Context and Motivation

The present decade has seen a revival of interest in preference queries that aim at retrieving not necessarily all answers to queries but rather the best, most preferred answers. Skyline queries introduced by [START_REF] Borzsonyi | The skyline operator[END_REF]), are a popular example of preference queries. They rely on Pareto dominance relationship and they have been shown to be a powerful means in multi-criteria decision-making. The skyline comprises the objects that are not dominated (in Pareto sense) by any other object. Given a set of database objects, defined on a set of attributes, an object U is said to dominate (in Pareto sense) another object V if and only if U is better than or equal to V in all attributes and better in at least one attribute.

On the other hand, due to the exploding number of information stored and shared over Internet, and the introduction of new technologies to capture and transit data, uncertain data analysis is an important issue in many modern real-life applications such as decision-making, data integration, object identification [START_REF] Bohm | The gauss-tree: Efficient object identification in databases of probabilistic feature vectors[END_REF], moving objects tracking [START_REF] Cheng | Querying imprecise data in moving object environments[END_REF][START_REF] Chen | Robust and fast similarity search for moving object trajectories[END_REF] and data cleaning [START_REF] Fuxman | Conquer: Efficient management of inconsis-tent databases[END_REF]. Uncertain data in those applications are generally caused by factors like data randomness and incompleteness, limitations of measuring equipment and delay or loss in data transfer. For example, in sensor networks, collected data often contain noise due to environmental factors, device failure or multiple sources of errors.

To deal with imperfect 1 values of database attributes, several models were proposed. The most studied and known models are: probabilistic databases (N. Dalvi & Suciu, 2007; N. N. Dalvi & Suciu, 2007;[START_REF] Aggarwal | A survey of uncertain data algorithms and applications[END_REF], possibilistic databases [START_REF] Bosc | About projection-selection-join queries addressed to possibilistic relational databases[END_REF], 2010) and evidential databases (based on Dempster-shafer theory) (Lee, 1992a;[START_REF] Ee | Resolving attribute incompatibility in database integration: An evidential reasoning approach[END_REF], 1996;[START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Bach Tobji | Frequent itemset mining from databases including one evidential attribute[END_REF][START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF]. The advantage of the evidential database model is twofold: (i) it allows modeling both uncertainty and imprecision (due to the lack of information) in data; and (ii) it represents a generalization of both probabilistic and possibilistic models.

Substantial research work has addressed the problem of skyline analysis on uncertain data from different perspectives and within various communities, including, databases; e.g., [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF][START_REF] Jiang | Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods[END_REF][START_REF] Lian | Monochromatic and bichromatic reverse skyline search over uncertain databases[END_REF]; W. [START_REF] Zhang | Probabilistic skyline operator over sliding windows[END_REF][START_REF] Bosc | On possibilistic skyline queries[END_REF], Web services; e.g., [START_REF] Yu | Computing service skyline from uncertain qows[END_REF][START_REF] Benouaret | Selecting skyline web services from uncertain qos[END_REF], and so on. These works are important 1 Imperfect values stands for uncertain/imprecise values in our study. and useful, but they focus on either probabilistic data or possibilistic data. However, as mentioned above, these models (i.e., probabilistic and possibilistic) have some limitations to handle some imperfections like imprecision.

As an example, consider plane sensor analysis: to be aware of plane environment in the ordinary situation or to get more information about targets in a state of war, it is absolutely necessary to analyze sensor data to know which target is the most dangerous. To analyze plane sensor observations, we can use some technical criteria (e.g., distance from the target and its altitude). Ideally, we want to find the optimum plane sensor observation that returns, among n targets, the most dangerous in all aspects (i.e., with less distance and altitude). While such target does not exist, the skyline discloses the trade-off between the different preferences. The skyline includes each target U such that there is any other target V that is more dangerous. In other words, a target U is in the skyline if there exists no other target V that dominates U in distance and altitude dimensions. We argue that skyline analysis is also meaningful on uncertain data. Consider the skyline analysis in sensor observations again, the initial impulse emitted by the sensor loses energy outward journey, on impact with the object and in its return path. Add to that, the climatic conditions and incompleteness in data, all these reasons make sensor observations frequently imperfect. In order to access to the most accurate and reliable information, we need to make many observations, well represent these observations and manage the lack of data. Such imperfection in data can be well modeled by the evidence theory and such imperfect data can be well managed in evidential databases. If observation-by-observation data are considered, we can answer many questions such as: which target should be in the skyline and among these skyline targets, which targets are considered the most dangerous. In other words, which objects in the skyline are the best w.r.t. the skyline criteria.

The main purpose of this thesis is to study an advanced database tool named the skyline operator in the context of imperfect data modeled by the evidence theory. This thesis addresses, on the one hand, the fundamental question of how to extend the dominance relationship to evidential data and to define the semantics of the evidential skyline, and on the other hand, the issue of the optimization techniques for improving the computation of the evidential skyline.

Thesis Contributions

In this thesis, based on the material presented in (Elmi, Benouaret, Hadjali, Bach Tobji, & Ben Yaghlane, 2014), the following new contributions are made:

• Evidential skyline operator: We tackle the problem of skyline analysis over imperfect data modeled by the evidence theory. Specifically, we address two main challenges.

The first is about modeling skyline on evidential data: how can we capture the dominance relationship between the objects of an evidential database? And what should be the skyline on those objects? The second is about computing this kind of skyline: can we provide efficient techniques for computing the skyline on evidential data?

• Distributed evidential skyline: We first define the local evidential skyline. We then introduce an efficient approach for querying and processing the evidential skyline over multiple and distributed servers. This approach is mainly based on the notions of: (i) increasing the parallelism to improve the efficiency of the distributed evidential skyline computation and (ii) marginal points to resume the dominance regions of each local evidential skyline. We also propose the distributed architecture scheme of our distributed skyline processing and we develop efficient algorithms to compute the global evidential skyline. We conduct extensive experiments to show the interest of our approach.

• Evidential skyline maintenance: We propose efficient methods to maintain the skyline results in the evidential database context when a set of objects is inserted or deleted.

The idea is to incrementally compute the new skyline, without reconducting an initial operation from the scratch. In addition, we perform an extensive experimental evaluation to demonstrate the scalability of the algorithms proposed.

• Top-k evidential skyline queries: Based on the evidential dominance relationship, we propose a score function reflecting the dominance degree of each object. This score function aims at retrieving the k objects that are expected to believably dominate the more the other objects. In a second step, we develop efficient algorithms to the evidential skyline computation and the top-k query. We conduct extensive experiments to show the efficiency and the effectiveness of our approach. In addition, our extensive experiments reflect the impact of the confidence level on the top-k skyline results.

• Evidential skyline stars: Since the evidential skyline size is often too large to be analyzed, we define the set SKY 2 to refine the evidential skyline and retrieve the best evidential skyline objects (or the stars). In addition, we develop suitable algorithms based on scalable techniques to efficiently compute the evidential SKY 2 . We also perform an extensive experimental evaluation to demonstrate the scalability of the proposed algorithms.

Thesis Structure

The remainder of this thesis is organized as follows:

In Chapter 2, we present the theory of belief functions in a first part. The main objective of this theory is to represent and manage degrees of belief about propositions of a given problem. It is usually regarded as a generalization of the Bayesian approach, but has several interpretations. Then, we briefly describe the evidential databases. In a second part, we present the basic concepts of the skyline operator over certain data as well as uncertain data.

In chapter 3, first we tackle the problem of skyline analysis on evidential databases. We first introduce a skyline model that is appropriate to the evidential data nature. We then develop an efficient algorithm to compute this kind of skyline. Finally, we present a thorough experimental evaluation of our approach.

In chapter 4, we consider the evidential skyline in both centralized and distributed environments. first we define in section 4.2, the notion of marginal points used in the next sections. In section 4.3, as large amounts of distributed data over Internet are communicated and shared, we propose to efficiently compute the global skyline from distributed local sites, using the idea of skyline query over centralized evidential data. The efficiency and effectiveness of our proposal are verified by extensive experimental results. In section 4.4, we address the problem of the skyline objects maintenance of frequently updated evidential databases. In particular, we propose algorithms for maintaining evidential skyline in the case of object insertion or object deletion. Extensive experiments are conducted to demonstrate the efficiency and scalability of the approaches proposed.

In chapter 5, since previous researches showed that the skyline size over uncertain data is too large, we propose to rank the evidential skyline results and retrieve the k skyline objects that are expected to have the highest score with considering the confidence level of the objects. We also study its impact on the top-k result. The efficiency and effectiveness of our proposal are verified by a set of experiments.

In chapter 6, we particularly tackle an important issue, namely the skyline stars (denoted by SKY 2 ) over the evidential data. This kind of skyline aims at retrieving the best evidential skyline objects (or the stars). Efficient algorithms have been developed to compute the SKY 2 . Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approaches that considerably refine the huge skyline.

Finally, the last chapter gives a summary of the results achieved in this thesis. We also provide some research lines for future work. 

Introduction

The necessary background material will be presented in this chapter. We first recall the basic notions about the evidential databases in section 2.2, then a reminder about the skyline operator will be provided and detailed in section 2.3.

Evidential Databases

We first start by presenting the basic concepts about the evidence theory.

Evidence theory

Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] introduced the mathematical theory of evidence which is a subjective evaluation used to characterize the truth of a proposition. The theory of evidence (also called the belief functions theory) is a generalization of the Bayesian theory of subjective probabilities [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Dempster | A generalization of bayesian inference[END_REF].

Let Θ be a finite and exhaustive set whose elements are mutually exclusive, Θ is called a frame of discernment (in practice, Θ stands for a set of possible alternatives or propositions). A basic belief assignment (bba), also called a mass function, is a mapping m : 2 Θ -→ [0, 1] such that

m(∅) = 0 A⊆Θ m(A) = 1 (2.1)
An element A of 2 Θ is called a focal element whenever m(A) > 0. The mass m(A) represents the level of credibility allocated to the subset A. The truth of A is measured thanks to two functions: The belief of A, denoted by bel(A), is defined as the sum of the masses assigned to every subset B of A, i.e., bel(A) = B⊆A m(B)

(2.2)

The plausibility of A, denoted by pl(A), is defined as the sum of the masses assigned to every subset B of Θ that intersects A, i.e.,

pl(A) = B∩A =∅ m(B) (2.3)
One can observe that bel(A) reflects the total weight of evidence in A, while pl(A) reflects the total weight of evidence which is not committed to Θ-A called the complement of A. It is necessary to note that the belief and plausibility functions are dual functions, i.e., bel(A) = 1 -pl( Ā). The identification of a target can then be expressed by a mass function. Assume that a sensor is available to signal the presence of a fairly quick target. It produces this bba: m(Airliner) = 0.6, m(Airliner ∪ M issile) = 0.2, m(Θ) = 0.2 Note that m(Θ) represents the mass allocated to all propositions in Θ which reflects the partial ignorance if 0 < m(Θ) < 1 else the total ignorance (m(Θ) = 1). One can easily check that: bel

(Airliner) = m(Airliner) = 0.6, bel(M issile) = bel(Helicopter) = 0, bel(Airliner ∪ M issile) = m(Airliner ∪ M issile) + m(Airliner) = 0.8, bel(Airliner ∪ Helicopter) = m(Airliner) = 0.6, bel(M issile ∪ Helicopter) = 0. Let us now compute the degree of plausibility of A ∪ H. It is easy to see that pl(A ∪ H) = m(A) + m(H) + m(A ∪ H) + m(Θ) = 0.8.
As shown in this example, plausibility function measures the intensity with which we do not doubt the proposition (Airliner ∪ Helicopter), that is to say intensity with which (Airliner ∪ Helicopter) is plausible.

In probability theory, one can easily compute the probabilities of comparisons of two independent probability distributions. For example, we can work out the probability that one of the associated random variables is less than or equal to the other. But in standard Dempster-Shafer theory, the definitions of the bel and pl functions do not handle comparisons like this. When we use mass functions to represent uncertain and imprecise information instead of probability distributions, it is necessary to extend the definition of bel and pl functions to handle the comparison of two independent basic probability assignments.

In [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], authors proposed to extend the definition of bel and pl functions to deal with comparison of two independent bbas. This concept is also used in (Y. [START_REF] Zhang | Find multi-objective paths in stochastic networks via chaotic immune pso[END_REF][START_REF] Zhang | A novel algorithm for all pairs shortest path problem based on matrix multiplication and pulse coupled neural network[END_REF]. Let X and Y be two bba which are independent and let m X , m Y : 2 Θ → [0, 1], be their two mass functions, respectively. Then Definition 2.1. (Inequality relations) For A, B ⊆ Θ, we have:

bel(X ≤ Y ) = A⊆Θ (m X (A) B⊆Θ,A≤ ∀ B m Y (B)).
(2.4)

where A ≤ ∀ B means that ∀a ∈ A, ∀b ∈ B, such that a ≤ b. We have also:

bel(X < Y ) = A⊆Θ (m X (A) B⊆Θ,A< ∀ B m Y (B)). (2.5)
where A < ∀ B means that a < b for all a ∈A and b ∈B.

bel(X

= Y ) = |A|=1 m X (A)m Y (A) = a∈Θ m X ({a})m Y ({a}). (2.6)
We have also:

pl(X ≤ Y ) = A⊆Θ (m X (A) B⊆Θ,A≤ ∃ B m Y (B)). (2.7)
where A ≤ ∃ B means for every a ∈ A, there exists b ∈ B such that a ≤ b. Also, we have:

pl(X < Y ) = A⊆Θ (m X (A) B⊆Θ,A< ∃ B m Y (B)). (2.8)
where A < ∃ B means for every a ∈ A, there exists b ∈ B such that a < b.

Example 2.2. Assume that t 1 and t 2 are two target observations defined on the attribute Distance. Assume also that we have two bbas 

.d) = 1, bel(t 1 .d < t 2 .d)=0.3, pl(t 1 .d ≤ t 2 .d) = 1 and pl(t 1 .d < t 2 .d) = 1.
As we can observe, the plausible function returns an optimistic degree. That is because intersections between bba are considered.

With appropriate definitions, we can easily prove that the definitions of bel(X∇Y) and pl(X∇Y), where ∇ ∈ (=, =, <, ≤), satisfy the following properties:

• 0 ≤ bel(X ∇ Y) ≤ pl(X ∇ Y) ≤ 1; • bel(X ∇ Y) + bel(¬(X ∇ Y)) ≤ 1; • pl(X ∇ Y) + pl( ¬ (X ∇ Y)) ≥ 1; • If all the focal elements of m X , m Y are singletons, then bel(X ∇ Y) is Bayesian i.e., bel(X ∇ Y) = pl(X ∇ Y) = Pr(X ∇ Y).
General Properties

• bel(∅) = 0, bel(Ω) = 1. • bel(A) + bel(A) ≤ 1. • bel(A 1 ∪A 2 ∪...∪A n ) ≥ i bel(A i )-i<j bel(A i ∩A j )+...+(-1) n+1 bel(A 1 ∩...∩A n ).
It is worth noticing that the evidence theory is very powerful in terms of resolving many and different problems dealing with uncertain data. Let us enumerate some works using evidential theory. Hong et al. [START_REF] Hong | An evidential approach to query interface matching on the deep web[END_REF]) have used the evidential approach to query interface matching on the deep web. Add to that, evidential theory has also been used to extract frequent items so-called Data Mining [START_REF] Samet | Integration of extra-information for belief function theory conflict management problem through generic association rules[END_REF].

Let now m 1 : 2 Θ -→ [0, 1] be a mass function induced on the frame of discernment Θ by a source S 1 (piece of evidence) and m 2 : 2 Θ -→ [0, 1] a mass function induced on the frame of discernment Θ by another source S 2 . Assuming that all sources are reliable and consistent, Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] introduced the rule of combination to merge mass functions provided by distinct and independent sources. On the other hand, Smets [START_REF] Smets | Belief functions: The disjunctive rule of combination and the generalized bayesian theorem[END_REF] proposed also the conjunctive and disjunctive rules of combination for two mass functions m 1 and m 2 defined on the same frame of discernment Θ. Definition 2.2. (Conjunctive rule of combination) Considering two mass functions m 1 and m 2 defined on Θ. For all A ∈ 2 Θ , this rule writes:

m ∩ (A) = B∩C=A m 1 (B) * m 2 (C) (2.9)
m ∩ (A) represents the combined mass function attributed to the proposition A.

Definition 2.3. (The disjunctive rule of combination) Considering two mass functions m 1 and m 2 defined on Θ. For all A ∈ 2 Θ , this rule writes:

m ∪ (A) = B∪C=A m 1 (B) * m 2 (C) (2.10)
In some cases, we need to combine two bba m 1 and m 2 that are defined on different frames of discernment Θ 1 and Θ 2 , respectively. However, rules of combination need that bbas have the same frame of discernment. The vacuous extension of belief functions [START_REF] Shafer | A mathematical theory of evidence[END_REF]) is a solution for that problem.

Definition 2.4. (Vacuous extension) The vacuous extension of belief functions defines bbas on a compatible frame of discernment called the join frame of discernment which is an extension of Θ 1 and Θ 2 denoted by Θ where Θ = Θ 1 × Θ 2 .

The evidential database model

As said above, several real-world applications deal with imperfect data. Introduced by Lee [START_REF] Lee | Imprecise and uncertain information in databases: An evidential approach[END_REF], evidential databases aim at modelling imperfect data (i.e., imprecise, missing and uncertain data). The evidential databases provide a solid framework to model and manage such type of information. For instance, many works (Lee, 1992a;[START_REF] Bach Tobji | Frequent itemset mining from databases including one evidential attribute[END_REF][START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF] have addressed the issue of modeling uncertainty in database systems.

An evidential database can be presented by its compact form as well as a set of possible worlds. We show in the following the two different ways to present an evidential database (EDB).

The compact form of an EDB

The evidential databases can be seen as a set of evidential objects where its attributes values are modeled in the setting of the evidence theory.

Definition 2.5. An evidential database is a collection of objects O defined on a set of attributes A = {a 1 , a 2 , . . . , a d } where each attribute a k has a domain Θ a k . We assume here that Θ a k is endowed with an ordered relation. The relation between the i th object and the k th attribute is expressed by a bba. The bba may contain one or more focal elements A. Assume that observations are pervaded with uncertainty modelled thanks to evidence theory, as shown in Table 2.1. Each target observation, defined on each attribute, may have one or more focal elements. For example, the distance of target t 1 , called a bba includes two focal elements {150, 160, 180} and {190, 200} where their mass functions are respectively 0.1 and 0.9. That is, we believe that the attribute value is either 150, 160 or 180 with a mass function 0.1 or one of the values 190 or 200 with a mass 0.9. However, we do not know how credible each single element is.

One can write:

o i .a k = { A, m ik (A) | A ⊆ Θ a k , m ik (A) > 0} where m ik : 2 Θa k -→ [0, 1], with m ik (∅) = 0 and A⊆Θa k m ik (A) = 1.
Note that the evidential databases can store various kind of data imperfections: Probabilistic data when focal elements are singletons (t 1 .Altitude), Possibilistic data when focal elements are nested (t 2 .Altitude), Partial ignorance: 0 < m(Θ a k ) < 1, (t 2 .Distance), Perfect data when focal element is singleton and its mass is equal to one (t 3 .Distance), or Total ignorance when m(Θ a k ) = 1 (t 3 .Altitude).

Generally, evidential databases are obtained by collecting different experts opinions/observations [START_REF] Ha-Duong | Hierarchical fusion of expert opinions in the transferable belief model, application to climate sensitivity[END_REF]. Another way to obtain this type of databases, is the matching of different databases having the same attributes and objects, including different and missing values. But, in our case, evidential databases result from collecting different observation results of radars.

Possible worlds form of an EDB

In this section, we present the possible worlds of an evidential database. This form is very important when modelling uncertain database operations. Indeed, a database operation performed on the compact form is said to be a strong representation system if it produces the same result (when exploded) when applied on the set of possible worlds of that database. Hence, one can see the importance of the possible worlds form to valid uncertain database operators.

As described in [START_REF] Bousnina | A new formalism for evidential databases[END_REF], the non-compact form of an evidential database O of n objects is a set of imprecise worlds {IW 1 , IW 2 , .., IW t } where each IW i contains n objects such that each object is defined by only one focal element per attribute. Such representation is obtained using the disjunctive rule of combination. IW 1 (0.12) IW 2 (0.18) IW 3 (0.28)

Objects A B Z {a 1 }, 0.3 , {a 1 , a 2 }, 0.7 b 1 T a 5 {b 1 , b 0 }, 0.4 , b 1 , 0.6
IW 4 (0.42) (Z, a 1 , b 1 ) 0.3 (Z, a 1 , b 1 ) 0.3 (Z, {a 1 , a 2 }, b 1 ) 0.7 (Z, {a 1 , a 2 }, b 1 ) 0.7 (T, a 5 , {b 1 , b 0 }) 0.4 (T, a 5 , b 1 ) 0.6 (T, a 5 , {b 1 , b 0 }) 0.4 (T, a 5 , b 1 ) 0.6
Each imprecise world IW i can be expanded to different possible worlds P W as detailed in Table 2.4. IW 1 (0.12)

P W 1 P W 2 (Z, a 1 , b 1 ) (Z, a 1 , b 1 ) (T, a 5 , b 1 ) (T, a 5 , b 0 ) IW 2 (0.18) P W 1 (Z, a 1 , b 1 ) (T, a 5 , b 1 ) IW 4 (0.42) P W 1 P W 3 (Z, a 1 , b 1 ) (Z, a 2 , b 1 ) (T, a 5 , b 1 ) (T, a 5 , b 1 ) IW 3 (0.28) P W 1 P W 2 P W 3 P W 4 (Z, a 1 , b 1 ) (Z, a 1 , b 1 ) (Z, a 2 , b 1 ) (Z, a 2 , b 1 ) (T, a 5 , b 1 ) (T, a 5 , b 0 ) (T, a 5 , b 1 ) (T, a 5 , b 0 )
The basic belief assignment of the different possible worlds are computed in the following way:

m(IW 1 ) = m({P W 1 , P W 2 }) = 0.12 m(IW 2 ) = m({P W 1 }) = 0.18 m(IW 3 ) = m({P W 1 , P W 2 , P W 3 , P W 4 }) = 0.28 m(IW 4 ) = m({P W 1 , P W 3 }) = 0.42
The possible worlds form of an evidential database is essential to prove if a model constitutes a strong representation system [START_REF] Imieliński | Incomplete information in relational databases[END_REF]. However, this form results in a high computational cost. That is why, in the literature, researchers generally use the EDB compact form for querying [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF], analyzing [START_REF] Elmi | Computing skyline from evidential data[END_REF] and mining [START_REF] Bach Tobji | Frequent itemset mining from databases including one evidential attribute[END_REF][START_REF] Samet | Integration of extra-information for belief function theory conflict management problem through generic association rules[END_REF] evidential data.

Skyline Operator

In this section, we present some previous important works proposed to deal with the skyline operator both on certain and imperfect data.

Skyline operator on certain data

Basic Concepts

The idea of Skyline queries has attracted the interest of different communities. It is worth noticing that preferences can be relevant to many types of attributes in order to return [START_REF] Aggarwal | A survey of uncertain data algorithms and applications[END_REF], or qualitatively [START_REF] Kiessling | Foundations of preferences in database systems[END_REF][START_REF] Chomicki | Database querying under changing preferences[END_REF] which is the more general approach. Many definitions have been proposed in the literature, but all of them are based on the use of Pareto order. [START_REF] Borzsonyi | The skyline operator[END_REF] have introduced skyline preferences that aim at filtering out a set of interesting objects from a large set of data. An object is interesting if it is not dominated by any other object in all dimensions. Let say that an object o 1 dominates (in the Pareto sense) another object o 2 if o 1 is at least as good as o 2 in all dimensions and better than o 2 in at least one dimension.

Consider a set O of n objects defined on a set of d attributes A = {a 1 , a 2 , . . . , a d } defined on numerical domains. For simplicity and without loss of generality, we assume throughout all the chapter that the smaller the value the better. Recall that o i .a k represents the value of the i th object defined on attribute a k . 

k 0 (1 ≤ k 0 ≤ d), i.e., ∀a k ∈ A : o i .a k ≤ o j .a k ∧ ∃a k 0 ∈ A : o i .a k 0 < o j .a k 0 .
Definition 2.7. (Skyline) The skyline of O, denoted by Sky O , includes objects of O that are not dominated by any other object, i.e.,

Sky O = {o i ∈ O | o j ∈ O, o j o i }.
Example 2.5. Figure 2.1 shows the skyline of the database O (depicted in Table 2.5) of flying objects representing the most dangerous targets (i.e., objects with small distance and altitude). Note that objects in the skyline are those that are not dominated by any other object in O w.r.t. to the skyline attributes, i.e., distance and altitude. 

SQL Extensions

In order to specify skyline queries, authors in [START_REF] Borzsonyi | The skyline operator[END_REF] 

Skyline Algorithms

In the literature, many algorithms were proposed to compute the skyline from a database. Hereafter, we present some of them:

Divide and Conquer Algorithm

The divide and conquer algorithm can proceed as follows:

• The first step is to get a median value. Then, it divides objects into two partitions P1 and P2.

• The second step is to compute the Skylines S1 and S2 of P1 and P2, respectively. This is done by recursively applying the whole algorithm to P1 and P2. The recursive partitioning stops if a partition contains few objects.

• Finally, it consists to merge S1 and S2 to compute the overall Skyline. This means eliminating all the objects of S2 which are dominated by objects of S1, i.e, no objects of S1 can be dominated by objects of S2.

BNL Algorithm

Block-Nested-Loop algorithm (BNL) works especially well if the skyline is small, and in the best case the skyline fits into the memory and it stops in one or two iterations. BNL algorithm runtime complexity in the best case is O(n) where n is the number of tuples in the input, and the runtime in the worst case is O(n 2 ). It shows very good I/O behaviour especially if the window can contain the whole skyline. BNL algorithm (see algorithm 1 and table 2.6) consists of the following steps [START_REF] Borzsonyi | The skyline operator[END_REF]):

• Outer loop: repeat over the input list.

• Inner loop: compare object to all identified candidates.

-If object is dominated exit to the inner loop.

-If object dominates candidate from the window, delete the candidate from the window.

• Objects that are remaining in the inner loop are added to the window.

• If window becomes full write the incomparable objects into temporary file.

• After outer loop stop -The objects that are completed with comparisons are added to the output list.

-The temporary file is used as input list to manage the remaining comparisons.

• Repeat until the temporary file is empty. Three cases can occur for every tuple p at the beginning [START_REF] Borzsonyi | The skyline operator[END_REF]):

• P is dominated by any tuple in the window so p is discarded.

• P dominates any tuple in the window so p is added in the window and all tuples dominated by p are removed from the window.

• P is incomparable with all tuples in the window so p is added to the window if there is space otherwise p is written in the temporary file.

B-trees Algorithm

To compute the skyline, it is also possible to use an ordered index; e.g., a B-tree. One way to use an ordered index for a two-dimensional skyline is to scan through the whole index, get the objects in sorted order and filter out the objects of the skyline. Assuming that each object has d attributes and there is an index for every attribute, the skyline can be computed as follows.

• Scan all the indexes simultaneously to find the first match, i.e., the first object to be seen by all the indexes during the scan.

• The first match is definitely part of the skyline and can be returned immediately, providing a fast initial response

• Scan the rest of the index entries of the first attribute's index. If the object has not been seen before (i.e., the index entries of this object in the other indexes have not been examined prior to the first match), it is definitely not in the skyline and can thus be eliminated. If any of the other indexes contain an index entry to this object prior to the first match, then the object may or may not be in the skyline.

To determine whether it is in the skyline, an existing skyline computation algorithm can be applied.

These algorithms have been ameliorated and improved by several research papers [START_REF] Chomicki | Skyline with presorting[END_REF][START_REF] Chomicki | Database querying under changing preferences[END_REF]Lin, Yuan, Wang, & Lu, 2005a).

Skyline operator over imperfect data

Many research projects have been conducted to deal with the skyline operator over imperfect database. We can refer to [START_REF] Alwan | Processing skyline queries in incomplete distributed databases[END_REF][START_REF] Bosc | Modeling and querying uncertain relational databases: a survey of approaches based on the possible worlds semantics[END_REF][START_REF] Jiang | Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods[END_REF][START_REF] Pei | Probabilistic skylines on uncertain data[END_REF][START_REF] Lian | Monochromatic and bichromatic reverse skyline search over uncertain databases[END_REF][START_REF] Yu | Computing service skyline from uncertain qows[END_REF][START_REF] Yong | Skyline ranking for uncertain databases[END_REF][START_REF] Groz | Skyline queries with noisy comparisons[END_REF][START_REF] Ilaria | Domination in the probabilistic world: Computing skylines for arbitrary correlations and ranking semantics[END_REF].

In this section, we present some imperfect skyline modeled by the probability theory as well as the possibility theory. In addition, we review the stochastic skyline introduced by [START_REF] Lin | Stochastic skyline operator[END_REF].

Probabilistic Skyline

Probabilistic skyline on uncertain data is first tackled by [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF] where skyline objects are retrieved based on skyline probabilities. This idea is also developed and improved in [START_REF] Jiang | Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods[END_REF]. There are other studies which have adopted the probabilistic skyline model. [START_REF] Lian | Probabilistic inverse ranking queries over uncertain data[END_REF]) combine reverse skyline with uncertain semantics and study the probabilistic reverse skyline problem in both monochromatic and bichromatic fashion. [START_REF] Atallah | Computing all skyline probabilities for uncertain data[END_REF] develop sub-quadratic algorithms to compute the skyline probabilities for every object. In (W. [START_REF] Zhang | Probabilistic skyline operator over sliding windows[END_REF], authors tackle the problem of efficiently on-line computing probabilistic skyline over sliding windows. In [START_REF] Yong | Skyline ranking for uncertain databases[END_REF], authors studied the problem of supporting skyline queries for uncertain data with maybe confidence.

To illustrate this kind of skyline, let us consider the motivating example shown in [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF]) that aims at analyzing players using the following multiple technical statistics criteria: the number of assists and the number of rebounds.

Let us assume that for both criteria, both the larger the better, to examine the players and to find the perfect one who can achieve the best performance in all aspects. Unfortunately, such a player does not exist. The skyline analysis here is meaningful since it discloses the trade-off between the merits of multiple aspects. A player U is in the skyline if there does not exist other player V such that V is better than U in one aspect, and is not worst than U in all other aspects. In figure 2.2, we plot a few games of 5 synthesis Figure 2.2: A Set of Players players to illustrate several important issues. In this example, performances in different games may vary differently. In Figure 2.2, Arbor's performances are quite consistent while Eddy's performances are quite diverse. Although Eddy's performance in one game (point b) is better than Arbor's performances in all games in both criteria/ dimensions. Our goal is to detect the players that are not dominated by any other players, i.e., in the skyline set of the players data-set.

By default, we consider objects in an n-dimensional numeric space (Attributes) A = (a 1 , ..., a n ). We assume that, on a given attribute, the smaller the value the better.

Definition 2.8. Let U and V be two uncertain objects, and f and f´be the corresponding probability density functions, respectively. Let U = {u 1 , ..., u l 1 } and V = {v n , ..., v l 2 } be two uncertain objects and their instances. Then, the probability that V dominates U is given by [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF]:

P r[V ≺ U ] = u∈D f (u)( v≺u f (v)dv)du (2.11) P r[V ≺ U ] = 1 l 1 l 2 l 1 i=1 | {v j ∈ V | v j ≺ u i }
(2.12) Definition 2.9. (The Skyline probability of U ) Let U = {u 1 , ..., u l 1 } be an uncertain object and its instances, the probability that U is in the skyline is given by [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF]:

P r(U ) = 1 l l i=1 V =U (1 - | {v ∈ V | v ≺ u i |} | V | (2.13)
As another definition of skyline probability of U , the equation 2.13 can be differently written:

P r(U ) = 1 l u∈U P r(u) (2.14)
Definition 2.10. (The skyline probability of the instance u ∈ U ) Let U = {u 1 , ..., u l 1 } be an uncertain object and its instances, P r(u) is the probability that u is not dominated by any other objects, i.e., u is in the skyline, is given by:

P r(u) = V =U (1 - | {v ∈ V | v ≺ u |} | V | (2.15)
For uncertain data modeled by probabilistic distribution, [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF] tackled the problem of computing probabilistic skylines on large uncertain data sets and proposed two efficient algorithms:

• The bottom-up algorithm: computes the skyline probabilities of some selected instances of uncertain objects, and uses those instances to prune other instances and uncertain objects effectively.

• The top-down algorithm: recursively divide the instances of uncertain objects into subsets, and aggressively prunes subsets and objects.

This idea has been improved in [START_REF] Yong | Skyline ranking for uncertain databases[END_REF] by adding the maybe confidence measure that indicates the existence probability of a given object. [START_REF] Fung | Dominant and k nearest probabilistic skylines[END_REF] proposed an efficient algorithm being able to compare objects that are skyline points using the probabilistic skyline model. Add to that and thanks to the work of [START_REF] Fung | Dominant and k nearest probabilistic skylines[END_REF], we are able now to answer to the following question: Which of the objects are the K nearest neighbors to a given object according to their skyline probabilities? Moreover, [START_REF] Jiang | Probabilistic skylines on uncertain data: model and bounding-pruning-refining methods[END_REF] proposed a novel probabilistic skyline model where an uncertain object may take a probability to be in the skyline, and a p-skyline contains all objects whose skyline probabilities are at least p (0 < p ≤ 1 ). Also, a bounding-pruning-refining algorithms were proposed too. (W. [START_REF] Zhang | Probabilistic skyline operator over sliding windows[END_REF] studied the problem of efficient processing of continuous skyline queries over sliding windows on uncertain data regarding a given probability thresholds.

Possibilistic Skyline

In contrast with probability theory, when using possibility theory, we expect the following features: (i) the possibility theory offers a qualitative model for uncertainty. (ii) the sum of the possibility degrees is not necessary equal to 1.

For uncertain attribute values that are represented by possibility distribution, [START_REF] Bosc | On possibilistic skyline queries[END_REF][START_REF] Benouaret | Selecting skyline web services from uncertain qos[END_REF] proposed to compute the possibility that a given object is not dominated by any other object. In this framework, skyline queries aim at computing the possibility degree that an object from a given relation is possibly not dominated by any other object from that relation. In addition, preferences can be represented in a possibilistic logic way using symbolic weights [START_REF] Hadjali | Database preferences queries: A possibilistic logic approach with symbolic priorities[END_REF]. As defined by [START_REF] Bosc | On possibilistic skyline queries[END_REF], the possibilistic dominance can be stated as follows:

Definition 2.11. Let (A 1 , ..., A n ) be the schema of the relation queried. Let (a 1 , ..., a p ) be the attributes concerned by a preference in the query and res the result of the query. We denote by a k the preference relation defined over the attribute domain of attribute a k . A given object o i is dominated by another object o j , denoted by o i ≺ o j iff: ∀k ∈ {1, ..., p}, o j .a k a k o i .a k and ∃q ∈ {1, ..., p}, o j .a q aq o i .a q Let Π(o) denotes the degree of possibility that an object o from res be non-dominated by any other object o . For each interpretation Π i /o i of o, we compute the possibility that for every object o = o, there exists an interpretation o j of o which does not dominate o i . The final degree Π(o) is the maximum of these degrees, computed over all the interpretations of o. This leads to:

Π(o) = max Π i /o i ∈int(o) Π(Π i /o i ) (2.16)
Where int(o) denotes the set of interpretations of o and

Π(Π i /o i ) = min(Π i , min o ∈resn{o} Π(o i ⊀ o )) (2.17)
To compute the possibility dominance between two given objects o and o , we first should compute the possibility degree that each interpretation of o is dominated/ not dominated by o

Π(o i ≺ o ) = 0, if {Π j /o j ∈ int(o ) | o i ≺ o j = ∅, max Π/o j ∈int(o )|o i ≺o j Π j , otherwise (2.18)
Example 2.6. Let us consider a relation of schema (make, category), the preferences user are as follows: (V W F ord Opel) and (SU V roadster others) and the objects: 

• o 1 = {1/Opel, 0.8/V W }, roadster • o 2 = F ord, {1/SU V, 0.7/V W }, Sedan} • o 3 = {1/V W,

Stochastic Skyline

In the light of utility of applications with uncertain data, the probabilistic skyline model is proposed to retrieve uncertain objects based on skyline probabilities. Nevertheless, skyline probabilities cannot capture the preferences of monotonic utility functions. A novel skyline operator, namely stochastic skyline, provides the minimum set of candidates for the optimal solutions over all possible monotonic multiplicative utility functions [START_REF] Lin | Stochastic skyline operator[END_REF][START_REF] Zhang | Stochastic skylines[END_REF].

Definition 2.12. (Skyline) Given a class F (family of utility (scoring) functions where

F = { d i=1 f i (x i )}, an uncertain object (random variable) U stochastically dominates V regarding F , denoted by U ≺ F V if and only if E[f (U )] ≥ E[f (V )] for each f ∈ F
with f is a given utility function and E is the optimal solution. R d + is used to denote the points in R d with non negative coordinate values. An uncertain object U is the set {u 1 , ..., u m } instances in R d + where for 1 ≤ i ≤ m, u i is in R d + and has the probability p u i (p u i > 0), and m i=2 p u i = 1 Definition 2.13. (Stochastic Dominance) Given two uncertain objects U and V , U stochastically dominates V , denoted by

U ≺ sd V if U.cdf (x) ≥ V.cdf (x), ∀x ∈ R d + and ∃y ∈ R d +such that U.cdf (y) > V.cdf (y)
The probability mass U.cdf (x) of U is the sum of the probabilities of the instances in R = ((0, ..., 0), x) where (0, 0, ..., 0) is the origin in R d .

Definition 2.14. (Stochastic Skyline) Given a set of uncertain objects D, an object U ∈ D is a stochastic skyline object if there is no object V ∈ D such that V ≺ sd U

Comparative Study

In this section, we present the main models already proposed in the literature that modeled the Skyline Operator in different types of data pervaded with imperfection. Table 2.7 contains the frequently used notation and its meaning. The number of instances of U and V , respectively f(x)

The continuous object int(t)

interpretation of the object t

The table 2.8 presents in an easy way, the definitions of the different proposed Skyline models.

Table 2.8: Imperfect Skyline Models.

Distributions Dominance relationship

Degree to be in

S Discrete P r[V ≺ U ] = P r(U ) = case 1 l 1 l 2 l 1 i=1 | {v j ∈ V | v j ≺ u i } 1 l u∈U P r(u) Probabilistic Continuous P (f i ( - → x i ) ≺ f j ( - → x j )) = P S (f (x)) = Distribution Case f i ( - → x i ).f j ( - → x j ). R d f (x) g(y)∈DB 1, - → x i ≺ - → x j 0, - → x i ⊀ - → x j (d - → x i d - → x j ) 1 - R d g(y). 1, y ≺ x 0, otherwise dy dx Possibilistic Distribution Π(t i ≺ t ) = Π(t) =              0, if {Π j /t j ∈ int(t ) | t i ≺ t j = ∅, max Π/t j ∈int(t )|t i ≺t j Π j , otherwise max Π i /t i ∈int(t) Π(Π i /t i )
In addition, it details for each uncertain model, the dominance relationship between the objects and its degrees of being in the skyline. The degree can be a probability, if data are modeled by the probabilistic distribution, or a possibility degree if data are represented by the possibilistic distribution. Table 2.9 presents a comparative study between the different Skyline models proposed in the literature. New concepts mentioned in table 2.9 are presented as follows: • The skyline maintenance: Maintaining the skyline results in the given database when an object is inserted or deleted.

• The Distributed Skyline: Computing the skyline operator over multiple and distributed servers.

To the best of our knowledge, there is no previous works that deal with computing the skyline over Evidential Data.

Conclusion

In this chapter, we first presented the basic concepts of the evidential database. Then, we presented a reminder about the skyline operator in the context of certain and uncertain data. Data can be modeled by different distributions such as the probability theory as well as the possibility theory. Both probabilistic and possibilistic skylines were detailed in this chapter.

As said above, the evidential databases have a powerful mechanism to deal with data uncertainty since it is a generalisation of both probabilistic and possibilistic models. For this reason, we consider that modeling skyline operator over evidential data is really a challenging work.

In the next chapter, we define the evidential skyline model. In addition, we propose new semantics for the skyline operator extended to the evidential data. We also propose efficient algorithms for the evidential skyline computation. 

Introduction

Uncertainty is inherent in several applications such as environment surveillance, market analysis, and sensor networks. To deal with uncertain data, several studies were conducted into both possibilistic databases [START_REF] Bosc | On possibilistic skyline queries[END_REF][START_REF] Bosc | Modeling and querying uncertain relational databases: a survey of approaches based on the possible worlds semantics[END_REF], probabilistic databases [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF][START_REF] Aggarwal | A survey of uncertain data algorithms and applications[END_REF]N. Dalvi & Suciu, 2007; N. N. Dalvi & Suciu, 2007) and recently evidential databases [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF][START_REF] Bousnina | A new formalism for evidential databases[END_REF]. Evidential databases are very interesting since they can handle both possibilistic data, probabilistic data and other types of imperfect data. In addition, authors in [START_REF] Samet | Predictive model based on the evidence theory for assessing critical micelle concentration property[END_REF] developed a belief-function based modelling approach to construct a chemical evidential database. Then, they developed a mining process to discover valid association rules between molecule characteristics and properties. In [START_REF] Smets | Practical uses of belief functions[END_REF], the authors presented examples where the use of the evidence theory provides elegant solutions to real life problems such as the combination of data coming from sensors competent on partially overlapping frames. The author in [START_REF] Ha-Duong | Hierarchical fusion of expert opinions in the transferable belief model, application to climate sensitivity[END_REF]) introduced a hierarchical fusion method based on the Transferable Belief Model to aggregate expert opinions and obtain a set of more representative belief distributions.

On the other hand, the present decade has seen a revival of interest in preference queries which aim at retrieving the objects from a database which are not dominated by any other object. Many previous studies such as [START_REF] Sharif Zadeh | The spatial skyline queries[END_REF][START_REF] Lin | Stabbing the sky: efficient skyline computation over sliding windows[END_REF][START_REF] Huang | Skyline queries against mobile lightweight devices in manets[END_REF][START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF])) showed that skyline queries are very useful in multi-criteria decision making applications. Starting with the pioneering work of [START_REF] Borzsonyi | The skyline operator[END_REF], which provided foundations for a Pareto-order-based preference model for database systems.

Motivating Example

As pointed out above, a large amount of works [START_REF] Borzsonyi | The skyline operator[END_REF][START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF][START_REF] Huang | Skyline queries against mobile lightweight devices in manets[END_REF][START_REF] Lin | Stabbing the sky: efficient skyline computation over sliding windows[END_REF][START_REF] Yuan | Efficient computation of the skyline cube[END_REF] proved that skyline queries provide an adequate tool that can help users to make intelligent decisions in the presence of multidimensional data where different and often conflicting criteria must be considered.

As an example, consider analyzing sensor data: to be aware of the plane environment in the ordinary situation or to get more information about targets in a state of war, it is absolutely necessary to analyze sensor performances to identify the most dangerous target. To analyze sensor observations, we can use some multiple technical measures criteria (e.g., distance from the target, its altitude, its speed, etc..). We suppose targets having the smaller distance and smaller altitude are the most dangerous. Ideally, we want to find the perfect sensor observation that returns, among n targets, which is the most dangerous in all aspects. While such target does not exist, the skyline discloses the trade-off between the different preferences. A target U is in the skyline if there exists no other target V such that V dominates (in Pareto sens) U . 1We are persuaded that skyline analysis is also meaningful on uncertain data as shown in section 1.1. Our challenge is to answer the following question: which target is the most dangerous if the sensor observations are uncertain and noisy? i.e., which objects are in the evidential skyline ?

Contributions

In this chapter, and starting from our conference work [START_REF] Elmi | Computing skyline from evidential data[END_REF], we propose new models to skyline definition and computation over uncertain data where uncertainty is represented thanks to evidence theory. We particularly define two main models, the first model is presented in section 3.2 and has a Boolean semantics. The second model is discussed in section 3.3. The key notion of this model is the concept of knowledge states associated to the real world.

In particular, the following two major contributions are made.

Contribution 1 is about semantics aspect. First, we propose some extensions of Pareto dominance to evidential data. The first skyline semantics respects perfectly the classic skyline definition. A second semantic is based on representing an evidential object U as a set of instances, also called states of knowledge. Each knowledge state is associated with a mass function, which reflects the degree of belief to which it represents the real world, i.e., the object U .

The issue of comparing two evidential objects is discussed by leveraging the knowledge state representation. A belief (resp. plausible) degree that one object dominates another is then defined. Second, an evidential counterpart of the skyline is discussed according to two variants: the belief skyline and the plausible skyline. We show that the latter is more interesting in term of refinement.

Contribution 2 is about algorithmic and computing aspect. We develop efficient algorithms to tackle the problem of evidential skyline computation. In particular, we provide appropriate comparison methods between two evidential objects through reducing the num-ber of dominance checks and hence improving the performance of the proposed algorithms.

The contributions presented in this chapter are under consideration in the International Journal of Information Sciences.

Chapter Organisation

The rest of the chapter is organized as follows. I sections 3.2 and 3.3, we introduce the evidential skyline. Then, we present our algorithms to compute this kind of skyline in section 3.4, while in section 3.5, we report our experimental evaluation. Finally, section 3.6 concludes the chapter.

Evidential Skyline

In this section, and starting from our work [START_REF] Elmi | Computing skyline from evidential data[END_REF], the following issues are discussed:

• We first propose a new semantics of the skyline extended to the evidential databases.

• Then, we introduce two kind of evidential skylines the believable skyline (denoted by the b-skyline) and the plausible skyline (denoted by the p-skyline).

• We develop suitable algorithms based on scalable techniques to efficiently compute the b-skyline and the p-skyline. 

Belief Skyline

(o i .a k ≤ o j .a k ) = A⊆Θa k (m ik (A) B⊆Θa k ,A≤ ∀ B m jk (B)) (3.1) Where A ≤ ∀ B stands for a ≤ b, ∀(a, b) ∈ A × B. bel(o i .a k < o j .a k ) = A⊆Θa k (m ik (A) B⊆Θa k ,A< ∀ B m jk (B)) (3.2) Where A < ∀ B stands for a < b, ∀(a, b) ∈ A × B.
bel(t 1 .d ≤ t 2 .d) = 0, bel(t 1 .a ≤ t 2 .a) = 0.3, bel(t 2 .d < t 1 .d) = 0.
a k 0 (1 ≤ k 0 ≤ d) according to a belief threshold b, i.e., ∀a k ∈ A : bel(o i .a k ≤ o j .a k ) ≥ b and ∃a k ∈ A : bel(o i .a k < o j .a k ) ≥ b.
Example 3.2. Let b=0.2. One can check that in Table 3.1, t 5 0.2-dominates t 4 since bel(t 5 .d < t 4 .d) = 0.2 and bel(t 5 .a ≤ t 4 .a) = 0.6.

In order to define the b-skyline, it is essential to state the following key property of the b-dominance.

Property 3.1. The b-dominance relationship does not satisfy the property of transitivity.

Proof. Consider the objects depicted in Table 3.2. We have, t x b=0.4 t y , t y b=0.4 t z and t x b=0.07 t z . Observe that, t x 0.4-dominates t y and t y 0.4-dominates t z , but t x does not 0.4-dominate t z . Thus, the b-dominance relationship is not transitive. Example 3.4. In Table 3.1, one can observe that t 1 , t 2 and t 3 can not be in the 0.5-skyline since they are 0.5-dominated. However, we have t 4 0.4 t 5 and t 5 0.2 t 4 . Thus, the 0.5skyline comprises t 4 and t 5 since they are not 0.5-dominated by any other object, while the 0.4-Skyline contains only t 4 as t 5 is 0.4-dominated by t 4 . 0.4-skyline ⊆ 0.5-skyline

i .a + k < o j .a - k then o j does not dominate o i , i.e., o j o i since bel(o j .a k ≤ o i .a k ) = 0.
i . Thus, ∀a k ∈ A : bel(o j .a k ≤ o i .a k ) > b . But, b < b , therefore, ∀a k ∈ A, bel(o j .a k ≤ o i .a k ) > b holds also. Hence, o j b o i ,

Plausible Skyline

Given a set of objects O = {o 1 , o 2 , . . . , o n } defined on a set of attributes A = {a 1 , a 2 , . . . , a d }, with o i .a k denotes the bba of object o i w.r.t. attribute a k . According to Definition 2.1, the degree of plausibility that an object o i is better than or equal (or strictly better) to another object o j w.r.t. an attribute a k writes :

pl(o i .a k ≤ o j .a k ) = A⊆Θa k (m ik (A) B⊆Θa k ,A≤ ∃ B m jk (B)) (3.3) Where A ≤ ∃ B means for every a ∈ A, ∃b ∈ B such that a ≤ b. pl(o i .a k < o j .a k ) = A⊆Θa k (m ik (A) B⊆Θa k ,A< ∃ B m jk (B)) (3.4)
Where A < ∃ B means for every a ∈ A, ∃b ∈ B such that a < b.

Example 3.5. In Table 3.1, one can check that pl(t

1 .d ≤ t 2 .d) = 0.3, pl(t 1 .a ≤ t 2 .a) = 0.3, pl(t 2 .d ≤ t 1 .d) = 1, pl(t 2 .a ≤ t 1 .a) = 0.7 and pl(t 5 .d < t 4 .d) = 0.6
Let us now present the notion of the plausible skyline. This later aims at retrieving the most interesting objects in O that are not plausibly dominated by any other object.

Let us first introduce the notion of the plausible dominance, denoted by p-dominance, and then the plausible skyline, denoted by p-skyline.

Definition 3.3. (Plausible dominance) Given two objects o i , o j ∈ O and a plausibility threshold p, o i p-dominates o j , denoted by o i p o j , if and only if o i is plausibly as good or better than o j in all attributes a k in A (1 ≤ k ≤ d) and strictly plausibly better in at least one attribute

a k 0 (1 ≤ k 0 ≤ d) according to a plausible threshold p, i.e., ∀a k ∈ A : pl(o i .a k ≤ o j .a k ) ≥ p and ∃a k 0 ∈ A : pl(o i .a k 0 < o j .a k 0 ) ≥ p.
Example 3.6. Let us again consider the evidential objects depicted in Table 3.1, we have Proof. One can check that t y p=0.5 t z , t z p=0.5 t x but t y does not dominate at all t x since pl(t y .d ≤ t x .d) = 0. Thus, the p-dominance relationship is not transitive. Property 3.5. Given two plausible thresholds p and p , if p < p then the p-skyline is a subset of the p -skyline, i.e., p < p ⇒ p-skyline ⊆ p -skyline.

Proof. Similar way as Property 3.2.1.

Example 3.7. From Table 3.1, one can check that the 0.7-skyline = {t 4 , t 5 } while the 0.6-skyline = {t 5 } thus 0.6-skyline ⊆ 0.7-skyline For comparison purposes, the algorithms and the experiments of this evidential skyline model are presented and discussed in chapter 6.

Evidential Skyline oriented Knowledge States

In this section, first, we propose an extension of Pareto dominance to evidential data by representing an evidential object U as a set of instances, also called states of knowledge. Each knowledge state is associated with a mass function, which reflects the degree of belief to which it represents the real world, i.e., the object U . This section is organized in three parts; we first introduce the basic notions about knowledge states of an evidential object. Second, we describe the dominance relationship between two knowledge states. In the third part, we define the new semantics for the evidential dominance between two evidential objects.

Knowledge states

A knowledge state is an instance of an evidential object. An instance reflects a part of evidence of an evidential object defined on the set of attributes A = {a 1 , a 2 , .., a d } and on the joint frames of discernment denoted by Θ where Θ = d k=1 Θ a k where Θ a k stands for the domain of the attributes a k . Definition 3.5. (Knowledge State) A knowledge state u of an object U is a combination of focal elements defined on the different Θ a k in Θ. The mass of a knowledge state u is computed using the conjunctive rule of combination of the extended bba's evidential values.

m : Θ → [0, 1] m(∅) = 0 u∈U m(u) = 1
The mass of a knowledge state is the cross product of all the focal elements masses.

m(u ∈ U ) = m Θa k ↑Θ (u Θa k ↑Θ ) m(u ∈ U ) = d k=1 m(u Θa k ↑Θ ) Definition 3.6. (Evidential Object) An evidential object U is a set of knowledge states, i.e, U = {u 1 , u 2 , . . . , u n } where n = d k=1 |F a k | and |F a k |
is the number of focal elements on the k th attribute. The frame of discernment of an object is the joint frames of discernment denoted by Θ = k≤d Θ a k .

Example 3.8. To illustrate the previous definitions, we present here the knowledge states that constitute object 1 in the database example provided in Table 3.3.

Table 3.3: Evidential database Object A B C U A 1 , 0.6 B 1 C 2 , 0.2 A 2 , 0.4 {C 1 , C 2 }, 0.8 V A 1 , 0.2 B 1 C 1 , 0.5 {A 2 , A 3 }, 0.8 C 2 , 0.5
The frame of discernment Θ is the cross product of all the attributes' domains Θ a k . Since knowledge states represent all possible combinations, thus the evidential object U is a set of knowledge states {u 1 , u 2 , u 3 , u 4 } where:

u 1 = A 1 B 1 C 2 , u 2 = A 1 B 1 {C 1 , C 2 }, u 3 = A 2 B 1 C 2 and u 4 = A 2 B 1 {C 1 , C 2 }.
In a first step, we extend the bba of each evidential value composing the object U . For example, the extended knowledge states that correspond to the attribute A in the line 1 are:

m Θ A ↑Θ (A 1 Θ B Θ C ) = 0.6 and m Θ A ↑Θ (A 2 Θ B Θ C ) = 0.4
Once we have the extended bba of all evidential values, we combine them via the conjunctive rule, we obtain:

m 1 (A 1 B 1 C 2 ) = m 1 (A 1 Θ B Θ C ) × m 1 (Θ A B 1 Θ C ) × m 1 (Θ A Θ B C 2 ) = 0.6 × 1 × 0.2 = 0.12, m 1 (A 1 B 1 {C 1 , C 2 }) = 0.6 × 1 × 0.8 = 0.48, m 1 (A 2 B 1 C 2 ) = 0.4 × 1 × 0.2 = 0.08 and m 1 (A 2 B 1 {C 1 , C 2 }) = 0.4 × 1 × 0.8 = 0.32.
As a result, the object U corresponds to the following knowledge states:

U = {u 1 : {A 1 , B 1 , C 2 }, 0.12 , u 2 : {A 1 , B 1 , {C 1 , C 2 }}, 0.48 , u 3 : {A 2 , B 1 , C 2 }, 0.08 , u 4 : {A 2 , B 1 , {C 1 , C 2 }}, 0.32 }

Belief skyline oriented knowledge states

In this section, we define the belief dominance relationship between knowledge states. We then extend this dominance to evidential objects, which plays a key role to define the belief skyline.

Belief dominance between knowledge states

Given two evidential objects represented by their knowledge states U = {u 1 , u 2 , . . . , u n } and V = {v 1 , v 2 , . . . , v m } defined on d attributes which the joint frame of discernment is Θ = k≤d Θ a k . The belief dominance is our belief that a state of knowledge u i dominates v j . We say that u i believably dominates (or not) v i . The belief dominance is defined as follows:

Definition 3.7. (Belief dominance) Let u i ∈ U , and v j ∈ V be two knowledge states whose mass functions are m u i , m v j : 2 Θ → [0, 1] respectively. Let u i .a k and v j .a k denote the part of knowledge states u i and v j respectively, defined on the attribute a k . The knowledge state u i believably dominates v j denoted by u i bl v j if and only if u i is believably as good or better than v j in all attributes a k in A (1 ≤ k ≤ d) and believably strictly better in at least one attribute

a k 0 (1 ≤ k 0 ≤ d), i.e., ∀a k ∈ A : u i .a k ≤ ∀ v j .a k and ∃a k 0 ∈ A : u i .a k 0 < ∀ v j .a k 0 Table 3.4: Evidential Objects Target Distance Altitude U {90, 100}, 0.7 , {1, 2, 3}, 0.9 , {65}, 0.3 {2}, 0.1 V {100}, 1 {1, 2}, 0.8 , {3, 4}, 0.2
Example 3.9. Assume we have the evidential objects of Table 3.4. Let's now derive the knowledge states of U and V : u 1 = {90, 100}, {1, 2, 3}, 0.7 × 0.9 = 0.63 , u 2 = {90, 100}, {2}, 0.7 × 0.1 = 0.07

u 3 = {65}, {1, 2, 3}, 0.3 × 0.9 = 0.27 , u 4 = {65}, {2}, 0.3 × 0.1 = 0.03 v 1 = {100}, {1, 2}, 0.8 , v 2 = {100}, {3, 4}, 0.2
Applying definition 3.7, one can write:

u 1 bl v 1 since {1, 2, 3} < ∀ {1, 2}. Also, u 1 bl v 2 because {90, 100} ≤ ∀ {100} and {1, 2, 3} ≤ ∀ {3, 4}, but {90, 100} < ∀ {100} and {1, 2, 3} < ∀ {3, 4}. u 2 bl v 2 since {90, 100} ≤ ∀ {100} and {2} < ∀ {3, 4} u 3 bl v 2 since {65} < ∀ {100} and {1, 2, 3} ≤ ∀ {3, 4} u 4 bl v 2 since {65} < ∀ {100} and {2} ≤ ∀ {3, 4}.

Belief dominance between evidential objects

The belief dominance between two evidential objects is based on the belief dominance between their instances.

Definition 3.8. Given two evidential objects U and V defined on a set of attributes A. {u 1 , u 2 , . . . , u n } and {v 1 , v 2 , . . . , v m } represent the knowledge states of the objects U and V , respectively, defined on d attributes whose discernment frame is Θ = 1≤k≤d Θ a k . Let u i ∈ U , and v j ∈ V be two knowledge states whose mass functions are

m u i , m v j : 2 Θ → [0, 1],
respectively. The degree of belief that U believably dominates V is defined as follows:

bel(U V ) = n i=1 m(u i ) m j:u i bl v j m(v j ) (3.5)
where u i bl v j means that u i believably dominates v j Example 3.10. One can see that bel(U V ) = 0.07 × 0.2 + 0.27 × 0.2 + 0.03 × 0.2 = 0.074. One can also easily check that: bel(V U ) = 0.8 × (0 + 0 + 0 + 0) + 0.2 × (0 + 0 + 0 + 0) = 0. This means that the degree of belief that U dominates V is equal to 0.2 (while V does not dominate U at all).

Modelling the dominance operator on the basis of the interpretations (instances) of the compared evidential objects seems of a great interest. Indeed, an efficient way to implement a database operator (here the dominance operator), is to manipulate the compact form of the database (such in example 2.1). Generating the whole candidate instances to compare two evidential objects would produce an important requirement in terms of CPU computation and memory consumption. In this context, we introduce Theorem 3.1, to provide an alternative representation of the belief dominance operator, based on the compact form of the evidential objects. We'll show that the introduced formula is equivalent to definition 3.8.

Theorem 3.1. bel(U V ) = d k=1 bel(U.a k ≤ V.a k ) - d k=1 bel(U.a k ≤ V.a k and U.a k < V.a k ) (3.6) Proof. bel(U V ) = n i=1 m(u i ) m j:u i bl v j m(v j ) = n i=1 m(u i ) m j:(∀k, u i .a k ≤ ∀ v j .a k and ∃k,u i .a k <v j .a k ) m(v j ) = n i=1 m(u i ) m j:(∀k, u i .a k ≤ ∀ v j .a k and not(∀k,u i .a k <v j .a k )) m(v j ) = n i=1 m(u i )   j:∀k, u i .a k ≤ ∀ v j .a k m(v j ) - j:(∀k, u i .a k ≤ ∀ v j .a k and u i .a k <v j .a k ) m(v j )   = n i=1 m(u i ) j:∀k, u i .a k ≤ ∀ v j .a k m(v j ) - n i=1 m(u i ) j:(∀k, u i .a k ≤ ∀ v j .a k and u i .a k <v j .a k ) m(v j ) = n i=1 d k=1 m ik (u Θ k ↑Θ ) j:u i ≤ bl v j d k=1 m jk (v Θ k ↑Θ )- n i=1 d k=1 m ik (u Θ k ↑Θ ) m j=1 d ∀k, u i .a k ≤ ∀ v j .a k and u i .a k <v j .a k m jk (v Θ k ↑Θ ) = d k=1   n i=1 m ik (u Θ k ↑Θ ) j:u i ≤ bl v j m jk (v Θ k ↑Θ )   - d k=1   n i=1 m ik (u Θ k ↑Θ ) ∀k, u i .a k ≤ ∀ v j .a k and u i .a k < ∃ v j .a k m jk (v Θ k ↑Θ )   = d k=1 bel(U.a k ≤ V.a k ) - d k=1 bel(U.a k ≤ V.a k and U.a k < V.a k ) (3.7) Table 3.5: Targets Observations Target Distance Altitude U {5, 20}, 0.1 , {20, 30}, 0.1 , {30}, 0.9 {70}, 0.9 V {30}, 0.1 {70}, 0.1 ,
{5}, 0.9 {30}, 0.9

Illustration 3.1. Consider the targets observations depicted in Table 3.5. We propose to compute the belief degree that U dominates V (Theorem 3.1).

2 k=1 bel(U.a k ≤ V.a k ) -2 k=1 bel(U.a k ≤ V.a k and U.a k < V.a k ) = ((0.1 × 0.1 + 0.9 × 0.1) × (0.1 × (0.1 + 0.9) + 0.9 × 0.1)) - ((0.9 × 0.1) × (0.1 × 0.9 + 0.1 × 0.9)) =0.0028
Based on the definition 3.8, to compute the degree bel(U V ), it is necessary to derive the knowledge states of U and V . 

U = {u 1 = {{5, 20}, {20, 30}, 0.01}, u 2 = {{5, 20}, {70}, 0.09}, u 3 = {{30}, {20, 30}, 0.09}, u 4 = {{30}, {70}, 0.81}} V = {v 1 = {{30}, {70}, 0.01}, v 2 = {{30}, {30}, 0.09}, v 3 = {{5}, {70}, 0.09}, v 4 = {{5}, {30}, 0.81}} bel(U V ) = 0.01 × (0.01 + 0.09) + 0.09 × 0.01 + 0.09 × 0.01 =0.0028 Definition 3.9. (b-dominance) Given two objects U, V ∈ O and a belief threshold b, U believably b-dominates V , denoted by U bl b V if and only if bel(U V ) ≥ b. Example 3.11. In Table 3.4, U bl 0.1 V since bel(U V ) = 0.2 ≥ 0.1, however, V does not believably 0.1-dominates U denoted by V bl 0.1 U Belief Skyline

Plausible skyline oriented knowledge states

In this section, we define the plausible dominance operator between knowledge states. We then extend it to evidential objects. We define then the notion of the plausible skyline.

Plausible dominance between knowledge states

Given two evidential objects U = {u 1 , u 2 , . . . , u n } and V = ({v 1 , v 2 , . . . , v m } defined on d attributes which the joint frame of discernment is Θ = k≤d Θ a k . To check if a state of knowledge u i plausibly dominates v j or not, we proceed as follows.

Definition 3.11. (Plausible dominance) Let u i ∈ U , and v j ∈ V be two knowledge states whose mass functions are m u i , m v j : 2 Θ → [0, 1], respectively. Let u i .a k and v j .a k denote the part of knowledge states u i and v j , respectively, defined on the attribute a k . The knowledge state u i plausibly dominates v j denoted by u i pl v j if and only if u i is plausibly as good or better than v j in all attributes a k in A (1 ≤ k ≤ d) and plausibly strictly better in at least one attribute

a k 0 (1 ≤ k 0 ≤ d), i.e., ∀a k ∈ A : u i .a k ≤ ∃ v j .a k and ∃a k 0 ∈ A : u i .a k 0 < ∃ v j .a k 0
Example 3.13. Let us consider the Table 3.4 again. The knowledge states of the objects U and V are already derived in example 3.9. Applying definition 3.11, we can say that:

u 1 pl v 1 since {90, 100} ≤ ∃ {100} and {1, 2, 3} < ∃ {1, 2} u 3 pl v 1 since {65} < ∃ {100} and {1, 2, 3} ≤ ∃ {1, 2} u 4 pl v 1 since {65} < ∃ {100} and {2} ≤ ∃ {1, 2}
Plausible dominance between evidential objects Definition 3.12. Given two evidential objects U and V defined on a set of attributes A. {u 1 , u 2 , . . . , u n } and {v 1 , v 2 , . . . , v m } represent the knowledge states of the objects U and V , respectively, defined on d attributes whose discernment frame is Θ = 1≤k≤d Θ a k . Let u i ∈ U , and v j ∈ V be two knowledge states whose mass functions are

m u i , m v j : 2 Θ → [0, 1],
respectively. The degree of plausibility that U plausibly dominates V is defined as follows:

pl(U V ) = n i=1 m(u i ) m j:u i pl v j m(v j ) (3.8)
where u i pl v j means that u i plausibly dominates v j Theorem 3.2.

pl(U V ) = d k=1 pl(U.a k ≤ V.a k ) - d k=1 pl(U.a k ≤ V.a k and U.a k < V.a k ) (3.9) Proof. pl(U V ) = n i=1 m(u i ) m j:u i pl v j m(v j ) = n i=1 m(u i ) m j:(∃k, u i .a k ≤ ∃ v j .a k and ∃k,u i .a k <v j .a k ) m(v j ) = n i=1 m(u i ) m j:(∃k, u i .a k ≤ ∃ v j .a k and not(∀k,u i .a k <v j .a k )) m(v j ) = n i=1 m(u i )   (j:∃k, u i .a k ≤ ∃ v j .a k ) m(v j ) - j:(∃k, u i .a k ≤ ∃ v j .a k and ∀k, u i .a k <v j .a k ) m(v j )   = n i=1 m(u i ) (j:∃k, u i .a k ≤ ∃ v j .a k ) m(v j ) - n i=1 m(u i ) (j:∀k, u i .a k <v j .a k ) m(v j ) = n i=1 d k=1 m ik (u Θ k ↑Θ ) (j:∃k, u Θ k ↑Θ .a k ≤ ∃ v Θ k ↑Θ .a k ) d k=1 m jk (v Θ k ↑Θ )- n i=1 d k=1 m ik (u Θ k ↑Θ ) m j=1 d ∀k, u Θ k ↑Θ .a k < ∀ v Θ k ↑Θ .a k m jk (v Θ k ↑Θ ) = d k=1 pl(U.a k ≤ V.a k ) - d k=1 pl(U.a k ≤ V.a k and U.a k < V.a k ) (3.10)
Example 3.14. Le us consider the evidential database example shown in Table 3.5. We propose to compute the plausibility that U dominates V according to Theorem 3.2.

pl(U V ) = 2 k pl(U.a k ≤ V.a k ) -2 k pl(U.a k ≤ V.a k and U.a k < V.a k ) = 0.0361 - 0.0162 = 0.0199
Using the definition 3.12, that consists in comparing the instances of U and V , we obtain the same result:

U = {u 1 = {{5, 20}, {20, 30}, 0.01}, u 2 = {{5, 20}, {70}, 0.09}, u 3 = {{30}, {20, 30}, 0.09}, u 4 = {{30}, {70}, 0.81}} V = {v 1 = {{30}, {70}, 0.01}, v 2 = {{30}, {30}, 0.09}, v 3 = {{5}, {70}, 0.09}, v 4 = {{5}, {30}, 0.81}} pl(U V ) = 0.
01 × (0.01 + 0.09 + 0.09 + 0.81) + 0.09 × (0.01) + 0.09 × (0.01 + 0.09) = 0.0199 Definition 3.13. (p-dominance) Given two objects U, V ∈ O and a plausible threshold p, U plausibly dominates V , denoted by U pl p V according to the threshold p if and only if pl(U V ) ≥ p.

Example 3.15. As we can see in example 3.5, U pl 0.9 V since pl(U V ) = 0.0199, however, V plausibly 0.9-dominates U since pl(V U ) = 0.9639 > 0.9

Plausible skyline Definition 3.14. (p-Skyline) The plausible skyline is the set of evidential objects that are not plausibly dominated by any other objects in O, we define the notion of p-skyline as follows:

p-skyline= {U ∈ O | ∃V ∈ O, V pl p U }.
Proposition 3.2. Given two plausible thresholds p and p , if p < p then the p-skyline is a subset of the p -skyline, i.e., p < p ⇒ p-skyline ⊆ p -skyline.

Proof. Assume that there exists an object U such that U ∈ p-skyline and U / ∈ p -skyline. Since U / ∈ p -skyline, there must exist another object, say V , that p -dominates U . Thus, pl(V U ) > p . But, p < p . Therefore, pl(V U ) > p. Hence, V pl p U , which leads to a contradiction as U ∈ p-skyline.

Analysis of the evidential dominance

In this part, we introduce several fundamental properties of dominance relationship between imperfect objects modeled by the evidence theory. These properties are used later to efficiently perform the main operations on evidential skyline computation, essentially, to minimize the dominance checks. 

∈ A such that V.a + k l < U.a - k l then bel(U V ) = 0 since bel(U.a k l ≤ V.a k l ) = 0. Property 3.9. if ∃a k l ∈ A such that V.a + k l < U.a - k l then pl(U V ) = 0 since pl(U.a k l ≤ V.a k l ) = 0.
Property 3.10. Let U.a k and V.a k be two bba of the evidential objects U and V , respectively, defined on attribute a k . Let b be a threshold.

If ∃a k ∈ A such that bel(U.a k ≤ V.a k ) < b then U does not b-dominate V . Proof. We have bel(U.a k ≤ V.a k ) = x k ∈ [0, 1]. Suppose ∃k 0 ∈ {1, d}/x k 0 < b and ∀ attribute a k ∈ A \ {a k 0 }, x k = 1. Then bel(U V ) = d k=1 x k = x 1 × x 2 × • • • × x k 0 × • • • × x d = x k 0 × 1 = x k 0 < b

Evidential Skyline Computation

In this section, we develop efficient algorithms to tackle the problem of evidential skyline computation. In particular, we provide appropriate comparison methods between two evidential objects through reducing the number of dominance checks and hence improving the performance of the proposed algorithms.

Belief skyline computation

A straightforward algorithm to compute the belief skyline (denoted by BBS) is to compare each object U against the other objects. If U is not b-dominated, then it belongs to the b-skyline. However, this approach results in a high computational cost (see Section 3.5) as it needs to compare each object with every other object in O.

Also, while the b-dominance relationship is not transitive (see Property 3.6), an object cannot be eliminated even if it is b-dominated since it will be probably useful to eliminate other objects. For this reason, we propose the algorithm 2 that follows the principle of the two scans algorithm [START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF].

Our proposed algorithm, named BS, computes the belief skyline through two phases.

In the first phase (lines 2-13), a set of candidate objects b-skyline is selected by comparing each object U in O with those selected in b-skyline. If an object V in b-skyline is bdominated by U , then V is removed from the set of candidate objects as it is not part of the believable skyline. At the end of the comparison of U with objects of b-skyline, if U is not b-dominated by any object then, it is added to b-skyline as a candidate object. After this first phase, the b-skyline comprises a set of objects that may be part of the b-skyline.

To avoid the situation illustrated by the example in Table 3.7, a second phase is needed (lines 14-17). To determine if an object U in the set b-skyline is indeed a skyline point, it is sufficient to compare U with those in O \ {b-skyline ∪undom(U ) ∪ {U }} that occur earlier than U since the other ones have been already compared against U , where undom(U ) is the set of objects that occur before U and that do not b-dominate V . This set is computed in the first phase in order to reduce the dominance checks in the second phase.

Plausible skyline computation

To compute the plausible skyline, we refer to the PS algorithm presented in algorithm 4, in which we follow the same steps as BS algorithm using an efficient method to compute the p-dominance between objects in O. The algorithm denoted PS has a quadratic time complexity, i.e, T (n) = O(n 2 ).

In fact, in algorithm 4, the p-dominance method denoted by pl p can recall the principle of the b-dominance represented in algorithm 3.

Algorithm 5: p-dominates(U, V, p)

Input: Objects U ,V ; plausible threshold p; To reduce the complexity of the knowledge states dominance computation, we used Theorem 3.2. Algorithm 5 computes the p-dominance, exactly in the similar way of algorithm 3. The only difference is in line 7 where we compute the plausibility of the attributes' comparison, instead of the belief. The pruning techniques are exactly the same.

1 foreach a k in A do 2 if U.a - k > V.a + k then 3 return false; 4 pDom ← 0, pl ← 1, eqpl ← 1; 5 foreach a k in A do 6 if U.a + k ≥ V.a - k then 7 pl ← pl × pl(U.a k ≤ V.a k );

Experimental Evaluation

In this section, we have performed an extensive experimental evaluation of the proposed framework. We report empirical study to examine the effectiveness and the efficiency of the evidential skyline analysis on uncertain data modeled by the evidence theory. More specifically, we focus on two issues: (i) the size of the evidential skyline; we show how the p-skyline is more significant than the b-skyline and (ii) the scalability of our proposed techniques for computing the evidential skyline. We implemented two efficient functions, i.e., b-dominates(U,V,b) and p-dominates(U,V,p), to show how perform the b-skyline and the p-skyline algorithms. For comparison purpose, we implemented the baseline algorithms for computing the bskyline and the p-skyline referred to as BBS (basic b-skyline) and BPS (basic p-skyline), respectively. BBS and BPS do not use the two phases algorithm, and compare each object U in O against all the other objects in O. In addition, BBS and BPS algorithms do not use the methods b-dominates() and p-dominates() and iterate all propositions in a focal element to compute the dominance degrees between objects.

Experimental Setup

The generation of evidential databases is controlled by the parameters in Table 3.8. It lists their notations, range of examined values, and default values. In each experimental setup, we investigate the effect of one parameter, while we set the remaining to their default values. For the data generation, we have considered that an evidential object is an ArrayList of bba defined on d dimensions. Each bba is represented by an ArrayList of focal elements f whose number is a random value in [1..Max Nbr of focal elmts]. A focal element is a set of random values to which we attribute a mass function.

The data generator and the algorithms, i.e., BBS, BPS, BS and PS were implemented in Java, and all experiments were conducted on a 2.3 GHz Intel Core i7 processor, with 6GB of RAM. We also varied the theta cardinality for each attribute, i.e., number of possible propositions for each attribute. In contrast to n, b, p, f and d, the size of the evidential skyline is not affected by the parameter t, as shown in Figure 3.4b. We can clearly remark that using the p-skyline is more significant than the b-skyline since for all figures, with varying all the parameters, the p-skyline size is significantly smaller than the b-skyline size which can helps more and more the decision maker. In the following, we explain how can the p-skyline be more significant. Suppose we have four evidential objects in O such that O = {o 1 , o 2 , o 3 , o 4 }. We study the belief degrees and the plausibility degrees that an object in O dominates the others. Table 3.9 shows the belief degrees that each object in lines dominates another object in columns. Table 3.10 shows the plausibility degrees that each object in lines dominates another object in columns. As we can observe, the degrees returned by the plausible dominance are either equal or larger than those returned by the belief dominance. That is because, as we have shown above, the plausibility function gives more chance to objects to dominate the others. 

Scalability

In this subsection, we first show that the b-skyline algorithm BS is more scalable than the basic b-skyline algorithm BBS, and then. In addition, the p-skyline PS algorithm is more scalable than the basic p-skyline algorithm BPS and even than BS.

Figures 3.5, 3.6, 3.7 and 3.8 depict the execution time and the used memory percentage of the implemented algorithms with respect to various parameters (n, d, b, p, t and f ). Overall, BS outperforms BBS. More specifically, BS is faster than BBS, which in turn is faster than Basic p-BPS. As expected, Figure 3.5 shows that the performance of all the algorithms decreases with the increase of n. Observe that PS is one order of magnitude faster than BS. In fact, it can quickly identify if an object is plausibly dominated or not. In addition, although the BS algorithm contains more dominance checks than PS algorithm, it outperforms the BBS thanks to properties already presented in section 3.3. In contrast As shown in Figure 3.6, the running time of the algorithms increases when the number of dimensions increases. That is because when d increases, the number of knowledge states increases which explains the increase of dominance checks. BBS and BPS perform a large number of dominance checks. Even if BS performs the same number of dominance checks than BBS, BS is more efficient than BBS since it can detect immediately whether an object does not dominate another. The same logic is used to compare PS and BPS performances. We can note that there is a slight difference in term of CPU time between BS and PS. In addition, varying d has no effect on used memory (Figure 3.6b).

Figure 3.7 shows that, with the increase of f , BS algorithm outperforms the BBS (see Figure 3.7a). The same observation is valid for PS and BPS; PS is more than one order of magnitude faster than BPS. In addition, observe there is a slight difference between BS and PS algorithms. As shown in Figure 3.8a, the more b and p increase, the more the computation cost increases. In this case, the dominance between objects takes more time, the number of skyline objects increases and consequently the number of dominance checks increases.

Conclusion

In this chapter, we extended the well-known skyline analysis to imperfect data modeled by the evidence theory. We proposed two main models: a first evidential skyline model which is based on the classic skyline definition and, the evidential skyline oriented knowledge states.

The key concept of this second extension is the states of knowledge derived from each imperfect object that represents the real world. We explored the belief skyline framework as well as the plausible skyline one. We studied the properties of the belief dominance as well as the plausible dominance and provided efficient methods for performing the dominance checks using some pruning techniques.

We also developed two efficient algorithms to tackle the problem of the evidential skyline computation. On the other hand, we demonstrated the effectiveness of the evidential skyline and the efficiency and scalability of our algorithms.

In the next chapter, we address the following problems:

• Based on the skyline query over centralised imperfect data where imperfection is modeled by the evidence theory, we propose to efficiently compute the global skyline from distributed local sites.

• The maintenance of the skyline objects of frequently updated evidential databases.

In particular, we propose algorithms for maintaining evidential skyline in the case of object insertion or deletion.

Introduction

With the fast development of computing infrastructures and easily available network services, data management and storage have become inevitably more distributed [START_REF] Hevner | Query processing in distributed database system[END_REF][START_REF] Park | Parallel computation of skyline and reverse skyline queries using mapreduce[END_REF]. Dealing with skyline analysis over the distributed environments faces important challenges. Interestingly enough, many real-life applications where uncertain, imprecise, noisy and error-prone data inherently exist, are distributed, e.g., multiple geographic data sources in road networks [START_REF] Deng | Multi-source skyline query processing in road networks[END_REF], distributed sensor networks with imprecise measurements [START_REF] Deshpande | Model-driven data acquisition in sensor networks[END_REF], etc. Distributed skyline computation over uncertain data has received an increasing attention [START_REF] Endres | Parallel skyline computation exploiting the lattice structure[END_REF]. Ding et al. [START_REF] Ding | Efficient and progressive algorithms for distributed skyline queries over uncertain data[END_REF] studied the skyline query on probabilistic data from multiple and distributed environments.

In [START_REF] Li | Ranking distributed probabilistic data[END_REF], authors were interested in the fundamental problem of retrieving the global top-k objects from uncertain distributed data with minimum communication cost. Despite of the fact that the two research lines often arise concurrently in many applications, uncertainty modeled by the evidence theory and distributed skyline query processing, have been studied separately.

In section 4.3, we first recall the skyline semantic over evidential data and then, we study the problem of distributed skyline queries over imperfect data where imperfection is modeled by the evidence theory.

This contribution is published in the 28th IEEE International Conference on Tools with Artificial Intelligence (Elmi, Tobji, Hadjali, & Yaghlane, 2016a).

The skyline maintenance is not an easy task when the queried database is updated and unfortunately, there exist not much works that can handle skyline queries under database updates. The maintenance of the skyline set is then very useful since it allows users to get informed about the new interesting objects.

Let us mention the work done in [START_REF] Papadias | Progressive skyline computation in database systems[END_REF][START_REF] Wu | Deltasky: Optimal maintenance of skyline deletions without exclusive dominance region generation[END_REF] where the authors introduce an optimal skyline deletion maintenance for certain data. Xia et al. [START_REF] Xia | Refreshing the sky: The compressed skycube with efficient support for frequent updates[END_REF] present efficient update algorithms for compressed skyline Cubes. Closely relating to the maintenance of skyline results, let us point out the study related to the progressive skyline query evaluation and maintenance done in [START_REF] Zhenjie | Minimizing the communication cost for continuous skyline maintenance[END_REF]. However, up to our knowledge, there is no work about the skyline maintenance issue in the uncertain/evidential databases context.

In section 4.4, we address the problem of the maintenance of the skyline objects of frequently updated evidential databases. In particular, we propose algorithms for maintaining evidential skyline in the case of object insertion or deletion.

This work is published in the 16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems [START_REF] Elmi | Efficient skyline maintenance over frequently updated evidential databases[END_REF]).

In the next section (section 4.2), we define the notion of the marginal points which are used to prune the research space for the distributed skyline computing and the skyline maintenance computation.

Marginal Points: Ideal Point and Header Point

An Ideal Point IP and a Header Point HP summarize the region of data explored in earlier iterations required to compute the evidential skyline. This approach is used in [START_REF] Elmi | Efficient skyline maintenance over frequently updated evidential databases[END_REF] to efficiently maintain the evidential skyline if a newly object is inserted in the evidential database O i , and in (Elmi, Tobji, et al., 2016a) to prune the research space for the distributed skyline computation. Let us first present the local marginal points.

The Ideal Point is a virtual object having the most interesting values across all attributes. Example 4.3. One can check that in Table 4.1, O * i = {s 1 , s 3 }. The maximum values defined on distance and altitude for s 1 and s 3 are 56 and 60, respectively. Then the Header Point is HP (56, 60). In Figure 4.1, we present the local skyline region of a given database O i mainly presented by the marginal points IP [START_REF] Elmi | Computing Skyline from Evidential Data[END_REF]20) and HP (56, 60). All objects in the crosshatch area can not be in the local evidential skyline and the skyline region is represented by the rectangular including the points IP and HP .

Distributed Evidential Skyline (DES)

In this section, we tackle the problem of conducting advanced analysis by means of skyline queries on uncertain data from distributed environments. We address the following major challenges:

• We first recall our new semantics for the evidential dominance by extending the dominance relationship of Pareto to the evidential context. We then present the local evidential skyline.

• We introduce efficient approach for querying and processing the evidential skyline over multiple and distributed servers. This approach is mainly based on the notions of: (i) increasing the parallelism to improve the efficiency and the effectiveness of the distributed evidential skyline computation and (ii) marginal points to resume the dominance regions of each local evidential skyline. We also propose the distributed architecture scheme of our distributed skyline processing.

• We develop efficient algorithms to compute the local evidential skylines, and the global evidential skyline. We conduct extensive experiments to show the efficiency and the effectiveness of our approach. Let us recall the example of acoustic sensors (e.g., microphones), they are often used to detect presence of a given object, its altitude, its distance, speed, etc. Due to the nature of acoustic sensing, values returned by microphones are intrinsically ambiguous, noisy and error-prone. Ideally, we want to find the most interesting objects which can meet the user needs in all dimensions. However, the size of data sets become larger and larger, and the skyline computation become more complex and expensive. Hence, to improve its performance, the skyline computation need to be processed on many servers instead of being limited to one. For instance, Figure 4.2 shows the skyline results when the objects are distributed over two servers. This section is organised as follows. We start by defining the problem and presenting the distributed architecture scheme in section 4.3.1. In section 4.3.2, we first recall the semantics for the dominance relationship over evidential data. Then, we define the problem of the local evidential skyline. In section 4.3.3, we describe our efficient approach to compute the global skyline from multiple servers using the local and global marginal points. We also present our algorithms. An experimental study is reported in section 4.3.4. Finally, at the end of this section, we recall the main contributions. The skyline region of the database O i A first step is to increase parallelism as shown in Figure 4.3. The local skylines derived from different servers are computed in parallel to improve performance. The coordinator server, in a second step, combines the skyline sets and returns the global skyline.

Problem Definition

Local Evidential Skyline

In this section, we first present the problem definition for the local evidential skyline, then, we describe the local skyline computation.

Given a set of objects O i = {o 1 , o 2 , . . . , o n } defined on a set of attributes A = {a 1 , a 2 , . . . , a d }, with o t .a r denotes the bba of object o t w.r.t. attribute a r .

To extend the dominance relationship to the evidential data, we refer to the definition 3.1 described in chapter 3.

All properties stated and proved in the previous chapters are always meaningful for the local evidential skyline.

Intuitively, an object is in the believable skyline if it is not believably dominated by any other object. Based on the believable dominance relationship, the notion of b-SKY (O i ) is defined as follows. 

O i ) = {o t ∈ O i | ∃ o h ∈ O i , o h b o t }.
For the local skyline, we use the same properties and proofs.

Local Skyline Computation

A straightforward algorithm to compute the local evidential skyline denoted by BLSE, is to compare each object o t against the other objects. If o t is not b-dominated by any other object, then it belongs to the evidential skyline. However, this approach results in a high computational cost (see Section 4.3.4). Also, since the b-dominance relationship is not transitive as proved in the previous chapters, an object cannot be eliminated from the comparison even if it is b-dominated since it will be useful for eliminating other objects. For this reason, we propose an algorithm denoted by LSE (see Algorithm 6) in which we follow the principle of the two scans algorithm cited in [START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF] in order to efficiently compute the evidential skyline.

The algorithm denoted LSE has a quadratic time complexity, i.e, T (n) = O(n 2 ). First, LSE algorithm computes the evidential skyline through two phases. In the first phase (lines 2-13), we compare, each object o t in O i with those selected in b-SKY 

(O i ). If an object o h in b-SKY (O i ) is b-dominated by o t ,
t in b-SKY (O i ) is indeed in the b- SKY (O i ), it is sufficient to compare o t with those in O \ {b-SKY (O i ) ∪ undom(o t ) ∪ {o t }}
where undom(o t ) is the set of objects that occurs before o t and that do not b-dominate o h . Even if, LSE minimizes the number of dominance checks, it also may result in a high computational cost. In particular, when the average number of dimensions is large. Thus, it is crucial to optimize the dominance checks to improve the performance of the local evidential skyline computation and therefore the LSE computation. In the following, in order to check the b-dominance between objects, we devise an efficient method (algorithm 7) that overcomes this problem using the minimum and the maximum values of each bba w.r.t. each attribute, according to the property stated in the previous chapters.

Global Marginal Points

In this section, we define the global skyline over evidential data from multiple and different databases. A key property gives: b-SKY (H) = b-SKY (∪ 1≤i≤m b-SKY (O i )). A straightforward method to compute the global skyline (algorithm BGES) b-SKY (H) is to consider the local skyline sets (∪b-SKY (O i ), ∀i ∈ {1..m}) as an input for the algorithm 6 to retrieve the final skyline objects, but this approach can result in a high computational cost.

Our proposition is that the coordinator server H computes the global skyline using the global marginal points of O to improve the performance of our approach. As shown in Figure 4.3, each local skyline is presented by its marginal points, i.e., its skyline region.

Our goal is to define the global marginal points derived from O 1 ∪ O 2 to determine whether a local skyline set should be considered as interesting or be pruned in advance from the expensive global skyline processing phases.

Let ∀i ∈ {1..m}, IP i and HP i be the ideal point and the header point, respectively, of b-SKY (O i ). IP i .a r (resp. HP i .a r ) denotes the IP (resp. HP) value defined on the attribute a r . 

Experimental Evaluation

For our evaluation, we use a generated data-sets. We control the generation of evidential data by the parameters in Table 4.3, which provides us with the parameters and their default values. 5, 10, 15, 20 10 In each experimental setup, we evaluate the effect of one parameter, while we set the other to their default values. |F| represents the maximum number of focal elements per attribute. |Θ a k | represents the number of proposition in Θ a k .

The data generator and the algorithms, i.e, GES, BGES, LSE and BLSE were implemented in Java, and all experiments were conducted on a 2.3 GHz Intel Core i7 processor, with 6GB of RAM. Figures 4.5a,4.5b,4.5c,4.5d and 4.5e depict the execution time the implemented algorithms LSE and BLSE with respect to various parameters (n, d, b, t and f ). Overall, LSE outperforms BLSE. More specifically, LSE is faster than BLSE. As expected, Figure 4.5a shows that the performance of the algorithms deteriorates with the increase of n. Figure 4.5d shows that, with the increase of f , LSE algorithm outperforms the BLSE. As shown in figure 4.5c, the more b increases, the more the computation cost increases because the more we have a large number of skyline objects, the more the number of dominance checks increases. In contrast to n, d, b and f , the execution time of the algorithms is large for small number of propositions in Θ a k (Figure 4.5e). As expected, Figure 4.5f shows that the performance of the algorithms deteriorates with the increase of the servers number. Overall, GES outperforms BGES. More specifically, it is faster than the basic algorithm thanks to the proposed approach.

In this section, we have addressed the problem of the distributed skyline over evidential data. We presented the centring/local skyline analysis when data are imperfect and modeled by the evidence theory. We then defined the global evidential skyline which returns the most interesting objects from distributed environments.

Our experimental evaluation demonstrated the performance of the proposed algorithms. An interesting future direction is to use Hadoop in the distributed evidential skyline processing.

Evidential Skyline Maintenance

In chapter 3, we introduced a method for extracting skyline objects from an evidential database. When evidential data are updated, the skyline set could be computed, again from the overall updated database. It is the trivial maintenance of the skyline set. In this chapter, the aim is to incrementally maintain the skyline set, without starting from the scratch. Our objective is to reduce the computation cost of the maintenance by using the skyline set already computed. We address then the following major challenges:

• We propose efficient methods to maintain the skyline results in the evidential database context when an object is inserted or deleted.

• We perform an extensive experimental evaluation to demonstrate the scalability of the algorithms proposed for the evidential skyline maintenance.

This section is organised as follows. In subsections 4.4.1 and 4.4.2, we formally propose a new approach for the incremental maintenance of evidential skyline. Our experimental evaluation is reported in subsection 4.4.3. Finally, we recall the main contributions.

Object Insertion

In this subsection, we discuss the maintenance problem of the evidential skyline after an insertion occurs in the evidential database EDB.

Approach Proposed

Because the dominance relationship is intransitive as proved in [START_REF] Elmi | Computing skyline from evidential data[END_REF], a naive approach to see if a new object has an impact on the evidential skyline, is to compare all objects in O against this inserted object. This way results in a very costly procedure. To avoid the full scan of the database, one has to prune the search space in some cases.

We present in this section an approach for optimizing the evidential skyline updating by using the notions of "IdealP oint" and "HeaderP oint" already defined in section 4.1. These points keep up a concise summary of the already visited regions of the objects' space. This summary allows a fraction of objects in O to be pruned from the skyline processing phases required in the naive approach, thus reducing the overall cost of expensive dominance checks.

An IdealP oint and a HeaderP oint summarize the region of data explored in earlier iterations. They enable a newly inserted object to be compared against this summary rather than to perform multiple comparisons against the whole objects in the b-skyline. Our goal is to leverage these two points to determine whether a newly inserted object should be considered as a candidate skyline object or be pruned in advance from the expensive skyline processing phases.

Our goal with the Header Point and the Ideal Point is to determine whether the newly inserted object should be considered as a candidate skyline object or be pruned in advance from the expensive skyline processing phases. As shown in Figure 4.1, if the newly inserted point denoted by P + is in the hatched area, i.e, is strictly better than IP in at least one dimension, then it is directly added to the evidential skyline. In this case, P + should be compared to all skyline's points because it could dominate one or several of them. We also propose another pruning strategy by adapting the notion of Header Point (HP ) to the evidential database context. If P + is in the crosshatch area, then it cannot be in the evidential skyline because it has a value attribute which is worse than the HP . In other words, if a newly inserted object is not better than the Ideal Point in at least one dimension and it is worse than the Header Point, then, the new object cannot be a skyline object and can be discarded. If an evidential object is inserted, we have to refer to definition 2.1 in order to compare the new object against the Header Point and the Ideal Point. Let P + .a k be the new object value defined on attribute a k . Let also b be the threshold introduced by the user. Note that b is already considered to compute the original set of skyline points b-sky O . A naive approach for skyline insertion maintenance is to recompute from scratch the bsky O considering the newly inserted object (Baseline Maintenance Algorithm after Insertion denoted by BMAI). Clearly, this approach may result in a high computational cost since we recompute the b-dominance relationship between all objects in {O} ∪ {P + }. Algorithm 9 shows the algorithmic description of the proposed method in order to decrease the check space. As shown in algorithm 9, we compare the bbas of the inserted object defined on each attribute against all values of the Ideal Point and the Header Point defined on the set of attributes A. If it does exist an attribute a k ∈ A such that bel(P + .a k < IP.a k ) ≥ b, then the newly inserted object is added to the b-skyline and is compared to all skyline points since it may dominate some of them. If property 4.3 is not satisfied and it does exist an attribute a k ∈ A such that bel(HP.a k <P + .a k ) ≥ b, then the newly inserted object is directly discarded from the b-skyline since the Header Point b-dominates the new object P + in at least one dimension. Else, because of the well-known non transitivity of the b-dominance relationship, we have to re-compute the b-skyline from scratch which is represented by the function "b-Sky O ()".

Object Deletion

In this subsection, we discuss the maintenance problem of the evidential skyline after a deletion occurs in the evidential database EDB.

Approach Proposed

In this section, we study the impact of skyline object deletion on the set of skyline points. Two simple approaches are discussed here. The most straightforward method for skyline deletion maintenance is to recompute from scratch (represented by the Baseline Deletion Algorithm BMAD) the b-Sky O . Clearly, this approach is overly simplistic and may result in a high computational cost because a considerable portion of evidential objects is not affected by the deleted point at all. This BMAD computation can be easily optimized for the purpose of deletion maintenance. For a given skyline object S i ∈ b-Sky O , we define its b-dominance region designed by b-DR(S i ) as the whole objects space that is dominated by S i , and its exclusive b-dominance region, designed by EDR(S i ), which contains the objects space that is only dominated by S i . For instance, in Figure 4.6, the b-DR(a) can be represented as rectangle ahf e. However, 

Skyline Objects

S i b-DR(S i ) S 1 = o 2 {o 1 , o 3 } S 2 = o 4 {o 3 } S 3 = o 6 {o 5 }

Computation Method

To compute the b-skyline over an evidential database, we refer to the algorithm proposed in section 3 called BS. In BS algorithm, while computing the b-dominance degrees between objects in O, one can automatically save the exclusive b-dominance region of each skyline point EDR(S i ). As it can be seen, once information about exclusive b-dominance region of each skyline object is available, we can detect via algorithm 10, which object can be directly promoted as a new skyline object.

Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approaches. More specifically, we focus on the scalability of our proposed methods for maintaining the evidential skyline. For comparison purpose, we also implemented the baseline algorithms for maintenance after insertion and after deletion referred to as BMAI and BMAD.

Experimental Setup

The generation of evidential data sets is controlled by the parameters in Table 4.6. In each experimental setup, we investigate the effect of one parameter, while we set the remaining ones to their default values. K means a thousand of evidential objects. A simple comparison between the attributes values of P + and the certain points IP and HD, makes the algorithm MAI more efficient than BMAI. This later aims at comparing P + against all objects in the skyline set in order to check if the newly inserted object is in the evidential skyline or not.

Parameter

However, MAI decreases the research space by discarding points which are worst than the Header Point on the one hand, and inserting P + in the b-skyline if it is better than the Ideal Point on the other hand. As expected, Fig. 4.7a shows that the performance of the algorithm BMAI deteriorates with the increase of the skyline size S. This is because when S increases the number of dominance checks becomes larger. Observe that MAI is one order of magnitude faster than BMAI since it can quickly identify if an object can be in the skyline or not with a simple operation of comparison with both Header Point and Ideal Point. As shown in Fig. 4.7b,and Fig. 4.7c, MAI is not affected by increasing d and f as it makes a simple check. However, BMAI does not scale with d and f . Fig. 4.7 depicts also the execution time of the implemented algorithms MAD and BMAD w.r.t. n, d and f . Fig. 4.7d shows that the execution time of the algorithm MAD slightly increases with the increase of n as we have to check more and more objects in O, but it outperforms BMAD. Observe that BMAD has a high computational cost if we increase all parameters. It is not the case for MAD.

Conclusion

In this chapter, based on the marginal points, i.e., the ideal point and the header point, we have addressed, on the one hand, the problem of the distributed evidential skyline and, on the other hand, the problem of the evidential skyline maintenance.

Our solutions guarantees I/O optimality and can be easily implemented. Experimental results show that our methods outperform the naive methods.

In the next chapter, we will introduce the top-k evidential skyline. We particularly tackle the problem of the evidential skyline ranking, i.e., retrieve the k skyline objects that are expected to have the highest score with considering the confidence level (CL) of the objects. We also study the impact of CL on the top-k results. The efficiency and effectiveness of our proposal are verified by extensive experimental results.

Introduction

How to conduct advanced analysis, particularly skyline analysis, remains an open problem at large. In many application domains where data are pervaded with uncertainty, end-users are often interested in the top-k query answers within a potentially large space answer. This requires to introduce a rank-order between the evidential skyline objects.

The skyline ranking has received an increasing importance [START_REF] Lian | Probabilistic top-k dominating queries in uncertain databases[END_REF][START_REF] Yi | Efficient processing of top-k queries in uncertain databases[END_REF][START_REF] Yong | Skyline ranking for uncertain data with maybe confidence[END_REF][START_REF] Amagata | Efficient processing of topk dominating queries in distributed environments[END_REF]. Skyline ranking queries has been proposed in classic databases as well as uncertain databases such as probabilistic databases [START_REF] Liu | Finding probabilistic k-skyline sets on uncertain data[END_REF]. Zhang et al [START_REF] Ying | Ranking uncertain sky: The probabilistic top-k skyline operator[END_REF], propose to compute the top-k skyline objects for discrete cases. In addition, authors in [START_REF] Ilaria | Domination in the probabilistic world: Computing skylines for arbitrary correlations and ranking semantics[END_REF] tackle the problem of developing a ranking semantics in a probabilistic databases. Moreover, a new approach introducing the skyline ranking for uncertain data with maybe confidence, is proposed in [START_REF] Yong | Skyline ranking for uncertain data with maybe confidence[END_REF]. Also, Lian and Chen in [START_REF] Lian | Probabilistic top-k dominating queries in uncertain databases[END_REF]) provide an effective pruning method for computing the probabilistic top-k dominating queries in uncertain databases. In addition, the authors [START_REF] Yiu | Efficient processing of top-k dominating queries on multi-dimensional data[END_REF] introduce the concept of Top-k dominating queries on certain database to rank skyline objects. In [START_REF] Ge | Top-k queries on uncertain data: On score distribution and typical answers[END_REF], authors propose to rank results according to some user-defined score.

Motivating Example

The need to manage uncertain data arises in several real-life applications. For example, acoustic sensors (e.g., microphones) are often used to detect presence of a given object, its altitude, its distance, speed, etc. Ideally, we want to find the most interesting objects which can meet the user needs in all dimensions, suppose that objects having the smaller distance and the smaller altitude are the most interesting objects. The skyline analysis is meaningful here since it discloses the trade-off between the merits of multiple aspects. An object o i is in the skyline if there exists no object o j such that o j is better than o i in (at least) one dimension, and is not worst than o i in all other aspects. We argue that skyline analysis is also meaningful on imperfect data. Due to the nature of acoustic sensing, values returned by microphones are intrinsically ambiguous, noisy and error-prone. Add to that, an object in a database may have a confidence level [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF](i.e., probability of existence in a table). Often, a query over such data has a large number of result objects. In this context, the top-k query has proven to be useful.

Contributions

In this chapter, we tackle the problem of conducting advanced analysis by means of skyline queries on uncertain data modeled by the evidence theory. We address the following major challenges:

• We recall the evidential dominance relationship, then, the skyline over evidential objects.

• Based on this dominance relationship, we propose a score function reflecting the confidence level of each object. This score function aims at retrieving k objects that are expected to believably dominate the more the other objects.

• We develop efficient algorithms to the evidential skyline computation and the top-k query. We conduct extensive experiments to show the efficiency and the effectiveness of our approach. In addition, our extensive experiments reflects the impact of the confidence level on the top-k skyline results.

This chapter is published in the 13th IEEE/ACS International Conference of Computer Systems and Applications (Elmi, Hadjali, Bach Tobji, & Ben Yaghlane, 2016).

Chapter Organisation

The rest of the chapter is organized as follows. In section 5.2, we recall the evidential dominance definition and the evidential skyline. We conclude the section by defining a score function in order to retrieve the top-k skyline. Section 5.3 is devoted to the top-k skyline computation. An experimental study is reported in section 5.4. Finally, Section 5.5 recalls the main contributions.

Top-k Skyline over evidential objects

In this section, we present the notion of the evidential skyline. This later aims at retrieving the most interesting objects in O that are not dominated by any other objects. We first present the concept of the evidential dominance denoted by the b-dominance and then the evidential skyline denoted by the b-sky O . We finally define the score function that allows us to retrieve the top-k skyline objects in a given database O. The score function is based on the confidence level.

Given a set of objects O = {o 1 , o 2 , . . . , o n } defined on a set of attributes A = {a 1 , a 2 , . . . , a d }, with o i .a r denotes the bba of object o i w.r.t. attribute a r . The degree of belief that an object o i is better than or equal (or strictly better) to other object o j w.r.t. an attribute a r is given by [START_REF] Bell | Generalized union and project operations for pooling uncertain and imprecise information[END_REF]:

bel(o i .a r ≤ o j .a r ) = A⊆Θa r (m ir (A) B⊆Θa r ,A≤ ∀ B m jr (B)) (5.1) 
Where

A ≤ ∀ B stands for a ≤ b, ∀(a, b) ∈ A × B. bel(o i .a r < o j .a r ) = A⊆Θa r (m ir (A) B⊆Θa r ,A< ∀ B m jr (B)) (5.2) Where A < ∀ B stands for a < b, ∀(a, b) ∈ A × B.
Example 5.1. In Table 5.1, one can check that To extend the dominance relationship to the evidential data, we refer to the definition 3.1 described in chapter 3.

1 bel(o 1 .d ≤ o 2 .d) = 0, bel(o 1 .a ≤ o 2 .a) = 0.3, bel(o 2 .d < o 1 .d) = 0.
All properties related to the b-dominance relationship already presented in the previous chapters are meaningful.

Intuitively, an object is in the believable skyline if it is not believably dominated by any other object. Based on the b-dominance relationship, the notion of b-sky O is defined as follows. 

= {o i ∈ O | ∃ o j ∈ O, o j b o i }.
For each object S i in the b-skyline, we need to know how much does it dominate other objects in the b-skyline set. We first introduce the notion of the object dominance score denoted by µ(S i ). We then introduce a new score function reflecting the confidence level impact.

Definition 5.2. (Dominance score) Let S i be in the b-sky O . The dominance score that reflects how much S i dominates other skyline objects denoted by µ(S i ) is defined as follows:

µ(S i ) = ∀S j ∈b-sky O ,S i =S j bel(S i S j ) × 1 |b -sky O | -1 (5.3) where bel(S i S j ) = ar∈A bel(S i .a r ≤ S j .a r ) (5.4) 
Unfortunately, the semantics of dominance score in such data is unclear, due to the fact that both scores and probabilities of objects (confidence level) must be taken in account. For example, it is unclear whether it is better to report highly scored objects with a relatively low belief of existence or a lower -scored objects with high belief of existence. Therefore, we introduce a score dominance with confidence level denoted by σ(S i ).

Definition 5.3. (Dominance score with confidence level) Let S i be a skyline object. Let CL[bl(S i ), pl(S i )] be the confidence level of the object skyline S i where bl(S i ) and pl(S i ) are the belief and plausible degrees, respectively, of the object existence in O. σ(S i ) presents the score dominance that reflects the belief degree of the object existence. σ(S i ) is defined as follows:

σ(S i ) = µ(S i ) × bl(S i ) (5.5)
Example 5.2. In Table 5.1, we have 0. 

Top-k Skyline Computation

In this section, we first discuss how our top-k skyline algorithm can highlight the properties of dominance relationship mentioned in section 5.2. Then, we propose an efficient method in order to reduce the complexity of belief function operations.

A straightforward algorithm to compute the top-k skyline denoted by BTOPk-CL (Basic TOPk-CL) is to compare each object o i against the other objects. If o i is not bdominated, then it belongs to the b-skyline and can be in the top-k objects. However, this approach results in a high computational cost (see Section 5.4). Also, since the b-dominance relationship is not transitive, an object cannot be eliminated from the comparison even if it is b-dominated since it will be useful for eliminating other objects. For this reason, we propose an algorithm denoted by TOPk-CL (see Algorithm 11). In lines (2-21), we follow the principle of the two scan algorithm cited in [START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF] in order to efficiently compute the evidential skyline.

Algorithm 11: Top-k skyline with CL (TOPk-CL) Input: Objects O; belief threshold b; a retrieval size k Output: TOPk-CL;

1 begin 2 foreach o i in O do 3 isSkyline ← true; 4 s ← 0; 5 foreach o j in b-Sky O do 6 if isSkyline then 7 if o j b o i then 8 isSkyline ← f alse; 9 else 10 undom(o i ) ← undom(o i ) ∪ {o j }; 11 s ← s + bel(o i o j ); 12 if o i b o j then 13 remove o j from b-Sky O ; 14 if isSkyline then 15 insert o i in b-Sky O ; 16 µ(o i ) ← s/(|b-sky O | -1) ; 17 σ(o i ) ← µ(o i ) × bl(o i ) ; 18 foreach o i in b-Sky O do 19 foreach o j in O \ (b-Sky O ∪ undom(o i ) ∪ {o i }), pos(o j ) < pos(o i ) do 20 if o j b o i then 21 remove o i from b-Sky O ; 22 TOPk-CL← top-k(b-sky O , k); 23 return TOPk-CL
The algorithm denoted TOPk-CL has the complexity of O(n 2 ) where n is the number of evidential objects.

To compute the TOPk-CL skyline query over evidential data, we need to first compute the evidential skyline. After that, we rank the objects in the skyline according to the dominance score function with CL (σ()) as defined in the previous section. First, TOPk-CL algorithm computes the evidential skyline through two phases. In the first phase (lines 2-17), we compare in the one hand, each object o i in O with those selected in b-Sky O and we compute the score dominance attributed for each object. If an object o j in b-Sky O is b-dominated by o i , we remove o j from the set of candidate objects since it is not part of the evidential skyline. At the end of the comparison of o i with objects of b-Sky O , if o i is not b-dominated by any object then, it is added to b-Sky O with a final score.

To avoid the situation illustrated by the example in Table 3.7 Even if, TOPk-CL minimizes the number of dominance checks, it also may result in a high computational cost. In particular, when the average number of dimensions is large. Thus, it is crucial to optimize the dominance checks to improve the performance of the b-skyline computation and therefore the TOPk-CL computation. In the following, in order to check the b-dominance between objects, we devise an efficient method that overcomes this problem using the minimum and the maximum values of each bba w.r.t. each attribute. To efficiently check if a given object o i b-dominates or not another object o j , we propose an efficient method (see Algorithm 12). To determine if an abject b-dominates another, it is not necessary to iterate all bbas defined on all attributes.

The details of the b-dominates() function are as follows. For each attribute a r ∈ A,

o i .a - k is compared against o j .a + k .
If there is any attribute a r for which o j .a + k < o i .a - k holds then return false (If in line 4); since o i cannot b-dominate o j . The method returns "false" as soon as the degree of belief that o i .a r is less or equal than o j .a r denoted by bel(o i .a r ≤ o j .a r ), is less than the threshold b; since that does not satisfy the principle of the b-dominance. Finally, the method returns "false" as well as if it does not exist an attribute where o i is strictly better than o j .

Experimental Evaluation

In this section, we have performed an extensive experimental evaluation of the proposed framework. We report empirical study to examine the effectiveness and the efficiency of the top-k skyline query with confidence level on evidential data. More specifically, we focus on the following important issues: (1) the scalability and the performance of our proposed techniques for computing the TOPk-CL algorithm. For comparison purposes, we implement a baseline algorithm for the TOPk-CL referred to as BTOPk-CL. In addition, we implemented an efficient method; b-dominates function to show how does it perform the TOPk-CL algorithm.

(2) We implement the top-k query without confidence level referred to as TOPk and we conduct an analysis about the impact of the confidence level on the top-k skyline results.

Experimental Setup

For our evaluation, we use a generated data-sets. We control the generation of evidential data by the parameters in Table 5.2, which provides us with the parameters and their default values. In each experimental setup, we evaluate the effect of one parameter, while we set the other to their default values.

The data generator and the algorithms, i.e, TOPk, TOPk-CL and BTOPk-CL were implemented in Java, and all experiments were conducted on a 2.3 GHz Intel Core i7 processor, with 6GB of RAM.

Performance and Scalability

In this section, we show on the one hand, that the TOPk-CL algorithm is more scalable than the BTOPk-CL algorithm. More specifically, it is faster than the basic algorithm. As expected, figure 5.1 shows that the performance of all the algorithms deteriorates with the increase of n, d, f and b. That is because the more these parameters increase, the more the dominance checks increase. Observe that TOPk-CL is one order of magnitude faster BTOPk-CL since it can quickly identify whether an object is b-dominated. For example, as shown in figure 5.1b, when d increases, the size of the evidential skyline becomes larger, thus a large number of objects will be selected to the second phase. Hence, BTOPk-CL performs a large number of dominance checks with a basic function. Even if TOPk-CL performs the same number of dominance checks than BTOPk-CL, TOPk-CL is more efficient than BTOPk-CL since it can detect immediately whether an object dominates or not another. In contrast to n, d, f and b, varying t and k, has no apparent effect on CPU Time as shown in figure 5.1e and figure 5.1f, respectively.

Topk-CL VS Topk

In this section, we study the impact of the confidence level which reflects the belief and plausibility degrees of the objects existence in the database. For each parameter value, we first obtain the skyline set b-sky O , we then implement two algorithms: TOPk-CL skyline and TOPk skyline which have the same input (b-sky O ). The TOPk skyline algorithm is based on the dominance score function µ() to rank the skyline set. However, the TOPk-CL skyline is based on the dominance score function with confidence level σ(). For each parameter value, we study the impact of the confidence level by returning the number of common objects between the two result sets denoted by TOPk∩TOPk-CL. Note that for figures 5.2a, 5.2b, 5.2c, 5.2d and 5.2e, we are interested in the top-10 query, i.e., the result set size is k = 10.

For example, in figure 5.2a, TOP10-CL and TOP10 have 6 common objects when (10 common objects). In figure 5.2d, ∀b ≥ 0.3, the skyline size is larger than k = 10. However, when the skyline size is less than k, the TOPk-CL as well as the TOPk skyline return the skyline set as shown in figure 5.2d when b = 0.1. Figures 5.2c and 5.2e show that the confidence level may change up to 50% of the TOPk skyline results. Figure 5.2f shows that the more k increases, the more the number of common objects increases.

Conclusion

In this chapter have addressed the problem of top-k skyline with confidence level on evidential data. After introducing new semantics for the imperfect skyline analysis, we defined the top-k skyline operator which ranks the skyline results and returns the most interesting k objects. We also integrated the notion of the confidence level and we conducted an analysis about its impact on the top-k results.

Our experimental evaluation demonstrated the flexibility of the proposed top-k skyline query over evidential data and the scalability of our algorithms.

In the next chapter, we particularly tackle an important issue, namely the skyline stars (denoted by SKY 2 ) over the evidential data. This kind of skyline aims at retrieving the best evidential skyline objects (or the stars). Efficient algorithms have been developed to compute the SKY 2 . Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approaches that considerably refine the huge skyline set. In addition, the conducted experiments have shown that our algorithms significantly outperform the basic skyline algorithms in terms of CPU and memory costs.

Introduction

In this chapter, we address the issue of refining the skyline on evidential databases.

Motivating example

Let us recall the example presented in chapter 1, we consider again plane sensor analysis. If observation-by-observation data are considered, we can answer many questions such as: which target should be in the skyline. However, the previous studies analysing the skyline size, prove that it is worthwhile to refine this huge skyline set, i.e., among the skyline targets, which targets are considered the most dangerous.

Contributions

In this chapter, the following contributions are made:

• We first give a reminder about the evidential skyline models: the believable skyline (denoted by the b-skyline) and the plausible skyline (denoted by the p-skyline).

• Since the evidential skyline size is often too large to be analyzed, we define the set SKY 2 to refine the evidential skyline and retrieve the best evidential skyline objects (or the stars).

• We develop suitable algorithms based on scalable techniques to efficiently compute the b-skyline and the p-skyline, on the one hand, and the evidential SKY 2 on the other hand. We also perform an extensive experimental evaluation to demonstrate the scalability of the proposed algorithms.

These chapter contributions are published in the International Journal of Applied Soft Computing (Elmi, Tobji, Hadjali, & Yaghlane, 2017).

Chapter Organization

This chapter is organized as follows. In section 6.2, we recall the main notions of the believable skyline and and the plausible skyline, while in section 6.3, we propose the concept of the b-SKY 2 and p-SKY 2 . Section 6.4 describe our algorithms to retrieve the skyline stars. Details about the experimental evaluation are reported in section 6.5. Finally, section 6.6 concludes the chapter and outlines some perspectives for future work.

Evidential skyline

In this section, we present the notion of the believable skyline, and then, we introduce the notion of plausible skyline over evidential databases.

Given a set of objects O = {o 1 , o 2 , . . . , o n } defined on a set of attributes A = {a 1 , a 2 , . . . , a d }, with o i .a k denotes the bba of object o i w.r.t. attribute a k . According to Definition 2.1, the degrees of belief and plausibility that an object o i is better than or equal (or strictly better) to another object o j w.r.t. an attribute a k write :

bel(o i .a k ≤ o j .a k ) = A⊆Θa k (m ik (A) B⊆Θa k ,A≤ ∀ B m jk (B)) (6.1) Where A ≤ ∀ B stands for a ≤ b, ∀(a, b) ∈ A × B. bel(o i .a k < o j .a k ) = A⊆Θa k (m ik (A) B⊆Θa k ,A< ∀ B m jk (B)) (6.2)
Where A < ∀ B stands for a < b, ∀(a, b) ∈ A × B.

Example 6.1. In Table 6 

The plausible skyline

In this section, we present the notion of the plausible skyline which retrieves the most interesting objects in O that are not plausibly dominated by any other objects. Note that the plausible skyline is semantically different from the believable skyline. The believable skyline returns the objects that are not surely dominated by any other object with respect to some threshold. However, the plausible skyline returns the objects that are not plausibly dominated by any other object according to a threshold. In the following, we show how they are semantically different, and later in section 6.5, we will show how this difference affects on the skyline size.

Let us first introduce the notion of the plausible dominance denoted by the p-dominance and then the plausible skyline denoted by the p-skyline. Property 6.5. Given two plausible thresholds p and p , if p < p then the p-skyline is a subset of the p -skyline, i.e., p < p ⇒ p-skyline ⊆ p -skyline.

SKY 2 : Skyline stars over evidential databases

In this section, we introduce the notion of evidential SKY 2 which allows refining the evidential skyline results (believable skyline and plausible skyline already introduced in section 6.2). To refine the objects in b-skyline (resp. p-skyline), we first compute the average score (called the dominance score and denoted by score 1 ) that every object S i in the bskyline (resp. p-skyline) dominates all objects in O. We then compute its average score of being dominated denoted by score 2 . Let us first give the definition of b-SKY 2 . 

-score 1 (S i ) = ∀o j ∈O,S i =o j ,S i ∈b-skyline bel(S i o j ) × 1 |O| -1 (6.5)
where 1 |O|-1 is used for the normalisation need and the belief degree that a skyline object S i dominates an object o j ∈ O, denoted by bel(S i o j ), is defined as follows: where bel(o j S i ) recalls the principle of equation 6.6.

bel(S i o j ) = a k ∈A bel(S i .a k ≤ o j .a k ) ( 6 
One way to select the best objects from the believable skyline (i.e., the skyline stars), is to retrieve those have the highest dominance scores on the one hand, and the smallest scores of being-dominated on the other hand. See the example bellow for more illustration.

Example 6.4. Suppose we have the following set of believable skyline objects: b-skyline = {S 1 , S 2 , S 3 , S 4 , S 5 }. For each skyline point S i , we give its dominance score b-score 1 (S i ) and its being-dominated score b-score 2 (S i ) as described in Table 6 Also, while the b-dominance relationship is not transitive, (see Property 6.1), an object cannot be eliminated from the comparison even if it is b-dominated since it will be useful for eliminating other objects.

For this reason, we propose an algorithm (see Algorithm 13) that follows the principle of the two scan algorithm cited in [START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF] in order to efficiently compute the evidential skyline. To avoid the situation of non-transitivity, a second phase is needed (lines 21-24). To determine if an object o i in b-skyline is indeed in the believable skyline it is sufficient to compare o i with those in O \ {b-skyline ∪ undom(o i ) ∪ {o i }} that occur earlier than o i since the other ones have been already compared against o i , where undom(o i ) is the set of objects that occur before o i and that do not b-dominate o j .

In lines 19 and 20, we compute the scores of each skyline object o i . b-score 1 is recovered by summing the belief degrees that o i b-dominates o j ∈ O where o i = o j . Even, if b-SKY 2 algorithm minimizes the number of dominance checks, it also may result in a high computational cost. In particular, when the average number of focal elements per object is large. Thus, it is crucial to more optimize the dominance checks to improve the performance of b-SKY 2 . In the following, we devise an efficient method that overcomes this problem using the minimum and the maximum values of each object w.r.t. each attribute, according to Property 6.2. To determine if an object o i b-dominates another object o j , Property 6.2 shows that it is not necessary to iterate all focal elements of each bba. To efficiently check that a given object o i b-dominates or not another object o j , it suffices to compare for each attribute a k ∈ A, o i .a - k against o j .a + k .(see Algorithm 14) which is based on property 6.2. The method returns false (in line 4), if there is any attribute a k for which o i .a - k > o j .a + k ; since o i cannot b-dominate o j according to Property 6.2. Otherwise, if the belief degree that o i .a k is as good or better than o j .a k , is less than the threshold b, then o i does not b-dominate o j (line 6). The method returns "false" as soon as it does not exist an attribute a k 0 where o i is strictly better than o j (line 7-10). 

s 2 ← 0; foreach o j in b-skyline do if isSkyline then if o j b o i then isSkyline ← f alse; else undom(o i ) ← undom(o i ) ∪ {o j }; s 2 ← s 2 + bel(o j o i ); if o i b o j then remove o j from b-skyline; if isSkyline then insert o i in b-skyline; foreach o x in O do s 1 ← s 1 + bel(o i o x ); o i .b-score 1 ← s 1 /(|O| -1); o i .b-score 2 ← s 2 /(|O| -1); foreach o i in b-skyline do foreach o j in O \ (b-skyline ∪ undom(o i ) ∪ {o i }), pos(o j ) < pos(o i ) do if o j b o i then remove o i from b-skyline; b-SKY 2 ←SKY-OF(b-skyline); return b-SKY 2 ;
The algorithm denoted b-SKY 2 has the complexity of O(n 2 ) where n is the number of evidential objects.

The method SKY-OF() described in algorithm 15 aims at retrieving the skyline stars which have the highest dominance score and the smallest being-dominated score. As shown in algorithm 15, this set of stars is computed by a simple classic skyline on a data set with To compute the plausible skyline stars, we refer to the p-SKY2 algorithm. In this algorithm, we follow the same steps as in b-SKY 2 algorithm using an efficient method to compute the p-dominance between objects in O.

In fact, in algorithm 16, the p-dominance method, denoted by p , can recall the principle of the b-dominance discussed in algorithm 14. However, computing the plausibility function can result in a high cost computation because it requires the intersection operations between two bbas. In the following, we propose a way to reduce this cost computation. To detect the intersections between two bba, it is necessary to iterate all propositions in each focal element. In the following, we represent a focal element as a decimal number and we reduce the set operations to bit-wise operations 2 . The plausibility function can be then equivalently expressed as follows: 6.11) where A and B are two decimal numbers and & stands for the logic operator "and".

pl(A) = A&B =0 m(B) ( 
In this context, we denote the frame of discernment of an attribute a k as Θ ak = {p 1 , p 2 , . . . , p n } and {p 1 , p 2 , . . . , p n } represent the set of propositions in Θ ak . A focal element f can have a relational representation R where R is a binary number such as R = r 1 r 2 . . . r n where

r i = 1 if p i ∈ f 0 if p i ∈ f
However, it is necessary to fix the order of propositions in Θ ak to have a one-to-one correspondence between propositions and n-bits binary numbers. Example 6.6. Let Θ ak = {tall, short, small, big}. The following focal element f = {tall, short, small, big} can be equivalently represented by the binary representation R = 1111. This binary code can be converted to decimal code denoted by cod such that f.cod = (2 0 * 1) + (2 1 * 1) + (2 2 * 1) + (2 3 * 1) = 15. Suppose now we have the focal element f = {tall, big}, its representation as a binary code is R = 1001. This later can be converted to decimal as follows: 1001 = (2 0 * 1) + (2 1 * 0) + (2 2 * 0) + (2 3 * 1) = 9. Thus f .cod = 9. In order to detect if there is an intersection between the focal elements f and f , it is just sufficient to check if (f.cod&f .cod) equals or not to zero.

The correspondence between subsets and decimal codes lies not only at the format but also the operations and relations. Bit-wise operations include intersection AND (&), union OR and complement. The algorithm denoted p-SKY 2 has the complexity of O(n 2 ) where n is the number of evidential objects.

With relational representation, we can immediately reduce the complexity of plausibility function (see algorithm 17 where f.mass and f .mass are the masses attributed for the focal elements f and f , respectively.) and hence reduce the complexity of p-SKY 2 algorithm. In addition, we mean by the theta cardinality, the number of possible propositions for each attribute.

We refer to the work introduced by [START_REF] Bousnina | Object-relational implementation of evidential databases[END_REF] to design the evidential database. The data generator and the algorithms, i.e., BBS, BPS, b-SKY 2 and p-SKY 2 were implemented in Java and all experiments were conducted on a 2.3 GHz Intel Core i7 processor, with 6GB of RAM. Note that the baseline algorithms do not use the methods b-dominates() and p-dominates() and iterate on all the propositions in a focal element to compute the dominance degrees between objects.

Size of the Skyline Stars

Skylines are generally of large size for large sets of objects as well as attributes A. It is larger if the attributes values are uncertain. The goal of the experiments in this section is twofold. First, we demonstrate that using p-skyline to model the skyline results over evidential data is more significant than the b-skyline in terms of size. Second, we show that the reduction of query result size is more and more significant if we compute the p-SKY 2 and the b-SKY 2 . More specially, the p-SKY 2 size is smaller than the b-SKY 2 size.

First of all, let us show how the p-skyline results can be more significant in terms of size than the b-skyline results. Suppose we have four evidential objects in O such that O = {o 1 , o 2 , o 3 , o 4 }. We study the believable dominance and the plausible dominance of each object o i in O. Table 6.5 shows the belief degrees that each object in lines dominates another object in columns. Table 6.6 shows the plausibility degrees that each object in lines dominates another object in columns. As we can observe, the degrees returned by the plausible dominance are either equal or larger than those returned by the belief dominance. That is because, as we have shown in Table 6.5 and Table 6.6, the plausibility function gives more chance to objects to dominate the others. For example, o 1 0.2-believably dominates o 2 , however, it 0.3-plausibly dominates o 2 . Let us compute the skyline objects with the following belief and plausible thresholds: b = p = 0.3 In Table 6.5 Add to that, as the figures suggest, using the b-SKY 2 and the p-SKY 2 has a significant In particular, the p-SKY 2 algorithm returns less objects in the skyline stars set. For example, in Figure 6.1a, for a high size of data set (n=500K), the b-skyline algorithm returns 0.04% of the database size (200 objects). However, the b-SKY 2 returns only 0.002% of the database size (less than 10 objects). In addition, the p-skyline algorithm returns 0.003% (15 objects) of the database size. However, the b-SKY 2 returns only 0.001% (5 objects), which is interesting for the user.

In general and in all cases, the p-SKY 2 retrieves the best result size for the user (the smallest size). It can be observed in Fig. 6.1b, because using larger sets of attributes A generally results in a high result size. In this figure, as the linear scale does not reflect the difference on the skyline size between algorithms, we present data on a logarithmic scale in Fig. 6.2. The cardinality of the b-skyline and p-skyline increases significantly with the increase of d. This is because with the increase of d an object has better opportunity to be not dominated in all attributes. However, it does not affect the p-SKY 2 size because for larger attribute sets, p-SKY 2 size grows slowly. The same observation can be done for the f effect in Fig. 6.1c and t effect in Fig. 6.1d. Another important observation in Fig. 6.1a, is that when varying n, the p-SKY 2 size is always smaller than the b-skyline size, the p-skyline size and also the b-SKY 2 size. Moreover, the figure 6.1c shows that the size of the b-skyline and the p-skyline increases with higher values of n since when n increases, more objects have chances to be not dominated. Fig. 6.1f shows that the size of the p-skyline increases with the increase of the p since the p-skyline contains the p -skyline if p > p ; see Theorem 6.5. In contrast to d, p and b, f and t have no apparent effect on the size of the b-skyline and the p-skyline as shown in Fig. 6.1c and Fig. 6.1d since varying f and t, some objects have better chances to be not dominated, while other have better chances to be dominated.

Performance and Scalability

To show the efficiency and the scalability of our algorithms, four algorithms are evaluated (the b-SKY 2 , the p-SKY 2 and their baseline algorithms referred to BBS and BPS) w.r.t. n, d, b p, t, and f . Overall, p-SKY 2 outperforms BBS and BPS. Fig. 6.3a shows that the performance of the algorithms deteriorates with the increase of n. In Fig. 6.4, we use the logarithmic scale to well perceive the effect of n. Observe that p-SKY 2 is one order of magnitude faster According to Fig. 6.3b, the running time of the algorithms increases when the number of dimensions increases. Moreover, BBS and BPS do not scale with d. This is because when d increases the size of the skyline stars becomes larger, thus a large number of objects will be selected for the the second phase. Hence, BPS performs a large number of dominance checks with a basic function. Even if the p-SKY 2 performs the same number of dominance checks than BPS, p-SKY 2 is more efficient than BPS since it can detect immediately whether an object dominates or not another.

As shown in Fig. 6.3e and Fig. 6.3f, the more b and p increase, the more the computation cost increases. That is because there is more and more dominance checks. The four algorithms are not affected by t as the skyline stars computation is independent of the number of propositions for each attribute. Fig. 6.3c shows that the execution time of the algorithms p-SKY 2 and b-SKY 2 slightly increase with the increase of f . It is not the case of the BBS and BPS as the baseline algorithms must iterate all focal elements to check if an object dominates other objects or not. Fig. 6.5 shows the same experiments, but reports the memory cost instead. As we show in Fig. 6.5a, we can note that there is a slight difference in term of memory cost between b-SKY 2 and p-SKY 2 . In addition and as expected, larger cardinality increases the percent of used memory because the higher the number of objects, the sparser the data set. However, varying d has no effect on used memory as shown in Fig. 6.5b. The same if varying the parameter f . 

Conclusion

In this chapter, we have addressed the problem of selecting skyline stars over evidential data. We introduced new semantics for the skyline analysis over evidential data and we developed efficient algorithms for computation purpose.

Our experimental evaluation demonstrated the interest of the proposed evidential skyline stars and the scalability of our algorithms. In the context of frequently updated database, new methods of maintaining the skyline stars, without restarting the analysis process from the scratch, should be introduced. Thus, the skyline stars computation if the queried database is frequently updated, is left for future work. Also, another interesting future direction is to include the level confidence of an evidential object in the skyline stars computation in the spirit of [START_REF] Yong | Skyline ranking for uncertain databases[END_REF]. The confidence level represents the uncertainty of the tuple level in a database.

In the next chapter, we conclude this thesis by summarizing the achieved contributions Chapter 7

Conclusion and Future Work

Conclusion

It has been recognized that the Skyline analysis rapidly gains popularity and constituting an integral part of many real-world applications. Therefore, enhancing the capabilities of the current Skyline operator engines with effective and efficient techniques for the Skyline retrieval and selection is an important issue.

In this dissertation, we provided optimization strategies to enable users to select the most interesting database objects in a flexible way based on their preferences. Mainly, we have discussed some aspects related to the skyline analysis over imperfect data modeled by the belief function theory. In addition, we have deeply study the effect of some parameters on the skyline size on the one hand, and the execution time on the other hand, when data are uncertain, imprecise and incomplete. We summarize below our major contributions:

• The evidential skyline: we modeled the skyline operator over imperfect data modeled by the evidence theory. We proposed how can we compute the dominance relationship between the objects of an evidential database and to retrieve the objects that are not dominated by any other objects, i.e., the skyline objects. In particular, we define a first evidential skyline model which is based on the classic skyline definition and second, we propose new semantics for the evidential skyline where objects are considered as a set of knowledge states. Furthermore, we provided new techniques to efficiently compute the skyline on evidential data.

• The evidential skyline maintenance: We proposed efficient methods to maintain the skyline results in the evidential database context when an object is inserted or deleted.

In addition, we performed an extensive experimental evaluation to demonstrate the scalability of the proposed algorithm.

• The Top-k skyline: We proposed a novel ranking criterion based on the evidential dominance relationship, to select the most relevant objects in the evidential database. We proposed a score function reflecting the dominance degree of each object. This score function aims at retrieving k objects that are expected to believably dominate the more the other objects. In a second step, we developed a suitable algorithm to the evidential skyline computation and the top-k query. We evaluated our approach through a set of thorough experiments. In addition, our extensive experiments reflects the impact of the confidence level on the top-k skyline result.

• The distributed evidential skyline: We then introduced efficient approach for querying and processing the evidential skyline over multiple and distributed servers. We proposed the notions of the marginal points to resume the dominance regions of each local evidential skyline. We the developed efficient algorithms to compute the global evidential skyline. We conducted extensive experiments to show the efficiency and the effectiveness of our approach.

• The skyline stars: Since the evidential skyline size is often too large to be improved, we define the set SKY 2 to refine the evidential skyline and retrieve the best evidential skyline objects (or the stars). In addition, we developed suitable algorithms based on scalable techniques to efficiently compute the evidential SKY 2 . We evaluated our approach through a set of experiments.

Future Work

This dissertation leads to various fertile grounds for future research. In the following, we present some ideas which show the direction that future research could follow.

• Interestingly enough, many real-life applications where uncertain, imprecise, noisy and error-prone data inherently exist. By the advent of such applications, the support of advanced analysis queries such as the skyline for imperfect data has become important. Since location based services and GPS devices can easily connect users and make groups, the skyline queries can not answer a users group needs and are not sufficient to obtain a good choice for all group members. As future work, we can propose an imperfect spatial skyline query for group of users located at different positions. For example, if a group wants to find a restaurant, it is important to select the interesting place for all users of the group. Thus, the skyline computation under this constraint is an interesting future direction.

• Context is an important concept to customize the objects selection. It is thus interesting to consider the context in the object skyline selection. I addition, taking account a user-defined satisfaction functions in the skyline computation seems an interesting direction to rank the objects retrieved by the evidential skyline .

• An interesting future direction is to introduce the notion of confidence level to bskyline computing and updating in the spirit of [START_REF] Yong | Skyline ranking for uncertain data with maybe confidence[END_REF].

A.1 Introduction

This annex presents an Evidential Skyline System (eSky) designed to extract the most interesting (skyline) objects over imperfect data. Such data are managed in the evidential databases. eSky proposes a graphical interface including five main modules: (1) Computing the skyline objects over evidential data, (2) Maintaining the skyline set (3) Computing the global skyline from the distributed environments and ( 4) Retrieving the top-k skyline objects and ( 5) Retrieving the skyline stars. We also show that the efficiency we achieved is good enough to be used in practice.

A.2 eSKY'S Architecture

The main technical problems addressed by the system eSKY, depicted in ESC component is designed to return the skyline objects from an evidential database. This component associates to each object, a belief degree of dominance. The believable dominance, denoted by b-dominance, expresses the extent to which o i dominates o j , were defined in the previous chapters.

A.2.2 Evidential Skyline Maintenance (ESM)

The role of ESM component is to compute the new skyline of frequently updated evidential databases. In particular, this component provides the maintaining of the evidential skyline in the two main cases: the object insertion and the object deletion. ESM component is used to efficiently maintain the skyline set. A straightforward method to find the new skyline after insertion (resp.deletion) is to recompute from scratch the b-Sky O , represented by the Basic Maintenance After Insertion Algorithm BMAI (resp. Basic Maintenance After Deletion Algorithm BMAD). However, this approach incurs a high computational cost. To avoid this cost, we have provided in chapter 4, an optimization technique to recompute the skyline. This technique allows decreasing the number of dominance checks.

A.2.3 Distributed Evidential Skyline (DES)

DES component allows users to efficiently compute the evidential skyline from multiple and distributed sources.

Given a set of m distributed servers S = {S 1 , S 2 , .., S m }, each possessing an evidential database O i (1 ≤ i ≤ m) and a coordinator server H which is responsible for the final execution query and for the global skyline computation as shown in For each object S i in the b-skyline, we need to know how much does it dominate others objects in the b-skyline set. To this end, we introduce the notion of the object dominance score, denoted by µ(S i ) as described in chapter 5.

A.2.5 The Evidential Skyline Stars (ESS)

The evidential skyline set computed by the ESC component can be an input for ESS component to retrieve the best evidential skyline objects called the skyline stars and denoted by SKY 2 since there is a double skyline ranking. Our proposed approaches considerably refine the huge skyline set. The conducted experiments have shown in chapter 6. (denoted by algorithm BA), is to compare each object o i against the others objects. If o i is not b-dominated, then it belongs to the evidential skyline. However, this approach results in a high computational cost as it needs to compare each object with every others. For this reason, we propose a two phase algorithm (denoted by EvSky) that follows the principle of the two scan algorithm [START_REF] Chan | Finding k-dominant skylines in high dimensional space[END_REF]. As shown in 

A.3 Demo Scenarios

A.4 Conclusion

In this annex, we have proposed our evidential skyline system and have shown some demo scenarios. We have proved that our experimental results achieved in the previous chapters are efficient enough to be used in practice.

4. P (A ∼ ) = 1 -P (A) for every A ⊂ ω. In summary probability theory

• Dedicated to random phenomena

• Unable to model uncertainty due to lack of knowledge or missing information

• Information demanding (requires to known W or prior probabilities)

• A pure numeric model (very difficult in the case of subjective probabilities)

• Complex computation and reasoning

• Additive: error propagation and amplification

• A single measure to represent uncertainty, i.e., P (A) implies P (A c ), (A c complementary of A).

A.2 Basic Possibility Theory

The theory of possibility [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF][START_REF] Dubois | Possibility theory: An approach to computerized processing of uncertainty[END_REF] described in this appendix is related to the theory fuzzy sets by defining the concept of a possibility distribution as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned to a variable.

The importance of the theory of possibility stems from the fact that-contrary to what has become a widely accepted assumption much of the information on which human decisions are based is possibilistic rather than probabilistic in nature.

The basic building blocks of possibility theory originate in Zadeh's paper [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] and have been more extensively described and investigated in books by [START_REF] Dubois | Possibility theory: An approach to computerized processing of uncertainty[END_REF]. Zadeh starts from the idea of a possibility distribution, to which he associates a possibility measure.

Let U be a set of states of affairs (or descriptions thereof), or states for short. This set can be the domain of an attribute (numerical or categorical), the Cartesian product of attribute domains, the set of interpretation of a propositional language, etc.

A possibility distribution is a mapping π from U to a totally ordered scale S, with top denoted by 1 and bottom by 0. In the finite case S = {1 = λ 1 > ...λ n > λ n+1 = 0}. The possibility scale can be the unit interval as suggested by Zadeh, or generally any finite chain, or even the set of non-negative integers. It is assumed that S is equipped with an order-reversing map denoted by λ ∈ S → 1 -λ. • π(u) = 0 means that state u is rejected as impossible.

• π(u) = 1 means that state u is totally possible (= plausible).

The larger π(u), the more possible, i.e., plausible the state u is.

In the Boolean case, π is just the characteristic function of a subset E ⊆ U of mutually exclusive states, ruling out all those states outside E considered as impossible. Possibility theory is thus a (fuzzy) set-based representation of incomplete information.

Given a simple query of the form "does event A occur?" (is the corresponding proposition a true?), where A is a subset of states, the set of models of a, the response to the query can be obtained by computing degrees of possibility [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] and necessity [START_REF] Dubois | Possibility theory: An approach to computerized processing of uncertainty[END_REF], respectively: 
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Example 2. 1 .

 1 Let us consider a classification problem of air targets, one can have as frame of discernment: Θ = {Airliner, Helicopter, M issile}. Then, 2 Θ = {∅, A, H, M, A ∪ H, A ∪ M, H ∪ M, Θ} where A = Airliner, H = Helicopter and M = Missile.
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 21 Figure 2.1: Skyline of Certain Sensor Observations

Figure 2

 2 Figure 2.3: Uncertain objects For instance, in Figure 2.3, let us compute the probability that object A dominates object C: P r(A ≺ C) = 1 3 (C has 3 instances ) × 1 4 (A has 4 instances )× ( 4 (c 1 is dominated by every instance of A) + 4 ( c 2 is dominated by every instance of A) + 0 ( c 3 is not dominated by any instance of A)) = 2 3
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7 ,

 7 and bel(t 2 .a ≤ t 1 .a) = 0.7 Let us now present the notion of the belief skyline. This later aims at retrieving the most interesting objects in O that are not believably dominated by any other objects. We first present the concept of the believable dominance denoted by the b-dominance and then the belief skyline denoted by the b-skyline. Definition 3.1. (Believable dominance) Given two objects o i , o j ∈ O and a belief threshold b, o i b-dominates o j denoted by o i b o j if and only if o i is believably as good or better than o j in all attributes a k in A (1 ≤ k ≤ d) and strictly believably better in at least one attribute

  Example 3.3. Let o i .a k and o j .a k be two bbas defined on objects o i and o j , respectively, and defined on the attribute a k such that o i .a k = {100, 200} and o j .a k = {250, 300}. We have bel(o j .a k ≤ o i .a k ) = 0 since 200 < 250. Thus o j b o i . Intuitively, an object is in the believable skyline if it is not believably dominated by another object. Based on the b-dominance relationship, the notion of b-skyline is defined as follows. Definition 3.2. (Belief skyline) The believable skyline of O, denoted by b-skyline, comprises those objects in O that are not b-dominated by any other object, i.e., b-skyline = {o i ∈ O | o j ∈ O, o j b o i }. Property 3.3. Given two belief thresholds b and b , if b < b then the b-skyline is a subset of the b -skyline, i.e., b < b ⇒ b-skyline ⊆ b -skyline. Proof. Assume that there exists an object o i such that o i ∈ b-skyline and o i / ∈ b -skyline. Since o i / ∈ b -skyline, there must exists another object, say o j , that b -dominates o

  which leads to a contradiction as o i ∈ b-skyline. Property 3.3 indicates that the size of the b-Skyline is smaller than the b -Skyline if b < b . Roughly speaking, this means that the threshold b constitutes a tool to control the size of the believable skyline.

  t 4 p=0.4 t 5 since pl(t 4 .d ≤ t 5 .d) = 0.8 and pl(t 4 .a < t 5 .a) = 0.4, however, t 5 p=0.6 t 4 since pl(t 5 .d < t 4 .d) = 0.6 and pl(t 5 .a ≤ t 4 .a) = 0.6 Property 3.4. The p-dominance relationship does not satisfy the property of transitivity as well.

Definition 3. 4 .

 4 (Plausible skyline) The plausible skyline of O, denoted by p-skyline, comprises those objects in O that are not p-dominated by any other object, i.e., p-skyline = {o i ∈ O | o j ∈ O, o j p o i }.

  Definition 3.10. (b-skyline) The belief skyline of the evidential databases, denoted by bskyline, comprises those objects that are not b-dominated by any other object. Thus, we define the notion of b-skyline as follows: b-skyline = {U ∈ O | ∃V ∈ O, V bl b U }. Proposition 3.1. Given two belief thresholds b and b , if b < b then the b-skyline is a subset of the b -skyline, i.e., b < b ⇒ b-skyline ⊆ b -skyline. Proof. Assume that there exists an object U such that U ∈ b-skyline and U / ∈ b -skyline. Since U / ∈ b -skyline, there must exists another object, say V , that b -dominates U . Thus, bel(V U ) > b . But, b < b . Therefore, bel(V U ) > b. Hence, V bl b U , which leads to a contradiction as U ∈ b-skyline. Proposition 3.1 indicates that the b-skyline size is smaller than the b -skyline size if b < b . Roughly speaking, from proposition 3.1, we can see that users have a flexible tool to control the size of the retrieved evidential skyline by varying the belief threshold.

8 if pl < p then 9

 89 return false; 10 foreach a k in A do 11 eqpl ← eqpl × pl(U.a k ≤ V.a k and U.a k < V.a k ); 12 pDom ← pl -eqpl; 13 if pDom > p then 14 return true;

Figures

  Figures 3.1, 3.2, 3.3 and 3.4 show the b-skyline size (i.e., the number of objects returned in the skyline set) and the p-skyline size w.r.t. n, d, b, p, t and f . Figures 3.1b, 3.2b present the percentage of objects returned by the belief skyline BS and the plausible skyline PS algorithms while varying the parameters in question.

Figure 3 .Figure 3

 33 Figure3.1a shows that the size on the belief and the plausible skyline increases with

Figure 3 . 4 :

 34 Figure 3.3: Skyline Size with varying the thresholds b and p

  For example, o 1 0.2-believably dominates o 2 , however, it 0.3-plausibly dominates o 2 . Let us compute the skyline objects with the following belief and plausible thresholds: b = p = 0.3 In Table 3.9, o 1 cannot be in the b-skyline since o 2 0.4 o 1 . However, o 2 , o 3 and o 4 are not 0.3-dominated by any other object. Thus, b-skyline = {o 2 , o 3 , o 4 }. In Table 3.10, o 2 cannot be in the p-skyline since o 3 0.5 o 2 and o 4 0.4 o 2 . As well as o 4 can not be in the p-skyline since o 1 0.4 o 4 , o 2 0.4 o 4 and o 3 0.5 o 4 . Thus, the p-skyline only contains o 3 since it is not plausibly dominated by any other object with p=0.3 and the p-skyline= {o 3 }.
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 3536 Figure 3.5: Skyline queries with varying n. a. CPU time, b. Used memory (%)

Figure 3 . 7 :Figure 3 . 8 :

 3738 Figure 3.7: Skyline queries with varying f . a. CPU time, b. Used memory (%)

Definition 4 .

 4 1. (Ideal Point) Let b-SKY (O i ) = {s 1 , s 2 , . . . , s u } be the set of objects being in a local believable skyline. An Ideal Point IP of b-SKY (O i ) is a certain object defined such as: < M IN (val.a 1 ), M IN (val.a 2 ), . . . , M IN (val.a d ) >, ∀s j ∈ b-SKY (O i ) where M IN (val.a k ) is the function which returns the minimum certain value defined on the attribute a k and val.a k is the set of distinct values defined on a k .

Figure 4 .

 4 Figure 4.1: Marginal Points

Figure 4

 4 Figure 4.2: Distributed Skyline

Figure 4 .

 4 Figure 4.3: Distributed Architecture Scheme

Definition 4 .

 4 3. (The local skyline b-SKY (O i )) The believable skyline of O i denoted by b-SKY(O i ), comprises those objects in O i that are not believably dominated by any other object, i.e., b-SKY (

Definition 4 . 4 .

 44 (Global Ideal Point GIP) The global ideal point is a certain and virtual point which its coordinates are the minimum values defined on the attributes a r ∈ A, i.e., ∀a r ∈ A, GIP.a r = min(IP i .a r , ∀i ∈ {1..m})

Figure 4 . 4 :Algorithm 8 :foreach a k in A do 4 if 7 foreach O i in O do 8 foreach a k in A do 9 if

 4484789 Figure 4.4: Skyline Regions and Global Marginal Points

Figure 4 . 5 :

 45 Figure 4.5: Distributed Evidential Skyline

Property 4 . 3 .Algorithm 9 : 6 Compare 7 var1 ← f alse; 8 else 9 if 10 P

 439678910 If ∃a k ∈ A such that bel(P + .a k < IP.a k ) ≥ b, then P + is added to the b-skyline. Property 4.4. If property 4.3 is not satisfied and ∃a k ∈ A such that bel(P + .a k ≤ HP.a k ) < b then P + cannot be in the b-skyline. Proof. Suppose ∀a i ∈ A, bel(P + .a i ≤ HP.a i ) = 1 and ∃a k ∈ A such that bel(P + .a k ≤ HP.a k ) = x < b. We have bel(P + HP ) = d i=1 bel(P + .a k ≤ HP.a k ) = 1 * 1 * • • • * 1 * x = x < b. Thus P + does not b-dominates HP. Computation Method Incremental maintenance after Insertion (MAI) Input: b-Sky O , P + : the object to insert; HP(a 1 , a 2 , . . . , a d ): Header Point, IP(a 1 , a 2 , . . . , a d ): Ideal Point 1 begin 2 var1 ← true; 3 while a k in A and var1 do 4 if bel(P + .a k < IP.a k ) ≥ b then 5 b-Sky O ← P + ; P + to all point in b-Sky O ; bel(HP.a k < P + .a k ) ≥ b then + cannot be in the b-skyline; MAI has the complexity of O(d) where d is the number of attributes.

Figure 4 . 6 :

 46 Figure 4.6: Exclusive Dominance Region Example.

Algorithm 10 :

 10 Incremental maintenance after Deletion (MAD) Input: O: evidential database, b-Sky O : evidential skyline, S i : the skyline point to delete; Output: b-Sky O ': the new evidential skyline; 1 begin 2 b-Sky O ← b-Sky O ∪ EDR(S i ); 3 return b-Sky O ;

Figure 4 . 7 :

 47 Figure 4.7: Elapsed Time for Maintenance operations.

7 ,

 7 and bel(o 2 .a ≤ o 1 .a) = 0.7

Definition 5 .

 5 1. (The b-skyline) The b-skyline of O denoted by b-sky O , comprises those objects in O that are not b-dominated by any other object, i.e., b-sky O

  5-sky O = {o 4 , o 5 }. bel(o 4 o 5 ) = 0.4 since bel(o 4 .d ≤ o 5 .d) = 0.4 and bel(o 4 .a ≤ o 5 .a) = 1, thus, µ(o 4 ) = 0.4 and σ(o 4 ) = 0.4 × 0.7 = 0.28 bel(o 5 o 4 ) = 0.36 since bel(o 5 .d ≤ o 4 .d) = 0.6 and bel(o 5 .a ≤ o 4 .a) = 0.6, thus, µ(o 5 ) = 0.36 and σ(o 5 ) = 0.36 × 0.9 = 0.324 Definition 5.4. (Top-k Skyline query) A top-k skyline query selects the k objects in b-sky O with the largest dominance score µ. A TOPk-CL query selects the k objects in b-sky O with the largest dominance score with confidence level σ. Example 5.3. Let us recall the example, 0.5-sky O = {o 4 , o 5 }. One can observe that top-1 = {o 4 } since µ(o 4 ) > µ(o 5 ) and top-1-CL= {o 5 } since σ(o 5 ) > σ(o 4 )

  , a second phase is needed (lines 18-21). To determine if an object o i in b-Sky O is indeed in the b-sky O , it is sufficient to compare o i with those in O \ {b-Sky O ∪ undom(o i ) ∪ {o i }} that occur earlier than o i since the other ones have been already compared against o i , where undom(o i ) is the set of objects that occurs before o i and that do not b-dominate o j . Each object in the b-sky O has a score dominance computed in line 16 and a score dominance withe CL computed in line 17. The method top-k(b-sky O , k) shown in line 22, returns k objects in b-sky O that are expected to have the largest score dominance value σ().

4 return false; 5 if 8 strict

 458 Algorithm 12: b-dominates(o i , o j , b) 1 strict ← F alse; 2 while a r in A and strict=False do 3 if o i .a - r > o j .a + r then bel(o i .a r ≤ o j .a r ) < b then 6 return false; 7 if bel(o i .a r < o j .a r ) ≥ b then

Figure 5 .

 5 Figure 5.1 depicts the execution time of the implemented algorithms with respect to

Figure 5 . 1 :

 51 Figure 5.1: Performance of Top-k Skyline varying the parameters

Figure 5 .

 5 Figure 5.2: TOPk-CL VS TOPk

  (The believable skyline) The believable skyline of O, denoted by b-skyline, comprises those objects in O that are not b-dominated by any other object, i.e., b-skyline = {o i ∈ O | o j ∈ O, o j b o i }. Property 6.3. Given two belief thresholds b and b , if b < b then the b-skyline is a subset of the b -skyline, i.e., b < b ⇒ b-skyline ⊆ b -skyline. Property 6.3 indicates that the size of the b-Skyline is smaller than the b -Skyline if b < b . Roughly speaking, from Property 6.3, we can see that users have the flexibility to control the size of the retrieved believable skyline by varying the believable threshold b.

Definition 6 .

 6 3. (The plausible dominance) Given two objects o i , o j ∈ O and a plausibility threshold p, o i p-dominates o j denoted by o i p o j if and only if o i is plausibly as good or better than o j in all attributes a k in A (1 ≤ k ≤ d) and strictly plausibly better in at least one attribute a k 0 (1 ≤ k 0 ≤ d) according to a plausible threshold p, i.e., ∀a k ∈ A : pl(o i .a k ≤ o j .a k ) ≥ p and ∃a k ∈ A : pl(o i .a k < o j .a k ) ≥ p. Property 6.4. The p-dominance relationship does not satisfy the property of transitivity as well. Definition 6.4. (The plausible skyline) The plausible skyline of O, denoted by p-skyline, comprises those objects in O that are not p-dominated by any other object, i.e., p-skyline = {o i ∈ O | o j ∈ O, o j p o i }.

  6.3.1 b-SKY 2 : The believable skyline stars In this section, we present the notions of different score functions used to compute the b-SKY 2 . Let us first introduce the concept of the dominance score. Definition 6.5. (Believable dominance score) Given an evidential database O, a believable dominance score, denoted by b-score 1 (S i ), reflects how much the skyline object S i believably dominate the rest of objects in O.

  b

Definition 6 . 7 .

 67 (b-SKY 2 ) The refined believable skyline denoted by b-SKY 2 comprises those objects in the b-skyline such that they have the highest values returned by b-score 1 and the smallest values returned by b-score 2 . To compute the b-SKY 2 , it suffices to compute the classical skyline over the data set S * containing all the object S i of b-skyline with their degrees b-score 1 and b-score 2 .

First

  , algorithm 13 computes the believable skyline through two phases. In the first phase (lines 2-20), we compare each object o i in O with those selected in b-skyline and we compute the several scores attributed for each object. If an object o j in b-Sky O is b-dominated by o i , we remove o j from the set of candidate objects since it can not be a part of the believable skyline. At the end of the comparison of o i with the objects of b-skyline, if o i is not b-dominated by any object then, it is added to b-skyline with two scores (b.score 1 and b.score 2 ).

  Algorithm 13: b-SKY 2 Input: Objects O; belief threshold b; Output: b-SKY 2 ; begin foreach o i in O do isSkyline ← true; s 1 ← 0;

  , o 1 can not be in the b-skyline since o 2 0.4 o 1 . However, o 2 , o 3 and o 4 are not 0.3-dominated by any other object. Thus, b-skyline = {o 2 , o 3 , o 4 }. In Table 6.6, o 2 can not be in the p-skyline since o 3 0.5 o 2 and o 4 0.4 o 2 . As well as o 4 can not be in the p-skyline since o 1 0.4 o 4 , o 2 0.4 o 4 and o 3 0.5 o 4 . Thus, the p-skyline only contains o 3 since it is not plausibly dominated by any other object with p=0.3 and thus the p-skyline= {o 3 }.

Fig. 6 .

 6 Fig. 6.1 shows the size (i.e., the number of objects returned) of the b-skyline, p-skyline, b-SKY 2 and p-SKY 2 w.r.t. n, d, b, p, t and f . All figures show the difference in the size of the results of p-skyline and b-skyline. In all cases, the p-skyline returns less objects than the b-skyline.
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 61 Figure 6.1: Size on the skyline stars
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 62 Figure 6.2: Effect of d on Size.
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 63 Figure 6.3: Elapsed time to compute the skyline stars

Figure 6 . 4 :

 64 Figure 6.4: Effect of n on CPU Time

  Figure 6.5: Used Memory

  Figure A.1, are described in the following.

Figure

  Figure A.1: eSKY's Architecture

  Figure A.1. DES component is based on ESC component to compute the evidential skyline over independent local databases O i . A key property gives b-SKY (H) = b-SKY (∪ 1≤i≤m b-SKY (O i )). But, this approach results in a high computational cost. In chapter 4, we have presented new techniques to improve our algorithms.A.2.4 The Top-k Evidential Skyline (TES)As shown in FigureA.1, all the result sets of the others components can be an input for TES component to rank the skyline set and retrieve the k skyline objects that are expected to have the highest score of dominance.

  Figure A.2: EDB Generation

Figure

  Figure A.3, presents the user interface of the Evidential Skyline system. Users choose one of the component already described in section A.2. The system components ESM and TES are not active until the users compute the skyline over an independent or multiple databases. DEMO 1: A straightforward algorithm to compute the b-skyline for the ESC component

Figure

  Figure A.3: eSKY Platform

  Figure A.4, we mainly evaluate the effect of the parameter n (number of objects in O) on the skyline size and the execution time.

Figure A. 5 :

 5 Figure A.5: Evidential Skyline Maintenance

  Figure A.6: Distributed Evidential Skyline

Figure A. 7 :

 7 Figure A.7: Top-k Evidential Skyline

5 .

 5 If A and B are disjoint subsets of ω, then P (A ∪ B) = P (A) + P (B). Suppose next that A and B are disjoint subsets of ω. Then every element w of A ∪ B lies either in A and not in B or in B and not in A. It follows thatP (A ∪ B)

  The function π represents the state of knowledge of an agent (about the actual state of affairs), also called an epistemic state distinguishing what is plausible from what is less plausible, what is the normal course of things from what is not, what is surprising from what is expected. It represents a flexible restriction on what is the actual state of facts with the following conventions (similar to probability, but opposite to Shackle's potential surprise scale which refers to impossibility):

  π(A) = sup u∈A π(u); (A.2) N (A) = inf s ∈A = 1 -π(u). (A.3) π(A)evaluates to what extent A is consistent with π, while N (A) evaluates to what extent A is certainly implied by π. The possibility-necessity duality is expressed by N (A) =

Table 2

 2 Example 2.3. Let us consider an example of the sensor data about target observations.

		.1: Evidential database.
	Target	Distance (10 3 .km)	Altitude (10 3 .km)
	t 1	{150, 160, 180}, 0.1 , {190, 200}, 0.9	60, 0.3 , 100, 0.7
	t 2	100, 0.7 Θ Distance , 0.3	{70, 80}, 0.8 , 80, 0.2
	t 3	70	Θ Altitude
	t 4	{50, 60}, 0.8 , {65}, 0.2	60
	t 5	{50}, 0.5 , {60}, 0.5	{60}, 0.6 , {70}, 0.4

  Example 2.4. Let Table 2.2 describe the evidential database O defined on the two attributes A and B. The imprecise worlds (IW ) derived from O are shown in Table 2.3 Table 2.2: Evidential database O.

Table 2

 2 

.3: Imprecise Worlds of O.

Table 2 .

 2 4: Possible worlds of O.

  Definition 2.6. (Pareto Dominance) Given two objects o i , o j ∈ O, o i dominates o j (in the sense of Pareto), denoted by o i o

j , if and only if o i is as good or better than o j in all attributes a k (1 ≤ k ≤ d) and strictly better in at least one attribute a

Table 2 .

 2 5: Certain Data.

	Target Distance (km) Altitude (km)
	t 1	119	17
	t 2	136	16
	t 3	114	15
	t 4	118	12

Table 2 .

 2 6: The summary of notation.

	Notation Definition
	M	Input of the skyline operation
	R	Output of the skyline operation
	T	The temporary file
	S	The main memory
	q p	point p is dominated by point q
	Algorithm 1: SkylineBNL(M)	
	Input: R; T ; S; CountIn:=0, CountOut:= 0
	begin	
	while EOF (M ) do	
	foreach p in S do	
	if TimeStamp(p)=CountIn then
	save(R, p), release (p);
	load(M, p), TimeStamp(p):=CountOut;
	CountIn:= CountIn + 1;
	foreach q in S \ {p} do	
	if p q then	
	release(p), break	
	if q p then	
	release(q), break	
	if MemoryAvalaible then
	save(T , p), release (p);
	CountOut:= CountOut + 1;
	if EOF(M) then	
	M := T , T := ∅ ;	
	CountIn:=0, CountOut:= 0 ;
	foreach p in S do	
	save(R, p), release (p);	
	return R	

Table 2 .

 2 7: The summary of notation.

	Notation Definition
	U , V , t, t Uncertain objects
	u i , v j	Instances of the uncertain objects U and V , respectively
	l 1 , l 2	

Table 2 .

 2 9: Comparative table. We denote by O the data set of uncertain objects. Let Sky O be the result of the Skyline Query (i.e., the set of objects that are not dominated by any other objects). The top-k Skyline consists on ranking objects in Sky O and retrieving the k most interesting objects.

		Probabilistic data	Possibilistic Data
		(Pei et al., 2007)	(Pivert & Prade, 2014)
		(Jiang et al., 2012)	(Bosc et al., 2011)
	Skyline		(Hadjali, Souhila, & Henri, 2011)
	Computing	(Atallah & Qi, 2009)	(Lian & Chen, 2013)
		(Ilaria et al., 2014)	(Hadjali et al., 2008)
		(Lian & Chen, 2009)	
	Top-k Skyline	(Fung et al., 2009)	∅
		(W. Zhang et al., 2013)	
	Skyline	(Zhenjie, Reynold, Dimitris, & Anthony, 2009)	∅
	Maintenance	(Baichen, Weifa, & Xu, 2009)	
	Distributed	(Amagata, Sasaki, Hara, & Nishio, 2016)	
	Skyline	(Ding & Jin, 2010)	∅
		(Li, Yi, & Jestes, 2009)	
	• The Top-k Skyline:	

Table 3

 3 Example 3.1. In Table3.1, one can check that 2

		.1: Evidential database example.
	Target	Distance (km)	Altitude (km)
	t 1	{150, 160, 180}, 0.1 , {190, 200}, 0.9	60, 0.3 , 100, 0.7
	t 2	100, 0.7 Θ Distance , 0.3	{70, 80}, 0.8 , 80, 0.2
	t 3	70	Θ Altitude
	t 4	{50, 60}, 0.8 , {65}, 0.2	60
	t 5	{50}, 0.5 , {60}, 0.5	{60}, 0.6 , {70}, 0.4

Table 3 .

 3 2: Example of Evidential Data. Given an object o i , we denote by o i .a - k and by o i .a + k respectively the minimum value and the maximum value of o i .a k . For example, in Table 3.2, t x .d -= 90 and t x .d + = 160 Property 3.2. if ∃a k ∈ A where o

	Target	Distance	Altitude
	t x	{90, 120}, 0.7 , {150, 160}, 0.3	80, 0.1 , {90, 100}, 0.9
	t y	{170, 180}, 1	{60, 70}, 0.6 , 100, 0.4
	t z	{100, 110}, 0.5 , {190, 200}, 0.5	70, 0.3 , {80, 90}, 0.7

Table 3 .

 3 6: Evidential database: Example of targets. (0.1-skyline = {t 3 }), t 4 is discarded because it is 0.16-dominated by t 3 (t 3

	Target	Distance	Altitude
	t 1	{150, 160, 180}, 0.1 , {190, 200}, 0.9	60, 0.3 , 100, 0.7
	t 2	100, 0.7 Θ, 0.3	{70, 80}, 0.8 , 80, 0.2
	t 3	{50, 60}, 0.8 , {65}, 0.2	60
	t 4	{50}, 0.5 , {60}, 0.5	{60}, 0.6 , {70}, 0.4
			bl 0.16 t 4 ).
	Thus, 0.1-skyline ⊆ 0.5-skyline	

Example 3.12. Consider the set of evidential objects presented in Table

3

.6. 0.5-skyline = {t 3 , t 4 } since t 3 and t 4 are not believably 0.5-dominated by any other objects in O. However, {t 1 , t 2 } ∈ 0.5-skyline since t 4 bl 0.88 t 1 and t 3 bl 0.7 t 2 . The 0.1-skyline only contains the object t 3

Table 3 .

 3 7: Evidential data example.Illustration 3.2. Consider the objects depicted in Table3.7. We have, bel(t x t y ) = 0.4, bel(t y t z ) = 0.3 and bel(t x t z ) = 0.035. Observe that, t x bl 0.4 t y and t y bl 0.3 t z , but t x does not 0.3-dominate t z . Thus, the b-dominance relationship is not transitive.Property 3.7. The p-dominance relationship does not satisfy the property of transitivity. Consider the objects depicted in Table3.7. We have, pl(t y t z ) = 0.3, t x , but t y does not dominate t x at all. Thus, the p-dominance relationship is not transitive.Given an object U , we denote by U.a - k and by U.a + k respectively the minimum value and the maximum value of U.a k , i.e, its bba defined on attribute a k . For example, in Table3.7, t z .d -= 100 and t z .d + = 200 Property 3.8. if ∃a k l

	Target	Distance	Altitude
	t x	{90, 120}, 0.7 , {150, 160}, 0.3	80, 0.1 , {90, 100}, 0.9
	t y	{170, 180}, 1	{60, 70}, 0.6 , 100, 0.4
	t z	{100, 110}, 0.5 , {190, 200}, 0.5	70, 0.3 , {80, 90}, 0.7

Property 3.6. The b-dominance relationship does not satisfy the property of transitivity.

Table 3 . 8 :

 38 Parameters for the Skyline Computation.

	Parameter	Symbol	Values	Default
	Number of objects	n	1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K	10K
	Number of attributes	d	2, 3, 4, 5, 6	3
	Max Nbr of focal elmts/attr	f	2, 3, 4, 6, 8, 9, 10, 11	5
	belief threshold	b	0.01, 0.1, 0.3, 0.5, 0.7, 0.9	0.5
	plausible threshold	p	0.5, 0.6, 0.7, 0.8, 0.9	0.7
	Theta cardinality/attr	t	10, 50, 100, 150, 200	100
	3.5.2 Skyline result size		

Table 3 .

 3 

		9: Belief Dominance
	Objects o 1 o 2	o 3	o 4
	o 1	-0.2 0.2 0.3
	o 2	0.4 -	0.1 0.3
	o 3	0.1 0.3	-	0.2
	o 4	0.1 0.1 0.15 -
	Table 3.10: Plausible Dominance
	Objects o 1	o 2	o 3	o 4
	o 1	-	0.3 0.25 0.4
	o 2	0.4	-	0.2 0.4
	o 3	0.2 0.5	-	0.5
	o 4	0.35 0.4 0.15 -

Table 4 .

 4 2: Frequently Used Symbols.

	Symbol	Interpretation
	H	The central server (coordinator)
	m	The number of local servers
	S i	The i th local server
	O i	The i th evidential database of server S i
	O	The global evidential database
	b-SKY (H) The global skyline objects retrieved by H
	b-SKY (O i )	The local skyline objects from by O i
	SR(O i )	

  we remove o h from the set of candidates Algorithm 6: Local Skyline over Evidential Data (LSE) Input: Objects O i ; belief threshold b Output: b-SKY (O i );

	1 begin
	2	foreach o t in O i do
	3	isSkyline ← true;
	4	foreach o h in b-SKY (O i ) do
	5	if isSkyline then
	6	if o h b o t then
	7	isSkyline ← f alse;

8 else 9 undom(o t ) ← undom(o t ) ∪ {o h }; 10 if o t b o h then 11 remove o h from b-SKY (O i ); 12 if isSkyline then 13 insert o t in b-SKY (O i ); 14 foreach o t in b-SKY (O i ) do 15 foreach o h in O i \ (b-Sky O i ∪ undom(o t ) ∪ {o t }), pos(o h ) < pos(o t ) do 16 if o h b o t then 17 remove o t from b-SKY (O i ); 18 return b-SKY (O i )

objects since it is not part of the evidential skyline. At the end of the comparison of o t with objects of b-SKY (O i ), if o t is not b-dominated by any object then, it is added to b-SKY (O i ). To avoid the situation illustrated by the example in Table

3

.7, a second phase is needed (lines 14-17). To determine if an object o

Table 4 .

 4 3: Examined Values for the Distributed Skyline Computation.

	Parameter	Symbol	Values	Default
	|O i |	n	1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K	10K
	|A|	d	2, 3, 4, 5, 6	3
	|F|	f	2, 3, 4, 6, 8, 9, 10, 11	5
	belief threshold	b	0.01, 0.1, 0.3, 0.5, 0.7, 0.9	0.5
	|Θ a k |	t	10, 50, 100, 150, 200	100
	Servers	S	3,	

Table 4 .

 4 4: b-Dominance Region Example 4.7. Suppose we have an evidential database that contains a set of objects O= {o 1 , o 2 , . . . , o 6 } and b-Sky O = {o 2 , o 4 , o 6 }. Table4.4 gives the objects that are dominated by each object in b-Sky O , i.e, the b-dominance region of skyline objects. Suppose o 2 is deleted, only objects that are exclusively dominated by o 2 are promoted as new skyline objects. However, o 3 can not be promoted to the b-skyline because it is dominated by one or more other objects. Table4.5 shows that o

	Object Skyline S i EDR(S i )
	o 2	{o 1 }
	o 4	∅
	o 6	{o 5 }

2 exclusively b-dominates o 1 . It is then promoted to be in the new skyline b-Sky O '. As a result, b-Sky O '= {o 1 , o 4 , o 6 }

Table 4 .

 4 5: Exclusive b-dominance region of skyline points.

Table 4 . 6

 46 

		Symbol	Values	Default
	Skyline size	S	1K, 3K, 5K, 7K, 10K	10K
	Number of objects in O	n	10K, 30K, 50K, 70K, 100K	10K
	Number of attributes	d	2, 4, 6, 8	4
	Number of focal elements/attribute	f	3, 5, 7, 9	5

: Parameters for the Skyline Maintenance Computation Performance Evaluation Fig. 4.7 depicts the execution time of the implemented algorithms MAI and BMAI w.r.t. S, d and f . Overall, MAI outperforms BMAI. More specifically, MAI is faster than BMAI since it can detect immediately whether an inserted object is better or not than another existing in the b-Sky O .

Table 5 .

 5 1: Evidential database example.

	Object	Distance	Altitude	Confidence Level CL
	o 1	{150, 160, 180}, 0.1 , {190, 200}, 0.9	60, 0.3 , 100, 0.7	[0.1, 0.3]
	o 2	100, 0.7 Θ, 0.3	{70, 80}, 0.8 , 80, 0.2	[0.1, 0.2]
	o 3	70	Θ	[0.2, 0.5]
	o 4	{50, 60}, 0.8 , {65}, 0.2	60	[0.7, 0.7]
	o 5	{50}, 0.5 , {60}, 0.5	{60}, 0.6 , {70}, 0.4	[0.9, 1]

Table 5 .

 5 2: Examined Values for the Top-k Skyline Computation. various parameters (n, d, f , b, t and k). Overall, TOPk-CL outperforms BTOPk-CL.

	Parameter	Symbol	Values	Default
	Number of objects	n	1K, 5K, 10K, 50K, 100K	10K
	Number of attributes	d	2, 3, 4, 5, 6	3
	Nbr of focal elmts/attr	f	2, 3, 4, 6, 8, 10	4
	belief threshold	b	0.1, 0.3, 0.5, 0.7, 0.9	0.5
	Theta cardinality	t	10, 50, 100, 200	100
	Top-k size	k	10, 20, 30, 40, 50	10

Table 6 .

 6 .1, one can check that 1 bel(t 1 .d ≤ t 2 .d) = 0, bel(t 1 .a ≤ t 2 .a) = 0.3, bel(t 2 .d < t 1 .d) = 0.7, and bel(t 2 .a ≤ t 1 .a) = 0.7 1: Evidential data for the skyline stars computation.

	Target	Distance (10 3 .km)	Altitude (10 3 .km)
	t 1	{150, 160, 180}, 0.1 , {190, 200}, 0.9	60, 0.3 , 100, 0.7
	t 2	100, 0.7 Θ Distance , 0.3	{70, 80}, 0.8 , 80, 0.2
	t 3	70	Θ Altitude
	t 4	{50, 60}, 0.8 , {65}, 0.2	60
	t 5	{50}, 0.5 , {60}, 0.5	{60}, 0.6 , {70}, 0.4
	pl(o i .a k ≤ o j .a k ) =	

. 6 )

 6 Example 6.3. Let us come back to Table6.1. Since bel(t 2 .d ≤ t 1 .d) = 0.7 and bel(t 2 .a ≤ t 1 .a) = 0.7, the belief degree that t 2 dominates t 1 is given by bel(t 2 t 1 ) = 0.7 * 0.7 = 0.49 Let us now introduce the concept of the being-dominated score. Definition 6.6. (Believable being-dominated score) Given an evidential database O, a believable being-dominated score, denoted by b-score 2 (S i ), reflects how much the skyline object S i is believably dominated by the rest of objects in O.

	b -score 2 (S i ) =	∀o j ∈O,S i =o j ,S i ∈b-skyline	bel(o j S i ) ×	1 |O| -1	(6.7)

Table 6 .

 6 .2. One can check that skyline object S 2 dominates skyline objects S 1 and S 4 . Skyline objects S 2 , S 3 and S 5 do not dominate each other. They thus form the skyline of S * . As a result, we have b-SKY 2 ={S 2 , S 3 , S 5 } 2: The database S * for the b-SKY 2 example Skyline objects b-score 1 (S i ) b-score 2 (S i )In this section, we propose how can we refine the plausible skyline results and get the skyline stars. j ∈O,S i =o j ,S i ∈p-skyline

	S 1	0.16	0.71
	S 2	0.65	0.4
	S 3	0.5	0.23
	S 4	0.23	0.69
	S 5	0.6	0.3
	6.3.2 p-SKY 2 : The plausible skyline stars
	Definition 6.8. (Plausible dominance score) Given an evidential database O, a plausible
	dominance score, denoted by p-score 1 (S i ), expresses how much the skyline objects plausibly
	dominate the rest of objects in O.		
		pl(S i o j ) ×	1 |O| -1	(6.8)

p -score 1 (S i ) = ∀o

Table 6 .

 6 3: The database S * Skyline objects b-score 1 (S i ) b-score 2 (S i )

	S 1	0.9	0.3
	S 2	0.8	0.5
	S 3	0.6	0.4
	S 4	0.4	0.2
	6.4.2 p-SKY 2 computation		

Table 6 .

 6 4: Examined Values for the Skyline Stars Computation.

	Parameter	Symbol	Values	Default
	Number of objects	n	1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K	10K
	Number of attributes	d	2, 3, 4, 5, 6, 10, 15	3
	Max Nbr of focal elmts/attr	f	2, 3, 4, 6, 8, 9, 10, 15, 20	5
	belief threshold	b	0.01, 0.1, 0.3, 0.5, 0.7, 0.9	0.5
	plausible threshold	p	0.5, 0.6, 0.7, 0.8, 0.9	0.7
	Theta cardinality/attr	t	10, 50, 100, 150, 200	100
	elements is in [1..f ].			

Table 6 .

 6 

		5: Belief Dominance
	Objects o 1 o 2	o 3	o 4
	o 1	-0.2 0.2 0.3
	o 2	0.4 -	0.1 0.3
	o 3	0.1 0.3	-	0.2
	o 4	0.1 0.1 0.15 -

In the following, and for short, we use d to denote the distance from target.

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V dominates U if V is smaller than or equal to U in all dimensions, and strictly smaller in at least one dimension.

d and a denote the distance and the altitude attributes, respectively

For short, we use d and a to denote the distance and the altitude attributes, respectively Section 5.2 -Top-k Skyline over evidential objects

d and a denote the distance and the altitude attributes, respectively Section 6.2 -Evidential skyline

This approach is introduced by[START_REF] Haenni | Implementing belief function computations[END_REF] for the purpose of reducing the evidential functions computation.

Acknowledgements

It would not have been possible to write this dissertation without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here. A special word of thank and gratitude to all, therefore the following list is by no means exhausting.

Even if BS minimizes the number of dominance checks, it also may result in a high computational cost, in particular, when the average number of focal elements and the number of attributes per object are large. Thus, it is crucial to optimize the operator bel(A ≤ B) (line 7 in algorithm 3) in order to reduce the dominance checks and improve the performance of the BS algorithm. We devise an efficient method that overcomes this problem using the minimum and maximum values of each bba w.r.t. each attribute, according to Property 3.8. The method b-dominates(U, V, b) denoted by bl b in the algorithm 2 (line 6) is detailed in algorithm 3. Here after some details about this method.

To reduce the complexity of the knowledge states dominance computation, we essentially rely on Theorem 3.1. For each attribute a k ∈ A, if the condition U.a - k > V.a + k holds, then we are sure that U could not dominate V (Property 3.8). The function returns false (line 3). If this first scan ends without satisfying the above-mentioned condition, then we do a second scan (line 5). For each attribute, if

In this case, we should not modify the value bel (already initialized to 1 in line 4). The contrary case, however, should be processed (i.e., when U.a + k ≥ V.a - k is true) by multiplying bel by bel(U.a k ≤ V.a k ). If the obtained bel does not reach the threshold b (line 8), then it is useless to continue, and the function returns false (according to Property 3.10). In lines 10 to 12, we compute the dominance degree following Theorem 3.1 and check if it exceeds the threshold b (line 13). 

Efficient DES Computation

In this section, we introduce the notions of the global marginal points based on the notion of the local marginal points. Then, we present our methods to efficiently compute the DES.

Because the believable dominance relationship is intransitive as previously proved, a naive approach to retrieve the global skyline from different local skylines from multiple servers, is to compare all objects in the coordinator server H. This way results in a very costly procedure. To avoid the full scan of the database in H, one has to prune the search space in some cases.

We present in this section an approach for optimizing the DES by using the notions of local marginal points: "IdealP oint" and "HeaderP oint" which keep up a concise summary of the skyline region of each O i , denoted by SR(O i ). A skyline region includes the candidate objects that can be in the skyline and excludes the already visited objects (the dominated objects). This summary allows a fraction of objects in each O i to be pruned from the global evidential skyline processing phases required in the naive approach, thus reducing the overall cost of the expensive dominance checks.

In this section, we use the local marginal points to define the global skyline region of O, i.e., we define the global marginal points of objects in H. Our goal is to leverage the global skyline regions to determine whether an object in H should be considered as a candidate object for the global skyline or be pruned in advance from the expensive skyline processing phases.

Suppose we have two skyline sets of the databases O 1 and O 2 . Let IP 1 and HP 1 (resp. IP 2 and HP 2 ) be the marginal points of the database O 1 (resp. O 2 ).

Example 4.4. In Figure 4.4a, we have IP 1 [START_REF] Elmi | Computing Skyline from Evidential Data[END_REF][START_REF] Elmi | Computing Skyline from Evidential Data[END_REF] andHP 1 (20, 30). Also, IP 2 (30, 35) andHP 2 (40, 50). Thus, GIP (10, 10) andGHP (40, 50). Also, in Figure 4.4b, we have GIP [START_REF] Elmi | Computing Skyline from Evidential Data[END_REF][START_REF] Elmi | Computing Skyline from Evidential Data[END_REF] andGHP (40, 40) since IP 1 (10, 20), HP 1 (30, 40) andIP 2 (20, 10), HP 2 (40, 30). In Figure 4.4b, we have GIP [START_REF] Elmi | Computing Skyline from Evidential Data[END_REF][START_REF] Elmi | Computing Skyline from Evidential Data[END_REF] andGHP (50, 40). Observe that the global skyline region of O 1 and O 2 is described by the rectangle including the marginal points GIP and GHP .

In Figure 4.4a, one can check that any object skyline in SR(O 2 ) can dominate those in SR(O 1 ). Let O i and O j be two evidential databases. 

Global Evidential Skyline Computation

The properties already described in section 4.3.3 are used in algorithm 8 whose inputs are the marginal points of all O i ∈ O, the best IP and the Best HP denoted by BIP and BHP , respectively. ∀a k in A, BIP.a k and BHP.a k are both initialized by the maximum value in Θ a k . In lines(2--6), algorithm 8 returns the best skyline region from O presented by BIP and BHP . In lines (7--11), if a given skyline region SR(O i ) is worst than the best skyline region BSR, i.e., ∀a k ∈ A, BHP.a k < IP i .a k , (see property 4.1), objects in SR(O i ) are pruned in advance from the expensive global skyline processing.

The algorithm denoted GES has the complexity of O(S × d) where S is the number of servers and d the number of attributes.

Chapter 6

The Skyline Stars

Where A < ∃ B means for every a ∈ A, ∃b ∈ B such that a < b.

Example 6.2. In Table 6.1, one can check that pl(t

Let us now discuss how can we extend the dominance relationship to evidential data.

The believable skyline

In this section, we present the notion of the believable skyline. This later aims at retrieving the most interesting objects in O that are not believably dominated by any other objects. We first present the concept of the believable dominance denoted by the b-dominance and then the believable skyline denoted by the b-skyline. Intuitively, an object is in the believable skyline if it is not believably dominated by another object. Based on the b-dominance relationship, the notion of b-skyline is defined as follows.

where the degree of plausibility that a skyline object S i dominates an object o j ∈ O, denoted by pl(S i o j ), is defined as follows:

Example 6.5. From Table 6.1, we have pl(t 2 .d ≤ t 1 .d) = 1 and pl(t 2 .a ≤ t 1 .a) = 0.7. The plausibility that t 2 dominates t 1 is then given by pl(t 2 t 1 ) = 1 * 0.7 = 0. and the smallest values returned by p-score 2 (S i ). To compute the p-SKY 2 , it suffices to compute the classical skyline over the data set S * * containing all the object S i of p-skyline with their degrees p-score 1 and p-score 2 .

Skyline Stars Computation

In this section, we first discuss how our evidential SKY 2 algorithms can highlight the properties of dominance relationship mentioned in section 3. Then, we propose an efficient method to reduce the complexity of belief function operations as well as the plausibility function operations.

b-SKY 2 computation

In this section, we describe how can we obtain the skyline stars. In a first part, we describe the b-SKY 2 algorithm which returns from the b-skyline the skyline stars.

A straightforward algorithm to compute the b-skyline is to compare each object o i against the other objects. If o i is not b-dominated, then it belongs to the believable skyline. However, this approach results in a high computational cost (see Section 6.5). A two-dimensional skyline can be computed by sorting the data (line 1 in algorithm 15). If the data is topologically sorted according to one attribute of the database (here in line 1, we sort the skyline points according to the attribute score 1 ), the test of whether an object is a part of the skyline stars does not result in a high cost: we simply need to compare an object with its predecessor. More precisely, we need to compare an object with the last previous object which is part of the skyline stars. Table 6.3 illustrates this approach. Note that the skyline objects are sorted according to the first attribute, i.e., b-score 1 (S i ). So, S 2 can be eliminated because it is dominated by S 1 , its predecessor. Likewise, S 3 can be eliminated because it is dominated by S 1 , its predecessor after S 2 has been eliminated.

We show in section 6.5, that the results clearly indicate that this method significantly save the cost of the plausibility function computation.

The complexity of b-SKY 2 and p-SKY 2 is of the order of O(n 2 ) where n is the database size. However, algorithm complexity copes with the worst algorithm scenario (a complete database scan). That is why we conduct in section 6.5 an extensive experimentation evaluation, where we consider several aspects of the evidential database to mainly assess the performance of our methods.

Experimental Evaluation

In this section, we have performed an extensive experimental evaluation of the proposed framework. We report empirical study to examine the effectiveness and the efficiency of computing the skyline stars over evidential data. More specifically, we focus on two issues: (i) the size of the skyline stars; and (ii) the scalability of our proposed techniques for computing the skyline stars. For comparison purposes, we implement the baseline algorithms for b-SKY 2 and p-SKY 2 referred to as BBS and BPS, respectively. In addition, we implement two efficient methods b-dominates function and p-dominates function to show how do they perform the b-SKY 2 and the p-SKY 2 algorithms, respectively.

Experimental Setup

We control the generation of evidential data by the parameters provided in Table 6.4, which lists the parameters and their default values. In each experimental setup, we evaluate the effect of one parameter, while we set the other to their default values. For the number of focal elements, the values listed in Table 6.4, refer to the maximum number of focal elements that a bba may contain. This means that the number of focal
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Uncertainty Models

Data uncertainty is inherent in many real-life applications. Several theories were proposed to handle the data imprecision, uncertainty and imperfection. In this appendix, we present the basic notions about the probability theory as well as the possibility theory, the main uncertainty models.

A.1 Basic Probability Theory

Probability theory began in seventeenth century France when the two great French mathematicians, Blaise Pascal and Pierre de Fermat, corresponded over two problems from games of chance. Problems like those Pascal and Fermat solved continued to influence such early researchers as Huygens, Bernoulli, and De Moivre in establishing a mathematical theory of probability. Today, probability theory is a well established branch of mathematics that finds applications in every area of scholarly activity from music to physics, and in daily experience from weather prediction to predicting the risks of new medical treatments. This appendix is designed for an introductory probability reminder.

The probabilities assigned to events by a distribution function on a sample space ω satisfy the following properties:

1. P (E) ≥ 0 for every E ⊂ ω.

P

, where A c is the complement of A. Generally, π(U ) = N (U ) = 1 and π(∅) = N (∅) = 0 (since π is normalized to 1). In the Boolean case, the possibility distribution comes down to the disjunctive (epistemic) set E ⊆ U , and possibility and necessity are then as follows:

• π(A) = 1 if A ∩ E = ∅, and 0 otherwise: function π checks whether proposition A is logically consistent with the available information or not.

• N (A) = 1 if E ⊆ A, and 0 otherwise: function N checks whether proposition A is logically entailed by the available information or not.

Possibility measures satisfy the characteristic "maxitivity" property

Necessity measures satisfy an axiom dual to that of possibility measures, namely

On infinite spaces, these axioms must hold for infinite families of sets. As a consequence, of the normalization of π, min(N (A), N (A c )) = 0 and max(π(A), π(A c )) = 1, where A c is the complement of A, or equivalently π(A) = 1 whenever N (A) > 0, which totally fits the intuition behind this formalism, namely that something somewhat certain should be first fully possible, i.e. consistent with the available information. Moreover, one cannot be somewhat certain of both A and A c , without being inconsistent. Note also that we only have N (A ∩ B) ≥ max(N (A), N (B)): This goes well with the idea that one may be certain about the event A ∩ B, without being really certain about more specific events such as A and B.

In this appendix, we have presented the basic notions about the probability theory as well as the possibilistic theory. These theories aim at modeling the uncertainty in data.

In summary, the probability theory is dedicated to random phenomena, unable to model uncertainty due to lack of knowledge or missing information. It is really a pure numeric model, thus, very difficult in the case of subjective probabilities. In addition, when talking about the possibilistic setting, it is necessary to note that the knowledge can be then encoded in a pure qualitative way while the probabilistic knowledge must be numeric. lands, 2016, pp. 199-210. 
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