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Summary ______                                                                                             ___                                                
 

How do neurons dynamically control behavior? The neural networks that underlie actions 

are complex and involve integration of sensory input and physiological state of the animal. 

Locomotion is a key component of animal behavior, and the spinal circuits underlying 

locomotion provide a system to study how complex organization produces a behavioral 

output. Thanks to molecular and genetic techniques, basic understanding of how hindbrain 

and spinal circuits produce rhythmic locomotor patterns, known as central pattern generators 

(CPGs), has been achieved. However, understanding how these circuits function during 

locomotion, incorporating sensory input from the environment and the internal state of the 

animal, remains challenging to study because of the difficulty of manipulating and monitoring 

activity of neuronal populations in vivo. The zebrafish is an ideal vertebrate model organism 

to tackle these problems because of its simple locomotor repertoire at larval stages, 

transparency, and amenability to genetic manipulation.  

 Previous studies on larval zebrafish locomotion relied heavily on manual classification 

of single movements, and thanks to this work researchers defined a larval locomotor 

repertoire. Extensive morphological and single cell recordings established principles of 

population function in the spinal cord by morphologically-, physiologically-, or genetically-

defined neuronal populations. In order to bridge neuronal properties and the behaviors they 

drive, we built a setup and developed a program named ZebraZoom to track larval behavior 

rapidly and automatically characterize locomotor patterns using previously defined behaviors 

(Chapter 1). ZebraZoom reached 90% accuracy, accomplishing tracking and analysis in a 

high-throughput manner. This work has allowed investigation of sensory-motor loops during 

active locomotion and analysis of behavioral deficits in genetic mutants. 

 V2a interneurons are excitatory interneurons in the spinal cord and hindbrain 

identified by the chx10 transcription factor. These neurons are critical for proper locomotor 

patterns in many species. In the zebrafish, V2as drive high frequency rhythmic activity and 

are sufficient to generate locomotion when hindbrain V2as are stimulated. However, whether 

they contribute to ongoing slow locomotion and active fast locomotion is unknown. In order 

to probe their role during two different states of locomotion – slow or fast – we developed a 

genetically-encoded neurotoxin (Tg(UAS:BoTxBLC-GFP)) to silence the chx10 population of 

V2as in zebrafish (Chapter 2).  Using calcium imaging, behavior, and whole cell patch clamp 

electrophysiology, we validated the efficiency and lack of side effects of Tg(UAS:BoTxBLC-

GFP. Using behavior, fictive locomotor recordings, and calcium imaging, we showed that 

V2a interneurons contribute to slow and fast locomotion in distinct ways. Development of this 

tool has also allowed investigation of the contribution of other classes of neurons to behavior, 

used in conjunction with ZebraZoom, described in Chapter 1. 

Cerebrospinal fluid-contacting neurons (CSF-cNs) are sensory neurons responsible 

for relaying mechanical and chemical sensory information locally to motor circuits.  CSF-cNs 

in diverse species express GABA and the transient receptor potential (TRP) channel PKD2L1. 

Finally, I use genetic targeting, calcium imaging, pharmacology, and electrophysiology to 

investigate the role of Pkd channels in spontaneous activity in these neurons (Chapter 3). 

These results demonstrate that a single channel opening can generate an intrinsic source of 

spontaneous activity in sensory CSF-cNs that reflects sensory properties of CSF-cNs.  

This work together shows how excitatory interneurons driving locomotion contribute to 

distinct motor patterns, and establishes the origin of activity of intraspinal sensory neurons 

that may contribute to their function as part of a sensory-motor loop. Together with 

establishing new tools to probe the dynamic roles of sensory input and neuronal populations 

during active locomotion, a more complete picture of how dynamic interactions shape 

locomotor output may be achieved. 
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Arch  archaeorhodopsin-3 

ASIC   acid sensing ion channel 

BoNT   botulinum neurotoxin 

CaP  caudal primary motor neuron 
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hpf   hours post fertilization 
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KA   Kolmer-Agduhr neuron (see also CSF-cN) 

KCC2   potassium chloride co-transporter  
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MN   motor neuron 

OKR   optokinetic response 

OMR   optomotor response 

PCA   principal component analysis 

PKD2L1 Polycystic kidney disease 2-like-1 

PMN   primary motor neuron 

RB  Rohon-Beard neuron 

ROS   reactive oxygen species 

SERT  serotonin transporter 

SHH  Sonic hedgehog  

SNARE  soluble N-ethyl maleimide-sensitive factor attachment protein receptor 
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TeNT   tetanus toxin 

TRC  taste receptor cell 

TRP  transient receptor potential 

TTX   tetrodotoxin 

VeLD   ventral lateral descending interneuron 

VMAT   vesicular monoamine transporter 

Wnt    Wingless signaling pathway 
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I. The neural basis of behavior 

Understanding how neural networks generate and modulate behavior is not a new question but 

remains elusive to study. Over 100 years ago, Sherrington first proposed that neurons may form 

networks that are controlled dynamically (Sherrington, 1906). The complexity of actions that a 

neuron can perform function along the difference scales of anatomical and neuronal organization 

from cellular and firing properties, synaptic properties, connectivity, and system constraints 

(Getting, 1983; Wilson, 2014). Beyond the level of the individual neuron and its connectivity, 

neuromodulation can affect the activity of a circuit (Harris-Warrick and Marder, 1991; Katz et al., 

1994; Marder and Thirumalai, 2002; Sakurai and Katz, 2003), resulting in state-dependent circuit 

operation that can involve single neurons or circuits capable of generating excitation or inhibition 

(Getting, 1983; Fields, 2004; Buonomano and Maass, 2009; Marder et al., 2014).  

 

II. Vertebrate spinal circuits 

Motor tasks are vital elements of behavior for all animals and understanding motor behavior 

will lead to better understanding of how the nervous system is organized and functions to generate 

coordinated output. Work in a variety of vertebrate species revealed that intrinsic networks in the 

spinal cord can generate rhythmic oscillations without sensory input (Marder and Calabrese, 1996). 

These networks that can act without external input to generate organized patterns of activity are 

known as central pattern generators (CPG) (Grillner and Wallen 1985). In vertebrates, the CPG 

consists of local interneurons and motor neurons that can produce oscillatory activity resembling 

the activity occurring during repetitive locomotion (Figure 1; Marder and Calabrese, 1996; 

Grillner, 2003; Grillner et al., 2007; Goulding, 2009). The brain determines a motor output, and 

descending projections excite spinal circuits to achieve the action (Grillner and Shik, 1973; Steeves 

and Jordan, 1980; Armstrong 1988.  The spinal cord itself effects movement, integrating sensory 

information from the periphery and descending commands while sending feedback to the brain via 

ascending connections (Rossignol et al., 2006).  
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Interneurons in the spinal cord comprise CPG elements to activate motor neurons in a 

coordinated manner and integrate sensory inputs. Genetic programs control how these interneurons 

are patterned in the embryonic spinal cord. Neuronal identity is determined by morphogen gradients 

acting on neuronal progenitors in the ventricular zone to establish dorsoventral position (Goulding, 

2009). The notochord and floor plate produce sonic hedgehog (SHH), while the dorsal epidermis 

secretes bone morphogenetic protein (BMP; Figure 2; Jessell, 2000; Shirasaki and Pfaff, 2002; Lee 

and Jessell, 1999). Distinct concentrations of morphogens allow subdivisions between progenitor 

domains to generate unique classes of neurons in the embryonic spinal cord (Shirasaki and Pfaff, 
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2002). The transcription factor domains as well as morphology and in some cases function are 

conserved between vertebrate species, including mouse and zebrafish (Figure 3; Goulding 2009). 

 

 

Functions of these diverse interneuron classes and heterogeneity within classes is an active 

field of research (Jessell, 2000; Goulding, 2009; Grillner and El Manira, 2015; Kiehn 2016). 

However, understanding the contribution of sensory input and modulation of these circuits by both 

external sensory input and physiological state of the animal remains difficult to tackle.  

Most knowledge relies on in vitro preparations due to embryonic lethality of knockouts or difficulty 

of accessing the neurons (Crone et al., 2008; Zhang et al., 2008). Although combinatorial genetic 

strategies are being developed to target subclasses of neurons that will not lead to embryonic death 

 5



Introduction      _____                                                                                             ___                                                
  

  

by restricting manipulation, often neurotoxin-mediated silencing, to the spinal cord (Talpalar et al., 

2013), in vivo analysis of spinal circuits and sensory input remains a challenge. 

 

 

 

III. Zebrafish as a model organism for systems and sensory neuroscience 

Obtaining an understanding at the mechanistic level of nervous system functioning requires 

detailed analysis of neural circuits. Advances in optogenetics, high resolution functional imaging, 

molecular and genetic tools, in vivo electrophysiology, and synaptic tracing are making this 

understanding more feasible in vivo. Thanks to its transparency at embryonic and larval stages and 

genetic tractability, the zebrafish is an ideal model organism for understanding the principles 

underlying network function and behavior in vertebrates (Grunwald and Eisen, 2002). 
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The zebrafish has been used as a genetic model organism now for over thirty years (Streisinger 

et al., 1981) and has primarily been exploited in development biology thanks to its external 

fertilization and rapid development. Larval zebrafish are approximately 4 mm long, and their brain 

is less than 500 um thick, making the entire brain accessible for functional imaging (Grunwald and 

Eisen, 2002). The locomotor network of embryonic and larval zebrafish evolves rapidly between 

fertilization and mature swimming over the course of a few days (Figure 4; Drapeau et al., 2002; 

Lewis and Eisen, 2003). In the spinal cord, classes of interneurons are highly conserved between 

zebrafish and mammalian species, including neurotransmitter phenotype and morphology in some 

cases (Figure 3; Goulding 2009; Djenoune et al., 2014). 

 

IV. Development of locomotion in the zebrafish 

Locomotor activity begins prior to sensory input (Hamburger and Balaban, 1963), thus basic 

circuits develop independent of activation or of sensory input (Haverkamp, 1986). Spontaneous 

electrical activity in the zebrafish spinal cord begins around 17 hpf and develops into a mature 

locomotor network by 4 dpf (Figure 4; Drapeau et al., 2002). Vertebrates at embryonic stages 

display spontaneous motor behavior that consists of alternating bending of the trunk (Hooker 1952; 

Hamburger and Balaban, 1963). In the zebrafish this behavior begins at 17 hpf, as the earliest born 

motor neurons start extending growth cones into muscle, pioneering the ventral root (Kimmel et al., 

1995; Saint-Amant and Drapeau, 1998; Lewis and Eisen, 2003) and is independent of descending 

commands from the brain (Saint-Amant and Drapeau, 1998; Downes and Granato 2006). The 

underlying neuronal activity consists of periodic depolarizations that trigger action potentials, and 

thus coiling, as well as synaptic bursts of glycinergic inputs that originate from the contralateral 

side of the spinal cord (Saint-Amant and Drapeau, 2000). This behavior relies on electrical 

coupling, occurring independently of glycinergic and glutamatergic transmission but blocked by 

heptanol, a gap junction blocker (Saint-Amant and Drapeau 2000; Saint-Amant and Drapeau, 

2001).  
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Chemical transmission in the zebrafish begins to appear around 21 hpf as embryos develop an 

immature touch response. Swimming begins at 3 dpf, consisting of occasional swimming episodes 

that last several seconds. By 4 dpf, larvae exhibit beat-and-glide locomotion that occurs frequently, 

and by 5 dpf, larvae swim more frequently (approximately 1 Hz) and feeding starts. Additionally, 

by 5 dpf larvae respond to visual, vestibular, mechanical, nociceptive, and acoustic stimuli 

(Metcalfe et al., 1985; Knaut et al., 2005; Fleisch and Neuhauss, 2006; Burgess and Granato, 2007a; 

Kohashi and Oda, 2008). Thus, the zebrafish larvae serves as a useful model for studying the 

extensive pathways for sensing and responding to the external environment and their contribution to 

motor behavior. 
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V. Thesis outline 

This thesis will address three aims. I first establish methods to investigate behavior and its 

neural underpinnings in intact animals. Next, I will address how interneurons within the hindbrain 

and spinal cord contribute to either locomotion or the development of the motor networks within the 

spinal cord. 

 

First, I establish and validate an automated and high-throughput method to analyze larval 

zebrafish behavior. Using kinematic characterization of swimming bouts, we isolated distinct 

types of swim bouts in 5-7 dpf zebrafish larvae, analyzed effects of bath application of 

pharmacological agents, and characterized sequences of movements. Together this work establishes 

a framework in which sensory integration and active behavior can be studied in a quantitative and 

high-throughput manner (Chapter 1) in combination with techniques to manipulate neuronal 

activity. 

 

Second, I will present validation of a genetically-encoded neurotoxin, a tool to study 

behavior in actively swimming animals by potently silencing neurons. This tool serves as an 

alternative to other techniques for silencing and manipulating neural populations during active 

behavior. I will then demonstrate use of this tool to reveal novel roles of excitatory chx10+ 

premotor interneurons during different modes of active locomotion (Chapter 2). 

 

Finally, I will address the role of spontaneous activity of a unique population of intraspinal 

sensory neurons during development of the spinal cord with the goal of understanding how 

spontaneous activity of these GABAergic sensory neurons contributes to development and 

function of the spinal cord. (Chapter 3). 
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Chapter 1                                                                                          Introduction 
 

I. Locomotion in larval zebrafish 

As the zebrafish has emerged as a model organism to study how neural circuits drive 

behavior, efforts in the last couple of decades have aimed to quantify and characterize the 

repertoire of zebrafish locomotion. Early work by Budick and O’Malley established a 

subjective framework by which researchers could isolate defined locomotor patterns (2000). 

Unlike the continuous swimming of adult zebrafish, larvae swim in a "beat-and-glide" 

fashion, periods of rhythmic tail movements called swim bouts alternate with periods of rest. 

Spontaneous motor patterns for zebrafish larvae are discretized into a few simple patterns 

that operate in distinct gaits (Thorsen et al., 2004).  Basic spontaneous swims can be 

characterized as spontaneous slow swims or routine turns. Routine turns have a shallow initial 

bend angle of 14 to 27° as part of a low-speed swim, whereas spontaneous slow swims are 

low-speed swims with mean yaw angles of less than 3° (Budick and O’Malley, 2000). Escape 

responses are high-velocity turns initiated by a fast C-shaped bend of the tail (Foreman and 

Eaton, 1993; Liu and Fetcho, 1999) and followed by a burst swim (Hale, 1996; Budick and 

O'Malley, 2000) that involves larger bend angles and faster speeds than spontaneous slow 

swimming.  

In addition to this basic repertoire, larvae are able to perform diverse types of goal or 

reflex-directed behavior, including O-bends in response to a dark flash (Burgess and Granato, 

2007a), J-turns for tracking prey (McElligott and O’Malley, 2005), burst swims for prey 

capture (Borla et al., 2002), long-latency C-starts (Burgess and Granato, 2007b), and struggles 

in response to aversive stimuli (O’Malley et al., 2004). Larvae also perform highly 

stereotyped visually-mediated reflexive behavior, including the optomotor response (OMR) 

(Neuhauss et al., 1999), which has been extensively used to elicit slow swimming for probing 

the role of individual neurons in controlling distinct parameters of locomotion (Orger et al., 

2008, Severi et al., 2014). These different types of locomotion were identified by manual 
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classification (Borla et al., 2002; McElligott and O’Malley, 2005), or short (400 ms – 1000 

ms) video acquisitions of stimulus-driven behavior coupled with kinematic analysis (Burgess 

and Granato, 2007a; Burgess and Granato, 2007b) 

 

II. Automated tracking and characterization of behavior 

Automated analysis continues to generate more complete pictures of the behavioral 

repertoires of model organisms such as C. elegans (Zheng et al., 2011; Brown et al., 2013), 

Drosophila (Branson et al. 2009; Dankert et al., 2009), and mouse (Jhuang et al. 2010; de 

Chaumont F, et al., 2012). For the purposes of mapping neural circuits, the ultimate goal 

would be to obtain high speed tracking of behavior in real-time combined with a wide array of 

stimuli, including activating or silencing tools that act on a millisecond scale. This has been 

achieved in C. elegans, for which acquisition speed demands are not as high as zebrafish 

(Leifer et al., 2011; Stirman et al., 2011) and to some extent in Drosophila (Wu et al., 2014) 

and rodents (Armstrong et al., 2013). 

Refined analysis to understand how circuits are integrating information at the level of the 

spinal cord or how sensory feedback is incorporated to generate this wide diversity of 

behavior in zebrafish requires high-throughput analysis of kinematics in freely behaving 

larvae. By developing new tracking and categorization software, we sought to develop a 

program that would address two challenges of quantifying locomotor behavior: automating 

tracking of larvae over long time scales (minutes) and categorizing this behavior into 

previously-defined and subjective motifs in order to be able to investigate the neural 

underpinnings of distinct locomotor patterns during active locomotion. 
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The zebrafish larva stands out as an emergent model organism for translational studies
involving gene or drug screening thanks to its size, genetics, and permeability. At the
larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although
phenotyping behavior is a key component of large-scale screens, it has not yet been
automated in this model system. We developed ZebraZoom, a program to automatically
track larvae and identify maneuvers for many animals performing discrete movements.
Our program detects each episodic movement and extracts large-scale statistics on motor
patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to
identify motor defects induced by a glycinergic receptor antagonist. The analysis of the
blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using
multiclass supervised machine learning, ZebraZoom categorized all episodes of movement
for each larva into one of three possible maneuvers: slow forward swim, routine turn, and
escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers
that four independent experimenters unanimously identified. For all maneuvers in the data
set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled
the series of maneuvers performed by larvae as Markov chains and observed that
larvae often repeated the same maneuvers within a group. When analyzing subsequent
maneuvers performed by different larvae, we found that larva–larva interactions occurred
as series of escapes. Overall, ZebraZoom reached the level of precision found in
manual analysis but accomplished tasks in a high-throughput format necessary for large
screens.

Keywords: machine learning, tracking, analysis of kinematics, collective behavior, support vector machine

classifier, multiclass categorization, locomotion in intact behaving animals

A central question in systems neuroscience is how neural cir-
cuit assembly and function relate to animal behavior. Genetic
screens in invertebrate models, such as Drosophila melanogaster
and Caenorhabditis elegans have begun to unravel the genetic
basis of circuit function and behavior (Chalfie et al., 1985; Moore
et al., 1998; Scholz et al., 2000). Automated methods have recently
been developed in these species to track the position of individ-
uals alone or in a group (Branson et al., 2009; Swierczek et al.,
2011) and to categorize behavior (Dankert et al., 2009; Kabra
et al., 2013). The zebrafish has emerged as an important verte-
brate model organism for developmental biology, neurobiology,
and human disease models, and is now used as a genetic model
organism for the study of the mechanisms modulating complex
behaviors in vertebrates such as depression and anxiety (Blaser
et al., 2010; Lee et al., 2010; Cachat et al., 2011; Vermoesen et al.,
2011; Zakhary et al., 2011; Ziv et al., 2013), sleep (Zhdanova et al.,
2001; Appelbaum et al., 2009), or addiction (Petzold et al., 2009;
Khor et al., 2011). The permeability, small size, genetic tractabil-
ity, transparency, and low cost of zebrafish make them highly
suitable for large-scale genetic and chemical screens (Driever

et al., 1996; Granato et al., 1996; Haffter and Nusslein-Volhard,
1996).

Although simple for a vertebrate, the locomotor patterns of the
zebrafish larva bring technical challenges to automated analysis.
Larvae spontaneously swim in discrete bouts in a manner often
described as “beat and glide,” which can be classified as individual
maneuvers, including slow forward swim, routine turn, or escape.
These short movements are characterized by a large range of tail-
beat frequencies (15–100 Hz), which require high-speed imaging
to capture accurately and can be separated by long resting peri-
ods of up to a few seconds. Manual tracking via frame-by-frame
analysis has formed the basis of contemporary knowledge and
has enabled initial characterization of the larval zebrafish loco-
motor repertoire (Budick and O’Malley, 2000; Borla et al., 2002;
McElligott and O’Malley, 2005). However, manual techniques are
both laborious and limited in scope for high-throughput screens
(Driever et al., 1996; Granato et al., 1996; Haffter and Nusslein-
Volhard, 1996). The currently available automated tools have
limitations in either refinement or time-scale. Recent chemical or
genetic screens have relied on commercial software that estimates
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an index of mobility of the larvae, usually measured as the dis-
tance traveled during a recording session or the amount of time
spent moving (Rihel et al., 2010; Elbaz et al., 2012; Rihel and
Schier, 2012). These approaches for high-throughput screens pro-
vide information about average velocity and distance traveled
by tracking the animals’ center-of-mass over minutes to hours.
Previous studies have either focused on analyzing movement
duration and speed at low frequency over long periods of time or
on fine analysis of kinematics at high frequency but for very short
acquisition (typically 1000 ms, Burgess and Granato, 2007; Liu
et al., 2012). Accurate categorization of maneuvers for each indi-
vidual in a group requires novel methods to record behavior with
high temporal resolution and over long durations, automatically
tracking and categorizing thousands of maneuvers.

Here we developed a new program, ZebraZoom, to track the
full body position over a multiple-minute timescale of 56 larvae
simultaneously recorded at high frequency and to finely charac-
terize each maneuver. To identify core and tail positions for large
datasets, videos were obtained on multiple larvae simultaneously
over long periods of time and at high resolution using a high-
speed camera run in a streaming-to-disk interface (Methods).
Typically 500–1000 movements from seven larvae were recorded
per dish in four minutes and eight dishes were monitored in par-
allel. To simplify tracking, we placed larvae in conditions that
reduced overlapping in the z-plane during swimming (Methods;
overlaps occurred on average once every 145 s per larva). We
developed an offline 2D tracking method for identifying and
separating each animal even when in close contact (Methods,

Figure 1). For each larva several features were identified, a core
position that included the head and swim bladder (Figure 1A)
and ten points along the tail (Methods and Figure 1B; Video S1).
As movements occurred as discrete episodes, ZebraZoom
detected movements based on the tail-bending angle over time
(Methods and Figures 1C–D). To validate the accuracy of move-
ment detection, one trained experimenter manually identified all
movements occurring in a subset of videos. In three videos rep-
resenting a total of 189 events, movements occurred with a false
negative rate of 2.7% and a false positive rate of 3.7%.

To quantify movements in a consistent manner, we used the
location of the head, the position of the tail, the heading direction
and the tail-bending angle to estimate global parameters of loco-
motion (Figure 2A, Methods). We observed that movements for
5–7 dpf wild-type (WT) larvae occurred every 2.22 s on average
per larva (at 0.4495 ± 0.0117 Hz). For all movements identified,
larvae performed on average 3.19 ± 0.01 oscillations per move-
ment, had a 24.29 ± 0.03 Hz tail-beat frequency (TBF), lasting
189.5 ± 0.0004 ms with a 51.14 ± 0.18◦ heading direction range,
2.49 ± 0.008 mm traveled distance and 13.35 ± 0.04 mm/s speed
per maneuver. We illustrated the use of ZebraZoom for quanti-
fying the effects of a known glycinergic receptor antagonist, and
for analyzing a blind genetic mutant. Glycine is responsible for
reciprocal inhibition in the spinal cord that permits left-right
alternation to sustain oscillations (Dale, 1985; Grillner et al.,
1995; Granato et al., 1996; Drapeau et al., 2002; Li et al., 2004).
In zebrafish, mutants for glycinergic receptors or transporters
have been associated with defects in motor pattern generation

FIGURE 1 | Image processing for tracking of larvae’s core positions and

larvae’s tail and detection of movements based on the tail-bending

angle. (A) Tracking of the larvae’s core positions. (Ai) Initial image.
(Aii) Background image. (Aiii) Image with background subtracted.
(Aiv) Binary image. (Av) Eroded image. (Avi) For each larva, identification
of the core (blue dot) and heading direction (red axis). (B). Identifying the
tip of the tail. (Bi) The head center is located at the boundary of the head
and trunk. Candidate Point 1–4 along the tail are the four points of the

contour with the smallest x-value, smallest y-value, largest x-value, and
largest y-value caudal to reference points 1 and 2. (Bii) The two distances
d1 and d2 shown for candidate point 1. (Biii) The two vectors used to
identify the tail tip defined with the minimal scalar product for candidate
point 1. (C) Definition of the tail-bending angle (α) separating the body axis
(pink) and the line connecting the core and the tip of the tail (green).
(D) Example of the tail-bending angle over time with detection of
movements indicated by the pink line.
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FIGURE 2 | Global parameters describing locomotion in wild-type,

mutant, or drug-treated larvae. (A) Distribution of global parameters
of movements for 5–7 dpf WT larvae. From left to right: Number of
oscillations per movement, TBF in Hz across all movements, duration
of each movement in ms, heading direction range in degrees,
distance traveled per movement in mm, speed in mm/s during each
movement (eight videos, 420 larvae, six clutches, 5–7 dpf, 44,688
movements). All values were calculated per movement. (B) Effect of

the glycinergic receptor antagonist strychnine on the global parameters
of movements. White circles are before application, gray are after
application (two videos, 42 larvae for each condition, two clutches,
6–7 dpf, 10,459 movements). (C) Effect of the atoh7 mutation on the
global parameters characterizing movements (four videos, 112 mutants
atoh7−/− , and 112 control siblings, four clutches, 6 dpf). For (B,C):
error bars are standard errors of the mean and statistics were
calculated per larva.

(Granato et al., 1996; Odenthal et al., 1996; Hirata et al., 2005;
Masino and Fetcho, 2005). We measured the effect of bath appli-
cation of 75 μM strychnine on spontaneous locomotor activity
in larvae and compared to control siblings that were not exposed
to the drug (Figure 2B, Methods). For control larvae, we did not
observe a significant change in the occurrence of movements over
time (0.35 ± 0.05 movements per larva/s before and 0.27 ± 0.03
movements per larva/s after), or on any of the global param-
eters (Figure 2B; all p > 0.15). However the locomotor behav-
ior of larvae treated with strychnine was significantly impacted
(Figure 2B). Overall, movements occurred less frequently (0.30
± 0.04 Hz before and 0.12 ± 0.02 Hz after, p < 0.0002). Although
the average TBF during a movement did not change (p > 0.81),
the number of oscillations decreased (3.52 ± 0.17 before and 2.89
± 0.16 after; p < 0.0078), an effect that was associated with a

decrease in movement duration (p < 0.0001), distance traveled
(p < 10−5), and average speed (p < 10−5). Strychnine applica-
tion also resulted in a decrease in the range of heading direction
(p < 10−5). atoh7 mutant larva lack retinal ganglion cells, ren-
dering them blind (atoh7−/−, Kay et al., 2001). Considering
the importance of vision for zebrafish larvae, analyzing their
locomotor output could reveal corresponding behavioral differ-
ences. Overall atoh7−/− mutants generated episodic movements
less frequently than control siblings (0.33 ± 0.02 Hz vs. 0.51 ±
0.02 Hz, 112 larvae for each condition). Quantitative analysis of
global parameters of the blind mutants showed no difference
in the average TBF or the average speed per larva (Figure 2C;
p > 0.85 and p > 0.83, respectively) but there were small but sig-
nificant decreases in the number of oscillations, duration, heading
direction range, and distance traveled (Figure 2C; all p < 10−3).
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These defects were observed systematically in four clutches.
atoh7−/− mutants thus display small but substantial differences
in basic motor behavior when compared to control siblings.

Zebrafish larvae display a variety of locomotor maneuvers that
are often grouped into discrete categories. In these experimental
conditions, three types of movement occur in groups of larvae
at early stages: slow forward swims (S), routine turns (T, also
referred to as slow turns), and escapes (E, including C-turns
or burst swims). Figure 3 shows examples of these movements
reported by ZebraZoom. For each maneuver, we superimposed
a succession of images (Figures 3Ai–Ci), the tail-bending angle
over time (Figures 3Aii–Cii) and the curvature along the rostro-
caudal axis and as a function of time (Figures 3Aiii–Ciii). The
three types of maneuvers included a series of slow left-right alter-
nation; high values of curvature were confined to the caudal
tail (Figures 3Aiii–Ciii). While high values of curvature of the
tail were confined to the caudal end for slow forward swims
(Figure 3Aiii), high values of curvature were distributed from
head to tail for routine turns and escapes (Figures 3Biii,Ciii).
Stereotypical routine turns and escapes differed by the frequency
of left-right alternation in the tail bend (Figures 3Biii,Ciii). As
larvae did not always exhibit a canonical slow forward swim,
routine turn or escape, some movements were ambiguous. To
estimate the percentage of these movements, four experimenters
subjectively classified 390 movements distributed over eight

videos. Overall about 82% of all movements were classified uni-
formly by at least three out of four experimenters (Methods)
indicating that 18% of movements were difficult to categorize.

Using knowledge of stereotypical locomotor events, we
designed a multiclass categorization approach with supervised
machine learning to automatically sort each movement into one
of the three categories. To implement the multiclass categoriza-
tion, we used two successive support vector machine (SVM)
classifiers: the first classifier sorted S vs. all other maneuvers, and
when necessary the second classifier sorted T vs. E. Locomotor
events were segregated subjectively in the training set (n = 201).
This machine learning approach relied on associating dynamic
parameters extracted from the tail-bending angle over time with
each maneuver type identified in the training set (Figure 4A
and Methods). To reduce the dimensionality of the data, we

Table 1 | Estimation of ZebraZoom categorizing accuracy based on

the different reference experimenters.

All movements (%) S (%) T (%) E (%)

Experimenter #1 82.5 85 82 79

Experimenter #2 73.2 85 60 53

Experimenter #3 74.3 73 80 58

Experimenter #4 75.4 79 77 47

FIGURE 3 | Typical maneuvers occurring in groups of 5–6 dpf larvae.

(A) Slow forward swim (S). (B) Routine turn (T). (C) Escape response
(E). (Ai–Ci) Superimposed images taken every 17 ms. (Aii–Cii) The

tail-bending angle over time for each maneuver. (Aiii–Ciii) Plots of the
curvature of the tail as a function of time and position along the rostro-caudal
body axis.
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performed Principal Component Analysis (PCA). Based on the
selection of a trained experimenter on the learning set, we val-
idated the multiclass categorization to sort maneuvers by com-
parison with the subjective classification performed by a trained
experimenter for a recognition set (n = 189; Figures 4B,C). We
observed that ZebraZoom agreed with the trained experimenter
82.5% of the time for the recognition dataset (85% for S, 82%
for T, and 79% for E; Figures 4B,C; Table 1 and Methods).
When compared to four independent experimenters, ZebraZoom
reached 91% accuracy for categorization of stereotypical maneu-
vers that all experimenters had unanimously identified and
76.4% on average for all maneuvers (73.2–82.5%, Table 1).
Once validated, we applied the ZebraZoom categorization algo-
rithm on a large dataset of 44,688 movements of WT larvae
(Figure 4D). We identified 14.911 S (33.36%), 21,432 T (49.96%),
and 8,345 E (18.67%). The distribution of global parameters for
the three classes of maneuvers were similar in terms of num-
ber of oscillations and duration, but they differed in terms of
mean TBF, heading direction range, distance traveled and speed
(Figure 4D).

The investigation of interactions between individuals lead-
ing to coordinated motion in animal groups has been a long-
standing challenge that is central to elucidating the mecha-
nisms and evolution of collective behavior. Most studies have
focused on the analysis of speed or directionality to reflect the
interaction between animals (Katz et al., 2011; Gautrais et al.,
2012). We availed ourselves of ZebraZoom’s features to accu-
rately identify each larva and categorize their maneuvers to
study how larvae interacted. In comparison to juvenile and adult
zebrafish that swim continuously, larval zebrafish swim episod-
ically with maneuvers that occur in a beat-and-glide manner.
Each movement can be regarded as a discrete event, therefore
we were motivated to explore how local perturbations of a sin-
gle individual could impact the group. The program switched
identity of larvae once every 109 s (once every 49 movements
on average), allowing us to track single larvae. We modeled
sequences of maneuvers performed by larvae within a group as
Markov chains. Utilizing the classifier, we described larva–larva
interactions in a group and intrinsic properties of individu-
als. We calculated a transition index (I) for each sequence of
two maneuvers as the transition probability between first and
second maneuvers divided by the probability of random occur-
rence of the second maneuver (Figure 5; Table 2 and Methods).
When the two successive maneuvers were the same, a higher
transition index indicated the probability of repetition of this
maneuver was greater than chance. The transition index was
equal to one when the order of sequential maneuvers was ran-
dom. Overall I was greater than one for repetition of the
same maneuvers (Table 2). We sorted the data into interactions
between different animals and the repetition within the same
animal. We analyzed how the transition index for a given suc-
cession of maneuvers depended on the distance between the
two larvae’s core positions at the onset of the movement and
the time between the onset of each movement (Figure 5 and
Methods). Individual larvae often performed the same type
of maneuver sequentially (maximal values IS max (same) = 1.43,
IT max (same) = 1.37, IE (same) = 2.38, all p < 0.002; Figure 5A,

Table 2, and Methods). Although slow forward swims or rou-
tine turns were not frequently repeated between larvae (I close
to 1: maximal values IS (diff) = 1.09 and IT (diff) = 1.01, p >

0.05; Figures 5Bi,ii, Table 2, and Methods), we found that recur-
rent escapes were very frequent between different larvae (max-
imal value IE (diff) = 3.6, p < 0.002; Figure 5Biii, Table 2, and
Methods). Five to seven dpf larvae do not show evidence for
social interactions (Buske and Gerlai, 2011). By taking advan-
tage of the algorithm for identifying single larva and categorizing
simple maneuvers, we reveal that larva–larva interactions pri-
marily occurred for escape responses. These series of escapes
occurred after direct collisions (in one third of the cases) or via
long distance interaction (two third of cases). Blind atoh7−/−
larvae showed a similar profile of interactions for escapes (data
not shown); these interactions were most likely mechanically
triggered.

Large-scale chemical and genetic screens would benefit from
a quantitative approach to analyze fine locomotor patterns
over long periods of time. Compared to other genetic models,
zebrafish locomotion is difficult to analyze because larvae initi-
ate maneuvers intermittently and during these short events, the
larvae swim at a high speed with TBFs ranging from 15–100 Hz.
The quantitative analysis of motor behavior for large-scale screens
requires solving the problem of recording multiple animals simul-
taneously at high frequency (above 200 Hz) and for long periods
of time (minutes). Here we implemented a reliable method for
quantifying global parameters of movements based on stream-to-
disk recordings acquired at high frequency and over long periods
of time, limited only by data storage. Next we developed a robust
method for tracking the full body position of zebrafish larvae
swimming in groups. We first manually validated that the track-
ing accurately detected discrete movements, and then used the
global parameters obtained to characterize the locomotion of
WT larvae. Quantification of the global parameters describing
larval movements corroborates previous observations based on
fewer samples (Budick and O’Malley, 2000; Danos and Lauder,
2007; Liu et al., 2012). Similar estimates of the duration of
movements, distance traveled and speed were obtained from the
recent application of C-trax (designed originally for Drosophila)
to zebrafish larvae [Lambert et al. (2012) based on Branson
et al. (2009)]. In these conditions, recordings at low frequency
over long periods of time, typically 60 Hz for minutes or hours,
revealed the global level of activity over time but no informa-
tion on fine kinematics during individual maneuvers (Elbaz et al.,
2012). When recordings were performed at high frequency to cap-
ture the dynamics of motion, they usually lasted 1000 ms (Burgess
and Granato, 2007).

We illustrated the benefit of ZebraZoom to quantify global
parameters of movements by analyzing the effect of a drug to
block glycinergic neurotransmission, which has been known to
be involved in motor pattern generation and alternation between
the left and right side of the spinal cord across vertebrate species
(Grillner, 2003; Korn and Faber, 2005; Nishimaru and Kakizaki,
2009). Most studies relied on ventral nerve root recordings where
muscles were dissected out or paralyzed in order to record the
activity of motor neurons at the level of a few segments at
most. Our automated quantification of locomotor events enabled
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FIGURE 4 | Validation of the automated categorization of maneuvers:

slow forward swim (S), routine turn (T) and escape (E). (A) Dynamic
parameters used for categorizing the different maneuvers: amplitude of
tail-bending angle (TBA) in degrees, integrated TBA in degrees, TBF in Hz,
and speed in mm/s. The mean of each parameter for each time bin is shown
and error bars are standard error of the mean: S in pink, T in green and E in
blue. Time 0 is taken at the peak of the first bend of the movement.
(B,C) Comparison of the results of the automatic categorization from

ZebraZoom with the subjective categorization by a trained experimenter on
189 movements from one video. The comparison of the categorization is
shown overall (B) and for each maneuver (C: Ci for S, Cii for T, Ciii for E). The
proportion of movements categorized the same way by both methods is
shown in addition to the proportion of movements miscategorized and how
they were categorized. (D) Distribution of global parameters for each
maneuver S, T, and E of WT larvae (same color code as in A; 44,688
movements total from eight videos, six clutches).
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FIGURE 5 | Larva–larva interactions occurred most frequently as

sequences of escapes. Transition index for the same larvae (A) and
for different larvae (B). Time is plotted in seconds from the time of
initiation of the first movement. Distance is plotted from the core

position of the larva at the beginning of a movement. (Ai,Bi) The
sequence S–S. (Aii,Bii) The sequence T–T. (Aiii,Biii) The sequence
E–E (36,068 total movements from five videos, 280 WT larvae, four
clutches, 5–6 dpf).

Table 2 | Transition index for sequence of two maneuvers estimated

as the probability of transition from maneuver 1 to maneuver 2

divided by the occurrence of the maneuver 2.

S T E

INTERACTIONS BETWEEN DIFFERENT ANIMALS

S 1.0498 1.0152 0.8481

T 1.0087 1.0413 0.8606

E 0.8549 0.8493 1.7528

REPETITIONS WITHIN THE SAME ANIMAL

S 1.2162 0.8947 0.8413

T 0.9091 1.1185 0.8499

E 0.8263 0.8887 1.6995

identification of effects induced by bath application of the glycin-
ergic antagonist strychnine on locomotion in intact animals. As
predicted, bath application of strychnine dramatically reduced
the occurrence of movements and the number of oscillations per
movement, that was correlated with a reduction of the dura-
tion of movement and of the distance traveled. While mean TBF
was not affected, we observed a reduction in the heading direc-
tion range and in speed. Our approach pinpointed effects of
glycinergic blockade, including a reduction in the number of
oscillations per movement, a kinematic feature not estimated in
commercially available software. The analysis of the mutant atoh7
revealed that although TBF and speed were not affected in the
blind mutant, there was a small but significant decrease in the
number of oscillations, heading direction range, distance, and
duration of each bout compared to their control siblings. These
effects were systematically observed on four clutches suggesting
that visual feedback may impact some global parameters of loco-
motion. However since the pattern of expression of atoh7 has not

yet been fully characterized, it cannot be excluded that the gene
may be expressed in cells other than retinal ganglion cells.

The originality of ZebraZoom lies in categorizing all maneu-
vers performed by individual larvae in a group. The subjective
analysis of maneuvers based on four independent experimenters
revealed that locomotor maneuvers were not obvious to catego-
rize. Based on subjective estimates, 18% of all movements corre-
sponded to ambiguous maneuvers. By using a machine-learning
paradigm, we trained ZebraZoom to categorize all maneuvers
over tens of thousands of movements with 82.5% accuracy, a sim-
ilar value to the 72% agreement rate of all four experimenters
measured over a few hundreds of movements. The approach we
developed here could be expanded to include directionality of the
turns, sequences of maneuvers such as those occurring during
prey tracking, and subcategories of escapes.

This study constitutes an important first step for accurate
tracking of multiple larvae in groups over long periods of time
and for categorizing maneuvers. Some improvements could be
implemented in the future. While our tracking method currently
relies on a simple “blob” approach solely based on raw image
analysis, a model-based approach may be more reliable in partic-
ular when animals are in close contact (Fontaine et al., 2008). We
show here that ZebraZoom can achieve an accurate categoriza-
tion of maneuvers, comparable to experimenters’ estimates, based
solely on the dynamics of movement of head and tail. An interest-
ing avenue of exploration to address this could be investigation
of novel dynamic parameters for the learning and recognition
process of the classifier to yield subtler methods for detection of
defects. Quantification of motor patterns in C. elegans is based
on a description of all possible positions of the animal over
time (Stephens et al., 2008). In order to fully understand larval
zebrafish behavior we need to identify a minimal set of param-
eters sufficient to describe all motor patterns. All together this
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work brings new insight to the complexity of behavior determi-
nation in zebrafish larvae and could be applied to investigation of
the mechanisms of addiction, arousal, feeding, social interaction
and aggression in larvae and juveniles (Gahtan et al., 2005; Bianco
et al., 2011; Buske and Gerlai, 2011; Miller and Gerlai, 2012; Ziv
et al., 2013). The observation of complex interactions in juve-
niles raises the hope that it will soon be possible to investigate the
neuronal circuits and molecular pathways underlying social inter-
actions. The fact that we can track individual larva and analyze
their interactions is a major advance over existing methods. Our
approach that systematically quantifies and categorizes thousands
of motor patterns was designed to bring efficiency and reliability
to drug screening and forward genetic screens. ZebraZoom can
detect, quantify, and categorize movements to provide a quan-
titative description of global parameters as well as a qualitative
description of all maneuvers performed by individual larvae.

METHODS
ZEBRAFISH HUSBANDRY
All experiments were performed on Danio rerio larvae between 5
and 7 dpf. AB and TL strains of WT larvae were obtained from
our laboratory stock of adults. Embryos and larvae were raised
in an incubator at 28.5◦C under a 14/10 light/dark cycle (lights
on, 8:00 A.M.; lights off, 10:00 P.M.) until the start of behavioral
recordings. The mutant line for atoh7 (Kay et al., 2001) was given
by Dr. Herwig Baier, MPI Munich. Double recessive atoh7−/−
mutants were identified at 5 dpf by their dark pigmentation. All
procedures were approved by the Institutional Ethics Committee
at the Research Center of the Institut du Cerveau et de la Moelle
épinière (CRICM).

BEHAVIORAL RECORDINGS
Motor behavior of 56 larvae split into eight dishes (seven
larvae per dish, Figure 1Ai) on a homogeneous illumi-
nation plate (light intensity 0.78 mW/cm2, Phlox, ref.
LEDW-BL-200/200-LLUB-Q-1R24) in egg water (http://zfin.
org/zf_info/zfbook/chapt1/1.3.html, methylene blue added at
0.5 ppm). Following acclimation, larvae were recorded for 4 min
at 337 Hz with a high-speed camera (VC-2MC-M340E0-C,
CMOS chip 2048 × 1088 pixels, Vieworks, South Korea) placed
above the setup and coupled to a camera objective (AF Nikkor
50 mm f/1.8D, Nikon, Japan). Pixel size was 66 μm. We developed
a direct-to-disk high-speed imaging system designed for long
acquisitions of raw images in collaboration with R&D Vision,
France. Behavioral recordings were performed between 2:00
and 5:00 P.M. Larvae were acclimated for 60 minutes on the
light source at room temperature (21–22◦C) and kept at room
temperature during all recordings. Larvae were kept in dishes
with an inner diameter of 2.2 cm and an outer diameter of 3.5 cm
(Figure 1A). Water was kept at a low level (2 mm) in order to
reduce the occurrence of crossings between larvae. Typically
500–1000 movements were recorded in each 4-min session for
each well.

ZEBRAZOOM TRACKING ALGORITHM
The first step is to track the core and then the tail for all lar-
vae over time. Written in C++ using the openCV library, the

program identified the center position and heading direction of
each larva (Figures 1Ai–vi). The algorithm used a Hough trans-
form to identify the eight wells. For each well the background
was estimated as the maximum pixel value over all frames of the
video recording (Figure 1Aii) and then subtracted for all frames
for that well (Figure 1Aiii). The resulting image was converted
to binary (Figure 1Aiv). An erosion filter was applied twice in a
row with a 3 by 3 structuring element (Figure 1Av). The “core” of
the larva referred to the resulting connected components that had
an appropriate area (between 0.0871 and 0.8712 mm2). The core
of the larva included the head and the trunk with swim bladder
(Figure 1Avi). The algorithm identified the head center position
as the center of mass of the putative cores for each larva in a frame.
To follow each larva across subsequent frames, ZebraZoom used
the information from the previous two frames (core position and
speed) to predict the position of the larva and located the closest
core out of all the possible cores. The heading direction for each
larva was calculated simultaneously using the moments of the
eroded body (up to the second order, see red lines in Figure 1Avi).

For each larva with an identified core, we determined the “full
body” referring to the connected component of the binary image
in Figure 1Aiv. In order to track the tail, the full body was rotated
so that the head axis was parallel to the y-axis, always in the same
orientation. To identify the contour of the tail in the coordinate
system defined by the head axis, a series of points was extracted
from the full body by using the algorithm of Suzuki and Abe
(1985), (white dots in Figures 1Bi–iii). Reference point A1 was
the closest point on the contour line from the head center and
reference point A2 was the point symmetrical along the head axis
to reference point A1 on the contour. In order to identify the tip of
the tail, four candidate points on the contour were selected with
minimal and maximal x- and y-values (Figures 1Bi–iii). For the
maximal y-value the point also had to be above a given distance
away from the two reference points [below a 20% threshold for
the ratio |(d1 − d2)|/(d1 + d2), Figure 1Bii]. Distances d1 and d2
were calculated from each candidate point to the reference points
A1 and A2 along the contour (Figure 1Bii). Candidate points
with a ratio |(d1 − d2)|/(d1 + d2) over 0.25 were excluded. The
tip of the tail was then identified as the point associated with the
smallest scalar product of the tangential vectors pointing in oppo-
site directions (Figure 1Biii). The midline of the larva was defined
as the line equidistant to the contour line on the left and right side.

ERRORS IN CORE AND TAIL TRACKING
If an error occurred in the core tracking, the larva was missing
for that frame and there was no tracking of its tail. If the core of
a larva was identified, the algorithm proceeded to the tail track-
ing. To confirm that the tail tracking was correct, the algorithm
checked that the tail length was greater than 1.32 and less than
3.96 mm. If this criterion was invalid, the tail position was set
to the previous frame. This happened in 13.46% of frames on
average but was compensated by a smoothing spline on the cen-
ter positions between the left and right contour points of the tail
and a median filter applied on the tail-bending angle over time.
The tail-bending angle was defined as the angle between the axis
formed by the tip of the tail and the center of the head with respect
to the larva heading direction (Figures 1C,D).
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SEPARATING LARVAE DURING CONTACTS
Tracking was optimized to separate larvae in close vicinity to
one another or in direct contact. For core tracking, if the tra-
jectories of the two cores merged at a given time point, then
the algorithm considered that a collision occurred between the
two larvae. When the predicted positions of two larvae based on
core position and speed in the two previous frames were clos-
est to the same core, the algorithm considered that a collision
between the two larvae occurred at that frame. When a collision
was detected, the algorithm applied erosion filters in the region
of interest defined by the core until more than one isolated core
emerged. In rare cases, the multiple cores were not resolved and
the larva could not be tracked for that frame. For the tail track-
ing, if the area of the larva’s full body was greater than 1.9 mm2,
the algorithm considered that two larvae were in direct contact.
The distance separating the larvae’s cores determined which of
two algorithms was used to isolate the tails: if the distance was
less than 1.32 mm, a line separation algorithm was applied. A line
was created to separate the two larvae by optimizing the area of
the resulting tails, calculated by maximizing the sum of the two
largest areas containing a head center position. If the distance
was greater than 1.32 mm, a pixel intensity separation algorithm
was applied instead. The threshold used to convert the image
into binary was adjusted until two separate full bodies, each a
connected component, emerged and contained the head center
position. Larvae crossings occurred once every 145 s on average
per larva (0.0069 ± 0.0019 events per second) and the switching
of identification between two larvae after a collision was esti-
mated manually to occur every 109 s on average (0.0092 ± 0.0036
events per second per larva based on 720 s of recordings from four
videos, and 28 larvae).

DETECTION OF MOVEMENTS
Algorithms for the detection of movements and the behavior
analysis were written in MATLAB (The Mathworks, Inc., USA).
The detection of movement was based solely on threshold-
ing the tail-bending angle measured over time (Figures 1C,D).
ZebraZoom detected the start of a movement when the value for
the tail-bending angle at a given frame varied over 1.15◦ from
the mean value of the tail-bending angle for the ten surround-
ing frames, or 29.7 ms. To avoid separating single maneuvers
into multiple events, movements that occur within 14.8 ms of
each other were merged. To avoid false positives we considered
only movements in which the larva core had moved more than
0.099 mm and where the range of tail-bending angle values was
above 2.86 degrees. Additionally, only events during which the
eroded binary image of the larva had moved more than a set num-
ber of pixels between subsequent images were considered based
on the parameters used for the erosion. Rarely we have observed
two distinct movements occurring without a pause, such as a slow
forward swim followed by an escape due to a collision. In these
few cases when two movements occurred without a noticeable
stabilization in the tail-bending angle over time, the movements
were merged into one movement in our analysis.

Our tracking method was robust in these experimental con-
ditions. We cannot probe the impact of a reduction of contrast
or spatial resolution. All numerical thresholds used above for

tracking were fixed empirically, but they could easily be modified
for other users to adapt to other recording conditions.

CALCULATION OF THE CURVATURE
After alignment of the body axis with the y-axis in a consistent
orientation, the tail was represented parametrically in Cartesian
coordinates as [x(t), y(t)]. The midline of the tail was fitted to
the x(t), y(t) function with a spline. Curvature was calculated in
Cartesian coordinates:

c =
∣∣x′y′′ − y′x′′∣∣
(
x′2 + y′2)

(
3
2

)

where the derivatives were all calculated with respect to t, the
distance along the tail.

EXTRACTION OF GLOBAL PARAMETERS
For all frames of a video, ZebraZoom outputs variables for
each larva in each dish including: the position of its core, head
axis, midline position of its tail and tail-bending angle. For
each detected movement, a reference number for the larvae was
extracted along with the corresponding well number, start and
end time of the movement, and global parameters such as the
number of oscillations, TBF, movement duration, heading direc-
tion range referring to the range of values of the heading axis for
one movement with the heading angle reset to zero at the onset
of movement, distance traveled, average speed (distance traveled
divided by movement duration).

AUTOMATIC MULTICLASS CATEGORIZATION
We automatically attributed each movement detected in the video
to either one of the three maneuvers: slow forward swim, routine
turn or escape response. Our method relied on a dynamic set of
parameters extracted from the bending angle of the tail estimated
from the first tail bend over a limited time window (Figures 1C,
4A). We based our categorization on the four following parame-
ters: (1) the amplitude of the tail-bending angle (0–178 ms, bins
of 12 ms), (2) the instantaneous frequency (0–104 ms, bins of
7 ms), (3) the cumulative tail-bending angle calculated as the
average angle value over time (0–178 ms, bins of 12 ms), and (4)
the speed (0–240 ms, bins of 24 ms) (Figure 4A). The values of
these four dynamic parameters were interpolated with a spline
for a given time window during the movement and then used
for categorization of every movement. PCA was first performed
to reduce noise and dimensionality. Each movement was subse-
quently represented by the fourteen first principal components of
the PCA out of 53 components (representing all together about
93% of the variance), to which the total duration of the movement
was added. Multiclass categorization was implemented in two
steps: a series of two subsequent SVM classifiers with linear kernel
was applied for automatic categorization of movements: the first
SVM classifier discriminated slow forward swims vs. turns and
escapes, and if necessary a second SVM discriminated between
a routine turn and an escape. We used two distinct datasets
from WT 5–7 dpf larvae, one for learning the three maneuver
types (five videos, n = 201 movements) and one for testing their
recognition (three videos, n = 189 movements).
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ESTIMATING THE RECURRENCE OF MANEUVERS
Successions of maneuvers performed by larvae in a given dish
were modeled as Markov chains. Out of the nine possible
sequences of two maneuvers (S–S, S–T, S–E, T–S, T–T, T–E, E–S,
E–T, E–E), we estimated the frequency of occurrence of each
sequence. For a given movement classified as S, T, or E occurring
at a given time in one dish, we calculated the transition proba-
bility for the subsequent movement to be classified as S, T, or E.
We calculated a weighted transition index (I) for each sequence of
two sequential maneuvers as the ratio of the transition probability
from the first maneuver to the second, divided by the probability
of occurrence of the second maneuver (Table 2 for values of all
transition indexes). When I is equal to 1, the probability of repeat-
ing a maneuver is equal to the probability of random occurrence
of the maneuver (probability of random occurrence was 0.35 for
S; 0.48 for T and 0.16 for E; Table 2). Thus the index of recurrence
I was defined as:

I(B1, B2) = p(xi = B1|xi − 1 = B2)

p(xi = B1)

with B1 and B2 as two possible maneuvers (S, T, or E) and xi − 1

and xi as two successive movements. WT larvae were used to esti-
mate the transition index (36,068 movements from 280 larvae
originating from four clutches and obtained from 40 wells). To
investigate the recurrence of maneuvers as a function of time and
distance, we calculated I as a function of the distance separating
the two head centers of the larvae at the onset of their respective
movement and the time as the time interval between the onsets
of the first and second movement. I was calculated for many dif-
ferent time and distance windows. In Figure 5, we plotted these
indexes for the sequences S–S, T–T, and E–E. We first calculated
the index for the same larva (Figures 5Ai–iii) and across different
larvae (Figures 5Bi–iii).

STATISTICAL ANALYSIS
The data used for Figure 2A were based on eight videos, 420 WT
AB larvae from six different clutches between 5 and 7 dpf. All val-
ues were given as mean ± standard error of the mean (s.e.m.)
calculated per movement. For the pharmacology experiments
(Figure 2B), strychnine was bath applied at 75 μM and the data
were based on two videos of 84 WT larvae coming from two
clutches (42 for controls and 42 for strychnine) between 6 and
7 dpf. The data on atoh7−/− mutants in Figure 2C were generated
using four videos, 224 larvae total originating from four clutches
(112 atoh7−/− and 112 control siblings). All global parameters
plotted in Figures 2B,C were calculated per larva then averaged
across all larvae and means were given ± s.e.m. across all lar-
vae. Since the distributions of global parameters were not normal,
a standard non-parametric Wilcoxon rank sum test was used
in MATLAB for calculating differences between conditions with
vs. without drugs for Figure 2B and atoh7−/− vs. siblings for
Figure 2C. The data used for Figure 4D were based on 44,688
movements from eight videos, 448 larvae, six clutches and for
Figure 5 from 36,068 movements from five videos, 280 WT AB
larvae from four clutches. To test how the maximal values of
the transition index were different from random, we calculated

Imax after randomly permuting maneuvers while keeping track
of the larva identity, time, and location the same for 50 itera-
tions. For each comparison, S–S, T–T, E–E across different larvae
or within the same larva, we compared the values of Imax after
randomization to the measured value Imax using a two-sample
T-test.

DATA AND ALGORITHM SHARING
The software ZebraZoom is documented and available online
from Source Forge in the code tab (http://sourceforge.net/p/
zebrazoom/wiki/Home/). ZebraZoom requires MATLAB and
works reliably on an Ubuntu 11.04 computer with OpenCV
installed and MATLAB 7.10.
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Video S1 | ZebraZoom tracking of seven larvae in a dish. Acquisition

was performed at 300 Hz, and one out of every ten images is displayed

(every 33.3 ms).
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Motion is the final output of the neural networks underlying behavior. Historically, 

manual observations generated key observations about how animals interact with their 

environments. However, changes in behavior often take place on short (millisecond) or long 

(minutes to hours) time scales, which are difficult to detect with subjective analysis. Thanks 

to genetic model systems and the development of tools for controlling neuronal activity, 

probing the role of circuits in natural locomotion is primarily challenged by the lack 

automated analysis. We developed software that can address this problem in zebrafish larvae 

by performing fine kinematic analysis and quantification of behavior on a millisecond to 

minute time scale.  

 

I. Defining behavioral motifs 

Classic ethology defined behavioral motifs using subjective measures of an experimenter. 

A major question for linking neural activity and behavioral output is whether these 

experimenter-defined behavior motifs are sufficient to understand behavior and relevant in 

classifying distinct locomotor sequences or whether new motifs revealed by unsupervised 

methods are more pertinent for investigating behavior. 

In developing ZebraZoom, we relied heavily on locomotor sequences extensively 

characterized with classic ethology techniques (Foreman and Eaton, 1993; Liu and Fetcho, 

1999; Budick and O’Malley, 2000).  This approach proved advantageous because we could 

use these defined patterns to validate our approach and quantify the occurrence of these 

behaviors over time. Although this approach provided a useful starting point, our work has 

several limitations. We limited the algorithm to three classic behaviors, ignoring the diversity 

of movement types that zebrafish larvae perform. However, our classification system forced 

all movements into one of the three categories. In segregating behavior in this manner, 

certainly movements that did not fall within classical definitions were determined by 
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ZebraZoom to fall into one category, even if the movement may have reflected a different 

type of behavior. Therefore, knowledge about diversity or possible subtypes of behavioral 

motifs was not considered. For future studies looking at spontaneous locomotion over time, 

integrating these movements or performing unsupervised learning may provide new insight 

without the limitations of subjectively-defined motifs. 

The problem of classification was further exacerbated by the difficulty in finding suitable 

parameters to define a behavioral sequence. When looking at raw data, the tail curvature 

allowed for distinguishing between slow swims and turns in particular, which are similar in 

kinematics but differ in yaw at the beginning of the movement (Budick and O'Malley, 2000). 

However, curvature proved difficult to quantify and integrate into the algorithm to classify 

behaviors (Figure 3). Ultimately, the tail bend angle, measured from a point between the two 

eyes to the tip of the tail, served as a readout of tail movement over time (Figure 1). 

However, tail bend angle does not fully consider, for example, the point along the tail with the 

maximum angle, which is different for different types of movement (Budick and O’Malley, 

2000). Recent work has emphasized the importance of quantifying tail angle at many points 

along the tail or curvature to identify and characterize movements (Huang et al., 2013; Jouary 

and Sumbre, 2016). In the future, expanding the list of distinct behavioral motifs that might 

otherwise overlap will depend on having a quantitative method to include the vector position 

of the tail over time.  

Although larval zebrafish move along a continuum of speeds, these tend to cluster into 

distinct gaits or modules (Thorsen et al., 2004; Severi et al., 2014). A question to be resolved 

is how the circuits that underpin this continuum and the distinct gaits are integrated in the 

nervous system and at what level this integration occurs. Advances in tracking, kinematic 

analysis, and classification will help to provide the answers to these questions in the most 

physiological conditions possible. 
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II. Behavior and time 

Behavior can encompass an animal or person’s activity across time scales. For example, a 

blink can take place in a hundred milliseconds, whereas sleep-wake cycles can operate on a 

scale of hours or days. At the level of the nervous system, by studying one or the other, we 

can be privy to rapid circuitry or long-term neuroendocrine influence that shape patterns of 

activity over time. Because of computational demands to resolve complex movements, events 

that occur on millisecond timescales are often studied in isolation, whereas patterns that occur 

over long time are studied in low resolution, i.e. "Did the animal move or not?" Ultimately the 

interplay of actions across temporal scales will need to be considered. Establishing a balance 

that allows capturing of fine kinematics over long periods of time is a tradeoff to be 

considered in terms of data acquisition, analysis, and the demands of a biological question. 

Other tools to analyze zebrafish locomotion focused on fine kinematic analysis for the 

duration of a bout or cruder analytics over hours. Our goal was to develop a tool that could 

address questions that demand fine kinematic analysis of individual movements for multiple 

larvae over time. Thanks to elimination of buffering by using a direct-to-disk acquisition 

system, the software is capable of collecting data for up to a few minutes. As a larval 

zebrafish of five to seven days post fertilization (dpf) perform on average one bout every one 

to three seconds, a few minutes of recording is sufficient to permit a larger picture of the 

behavior of larvae over time. This software served as a step to consider movement over time 

without yet being able to analyze very long time frames that encompass circadian rhythms 

and other long-term effects on behavior. 

 

III. Manipulation of neural circuits 

In this study, we relied on pharmacological manipulations of behavior to validate the 

utility of our approach. One problem with combining pharmacology and behavior is the lack 
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of readout to measure the extent to which a drug penetrates the nervous system. Unlike 

mutants, in which the defect is known, or in single cell electrophysiology, in which changes 

can be measured at the level of the cell, motor output represents the final measure of what 

many neurons organized into circuits accomplish together. In large-scale screens to identify 

potential therapeutics or drug mechanisms, frequently a single concentration of each 

compound is applied and behavioral changes are observed (Rihel et al., 2010).  

For validation of ZebraZoom, we tested the effects of applying a glycine receptor 

antagonist, strychnine. Glycine is the primary inhibitory neurotransmitter in the spinal cord 

(Legendre, 2001) and underlies reciprocal inhibition required for sustained left-right 

alternations (Dale, 1985; Grillner et al., 1995; Granato et al., 1996; Drapeau et al., 2002; Li et 

al., 2004) In zebrafish diverse classes of commissural glycinergic interneurons are active 

during swimming, escape responses, and struggles (Liao and Fetcho, 2008). We hypothesized 

that a systemic block of glycine receptors would dramatically affect the ability of larval 

zebrafish to perform rhythmic locomotion. 

Bath application of 75 µM of strychnine generated a consistent and clear behavioral 

phenotype; larvae swam shorter distances for shorter durations with a corresponding decrease 

in swimming speed and fewer oscillations of the tail.  Surprisingly, tail beat frequency was 

unaffected. However, the resulting observation that the number of oscillations, duration, 

heading degree, distance, and speed traveled for each bout were affected without a change in 

tail beat frequency could be related to dose-dependent effects of blocking glycinergic 

transmission. As with all behavioral studies, interpretation of these results should be taken 

with caution. Ideally, manipulating neural circuits with pharmacology should involve 

comparisons at different doses or in conjunction with other methods. 

One motivation for creating ZebraZoom was to analyze kinematic parameters of 

movements in mutants for which specific ion channels or receptors are eliminated. The atoh-/- 
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mutant is blind because of a loss of retinal ganglion cells (Kay et al., 2001). These mutants 

had significant differences from sibling controls in number of oscillations, duration, heading 

degree, and distance, but not in tail beat frequency or speed. Whether these effects are directly 

related to blindness or loss of atoh7 expression in other cells in unknown. This again 

highlights the need to have highly specific manipulations to be able to resolve effects from the 

cellular to behavioral level. 

 

IV. Experimental design 

The ZebraZoom setup operates with a fixed frame rate camera mounted to a stand that 

images larvae placed in wells on top of an evenly illuminated plate, allowing for simultaneous 

imaging of 50-100 larvae, ideal for high-throughput screens or analysis. Despite its utility for 

these purposes, some drawbacks limit the breadth of uses for the setup. First, only a limited 

number of stimuli can be applied. In this work, pharmacological agents applied between 

imaging sessions prevented tracking of behavior immediately following application of the 

drug. With a maximum acquisition time of four minutes, monitoring behavior over time 

proved difficult. Moreover, currently all analysis is performed offline. For integrating on-line 

tracking, critical for implementing behavior triggered stimulus application, the software 

would need to operate in real time. 

This work in zebrafish represents a step in integrating various demands, including the 

need for tracking multiple larvae simultaneously for high-throughput acquisition and analysis 

of both spontaneous and evoked locomotor patterns, fine kinematics, and extending the 

temporal scale beyond milliseconds to understand spontaneous and evoked behavior over 

time.  
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Efficient tools to control neuronal activity with spatial and temporal specificity are critical 

to understanding how populations of neurons contribute to behavior. Previous efforts relied 

on classical approaches that primarily included electrophysiological recording combined with 

pharmacology (Saint-Amant and Drapeau, 2001; Roeser and Baier, 2003). Although in many 

cases these methods could be used to establish general principles of neural network function, 

they are limited by the challenge of identifying the same type of neuron and restrict 

manipulation to one or few neurons. Over the last few decades, molecular genetics advances 

have allowed specific targeting of populations that share common molecular markers. In 

genetic model organisms such as fruit flies, zebrafish, and mice, dissecting the neural basis 

for behavior has been greatly helped by techniques that allow identification of populations of 

neurons and expressing reporters or sensors in these neurons to manipulate or monitor their 

activity.  

 

I. Motivation 

Although various chemical, optical, and toxin-mediated approaches to silencing or ablation 

in conjunction are available for use in zebrafish, many of these tools are not currently feasible 

for use in freely swimming assays to investigate the role of interneurons and neural 

populations during active locomotion (Arrenberg et al., 2009; Lee et al., 2010). The first aim 

will be to validate a new genetically-encoded botulinum neurotoxin Tg(UAS:BoTxBLC-GFP) 

by testing its efficacy for chronic silencing in vivo. Because of the importance of synaptic 

activity during development, this characterization included evaluation of neurotransmitter 

phenotype and spinal cord excitability when GABAergic cerebrospinal fluid-contacting 

neurons (CSF-cNs) were silenced. 

The second aim will be to investigate the effect of silencing chx10+ V2a interneurons 

during active locomotion. These neurons are well characterized in zebrafish, but their role in 
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active locomotion or spontaneous swimming was unknown. By choosing this population, it 

becomes possible to compare the results of silencing with Tg(UAS:BoTxBLC-GFP) to 

previously established literature, determine their role in innate behavior and whether they play 

a similar role during distinct gaits, either slow or fast swimming. 

 

II. Genetic targeting in zebrafish 

The zebrafish benefits from the Gal4/UAS system, a combinatorial method developed first 

in Drosophila to express genes in identified neurons of interest (Fischer et al., 1988), then 

extended to zebrafish (Figure 1; Scheer and Campos-Ortega, 1999). The Gal4/UAS system is 

a combinatorial expression system. Gal4, a yeast transcriptional activator, is controlled under 

a specific promoter. In a separate effector line, the gene of interest is fused to the DNA-

binding motif of Gal4, the upstream activating sequence, or UAS. The effector gene can only 

be activated when a cell is also expressing a Gal4, and whether the cell contains the Gal4 is 

dependent on the promoter of interest used to express it (Ornitz et al., 1991; Scheer and 

Campos-Ortega 1999). This system allows for specific tools to monitor and control neuronal 

activity to be expressed in specific tissues or cell populations of interest. 
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Figure 1. The Tol2-mediated 

Gal4 enhancer trap and gene 

trap screen. The scheme for 

Gal4 enhancer and gene trap 

screen by using the upstream 

activating sequence 

(UAS:eGFP) reporter. The 

synthetic transposase mRNA 

and a transposon donor plasmid 

containing a Gal4 trap 

construct are co-injected into 

zebrafish fertilized eggs. The 

trap construct is excised from 

the donor plasmid and 

integrated in the genome. Tol2 

insertions created in the germ 

cells are transmitted to the next 

generation. In double 

transgenic embryos obtained 

from a cross of the injected fish 

and the UAS-reporter fish, 

Gal4 expressing cells are 

visualized by the fluorescent 

reporter. Adapted from 

Asakawa and Kawakami, 2008. 
 

III. Tools to control neural activity: activation 

Development of tools to activate specific populations of neurons have provided immense 

knowledge about neural pathways underlying behavior (Kramer et al., 2009; Bernstein and 

Boyden, 2011). Classically, neuroscientists relied on single cell recordings that allowed 

control of that cell’s firing, but newer tools provide the ability to control single cells or 

populations using non-invasive techniques. In the 2000s, several groups established the use of 

light-gated channels and pumps (Nagel et al., 2002; Lima and Miesenböck, 2005; Gorostiza 

and Isacoff, 2008). In particular, Channelrhodopsin-2 (ChR2), a light-activated cation channel 

found naturally in Chlamydomonas reinhardtii that is activated by blue light, could be 

expressed in hippocampal neurons in vitro (Nagel et al., 2003; Boyden et al., 2005). These 

findings launched the field of optogenetics dedicated to using isolated microbial opsins to 

control neurons in vivo, extending use of these tools for studying behavior in species from C. 
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elegans to primates. The major advantage of opsins is remote manipulation, possible as long 

as light can be delivered with sufficient power density. This obviates the need to dissect tissue 

in order to access neurons and also allows study of actively behaving animals. Thousands of 

studies published have showed the extent to which these methods can be applied to study 

neural circuits (reviewed in Bernstein and Boyden, 2011; Yizhar et al., 2011; Deisseroth, 

2015).  

Some limitations and reservations must be made about the use of optical techniques to 

activate populations of neurons. First, simultaneous activation of many cells confounds the 

physiological role these neurons play and demonstrates sufficiency to perform a certain 

action. However, gross manipulation may lead to invalid conclusions about the role of 

neurons activated optogenetically.  Recent work has emphasized the need to take results of 

ChR2 studies in context (Otchy et al., 2015), as activating with ChR2 and silencing or 

ablating can result in vastly different conclusions about the role of the neurons studied. 

Techniques are being developed to provide activation to three-dimensionally restricted spots 

(Vaziri and Emiliani, 2011; Hernandez et al., 2016), however, these methods are challenging 

to implement and require samples to be immobilized, often limiting the number of questions 

related to behavior that can be addressed. Additionally, opsins require a relatively high power 

density in vivo to be activated (Yizhar et al., 2011). In the case of classic ChR2, this may be 

as low as one to five milliwatts per millimeter, which is reasonable to achieve through an 

objective but challenging to provide for freely moving animals that are not tethered to the 

light source.  

Thanks to the transparency of zebrafish larvae, optogenetic techniques have been 

implemented with success for studying behavior in restrained or enucleated zebrafish larvae 

(Douglass et al., 2008; Wyart et al., 2009; Fidelin et al., 2015). However, light power 

requirements (Arrenberg et al., 2008) and photosensitive behaviors (Friedmann al., 2015; 
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Rihel and Schier, 2012; Kokel et al., 2010) limit use of these tools in freely swimming larvae. 

New chemogenetic tools utilize small molecules or temperatures to induce activation 

(Armbruster et al., 2007; Arenkiel et al., 2008; Sternson and Roth, 2014). Although these 

tools avoid light-induced behavioral confounds or the need to deliver light, many have not 

been developed for use in zebrafish. A recently developed tool used genetic targeting of TRP 

channels in conjunction with thermal or chemical agonists to activate or ablate neurons (Chen 

et al., 2016). More research in this field should result in better tools for specifically activating 

neurons during active locomotion without unwanted behavioral side effects. 

Thanks for extensive genetic identification of neuronal populations, all of these techniques 

are afforded some form of spatial control when used under the control of a specific promoter. 

The diversity of techniques also allows for control at a diversity of temporal scales; opsins 

acts in milliseconds, whereas TRPV activation occurs over minutes, and Designer Receptor 

Exclusively Activated by Designer Drugs (DREADDs) act over hours (Boyden et al., 2005; 

Rogan and Roth, 2011; Chen et al., 2016). All of these tools require expression of an 

exogenous protein or receptor, either for light or for small molecules (Rogan and Roth, 2011), 

which can create experimental confounds. Overall, activation has been easier to implement 

than silencing. Although studies must be taken in context, as it is assumed that activation does 

not generally mimic physiological activation, they have provided critical insight to 

understanding the activity and pathways of neural circuits. 

 

IV. Tools to control neural activity: silencing 

Although activation demonstrates sufficiency, only silencing can demonstrate necessity. 

Compared to activation, silencing neurons has posed a greater challenge in neuroscience. 

Targeted laser ablation (Liu and Fetcho, 1999; Roeser and Baier, 2003) and pharmacology 

(Saint-Amant and Drapeau, 2001) are classical methods to silence output or remove specific 
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circuit elements in vivo. Modern techniques include methods to genetically silence output or 

to ablate neurons entirely, eliminating them from their circuits. Some of the major techniques 

currently used in zebrafish include Nitroreductase- or KillerRed-mediated ablation (Bulina et 

al., 2006; Curado et al., 2008), TRP channel mediated silencing (Chen et al., 2016), and 

ablation or silencing with neurotoxins (Kurita et al., 2003; Asakawa et al., 2008; Chou et al., 

2016). 

Although optical tools are widely used and effective for in vivo activation, similar tools 

for silencing have been more difficult to implement. Halorhodopsin (NpHR), an inward 

chloride pump, operates on the assumption that forcing chloride into the neuron will 

hyperpolarize the neuron, when in fact changing the chloride gradient can lead to a 

depolarizing shift of the reversal potential of chloride, which can be sufficient to turn 

hyperpolarizing GABA to depolarizing signaling. Use of NpHR in vivo often causes post-

inhibitory rebound as well and requires much higher light power density than ChR2, on the 

order of 20-50 milliwatts per millimeter squared (Arrenberg et al., 2009). Archaeorhodopsins 

are proton pumps that are slightly more efficient than NpHR but are also associated with 

increased spontaneous release (Mahn et al., 2016). Although these tools have been used with 

some success to probe neural circuits on a millisecond timescale, questions remain on whether 

effects are due to silencing or the side effect of increased neurotransmitter release. This and 

high light power requirements render opsins currently incapable of silencing neuronal activity 

in freely behaving zebrafish. 

Targeted ablation can be used for killing neurons can are superficial and individually 

identifiable, but frequently neurons or tissues of interest do not fulfill these criteria. In these 

cases, approaches relying on genetic targeting can be used. Nitroreductase ablation allows 

targeting of genetically identified populations of any cell type using a hybrid chemical-genetic 

approach (Curado et al., 2008; Mathias et al., 2014). Nitroreductase catalyzes the reduction of 
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prodrug metrodinazole (Mtz), and the cytotoxic product produced induces cell death (Curado 

et al., 2008). This method provides a method to ablate any genetically-identified tissue, and 

can be highly effective. However, some drawbacks include tissues are not fully ablated or 

induction of cell death requires bathing in Mtz for up to 72 hours, limiting the developmental 

timepoints that can be evaluated. Furthermore unwanted ablation can occur when used in 

conjunction with the Gal4/UAS system (Curado et al., 2008). Many transgenic lines that are 

specific, for example, to one cell population in the spinal cord, also have “leaky” expression 

in non-neuronal tissues such as the heart or muscle. If nitroreductase was used, these tissues 

would also be ablated, rendering conditions impossible to distinguish effects from the 

different types of tissues affected.  

KillerRed is another form of targeted ablation that has been implemented for use in 

zebrafish. KillerRed is a photosensitizer that generates reactive oxygen species (ROS) when 

KillerRed-expressing cells are activated with green or white light, triggering plasma 

membrane damage and cell death and works well in zebrafish (Bulina et al., 2006, Teh et al., 

2010; Lee et al., 2010). However, this technique is associated with photodamage, requires 

tissue transparency, and needs high expression level, and illumination power must be 

optimized for each transgenic line or tissue to elicit desired level of photodamage (Teh et al., 

2010). 

 

V. Neurotoxins to ablate or silence neurons 

Neurotoxins are widely used in neuroscience for channel pharmacology, specific ablation, 

or silencing of neuronal populations. For ablation purposes, genetically-encoded diphtheria 

toxin can effectively ablate a target cell population, however undesired ablation of other cells 

or animal death due to its potency has prevented establishment of a stable zebrafish transgenic 

line (Kurita et al., 2003; Wan et al., 2006).  
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Tetanus and botulinum toxins (BoNTs) are extremely toxic poisons that block vesicular 

release at the synaptic cleft and thus block synaptic transmission (Schiavo et al., 1992). 

BoNTs are proteins synthesized as single inactive polypeptide chains which become active by 

proteolysis. The active form of the toxin is a dimer composed a heavy chain (HC) coupled to 

a light chain metalloprotease (LC). The HC binds to receptors on neurons to allow 

endocytosis of the toxin. Once endocytosed, the acidic environment leads to a conformational 

change that results in a translocation of the LC into the cytosol (Simpson, 2004). The light 

chain is a zinc-dependent endopeptidase that cleaves one on the SNARE (Soluble NSF 

Attachment Protein Receptor) proteins, which are critical for vesicle fusion and 

neurotransmitter release (Stecher et al., 1989; Pellizzari et al., 1999; Aoki and Guyer, 2001). 

The fatal effects of the toxins are not due to cell death, but rather to toxin-induced inhibition 

of acetylcholine release within the motor neuron synaptic cleft.  

Use of neurotoxins is ideal for neuroscientists because the possibility of blocking 

output while leaving the neurons intact, in addition to not affecting heart, muscle, or other 

non-neuronal tissues. For neural specific silencing, several labs have generated transgenic 

lines carrying the tetanus toxin light chain (Asakawa et al., 2008; Chou et al., 2016). Tetanus 

toxin operates by cleaving vesicle membrane protein, synaptobrevin-2, blocking 

neurotransmitter release from synaptic vesicles. Unfortunately, technical problems with using 

transgenics for targeted tetanus toxin prevented widespread use, including the need to perform 

immunohistochemistry to detect expression in vivo (Lee et al., 2010), low levels of expression 

with the transgenic line forcing the need to inject RNA at the single cell stage (David Lyons, 

personal communication), and methylation of the UAS transgene across generations, leading 

to silencing of the transgenic over time. Efficacy has also been difficult to evaluate for this 

and other techniques because of the lack of published information in vivo. Although purified 

BoTxLC proteins have been extensively used in basic research, genetically encoded forms of 
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BoTxLC, which can be easily modified, expressed in zebrafish, and used for active behavioral 

assays have not been actively developed.  

Figure 2. Rhythm-generating circuits are excitatory in all the vertebrates that have been investigated.  

(A)-(B) |In tadpoles, the circuit is composed of reciprocally and electrically connected glutamatergic and 

cholinergic neurons (excitatory interneurons (EINs)) that are located in the hindbrain and the spinal cord. In 

lampreys, EINs are glutamatergic, with synaptic connections to other EINs and are located in each segment 

along the spinal cord. EINs drive motor neurons (MNs), which project to the muscles) and inhibitory 

commissural neurons (CNs), with axons projecting to the other half of the cord) on the same side of the cord. (C) 

Proposed circuits for the rhythm-generating circuit in the mouse spinal cord. The rhythm-generating circuit (R) 

is composed of neurons that express the transcription factor short stature homeobox protein 2 (SHOX2). 

Rhythm-generating circuits drive left–right alternating circuits (V0D–V0V), including V2a neurons that express 

the transcription factor chx10 homeodomain containing homologue (CHX10), and neurons that are both CHX10- 

and SHOX2-positive (V2a SHOX2+) that presumably connect to motor neurons. Rhythm-generation circuits also 

drive left–right synchronizing circuits (non-V0, possibly of the V3 class). Only the left side of the circuit is 

shown. Blocking the synaptic output of SHOX2+ neurons or optogenetically silencing these neurons disrupts the 

rhythm without completely abolishing it, suggesting that as yet unidentified EINs contribute to the rhythm. (D) 

The rhythm-generating circuits in zebrafish larvae are composed of CNs that belong to the excitatory multipolar 

commissural descending type (MCoD) neurons and circumferential ipsilateral descending (CID) neurons, which 

are analogues of V0V and V2a mouse neurons, respectively. The MCoDs (CNs) are active at low swimming 

frequencies but are silenced as the swimming frequencies increase (>40 Hz). The probability of CID (V2a) 

neuron firing increases with frequency, with the most dorsal neuron active at the highest frequencies (60–90 Hz). 

Laser ablation of MCoD neurons abrogates slow swimming, whereas ablation of dorsal CID (V2a) neurons 

abolishes high frequency swimming frequency. (E) In the adult zebrafish, three groups of rhythm-generating 

V2a neurons innervate slow, intermediate and fast MNs. The three groups of V2a neurons are recruited 

incrementally (as indicated by the color change) in a modular manner that reflects an ordered recruitment of 

slow, intermediate and fast MNs as the speed of swimming increases. Adapted from Kiehn, 2016. 
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VI. Excitatory drive for locomotion 

In vertebrates, excitatory signals from the brainstem interneurons send processes into the 

spinal cord to activate spinal circuits necessary to execute the target motor output (Drew et 

al., 2004; Gahtan et al., 2005; Jordan et al., 2008). In the lamprey, amphibian tadpoles, 

zebrafish, and mouse, networks that coordinate locomotor movements depend primarily on 

ipsilateral projecting excitatory neurons (Jordan et al., 2008; Goulding, 2009; Roberts et al., 

2010). In tadpoles and lamprey, electrophysiological methods identified these neurons based 

on their connections in the spinal cord, though without genetic markers, the causal role of 

these neurons remains unknown (Grillner et al., 1991; Roberts et al., 2010; Kiehn 2016). In 

mammals, excitatory and ipsilaterally-projecting interneurons consist of CHX10+ V2a 

interneurons to a large extent (Figure 2; Al-Mosawie et al., 2007; Lundfald et al., 2007).  

 

VII. V2a interneurons in the zebrafish 

V2 neurons comprise a mixed population of glutamatergic chx10+ V2a and gata2/3+ 

GABAergic V2b neurons that project ipsilaterally and span many spinal cord segments 

(Karunaratne et al., 2002; Kimura et al., 2006; Peng et al., 2007; Al-Mosawie et al., 2007; 

Lundfald et al., 2007). In the zebrafish, V2as, also referred to as circumferential descending 

interneurons (CiDs), provide a primary source of excitatory drive to spinal circuits. Paired 

recordings from chx10+ V2as form monosynaptic connections with motor neurons, in 

particular those involved in fast swimming (Figure 2, Kimura et al., 2006). Targeted ablation 

of these neurons also resulted in a loss of fast frequencies during electrically-induced 

swimming (Eklöf-Ljunggren et al., 2012). Activation with ChR2 in a behaving head-

embedded animal demonstrated that V2a neurons in the hindbrain but not spinal cord are 

sufficient to elicit slow frequency swimming, and silencing with NpHR halts ongoing slow 

swimming bouts in 3 dpf larvae (Kimura et al., 2013). Together, these data suggest that V2as 
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are necessary for high frequency fictive swimming elicited by electrical stimulation and that a 

subset are necessary for initiation of slow frequency locomotion at early larval stages.  

As with mammals, in which movement occurs along a continuum of speeds but clusters 

into specified gaits (Hoyt and Taylor 1981; Bramble and Carrier, 1983), larval zebrafish 

similarly display gaits for slow and fast locomotion (Thorsen et al., 2004). In addition to the 

V2a population, multipolar commissural descending interneurons (MCoDs), also known as 

V0-v interneurons, are active during slow swimming frequencies and are silenced at higher 

swimming frequencies (Mclean et al., 2008). V2as are active at the highest swimming 

frequencies. In vivo electrophysiology demonstrated that the spinal interneuron classes active 

at slow speeds are inhibited at fast speeds, during which other classes of neurons become 

active (Masino et al., 2005; Mclean et al., 2008). Based on these results, it appears that the 

circuits driving slow and fast locomotion are distinct and that excitatory drive for these 

separate gaits may originate from unique sources. 

 

VIII. Aims 

The first aim is to validate a new genetically-encoded botulinum neurotoxin 

Tg(UAS:BoTxBLC-GFP) for use in vivo. Because of the chronic nature of silencing and 

importance of activity-dependent development, this characterization included evaluation of 

neurotransmitter phenotype and spinal cord excitability when GABAergic CSF-cNS were 

silenced. The second aim was to investigate the effect of silencing chx10+ V2a interneurons 

during active locomotion. These neurons are well characterized in zebrafish, but their role in 

active locomotion or spontaneous swimming is unknown. By choosing this population, it was 

possible to compare the results of silencing with BoTxBLC-GFP to previously establish 

literature that showed that V2as are required for fastest swimming speeds and probe whether 

the V2a population played roles during spontaneous slow swimming and active locomotion.  
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SUMMARY

Precise control of speed during locomotion is essen-
tial for adaptation of behavior in different environ-
mental contexts [1–4]. A central question in locomo-
tion lies in understanding which neural populations
set locomotor frequency during slow and fast re-
gimes. Tackling this question in vivo requires addi-
tional non-invasive tools to silence large populations
of neurons during active locomotion. Here we gener-
ated a stable transgenic line encoding a zebra-
fish-optimizedbotulinumneurotoxin light chain fused
to GFP (BoTxBLC-GFP) to silence synaptic output
over large populations of motor neurons or in-
terneurons while monitoring active locomotion.
By combining calcium imaging, electrophysiology,
optogenetics, and behavior, we show that expres-
sion of BoTxBLC-GFP abolished synaptic release
while maintaining characterized activity patterns
and without triggering off-target effects. As chx10+

V2a interneurons (V2as) are well characterized as
themainpopulationdriving the frequency-dependent
recruitment of motor neurons during fictive locomo-
tion [5–14], we validated our silencing method by
testing the effect of silencing chx10+ V2as during
active and fictive locomotion. Silencing of V2as
selectively abolished fast locomotor frequencies dur-
ing escape responses. In addition, spontaneous
slow locomotion occurred less often and at fre-
quencies lower than in controls.Overall, this silencing
approach confirms that V2a excitation is critical for
the production of fast stimulus-evoked swimming
and also reveals a role for V2a excitation in the pro-
duction of slower spontaneous locomotor behavior.
Altogether, these results establish BoTxBLC-GFP

as an ideal tool for in vivo silencing for probing the
development and function of neural circuits from
the synaptic to the behavioral level.

RESULTS

Generation of a Zebrafish-Optimized Transgenic Line
for Botulinum Neurotoxin Light Chain
In order to understand the neural circuits underlying behavior,

efficient tools to silence distinct classes of neurons in behaving

animals are necessary. Botulinum toxins are potent poisons

that block vesicular release at the synaptic cleft by cleaving

SNARE (soluble NSF attachment protein [SNAP] receptor) pro-

teins and thus eliminate synaptic transmission [15–18]. The effi-

cacy and specificity of action of botulinum toxin light chains

(BoTxLCs) make them ideal tools for silencing neurons. How-

ever, stable transgenic lines optimized for expression have not

yet been generated and characterized in zebrafish.

We utilized the two-part Gal4/UAS combinatorial gene expres-

sion system [19, 20] to generate a stable and efficient zebrafish-

optimized transgenic line encoding BoTxLC fused to GFP to

abolish synaptic release in vivo. To test the efficiency of neuronal

silencing of different botulinum neurotoxin serotypes (Figure 1A),

we expressed distinct serotypes fused to GFP under the control

of a 53 repeat of UAS (Figure 1B). We quantified the touch

escape response of embryos transiently expressing either the

bacterial or zebrafish codon-optimized variants of each serotype

under a ubiquitous driver (Figure 1C) [19]. The bacterial forms

were unable to induce paralysis, whereas the zebrafish codon-

optimized form of the B serotype paralyzed 72% of embryos

(Figure 1C). We established a stable transgenic line for the

B serotype, Tg(UAS:BoTxBLC-GFP). Offspring of Tg(UAS:

BoTxBLC-GFP) fish mated to Tg(SAGFF73A:gal4) fish [19]

(Table S1), which expresses ubiquitously, were unable to

generate spontaneous and touch-evoked movement (>99%;

data not shown). Tg(UAS:BoTxBLC-GFP) fish of at least the tenth

generation were used for the remainder of this article.
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Expression of BoTxBLC-GFP in Spinal Motor Neurons
Selectively Abolishes Coiling at the Embryonic Stage
To test the efficiency and evaluate off-target effects of

BoTxBLC-GFP, we performed a behavioral assay using Gal4

lines driving expression in either motor neurons or spinal inter-

neurons [5, 20, 21]. Embryos 17–25 hr post-fertilization (hpf)

perform a gap junction driven stereotyped coiling behavior

[22, 23]. To determine whether BoTxBLC-GFP expressed in

motor neurons could block muscle contraction, we used

Tg(s1020t:gal4), which drives expression in a large subset of mo-

tor neurons [24, 25] (Figure S1). Embryos lost the ability to coil

when BoTxBLC-GFP was expressed in this line (Figure 1D;

Movie S1). We then went on to test Gal4 lines expressing in in-

terneurons that do not drive embryonic coiling [23]. Coiling

persisted when embryos expressed BoTxBLC-GFP in chx10+ in-

terneurons (V2as) or in GABAergic pkd2l1+ cerebrospinal-fluid-

contacting neurons (CSF-cNs) (Figures 1E and 1F) [14, 26].

Together, these results indicate that BoTxBLC-GFP efficiently

blocks synaptic output without off-target effects in zebrafish

embryos.

BoTxBLC-GFP-Expressing Motor Neurons Maintain
Their Characteristic Activity
To test whether the loss of coiling in Tg(s1020t:gal4; UAS:

BoTxBLC-GFP) embryos (Figure 1D) was due to off-target ef-

fects of BoTxBLC-GFP expression, we performed calcium imag-

ing in motor neurons expressing both BoTxBLC-GFP and

GCaMP5G [21, 27, 28] (Figures 1G and 1H). Motor neurons

in Tg(s1020t:gal4; UAS:BoTxBLC-GFP; UAS:GCaMP5G) em-

bryos showed calcium transients occurring at comparable

frequencies to non-BoTxBLC-GFP-expressing Tg(s1020t:gal4;

UAS:GCaMP5G) embryos at 24 hpf (Figures 1G–1I; Movie S2).

This result indicates that expression of BoTxBLC-GFP silenced

motor output without noticeably affecting motor neuron proper-

ties, suggesting that paralysis resulted from a loss of presynaptic

release rather than cell death.

BoTxBLC-GFP Expression in Essential Neuronal
Populations Effectively Disrupts the Escape Response
in Freely Swimming Larvae
To test the utility of BoTxBLC-GFP in an active behavioral assay,

we measured the escape response to an acoustic stimulus,

which at 5 days post-fertilization (dpf) consists of a high ampli-

tude turn followed by fast swimming [29, 30]. The expression

of BoTxBLC-GFP in Tg(s1020t:gal4) (Figures 1J and S1), target-

ing a large subset of motor neurons, or in Tg(vglut2a:gal4), tar-

geting glutamatergic neurons (Figure 1K) [31], severely disrupted

the escape response (Movie S3). When the larva responded, the

distance traveled was significantly reduced (Figures 1J4 and

1K4), confirming that expression of BoTxBLC-GFP in essential

motor circuit populations leads to a predictable massive deficit

in locomotion at larval stages.

BoTxBLC-GFP Completely Blocks Synaptic Release
In Vivo
To directly test the capacity of BoTxBLC-GFP to abolish vesicu-

lar release, we took advantage of a reliable monosynaptic

connection between GABAergic CSF-cNs and caudal primary

motor neurons (CaPs) (J.M.H., unpublished data). Using trans-

genic Tg(pkd2l1:gal4; UAS:ChR2-mCherry) larvae, we elicited

single spikes with a 5ms light pulse in CSF-cNs while performing

whole-cell recordings in CaPs [21, 26] (Figures 2A and 2B). Light-

mediated spiking of CSF-cNs induced large short-latency inhib-

itory postsynaptic currents (IPSCs) in CaPs (J.M.H., unpublished

Figure 1. Generation and Validation of the Transgenic Line Tg(UAS:BoTxBLC-GFP)

(A) Botulinum serotype B targets synaptobrevin, a SNARE complex protein essential for neurotransmitter release (after [17, 18]; A–G denote cleavage sites of

distinct Botulinum serotypes).

(B) Design of the zebrafish codon-optimized UAS:BoTxLC-GFP constructs for the A, B, C, and E serotypes tested in transient.

(C) Percentage of Tg(SAGFF73:gal4) embryos paralyzed upon transient expression of BoTx serotypes, with and without codon optimization for zebrafish

(embryos tested, from left to right: n = 11, 16, 18, 20, 20, 25, 16, and 30).

(D) Expression pattern of Tg(s1020t:gal4; UAS:BoTxBLC-GFP) double transgenic embryos (left) and reduction in coiling frequency (right). n = 14 BoTxBLC-GFP+

embryos and n = 14 control siblings.

(E) Same as (D) but for Tg(chx10:gal4; UAS:BoTxBLC-GFP). n = 11 BoTxBLC-GFP+ embryos and n = 12 control siblings.

(F) Same as (D) but for Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP). n = 16 BoTxBLC-GFP+ embryos and n = 15 control siblings.

(G andH) Representative examples of calcium imaging in Tg(s1020t:gal4; UAS:GCaMP5G) control (G) and Tg(s1020t:gal4; UAS:GCaMP5G; UAS:BoTxBLC-GFP)

(H) embryos. Imaging plane (G1 and H1) and selected regions of interest (ROIs) (G2 and H2) (left and right hemicords are indicated in magenta and green,

respectively) are shown, with the corresponding DF/F traces on the right. Differences in DF/F amplitude result from higher levels of baseline GFP expression in

BoTxBLC-GFP+ embryos.

(I) Frequency of calcium transients in control and BoTxBLC-GFP+ embryos. Each point represents the average frequency of all ROIs within an embryo (n = 8

BoTxBLC-GFP+ and n = 8 non-sibling control embryos).

(J) Comparison of control siblings and Tg(s1020t:gal4; UAS:BoTxBLC-GFP) 5 dpf larvae in a freely swimming acoustic escape assay.Whole-larva lateral view (J1),

lateral view of the spinal cord (J2), and trajectories of swimming larvae in the assay (J3) are shown. Control siblings are Tg(UAS:BoTxBLC-GFP) only. (J4) shows

the average distance traveled during a responsive trial (in milimeters) (n = 12 control larvae, 109 responses out of 118 trials; n = 11 BoTxBLC-GFP+ larvae, 72

responses out of 118 trials).

(K) Same as (J) but for Tg(vglut2a:gal4; UAS:BoTxBLC-GFP). n = 12 control larvae, 98 responses out of 128 trials; n = 10 BoTxBLC-GFP+ larvae, 67 responses out

of 128 trials.

Control sibling embryos for (D)–(F) had the Gal4, the UAS, or neither transgene. Insets for (D)–(F) are z projection stacks of a few optical sections imaged on the

lateral side between segments 7 and 10. Scale bars represent 500 mm in (D)–(F), 20 mm for the insets in (D)–(F), 20 mm in (G) and (H), 100 mm in (J1) and (K1), 25 mm

in (J2) and (K2), and 5 mm in (J3) and (K3). (D)–(F), (J1), (J2), (K1), and (K2) are lateral views with dorsal up. (G) and (H) are dorsal views. Rostral is to the left in all

panels. In (D)–(F), individual points correspond to coiling frequency for one embryo. For (J4) and (K4), the average responses of each larva are represented by a

single gray point for control or teal point for BoTxBLC-GFP+ larvae, respectively. Means are shown ±SEM in black. The central line on each boxplot is the median

value, and the box limits are the 25th and 75th percentiles. The whiskers include all data points not considered outliers. ***p < 0.001, ****p < 0.0001, Student’s t test

(D–F and I). L, left; R, right. See also Figure S1, Table S1, and Movies S1, S2, and S3.
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data) that were strongly reduced by bath application of GABAAR

antagonist gabazine (Figure 2B2). In Tg(pkd2l1:gal4; UAS:

BoTxBLC-GFP; UAS:ChR2-mCherry) larvae, light-mediated

spiking in CSF-cNs did not generate IPSCs in CaPs (Figure 2C).

The identity of the CaP was confirmed by filling the cells with

Alexa 488 dye (Figures 2D and 2E). In 59 out of 60 trials, expres-

sion of BoTxBLC-GFPabolished the evoked current inCaPs (Fig-

ure 2F). Despite the block of synaptic release, Tg(pkd2l1:gal4;

UAS:BoTxBLC-GFP) transgenic larvae did not exhibit any de-

fects in spinal cord formation (Figure S2). Furthermore, CSF-

cNs retained their standard morphology, and the animals lived

to adulthood (data not shown). These results demonstrate the

complete loss of vesicular release fromBoTxBLC-GFP-express-

ing neurons in vivo.

BoTxBLC-Mediated Silencing of V2a Interneurons
Confirms Their Critical Role in Fast Locomotion
V2a interneurons are known to drive motor neuron activation,

and their recruitment is frequency dependent during fictive loco-

motion [8, 9, 14]. Therefore, we tested howV2a silencing impacts

fast and slow locomotor regimes during active locomotion.

Expression of BoTxBLC-GFP under the control of the chx10

promoter [5] targeted most V2a interneurons (Figures 3A1 and

3A2). Consequently, acoustic escape responses in these larvae

Figure 2. ChR2-Mediated Activation of Presynaptic Neurons Expressing BoTxBLC-GFP Demonstrates a Complete Block of Synaptic

Release In Vivo

(A) Expression of BoTxBLC-GFP and ChR2-mCherry in Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP; UAS:ChR2-mCherry). GFP and mCherry co-labeling in a CSF-cN

innervating a CaP primary motor neuron is shown (innervation of a CaP by a CSF-cN is indicated by an arrowhead).

(B) Full field light-mediated activation of CSF-cNs in Tg(pkd2l1:gal4; UAS:ChR2-mCherry) induces a monosynaptic IPSC in a CaP that is reduced by gabazine.

(B1) is a schematic representation of light-mediated activation of ChR2+ CSF-cNs coupled with a whole-cell recording of a CaP. Individual traces from one CaP

(gray) and the average of ten trials (black) are shown in the top panel of (B2); the bottom panel shows that gabazine strongly reduces the induced IPSC (individual

traces from one CaP [gray] and the average of ten trials [purple]).

(C) No IPSC was observed after light-mediated activation of CSF-cNs in Tg(pkd2l1:gal4; UAS:ChR2-mCherry;UAS:BoTxBLC-GFP) larvae. (C1) shows the

schematic representation of experimental setup. (C2) shows individual traces from one CaP (gray) and the average of ten trials (teal).

(D and E) Confirmation of CaP identity after filling with Alexa 488 dye. (D) shows a cell body with Alexa 488 (top), ChR2-mCherry (middle), merge (bottom), and

axonal projections onto ventral musculature in (E) (black double arrowhead, CaP soma; double white arrowhead, axon exiting the spinal cord).

(F) Quantification of peak IPSC amplitude in control and BoTxBLC-GFP+ larvae (control, n = 3 cells from three larvae, 60 trials; gabazine, n = 2 cells from two

larvae, 40 trials; BoTxBLC-GFP+, n = 3 cells from three larvae, 60 trials).

(A) and (E) are z projection stacks from a few optical sections imaged on the lateral side. (D) is a single plane image. All images are oriented with rostral to the left

and dorsal up. Scale bars represent 10 mm (approximated in D). The central line on each boxplot is the median value, and the box limits are the 25th and 75th

percentiles. The whiskers include all data points not considered outliers. *p < 0.05, one-way ANOVA with repeated measures. R, rostral; C, caudal; D dorsal; V,

ventral. See also Figure S2 and Table S1.
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showed a large reduction in the distance traveled in responsive

trials compared to control siblings (Figures 3A3 and 3A4; Movie

S3). In Tg(chx10:gal4; UAS:BoTxBLC-GFP) larvae assayed in a

head-embedded and tail-free configuration (Figures 3B–3C;

Movie S4), the maximum bend angle, average tail-beat fre-

quency, and response duration were all significantly reduced

compared to control siblings during the acoustic escape

response (Figure 3D).

Although the Tg(chx10:gal4) transgenic line recapitulated

chx10 expression in the hindbrain and rostral spinal cord [5], a

few neurons with axons exiting the spinal cord were labeled

caudally (Figure 3A2), which could contribute to the response

by affecting muscle contraction. To circumvent this confound,

we performed fictive ventral nerve root (VNR) recordings in 4

dpf paralyzed larvae, which allowed monitoring of the motor

neuron output upstream of the neuromuscular junction. In

control siblings, fast escape responses induced by otic vesicle

stimulation [32] consisted of a few large amplitude bursts

(phase 1), followed by fast-frequency swimming (�35–60 Hz;

phase 2), which transitioned to slow-frequency swimming

(<35 Hz; phase 3) (Figure 3E). Silencing of V2a output selectively

disrupted fast swimming (Figure 3F); the response duration

was not significantly reduced (Figure 3G). Fast locomotor fre-

quencies above 40 Hz were abolished, whereas lower fre-

quencies were unaffected (Figures 3H and 3I).

Motor neurons are incrementally recruited along the dorsoven-

tral axis with swimming frequency [7]. To investigate how motor

neuron recruitment was affected when V2as were silenced, we

generated a novel transgenic line, Tg(mnx1:GCaMP5G), in which

motor neurons express the genetically encoded calcium sensor

GCaMP5G, and coupled calcium imaging of motor neurons

with otic-vesicle stimulation and VNR recordings [28, 33]

(Table S1; Experimental Procedures; Figures 3J–3N). The ampli-

tude of calcium transients varied as a function of the dorsoventral

position within the motor pool in a different manner for con-

trol Tg(mnx1:GCaMP5G) larvae and V2a-silenced Tg(mnx1:

GCaMP5G; chx10:gal4; UAS:BoTxBLC-GFP) larvae (Figures 3K

and 3M; p = 0.000005). Overall, the average peakDF/F amplitude

was highest in the most dorsal motor neurons in control larvae.

Ventral motor neurons exhibited similar DF/F amplitude whether

V2as were silenced or not (Figure 3L). In contrast, the activity of

dorsal motor neurons was largely reduced in V2a-silenced larvae

compared to controls (Figure 3N). A reduction in the recruitment

of dorsal motor neuron is consistent with our observations that

fast locomotor frequencies (>40 Hz) in both active and fictive

locomotion are abolished when V2as are silenced.

Silencing of V2a Interneurons Decreases the Locomotor
Frequency during Spontaneous Slow Swimming
Despite the role of hindbrain V2a neurons in initiating locomo-

tion in zebrafish larva [5], the V2a contribution to spontaneous

slow swimming has not been directly addressed. In freely

swimming larvae, we noted that the occurrence of spontaneous

slow swimming was largely reduced in Tg(chx10:gal4; UAS:

BoTxBLC-GFP) (Figures 4A–4D; Movie S5), indicating that

these neurons normally drive spontaneous locomotion. We

observed that the rarely occurring swim bouts were on average

longer in duration (Figure 4E). In V2a-silenced larvae, fictive

Figure 3. V2a Interneurons Are Critical for Induced Fast-Frequency Swimming

(A) Comparison of control siblings and Tg(chx10:gal4; UAS:BoTxBLC-GFP) 5 dpf larvae in a freely swimming acoustic escape assay.Whole-larva lateral view (A1),

lateral view of the spinal cord with borders denoted by dotted line (A2), and trajectories of swimming larvae in the assay (A3) are shown. Control siblings are

Tg(UAS:BoTxBLC-GFP) larvae. (A4) shows the average distance traveled during a responsive trial (in millimeters) (n = 11 control larvae, 81 responses out of 120

trials; n =12 BoTxBLC-GFP+ larvae, 107 responses out of 120 trials).

(B–D) Comparison of control siblings and Tg(chx10:gal4; UAS:BoTxBLC-GFP) 5 dpf larvae in a head-embedded, tail-free acoustic escape assay.

(B) Left: control larva (Tg(UAS:BoTxBLC-GFP)). Right: Tg(chx10:gal4;UAS:BoTxBLC-GFP) larva with its head embedded in agarose and the tail free to move. The

dotted line indicates the agar border.

(C) Example tail-bend angle (degrees) extracted for head-restrained control larvae (Tg(UAS:BoTxBLC-GFP) alone, black, top) and BoTxBLC-GFP (Tg(chx10:gal4;

UAS:BoTxBLC-GFP), teal, bottom). The dotted line indicates the time of stimulus delivery.

(D) Kinematic analysis of head-embedded acoustic-induced escape responses. Maximum bend angle in the trial (left, degrees), average tail-beat frequency

within a bout (center, Hz), and average bout duration (right, ms). n = 12 control larvae, 104 trials; n = 12 Tg(chx10:gal4; UAS:BoTxBLC-GFP) larvae, 118 trials.

(E–I) Analysis of fictive VNR recordings during escape responses in 4 dpf larvae.

(E) Left: schematic of the otic vesicle stimulation used to evoke fast escape responses in combination with fictive VNR recordings. Right: three phases of the

response can be distinguished in the escape response.

(F) Representative traces of fictive escape responses from three larvae for control (F1) and Tg(chx10:gal4; UAS:BoTxBLC-GFP) (F2) larvae. Red asterisks indicate

the stimulus onset.

(G and H) Response duration (G, s) andmean burst frequency (H, Hz) for n = 57 stimulations for five control larvae and n = 54 stimulations for five BoTxBLC-GFP+

larvae.

(I) Distribution of burst frequencies (Hz) in control larvae (gray) and BoTxBLC-GFP+ larvae (teal). Inset: cumulative distribution function.

(J–N) Calcium transients, imaged in motor neurons as a function of dorsoventral position, when V2as are silenced (BoTxBLC-GFP+) or not (control) with

simultaneous fictive VNR recording.

(J) Schematic of the calcium imaging configuration performed in combination with otic vesicle stimulation and VNR recordings as described in (E).

(K) GCaMP5G expression in Tg(mnx1:GCaMP5G)with ROIs overlaid (top), calcium transients (center), and fictive VNR recording during a fictive escape in ventral

motor neurons (bottom). Control larva: purple ROIs, black DF/F trace (left). BoTxBLC-GFP+ larva: teal ROIs, teal DF/F trace (right).

(L) Peak DF/F response for an individual ROI, color-coded by larva, with the average across larvae indicated by a black line. Comparison of control versus

BoTxBLC-GFP+ larvae for ventral motor neurons at dorsoventral positions: 0–0.2 (L1), 0.2–0.3 (L2), or 0.3–0.4 (L3).

(M) Same as (K) but for dorsal motor neurons.

(N) Same as (L) but for dorsoventral positions: 0.4–0.5 (N1) or 0.5–1 (N2).

For (L) and (N), n = 199 ROIs from 55 stimulations with swimming episodes for five control larvae and n = 102 ROIs from n = 30 stimulations with swimming

episodes for four BoTxBLC-GFP+ larvae. Scale bars represent 100 mm in (A1), 25 mm in (A2), 5 mm in (A3), 1 mm in (B), and 20 mm in (K) and (M). For (A4), (D), (G),

and (H), each data point is the average across all trials for a single larva. Control sibling Tg(UAS:BoTxBLC-GFP) larvae are in gray and Tg(chx10:gal4; UAS:

BoTxBLC-GFP) are in teal. Means are shown ±SEM in black. **p < 0.01, ***p < 0.001, ****p < 0.0001. See also Table S1 and Movies S3 and S4.
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slow swim bouts occurred less frequently and tended to last

longer than in control siblings (Figures 4F–4H). In contrast to

fast escapes, in which a reduction of frequency occurred via

a suppression of the highest frequencies (Figure 3I), in the

slow regime swim frequency was reduced by a downward shift

of locomotor frequencies (Figures 4I and 4J). Taken together,

the active and fictive data demonstrate that V2a interneu-

rons contribute to generation of spontaneous swim events

and setting the range of locomotor frequencies during slow

locomotion.

DISCUSSION

Silencing with the Optimized Botulinum Toxin Light
Chain
Silencing large populations of neurons in vivo is critical to under-

standing their role in circuits that control behavior. To be readily

implemented, silencing tools should be genetically encoded,

efficient, and non-toxic. BoTxBLC-GFP is efficient at blocking

presynaptic vesicular release, as demonstrated here by prob-

ing monosynaptically connected pairs of neurons in vivo.

Figure 4. V2a Interneurons Drive Most of Spontaneous Slow Swimming and Adjust the Locomotor Frequency in the Slow Regime
(A–E) Spontaneous slow swimming assay comparing control and Tg(chx10:gal4; UAS:BoTxBLC-GFP) larvae at 5 dpf.

(A) The trajectory of a 5 dpf larvae spontaneously swimming for the first minute of a 4 min recording. Left: control sibling (Tg(UAS:BoTxBLC-GFP)) alone. Right:

Tg(chx10:gal4; UAS:BoTxBLC-GFP) larva recorded simultaneously.

(B) Average distance traveled (mm; measured during the first minute of the trial).

(C) Rastergram of the timing of swim bout initiation over the 4 min spontaneous swimming trial recorded. The y axis represents a different individual larva. Top:

control siblings. Bottom: Tg(chx10:gal4; UAS:BoTxBLC-GFP).

(D) Mean frequency of bout occurrence (bouts per second, Hz) measured over a 4 min trial.

(E) Average bout duration (ms) across all bouts recorded spontaneously in a 4 min trial.

(B–E) n = 8 control larvae and n =8 BoTxBLC-GFP+ larvae.

(F) Schematic and example trace of fictive slow swimming in a control (top) and a BoTxBLC-GFP+ (bottom) larva. Boxes indicate expanded regions at right. Note

the reduced burst frequency in BoTxBLC-GFP+ larvae when V2as are silenced.

(G) Reduction in frequency of bout occurrence (bouts per second) in BoTxBLC-GFP+ larvae compared to control siblings (n = 1265 bouts for eight control larvae;

n = 938 bouts for eight BoTxBLC-GFP+ larvae).

(H) Fictive bout duration (s).

(I) Mean burst frequency during fictive slow swim bouts (Hz).

(H and I) n = 741 bouts from eight control larvae; n = 497 bouts from eight BoTxBLC-GFP+ larvae.

(J) Distribution of burst frequencies (Hz) in control larvae (gray) and BoTxBLC-GFP+ larvae (teal). Inset: cumulative distribution function.

For (B), (D), (E), (G), (H), and (I), control siblings (gray, Tg(UAS:BoTxBLC-GFP)) were compared to Tg(chx10:gal4; UAS:BoTxBLC-GFP) larvae (teal), and each point

represents a single larva. Means are shown ±SEM in black. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Student’s t test (D and G). See also Table S1 and

Movie S5.
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Neurotoxins have been used extensively for eliminating neuronal

activity. Persistent problems for diphtheria use include off-target

damage and establishing stable transgenic lines, while in the

case of tetanus, detection of fluorescence is difficult in vivo

[19, 34–36]. The stable trangenic BoTxBLC-GFP has been effec-

tive for many generations, and fluorescence could be detected

in vivo. Codon optimization of BoTxBLC-GFP was critical for

expression and silencing in zebrafish, demonstrating the need

to design model-specific tools.

Other strategies such as Nitroreductase, KillerRed, or tran-

sient receptor potential channels developed for targeted cell

ablation or silencing in zebrafish work in vivo but require a chem-

ical cofactor or light delivery [34–37]. With chemically mediated

methods, ablations can require long incubation times, depend-

ing on the expression level, and if driver lines express in non-

neuronal tissues [36], these tissues will be ablated. Although

opsins can silence with precise spatial and temporal resolution,

light delivery can interfere with light-sensitive behaviors, and op-

sins are currently unfeasible for silencing across large spatial

regions during active behavior because they require high power

density [38–40]. BoTxBLC-GFP offers a straightforward alterna-

tive to these existing methods, potently and chronically silencing

in neuronal tissue without additional cofactors or off-target ef-

fects. Implementing inducible expression in the future would

allow dissection of the relative contributions of acute versus

chronic silencing.

The Contribution of V2a Interneurons to Locomotion
chx10+ V2a glutamatergic neurons are involved in initiation [5],

termination [6], left-right alternation [41], and setting of locomo-

tor frequency [7, 11, 42] in vertebrate species. V2a interneurons

recorded during fictive locomotion in zebrafish are recruited in

a frequency-dependent manner along the dorsoventral axis

and are necessary for generation of high-frequency swimming

[8, 12]. Here we investigated the effects of silencing a majority

of V2as during two motor behaviors: slow spontaneous swim-

ming and fast escape responses. The escape response in zebra-

fish larva includes a wide range of locomotor frequencies from

15–100 Hz [2, 43]. Fast components of the escape were sup-

pressed when V2a interneurons were silenced, confirming the

critical role of V2as in fast locomotion [8, 44]. By performing cal-

cium imaging on the motor pool, we showed that this suppres-

sion effect corresponds to the diminished recruitment of dorsal

motor neurons essential for fast swimming. This suggests that

the excitation of motor neurons by V2as is necessary to generate

fast locomotor frequencies.

Spontaneous slow locomotion occurs in a narrow range of lo-

comotor frequencies (20–30 Hz) [2, 43], during which a subset of

ventral V2as is active [8]. Spontaneous active slow swimming

rarely occurred when V2as were silenced, and those swim bouts

lasted longer. These effects could be related to hindbrain V2a

populations involved in initiating locomotion [5] or controlling

the duration of locomotor events [6]. In addition, we observed

that V2as adjust the locomotor frequency in the slow regime.

Further investigation should clarify how excitation by V2as

from the hindbrain and spinal cord contribute to this effect.

The remaining source of excitation driving slow swimming

when V2as are silenced could be glutamatergic V0-v neurons,

referred to asMCoDs in zebrafish, which are selectively recruited

at these frequencies [8], suggesting that MCoDs and V2as may

work in concert during slow locomotion.

Our results confirm important contributions for V2as in fast

and slow regimes of locomotion. Previous work showed that spi-

nal V2as are a heterogeneous population of neurons based on

their dorsoventral positioning, morphology, intrinsic properties,

and connectivity [8, 9, 12]. Our results, obtained by silencing of

the V2a population in the hindbrain and spinal cord, indicate

speed-dependent roles for V2as. Although V2as are critical for

sustaining fast locomotion, they appear to adjust locomotor

frequency and modulate bout duration in the slow regime. New

genetic tools will be required to distinguish how hindbrain and

spinal cord V2as accomplish these unique functions.

EXPERIMENTAL PROCEDURES

Generation of Stable Transgenic Zebrafish Lines

25 ng ml�1 of Tol2 transposasemRNA and either pT2S-UAS:zBoTxBLC-GFP or

pT2S-UAS:zBoTxBLC were co-injected into one-cell-stage embryos of the

TAB (AB/TUB) strain. 188 injected embryos from seven unique clutches

were raised. 47 embryos injected with pT2S-UAS:zBoTxBLC-GFP were

screened after mating with selected Gal4FF lines for behavioral phenotypes

and GFP fluorescence. 13 embryos injected with pT2S-UAS:zBoTxBLC

were screened by PCR. We used Gal4FF drivers (Tg(SAGFF73A) and others)

for screening the UAS founder fish. We selected six founders, identified single

integrations by Southern blot, and mapped the integration sites from F1 prog-

eny (834 F1 fish examined). A single homozygous F2 line, Tg(UAS:zBoTxBLC-

GFP)34b, has been stably maintained for over ten generations and used for

the experiments shown for all figures except Figure 1C. The sequences are

available on the zTrap database (http://kawakami.lab.nig.ac.jp/ztrap/). The

Tg(mnx1:GCaMP5G)icm25 stable transgenic line was generated based on

the mnx1 promoter [33] integrated in a 50 entry gateway clone [45] and com-

bined to the pME-GCaMP5G and the 30 polyA entry clone into the destination

vector carrying tol2 sites and cryaa:venus [46]. Table S1 lists all trans-

genic lines used in this study, long-form names, and expression patterns if

applicable.

All procedures were approved by the Institut du Cerveau et de la Moelle

Épinière (ICM) and the National Ethics Committee (Comité National de

Réflexion Ethique sur l’Expérimentation Animale Ce5/2011/056) based on

EU legislation or were in accordance with institutional and national guidelines

and regulations at the National Institute of Genetics in accordance with the

Guide for the Care and Use of Laboratory Animals of the Institutional Animal

Care and Use Committee (IACUC, approval identification number 27-2) in

Japan.

ACCESSION NUMBERS

The accession number for the transgenic UAS:BoTxBLC-GFP reported in this

paper is ZFIN: ZDB-ALT-160119-9. The accession number for the transgenic

mnx1:GCaMP5G reported in this paper is ZFIN: ZDB-ALT-160427-5.
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Table S1. List of stable transgenic lines used and generated in this study. 

 

Name used in text Long form or alternate name Labeling Reference 

Tg(pkd2l1:gal4) Tg(pkd2l1:gal4)icm10 CSF-cNs Fidelin et al., 2015 [S1] 

Tg(s1020t:gal4) Et(-0.6hsp70l:Gal4-VP16)s1020t Motor neurons,  

CSF-cNs,VeLDs 
Scott et al., 2007 [S2] 

Tg(SAGFF73:gal4) SAGFF(nedd4b1):gal4FF Ubiquitous Asakawa et al., 2008 [S3] 

Tg(chx10:|R|-GFP) Tg(chx10:lox:DsRed:lox:GFP) V2a interneurons Kimura et al., 2006 [S4] 

Tg(chx10:gal4) Tg(chx10:gal4) V2a interneurons Kimura et al., 2013 [S5] 

Tg(UAS:BoTxBLC-GFP) Tg(Nk(UAS:zBoTxBLC-GFP)34b) 

Tg(UAS:BoTxBLC-GFP)icm21 
N/A This study (see Auer et al., 2015; 

Böhm et al., 2016) [S6,S7] 

Tg(UAS:ChR2-mCherry) Tg(UAS:Cr.ChR2_H134R-mCherry) N/A Schoonheim et al., 2010 [S8] 

Tg(UAS:GCaMP5G) Tg(UAS:GCaMP5G)icm08 N/A Fidelin et al., 2015 [S1] 

Tg(vglut2a:gal4) Tg(vglut2a:gal4) Glutamatergic cells 

expressing vGluT2 

Satou et al., 2013 [S9] 

Tg(vglut2a:|R|-GFP) Tg(vglut2:lox:DsRed:lox:GFP) Glutamatergic cells 

expressing vGluT2 
Satou et al., 2013 [S9] 

Tg(gad1b:|R|-GFP) Tg(gad1b:lox:DsRed:lox:GFP) GABAergic cells Satou et al., 2013 [S9] 

Tg(mnx1:GCaMP5G) Tg(mnx1:GCaMP5G)icm25 Motor neurons This study 

Tg(HuC:GCaMP5G) Tg(elavl3:GCaMP5G) Most neurons Ahrens et al., 2013 [S10] 
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Figure S1. Related to Figure 1. Tg(s1020t:gal4) enhancer trap line labels most but not all motor neurons. 

 

Image of 1 dpf Tg(HuC:GCaMP5G; s1020t:gal4; UAS:mCherry) embryo. Top: The HuC promoter labels a diverse 

population of interneurons and motor neurons in the spinal cord. Middle: In the Tg(s1020t:gal4) enhancer trap line, 

most primary motor neurons are labeled in the spinal cord. Merge: GCaMP5G and mCherry expression. 

Magnification: axons from motor neurons exiting the spinal cord are visible in non-overlapping populations of 

motor neurons from both transgenic lines. Rostral is left, dorsal is up. Scale bar is 50µm. 
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Figure S2. Related to Figure 2. Neurotransmitter specification in the spinal cord is unaffected when 

GABAergic CSF-cNs are silenced in Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP). 

 

(A-C) Quantification of ventral glutamatergic, GABAergic, and chx10
+
 interneurons per segment in rostral 

(segments 3-4), mid-cord (segments 10-11), and caudal (segments 25-26) regions in 3 dpf larvae. (A) Left: 

quantification of ventral glutamatergic cells in control and Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP). Right: image of 

Tg(vglut2a:|R|-GFP; pkd2l1:gal4; UAS:BoTxBLC-GFP) at segment 10. n = 14 control siblings, n = 13 BoTxBLC-

GFP
+
. (B) Left: quantification of ventral GABAergic cells in control and Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP). 

Right: image of Tg(gad1b:|R|-GFP; pkd2l1:gal4; UAS:BoTxBLC-GFP) at segment 10. n = 12 control siblings, n = 

12 BoTxBLC-GFP
+
. (C) Left: quantification of chx10

+ 
 V2as in control and Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP). 

Right: image of Tg(chx10:|R|-GFP; pkd2l1:gal4; UAS:BoTxBLC-GFP) at segment 10.  n = 10 control siblings, n = 

10 BoTxBLC-GFP
+
. (D) Schema of regions for quantification. (E) Number of BoTxBLC-GFP

+ 
CSF-cNs per 

segment. Dotted line indicates average number of pkd2l1+ CSF-cNs in the spinal cord per segment. 

 * p < 0.05. Student's t-test. All comparisons were performed per region between control and BoTxBLC-GFP
+ 

conditions. 
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Supplemental Experimental Procedures 
  

Zebrafish husbandry 

 

All procedures were approved by the Institut du cerveau et de la moelle épinière (ICM) and the National Ethics 

Committee (Comité National de Réflexion Ethique sur l’Expérimentation Animale Ce5/2011/056) based on E.U 

legislation or were in accordance with institutional and national guidelines and regulations at the National Institute 

of Genetics in accordance with the Guide for the Care and Use of Laboratory Animals of the Institutional Animal 

Care and Use Committee (IACUC, approval identification number 27-2) in Japan. All experiments were performed 

on Danio rerio embryos and larvae of AB, TL, TU, or mixed background. For some experiments, mitfa -/- animals 

were used. Embryos and larvae were raised in an incubator at 28.5°C under a 14/10 light/dark cycle until the start of 

experimentation. Experiments were performed at room temperature (22-26°C) on 1 to 5 dpf larvae. 

 

Generation of plasmids for conditional expression of Botulinum Toxin Light Chain (BoTxLC) in zebrafish 

embryos 

 

Plasmids encoding published bacterial BoTxLC proteins A, B, C, D, E, F and G were obtained in vector pQE3 

(3416 bp) (a gift to KK). In parallel, cDNA sequences encoding full BoTxLC serotypes A (1398bp), B (1350 bp), C 

(1401 bp), and E (1320 bp) were constructed in silico based on entries from NCBI, then modified in-house for 

optimal translation in zebrafish, and finally purchased from GenScript (New Jersey, USA). Synthetic cDNAs were 

blunt-end cloned at the EcoRV site of pUC57, and in most cases subsequently amplified by PCR using high-fidelity 

PfuUltra II Fusion HS DNA polymerase, TOPO cloned in pCR8GW (Invitrogen, Carlsbad, California) and fully 

sequenced thereafter to confirm that no mutations had been introduced by PCR. To generate GFP reporter plasmids 

that express BoTxLC under Gal4/UAS control, we first generated a custom Tol2 transgenesis and expression vector 

containing the Gal4-target sequence, 5x UAS, followed by an atg-less GFP. A Gateway-compatible vector 

pT2UASMCSGW-R1R2 (5419 bp) was digested with SalI/XhoI to introduce an XhoI/SalI GFP fragment (740 bp). 

The resulting plasmid was digested with EcoRI/XhoI to ligate either a bacterial or zebrafish-codon optimized 

BoTxLC cDNA fragment containing 5’ EcoRI and 3’ XhoI compatible ends. The resulting plasmids 

pT2UAS:BoTxLC-GFP or pT2UAS:zBoTxLC-GFP encode an in-frame fusion of GFP at the C-terminus of BoTxLC 

(see supplemental material in [S6, S7]).  

 

Transient expression of botulinum toxin serotypes and behavioral scoring  

 

Groups of n > 30 were raised for each injected group and examined at 36 or 48 hours post fertilization (hpf). 

Embryos were placed in 5 cm plastic petri dishes filled with E3 media and allowed to settle for 5 minutes before 

recording touch-evoked motor behaviors. Embryos were firmly touched at the tail, head, and yolk region at least 3 

times with a fine syringe needle, and those that displayed no motion at all (escape response or swimming) were 

considered paralyzed. Paralysis was confirmed in 500 fps high-speed video recordings (Photron, United Kingdom).  

 

Coiling Assay in transgenic lines expressing the optimized BoTxBLC-GFP 

 

Embryos expressing BoTxBLC-GFP under the control of either Tg(pkd2l1:gal4), Tg(s1020t:gal4), or 

Tg(chx10:gal4) were screened for fluorescence and dechorionated. Coiling was evaluated between 24 and 25 hpf for 

1 minute. All experiments were performed simultaneously with sibling embryos not expressing BoTxBLC-GFP as 

controls. All images were obtained using a uEye camera (IDS Imaging Development Systems GmbH, Obersulm, 

Germany). 

 

Fluorescent imaging of transgenic lines 

 

A Nikon AZ100 Multizoom microscope system was used for all images of whole embryos or larvae. Stacks of 

spinal neurons in diverse transgenics lines were obtained using a 20x or 40x water immersion objective on a 

spinning disk confocal microscope or 2-photon laser scanning microscope using a 20x water immersion objective (3i 

Intelligent Imaging Innovations, Inc., Denver, CO, USA). 

 

Calcium imaging in zebrafish embryos 

 

Adults of homozygous Tg(UAS:BoTxBLC-GFP) were crossed to double transgenic Tg(s1020t:gal4; 

UAS:GCaMP5G) and Tg(s1020t:gal4:UAS:GCaMP5G) were crossed to wild type AB adults for age-matched 
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controls. Embryos were maintained at 28.5°C and staged according to [S11], dechorionated manually, then 

embedded in 1.5% low melting point agarose. All imaging was performed following injection in caudal axial muscle 

with approximately 2 nL of 500 µM α-bungarotoxin (Tocris Bioscience, Bristol, United Kingdom). Calcium 

imaging was performed at 4 or 5 Hz with a spinning disk confocal (3i Intelligent Imaging Innovations, Inc., Denver, 

CO, USA) for 4 or 8 minutes. Images were acquired using Slidebook software (3i Intelligent Imaging Innovations, 

Inc., Denver, CO, USA) and reconstructed online using Fiji (fiji.sc/). ROIs were manually selected based on a 

standard deviation Z-projection stack and dorsolateral position in the spinal cord. Peak detection was performed 

using an open-source signal processing toolbox [S12]. Individual ROI peak frequencies were averaged within 

embryos to determine coiling frequency from ΔF/F calculated using custom scripts written in MATLAB (The 

Mathworks, Natick, MA, USA). 

 

Electrophysiology 

 

Whole cell recording were performed in 3 dpf larvae in artificial CSF (concentrations in mM: 134 NaCl, 2.9 KCl, 

1.2 MgCl2, 10 HEPES, 10 glucose, 2 CaCl2; 290 mOsM +/- 3 mOsm, pH adjusted to 7.8 with NaOH). Larvae were 

pinned through the notochord with 0.025 mm tungsten pins. Larvae were decapitated to prevent visual light 

response, and skin and muscle from two segments between segments 8 and 18 were dissected using a glass suction 

pipette.  A MultiClamp 700B amplifier, a Digidata series 1440A Digitizer, and pClamp 10.3 software (Axon 

Instruments, Molecular Devices 446 Sunnyvale, CA, USA) were used for acquisitions. Patch pipettes (1B150F-4, 

WPI, Sarasota, FL,USA) with a tip resistance of 8-11 MΩ were filled with internal solution (concentrations in mM: 

K-gluconate 115, KCl 15, MgCl2 2, Mg-ATP 4, HEPES free acid 10, EGTA 0.5, 290 mOsm, adjusted to pH 7.2 

with KOH with Alexa 488 at 10 μM final concentration). Holding potential was - 85 mV, away from the calculated 

chloride reversal potential (- 51 mV). Liquid junction potential in our experiments was - 19 mV, stated values for 

holding potential are not corrected as it did not affect the outcome of the experiments. Gabazine (Tocris Bioscience, 

Bristol, United Kingdom) was applied in the bath for a final concentration of 10 µM. Recordings with gabazine in 

the bath were initiated at least 2 minutes after bath application. Analysis of electrophysiological data was performed 

offline using Clampex 10 software (Molecular Devices, California, USA). 

 

Cell selection for electrophysiology 

 

For experiments in Tg(pkd2l1:gal4; UAS:ChR2-mCherry), larvae were pre-screened for fluorescence to identify 

motor neuron somas encircled by CSF-cN axons expressing ChR2-mCherry. For experiments in Tg(pkd2l1:gal4; 

UAS:ChR2-mCherry; UAS:BoTxBLC-GFP), larvae were pre-screened for fluorescence to identify motor neurons 

encircled by presynaptic CSF-cNs expressing both ChR2 and BoTxBLC-GFP. After recordings, motor neuron 

identity was confirmed by visualization of Alexa 488 dye and post hoc imaging of ChR2-mCherry. One cell per 

larva was used for data analysis. 

 

Optogenetic stimulation 

 

Activation of CSF-cNs was achieved by whole field stimulation through a 40x objective for 5 ms with a blue LED 

(UHP-Mic-LED-460, Prizmatic Ltd., Israel, power = 3.88 mW / mm
2
) through a Digital Micromirror Device with all 

mirrors in the “on” position. All experiments were run as sets of 10 trials. Two sets of experiments were performed 

for each cell. 

 

Behavioral recordings and analysis of acoustic escape responses from freely swimming larvae 

 

Depending on the severity of the defects, embryos that could not hatch on their own were dechorionated manually at 

2 dpf, as well as their control siblings. 5 dpf larvae were placed individually in dishes with 2.2 cm inner diameter 

and 3.5 cm outer diameter in 400 µL of fish facility water on a homogeneous illumination plate (light intensity 0.78 

mW / cm
2
 Phlox, ref. LEDW-BL-200/200-LLUB-Q-1R24). Only undamaged, healthy-looking larvae were selected 

for testing. Larvae were habituated for 10 minutes on the light source at room temperature not lower than 22°C and 

kept at room temperature during all recordings. For the acoustic startle assay, following acclimation, larvae were 

given a 500 Hz acoustic stimulus for 10 ms at frame 130 and recorded for a total of 1 second at 650 frames per 

second with a high-speed camera (Basler AG, ac12040-180km) placed above the setup. Synchronization of the 

camera and the stimulus was achieved by a custom built Arduino setup. For each group of four dishes, 10 trials were 

recorded with an inter-trial interval of 2-5 minutes. The acquired images had pixel dimensions of 2000 x 544 and an 

exposure time of 500 µs. Behavioral recordings were acquired between 1:00 and 6:00 P.M.  The behavior setup used 

here was described in [S7].  To determine the distance traveled in each trial, using custom-written MATLAB, videos 
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were analyzed to detect the center of mass of the larva at each frame and to determine the distance traveled between 

successive frames, which was summed over the trial. 

 

Behavioral recordings and analysis of acoustic escape responses from head-embedded larvae 

 

Due to failure to inflate the swim bladder in Tg(chx10:gal4; UAS:BoTxBLC-GFP) larvae, a common problem in 

larvae with locomotor defects, we utilized the head-embedded configuration to record high-speed kinematics in 

upright larvae. Recordings were performed in an identical way to freely swimming acoustic-induced escape assay 

(above) with the exception that larvae were embedded in 2% low-melting temperature agarose and the agarose 

surrounding the tail was manually removed. Tracking was performed with custom written MATLAB software. A 

skeleton of the tail was extracted using 10 segments. Depending on the quality of the tracking, traces were 

individually manually excluded from the dataset in cases of tracking failure, and parameters were manually adjusted 

to achieve excellent tracking. Kinematic parameters were extracted for each trial including: escape duration, escape 

latency, the number of tail oscillations, the average tail-beat frequency over the escape bout, and the maximum tail 

bend angle. 

 

Behavioral recordings and analysis of spontaneously freely swimming larvae 

 

5 dpf larvae in the same wells and on the same setup as in freely swimming acoustic escape experiments above were 

recorded following a minimum 10 minute acclimation period with no stimulation provided by the experimenter. 

Videos were recorded at 60 Hz for four minutes at 2000 x 1088 pixel resolution. Videos were scored manually and 

frames where swim bouts started or ended were recorded. To determine the distance traveled, the same custom 

MATLAB code as above was employed on the first minute of the four minute acquisition sequence. 

 

Fictive ventral nerve root (VNR) recordings 

 

The fictive locomotion protocol was based on published procedures ([S1,S13]). Thin-walled, borosilicate glass 

capillaries (Sutter Instruments, Novato, CA, USA) were pulled and fire-polished from a Flaming/Brown pipette 

puller (Sutter Instruments, Novato, CA, USA) to obtain peripheral nerve recording micropipettes. Pipettes were 

filled with artificial CSF and positioned next to the preparation using motorized micromanipulators under the 

microscope. Light suction was applied when the pipette reached the muscle region located at the vicinity of 

intermyotomal junctions, ventral to the axial musculature midline. The larva was laterally mounted and the otic 

vesicle was stimulated by a jet of water delivered by a glass pipette and powered by a picospritzer (WPI, Sarasota, 

FL, USA) on the same side of the body as the VNR pipette. VNR signals were acquired at 10 kHz in current clamp 

IC=0 mode using a MultiClamp 700A amplifier, a Digidata series 1322A digitizer, and pClamp 8.2 software 

(Molecular Devices–Axon Instruments, Sunnyvale, CA, USA). Recordings were considered for analysis when the 

background noise did not exceed 0.05 mV amplitude and signal to noise ratio for fictive locomotor events detection 

was above three. VNR recordings were analyzed offline using custom MATLAB scripts. For analysis of fast evoked 

locomotion, the phase 1 portion of elicited fast responses consisted of low frequency bursts between 10 and 20 Hz, 

lower frequencies than the typical slow swimming frequency range (between 20 to 30 Hz).  Because our assay was 

designed to induce fast locomotor frequencies, we did not perform double VNR recordings to determine if the initial 

and variable phase 1 slow component corresponds to fictive struggles characterized by locomotor activity back 

propagating caudal to rostral ([S14]). Since these bursts were always followed by fast frequencies (above 40 Hz) and 

were part of induced responses, we included them in frequency analysis because it did not affect interpretation of 

results with respect to the generation of fast locomotion. 

 

Fictive VNR recordings combined with calcium imaging of motor neurons 

 

Calcium imaging was performed at 10 Hz with a spinning disk confocal microscope (3i Intelligent Imaging 

Innovations, Inc., Denver, CO, USA) in either Tg(mnx1:GCaMP5G) or Tg(mnx1:GCaMP5G; chx10:gal4; 

UAS:BoTxBLC-GFP) larvae at 4 dpf. Fictive recordings were performed as described above with otic vesicle 

stimulation. Up to 12 trials total were performed per larva. Trials in which the fictive recording had at least four 

bursts in response to otic vesicle stimulation were included for analysis. ROIs were manually selected based on a 

standard deviation of a Z projection stack computed over few optical sections. For experimental larvae expressing 

BoTxBLC-GFP in V2a interneurons and GCaMP5G in motor neurons, only neurons with obvious nuclear-excluded 

GCAMP5G were included in analysis to ensure that background BoTxBLC-GFP expression did not impact ΔF/F 

amplitude analysis. 

 

 61



 

 

Cell counts in Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP) 

 

Tg(pkd2l1:gal4; UAS:BoTxBLC-GFP) adults were crossed to Tg(vglut2:IRI-GFP), Tg(gad1b:IRI-GFP), or 

Tg(chx10:IRI-GFP) to obtain triple transgenic larvae. Siblings expressing only Tg(vglut2:IRI-GFP), Tg(gad1b:IRI-

GFP), or Tg(chx10:IRI-GFP) were used as controls. Larvae were embedded in agar and anesthetized in 0.02% 

tricaine for imaging. From each larva, separate stacks from three regions were obtained: segments 3-4, 10-11, and 

25-26. Segment boundaries were identified with a transmitted image, and cells were counted in Fiji (fiji.sc/). 

 

Statistics 

 

For larval behavioral and fictive data, statistical results were generated from a linear mixed effect models (LME) 

estimated with R version 3.2.3, where the individual fish was considered as random in order to take into account 

repeated measurements. When non-LME tests were appropriate, statistical tests were used as specified in figure 

legends. 
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I. Ongoing challenges to silencing in vivo 

A major problem to understanding the role of neurons in the brain and spinal cord 

involved in locomotion is the difficulty of monitoring and manipulating their activity during 

active behavior. In the mouse, studies on specified classes of spinal cord interneurons are 

restricted to pre- or post-natal animals because genetic ablation of neurons involved in rhythm 

generation, causes defects in the respiratory rhythm generating centers or neurons are difficult 

to access with light for optogenetic manipulations at later stages (Lanuza et al., 2004; Crone 

et al., 2008; Zhang et al., 2014; Bouvier et al., 2016). Combinatorial genetic tools now allow 

study of neural populations in vivo at adult stages in mammals (Satoh et al., 2016), but use of 

optogenetic techniques in vivo require implantation of optical fibers, feasible in the brain but 

not spinal cord (Bouvier et al., 2016; Tovote et al., 2016). 

Even in the zebrafish, in which the larvae is transparent, analysis of causal roles of neural 

populations in the spinal cord has been restricted to using fictive locomotion as a readout of 

motor activity, often in combination with single cell recordings (McLean et al., 2007; McLean 

et al., 2008; Eklöf-Ljunggren et al., 2012) or in head-fixed preparations (Wyart et al., 2009). 

Active locomotion has proved harder to investigate. Both genetic silencing has been difficult 

to achieve and manipulation of neural circuits during active locomotion requires application 

of pharmacological agents that act systemically or requires spatial targeting with high 

temporal resolution for optogenetic manipulation. 

Often a fine balance between the advantages and drawbacks of different techniques are 

used to tackle unique questions about neural populations underlying behavior. For example, 

optogenetic activation will indicate what a system is capable of doing when widely activated. 

Often these manipulations involve synchronous activation of many neurons not found in 

physiological activation resulting in behavioral output that would not occur in physiological 

conditions (Otchy et al., 2015). Opsins intended for silencing such as light-gated chloride 
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pump NpHR (Zhang et al., 2007) or proton pump Arch (Chow et al., 2010), can lead to 

undesired activation. NpHR must be carefully used to account for changes in chloride reversal 

potential (Raimondo et al., 2012) or rebound following a light pulse (Arrenberg et al., 2009) 

Sustained proton pump activity induces pH-dependent calcium influx that leads to increased 

spontaneous release (Mathias et al., 2016). Optogenetic techniques therefore afford the ability 

to control activity remotely, leaving the animal alive and intact, but should be supported by 

other methods for interpreting the roles of neural populations in behavior. 

Chemogenetic tools use genetically engineered receptors that interact with small 

molecules and can be used in vivo to activate, ablate, or silence neurons (Sternson and Roth, 

2014). In zebrafish, nitroreductase ablation is most widely used to ablate tissues (Curado et 

al., 2008; Mathias et al., 2014).  The efficacy of nitroreductase ablation depends on the tissue 

being ablated and requires 12-72 hours to ablate tissues (Curado et al., 2008). However, in 

tissues that can be ablated, these techniques provide a way to eliminate entirely a population 

from its networks. Targeted ablation can precisely kill single neurons and researchers have 

temporal control, choosing the stage at which the neurons are ablated, but neurons must 

identifiable, easily accessible, and limited in number. 

A critical question in determining which silencing or ablation tool to use to link activity 

to behavior is whether the method used should be acute or chronic. For behavior, ideally 

neurons could be silenced on a millisecond timescale, however, optogenetic tools cannot be 

used in freely swimming larvae due to technical constraints of light power, the confound of 

light-induced behaviors (Arrenberg et al. 2009; Rihel and Schier, 2012; Friedmann et al., 

2015), and can provide activation instead of silencing (Arrenberg et al., 2009; Warp et al., 

2012; Mahn et al., 2016). However, some of these techniques can be implemented in head-

restrained configurations (Ritter et al., 2001), in which the tail can still be monitored. Chronic 

silencing or ablation methods using laser, chemical, neurotoxin-induced ablation, or 
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neurotoxin-mediated silencing provide varying levels of temporal specificity. Bathing in 

chemical cofactors for up to three days required for Nitroreductase-mediated ablation (Curado 

et al., 2008; Mathias et al., 2014) limits the timeframe during which experiments can be 

performed but avoids some of the rewiring that probably occurs when neurons are genetically 

silenced from their birth as with genetically-encoded neurotoxins. In the case of silencing 

chx10+ V2a neurons with BoTxBLC-GFP, understanding whether the effects on locomotion 

resulted from developmental changes or reflected the role of V2as during active locomotion 

remains to be determined.  

 

II. Challenges for genetic targeting 

The Gal4/UAS system is practical for use in vivo but has limitations of silencing over 

time and in all cases, the Gal4 is not expressed in every cell within a given class. The 

Tg(chx10:gal4) provides highly specific expression in V2as compared to other transgenic 

lines isolated for targeting a single cell class, but even in this line only 60-70% of neurons are 

affected, rendering results difficult to interpret. The remaining 30% could, via redundancy or 

developmental rewiring, carry the primary functions of V2as. Also, some chx10-negative 

neurons are frequently labeled in the transgenic line Tg(chx10:gal4), a common drawback of 

the Gal4/UAS system. Although most of the neurons in the Gal4 are glutamatergic (Kimura et 

al., 2013 and data not shown), a small number of motor neurons are present and could 

confound behavioral results if they were silenced in addition to V2as. Thankfully, the effect 

of ectopic motor neuron expression could be eliminated by performing fictive recordings, in 

which motor output is recorded upstream of the neuromuscular junction. If a significant 

proportion of chx10-negative interneurons were also labeled, the results would be 

uninterpretable, highlighting again the need for adequate genetic tools to target neural 

populations. 
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III. V2a interneurons in locomotion 

In our study, silencing V2as selectively abolished fast locomotor frequencies during 

escape responses. Additionally, spontaneous, slow locomotion occurred less often and at 

frequencies lower than controls. Overall, this silencing approach confirmed that V2a 

excitation is critical for the production of fast, stimulus-evoked swimming. Moreover, V2as 

are critical for generation of spontaneous slow locomotion and set the range of frequencies at 

which slow swimming occurs. When optogenetically activated, hindbrain V2as can elicit a 

slow swim bout in head-fixed larvae, and when optogenetically silenced with Arch, larvae 

stop ongoing swimming (Kimura et al., 2013). Most likely, abolishment of initiation of slow 

locomotion is a function carried by hindbrain V2a interneurons.  

In a morphological characterization of the spinal V2a population, axon projection 

patterns and synapse distribution varied with respect to dorsoventral position and recruitment 

order (Menelaou et al., 2014). In lampreys, tadpoles, and mice, V2a-like neurons form 

connections with motor neurons, other V2a-like neurons, and commissural inhibitory 

interneurons (Grillner, 2003; Roberts et al., 2010; Crone et al., 2008; Dougherty and Kiehn, 

2010; Menelaou et al., 2014). Whether spinal or hindbrain V2as contribute to setting slow 

swim frequency is unclear, however, spinal V2as are recruited differentially at different 

swimming frequencies (Menelaou et al., 2014), and ablation of spinal V2as is sufficient to 

eliminate the fastest swimming frequencies (Eklöf-Ljunggren et al., 2012) suggesting this 

function is at least partially carried by spinal V2as. With the morphological and paired 

recording approach in zebrafish and complementary genetic approaches in mammals, a better 

picture of the diversity of V2a interneurons can be established.  

In our experiments, BoTxBLC-GFP expression was not restricted to the hindbrain or 

spinal cord, and our results reflect widespread silencing of subtypes of V2a interneurons. 
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Brainstem V2a neurons in can initiate or stop rhythmic motor networks in the spinal cord 

(Kimura et al., 2013; Bouvier et al., 2016), which could result from dual functionality or a 

heterogeneous population of V2a neurons. Recent work in mammals demonstrated V2a 

contribution to frequency control, left-right alternation, burst variability, stabilizing burst 

amplitude and duration (Crone et al., 2008; Zhong et al., 2011; Dougherty et al., 2013). 

Together, this work has established that V2as are critical for locomotion and contribute to 

diverse functions across species, with differences possibly relating to different motor 

demands.  Subtypes of neurons providing excitatory drive in the mouse, including subtypes of 

V2as or Chx10+ neurons are beginning to be identified (Doughterty et al., 2013). 

In the zebrafish, MCoDs/V0-s are rhythmically active at slow swimming frequencies 

(McLean et al., 2008) MCoDs/V0-vs, identified as a unique class by their morphology and 

neurotransmitter phenotype (Hale et al., 2001; Higashijima et al., 2004a, 2004b), are active at 

slow swimming frequencies, but their role beyond causation cannot be established without 

genetic targeting.  In mice, excitatory V0 interneurons express Dbx1 during early 

development. Using diphtheria toxin to genetically ablate the Dbx1 population, V0 neurons 

were determined to control left-right alternation at high speeds, whereas inhibitory V0 

interneurons appear to ensure alternation at low frequencies (Lanuza et al., 2004; Talpalar et 

al., 2013). Whether subtypes of these neurons exist in zebrafish and how they contribute to 

locomotion in concert with V2a interneurons during slow and fast swimming remains to be 

studied.  

Another question to be addressed in the future is how circuits are wired and modulated 

pre-synaptically to the V2as. What are the sources of excitation to V2as? Some of the 

functional diversity of the chx10+ interneurons may be due to differences in which 

populations are activating or silencing these neurons. Evidence in both mouse and zebrafish 

suggests that these neurons receive input related to sensory feedback (Pfaff, 2016; 
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unpublished results) and the effect of silencing the chx10+ V2as, decreased swimming 

frequency,  is consistent with the results of silencing sensory afferents during ongoing 

locomotion (Knafo et al., in preparation). V2as may play a critical role in integrating both 

descending and peripheral inputs to generate smooth, coordinated movements at a diversity of 

locomotor speeds. 

In order to further decipher the roles of V2a and other populations during active 

locomotion, tools need to be developed. First, more specific genetic markers to identify 

coherent subpopulations of neurons are needed, for examples Shox2, expressed in a 

subpopulation of V2as (Dougherty et al., 2013) or Satb2 (Pfaff, 2016), already identified in 

mice. Second, intersectional genetic approaches will need to be developed in order to restrict 

expression of the reporter, activator, or silencer of interest. Additionally, generating a 

genetically-encoded, quickly inducible form of Tg(UAS:BoTxBLC-GFP) would eliminate the 

confound of developmental rewiring. This would also provide insight in the role of 

developmental activity in producing functional neural circuits by comparing chronically 

silenced and acutely silenced populations. 

 

IV. Developmental effects of silencing GABAergic activity 

In addition to probing activity during ongoing locomotion, one use of genetically-encoded 

botulinum toxin is for chronic silencing to investigate activity-dependent development. 

Tg(UAS:BoTxBLC-GFP) allows for silencing throughout development. Indeed, one original 

goal of my work was to chronically silence CSF-cNs, which are GABAergic and highly 

active at early stages of development, in order to investigate the role of their GABAergic 

signaling during embryonic motor behaviors and during development. Silencing the CSF-cNs, 

validated by whole cell patch clamp, did not lead to a defect of coiling, alter the number of 

neurons expressing either GABA or glutamate, or lead to premature cell death. These results 
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indicated that synaptic release from CSF-cNs during early development does not play a 

significant role in excitability of motor circuits, when early rhythmic activity of spinal CPGs 

is taking place. Although, other developmental processes might be affected. Relying on the 

Gal4/UAS system, it is possible that the remaining GABAergic signaling was sufficient to 

contribute to proper development as mediated by CSF-cNs, however the lack of any 

developmental changes suggests that this early activity has other functions not examined here.  

 

V. Conclusions 

Determining the role of a neuron or neural population during active behavior ideally 

entails silencing these neurons on a millisecond timescale during ongoing locomotion. 

However, due to constraints with optical methods, the only currently available tools with such 

high temporal precision, these experiments are not currently possible. As both genetic and 

silencing or ablation tools continued to be developed with the goal of use in actively behaving 

animals, it will be possible to achieve this goal. These results emphasize the complementarity 

of in vivo and in vitro approaches and silencing methods, and the diversity of functions a 

population such as the V2as can perform. Future studies should investigate whether BoTx- 

mediated silencing effects result from acute or chronic block of synaptic release and how 

different populations of V2as contribute to their unique roles. Thanks to parallel development 

of tools to probe behavior in freely moving animals and genetic tools to isolate neuronal 

populations, a more complete picture of how the brain and spinal cord generate locomotor 

output will continue to emerge. 
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I. Motivation 

 The challenge of investigating behavior in vivo often necessitates researchers attempting 

to understand the spinal cord to perform experiments in vitro (Grillner and Zangger, 1979; 

Wallen and Williams, 1984; Kjaerulff and Kiehn, 1996). By removing the spinal cord and 

adding excitatory neuromodulators, the isolated spinal cord can perform rhythmic oscillations 

without sensory input (Delcomyn 1980; Buchanan and Grillner, 1987; Smith and Feldman, 

1987). With these tools, understanding of the mechanisms by which locomotion is generated 

and elements of the central pattern generator (CPG) were established. However, locomotion is 

a product of dynamic interactions between descending command from the brain, rhythmic 

motor elements in the spinal cord, and sensory feedback (Figure 1; Rossignol et al., 2006).  

 Sensory feedback can allow, prevent, or select motor patterns, modulate excitation levels, 

and demands flexibility from motor networks (Rossignol et al., 2006). Thanks to extensive 

work, primarily in decerebrate cats, we know that muscle and skin afferents as can adapt a 

locomotor pattern to environmental demands (Loeb et al., 1977; Duysens and Pearson, 1980; 

Aoyagi et al., 2003; Rossignol et al., 2006) in addition to input from visual, auditory, and 

vestibular systems.  

 A major challenge to understanding the neural basis of behavior is quantifying kinematics 

of locomotion in awake behaving animals, described in Chapter 1. In Chapter 2, I addressed 

the challenge of manipulating circuits to enable study of their function, characterizing an 

optimized neurotoxin and using it to investigate the role of a population of interneurons that 

provide excitatory drive during locomotion. Having tools to probe neural function in vivo, we 

can address how sensory input contributes to activity in the spinal cord during development 

and in conjunction with the motor system. In this chapter, I will focus on single cell and 

population activity with electrophysiological recordings and calcium imaging to investigate 

how sensory neurons contribute to activity in the spinal cord. 
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 Cerebrospinal fluid-contacting neurons (CSF-cNs) are a unique class of neurons 

originally described over a hundred years ago and thought to contribute to sensory function 

thanks to their morphology and location around the CSF-filled central canal of the spinal cord 

(Kolmer 1921; Agduhr 1922; Kolmer 1931; Vigh and Vigh-Teichmann, 1971). However, 

their location within the spinal cord has hampered efforts to study their function.  

Here I will address the question of whether CSF-cNs are active during development of 

the motor network, and whether this activity contributes to development of the motor network 

or CSF-cN function as intraspinal sensory cells in vivo. 
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II. Spontaneous activity during development 

During early development of the nervous system, spontaneous activity occurs in many 

neural circuits in the nervous system including the retina, cochlea, cerebellum, hippocampus, 

neocortex, and the spinal cord (Moody and Bosma, 2005; Blankenship and Feller, 2010). This 

activity plays important roles in development, including synapse formation, excitatory-

inhibitory balance, organization of brain regions, developmental timing, activity-dependent 

wiring, axonal guidance, differentiations, neurotransmitter phenotype (Katz and Shatz, 1996; 

Kirkby et al., 2003). In sensory systems, spontaneous and synchronized events allow 

projection neurons to form sensory maps. Mammalian retinal ganglion cells are active during 

the period when the ganglion cell axons reach the superior colliculus and the lateral geniculate 

nucleus as many projections are refined (Galli and Maffei, 1988; Meister et al., 1991). 

Depolarization of hair cells before the onset of hearing is essential for cochlear neurons to 

reach their targets (Tritsch et al., 2007). 

Even before synapses form, neurons and their precursors display chemical and electrical 

activity that regulates differentiation, neurotransmitter phenotype, and neuronal migration 

(Figure 2; Desarmenien et al., 1991; Gu and Spitzer 1995; LoTurco et al., 1995; Demarque et 

al., 2002; Manent et al., 2005; Spitzer, 2006). Much of this early uncoordinated activity is 

generated by neurotransmitters depolarizing neurons and activating voltage-gated calcium 

channels, leading to changes in changes in calcium concentrations that regulate intracellular 

cascades (Vanhoutte and Bading, 2003). Additionally, calcium entry can regulate 

development via channels that do not rely on classical voltage- or neurotransmitter-gating. 

Metabotropic glutamate receptor activation and activation of GABAA receptors can lead to 

depolarization of neural progenitors (Flint et al., 1999; Wang, et al., 2003). Transient receptor 

potential (TRP) channels can also generate calcium transients in growth cones of developing 

axons (Greka et al., 2003). 
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Later, when circuits are beginning to form, activity becomes correlated and patterned 

between neighboring cells. Spontaneous patterned activity often shares common mechanisms 

for their generation, including pacemaker neurons (Rockhill et al., 2009; Tong and 

McDearmid, 2012), gap junction coupling (Singer et al., 2001; Personius et al., 2007), 

transient synaptic connectivity (Tritsch et al., 2007), paracrine or extra synaptic transmission 

(Demarque et al., 2002), or depolarizing GABA (Leinekugel et al., 1997; Garaschuk et al., 

1998). 

In the spinal cord, coordinated spontaneous bursting in chick is driven by depolarizing 

acetylcholine, GABA acting on GABAA receptors, and glycine (Milner and Landmesser 

1999). Later in development in the mouse and rat, activation of spinal circuits by the 

brainstem drives correlated activity between the left and right sides of the spinal cord 

(Nishimaru and Kudo, 2000). Pharmacological and optogenetic activation to alter the 
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frequency of these bursts induced defects in motor neuron pool-specific pathfinding to target 

appropriate muscles (Figure 3; Hanson and Landmesser, 2006; Kastenenka and Landmesser, 

2013), maturation of synapses (Gonzalez-Islas and Wenner, 2006), and development of CPG 

networks (Myers et al., 2005; Marder and Rehm, 2005). In Drosophila, spontaneous motor 

neuron activity drives muscle contraction from 17 hpf, leading to sequential activation of 

muscles segments. When ChR2 was used to alter the frequency of neural activity before 

appearance of coordinated muscle contractions, the contractions were delayed, indicating that 

maturation of motor function requires a specified frequency of coordinated neural activity 

(Crisp et al., 2011). Together, these results demonstrate a functional role for spontaneous 

activity in the development of motor networks. 

Coordinated activity in the spinal cord thus plays a role in development and maturation of 

the networks underlying locomotion. Although the motor network can develop independent of 

sensory input (Suster and Bate; 2002; Goulding 2009), early born and active sensory neurons 

could contribute to refining of the spinal motor network. 
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III. Signal control and amplification in sensory systems 

Spontaneous activity is a key developmental feature of neural circuits but also plays 

important roles in coding inputs in functional sensory systems. Animals encounter diverse 

stimuli in their environments that can rapidly change, and thus modulation of how neurons 

respond to these inputs enables correct readout by the central nervous system. However, firing 

and vesicular release rates cannot be negative, necessitating a need for a basal firing rate to 

enable sensitivity to a dynamic range of inputs (Wilson, 2014). Sensory systems also cope 

with the need to respond to a wide range of stimuli by having neurons respond to opposing 

stimuli, such as with ON-OFF neurons and color opponent neurons. This strategy is also 

employed by auditory, thermosensory, and mechanosensory systems (Jacobs et al., 2008; 

Yorozu et al., 2009; Ma, 2010; Wilson, 2014). 

Metabolic constraints limit the extent to which a single neuron can code for extensive 

stimuli and incentivize systems to implement adaptation or gain control. By adapting basal 

firing, neurons can adjust their sensitivity and constantly change the relationship between 

input and output based on the state of the environment at any given time (Wark et al., 2007). 

TRP channels are mostly cation non-selective ion channels (Owsianik et al., 2006) and are 

involved in transduction of diverse stimuli, such as vision, olfaction, taste, chemosensation, 

thermosensation, and mechanosensation as well as amplifying these sensory responses 

(Clapham 2003; Voets et al., 2005; Christensen and Corey, 2007).  

In sensory neurons, TRP channels can contribute to both sensory transduction and 

controlling sensitivity of a neuron to relevant stimuli.  In the Drosophila auditory system, one 

TRPN channel, NompC amplifies sound evoked motion by the auditory organ but is not 

required for signal transduction, while Nanchung and Inactive are TRPV channels that are 

required for responses, forming components of the transduction complex (Gopfert et al., 

2006; Lehnert et al., 2013). A great debate in the mechanosensation field is whether TRP 
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channels are the primary transducers that sense force or whether they play a secondary role in 

the signal transduction pathway, such as in amplification or modulation of the primary 

transduction signal (Figure 4; Christensen and Corey, 2007; Hu et al., 

2015). This system of separating transduction and amplification could 

play critical roles in ensuring a dynamic system to finely decipher and 

integrate sensory inputs to ensure coordinated locomotion.  

 

IV. Spontaneous activity in the developing zebrafish embryo 

The zebrafish is an ideal organism to probe the role of sensory neurons in vivo thanks to 

their transparence and rapid development. The earliest motor activity in the zebrafish consists 

of spontaneous contractions ("coiling") that appears at 17 hpf (Saint Amant and Drapeau 

1998) when few spinal motor neurons and interneurons have extended axons (Bernhardt et al., 

1990; Kuwada et al., 1990; Saint-Amant and Drapeau, 1998). Coiling is early motor network 

activity that is independent of supraspinal input (Saint Amant and Drapeau, 1998; Downes et 

al., 2006).  Glutamatergic neurons with pacemaker properties that are known as ipsilateral 

caudal (IC) cells (Tong and McDearmid, 2012) drive a gap junction coupled network of early 

born motor neurons and primary interneurons (Saint Amant and Drapeau, 2001). This activity 

is characterized by spontaneous coordinated activation of motor neurons and early born 

interneurons of one hemicord out of phase with the other hemicord, which manifests as 

alternated muscle contraction of the tail (Saint Amant and Drapeau, 2000; Muto et al., 2011; 

Warp et al., 2012). Motor neuron activity is uncorrelated at 18 hpf and becomes correlated by 

20 hpf via progressive synchronization of subgroups of cells (Warp et al., 2012). Coiling 

behavior starts around 17 hpf and increases to approximately 1 Hz at 19-21 hpf before 

steadily decreasing until 25-26 dpf, after which very little spontaneous contraction occurs 

(Eaton and Farley, 1973; Kimmel et al., 1995; Saint-Amant and Drapeau, 1998).  
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While coiling occurs, embryos also become touch-sensitive around 21 hpf and can 

generate short swim bursts in response to touch by 27 hpf (Saint Amant and Drapeau, 1998). 

At 2 and 3 dpf, embryos and larvae generate infrequent immature swim bursts of long 

duration before displaying mature beat-and-glide swimming that includes a range of 

behaviors by 4 and 5 dpf, at which point they start to feed and exhibit complex predation 

behavior (Drapeau et al., 2002; Borla et al., 2002; McElligott and O’Malley, 2005). Thus, 

spontaneous coiling sets an early electrically-coupled network that contributes to early motor 

behaviors as chemical transmission begins developing, whereas by 4 dpf, mature beat-and-

glide swimming mediated by chemical neurotransmission predominates (Drapeau et al., 

2002). Sensory input could also contribute to development of the spinal cord at this stage, 

either via regulating frequency of motor neuron activation or through an alternative 

mechanism. 

Recently population imaging with GCaMP at embryonic stages demonstrated rostral to 

caudal propagation of motor neuron activity underlying coiling (Muto et al., 2011). Altering 

activity frequency with NpHR led to fewer neurons integrated into the coordinated oscillating 

network (Warp et al., 2012). This evidence suggests that oscillations play a role in setting 

developmental timing and permitting newly born neurons beginning to extend axons into the 

CPG network.   

In work by Warp et al., enhancer trap line Tg(s1020t:gal4), used to monitor coordinated 

oscillations, also labeled ventral longitudinal descending neurons (VeLD) and a small fraction 

of dorsal cerebrospinal fluid-contacting neurons (CSF-Cns) (2012) . VeLDs are 100% 

correlated with the motor network (Saint Amant and Drapeau, 2001). Both motor neurons 

(MNs) and VeLDs are located laterally. Some medially-located neurons displayed long 

uncorrelated calcium transients, suggesting that CSF-cNs might display spontaneous activity 

early in development (Figure 5). 
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V. CSF-cNs in the spinal cord 

Cerebrospinal fluid (CSF) is a fluid that is secreted from the choroid plexus, an epithelial 

structure found in the ventricles of the brain. Its roles are not well understood but are thought 

to include homeostasis, mechanical protection, sleep, transportation of chemical signals, 

migration and guidance of neuroblasts (Bito et al., 1966; Sawamoto et al., 2006). In the spinal 

cord, CSF flows in the lumen of the central canal, which extends the length of the spinal cord 

(Bradbury and Lathem, 1965). A diverse populations of cells surround the vertebrate central 

canal, including ependymocytes, tanyctes (Seitz et al., 1981; Hugnot and Franzen, 2010), and 

neurons known as CSF-contacting neurons or CSF-cNs, which represent an interface between 

the CSF and the nervous system. 

CSF-cNs were originally described in the early twentieth century by Kolmer and Agduhr 

(Kolmer 1921; Agduhr, 1922; Kolmer 1931). Kolmer and Agduhr described the cells as 

neurosensory and intraependymal, respectiviely. Based on the morphology of these 

"Liquorkontakt-Neuronensystem" or liquor-contacting neural system cells, consistent with the 

morphology of known receptor cells, they proposed that the cells might carry sensory 
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function. Kolmer proposed calling them a "parasagittal organ" and Agduhr a "sense organ" 

(Kolmer 1921; Agduhr 1922; Kolmer 1931). 

Following Kolmer and Agduhr's observations, Vigh and Vigh-Veichmann used electron 

microscopy to investigate the morphology of these neurons in a variety of structures (Vigh 

and Vigh-Teichmann, 1971; Vigh and Vigh-Teichmann, 1973; Vigh and Vigh-Teichmann, 

1998). They reported that CSF-cNs in the spinal cord protrude into the lumen of the central 

canal that contains microvilli and a motile kinocilium (Figure 6; Vigh and Vigh-Teichmann, 

1971; Vigh and Vigh-Teichmann, 1973). These morphological details were expanded by 

backfilling with horseradish peroxidase to describe ipsilateral and rostral projecting axons in 

Xenopus (Dale et al., 1987a; Dale et al., 1987b), later confirmed in rat (Stoeckel et al., 2003) 

and zebrafish (Wyart et al., 2009). Since initial descriptions of the morphology and 

projections of CSF-cNs, immunohistochemistry demonstrated that across diverse species 

CSF-cNs are always GABAergic (Figure 6; Barber et al., 1982; Dale et al., 1987a; Dale et al., 

1987b; Bernhardt et al., 1992). 

Thanks to this extensive morphological characterization, CSF-cNs can be viewed as a 

conserved class of neurons across species. In the spinal cord, CSF-cNs are ovoid shaped and 

possess an apical extension that extends into the central canal (Vigh and Vigh-Teichmann, 

1971; Vigh and Vigh-Teichmann, 1973). This extension has a tuft of microvilli and a 

kinocilium, a primary motile cilium, in the zebrafish (Bohm et al., 2016). In addition GABA 

expressio, in various species CSF-cNs can express, for example, neuropeptides such as 

somatostatin (Buchanan et al., 1987; Wyart et al., 2009), urotension-II related peptide (Quan 

et al., 2015), serotonin (Annex 2; Montgomery et al., 2015), and dopamine (Roberts and 

Meredith, 1987; Roberts et al., 1989). 
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In the zebrafish, genetic characterization has demonstrated the CSF-cNs originate from 

two separate progenitor domains in the spinal cord. Dorsal CSF-cNs, also designated as KA', 

originate from pMN and olig2+ precursors, whereas ventral CSF-cNs, also known as KA", 

originate from the lateral floor plate p3 nkx2.2+ precursors (Bernhardt et al., 1992; Park et al., 

2004; Schäfer et al.,  2007; Yang et al. 2010). Both populations are present by the beginning 

of electrical activity in the spinal cord and express GABA by 20 hpf (Djenoune et al., 2014). 

Additionally, dorsal CSF-cNs express somatostatin-1 from 24-55 hpf, a period during which 

extensive axonal outgrowth and birth of secondary motor neurons occurs. Ventral CSF-cNs 

express serotonin from 48-72 hpf, before the onset of mature locomotion (Annex 2). 
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Expanding on this knowledge, extensive characterization of CSF-cNs in the zebrafish 

demonstrated that although ventral and dorsal CSF-cNs both have ipsilateral and rostral 

projecting axons, dorsal CSF-cN axons remain ventral in the spinal cord, whereas ventral 

CSF-cN axons branch and project more dorsally in the spinal cord by larval stages (Annex 2). 

Connectivity of dorsal versus ventral CSF-cNs onto spinal circuits may also differ. Ventral 

CSF-cNs preferentially project onto interneurons involved in both slow (Fidelin et al., 2015) 

and fast (Hubbard et al., in revision) locomotion as well as primary motor neurons active 

during fast locomotion. Connectivity of dorsal CSF-cNs has not been established.  

CSF-cNs are among the earliest born neurons in the spinal cord (Bernhardt et al., 1992). 

GABAergic from the earliest stages of electrical activity in the spinal cord, CSF-cNs could 

function to set the excitability of the motor network via GABA release or develop early in 

response to a requirement for communicating sensory responses from the CSF to the central 

nervous system.  

 

VI. CSF-cNs express TRP channel PKD2L1 

TRP channels belong to a large family of ion channels implicated in a diversity of neural 

signaling processes and found primarily in sensory receptor cells. These channels are 

identified by their homology instead of their function or selectivity because their functions are 

diverse and difficult to understand (Clapham, 2003). TRP channels are identified by their 

structure, six-transmembrane polypeptide subunits that form tetrameric assemblies that are 

permeable to cations. Many TRP channels are almost ubiquitously expressed, and most have 

splice variants (Clapham 2003).  TRP channels function widely in sensory systems and can 

respond to touch, temperature (Peier et al., 2002; Voets et al., 2004), pain (Caterina et al., 

1997; Jordt et al., 2004), osmolarity (Strotmann et al., 2000), pheromones (Liman et al., 

1999), taste (Perez et al., 2002; Huang et al., 2006), and other sensory stimuli. Ongoing 
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debate remains concerning the primary function of TRP channels in sensory pathways; 

evidence suggests they transduce sensory signals but also activate indirectly and play roles in 

modulating gain for responses to sensory inputs (Lin and Corey, 2005; Christensen and 

Corey, 2007). 

The TRPP (polycystin, also known as PKD channels because they are deleted in 

polycystin kidney disease) subfamily includes calcium permeant channels that require a 

partner of another PKD to form a cation channel at the cell membrane. PKD2L1 (PKD2L1 

(Polycystic-kidney-disease-like ion channel 2 – Like 1), also known as TRPP3, is expressed 

in a subset of taste receptor cells (TRC) (Huang et al., 2006; Bushman and Liman, 2015). 

Additionally, PKD2L1 is also expressed in neurons surrounding the central canal of the spinal 

cord (Figure 7; Huang et al., 2006) Recent work demonstrated further that expression of 

PKD2L1 is specific to CSF-cNs in the spinal cord and brainstem of mouse, macaque, and 

zebrafish from early in development of the spinal cord (Figure 8; Djenoune et al., 2014; Orts-

Del’Immagine et al., 2014). 
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In both mouse and macaque, species in which 

immunohistochemistry for PKD2L1 was performed, 

PKD2L1 localizes to the soma and more densely to the 

apical bulbous extension protruding into the central 

canal. CSF-cNs have a motile cilium in zebrafish 

(Bohm et al., 2016). Heteromeric PKD2L1-PKD1L1 

complexes in mice and humans acts as a ciliary calcium 

channel controlling ciliary calcium concentration 

leading to activation of hedgehog pathways directly in 

the cilium (Delling et al., 2013). PKD2L1 can also form 

a complex with PKD1L3 in order to localize to the cell 

surface, whereas PKD2L1 itself has ER retention 

sequences that relegate PKD2L1 homotetramers to the 

endoplasmic reticulum (Murakami et al., 2005). In spinal CSF-cNs in the mouse, PKD2L1 is 

co-expressed with PKD1L2, indicating that PKD2L1 is most likely trafficked to the cell 

surface (Petracca et al., 2016). 

 

VII. Sensory function of PKD2L1 

PKD2L1 was originally identified in a subset of taste receptor cells that lost sour taste 

response when PKD2L1 was genetically ablated from those cells (Huang et al., 2006). 

Therefore, PKD2L1 is thought to be involved in sour taste, however its role in pH detection is 

unclear. When overexpressed in Xenopus oocytes, channel opening decreased when pH was 

lowered (Chen et al., 1999). An "off" response following acidification activates the PKD2L1-

PKD1L3 complex. Alkaline increases in pH increases PKD2L1 activity up to pH 8-9 and 

decreases its activity at higher pH (Inada et al., 2008). 
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PKD2L1 channels have an increased opening probability in hypo-osmotic solutions and a 

decreased opening probability in hyperosmotic solutions (Murakami et al., 2005; Shimizu et 

al., 2009). PKD2L1 channel opening probably also increases after heating followed by rapid 

cooling and is decreased at high temperatures (Higuchi et al., 2014).  

Several reports PKD2L1 may open constitutively (Chen et al., 1999, Liu et al., 2002). 

However it is difficult to disentangle sensory-induced high frequency opening from 

constitutive opening. Expression of recombinant PKD2L1-PKD1L3 tetramers in HEK293 

cells show that this complex may not serve as a sensory transduction element, but that Ca2+ 

spikes controlled by Ca2+ influx through the channel may serve to amplify sensory signals.  A 

recent report demonstrated that Ca2+-dependent activation amplifies a small Ca2+ influx via 

the PKD2L1-PKD1L3 complex triggered by rapid onset/offset of Ca2+, voltage, or acidic 

stimuli (Hu et al., 2015). 

PKD2L1 may also play a role in mechanosensation, though no direct evidence is 

available to support this claim (Lin and Corey, 2005), and calcium imaging showed that 

primary cilia, where PKDs are generally expressed, do not appear to be calcium-responsive 

mechanosensors (Delling et al., 2016). PKD2 senses fluid flow to establish left-right 

determination (Praetorius and Spring, 2005; Yoshiba et al., 2012). However, PKD1L1-

PKD2L1 expressed in vitro showed that although channel activity increased at high pressures 

of 11-13 kPA, the PKD1L1-PKD2L1 channel lacks sensitivity found in classical 

mechanosensitive channels such as Piezo (Coste et al., 2012) or MscL (Sukharev et al., 1994), 

and in TRPP knockout and double and triple knockout mice, mechanotransduction persists in 

hair cells (Wu et al., 2016). Indeed in other systems, such as Drosophila audition, nematode 

touch, and mechanical pain or hair cell transduction in mouse, TRP channels are critical for 

mechanosensation without playing a direct role in transduction of the mechanical stimulus 

(Christensen and Corey, 2007). 
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VIII. CSF-cN function 

 Despite their presence in every vertebrate species investigated (Kolmer, 1921; Agduhr 

1922; Kolmer 1931; Vigh and Vigh-Teichmann, 1971; Vigh et al., 1973; Barber et al, 1982; 

Dale et al., 1987a; Stoeckel et al., 2003; Reali et al., 2011; Jalalvand et al., 2014; Djenoune et 

al., 2014), the physiological role of CSF-cNs is only beginning to be understood. Their 

location around the central canal, morphology, and conserved expression of PKD2L1 and 

GABA suggest that CSF-cNs probably carry mechanosensory or chemosensory functions, 

transmitting changes in flow or composition of the CSF to regulate activity in the spinal cord. 

Thanks to recent development of genetic and optical tools, the function of CSF-cNs has been 

probed directly in recent years. 

 Knowledge of expression of PKD2L1 in sour taste receptor cells strongly suggested a 

role in monitoring pH (Huang et al., 2006). Comparative work in taste receptor cells and CSF-

cNs demonstrated although PKD2L1-positive taste receptor cells transduce acidic stimuli via 

a proton current, sour taste persists in knockouts of the PKD channels (Horio et al., 2011; 

Nelson et al., 2010). The responses of CSF-cNs to acidification in the spinal cord, rapid 

activation and decay kinetics, were reminiscent of ASIC channels (Bushman and Liman, 

2015). In the mouse and lamprey, CSF-cNs respond to pH in a bell-shaped manner, possibly 

using ASIC channels to respond to acidic pH and 

PKD2L1 to respond to alkaline pH (Figure 9; 

Orts-Del’Immagine et al., 2016, Jalalvand et al., 

2016b). Firing rates are lowest when the pH is 

closest to physiological conditions, suggesting 

CSF-cNs may be active during any departures 

from healthy conditions (Jalalvand et al., 2016b). 
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However, the impact of changing firing rates to cope with pH changes on behavior is 

unknown.  

 The Wyart lab has undertaken extensive characterization of the connectivity of CSF-cNs 

and their sensory responses in zebrafish, in which circuits can be manipulated and monitored 

in actively behaving animals. CSF-cNs form monosynaptic connections with excitatory 

interneurons involved in slow locomotion (Fidelin et al., 2015) as well as CaP primary motor 

neurons (Hubbard et al., in revision). During slow locomotion, simultaneous optogenetic 

activation of all CSF-cNs is sufficient to silence ongoing locomotor bouts, while activation of 

CSF-cNs during rest can trigger a slow swim bout, a phenomenon enhanced in a state of high 

excitability following bath application of NMDA (Wyart et al., 2009; Fidelin et al., 2015).  

 Spinal CSF-cNs in the zebrafish also respond to both passive and active bending of the 

tail that is abolished in a pkd2l1 null mutant (Figure 10; Bohm et al., 2016), which suggests 

that Pkd21l in zebrafish may play a critical role in transduction or facilitation of mechanical 

inputs. However, the role of Pkd2l1 in this pathway or other sensory modalities is not 

established. Expression of neuropeptides suggests that CSF-cNs may play a long lasting 

modulatory role on behavioral state or neuronal plasticity, but this is challenging to test on a 

long time scale. Location around the central canal and GABA expression have also lead to 

investigation on whether CSF-cNs could enabling the differentiation of progenitors in the 

ependymal neurogenic niche via GABA release (Reali et al., 2011). However the contexts in 

which CSF-cNs are physiologically activated and the extent to which they play diverse roles 

in the spinal cord are not known. 
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IX. Aims 

Spontaneous activity is critical for developmental processes and function of sensory cells. 

CSF-cNs in zebrafish express GABA and Pkd2l1 early in development as spontaneous 

activity transitions from uncorrelated electrical activity to correlated activation of CPG 

neurons within each spinal hemicord.  

 

1. What are the spontaneous activity levels of CSF-cNs in vivo from embryonic 

development to stages in which mature motor networks are formed? I will address this 

question using genetic targeting, calcium imaging with genetically-encoded calcium 

indicator GCaMP5G.  

 

2. Can spontaneous activity contribute to development of spinal cord networks? Using 

immunohistochemistry and quantification, optogenetics, and electrophysiology, I will 

evaluate the effects of reducing spontaneous activity in CSF-cNs. 

 

3. What is the origin of spontaneous activity and does it reflect sensory properties of 

CSF-cNs? I address this question with pharmacology, calcium imaging, and 

electrophysiological recordings. 
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Zebrafish husbandry 

All procedures were approved by the Institut du cerveau et de la moelle épinière (ICM) and 

the National Ethics Committee on E.U. legislation. All experiments were performed on Danio 

rerio embryos or larvae of AB, TL, or mixed background. For some experiments, mifta-/- 

were used. Embryos or larvae were raised in an incubator at 28.5°C under a 14/10 light/dark 

cycle until the start of experimentation. In the case of some experiments at 24 hpf, embryos 

were raised at 28.5°C until at least 60% epiboly then moved to 26.5°C to delay development 

in order to perform experiments at the correct stage (Kimmel et al., 1995). Experiments were 

performed at room temperature (22-26°C) on 24 hpf embryos to 5 dpf larvae. 

 

Table 1. Transgenic lines used 

Short name Alternate name Labels Reference 

Tg(pkd2l1:GCaMP5G) Tg(pkd2l1:GCaMP5G)icm07 CSF-cNs Böhm et al., 2016 

Tg(olig2:dsred2) Tg(olig2:dsred2) Diverse, includes motor 

neurons and dorsal CSF-

cNs in the spinal cord 

Kucenas et al., 2008 

Tg(HuC:GCaMP5G) Tg(elavl3:GCaMP5G) Most neurons Ahrens et al., 2013 

Tg(s1020t):gal4  Et(-0.6hsp70l:Gal4-

VP16)s1020t 

Motor neurons, CSF-cNs, 

VeLDs 

Scott et al., 2007 

Tg(pkd2l1:gal4) Tg(pkd2l1:gal4)icm10 CSF-cNs Fidelin et al., 2015 

Tg(pvalb6):gal4 Tg(pvalb6):gal4 ventral CSF-cNs Isaac Bianco and Florian 

Engert, unpublished 

Tg(UAS:GCaMP5G) Tg(UAS:GCaMP5G)icm08 N/A Fidelin et al., 2015 

Tg(UAS:ChR2-mCherry) Tg(UAS:Cr.ChR2_H134R-

mCherry) 

N/A Schoonheim et al., 2010 

Tg(UAS:mCherry) Tg(UAS:mCherry) N/A Herwig Baier lab, un-

published 
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Generation of transgenic lines 

The pkd2l1-/- mutant was generated by Lydia Djenoune and Andrew Prendergast, 

methods are adapted from Böhm et al., 2016. 

To generate the Tg(pkd2l1:GCaMP5G)icm10 transgenic line expressing the GCaMP5G 

reporter gene in pkd2l1 expressing cells, we amplified 3.8kbp of genomic sequence 

immediately upstream of the predicted ATG site for the zebrafish pkd2l1 gene 

(ENSDARG00000022503)13 as well as 630 bp of highly conserved DNA in intron 2. Both 

DNA fragments were then subcloned into the pT2KhspGFF plasmid using restriction 

digestion and T4 ligation. The 3.8 kb promoter region was cloned in place of the hsp 

promoter, while the intronic sequence was placed after the Gal4 stop codon and before the 

SV40 poly-A site. For establishing the Tg(pkd2l1:GCaMP5G)icm07, the same strategy was 

used by regular cloning with the PT2 vector containing the GCaMP5G construct. 

RNA coding for each TALEN monomer (left arm target: 50-

TGAGAAAGGATACAAAAG-30; right arm target: 50-TTGAG ATTTGCTTTGACG-30) 

was synthesized by the mMessage mMachine in vitro transcription kit (Invitrogen) and 

injected into Tg(pkd2l1:GCaMP5G)icm07 embryos at the one-cell stage. Injected embryos 

were pooled and a crude DNA extract was harvested. A DNA cassette containing the target 

site was amplified by PCR (primers: 50-AGGGCAAGAGAATGGCAAGACG-30 and 50-

TGTGTGCTA GGACTGTGGGG-30), and the resulting band was digested by SacI (Roche) 

to confirm disruption of the TALEN site. The mutant alleles were cloned by TOPO cloning 

(Invitrogen) and sequenced to determine the exact nature of the mutations. The pkd2l1icm02 

mutant allele is an 8 bp deletion in exon 2 causing a þ1 frameshift that terminates in a stop 

codon within 35 amino acids of the substitution, upstream of the first transmembrane domain 

of Pkd2l1. All analysis was performed blind to genotype, which was only assayed at the 

conclusion of each experiment. 
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Coiling Assay in pkd2l1 -/- 

Heterozygotes for pkd21l were crossed together to obtain a mix of pkd2l1+/+ pkd2l1+/-, 

and pkd2l1-/- offspring. Coiling was evaluated blindly at 24 hpf for 2 minutes. Embryos were 

genotyped following experiments. All images were obtained using a uEye camera (IDS 

Imaging Development Systems GmbH, Obersulm, Germany). 

 

Preparation of embryos or larvae for calcium imaging 

Tg(pkd2l1:GCaMP5G); pkd2l1+/- adults were crossed to obtain pkd2l1+/+ pkd2l1+/-, and 

pkd2l1-/- offspring from 24 hpf to 5 dpf. Embryos or larvae were anesthetized in 0.02% MS 22 

and mounted laterally in 1.5% low melting point agarose in glass-bottomed dishes filled with 

fish facility water. Once embedded in agarose, approximately 2 nl of 0.5 mM α-Bungarotoxin 

(Tocris, Bristol, UK) was injected inn the caudal ventral axial musculature to induce 

paralysis.  

 

Multiday calcium imaging 

Embryos and larvae were imaged between segments 5-12 using an upright microscope 

(Examiner Z1, Zeiss, Germany) with a spinning disk head (CSU-X1, Yokogawa), and a 

modular laser light source (3i Intelligent Imaging Innovations, Inc., Denver, Colorado, USA, 

Examiner Z1, Zeiss, Germany) using a long distance water-immersion 20X objective (Zeiss, 

NA=1). Calcium transients were acquired from GCaMP5G expressing CSF-cNs at 4Hz using 

Slidebook software (3i Intelligent Imaging Innovations, Inc., Denver, CO, USA) and 

reconstructed online using Fiji (fiji.sc/). All experiments were performed blind; embryos and 

larvae were genotyped following experiments. 
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Quantification  

For analysis, ROIs were selected manually based on maximum z-projections. Analysis 

of ΔF/F was calculated using custom scripts written in MATLAB (The Mathworks, Natick, 

MA, USA). Photobleaching was corrected for all calcium traces by fitting a polynomial decay 

function. The baseline F0 was a manually selected based on periods of time with low 

spontaneous activity. ΔF/F for each ROI was calculated as ΔF/F = (F(t) – F0) / F0  from the 

adjusted trace. To estimate the contribution of background fluorescence to the calculated 

signal, ROIs from the dorsal spinal cord that did not have GCaMP labeled cells were selected 

from twenty traces and averaged. Cross-correlation between ROI was performed in MATLAB 

(The Mathworks, Natick, MA, USA) with the xcorr function, which measures the similarity 

between one time sequence and shifted (time-lagged) copies of a second time sequence as a 

function of the lag. 

 

Integral analysis 

Due to unstable baselines due to high levels of activity, calcium traces were additionally 

corrected by identifying minima along the calcium trace using an open-source signal 

processing toolbox 

(https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm.) A second 

degree polynomial function was fitted to thresholded minima on the ΔF/F trace, and then 

integral ʃΔF/F was calculated based on this corrected ΔF/F trace using a trapezoidal integral 

approximation. ΔF/F for all ventral or dorsal ROIs were averaged per embryo or larvae for 

comparison (Figure). 

 94

https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm


Chapter 3                        ____________________    __Materials and Methods 

 

Figure. Baseline correction 

for calcium imaging 

integral quantification 

Traces in red are ΔF/F based 

on raw fluorescence values. 

The black line indicates a 

second-degree polynomial fit 

to thresholded minima on the 

red trace. The blue trace 

represents correlated ΔF/F 

from which the integral was 

calculated. 

 

 

 

 

 

Pharmacology 

24 hpf Tg(s1020t:gal4:UAS:GCaMP5G) or Tg(pkd2l1:GCaMP5G) embryos were 

prepared as described above (preparation for calcium imaging) Following a four minute 

baseline recording, embryos were injected in the yolk sac with approximately 3 nl of 500 uM 

TTX or artificial CSF artificial CSF (concentrations in mM: 134 NaCl, 2.9 KCl, 1.2 MgCl2, 

10 HEPES, 10 glucose, 2 CaCl2; 290 mOsm +/- 3 mOsm, pH adjusted to 7.8 with NaOH). 

Post-injection recordings were recording after 15-30 minutes. 

 

Immunohistochemistry 

Immunohistochemistry was perfomed in pkd2l1+/+ pkd2l1+/-, or pkd2l1-/- embryos and 

larvae that were also Tg(pkd2l1:GCaMP5G). Embryos and larvae were all stained for GFP 

plus either 5-HT or GABA. Imaging was performed on an upright laser scanning confocal 

Olympus FV-1000 microscope (PICPS, ICM). 
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5-HT: Embryos and larvae from 24 hpf to 3 dpf were fixed in 4% PFA, 1% DMSO prior 

to incubation in 50mM of glycine in 0.1% PBS-Triton X-100 (PBSTx). Following blocking 

for 2 hours in 1% DMSO, 1% NGS, 1% BSA, and 0.7% Triton X-100, the primary antibody 

was applied (rabbit anti-5-HT, 1:2000, provided by Dr. Steinbusch, Maastricht University, 

Netherlands; chicken anti-GFP, 1:500, Abcam, Cambridge, UK) in blocking buffer overnight 

at 4°C. Following washing, Alexa- conjugated secondary antibodies IgG (1:500, Invitrogen, 

Carlsbad, CA, USA) were applied in blocking buffer overnight at 4°C. 3 dpf larvae were 

treated prior to staining with For IHC at 3 dpf, 30% sucrose was added in fixation solutions, 

and prior to staining, larvae were treated with 0.2mg/ml collagenase in PBS for 5min and the 

skin was removed with forceps to increase permeabilization. 

GABA: Larvae at 3 dpf were fixed in 4% PFA, 0.1% glutaraldehyde, and 30 % sucrose, 

then the skin was removed. Larvae were dehydrated stepwise in increasing concentrations of 

methanol, incubated at -20°C for at least 2 hours, then rehydrated step-wise. Larvae were 

digested with 0.5U/mL dispase (Invitrogen, Carlsbad, CA, USA) in PBS-Tween for 72 hours. 

Following blocking in 1% DMSO/2% BSA/5% NGS/PBS-Tween, larvae were incubated 

overnight in the primary rabbit anti-GABA antibody at 4°C (1:2000, Sigma-Aldrich A2052, 

St. Louis, MO, USA; chicken anti-GFP, 1:500, Abcam, Cambridge, UK) in blocking solution. 

Larvae were incubated with Alexa conjugated secondary antibodies overnight at 4°C (1:500, 

Invitrogen, Carlsbad, CA, USA).  

 

Electrophysiology 

Embryos or larvae were anesthetized in 0.02% MS-222 dissolved in aCSF 

(concentrations in mM: 134 NaCl, 2.9 KCl, 1.2 MgCl2, 10 HEPES, 10 glucose, 2 CaCl2; 290 

mOsm +/- 3 mOsm, pH adjusted to 7.8 with NaOH), then pinned to a Sylgard-lined dish with 

0.025 mm diameter tungsten wires inserted in the notochord and paralyzed by injection into 
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caudal axial muscle with 0.5 mM α-Bungarotoxin (Tocris, Bristol, UK). A region of 2-3 

segments was dissected, skin and muscle were removed by gentle suction. Patch clamp 

electrodes (6-10 MΩ resistance) were pulled from borosilicate glass (World Precision 

Instruments, USA) using a P-1000 micropipette puller (Sutter Instruments, USA).  

For loose patch recordings, electrodes were filled with aCSF and low resistance seals of 

15-35 MΩ were obtained to extracellularly observe cell firing. When loose-patch recordings 

were coupled with calcium imaging. Tg(pkd2l1:GCaMP5G) embryos of 25-27 hpf were used, 

and experiments were acquired with using a MultiClamp 700A amplifier, a Digidata series 

1322A Digitizer, and pClamp 8.2 software (Axon Instruments, Molecular Devices). Calcium 

imaging was performed as described above (Multiday calcium imaging).  

For whole cell recordings of CSF-cNs, patch clamp electrodes (6-10 MΩ resistance) were 

pulled. Experiments were performed in Tg(pkd2l1:gal4: UAS:mCherry) or Tg(pvalb6:gal4); 

UAS:mCherry for ventral CSF-cNs, Tg(pkd2l1:gal4: UAS:mCherry) or Tg(olig2:dsred) for 

dorsal CSF-cNs. For motor neuron recordings at 3 dpf, higher resistance electrodes (8-13 MΩ 

resistance) were used. Patch electrodes were filled with intracellular solution (concentrations 

in mM: K-gluconate 115, KCl 15, MgCl2 2, Mg-ATP 4, HEPES free acid 10, EGTA 0.5, 290 

mOsm, adjusted to pH 7.2 with KOH, Alexa 488 added to 5 mM final concentration). Liquid 

junction potential was calculated to be -19 mV and corrected for analysis. 

Whole cell recordings were obtained with a MultiClamp 700B amplifier, a Digidata 

series 1440A Digitizer, and pClamp 10.3 software (Axon Instruments, Molecular Devices 446 

Sunnyvale, CA, USA). Raw signals were acquired at 15 kHz and low-pass filtered at 10 kHz. 

Analysis of electrophysiological data was performed offline using Clampex 10 software 

(Molecular Devices, California, USA) or MATLAB (The Mathworks, Natick, MA, USA).  

To identify single channel events in whole cell recordings, cells were held in gap-free 

voltage clamp configuration at -85 mV. Events were segregated into those lasting less than 
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1.5 ms or longer than 2 ms because events shorter than 2 ms had highly variable currents 

associated with partial channel opening. A manual threshold was used to determine the 

amplitude of a single channel opening based on visualization. Initial channel opening 

frequency was based on an arbitrary 20 s window of a gap-free voltage clamp recording at 

least 1 minute after breaking into the cell. 

 

Evaluation of monosynaptic connection between CSF-cNs and CaP PMNs in pkd2l1-/- 

Homogyzous pkd2l1-/- adults were incrossed to obtain pkd2l1-/- offspring. In order to 

sparsely label CSF-cNs with ChR2, fertilized embryos were injected with DNA constructs 

pkd2l1:gal4 and UAS:ChR2-mCherry at the single-cell stage at 25 ng/ul. Larvae were 

screened at 3 dpf for ChR2-mCherry+ CSF-cNs with an axon that formed a basket-like 

structure midway along the dorsoventral axis, suggestive of the CSF-cN-CaP connection. 

Whole cell recordings of CaPs were performed as described above. Activation of CSF-cNs 

was achieved by whole field stimulation through a 40x objective for 5 ms with a blue LED 

(UHP-Mic-LED-460, Prizmatix Ltd., Israel, power = 3.88 mW/mm2) through a digital micro 

mirror device with all mirrors in the "on" position (described in Chapter 2). All experiments 

were run as a set of ten trials. Two sets of experiments were performed for each cell. 

 

CSF-flow stimulus  

For testing the response of CSF-cNs to flow in the central canal, 26-29 hpf 

Tg(pkd2l1:GCaMP5G) embryos were prepared as for electrophysiology: embryos were 

anesthetized in 0.02% MS-222 dissolved in aCSF (concentrations in mM: 134 NaCl, 2.9 KCl, 

1.2 MgCl2, 10 HEPES, 10 glucose, 2 CaCl2; 290 mOsm +/- 3 mOsm, pH adjusted to 7.8 with 

NaOH), then pinned through the notochord to a Sylgard-lined dish with 0.025 mm diameter 

tungsten wires and paralyzed by injection into caudal axial muscle with 0.5 mM α-
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Bungarotoxin (Tocris, UK). A region of 2-3 segments was dissected, skin and muscle were 

removed by gentle suction. A patch pipette (3-5 MΩ) connected to a pico-spritzer was filled 

with aCSF and inserted into the central canal. Visualization of a 300 ms stimulus at 5 psi 

confirmed that the flow was contained in the central canal. Each stimulus comprised a 300-

500 ms long stimulus applied with a pressure of 5-10 psi. Experiments were performed as sets 

of three stimuli with twenty second intervals between stimuli. Calcium imaging was 

performed with an EM-CCD camera (Hamamatsu Photonics, Japan), and images were 

acquired at 10 Hz using a custom script (Urs Böhm) written in LabVIEW (National 

Instruments, USA). The stimulus and calcium imaging were triggered and synchronized via 

pClamp 10.3 software (Axon Instruments, Molecular Devices, USA). Analysis of calcium 

transients was performed offline as described above. Peak ΔF/F was the maximal value in the 

five frames following the end of the stimulus. For each acquisition, a background ROI was 

used to estimate contribute of out-of-focus signals to the change in fluorescence. On average, 

these signals represented approximately 5% ΔF/F.  

 

Dual color two-photon imaging  

27-30 hpf embryos were embedded in agar as described above in either a dorsal or lateral 

orientation. Calcium imaging was performed on a two-photon microscope (2p-vivo, 

Intelligent Imaging Innovations, Inc., USA) using a 20x objective. Images were acquired at 

6.5 Hz. Regions of interest around CSF-cN cell bodies expressing both GCaMP5G and 

tagRFP were manually defined in MATLAB (The Mathworks, UAS).  To correct for motion 

artifacts due to muscle contraction-relation motion, the ratio of the GCaMP and the tagRFP 

signal (ΔR/R) was calculated. Maximum ΔR/R for each ROI was calculated following the 

return of the cell to its initial position prior to muscle contraction in the 10 frames following 

the end of the contraction. 
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I. Characteristics of spontaneous activity during early development 

Previous studies in zebrafish described in detail rhythmic oscillations that underlie coiling 

behavior occurring from 17-25 hpf (Saint Amant and Drapeau, 1998; Saint Amant and Drapeau, 

2000; Warp et al., 2012). Motor neurons and early born interneurons that will become part of the 

CPG network to generate locomotion in the spinal cord integrate into a gap junction coupled 

network driven by glutamatergic descending interneurons in the hindbrain and rostral spinal cord 

(Saint Amant and Drapeau 2001; Tong and McDearmid, 2012). At these stages, activity is restricted 

to ventrally-located cells that participate in the rhythmic coiling network (Figure 1A). The 

electrophysiological signature is periodic inward currents and synaptic bursts (Figure 1B). These 

oscillations require gap junction coupling (Figure 1C). GABAergic and pkd2l1+ CSF-cNs are 

present at this stage but were presumed to be silent, likely because access to these cells for 

electrophysiological recording is difficult as they are medially located in the spinal cord around the 

viscous central canal and the ventral longitudinal axonal fasciculus. 
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Dorsal CSF-cNs, VeLDs and motor neurons are labeled at the embryonic stage in the 

transgenic enhancer trap line Tg(s1020t:gal4) (Warp et al., 2012) . A previous study reported that a 

small subpopulation of medially-located putative CSF-cNs appeared to be active when this 

population was imaged with the genetically-encoded calcium indicator GCaMP3 (Warp et al., 

2012). Calcium imaging in Tg(s1020t:Gal4; UAS:GCaMP5G) at 24 hpf confirmed that these few 

CSF-cNs did not participate in the rhythmic network, and their activity did not correlate with motor 

neurons or each other (Figure 2A-2B).  In order to characterize better this sparse activity, I 

performed calcium imaging at 24-25 hpf in a transgenic line labeling all CSF-cNs 

Tg(pkd2l1:GCaMP5G) (Böhm et al., 2016; Annex 2). Imaging laterally to identify ventral versus 
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dorsal CSF-cNs, a few dorsal CSF-cNs displayed rare calcium transients. Surprisingly, ventral CSF-

cNs, not labeled in the Tg(s1020t:gal4) enhancer trap line displayed massive, uncorrelated, and 

long-lasting calcium transients in almost all neurons at 24-25 hpf (Figure 2C-2D). 

In other experiments at larval stages, CSF-cNs did not appear to be active, so we asked whether 

this activity was restricted to early development and could reflect spontaneous network activity. To 

address this question, we imaged CSF-cNs in the Tg(pkd2l1:GCaMP5G) daily from 1-5 dpf, stages 

during which embryonic behavior transitions to more mature larval locomotor networks, and CSF-

cNs develop the morphology of a pear-shaped cell body with a brush of microvilli that extends into 

the central canal (Figure 3A-3B). Although spontaneous activity overall increased between 

embryonic (from 2 dpf) and larval stages, a period during which the transition to mature swimming 

occurs, the highest level of activity was restricted to the ventral CSF-cN population at 1 dpf (Figure 

3C). 

All CSF-cNs express pkd2l1 from 18 hpf (Djenoune et al. 2014), when spontaneous activity in 

the spinal cord starts, therefore we asked whether this channel contributes to this embryonic 

activity. I took advantage of a pkd2l1-/- mutant generated in the lab (Böhm et al., 2016) to test 

whether spontaneous activity was affected in CSF-cNs lacking Pkd2l1 (Figure 4). Activity was 

almost completely abolished in ventral cells at 1 dpf when dorsal CSF-cN activity was already low 

(Figure 4A-4C). Activity in both ventral and dorsal CSF-cNs increased in wild type larvae by 4 and 

5 dpf, when larvae can execute mature swim bouts (Figure 4C). This activity was significantly 

reduced in the pkd2l1-/- mutant in ventral and dorsal CSF-cNs at 4 and 5 dpf (Figure 4A-4B).  In 

both ventral and dorsal CSF-cNs, correlated activity between cells occurred in approximately 15% 

of fish from embryonic to larval stages (Figure 5A, Table). A small level of activity remained in 

the pkd2l1-/- mutant, which mostly occurred in the context these correlated events between CSF-cNs 

(Figure 5B, Table). 
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II. Evaluation of developmental effects due to loss of activity 

Calcium transients in GABAergic CSF-cNs predominated at embryonic stages during which 

the spinal cord has a high level of spontaneous network activity (Figure 3A) and was strongly 

reduced at embryonic and larval stages (Figure 4A-4C). Therefore, this activity could potentially 

contribute to development of a functional locomotor network. CSF-cNs project axons ipsilaterally 

and rostrally and express GABA from as early as 18 hpf (Djenoune et al., 2014, Bernhardt et al., 

1992).  GABA is known to play important roles in activity-dependent development, and GABA 

release also contributes to setting the excitability of oscillating networks to set frequency of 

oscillation, entraining a clock for developmental timing (Barbin et al., 1993; Represa and Ben-Ari, 

2005; Kastanenka and Landmesser, 2013). We therefore postulated that early GABAergic release 

by CSF-cNs may contribute to proper development of the spinal cord or setting oscillation 

frequency for the developing motor network. GABA can be excitatory or shunting at early stages 

because chloride exporter KCC2 is only expressed starting at 2 dpf (Ben-Ari, 2002; Reynolds et al., 

2008), and GABA release could condition the excitatory of the spinal cord, affecting the frequency 

of oscillations. In zebrafish, GABA does not drive spontaneous oscillations of motor neurons and 

other CPG neurons at embryonic stages (Saint Amant and Drapeau, 2000). However, GABA release 

could have an impact on neurotransmitter phenotype, number of CSF-cNs, development of synaptic 

connections, expression of neuropeptides, or neuron morphology. 

To investigate whether the frequency of motor network oscillations was altered by CSF-cN 

activity, we assessed coiling frequency when synaptic release was silenced (Chapter 2) or in the 

pkd2l1-/- mutant. Coiling was unaffected in both conditions. Wild type embryos performed coiling 

behavior at 0.58 Hz on average (n = 7 embryos), and similarly pkd2l1-/- mutants coiled at 0.57 Hz (n 

= 6 embryos, p > 0.05, unpaired t-test). 

Activity was lost in the pkd2l1-/- mutant (Figure 4), and this loss of activity may affect 

development of the spinal cord. We performed morphology and axonal trajectory analysis,  
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analysis of neurotransmitter phenotype, quantification of CSF-cNs, and evaluation of synaptic 

connections with whole cell patch clamp recordings. CSF-cNs retained their standard morphology 

and axonal projections (Annex 2). Reducing the amount of GABA releases could generate an 

imbalance in excitatory versus inhibitory populations, affecting the GABAergic phenotype or 

number of CSF-cNs or other neurons. At 3 dpf the larval spinal cord has 267 ± 8 CSF-cNs in wild 

type larvae (Figure 6A). CSF-cNs retained their GABA expression (Figure 6B-6C) at 3 dpf 

showing comparable numbers with wild type larvae. 

Serotonin transient expression is a feature of developing neural networks and is thought to 

contribute to proper development of neuronal circuits (Gaspar et al., 2003). CSF-cNs show transient 

serotonin expression (Montgomery et al., 2015; Annex 2). Yet, loss of spontaneous activity did not 

affect CSF-cN serotonin expression (Figure 6D-6E).  In addition to morphology and development 

of correct neurotransmitter phenotype, spontaneous network activity contributes to formation of 

functional synaptic connections (Gonzalez-Islas and Wenner, 2006). CSF-cNs form monosynaptic 

connections with CaP primary motor neurons, a single spike inducing large amplitude short latency 

inward currents in a connected CaP (Chapter 2; Hubbard et al., in revision), involved in producing 

fast swimming movements as well as MCoDs (Fidelin et al., 2015), excitatory interneurons active 

during slow swimming (McLean et al., 2008).  

The connection between CSF-cNs and CaP primary motor neurons is restricted to ventral CSF-

cNs. The ventral population is highly active at early stages, and this connection is both easily 

identified by the characteristic basket shape formed by the CSF-cN axon and is 100% reliable in 

wild type larvae (n = 37, Chapter 2; Hubbard et al., in revision). Therefore I decided to test 

whether loss of Pkd2l1 and loss of spontaneous activity disrupted this connection. In order to 

address this question, homozygous pkd2l1 -/- mutants were injected at the single-cell stage with 

constructs for pkd2l1:gal4 and UAS:ChR2-mCherry DNA constructs to sparsely label CSF-cNs 

with ChR2-mcherry. Larvae were screened at 3 dpf for the basket shape indicative of CaP 

innervation, and ChR2-mediated activation of CSF-cNs was coupled with a whole cell patch clamp 
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recording of the CaP in vivo to evaluate the reliability of this connection (Figure 7A-7B). In both 

control and pkd2l1-/- larvae, a single spike induced short latency inward currents of similar 

amplitude in the recorded CaP (Figure 7D). The CSF-cN-CaP connection displays short term 

plasticity, habituating in response to high frequency repeated stimuli (Hubbard et al., in revision), 

which is conserved in the pkd2l1-/- mutant (Figure 7E-7F).  
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Altogether, these results demonstrate that the pkd2l1-/- mutant has preserved morphology, 

axonal trajectory, neurotransmitter phenotype, number of CSF-cNs, and synaptic connections. In 

addition to using the pkd2l1-/- mutant to silence embryonic activity, we expressed botulinum 

neurotoxin in CSF-cNs to silence synaptic release (Chapter 2). Silencing synaptic release in a 

majority of CSF-cNs with genetically encoded botulinum neurotoxin did not affecting coiling 

frequency or neurotransmitter phenotype of CSF-cNs and their putative synaptic partners (Chapter 

2, Figure 1, Supplemental Figure 2). These results together suggest that the early spontaneous 

network activity of CSF-cNs during embryonic stages does not play a critical role in their 

development or development of functional spinal cord networks. 

 

III. Spontaneous activity of CSF-cNs relies on Pkd2l1 channel activity. 

Pkd2l1 conditions high activity at embryonic stages exclusively in ventral CSF-cNs (Figure 3). 

This activity related to Pkd21l appeared not critical for development, although some function may 

be compensated during development by the activity of other subpopulations of neurons. As the 

physiology of the PKD2L1 channel is complex (Clapham, 2003) and remains poorly understood, 

we investigated the role of this channel in driving spontaneous activity and sensory responses in 

CSF-cNs. 

Although calcium imaging classically reflects spiking in response to varied stimuli, the diverse 

function of calcium within cells could hamper this analysis. Pkd2l1 forms heteromeric tetramers 

with a PKD1 partner in taste receptor cells in the mouse (Ishimaru et al., 2006), in primary cilia 

(Delling et al., 2013), and in CSF-cNs in the mouse (Petracca et al., 2016), which allows targeting 

of the channel to the plasma membrane (Murakami et al., 2005). However, this reports also 

demonstrated that Pkd2l1 can also form homomeric tetramers at the endoplasmic reticulum 

(Murakami et al., 2005), from which release of calcium could trigger calcium waves and calcium 

release that modulates excitability. 
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In order to determine the mechanisms underlying CSF-cN spontaneous activity, I used 

tetrotodoxin (TTX), a voltage-gated sodium channel blocker to silence synaptic activity 

systemically in the embryonic zebrafish and recorded calcium transients in either motor neurons of 

CSF-cNs using calcium imaging. TTX injected into the yolk effectively silenced motor neuron 

oscillations present at 24 hpf in Tg(s1020t:gal4; UAS:GCaMP5G) embryos (Figure 8A-8C), 

demonstrating effectiveness at embryonic stages. In Tg(pkd2l1:GCaMP5G) embryos, expressing 

GCamP5G in CSF-cNs, the level of calcium activity in ventral CSF-cNs was significantly reduced 

but not abolished. (Figure 8D-8G). Control injections of artificial CSF into the yolk may also cause 

a decrease in the overall level of activity (Figure 8F-8G), possibly confounding interpretation of 

the absolute changes in calcium activity. These results indicate that TTX is effective as it silences 

motor neuron activity relying on TTX-sensitive sodium channels for generating spikes. In contrast, 

activity of CSF-cNs persists, indicating that the activity relies mainly on the Pkd2l1 channel and 

that sodium channels at most contribute to amplifying it. 

If the spontaneous activity is intrinsic to CSF-cNs, the activity could reflect either action 

potentials or calcium-induced calcium release leading to high changes in calcium levels within 

CSF-cNs. Coupling calcium imaging in Tg(pkd2l1:GCaMP5G) with extracellular recordings in 

loose-patch configuration allowed simultaneous recording of electrical activity and calcium activity 

without influencing spontaneous patterns. Ventral CSF-cNs fired regular action potentials at 24-26 

hpf (Figure 9A), while dorsal cells never spontaneously fired (Figure 9B). When simultaneously 

performing calcium imaging and loose-patch recordings, calcium transients typically corresponded 

to bursts of action potentials (Figure 9C). Single action potentials were usually not detected by 

GCaMP5G in Tg(pkd2l1:GCaMP5G) (Figure 9C).  
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IV. Origins of activity in CSF-cNs 

Together the results from TTX experiments (Figure 8) and loose-patch recordings (Figure 9) 

establish that ventral CSF-cNs spontaneously regularly fire action potentials at 1 dpf, generating 

large, long-lasting calcium transients. Additionally, this activity depends on Pkd2l1 because the 

activity is lost in a mutant lacking this ion channel. These results raised questions about the origin 

and role of Pkd2l1-driven activity in CSF-cNs. How could Pkd2l1, present in both ventral and 

dorsal CSF-cNs, drive activity in only one of these two populations? Several hypotheses arose: 

 

1. Intrinsic properties of CSF-cNs differ, and only ventral CSF-cNs are capable of generating action 

potentials at 1 dpf. Pkd2l1 channel opening depolarizes the CSF-cNs and generates action potentials 

in ventral CSF-cNs. 

 

2. Differences in translation or sub-cellular localization of Pkd2l1 in ventral and dorsal CSF-cNs: 

Pkd2l1 is present at the cell membrane in ventral CSF-cNs and its opening depolarizes the 
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membrane to generate an action potential in ventral CSF-cNs but does not have the requisite Pkd1-

like partner necessary to be trafficked to the membrane in dorsal CSF-cNs. 

 

3. The activity is not spontaneous. Extrinsic factors cause Pkd2l1 to open constitutively in ventral 

but not dorsal CSF-cNs.  

 

CSF-cNs do not appear to fire action potentials in response to depolarizing currents from 22-24 

hpf (Moreno and Ribera, 2014), however no previous studies have addressed electrical properties of 

CSF-cNs later in development when CSF-cNs are active. To test whether differences between 

intrinsic properties of dorsal and ventral CSF-cNs could lead to differences in spontaneous firing at 

1 dpf, I performed fluorescence-guided whole cell patch clamp recordings at 24-29 hpf (Figure 8). 

From 24-29 hpf, most ventral and dorsal cells produced a single action potential in response to a 

small sustained depolarizing current of either 10 or 20 picoampere (pA) and a rebound action 

potential after a prolonged period of hyperpolarization (Figure 10A-10D). Membrane resistance 

and capacitance were not significantly different between ventral and dorsal cells, although the 

membrane time constant was significantly higher in ventral CSF-cNs (Figure 10E-10G), which 

could contribute to an integration of inputs over longer durations, leading to more frequent burst 

firing. 

Both ventral and dorsal CSF-cNs in the zebrafish spinal cord express Pkd2l1 (Djenoune et al., 

2014), but PKD2L1 requires a PKD partner to operate functionally at the cell surface (Ishimaru et 

al., 2006). CSF-cNs might have differential activity due to different subcellular localization of 

Pkd2l1 in ventral and dorsal CSF-cNs. Voltage-clamp recordings revealed that both ventral and 

dorsal cells have extensive single channel opening at 1 dpf (Figure 11). Channel activity reversed 

between 6-20 mV, in accordance with a cationic conductance. (Figure 11A-11C).  CSF-cNs in 

zebrafish respond to mechanical stimuli and respond to decrease in osmolarity in the mouse (Orts-

Del’Immagine et al., 2012). Analyzing frequency of channel open was thus hindered by a massive 
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increase in channel activity in the first 60 seconds of breaking into the cell, possibly due to a change 

in osmolarity induced by the step of breaking-in. Dorsal CSF-cNs showed high levels of single 

channel activity during the first five minutes of recording that declined to almost zero within 5-10 

minutes of the beginning of recording, while ventral cells were less markedly affected by breaking 

into the cell and sustained channel activity at 1 Hz at 5-10 minutes of recording (Figure 11D). This 

relative difference in activity over time was preserved in shorter duration events that represented 

partial channel opening (Figure 11E). Altogether these results show that both ventral and dorsal 

populations have single channel openings, suggesting that Pkd2l1 is functionally expressed in both 

populations at the cell membrane but may have differences in channel opening probability leading 

to differences in spontaneous firing rates. 
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In voltage-clamp recordings performed to detect spontaneous currents, no synaptic events were 

present, but current amplitude was highly variable. To determine if all of the spontaneous inward 

currents were related to Pkd2l1 activity, I performed whole cell patch clamp recordings in the 

pkd2l1 -/- mutant (Figure 12). CSF-cNs lacking Pkd21l retained the ability to fire action potentials 

in response to depolarizing current injection (Figure 12A) or as a rebound to a hyperpolarizing 

current step (Figure 12B). However, almost all spontaneous currents were abolished (Figure 12C). 

Membrane resistance, capacitance, and the time constant were within the ranges of wild type CSF-

cNs. Single channel events lasting longer than 2 ms, reflecting complete opening of the channel, 

rarely occurred or appeared in bursts (Figure 12C-12D), which could reflect the remaining, often 

correlated, activity remaining in these neurons (Figure 5, Table). We can conclude that Pkd2l1 

does not seem to affect neuronal properties, and almost all spontaneous inward current relies on 

Pkd2l1.  

To ask whether differences between the two cell types could be due to intrinsic properties and 

high membrane resistance of CSF-cNs relative to later stages, I recorded from CSF-cNs at larval 

stages. At 1 dpf, a single channel opening generates enough inward current (approximately 20-25 

pA) to depolarize a CSF-cN and generate an action potential (Figure 11). This is preserved at 4 dpf 

(Figure 13A). Some CSF-cNs also retain a rebound action potential following hyperpolarization 

(Figure 13A-13B). Membrane resistance is comparable, although capacitance and membrane time 

constant may be slightly higher than at embryonic stages (Figure 13C). In gap-free recordings 

performed in voltage clamp configuration, CSF-cNs at 4 dpf also show high frequency channel 

opening that persists over time (Figure 13D-13E). These results suggest that extrinsic factors likely 

determine the probability of channel opening and relay sensory information read out by CSF-cNs.   
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If “spontaneous” activity is actually related to sensory function, how early do CSF-cNs carry 

sensory function and in what role does Pkd2l1 play? CSF-cNs sense pH, osmolarity, and relay 

mechanosensory information to spinal circuits. In the zebrafish, CSF-cNs respond to both passive 

and active bending of the tail at larval stages (5-6 dpf, Böhm et al., 2016), which depends on 

Pkd2l1. However, how Pkd2l1 participates in this response has not been investigated. Present on the 

cell surface as evidenced by whole cell recordings (Figures 11-13), Pkd2l1 could act as a direct 

mechanosensitive channel. In the lamprey, pharmacological block of ASIC channels blocks 

response to CSF flow, suggesting that PKD and ASIC channels may work together and possibly 

with other channels to carry a mechanosensory response (Jalalvand et al., 2016a). If CSF-cNs are 

responding to flow, one possibility is that other cells detect bending, and these signals are 

transmitted to CSF-cNs. 
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If CSF-cNs respond to mechanosensory input at embryonic stages, early embryonic activity 

could relate to sensory function of CSF-cNs. To test whether CSF-cNs are activated during muscle 

contraction at embryonic stages, I performed calcium imaging in unparalyzed in pkd2l1+/+ or 

pkd2l1-/-  embryos expressing GCaMP5G and tagRFP under the pkd2l1 promoter, using the tagRFP 

expression as a reference for cellular location (Figure 14A) and quantified changes in GCaMP 

fluorescence following muscle contraction (Figure 14A-14B). CSF-cNs are activated when muscle 

contraction is initiated, suggesting their response to mechanical stimuli begins at 1 dpf. It also 

appeared that the pkd2l1-/- mutant may also retain some response to bending at this stage (Figure 
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14C). Further investigation will be necessary to determine whether the response was reduced but 

preserved in pkd2l1 -/- and if other ion channels could be involved in mechanosensory transduction 

in these neurons. 

Thanks to genetic and pharmacological tools, it is now possible to test the relative contribution 

of Pkd2l1 and other ion channels to sensory function in CSF-cNs. I developed a preparation (Figure 

15A) to test whether CSF-cNs respond directly to flow in the central canal. Neurons that do not 

contact the central canal do not respond to a brief water puff into the central canal (Figure 15B). At 

1 dpf, a subset of CSF-cNs respond to a puff of artificial CSF applied within the central (Figure 

15C) but not when applied in the spinal cord outside of the central canal (Figure 15D). CSF-cNs 

therefore detect flow in the central canal, and this open preparation can now be utilized to 

implement testing of the sensory response of CSF-cNs and the relative contribution of different ion 

channels to their sensory response in vivo. 
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Overview 

CSF-cNs consist of a heterogeneous population of sensory neurons located within the 

spinal cord. Ventral CSF-cNs arise from nkx2.2+ p3 progenitors and are distinct from dorsal 

CSF-cNs that derive from pMN and olig2+ progenitors (Park et al., 2004; Yang et al., 2010; 

Djenoune et al., 2014). Despite their unique origin, no work has described functional 

differences between the two classes.  Evidence suggests that ventral CSF-cNs preferentially 

target motor circuits in the spinal cord (Fidelin et al., 2015, Hubbard et al., in revision), and 

peptides are generally expressed in subpopulations of dorsal or ventral CSF-cNs (Annex 2). 

Spontaneous activity, characterized with calcium imaging, occurs in CSF-cNs at early 

embryonic and larval stages, though very high levels of activity predominate at 1 dpf in 

ventral CSF-cNs. This activity is dependent on the opening of transient receptor channel 

Pkd2l1. We showed that the loss of activity does not preclude development of synaptic 

connections, neurotransmitter phenotype, axonal guidance, or CSF-cN morphology. CSF-cNs 

fired action potentials that were associated with calcium transients, although pharmacological 

block of TTX-sensitive voltage-gated sodium channels did not abolish entirely their activity. 

This could be due to the recruitment of TTX-insensitive sodium channels or calcium voltage-

dependent channels following the channel opening. Even though only ventral cells are highly 

active, dorsal and ventral CSF-cNs both have extensive single channel opening but not 

spontaneous synaptic inputs at embryonic and larval stages. Small differences in intrinsic 

properties, such as the membrane time constant, may underlie differences between groups. 

CSF-cNs gain sensory properties, responding to active bending of the tail and fluid flow in the 

central canal by 28 hpf. Early embryonic activity may thus reflect a development process not 

evaluated here, compensated by other mechanism, or an early sensory response within the 

spinal cord. 
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I.  Embryonic activity in CSF-cNs and development 

Activity was restricted primarily to 1 dpf, a time of intense neuronal birth, axon guidance, 

and wiring of early motor circuits (Drapeau et al., 2002; Lewis and Eisen; 2003). In many 

species, GABA contributes to developmental timing and synchrony for wiring during 

development (Milner and Landmesser, 1999; Ben-Ari, 2002; Wang et al., 2003). Because 

CSF-cNs are GABAergic, the idea that the activity at 1 dpf in ventral CSF-cNs might be 

involved in proper development of the spinal cord seemed probable. The pkd2l1-/- mutant 

provided a means to silence embryonic activity and probe the function of early activity 

specifically.  

Numbers and neurotransmitter phenotype of CSF-cNs were unaffected in the pkd2l1-/- 

mutant by early larval stages. Evaluation of the pkd2l1-/- mutant at early larval stages allowed 

for investigation at a stage in which mature circuits for locomotion at 4 dpf are mostly 

established. GABA signaling sets timing for development of the spinal cord in other species 

(Milner and Landmesser, 1999). Early activity or GABA release related to developmental 

timing could have led to developmental delay at embryonic stages when the high activity in 

CSF-cNs pervades, followed by compensation to have the correct number of neurons by 

larval stages. 

Approximately 100 CSF-cNs are present in the spinal cord at 1 dpf (Djenoune et al., 

2014), which increases to almost three times that number by early larval stages. Early-

differentiated CSF-cNs active at embryonic may function as one subpopulation among the 

ventral CSF-cNs to target the fast motor circuitry, which develops before slow motor 

circuitry. By using photoconvertible proteins and morphology analysis, it may be possible to 

determine whether early-born ventral CSF-cNs comprise a subtype. At larval stages, the 

pkd2l1-/- mutant displays decreased tail beat frequency during fast swimming (Bohm et al., 

2016). As I demonstrated that the monosynaptic connection between CSF-cNs and CaP 
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primary motor neurons is preserved in the pkd2l1-/- mutant, the difference underlying the 

larval behavioral phenotype is most likely due to the fact that sensory response to bending is 

decreased when the channel is mutated. 

 

CSF-cNs and development 

Although embryonic activity in CSF-cNs did not contribute detectibly to spinal cord 

development as shown by neurotransmitter identity, CSF-cNs may contribute to other 

developmental processes such as axonal migration that we did not quantify here. Furthermore, 

CSF-cNs express somatostatin in dorsal CSF-cNs from 24-55 hpf. Somatostatin increases the 

frequency of calcium transients and the initial rate of cell migration (Yacubova and Komuro, 

2002). Expression of somatostatin in dorsal CSF-cNs during this period could contribute to 

neuronal migration. In addition, CSF-cNs also express serotonin (5-HT) specifically from 48-

72 hpf, a period when many interneurons and secondary motor neurons are developing (Lewis 

and Eisen, 2003). Transient serotonin expression is a feature of developing neural circuits. 

Many neurons that do not express 5-HT at mature stages express serotonin transporter 

(SERT) and vesicular monoamine transporter (VMAT) during development (Lebrand et al., 

1996; Hansson et al., 1998). Although no clear role has been established, suggested roles 

include (1) participating in a transition from electrical to chemical coupling, (2) creating a 

morphogenetic gradient between neurons that actively produce 5-HT and those that actively 

pump it, (3) serving as a "borrowed neurotransmitter," allowing neurons to produce pulse of 

5-HT release in phase with incoming neural activity, or (4) serving to clear 5-HT away from 

the extracellular space when the serotonergic fiber network is not fully mature (Gaspar et al., 

2003).  In zebrafish, the period during which CSF-cNs are serotonergic corresponds to a wave 

of neurogenesis of secondary motor neurons (Lewis and Eisen, 2003). All of these are 

plausible roles of 5-HT in CSF-cNs. Understanding whether CSF-cNs play a role in 
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development of spinal cord networks will require cell-type specific block of somatostatin or 

block of 5-HT uptake or release. 

 

TRP channels in development 

During development, primary cilia sense extracellular signals (Berbari et al., 2009). 

Hedgehog is a secreted protein that regulates a diversity of developmental processes 

(Nusslein-Volhard and Wieschaus, 1980). Calcium signaling via TRPP channels (PKDs) in 

ciliary compartments drives transcriptional activation via Gli transcription factors (Haycraft et 

al., 2005; Kiprilov et al., 2008). The Wingless (Wnt) pathway also mediates effects via 

changes in intracellular calcium. Calcium influx via a Pkd2l1-Pkd1 like complex could 

contribute to transcriptional activation within zebrafish CSF-cNs. 

Turning responses to netrin-1, BDNF, and MAG are mediated by TRPC1 channels in 

Xenopus spinal neurons and TRPC channels in rat cerebellar granule neurons (Li et al., 2005; 

Shim et al., 2005; Wang and Poo, 2005) TRPC5-repector operated ion channels appear to 

constitute the calcium entry pathway generating spontaneous growth cone transients in 

cultured hippocampal neurons (Greka et al., 2003). Again, Pkd2l1 could serve a function 

compensated during development by other factors. 

 

Possible contribution of gap junctions to CSF-cN activity 

We used a pkd2l1-/- mutant to study embryonic activity of CSF-cNs, in which 

uncorrelated calcium transients in CSF-cNs were abolished. Although activity was mostly 

uncorrelated between CSF-cNs, in some cases (at least one event in approximately fifteen 

percent of traces in pkd2l1+/+, pkd2l1+/-, pkd2l1-/-, n = 200 embryos and larvae) synchronized 

activity occurred in CSF-cNs. These events occurred either in most or all CSF-cNs in the 

imaging plane, and occurred at both embryonic and larval stages. Electrical activity via gap 
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junctions contributes to synchronized activity in the developing nervous system (Ben-Ari 

2002), and contributes to synaptogenesis (Personius et al., 2007), neuronal differentiation 

(Hartfield et al., 2011), migration (Cina et al., 2007), and neural circuit maturation (Maher et 

al., 2009; Hanganu et al., 2009) via calcium influx, metabolites, and second messengers that 

coordinate metabolism and transcription in developing neurons (Kandler and Katz, 1998). 

Although the uncorrelated activity silenced here did not have a detectable effect on 

development, these correlated events that resemble closely correlated spontaneous activity in 

other species may function in development. 

Gap junction coupling mediating interactions between sensory neurons can be found in 

other systems, including C. elegans, in which electrical synapses mediate inhibitory and 

excitatory interactions between neurons (Chatzigeorgiou et al., 2011; Rabinowitch et al., 

2013). Experiments using fictive recordings as a readout of locomotion demonstrated that 

when CSF-cNs are activated optogenetically during slow swimming in rostral regions of the 

spinal cord, locomotor output is silenced in caudal regions as well (Fidelin et al., 2015). This 

could result from CSF-cNs projecting onto descending interneurons or possibly from gap 

junction coupling between CSF-cNs to effect sensory function during distinct swimming 

modes.  

Whether connexins are expressed and form gap junctions between CSF-cNs and whether 

this underlies some of the synchronous activity, asynchronous activity via subthreshold 

depolarizations, or function in locomotor circuits remains to be determined. We previously 

demonstrated that Granger causality could be used to demonstrate rostral to caudal 

propagation signals in the gap junction coupled synchronized motor networks during 

embryonic development (De Vico Fallani et al., 2015, Annex 3). It would be interesting to use 

causality analysis to investigate whether correlated activity results from signal propagation 

from specific CSF-cN hub neurons or in a rostral to caudal fashion similar to gap junction 
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coupled motor networks (Muto et al., 2011; De Vico Fallani et al., 2015, Annex 3). 

Pharmacological manipulation to block gap junctions or gabazine could elucidate the 

mechanism of correlated events and function in either development or locomotion, though the 

relative rare occurrence of these events hinders study of their role. 

 

Conclusions: embryonic activity and development  

Understanding whether spontaneous activity during embryonic development plays a 

functional role may require more acute manipulations of spontaneous activity. Activity-

dependent processes are often redundant and compensated in case of loss (Blankenship and 

Feller, 2010).  Pkd2l1-driven spontaneous activity may play a redundant role during 

development or be compensated by early larval stages, when we evaluated effects of the 

mutation on development.  Current methods for silencing either do not silence completely or 

are difficult to implement in vivo (Curado et al., 2008; Arrenberg et al., 2009). I previously 

used botulinum neurotoxin (Chapter 2) to investigate whether silencing synaptic output would 

affect development. However, neurotransmitter phenotype and number of neurons were the 

same as controls, the fish had normal rhythmic embryonic activity, and lived to adulthood 

without apparent health defects, all together suggesting synaptic release during development 

does not play a critical role.  Release of GABA in a paracrine manner that acts independently 

of synaptic release promotes migration of embryonic neurons in the hippocampus of mice 

(Demarque et al., 2002; Manent et al., 2005), which could be a function of GABA release in 

CSF-cNs, otherwise undetectable by blocking synaptic release with botulinum neurotoxin. 

Targeted ablation may be a better option to eliminate CSF-cNs as circuit elements. 

Additionally, methods to block serotonin or somatostatin release from these neurons may 

reveal important functions for their expression in CSF-cNs for developmental processes. 
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II.  Challenges and limitations of interpreting calcium imaging data 

Immunohistochemistry showed that expression of PKD2L1 in CSF-cNs in mouse and 

macaque is enhanced in the terminal bud of the apical extension into the lumen of the central 

canal (Djenoune et al., 2014), suggesting expression is not confined to the endoplasmic 

reticulum. However, due to technical challenges of immunohistochemistry in the zebrafish, to 

date, subcellular localization of Pkd2l1 remains unknown. The PKD2L1 channel forms 

homomeric tetramers that are restricted to ER as well as heteromeric tetramers with a PKD1 

partner that leads to expression on the cell surface (Murakami et al., 2005). At the level of the 

endoplasmic reticulum, Pkd21l-Pkd2l1 complexes in zebrafish could participate in calcium 

release from internal stores and not participate in calcium influx at the level of the cell 

membrane.  

Calcium release from internal stores contributes to action potentials and synaptic 

potentiation (Sandler and Barbara, 1999). Calcium entry during an action potential stimulates 

calcium release from the internal stores in dorsal root ganglia (DRG) (Shmigol et al., 1995; 

Usachev and Thayer, 1997) and could serve as coincidence detectors for synaptic 

potentiation. Calcium release via IP3-receptor dependent calcium release contributes to 

stabilization of GABAAR (Bannai et al., 2015). Function of PKD2Ll-PKD2L1 complexes at 

the level of the endoplasmic reticulum has not been investigated, however, it could entrain 

one of these functions.  

When beginning this study, Pkd2l1 expression in zebrafish was established in CSF-cNs 

via in situ hybridization (Djenoune et al., 2014) and expression of potential Pkd1 partners was 

unknown. Additionally, subcellular localization of PKD2L1 to the apical extension in other 

species was not established. Therefore, it then seemed reasonable that Pkd2l1 could form 

homomeric tetramers intracellularly and not be involved at all in intercellular signaling, and 

this activity was reflected in the calcium imaging instead of action potentials. Frequently, 
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neuroscientists rely on spike rate inference to predict firing rates from calcium imaging when 

a stimulus in delivered without ground truth electrophysiological recordings. Many 

neuroscientists and mathematicians are using various techniques to perform this computation 

including Bayesian inference (Vogelstein et al., 2009; Pnevmatikakis et al., 2016); 

deconvolution (Yaksi and Friedrich, 2006; Park et al., 2013), or template matching (Grewe et 

al., 2010; Onativia et al., 2013). However, in all cases these algorithms assume that the 

calcium activity corresponds to neuronal spiking. 

In my experiments, the possibility that Pkd2l1 was sequestered inside the cell prevented 

assumption that these neurons were firing action potentials. Cell attached recordings 

demonstrated that CSF-cNs do fire action potentials regularly even during early development 

at 24 hpf.  All activity visible on the calcium traces corresponded to action potentials. 

Experiments to block CICR from intracellular stores with thapsigargin, a sarco/endoplasmic 

reticulum Ca2+ ATPase (SERCA) inhibiter also did not impact CSF-cN activity, though 

pharmacological agents penetrate weakly in the embryo without dissection and without a 

positive control to ensure that the drug was entering cells, these data could not be fully 

interpreted (data not shown). Evidence now suggests that Pkd21l is localized to the cell 

membrane via a Pkd1 partner and is concentrated in the apical extension within the central 

canal of the spinal cord (Djenoune et al., 2014; unpublished results). Together these results 

suggest that Pkd2l1 is present and functional as a cationic selective channel at the cell 

membrane. 

Experiments using TTX to block classical Na+ action potentials did not abolish 

spontaneous activity in CSF-cNs as it did for rhythmic oscillations in motor networks. CSF-

cN embryonic activity thus does not rely on synaptic transmission, more likely being intrinsic. 

The remaining activity when TTX is applied could be a result of (1) direct conductance of the 

Pkd2l1-Pkd1 complex, (2) calcium release from intracellular stores, or (3) calcium spikes. A 
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complete picture of the calcium activity taking place within the CSF-cNs and reflected in the 

calcium imaging remains to be determined. 

 

III. Properties of CSF-cNs 

In order to understand how subpopulations of CSF-cNs contribute to spinal cord 

development and locomotion, either via sensing CSF flow, contents, or other interactions, two 

questions still need to be addressed. Why are ventral cells highly active at 1 dpf, and what are 

the functional differences between dorsal and ventral CSF-cNs?  In vivo electrophysiology 

demonstrated that Pkd2l1 ventral and dorsal CSF-cNs may have a different opening 

probability in the two cell types. However, whole cell patch clamp techniques affect channel 

opening probability without any additional stimulus. Calcium imaging alone allowed readout 

of cellular activity without stimulating the CSF-cNs, other than with light. Using whole cell 

recordings to better understand the origin of the activity and differences between 

subpopulations of CSF-cNs confounded interpretation by influencing basal activity of the 

CSF-cNs. CSF-cNs all showed changing levels of Pkd2l1 channel activity over the course of 

a recording.   

At 4 dpf, when spontaneous activity is generally lower in CSF-cNs, whole cell recordings 

show similar channel opening frequency as at 1 dpf, suggesting that recording directly from 

cells alters the physiological channel activity. Whether ventral and dorsal CSF-cNs have 

different intrinsic excitability remains to be fully determined. The membrane input resistance 

varied from 3.5 to 18 GΩ in ventral CSF-cNs and 1-10 GΩ in dorsal CSF-cNs, membrane 

capacitance ranged from 0.25 to 0.75 in ventral CSF-cNs versus 0.8 to 0.55 in dorsal CSF-

cNs, and the membrane time constant ranged from 1.2 to 4.2 ms in ventral CSF-cNs versus 

0.3 to 1.7 in dorsal CSF-cNs. More recordings are needed to determine whether these 
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differences are sufficient to alter early activity or if the two classes of CSF-cNs (ventral or 

dorsal) can be divided into additional subpopulations. 

Increased Pkd2l1 activity at the beginning of a whole cell recording could be related to 

sensory responses to osmolarity changes, although the small osmolarity differences between 

the intracellular or extracellular solution (5-10 mOsmol/kg) were lower than published 

changes necessary to elicit a response from PKD2L1 in vitro (500 mOsmol/kg in CSF-cNs, 

Orts-Del’Immagine et al., 2012; 40-50 mOsmol/kg in vitro, Shimizu et al., 2009), although 

the channel could be sensitive to much smaller changes in vivo. Ciliary PKD proteins regulate 

intracellular calcium signaling triggering downstream cascades (Koulen et al., 2005; Abou 

Alaiwi et al., 2009), and by washing out the intracellular milieu with an imposed intracellular 

solution, the properties of the cell could be affected. By varying calcium concentration within 

in the intracellular solution or performing perforated patch recordings, more physiological 

conditions for CSF-cNs and Pkd2l1 may be achieved. 

 

PKD2L1 in mechanosensory function 

Some TRP channels contribute to mechanosensation, but their function remains unclear 

(Christensen and Corey, 2007). In, Drosophila distinct TRP or other ion channels may 

function separately in sensory cells to mediate a mechanosensory response or amplify the 

signal (Göpfert et al., 2006; Lehnert et al., 2013), and in C. elegans TRPV channels and 

TRPA-1 are involved in mechanosensation, either as primary transducers or through a 

modulatory role (Kindt et al., 2007; Kang et al., 2010).  

The PKD2L1 channel shows responses to changes in osmolarity, however its role in 

mechanosensation as for other PKDs is not clear. Previous work suggested PKD1 and PKD2 

form mechanosensory channels in primary cilia in the kidney (Nauli et al., 2003; Nauli and 

Zhou, 2004). However, single cilia recordings show currents in response to mechanical 

 132



Chapter 3                        ____________________    __                      Discussion 

stimuli at higher pressures than known mechanosensitive channels (DeCaen et al., 2013). 

Other evidence points to PKD2 as a regulator of other nonselective cationic channels 

(currently unidentified) instead of a primary mechanosensory role (Sharif-Naeini et al., 2009). 

Hair cell transduction persists in double and triple PKD knockout mice (TRPM2, PKD2, 

PKD2L1, PKD2L2 and PKD1L3; Wu et al., 2016). PKD2L1 is strongly conserved in CSF-

cNs across species (Djenoune et al., 2014; Orts-Del-Immagine et al., 2014) and likely 

PKD2L1 in CSF-cNs has a conserved role in vertebrates, though this role may not be direct 

transduction of mechanical stimuli.  

In zebrafish, Pkd2l1 mediates at least a part of responses to mechanosensory stimuli in 

CSF-cNs (Bohm et al., 2016). Whether PKD2L1 carries out the function of a 

mechanotransducer or whether CSF-cNs themselves are mechanosensors remains to be 

determined. At embryonic stages when CSF-cNs begin to respond to sensory stimuli, a small 

response may be preserved in the pkd2l1-/- mutant. PKD2L1 may function in sensory 

transduction or amplifying a signal.  Recent work demonstrated that PKD2L1-PKD1L3 

complexes operate as gain control by generating calcium spikes in response to diverse sensory 

stimuli (Hu et al., 2015). Studying cultured CSF-cNs in isolation (Böhm et al., 2016) will 

provide evidence of whether they directly sense mechanical stimulus, and pharmacological 

stimulation in vivo can be used to elucidate relative contributions of different channels for 

sensory responses. 

 

The function of PKD2L1 in CSF-cNS 

In addition to responses to mechanical stimuli, CSF-cNs respond to changes in pH via 

PKD2L1 and acid sensing ion channels (ASICs) in mouse and lamprey (Orts-Del’Immagine 

et al., 2016; Jalalvand et al., 2016a; Jalalvand et al., 2016b). Pharmacological blockade of 

ASIC channels combined with a mutant for PKD2l1 indicated that ASIC channels carry 
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responses to acidic stimuli, whereas PKD2L1 carries responses to alkaline stimuli. Activation 

of either channel increases firing in CSF-cNs, which are inhibitory across species (Orts-

Del’Immagine et al., 2016; Jalalvand et al., 2016a; Jalalvand et al., 2016b). In the lamprey, 

ASIC channels are also activated when CSF-cNs are mechanically stimulated through fluid 

flow in the central canal (Jalalvand et al., 2016a), though lack of genetic targeting or 

pharmacology for PKD2L1 prevented investigation of its function in mechanical responses. 

By developing a preparation in which CSF-cNs can be readily accessed by pharmacology, I 

can now investigate the relative contributions of these channels to mechanosensory function 

in vivo in wild type or pkd2l1-/- mutants. 

 

A role for CSF flow in embryonic activity? 

CSF-cNs have sensory capabilities from 1 dpf, sensing bending of the tail and flow in the 

central canal starting from 26-28 hpf. Between intrinsic properties being similar and sensory 

properties developing early, high activity in ventral CSF-cNs at 1 dpf could results from 

extrinsic factors triggering Pkd2l1 channel opening.  

Cilia beating of ependymal cells generates CSF flow, which provides directional 

information for the guidance of developing neurons (Sawamoto et al., 2006) and contributes 

to development of normal curvature of the spine (Grimes et al., 2016). In the central canal of 

the zebrafish spinal cord, radial glia have a motile cilium from 24 hpf and beat at 

approximately 12 Hz at 2.5 dpf (Kramer-Zucker et al., 2005). Additionally, CSF-cNs respond 

to fluid flow in the central canal starting around 25-28 hpf. Beating of cilia from radial glia at 

different rates ventrally or dorsally may trigger differential flow within the central canal that 

would increase CSF-cN activity in only ventral CSF-cNs via activation of Pkd2l1. Whether 

CSF flow affects CSF-cN activity at 1 dpf could be tested with motile cilia mutants, in which 

the CSF no longer flows in the central canal of the spinal cord, in combination with calcium 

 134



Chapter 3                        ____________________    __                      Discussion 

imaging using the transgenic line Tg(pkd2l1:GCaMP5G). If flow at 1 dpf selectively altered 

CSF-cN activity, this activity could guide newborn neurons as previously found (Sawamoto et 

al., 2006), readout of calcium signals to selectively trigger intracellular cascades (Borodinsky 

et al., 2004; Swapna and Borodinsky, 2012), or these processes could be carried by 

neuroblasts (Sawamoto et al., 2006), and CSF-cN activity driven by Pkd2l1 at 1 dpf is simply 

a feature of the sensory capacities of these cells.  

 

Relationship of activity to function in ventral and dorsal CSF-cNs  

In both mammals and zebrafish, CSF-cNs form subpopulations that originate from two 

progenitor populations (Park et al., 2004; Yang et al., 2010; Petracca et al., 2016) and 

subgroups have unique morphological, molecular, and electrical properties (Petracca et al., 

2016; Annex 2). Differential activity between ventral and dorsal CSF-cNs at early stages 

could have consequences or reflect functional differences between these two subpopulations 

that derive from unique origins. At larval stages, ventral CSF-cNs form monosynaptic 

connections with excitatory neurons involved in both slow and fast locomotion as well as 

primary motor neurons active during fast swimming, both revealed by optogenetic activation 

of CSF-cNs. Morphological analysis suggests as well that ventral CSF-cNs form more 

dorsally-projecting axons that innervate fast locomotor circuitry whereas axons of dorsal 

CSF-cNs remain ventral in the spinal cord (Annex 2).  

What is the connectivity and function of dorsal CSF-cNs versus ventral CSF-cNs? 

Synaptic partners of dorsal CSF-cNs remain unknown, although this population preferentially 

responds over ventral CSF-cNs to active or passive lateral bending of the tail at larval stages 

using calcium imaging with GCaMP5 (Böhm et al., 2016). Together, preferential targeting of 

motor circuitry by ventral CSF-cNs and larger responses to lateral bending of dorsal CSF-cNs 

suggest the two populations play distinct roles. For instance, ventral CSF-cNs could respond 
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to bending via a single action potential rather than burst spiking of dorsal CSF-cNs that can be 

detected with GCaMP5 or they could detect bending along the vertical axis instead of the 

lateral directions. Addressing the connectivity of dorsal CSF-cNs, and mostly, the 

physiological activation of these cells in vivo will further expound on heterogeneity of the 

population that could be reflected by embryonic activity. 

 

IV. Conclusions 

CSF-cNs comprise a heterogeneous population of intraspinal neurons that display high 

levels of activity during development and expression of diverse signaling molecules that 

could impart unique functions to development or locomotion. Understanding the contribution 

of PKD2L1 and other ion channels to activity of CSF-cNs during development, in response to 

sensory stimuli, or even by secreting molecules into the CSF will create a larger picture of the 

possible roles of CSF-cNs in regulating activity in the spinal cord and the nervous system. 

 

 

 136



References_________                                               _____________________________________________ 

                                                                                                       
 
Abou Alaiwi, W. A., S. T. Lo, and S. M. Nauli. "Primary Cilia: Highly Sophisticated Biological Sensors." Sensors 

9, no. 9 (2009): 7003-20. 

Ahrens, M. B., M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller. "Whole-Brain Functional Imaging at Cellular 

Resolution Using Light-Sheet Microscopy." Nat Methods 10, no. 5 (2013): 413-20. 

Akerboom, J., T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderon, et al. "Optimization of a 

Gcamp Calcium Indicator for Neural Activity Imaging." J Neurosci 32, no. 40 (2012): 13819-40. 

Al-Mosawie, A., J. M. Wilson, and R. M. Brownstone. "Heterogeneity of V2-Derived Interneurons in the Adult 

Mouse Spinal Cord." Eur J Neurosci 26, no. 11 (2007): 3003-15. 

Ampatzis, K., J. Song, J. Ausborn, and A. El Manira. "Separate Microcircuit Modules of Distinct V2a Interneurons 

and Motoneurons Control the Speed of Locomotion." Neuron 83, no. 4 (2014): 934-43. 

Aoki, K. R., and B. Guyer. "Botulinum Toxin Type a and Other Botulinum Toxin Serotypes: A Comparative 

Review of Biochemical and Pharmacological Actions." Eur J Neurol 8 (2001): 21-9. 

Aoyagi, Y., R. B. Stein, A. Branner, K. G. Pearson, and R. A. Normann. "Capabilities of a Penetrating 

Microelectrode Array for Recording Single Units in Dorsal Root Ganglia of the Cat." J Neurosci Methods 

128, no. 1 (2003): 9-20. 

Appelbaum, L., G. X. Wang, G. S. Maro, R. Mori, A. Tovin, W. Marin, T. Yokogawa, et al. "Sleep-Wake 

Regulation and Hypocretin-Melatonin Interaction in Zebrafish." Proc Natl Acad Sci U S A 106, no. 51 

(2009): 21942-7. 

Arenkiel, B. R., M. E. Klein, I. G. Davison, L. C. Katz, and M. D. Ehlers. "Genetic Control of Neuronal Activity in 

Mice Conditionally Expressing Trpv1." Nat Methods 5, no. 4 (2008): 299-302. 

Armbruster, B., X. Li, M. H. Pausch, S. Herlitze, and B. Roth. "Evolving the Lock to Fit the Key to Create a Family 

of G Protein-Coupled Receptors Potently Activated by an Inert Ligand." Proceedings of the National 

Academy of Sciences 104, no. 12 (2007): 5163-68. 

Armstrong, C., E. Krook-Magnuson, M. Oijala, and I. Soltesz. "Closed-Loop Optogenetic Intervention in Mice." 

Nat Protoc 8, no. 8 (2013): 1475-93. 

Armstrong, D. M. "The Supraspinal Control of Mammalian Locomotion." J Physiol 405 (1988): 1-37. 

Arrenberg, A. B., F. Del Bene, and H. Baier. "Optical Control of Zebrafish Behavior with Halorhodopsin." Proc 

Natl Acad Sci USA 106, no. 42 (2009): 17968-73. 

Asakawa, K., and K. Kawakami. "Targeted Gene Expression by the Gal4‐Uas System in Zebrafish." Development, 

growth & differentiation 50, no. 6 (2008): 391-99. 

Asakawa, K., M. L. Suster, K. Mizusawa, S. Nagayoshi, T. Kotani, A. Urasaki, Y. Kishimoto, M. Hibi, and K. 

Kawakami. "Genetic Dissection of Neural Circuits by Tol2 Transposon-Mediated Gal4 Gene and Enhancer 

Trapping in Zebrafish." Proc Natl Acad Sci U S A 105, no. 4 (2008): 1255-60. 

Bannai, H., F. Niwa, M. W. Sherwood, A. N. Shrivastava, M. Arizono, A. Miyamoto, K. Sugiura, et al. 

"Bidirectional Control of Synaptic Gabaar Clustering by Glutamate and Calcium." Cell Rep 13, no. 12 

(2015): 2768-80. 

Barber, R. P., J. E. Vaughn, and E. Roberts. "The Cytoarchitecture of Gabaergic Neurons in Rat Spinal Cord." Brain 

Res 238, no. 2 (1982): 305-28. 

Barbin, G., H. Pollard, J. L. Gaiarsa, and Y. Ben-Ari. "Involvement of Gabaa Receptors in the Outgrowth of 

Cultured Hippocampal Neurons." Neurosci Lett 152, no. 1-2 (1993): 150-4. 

Ben-Ari, Y. "Excitatory Actions of Gaba During Development: The Nature of the Nurture." Nat Rev Neurosci 3, no. 

9 (2002): 728-39. 

Berbari, N. F., A. K. O'Connor, C. J. Haycraft, and B. K. Yoder. "The Primary Cilium as a Complex Signaling 

Center." Curr Biol 19, no. 13 (2009): R526-35. 

Bernhardt, R. R., A. B. Chitnis, L. Lindamer, and J. Y. Kuwada. "Identification of Spinal Neurons in the Embryonic 

and Larval Zebrafish." J Comp Neurol 302, no. 3 (1990): 603-16. 

 137



References_________                                               _____________________________________________ 

                                                                                                       
 
Bernhardt, R. R., C. K. Patel, S. W. Wilson, and J. Y. Kuwada. "Axonal Trajectories and Distribution of Gabaergic 

Spinal Neurons in Wildtype and Mutant Zebrafish Lacking Floor Plate Cells." J Comp Neurol 326, no. 2 

(1992): 263-72. 

Bernstein, J. G., and E. S. Boyden. "Optogenetic Tools for Analyzing the Neural Circuits of Behavior." Trends in 

cognitive sciences 15, no. 12 (2011): 592-600. 

Bianco, I. H., A. R. Kampff, and F. Engert. "Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval 

Zebrafish." Front Syst Neurosci 5 (2011): 101. 

Bito, L., H. Davson, E. Levin, M. Murray, and N. Snider. "The Concentrations of Free Amino Acids and Other 

Electrolytes in Cerebrospinal Fluid, in Vivo Dialysate of Brain, and Blood Plasma of the Dog." Journal of 

neurochemistry 13, no. 11 (1966): 1057-67. 

Blankenship, A. G., and M. B. Feller. "Mechanisms Underlying Spontaneous Patterned Activity in Developing 

Neural Circuits." Nat Rev Neurosci 11, no. 1 (2010): 18-29. 

Blaser, R. E., L. Chadwick, and G. C. McGinnis. "Behavioral Measures of Anxiety in Zebrafish (Danio Rerio)." 

Behav Brain Res 208, no. 1 (2010): 56-62. 

Bohm, U. L., A. Prendergast, L. Djenoune, S. Nunes Figueiredo, J. Gomez, C. Stokes, S. Kaiser, et al. "Csf-

Contacting Neurons Regulate Locomotion by Relaying Mechanical Stimuli to Spinal Circuits." Nat Commun 

7 (2016): 10866. 

Borla, M. A., B. Palecek, S. Budick, and D. M. O'Malley. "Prey Capture by Larval Zebrafish: Evidence for Fine 

Axial Motor Control." Brain Behav Evol 60, no. 4 (2002): 207-29. 

Borodinsky, L. N., C. M. Root, J. A. Cronin, S. B. Sann, X. Gu, and N. C. Spitzer. "Activity-Dependent 

Homeostatic Specification of Transmitter Expression in Embryonic Neurons." Nature 429, no. 6991 (2004): 

523-30. 

Bouvier, J., V. Caggiano, R. Leiras, V. Caldeira, C. Bellardita, K. Balueva, A. Fuchs, and O. Kiehn. "Descending 

Command Neurons in the Brainstem That Halt Locomotion." Cell 163, no. 5 (2015): 1191-203. 

Boyden, E. S., F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth. "Millisecond-Timescale, Genetically Targeted 

Optical Control of Neural Activity." Nat Neurosci 8, no. 9 (2005): 1263-8. 

Bradbury, M. W., and W. Lathem. "A Flow of Cerebrospinal Fluid Along the Central Canal of the Spinal Cord of 

the Rabbit and Communications between This Canal and the Sacral Subarachnoid Space." J Physiol 181, no. 

4 (1965): 785-800. 

Bramble, D. M., and D. R. Carrier. "Running and Breathing in Mammals." Science 219, no. 4582 (1983): 251-6. 

Branson, K., A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson. "High-Throughput Ethomics in Large Groups 

of Drosophila." Nat Methods 6, no. 6 (2009): 451-7. 

Brown, A. E., E. I. Yemini, L. J. Grundy, T. Jucikas, and W. R. Schafer. "A Dictionary of Behavioral Motifs 

Reveals Clusters of Genes Affecting Caenorhabditis Elegans Locomotion." Proc Natl Acad Sci U S A 110, 

no. 2 (2013): 791-6. 

Brunger, A. T., R. Jin, and M. A. Breidenbach. "Highly Specific Interactions between Botulinum Neurotoxins and 

Synaptic Vesicle Proteins." Cell Mol Life Sci 65, no. 15 (2008): 2296-306. 

Buchanan, J. T., L. Brodin, T. Hokfelt, P. A. Van Dongen, and S. Grillner. "Survey of Neuropeptide-Like 

Immunoreactivity in the Lamprey Spinal Cord." Brain Res 408, no. 1-2 (1987): 299-302. 

Buchanan, J. T., and S. Grillner. "Newly Identified 'Glutamate Interneurons' and Their Role in Locomotion in the 

Lamprey Spinal Cord." Science 236, no. 4799 (1987): 312-4. 

Budick, S. A., and D. M. O'Malley. "Locomotor Repertoire of the Larval Zebrafish: Swimming, Turning and Prey 

Capture." J Exp Biol 203, no. Pt 17 (2000): 2565-79. 

———. "Locomotor Repertoire of the Larval Zebrafish: Swimming, Turning and Prey Capture." [In eng]. J Exp 

Biol 203, no. Pt 17 (Sep 2000): 2565-79. 

Bulina, M. E., K. A. Lukyanov, O. V. Britanova, D. Onichtchouk, S. Lukyanov, and D. M. Chudakov. 

"Chromophore-Assisted Light Inactivation (Cali) Using the Phototoxic Fluorescent Protein Killerred." Nat 

Protoc 1, no. 2 (2006): 947-53. 

 138



References_________                                               _____________________________________________ 

                                                                                                       
 
Buonomano, D. V., and W. Maass. "State-Dependent Computations: Spatiotemporal Processing in Cortical 

Networks." Nat Rev Neurosci 10, no. 2 (2009): 113-25. 

Burgess, H. A., and M. Granato. "Modulation of Locomotor Activity in Larval Zebrafish During Light Adaptation." 

J Exp Biol 210, no. Pt 14 (2007): 2526-39. 

———. "Sensorimotor Gating in Larval Zebrafish." J Neurosci 27, no. 18 (2007): 4984-94. 

Bushman, J. D., W. Ye, and E. R. Liman. "A Proton Current Associated with Sour Taste: Distribution and 

Functional Properties." FASEB J 29, no. 7 (2015): 3014-26. 

Buske, C., and R. Gerlai. "Shoaling Develops with Age in Zebrafish (Danio Rerio)." Prog Neuropsychopharmacol 

Biol Psychiatry 35, no. 6 (2011): 1409-15. 

Cachat, J., A. Stewart, E. Utterback, P. Hart, S. Gaikwad, K. Wong, E. Kyzar, N. Wu, and A. V. Kalueff. "Three-

Dimensional Neurophenotyping of Adult Zebrafish Behavior." PLoS One 6, no. 3 (2011): e17597. 

Caterina, M. J., M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius. "The Capsaicin 

Receptor: A Heat-Activated Ion Channel in the Pain Pathway." Nature 389, no. 6653 (1997): 816-24. 

Chalfie, M., J. E. Sulston, J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. "The Neural Circuit for Touch 

Sensitivity in Caenorhabditis Elegans." J Neurosci 5, no. 4 (1985): 956-64. 

Chatzigeorgiou, M., and W. R. Schafer. "Lateral Facilitation between Primary Mechanosensory Neurons Controls 

Nose Touch Perception in C. Elegans." Neuron 70, no. 2 (2011): 299-309. 

Chen, S., C. N. Chiu, K. L. McArthur, J. R. Fetcho, and D. A. Prober. "Trp Channel Mediated Neuronal Activation 

and Ablation in Freely Behaving Zebrafish." Nat Methods 13, no. 2 (2016): 147-50. 

Chen, X. Z., P. M. Vassilev, N. Basora, J. B. Peng, H. Nomura, Y. Segal, E. M. Brown, et al. "Polycystin-L Is a 

Calcium-Regulated Cation Channel Permeable to Calcium Ions." Nature 401, no. 6751 (1999): 383-6. 

Chou, M. Y., R. Amo, M. Kinoshita, B. W. Cherng, H. Shimazaki, M. Agetsuma, T. Shiraki, et al. "Social Conflict 

Resolution Regulated by Two Dorsal Habenular Subregions in Zebrafish." Science 352, no. 6281 (2016): 87-

90. 

Chow, B. Y., X. Han, A. S. Dobry, X. Qian, A. S. Chuong, M. Li, M. A. Henninger, et al. "High-Performance 

Genetically Targetable Optical Neural Silencing by Light-Driven Proton Pumps." Nature 463, no. 7277 

(2010): 98-102. 

Christensen, A. P., and D. P. Corey. "Trp Channels in Mechanosensation: Direct or Indirect Activation?". Nat Rev 

Neurosci 8, no. 7 (2007): 510-21. 

Cina, C., J. F. Bechberger, M. A. Ozog, and C. C. Naus. "Expression of Connexins in Embryonic Mouse Neocortical 

Development." J Comp Neurol 504, no. 3 (2007): 298-313. 

Clapham, D. E. "Trp Channels as Cellular Sensors." Nature 426, no. 6966 (2003): 517-24. 

Coste, B., B. Xiao, J. S. Santos, R. Syeda, J. Grandl, K. S. Spencer, S. E. Kim, et al. "Piezo Proteins Are Pore-

Forming Subunits of Mechanically Activated Channels." Nature 483, no. 7388 (2012): 176-81. 

Crisp, S. J., J. F. Evers, and M. Bate. "Endogenous Patterns of Activity Are Required for the Maturation of a Motor 

Network." J Neurosci 31, no. 29 (2011): 10445-50. 

Crone, S. A., K. A. Quinlan, L. Zagoraiou, S. Droho, C. E. Restrepo, L. Lundfald, T. Endo, et al. "Genetic Ablation 

of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord." 

Neuron 60, no. 1 (2008): 70-83. 

Curado, S., R. M. Anderson, B. Jungblut, J. Mumm, E. Schroeter, and D. Y. Stainier. "Conditional Targeted Cell 

Ablation in Zebrafish: A New Tool for Regeneration Studies." Dev Dyn 236, no. 4 (2007): 1025-35. 

Curado, S., D. Y. Stainier, and R. M. Anderson. "Nitroreductase-Mediated Cell/Tissue Ablation in Zebrafish: A 

Spatially and Temporally Controlled Ablation Method with Applications in Developmental and Regeneration 

Studies." Nat Protoc 3, no. 6 (2008): 948-54. 

Dale, N. "Reciprocal Inhibitory Interneurones in the Xenopus Embryo Spinal Cord." J Physiol 363 (1985): 61-70. 

 139



References_________                                               _____________________________________________ 

                                                                                                       
 
Dale, N., A. Roberts, O. P. Ottersen, and J. Storm-Mathisen. "The Development of a Population of Spinal Cord 

Neurons and Their Axonal Projections Revealed by Gaba Immunocytochemistry in Frog Embryos." Proc R 

Soc Lond B Biol Sci 232, no. 1267 (1987): 205-15. 

———. "The Morphology and Distribution of 'Kolmer-Agduhr Cells', a Class of Cerebrospinal-Fluid-Contacting 

Neurons Revealed in the Frog Embryo Spinal Cord by Gaba Immunocytochemistry." Proc R Soc Lond B Biol 

Sci 232, no. 1267 (1987): 193-203. 

Dankert, H., L. Wang, E. D. Hoopfer, D. J. Anderson, and P. Perona. "Automated Monitoring and Analysis of 

Social Behavior in Drosophila." Nat Methods 6, no. 4 (2009): 297-303. 

Danos, N., and G. V. Lauder. "The Ontogeny of Fin Function During Routine Turns in Zebrafish Danio Rerio." J 

Exp Biol 210, no. Pt 19 (2007): 3374-86. 

de Chaumont, F., R. D. Coura, P. Serreau, A. Cressant, J. Chabout, S. Granon, and J. C. Olivo-Marin. 

"Computerized Video Analysis of Social Interactions in Mice." Nat Methods 9, no. 4 (2012): 410-7. 

DeCaen, P. G., M. Delling, T. N. Vien, and D. E. Clapham. "Direct Recording and Molecular Identification of the 

Calcium Channel of Primary Cilia." Nature 504, no. 7479 (2013): 315-8. 

Deisseroth, K. "Optogenetics: 10 Years of Microbial Opsins in Neuroscience." Nat Neurosci 18, no. 9 (2015): 1213-

25. 

Delcomyn, F. "Neural Basis of Rhythmic Behavior in Animals." Science 210, no. 4469 (1980): 492-8. 

Delling, M., P. G. DeCaen, J. F. Doerner, S. Febvay, and D. E. Clapham. "Primary Cilia Are Specialized Calcium 

Signalling Organelles." Nature 504, no. 7479 (2013): 311-4. 

Delling, M., A. A. Indzhykulian, X. Liu, Y. Li, T. Xie, D. P. Corey, and D. E. Clapham. "Primary Cilia Are Not 

Calcium-Responsive Mechanosensors." Nature 531, no. 7596 (2016): 656-60. 

Demarque, M., A. Represa, H. Becq, I. Khalilov, Y. Ben-Ari, and L. Aniksztejn. "Paracrine Intercellular 

Communication by a Ca2+- and Snare-Independent Release of Gaba and Glutamate Prior to Synapse 

Formation." Neuron 36, no. 6 (2002): 1051-61. 

Desarmenien, M. G., and N. C. Spitzer. "Role of Calcium and Protein Kinase C in Development of the Delayed 

Rectifier Potassium Current in Xenopus Spinal Neurons." Neuron 7, no. 5 (1991): 797-805. 

Djenoune, L. "Molecular and Morphological Analysis of Spinal Cerebrospinal Fluid-Contacting Neurons." Doctoral 

Thesis, 2015. 

Djenoune, L., H. Khabou, F. Joubert, F. B. Quan, S. Nunes Figueiredo, L. Bodineau, F. Del Bene, et al. 

"Investigation of Spinal Cerebrospinal Fluid-Contacting Neurons Expressing Pkd2l1: Evidence for a 

Conserved System from Fish to Primates." Front Neuroanat 8 (2014): 26. 

Dougherty, K. J., and O. Kiehn. "Functional Organization of V2a-Related Locomotor Circuits in the Rodent Spinal 

Cord." Ann N Y Acad Sci 1198 (2010): 85-93. 

Dougherty, K. J., L. Zagoraiou, D. Satoh, I. Rozani, S. Doobar, S. Arber, T. M. Jessell, and O. Kiehn. "Locomotor 

Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons." Neuron 80, no. 4 (2013): 

920-33. 

Douglass, A. D., S. Kraves, K. Deisseroth, A. F. Schier, and F. Engert. "Escape Behavior Elicited by Single, 

Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons." Curr Biol 18, no. 15 (2008): 

1133-7. 

Downes, G. B., and M. Granato. "Supraspinal Input Is Dispensable to Generate Glycine-Mediated Locomotive 

Behaviors in the Zebrafish Embryo." J Neurobiol 66, no. 5 (2006): 437-51. 

Drapeau, P., L. Saint-Amant, R. R. Buss, M. Chong, J. R. McDearmid, and E. Brustein. "Development of the 

Locomotor Network in Zebrafish." Prog Neurobiol 68, no. 2 (2002): 85-111. 

Drew, T., S. Prentice, and B. Schepens. "Cortical and Brainstem Control of Locomotion." Prog Brain Res 143 

(2004): 251-61. 

Driever, W., L. Solnica-Krezel, A. F. Schier, S. C. Neuhauss, J. Malicki, D. L. Stemple, D. Y. Stainier, et al. "A 

Genetic Screen for Mutations Affecting Embryogenesis in Zebrafish." Development 123 (1996): 37-46. 

 140



References_________                                               _____________________________________________ 

                                                                                                       
 
Duysens, J., and K. G. Pearson. "Inhibition of Flexor Burst Generation by Loading Ankle Extensor Muscles in 

Walking Cats." Brain Res 187, no. 2 (1980): 321-32. 

E., Agduhr. "Über Ein Zentrales Sinnesorgan (?) Bei Den Vertebraten." Z. Anat. Entwickl. Gesch 66 (1922): 223–

360. 

Eaton, R. C., and R. D. Farley. "Spawning Cycle and Egg Production of Zebrafish, Brachydanio Rerio, in the 

Laboratory." Copeia  (1974): 195-204. 

Eklof-Ljunggren, E., S. Haupt, J. Ausborn, I. Dehnisch, P. Uhlen, S. Higashijima, and A. El Manira. "Origin of 

Excitation Underlying Locomotion in the Spinal Circuit of Zebrafish." Proc Natl Acad Sci U S A 109, no. 14 

(2012): 5511-6. 

Elbaz, I., L. Yelin-Bekerman, J. Nicenboim, G. Vatine, and L. Appelbaum. "Genetic Ablation of Hypocretin 

Neurons Alters Behavioral State Transitions in Zebrafish." J Neurosci 32, no. 37 (2012): 12961-72. 

Fallani Fde, V., M. Corazzol, J. R. Sternberg, C. Wyart, and M. Chavez. "Hierarchy of Neural Organization in the 

Embryonic Spinal Cord: Granger-Causality Graph Analysis of in Vivo Calcium Imaging Data." IEEE Trans 

Neural Syst Rehabil Eng 23, no. 3 (2015): 333-41. 

Fidelin, K., L. Djenoune, C. Stokes, A. Prendergast, J. Gomez, A. Baradel, F. Del Bene, and C. Wyart. "State-

Dependent Modulation of Locomotion by Gabaergic Spinal Sensory Neurons." Current Biology 25, no. 23 

(2015): 3035-47. 

Fields, H. "State-Dependent Opioid Control of Pain." Nat Rev Neurosci 5, no. 7 (2004): 565-75. 

Fischer, JA, E Giniger, T Maniatis, and M Ptashne. "Gal4 Activates Transcription in Drosophila." Nature 332, no. 

6167 (1988): 853. 

Fleisch, V. C., and S. C. Neuhauss. "Visual Behavior in Zebrafish." Zebrafish 3, no. 2 (2006): 191-201. 

Flint, A. C., R. S. Dammerman, and A. R. Kriegstein. "Endogenous Activation of Metabotropic Glutamate 

Receptors in Neocortical Development Causes Neuronal Calcium Oscillations." Proc Natl Acad Sci U S A 

96, no. 21 (1999): 12144-9. 

Fontaine, E., D. Lentink, S. Kranenbarg, U. K. Muller, J. L. van Leeuwen, A. H. Barr, and J. W. Burdick. 

"Automated Visual Tracking for Studying the Ontogeny of Zebrafish Swimming." J Exp Biol 211, no. Pt 8 

(2008): 1305-16. 

Foreman, M. B., and R. C. Eaton. "The Direction Change Concept for Reticulospinal Control of Goldfish Escape." J 

Neurosci 13, no. 10 (1993): 4101-13. 

Friedmann, D., A. Hoagland, S. Berlin, and E. Y. Isacoff. "A Spinal Opsin Controls Early Neural Activity and 

Drives a Behavioral Light Response." Curr Biol 25, no. 1 (2015): 69-74. 

Gahtan, E., P. Tanger, and H. Baier. "Visual Prey Capture in Larval Zebrafish Is Controlled by Identified 

Reticulospinal Neurons Downstream of the Tectum." J Neurosci 25, no. 40 (2005): 9294-303. 

Galli, L., and L. Maffei. "Spontaneous Impulse Activity of Rat Retinal Ganglion Cells in Prenatal Life." Science 

242, no. 4875 (1988): 90-91. 

Garaschuk, O., E. Hanse, and A. Konnerth. "Developmental Profile and Synaptic Origin of Early Network 

Oscillations in the Ca1 Region of Rat Neonatal Hippocampus." J Physiol 507 (1998): 219-36. 

Gaspar, P., O. Cases, and L. Maroteaux. "The Developmental Role of Serotonin: News from Mouse Molecular 

Genetics." Nat Rev Neurosci 4, no. 12 (2003): 1002-12. 

Gautrais, J., F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chate, and G. Theraulaz. "Deciphering Interactions in 

Moving Animal Groups." PLoS Comput Biol 8, no. 9 (2012): e1002678. 

Getting, P. A. "Mechanisms of Pattern Generation Underlying Swimming in Tritonia. Iii. Intrinsic and Synaptic 

Mechanisms for Delayed Excitation." J Neurophysiol 49, no. 4 (1983): 1036-50. 

Gonzalez-Islas, C., and P. Wenner. "Spontaneous Network Activity in the Embryonic Spinal Cord Regulates 

Ampaergic and Gabaergic Synaptic Strength." Neuron 49, no. 4 (2006): 563-75. 

Gopfert, M. C., J. T. Albert, B. Nadrowski, and A. Kamikouchi. "Specification of Auditory Sensitivity by 

Drosophila Trp Channels." Nat Neurosci 9, no. 8 (2006): 999-1000. 

 141



References_________                                               _____________________________________________ 

                                                                                                       
 
Gorostiza, P., and E. Y. Isacoff. "Optical Switches for Remote and Noninvasive Control of Cell Signaling." Science 

322, no. 5900 (2008): 395-9. 

Gosgnach, S., G. M. Lanuza, S. J. Butt, H. Saueressig, Y. Zhang, T. Velasquez, D. Riethmacher, et al. "V1 Spinal 

Neurons Regulate the Speed of Vertebrate Locomotor Outputs." Nature 440, no. 7081 (2006): 215-9. 

Goulding, M. "Circuits Controlling Vertebrate Locomotion: Moving in a New Direction." Nat Rev Neurosci 10, no. 

7 (2009): 507-18. 

Granato, M., F. J. van Eeden, U. Schach, T. Trowe, M. Brand, M. Furutani-Seiki, P. Haffter, et al. "Genes 

Controlling and Mediating Locomotion Behavior of the Zebrafish Embryo and Larva." Development 123 

(1996): 399-413. 

Greka, A., B. Navarro, E. Oancea, A. Duggan, and D. E. Clapham. "Trpc5 Is a Regulator of Hippocampal Neurite 

Length and Growth Cone Morphology." Nat Neurosci 6, no. 8 (2003): 837-45. 

Grewe, B. F., D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen. "High-Speed in Vivo Calcium Imaging 

Reveals Neuronal Network Activity with near-Millisecond Precision." Nat Methods 7, no. 5 (2010): 399-405. 

Grillner, S. "The Motor Infrastructure: From Ion Channels to Neuronal Networks." Nat Rev Neurosci 4, no. 7 

(2003): 573-86. 

Grillner, S., T. Deliagina, O. Ekeberg, A. el Manira, R. H. Hill, A. Lansner, G. N. Orlovsky, and P. Wallen. "Neural 

Networks That Co-Ordinate Locomotion and Body Orientation in Lamprey." Trends Neurosci 18, no. 6 

(1995): 270-9. 

Grillner, S., and A. El Manira. "The Intrinsic Operation of the Networks That Make Us Locomote." Curr Opin 

Neurobiol 31 (2015): 244-9. 

Grillner, S., and T. M. Jessell. "Measured Motion: Searching for Simplicity in Spinal Locomotor Networks." Curr 

Opin Neurobiol 19, no. 6 (2009): 572-86. 

Grillner, S., A. Kozlov, P. Dario, C. Stefanini, A. Menciassi, A. Lansner, and J. Hellgren Kotaleski. "Modeling a 

Vertebrate Motor System: Pattern Generation, Steering and Control of Body Orientation." Prog Brain Res 

165 (2007): 221-34. 

Grillner, S., and M. L. Shik. "On the Descending Control of the Lumbosacral Spinal Cord from the "Mesencephalic 

Locomotor Region"." Acta Physiol Scand 87, no. 3 (1973): 320-33. 

Grillner, S., and P. Wallen. "Central Pattern Generators for Locomotion, with Special Reference to Vertebrates." 

Annu Rev Neurosci 8 (1985): 233-61. 

Grillner, S., P. Wallen, L. Brodin, and A. Lansner. "Neuronal Network Generating Locomotor Behavior in Lamprey: 

Circuitry, Transmitters, Membrane Properties, and Simulation." Annu Rev Neurosci 14 (1991): 169-99. 

Grillner, S., and P. Zangger. "On the Central Generation of Locomotion in the Low Spinal Cat." Exp Brain Res 34, 

no. 2 (1979): 241-61. 

Grimes, D. T., C. W. Boswell, N. F. Morante, R. M. Henkelman, R. D. Burdine, and B. Ciruna. "Zebrafish Models 

of Idiopathic Scoliosis Link Cerebrospinal Fluid Flow Defects to Spine Curvature." Science 352, no. 6291 

(2016): 1341-4. 

Grunwald, D. J., and J. S. Eisen. "Headwaters of the Zebrafish -- Emergence of a New Model Vertebrate." Nat Rev 

Genet 3, no. 9 (2002): 717-24. 

Gu, X., and N. C. Spitzer. "Distinct Aspects of Neuronal Differentiation Encoded by Frequency of Spontaneous 

Ca2+ Transients." Nature 375, no. 6534 (1995): 784-7. 

Haffter, P., and C. Nusslein-Volhard. "Large Scale Genetics in a Small Vertebrate, the Zebrafish." Int J Dev Biol 40, 

no. 1 (1996): 221-7. 

Hale, M. E. "Locomotor Mechanics During Early Life History: Effects of Size and Ontogeny on Fast-Start 

Performance of Salmonid Fishes." J Exp Biol 202 (1999): 1465-79. 

Hale, M. E., D. A. Ritter, and J. R. Fetcho. "A Confocal Study of Spinal Interneurons in Living Larval Zebrafish." J 

Comp Neurol 437, no. 1 (2001): 1-16. 

Hamburger, V., and M. Balaban. "Observations and Experiments on Spontaneous Rhythmical Behavior in the Chick 

Embryo." Dev Biol 6 (1963): 533-45. 

 142



References_________                                               _____________________________________________ 

                                                                                                       
 
Hanganu, I. L., A. Okabe, V. Lessmann, and H. J. Luhmann. "Cellular Mechanisms of Subplate-Driven and 

Cholinergic Input-Dependent Network Activity in the Neonatal Rat Somatosensory Cortex." Cereb Cortex 

19, no. 1 (2009): 89-105. 

Hanson, M. G., and L. T. Landmesser. "Increasing the Frequency of Spontaneous Rhythmic Activity Disrupts Pool-

Specific Axon Fasciculation and Pathfinding of Embryonic Spinal Motoneurons." J Neurosci 26, no. 49 

(2006): 12769-80. 

Hansson, S. R., E. Mezey, and B. J. Hoffman. "Serotonin Transporter Messenger Rna in the Developing Rat Brain: 

Early Expression in Serotonergic Neurons and Transient Expression in Non-Serotonergic Neurons." 

Neuroscience 83, no. 4 (1998): 1185-201. 

Harris-Warrick, R. M., and E. Marder. "Modulation of Neural Networks for Behavior." Annu Rev Neurosci 14 

(1991): 39-57. 

Hartfield, E. M., F. Rinaldi, C. P. Glover, L. F. Wong, M. A. Caldwell, and J. B. Uney. "Connexin 36 Expression 

Regulates Neuronal Differentiation from Neural Progenitor Cells." PLoS One 6, no. 3 (2011): e14746. 

Haverkamp, L. J. "Anatomical and Physiological Development of the Xenopus Embryonic Motor System in the 

Absence of Neural Activity." J Neurosci 6, no. 5 (1986): 1338-48. 

Haycraft, C. J., B. Banizs, Y. Aydin-Son, Q. Zhang, E. J. Michaud, and B. K. Yoder. "Gli2 and Gli3 Localize to 

Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function." PLoS Genet 1, 

no. 4 (2005): e53. 

Hernandez, O., E. Papagiakoumou, D. Tanese, K. Fidelin, C. Wyart, and V. Emiliani. "Three-Dimensional 

Spatiotemporal Focusing of Holographic Patterns." Nat Commun 7 (2016): 11928. 

Higuchi, T., T. Shimizu, T. Fujii, B. Nilius, and H. Sakai. "Gating Modulation by Heat of the Polycystin Transient 

Receptor Potential Channel Pkd2l1 (Trpp3)." Pflugers Arch 466, no. 10 (2014): 1933-40. 

Hirata, H., L. Saint-Amant, G. B. Downes, W. W. Cui, W. Zhou, M. Granato, and J. Y. Kuwada. "Zebrafish 

Bandoneon Mutants Display Behavioral Defects Due to a Mutation in the Glycine Receptor Beta-Subunit." 

Proc Natl Acad Sci U S A 102, no. 23 (2005): 8345-50. 

Hooker, D. "Early Human Fetal Behavior, with a Preliminary Note on Double Simultaneous Fetal Stimulation." Res 

Publ Assoc Res Nerv Ment Dis 33 (1954): 98-113. 

Horio, N., R. Yoshida, K. Yasumatsu, Y. Yanagawa, Y. Ishimaru, H. Matsunami, and Y. Ninomiya. "Sour Taste 

Responses in Mice Lacking Pkd Channels." PLoS One 6, no. 5 (2011): e20007. 

Hoyt, D. F., and C. R. Taylor. "Gait and the Energetics of Locomotion in Horses." Nature  (1981). 

Hu, M., Y. Liu, J. Wu, and X. Liu. "Influx-Operated Ca(2+) Entry Via Pkd2-L1 and Pkd1-L3 Channels Facilitates 

Sensory Responses to Polymodal Transient Stimuli." Cell Rep 13, no. 4 (2015): 798-811. 

Huang, K. H., M. B. Ahrens, T. W. Dunn, and F. Engert. "Spinal Projection Neurons Control Turning Behaviors in 

Zebrafish." Curr Biol 23, no. 16 (2013): 1566-73. 

Hubbard, J.M., U.L.  Böhm, A. Prendergast, P.-E. Tseng, M. Newman, C. Stokes, and C. Wyart. "Intraspinal 

Sensory Neurons Provide Powerful Inhibition to Motor Circuits Ensuring Postural Control During 

Locomotion."  (In revision). 

Hugnot, J. P., and R. Franzen. "The Spinal Cord Ependymal Region: A Stem Cell Niche in the Caudal Central 

Nervous System." Front Biosci (Landmark Ed) 16 (2011): 1044-59. 

Inada, H., F. Kawabata, Y. Ishimaru, T. Fushiki, H. Matsunami, and M. Tominaga. "Off-Response Property of an 

Acid-Activated Cation Channel Complex Pkd1l3-Pkd2l1." EMBO Rep 9, no. 7 (2008): 690-7. 

Ishimaru, Y., H. Inada, M. Kubota, H. Zhuang, M. Tominaga, and H. Matsunami. "Transient Receptor Potential 

Family Members Pkd1l3 and Pkd2l1 Form a Candidate Sour Taste Receptor." Proc Natl Acad Sci U S A 103, 

no. 33 (2006): 12569-74. 

Jacobs, G. A., J. P. Miller, and Z. Aldworth. "Computational Mechanisms of Mechanosensory Processing in the 

Cricket." J Exp Biol 211, no. 11 (2008): 1819-28. 

Jalalvand, E., B. Robertson, H. Tostivint, P. Wallen, and S. Grillner. "The Spinal Cord Has an Intrinsic System for 

the Control of Ph." Curr Biol 26, no. 10 (2016): 1346-51. 

 143



References_________                                               _____________________________________________ 

                                                                                                       
 
Jalalvand, E., B. Robertson, P. Wallen, and S. Grillner. "Ciliated Neurons Lining the Central Canal Sense Both Fluid 

Movement and Ph through Asic3." Nat Commun 7 (2016): 10002. 

Jalalvand, E., B. Robertson, P. Wallen, R. H. Hill, and S. Grillner. "Laterally Projecting Cerebrospinal Fluid-

Contacting Cells in the Lamprey Spinal Cord Are of Two Distinct Types." J Comp Neurol 522, no. 8 (2014): 

Spc1. 

Jessell, T. M. "Neuronal Specification in the Spinal Cord: Inductive Signals and Transcriptional Codes." Nat Rev 

Genet 1, no. 1 (2000): 20-9. 

Jhuang, H., E. Garrote, J. Mutch, X. Yu, V. Khilnani, T. Poggio, A. D. Steele, and T. Serre. "Automated Home-

Cage Behavioural Phenotyping of Mice." Nat Commun 1 (2010): 68. 

Jordan, L. M., J. Liu, P. B. Hedlund, T. Akay, and K. G. Pearson. "Descending Command Systems for the Initiation 

of Locomotion in Mammals." Brain research reviews 57, no. 1 (2008): 183-91. 

Jordt, S. E., D. M. Bautista, H. H. Chuang, D. D. McKemy, P. M. Zygmunt, E. D. Hogestatt, I. D. Meng, and D. 

Julius. "Mustard Oils and Cannabinoids Excite Sensory Nerve Fibres through the Trp Channel Anktm1." 

Nature 427, no. 6971 (2004): 260-5. 

Jouary, Adrien, and German Sumbre. "Automatic Classification of Behavior in Zebrafish Larvae." bioRxiv  (2016): 

052324. 

Kabra, M., A. A. Robie, M. Rivera-Alba, S. Branson, and K. Branson. "Jaaba: Interactive Machine Learning for 

Automatic Annotation of Animal Behavior." Nat Methods 10, no. 1 (2013): 64-7. 

Kandler, K., and L. C. Katz. "Coordination of Neuronal Activity in Developing Visual Cortex by Gap Junction-

Mediated Biochemical Communication." J Neurosci 18, no. 4 (1998): 1419-27. 

Kang, L., J. Gao, W. R. Schafer, Z. Xie, and X. Z. Xu. "C. Elegans Trp Family Protein Trp-4 Is a Pore-Forming 

Subunit of a Native Mechanotransduction Channel." Neuron 67, no. 3 (2010): 381-91. 

Kao, I., D. B. Drachman, and D. L. Price. "Botulinum Toxin: Mechanism of Presynaptic Blockade." Science 193, 

no. 4259 (1976): 1256-8. 

Karunaratne, A., M. Hargrave, A. Poh, and T. Yamada. "Gata Proteins Identify a Novel Ventral Interneuron 

Subclass in the Developing Chick Spinal Cord." Dev Biol 249, no. 1 (2002): 30-43. 

Kastanenka, K. V., and L. T. Landmesser. "Optogenetic-Mediated Increases in in Vivo Spontaneous Activity 

Disrupt Pool-Specific but Not Dorsal-Ventral Motoneuron Pathfinding." Proc Natl Acad Sci U S A 110, no. 

43 (2013): 17528-33. 

Katz, L. C., and C. J. Shatz. "Synaptic Activity and the Construction of Cortical Circuits." Science 274, no. 5290 

(1996): 1133-8. 

Katz, P. S., P. A. Getting, and W. N. Frost. "Dynamic Neuromodulation of Synaptic Strength Intrinsic to a Central 

Pattern Generator Circuit." Nature 367, no. 6465 (1994): 729-31. 

Katz, Y., K. Tunstrom, C. C. Ioannou, C. Huepe, and I. D. Couzin. "Inferring the Structure and Dynamics of 

Interactions in Schooling Fish." Proc Natl Acad Sci U S A 108, no. 46 (2011): 18720-5. 

Kay, J. N., K. C. Finger-Baier, T. Roeser, W. Staub, and H. Baier. "Retinal Ganglion Cell Genesis Requires Lakritz, 

a Zebrafish Atonal Homolog." Neuron 30 (Jun 2001): 725-36. 

Khor, B. S., M. F. Jamil, M. I. Adenan, and A. C. Shu-Chien. "Mitragynine Attenuates Withdrawal Syndrome in 

Morphine-Withdrawn Zebrafish." PLoS One 6, no. 12 (2011): e28340. 

Kiehn, O. "Decoding the Organization of Spinal Circuits That Control Locomotion." Nat Rev Neurosci 17, no. 4 

(2016): 224-38. 

Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling. "Stages of Embryonic Development 

of the Zebrafish." Dev Dyn 203, no. 3 (1995): 253-310. 

Kimura, Y., Y. Okamura, and S. Higashijima. "Alx, a Zebrafish Homolog of Chx10, Marks Ipsilateral Descending 

Excitatory Interneurons That Participate in the Regulation of Spinal Locomotor Circuits." J Neurosci 26, no. 

21 (2006): 5684-97. 

 144



References_________                                               _____________________________________________ 

                                                                                                       
 
Kimura, Y., C. Satou, S. Fujioka, W. Shoji, K. Umeda, T. Ishizuka, H. Yawo, and S. Higashijima. "Hindbrain V2a 

Neurons in the Excitation of Spinal Locomotor Circuits During Zebrafish Swimming." Curr Biol 23, no. 10 

(2013): 843-9. 

Kimura, Y., C. Satou, and S. Higashijima. "V2a and V2b Neurons Are Generated by the Final Divisions of Pair-

Producing Progenitors in the Zebrafish Spinal Cord." Development 135, no. 18 (2008): 3001-5. 

Kindt, K. S., V. Viswanath, L. Macpherson, K. Quast, H. Hu, A. Patapoutian, and W. R. Schafer. "Caenorhabditis 

Elegans Trpa-1 Functions in Mechanosensation." Nat Neurosci 10, no. 5 (2007): 568-77. 

Kiprilov, E. N., A. Awan, R. Desprat, M. Velho, C. A. Clement, A. G. Byskov, C. Y. Andersen, et al. "Human 

Embryonic Stem Cells in Culture Possess Primary Cilia with Hedgehog Signaling Machinery." J Cell Biol 

180, no. 5 (2008): 897-904. 

Kirkby, L. A., G. S. Sack, A. Firl, and M. B. Feller. "A Role for Correlated Spontaneous Activity in the Assembly of 

Neural Circuits." Neuron 80, no. 5 (2013): 1129-44. 

Kjaerulff, O., and O. Kiehn. "Distribution of Networks Generating and Coordinating Locomotor Activity in the 

Neonatal Rat Spinal Cord in Vitro: A Lesion Study." J Neurosci 16, no. 18 (1996): 5777-94. 

Knaut, H., P. Blader, U. Strahle, and A. F. Schier. "Assembly of Trigeminal Sensory Ganglia by Chemokine 

Signaling." Neuron 47, no. 5 (2005): 653-66. 

Knogler, L. D., J. Ryan, L. Saint-Amant, and P. Drapeau. "A Hybrid Electrical/Chemical Circuit in the Spinal Cord 

Generates a Transient Embryonic Motor Behavior." J Neurosci 34, no. 29 (2014): 9644-55. 

Kohashi, T., N. Nakata, and Y. Oda. "Effective Sensory Modality Activating an Escape Triggering Neuron Switches 

During Early Development in Zebrafish." J Neurosci 32, no. 17 (2012): 5810-20. 

Kohashi, T., and Y. Oda. "Initiation of Mauthner- or Non-Mauthner-Mediated Fast Escape Evoked by Different 

Modes of Sensory Input." J Neurosci 28, no. 42 (2008): 10641-53. 

Kokel, D., J. Bryan, C. Laggner, R. White, C. Y. Cheung, R. Mateus, D. Healey, et al. "Rapid Behavior-Based 

Identification of Neuroactive Small Molecules in the Zebrafish." Nat Chem Biol 6, no. 3 (2010): 231-37. 

Kolmer, W. "Das ‘Sagitallorgan’ Der Wirbeltiere." Z. Anat. EntwGesch 60 (1921 1921): 652-717. 

———. "Über Das Sagittalorgan, Ein Zentrales Sinnesorgan Der Wirbeltiere, Insbesondere Beim Affen." Z. 

Zellforsch 13 (1931): 236–48. 

Korn, H., and D. S. Faber. "The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-

Making?". Neuron 47, no. 1 (2005): 13-28. 

Koulen, P., R. S. Duncan, J. Liu, N. E. Cohen, J. A. Yannazzo, N. McClung, C. L. Lockhart, M. Branden, and M. 

Buechner. "Polycystin-2 Accelerates Ca2+ Release from Intracellular Stores in Caenorhabditis Elegans." Cell 

Calcium 37, no. 6 (2005): 593-601. 

Kramer, R. H., D. L. Fortin, and D. Trauner. "New Photochemical Tools for Controlling Neuronal Activity." Curr 

Opin Neurobiol 19, no. 5 (2009): 544-52. 

Kramer-Zucker, A. G., F. Olale, C. J. Haycraft, B. K. Yoder, A. F. Schier, and I. A. Drummond. "Cilia-Driven Fluid 

Flow in the Zebrafish Pronephros, Brain and Kupffer's Vesicle Is Required for Normal Organogenesis." 

Development 132, no. 8 (2005): 1907-21. 

Kucenas, S., N. Takada, H. C. Park, E. Woodruff, K. Broadie, and B. Appel. "Cns-Derived Glia Ensheath Peripheral 

Nerves and Mediate Motor Root Development." Nat Neurosci 11, no. 2 (2008): 143-51. 

Kurita, R., H. Sagara, Y. Aoki, B. A. Link, K. Arai, and S. Watanabe. "Suppression of Lens Growth by Αa-

Crystallin Promoter-Driven Expression of Diphtheria Toxin Results in Disruption of Retinal Cell 

Organization in Zebrafish." Dev Biol 255, no. 1 (2003): 113-27. 

Kuwada, J. Y., R. R. Bernhardt, and N. Nguyen. "Development of Spinal Neurons and Tracts in the Zebrafish 

Embryo." J Comp Neurol 302, no. 3 (1990): 617-28. 

Kwan, K. M., E. Fujimoto, C. Grabher, B. D. Mangum, M. E. Hardy, D. S. Campbell, J. M. Parant, et al. "The 

Tol2kit: A Multisite Gateway-Based Construction Kit for Tol2 Transposon Transgenesis Constructs." Dev 

Dyn 236, no. 11 (2007): 3088-99. 

 145



References_________                                               _____________________________________________ 

                                                                                                       
 
Lambert, A. M., J. L. Bonkowsky, and M. A. Masino. "The Conserved Dopaminergic Diencephalospinal Tract 

Mediates Vertebrate Locomotor Development in Zebrafish Larvae." J Neurosci 32, no. 39 (2012): 13488-

500. 

Lanuza, G. M., S. Gosgnach, A. Pierani, T. M. Jessell, and M. Goulding. "Genetic Identification of Spinal 

Interneurons That Coordinate Left-Right Locomotor Activity Necessary for Walking Movements." Neuron 

42, no. 3 (2004): 375-86. 

Lauterbach, M. A., E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani. "Fast Calcium Imaging with Optical 

Sectioning Via Hilo Microscopy." PLoS One 10, no. 12 (2015): e0143681. 

Lebrand, C., O. Cases, C. Adelbrecht, A. Doye, C. Alvarez, S. El Mestikawy, I. Seif, and P. Gaspar. "Transient 

Uptake and Storage of Serotonin in Developing Thalamic Neurons." Neuron 17, no. 5 (1996): 823-35. 

Lee, A., A. S. Mathuru, C. Teh, C. Kibat, V. Korzh, T. B. Penney, and S. Jesuthasan. "The Habenula Prevents 

Helpless Behavior in Larval Zebrafish." Curr Biol 20, no. 24 (2010): 2211-6. 

Lee, K. J., and T. M. Jessell. "The Specification of Dorsal Cell Fates in the Vertebrate Central Nervous System." 

Annu Rev Neurosci 22 (1999): 261-94. 

Lehnert, B. P., A. E. Baker, Q. Gaudry, A. S. Chiang, and R. I. Wilson. "Distinct Roles of Trp Channels in Auditory 

Transduction and Amplification in Drosophila." Neuron 77, no. 1 (2013): 115-28. 

Leifer, A. M., C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. Samuel. "Optogenetic Manipulation of Neural 

Activity in Freely Moving Caenorhabditis Elegans." Nat Methods 8, no. 2 (2011): 147-52. 

Leinekugel, X., I. Medina, I. Khalilov, Y. Ben-Ari, and R. Khazipov. "Ca2+ Oscillations Mediated by the 

Synergistic Excitatory Actions of Gaba(a) and Nmda Receptors in the Neonatal Hippocampus." Neuron 18, 

no. 2 (1997): 243-55. 

Lewis, K. E., and J. S. Eisen. "From Cells to Circuits: Development of the Zebrafish Spinal Cord." Prog Neurobiol 

69, no. 6 (2003): 419-49. 

Li, W. C., S. Higashijima, D. M. Parry, A. Roberts, and S. R. Soffe. "Primitive Roles for Inhibitory Interneurons in 

Developing Frog Spinal Cord." J Neurosci 24, no. 25 (2004): 5840-8. 

Li, Y., Y. C. Jia, K. Cui, N. Li, Z. Y. Zheng, Y. Z. Wang, and X. B. Yuan. "Essential Role of Trpc Channels in the 

Guidance of Nerve Growth Cones by Brain-Derived Neurotrophic Factor." Nature 434, no. 7035 (2005): 

894-8. 

Lima, S. Q., and G. Miesenbock. "Remote Control of Behavior through Genetically Targeted Photostimulation of 

Neurons." Cell 121, no. 1 (2005): 141-52. 

Liman, E. R., D. P. Corey, and C. Dulac. "Trp2: A Candidate Transduction Channel for Mammalian Pheromone 

Sensory Signaling." Proc Natl Acad Sci U S A 96, no. 10 (1999): 5791-6. 

Lin, S. Y., and D. P. Corey. "Trp Channels in Mechanosensation." Curr Opin Neurobiol 15, no. 3 (2005): 350-7. 

Liu, K. S., and J. R. Fetcho. "Laser Ablations Reveal Functional Relationships of Segmental Hindbrain Neurons in 

Zebrafish." Neuron 23, no. 2 (1999): 325-35. 

Liu, Y., Q. Li, M. Tan, Y. Y. Zhang, E. Karpinski, J. Zhou, and X. Z. Chen. "Modulation of the Human Polycystin-

L Channel by Voltage and Divalent Cations." FEBS Lett 525, no. 1-3 (2002): 71-6. 

Liu, Y. C., I. Bailey, and M. E. Hale. "Alternative Startle Motor Patterns and Behaviors in the Larval Zebrafish 

(Danio Rerio)." J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198, no. 1 (2012): 11-24. 

Ljunggren, E. E., S. Haupt, J. Ausborn, K. Ampatzis, and A. El Manira. "Optogenetic Activation of Excitatory 

Premotor Interneurons Is Sufficient to Generate Coordinated Locomotor Activity in Larval Zebrafish." J 

Neurosci 34, no. 1 (2014): 134-9. 

Loeb, G. E., M. J.  Bak, and J. Duysens. "Long-Term Unit Recording from Somatosensory Neurons in the Spinal 

Ganglia of the Freely Walking Cat." Science 197, no. 4309 (1977): 1192-94. 

LoTurco, J. J., D. F. Owens, M. J. Heath, M. B. Davis, and A. R. Kriegstein. "Gaba and Glutamate Depolarize 

Cortical Progenitor Cells and Inhibit DNA Synthesis." Neuron 15, no. 6 (1995): 1287-98. 

 146



References_________                                               _____________________________________________ 

                                                                                                       
 
Lundfald, L., C. E. Restrepo, S. J. Butt, C. Y. Peng, S. Droho, T. Endo, H. U. Zeilhofer, K. Sharma, and O. Kiehn. 

"Phenotype of V2-Derived Interneurons and Their Relationship to the Axon Guidance Molecule Epha4 in the 

Developing Mouse Spinal Cord." Eur J Neurosci 26, no. 11 (2007): 2989-3002. 

Ma, Q. "Labeled Lines Meet and Talk: Population Coding of Somatic Sensations." J Clin Invest 120, no. 11 (2010): 

3773-8. 

Maher, B. J., M. J. McGinley, and G. L. Westbrook. "Experience-Dependent Maturation of the Glomerular 

Microcircuit." Proc Natl Acad Sci U S A 106, no. 39 (2009): 16865-70. 

Mahn, M., M. Prigge, S. Ron, R. Levy, and O. Yizhar. "Biophysical Constraints of Optogenetic Inhibition at 

Presynaptic Terminals." Nat Neurosci 19, no. 4 (2016): 554-6. 

Manent, J. B., M. Demarque, I. Jorquera, C. Pellegrino, Y. Ben-Ari, L. Aniksztejn, and A. Represa. "A 

Noncanonical Release of Gaba and Glutamate Modulates Neuronal Migration." J Neurosci 25, no. 19 (2005): 

4755-65. 

Marder, E., and R. L. Calabrese. "Principles of Rhythmic Motor Pattern Generation." Physiol Rev 76, no. 3 (1996): 

687-717. 

Marder, E., T. O'Leary, and S. Shruti. "Neuromodulation of Circuits with Variable Parameters: Single Neurons and 

Small Circuits Reveal Principles of State-Dependent and Robust Neuromodulation." Annu Rev Neurosci 37 

(2014): 329-46. 

Marder, E., and K. J. Rehm. "Development of Central Pattern Generating Circuits." Curr Opin Neurobiol 15, no. 1 

(2005): 86-93. 

Marder, E., and V. Thirumalai. "Cellular, Synaptic and Network Effects of Neuromodulation." Neural Netw 15, no. 

4-6 (Jun-Jul 2002): 479-93. 

Marques, J. C. "Density Valley Clustering Reveals New Swim Types of the Zebrafish Larvae."  (2016). 

Masino, M. A., and J. R. Fetcho. "Fictive Swimming Motor Patterns in Wild Type and Mutant Larval Zebrafish." J 

Neurophysiol 93, no. 6 (2005): 3177-88. 

Mathias, J. R., Z. Zhang, M. T. Saxena, and J. S. Mumm. "Enhanced Cell-Specific Ablation in Zebrafish Using a 

Triple Mutant of Escherichia Coli Nitroreductase." Zebrafish 11, no. 2 (2014): 85-97. 

Mattis, J., K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O'Shea, R. Prakash, L. A. Gunaydin, et al. "Principles 

for Applying Optogenetic Tools Derived from Direct Comparative Analysis of Microbial Opsins." Nat 

Methods 9, no. 2 (2012): 159-72. 

McElligott, M. B., and M. O'Malley D. "Prey Tracking by Larval Zebrafish: Axial Kinematics and Visual Control." 

Brain Behav Evol 66, no. 3 (2005): 177-96. 

McLean, D. L., J. Fan, S. Higashijima, M. E. Hale, and J. R. Fetcho. "A Topographic Map of Recruitment in Spinal 

Cord." Nature 446, no. 7131 (2007): 71-5. 

McLean, D. L., M. A. Masino, I. Y. Koh, W. B. Lindquist, and J. R. Fetcho. "Continuous Shifts in the Active Set of 

Spinal Interneurons During Changes in Locomotor Speed." Nat Neurosci 11, no. 12 (2008): 1419-29. 

Meister, M., R. O. Wong, D. A. Baylor, and C. J. Shatz. "Synchronous Bursts of Action Potentials in Ganglion Cells 

of the Developing Mammalian Retina." Science 252, no. 5008 (1991): 939-43. 

Menelaou, E., C. VanDunk, and D. L. McLean. "Differences in the Morphology of Spinal V2a Neurons Reflect 

Their Recruitment Order During Swimming in Larval Zebrafish." J Comp Neurol 522, no. 6 (2014): 1232-48. 

Metcalfe, W. K., C. B. Kimmel, and E. Schabtach. "Anatomy of the Posterior Lateral Line System in Young Larvae 

of the Zebrafish." J Comp Neurol 233, no. 3 (1985): 377-89. 

Miller, N., and R. Gerlai. "From Schooling to Shoaling: Patterns of Collective Motion in Zebrafish (Danio Rerio)." 

PLoS One 7, no. 11 (2012): e48865. 

Milner, L. D., and L. T. Landmesser. "Cholinergic and Gabaergic Inputs Drive Patterned Spontaneous Motoneuron 

Activity before Target Contact." J Neurosci 19, no. 8 (1999): 3007-22. 

Mirat, O., J. R. Sternberg, K. E. Severi, and C. Wyart. "Zebrazoom: An Automated Program for High-Throughput 

Behavioral Analysis and Categorization." Front Neural Circuits 7 (2013): 107. 

 147



References_________                                               _____________________________________________ 

                                                                                                       
 
Montgomery, J. E., T. D. Wiggin, L. M. Rivera-Perez, C. Lillesaar, and M. A. Masino. "Intraspinal Serotonergic 

Neurons Consist of Two, Temporally Distinct Populations in Developing Zebrafish." Dev Neurobiol 76, no. 6 

(2016): 673-87. 

Moody, W. J., and M. M. Bosma. "Ion Channel Development, Spontaneous Activity, and Activity-Dependent 

Development in Nerve and Muscle Cells." Physiol Rev 85, no. 3 (2005): 883-941. 

Moore, M. S., J. DeZazzo, A. Y. Luk, T. Tully, C. M. Singh, and U. Heberlein. "Ethanol Intoxication in Drosophila: 

Genetic and Pharmacological Evidence for Regulation by the Camp Signaling Pathway." Cell 93, no. 6 

(1998): 997-1007. 

Moreno, R. L., and A. B. Ribera. "Spinal Neurons Require Islet1 for Subtype-Specific Differentiation of Electrical 

Excitability." Neural Dev 9 (2014): 19. 

Murakami, M., T. Ohba, F. Xu, S. Shida, E. Satoh, K. Ono, I. Miyoshi, et al. "Genomic Organization and Functional 

Analysis of Murine Pkd2l1." J Biol Chem 280, no. 7 (2005): 5626-35. 

Muto, A., M. Ohkura, T. Kotani, S. Higashijima, J. Nakai, and K. Kawakami. "Genetic Visualization with an 

Improved Gcamp Calcium Indicator Reveals Spatiotemporal Activation of the Spinal Motor Neurons in 

Zebrafish." Proc Natl Acad Sci U S A 108, no. 13 (2011): 5425-30. 

Myers, C. P., J. W. Lewcock, M. G. Hanson, S. Gosgnach, J. B. Aimone, F. H. Gage, K. F. Lee, L. T. Landmesser, 

and S. L. Pfaff. "Cholinergic Input Is Required During Embryonic Development to Mediate Proper Assembly 

of Spinal Locomotor Circuits." Neuron 46, no. 1 (2005): 37-49. 

Nagel, G., D. Ollig, M. Fuhrmann, S. Kateriya, A. M. Musti, E. Bamberg, and P. Hegemann. "Channelrhodopsin-1: 

A Light-Gated Proton Channel in Green Algae." Science 296, no. 5577 (2002): 2395-8. 

Nagel, G., T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg. 

"Channelrhodopsin-2, a Directly Light-Gated Cation-Selective Membrane Channel." Proc Natl Acad Sci U S 

A 100, no. 24 (2003): 13940-5. 

Nauli, S. M., F. J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A. E. Elia, et al. "Polycystins 1 and 2 Mediate 

Mechanosensation in the Primary Cilium of Kidney Cells." Nat Genet 33, no. 2 (2003): 129-37. 

Nauli, S. M., and J. Zhou. "Polycystins and Mechanosensation in Renal and Nodal Cilia." Bioessays 26, no. 8 

(2004): 844-56. 

Nelson, T. M., N. D. Lopezjimenez, L. Tessarollo, M. Inoue, A. A. Bachmanov, and S. L. Sullivan. "Taste Function 

in Mice with a Targeted Mutation of the Pkd1l3 Gene." Chem Senses 35, no. 7 (2010): 565-77. 

Neuhauss, S. C., O. Biehlmaier, M. W. Seeliger, T. Das, K. Kohler, W. A. Harris, and H. Baier. "Genetic Disorders 

of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish." J Neurosci 19, no. 19 (1999): 

8603-15. 

Ni, T. T., J. Lu, M. Zhu, L. A. Maddison, K. L. Boyd, L. Huskey, B. Ju, et al. "Conditional Control of Gene 

Function by an Invertible Gene Trap in Zebrafish." Proc Natl Acad Sci U S A 109, no. 38 (2012): 15389-94. 

Nishimaru, H., and M. Kakizaki. "The Role of Inhibitory Neurotransmission in Locomotor Circuits of the 

Developing Mammalian Spinal Cord." Acta Physiol (Oxf) 197, no. 2 (2009): 83-97. 

Nusslein-Volhard, C., and E. Wieschaus. "Mutations Affecting Segment Number and Polarity in Drosophila." 

Nature 287, no. 5785 (1980): 795-801. 

Odenthal, J., K. Rossnagel, P. Haffter, R. N. Kelsh, E. Vogelsang, M. Brand, F. J. van Eeden, et al. "Mutations 

Affecting Xanthophore Pigmentation in the Zebrafish, Danio Rerio." Development 123 (1996): 391-8. 

O'Malley, D. M., N. S. Sankrithi, M. A. Borla, S. Parker, S. Banden, E. Gahtan, and H. W. Detrich, 3rd. "Optical 

Physiology and Locomotor Behaviors of Wild-Type and Nacre Zebrafish." Methods Cell Biol 76 (2004): 

261-84. 

Onativia, J., S. R. Schultz, and P. L. Dragotti. "A Finite Rate of Innovation Algorithm for Fast and Accurate Spike 

Detection from Two-Photon Calcium Imaging." J Neural Eng 10, no. 4 (2013): 046017. 

Orger, M. B., A. R. Kampff, K. E. Severi, J. H. Bollmann, and F. Engert. "Control of Visually Guided Behavior by 

Distinct Populations of Spinal Projection Neurons." Nat Neurosci 11, no. 3 (2008): 327-33. 

 148



References_________                                               _____________________________________________ 

                                                                                                       
 
Ornitz, David M, Randall W Moreadith, and Philip Leder. "Binary System for Regulating Transgene Expression in 

Mice: Targeting Int-2 Gene Expression with Yeast Gal4/Uas Control Elements." Proceedings of the National 

Academy of Sciences 88, no. 3 (1991): 698-702. 

Orts-Del'Immagine, A., A. Kastner, V. Tillement, C. Tardivel, J. Trouslard, and N. Wanaverbecq. "Morphology, 

Distribution and Phenotype of Polycystin Kidney Disease 2-Like 1-Positive Cerebrospinal Fluid Contacting 

Neurons in the Brainstem of Adult Mice." PLoS One 9, no. 2 (2014): e87748. 

Orts-Del'Immagine, A., R. Seddik, F. Tell, C. Airault, G. Er-Raoui, M. Najimi, J. Trouslard, and N. Wanaverbecq. 

"A Single Polycystic Kidney Disease 2-Like 1 Channel Opening Acts as a Spike Generator in Cerebrospinal 

Fluid-Contacting Neurons of Adult Mouse Brainstem." Neuropharmacology 101 (2016): 549-65. 

Orts-Del'immagine, A., N. Wanaverbecq, C. Tardivel, V. Tillement, M. Dallaporta, and J. Trouslard. "Properties of 

Subependymal Cerebrospinal Fluid Contacting Neurones in the Dorsal Vagal Complex of the Mouse 

Brainstem." J Physiol 590, no. 16 (2012): 3719-41. 

Otchy, T. M., S. B. Wolff, J. Y. Rhee, C. Pehlevan, R. Kawai, A. Kempf, S. M. Gobes, and B. P. Olveczky. "Acute 

Off-Target Effects of Neural Circuit Manipulations." Nature 528, no. 7582 (2015): 358-63. 

Owsianik, G., K. Talavera, T. Voets, and B. Nilius. "Permeation and Selectivity of Trp Channels." Annu Rev Physiol 

68 (2006): 685-717. 

Park, H. C., J. Shin, and B. Appel. "Spatial and Temporal Regulation of Ventral Spinal Cord Precursor Specification 

by Hedgehog Signaling." Development 131, no. 23 (2004): 5959-69. 

Park, I. J., Y. V. Bobkov, B. W. Ache, and J. C. Principe. "Quantifying Bursting Neuron Activity from Calcium 

Signals Using Blind Deconvolution." J Neurosci Methods 218, no. 2 (2013): 196-205. 

Peier, A. M., A. Moqrich, A. C. Hergarden, A. J. Reeve, D. A. Andersson, G. M. Story, T. J. Earley, et al. "A Trp 

Channel That Senses Cold Stimuli and Menthol." Cell 108, no. 5 (2002): 705-15. 

Pellizzari, R., O. Rossetto, G. Schiavo, and C. Montecucco. "Tetanus and Botulinum Neurotoxins: Mechanism of 

Action and Therapeutic Uses." Philos Trans R Soc Lond B Biol Sci 354, no. 1381 (1999): 259-68. 

Perez, C. A., L. Huang, M. Rong, J. A. Kozak, A. K. Preuss, H. Zhang, M. Max, and R. F. Margolskee. "A Transient 

Receptor Potential Channel Expressed in Taste Receptor Cells." Nat Neurosci 5, no. 11 (2002): 1169-76. 

Personius, K. E., Q. Chang, G. Z. Mentis, M. J. O'Donovan, and R. J. Balice-Gordon. "Reduced Gap Junctional 

Coupling Leads to Uncorrelated Motor Neuron Firing and Precocious Neuromuscular Synapse Elimination." 

Proc Natl Acad Sci U S A 104, no. 28 (2007): 11808-13. 

Petracca, Y. L., M. M. Sartoretti, D. J. Di Bella, A. Marin-Burgin, A. L. Carcagno, A. F. Schinder, and G. M. 

Lanuza. "The Late and Dual Origin of Cerebrospinal Fluid-Contacting Neurons in the Mouse Spinal Cord." 

Development 143, no. 5 (2016): 880-91. 

Petzold, A. M., D. Balciunas, S. Sivasubbu, K. J. Clark, V. M. Bedell, S. E. Westcot, S. R. Myers, et al. "Nicotine 

Response Genetics in the Zebrafish." Proc Natl Acad Sci U S A 106, no. 44 (2009): 18662-7. 

Pfaff, S. L. "Development of a Spinal Sensorimotor Node That Modulates Limb Position in Response to Painful 

Stimuli." Paper presented at the 21st Biennial Meeting of the International Society for Developmental 

Neuroscience, France, 2016. 

Pnevmatikakis, E. A., D. Soudry, Y. Gao, T. A. Machado, J. Merel, D. Pfau, T. Reardon, et al. "Simultaneous 

Denoising, Deconvolution, and Demixing of Calcium Imaging Data." Neuron 89, no. 2 (2016): 285-99. 

Praetorius, H. A., and K. R. Spring. "A Physiological View of the Primary Cilium." Annu Rev Physiol 67 (2005): 

515-29. 

Quan, F. B., C. Dubessy, S. Galant, N. B. Kenigfest, L. Djenoune, J. Leprince, C. Wyart, I. Lihrmann, and H. 

Tostivint. "Comparative Distribution and in Vitro Activities of the Urotensin Ii-Related Peptides Urp1 and 

Urp2 in Zebrafish: Evidence for Their Colocalization in Spinal Cerebrospinal Fluid-Contacting Neurons." 

PLoS One 10, no. 3 (2015): e0119290. 

Rabinowitch, I., M. Chatzigeorgiou, and W. R. Schafer. "A Gap Junction Circuit Enhances Processing of Coincident 

Mechanosensory Inputs." Curr Biol 23, no. 11 (2013): 963-7. 

 149



References_________                                               _____________________________________________ 

                                                                                                       
 
Raimondo, J. V., L. Kay, T. J. Ellender, and C. J. Akerman. "Optogenetic Silencing Strategies Differ in Their 

Effects on Inhibitory Synaptic Transmission." Nat Neurosci 15, no. 8 (2012): 1102-4. 

Reali, C., A. Fernandez, M. Radmilovich, O. Trujillo-Cenoz, and R. E. Russo. "Gabaergic Signalling in a 

Neurogenic Niche of the Turtle Spinal Cord." J Physiol 589, no. Pt 23 (2011): 5633-47. 

Represa, A., and Y. Ben-Ari. "Trophic Actions of Gaba on Neuronal Development." Trends Neurosci 28, no. 6 

(2005): 278-83. 

Reynolds, A., E. Brustein, M. Liao, A. Mercado, E. Babilonia, D. B. Mount, and P. Drapeau. "Neurogenic Role of 

the Depolarizing Chloride Gradient Revealed by Global Overexpression of Kcc2 from the Onset of 

Development." J Neurosci 28, no. 7 (2008): 1588-97. 

Rihel, J., D. A. Prober, A. Arvanites, K. Lam, S. Zimmerman, S. Jang, S. J. Haggarty, et al. "Zebrafish Behavioral 

Profiling Links Drugs to Biological Targets and Rest/Wake Regulation." Science 327, no. 5963 (2010): 348-

51. 

Rihel, J., and A. F. Schier. "Behavioral Screening for Neuroactive Drugs in Zebrafish." Dev Neurobiol 72, no. 3 

(2012): 373-85. 

Ritter, D. A., D. H. Bhatt, and J. R. Fetcho. "In Vivo Imaging of Zebrafish Reveals Differences in the Spinal 

Networks for Escape and Swimming Movements." J Neurosci 21, no. 22 (2001): 8956-65. 

Roberts, A., W. C. Li, and S. R. Soffe. "How Neurons Generate Behavior in a Hatchling Amphibian Tadpole: An 

Outline." Front Behav Neurosci 4 (2010): 16. 

Roberts, B. L., and G. E. Meredith. "Immunohistochemical Study of a Dopaminergic System in the Spinal Cord of 

the Ray, Raja Radiata." Brain Res 437, no. 1 (1987): 171-5. 

Roberts, B. L., G. E. Meredith, and S. Maslam. "Immunocytochemical Analysis of the Dopamine System in the 

Brain and Spinal Cord of the European Eel, Anguilla Anguilla." Anat Embryol (Berl) 180, no. 4 (1989): 401-

12. 

Rockhill, W., J. L. Kirkman, and M. M. Bosma. "Spontaneous Activity in the Developing Mouse Midbrain Driven 

by an External Pacemaker." Dev Neurobiol 69, no. 11 (2009): 689-704. 

Roeser, T., and H. Baier. "Visuomotor Behaviors in Larval Zebrafish after Gfp-Guided Laser Ablation of the Optic 

Tectum." J Neurosci 23, no. 9 (2003): 3726-34. 

Rogan, S. C., and B. L. Roth. "Remote Control of Neuronal Signaling." Pharmacol Rev 63, no. 2 (2011): 291-315. 

Rossignol, S., R. Dubuc, and J. P. Gossard. "Dynamic Sensorimotor Interactions in Locomotion." Physiol Rev 86, 

no. 1 (2006): 89-154. 

Saint-Amant, L., and P. Drapeau. "Motoneuron Activity Patterns Related to the Earliest Behavior of the Zebrafish 

Embryo." J Neurosci 20, no. 11 (2000): 3964-72. 

———. "Synchronization of an Embryonic Network of Identified Spinal Interneurons Solely by Electrical 

Coupling." Neuron 31, no. 6 (2001): 1035-46. 

———. "Time Course of the Development of Motor Behaviors in the Zebrafish Embryo." J Neurobiol 37, no. 4 

(1998): 622-32. 

Sakurai, A., and P. S. Katz. "Spike Timing-Dependent Serotonergic Neuromodulation of Synaptic Strength Intrinsic 

to a Central Pattern Generator Circuit." J Neurosci 23, no. 34 (2003): 10745-55. 

Sandler, V. M., and J. G. Barbara. "Calcium-Induced Calcium Release Contributes to Action Potential-Evoked 

Calcium Transients in Hippocampal Ca1 Pyramidal Neurons." J Neurosci 19, no. 11 (1999): 4325-36. 

Satoh, D., C. Pudenz, and S. Arber. "Context-Dependent Gait Choice Elicited by Epha4 Mutation in Lbx1 Spinal 

Interneurons." Neuron 89, no. 5 (2016): 1046-58. 

Satou, C., Y. Kimura, H. Hirata, M. L. Suster, K. Kawakami, and S. Higashijima. "Transgenic Tools to Characterize 

Neuronal Properties of Discrete Populations of Zebrafish Neurons." Development 140, no. 18 (2013): 3927-

31. 

Sawamoto, K., H. Wichterle, O. Gonzalez-Perez, J. A. Cholfin, M. Yamada, N. Spassky, N. S. Murcia, et al. "New 

Neurons Follow the Flow of Cerebrospinal Fluid in the Adult Brain." Science 311, no. 5761 (2006): 629-32. 

 150



References_________                                               _____________________________________________ 

                                                                                                       
 
Schafer, M., D. Kinzel, and C. Winkler. "Discontinuous Organization and Specification of the Lateral Floor Plate in 

Zebrafish." Dev Biol 301, no. 1 (2007): 117-29. 

Scheer, Nico, and José A Campos-Ortega. "Use of the Gal4-Uas Technique for Targeted Gene Expression in the 

Zebrafish." Mechanisms of development 80, no. 2 (1999): 153-58. 

Schiavo, G., F. Benfenati, B. Poulain, O. Rossetto, P. Polverino de Laureto, B. R. DasGupta, and C. Montecucco. 

"Tetanus and Botulinum-B Neurotoxins Block Neurotransmitter Release by Proteolytic Cleavage of 

Synaptobrevin." Nature 359, no. 6398 (1992): 832-5. 

Scholz, H., J. Ramond, C. M. Singh, and U. Heberlein. "Functional Ethanol Tolerance in Drosophila." Neuron 28, 

no. 1 (2000): 261-71. 

Schoonheim, P. J., A. B. Arrenberg, F. Del Bene, and H. Baier. "Optogenetic Localization and Genetic Perturbation 

of Saccade-Generating Neurons in Zebrafish." J Neurosci 30, no. 20 (2010): 7111-20. 

Scott, E. K., L. Mason, A. B. Arrenberg, L. Ziv, N. J. Gosse, T. Xiao, N. C. Chi, et al. "Targeting Neural Circuitry 

in Zebrafish Using Gal4 Enhancer Trapping." Nat Methods 4, no. 4 (2007): 323-6. 

Seitz, R., J. Lohler, and G. Schwendemann. "Ependyma and Meninges of the Spinal Cord of the Mouse. A Light-

and Electron-Microscopic Study." Cell Tissue Res 220, no. 1 (1981): 61-72. 

Severi, K. E., R. Portugues, J. C. Marques, D. M. O'Malley, M. B. Orger, and F. Engert. "Neural Control and 

Modulation of Swimming Speed in the Larval Zebrafish." Neuron 83, no. 3 (2014): 692-707. 

Sharif-Naeini, R., J. H. Folgering, D. Bichet, F. Duprat, I. Lauritzen, M. Arhatte, M. Jodar, et al. "Polycystin-1 and -

2 Dosage Regulates Pressure Sensing." Cell 139, no. 3 (2009): 587-96. 

Sherrington, C. S. "Observations on the Scratch-Reflex in the Spinal Dog." J Physiol 34, no. 1-2 (1906): 1-50. 

Shim, S., E. L. Goh, S. Ge, K. Sailor, J. P. Yuan, H. L. Roderick, M. D. Bootman, et al. "Xtrpc1-Dependent 

Chemotropic Guidance of Neuronal Growth Cones." Nat Neurosci 8, no. 6 (2005): 730-5. 

Shimizu, T., T. Higuchi, T. Fujii, B. Nilius, and H. Sakai. "Bimodal Effect of Alkalization on the Polycystin 

Transient Receptor Potential Channel, Pkd2l1." Pflugers Arch 461, no. 5 (2011): 507-13. 

Shimizu, T., A. Janssens, T. Voets, and B. Nilius. "Regulation of the Murine Trpp3 Channel by Voltage, Ph, and 

Changes in Cell Volume." Pflugers Arch 457, no. 4 (2009): 795-807. 

Shirasaki, R., and S. L. Pfaff. "Transcriptional Codes and the Control of Neuronal Identity." Annu Rev Neurosci 25 

(2002): 251-81. 

Shmigol, A., A. Verkhratsky, and G. Isenberg. "Calcium-Induced Calcium Release in Rat Sensory Neurons." J 

Physiol 489 ( Pt 3) (1995): 627-36. 

Simpson, L. L. "Identification of the Major Steps in Botulinum Toxin Action." Annu Rev Pharmacol Toxicol 44 

(2004): 167-93. 

Singer, J. H., R. R. Mirotznik, and M. B. Feller. "Potentiation of L-Type Calcium Channels Reveals Nonsynaptic 

Mechanisms That Correlate Spontaneous Activity in the Developing Mammalian Retina." J Neurosci 21, no. 

21 (2001): 8514-22. 

Smith, J. C., and J. L. Feldman. "In Vitro Brainstem-Spinal Cord Preparations for Study of Motor Systems for 

Mammalian Respiration and Locomotion." J Neurosci Methods 21, no. 2-4 (1987): 321-33. 

Spitzer, N. C. "Electrical Activity in Early Neuronal Development." Nature 444, no. 7120 (2006): 707-12. 

Stecher, B., U. Weller, E. Habermann, M. Gratzl, and G. Ahnert-Hilger. "The Light Chain but Not the Heavy Chain 

of Botulinum a Toxin Inhibits Exocytosis from Permeabilized Adrenal Chromaffin Cells." FEBS Lett 255, 

no. 2 (1989): 391-4. 

Steeves, J. D., and L. M. Jordan. "Localization of a Descending Pathway in the Spinal Cord Which Is Necessary for 

Controlled Treadmill Locomotion." Neurosci Lett 20, no. 3 (1980): 283-8. 

Stephens, G. J., B. Johnson-Kerner, W. Bialek, and W. S. Ryu. "Dimensionality and Dynamics in the Behavior of C. 

Elegans." PLoS Comput Biol 4, no. 4 (2008): e1000028. 

Sternson, S. M., and B. L. Roth. "Chemogenetic Tools to Interrogate Brain Functions." Annu Rev Neurosci 37 

(2014): 387-407. 

 151



References_________                                               _____________________________________________ 

                                                                                                       
 
Stirman, J. N., M. M. Crane, S. J. Husson, S. Wabnig, C. Schultheis, A. Gottschalk, and H. Lu. "Real-Time 

Multimodal Optical Control of Neurons and Muscles in Freely Behaving Caenorhabditis Elegans." Nat 

Methods 8, no. 2 (2011): 153-8. 

Stoeckel, M. E., S. Uhl-Bronner, S. Hugel, P. Veinante, M. J. Klein, J. Mutterer, M. J. Freund-Mercier, and R. 

Schlichter. "Cerebrospinal Fluid-Contacting Neurons in the Rat Spinal Cord, a Gamma-Aminobutyric 

Acidergic System Expressing the P2x2 Subunit of Purinergic Receptors, Psa-Ncam, and Gap-43 

Immunoreactivities: Light and Electron Microscopic Study." J Comp Neurol 457, no. 2 (2003): 159-74. 

Streisinger, G., C. Walker, N. Dower, D. Knauber, and F. Singer. "Production of Clones of Homozygous Diploid 

Zebra Fish (Brachydanio Rerio)." Nature 291, no. 5813 (1981): 293-6. 

Strotmann, R., C. Harteneck, K. Nunnenmacher, G. Schultz, and T. D. Plant. "Otrpc4, a Nonselective Cation 

Channel That Confers Sensitivity to Extracellular Osmolarity." Nat Cell Biol 2, no. 10 (2000): 695-702. 

Sukharev, S. I., P. Blount, B. Martinac, F. R. Blattner, and C. Kung. "A Large-Conductance Mechanosensitive 

Channel in E. Coli Encoded by Mscl Alone." Nature 368, no. 6468 (1994): 265-8. 

Suster, M. L., and M. Bate. "Embryonic Assembly of a Central Pattern Generator without Sensory Input." Nature 

416, no. 6877 (2002): 174-8. 

Sutton, R. B., D. Fasshauer, R. Jahn, and A. T. Brunger. "Crystal Structure of a Snare Complex Involved in Synaptic 

Exocytosis at 2.4 a Resolution." Nature 395, no. 6700 (1998): 347-53. 

Suzuki, Satoshi. "Topological Structural Analysis of Digitized Binary Images by Border Following." Computer 

Vision, Graphics, and Image Processing 30, no. 1 (1985): 32-46. 

Swapna, I., and L. N. Borodinsky. "Interplay between Electrical Activity and Bone Morphogenetic Protein Signaling 

Regulates Spinal Neuron Differentiation." Proc Natl Acad Sci U S A 109, no. 40 (2012): 16336-41. 

Swierczek, N. A., A. C. Giles, C. H. Rankin, and R. A. Kerr. "High-Throughput Behavioral Analysis in C. Elegans." 

Nat Methods 8, no. 7 (2011): 592-8. 

Talpalar, A. E., J. Bouvier, L. Borgius, G. Fortin, A. Pierani, and O. Kiehn. "Dual-Mode Operation of Neuronal 

Networks Involved in Left-Right Alternation." Nature 500, no. 7460 (2013): 85-8. 

Teh, C., D. M. Chudakov, K. L. Poon, I. Z. Mamedov, J. Y. Sek, K. Shidlovsky, S. Lukyanov, and V. Korzh. 

"Optogenetic in Vivo Cell Manipulation in Killerred-Expressing Zebrafish Transgenics." BMC Dev Biol 10 

(2010): 110. 

Thorsen, D. H., J. J. Cassidy, and M. E. Hale. "Swimming of Larval Zebrafish: Fin-Axis Coordination and 

Implications for Function and Neural Control." J Exp Biol 207, no. Pt 24 (2004): 4175-83. 

Tong, H., and J. R. McDearmid. "Pacemaker and Plateau Potentials Shape Output of a Developing Locomotor 

Network." Curr Biol 22, no. 24 (2012): 2285-93. 

Tovote, P., M. S. Esposito, P. Botta, F. Chaudun, J. P. Fadok, M. Markovic, S. B. Wolff, et al. "Midbrain Circuits 

for Defensive Behaviour." Nature 534, no. 7606 (2016): 206-12. 

Tritsch, N. X., E. Yi, J. E. Gale, E. Glowatzki, and D. E. Bergles. "The Origin of Spontaneous Activity in the 

Developing Auditory System." Nature 450, no. 7166 (2007): 50-5. 

Usachev, Y. M., and S. A. Thayer. "All-or-None Ca2+ Release from Intracellular Stores Triggered by Ca2+ Influx 

through Voltage-Gated Ca2+ Channels in Rat Sensory Neurons." J Neurosci 17, no. 19 (1997): 7404-14. 

Vanhoutte, P., and H. Bading. "Opposing Roles of Synaptic and Extrasynaptic Nmda Receptors in Neuronal 

Calcium Signalling and Bdnf Gene Regulation." Curr Opin Neurobiol 13, no. 3 (2003): 366-71. 

Vaziri, A., and V. Emiliani. "Reshaping the Optical Dimension in Optogenetics." Curr Opin Neurobiol 22, no. 1 

(2012): 128-37. 

Vermoesen, K., A. S. Serruys, E. Loyens, T. Afrikanova, A. Massie, A. Schallier, Y. Michotte, et al. "Assessment of 

the Convulsant Liability of Antidepressants Using Zebrafish and Mouse Seizure Models." Epilepsy Behav 22, 

no. 3 (2011): 450-60. 

Vigh, B., and I. Vigh-Teichmann. "Actual Problems of the Cerebrospinal Fluid-Contacting Neurons." Microsc Res 

Tech 41, no. 1 (1998): 57-83. 

 152



References_________                                               _____________________________________________ 

                                                                                                       
 
———. "Comparative Ultrastructure of the Cerebrospinal Fluid-Contacting Neurons." Int Rev Cytol 35 (1973): 189-

251. 

———. "Structure of the Medullo-Spinal Liquor-Contacting Neuronal System." Acta Biol Acad Sci Hung 22, no. 2 

(1971): 227-43. 

Vigh-Teichmann, I., and B. Vigh. "Structure and Function of the Liquor Contacting Neurosecretory System." In 

Aspects of Neuroendocrinology. 329-37: Springer, 1970. 

Voets, T., G. Droogmans, U. Wissenbach, A. Janssens, V. Flockerzi, and B. Nilius. "The Principle of Temperature-

Dependent Gating in Cold- and Heat-Sensitive Trp Channels." Nature 430, no. 7001 (2004): 748-54. 

Voets, T., K. Talavera, G. Owsianik, and B. Nilius. "Sensing with Trp Channels." Nat Chem Biol 1, no. 2 (2005): 

85-92. 

Vogelstein, J. T., B. O. Watson, A. M. Packer, R. Yuste, B. Jedynak, and L. Paninski. "Spike Inference from 

Calcium Imaging Using Sequential Monte Carlo Methods." Biophys J 97, no. 2 (2009): 636-55. 

Wallen, P., and T. L. Williams. "Fictive Locomotion in the Lamprey Spinal Cord in Vitro Compared with 

Swimming in the Intact and Spinal Animal." J Physiol 347 (1984): 225-39. 

Wan, H., S. Korzh, Z. Li, S. P. Mudumana, V. Korzh, Y. J. Jiang, S. Lin, and Z. Gong. "Analyses of Pancreas 

Development by Generation of Gfp Transgenic Zebrafish Using an Exocrine Pancreas-Specific Elastasea 

Gene Promoter." Exp Cell Res 312, no. 9 (2006): 1526-39. 

Wang, D. D., D. D. Krueger, and A. Bordey. "Gaba Depolarizes Neuronal Progenitors of the Postnatal 

Subventricular Zone Via Gabaa Receptor Activation." J Physiol 550 (2003): 785-800. 

Wang, G. X., and M. M. Poo. "Requirement of Trpc Channels in Netrin-1-Induced Chemotropic Turning of Nerve 

Growth Cones." Nature 434, no. 7035 (2005): 898-904. 

Wark, B., B. N. Lundstrom, and A. Fairhall. "Sensory Adaptation." Curr Opin Neurobiol 17, no. 4 (2007): 423-9. 

Warp, E., G. Agarwal, C. Wyart, D. Friedmann, C. S. Oldfield, A. Conner, F. Del Bene, et al. "Emergence of 

Patterned Activity in the Developing Zebrafish Spinal Cord." Curr Biol 22, no. 2 (2012): 93-102. 

Wilson, Rachel I. "Constraints on Sensory Processing." In Cognitive Neuroscience: The Biology of the Mind, edited 

by Michael S. Gazzaniga, Richard B. Ivry and George R. Mangun. 261-70: MIT Press, 2014. 

Wu, M. C., L. A. Chu, P. Y. Hsiao, Y. Y. Lin, C. C. Chi, T. H. Liu, C. C. Fu, and A. S. Chiang. "Optogenetic 

Control of Selective Neural Activity in Multiple Freely Moving Drosophila Adults." Proc Natl Acad Sci U S 

A 111, no. 14 (2014): 5367-72. 

Wu, X., A. A. Indzhykulian, P. D. Niksch, R. M. Webber, M. Garcia-Gonzalez, T. Watnick, J. Zhou, M. A. 

Vollrath, and D. P. Corey. "Hair-Cell Mechanotransduction Persists in Trp Channel Knockout Mice." PLoS 

One 11, no. 5 (2016): e0155577. 

Wyart, C., F. Del Bene, E. Warp, E. K. Scott, D. Trauner, H. Baier, and E. Y. Isacoff. "Optogenetic Dissection of a 

Behavioural Module in the Vertebrate Spinal Cord." Nature 461, no. 7262 (2009): 407-10. 

Yacubova, E., and H. Komuro. "Stage-Specific Control of Neuronal Migration by Somatostatin." Nature 415, no. 

6867 (2002): 77-81. 

Yaksi, E., and R. W. Friedrich. "Reconstruction of Firing Rate Changes across Neuronal Populations by Temporally 

Deconvolved Ca2+ Imaging." Nat Methods 3, no. 5 (2006): 377-83. 

Yang, L., S. Rastegar, and U. Strahle. "Regulatory Interactions Specifying Kolmer-Agduhr Interneurons." 

Development 137, no. 16 (2010): 2713-22. 

Yizhar, O., L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth. "Optogenetics in Neural Systems." Neuron 

71, no. 1 (2011): 9-34. 

Yorozu, S., A. Wong, B. J. Fischer, H. Dankert, M. J. Kernan, A. Kamikouchi, K. Ito, and D. J. Anderson. "Distinct 

Sensory Representations of Wind and near-Field Sound in the Drosophila Brain." Nature 458, no. 7235 

(2009): 201-5. 

Yoshiba, S., H. Shiratori, I. Y. Kuo, A. Kawasumi, K. Shinohara, S. Nonaka, Y. Asai, et al. "Cilia at the Node of 

Mouse Embryos Sense Fluid Flow for Left-Right Determination Via Pkd2." Science 338, no. 6104 (2012): 

226-31. 

 153



References_________                                               _____________________________________________ 

                                                                                                       
 
Yu, Y., M. H. Ulbrich, M. H. Li, S. Dobbins, W. K. Zhang, L. Tong, E. Y. Isacoff, and J. Yang. "Molecular 

Mechanism of the Assembly of an Acid-Sensing Receptor Ion Channel Complex." Nat Commun 3 (2012): 

1252. 

Zakhary, S. M., D. Ayubcha, F. Ansari, K. Kamran, M. Karim, J. R. Leheste, J. M. Horowitz, and G. Torres. "A 

Behavioral and Molecular Analysis of Ketamine in Zebrafish." Synapse 65, no. 2 (2011): 160-7. 

Zelenchuk, T. A., and J. L. Bruses. "In Vivo Labeling of Zebrafish Motor Neurons Using an Mnx1 Enhancer and 

Gal4/Uas." Genesis 49, no. 7 (2011): 546-54. 

Zhang, F., L. P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, et al. "Multimodal Fast Optical 

Interrogation of Neural Circuitry." Nature 446, no. 7136 (2007): 633-9. 

Zhang, J., G. M. Lanuza, O. Britz, Z. Wang, V. C. Siembab, Y. Zhang, T. Velasquez, et al. "V1 and V2b 

Interneurons Secure the Alternating Flexor-Extensor Motor Activity Mice Require for Limbed Locomotion." 

Neuron 82, no. 1 (2014): 138-50. 

Zhang, Y., S. Narayan, E. Geiman, G. M. Lanuza, T. Velasquez, B. Shanks, T. Akay, et al. "V3 Spinal Neurons 

Establish a Robust and Balanced Locomotor Rhythm During Walking." Neuron 60, no. 1 (2008): 84-96. 

Zhdanova, I. V., R. J. Wurtman, M. M. Regan, J. A. Taylor, J. P. Shi, and O. U. Leclair. "Melatonin Treatment for 

Age-Related Insomnia." J Clin Endocrinol Metab 86, no. 10 (2001): 4727-30. 

Zheng, W., S. Hussein, J. Yang, J. Huang, F. Zhang, S. Hernandez-Anzaldo, C. Fernandez-Patron, et al. "A Novel 

Pkd2l1 C-Terminal Domain Critical for Trimerization and Channel Function." Sci Rep 5 (2015): 9460. 

Zheng, Y., P. J. Brockie, J. E. Mellem, D. M. Madsen, and A. V. Maricq. "Neuronal Control of Locomotion in C. 

Elegans Is Modified by a Dominant Mutation in the Glr-1 Ionotropic Glutamate Receptor." Neuron 24, no. 2 

(1999): 347-61. 

Zhong, G., K. Sharma, and R. M. Harris-Warrick. "Frequency-Dependent Recruitment of V2a Interneurons During 

Fictive Locomotion in the Mouse Spinal Cord." Nat Commun 2 (2011): 274. 

Ziv, L., A. Muto, P. J. Schoonheim, S. H. Meijsing, D. Strasser, H. A. Ingraham, M. J. Schaaf, K. R. Yamamoto, 

and H. Baier. "An Affective Disorder in Zebrafish with Mutation of the Glucocorticoid Receptor." Mol 

Psychiatry 18, no. 6 (2013): 681-91. 

 

 154



Annex 1                                                                         Contribution Statement                                                                              
 

 

 

 

Chapter 1 

 

Olivier Mirat and Claire Wyart conceived the original project of developing automated 

tracking and classification of larval zebrafish behavior, and I worked with them to design the 

behavioral setup. I designed experiments with Claire Wyart, and I independently performed 

all of these experiments. I manually classified behaviors to evaluate the automatic algorithm 

and wrote the publication with Claire Wyart and Kristen Severi. 

 

 

Chapter 2 

 

I designed this project with Kristen Severi and Claire Wyart. I performed and analyzed 

embryonic behavior and calcium imaging, whole cell patch clamp confirmation of loss of 

synaptic input from CSF-cNs to PMNs, fictive recordings combined with calcium imaging, 

and quantification of changes in neurotransmitter expression when GABAergic CSF-cNS 

expressed BoTxBLC-GFP (Figures 1D-J, Figure 2, Figure 4G-J, and Supplemental Figures). I 

wrote the paper with Kristen Severi, with input from Claire Wyart and Kevin Fidelin. Max 

Suster generated the optimized UAS:BoTxBLC-GFP. Kristen Severi and 

Yara Alcheikh performed and analyzed larval behavioral experiments. Kevin Fidelin acquired 

and analyzed the initial dataset of fictive recordings. 

 

Chapter 3 

 

I performed multi-day calcium imaging with Lydia Djenoune and Andrew Prendergast. 

Johanna Gomez performed serotonin immunohistochemistry shown. Lydia Djenoune and 

Johanna Gomez contributed to quantification of GABA and serotonin expression in the 

pkd2l1-/- mutant. I designed, performed, and analyzed all other experiments. 

 

 

Contributions in annexes 

 

Annex 2 – I performed and analyzed GABA immunohistochemistry in pkd2l1+/+ and pkd2l1-/- 

and analyzed serotonin immunohistochemistry in pkd2l1+/+ and pkd2l1-/-. 

 

Annex 3 – I designed, performed, and analyzed ∆F/F for all experiments in this article and 

contributed to writing relevant sections of the manuscript. FDVF, MC, and MC performed 

and supervised Granger causality analysis. 

 

Annex 4 – I designed (with CW) and performed (with ML and ER) all calcium imaging 

experiments in this article.  
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Abstract 

Multiple evidence indicate that molecular and mechanical cues from the cerebrospinal fluid 

(CSF) can affect the development and function of the central nervous system (CNS). 

However, the mechanisms by which these cues are detected and relayed to the CNS remain 

elusive. Cerebrospinal fluid contacting neurons (CSF-cNs) being situated at the interface 

between the CSF and the CNS are in an ideal location to convey such information to local 

networks. In the spinal cord, these GABAergic neurons expressing the channel PKD2L1 

extend an apical extension bearing microvilli into the CSF and an axon projecting rostrally. 

Evidence in zebrafish and mouse indicate that spinal CSF-cNs originate from at least two 

distinct progenitor domains. Here we ask whether these two groups of CSF-cNs differ by their 

morphology and molecular features. We show in zebrafish larva that morphology of the apical 

extension as well as the axon projection distinguish spinal CSF-cNs. In addition, each type is 

characterized by the expression of specific neuromodulator and peptides. Altogether our study 

demonstrates that spinal CSF-cNs identified by their developmental origins also corresponds 

to at least two cell types characterized by specific morphologies of the apical extension, 

axonal projections and neuromodulators. This work opens new research paths to understand 

how these cell types carry specific functions in spinal cord formation, locomotion and posture.  

 

Introduction 

The cerebrospinal fluid (CSF) is a complex solution circulating around the entire central 

nervous system (CNS). It has classically been assumed that CSF insured the homeostasis of 

the CNS (Davson et al., 1962; Di Terlizzi and Platt, 2006; Iliff et al., 2012). Multiple studies 

indicate that the CSF also conveys signals that can modulate the development and output 

functions of the nervous CNS, such as feeding, sleep, and locomotion (Pappenheimer et al., 

1967; Martin et al., 1973; Lerner et al., 1994; Nishino et al., 2001; Gato et al., 2005; 

Sawamoto et al., 2006; Xie et al., 2013). This phenomenon implies that chemical or 

mechanical cues from the CSF can act on neurons in the brain and spinal cord. Cerebrospinal 

fluid-contacting neurons (CSF-cNs) are located precisely at the interface between the CSF in 

the central canal and the neuronal circuits (Vigh and Vigh-Teichmann, 1971; Vigh and Vigh-

Teichmann, 1998).  
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In the vertebrate spinal cord, CSF-cNs reside around the central canal (Kolmer, 1921; 

Agduhr, 1922; Kolmer, 1931; Dale et al., 1987; Huang et al., 2006; Wyart et al., 2009; 

Djenoune et al., 2014; Jalalvand et al; 2014; Fidelin et al., 2015; Jalalvand et al., 2016). These 

cells project an apical dendritic extension that contacts the CSF (Vigh et al., 1974; 1977; 

Jaeger et al., 1983; Schueren and DeSantis, 1985; LaMotte, 1987; Vigh and Vigh-Teichmann, 

1998; Stoeckel et al., 2003; Marichal et al., 2009) and an axon projecting locally axon (Ochi 

and Hosoya, 1974; Vigh et al., 1977; Dale et al., 1987a; b; Christenson et al., 1991b; Megias 

et al., 2003; Vigh et al., 2004; Jalalvand et al., 2014a) to modulate the activity of other 

neurons (Christenson et al., 1991a; Wyart et al., 2009; Fidelin et al., 2015).  

 

One essential first step to understand spinal CSF-cN functions lies in identifying specific 

markers for these cells. In this regard, the polycystic kidney disease 2 like 1 (PKD2L1) 

channel also called TRPP3 (Delmas, 2004b; 2005) belonging to the Transient Potential 

Receptor (TRP) family appears as a robust candidate to label CSF-cNs (Huang et al., 2006; 

Orts-Del'immagine et al., 2012, 2015; Djenoune et al., 2014). PKD2L1, originally identified 

as the sour taste receptor in the taste buds, has been found in mouse spinal CSF-cNs (Huang 

et al., 2006, Orts-Del’immagine et al., 2014; Djenoune et al., 2014; Petracca et al., 2016) as 

well as macaques (Djenoune et al., 2014). The opening of the PKD2L1 channel is modulated 

by variations in pH (Ishimaru et al., 2006; Inada et al., 2008; Shimizu et al., 2011; Orts-

Del'immagine et al., 2012) and osmolarity (Shimizu et al., 2009; Orts-Del'immagine et al., 

2012; Jalalvand et al., 2016). Although the physiological amplitude of pH and osmolarity 

variations in the CSF are not well known, these observations suggest that CSF-cNs could be 

interoceptors modulated by chemical cues in the CSF.  

 

There is evidence that spinal CSF-cNs do not constitute a homogeneous population of 

neurons. They originate from distinct progenitor domains and are specified differentially by 

several cascades of transcription factors (Park et al., 2004; Yang et al., 2010; Huang et al., 

2012; Petracca et al., 2016). In zebrafish, CSF-cNs are subdivided into the ventral population 

(also named KA’’) originating from the progenitor domain p3 and the dorsal one (also named 

KA’) originating from pMN (Park et al., 2004; Yang et al., 2010; Huang et al., 2012). In 

mouse, spinal CSF-cNs were recently shown to originate mainly from the p3 and p2 

progenitor domains (Petracca et al., 2016).  

 

The zebrafish has emerged as an ideal model organism to study the development (Park et al., 

2004; Yang et al., 2010; Huang et al., 2012; Djenoune et al., 2014), morphology and functions 

of CSF-cNs in vivo due to its transparency at early stages (Wyart et al., 2009; Fidelin et al., 

2015; Bohm et al., 2016). Yet, few functional markers of CSF-cNs have been identified in this 

species. Here, we investigated whether the two types of spinal CSF-cNs defined by their 

developmental origins had distinct morphology and molecular markers. We show that ventral 

and dorsal CSF-cNs exhibit distinct shapes of apical extension as well as different axonal 

projections. Interestingly we demonstrate that these two cell types are also characterized by 

the transient expression of distinct modulators and peptides. While ventral CSF-cNs 

transiently express serotonin, dorsal CSF-cNs transiently express the sst1.1 somatostatin 
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paralogue. We report that the Pkd2l1 channel is not required for CSF-cN differentiation of 

their axonal projection, as well as for the expression of serotonin nor somatostatin. 

Altogether, our results show that spinal GABAergic Pkd2l1+ CSF-cNs constitute at least two 

cell types that differ in apical and axonal morphology as well as in the expression of 

molecular markers.  

 

Materials and Methods 

 
Animal care 

Zebrafish (Danio rerio) adults and larvae were maintained and raised on a 14/10 hour light 

cycle. Water was regulated at 28.5°C, conductivity at 500μS and pH at 7.4 (Westerfield, 

2000). Embryos were dechorionated and staged as described (Kimmel et al., 1995). All 

embryos and larvae were anesthetized in 0.02% tricaine methane sulfonate (MS 222) (Sandoz, 

Levallois-Perret, France) and killed in 0.2% MS 222 prior to fixation. Animal handling and 

procedures were validated by the Institut du Cerveau et de la Moelle épinière (ICM), Paris 

and the French National Ethics Committee (Comité National de Réflexion Ethique sur 

l'Expérimentation Animale-Ce5/2011/056) in agreement with European Union legislation. 

 

Description of transgenic lines and mutants 

Transgenic lines and mutants generated for and used in this study along with the spinal cell 

populations targeted are referenced in Table 1. 

Table 1: Transgenic lines used in our study. 

Transgenic/mutant Labelling in the 

spinal cord 

Original publication 

Tg(pkd2l1:GCaMP5G)icm07 CSF-cNs Böhm et al., 2016 

Tg(pkd2l1:GCaMP5G)icm07;pkd2l1icm02 CSF-cNs Böhm et al., 2016 

Tg(mnx1:GFP) Motor neurons Flanagan-Steet et al., 

2005 

Tg(pkd2l1:Gal4)icm10 CSF-cNs Fidelin et al., 2015 

Tg(UAS:TagRFP-CAAX;cmlc2:eGFP)icm22  Heart (for cmlc2) This study 

Genotype protocol for the pkd2l1icm02 mutants was described in Böhm et al., 2016. 

 

Generation of transgenic lines 

In order to generate the Tg(UAS:TagRFP-CAAX;cmlc2:eGFP)icm22 line, the TagRFP-CAAX 

sequence was amplified using a TagRFP-forward (5’-

CCCGGGATCCACATGGTGTCTAAGGGCGAAG-3’) and reverse primer (5’- 

GATCGCGGCCGCTCAGGAGAGCACACACTTGCAGCTCATGCAGCCGGGGCCACT

CTCATCAGGAGGGTTCAGCTTATTAAGTTTGTGCCC-3’) and inserted into the pME-

MCS vector (Kwan et al., 2007) via BamHI/NotI restriction digestion. The resulting pME-

TagRFP-CAAX vector was recombined via a Gateway reaction (MultiSite Gateway Three-

Fragment Vector Construction Kit) with p5E-4nrUAS (Auer et al., 2015), p3E-pA and pDest-

Tol2; cmlc2:eGFP (Kwan et al., 2007) resulting in p4nrUAS:TagRFP-CAAX-pA-

Tol2;cmcl2:eGFP. Microinjection of this plasmid was performed with Tol2 mRNA (25ng/µl) 

following standard protocols. Transgenic founder fish Tg(UAS:TagRFP-

CAAX;cmlc2:eGFP)icm22 where screened based on GFP expression in the heart and 

transactivation of the TagRFP transgene when crossed with various Gal4 transgenic lines. 
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Plasmid design 

To generate the Tg(UAS:LifeAct-TagRFP;cryaaC) DNA construct, we first extracted the 

coding sequence of the tagged protein LifeAct-TagRFP from the plasmid mTagRFP-T- 

LifeAct-7 (Addgene #54586, kind gift from Michael Davidson) by PCR using a forward 

(GGGGACAAGTTTGTACAAAAAAGCAGGCTAGATCTCTGCCACCATGGGCGTGGC

CGACTTGATC) and a reverse  

(GGGGACCACTTTGTACAAGAAAGCTGGGTACTAGTTTACTTGTACAGCTCGTCCA

TGCC) primer. LifeAct-TagRFP was then inserted into the plasmid pDONR221 by a BP 

reaction to produce the pME_LifeAct-TagRFP plasmid. A three-way gateway reaction was 

then performed using pME_LifeAct-TagRFP, pDest_cry:aaC, p5’E_10XUAS and 

p3’E_polyA plasmids to produce the Tg(UAS:LifeAct-TagRFP;cryaaC) construct. 

  

Analysis of the apical dendritic extension of CSF-cNs 

To investigate the shape of CSF-cNs apical dendritic extension, we used two different 

strategies to access to their morphology at a high resolution. First, we took advantage of a 

membrane-tagged red fluorescent protein (RFP) by crossing Tg(UAS:TagRFP-

CAAX;cmlc2:eGFP)icm22 fish to Tg(pkd2l1:Gal4)icm10. In a second approach, we injected 

both Tg(pkd2l1:Gal4) (Fidelin et al., 2015) and Tg(UAS:LifeAct-TagRFP;cryaaC) DNA 

constructs into Tg(pkd2l1:GCaMP5)icm07 eggs at the one cell stage in order to specifically 

label F-actin (Riedl et al., 2008) in CSF-cNs. 3 dpf larvae were then selected for specific 

expression in CSF-cNs and fixed using 4% PFA during 4 hours at 4°C.  Immunostainings 

were performed based on the procedures described below. 50 µm-thick transverse sections 

were done on larvae mounted in 4% low meting point agarose using a vibratome (HM 650V 

Microtome, Thermo Scientific). For each cell, Z-stacks (step size 0.25 µm) were acquired to 

image the entire apical extension. To assess whether a CSF-cN was ventral or dorsal, we first 

calculated its position (P) relative to the ventral limit of the central canal (VCC) by the ratio 

between its dorso-ventral position in the spinal cord (D-V_soma) and the dorso-ventral 

position of the VCC (D-V_VCC) (Figure 3B, see below for the detail of the calculation of the 

D-V position). P > 1 indicates that the cell is dorsal with a soma located above the VCC while 

P < 1 indicates that the cell is ventral. To characterize the shape of the apical extension, we 

modeled its spread (S) by calculating the ratio between the width of the spread along the 

central canal (W) and the height of the extension within the central canal (H). W and H were 

extracted by drawing a polygon around the apical extension using the polygon tool in Fiji and 

then estimated by the parallel and perpendicular axis, respectively, of the best fitting ellipse 

(Figure 3B).  

 

Single cell labeling 

To assess whether pkd2l1 mutation led to a disruption of CSF-cN axonal refinement, we 

injected at 25 ng/μl the Tg(pkd2l1:TagRFP) construct generated with a three-fragment 

Gateway recombineering reaction (Fidelin et al., 2015) into single-cell stage embryos from 

pkd2l1icm02/+ incrosses. 3 dpf larvae selected for single CSF-cN expression were fixed with 

4% PFA for 3 hours and immunostained following procedures described below. Genotyping 

of the larvae was performed after immunostaining. 
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Analysis of the axonal arborization of isolated CSF-cNs 

For each cell, multiple Z-stacks (step size 1 μm) were acquired to capture the entire 

arborization of the axon. Multiple stacks from a single cell were combined using the Pairwise 

stitching and Grid/Collection stitching plugins in Fiji (Preibisch et al., 2009) or the XuvTools 

stitching software (Emmenlauer et al., 2009). The combined files were then exported in Fiji 

(Schindelin et al., 2012) and the cell morphology was reconstructed into a three-dimensional 

image using the Simple Neurite Tracer (SNT) plugin in Fiji (Longair et al., 2011) (Figure 

4B). The area was measured in MATLAB as the smallest polygon that included all axonal 

endings (grey area, Figure 4C). The total axon length and the number of branches were 

obtained from SNT (red and purple segments in Figure 4C). The traces obtained from SNT 

were then imported in MATLAB and morphological parameters were extracted using a 

custom made script available upon request. The dorso-ventral soma positions were measured 

from the center of the cell body and normalized to the limits of the spinal cord where the 

ventral edge corresponds to 0 and the dorsal edge to 1 (Figure 4B, D-V_soma).The 

attribution of dorsal versus ventral CSF-cN (Park et al., 2004) was based on the soma location 

relative to the central canal. The total axon length was the sum of the length of the main axon 

and all branches. The minimum dorso-ventral axon position referred to the most ventral 

position reached by the axon. The maximum dorso-ventral axon position referred to the most 

dorsal position reached by the axon. The dorso-ventral axonal range was the difference 

between the two. For illustration purposes, the cell reconstruction images were processed in 

Photoshop CS5 in order to assign them a color according to their genotype and to display 

them according to their dorso-ventral index. 

 

Fluorescent in situ (FISH)  

The pkd2l1 ISH probe was generated as previously described (Djenoune et al., 2014). The 

sst1.1 plasmid originates from the Argenton lab, Padova, Italy, (Argenton et al., 1999; Devos 

et al., 2002). pkd2l1 and sst1.1 plasmids were respectively linearized with NotI and SalI. 

Digoxigenin (DIG)- and fluorescein (Fluo)-labeled probes were synthesized using SP6 RNA 

polymerase with the RNA Labeling Kit (Roche Applied Science, Basel, Switzerland) to 

generate both pkd2l1 and sst1.1 antisense probes. All probes were purified using the mini 

Quick Spin RNA Column (Roche, Basel, Switzerland). Whole-mount ISH were performed as 

previously described (Parmentier et al., 2011; Alunni et al., 2013, Djenoune et al., 2014) on 

embryos or larvae fixed in 4% PFA in PBS overnight at 4°C.  

 

Immunohistochemistry (IHC) 

For 5-HT IHC, embryos and larvae were fixed in 4% PFA, 1% dimethyl sulfoxide (DMSO), 

washed, incubated in 50mM of glycine in 0.1% PBS-Triton X-100 (PBSTx), washed in 

PBSTx, blocked for 2h in 1% DMSO, 1% NGS, 1% BSA, and 0.7% Triton X-100 and 

incubated with primary antibody (rabbit anti-5-HT, 1:2000 from Dr Steinbusch, Maastricht 

University, Netherlands) in blocking buffer overnight at 4°C. After several washes in PBSTx, 

fish were incubated in corresponding Alexa conjugated secondary antibodies IgG (1:500, 

Invitrogen, Carlsbad, CA, USA) in blocking buffer overnight at 4°C. Fish were then washed 

in PBSTx several times before mounting. For TagRFP immunostaining, after 3h of 4% PFA 
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fixation, larvae were washed in successive baths of PBS-Tween 0.1% (PBST). After 1h 

blocking in a solution of 10% normal goat serum (NGS), 1% DMSO, 0.5% Triton X-100 in 

PBS 1X, we incubated embryos with the primary rabbit anti-TagRFP antibody (1:500, 

Invitrogen R10367, Carlsbad, CA, USA) overnight at 4°C in a solution of 1% NGS, 1% 

DMSO, 0.5% Triton X-100 in PBS 1X. After several washes in PBST, larvae were incubated 

with corresponding Alexa conjugated secondary antibodies IgG (1:500, Invitrogen, Carlsbad, 

CA, USA) overnight at 4°C and washed several times with PBST. For GABA 

immunostaining, larvae were fixed for 3h at 4°C in 4% PFA, 0.1% glutaraldehyde, washed in 

successive baths of PBST, dehydrated stepwise in increasing concentration of methanol 

(MeOH), stored in MeOH for at least two hours at -20°Cm then rehydrated stepwise. Larvae 

were digested with 0.5U/mL dispase (1X, Invitrogen 17105-041, Carlsbad, CA, USA) for 90 

min. Larvae were blocked for at least two hours in 2% BSA, 5% NGS, 1% DMSO, PBST and 

incubated with the primary rabbit anti-GABA (1:2,000, Sigma-Aldrich A2052, St. Louis, 

MO, USA) overnight at 4°C in a solution of 2% BSA, 2% NGS, 1% DMSO, PBST. After 

several washes in 1% DMSO, 1% NGS, PBST, larvae were incubated in corresponding Alexa 

conjugated secondary antibodies IgG (1:500, Invitrogen, Carlsbad, CA, USA) overnight at 

4°C. Note that for GABA and 5-HT IHC at 3dpf, 30% sucrose was added in fixation 

solutions, fish were treated prior to staining with 0.2mg/ml collagenase in PBS for 5min and 

skin was removed with forceps to increase permeabilization. 

 

FISH coupled to IHC 

Procedures were described in Djenoune et al., 2014. Briefly, pkd2l1 and sst1.1 FISH were 

performed prior to IHC against green fluorescent protein (GFP): embryos and larvae were 

washed and immunostained with the chicken anti-GFP antibody (1:500 dilution, Abcam 

ab13970, Cambridge, UK) overnight at 4°C, and then incubated with the corresponding 

Alexa-conjugated secondary antibodies IgG (1:500, Invitrogen A11039, Carlsbad, CA, USA) 

combined with DAPI (2.5 μg/ml, Invitrogen D3571, Carlsbad, CA, USA). 

 

Cell counting 

To allow a systematic comparison and quantification between different markers investigated, 

we systematically imaged 3 regions along the rostrocaudal axis of the fish: segments 3-6 

(referred as rostral), 10-13 (referred as middle) and 23-26 (referred as caudal). For 

consistency in all figures, we displayed the region corresponding to segments 10-13.  

 

Imaging 

Images were acquired using an Olympus FV1000 confocal microscope equipped with a 20 

and 40x water immersion objective using the 405, 473nm and 543nm laser lines. To 

determine the overlap of GFP in the Tg(pkd2l1:GCaMP5G)icm07 transgenic embryos and 

larvae with pkd2l1, sst1.1 FISH or GABA and 5-HT IHC, fish were mounted laterally in 1,5% 

agarose covered of Vectashield Mounting Medium (Vectorlabs, CA, USA). To analyze apical 

extensions, slices were transferred into Vectashield mounting medium as well (Vectorlab, 

CA, USA) and images were acquired using the 488, 543 and 633 nm laser lines on a confocal 

microscope (Olympus FV-1000) equipped with a 60x oil immersion objective. Images were 
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processed using Fiji (Schindelin et al., 2012) and Adobe Illustrator (Adobe Systems, 

Mountain View, CA, USA) softwares. 

 

Statistics 

For the morphological comparison of ventral versus dorsal WT CSF-cNs and WT versus 

homozygous pkd2l1icm02/icm02 mutant CSF-cNs, Student’s t-tests were performed. Two-way 

ANOVAs were performed to test the interaction between the genotypes and the regions were 

cells were counted. The level of significance was p < 0.05 for all datasets. 
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Results 

 

pkd2l1 promoter drives expression selectively in spinal CSF-cNs  

 

Taking advantage of pkd2l1 expression in CSF-cNs (Djenoune et al., 2014), we used the 

Tg(pkd2l1:GCaMP5G)icm07 transgenic line to selectively target CSF-cNs (Böhm et al., 

2016). To validate the line, we performed FISH for pkd2l1 mRNA coupled to a GFP IHC to 

amplify the endogenous GCaMP5G signal at different stages of development from 24hpf to 

5dpf (Figure 1A-E). We found that Tg(pkd2l1:GCaMP5G)icm07 line (green signal, Figure 

1A-E) selectively labeled pkd2l1+ cells (red signal, Figure 1A-E) at all stages investigated, 

that is to say ventral CSF-cNs (Figure1E, arrowhead) and dorsal ones (Figure1E, arrow). 

Moreover, we found that all GFP+ cells around the central canal (green, Figure 1F) were 

GABAergic (red, Figure 1F) confirming further that they were CSF-cNs. Altogether, these 

results indicate that the Tg(pkd2l1:GCaMP5G)icm07 line is a reliable tool to target all CSF-

cNs in the zebrafish spinal cord.  

 

CSF-cNs display different shapes of apical extensions 

 

Given that ventral and dorsal CSF-cNs do not share the same developmental origin, we tested 

whether they also displayed specific morphological properties. We investigated the shape of 

CSF-cN apical extension at 3 dpf using either 

Tg(pld2l1:Gal4;UAS:TagRFPCAAX;cryaaC)icm22 embryos or Tg(pkd2l1:GCaMP5)icm07 

embryos injected with two DNA constructs: Tg(pkd2l1:Gal4) and Tg(UAS:LifeAct-

TagRFP,cryaaC). With both labeling technics, we observed different shapes of apical 

extensions for ventral and dorsal CSF-cNs (Figure 2A). We found that dorsal CSF-cNs 

consistently formed an apical extension spread along the border of the central canal (Figure 

2A1, arrow) while ventral CSF-cNs exhibited a compact and dense apical extension (80.8%, n 

= 21 out of 26 ventral cells, Figures 2A1, arrowhead). The shape of this last population 

appears more diverse, with a small proportion of ventral CSF-cNs displaying a spread apical 

extension (19.2%, n = 5 out of 26 ventral cells, Figure 2A2, empty arrow). To characterize 

the shape of the apical extension for each cell, we performed a systematic analysis of its 

spread (Figure 2B). The distribution of the cells according to both the spread and the position 

showed a good correlation between cell body position and spread of the apical extension 

(Figure 2C1); the more dorsal a CSF-cN is, the more spread its brush is. The comparison of 

the spread of the apical extension of these two populations (Figure 2C2) indicated that dorsal 

CSF-cNs possess a significantly more extended apical extension than ventral ones (p = 

3.23.10-5, 13 dorsal CSF-cNs, 26 ventral CSF-cNs). Notably, among the ventral population, 

we observed some outliers with high spreads (Figure 2C2), confirming the existence of a 

small proportion of ventral CSF-cNs displaying a highly spread apical extension similar to 

dorsal ones. These results provide the first evidence of morphological heterogeneity among 

zebrafish spinal CSF-cNs between ventral and dorsal CSF-cNs and suggest a morphological 

heterogeneity within ventral CSF-cNs themselves. 

 

Ventral and dorsal spinal CSF-cNs possess specific axonal projections 
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In order to assess whether CSF-cNs could also be classified regarding their axonal 

projections, we injected the Tg(pkd2l1-TagRFP) DNA construct  to label single cells (Figure 

3A) and reconstruct their axon (Figure 3B,C). All CSF-cN axonal projections were ventral, 

ipsilateral and ascending (consistent with Fidelin et al., 2015), yet they were heterogeneous 

along the rostrocaudal axis of the spinal cord (Figure 3B, Supplemental Figure 1). We 

performed a systematic comparison between the ventral and dorsal populations for the 

parameters we extrapolated from each cell (Figure 3C). We detected significant differences 

between the two populations for all of the morphological parameters investigated (Figure 

3D). Indeed, ventral CSF-cNs have a wider axonal arborization (p=0.0025), a longer axon 

(p=0.0014), reach more ventral domains of the spinal cord (p=8.67 10-4), cover a larger dorso-

ventral (D-V) range (p=1.13 10-4) with more axonal branches (p=0.0138). These results 

strongly indicate that ventral and dorsal CSF-cNs have axonal differences suggesting that they 

may not target the same cell types within the ventral spinal cord. Nonetheless, we could not 

detect from our analysis whether ventral CSF-cNs segregated in different clusters based on 

axonal projections.  

 

Investigation of the molecular heterogeneity of spinal CSF-cNs leads to specific profiles 

in ventral and dorsal CSF-cNS 

 

In order to confirm that ventral and dorsal CSF-cNs are two distinct functional populations, 

we tested whether they expressed differentially two selected markers that have been 

previously reported as expressed in a restricted number of CSF-cNs. Somatostatin was found 

in restricted CSF-cNs (in lamprey: Buchanan et al., 1987; Christenson et al., 1991a; Jalalvand 

et al., 2014; in Mexican burrowing caecilian: Lopez et al., 2007). In zebrafish, somatostatin 

immunoreactivity has previously been reported (Wyart et al., 2009). Nonetheless, there are 6 

different paralogues of the peptide in this species: sst1.1 (also referred as SS1), sst1.2 (also 

referred as SS3), sst2 (also SS4), sst3 (also SS2 and named cortistatin in mammals), sst5 (also 

SS5) and sst6 (also SS6) (Tostivint et al., 2004; 2008; 2013). We tested which form was 

expressed in zebrafish CSF-cNs and did not detect their expression in these cells except for 

sst1.1. Indeed, by combining FISH for sst1.1 with GFP IHC from 24 to 120 hpf 

Tg(pkd2l1:GCaMP5G)icm07 embryos and larvae, we observed at 24 and 48 hpf restricted 

expression of sst1.1 in  dorsal CSF-cNs (Figure 4A,B, arrows) mainly in the rostral part of 

the spinal cord, from segment 1 to 13 approximately. Since sst1.1 had been reported as 

expressed transiently in motor neurons from 19 hpf until 55 hpf (Devos et al., 2002), we 

combined FISH for sst1.1 and GFP IHC on 24 hpf Tg(mnx1:GFP) embryos in which GFP 

expression labels motor neurons (Flanagan-Steet et al., 2005). sst1.1 expression was distinct 

from GFP expression in this line (Figure 4C) excluding the motor neuronal expression of 

sst1.1. The expression of sst1.1 not being detected in the spinal cord after 55 hpf (Devos et al., 

2002; data not shown), our results show that sst1.1 is transiently expressed in dorsal CSF-cNs 

at early stages of development and is excluded from motor neurons.  

 

Likewise, the serotonin has been reported in a restricted number of CSF-cNs of multiple fish 

species (Sims, 1977; Ochi et al., 1979; Parent and Northcutt, 1982; Chiba and Oka, 1999). We 
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thus tested whether zebrafish CSF-cNs were serotoninergic by performing double IHC for 5-

HT and GFP on Tg(pkd2l1:GCaMP5G)icm07 embryos and larvae from 24 hpf to 72 hpf. At 

24 hpf, no 5-HT immunostaining was detected in the zebrafish spinal cord (data not shown). 

At 48 hpf, we detected 5-HT in ventral CSF-cNs (Figure 4D, arrowheads) mainly in the 

rostral part of the spinal cord (from segment 1 to about 24). Notably, this expression was 

restricted only in a subset of ventral CSF-cNs (Figure 4D). The proportion of these 5-HT+ 

cells along the rostrocaudal axis of the spinal cord decreases from the rostral part to the caudal 

one; segments 3 to 6: 88.6 ± 16.0% of 5-HT+ ventral CSF-cNs (96 cells counted); segments 

10 to 13: 73.2 ± 27.3% 5-HT+ ventral CSF-cNs (100 cells counted); segments 23 to 26: 31.2 ± 

33.3% 5-HT+ ventral CSF-cNs (94 cells counted). Nonetheless, at 72 hpf, 5-HT staining was 

clearly distinct from the GFP labelling (Figure 4E) in the rostral cord but was still detected in 

restricted ventral CSF-cNs of the caudal part (data not shown). In conclusion, we identified a 

novel marker expressed in zebrafish spinal CSF-cNs, the sst1.1 in dorsal CSF-cNs and 

showed that a subpopulation of the ventral CSF-cNs population is transiently serotoninergic. 

 

pkd2l1 null mutation does not impact on the differentiation of spinal CSF-cNs 

 

PKD2L1 channel is expressed in spinal CSF-cNs across multiple vertebrate species 

(Djenoune et al., 2014). This conservation strongly suggests a critical role of the channel 

within the cells. In order to assess Pkd2l1 contribution to zebrafish spinal CSF-cNs, we 

generated a mutant using TALENs in the Tg(pkd2l1:GCaMP5G)icm07 background (Böhm et 

al., 2016). We tested whether the mutation impacted on the molecular differentiation of the 

cells and observed that in pkd21icm02/icm02 mutants, CSF-cNs still expressed GABA (Figure 

5A) and that a large proportion of ventral CSF-cNs were still serotoninergic (Figure 5B). We 

counted the number of ventral and dorsal CSF-cNs in the three regions along the rostrocaudal 

axis of the spinal cord and did not count any significant difference in the number of CSF-cNs 

in the mutants compared to the WT (Figure 5C). We did not detect a difference in the 

proportion of 5-HT+ ventral CSF-cNs neither (Figure 5D). We next tested whether the loss of 

Pkd2l1 could lead to the alteration of CSF-cNs axonal development. We did not find any 

significant difference for any of the reported axonal parameters between the two genotypes 

both for ventral and dorsal CSF-cNs, while the same differences observed between ventral 

and dorsal CSF-cNs in WT were still present in the mutant (Figure 5E). Altogether, our 

results indicate that pkd2l1 function is not required for proper CSF-cNs differentiation. 

 

Discussion 

 

Using zebrafish spinal cord as a model, we identified a heterogeneity of spinal CSF-cNs at 

different levels. First, they harbor different and specific morphological features. Second, 

ventral and dorsal CSF-cNs populations selectively express 5-HT and sst1.1 respectively. 

Third, Pkd2l1 is not necessary for the differentiation of any of the CSF-cNs classes. 

Altogether, our results demonstrate that zebrafish spinal CSF-cNs are more heterogeneous 

than reported so far and suggest that the CSF-cNs system might sustain multiple functions 

within the vertebrate spinal cord.  
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Distinct morphology of ventral and dorsal CSF-cNs for distinct functions? 

 

Due to their peculiar apical extension contacting the CSF and their morphology reminiscent of 

sensory cells, it has been hypothesized that CSF-cNs may have sensory properties to detect 

cues or movements of the CSF (Kolmer 1921; Agduhr 1922; Vigh and Vigh-Teichmann, 

1971; 1973; Vigh et al., 1977; Huang et al., 2006; Orts-Del'immagine et al., 2012) or that they 

may release compounds into the CSF (Leonhardt, 1967; Vigh and Vigh-Teichmann, 1971; 

1973; Vigh et al., 1977). Nonetheless, whether all spinal CSF-cNs share the same sensory 

properties is not clear. Previous studies reported that spinal CSF-cNs can harbor different 

morphologies. In rat, spinal GABAergic CSF-cNs were first classified into three subtypes 

according to the shape of their soma (Barber et al., 1982). Four morphological types of CSF-

cNs were then described based on the shape of their soma, their axonal projection, and on the 

expression of the peptide Met-Enk-Arg-Gly-Leu (Shimosegawa et al., 1986). These 

indications together with our data reveal a high level of heterogeneity among spinal CSF-cNs 

which remained poorly understood.  

 

Regarding the shape of their apical extension, we showed that dorsal CSF-cNs exhibit a 

spread contact with the CSF, whereas ventral ones are more compact. Notably, among the 

ventral population of CSF-cNs, we found another level of heterogeneity with at least two 

types of apical extensions. We cannot exclude that the few ventrally positioned cells are 

originating from the dorsal domain and have slightly shifted down during development. 

However, this may reflect a subdivision of the ventral population into more different cell 

types, as suggested by the 5-HT staining (see below). As for the functional meaning of the 

dorso-ventral difference, we can assume that a particular shape is associated with specific 

integration and/or the release of given cues in the CSF. The recent study in which we 

demonstrated that CSF-cNs respond to passive and active bending of the spinal cord (Böhm et 

al., 2016) reinforces this hypothesis. Indeed, we showed that dorsal CSF-cNs respond to tail 

bending selectively on the contracting side while contralateral dorsal and ventral cells 

remained mostly silent (Böhm et al., 2016). These results suggest that the different 

populations of CSF-cNs could bear specific sensory properties sustained by distinct 

ultrastructural features. The mechanisms underlying the formation of a spread apical 

extension as opposed to a more compact one are still not understood. Whether a given 

molecular profile (e.g. the expression of 5-HT at 48 hpf by a subpopulation of ventral CSF-

cNs) can be associated to the development of a particular type of apical extension remains to 

be determined. Although distinct molecular pathways could be responsible for the differences 

observed between ventral and dorsal CSF-cN apical extensions, we cannot exclude that they 

might be due to specific physical constraints. 

 

By a single cell labelling approach, we found that ventral CSF-cNs had on average a longer 

and broader axonal arborization covering a higher dorso-ventral spinal cord range and 

possessing more axonal branches than dorsal CSF-cNs. Our results thus demonstrate that 

ventral and dorsal CSF-cNs populations have distinct morphological features and support the 

idea that these cells are two different populations. These axonal differences between the two 
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populations suggest that they might have specific targets within the spinal cord. In a previous 

study, we observed that CSF-cNs preferentially form presynaptic boutons in the ventral spinal 

cord (between 0.2-0.4) (Fidelin et al., 2015). We demonstrated that CSF-cNs form active 

GABAergic synapses onto glutamatergic descending V0-v interneurons and that they 

modulate slow locomotor events (Fidelin et al., 2015). We also showed that CSF-cNs contact 

and modulate the activity of CaPs primary motor neurons, indicating their participation in fast 

swimming (Hubbard et al., in revision). Together with our results demonstrating that ventral 

CSF-cNs innervate a more dorsal D-V range of the spinal cord than dorsal ones, it could thus 

be hypothesized that ventral CSF-cNs preferentially innervate CaPs while dorsal CSF-cNs 

mainly contact V0-v. Demonstrating whether one type of CSF-cNs specifically project onto 

slow locomotor circuits and the other type onto fast ones would require further investigations. 

 

Molecular classification of zebrafish spinal CSF-cNs 

 

 Multiple markers have been found in subpopulations of CSF-cNs across species: 

somatostatin (in lamprey: Buchanan et al., 1987; Christenson et al., 1991a; Jalalvand et al., 

2014; in coho salmon: Yulis and Lederis, 1986; Yulis and Lederis, 1988a; b; in Mexican 

burrowing caecilian: Lopez et al., 2007; in zebrafish: Wyart et al., 2009), dopamine (in 

lamprey: Schotland et al., 1995, 1996; Barreiro-Iglesias et al, 2008; Rodicio et al., 2008; in 

xenopus: Binor and Heathcote, 2001; in ray: Roberts and Meredith, 1987; in eels: Roberts et 

al., 1989, 1995; in pigeon: Acerbo et al., 2003) or serotonin (in salamander: Sims, 1977; in 

lamprey and Hagfish: Ochi et al., 1979; in garfish: Parent and Northcutt, 1982; in spotted gar: 

Chiba and Oka, 1999; in chick: Sako et al., 1986). Notably, the expression of most of these 

markers was reported only in a restricted number of CSF-cNs. In order to further characterize 

the expression patterns of each population in zebrafish, we tested whether these markers also 

showed restricted expression patterns among CSF-cNs in this model. Interestingly, we found 

that ventral CSF-cNs were at 48 hpf transiently serotoninergic as previously described in 

other species (salamander: Sims, 1977; lamprey and hagfish: Ochi et al., 1979; garfish: Parent 

and Northcutt, 1982; chick: Sako et al., 1986; spotted gar: Chiba and Oka, 1999) in 

accordance with findings from Montgomery et al., 2015. Nonetheless, we demonstrated here 

that, even at 48 hpf, not all ventral CSF-cNs were clearly 5-HT+ as many cells were dimly or 

not labelled. There may be different subtypes of ventral CSF-cNs based on 5-HT expression. 

Moreover, Montgomery et al., 2015 also suggest that the rate-limiting enzyme involved in 5-

HT synthesis tryptophan hydroxylase 1 a (tph1a) (Bellipanni et al., 2002; Teraoka et al., 

2004) may be expressed in the ventral spinal cord at 24 and 48 hpf. This suggests that ventral 

CSF-cNs transient expression of 5-HT could be a transient source of serotonin at early stages. 

One possible reason for the disappearance of 5-HT expression in ventral CSF-cNs could be 

the appearance of 5-HT expressing descending neurons from the brainstem raphe nuclei 

during the same time window, from 48 hpf onwards (Bellipanni et al., 2002), that would 

suppress the monoaminergic expression of ventral CSF-cNs as suggested in rodents 

(Branchereau et al., 2002; Allain et al., 2010; Wienecke et al., 2014). The physiological 

relevance of the transient 5-HT expression among this ventral population of CSF-cNs remains 

to be elucidated.  
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Testing the somatostatin phenotype of zebrafish CSF-cNs, we found that among the six SST 

paralogues, sst1.1 was expressed in CSF-cNs. Notably, we demonstrated that the expression 

of the peptide is specific and restricted to the dorsal population of CSF-cNs, identifying for 

the first time a specific marker of dorsal CSF-cNs, contrary to its reported expression in motor 

neurons (Devos et al., 2002). Motor neurons originate from the same pMN domain (Myers et 

al., 1986; Park et al., 2004) as dorsal CSF-cNs (Park et al., 2004; Yang et al., 2010, Djenoune 

et al., 2014). The proximity of both populations can explain how sst1.1 could have been 

mistaken for motor neurons. The physiological relevance of sst1.1 expression by dorsal CSF-

cNs is not yet established. In mammals and lamprey, it has been shown that somatostatin can 

modulate the frequency of locomotion in reducing the global level of fictive locomotor 

activity (Barriere et al., 2005; Miles and Sillar, 2011; Jalalvand et al., 2016). The release of 

SST by CSF-cNs thus may modulate the frequency of locomotor events. Moreover, among 

the UII family of neuropeptides, urp1 and urp2 are specifically expressed in ventral CSF-cNs 

(Quan et al., 2015). Coupled with the specific expression of sst1.1 in dorsal CSF-cNs, we 

show in zebrafish what Yulis and Lederis (1988b) reported in the coho salmon: a UII-like 

immunoreactive ventral population of CSF-cNs and a distinct somatostatinergic one. Taken 

together, the results of the molecular characterization of zebrafish CSF-cNs we performed 

indicate that ventral and dorsal CSF-cNs are molecularly distinct populations and suggest that 

these classes may be conserved across species and have specific functional properties 

sustained by the pool of markers they possess or given their physiological context.  

 

Altogether, in addition to reinforcing the classification in two classes of the CSF-cNs system 

in the zebrafish spinal cord, our study demonstrates that this system is more heterogeneous 

than reported so far. The multiple morphologies and functional markers CSF-cNs bear could 

underlie the multiple roles they perform at the CSF/CNS interface and within motor circuits. 

How these molecular and morphological features are connected to their physiological 

contributions within the vertebrate spinal cord remains to be elucidated.  
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Figures 

 
 

Figure 1: The Tg(pkd2l1:GCaMP5G)icm07 transgenic line recapitulates endogenous 

pkd2l1 mRNA expression. 

FISH for pkd2l1 (magenta) coupled to GFP IHC (green) on Tg(pkd2l1:GCaMP5G) embryos 

and larvae at 24 hpf (A), 48 hpf (B, E), 72 hpf (C) and 120 hpf (D). (A-D) Lateral views of 

the spinal cord from segments 10 to 13 show that all GFP+ cells (green) in the 

Tg(pkd2l1:GCaMP5G) line are pkd2l1+ (magenta). (E) Transverse sections of the spinal cord 

of 48 hpf embryos show the dorso-ventral distribution of a ventral CSF-cN (arrowhead) 

ventral to the central canal (small dotted circle) and a dorsal CSF-cNs (arrow) above it. (F) 

All CSF-cNs in the Tg(pkd2l1:GCaMP5G) line (green) express GABA (magenta). Horizontal 

lines represent the limits of the spinal cord and slash dashed lines represent somites 

boundaries. Scale bars= 20μm. 
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Figure 2: The analysis of CSF-cNs apical extension reveals heterogeneous shapes  

Transverse sections showing ventral and dorsal TagRFP-CAAX+ (magenta) CSF-cNs at 3 dpf 

displaying the different types of apical extension characterized in our study. (A1) Dorsal CSF-

cNs possess an apical extension spreading along the central canal border (arrow) while most 

ventral CSF-cNs (80.8%) form compact ones (arrowhead). (A2) A small subpopulation of 

ventral CSF-cNs (19.2%) exhibit the typical spread of dorsal apical extensions (arrow with 

empty head). Phalloïdine staining (green). Scale bar, 10µm. (B) Schematics of the analysis of 

the apical extension performed on each cell. For illustration purpose, we based our schematics 

on the cell displayed in A2. (C) Analysis for 39 CSF-cNs.  (C1) Graph showing the 

distribution of the CSF-cNs considering the spread of their apical extension (S= ratio between 

the width of the spread along the central canal (W) and the height of the extension within the 

central canal (H)) and their position (P) relative to VCC. The vertical grey line represents the 

physiological cutoff between ventral (P < 1.0) and dorsal (P > 1.0) position taking the VCC as 

a reference. (C2) Statistical analysis comparing the spread of the apical extension between 26 

ventral and 13 dorsal CSF-cNs distinguished systematically based on the cutoff at P = 1 as 

shown in C1. Two-sample t-tests to compare two populations were performed for significance 

is indicated by the triple stars (p < 0.05). 
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Figure 3: Ventral and dorsal CSF-cNs exhibit specific morphological properties 

(A) Projection obtained from z-stacks of a single CSF-cN in a wild-type larva previously 

injected with Tg(pkd2l1-TagRFP). (B) The reconstruction of 3 ventral CSF-cNs (dark blue) 

and 3 dorsal CSF-cNs (orange) from segment 3, 12 and 19 show that along the rostrocaudal 

axis, ventral CSF-cNs are morphologically different from dorsal ones. (B) Illustration of the 

reconstruction of one ventral CSF-cN displays the area covered by the axon and the axonal 

arborization nomenclature. (C) Statistical analysis of 39 ventral CSF-cNs and 15 dorsal ones 

comparing the two populations for the axonal arborization area, the total axon length, the 

number of branches and the axonal arborization dorso-ventral range. Each dot represents one 

cell. Two-sample t-tests to compare the two populations were performed for the given 

parameter and significance is indicated by the triple stars (p < 0.05). Scale bars = 20 μm. 
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Figure 4: Dorsal CSF-cNs specifically express the somatostatin paralogue sst1.1 when 

ventral CSF-cNs are partially and transiently serotoninergic at early stages of 

development in the zebrafish spinal cord.  

(A-C) FISH for sst1.1 (magenta) coupled to GFP IHC (green) on Tg(pkd2l1:GCaMP5G) (A, 

B) and Tg(mnx1:GFP) (C) embryos and larvae at 24 hpf and 48 hpf. (A-B) Lateral views of 

the spinal cord show that sst1.1 expression is restricted to dorsal CSF-cNs (arrows). (C) 

Transverse sections of the spinal cord demonstrate that sst1.1 (magenta) is not expressed in 

motor neurons (green) as previously reported (Devos et al. 2002). (D-E) 5-HT IHC (magenta) 

coupled to GFP IHC (green) on Tg(pkd2l1:GCaMP5G) larvae at 48 hpf (D) and 72 hpf (E). 

(D) At 48 hpf, a large proportion of ventral CSF-cNs express 5-HT (arrowhead) but not all 

(empty arrowhead). Note that dorsal CSF-cNs (arrows) are not labelled by 5-HT. (E) At 72 

hpf, ventral CSF-cNs are not serotoninergic anymore in the rostral part of the spinal cord. 

Horizontal dashed lines represent the limits of the spinal cord and slash dashed lines represent 

somites boundaries. Small dotted ellipses represent respectively the limit of the central canal. 

Scale bars= 20μm. 
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Figure 5: Pkd2l1 is not required for the proper differentiation of spinal CSF-cNs 

GABA (A, magenta), 5-HT (B, magenta) and GFP (A-B, green) IHCs on pkd2l1icm02/icm02 

mutants carrying Tg(pkd2l1:GCaMP5G)icm07 (thus named Tg(pkd2l1:GCaMP5G)icm02/icm02). 

(A) All CSF-cNs in the mutants express GABA at 72 hpf. (B) At 48 hpf, a large proportion of 

ventral CSF-cNs in the mutants express the 5-HT. Horizontal dashed lines represent the limits 

of the spinal cord and slash dashed lines represent somites boundaries. Scale bars= 20μm. (C-

E) pkd2l1+/+ and pkd2l1icm02/icm02 ventral CSF-cNs are represented in two shades of orange 

from dark to light respectively. pkd2l1+/+ and pkd2l1icm02/icm02 dorsal CSF-cNs are similarly 

represented in two shades of blue. (C) Counting of the number of ventral and dorsal CSF-cNs 

in WT and pkd2l1icm02/icm02 larvae at 3 dpf in three regions of the spinal cord; rostral from 

segments 3 to 6; middle from segments 10 to 13 and caudal from segments 23 to 26. (D) 

Counting of the number of 5-HT+ ventral CSF-cNs in 48hpf WT and pkd2l1icm02/icm02 

embryos. Two-way ANOVAs were performed to test the interaction between the genotypes 

and the regions were cells were counted. (E) Statistical analysis of 39 WT  and 38 

pkd2l1icm02/icm02 ventral CSF-cNs, 15 WT and 23 pkd2l1icm02/icm02 dorsal CSF-cNs, and 38 

pkd2l1icm02/icm02 ventral and 23 pkd2l1icm02/icm02 dorsal CSF-cNs comparing the two 

populations for the axonal arborization area, the total axon length, the number of branches and 

the axonal arborization dorso-ventral range. Each dot represents one cell. Two-sample t-tests 

to compare two populations were performed for the given parameter and significance is 

indicated by the triple stars (p < 0.05). 
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Abstract—The recent development of genetically encoded cal-
cium indicators enables monitoring in vivo the activity of neuronal
populations. Most analysis of these calcium transients relies on
linear regression analysis based on the sensory stimulus applied
or the behavior observed. To estimate the basic properties of the
functional neural circuitry, we propose a network approach to cal-
cium imaging recorded at single cell resolution. Differently from
previous analysis based on cross-correlation, we used Granger-
causality estimates to infer information propagation between the
activities of different neurons. The resulting functional network
was then modeled as a directed graph and characterized in terms
of connectivity and node centralities. We applied our approach
to calcium transients recorded at low frequency (4 Hz) in ven-
tral neurons of the zebrafish spinal cord at the embryonic stage
when spontaneous coiling of the tail occurs. Our analysis on pop-
ulation calcium imaging data revealed a strong ipsilateral connec-
tivity and a characteristic hierarchical organization of the network
hubs that supported established propagation of activity from ros-
tral to caudal spinal cord. Our method could be used for detecting
functional defects in neuronal circuitry during development and
pathological conditions.

Index Terms—Functional connectivity, GCaMP3 fluorescence,
graph modeling, neuronal networks, zebrafish.
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I. INTRODUCTION

N EURAL circuits in the spinal cord play essential roles
in vertebrate locomotion [1]. During early development,

spontaneous coordinated activity rises from newborn neurons
across the entire spinal cord. Embryonic and larval zebrafish
provide a unique model to investigate the mechanisms involved
in generating rhythmic patterns of neuronal activity due to their
transparency, relatively small size and amenability to genetic
manipulation [2]. Notably, the combination of genetics and
optical imaging has been recently developed to investigate non-
invasively the neuronal circuit function at single-cell resolution
[3], [4]. In contrast to conventional electrophysiology, which
records the activity of few neuronal cells through electrode
insertion, calcium fluorescence imaging techniques allow us to
optically record from multiple neurons the Ca2+ influx associ-
ated with their activity and in systems as diverse as neuronal
cultures, hippocampal brain slices, nematodes and zebrafish
[5]–[13].
It has been reported that zebrafish embryos show spontaneous

activity as early as 17 hours post-fertilization (hpf) [14]. This
spontaneous activity consists of the contraction of the left and
right trunk muscles alternatively without any external stimulus.
This coiling behavior precedes touch-evoked escape response
and swimming, which emerge in later developmental stages.
Conventional electrophysiology analyses showed evidence in
the paralyzed embryo for periodic and synchronized activity
of motoneurons within one side of the spinal cord and alter-
nation between the two hemicords [15]. Similar results were
also replicated by using genetically encoded calcium indicators
[16]; the latter approach, based on high frequency imaging (20
Hz), has also shown rostro-caudal propagation of activity [16].
From a methodological perspective synchronized coordination
between neurons has been generally evaluated by cross-correla-
tion analyses, which are basic indexes of undirected functional
connectivity [17]–[19]. Synchronization does not inform on the
propagation of such activity, which could instead describe how
the information flows across neuronal populations [20]. Current
methods for investigating activity propagation in calcium fluo-
rescence imaging data largely rely on the computation of either
inter-spike delays between different signals [16], [17] or onset
times of neuronal activation [10], [13], that can be seen as an
heuristic instance of the more general cross-lagged correlation
[21]. The arbitrary selection of several parameters (e.g., ampli-
tude thresholds, refractory periods) to be fixed a priori, as well
as the sensitivity to spurious noisy peaks, make this heuristic
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method suboptimal in terms of general applicability. Interest-
ingly, a recent in vitro study suggests that theoretically grounded
methods, like the transfer entropy, can be effectively used to
reconstruct activity propagation from calcium signals of neu-
ronal cultures [12]. Despite its theoretical advantages, transfer
entropy requires very long data to obtain reliable estimates of
activity propagation [22]. This technical requirement represents
a limiting factor when dealing with in vivo, generally shorter,
data.
In the present study, we use a more robust principled method

to infer activity propagation by exploiting the entire dynamics
of in vivo recorded calcium signals. Specifically, we refer here
to the Granger-causality (GC), a statistical concept, based on
prediction error that is commonly used to quantify the informa-
tion flow between neurophysiological signals [23]. Estimating
Granger-causality between all the available calcium signals
gives a functional connectivity pattern that describes in a
compact way the directed interactions between all the neuronal
cells. This functional connectivity pattern is shaped to some ex-
tent by the underlying synaptic connectivity [24] and provides
complementary information about the putative dynamic flow
within the neuronal network. Functional connectivity patterns
can be probed as graphs or networks, i.e., mathematical objects
composed of nodes corresponding to neurons and weighted
directed links (GC values). Finally, we exploit graph theoretical
approaches to: i) characterize at a system level the putative
functional circuitry in the spinal cord of the zebrafish embryo
and ii) identify the neuronal “hubs” of information flow that
subserve the spontaneous activity.

II. METHODS

A. Experimental Data and Preprocessing
All experiments were performed on Danio rerio embryos

between 23 and 24 hours post-fertilization. AB and TL strains
of wild-type (WT) larvae were obtained from our laboratory
stock of adults. Embryos and larvae were raised in an incubator
at 28.5 C until 60%–75% epiboly, then maintained at 26 C
until shortly before recordings were performed. All procedures
were approved by the Institutional Ethics Committee at the
Institut du Cerveau et de la Moelle épinière (ICM). Five 28–30
somite-stage Tg{s1020t:Gal4; UAS:GCaMP3} [25] transgenic
embryos were used for this study. Before recordings were
performed, embryos were dechorionated and screened for
fluorescence. Embryos screened for GCaMP3 fluorescence
were staged at 23 hpf and embedded in 1.5% agarose with
the dorsal side of the spinal cord oriented up. Embryos were
anesthetized in MS-222 before being paralyzed with 0.5 mM
-bungarotoxin (Sigma-Aldrich, USA) diluted in phenol red

solution via injection of caudal muscle (segments 15–18). Data
were acquired with a 3i spinning disk confocal microscope.
Calcium imaging was performed during spontaneous activity
for 250 seconds at 4 Hz with a 488 nm laser. A 20x objective
allowed simultaneous imaging of five segments of the spinal
cord from somites 3 to 7. After the experiment was performed,
embryos were staged again to confirm that imaging reflected
activity of 30-somite stage embryos (corresponding to 24 hpf).
Images were acquired with Slidebook software and analyzed
offline with ImageJ and MATLAB (The Mathworks, USA).

Neurons expressing in these lines and implicated in the spon-
taneous activity are mainly motoneurons. They were identified
based on the amplitude of the change of GCaMP3 fluorescence
that is related to intracellular calcium concentration. ROIs for
motoneurons on each side were manually selected based on the
standard deviation image calculated over the entire recording.
For each ROI, the fluorescence value was computed as

, where was the fluorescence
signal averaged across the pixels within the ROI, the baseline
fluorescence was calculated as the mean of the first ten
frames acquired and was calculated in a region outside of
the embryo (Fig. 1).

B. Neuronal Functional Connectivity

To elucidate how different motoneurons were collectively re-
cruited, we referred to the concept of functional connectivity
[26]. Here, the organization of neural circuits is estimated on
the basis of the model-free Granger-causality [27], which tests
whether the prediction of the present value in one time series
can be significantly improved by including information from an-
other time series. If so, the second time series is said to have a
Granger causal effect on the first, and the degree of significance
of the improvement may be taken as the strength of GC. The
GC measure is typically implemented by autoregressive (AR)
modeling. In AR modeling, a stationary signal can be ex-
pressed by a linear regression of its past values according to the
formula

(1)

where are the regression coefficients of the univariate AR
model, is the model order, and is the respective predic-
tion error. By introducing the information from a second sta-
tionary signal the formula can be rewritten as

(2)
where and are the new regression coefficients of the
bivariate AR model, and is the new prediction error ob-
tained by including also the past of in the linear regression
of .
The GC between and is then measured by the

log ratio of the prediction error variances for the bivariate and
univariate model:

(3)

GC is a positive number; the higher , the stronger the
influence of on is. Such influence is often considered to
reflect the existence of an information flow outgoing from the
system to the system [28]. Finally, GC is generally asym-
metric ( ), which is an important feature to
infer causal or driving relationships.
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Fig. 1. Optical imaging of calcium transients recorded in a 30-somite stage representative embryo in the stable transgenic zebrafish line Tg(s1020t:Gal4;
UAS:GCaMP3). Panel a) Dorsal side showing the field of view. Scale bar m. Rostral is up, “L” for left and “R” for right side of the spinal cord. Each
motoneuron selected for analysis is circled (from 1 to 6 on the left side, and 7 to 11 on the right side). Panel b) fluorescence signals (related to calcium
activity) for each motoneuron selected in a). Motoneurons 1 and 2 have a smaller signal-to-noise ratio, which may be due to their position slightly shifted
compared to the focal plan. Panel c) Inset shows a zoomed view of a representative calcium transient for the motoneurons in the right hemicord.

1) Application to Calcium Fluorescence Imaging Data: In
our study the neuronal GCaMP3 fluorescence signals exhib-
ited steady oscillations (see Fig. 1 for a representative embryo).
Specifically, the 98.5% of the pooled data satisfied the stationary
test [29] and we computed values, with
where is the number of the identified motoneurons in each
zebrafish embryo. The regression coefficients of the AR models
were computed according to the ordinary least-squares mini-
mization of the Yule-walker equations. The model order was
selected for each zebrafish embryo according to the Akaike cri-
terion [30]. This criterion tries to find the optimal that min-
imizes the following cost function:

, where is the noise covariance matrix of the bivariate
AR model and is the number of samples of the time series.
Basically, this cost function balances the variance accounted for
by the AR model against the number of coefficients to be es-
timated. Obtained values across zebrafish embryos ranged be-
tween 8 and 20, corresponding to sliding regression windows
of 2 and 5 s, a temporal period which is compatible with the
dynamics of single calcium transients (see Fig. 1). For each ze-
brafish embryo a full connectivity pattern was constructed by
estimating the GC influences between the activities of all the
identified motoneurons in the spinal cord. The statistical signif-
icance of the obtained influences was established by means of a
-test under the null hypothesis [23]. According to

this procedure, only the GC values corresponding to percentiles
inferior to a statistical threshold of , Bonferroni cor-
rected for multiple comparisons were retained.

C. Graph Modeling of Functional Connectivity

The obtained functional connectivity patterns were then
analyzed by means of a graph theoretical approach, which
is a powerful tool to characterize the organization of several
connected systems including the brain [31]. According to this
framework, functional connectivity patterns can be regarded
as graphs (or networks) composed of nodes (motoneurons)
and directed weighted links (pairwise GC values). The math-
ematical representation of such network is an asymmetric
square weighted matrix of size , where is the number
of motoneurons. The generic weight corresponds to
the magnitude of the information flow estimated between the
motoneuron and the motoneuron . Thus,
if the corresponding GC value is statistically significant and

otherwise.
1) Connectivity Matrix Factorization: In general, functional

networks describing neuronal systems are peculiar in that the
nodes of the network represent neurons that are spatially em-
bedded [32]. Human brain networks, for example, consist of
two large subsets of neural assemblies coincident with the two
hemispheres, this evidence playing an important role for the
overall organization [33], [34]. Here, the obtained neuronal net-
works are embedded in a physical space coincident with the two
sides of the spinal cord (i.e., hemicords) of the zebrafish embryo,
where nodes are primary rhythmically active motoneurons [17].
Without loss of generality, we can assume that the first nodes
of the network belong to the left side ( ) and the remaining
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to the right side ( ). The connectivity matrix can be
then usefully split in two subcomponents describing the ipsilat-
eral and contralateral connectivity of the two hemicords

(4)

where is a matrix containing the first block
on the main diagonal of and 0 elsewhere; is a
matrix containing the second block

on the main diagonal of and 0 elsewhere; is the
sum of the blocks and corresponding to the ipsilateral
connectivity of the hemicords; is a matrix containing
the two remaining blocks and on
the second diagonal of that correspond to the contralateral
connectivity of the hemicords, and 0 elsewhere.
2) Connection Intensity: We considered the ipsilateral and

contralateral connectivity separately according to the factoriza-
tion of . The global intensity of connectivity was defined
as the sum of all the weighted links within (ipsi) or between
(contra) the two sides of the spinal cord and it was measured by
the connection intensity

(5)

By definition and are positive numbers; higher
values of reflect more intense connectivity. Connection in-
tensity can be seen as the weighted version of the connection
density for unweighted graphs [31].
3) Node Strength: At the local level we considered sepa-

rately the connectivity of each node with respect to its ipsi/con-
tralateral hemicord. Furthermore, we distinguished between in-
coming and outgoing connectivity. The local information flow
was then measured by the node strength (or weighted degree),
which considers the sum of all the incoming/outgoing weighted
links

(6)

(7)

By definition, node strengths are always positive and they are
characterized by a very intuitive interpretation: nodes with high
in-strength are highly influenced by others and represent poten-
tial receivers of information flow; nodes with high out-strength
are central in the way they influence others and represent pos-
sible neural transmitter of information flow.
4) Centrality: We also defined an index that integrates

the node strengths and gives a unique value of node centrality
(or importance). This index of delta centrality was computed

as the difference between the out- and in-strength and it was
defined either for the connectivity within (ipsi) and between
(contra) hemicords

(8)
(9)

centrality values quantify the tendency of the nodes to act
more as transmitter ( ) or receiver ( ) of information
flow.
5) Normalization by Random Graphs: Due to experimental

constraints (e.g., manual selection of motoneurons based on the
variability of the fluorescence signal, see Section II-A), the re-
sulting GC networks can have different sizes across embryos
in terms of number of nodes and weighted links. The measured
network indexes (i.e., connection intensity, node strength, delta
centrality) were then normalized in each embryo to compensate
possible biases on the network topology due to the different size
[35]. Specifically, for each embryo, the measured network in-
dexes were normalized by those obtained from a distribution
of 100 equivalent graphs generated by randomly shuffling the
weighted links of the actual GC network. From this distribution
themean and standard deviation were computed and used to nor-
malize ( -score) the actual network indexes. Eventually, a pos-
itive -score indicates that a network index measured on the ac-
tualGC network is higher than what expected in random graphs,
a negative -score indicates the opposite, and a -score close to
zero indicates that the network index measured on the actualGC
network is similar to that obtained in equivalent random config-
urations.

III. RESULTS

By performing calcium imaging within one plane of the ven-
tral and rostral spinal cord, we observed that motoneurons of ze-
brafish 30-somite stage embryos generated large calcium tran-
sients reflecting synchronous bursting activity (see Fig. 1, for
a representative embryo). Motoneurons were highly synchro-
nized on each side, as illustrated in the cross-correlation connec-
tivity matrix of Fig. 2(a). Reciprocal coordination is usually esti-
mated by the standard cross-correlation coefficient (CC), which
can only detect undirected relationships between neuronal ac-
tivities, i.e., . Here, we used Granger-causality
estimates to infer the activity propagation between the calcium
transients of the motoneurons. Such nonreciprocal relationships
allow identifying a directed neuronal network as revealed by the
asymmetric connectivitymatrix of the representative embryo
[Fig. 2(b)]. In this matrix the elements above the main diag-
onal represent influences from rostral to caudal motoneurons,
the elements below the main diagonal indicating the opposite
direction. Since active neurons were selected based on the stan-
dard deviation of the fluorescence signal for the length of the
recording, the number of considered motoneurons could differ
across distinct embryos.
By using a graph theoretical approach, we found that the

ipsilateral connectivity intensity was significantly higher
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Fig. 2. Cross-correlation (CC) versus Granger-causality (GC) connectivity matrix of the representative zebrafish embryo. Functional connectivity between
motoneurons is coded by the elements of the matrices. In these matrices, each element contains the magnitude of functional connectivity between the
activity of the neuron and according to the respective color bar. Elements on the main diagonal, indicating self-connections, were excluded due to their trivial
interpretation and coded by a blue color (i.e., absence of connectivity). The first block identified by the rows and columns from 1 to 6 represent the connectivity
between the motoneurons in the left hemicord ( ), while the second block of rows and columns from 7 to 11 represent the connectivity between the motoneurons
in the right hemicord ( ). Intensity of the pairwise connectivity is coded by the colorbar. Panel a) CC matrix shows a strong undirected (the matrix is symmetric)
connectivity between ipsilateral motoneurons. Panel b) Asymmetric GC matrix shows a general tendency of the rostral motoneurons (lower identifier numbers)
in each hemicord to influence caudal motoneurons (higher identifier numbers). Note that motoneurons 1 and 2 had a smaller signal-to-noise ratio [see
Fig. 1(b)] and they are less involved in the connectivity matrices, i.e., low values in the first two rows and columns of .

TABLE I
NORMALIZED VALUES OF IPSILATERAL AND CONTRALATERAL CONNECTION INTENSITY FOR NEURONAL GRANGER-CAUSALITY NETWORKS.

ASTERISKS DENOTE SIGNIFICANT DEVIATIONS ( score , ) FROM EQUIVALENT RANDOM GRAPHS.
GROUP-AVERAGED VALUES ARE ALSO REPORTED AT THE END OF THE TABLE

( ) compared with that obtained by randomly reshuf-
fling the links (i.e., pairwise GC) among all the available mo-
toneurons (here also referred as nodes). On the contrary, the con-
tralateral connectivity intensity was significantly lower
( ) with respect to random graphs (Table I). In general,

values tend to be higher than (Wilcoxon value
, ), this indicating that spontaneous coiling

in the zebrafish was functionally characterized by a strong ex-
change of information between the nodes in the same hemicord.
At a local level, we characterized each node in terms of

its outgoing/incoming information flow. The resulting in-
formation flows were preferably distributed along the same
side of the spinal cord as compared to random graphs, i.e.,

, (see Supplementary Fig. 1).
Given the scarce level of contralateral connectivity, both at
the global and local scale, the ipsilateral graph metrics were
expected to give more relevant information about the network
organization. In particular, by fusing the information from the
ipsilateral out-strength and in-strength we defined

a compact delta centrality index ( ) to identify the nodes
acting as connectivity “hubs”, i.e., nodes with relatively high
information flow. The characteristic spatial organization of
the values shows that rostral nodes tend to have a larger
amount of outgoing information flow while caudal nodes have a
higher tendency to receive information flow (see Fig. 3, for the
representative embryo). By exploiting the actual longitudinal
position of the motoneurons as measured by their Cartesian
-coordinate from the field of view of the spinal cord, we

tested whether the node centrality values and the normal-
ized -coordinates of the corresponding motoneurons were
statistically correlated. A first analysis considering the nodes in
both the hemicords revealed a significant positive correlation
for the pooled data (Spearman , ;
data not shown here). An even higher significant correlation
( , ) was obtained when we used the
representative side of the spinal cord that gave the signals
with better quality in each embryo [Fig. 4(a)]. Given that the
calcium imaging data are obtained by optical sectioning on a

 181



338 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 23, NO. 3, MAY 2015

Fig. 3. Rostro-caudal distribution of the nodal delta centrality in the representative zebrafish embryo. Panel a) Normalized value is represented for each
node (motoneuron) as a colored circle superimposed on the field of view. The larger the circle, the more central is the node in terms of its tendency to act as a
transmitter (red color, positive value) or receiver (blue color, negative value) hub of information flow. Panel b) Same normalized centrality values are here
represented within the neuronal GC network. Statistically significant GC influences are illustrated as directed arrows. The thicker the arrow the stronger the GC
value is. Inter-hemicord directed links are illustrated in gray color for the sake of simplicity.

Fig. 4. Spearman correlation between nodal delta centrality and longitudinal position of the motoneurons for the pooled data. Each circle in the panels represents
the normalized -coordinate ( -axis, whereby positive values correspond to more rostral positions and negative values indicate more caudal positions) and the

value ( -axis) for a node of a zebrafish embryo's neuronal network. Colors of the circles code the identifier of the embryo according to the legend. Panel
a) shows a significant positive correlation for the neuronal networks obtained by computing Granger-causality between the calcium imaging signals. Panel b) No
significant correlation was reported for the network obtained by using lagged correlation.

single plane across the spinal cord, one side of the cord often
shows signals with higher amplitude and signal-to-noise ratio
than the other. This is a well-known issue due to the difficulty
to obtain in the same focal plane signals with exactly
the same quality from neurons on both the hemicords (see for
example Fig. 1(b), motoneurons 1 and 2).
Such node spatial hierarchy also could be revealed, albeit

marginally, by solely using node in-strength and out-strength
values (see Supplementary Fig. 2). The observed node hierarchy
reflecting the rostro-caudal propagation of activity can be at-
tributed to the superiority of theGCmethod over standard tech-
niques using for instance lagged correlation (LC) to infer direc-
tionality [21]. To demonstrate this, the centralities were com-
puted for the LC networks obtained in each zebrafish embryo
(see Supplementary Fig. 3) and then correlated with the longi-

tudinal position of the motoneurons. No significant Spearman
correlation was reported when considering either the sides of the
spinal cord ( , data not shown here) or
the representative side ( , ) [see Fig. 4(b)].

IV. DISCUSSION

Functional connectivity is considered fundamental to under-
stand how neural assemblies exchange information and how the
resulting network leads to physiological and pathological be-
havior [36]. Despite the high potential of connectivity-based
approach in humans, neuroimaging techniques such as elec-
troencephalography (EEG), magnetoencephalography (MEG)
or functional magnetic resonance imaging (fMRI), only allow
sampling of activity across a fraction of the entire neuronal net-
work. This limitation restrains the power of subsequent analysis
and results interpretation.
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The transparency and small size of the zebrafish nervous
system provide an opportunity to optically record calcium-
transients reflecting neuronal activity from the entire neuronal
network [9], [16], [17], [37], [38]. Recently, the combination
of optical and genetic techniques has allowed us to record
networks composed of thousands of neurons at single-cell
resolution level [3], [4], [18], [19], [39], [40]. In the zebrafish
embryonic spinal cord we show here that Granger-causality
graph analysis of calcium imaging data, obtained from a single
plane at the single cell resolution and low acquisition rate, can
resolve the well-known rostro-caudal propagation in the spinal
cord where cross-correlation analysis did fail. These findings
are in line with previous studies showing that motoneurons
are coupled via GAP junctions at this stage and that excitation
most likely comes from descending fibers from the hindbrain
[15], [41].
Applied to -scan measurements, our methodological ap-

proach could provide new insights on mechanisms underlying
activity propagation and information flows between larger
populations of neurons in dataset acquired on the whole brain
[4], [18], [19], [39], [40], [42] and at faster acquisition rates
[43]. However, when considering a large number of neurons
( ), particular attention should be paid to the statistical
validation of the estimated GC networks. In our study, the
statistical threshold that filters out the less-significant links
(Section II-B1, Bonferroni criterion for multiple comparisons)
inversely depends on the total number of possible of links

, i.e., the higher , the more stringent
thethreshold is. This choice could lead to very sparse GC
networks when and less stringent statistical proce-
dures, based for example on false discovery rates [44], can be
considered to retain a sufficiently higher number of weighted
links describing the functional network.
Here, the resultingGC networks are factorized in order to dis-

entangle the role of the connectivity within (ipsi) and between
(contra) the two sides of the spinal cord. Our results suggest that
the neuronal activity underlying the rhythmic dynamics at this
early embryonic stage entails functional directed networks that
foster the information propagation between ipsilateral neurons
while discouraging contralateral connectivity flows. This out-
come is in line with the previous findings obtained with undi-
rected connectivity analyses, which reported high ipsilateral ac-
tivity coordination and low contralateral correlation [10], [11].
The directed connectivity approach further revealed a charac-
teristic spatial hierarchy of the network hubs, i.e., nodes with
a relatively high incoming/outgoing information flow. Network
hubs have a crucial structural role in connected systems as they
convey the large part of the available information and mediate
such information between other nodes [45]. The obtained results
show that there are two classes of network hubs in the spinal
cord of the zebrafish that underlie the early spontaneous activity:
i) the transmitter hubs, i.e., nodes with a relatively high rate of
outgoing information flow, and ii) the receiver hubs, i.e., those
with a relatively high rate of incoming information flow. Inter-
estingly, the transmitter hubs are located in the rostral zone of
the spinal cord while the receiver hubs are rather located in the
more caudal site (Figs. 3 and 4).

Although our approach is limited in that it cannot directly
unveil the underlying basic mechanisms giving rise to the mea-
sured GC networks, the observed characteristic network hub
organization supports previous evidence demonstrating rostro-
caudal activity propagation in terms of inter-spike delay be-
tween neurons [1], [16]. In those studies, rostro-caudal activity
propagation had been observed with electrophysiology tech-
niques and higher acquisition rate. Here, we show that such hub
organization cannot be determined when using temporal delays
(i.e., cross-lagged correlation) between calcium imaging signals
recorded at a low acquisition rate [Fig. 4(b)]. Hence, the pro-
posed network approach describing the functional circuitry in
terms of information propagation betweenmultiple neural activ-
ities appears to be: i) more general, i.e., Granger-causality con-
siders prediction error between signals whereas cross-lagged
correlation takes into account simple delay and ii) more robust,
i.e., rostro-caudal activity propagation can be characterized in
terms of connectivity at lower acquisition rates.
In this study, the information propagation is estimated by

means of bivariate ARmodels of Granger-causality (see Section
II-B). Although other methods based on information theory [46]
or multivariate autoregressive models (MVAR) could be used
to assess directionality [47], practical evidence shows that they
require generally longer data and strong assumptions on the ab-
sence of latent variables that could introduce spurious connec-
tivity [48], [49]. Using MVAR models when these assumptions
are marginally satisfied (like in our case) could lead to unreli-
able connectivity patterns. For the sake of completeness we have
also computed the MVAR GC networks (data not shown here).
A statistical procedure similar to the bivariate case (i.e., statis-
tical threshold of , Bonferroni corrected for multiple
comparisons) is used to retain the significant GC influences.
For these networks no significant hub hierarchy distribution is
reported when correlating centrality values with the nor-
malized -coordinates of the respective motoneurons either in
both the sides of the spinal cord ( , data not
shown here) or the representative side ( ,
data not shown here).

V. CONCLUSION

We used Granger-causality and graph theory to characterize
the organization of neural functional connectivity patterns in the
spinal cord of zebrafish embryos during spontaneous motor-like
activity at the 30-somite stage. The obtained results allowed us
to identify a characteristic network structure that supports ip-
silateral neural connectivity and rostro-caudal activity propa-
gation. This general framework can provide effective network-
based biomarkers for functional circuitry alteration of the spinal
cord during natural development as well as in induced or spon-
taneous pathological conditions.
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Abstract
Imaging intracellular calcium concentration via reporters that change their fluorescence

properties upon binding of calcium, referred to as calcium imaging, has revolutionized our

way to probe neuronal activity non-invasively. To reach neurons densely located deep in

the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in

a cost effective manner. Here we implement an accessible solution relying on HiLo micros-

copy to provide robust optical sectioning with a high frame rate in vivo. We show that large

calcium signals can be recorded from dense neuronal populations at high acquisition rates.

We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo micros-

copy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We

apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in bio-

logical tissues. This approach enables us to discriminate neuronal activity of motor neurons

from different depths in the spinal cord of zebrafish embryos. We observe distinct time

courses of calcium signals in somata and axons. We show that our method enables to

remove large fluctuations of the background fluorescence. All together our setup can be

implemented to provide efficient optical sectioning in vivo at low cost on a wide range of

existing microscopes.

Introduction
Calcium imaging enables the study of activity in large populations of neurons with high sensi-
tivity and high frame rates [1]. Camera-based imaging in wide-field (WF) mode can be fast,
but imaging in thick specimen might require optical sectioning to suppress spurious out-of-
focus signals [2]. Since the brain is an inherently three-dimensional structure, such sectioning
is essential for resolving neuronal signals and deciphering its function. Two-photon excitation
microscopy achieves optical sectioning at high penetration depth in highly scattering media;
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accordingly, it is the common approach for deep calcium imaging studies in the brain. On the
contrary, for thin samples or weakly-scattering tissue-investigations, single-photon (1P) excita-
tion can be sufficient and optical sectioning is usually provided by confocal laser scanning
microscopy [3]. The major limitation of a 1P scanning system with respect to a WF mode is
essentially the acquisition speed. Implementations with resonant scan mirrors or acousto-opti-
cal deflectors [4] can increase scan speed but they remain point scanning techniques. Apart
from technical constraints, the available fluorescence signal limits ultimately the dwell time
and hence the achievable speed.

Methods enabling WF imaging, where all pixels of the image are recorded in parallel, while
preserving the optical sectioning capability of the point scanning methods would be optimal.
Optical approaches have been conceived based either on a parallelization of the confocal prin-
ciple using multiple pinholes (Spinning Disk Confocal Microscopy, SDCM) [4], on a rear-
rangement of the illumination to induce excitation only in the focal plane (Single/Selective
Plane Illumination Microscopy, SPIM) [5, 6], or on a spatial modulation of the light to encode
only in-focus information (Structured Illumination Microscopy, SIM) [7–9]. Although SDCM
can image at video rate, inter-pinhole cross-talk impairs the out-of-focus light rejection in
thick tissue with dense labeling [10]. SPIM demands side-on access and imposes constraints on
handling of the sample, limiting its applications.

SIM offers a compromise between recording speed, sectioning capability, ease of integration
into a standard WF microscope, and cost. Optical sectioning by SIM is essentially based on the
elementary property of a WF microscope to blur fine details of the image when moving the
sample away from the focal plane [11]. SIM structures the excitation light in order to create
artificially fine high-contrasted details in the sample. This enables recognizing the in-focus por-
tion of an object (the in-focus portion is the one where details are seen sharply), even in the
absence of intrinsic details of the sample. A few raw images are computationally combined to
separate the artificially superimposed structures in the image from intrinsic details and to cal-
culate an optically sectioned image, i.e. to isolate the part of the object in focus. Relatively high
imaging speed is maintained as the total frame rate is equivalent to the one in WF mode just
reduced by a factor corresponding to the number of raw images required for the computation
of the sectioned image.

HiLo microscopy [8] is a SIM technique, which needs only two images: one image with
structured illumination and one with conventional uniform illumination (“HIgh” and “LOw”
contrast images). Structured illumination either with a grating or with laser speckles introduces
fine details that enable the computation of the optically sectioned image. Combination with the
uniformly illuminated image allows recovering all structural information without the need to
combine several non-uniform illumination patterns [12]. HiLo imaging can be fast, since only
two raw images are needed to obtain the sectioned image. It has been used for imaging c. ele-
gans and danio rerio (zebrafish) at 7 frames per second (fps) [13], chick embryos with up to 9.5
fps [14], xenopus laevis embryos with 25 fps [15] and externally induced calcium signals at cel-
lular resolution in the brain of drosophila melanogaster with 30 fps [16].

Here, we present a fast optical configuration for HiLo microscopy that enables rapid switch-
ing between structured and uniform illumination to obtain optically sectioned images, thus
allowing high-speed image recording (up to 100 fps) and demonstrate its capabilities by
recording calcium transients in motor neurons in the embryonic danio rerio spinal cord.

Results
The optical set up for HiLo microscopy is built up around a commercial upright microscope
(Fig 1). In order to realize high-frame-rate HiLo, fast switching between the speckled (SWF)

Fast HiLo Calcium Imaging
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and the uniform widefield illumination (UWF) is required. This is here achieved with a static
diffuser imaged onto a galvanometric mirror, which is in turn projected into the back focal
plane of the objective (Fig 1A). Each position of the galvanometric mirror generates a differ-
ently shifted speckle pattern (Fig 1A inset, SWF) at the sample plane. When the mirror is
vibrated with a period that is much shorter than the exposure time of the imaging camera, the
different speckle patterns are averaged giving a uniform illumination (Fig 1A inset, UWF).
With this configuration we could acquire HiLo images up to 100 fps.

To quantify the optical sectioning achievable in our HiLo microscope, we recorded a z-stack
of a thin fluorescent layer and determined the fluorescence intensity (averaged over the whole

Fig 1. Implementation of HiLo Microscopy to enable optical sectioning at high frame rate in thick biological tissue. (A) Setup: A 473nm laser beam is
expanded with lens L1 to a divergent beam to illuminate the diffuser D. The diffuser is imaged by lens L2 onto the galvanometric mirror GM. The
galvanometric mirror is then imaged by lens L3 into a conjugated plane of the back focal plane of the objective O within the microscope body. Fluorescence
images are acquired either with a CCD camera or a CMOS camera. (Inset) Fluorescent Rhodamine layer imaged with speckled (SWF) and uniform (UWF)
widefield illumination at 200 frames per second (fps), confirming successful uniform/speckled illumination. (B–C) Illustration of the optical Sectioning: (B) A
single fluorescent layer appears as a sharp intensity peak (width 2.1 μm) in a z-stack in HiLo mode (solid green line), but with almost constant intensity in
uniform wide-field (UWF) mode (blue dotted line). (C) Two Rhodamine layers can be separated in HiLo mode (solid green line), but in UWFmode only broad
peaks (due to spherical aberration) whose positions do not correspond to the layers are visible. Inset: Experimental arrangement: red: Rhodamine layers;
gray: supporting coverslips.

doi:10.1371/journal.pone.0143681.g001
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image) as a function of Z position (Fig 1B). Whereas UWF microscopy showed an almost con-
stant intensity with no sectioning (Fig 1B, dashed blue line), HiLo microscopy showed a sharp
peak at the position of the fluorescent layer (Fig 1B, green line; full width at half maximum
(FWHM) = 2.1 μm).

To achieve efficient optical sectioning in vivo, the ability to separate several objects along
the optical axis is critical. We tested this with two fluorescent layers spaced by 94 μm (Fig 1C).
UWF microscopy showed broad intensity peaks due to spherical aberrations that do not corre-
spond to the position of the fluorescent layers (Fig 1C, dashed blue line). On the contrary,
HiLo microscopy permits to clearly separate the two fluorescent layers showing sharp peaks at
47 μm and 141 μm Z position (Fig 1C, green line).

In order to demonstrate the capability of the microscope for optical sectioning in living
samples, we imaged the nervous system of zebrafish embryos (between the 26- and the
30-somite-stage) from transgenic animals expressing genetically encoded calcium indicator
GCaMP5 [17] in either motor neurons with Tg(UAS:GCaMP5Gicm08; Et(e1b:Gal4-VP16)
s1020t) or pan-neuronally with Tg(elavl3:GCaMP5G) [18–20]. The HiLo microscope enabled
the visualization of optical sections revealing the distribution of GCaMP5 (Fig 2A), not visible
in epifluorescence illumination (Fig 2B). Finally, we performed a three-dimensional recon-
struction of the neurons in the spinal cord of the embryo imaged from a lateral view (Fig 2C
and 2D). Neurons from both sides of the embryonic spinal cord were clearly visualized due to
the sectioning capability of the HiLo microscopy (Fig 2C, S1 Movie) while they remained
blurred with UWF illumination (Fig 2D).

The high-frame-rate acquisition reachable with our implementation of HiLo microscopy
was then used to record calcium transients in zebrafish embryos expressing GCaMP5 at the
embryonic 26- to 30-somite stage, when motor neurons are alternatively activated on the left
and on the right side of the embryo [21, 22].

Fig 2. Optical section in embryonic spinal cord of zebrafish obtained with HiLo microscopy. (A) Lateral view of the spinal cord of transgenic zebrafish
embryo expressing the fluorescent protein GCaMP5 pan-neuronally in Tg(elavl3:GCaMP5G) obtained with HiLo microscopy. (B) Same image obtained in
UWFmode. The spatial distribution of GCaMP5G remains hidden under a haze of background fluorescence due to missing optical sectioning.Scale bars in
both panels are 20 μm. (C) Corresponding z-stack in 3D visualization, imaged in HiLo mode. The pools of neurons on each side of the spinal cord are visible
in two separate planes. (D) Same reconstruction in WFmode (grid step 10 μm/line). See also S1 Movie.

doi:10.1371/journal.pone.0143681.g002
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In order to study the HiLo capability for calcium imaging, fluorescence variations (ΔF/F) of
the calcium indicator measured from selected regions of interest (ROIs; cell bodies, axons and
background) in HiLo and UWF mode have been compared in Tg(Et(e1b:Gal4-VP16)s1020t;
UAS:GCaMP5G icm08) (Fig 3A). Two main benefits can be noted in the HiLo mode:

First, substantially increased ΔF/F amplitudes are observable with HiLo (Fig 3, S2 Movie).
Already on the cell bodies, which gave a strong signal, HiLo microscopy led to a gain of a factor
of 2.5 in signal-to-baseline ratio (ΔF/F) compared to UWF microscopy. (Fig 3B) This gain
reached up to a factor 10 for less bright regions as axons (Fig 3C). Such an activity detection
boost, due to a reduction of the out-of-focus stray light contribution, reveals the higher sensi-
tivity of HiLo for identifying cellular activity with respect to a conventional WF observation.

Second, a set of lower-level peaks present in the UWF calcium signals (Fig 4A)was sup-
pressed in the HiLo recording (Fig 4B). Peculiarly, contrary to the principal peaks, these sec-
ondary peaks were not localized to a specific ROI and were present also in the background
signal (Fig 4A, Background ROIs 5–7). These secondary fluorescence variations are thus not

Fig 3. HiLomicroscopy enhances calcium signals. (A) In vivoHiLo image of motor neurons of a zebrafish embryo expressing GCaMP5G in soma (ROI1),
axons (ROIs 2–4), or background (ROIs 5–7). Scale bar 5 μm. (B) ΔF/F time series in the soma (ROI 1) shows that HiLo mode leads to a larger signal than
UWFmode. (C) For axons (ROI 4) the gain in HiLo mode is even larger. Acquisition rate was 25fps.

doi:10.1371/journal.pone.0143681.g003
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linked to an activity of the targeted cell, but originate from out-of-focus planes where anti-cor-
related neuronal activity was produced from the pool of contralateral motor neurons [21, 22].
Although for relatively strong signals, the real specific targeted activity can be distinguished
from the out-of-focus contributions on the basis of the amplitude (Fig 4A), in many other cir-
cumstances the two contributions become hardly distinguishable, possibly leading to an erro-
neous interpretation of the cellular activity (Fig 4C and 4D). Being able to acquire only the
fluorescence signal from the in-focus region of the sample, HiLo suppresses such unwanted
peaks both in the cells and in the background (Fig 4B and 4D). Especially, we were able to

Fig 4. Suppression of non-specific signals.Nonspecific signals appeared in UWFmode (A, C) and were suppressed in HiLo mode (B, D) (ROIs numbered
as in Fig 3A). The benefit is consistent in the somatic signal (A, B) and particularly important for the axonal signals (C, D) which are smaller and therefore
more difficult to distinguish from the unspecific signals. Furthermore HiLo mode allows observing that calcium spikes occasionally did not occur in a single
axon (black trace, arrow), despite occurrence in the neighboring axon (magenta trace) (D), while UWFmode hindered the observation of this phenomenon
(C). Note that some bleaching is seen over the 80 s recording time. Traces were offset vertically for visualization. Raw data are shown in all panels.
Acquisition rate was 25 fps.

doi:10.1371/journal.pone.0143681.g004
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resolve with HiLo microscopy that neuronal activity is not always transmitted to all cells: ROI
4 on the axonal track does not show any calcium signal at 72 s (Fig 4D, black trace, arrow),
despite a strong signal in the adjacent ROI (ROI 3, magenta trace in Fig 4D). This missing peak
is in stark contrast with all other calcium peaks in this recording, which were faithfully spread
to all ROIs (peaks at 15 s, 30 s, 42 s, 54 s, 57 s). Normal wide-field imaging shows a spurious
signal at this time point (Fig 4C, black trace, arrow), which is indistinguishable from true neu-
ronal signals. Only HiLo microsopy allowed here to detect the singular absence of signal
transmission.

Thus, compared to conventional widefield microscopy, HiLo microscopy offers a higher
sensitivity for fluorescence-variation detection and higher specificity in terms of spatial locali-
zation of the calcium signals. Since a fundamental requirement of calcium-signal recording is
being able to follow fast cellular kinetics, such HiLo benefits can become of authentic advantage
if HiLo imaging can be performed at very high frame rates.

We therefore verified HiLo-calcium-imaging performance up to 100 fps (200 fps raw-data
rate) (Fig 5, S3 Movie), a frame-rate at which cellular sub-compartmental kinetics can be exten-
sively investigated. This temporal resolution allows clearly observing that calcium transients rose
first in axons and then in the soma (Fig 5A and 5B). Moreover, the intracellular calcium concen-
tration rise was faster in the initial segment (Fig 5A and 5B, ROI 4, ROI 5, light blue and magenta)
than in the rest of the soma (ROI 2, ROI 3, orange and dark blue). In the soma a close to linear
rise of intracellular calcium was observed, followed by an exponential decay with a time constant
of 1.7 s (Fig 5C, Inset: blue data/red-dotted fit). The sequence and kinetics of the calcium tran-
sients were stable over time, as seen when recording neuronal activity 2.5 min later (Fig 5C).

Discussion
We have demonstrated high rate in vivoHiLo microscopy on zebrafish embryos enabling fast
calcium imaging up to 100 fps on a field of view of ~100 μm x 50 μm with optical sectioning.

We have shown an axial resolution of ~2 μm, permitting to resolve single axonal and den-
dritic processes. Correct targeting of the genetically encoded marker GCaMP5G could be visu-
alized without the haze of out-of-focus fluorescence due to subcellular resolution.

The optical sectioning provided by HiLo microscopy increased the amplitudes of the
recorded calcium signal and permitted the rejection of out-of-focus signals originating from
motor neurons in the contralateral side. This suppression of spurious calcium signals by HiLo
microscopy allowed a distinction between small signals that originate from the structure of
interest and stray signals from other neurons. This capability is particularly relevant for a cor-
rect interpretation and localization of the neuronal signals. Indeed in UWF, the stray signals
originating from neuronal activity from out-of-focus planes can be almost as strong as the sig-
nal arising from small regions of observation as axonal portions, making a distinction of true
signals and spurious signals almost impossible (Fig 4).

HiLo recordings have been shown with up to 100 fps, demonstrating that fast cellular
dynamics can be studied. This high imaging rate allows resolving differences in rise time of cal-
cium transients for soma and axon. The calcium-concentration rise in the initial segments was
faster than in the soma. By eliminating the out-of-focus light, we could detect failures to gener-
ate spikes in some axons.

It is worth mentioning that speckles are an inevitable interference phenomenon in laser illu-
mination [23]. Fully developed speckles are therefore resistant against misalignment and opti-
cal aberrations [24]. Compared to alternative HiLo methods that project gratings into the
sample plane, speckle projection is therefore more robust to optical aberrations induced by the
microscope and sample.
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We demonstrate that a fast-switching design can allow following calcium signals in zebra-
fish up to 100 fps, permitting accurate analysis of calcium kinetics. The system has an
extremely simple design using a standard static diffuser in combination with a one-axis scan
mirror that has to operate just in two states: stationary and moving. This is achieved by turning
a sinusoidal command voltage on and off.

In this study, we demonstrated single-color HiLo imaging; however, extension to multiple
colors would be straightforward and only require adding a second laser and the corresponding
filter cube without further changes in the optical path. In addition HiLo microscopy can easily
be combined with electrophysiology. Also combination with other optical widefield methods
remains possible, e.g. to stimulate neurons optogenetically either via uniform [25] or targeted
[26] illumination. Application to functional imaging other than calcium concentration, e.g.
imaging of voltage-sensitive dyes should be feasible as well.

High-frame-rate optical sectioning for dynamic imaging can be alternatively obtained via
Spinning Disk Confocal Microscopy (SDCM) or Single Plane Illumination Microscopy
(SPIM). SDCM extends the confocal principle with a parallelized detection through multiple
pinholes to speed up the scanning. Although a single-pinhole physical rejection of out-of
focus-light is often superior over computational SIMs in thick tissues [9], with multi-pinhole
detection the inter-pinhole cross-talk hampers the optical sectioning, leading to background
signals [21,22]. Thus, when optical sectioning and high-frame rate are required as for calcium
imaging, HiLo is an advantageous alternative to SDCM. Moreover, confocal microscopy
requires lasers of high beam quality as this determines the reachable resolution, while for HiLo
microscopy the demand on laser-beam quality is lower, because the laser illuminates just a
diffuser.

SPIM delivers sidewise illumination to illuminate just a single plane of the sample. Since the
optical sectioning is fully provided through a selective plane illumination, the detection can be
fully equivalent to a conventional microscope, thus basically speed-limited only by the camera
performance and available signal [18, 27]. However, the need for two orthogonal optical paths
restricts the access to the sample. representing a major limitation. Moreover, the sample scat-
tering and aberrations can broaden and distort the plane of illumination, reducing the optical
sectioning. On the contrary, clear access to the sample is maintained in HiLo since it is based
onWF epifluorescence imaging.

Conclusions
In summary this study highlights a simple, easy-to-implement and cost-efficient method for
fast calcium imaging in thick low-scattering samples. Optical sectioning is achieved due to
alignment- and aberration-insensitive structured illumination with laser speckles. Images are
acquired on a camera as in conventional WF microscopy, which is fast since no scanning is
necessary. We showed here that this approach was powerful to perform in vivo calcium imag-
ing with a genetically encoded calcium sensor at a speed of 100 fps on motor neurons of the
zebrafish embryonic spinal cord.

Fig 5. Fast calcium imaging at 100 fps with HiLomicroscopy reveals different dynamics in soma and initial segment. (A) HiLo image of motor
neurons expressing GCaMP5G with ROIs. Scale bar 5 μm. (B) Time course of calcium signals in soma, initial segment and axon, recorded at 100 fps. In the
axon (ROI 1, gray) and the initial segments (ROI 4, light blue; ROI 5, magenta) a much faster rise is observed than in the somata (ROI 2, orange; ROI 3, dark
blue). Somatic signals show a linear rise and a mono-exponential decay (Inset: blue somatic signal with red dotted fit, decay time 1.7 s, R2 = 0.998). (C) The
kinetics of calcium transients in different compartments were stable over time as shown with a recording performed 2.5 min later.

doi:10.1371/journal.pone.0143681.g005
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Materials and Methods

Optical setup
A HiLo microscope using laser speckles for structured illumination (Fig 1A) was implemented
on a commercial microscope body (Axio Examiner.Z1, Zeiss). A laser (MBL-F-473-500, Laser
2000, Wessling, Germany) with an emission wavelength of 473 nm and a power of 500 mW
served as light source. The beam was expanded to a divergent beam with lens L1 (Fig 1A) to
illuminate a static diffuser D (scattering angle 1°, 20DKIT-C1, Newport, Irvine, CA, USA). The
diffuser was then imaged onto the galvanometric mirror GM (Cambridge Technology) with
lens L2. Since the mirror had a size of only 4 mm, this image was demagnified. Note that a 4f
geometry that preserves collimation of beams is not necessary. The galvanometric mirror was
then imaged with lens L3 (f = 30 mm) through the rear port of the microscope onto an inter-
mediate back focal plane in the microscope stand. The illumination was reflected to the objec-
tive O (Zeiss W Plan-Apochromat 63x/1.0) with a filter cube (Semrock, FITC-3540C-000) of
the microscope. Fluorescence images were acquired either with a CCD camera (Coolsnap ES2,
Photometrics, Tucson, AZ, USA,) or a CMOS camera (Orca Flash, C11440, Hamamatsu,
Massy, France). Illumination power was 2.8 mW.

The microscope and the CCD camera were controlled with the software Slidebook (Intelli-
gent Imaging Innovations, Denver, CO, USA), the CMOS camera with the software HCImage
(Hamamatsu).

To obtain structured illumination, the galvanometric mirror was kept stationary; for uni-
form illumination it was vibrated with a frequency much faster than the frame rate. To this end
the galvanometric mirror was vibrated with a sine wave (700 Hz) from a function generator
(203047, Jeulin, Evreux, France).

The vibration could be turned on and off via a TTL signal, which allowed control of the
vibration via the microscope’s software Slidebook. Alternatively this TTL signal was derived
directly from the camera. The frame clock of the camera was divided by two with custom built
electronics, giving a high TTL signal (galvo moving) for every other frame.

Fluorescent layers
Fluorescent layers for validation of optical sectioning (Fig 1B and 1C) were made of Rhoda-
mine 6G in polymethyl-methacrylate (PMMA): 20 μl of a Rhodamine 6G solution (1M Rhoda-
mine in a 2% w/v PMMA-in-chloroform solution) were spin coated onto glass cover slips (#1,
25 mm, BK-7, diameter 18 mm, Marienfeld Superior, Menzel-Gläser GmbH, Braunschweig,
Germany) at 8500 rpm.

The fluorescent double layer for testing the optical sectioning (Fig 1B and 1C) was fabri-
cated by gluing two such spin coated cover slips together with double-sided adhesive tape. The
Rhodamine layers were facing the tape. The space between the cover slips was filled with water.

Zebrafish care and strains
Danio rerio embryos of the AB and Tubingen Longfin (TL) genetic backgrounds were raised in
egg water [28], at 28.5°C until 75% epiboly and then at 26°C to delay development for experi-
mentation until the 24-somite stage. GCaMP5G-positive embryos originating from the cross of
Tg(Et(e1b:Gal4-VP16)s1020t; UAS:GCaMP5G icm08) or Tg(elavl3:GCaMP5G) with wild type
adults were dechorionated, mounted laterally in 1.5% agar at the 24-somite stage, and para-
lyzed with injections of 0.5 mM α-bungarotoxin (Sigma-Aldrich, USA) into caudal muscle of
the tail. Experiments were performed at the 26–30 somite stages at room temperature. Embryo
staging was performed according to stages described in Kimmel et al. [29]. All procedures were
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approved by the Institutional Ethics Committee “Charles Darwin” at the Institut du Cerveau et
de la Moelle épinière (ICM), Paris, France, and received subsequent approval from the EEC
(2010/63/EU).

Data analysis
Images were acquired in 16 bit and exported in tiff format. All further data processing was per-
formed with MATLAB (Mathworks, Natick, MA, USA).

HiLo. Raw images were recorded alternatingly with uniform illumination and speckled
illumination. Optically sectioned images (“HiLo images”) were calculated from pairs of a
speckled image (SWF) followed by a uniformly illuminated image (UWF) with the algorithm
previously described [12]. A plugin for Image J (Rasband, W.S., ImageJ, U. S. National Insti-
tutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014) is available
from the group of Jerome Mertz (http://biomicroscopy.bu.edu/). We generated custom made
Matlab scripts based on initial code kindly provided by Daryl Lim and Jerome Mertz. We
favored the Matlab implementation for greater control of parameters and for the possibility of
automating data processing. Since two raw images are used to obtain one HiLo image, the
frame rate of the raw images is twice the frame rate of the HiLo images. All UWF images pre-
sented in the article are the images with uniform illumination that were also used for the calcu-
lation of the HiLo images.

Optical sectioning. To test the resolution of optical sectioning (Fig 1), image stacks of
fluorescent Rhodamine 6G layers were recorded with a long distance 63X, NA 1.0 water-dip-
ping objective. Fluorescence intensity was averaged over the whole field of view and plotted
against axial position. Raw data without further smoothing are displayed.

Calcium imaging. For time series of calcium transients, the average fluorescence intensity
was determined in the HiLo and the UWF images in ROIs as indicated. Fluorescence changes
ΔF were normalized to the minimal fluorescence F in each time series. To show small peaks
without overlay with other graphs, traces in Fig 4A and 4C were offset vertically by 0.1, traces
in Fig 4B by 0.2, and traces in Fig 4D by 0.4. No temporal averaging was applied to the calcium
signals.

Supporting Information
S1 Fig. Same data as in Fig 3C not normalized to ΔF/F, but shown as raw signals.
(PDF)

S1 Movie. 3D-view of the spinal cord of double transgenic zebrafish embryo expressing the
fluorescent protein GCaMP5 in motor neurons obtained with HiLo microscopy.
(WMV)

S2 Movie. Comparison of calcium transients imaged in HiLo and wide-field modes at 25
fps. (Upper Panel) In vivoHiLo image of motor neurons of a zebrafish embryo expressing
GCaMP5G. Optical sectioning in HiLo mode visualizes the membraneous distribution of
GCaMP5G and the calcium transients of spontaneous activity. (Lower Panel) Same recording
in normal widefield mode with uniform illumination (UWF). Due to a lack of sectioning the
localization of GCaMP5G and the calcium transients remain hidden in a haze.
(MP4)

S3 Movie. Stop-motion imaging of calcium transients at 100 fps.HiLo microscopy reaches
up to 100 fps (upper panel) and provides the necessary optical sectioning, whereas the neurons
are not clearly resolved in widefield mode (UWF) (lower panel).
(MP4)
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