2016b]. Karpathy

et al. [2014] proposed a deep neural bi-directional network that embeds fragments of images

(objects) and fragments of sentences (typed dependency tree relations) into a common

space and explicitly reasons about their latent, inter-modal correspondences (Figure 2.15).

The authors then formulated a structured max-margin objective allowing to explicitly

associate these fragments across modalities.

Figure 2.15: Illustration of the Deep Fragment Embeddings for Bidirectional Image Sentence
Mapping model [Karpathy et al. 2014]
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Adopting a similar approach, Socher et al. [2014] described a Dependency Tree Recursive

Neural Network (DT-RNN) which maps sentences and images into a common embedding

space in order to be able to retrieve one from the other. The DT-RNN learns vector

representations for text (sentences, phrases) based on dependency trees. These vectors

capture more of the meaning of sentences, where they define meaning in terms of similarity

to a “visual representation” of the textual description.

More recently, Karpathy and Fei-Fei [2015] presented a model to generate natural

language descriptions of images and their regions. The alignment model is based on a

combination of Convolutional Neural Networks over image regions, bidirectional Recurrent

Neural Networks over sentences, and a structured objective that aligns the two modalities

through a multi-modal embedding. Region-word pairwise similarities are computed with

inner products and used for defining the corresponding image-sentence score.

Chen and Zitnick [2015] uses a bi-directional mapping from visual features to words

and words to visual features in a recurrent neural network model to generate descriptions

based on visual feature, and to reconstruct visual descriptions given a description. The

global objective is to maximize the likelihood of a word and the observed visual features

given the previous words and their visual interpretation. The approach is evaluated on

sentence generation, sentence retrieval and image retrieval.

Recently, Wang et al. [2016b] proposed to learn an image-text embedding using a

two-view neural network with two layers of nonlinearities on top of any representations

of the image and text views. These representations can be given by the outputs of two

pre-trained networks, off-the-shelf feature extractors, or trained jointly end-to-end with the

embedding. The authors use a bi-directional ranking loss function similar to [Karpathy

et al. 2014; Karpathy and Fei-Fei 2015] together with within-view neighborhood structure

preservation constraints for learning the model. Specifically, in the learned latent space,

images (resp. sentences) with similar meaning are expected to be close to each other.

This work demonstrates that these constraints provide a useful regularization term for the

cross-modal matching task.
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2.5 Multi-modal datasets

In this section, we describe the multi-modal datasets that we used to evaluate the

effectiveness and the robustness of our proposed approaches for different multimedia tasks

such as cross-modal retrieval, bi-modal classification or cross-modal classification. Since the

core research of this thesis focuses on the joint embedding of visual and textual content to

improve the results of such multimedia tasks, we mainly consider the multi-modal datasets

in which images and text are both available.

The datasets we investigate in this thesis contain real-world social images with their

associated text. The textual content can be human annotated tags, image captions, and/or

a textual document related to the content of image. A global statistic on datasets that we

considered in this dissertation is given in Table 2.1.

Dataset Sample #training/testing #labels
BBC News image-caption-document 3,121 / 240 n/a
Wikipedia image-caption-document 106,582 / 240 n/a

Pascal VOC07 image-description 5,011 / 4,952 20
NUS WIDE image-description 161,789 / 107,859 80
FlickR 8K image-5 descriptions 6,000 / 1000 n/a
FlickR 30K image-5 descriptions 29,783 / 1000 n/a

Table 2.1: Summarization of multi-modal datasets considered in the thesis

In the following, we briefly describe each of these multi-modal datasets.

BBC News dataset. This dataset was introduced in Feng and Lapata [2010] for image

annotation and text illustration. It consists of 3121 articles for training and 240 for testing,

downloaded from the BBC News website2. The articles cover a wide range of topics

including national and international politics, advanced technology, sports, education, etc.

Each BBC News article is accompanied with an image and associated caption. The

dataset thus consists of image-caption-document tuples. An example of an entry in our

database is illustrated in Figure 2.16. The average caption length is 5.35 words and the

average document length is 133.85 words.
2http://news.bbc.co.uk/
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Figure 2.16: A sample from our BBC News database. Each entry contains an image, a
caption for the image, and the accompanying document with its title.

This dataset is especially challenging for text illustration because of its small size and

the quite indirect relation between textual and visual content in most news articles. For

many articles, other images in the collection can be objectively considered more relevant to

the article’s content than the image selected by the author.

Wikipedia dataset. This dataset consists of 106,822 articles including 106,582 samples

for training and 240 for testing. Theses samples are english articles that we collected from

the ImageCLEF 2010 Wikipedia collection3. Each article is accompanied by an image

and associated caption. Each image is provided with its metadata in a XML files. The

metadata is often an image description or image caption in different languages such as

English, French, German. We are only interested in images which have corresponding

3http://imageclef.org/2010/wiki
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Figure 2.17: A sample from our Wikipedia database. Image in Wikipedia article is given
with corresponding metadata.

Wikipedia articles and image captions in English. An example that illustrates images in

the Wikipedia collection and their metadata is provided in Figure 2.17

Pascal VOC 07 dataset. This dataset was introduced in the Pascal VOC 07 chal-

lenge [Everingham et al. 2010]. It includes 5, 011 training and 4, 952 testing images

collected from Flickr without their original user tags. Each image has between 1 and 6

labels from a set of 20 labels. These labels describe vehicles (car, bus, bicycle...), animals

Figure 2.18: Example Pascal VOC 07 images with their associated tags collected using
AMT and their corresponding ground-truth labels.
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Figure 2.19: Example Nus-WIDE images with their associated tags and their corresponding
ground-truth labels. Several tags are very noisy. For instance, “colorartaward” and
“platinumheartaward” are respectively for “color art award” and “platinum heart award”.

(cat, dog, horse...), household (sofa, tv/monitor, chair ...) and persons.

In the PASCAL VOC challenge, the original dataset is not multi-modal and only images

are available. Using Amazon Mechanical Turk, several tags were also made available for

each image by the work of Hwang and Grauman [2012b]. These tags are provided on the

authors’ web page4. Each image is associated to 1 to 75 tags for training (6.9 on average)

and between 1 and 18 tags for testing (3.7 on average). Several examples of the Pascal

VOC 07 are given in Figure 2.18

Nus-WIDE dataset. This dataset was introduced in the work of Chua et al. [2009].

The NUS-WIDE dataset includes 161, 789 training and 107, 859 testing Flickr images with

both user tags and “ground truth” labels according to 81 concepts. The 81 concepts are

divided into six categories including people, objects, scene or location, event or activities,

program and graphics. Example images with their associated user tags and labels are

shown in 2.19

Moreover, the authors proposed several rules to filter the original tags and create

smaller and specialized sub-datasets (Objects, Scenes,...). They deleted tags with too

4http://vision.cs.utexas.edu/sungju/pascal_twkim.zip
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Figure 2.20: Example FlickR 8K images with their five associated descriptions.

low frequency (number of occurrence in the dataset is less than a threshold). The low

frequency threshold is set to 100. They also removed tags that do not exist in WordNet

which is a large lexical database of English. The final tag list has 5,018 unique tags. The

original tags are preserved and also available for users. Meanwhile, we observe that some

tags remain nevertheless noisy after the tags filter process proposed by the authors. For

instance, some tags are concatenated and result into a unique (non existing) word (e.g.

sunsetoverthesea). This fact infers a shortcoming in textual feature extraction. For example,

the term “sunsetoverthesea” is naturally absent from the Word2Vec vocabulary; hence the

Word2Vec model will not able to correctly represent it. To improve the quality of textual

features, we automatically separate the words (producing e.g. sunset over the sea) before

employing techniques of textual features extraction. For this, each tag is matched to the

previously mentioned tag dictionary of 5,018 terms and we retain only the valid largest

sub-strings. The exact proposed process is described in Appendix A.1 (Python code).

FlickR 8K and FlickR 30K datasets. The FlickR 8K [Rashtchian et al. 2010] and

FlickR 30K [Young et al. 2014] datasets contain 8000 and 31783 images respectively. Each

image was annotated by 5 sentences using Amazon Mechanical Turk. These datasets have

the same 1000 images for validation and 1000 images for testing. While the training set of

FlickR 8K contains 6000 images, the one of FlickR 30K is much larger containing 29783

images.
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2.6 Conclusion

In this chapter, we presented a survey of the state-of-the-art approaches involved in

retrieval and classification problems in the context of social media. During the chapter, we

investigated two modalties of data including visual modality represented by images or their

regions and the textual modality represented by tags, keywords, caption, or descriptions

associated to images.

This section aims to provide the reader an overview of various multimedia information

retrieval or classification problems such as uni-modal, multi-modal and particularly cross-

modal one. An important stage in these paradigms consists in learning to represent content

of data, covering single-media with the availability of only one modality (i.e. text or image)

and multi-modal media with both two modalities of data (i.e. text and image). We thus

provided a brief review on important techniques of media representation.

We are particularly interested in cross-modal problem to which learning a common

representation space (embedding space) for visual and textual data is a relevant solution.

We introduced in this chapter different categories of image and text embedding approaches

and furthermore described how they have been employed in different cross-modal tasks such

as image annotation, text illustration, image captioning and visual question answering.

Finally, we presented several multi-modal datasets that are commonly used in the state

of the art and that we employed for testing our proposed models in the following chapters

of this thesis.
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3.1 Introduction

In this chapter, we first propose to go through in details of (Kernel) Canonical Correla-

tion Analysis, the most popular method relying on correlation learning to find common

representation for image and text. The common representation subspace enables the

“matching” of information from one modality to another. In Chapter 2, the effectiveness

of the common representation subspace has been clearly shown in several cross-modal

and multi-modal problems between image and text. Nevertheless, in this chapter, we

identify two limitations of such common space, especially one learned from the KCCA.

We also demonstrate that these identified imperfections lead to an important decrease in

performance of multimedia retrieval and classification problems.

The first limitation relates to ill-represented data on the common space. The develop-

ment of the KCCA space relies on extracting statistical regularities from a large amount of

training data. Any piece of data having very few occurrences or weak relation to other

data is thus ignored in the joint model. However, the poorly represented information can

be very significant in a retrieval context. Disregarding such information highly obstructs

the effectiveness of the joint representation space.

The second limitation concerns the separation of data projections between different

modalities on the common space. By observing the distribution of projections on the

common representation space obtained with KCCA, we found that this space only provides

a very coarse association between modalities. For any given multi-modal document, the

projections of its visual and respectively textual features fall far apart. A direct use of

these projections results in limited quality of “translation” between modalities.

The Chapter is organized as follows. Section 3.2 aims to review the principle of the

(K)CCA method. We next demonstrate each of the identified limitations of the common

representation space learnt by KCCA in Section 3.3 followed by their investigations on real

cases of BBC News, Pascal VOC07 and FlickR 8K datasets.
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3.2 KCCA: common representation space for image and
text

While different categories of approaches have been introduced in Chapter 2 to approach

the problem of image and text common representation learning, our main research par-

ticularly focuses on correlation learning method. The latter embeds different modalities

(e.g. image and text) of data from their original feature spaces into a lower-dimensional

common representation subspace by learning inter-modal relationships between data from

these modalities.

In this thesis, we decided to rely on Canonical Correlation Analysis (CCA) for common

representation learning. Indeed, three reasons motivated this choice of such a method.

• First, Canonical correlation analysis (CCA) is the most popular method situated

among correlation learning approaches. The method has been introduced quite a

long time ago by Hotelling [1936] and its theoretical foundations are relatively well

formulated.

• Secondly, at the beginning of the thesis in 2013, several significant works in the

multimedia community were revisiting and widely investigating with success the CCA

and its kernelized extension KCCA to address various multi-modal and cross-modal

problems of visual and textual modalities [Hardoon et al. 2004; Hwang and Grauman

2012a; Costa Pereira et al. 2014; Gong et al. 2014]. Particularly, the experiments

concerning (K)CCA are relatively easy to reproduce.

• Finally, a common representation space allows to reduce semantic and heterogeneity

gaps across visual and textual modalities and such common representation enables

multi-modal and cross-modal tasks. However, the thesis is not particularly interested

in how to build a common representation space for image and text. Our considerable

attention aims to rely on a text-image joint space to develop robust representation

for multi-modal and cross-modal tasks. In this context, basing our work on a method

like (K)CCA, which maximizes the correlation between modalities, appeared to be

a reasonable and sufficient solution. A discussion on the choice of the joint space
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learning approach is further provided as an interesting perspective (Section 7.2).

This rest of this section aims to review the principle of CCA and its kernelized version

method KCCA for common representation subspace learning in 3.2.1, the projection of

data onto the KCCA subspace in 3.2.2 and finally the matching of data from different

modalities onto the KCCA subspace in 3.2.3.

3.2.1 Common representation space learning with (K)CCA

CCA was first introduced by Hotelling [1936] and then applied to solve cross-modal

problem in the seminar work of [Hardoon et al. 2004]. CCA is similar to the well-known

Principal Components Analysis (PCA) in the sense that it attempts to map data from

original feature spaces into a lower-dimensional (sub)spaces spanned by a set of canonical

components. These components are issued from linear combinations of features on the

original spaces. The difference between the two methods is that PCA detects the internal

relationships among one set of variables and CCA detects the relationship between two

different sets of variables.

Let XT and XI be two random variables, taking values in RdT and respectively RdI .

Consider N samples {(xT
i , xI

i )}N
i=1 ⊂ RdT × RdI . For each pair of data (xT

i , xI
i ), xT

i ∈ RdT

has a link with xI
i ∈ RdI and we expect to conserve this relation onto the common space.

CCA learns the d-dimensional subspaces UT ⊑ RdT for text and UI ⊑ RdI for image

where the correlation between two modalities is maximal (Figure 3.1). Concretely, CCA

simultaneously seeks directions wT ∈ RdT and wI ∈ RdI that maximize the correlation

between the projections of each xT onto wT with its corresponding xI onto wI ,

w∗
T , w∗

I = arg max
wT ,wI

wT
′
CT I wI

wT
′ CT T wT wI

′ CII wI

(3.1)

where CT T , CII denote the auto-covariance matrices of XT and XI respectively, while CT I

is the cross-covariance matrix.

The solutions w∗
T and w∗

I are eigenvectors of C−1
T T CT IC−1

II CIT and respectively

C−1
II CIT C−1

T T CT I . The set of d eigenvectors associated to the d largest eigenvalues {wT,k}d
k=1

and {wI,k}d
k=1 define a basis of the maximally correlated d-dimensional subspaces UT and
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Figure 3.1: Canonical correlation analysis between image and text modalities

UI . Even though these are linear subspaces of two different spaces, they are often referred

to as “common” representation space.

Kernel CCA (KCCA, see e.g. [Hardoon et al. 2004]) aims to remove the linearity

constraint by using the “kernel trick” to first map the data from each initial space to the

reproducing kernel Hilbert space (RKHS) associated to a selected kernel and then looking

for correlated subspaces in these RKHS.

KCCA then seeks vectors of coefficients αT , αI ∈ RN that allow to define these maxi-

mally correlated subspaces. αT , αI are solutions of

α∗
T , α∗

I = arg max
αT ,αI

α
′
T KT KI αI

V (αT , KT ) V (αI , KI) (3.2)

where V (α, K) =


αt (K2 + κ K) α, κ ∈ [0, 1] is a regularization parameter and KT , KI

denote the N ×N kernel matrices obtained from {xT
i }N

i=1 and {xI
i }N

i=1. Finding the solutions

amounts to solving a generalized eigenvalue problem and keeping the d highest eigenvalues

together with their associated eigenvectors, {αT,k}d
k=1 and {αI,k}d

k=1.
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3.2.2 Projections onto (K)CCA subspace

Image xI ∈ RdI and text xT ∈ RdT are represented by their projections pI and pT onto

the subspaces UI and UT respectively.

In the case of CCA, the projection pI (respectively pT ) is linear thus obtained by

computing the dot products between the vector representing the image xI ∈ RdI (or text

xT ∈ RdT ) and the image (or text) basis vectors, e.g. {wI,k}d
k=1 or {wT,k}d

k=1.

In the case of KCCA, the projections pT of xT and pI of xI onto their subspaces are

obtained as:

pT
k = [KT (xT , xT

1 ) . . . KT (xT , xT
N )]αT,k k ∈ {1, .., d} (3.3)

and respectively:

pI
k = [KI(xI , xI

1) . . . KI(xI , xI
N )]αI,k k ∈ {1, .., d} (3.4)

3.2.3 Cross-modal matching on (K)CCA subspaces

The similarity between two data points xI ∈ RdI , xT ∈ RdT from two different feature

spaces can not be directly computed because of the difference in dimensionality, nature of

data content, etc. The common representation subspaces allow establishing the similarity

between these two points xI , xT through the proximity between their projections pI , pT .

A natural invertible mapping between the projections onto UI and UT follows from the

correspondence between the d-dimensional bases of the subspaces. This results in a compact,

efficient representation of both modalities, where vectors pI and pT are coordinates in two

isomorphic d-dimensional subspaces UI and UT .

Given an image query xI with projection pI , the text xT that most closely matches it is

that for which pT minimizes the distance between pI and pT on the d-dimensional common

representation space. In this thesis, we mainly employ the Euclidean distance. However,

different types of distance e.g. Kullback-Leibler divergence, normalized correlation, centered

normalized correlation measure [Costa Pereira et al. 2014] can be considered.

Similarly, given a query text xT with projection pT , the closest image match xI is that

for which pI minimizes the distance on the common space between pI and pT .
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3.3 Limitations of common representation subspaces

The common representation subspaces enable the “matching” of information from one

modality to another. In Chapter 2, the effectiveness of the common representation subspaces

such as those issued from (K)CCA has been widely shown in cross-modal and multi-modal

problems between visual and textual modalities of data. Nevertheless, we identified two

limitations of such common subspace. We also perceive that these limitations lead to a

significant loss in performance of multimedia retrieval and classification problems. The

latter involves the quality of representation when method like CCA attempts to map data

from original spaces onto common subspaces with fewer dimensions. As (K)CCA method

uses lower-dimensional representations to summarize initially complete representations,

several data and relations contained in original spaces may not be preserved on their

common subspaces. The first limitation consists of relevant data that are ill-represented in

the common space (Section 3.3.1) and the second is about the separation of projections

between different modalities in the common subspace (Section 3.3.2). In the following, we

clarify each of these imperfections followed by evaluations on real data such as BBC News,

FlickR 8K and Pascal VOC07.

3.3.1 Poorly-represented data on the common space

This section aims to demonstrate the limitation concerning ill-represented data on the

common representation space. Particularly, we investigate this problematic in a context of

cross-modal retrieval where such limitation has a strong influence on a limited retrieval

performance.

The limitation mentioned in this section relies on the quality of representation into the

common representation space. This is a common problem for dimensionality reduction

methods such as Principle Component Analysis (PCA) and Canonical Correlation Analysis

(CCA). Using projections issued from PCA or CCA methods, each individual in the

original space is summarized by a projection on the lower-dimensional subspace. One of

the most crucial points is the quality of representation which means the reliability of the

representation of each individual on this common subspace. The latter aims to estimate
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whether the projection point is a good approximation of the original data.

Figure 3.2: Quality of representation on the common subspace.
(a): two different data points A, A′ have the same projection PA. This projection is a
good approximation of the close (hence well-represented) point A but not the very far
(poorly-represented) point A′. (b): two data points A, B are far from each other on
the original space but have very close projections PA,PB because of the poor quality of
representation of the point B.

For a better visualization, an illustration is given in Figure 3.2. For a projection PA

with a fixed distance OPA on the subspace learnt from CCA or PCA, its original data point

may have any distance to this subspace. The latter can be close (e.g. A) or arbitrarily far

(e.g. A
′) from the subspace (Figure 3.2.a). Accordingly, the angle between the vector issued

from the individual and its projection on the subspace can be small e.g. AOPA or large

e.g. A′OPA. Only points that are close to the subspace e.g. A (the corresponding angle

e.g. AOPA is small) are reasonably faithfully represented on the common space. This is

explained by the fact that the projection vector (e.g. OPA) of such point (e.g. A) express

relatively well the variance of the data (OA). In this case, the distance between the origin

to projection of a point gives a suitable approximation of the distance between the origin

to this point on the common space. On the contrary when the data point e.g. A
′ is very

far, the distance OPA between the origin and its projection is not a good approximation of

the true distance OA′ of the original point A′ to the origin. Furthermore, the proximity
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among projections is only correctly judged provided that the corresponding original data

points are well-represented. In Figure 3.2.b), two data points A, B are far from each other

on the original space but they have very close projections PA,PB. The proximity between

these two points is not adequately estimated on the subspace due to the poor quality of

representation of the point B.

The most widely used measure to judge the quality of representation of each individual

thus relies on the angle between vector issued from the individual and its projection on the

joint space e.g. AOPA or A′OPA in Figure 3.2.a). In general, the cosine of this angle is

estimated to evaluate the quality of representation of each individual. If this cosine is large

(close to one), this individual is close to the subspace and therefore will be well represented.

In this condition, we can then examine the position of its projection onto the subspace

with respect to other projection points.

In what follows, we investigate the limitation involving the quality of representation

of data on the common subspace learned with CCA on the BBC News data. These data

contain both visual and textual information, however we only examine in this work the

quality of CCA representation of textual data. In particularly, we investigate the quality

of representation of words collected from this dataset onto their common representation

space computing from text and images.

Assume W = {w1, w2, .., w|W|} the set of |W| = 23, 617 unique words collected from

training documents in the BBC News corpus. A vector xi (i = 1, .., |W|) is the Vector

Space Model (VSM) representation with TF-IDF weighting [Salton and McGill 1986] of

a word wi with respect to the vocabulary W. In such case, the tfidfi value of each word

wi simply becomes idfi since tfi = 1. The VSM representation xi of the word wi can be

rewritten as xi = (0, .., 0, idfi, 0, .., 0). The ith component is defined by idfi which reflects

the popularity (common or rare) of the word wi across all documents in the BBC News

corpus. The more common a word is, the lower its idf value.

In this experiment, the CCA common space is learnt from BBC News training documents

and has 2,500 dimensions. We note that the collection W of 23,617 words is a (textual)

part of what we use to learn the CCA space. Each word wi is then projected onto the

common representation space into pi.
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To study the quality of representation of each words wi ∈ W, we estimate the cosine

value of the angle between vector issued from the individual and its projection. This

measure is the ratio between ℓ2-norms of vectors issued from the projection pi of a word

wi onto the common representation space and the TF-IDF representation xi of this word.

It is determined as follows

Quality of representation(wi) = ∥pi∥
∥xi∥

(3.5)

where ∥a∥ is the ℓ2-norm of the k−dimensional vector a and ∥a∥ =


a2
1 + a2

2 + .. + a2
k.

We report in Figure 3.3 the relation between the quality of representation computed

by Eq. 3.5 and the idf value of each word in the BBC News collection. An important

observation is there exists a relation between the quality of representation of a word on the

subspace and its popularity within the corpus. Common words that we can easily find in

news articles such as “govern, home, nation, verdict, wild, economy, divorce” are relatively

well-represented on the common subspace. It is well worth noting that words with low

quality of representation have higher idf values with respect to other words. In other

words, the words which are poorly represented on the common subspace are relatively rare

in the corpus. As we can see in the figure, several instances of these poorly-represented

words “Bingham, Christianne, Britney, Fett, Gustard, Wikimedia” which are likely names

or proper nouns. In this way, they are rare because their meanings are more particular

and/or individual than other common words. An explanation for the poor quality of

representation of these relatively rare words is that, because the development of a latent

joint representation relies on extracting statistical regularities from a preferably large

amount of data, any piece of data having very few occurrences or very weak relations with

other data is ignored in the resulting joint model.

While some of specific words are quite ill-represented on the common representation

subspace, they are nevertheless very important indicators to select relevant results in

retrieval context. The fact that these words is ill-represented on the embedding space may

severely hamper the performance of cross-modal retrieval problem. For example, a corpus

of news articles covers a large number of topics such as business, world news, technology,

health, entertainment, etc. The vocabulary of words used in such corpus is huge. Many
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Figure 3.3: Quality of representation of words collected from BBC News.
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words in this vocabulary (e.g. students, nation, homes, cars, economy, migration, flight,

tourist) appear million times by their popular utilization. Meanwhile, we can also see

the word “Maldives” that is present only in a couple of articles. This word is ignored in

the common representation space for image and text relying on CCA method due to its

infrequency with respect to the others in the vocabulary. Meanwhile, for a query text

“Maldives island”, the ignored word “Maldives” can help cross-modal retrieval model refine

the search results to give a best-matched image answer.

3.3.2 Separation between modalities on the common subspace

In this section, we focus on the second limitation of the common representation space

with regard to the separation of projected data between modalities. Furthermore, we

conduct several preliminary experiments to study this shortcoming of the joint space on

various real-world data such as in Pascal VOC07 and FlickR 8K.

Figure 3.4: Separation between modalities on the KCCA space.

An important observation is that the textual and visual projections tend to be grouped

by modality rather than according to their semantic on the common representation space

obtained with KCCA. This observation is illustrated in Figure 3.4. Given a bi-modal

document containing both image and text. Visual features and textual features of this
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document are first extracted and then projected onto the common representation space in

visual and textual projections respectively. Ideally, these two projections should be as close

as possible. This is because they reflect the same semantics as they are textual document

and illustration image of a unique multi-modal content. However, the real projections that

we actually obtain on the common space usually fall far apart.

Furthermore, by observing the distribution of data projected on the common represen-

tation space, we found that the projections consequently establish themselves two separate

projection clouds. One of the clouds contains almost only textual projections and the

rest contains almost only visual projections. In this way, the common representation

space only provides a coarse association between modalities. As a result, a direct use of

these projections leads to a limited quality of “translation” between image and text. The

performance of cross-modal or multi-modal tasks on such space is consequently restricted.

In what follows, we study the imperfection of the KCCA projection on Pascal VOC07

and FlickR 8K datasets. We show several data analysis results that highlight the mentioned

problem.

First, we investigate the distribution of data projections on the common space by

measuring distances between these projections. For this purpose, we respectively compute

the intra-modality distances between projections belonging to a modality and the inter-

modality distance between projections concerning different modalities.

Table 3.1 reports the average distances between KCCA projections. The results are

reported on the sets of both textual and visual projections of training data, respectively

10,022 points in Pascal VOC07 and 12,000 points in FlickR 8K. We denote by dintramodality(I)

and dintramodality(T ) the average within-modality distances between image and respectively

text projected points. Next, we distinguish two types of inter-modality distances: the

distance between a visual projection and its associated textual projection on the KCCA

space of a training sample and the distance between visual and textual projections over

all training data (this last is the “classical” inter-class distance). The average of these

distances are respectively denoted as dintermodality(sample) and dintermodality(overall). The

values obtained in Table 3.1 show that projected points are closer to their within-modality

neighbors than to their corresponding points in the other modality. The latter confirms
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Average Distance Pascal VOC07 FlickR 8K
dintramodality(I) 1.18 ± 0.16 1.17 ± 0.13
dintramodality(T ) 1.11 ± 0.19 0.75 ± 0.13

dintermodality(sample) 1.39 ± 0.07 1.02 ± 0.12
dintermodality(overall) 1.42 ± 0.06 1.28 ± 0.10

Table 3.1: Average distances between projections on KCCA space.

# projected # visual # textual
Dataset points k clusters clusters

Pascal VOC07 10022 16 12 4
FlickR 8K 12000 8 6 2

Table 3.2: Distribution of textual and visual KCCA-projected points into clusters.

our observation about the imperfection of the common space on that data are regrouped

by modality rather than by their semantic. The fact that retrieval “can work” in the

common space directly results from dintermodality(sample) being lower dintermodality(overall).

On average, in the common space, the two corresponding projected points from a given

document are closer than the average distance between the modalities. However, the

difference between these two average distances is much larger than the average intra-

modalities distances. There is thus margin for improvement.

For a better visualization about such separation on the common space, we report the

distribution of the textual and visual projections of training data. For that, we computed

the centers of gravity of the visual and respectively textual points, then projected all the

points onto the line that joins these two centers. In Figure 3.5, we report the distribution

(histograms) of these projected points. The separation in the KCCA space between data

points from the two modalities appears very clearly, for both Pascal VOC07 and FlickR

8K datasets.

The last analysis we mention here consists of the statistic on clusters obtained with

k-means from the collection of both textual and visual projections of training data on the

common subspace. Table 3.2 shows the number of clusters associated to each modality in

Pascal VOC07 and FlickR 8K. Given the separation between modalities on the common

space, the resulting clusters contain mostly data from a single modality, i.e. image or
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Figure 3.5: Separation between modalities on the KCCA space.

text. They are qualified as “visual” or “textual” according to the majority of points they

contain. For more details, fifteen among the sixteen (15/16) clusters obtained from Pascal

VOC07 projections contain data from single modality including eleven visual and four

textual clusters. Only one cluster has simultaneously visual (99.02%) and textual (0.98%)

projections which is hence classified into visual cluster category. Similarly, FlickR 8K

contains two pure visual and two pure textual clusters. Fours cluster has both visual and

textual projections. The major modality occupies at least 95% the numbers of projections

in each of these bi-modal clusters.
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3.4 Conclusion

In this chapter, we proposed to review briefly the theory of Canonical Correlation

Analysis (CCA) and its kernelized extension Kernel CCA (KCCA) for learning common

representation subspaces from visual and textual modalities of data. Three principle steps

are mentioned including how to learn this common subspace using (K)CCA, how to project

data from the original features spaces onto the KCCA subspace and finally how to perform

a cross-modal matching on this subspace.

Despite the success of KCCA in the recent literature of image and text retrieval and

classification, we have identified two major limitations of the common representation

subspaces issued from this method. These limitations are related to the quality of data

representation on the common subspaces. The first limitation is about several relevant

data that are yet poorly represented by the joint model. An explication is that, because

the development of KCCA subspace relies on extracting statistical regularities from a large

amount of data, any piece of data having very few occurrences or weak relation to other

data is ill-represented and thus ignored in the joint subspace. Unfortunately, ignored data is

nevertheless very significant to select pertinent results in a retrieval context. Disregarding

them therefore strongly obstructs the effectiveness of the system. The second limitation is

the separation of data projections between visual and textual modalities on the common

subspace. This coarse association between modalities make the direct use of projections

resulting in limited quality of “translation”. These identified imperfections of common

representations lead to an important decrease in performance of multimedia retrieval and

classification problems. Besides identifying the imperfections of such common subspaces,

we furthermore show how they manifest on real-world data such as BBC News, Pascal

VOC07 and FlickR 8K.
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4.1 Introduction

This chapter addresses the limitation concerning relevant but poorly-represented data

on the joint space for image and text. This is due to the fact that the development of such

a CCA-based latent joint representation relies on extracting statistical regularities from a

preferably large amount of training data; any piece of data having very few occurrences or

very weak relations with other data in the training collection is consequently ignored in

the resulting joint model. Unfortunately, in a retrieval context, pieces of data that are rare

in the training set or even new in the test set, such as names or trademarks, can be very

significant in selecting the relevant results. Disregarding such information may strongly

obstruct the effectiveness of the joint representation space.

The work aims to manage the mentioned deficiency of the joint space to enhance the

cross-modal retrieval performance. For this purpose, it is necessary to extend the retrieval

framework beyond the joint model that one may be able to include “non regular but likely

to be relevant” information. We put forward a model which first identifies such information

(words) by particularly distinguishing it from noise and then finds ways to combine it

with the evidence provided by the joint representation model. This chapter furthermore

examines how the proposed model is applied to address text-illustration. This task consists

in finding an appropriate image to illustrate the content of a given textual document. We

show that, by appropriately identifying and taking such information into account, the

results of cross-modal retrieval can be strongly improved.

The rest of this chapter is organized as follows. Section 4.2 gives a brief overview of text

illustration and significant work addressing this problem. Section 4.3 outlines the proposed

model, including how to identify specific information that is poorly-represented on the

joint model in 4.3.1 and then how to combine it with generic information that is relatively

well-represented on the joint model in 4.3.2. Section 4.4 presents the experimental results.

BBC News and Wikipedia datasets are used to evaluate our models for text illustration.

One of the experiments considers domain transfer, emphasizing the need to make use of

information that may be absent from the training data. Our conclusions are drawn in the

final section 4.5.
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4.2 Text illustration problem

Text and images usually appear together in multimedia content. For example, a

children’s book or a news article is usually attached with pictures which aim to describe

the content of the text. Often the pictures themselves become more important than the

surrounding text as they can punctuate the effect of stories. In such a scenario, many

automatic text illustration (also called story picturing systems) have been investigated in

order to choose one or more representative images from an available large image collection

to accompany a text document (Figure 4.1). For instance, one may assists news writers

in complementing their text without manually searching pictures from a large corpus of

images to illustrate the content on their articles. The selected images highlight the content

mentioned by the text and furthermore allow readers to quickly catch the main messages

or topics that authors aim to deliver.

Figure 4.1: Automatic text illustration problem.

Considering textual data as the query to retrieve relevant visual data, text illustration

can be seen as a particular application of cross-modal retrieval problem between image and

text modalities. A variety of methods have been investigated to address this task. Most

of them have been developed relying on techniques from image processing, information

retrieval and more importantly natural language processing. A very classical approach to

this task consists on uni-modal retrieval paradigm adopting only textual information. In

113



CHAPTER 4. COMBINING GENERIC AND SPECIFIC INFORMATION FOR
CROSS-MODAL RETRIEVAL

this direction, Delgado et al. [2010] proposed an application to help people reading news

by illustrating the news story. The latter consists in finding the suitable images for each

scene and next selecting the best set of illustrations to improve the story sequence. Image

tags and story text are represented as the textual vectors, i.e. Vector Space Model (VSM),

modeled with the term frequency-inverse document frequency TF-IDF weights and then

compared by computing their similarities. The linguistic ontology WordNet [Miller 1995]

is also used to refine the text-image relationship by adopting a semantic expansion on story

text and image tags before the text-image comparison phase.

Meanwhile, the uni-modal solution is not usually effective for multi-modal data because

of the existence of the well-known semantic gap between current image representations and

those adopted by humans. To get out of this, text illustration model needs to take both

visual and textual modalities of data into account for its higher retrieval accuracy. One

popular approach following this direction relies on re-ranking techniques. One performs

first an uni-modal retrieval using data from one modality (e.g. text) and next uses other

modality (e.g. image) to re-rank the results of the previous uni-modal search. [Joshi et al.

2004, 2006] presented an unsupervised approach to automated story picturing. Semantics

keywords are first extracted from the story and then used to retrieve image in an annotated

image database. Thereafter, the importance of each candidate image is determined by

an image ranking processing which takes both lexical annotations and visual content into

account. The image ranking and selection is based on mutual reinforcement and discrete

Markov chain model. The highest ranked images are selected to illustrate principle ideas

conveyed by the story. Another cross-media re-ranking based illustration approach was

proposed by Coelho and Ribeiro [2011] in order to assist writers with content enrichment.

The model first performs a textual search followed by a scoring model to refine the results in

the pool of image candidates. The images issued from the textual search are then re-ranked

using visual information through a clustering scheme. This stage allows to eliminate very

distinct photos may belong to unrelated events that were not filtered in the first step.

An inconvenience of the above mentioned approaches is the requirement of an annotated

image collection in which textual search can be performed to match document query and

annotated image(s). In most of cases, this condition is not met. As alternatives, several
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works have attempted to directly match visual content of image(s) with textual content

of document. Ones have approached the problem by describing documents and images

by a common multi-modal vocabulary consisting of both textual and visual information.

These representations can be learnt with Bag of Multimedia Words [Znaidia et al. 2012]

or probabilistic multi-modal model mixLDA [Feng and Lapata 2010]. Based on Latent

Dirichlet Allocation (LDA) [Barnard et al. 2003]-a probabilistic model of text genera-

tion, Feng and Lapata [2010] proposed mixLDA model representing visual and textual

meaning jointly as a probability distribution over a set of topics. mixLDA model uses

concatenated representations of words and images features assuming that the two modalities

have equal importance in defining the latent space. The latter is built for the purpose of

automatic text illustration and image annotation. mixLDA models the probability of each

visual term in the vocabulary to a given text query through hidden topics and then delivers

a ranked list of visual terms according to the query. Images having highest overlap with

the top visual terms in the list are considered as the text illustration results.
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4.3 Combining generic and specific information

Differing from the existing work, we approach the text illustration problem by learning

a common correlated representation space between visual and textual modalities, e.g. using

CCA method and then performing a retrieval process in this space. The CCA subspace

enables matching either between document query and image itself or between document

query and text associated to image such as caption, tags, descriptions. As shown in 3.3.1,

such a space suffers from its imperfection while neglecting several pieces of data, called

specific information, which is relatively rare yet relevant for the retrieval process. To

achieve a good illustration performance, we put forward a retrieval method which combines

both generic and specific information. In Section 4.3.1, we aim to identify such specific

information that is ill-represented onto the common subspace and then show how these

pieces of data can bias the CCA-based approach in a cross-modal retrieval context like text

illustration. In Section 4.3.2, we subsequently introduce a model that fixes this drawback

by combining the identified pieces of data and those which are well-represented on the

common representation space.

4.3.1 Specific information identification

In Section 3.3.1, the imperfection of common representation subspace has been thor-

oughly investigated and demonstrated the existence of relevant yet poorly-represented pieces

of data on such space. By examining the relation between the frequency of appearance

of data in the collection and its corresponding quality of representation on the common

space, we indicated that ill-represented information probably involves infrequent data.

More precisely, such pieces of data are relatively rare and have weak relation to other

data in the collection. Sometimes, they carry important and discriminant information and

then the fact that they are ignored on the common representation space potentially has

negative impact on cross-modal retrieval performance. It is thus important to identify

such pieces of data while distinguishing them from noise. According to the rare and

discriminant properties of such data, we called them “specific” information what is different

from “generic” information being well-represented on the common space.
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For a better illustration, we refer the reader back to Figure 2.9 in Chapter 2 where

a complete cross-modal retrieval problem was described. Such a system is composed of

two phases: one for indexing and the other for retrieval (or test). The first phase consists

in learning a common representation space, e.g. with KCCA, for both visual and textual

modalities and then map data into this latter for retrieval. The test phase aims to search in

the indexed database a relevant (the most similar) entry for a given query. The imperfection

about ill-represented information is involved in the indexation phase. Concretely, two

databases are available during the learning phase: training base and reference base. The

training base contains multi-modal documents that are used to learn cross-modal projections,

e.g. KCCA projections, that map data from original visual and textual feature spaces

onto a common representation space. Training data samples require the presence of both

visual and textual modalities. Another dataset is the reference base contains documents

used for information retrieval. The reference dataset can be uni-modal (including only

textual documents or only images) or multi-modal (with both texts and images available).

Assuming both of these databases contain multi-modal documents. In general, entries

from these two sets can be either identical or completely different. Meanwhile, in the

particular context of cross-modal retrieval, the reference base is potentially different from

the training one. The major imperfection concerning ill-represented information on the

common representation space relies on the difference between data in the two datasets. In

the context of a real application, the training database is used to learn a common space,

that is a fixed resource. It can then be used with several use cases, each of them having their

own reference database. The fixed resource being included e.g. in a commercial product,

one can not always adapt it to the reference database (i.e. recomputing the projection).

Thus, it makes sense to study the effect of their difference.

The development of a latent joint representation obtained with KCCA for two or

more modalities of data relies on extracting statistical regularities from a preferably large

amount of training data. In this way, any piece of data having very few occurrences in

the training set or very weak relations with other training data is ignored in the resulting

joint representation model. Consequently, we define as “generic” information what is

included in the training base used for KCCA learning. This “generic” portion is thus
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Figure 4.2: Ill-represented data on the common representation space involved in the
difference between training and reference databases

relatively well-represented (regarding to the quality of representation) onto the common

representation subspace. On the contrary, ill-represented “specific” information includes

what is relatively rare with respect to other training data or even absent from the training

base. Specific information is defined as what is present in the reference base but not in

the training base, see Figure 4.2. In the scope of the thesis, we investigate the problem of

ill-represented information only in the textual modality.

As shown in Section 3.3.1, the identified “specific” information consists of names,

proper nouns, trademarks or scientific terms. In a retrieval context, the latter can be seen

as important indication to help the cross-modal model find the relevant retrieval result.

Furthermore, query and reference entries are likely to have a correspondence if they share

one or a set of these “specific” information. For example, a corpus of news articles covers a

large number of topics such as business, world news, technology, health, entertainment, etc.

The vocabulary of words used in such corpus is immense. Many words in this vocabulary

(e.g. students, nation, homes, cars, economy, migration, flight, tourist) appear million

times by their popular utilization. Meanwhile, we can also see the word “Maldives” that

presents in several articles. This word is ignored in the common representation space for

image and text relying on CCA method due to its infrequency with respect to the others in

the vocabulary. For a query text “Maldives island”, the ignored word “Maldives” can help

cross-modal retrieval model refine the search results to give a best-matched image answer.
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4.3.2 Generic and specific information combination for cross-modal re-
trieval

The fact that the “specific” portion containing “non regular but likely to be relevant”

information is poorly represented on the embedding space severely hampers the cross-

modal retrieval performance. Our contribution aims to put forward a model that combines

“generic” and “specific” information to achieve effectiveness of the examining cross-modal

problem, in particular for the text illustration task.

4.3.2.1 Text illustration problem formalization

Consider a reference base L of multi-modal documents comprising image and text

components

L = {D1, D2, .., D|L|} (4.1)

where Dj is the jth document in L and j = 1, .., |L|.

Each reference document contains an image and its associated text (e.g. description,

caption)

Dj = (xI
j , xT

j ) (4.2)

where xI
j ∈ RI and xT

j ∈ RT are thus respectively vectors of representation of the jth

document in visual and textual feature spaces (here, we directly assimilate the image and

text to their features).

In the scope of this chapter, we investigate text illustration - a particular case of

cross-modal retrieval problem where query only belongs to textual modality. For a query

text q ∈ RT , the model aims to find a set of illustration image(s) I(p) retrieved from the

reference collection L to illustrate the content of q. The images in I(p) must have the

most similar content to the query q. The illustration system hence needs to estimate the

similarity between the query and images or its associated textual descriptions. According to

different strategies in estimating this measure, we distinguish two approaches for selecting

relevant images. Uni-modal similarity, e.g. Text-Text, consists in computing the similarity

between a query text and a textual description of image. Cross-modal similarity, e.g.

Text-Image, estimates instead the similarity between a query text and an image itself.
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Let note Sim(q, xI
j ) (respectively Sim(q, xT

j )) the similarity function between the query

text q and the representation of an image xI
j (respectively of a textual description xT

j ) in

the reference base. The illustration I(p) for the query p is defined as follows.

• In the case of Text-Image

The similarity between the query text q ∈ RT and a document Dj = (xI
j , xT

j ) is

evaluated through the similarity between the query q and the image representation

xI
j of the document Dj . In this case, we directly use the most similar image xI to

illustrate the content of the query text q.

I(q) = {xI
j∗} such that j∗ = arg max

j∈{1,..,|L|}
(Sim(q, xI

j )) (4.3)

• In the case of Text-Text

The similarity between the query q ∈ RT and the textual description xT
j is instead

estimated to evaluate the similarity between the query text q and the document

Dj = (xI
j , xT

j ). The image of the most similar document to the query text q is chosen

as illustration of q.

I(q) = {xI
j∗} such that


j∗ = arg max

j∈{1,..,|L|}
(Sim(q, xT

j ))

Dj = (xI
j , xT

j )
(4.4)

4.3.2.2 Generic and specific information combination

The design of the text illustration system thus reduces to the design of effective similarity

functions, i.e. Sim(q, xI
j ) in Eq. 4.3 and Sim(q, xT

j ) in Eq. 4.4, which allows us to define

the relevant image in I(p) to illustrate the query text q. To facilitate the matching between

a query text q ∈ RT and a reference image xI
j ∈ RI or a reference text xT

j ∈ RT , we map

two feature spaces RI and RT into a common representation subspace, e.g. using the CCA

method. A natural way to perform the text illustration task within the CCA space relies on

estimating cosine similarity between vectors of projection of the query q and the reference

data xT
j or xI

j onto this space. However, we found that the direct use of these projections
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is not pertinent. As specific data is poorly represented on the common space, evaluating

the similarity between the query and a reference data relying on their projections onto

this space neglects important information provided by specific data. Our goal consists

in modeling effective similarity functions for the text illustration system by taking into

account both generic and specific information.

In what follows, we always consider a reference base L of multi-modal documents that

is a priori different from the learning multi-modal base T used to compute the common

space by CCA model.

Let us now investigate the consequence of poorly-represented data in such a scheme.

In what follows, we consider the visual modality I and the textual modality T of data.

The modality T = (G, S) is a textual feature vector that is composed of subspace G of

the generic vocabulary well represented by the training data and a subspace S of specific

vocabulary that is infrequent in training data, thus poorly represented by the CCA model.

The dimensionality of G and S is respectively dG and dS .

Since data in S is infrequent, we assume the cross-covariance matrix between G and

S is null, i.e. CGS ≈ 0 and the auto-covariance of S is the identity, i.e. CSS = IdS . The

cross-covariance between T and I is

CT I =

CGI

CSI



auto-covariance of T is written as

CT T =

CGG 0

0 IdS



In what follows, we consider two CCA spaces. The first one, named CCA(I, T ) is the

full CCA space learnt from the data on taken from RI (image) and RT (text with both

generic and specific information). The second one, named CCA(I, G), refers to CCA space

learnt from RI (image) and RG (text accounting only generic information). Assuming WT

the projection matrix from the feature space T onto the CCA(I, T ) space and WG the

projection matrix from the feature space G onto the CCA(I, G) space. Each column of

WT (respectively WG) contains respectively a direction wT (respectively wG) obtained by

resolving the corresponding eigen-problem relying on the matrix MT (respectively MG).
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MT and MG are defined as follows

MG = C−1
GGCGIC−1

II CIG (4.5)

and

MT = C−1
T T CT IC−1

II CIT

=

C−1

GG 0
0 IdS

 
CGI

CSI


C−1

II


CIG CIS



=

C−1

GGCGIC−1
II CIG C−1

GGCGIC−1
II CIS

CSIC−1
II CIG CSIC−1

II CIS


(4.6)

With such approximation proposed in the hypothesis, the projection matrix WT becomes

WT =

WG 0
0 R


(4.7)

where WG is the projection matrix from the feature space G onto the common space

obtained by CCA learnt from (I, G) and R a random matrix of size (dS × dS).

Accordingly, the cosine similarity in the case of Text-Text retrieval (Eq. 4.4) between

the query text q =
gq

sq


and a document Dj where its textual content is described by

xT
j =

gj
sj


is defined as

Sim(q, xT
j )

CCA(I,T )
=

< W
′
T q, W

′
T xT

j >W
′
T q

 W
′
T xT

j

 =
q

′
WT W

′
T xT

jW
′
T q

 W
′
T xT

j

 (4.8)

where A′ denotes the transpose of a matrix A and ∥v∥ the ℓ2-norm of a vector v.

Combining (4.7) and (4.8) results into:

Sim(q, xT
j )

CCA(I,T )
=

g
′
qWGW

′
Ggj + s

′
qRR

′
sjW

′
Ggq

R′ sq

 W
′
Ggj

R′ sj

 (4.9)

Since
W

′
Ggq

 ≪
R

′
sq

, one can keep the two first terms of the Taylor series of the

denominator of Eq 4.9, then the similarity between the query q and a text xT
j can be
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rewritten as follows:

Sim(q, xT
j )

CCA(I,T )
=

g
′
qWGW

′
Ggj + s

′
qRR

′
sjW

′
Ggq

 W
′
Ggj

 (1 − 1
2

R
′
sq

2

W
′
Ggq

2 )(1 − 1
2

R
′
sj

2

W
′
Ggj

2 )

= (Sim(gq, gj)
CCA(I,G)

+
s

′
qRR

′
sjW

′
Ggq

 W
′
Ggj

)(1 − 1
2

R
′
sq

2

W
′
Ggq

2 )(1 − 1
2

R
′
sj

2

W
′
Ggj

2 )

(4.10)

Since the number of specific words is much smaller than generic one (i.e. dS ≪ dG)

and the representation on the specific space (e.g. sq, sj) is relatively sparse with respect to

one on the generic space (e.g. gq, gj), the ratio between the ℓ2-norms of R
′
sq and W

′
Ggq

(similarly between R
′
sj and W

′
Ggj ) is very small, closing to 0. In this case, the similarity

between q and xT
j in Eq. 4.10 becomes

Sim(q, xT
j )

CCA(I,T )
= Sim(gq, gj)

CCA(I,G)
+

s
′
qRR

′
sjW

′
Ggq

 W
′
Ggj

 (4.11)

On the right hand side of Eq. 4.11 , the first term is the similarity according to the CCA

model computed on well-represented data, i.e. CCA(I, G) from image modality and generic

textual information. In the second term, the impact of specific data in S is biased by the

CCA-based denominator. To fix this, we propose to remove the CCA-based weighting

from the second term. In other words, we keep only the quantity of s
′
qRR

′
sj . In the

simplest case, we consider the random matrix R an identity matrix of size (dS × dS). We

furthermore propose to use a boolean model for this specific information, i.e. sq and sj

binary vectors. The second term hence becomes s
′
q · sj and simply reflects the number of

common specific dimensions (corresponding to infrequent words) that are shared by the

query q and the reference textual content xT
j .

However, with such a model, when two documents D1, D2 sharing the same number of

specific dimensions (s′
q · s1 = s

′
q · s2) their relative similarity to the query only depends on

the first term (CCA similarity). This may be inaccurate in this case since the documents

have specific dimensions. Hence, we propose to weight the second term by a better adapted

measure of similarity, given by the well-known TF-IDF model.

Finally, the similarity function of our proposed model, denoted CCA∗ taking both
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specific and generic information into account can be written as

Sim(q, xT
j )

CCA∗
= Sim(gq, gj)

CCA(I,G)
+ s

′
q · sj · Sim(gq, gj)

T F −IDF

(4.12)

When xT
j =

gj
sj


does not contain any specific dimension, that means every dimension of

sj (then s
′
q · sj) is equal to zero, our model is equivalent to the classic CCA-based retrieval

model. On the contrary, when sj is different from the zero vector, the second term may

become dominant in the similarity estimation.

It is worth noting that our model supports cross-modal retrieval since the similarity in

the CCA space can be estimated from the projection of any feature image xI
j or text xT

j .

Similarly, for the case of Text-Image retrieval (as in 4.3), we define the cosine similarity

between the query text q =
gq

sq


and a document Dj with its visual content xI

j as

Sim(q, xI
j )

CCA∗
= Sim(gq, xI

j )
CCA(I,G)

+ s
′
q · sj · Sim(gq, gj)

T F −IDF

(4.13)

The difference between the uni-modal similarity 4.12 and the cross-modal similarity 4.13

only involves the similarity in the CCA space, which is in the first terms on the right

hand side of these equations. More precisely, the proposed models computes the similarity

between the query text q and the textual representation xT
j of the reference document

Dj in Text-Text, respectively the visual representation xI
j in Text-Image. While specific

information is ignored in the computation of similarity in the CCA space, the latter is

handled, if available, in the second term of the equations. In both uni-modal (Text-Text)

and cross-modal (Text-Image) retrieval cases, our proposed model manages either generic

information, which is well represented on the CCA common space and specific information,

which is almost ignored by this space.

4.4 Experimental evaluation

The proposed method for automatic text illustration is evaluated on the BBC News

dataset and the Wikipedia dataset that are presented in Section 2.5. In the following, they

are respectively noted “bbc” and “wp”. We start by comparing our method with several

baselines on the BBC News illustration task. Then, we specifically study the impact of
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information that is absent from the training data by considering a domain transfer context,

that is closer from a real situation: the common space is learned from a dataset that is

different from the reference dataset used in the evaluation experiment. We end up by a

comparison on the Wikipedia 2010 collection, that contains a large amount of specific

information in comparison to the first two experiments.

4.4.1 Experimental Setting

Evaluation method. We adopt the evaluation methodology proposed in the work of Feng

and Lapata [2010], based on top-1 accuracy. For a query article, the system is expected to

rank first the image that was selected by the original author of the article. The reported

accuracy is thus the percentage of successfully matched image-article pairs in the test set

(240 documents). From this last, we obtain a reference database made of images aligned

with their caption, while the associated article is used as query. The BBC News training

dataset (3, 121 documents) is used to learn the common space only. In that last case, article

and caption are concatenated to get a unique textual content aligned with the image.

Content representation. To represent visual content we use OverFeat [Sermanet et al.

2013] which has been widely known to provide powerful features for several classification

tasks. More precisely, we employ 3072-dimensional vectors which are the layer-18 outputs

at the stage 6 of the fast OverFeat network and further ℓ2-normalize them. For text

features, we learn the dictionary by removing stop words, stemming the remaining words

and filtering the stems by their frequency. Accordingly, vocabulary on Vbbc has 23,617

words that are either stems appearing at least twice in the training set or proper nouns

from this set. The vocabulary on Vwp has 19,653 words, each appearing at least 5 and

at most 1500 times. The filtering thresholds have been chosen such that the size of the

dictionary is about the same order of magnitude for both datasets (∼ 20k). Texts have a

TF-IDF representation, followed by ℓ2-normalization.

Baselines. The proposed method is compared with three text illustration methods

presented in Feng and Lapata [2010]. The baselines Overlap and Vector Space Model
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disregard visual content.

• Overlap selects the image whose caption has the largest number of words in common

with the test document.

• Vector Space Model (VSM) first represents articles and image captions using TF-IDF

vectors. The cosine similarity measure is then performed to find the image whose

caption is most similar to the test article. We report the result of VSM baseline

VSMV introduced in Feng and Lapata [2010]. This work used a vocabulary V of 6,300

words for text representation. In VSMVbbc
baseline, we reproduce the VSM baseline

using our textual vocabulary Vbbc of 23,617 words.

• mixLDA [Feng and Lapata 2010] considers both visual and textual content in defining

a latent space. The method consists in computing the probability of each visual term

in the visual vocabulary to a given text query through hidden topics and delivering

a ranked list of relevant visual terms for the query. The image having the highest

overlap with the top 30 visual terms in the list is considered as the best image to

illustrate the text.

Notations. We denote by CCAcap (resp. CCAimg) the basic CCA illustration model

in which document-to-caption (resp. document-to-image) nearest neighbor search with

cosine similarity measure is applied on document and caption (image) projections. The

models in Eq.(4.12) and Eq.(4.13) are denoted by CCA∗
cap and CCA∗

img respectively. In

our experiments, CCA spaces are constructed from images and text that concatenate

documents (articles) and captions.

4.4.2 Results on BBC News

We first compare the basic CCA model to the three baselines. CCA dimension selection

is performed via 10-fold cross-validation on the 3121 articles training set of BBC News.

We retain 2500 as the projection dimension since it corresponds to the highest score, see

Fig. 4.3. As shown in Table 4.1, the corresponding accuracy of CCAcap on the test set is

76.7%, higher than the accuracy of all the baselines including those presented in Feng and

126



CHAPTER 4. COMBINING GENERIC AND SPECIFIC INFORMATION FOR
CROSS-MODAL RETRIEVAL

Lapata [2010] as well as the Vector Space VSMVbbc
model with the larger Vbbc vocabulary.
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Figure 4.3: CCAcap results (on the BBC News test set) and dimension selection (cross-
validation on the training set)

The large improvement of VSMVbbc
(73.8%) over VSMV [Feng and Lapata 2010] (38.7%)

highlights the importance of an appropriate text representation for this task. The fact

that the textual baseline VSMVbbc
yields a high illustration performance, together with the

weak score of CCAimg (5.4%), are indications that in the BBC News dataset the visual and

textual contents are rather poorly related, so the latent representation learned by CCA is

not so reliable. Meanwhile, the VSM model can easily take advantage of the connection

between documents and captions, that appears to be strong.

To apply the CCA∗ model we proposed in Section 4.3, we identify the vocabulary

Sbbc of 41 specific words that are present in 240 testing captions but not in the initial

vocabulary Vbbc. As shown in Table 4.1, our CCA∗
cap model achieves the best score with

80.8% accuracy.
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The third column in Table 4.1 reports the results of proposed models using a 10-fold

cross-validation on 3,361 BBC News data. For each fold, 3,121/3,361 documents are

employed for learning the CCA common space and the remaining 240/3,361 are used for

test. The number of specific words varies from 26 to 42 over these folds while its average

value is 35. The results show that the CCA∗
cap model outperforms the others.

Model Accuracy(%) Accuracy(%)
10-fold CV

Overlap [Feng and Lapata 2010] 31.3 n/a
VSMV [Feng and Lapata 2010] 38.7 n/a
mixLDA [Feng and Lapata 2010] 57.3 n/a

VSMVbbc
73.8 72.8 ± 2.1

CCAimg 5.4 8.9 ± 1.7
CCAcap 76.7 74.7 ± 2.5
CCA∗

img 15.8 19.0 ± 2.0
CCA∗

cap 80.8 78.9 ± 2.4

Table 4.1: Text illustration results on BBC News dataset

4.4.3 Results in a domain transfer context

In the second experiment, we aim to study the impact of having a larger difference

between the vocabularies of the target set and of the training set (used to learn the

common space), which is an important issue in practical applications. We thus used an

independent dataset to learn the latent space, collected from the large ImageCLEF 2013

Photo Annotation and Retrieval dataset1 and later noted “ic”.

The ImageCLEF 2013 collection includes 250,000 images downloaded from the Internet.

Each image has at most 100 tags (words) extracted near the position of the image in

the webpage it appears [Villegas et al. 2013]. These tags are considered as textual

content associated to images and thus used for learning the textual vocabulary Vic for

the ImageCLEF 2013 training dataset. We follow the processing of vocabulary learning

proposed in Section 4.4.1 including removing stop words, stemming the remaining words

and filtering the stems by their frequency steps. The final vocabulary Vic contains 18,003

unique words occurring each between 5 and 1500 times.

1http://www.imageclef.org/2013/photo/annotation
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Model Accuracy(%)
VSMVic 53.8
CCAcap 43.3
CCA∗

cap 61.3

Table 4.2: Results on BBC News with domain transfer

The CCA space is learned from images and tags using OverFeat features of size 3072

and TF-IDF textual representations of size 18, 003. When used for retrieval, this textual

representation induces a Vector Space Model noted VSMVic . In this experiment, the

dimension of the latent space is set to 3072.

In this domain transfer context, there are 208 specific words Sic present in the BBC

News test set captions but not in Vic. Table 4.2 reports the performance of three models

in this context: VSMVic , CCAcap and CCA∗
cap. By taking the specific information into

account, our model significantly improves the result of basic CCA, showing that it can be

quite effective in a domain transfer context.

One can note that the score obtained by CCAcap in this domain transfer context (43.3%)

is much lower than that obtained when the latent space is learned on the BBC News

training set (80.8%). This reveals that the two datasets, ImageCLEF 2013 and BBC News,

present rather different relations between images and words. However, when one uses our

contribution CCA∗
cap, it can fix about half of the performance loss, reaching 61.3%

4.4.4 Results on Wikipedia 2010

Model Accuracy(%)
VSMVwp 20.8
CCAimg 9.2
CCAcap 16.3
CCA∗

img 58.3
CCA∗

cap 55.4

Table 4.3: Results on Wikipedia 2010

For the third experiment we consider the Wikipedia 2010 collection that can be directly

employed for text illustration while being larger than the BBC News dataset. As for

the first experiment, the CCA space is obtained from images and texts that accumulate
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Figure 4.4: Top three images with their captions which are proposed by our model to
illustrate the BBC News documents about “Extent of school failure disputed” and “Thames
Water heads pollution list”

documents and captions, using the features described in Section 4.4.1. From the testing

set captions, we determined 2868 specific words out of the training vocabulary Vwp.

The results of the Vector Space model baseline, of the basic CCA model and of the

proposed CCA* model are shown in Table 4.3. Our approach CCA∗
cap improves the text

illustration accuracy over basic CCA from 16.25% to 55.4% and significantly outperforms

the Vector Space model (20.8%). The cross-modal model CCA∗
img of Eq. (4.13) with visual

features obtains even better results (58.3%).

The score are globally lower than in the experiment on the BBC News dataset, showing

that this larger benchmark is more challenging. It is nevertheless remarkable that our

proposal still conduct to a larger improvement when the task is more difficult.
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4.5 Conclusion

We proposed a new approach for CCA-based cross-modal retrieval that takes advantage

of specific information that is poorly represented in the training data but likely to be

relevant for the task. Our contribution consists in first identifying specific information and

then leveraging both specific information and generic information which is well-represented

on the CCA common representation space for cross-modal retrieval.

Benchmark Common space Nb specific Improv. Improv.
learned on words over VSM over CCA

BBC News BBC News 41 +7.0 +4.1
BBC News ImageCLEF13 208 +7.5 +18.0

Wikipedia2010 Wikipedia2010 2868 +37.5 +39.1

Table 4.4: Comparative performance of our method to the baseline CCA for different
experimental settings. The more difficult the task (in term of number of specific words)
the more our method is useful.

We showed the interest of our model in the context of the challenging text illustration

task formulated as top-1 cross-modal retrieval. The proposed approach was compared to

others on a previously published benchmark and shown to produce better results. We

also proposed two new benchmarks that are more realistic in the sense that they contain

more data that is new in the test set with respect to the training set. The results show

that the proposed method improves even more effectively over the performance of CCA in

these cases. Table 4.4 shows that the more number of specific information the model takes

into account, the higher the improvement of the model over the basic CCA or the VSM

model is. For instance, in the case of Wikipedia benchmark where 2,868 specific words

are accounted, the improvement of our proposed model is +37.5 over the VSM model and

+39.1 over the basic CCA model.

For discussion, it is worth noting that evaluation based on the top-1 result alone as

proposed in Feng and Lapata [2010] is quite strict for such a text illustration task. The

system must return as first relevant result the very image chosen by the author, but it may

not be the best one to illustrate the document.

Actually, in many cases, for both BBC News and Wikipedia 2010, other images in
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Figure 4.5: Illustration by author may not be the unique and the best choice to describe
the actual content of BBC News article

Model BBC News Wikipedia
VSM 94.2 27.1

CCA∗
cap 95.0 70.8

Table 4.5: Results with top-10 evaluation

the collection are at least as relevant for the document. Several examples are shown in

Figure 4.5. In the cases of a) and b), illustrations proposed by authors are placed in red

frames while our system suggested other relevant images that are also related to the content

of article. However, these images are ignored because they are not the original illustration

used by authors. It is thus important to also evaluate the methods based on the accuracy

of top-k results, with k > 1. As shown in Table 4.5 for k = 10, the proposed method

compares well with the Vector Space model on both datasets.

Finally, we found that BBC News dataset is especially challenging for text illustration

because of its small size and the quite indirect relation between textual and visual content

in most news articles. For many articles, as in example c) of Figure 4.5, the original

illustration does not relate to the actual content of article. However, other images in the

collection can be objectively considered more relevant to the article’s content than the

image selected by the author.
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5.1 Introduction

In this chapter, we are interested into cross-modal classification, a task which has not

been widely investigated in the multimedia community. It consists in training models on

data from one modality and applying them to predict data from another modality. In

the scope of this thesis, we investigate the cross-modal classification problem for image

and text modalities, thus we consider the cases where training is performed on labelled

textual-only data and testing on visual data or, symmetrically, training on labelled visual

data and testing on textual data. Cross-modal classification is illustrated in Figure 5.1.

Figure 5.1: Illustration of Image-Text cross-modal classification problem.
Models are trained on images and applied to predict a text.

This task has not been extensively investigated in the literature, first and foremost

because text and images are usually not described with the same features, and usually not

even in the same vector space, making the task quite incongruous. However, beyond an

academic interest, we believe this task also has an increasing practical interest. Suppose, for

example, that classifiers for many concepts could been learned from textual data because

of the massive availability of such labeled data. One could wish to detect these concepts

on content corresponding to another modality, e.g. images, even if class labels are not (yet)

available for this content. Such a situation may become more common with the current
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evolution of micro-blogging, that changes from purely textual content (historical Twitter) to

multi-modal content (current Twitter) or purely visual content (Instagram). Furthermore,

the study of the cross-modal classification task allows to explore in a more clear setting

methods that aim to make the best use of the many datasets that mix uni-modal and

bi-modal data.

Cross-modal classification is different but has connections with classical multimedia

problems between image and text such as bi-modal image classification or cross-modal

retrieval. The latter can be seen as a step beyond bi-modal image classification that usually

considers images associated to keywords or sentences (e.g. captions) as input data and uses

both visual and textual content to solve the task. This task is further related to cross-modal

retrieval tasks such as text illustration or image annotation that require matching the

information from one modality to the other.

The bi-modal classification and cross-modal retrieval tasks both need to relate text and

image modalities. Various approaches have been extensively exploited in the literature to

this purpose. To address bi-modal classification, several fusion approaches were proposed to

combine the two modalities, e.g. Wang et al. [2009]. However, for cross-modal retrieval it

was necessary to devise methods that are able to relate the two modalities more closely. The

development of a common latent representation space, resulting from a maximization of the

“relatedness” between the different modalities, is a generally adopted solution [Ngiam et al.

2011; Sharma et al. 2012; Srivastava and Salakhutdinov 2012; Hwang and Grauman 2012a;

Srivastava and Salakhutdinov 2012; Gong et al. 2014; Feng et al. 2014; Costa Pereira

et al. 2014].

In the context of cross-modal classification, such a common latent representation space

is a suitable solution to overcome the incompatibility problem between different feature

spaces. In this space, visual and textual information have similar representations and

become directly comparable. Hence, it is perfectly conceivable to train a classifier on

vectors of the common space that are projections of textual features and predict an output

for a vector that is a projection of a visual feature. A common space was widely employed

for cross-modal retrieval, i.e. information retrieval with both uni-modal and multi-modal

queries. Several significant work in the recent literature on this topic have been reviewed
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in Section 2.4. In particular, our contributions presented in Chapter 4 and Chapter 6 focus

on investigating a robust common representation space to address cross-modal retrieval

task. However, to the best of our knowledge, no attempt was made to employ cross-modal

classifiers as we suggested. This is precisely the question we investigate in this chapter.

The problem investigated in this work is related to the work of Sharma et al. [2012]

and Costa Pereira et al. [2014]. These models learn classifiers onto joint space of image

and text (detailed in Section 2.4.1). To our knowledge, the cross-view classification was

first mentioned by Sharma et al. [2012] to address the pose-invariant face recognition

task. This work approaches cross-view classification using a k-NN classification scheme

on their Generalized Multiview Analysis (GMA) joint space. It consists in classifying a

sample by a majority vote of its neighbors, with the case being assigned to the class most

common among its k nearest neighbors (k-NN) measured by a distance function. In this

work, the parameter k is set to 1 (1-NN) which means simply to assign the sample to the

class of its nearest neighbor on the latent space using the normalized correlation score

as a metric. This approach is different from our research problem consisting on learning

classifiers using features from one modality e.g. image and directly applying for another

modality e.g. text on the common space. Furthermore, our work is close to the Semantic

Correlation Matching (SCM) [Costa Pereira et al. 2014] in which classifiers are trained

using projections on the joint representation space learnt by KCCA. However, this work

used the output scores of these classifiers to build a semantic representation of uni-modal

data to address the cross-modal retrieval alone.

More importantly, as it has been shown in the Chapter 3, the quality of cross-modal

projections such as those obtained with KCCA is not good enough to achieve a robust

“translation” between the two modalities. As shown in Section 5.3, the performance of

cross-modal classification obtained with a direct use of KCCA projections is not too low.

However, we believe that this latter can be improved once the limitations of the joint space

described in Section 3 are managed.

Our contribution mainly consists in “completing” the projection of a uni-modal feature

on the common space with information coming from the other modality. For this, we

propose to rely on an auxiliary multi-modal dataset that acts as a set of connections
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between the modalities within the common latent space. Such a dataset is always available,

as it is required to obtain the common space. However, we also consider the case where

the auxiliary dataset is totally different from that employed to learn the common space.

While we mention a “naive” approach based on the auxiliary dataset, we propose a

slightly more sophisticated scheme to identify the complementary information, leading

to significantly better results. Last, our method includes a step that aggregates the

original vector coming from the projection of a uni-modal feature with the identified

complementary information to synthesize a unique representative vector of the document.

This new representation thus embeds both modalities. In what follows, we call “Weighted

Completion with Averaging” (WCA) the resulting proposed representation method.

Consequently, learning a classifier with such WCA representation and applying it to

uni-modal documents naturally leads to much better results than the “direct” approaches.

The rest of this chapter is organized as follows. In Section 5.2, we present the proposed

method WCA including the “completion” of the missing modality (Section 5.2.1, 5.2.2) and

the construction of an aggregated mutli-modal representation (Section 5.2.3) of a uni-modal

projection onto the common representation space. Section 5.3 reports the evaluation

results on Pascal VOC07 and NUS-WIDE. Comparisons are performed with two baselines,

showing that the proposed method leads to significant performance improvements (Sec-

tion 5.3.2). The impact of different parameters employed in our approach are investigated

in Section 5.3.3, 5.3.4. We eventually compare the cross-modal classification results we

obtained to state-of-the-art results concerning cross-modal retrieval, as well as uni-modal

and bi-modal classification, showing that the performance level attained in cross-modal

classification makes it a convincing choice for real applications (Section 5.3.5).
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5.2 Weighted Completion with Averaging (WCA)

Cross-modal classification consists in training models on data from one modality (e.g.

text) and applying them to data from another modality (e.g. image). This requires uni-

modal labeled training data from the first modality and uni-modal testing data from the

other modality. However, to relate the two modalities, one can rely on an additive bi-modal

dataset. There is no need for this dataset to have class labels. As in many cross-modal

retrieval methods, this additive dataset can be employed to learn a “common” latent space

for the two modalities. The projection of uni-modal data on this common space makes

data representations for the two modalities directly comparable. Nevertheless, as shown

in Chapter 3, this common representation space suffers from several limitations that may

hinder the performance of task e.g. cross-modal classification relying on such representation.

Figure 5.2: The proposed WCA approach for cross-modal classification

What we suggest here is to use another auxiliary bi-modal dataset to reflect the common

space projection distortions. It is thus possible to rely on this dataset to “fix” the distortion.

In practice, we propose to build a bi-modal representation in the common space for any

data originally uni-modal, by completing a uni-modal projection with a virtual point from

the other modality. The virtual point is obtained through the auxiliary dataset. The

resulting average of these two points (real and virtual) is named “Weighted Completion with
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Averaging” (WCA) in the following. The idea of using auxiliary dataset for uni-modal data

completion has been previously introduced in the work of Wang et al. [2009]. However, this

work addressed only the multi-modal classification and not the cross-modal classification

as we suggest here.

To train the classifiers, such a bi-modal representation is first obtained for each uni-modal

labeled training example and then learning is performed with these synthetic bi-modal

WCA representations. For each uni-modal testing example (in the other modality than the

one used for training), the bi-modal representation is built with the help of the auxiliary

dataset and then the available classifiers are applied to this representation. Figure 5.2

illustrates this approach to cross-modal classification.

We consider here two cross-modal classification tasks: Text-Image (T-I) and Image-Text

(I-T). In the Text-Image task, the classifiers are trained with documents that have only

textual content and then evaluated on documents in which only the visual modality is

available. Symmetrically, in the Image-Text task, classifiers are trained with visual-only

documents and tested on textual-only documents.

5.2.1 Relevant completion information identification

Let us consider an auxiliary dataset of m documents, each having both visual and

textual contents. Let A be the set of pairs of KCCA projections of the visual and textual

features of these documents on the common space, with A = {(qT , qI)}, qT ∈ AT , qI ∈ AI ,

|A| = m. Dataset A can be seen as a sample of pairs of “linked” points, each concerning

one modality. If the points are considered in the original spaces of visual and textual

features, these links may be loose because part of the visual content of a document is

unrelated to its textual content and conversely. The links should be stronger between

the projections of the visual and textual features of the documents on the common space

such as KCCA on which the relatedness between modalities are maximized. The sample

A provides information regarding the relations between the two modalities. The more

representative this sample is, the more reliable is the information.

The general idea of completion is to rely on this auxiliary dataset to transform a

projection point from a uni-modal document into a more robust representation that
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takes into account both modalities. For this purpose, one needs to determine a relevant

complementary representation from the missing modality of the examining uni-modal

document. The latter is represented by a virtual point obtained through the set of

projections of auxiliary data A on the common space. The process of identifying such

relevant complementary representation is explained in what follows.

Let us consider a document D with textual content only, described by a feature vector

xT that is projected as pT on the KCCA space. The method described here (and in

Sections 5.2.2 and 5.2.3) for a textual-only document can be symmetrically applied to a

document having only visual content.

A direct but “naive” choice would be to complete pT with a vector obtained from its

µ nearest neighbors among the points of the auxiliary dataset projected from the other

modality (visual one here), NNµ
AI (pT ), because this is the missing modality for D. This

naive choice, considered in Section 5.3 as a second baseline, can be expressed as

Mc(pT ) = {qI
j } such that qI

j ∈ NNµ
AI (pT ) (5.1)

To go further to such an approach, we need to consider the properties of the common

space. While it results from an overall maximization of the relatedness between the two

modalities, the projections of the textual and of the visual content of a same document

on this space are not necessarily very close. So, given the uni-modal representation of a

document D, its direct nearest neighbors within the other modality are not the best source

for “filling in” the missing modality of D. However, we expect that documents having

similar content according to one modality are likely to have quite similar content according

to the other modality.

So, we propose to find the auxiliary documents having similar projected content with D

in the available modality for D (textual modality in this case) and to use the projections of

the visual content of these documents to complete pT , see Figure 5.3. Formally, we define

the set of contributors to the “modality complement” of pT as

Mc(pT ) = {qI
j } such that


qT

j ∈ NNµ
AT (pT )

(qT
j , qI

j ) ∈ A
(5.2)

where the condition (qT
j , qI

j ) ∈ A means that qT
j and qI

j are the projections of two feature
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Figure 5.3: Naive completion (a) vs. proposed completion (b).
Squares and circles are text and resp. image projections. Connected red squares and circles
represent bi-modal documents in A. The blue circle is the projection of an image-only
document. The naive approach seeks neighbors in the missing modality directly, while our
proposal looks for them in the available modality.

vectors extracted from the same bimodal document. Note that
Mc(pT )

 = µ.

In practice, the auxiliary dataset A can be the training data employed to obtain the

KCCA space and denoted by T in Section 5.3. However, we also consider and evaluate the

use of different datasets for building the common space and for determining the relevant

completion information within the missing modality of a uni-modal document. This can

have a practical interest when, for example, the common space is an open resource but

the dataset employed to build it is private or no longer available. Alternately, the dataset

used to obtain the common space may be too large and generic, thus a smaller but “better

focused” auxiliary dataset would be preferable to better model the characteristics of a

narrow target domain.

5.2.2 Completion of the missing modality

Once the relevant complementary information regarding the missing modality of a

document D has been collected on the common space as Mc(pT ), we employ it for building

a representation for the missing modality of D.

Let p̂I be the representation of this missing modality (the visual modality here) on the

common space. A solution is to obtain p̂I as the centroid of the qI
j in Mc(pT ) = {qI

j }, i.e.

p̂I = 1
µ


qI

j ∈Mc(pT )

qI
j (5.3)
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With several neighbors (µ > 1), the neighborhood of pT is better sampled, making the

representation more robust. This is confirmed by experiments in Section 5.3.

The use of the centroid gives equal importance to all the µ neighbors. However, the

similarity between pT and each point qT
j ∈ NNµ

AT (pT ) should have an impact on the

construction of the representation p̂I of the missing modality. If, within the available

modality (textual modality here), pT is closer to a textual point qT
j1 than to qT

j2 (with

qT
j1 , qT

j2 ∈ NNµ
AT (pT )), then within the missing modality (visual modality here) the rep-

resentation p̂I should be closer to the corresponding visual point qI
j1 than to qI

j2 (with

qI
j1 , qI

j2 ∈ Mc(pT )). Consequently, we prefer to define the representation p̂I of the missing

modality for pT as a weighted centroid:

p̂I =


qI
j ∈Mc(pT )

ωjqI
j (5.4)

where ωj is the weight of qT
j . Among the µ nearest neighbors of pT considered, some may

be very close to pT and others comparatively far away. The weighting method should allow

to take into account the close neighbors and ignore the others, so the weight should quickly

drop when the distance increases. We consequently define the weights as:

ωj =
σ(pT , qT

j )
qI

j ∈Mc(pT )
σ(pT , qT

j )
(5.5)

with σ(pT , qT
j ) = 1/(ϵ + ∥pT − qT

j ∥). Here, ∥pT − qT
j ∥ is the Euclidean distance between pT

and each qT
j ∈ Mc(pT ). Also, ϵ is set to 10−16 to avoid marginal singularities for the points

that may actually belong to the auxiliary dataset. In particular, this is important when

the auxiliary dataset has data in common with the training set of the target task. The

representative point into the missing modality is thus built from the complementary points

of the neighbors found in the available modality and weighted according to the similarity

computed in the available modality as well.

To complete the missing modality of a document D with the help of the auxiliary dataset

A according to Eq. 5.4, it is necessary to retrieve NNµ
AT (pT ), the µ nearest neighbors of

pT among the points in AT . If the auxiliary dataset is relatively small (∥A∥ ≤ 106), exact

exhaustive search is fast enough. For larger A a sublinear approximate retrieval method

can be employed, e.g. Joly and Buisson [2011]; Novak et al. [2015].
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5.2.3 Aggregated representation construction

For any unimodal document D originally described by pT alone, after building the

representation p̂I of the missing modality, we aggregate pT and p̂I to obtain a unique

descriptor p of D. Various aggregation methods can be used and several are compared in

Section 5.3.

A widely employed method is the concatenation of the components, in this case of pT

and p̂I , resulting in a vector of size 2d. This “unfolded” representation allows the classifier

to process the textual and visual components separately but doubles the dimension of the

description space.

Max-pooling consists in building a descriptor where the ith element is the maximum

between pT
i and p̂I

i . This method has already been used with good results for bag-of-

visual-words (BoVW) representations, see e.g. Boureau et al. [2010]. We also evaluate

max-pooling here, even though quantization is not employed for pT and p̂I .

Averaging is also considered in Section 5.3. It obtains the aggregated description as the

element-wise average of the two components pT and p̂I :

p = (pT + p̂I)/2 (5.6)

The approach presented in sections 5.2.1, 5.2.2 and 5.2.3 for a textual-only document

can be symmetrically employed for a visual-only document.
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5.3 Experimental evaluation

We conduct several experiments on publicly available datasets according to standard

experimental protocols. Beyond the raw performance of the proposed WCA method and its

comparison to baselines, we study the influence of the main components of WCA, namely

the completion process, the aggregation method and the relation between the auxiliary

data A and the T dataset used for KCCA. We then compare the cross-modal classification

results of WCA to state-of-the-art results concerning cross-modal retrieval. To better

situate the performances attained by WCA on cross-modal classification, we compare them

to uni-modal and bi-modal classification results of the state of the art.

5.3.1 Experimental settings

Dataset descriptions. We evaluate the proposed WCA approach for cross-modal classi-

fication task on Pascal VOC07, Nus-WIDE and Nus-WIDE 10K data. We refer the readers

back on Chapter 2 for the detail description of Pascal VOC07 and Nus-WIDE dataset.

Nus-WIDE 10K is a subset of the original Nus-WIDE dataset that we collected following

the protocol proposed in Feng et al. [2014]. Only the following ten concepts are chosen:

animal, clouds, flowers, food, grass, person, sky, toy, water and window. For each of these

concepts we select 1000 image-text pairs (800 for training, 100 for validation and 100 for

testing) that only belong to this single concept. This dataset is considered for the sake of

comparison to the state of the art.

In what follows, we denote the full Nus-WIDE training set of 161,789 samples by

NW160K. We also selected two smaller subsets of NW160K, NW12K of nearly 12,000

images and NW23K of nearly 23,000 images, both containing training images of the 81

concepts. NW23K and NW12K contain maximum 300 images and respectively 150 images

for each of 81 concept.

Content representation. To represent visual content we use the 4096-dimensional

features of the Oxford VGG-Net [Simonyan and Zisserman 2014], L2-normalized. They

are extracted from a fully-connected layer (fc7, 16th layer) of a CNN architecture trained
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on the ILSVRC 2012 dataset [Russakovsky et al. 2015] that contains 1.2 million images

annotated according to 1,000 classes. These VGG features were shown to provide very

good results in several classification and retrieval tasks [Razavian et al. 2014].

For texts (sets of tags or sentences) we employ Word2Vec [Mikolov et al. 2013],

an efficient method for learning vector representations of words from large amounts of

unstructured text. In our experiments, textual features are 300-dimensional, L2-normalized

vectors. Following Mikolov et al. [2013], a single vector is obtained from several tags or a

sentence associated to a given image, by summing the vectors of the individual words.

Baselines. We compare WCA to two cross-modal classification baselines. The first,

denoted by KCCA0, is simply the direct use of the projections on the KCCA space. The

common space is learned from the dataset T and the two cross-modal tasks are performed

without any completion, both for training and testing. More explicitly, classifiers are

trained with the projections of one modality on the common KCCA space and tested with

projections of the other modality on this space.

The second baseline, denoted by KCCAnc (nc stands for “naive completion”), employs

the “naive” completion method following Eq.(5.1). For either training or testing, the

available modality is projected on the KCCA space and this projection is then completed,

according to Eq. (5.1), with a vector obtained by the centroid method (Eq. 5.3) from its µ

nearest neighbors among the points in A projected from the other modality. The averaging

aggregation method of Eq. (5.6) is employed.

Common space and classifier settings. In all the experiments we use the KCCA

implementation in Hardoon et al. [2004] to build the common space, with a regularization

parameter κ = 0.1 and a Gaussian kernel with standard deviation set to σ = 0.2. These

are the default values, also employed in other references Hodosh et al. [2013].

For each category, an SVM classifier with a linear kernel is trained, following a one-vs-all

strategy. In practice, we use the implementation proposed by Bottou [2010]. It provides

fast computations and is very efficient in terms of memory footprint since it is based on

averaged stochastic gradient, an approach that is asymptotically efficient after a single pass

145



CHAPTER 5. UNI-MODAL DATA COMPLETION WITH THE MISSING
MODALITY

on the training set.

5.3.2 Proposed completion vs. naive completion vs. no completion

We first study the effectiveness of the completion mechanism for cross-modal classifica-

tion on all the datasets. In the Text-Image task, the classifiers are trained with documents

(of the training set) from which the visual content was removed and then evaluated on

testing documents from which the textual content was removed. Symmetrically, in the

Image-Text task, the classifiers are trained with image-only documents and then evaluated

on text-only documents. Table 5.1 and 5.2 report the results obtained on these tasks by

WCA and compares them to the KCCA0 and KCCAnc baselines on Pascal VOC07 and

Nus-Wide datasets respectively.

Method Pascal VOC07
T-I I-T Average

KCCA0 78.98 59.88 69.43
KCCAnc 75.07 68.77 71.92
WCA 85.49 83.38 84.44

Table 5.1: Cross-modal classification results (mAP%) on Pascal VOC07.
Training set of Pascal VOC07 was employed for KCCA learning and for auxiliary dataset.

Parameters d = 4000 and µ = 15.

On Pascal VOC07, we employ the training examples (5011 image-text pairs) both as

training data T for learning the KCCA space and as auxiliary data A for the modality

completion stage. The best performances of the KCCA0 baseline (78.98% for Text-Image

and 59.88% for Image-Text) are obtained with d = 4000 dimensions. For the sake of

comparison, the results of the KCCAnc baseline and of WCA are reported in Table 5.1 for

this 4000-dimensional common space. With µ = 15, WCA yields a better performance

than the two cross-modal classification baselines (+15% and +12.5% on average compared

to KCCA0 and KCCAnc respectively).

On Nus-WIDE and Nus-WIDE 10K, the common space is learned from the data in

NW23K. Subsequently, the 161,789 training and 107,859 testing examples of Nus-WIDE

(respectively the 8,000 training and 1,000 testing data of Nus-WIDE 10K) are projected

onto the common space to perform cross-modal classification tasks. We use NW23K as
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Method NUS-WIDE NUS-WIDE 10K
T-I I-T Average T-I I-T Average

KCCA0 16.97 11.69 14.33 53.34 43.69 48.51
KCCAnc 14.87 11.61 13.24 46.41 39.28 42.85
WCA 18.81 17.90 18.36 58.62 52.77 55.69

Table 5.2: Cross-modal classification results (mAP%) on Nus-WIDE and Nus-WIDE 10K.
The common representation spaces were learned using NW23K collection. For auxiliary
data, NW23K was employed for Nus-WIDE benchmark while 9,000 (training and validation)
data in Nus-WIDE 10K was employed for Nus-WIDE 10K. Parameters d = 10 and µ = 10.

auxiliary data A to complete uni-modal data in the Nus-WIDE benchmark. The 8,000

training plus 1,000 validation data in NUS-WIDE 10K are employed together as auxiliary

data A for the NUS-WIDE 10K benchmark. In this experiment, the number of neighbors

µ used for completion is set to 10 both for the KCCAnc baseline and for WCA. The best

performances of KCCA0 and KCCAnc are obtained with d = 10 for the two datasets. In

this 10-dimensional common space, WCA (with µ = 10) outperforms these two baselines

by reaching a mAP of 18.81% for the Text-Image task and 17.9% for the Image-Text task

on the NUS-WIDE dataset, and respectively 58.62% and 52.77% on NUS-WIDE 10K.

5.3.3 Influence of the completion and aggregation methods

We study the influence of the different completion and aggregation methods described

in Section 5.2 on the performance obtained on Pascal VOC07, with the same parameters

as in Section 5.3.2. The training examples in Pascal VOC07 were employed here both for

KCCA learning (d = 4000) and as auxiliary dataset A. WCA uses the weighted centroid

for completion, and aggregation by averaging. “Weighted+Concatenation” combines the

weighted centroid for completion with aggregation by concatenation. “Weighted+Max”

also employs the weighted centroid for completion but max-pooling for aggregation. The

“Centroid+Average” method uses the unweighted centroid (Eq. 5.3) for completion and

average-pooling for aggregation. For each method, we report in Figure 5.4 the average of

the mAP values obtained for the Text-Image and Image-Text tasks with µ ∈ {1, 5, 10, 15}.

Both WCA and “Centroid+Average” perform significantly better than KCCAnc, showing
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Figure 5.4: Results of different completion and aggregation methods on Pascal VOC07,
showing the mAP(%) with respect to the number of neighbor points µ used in the auxiliary
dataset A. For each method, the curves are the average of the Text-Image and Image-Text
tasks. Parameter d is set to 4000.

the interest of the proposed completion method of Eq. (6.4) in comparison to the naive

completion of Eq. (5.1). Averaging is consistently better than max-pooling but the difference

is small. Both averaging and max-pooling are significantly better than concatenation.

Performance increases with the number of neighbors µ for the three aggregation methods

if the weighted centroid is employed, while with the unweighted centroid mAP slightly

diminishes beyond µ = 5. Indeed, for higher values of µ some neighbors that contribute to

the completion of the missing modality are not enough near to be representative, thus can

be considered as noise. In Eq. (5.5), the close neighbors are taken into account while those

that are not “near enough” are ignored thanks to the weighting. With such a scheme, the

number of neighbor µ can thus be increased without any risk of performance loss.
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5.3.4 Impact of the auxiliary data and the common space

One of our motivations is to develop a common representation space as a generic

“resource”, from a large and general bimodal dataset T , then address different cross-modal

classification problems with this resource. This allows to avoid re-learning a common space

for each problem, using a specific problem-related dataset. Projections onto this space

benefit from the generic text-image relations learned from T . A different, potentially more

problem-related dataset A can then be employed for representation completion, taking

thus into account problem-specific text-image links in the aggregated data representation.

To explore this idea, we study in this section the impact of using different datasets

for obtaining the common KCCA space (dataset T ) and for completing the unimodal

representations (dataset A). All the experiments in this section concern Text-Image and

Image-Text cross-modal classification on Pascal VOC07.

5.3.4.1 Auxiliary dataset A

We fix the dataset T employed for learning the KCCA space as the bimodal training

set of Pascal VOC07. The dimension of the common space is set to d = 4000 because

the baseline KCCA0 reaches its best performance for this value. While in the previous

experiments the auxiliary dataset A was the same as T , here we successively evaluate as

auxiliary dataset NW12K, NW23K, NW160K and eventually T . The number µ of nearest

neighbors in A used for data completion is set to 5. The cross-modal classification results

on the Pascal VOC07 test set are reported in Table 5.3.

Method A T-I I-T Average
KCCA0 - 78.98 59.88 69.43
KCCAnc VOC07 75.07 68.77 71.92

WCA

NW12K 65.06 57.30 61.18
NW23K 69.34 60.49 64.92
NW160K 73.77 64.47 69.12
VOC07 83.79 81.33 82.56

Table 5.3: Results on Pascal VOC07 with the common space obtained from the Pascal
VOC07 training set. Different auxiliary datasets A are used for WCA (with d = 4000, µ = 5).

The results show that the performance of WCA depends both on the size of the
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auxiliary dataset A and on the “agreement” between A and the specific classification

problem considered. As expected, with NW12K, NW23K and NW160K as auxiliary

datasets, the larger A, the better the performance. Nevertheless, the mAP value obtained

when A is the comparatively small (5011 bimodal documents) Pascal VOC07 training

dataset is 82.56%, significantly higher than the one obtained when A is the much larger

NW160K dataset (only 69.1%). A first potential explanation is that NUS-WIDE does not

sample well the domain in the common space covered by Pascal VOC07. Consequently,

given a projection of a unimodal document in Pascal VOC07, its µ nearest neighbors in

NW12K, NW23K or NW160K are not as close as the ones in the Pascal VOC07 training

set, so completion is less reliable with NUS-WIDE data.

A second potential explanation is that NUS-WIDE is not so well represented by the

projections on the common space obtained with KCCA performed on the small Pascal

VOC07 training set, because text-image relations may differ between the two datasets. Yet

another explanation is that the NUS-WIDE data remains noisy even after separating the

concatenated tags. This is shown by the fact that the cross-modal classification results

obtained on NUS-WIDE are significantly lower than those attained on Pascal VOC07.

5.3.4.2 Common space training dataset T

To get a better understanding of the relations between the dataset T employed for

learning the common space, the dataset A used for data completion and the specific

classification problem, a second experiment is performed. In this experiment, we still

consider cross-modal classification tasks on Pascal VOC07, but we vary both T and A.

When T is NW12K or NW23K, the baseline KCCA0 reaches its best performance for

d = 100. To support comparisons, we consider d = 100 and µ = 5 for all experiments.

Table 5.4 reports the cross-modal classification results on the Pascal VOC07 dataset

for each common space learned from T ∈ {NW12K, NW23K, VOC07} and A ∈ {NW12K,

NW23K, VOC07}. The results for KCCAnc were omitted from Table 5.4 because they are

very close to those of KCCA0.

As seen from Table 5.4, performance improves when the data in T is problem-related

rather than some other dataset (Pascal VOC07 training set instead of NW23K). This is true
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Method T A T-I I-T Avg.
KCCA0 NW12K - 11.03 15.62 13.33

WCA NW12K
NW12K 21.10 37.12 29.11
NW23K 23.05 40.33 31.69
VOC07 59.92 75.48 67.70

KCCA0 NW23K - 14.93 19.99 17.46

WCA NW23K
NW12K 26.37 41.84 34.11
NW23K 29.32 43.11 36.22
VOC07 67.82 75.24 71.53

KCCA0 VOC07 - 11.68 11.82 11.75

WCA VOC07

NW12K 45.67 44.63 45.15
NW23K 50.31 45.76 48.04
NW160K 56.50 52.49 54.50
VOC07 80.70 76.23 78.47

Table 5.4: Results on Pascal VOC07 with different datasets T to learn the common space
and different auxiliary datasets A (with d = 100, µ = 5) to connect the modalities in the
common space.

even though NW23K is more than four times larger than the training set of Pascal VOC07.

Also, with a same A, cross-modal classification results improve for larger T sampled from

the NUS-WIDE data (NW23K instead of NW12K). Using more data for obtaining the

common space does improve performance, even if this data (NW12K, NW23K) is not

related to the specific problem to be solved (in this case, cross-modal classification on

Pascal VOC07).

An interesting observation is that the results are significantly better when T is NW23K

(respectively NW12K) and A is the training set of Pascal VOC07 than when T is the

training set of Pascal VOC07 and A is NW23K (respectively NW12K). Using problem-

related data as auxiliary dataset A, i.e. for completing the unimodal representations, has a

much larger positive impact than using problem-related data for obtaining the common

space. Together with the fact that the increase in performance from T = NW12K to

T = NW23K is relatively high, this makes us optimistic about the possibility that, with

a much larger but generic T , results can improve beyond the level attained when T is

problem-related.

Another observation is that regardless of the dataset T used for learning the common

space, the highest performance is always obtained with Pascal VOC07 training data as
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auxiliary dataset A. The result obtained in Table 5.3 with problem-related T is thus

extended to the use of a T that is not related to the problem. A smaller but “better

focused” auxiliary dataset supports more reliable completion of unimodal representations,

with a significant positive impact on cross-modal classification performance. This is also

important from a complexity perspective. Indeed, our completion mechanism requires

nearest-neighbor retrieval from the projections of the points in A, according to the available

modality. If good results can be obtained with a relatively small A then retrieval can be

very fast and sublinear solutions may not be needed.

5.3.5 Comparison to the state-of-the-art

To our knowledge, cross-modal classification for text and image data was not previously

investigated. It is not directly comparable, in principle, to the more classical uni-modal and

bi-modal classification scenarios where classifiers are trained and tested with information

of a same nature (same modality for the uni-modal case, both modalities together for

the bi-modal case). Since it is nevertheless useful to have an idea of the relative levels of

performance attained in these different scenarios, we compare in Table 5.5 the performance

of WCA on cross-modal tasks to state-of-the-art results obtained on uni-modal and bi-modal

classification.

As introduced earlier, we employed VGG [Simonyan and Zisserman 2014] to represent

the visual content and Word2Vec (W2V) [Mikolov et al. 2013] for text since these features

led to state-of-the-art results in the literature, on several tasks. In the following, we

situate the performance of our proposed cross-modal classification with respect to the more

classical problems such as uni-modal and bi-modal classification based on these presented

features. In uni-modal classification, for the visual-only (denoted by VGG) and respectively

textual-only (W2V) case, classifiers are trained and tested on VGG (resp. W2V) features

alone. For bi-modal classification, in the VGG+W2V case of Table 5.5, representations for

both training and testing data are produced by concatenating VGG and W2V features.

The good results obtained in uni-modal classification, also very close to those of bi-modal

classification with VGG+W2V, show the high effectiveness of the features employed.

On Pascal VOC07, the WCA results is obtained on 4000-dimensional KCCA space
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learned from 5,011 Pascal VOC07 training data. This collection is also employed as auxiliary

data and the parameter µ is set to 15. The results of both cross-modal classification tasks are

lower but quite close to those of uni-modal classification with VGG or bi-modal classification

with VGG+W2V. On Nus-WIDE and Nus-WIDE 10K, the WCA performances are obtained

on 1000-dimensional KCCA space learned from NW23K. The parameter µ is set to 10. In

Nus-WIDE benchmark, NW23K is also employed as auxiliary data while in Nus-WIDE 10K,

we use its corresponding 9,000 training and validation. On Nus-WIDE, the difference is

larger between cross-modal classification and uni-modal or bi-modal task. We suspect that

this may be due to a comparatively weaker link between the two modalities on this dataset.

On NUS-WIDE 10K, WCA provides slightly better results than uni-modal classification and

weaker performance than bi-modal classification. We believe that the protocol put forward

in Feng et al. [2014] selects data where the visual and textual modalities are better related.

The mechanism we proposed for completing the uni-modal features with complementary

information in the missing modality appears to have a very significant contribution in

bringing the performance of cross-modal classification closer to the state-of-the-art in

uni-modal and bi-modal classification. We also compare WCA to Chen et al. [2010] that

reported previous state-of-the-art results for bimodal classification on NUS-WIDE. WCA

significantly outperforms this method.

Classification type Method Pascal VOC07 Nus-WIDE Nus-WIDE 10K

Uni-modal VGG 86.10 50.38 78.53
W2V 82.50 46.57 70.20

Bi-modal VGG+W2V 86.16 50.87 82.89
Chen et al. [2010] n/a 19.30 n/a

Cross-modal WCA (T-I) 85.49 37.80 79.53
WCA (I-T) 83.38 34.02 79.15

Table 5.5: Comparison in terms of mAP(%) with uni-modal and bi-modal classification
results.

Cross-modal retrieval is another well-known task and it may be interesting to see how

the cross-modal classfication approach proposed here compares to this task. For cross-

modal retrieval, the query is an item described along one modality and the ranked answers

belong to the other modality. In [Ngiam et al. 2011; Feng et al. 2014], the cross-modal

retrieval results reported on NUS-WIDE 10K employed the available concepts (our class
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Cross-modal Method I-T T-I Avg.Task

Retrieval Ngiam et al. [2011] 25.0 29.7 27.4
Feng et al. [2014] 33.1 37.9 35.5

Classification WCA 89.2 89.7 89.5

Table 5.6: mAP@50 for cross-modal retrieval and for cross-modal classification on NUS-
WIDE 10K. We implemented our method (WCA) and report the results of the original
paper for Ngiam et al. [2011]; Feng et al. [2014]. Experimental protocols are coherent with
these last (see text for details).

labels) as ground-truth for computing the mAP@50. For our cross-modal classification,

the “query” is a decision boundary learned in one modality and the ranked answers are

items described along the other modality. Table 5.6 shows both the mAP@50 results

of cross-modal retrieval and of cross-modal classification on NUS-WIDE 10K. Note that

Ngiam et al. [2011]and Feng et al. [2014] employed “classical” low or medium-dimensional

features such as color histograms or bag of SIFT descriptors for images and bag of words

for text, while we made use of VGG and W2V. The reader should however keep in mind

that these two tasks are different, so Table 5.6 should be interpreted with care.
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5.4 Conclusion

In this contribution, we put forward an approach, called “Weighted Completion with

Averaging” (WCA) that addresses cross-modal classification for visual and textual data.

This tasks consists in training classifiers with data from one modality and testing with

data from the other modality. In line with recent literature on cross-modal retrieval, this

approach relies on the development of a common latent representation space where image

and text possess same representations. The novelty of our approach lies in the use of an

auxiliary bi-modal dataset to systematically complete unimodal data, both for training

and testing, resulting in more comprehensive bi-modal representations. The completion

method we propose goes beyond a more direct completion solution that we also mention.

We provide an in-depth study of several aspects of our approach and compare it to

recent work in the literature. It outperforms two cross-modal classification baselines

that employ the raw KCCA data projections onto the common space. The proposed

approach also provides interesting results compared to recent cross-modal retrieval methods.

Furthermore, the performance level we attain on cross-modal classification also compares

well to state-of-the-art results of uni-modal and bi-modal classification, which are more

classical classification tasks. Such a performance level makes our approach to cross-modal

classification a convincing choice for real applications, such as learning classifiers from an

existing large amount of annotated textual data and applying them to visual content, to

annotate images for example.
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6.1 Introduction

As previously mentioned, a common representation space can improve the performance

of cross-modal and bi-modal tasks. However, Chapter 3 discusses that this space provides

a very coarse association between modalities. A direct use of these projections therefore

leads to limited quality “matching” between modalities.

To address this problem, our contribution is to put forward a new representation method

for the projections on the common space, called Multimedia Aggregated Correlated

Components (MACC). MACC representation aims to reduce the gap between the

projections of visual and textual features by embedding them in a local context reflecting

the data distribution in the common space. Given a database of multimedia documents,

we first perform KCCA and build a codebook from all the projections of visual and textual

features on the KCCA common space. Subsequently, for each multimedia document, visual

and textual features are projected on this common space, then coded using the codebook

and eventually aggregated into a single MACC vector that is the multimedia representation

of the document.

Specially, when a document is uni-modal, we further suggest to complete the absent

modality using data from an auxiliary dataset following the completion procedure described

in the Section 5. Subsequently, we combine the descriptors from two modalities to build

the MACC representation of the initially uni-modal document.

In our experiments, we show that MACC representations allow to reach state-of-the-art

performance in classification tasks on Pascal VOC07 and in image retrieval on FlickR8K

and FlickR30K.

The remainder of this chapter is organized as follows. In Section 6.2, we focus on the

construction of MACC representations, involving an aggregation of the projections of visual

and textual content represented on a common vocabulary. We also introduce the MACC

representation when data is missing for one of the modalities. The evaluation in Section 6.3,

conducted on three datasets, concerns both image classification and cross-modal retrieval.

158



CHAPTER 6. AGGREGATING IMAGE & TEXT QUANTIZED CORRELATED
COMPONENTS

6.2 Proposed approach

In Section 6.2.1, we describe a new representation of multimedia documents relying on an

aggregation of the projections of visual and textual content defined on a common vocabulary.

Since (K)CCA aims to find a projection space where the correlation between modalities is

maximized, we named this new representation “Multimedia Aggregated Correlated

Components” (MACC). In Section 6.2.2 we propose an extension for completing the

MACC representations of documents for which only one modality is available. While

MACC addresses problems with the representation of bi-modal documents, this extension

focuses on actual cross-modal cases.

6.2.1 Multimedia Aggregated Correlated Components

Let us consider a document with a textual and a visual (image) content. A feature

vector xT is extracted from its textual content and another feature vector xI from the

visual one. In what follows, we assimilate a document to a couple of feature vectors (xT , xI).

A set of such data is a set of couples X = {(xT
i , xI

i ), i = 1 . . . N}.

By applying KCCA to this data, we obtain 2N points (vectors) belonging to a “common”

vector space where the two modalities are maximally correlated. In this space, a document

(xT , xI) is represented by two points, pT that is the projection of xT and pI the projection

of xI . Ideally, since they represent the same document, pT and pI should be closer to each

other than to any other point in the projection space. However, in practice, this is far from

being the case as shown in Chapter 3. It is thus quite problematic for a given document to

be represented by two very distinct points for multimedia recognition tasks.

We propose to create a unified representation for each document, by the following

process:

1. Define a unifying vocabulary in the projection space,

2. Describe both pT and pI according to this vocabulary,

3. Aggregate both descriptions into a unique representative vector of the document.
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text feature
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space of correlated components, quantized
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Figure 6.1: Visual and textual contents of a document are projected onto a common space
that has been previously quantized. Both projections, corresponding to the same document,
are encoded according to a common vocabulary before their aggregation.

Our approach is illustrated in Figure 6.1. Simply said, the “unified vocabulary” is obtained

by quantizing the projection space, then pT and pI are projected to this codebook and sum

pooled to get the final representation. Since it is well known that in computer vision devil

is in the details [Chatfield et al. 2011, 2014], this is further explained below.

6.2.1.1 Codebook learning

As for the bag of words (BoW) model, we learn a codebook C = {c1, .., ck} of k codewords

with k-means directly in the projection space. A crucial point is that all the projected

points, coming from both textual and visual modalities, are employed as input to the

k-means algorithm. Hence, the clustering potentially results into three types of codewords
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(that are centers of the clusters). Some are representative of textual data only, others of

visual data only, while some clusters contain both textual and visual projection points.

The codebook is thus intrinsically cross-modal and can serve as “common vocabulary” for

all the points in the projection space, whether they result from the projection of a textual

content or of a visual one.

6.2.1.2 MACC representation

A bi-modal document (xT , xI) is projected on the KCCA projection space of dimension

d into (pT , pI). Each of these points is then encoded by its differences with respect to its

nearest codewords:

vT
i = pT − ci; ci ∈ NNn(pT ) (6.1)

vI
i = pI − ci; ci ∈ NNn(pI) (6.2)

where i = 1, .., k denotes the index of the k codewords of the vocabulary and NNn(p)

denotes the set of the n nearest codewords of p. The modality-specific representations vT

and vI result from the concatenation of the d-dimensional vectors vT
i and respectively vI

i .

The MACC representation v is then obtained by aggregating the visual and textual

descriptors vI , vT by sum pooling, leading to:

v = [v1, v2, . . . , vi, . . . , vk] s.t. (6.3)

vi = (pT − ci)1NNn(pT )(ci) + (pI − ci)1NNn(pI)(ci)

where 1A(.) is the indicator function. Vector v is subsequently L2-normalized. The

projection space obtained with KCCA has dimension d, so the modality-specific encoded

vectors vT and vI , as well as the MACC vector v, have a size of D = d × k, where k is the

size of the codebook C.

The vectors vT and vI are component-wise differences of pT and pI with some codewords.

When n = 1, such a gradient can be seen as a simplified non-probabilistic version of a

Fisher Vector (FV) representation. The FV representation is itself an extension of the

BoW model resulting from a Maximum Likelihood estimation of the gradient with respect
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to the parameters of a Gaussian Mixture that models the log-likelihood of data used to

learn the codebook [Jegou et al. 2012].

However, in our case we show in the experimental Section 6.3 that choosing n > 1 is

advantageous. In some cases, the best results are even obtained with n = k. With respect

to the vocabulary of a BoW model [Chatfield et al. 2011], we could say that Jegou et al.

[2012] uses a hard coding (n = 1) while we prefer soft coding (n = k) or possibly local soft

coding (1 < n < k). The benefits of soft coding are well known in the BoW context [Huang

et al. 2014] but have not been proven in the context of FV-like signatures (i.e. when one

uses component-wise gradients with respect to the codebook).

There is also another advantage in our context, where some codewords may be represen-

tative of “modality-specific” Voronoi cells, i.e. clusters that contain projected points of only

one modality after k-means (see Chapter 3). Therefore, by encoding pT and pI according to

several codewords, it is more likely to include information from both modalities. Hence, the

“modality vectors” vT and vI are not exactly modality-specific since they benefit from a sort

of “modality regularization” with the multimodal codebook. Yet another advantage is that

if pT and pI are close enough then they certainly share one or several nearest codewords.

These codewords will then be enforced by Eq. 6.3 in the final vector v.

All this indicates that the MACC representation is a soft synthesis of the contributions

of both modalities that compensates for the imperfection of the KCCA projection space in

the context of bi-modal tasks.

6.2.2 MACC completion with the missing modality

The MACC representation proposed in the previous section is defined when the

multimedia document it describes has both a visual and a textual content. However, this

condition does not hold for several important multimedia tasks. This reflects particularly

in cross-modal problems, where data in the reference base and/or the query usually come

from one modality.

In this section, our contribution consists in extending the original MACC representation

method so that it can deal with uni-modal documents. The idea here is to firstly complete
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the uni-modal data with suitable information that concerns the missing modality. The

completion process is performed with the use of an auxiliary dataset, as introduced in

Chapter 5. Once the complementary elements have been identified, we consider the initially

uni-modal document with its complementary part in the missing modality as a whole

bi-modal document. The MACC representation of the uni-modal document is therefore

easily estimated following its original process.

We formulate the problem as follows. Let us consider a document with textual content

only, described by a feature vector xT which is projected as pT onto the KCCA common

space. Similarly to the completion process described in Chapter 5, we consider a set A of

pairs of KCCA projections of the visual and textual features of the bi-modal documents

from the auxiliary dataset.

A = {(qT , qI)} with qT ∈ AT , qI ∈ AI , |A| = m

Our goal is to construct the bi-modal MACC representation of the document, given only

its textual content xT and the corresponding projection pT .

In the modality completion stage, we look for the complementary information in the

missing modality of an uni-modal document. Since our proposal for completion has shown

its effectiveness in the previous contribution in Chapter 5, we also employ it here for

modality completion. According to Eq. 6.4, we identify a set Mc(pT ) of contributors to

the “modality completion” of the missing modality of pT . In the case under study, each

element of Mc(pT ) is a visual projection of a document in the auxiliary dataset on the

common space.

Mc(pT ) = {qI
j } such that


qT

j ∈ NNµ
AT (pT )

(qT
j , qI

j ) ∈ A

In the next stage, we estimate the MACC representation of the initially textual-only

document from its original representation pT and the identified set of complementary

information Mc(pT ). As information provided in pT and Mc(pT ) is complementary and

related to each other, we consider a document containing pT together with Mc(pT )) as an

extension in bi-modal content of pT . Hence, the MACC representation method proposed

in 6.2.1 can be absolutely applied for such a bi-modal document.
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The only difference is that the document we studied in the previous section always

has one visual projection and one textual projection, while in the case we consider here a

document is described by the original projection (e.g. in the text modality) and several

complementary projections (e.g. in the image modality). In particular, we use µ projections

regarding the missing modality for completion. In order to take this difference into account

for MACC construction, we propose to first encode the µ complementary projections with

respect to the codebook C and then describe the complementary part by the (element by

element) average of these descriptors. The aggregation is always performed using sum

pooling of visual and textual representations.

Formally, the MACC representation of the initial textual-only document described by

pT is obtained as

v =[v1, v2, . . . , vi, . . . , vk] s.t

vi =(pT − ci)1NNn(pT )(ci)

+ 1
µ


qI

j ∈Mc(pT )

(qI
j − ci)1NNn(qI

j )(ci)
(6.4)

We note that the same development could be symmetrically applied to a document

having only visual content.

6.3 Experimental evaluation

To evaluate the effectiveness and the robustness of the proposed MACC representation,

we conduct experiments for image classification on Pascal VOC07 and image retrieval on

FlickR8K and FlickR30K.

We refer the reader back to Section 2.5 for dataset details regarding the number of

images, number of classes, number of tags per image, etc. For content representation, we

employ the same features as in previous WCA contribution. This means we use the VGG

features [Simonyan and Zisserman 2014] to represent images and Word2Vec [Mikolov et al.

2013] to represent text.

Importantly, we remind that the limitation of the KCCA projections on these three

datasets have been highlighted and explained in Chapter 3. In the following, we demonstrate
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the effectiveness of MACC representations in improving the “matching” quality between

text and image. Our contribution is first evaluated for bi-modal and also cross-modal

classification (introduced in Chapter 5) on Pascal VOC07 in Section 6.3.1. In Section 6.3.2

we then show that MACC establishes a new state of the art in cross-modal retrieval,

improving former results on FlickR 8K and FlickR 30K.

6.3.1 Image classification on Pascal VOC07

The KCCA is learnt on the 5011 training data, with both visual and textual content.

We used the seminal KCCA implementation [Hardoon et al. 2004], with a regularization

parameter κ = 0.1 and a Gaussian kernel with standard deviation σ = 0.2. The dimension

of the “common” projected space is set to d = 150. All 5011 training data are then

projected on this common space and a codebook C is learnt with k-means from this set

(2 × 5011 = 10022 points) for k ∈ {8, 16, 32}.

6.3.1.1 Classification of bi-modal documents.

The first evaluation considers the classification of documents having both a visual and

a textual content, such that a MACC representation (of size d × k) of each document is

directly obtained from Eq. 6.3, using the previously built codebook. The parameter n in

Eq. 6.3 varies in {1, 2, 5, 16, 32}. For each category, we learn a SVM classifier with linear

kernel, following a one-versus-all strategy.

With such settings, the best result we obtain on the testing set is a mAP of 90.37, with

(k = 16, n = 5), resulting into a 2400-dimensional MACC representation. However, when

a full cross-validation is conducted on the training set, we obtain a mAP of 90.12 with

(n = 5, k = 32).

Table 6.1 compares this performance to other results in the literature. We report

superior performance with respect to methods that use only the original (visual) data of

the Pascal VOC07 challenge, such as BoVW and Fisher Vectors (FV) [Sánchez et al. 2013;

Chatfield et al. 2014]. Our approach also outperforms methods employing additional

information sources for training, such as text [Znaidia et al. 2012], ground-truth bounding

box information [Dong et al. 2013], or based on deep learning [Perronnin and Larlus 2015;
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He et al. 2015b; Chatfield et al. 2014; Wei et al. 2014; Simonyan and Zisserman 2014].

Approach mAP (%)
BoVW 54.5

FV [Sánchez et al. 2013] 63.9
improved FV[Chatfield et al. 2014] 68.0

BoMW [Znaidia et al. 2012] 67.8
AGS [Dong et al. 2013] 71.1

FV+CNN [Perronnin and Larlus 2015] 76.2
[He et al. 2015b] 82.4

[Chatfield et al. 2014] 82.4
HCP-2000C [Wei et al. 2014] 85.2

VGG NetD&NetE [Simonyan and Zisserman 2014] 89.7
Our MACC 90.12

Table 6.1: Pascal VOC07: comparison with published results.

We further compare our image classification result to several baselines that employ the

same features as MACC in Table 6.2. For the VGG-Net (respectively Word2Vec) baseline,

classifiers are trained and tested on VGG-Net (respectively Word2Vec) features only, i.e.

using the visual (respectively textual) content alone. For the VGG-Net+Word2Vec baseline,

representations for both training and testing data are obtained by early fusion, i.e. by

concatenating VGG-Net features and Word2Vec features.

For the KCCAimg (respectively KCCAtxt) baseline, the visual (respectively textual)

features are first projected on the KCCA common space for both training and testing

data and then used for classifiers learning. We consider two different sizes of the KCCA

common space, 150 and 2400, so that the results can be compared to our 2400-dimensional

MACC representation (built from a 150-dimensional common space, with 16 codewords).

The results in Table 6.2 show that the MACC approach outperforms all the mentioned

baselines.

We report in Table 6.3 the results obtained with the MACC approach for different values

of k and n (for d = 150). We note that the results are quite stable and consistently above

the performance of the previously mentioned baselines for this entire range of parameters.

Furthermore, these results show that (local) soft coding (n > 1) is more effective than hard

coding (n = 1) to build the MACC representations.
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Baseline Size of representation mAP (%)
VGG-Net 4096 86.10
Word2Vec 300 82.50

VGG-Net+Word2Vec 4396 86.16
KCCAimg 150 84.84
KCCAimg 2400 85.29
KCCAtxt 150 82.01
KCCAtxt 2400 82.60
MACC 2400 90.12

Table 6.2: Pascal VOC07: comparison with baselines.

k=8 k=16 k= 32
n=1 88.75 87.73 86.33
n=2 90.1 89.71 89.18
n=5 89.96 90.37 90.10
n=16 - 89.68 90.33
n=32 - - 89.68

Table 6.3: Pascal VOC07: mAP (%) for different values of k and n.

6.3.1.2 Classification in a cross-modal context.

In this experiment, we investigate the performance of cross-modal classification task

introduced in Chapter 5 using the proposed representation MACC.

Let us now consider a scenario where a global resource is available, consisting of a

projection space obtained by KCCA and a codebook built on this space. One may wish to

train classifiers on new classes, using new data for which only one modality is available,

and then run these classifiers on other data that may also have only one modality available

(and maybe not the same as the one used for training).

Thanks to the completion mechanism (Eq. 6.4), the MACC representation addresses

not only classical cross-modal tasks e.g. cross-modal retrieval but also such a scenario, that

is tested in the following.

As in Chapter 5, we consider the Text-Image and Image-Text cross-modal classification

tasks. In the Text-Image task, the SVM classifiers are trained with documents from

the training set of Pascal VOC07 but the visual content was removed. Each document,

originally described by its textual content alone, has its MACC representation completed
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with a visual part following the procedure described in Section 6.2.2, with the training set

of PascalVOC 07 chosen as auxiliary dataset A. Hence, the visual part of the signature is

not computed from the original visual content of that document but results from combining

the contributions of the visual parts of its nearest neighbors according to the textual

modality (the document itself is not considered among its µ nearest neighbors). The

resulting classifiers are then evaluated on the testing documents of Pascal VOC07 but

where the textual content was removed and the MACC representations completed following

the procedure in Section 6.2.2. The Image-Text task is symmetric to the Text-Image task:

classifiers are trained with documents without textual content and tested on documents

without visual content, all being completed according to Eq. 6.4.

In what follows we use the same 150-dimensional projection space obtained by KCCA

from the bi-modal training data of Pascal VOC07 and the codebook learnt on this space

(k = 16) for MACC representations. Consequently, all MACC representations in Table 6.4

are 2400-dimensional vectors.

The results obtained on these two novel tasks are shown in Table 6.4 for several values

of the parameter µ and compared to two baselines. For the KCCA0 baseline, classifiers

are trained with the direct projections (without any completion) of one modality on the

common KCCA space and tested with the projections of the other modality on this space.

For the sake of comparison, the representation of KCCA0 baseline are issued from the 2400-

dimensional KCCA joint space. For the MACCrand baseline, the MACC representation is

completed with randomly selected data point along the missing modality.

Without completion (µ = 0), the performance of MACC representations is very low.

However, as soon as the completion is considered, the performance is significantly above

that of the baseline.

We also compare our MACC representation to the WCA representation proposed in

Chapter 5. As in MACC representation, WCA representation also relies on 150-dimensional

KCCA common representation space. We set the parameter µ to 15 for WCA on which

the MACC representation gets best performance among the different values of µ that we

reported in Table 6.4. The MACC representation improves the performance of the WCA

for this task, respectively +2.49 and +3.72 for Text-Image and Image-Text tasks.
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mAP (%) mAP (%)
Representation Text-Image Image-Text

KCCA0 71.21 51.20
MACCrand 7.76 7.33

WCA(µ = 15) 82.06 77.65
MACC(µ = 0) 12.03 10.04
MACC(µ = 1) 79.00 76.88
MACC(µ = 3) 81.72 79.18
MACC(µ = 5) 82.17 78.82
MACC(µ = 8) 82.18 78.65
MACC(µ = 15) 84.55 81.37

Table 6.4: Pascal VOC07: classification in a cross-modal context using the completion
mechanism for MACC representations. MACC and WCA representations rely on the
150-dimensional KCCA common representation space.

Lastly, it is not surprising that the results of MACC representation obtained in this

cross-modal scenario are not as good as those obtained in the bi-modal task (90.12%, see

Table 6.1). However, the difference is not so large and the improvement with respect to

the baselines is significant.

6.3.2 Image retrieval on FlickR 8K and FlickR 30K

In this section, we investigate image retrieval task on FlickR 8K and FlickR 30K

datasets. This task has been considered in many recently published work such as Socher

et al. [2014]; Hodosh et al. [2013]; Karpathy and Fei-Fei [2015]; Chen and Zitnick [2015].

Evaluation protocols. Since a FlickR image is associated to five different sentences

(texts), different evaluation methods for image retrieval task on these datasets have been

proposed and considered in the literature. In our work, we mainly followed the evaluation

protocol introduced by Chen and Zitnick [2015]. This latter aims to return the best ranked

image among candidate images retrieved from 5 sentences. Five sentences queries are

employed to obtain a corresponding list of candidate images and the image with the best

rank is selected as relevant image. Nevertheless, in several experiments, we also tested our

proposed representation using the more strict evaluation method proposed by Karpathy and

Fei-Fei [2015]. This protocol considers each of five sentences of an image as an individual
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Approach R@1 R@5 R@10
Socher et al. [2014] 6.1 18.5 29
Hodosh et al. [2013] 7.6 20.7 30.1

Karpathy and Fei-Fei [2015] 11.8 32.1 44.7
KCCA(V GG∗+W 2V ) 9.8 27.9 38.1
MACC(VGG∗) 11.9 33.1 45.8

Chen and Zitnick [2015] 17.3 42.5 57.4
KCCA(V GG+W 2V ) 26.1 53.7 65.6
MACC(VGG) 27.6 55.6 69.4

Table 6.5: Image retrieval results on FlickR 8K.
Two protocols of evaluation are considered. The first block of results employs the protocol
proposed by Karpathy and Fei-Fei [2015] and the second block employs the protocol
proposed by Chen and Zitnick [2015]. See text for the details of these evaluation protocols.

query, resulting to 5,000 queries text in the test set. The system must retrieve the image

associated to a sentence.

Common representation space setting. In the following experiments for both the

FlickR 8K and FlickR 30K benchmarks, the common representation space is learned on

the 6,000 FlickR 8K training documents with both visual and textual content. To select

the parameters, a grid search is performed employing the validation set of 1,000 documents.

This leads to use a Gaussian kernel with a standard deviation σ = 2, a regularization

parameter κ = 1 and only d = 50 dimensions for the projected space. The visual and

textual features of the training documents are then all projected on this common space

and a codebook is learnt from this set of 12,000 (= 2 × 6000) points.

6.3.2.1 FlickR 8K image retrieval.

For the text-to-image retrieval task the training dataset of FlickR 8K is used as auxiliary

dataset A. Parameters being cross-validated on the FlickR 8K training data leads to the

choice of k = n = 32 and µ = 64.

We compare our proposed approach to several significant work for image retrieval on

FlickR 8K. Two blocks of results are considered in Table 6.5, corresponding to two different

evaluation protocols. The first group follows the “strict” protocol of Karpathy and Fei-Fei
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[2015] while the second group follows the protocol proposed by Chen and Zitnick [2015].

As shown in Table 6.5, the proposed MACC has higher R@1, R@5 and R@10 than the

other image retrieval methods in the recent literature on the FlickR 8K dataset for both

evaluation methods. We obtain R@1=11.9% with the protocol of [Karpathy and Fei-Fei

2015] and R@1=27.6% using the evaluation protocol proposed by Chen and Zitnick

[2015].

In this table, KCCA(V GG+W 2V ) and MACCV GG rely on the KCCA common repre-

sentation learning with the features VGG-Net [Simonyan and Zisserman 2014] while

KCCA(V GG∗+W 2V ) and MACCV GG∗ employ the more recent features proposed by Tamaa-

zousti et al. [2017]. These features are extracted from a network relied on the deep

architecture VGG [Simonyan and Zisserman 2014]. The difference is that the network is

learned from larger dataset (i.e. ImageNet instead of ILSVRC dataset) on a diversified set

of 4,000 categories (1,000 categories for VGG). The weights of the network are initialized

by those of the pre-trained VGG network.

The work of Hodosh et al. [2013] was also based on cross retrieval in the KCCA space

but their visual and textual representations are simply described by several specific kernels

on classical features such as color, texture or GIST descriptors for images, and bag of

words for texts. In the KCCA(V GG∗+W 2V ) baseline, we apply the image retrieval method

of [Hodosh et al. 2013] with our KCCA space built from the visual features [Tamaazousti

et al. 2017] and Word2Vec, leading to better performance (9.8%) than Hodosh et al.

[2013]. Our method also outperforms several recent deep learning approaches [Socher et al.

2014; Karpathy and Fei-Fei 2015; Chen and Zitnick 2015]. Furthermore, the MACC

representation achieves better results than the current state-of-the-art results [Karpathy

and Fei-Fei 2015; Chen and Zitnick 2015] on FlickR 8K for the two evaluation methods.

We studied the impact of different coding parameters on the effectiveness of MACC

representations. We note that in the following experiments, the performance of our approach

is evaluated using the protocol of Chen and Zitnick [2015]. Codebook size being fixed to

k = 64, Figure 6.2 reports the performance with hard coding (n = 1), local soft coding

(1 < n < k) and soft coding (n = k). Since soft coding provides a better location of data

points in feature space (with respect to all k codewords, not only to one or to a few of
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Figure 6.2: Coding methods comparison for MACC representation.
Codebook size is fixed at k = 64. Evaluation follows the protocol of Chen and Zitnick
[2015].

them), it usually performs better for retrieval.

The most important result is nevertheless that our method achieves better performance

than the state-of-the-art [Chen and Zitnick 2015] as soon as µ > 10. On the FlickR 8K

benchmark, the performances are quite stable with any given coding scheme for µ > 20.

In a third experiment we study the stability of our approach with regard to k, n and µ.

Figure 6.3 reports performance on FlickR 8K while varying these parameters. Following the

conclusion of the second experiment, soft coding (n = k) is employed in this experiment for

its effectiveness. The results firstly show that even when the size of codebook and resulting

MACC representations is very small, we consistently achieve better performance than the

other methods in Table 6.5. For instance, our approach has a first rank recall (R@1) of
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Figure 6.3: FlickR 8K image retrieval: stability of MACC representations over a large
range of parameters. Evaluation follows the protocol of Chen and Zitnick [2015].

18.5% with k as low as 8 (the corresponding MACC representation is only 400-dimensional).

Besides, an interesting observation is that with a sufficiently large number µ of con-

tributors to MACC completion, the proposed approach yields superior performance over

the robust KCCA(V GG+W 2V ) baseline regardless of the size of the codebook. These results

show the stability of our approach over a large range of parameters.

6.3.2.2 FlickR 30K: benefit of auxiliary dataset.

To study the impact of the auxiliary dataset A used for MACC completion in cross-

modal tasks, we conducted an experiment on FlickR 30K that has the same validation

and testing sets as FlickR 8K but a larger training set. The experimental protocol was

the same as for FlickR 8K (same KCCA space and codebook) except for the choice of A,

where we used the full training set of FlickR 30K (29, 783 images) instead of the training

set of FlickR 8K (6, 000 images).
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Approach R@1 R@5 R@10
Socher et al. [2014] 8.9 29.8 41.1

Karpathy and Fei-Fei [2015] 15.2 37.7 50.5
Our MACC (F8K) 14.5 35.8 48.8

Chen and Zitnick [2015] 18.5 45.7 58.1
Our MACC (F8K) 33.9 65.6 77.5
Our MACC (F30K) 35.3 66.0 78.2

Table 6.6: Image retrieval results on FlickR 30K.
MACC parameters are cross-validated on FlickR 8K (F8K) or FlickR 30k (F30K).

Following the evaluation method proposed by Chen and Zitnick [2015], the MACC

approach yields a significant improvement of 6 points (from 27.6% to 33.9%) on 1,000

testing data, which is thus due to the larger auxiliary dataset. The improvement increases

when the parameters are cross-validated on FlickR30k training set (35.3%). While the

improvement in the previous state-of-the-art [Chen and Zitnick 2015] is from 17.3%

on FlickR 8k to 18.5% on FlickR 30K, in our case it is from 27.6% to 33.9% using the

parameters cross-validated on Flickr 8K data. This result shows a better use of the extended

training dataset, at a limited cost as KCCA and the codebook are always computed on

FlickR 8K.

In Table 6.6, we also compare our MACC approach with other previous methods

following the evaluation proposed by Karpathy and Fei-Fei [2015]. Our approach signifi-

cantly outperforms recent methods such as Socher et al. [2014]. However, the performance

obtained with MACC is weaker (14.5% with respect to 15.2% at R@1) than the current

state-of-the-art [Karpathy and Fei-Fei 2015]. In Karpathy and Fei-Fei [2015], each image

is described by a set of 20 vectors corresponding to the whole image and the top 19 most

relevant image regions detected using a CNN pre-trained on ImageNet and finetuned on the

200 classes of the ImageNet Detection Challenge. These visual features are computationally

costly. Our approach reports the performance using the description of the whole image

which is lighter yet yields competitive results with respect to the state-of-the-art.
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6.4 Conclusion

In this chapter, we proposed a new representation, called Multimedia Aggregated

Correlated Components (MACC) to describe a multimedia document including both

visual and textual content. The MACC representation aggregates information provided

by the projections of both modalities, e.g. image and text, on the joint space. Especially,

projections are encoded relatively to several codewords of a vocabulary learnt on the

common space before their aggregation.

Furthermore, we extended the MACC representation method to support the uni-modal

document where only visual or textual content is available. For this purpose, we re-employed

the idea of data completion onto the common space using auxiliary data proposed in the

previous contribution of Chapter 5.

The proposed representation approaches can address different multimedia tasks such

as bi-modal or cross-modal classification and cross-modal retrieval. Experimental results

show that the MACC brought improvement in term of performance in comparison with a

direct use of data projections for these last tasks. This shows that our proposed approaches

successfully reduced the gap between two modality onto the common space, which is one

of the most important shortcomings of such common representation based approach.

The interest of our approach was demonstrated in bi-modal classification, cross-modal

classification on Pascal VOC07 data and in cross-modal retrieval on FlickR 8K/30K data.

In these benchmarks, our method provides state-of-the-art performances.
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7.1 Conclusion

This thesis addresses the joint modeling of visual and textual modalities for cross-modal

problems. We approached this research topic by relying on learning a common representation

space for both images and text, then derived representations that are more robust than

the “naive” approach. The first aim consists in improving the quality of “matching” across

modalities on the joint space. We also consider to reduce the computational cost of such

multimedia representations for different tasks.

Our approach was to explicitly identify limitations of the common representation space

which might hamper performance in multimedia tasks. In the first contribution described

in Chapter 3, two such limitations have been identified. The first one concerns relevant

data that is ignored in the joint space. In the case of cross modal retrieval, this data

consists of words that are present in the reference database (or the queries) of the target

task but absent from (or very rare in) the training database used to learn the joint space.

The second limitation concerns the separation of projected data between visual and textual

modalities on the common space. These projections tend to be grouped by modality rather

than according to their semantics. This results in a limited quality of the matching across

modalities. This quality has been quantified in terms of average distance between the

projected points of both modalities, with regard to the intra-modality distances of these

points.

Consequently, we proposed different models that work on the joint space of images and

text to manage these identified limitations. The proposed models aim to explicitly improve

the quality of matching across modalities and, consequently, enhance the performance of

bi-modal and cross-modal tasks by reducing the gaps existing between the visual and textual

modalities. Three contributions have been proposed to address this research problem:

The second contribution deals with the relevant information that is poorly represented

on the joint space. In a retrieval task, such a piece of data, called specific information,

corresponds to words that are present in the reference data but absent from (or very rare in)

the training data. We put forward a model to combine them with generic information that

is relatively well represented on the joint space. The proposed models support both uni-
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modal and cross-modal retrieval tasks. Different experiments have been conducted on the

challenging text illustration task. In this case, “specific” information mostly concerns names,

trademarks or other very informative tags. Obtained results showed that by appropriately

identifying and taking such “specific” information into account, the performance in cross-

modal retrieval can be significantly improved. These results also show that in a realistic

case where the difference between the training set used for common space learning and the

reference set is important, our models are more effective with respect to the direct use of

the projections onto the joint space.

The main work in our third contribution considers cross-modal classification. Our goal

is to design a conceptual multimedia model at a higher semantic level by matching a given

document to “more general concepts” resulting from a set of other documents. At the

first step, we investigate the cross-modal classification consisting in training classifiers on

data from one modality e.g. text and applying them to predict data from another modality

e.g. image. To address this task, we proposed a method called Weighted Completion with

Averaging (WCA) to build a robust representation accounting for both the visual and

the textual information of a uni-modal document. At the core of this contribution we

use a bi-modal dataset, called auxiliary dataset, that acts as a set of connections between

the modalities within the joint space. We suggest to rely on this auxiliary dataset to

find a complementary information in the missing modality of a uni-modal document. It

leads to build a point representing the complementary modality of a given data point,

thus we obtain a complete bi-modal WCA representation of a initially uni-modal data.

Experiments have been conducted on well-known datasets [Hwang and Grauman 2012a;

Chua et al. 2009] and showed that the WCA representation method significantly improves

the cross-modal classification performance compared to the use of a latent space alone.

Furthermore, WCA provides interesting results compared to recent cross-modal retrieval

methods. It is important to note that the performance level we attain on cross-modal

classification also compares well to state-of-the-art uni-modal and bi-modal classification

results. Such a performance level makes our approach to cross-modal classification a

convincing choice for real applications, such as learning classifiers from an existing large

amount of annotated textual data and applying them to visual content.
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Representation dintra(I) dintra(T ) dinter(sample) dinter(overall)
KCCA (150) 1.18 ± 0.16 1.11 ± 0.19 1.39 ± 0.07 1.42 ± 0.06
WCA (150) 1.17 ± 0.15 1.16 ± 0.16 0.07 ± 0.15 1.17 ± 0.15

MACC (2400) 1.16 ± 0.13 1.15 ± 0.15 0.81 ± 0.13 1.16 ± 0.13

Table 7.1: Average Euclidean distances between image and text representations on Pascal
VOC07 data. All representations are calculated on the 150-dimensional KCCA spaces.
k = 16, n = 5, µ = 15 for MACC and µ = 15 for WCA.

In the fourth contribution, we put forward a robust representation method, called

Multimedia Aggregated Correlated Components (MACC) that aggregates information

provided by the projections of both visual and textual modalities on their joint space.

MACC representation reduces the separation between the projections of visual and textual

features by embedding them in a local context reflecting the data distribution in the

common space. More precisely, we learn a codebook on the joint space using projections

of all visual and textual features in the training dataset. For each bi-modal document,

both visual and textual features are projected on this common space, then coded using the

codebook and aggregated into a single MACC vector that is the multimedia representation

of the document. This representation can be extended for uni-modal documents. In this

case, the uni-modal completion processing relying on an auxiliary dataset (introduced in the

second contribution) is performed to suggest the corresponding complementary information

in the missing modality of the document. The extensive experimental evaluation on

three challenging datasets [Hwang and Grauman 2012b; Rashtchian et al. 2010; Young

et al. 2014] shows that our proposed MACC representation allows to reach state-of-the-art

performance in various multimedia tasks such as bi-modal and cross-modal classification

and image retrieval.

It is important noting that the proposed WCA and MACC representations have

succeeded in narrowing the separation between modalities on the common representation

space. To illustrate this fact, Table 7.1, 7.2 compares the average (intra-modal and inter-

modal) Euclidean distances for different representation methods including the direct KCCA

projection, WCA and MACC on Pascal VOC07 and FlickR 8K datasets. The average

distances concerning on KCCA projections in these tables are extracted from the Table 3.1

(in Chapter 3) where we demonstrated the limitation about the separation between the
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Representation dintra(I) dintra(T ) dinter(sample) dinter(overall)
KCCA (50) 1.17 ± 0.13 0.75 ± 0.13 1.02 ± 0.12 1.28 ± 0.10

MACC (1600) 0.89 ± 0.08 0.81 ± 0.09 0.66 ± 0.11 0.87 ± 0.07

Table 7.2: Average Euclidean distances between image and text representations on 1000
FlickR 8K testing data. All representations are calculated on the 50-dimensional KCCA
spaces. k = n = 32, µ = 64 for MACC.

projections of corresponding visual and textual features on the joint space. Table 7.1

reports the results on 5011 Pascal VOC07 training data. On the 150-dimensional KCCA

space, the average distance between an image projection and its corresponding textual

projection is reduced (from 1.39 with KCCA projection to 0.07 with WCA representation).

Also, WCA narrows the gap between the two clouds of visual and textual projections on

their joint space (from 1.42 with KCCA projection to 1.17 with WCA). While KCCA

and WCA representations reside in the same KCCA, MACC is represented in a different

higher-dimensional space. The average distances reported on MACC are thus not directly

comparable to those of KCCA and WCA methods. The average distances of projections

within modalities and across modalities (dinter(overall)) are quite similar, showing there

is no separation between modalities. Furthermore, the average distance between visual

and corresponding textual projection is smaller than the intra-modality and inter-modality

(dinter(overall)) distances. This indicates that MACC makes closer visual and textual

representations of a document, resulting to a better quality of “matching” across these

modalities and thus enhance the performance of classification tasks. The results on FlickR

8K data are shown in Table 7.2. Similarly, on the representation space of MACC, there is

no particular separation across modalities e.g. the intra-modal and inter-modal distances

are quite similar. More importantly, the inter-modal average distance (dinter(sample))

between a visual point and its associated textual point is smaller than the intra-modal

distances. This means that on the MACC representation space, the nearest neighbour

of a visual point is its associated textual point and vice versa. This fact explains the

improvement on retrieval performance obtained with the MACC representation on the

FlickR 8K dataset.
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7.2 Perspectives for future research

Three contributions were proposed in this dissertation for effectively and efficiently

combining visual and textual modalities to address various bi-modal or cross-modal retrieval

and classification problems. Without any doubt, these solutions can be improved in several

ways. To conclude the thesis, this section discusses promising directions for future research

related to the presented work. We divide these ideas into short-term and longer-term

perspectives.

7.2.1 Short-term perspectives

Robust criterion for “specific” information identification. In the second contri-

bution, the method we proposed aims to make better use of specific information that is

poorly represented by a learned cross-modal model but nevertheless likely to be relevant for

retrieval. In the text illustration experiments presented above, this information corresponds

to words that are present in the test data but absent from the training data (or below the

filtering threshold). This selection condition may appear still weak to distinguish specific

information from noise. It is possible to make use of e.g. domain-specific rules to further

improve this selection.

Multi-modal retrieval model for combining “specific” and “generic” informa-

tion. Also in this second contribution, two retrieval models e.g. Eq 4.4 (uni-modal)

and Eq 4.3 (cross-modal) were proposed for evaluating respectively query-caption and

query-image similarities. These models consider only one media e.g. image or text of the

reference bi-modal document containing at the same time image and its caption. Another

interesting direction is to propose a model that exploits simultaneously visual and textual

content of the reference document to enhance the retrieval performance. This can be done

simply by performing a fusion between the results of two presented models or finding a

suitable way to incorporate query-image and query-caption similarities on the joint space

and then combine them with the similarity on their specific part.
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MACC accounting “degree of similarity” with respect to codewords. In the

MACC representation method, µ nearest codewords were used and contributed equally for

the resulting bi-modal representation 6.3. However, one of the important aspects of soft

coding is that it can take into consideration the “degree of similarity” of a projection point

p with respect to different codewords. For further work, it is interesting to consider such

information for MACC encoding e.g. by adding different weights for codewords in Eq 6.3.

Compact auxiliary set for uni-modal completion. In WCA and MACC method,

we put forward a completion method to find the complementary information in the missing

modality of a uni-modal data and then use it to build the final bi-modal representation. The

completion process relies on an auxiliary bi-modal dataset that acts as a set of connections

between the modalities within the joint space. In the presented work, we investigated

different choices of such an auxiliary dataset for a target problem e.g. auxiliary data and

target data belonging to the same dataset or totally different. Nevertheless, we usually

employed the entire (training) set of a dataset as auxiliary data. An interesting perspective

consists in the selection of a relevant sample of auxiliary data from this entire dataset. In

other words, our goal is to restrict the number of data in the auxiliary set to reduce its

size while maintaining the performance of target problems. To this end, the definition of a

robust criterion for choosing data for such an auxiliary sample is crucial. A possibility is to

rely on the quality of representation (mentioned in Section 3.3.1) of an auxiliary individual

onto the common representation space for such a selection.

7.2.2 Longer-term perspectives

Generic methods for other cross-modal embedding techniques. An important

and interesting direction related to this work concerns common representation space for

visual and textual modalities. In this thesis, the joint spaces were built relying on (Kernel)

Canonical Correlation Analysis (KCCA). However, the WCA and MACC representations

are not specific to this particular type of joint space and we believe that they can be

potentially used with any text-image embedding technique. It is thus interesting to

investigate the effectiveness of our proposed models for other types of text-image joint
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representations, particularly on recent embedding spaces issued from deep learning proposed

by e.g. Yan and Mikolajczyk [2015]; Vukotić et al. [2016]. In the first step of this research,

we investigated the MACC representation method on the image-text joint space issued

from the Deep Canonical Correlation Analysis (DCCA) method [Andrew et al. 2013;

Yan and Mikolajczyk 2015]. This latter consists of two deep networks corresponding to

visual and textual modalities where the output layers (topmost layer of each network) are

maximally correlated. Results obtained on this study can be found in Chami [2016].

Domain transfer. In several of the proposed methods we also considered the issue of

a “universal resource”. The aim is to learn a joint space for image and text on a large

generic collection of multimedia documents and then apply this resource to address different

target problems. However, it is challenging to directly apply the generic resource to a

target problem since data from different collections (here, generic data and target data)

has different distributions and properties. An interesting research direction consists in

investigating the problem of “domain transfer” between such data. The goal is to better

relate the generic resource and the target problem in order to enhance the performance of

task in such a cross-domain context. A possible extension of this direction concerns the

“domain transfer” problem between auxiliary data that we used to refine the image-text

connection within the joint space and the target data and/or the generic data.

Extension for multi-lingual problems. In this thesis, we mainly consider the cross-

modal problems between image and text. Nevertheless, the proposed approaches can be

generic in multi-lingual settings. There, two different languages could be observed as two

different modalities, and the entire cross-modal framework is exactly the same as proposed

in our contributions. Particularly, it is possible to make the connection between the

proposed cross-modal classification framework and the cross-lingual document classification

scenario, which is also called cross-lingual knowledge transfer. Furthermore, it is interesting

to study a unified framework for both cross-modal and cross-lingual classification settings

which can be seen as zero-shot learning tasks.
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Appendix A

Tags cleaning

Tags provided by users remain sometimes noisy, even after several filter process proposed

by the authors of dataset. For instance, in Nus WIDE dataset, some tags are concatenated

and result into a unique and non-existing word, e.g. sunsetoverthesea. This fact infers a

shortcoming in textual feature extraction. For example, the term “sunsetoverthesea” is

naturally absent from the Word2Vec vocabulary; hence the Word2Vec model will not able

to correctly represent it. To improve the quality of textual features, we automatically

separate the words (producing e.g. sunset over the sea) before employing techniques of

textual features extraction. For this, each tag is matched to a dictionary of existing words

(e.g. the tag dictionary of 5,018 terms for Nus WIDE) and we then retain only the valid

largest sub-strings. The proposed process is described in the following Python code.
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APPENDIX A. TAGS CLEANING

d i c t_ f i l e = ’ d i c t i ona ry . txt ’
t a g s_ f i l e = ’ a l lTags_before . txt ’
f i n a l_ t a g s_ f i l e = ’ a l lTags_a f t e r . txt ’

# c o l l e c t words in d i c t i o n a r y
dict = [ ]
with open( d i c t_ f i l e , " r " ) as f i l e :

for l i n e in f i l e :
dict . append ( l i n e . s t r i p ( ) )

f i l e . c l o s e ( )

# clean each row o f t a g s
with open( t a g s_ f i l e , " r " ) as f i l e ,
open( f i n a l_ t ag s_ f i l e , "w" ) as o u t f i l e :

for l i n e in f i l e :
tags = l i n e . s t r i p ( ) . s p l i t ( ’ ␣ ’ )
f i n a l_tag s = [ ]
for t in tags :

# fo r each tag s t r i n g , cand ida te l i s t con ta ins
# a l l p o s s i b l e words ( from d i c t ) t h a t may be
# presen t in tag s t r i n g
candidate = [ ]
for d in dict :

i f d in t :
candidate . append (d)

# we take only the l o n g e s t word among p o s s i b l e
# words in candida te
# ( f o r ex : to avoid the case " s u n g l a s s e s "
# decomposing in to " sun " , " g l a s s e s " , " s u n g l a s s e s " )
for c in candidate :

i f any ( ( c in d) and ( len ( c ) != len (d) ) for d in
candidate ) :
print ( )

else :
f i n a l_tag s . append ( c )

for f in ( set ( f i n a l_tag s ) ) :
o u t f i l e . wr i t e ( ’%s ␣ ’%f )

o u t f i l e . wr i t e ( ’ \n ’ )
f i l e . c l o s e ( )
o u t f i l e . c l o s e ( )

Figure A.1: Python program to clean the tags
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Thi Quynh Nhi TRAN

Robust and comprehensive
joint image-text representations

Abstract :
This thesis investigates the joint modeling of visual and textual content of multimedia documents to address
cross-modal problems. A common representation space on which images and text can be both represented
and directly compared is a generally adopted solution. Such a joint space still suffers from several deficiencies.
The first limitation concerns significant information yet poorly represented on the common space. The second
limitation consists in a separation between modalities on the common space. To deal with the first limitation, we
put forward a model that combine such poorly-represented data with one that is relatively well-represented on
the joint space. To cope with the separation between modalities on the joint space, we propose two representation
methods that aggregate information from both the visual and textual modalities projected on the joint space.
Specifically, for uni-modal documents we suggest a completion process relying on an auxiliary dataset to find
the corresponding information in the absent modality and then use such information to build a final bi-modal
representation for a uni-modal document. Evaluations show that our approaches achieve state-of-the-art results
on several standard and challenging datasets for cross-modal retrieval or bi-modal and cross-modal classification.
Keywords :
common representation, cross-modal retrieval, cross-modal classification, (kernel) canonical correlation analysis,
multi-modal representation, image and text.

Résumé :
La présente thèse étudie la modélisation conjointe des contenus visuels et textuels extraits à partir des documents
multimédia pour résoudre les problèmes intermodaux. Un espace de représentation commun est la solution
généralement adoptée. Sur cet espace, images et textes peuvent être représentés par des vecteurs de même
type sur lesquels la comparaison intermodale peut se faire directement. Un tel espace commun souffre de
plusieurs insuffisances. La première concerne les informations très importantes mais qui sont mal représentées
sur cet espace. La deuxième insuffisance porte sur la séparation entre les projections des différentes modalités
sur l’espace commun. Pour faire face au premier problème, nous avons proposé un modèle qui combine ces
informations avec des données relativement bien représentées sur l’espace commun. Nous mettons en avant
deux méthodes de représentation pour les documents bi-modaux ou uni-modaux qui regroupent à la fois des
informations visuelles et textuelles projetées sur l’espace commun. Pour les documents uni-modaux, nous
proposons un processus de complétion basé sur un ensemble de données auxiliaires pour trouver les informations
correspondantes dans la modalité absente. Ces informations complémentaires sont ensuite employées pour
construire une représentation bi-modale d’un document uni-modal. Nos approches permettent d’améliorer l’état
de l’art pour la recherche intermodale ou la classification bi-modale et intermodale.
Mots clés :
espace commun de représentation, analyse canonique des corrélations, recherche intermodale, classification
intermodale, représentation multimodale, image et texte.
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