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Introduction 3

1.1 Context and Motivation

The present decade has seen a revival of interest in preference queries that aim at retrieving

not necessarily all answers to queries but rather the best, most preferred answers. Skyline

queries introduced by (Borzsonyi, Kossmann, & Stocker, 2001), are a popular example

of preference queries. They rely on Pareto dominance relationship and they have been

shown to be a powerful means in multi-criteria decision-making. The skyline comprises

the objects that are not dominated (in Pareto sense) by any other object. Given a set of

database objects, defined on a set of attributes, an object U is said to dominate (in Pareto

sense) another object V if and only if U is better than or equal to V in all attributes and

better in at least one attribute.

On the other hand, due to the exploding number of information stored and shared

over Internet, and the introduction of new technologies to capture and transit data, un-

certain data analysis is an important issue in many modern real-life applications such

as decision-making, data integration, object identification (Bohm, Pryakhin, & Schubert,

2006), moving objects tracking (Cheng, Kalashnikov, & Prabhakar, 2004; Chen, Özsu, &

Oria, 2005) and data cleaning (Fuxman, Fazli, & Miller, 2005). Uncertain data in those

applications are generally caused by factors like data randomness and incompleteness, lim-

itations of measuring equipment and delay or loss in data transfer. For example, in sensor

networks, collected data often contain noise due to environmental factors, device failure or

multiple sources of errors.

To deal with imperfect1 values of database attributes, several models were proposed.

The most studied and known models are: probabilistic databases (N. Dalvi & Suciu,

2007; N. N. Dalvi & Suciu, 2007; Aggarwal & Yu, 2009), possibilistic databases (Bosc

& Pivert, 2005, 2010) and evidential databases (based on Dempster-shafer theory) (Lee,

1992a; Ee, Srivastava, & Shekhar, 1994, 1996; Bell, Guan, & Lee, 1996; Bach Tobji,

Ben Yaghlane, & Mellouli, 2008; Bousnina et al., 2016). The advantage of the evidential

database model is twofold: (i) it allows modeling both uncertainty and imprecision (due to

the lack of information) in data; and (ii) it represents a generalization of both probabilistic

and possibilistic models.

Substantial research work has addressed the problem of skyline analysis on uncertain

data from different perspectives and within various communities, including, databases;

e.g., (Pei, Jiang, Lin, & Yuan, 2007; Jiang, Pei, Lin, & Yuan, 2012; Lian & Chen, 2008;

W. Zhang et al., 2013; Bosc, Hadjali, & Pivert, 2011), Web services; e.g., (Yu & Bouguet-

taya, 2010; Benouaret, Benslimane, & Hadjali, 2012), and so on. These works are important

1Imperfect values stands for uncertain/imprecise values in our study.
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and useful, but they focus on either probabilistic data or possibilistic data. However, as

mentioned above, these models (i.e., probabilistic and possibilistic) have some limitations

to handle some imperfections like imprecision.

As an example, consider plane sensor analysis: to be aware of plane environment in

the ordinary situation or to get more information about targets in a state of war, it is

absolutely necessary to analyze sensor data to know which target is the most dangerous.

To analyze plane sensor observations, we can use some technical criteria (e.g., distance from

the target and its altitude). Ideally, we want to find the optimum plane sensor observation

that returns, among n targets, the most dangerous in all aspects (i.e., with less distance

and altitude). While such target does not exist, the skyline discloses the trade-off between

the different preferences. The skyline includes each target U such that there is any other

target V that is more dangerous. In other words, a target U is in the skyline if there exists

no other target V that dominates U in distance and altitude dimensions.

We argue that skyline analysis is also meaningful on uncertain data. Consider the skyline

analysis in sensor observations again, the initial impulse emitted by the sensor loses energy

outward journey, on impact with the object and in its return path. Add to that, the

climatic conditions and incompleteness in data, all these reasons make sensor observations

frequently imperfect. In order to access to the most accurate and reliable information, we

need to make many observations, well represent these observations and manage the lack

of data. Such imperfection in data can be well modeled by the evidence theory and such

imperfect data can be well managed in evidential databases. If observation-by-observation

data are considered, we can answer many questions such as: which target should be in the

skyline and among these skyline targets, which targets are considered the most dangerous.

In other words, which objects in the skyline are the best w.r.t. the skyline criteria.

The main purpose of this thesis is to study an advanced database tool named the skyline

operator in the context of imperfect data modeled by the evidence theory. This thesis

addresses, on the one hand, the fundamental question of how to extend the dominance

relationship to evidential data and to define the semantics of the evidential skyline, and on

the other hand, the issue of the optimization techniques for improving the computation of

the evidential skyline.

1.2 Thesis Contributions

In this thesis, based on the material presented in (Elmi, Benouaret, Hadjali, Bach Tobji,

& Ben Yaghlane, 2014), the following new contributions are made:
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• Evidential skyline operator: We tackle the problem of skyline analysis over imperfect

data modeled by the evidence theory. Specifically, we address two main challenges.

The first is about modeling skyline on evidential data: how can we capture the

dominance relationship between the objects of an evidential database? And what

should be the skyline on those objects? The second is about computing this kind of

skyline: can we provide efficient techniques for computing the skyline on evidential

data?

• Distributed evidential skyline: We first define the local evidential skyline. We then

introduce an efficient approach for querying and processing the evidential skyline over

multiple and distributed servers. This approach is mainly based on the notions of:

(i) increasing the parallelism to improve the efficiency of the distributed evidential

skyline computation and (ii) marginal points to resume the dominance regions of

each local evidential skyline. We also propose the distributed architecture scheme

of our distributed skyline processing and we develop efficient algorithms to compute

the global evidential skyline. We conduct extensive experiments to show the interest

of our approach.

• Evidential skyline maintenance: We propose efficient methods to maintain the skyline

results in the evidential database context when a set of objects is inserted or deleted.

The idea is to incrementally compute the new skyline, without reconducting an ini-

tial operation from the scratch. In addition, we perform an extensive experimental

evaluation to demonstrate the scalability of the algorithms proposed.

• Top-k evidential skyline queries: Based on the evidential dominance relationship, we

propose a score function reflecting the dominance degree of each object. This score

function aims at retrieving the k objects that are expected to believably dominate

the more the other objects. In a second step, we develop efficient algorithms to the

evidential skyline computation and the top-k query. We conduct extensive experi-

ments to show the efficiency and the effectiveness of our approach. In addition, our

extensive experiments reflect the impact of the confidence level on the top-k skyline

results.

• Evidential skyline stars: Since the evidential skyline size is often too large to be

analyzed, we define the set SKY 2 to refine the evidential skyline and retrieve the best

evidential skyline objects (or the stars). In addition, we develop suitable algorithms

based on scalable techniques to efficiently compute the evidential SKY2. We also

perform an extensive experimental evaluation to demonstrate the scalability of the

proposed algorithms.
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1.3 Thesis Structure

The remainder of this thesis is organized as follows:

In Chapter 2, we present the theory of belief functions in a first part. The main

objective of this theory is to represent and manage degrees of belief about propositions

of a given problem. It is usually regarded as a generalization of the Bayesian approach,

but has several interpretations. Then, we briefly describe the evidential databases. In a

second part, we present the basic concepts of the skyline operator over certain data as well

as uncertain data.

In chapter 3, first we tackle the problem of skyline analysis on evidential databases.

We first introduce a skyline model that is appropriate to the evidential data nature. We

then develop an efficient algorithm to compute this kind of skyline. Finally, we present a

thorough experimental evaluation of our approach.

In chapter 4, we consider the evidential skyline in both centralized and distributed

environments. first we define in section 4.2, the notion of marginal points used in the next

sections. In section 4.3, as large amounts of distributed data over Internet are commu-

nicated and shared, we propose to efficiently compute the global skyline from distributed

local sites, using the idea of skyline query over centralized evidential data. The efficiency

and effectiveness of our proposal are verified by extensive experimental results. In section

4.4, we address the problem of the skyline objects maintenance of frequently updated evi-

dential databases. In particular, we propose algorithms for maintaining evidential skyline

in the case of object insertion or object deletion. Extensive experiments are conducted to

demonstrate the efficiency and scalability of the approaches proposed.

In chapter 5, since previous researches showed that the skyline size over uncertain data

is too large, we propose to rank the evidential skyline results and retrieve the k skyline

objects that are expected to have the highest score with considering the confidence level of

the objects. We also study its impact on the top-k result. The efficiency and effectiveness

of our proposal are verified by a set of experiments.

In chapter 6, we particularly tackle an important issue, namely the skyline stars (de-

noted by SKY2) over the evidential data. This kind of skyline aims at retrieving the best

evidential skyline objects (or the stars). Efficient algorithms have been developed to com-

pute the SKY2. Extensive experiments have demonstrated the efficiency and effectiveness

of our proposed approaches that considerably refine the huge skyline.

Finally, the last chapter gives a summary of the results achieved in this thesis. We also

provide some research lines for future work.



Section 1.3 – Thesis Structure 7



Chapter 2
Background Material

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Evidential Databases . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Evidence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 The evidential database model . . . . . . . . . . . . . . . . . . . 13

2.3 Skyline Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Skyline operator on certain data . . . . . . . . . . . . . . . . . . 16

2.3.2 Skyline operator over imperfect data . . . . . . . . . . . . . . . . 21

2.3.3 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8



Section 2.1 – Introduction 9

2.1 Introduction

The necessary background material will be presented in this chapter. We first recall the

basic notions about the evidential databases in section 2.2, then a reminder about the

skyline operator will be provided and detailed in section 2.3.

2.2 Evidential Databases

We first start by presenting the basic concepts about the evidence theory.

2.2.1 Evidence theory

Shafer (Shafer, 1976) introduced the mathematical theory of evidence which is a subjective

evaluation used to characterize the truth of a proposition. The theory of evidence (also

called the belief functions theory) is a generalization of the Bayesian theory of subjective

probabilities (Shafer, 1976; Dempster, 1968).

Let Θ be a finite and exhaustive set whose elements are mutually exclusive, Θ is

called a frame of discernment (in practice, Θ stands for a set of possible alternatives

or propositions). A basic belief assignment (bba), also called a mass function, is a mapping

m : 2Θ −→ [0, 1] such that

m(∅) = 0∑
A⊆Θ

m(A) = 1 (2.1)

An element A of 2Θ is called a focal element whenever m(A) > 0. The mass m(A)

represents the level of credibility allocated to the subset A. The truth of A is measured

thanks to two functions:

The belief of A, denoted by bel(A), is defined as the sum of the masses assigned to every

subset B of A, i.e.,

bel(A) =
∑
B⊆A

m(B) (2.2)

The plausibility of A, denoted by pl(A), is defined as the sum of the masses assigned
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to every subset B of Θ that intersects A, i.e.,

pl(A) =
∑

B∩A6=∅

m(B) (2.3)

One can observe that bel(A) reflects the total weight of evidence in A, while pl(A)

reflects the total weight of evidence which is not committed to Θ−A called the complement

of A. It is necessary to note that the belief and plausibility functions are dual functions,

i.e., bel(A) = 1− pl(Ā).

Example 2.1. Let us consider a classification problem of air targets, one can have as

frame of discernment: Θ = {Airliner,Helicopter,Missile}. Then, 2Θ = {∅, A,H,M,A ∪
H,A ∪M,H ∪M,Θ} where A = Airliner, H = Helicopter and M = Missile.

The identification of a target can then be expressed by a mass function. Assume that a

sensor is available to signal the presence of a fairly quick target. It produces this bba:

m(Airliner) = 0.6, m(Airliner ∪Missile) = 0.2, m(Θ) = 0.2

Note that m(Θ) represents the mass allocated to all propositions in Θ which reflects the

partial ignorance if 0 < m(Θ) < 1 else the total ignorance (m(Θ) = 1).

One can easily check that: bel(Airliner) = m(Airliner) = 0.6,

bel(Missile) = bel(Helicopter) = 0,

bel(Airliner ∪Missile) = m(Airliner ∪Missile) +m(Airliner) = 0.8,

bel(Airliner ∪Helicopter) = m(Airliner) = 0.6,

bel(Missile ∪Helicopter) = 0.

Let us now compute the degree of plausibility of A ∪H. It is easy to see that pl(A ∪H) =

m(A) +m(H) +m(A ∪H) +m(Θ) = 0.8.

As shown in this example, plausibility function measures the intensity with which we

do not doubt the proposition (Airliner ∪Helicopter), that is to say intensity with which

(Airliner ∪Helicopter) is plausible.

In probability theory, one can easily compute the probabilities of comparisons of two

independent probability distributions. For example, we can work out the probability that

one of the associated random variables is less than or equal to the other. But in stan-

dard Dempster-Shafer theory, the definitions of the bel and pl functions do not handle

comparisons like this. When we use mass functions to represent uncertain and imprecise

information instead of probability distributions, it is necessary to extend the definition of

bel and pl functions to handle the comparison of two independent basic probability assign-

ments.

In (Bell et al., 1996), authors proposed to extend the definition of bel and pl functions

to deal with comparison of two independent bbas. This concept is also used in (Y. Zhang,
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Jun, Wei, & Wu, 2010; Y. Zhang, Wu, Wei, & Wang, 2011).

Let X and Y be two bba which are independent and let mX ,mY : 2Θ → [0, 1], be their two

mass functions, respectively. Then

Definition 2.1. (Inequality relations) For A,B ⊆ Θ, we have:

bel(X ≤ Y ) =
∑
A⊆Θ

(mX(A)
∑

B⊆Θ,A≤∀B

mY (B)). (2.4)

where A ≤∀B means that ∀a ∈ A, ∀b ∈ B, such that a ≤ b. We have also:

bel(X < Y ) =
∑
A⊆Θ

(mX(A)
∑

B⊆Θ,A<∀B

mY (B)). (2.5)

where A <∀B means that a < b for all a ∈A and b ∈B.

bel(X = Y ) =
∑
|A|=1

mX(A)mY (A) =
∑
a∈Θ

mX({a})mY ({a}). (2.6)

We have also:

pl(X ≤ Y ) =
∑
A⊆Θ

(mX(A)
∑

B⊆Θ,A≤∃B

mY (B)). (2.7)

where A ≤∃B means for every a ∈ A, there exists b ∈ B such that a ≤ b. Also, we have:

pl(X < Y ) =
∑
A⊆Θ

(mX(A)
∑

B⊆Θ,A<∃B

mY (B)). (2.8)

where A <∃B means for every a ∈ A, there exists b ∈ B such that a < b.

Example 2.2. Assume that t1 and t2 are two target observations defined on the attribute

Distance. Assume also that we have two bbas 1 t1.d and t2.d defined such that t1.d=

〈{100}, 1.0〉 and t2.d= 〈{100, 120}, 0.7, {120}, 0.3〉.
One can check that bel(t1.d ≤ t2.d) = 1, bel(t1.d < t2.d)=0.3, pl(t1.d ≤ t2.d) = 1 and

pl(t1.d < t2.d) = 1.

As we can observe, the plausible function returns an optimistic degree. That is because

intersections between bba are considered.

With appropriate definitions, we can easily prove that the definitions of bel(X∇Y) and

pl(X∇Y), where ∇ ∈ (=, 6=, <, ≤), satisfy the following properties:

1In the following, and for short, we use d to denote the distance from target.
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• 0 ≤ bel(X ∇ Y) ≤ pl(X ∇ Y) ≤ 1;

• bel(X ∇ Y) + bel(¬(X ∇ Y)) ≤ 1;

• pl(X ∇ Y) + pl( ¬ (X ∇ Y)) ≥ 1;

• If all the focal elements of mX ,mY are singletons, then bel(X ∇ Y) is Bayesian i.e.,

bel(X ∇ Y) = pl(X ∇ Y) = Pr(X ∇ Y).

General Properties

• bel(∅) = 0, bel(Ω) = 1.

• bel(A) + bel(A) ≤ 1.

• bel(A1∪A2∪ ...∪An) ≥
∑

i bel(Ai)−
∑

i<j bel(Ai∩Aj)+ ...+(−1)n+1bel(A1∩ ...∩An).

It is worth noticing that the evidence theory is very powerful in terms of resolving many

and different problems dealing with uncertain data. Let us enumerate some works using

evidential theory. Hong et al. (Hong, He, & Bell, 2010) have used the evidential approach

to query interface matching on the deep web. Add to that, evidential theory has also been

used to extract frequent items so-called Data Mining (Samet, Lefevre, & Yahia, 2014).

Let now m1 : 2Θ −→ [0, 1] be a mass function induced on the frame of discernment

Θ by a source S1 (piece of evidence) and m2 : 2Θ −→ [0, 1] a mass function induced on

the frame of discernment Θ by another source S2. Assuming that all sources are reliable

and consistent, Shafer (Shafer, 1976) introduced the rule of combination to merge mass

functions provided by distinct and independent sources. On the other hand, Smets (Smets,

2008) proposed also the conjunctive and disjunctive rules of combination for two mass

functions m1 and m2 defined on the same frame of discernment Θ.

Definition 2.2. (Conjunctive rule of combination) Considering two mass functions m1

and m2 defined on Θ. For all A ∈ 2Θ, this rule writes:

m ∩©(A) =
∑

B∩C=A

m1(B) ∗m2(C) (2.9)
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m ∩©(A) represents the combined mass function attributed to the proposition A.

Definition 2.3. (The disjunctive rule of combination) Considering two mass functions m1

and m2 defined on Θ. For all A ∈ 2Θ, this rule writes:

m ∪©(A) =
∑

B∪C=A

m1(B) ∗m2(C) (2.10)

In some cases, we need to combine two bba m1 and m2 that are defined on different

frames of discernment Θ1 and Θ2, respectively. However, rules of combination need that

bbas have the same frame of discernment. The vacuous extension of belief functions (Shafer,

1976) is a solution for that problem.

Definition 2.4. (Vacuous extension) The vacuous extension of belief functions defines

bbas on a compatible frame of discernment called the join frame of discernment which is

an extension of Θ1 and Θ2 denoted by Θ where Θ = Θ1 ×Θ2.

2.2.2 The evidential database model

As said above, several real-world applications deal with imperfect data. Introduced by Lee

(Lee, 1992b), evidential databases aim at modelling imperfect data (i.e., imprecise, missing

and uncertain data). The evidential databases provide a solid framework to model and

manage such type of information. For instance, many works (Lee, 1992a; Bach Tobji et

al., 2008; Bell et al., 1996) have addressed the issue of modeling uncertainty in database

systems.

An evidential database can be presented by its compact form as well as a set of possible

worlds. We show in the following the two different ways to present an evidential database

(EDB).

The compact form of an EDB

The evidential databases can be seen as a set of evidential objects where its attributes

values are modeled in the setting of the evidence theory.

Definition 2.5. An evidential database is a collection of objects O defined on a set of

attributes A = {a1, a2, . . . , ad} where each attribute ak has a domain Θak . We assume here

that Θak is endowed with an ordered relation. The relation between the ith object and the

kth attribute is expressed by a bba. The bba may contain one or more focal elements A.
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One can write:

oi.ak = {〈A,mik(A)〉 | A ⊆ Θak ,mik(A) > 0} where mik : 2Θak −→ [0, 1], with mik(∅) = 0

and
∑

A⊆Θak
mik(A) = 1.

Table 2.1: Evidential database.

Target Distance (103.km) Altitude (103.km)

t1 〈{150, 160, 180}, 0.1〉, 〈{190, 200}, 0.9〉 〈60, 0.3〉, 〈100, 0.7〉
t2 〈100, 0.7〉 〈ΘDistance, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
t3 70 ΘAltitude

t4 〈{50, 60}, 0.8〉, 〈{65}, 0.2〉 60

t5 〈{50}, 0.5〉, 〈{60}, 0.5〉 〈{60}, 0.6〉, 〈{70}, 0.4〉

Example 2.3. Let us consider an example of the sensor data about target observations.

Assume that observations are pervaded with uncertainty modelled thanks to evidence theory,

as shown in Table 2.1. Each target observation, defined on each attribute, may have one or

more focal elements. For example, the distance of target t1, called a bba includes two focal

elements 〈{150, 160, 180}〉 and 〈{190, 200}〉 where their mass functions are respectively 0.1

and 0.9. That is, we believe that the attribute value is either 150, 160 or 180 with a mass

function 0.1 or one of the values 190 or 200 with a mass 0.9. However, we do not know

how credible each single element is.

Note that the evidential databases can store various kind of data imperfections: Proba-

bilistic data when focal elements are singletons (t1.Altitude), Possibilistic data when focal

elements are nested (t2.Altitude), Partial ignorance: 0 < m(Θak) < 1, (t2.Distance), Per-

fect data when focal element is singleton and its mass is equal to one (t3.Distance), or

Total ignorance when m(Θak) = 1 (t3.Altitude).

Generally, evidential databases are obtained by collecting different experts opinions/observations

(Ha-Duong, 2008). Another way to obtain this type of databases, is the matching of dif-

ferent databases having the same attributes and objects, including different and missing

values. But, in our case, evidential databases result from collecting different observation

results of radars.

Possible worlds form of an EDB

In this section, we present the possible worlds of an evidential database. This form is very

important when modelling uncertain database operations. Indeed, a database operation



Section 2.2 – Evidential Databases 15

performed on the compact form is said to be a strong representation system if it produces

the same result (when exploded) when applied on the set of possible worlds of that database.

Hence, one can see the importance of the possible worlds form to valid uncertain database

operators.

As described in (Bousnina, Bach Tobji, Chebbah, Liétard, & Ben Yaghlane, 2015), the

non-compact form of an evidential database O of n objects is a set of imprecise worlds

{IW1, IW2, .., IWt} where each IWi contains n objects such that each object is defined by

only one focal element per attribute. Such representation is obtained using the disjunctive

rule of combination.

Example 2.4. Let Table 2.2 describe the evidential database O defined on the two attributes

A and B. The imprecise worlds (IW ) derived from O are shown in Table 2.3

Table 2.2: Evidential database O.

Objects A B

Z 〈{a1}, 0.3〉, 〈{a1, a2}, 0.7〉 b1

T a5 〈{b1, b0}, 0.4〉, 〈b1, 0.6〉

Table 2.3: Imprecise Worlds of O.

IW1 (0.12) IW2 (0.18) IW3 (0.28) IW4 (0.42)

(Z, a1, b1) 0.3 (Z, a1, b1) 0.3 (Z, {a1, a2}, b1) 0.7 (Z, {a1, a2}, b1) 0.7

(T, a5, {b1, b0}) 0.4 (T, a5, b1) 0.6 (T, a5, {b1, b0}) 0.4 (T, a5, b1) 0.6

Each imprecise world IWi can be expanded to different possible worlds PW as detailed

in Table 2.4.



Section 2.3 – Skyline Operator 16

Table 2.4: Possible worlds of O.

IW1 (0.12)

PW1 PW2

(Z, a1, b1) (Z, a1, b1)

(T, a5, b1) (T, a5, b0)

IW2 (0.18)

PW1

(Z, a1, b1)

(T, a5, b1)

IW4 (0.42)

PW1 PW3

(Z, a1, b1) (Z, a2, b1)

(T, a5, b1) (T, a5, b1)

IW3 (0.28)

PW1 PW2 PW3 PW4

(Z, a1, b1) (Z, a1, b1) (Z, a2, b1) (Z, a2, b1)

(T, a5, b1) (T, a5, b0) (T, a5, b1) (T, a5, b0)

The basic belief assignment of the different possible worlds are computed in the follow-

ing way:

m(IW1) = m({PW1, PW2}) = 0.12

m(IW2) = m({PW1}) = 0.18

m(IW3) = m({PW1, PW2, PW3, PW4}) = 0.28

m(IW4) = m({PW1, PW3}) = 0.42

The possible worlds form of an evidential database is essential to prove if a model

constitutes a strong representation system (Imieliński & Lipski, 1984). However, this form

results in a high computational cost. That is why, in the literature, researchers generally

use the EDB compact form for querying (Bell et al., 1996), analyzing (Elmi et al., 2014)

and mining (Bach Tobji et al., 2008; Samet et al., 2014) evidential data.

2.3 Skyline Operator

In this section, we present some previous important works proposed to deal with the skyline

operator both on certain and imperfect data.

2.3.1 Skyline operator on certain data

Basic Concepts

The idea of Skyline queries has attracted the interest of different communities. It is worth

noticing that preferences can be relevant to many types of attributes in order to return
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Figure 2.1: Skyline of Certain Sensor Observations

a set of best possible items combining multiple preference criteria. Preferences can be

expressed quantitatively by a scoring function (Aggarwal & Yu, 2009), or qualitatively

(Kiessling, 2002; Chomicki, 2007) which is the more general approach. Many definitions

have been proposed in the literature, but all of them are based on the use of Pareto order.

(Borzsonyi et al., 2001) have introduced skyline preferences that aim at filtering out a set

of interesting objects from a large set of data. An object is interesting if it is not dominated

by any other object in all dimensions. Let say that an object o1 dominates (in the Pareto

sense) another object o2 if o1 is at least as good as o2 in all dimensions and better than o2

in at least one dimension.

Consider a setO of n objects defined on a set of d attributesA = {a1, a2, . . . , ad} defined

on numerical domains. For simplicity and without loss of generality, we assume throughout

all the chapter that the smaller the value the better. Recall that oi.ak represents the value

of the ith object defined on attribute ak.

Definition 2.6. (Pareto Dominance) Given two objects oi, oj ∈ O, oi dominates oj (in the

sense of Pareto), denoted by oi � oj, if and only if oi is as good or better than oj in all

attributes ak (1 ≤ k ≤ d) and strictly better in at least one attribute ak0 (1 ≤ k0 ≤ d), i.e.,

∀ak ∈ A : oi.ak ≤ oj.ak ∧ ∃ak0 ∈ A : oi.ak0 < oj.ak0.

Definition 2.7. (Skyline) The skyline of O, denoted by SkyO, includes objects of O that

are not dominated by any other object, i.e.,

SkyO = {oi ∈ O | @ oj ∈ O, oj � oi}.

Example 2.5. Figure 2.1 shows the skyline of the database O (depicted in Table 2.5) of

flying objects representing the most dangerous targets (i.e., objects with small distance and

altitude). Note that objects in the skyline are those that are not dominated by any other

object in O w.r.t. to the skyline attributes, i.e., distance and altitude.
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Table 2.5: Certain Data.

Target Distance (km) Altitude (km)

t1 119 17

t2 136 16

t3 114 15

t4 118 12

SQL Extensions

In order to specify skyline queries, authors in (Borzsonyi et al., 2001) proposed to extend

SQL’s SELECT statement by an optional SKYLINE OF clause as follows (we denote by

di the ith dimension or attribute):

SELECT ... FROM ... WHERE ...

GROUP BY ... HAVING ...

SKYLINE OF [DISTINCT] d1 [MIN | MAX | DIFF], ..., dm [MIN | MAX | DIFF]

where MIN, MAX, DIFF denote minimum, maximum and different, respectively. For in-

stance, to return the skyline objects from the targets database, we write:

SELECT * FROM Targets

SKYLINE OF distance [MIN], altitude [MIN]

This SQL query can be written without using the Skyline clause but it is very expensive

in term of execution time. The following standard SQL query is equivalent to the previous

query:

SELECT * FROM Targets T

WHERE NOT EXISTS( SELECT * FROM Targets T1

WHERE T1.distance ≤ h.distance

AND T1.altitude ≤ h.altitude

AND (T1.distance < T.distance OR T1.altitude < T.altitude));

Skyline Algorithms

In the literature, many algorithms were proposed to compute the skyline from a database.

Hereafter, we present some of them:

Divide and Conquer Algorithm

The divide and conquer algorithm can proceed as follows:

• The first step is to get a median value. Then, it divides objects into two partitions
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P1 and P2.

• The second step is to compute the Skylines S1 and S2 of P1 and P2, respectively.

This is done by recursively applying the whole algorithm to P1 and P2. The recursive

partitioning stops if a partition contains few objects.

• Finally, it consists to merge S1 and S2 to compute the overall Skyline. This means

eliminating all the objects of S2 which are dominated by objects of S1, i.e, no objects

of S1 can be dominated by objects of S2.

BNL Algorithm

Block-Nested-Loop algorithm (BNL) works especially well if the skyline is small, and

in the best case the skyline fits into the memory and it stops in one or two iterations. BNL

algorithm runtime complexity in the best case is O(n) where n is the number of tuples in

the input, and the runtime in the worst case is O(n2). It shows very good I/O behaviour

especially if the window can contain the whole skyline. BNL algorithm (see algorithm 1

and table 2.6) consists of the following steps (Borzsonyi et al., 2001):

• Outer loop: repeat over the input list.

• Inner loop: compare object to all identified candidates.

– If object is dominated exit to the inner loop.

– If object dominates candidate from the window, delete the candidate from the

window.

• Objects that are remaining in the inner loop are added to the window.

• If window becomes full write the incomparable objects into temporary file.

• After outer loop stop

– The objects that are completed with comparisons are added to the output list.

– The temporary file is used as input list to manage the remaining comparisons.

• Repeat until the temporary file is empty.
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Table 2.6: The summary of notation.

Notation Definition

M Input of the skyline operation

R Output of the skyline operation

T The temporary file

S The main memory

q � p point p is dominated by point q

Algorithm 1: SkylineBNL(M)

Input: R; T ; S; CountIn:=0, CountOut:= 0

1 begin

2 while 6 EOF (M) do

3 foreach p in S do

4 if TimeStamp(p)=CountIn then

5 save(R, p), release (p);

6 load(M, p), TimeStamp(p):=CountOut;

7 CountIn:= CountIn + 1;

8 foreach q in S \ {p} do

9 if p � q then

10 release(p), break

11 if q � p then

12 release(q), break

13 if 6 MemoryAvalaible then

14 save(T , p), release (p);

15 CountOut:= CountOut + 1;

16 if EOF(M) then

17 M := T , T := ∅ ;

18 CountIn:=0, CountOut:= 0 ;

19 foreach p in S do

20 save(R, p), release (p);

21 return R

Three cases can occur for every tuple p at the beginning (Borzsonyi et al., 2001):
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• P is dominated by any tuple in the window so p is discarded.

• P dominates any tuple in the window so p is added in the window and all tuples

dominated by p are removed from the window.

• P is incomparable with all tuples in the window so p is added to the window if there

is space otherwise p is written in the temporary file.

B-trees Algorithm

To compute the skyline, it is also possible to use an ordered index; e.g., a B-tree. One way

to use an ordered index for a two-dimensional skyline is to scan through the whole index,

get the objects in sorted order and filter out the objects of the skyline. Assuming that

each object has d attributes and there is an index for every attribute, the skyline can be

computed as follows.

• Scan all the indexes simultaneously to find the first match, i.e., the first object to be

seen by all the indexes during the scan.

• The first match is definitely part of the skyline and can be returned immediately,

providing a fast initial response

• Scan the rest of the index entries of the first attribute’s index. If the object has

not been seen before (i.e., the index entries of this object in the other indexes have

not been examined prior to the first match), it is definitely not in the skyline and

can thus be eliminated. If any of the other indexes contain an index entry to this

object prior to the first match, then the object may or may not be in the skyline.

To determine whether it is in the skyline, an existing skyline computation algorithm

can be applied.

These algorithms have been ameliorated and improved by several research papers (Chomicki,

Godfrey, Gryz, & Liang, 2003; Chomicki, 2007; Lin, Yuan, Wang, & Lu, 2005a).

2.3.2 Skyline operator over imperfect data

Many research projects have been conducted to deal with the skyline operator over imper-

fect database. We can refer to (Alwan, Ibrahim, Udzir, & Sidi, 2017; Bosc & Pivert, 2010;

Jiang et al., 2012; Pei et al., 2007; Lian & Chen, 2008; Yu & Bouguettaya, 2010; Yong,

Lee, Kim, & won Hwang, 2014; Groz & Milo, 2015; Ilaria, Paolo, & Marco, 2014).
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In this section, we present some imperfect skyline modeled by the probability theory

as well as the possibility theory. In addition, we review the stochastic skyline introduced

by (Lin, Zhang, Zhang, & Cheema, 2011).

Probabilistic Skyline

Probabilistic skyline on uncertain data is first tackled by (Pei et al., 2007) where skyline

objects are retrieved based on skyline probabilities. This idea is also developed and im-

proved in (Jiang et al., 2012). There are other studies which have adopted the probabilistic

skyline model. Lian et al. (Lian & Chen, 2009) combine reverse skyline with uncertain

semantics and study the probabilistic reverse skyline problem in both monochromatic and

bichromatic fashion. Atallah and Qi (Atallah & Qi, 2009) develop sub-quadratic algo-

rithms to compute the skyline probabilities for every object. In (W. Zhang et al., 2013),

authors tackle the problem of efficiently on-line computing probabilistic skyline over sliding

windows. In (Yong et al., 2014), authors studied the problem of supporting skyline queries

for uncertain data with maybe confidence.

To illustrate this kind of skyline, let us consider the motivating example shown in (Pei

et al., 2007) that aims at analyzing players using the following multiple technical statistics

criteria: the number of assists and the number of rebounds.

Let us assume that for both criteria, both the larger the better, to examine the players

and to find the perfect one who can achieve the best performance in all aspects. Unfor-

tunately, such a player does not exist. The skyline analysis here is meaningful since it

discloses the trade-off between the merits of multiple aspects. A player U is in the skyline

if there does not exist other player V such that V is better than U in one aspect, and is

not worst than U in all other aspects. In figure 2.2, we plot a few games of 5 synthesis

Figure 2.2: A Set of Players

players to illustrate several important issues. In this example, performances in different
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games may vary differently. In Figure 2.2, Arbor’s performances are quite consistent while

Eddy’s performances are quite diverse. Although Eddy’s performance in one game (point

b) is better than Arbor’s performances in all games in both criteria/ dimensions. Our goal

is to detect the players that are not dominated by any other players, i.e., in the skyline set

of the players data-set.

By default, we consider objects in an n-dimensional numeric space (Attributes) A =

(a1, ..., an). We assume that, on a given attribute, the smaller the value the better.

Definition 2.8. Let U and V be two uncertain objects, and f and f´ be the corresponding

probability density functions, respectively. Let U = {u1, ..., ul1} and V = {vn, ..., vl2} be two

uncertain objects and their instances. Then, the probability that V dominates U is given

by (Pei et al., 2007):

Pr[V ≺ U ] =

∫
u∈D

f(u)(

∫
v≺u

f ′(v)dv)du (2.11)

Pr[V ≺ U ] =
1

l1l2

l1∑
i=1

| {vj ∈ V | vj ≺ ui} (2.12)

Figure 2.3: Uncertain objects

For instance, in Figure 2.3, let us compute the probability that object A dominates

object C: Pr(A ≺ C) = 1
3

(C has 3 instances ) ×1
4

(A has 4 instances )×
( 4 (c1 is dominated by every instance of A) + 4 ( c2 is dominated by every instance of A)

+ 0 ( c3 is not dominated by any instance of A))

= 2
3

Definition 2.9. (The Skyline probability of U) Let U = {u1, ..., ul1} be an uncertain object

and its instances, the probability that U is in the skyline is given by (Pei et al., 2007):

Pr(U) =
1

l

l∑
i=1

∏
V 6=U

(1− | {v ∈ V | v ≺ ui |}
| V |

(2.13)
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As another definition of skyline probability of U , the equation 2.13 can be differently

written:

Pr(U) =
1

l

∑
u∈U

Pr(u) (2.14)

Definition 2.10. (The skyline probability of the instance u ∈ U) Let U = {u1, ..., ul1} be

an uncertain object and its instances, Pr(u) is the probability that u is not dominated by

any other objects, i.e., u is in the skyline, is given by:

Pr(u) =
∏
V 6=U

(1− | {v ∈ V | v ≺ u |}
| V |

(2.15)

For uncertain data modeled by probabilistic distribution, (Pei et al., 2007) tackled the

problem of computing probabilistic skylines on large uncertain data sets and proposed two

efficient algorithms:

• The bottom-up algorithm: computes the skyline probabilities of some selected in-

stances of uncertain objects, and uses those instances to prune other instances and

uncertain objects effectively.

• The top-down algorithm: recursively divide the instances of uncertain objects into

subsets, and aggressively prunes subsets and objects.

This idea has been improved in (Yong et al., 2014) by adding the maybe confidence mea-

sure that indicates the existence probability of a given object. (Fung, Lu, & Du, 2009)

proposed an efficient algorithm being able to compare objects that are skyline points using

the probabilistic skyline model. Add to that and thanks to the work of (Fung et al., 2009),

we are able now to answer to the following question: Which of the objects are the K

nearest neighbors to a given object according to their skyline probabilities?

Moreover, (Jiang et al., 2012) proposed a novel probabilistic skyline model where an uncer-

tain object may take a probability to be in the skyline, and a p-skyline contains all objects

whose skyline probabilities are at least p (0 < p ≤ 1 ). Also, a bounding-pruning-refining

algorithms were proposed too. (W. Zhang et al., 2013) studied the problem of efficient

processing of continuous skyline queries over sliding windows on uncertain data regarding

a given probability thresholds.

Possibilistic Skyline

In contrast with probability theory, when using possibility theory, we expect the following

features: (i) the possibility theory offers a qualitative model for uncertainty. (ii) the sum

of the possibility degrees is not necessary equal to 1.



Section 2.3 – Skyline Operator 25

For uncertain attribute values that are represented by possibility distribution, (Bosc et

al., 2011; Benouaret et al., 2012) proposed to compute the possibility that a given object is

not dominated by any other object. In this framework, skyline queries aim at computing

the possibility degree that an object from a given relation is possibly not dominated by any

other object from that relation. In addition, preferences can be represented in a possibilistic

logic way using symbolic weights (Hadjali, Kaci, & Prade, 2008). As defined by (Bosc et

al., 2011), the possibilistic dominance can be stated as follows:

Definition 2.11. Let (A1, ..., An) be the schema of the relation queried. Let (a1, ..., ap) be

the attributes concerned by a preference in the query and res the result of the query. We

denote by �ak the preference relation defined over the attribute domain of attribute ak.

A given object oi is dominated by another object o′j, denoted by oi ≺ o′j iff:

∀k ∈ {1, ..., p}, o′j.ak <ak oi.ak and ∃q ∈ {1, ..., p}, o′j.aq �aq oi.aq

Let Π(o) denotes the degree of possibility that an object o from res be non-dominated by

any other object o′. For each interpretation Πi/oi of o, we compute the possibility that for

every object o′ 6= o, there exists an interpretation o′j of o′ which does not dominate oi. The

final degree Π(o) is the maximum of these degrees, computed over all the interpretations

of o. This leads to:

Π(o) = maxΠi/oi∈int(o)Π(Πi/oi) (2.16)

Where int(o) denotes the set of interpretations of o and

Π(Πi/oi) = min(Πi,mino′∈resn{o}Π(oi ⊀ o′)) (2.17)

To compute the possibility dominance between two given objects o and o′, we first should

compute the possibility degree that each interpretation of o is dominated/ not dominated

by o′

Π(oi ≺ o′) =

{
0, if{Πj/o

′
j ∈ int(o′) | oi ≺ o′j = ∅,

maxΠ/o′j∈int(o′)|oi≺o′jΠj, otherwise
(2.18)

Example 2.6. Let us consider a relation of schema (make, category), the preferences user

are as follows: (VW � Ford � Opel) and (SUV � roadster � others) and the objects:

• o1 = 〈{1/Opel, 0.8/VW}, roadster〉

• o2 = 〈Ford, {1/SUV, 0.7/VW}, Sedan}〉
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• o3 = 〈{1/VW, 0.6/Opel}, roadster〉

For computing Π(o1), we have to identify the interpretations of o1:

o11 = 1/〈Opel, roadster〉 and o12 = 0.8/〈VW, roadster〉
Starting with o11 we have: Π(o11 ⊀ o2) = 0.7 and Π(o11 ⊀ o3) = 0.6 Then, for o12 we have:

Π(o12 ⊀ o2) = 1 and Π(o12 ⊀ o3) = 1, thus:

Π(o1) = max(min(1,min(0.7, 0.6)),min(0.8,min(1, 1))) = 0.8

Stochastic Skyline

In the light of utility of applications with uncertain data, the probabilistic skyline model

is proposed to retrieve uncertain objects based on skyline probabilities. Nevertheless,

skyline probabilities cannot capture the preferences of monotonic utility functions. A

novel skyline operator, namely stochastic skyline, provides the minimum set of candidates

for the optimal solutions over all possible monotonic multiplicative utility functions (Lin

et al., 2011; W. Zhang, Lin, Zhang, Cheema, & Zhang, 2012).

Definition 2.12. (Skyline) Given a class F (family of utility (scoring) functions where

F = {
∏d

i=1 fi(xi)}, an uncertain object (random variable) U stochastically dominates V

regarding F , denoted by U ≺F V if and only if

E[f(U)] ≥ E[f(V )] for each f ∈ F

with f is a given utility function and E is the optimal solution.

Rd+ is used to denote the points in Rd with non negative coordinate values. An

uncertain object U is the set {u1, ..., um} instances in Rd+ where for 1 ≤ i ≤ m, ui is in

Rd+ and has the probability pui
(pui

> 0), and
∑m

i=2 pui
= 1

Definition 2.13. (Stochastic Dominance) Given two uncertain objects U and V , U stochas-

tically dominates V , denoted by U ≺sd V if

U.cdf(x) ≥ V.cdf(x),∀x ∈ Rd+ and ∃y ∈ Rd+such that U.cdf(y) > V.cdf(y)

The probability mass U.cdf(x) of U is the sum of the probabilities of the instances in

R = ((0, ..., 0), x) where (0, 0, ..., 0) is the origin in Rd.

Definition 2.14. (Stochastic Skyline) Given a set of uncertain objects D, an object U ∈ D

is a stochastic skyline object if there is no object V ∈ D such that V ≺sd U
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2.3.3 Comparative Study

In this section, we present the main models already proposed in the literature that modeled

the Skyline Operator in different types of data pervaded with imperfection. Table 2.7

contains the frequently used notation and its meaning.

Table 2.7: The summary of notation.

Notation Definition

U , V , t, t′ Uncertain objects

ui, vj Instances of the uncertain objects U and V , respectively

l1, l2 The number of instances of U and V , respectively

f(x) The continuous object

int(t) interpretation of the object t

The table 2.8 presents in an easy way, the definitions of the different proposed Skyline

models.

Table 2.8: Imperfect Skyline Models.

Distributions Dominance relationship Degree to be in S
Discrete Pr[V ≺ U ] = Pr(U) =

case 1
l1l2

∑l1
i=1 | {vj ∈ V | vj ≺ ui} 1

l

∑
u∈U Pr(u)

Probabilistic Continuous P (fi(
−→xi ) ≺ fj(

−→xj )) = PS(f(x)) =

Distribution Case
∫ ∫

fi(
−→xi ).fj(−→xj ).

∫
Rd f(x)

∏
g(y)∈DB′{

1,−→xi ≺ −→xj
0,−→xi ⊀ −→xj

(d−→xid−→xj )

(
1−

∫
Rd g(y).{

1, y ≺ x

0, otherwise
dy

)
dx

Possibilistic Distribution Π(ti ≺ t′) = Π(t) =
0, if

{Πj/t
′
j ∈ int(t′) | ti ≺ t′j = ∅,

maxΠ/t′j∈int(t′)|ti≺t′jΠj,

otherwise

maxΠi/ti∈int(t)Π(Πi/ti)
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In addition, it details for each uncertain model, the dominance relationship between

the objects and its degrees of being in the skyline. The degree can be a probability, if data

are modeled by the probabilistic distribution, or a possibility degree if data are represented

by the possibilistic distribution.

Table 2.9 presents a comparative study between the different Skyline models proposed

in the literature. New concepts mentioned in table 2.9 are presented as follows:

Table 2.9: Comparative table.

Probabilistic data Possibilistic Data

(Pei et al., 2007) (Pivert & Prade, 2014)

(Jiang et al., 2012) (Bosc et al., 2011)

Skyline (Hadjali, Souhila, & Henri, 2011)

Computing (Atallah & Qi, 2009) (Lian & Chen, 2013)

(Ilaria et al., 2014) (Hadjali et al., 2008)

(Lian & Chen, 2009)

Top-k Skyline (Fung et al., 2009) ∅
(W. Zhang et al., 2013)

Skyline (Zhenjie, Reynold, Dimitris, & Anthony, 2009) ∅
Maintenance (Baichen, Weifa, & Xu, 2009)

Distributed (Amagata, Sasaki, Hara, & Nishio, 2016)

Skyline (Ding & Jin, 2010) ∅
(Li, Yi, & Jestes, 2009)

• The Top-k Skyline: We denote by O the data set of uncertain objects. Let SkyO
be the result of the Skyline Query (i.e., the set of objects that are not dominated

by any other objects). The top-k Skyline consists on ranking objects in SkyO and

retrieving the k most interesting objects.

• The skyline maintenance: Maintaining the skyline results in the given database

when an object is inserted or deleted.

• The Distributed Skyline: Computing the skyline operator over multiple and dis-

tributed servers.

To the best of our knowledge, there is no previous works that deal with computing the

skyline over Evidential Data.
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2.4 Conclusion

In this chapter, we first presented the basic concepts of the evidential database. Then, we

presented a reminder about the skyline operator in the context of certain and uncertain

data. Data can be modeled by different distributions such as the probability theory as well

as the possibility theory. Both probabilistic and possibilistic skylines were detailed in this

chapter.

As said above, the evidential databases have a powerful mechanism to deal with data

uncertainty since it is a generalisation of both probabilistic and possibilistic models. For

this reason, we consider that modeling skyline operator over evidential data is really a

challenging work.

In the next chapter, we define the evidential skyline model. In addition, we propose

new semantics for the skyline operator extended to the evidential data. We also propose

efficient algorithms for the evidential skyline computation.
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3.1 Introduction

Uncertainty is inherent in several applications such as environment surveillance, market

analysis, and sensor networks. To deal with uncertain data, several studies were conducted

into both possibilistic databases (Bosc et al., 2011; Bosc & Pivert, 2010), probabilistic

databases (Pei et al., 2007; Aggarwal & Yu, 2009; N. Dalvi & Suciu, 2007; N. N. Dalvi &

Suciu, 2007) and recently evidential databases (Bell et al., 1996; Bousnina et al., 2015).

Evidential databases are very interesting since they can handle both possibilistic data,

probabilistic data and other types of imperfect data. In addition, authors in (Samet et

al., 2016) developed a belief-function based modelling approach to construct a chemical

evidential database. Then, they developed a mining process to discover valid association

rules between molecule characteristics and properties. In (Smets, 1999), the authors pre-

sented examples where the use of the evidence theory provides elegant solutions to real life

problems such as the combination of data coming from sensors competent on partially over-

lapping frames. The author in (Ha-Duong, 2008) introduced a hierarchical fusion method

based on the Transferable Belief Model to aggregate expert opinions and obtain a set of

more representative belief distributions.

On the other hand, the present decade has seen a revival of interest in preference queries

which aim at retrieving the objects from a database which are not dominated by any other

object. Many previous studies such as ((Sharif Zadeh & Shahabi, 2006; Lin, Yuan, Wang, &

Lu, 2005b; Huang, Jensen, Lu, & Ooi, 2006; Chan, Jagadish, Tan, Tung, & Zhang, 2006))

showed that skyline queries are very useful in multi-criteria decision making applications.

Starting with the pioneering work of (Borzsonyi et al., 2001), which provided foundations

for a Pareto-order-based preference model for database systems.

3.1.1 Motivating Example

As pointed out above, a large amount of works (Borzsonyi et al., 2001; Chan et al., 2006;

Huang et al., 2006; Lin et al., 2005b; Yuan et al., 2005) proved that skyline queries pro-

vide an adequate tool that can help users to make intelligent decisions in the presence of

multidimensional data where different and often conflicting criteria must be considered.

As an example, consider analyzing sensor data: to be aware of the plane environment

in the ordinary situation or to get more information about targets in a state of war, it is

absolutely necessary to analyze sensor performances to identify the most dangerous target.

To analyze sensor observations, we can use some multiple technical measures criteria (e.g.,

distance from the target, its altitude, its speed, etc..). We suppose targets having the

smaller distance and smaller altitude are the most dangerous. Ideally, we want to find the
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perfect sensor observation that returns, among n targets, which is the most dangerous in

all aspects. While such target does not exist, the skyline discloses the trade-off between

the different preferences. A target U is in the skyline if there exists no other target V such

that V dominates (in Pareto sens) U . 1

We are persuaded that skyline analysis is also meaningful on uncertain data as shown in

section 1.1. Our challenge is to answer the following question: which target is the most

dangerous if the sensor observations are uncertain and noisy? i.e., which objects are in the

evidential skyline ?

3.1.2 Contributions

In this chapter, and starting from our conference work (Elmi et al., 2014), we propose

new models to skyline definition and computation over uncertain data where uncertainty

is represented thanks to evidence theory. We particularly define two main models, the

first model is presented in section 3.2 and has a Boolean semantics. The second model is

discussed in section 3.3. The key notion of this model is the concept of knowledge states

associated to the real world.

In particular, the following two major contributions are made.

Contribution 1 is about semantics aspect. First, we propose some extensions of Pareto

dominance to evidential data. The first skyline semantics respects perfectly the classic

skyline definition. A second semantic is based on representing an evidential object U as a

set of instances, also called states of knowledge. Each knowledge state is associated with

a mass function, which reflects the degree of belief to which it represents the real world,

i.e., the object U .

The issue of comparing two evidential objects is discussed by leveraging the knowledge

state representation. A belief (resp. plausible) degree that one object dominates another

is then defined. Second, an evidential counterpart of the skyline is discussed according to

two variants: the belief skyline and the plausible skyline. We show that the latter is more

interesting in term of refinement.

Contribution 2 is about algorithmic and computing aspect. We develop efficient algo-

rithms to tackle the problem of evidential skyline computation. In particular, we provide

appropriate comparison methods between two evidential objects through reducing the num-

1V dominates U if V is smaller than or equal to U in all dimensions, and strictly smaller in at least

one dimension.
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ber of dominance checks and hence improving the performance of the proposed algorithms.

The contributions presented in this chapter are under consideration in the

International Journal of Information Sciences.

3.1.3 Chapter Organisation

The rest of the chapter is organized as follows. I sections 3.2 and 3.3, we introduce the

evidential skyline. Then, we present our algorithms to compute this kind of skyline in

section 3.4, while in section 3.5, we report our experimental evaluation. Finally, section 3.6

concludes the chapter.

3.2 Evidential Skyline

In this section, and starting from our work (Elmi et al., 2014), the following issues are

discussed:

• We first propose a new semantics of the skyline extended to the evidential databases.

• Then, we introduce two kind of evidential skylines the believable skyline (denoted by

the b-skyline) and the plausible skyline (denoted by the p-skyline).

• We develop suitable algorithms based on scalable techniques to efficiently compute

the b-skyline and the p-skyline.

3.2.1 Belief Skyline

Given a set of objectsO = {o1, o2, . . . , on} defined on a set of attributesA = {a1, a2, . . . , ad},
with oi.ak denotes the bba of object oi w.r.t. attribute ak. According to Definition 2.1,

the degree of belief that an object oi is better than or equal (or strictly better) to another

object oj w.r.t. an attribute ak writes :

bel(oi.ak ≤ oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A≤∀B

mjk(B)) (3.1)

Where A ≤∀ B stands for a ≤ b, ∀(a, b) ∈ A×B.

bel(oi.ak < oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A<∀B

mjk(B)) (3.2)
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Where A <∀ B stands for a < b, ∀(a, b) ∈ A×B.

Table 3.1: Evidential database example.

Target Distance (km) Altitude (km)

t1 〈{150, 160, 180}, 0.1〉, 〈{190, 200}, 0.9〉 〈60, 0.3〉, 〈100, 0.7〉
t2 〈100, 0.7〉 〈ΘDistance, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
t3 70 ΘAltitude

t4 〈{50, 60}, 0.8〉, 〈{65}, 0.2〉 60

t5 〈{50}, 0.5〉, 〈{60}, 0.5〉 〈{60}, 0.6〉, 〈{70}, 0.4〉

Example 3.1. In Table 3.1, one can check that 2 bel(t1.d ≤ t2.d) = 0, bel(t1.a ≤ t2.a) =

0.3, bel(t2.d < t1.d) = 0.7, and bel(t2.a ≤ t1.a) = 0.7

Let us now present the notion of the belief skyline. This later aims at retrieving the

most interesting objects in O that are not believably dominated by any other objects. We

first present the concept of the believable dominance denoted by the b-dominance and then

the belief skyline denoted by the b-skyline.

Definition 3.1. (Believable dominance) Given two objects oi, oj ∈ O and a belief threshold

b, oi b-dominates oj denoted by oi �b oj if and only if oi is believably as good or better than

oj in all attributes ak in A (1 ≤ k ≤ d) and strictly believably better in at least one attribute

ak0 (1 ≤ k0 ≤ d) according to a belief threshold b, i.e.,

∀ak ∈ A : bel(oi.ak ≤ oj.ak) ≥ b and ∃ak ∈ A : bel(oi.ak < oj.ak) ≥ b.

Example 3.2. Let b=0.2. One can check that in Table 3.1, t5 0.2-dominates t4 since

bel(t5.d < t4.d) = 0.2 and bel(t5.a ≤ t4.a) = 0.6.

In order to define the b-skyline, it is essential to state the following key property of the

b-dominance.

Property 3.1. The b-dominance relationship does not satisfy the property of transitivity.

Proof. Consider the objects depicted in Table 3.2. We have, tx �b=0.4 ty, ty �b=0.4 tz and

tx �b=0.07 tz. Observe that, tx 0.4-dominates ty and ty 0.4-dominates tz, but tx does not

0.4-dominate tz. Thus, the b-dominance relationship is not transitive.

2d and a denote the distance and the altitude attributes, respectively
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Table 3.2: Example of Evidential Data.

Target Distance Altitude

tx 〈{90, 120}, 0.7〉, 〈{150, 160}, 0.3〉 〈80, 0.1〉, 〈{90, 100}, 0.9〉
ty 〈{170, 180}, 1〉 〈{60, 70}, 0.6〉, 〈100, 0.4〉
tz 〈{100, 110}, 0.5〉, 〈{190, 200}, 0.5〉 〈70, 0.3〉, 〈{80, 90}, 0.7〉

Given an object oi, we denote by oi.a
−
k and by oi.a

+
k respectively the minimum value

and the maximum value of oi.ak. For example, in Table 3.2, tx.d
− = 90 and tx.d

+ = 160

Property 3.2. if ∃ak ∈ A where oi.a
+
k < oj.a

−
k then oj does not dominate oi, i.e., oj 6� oi

since bel(oj.ak ≤ oi.ak) = 0.

Example 3.3. Let oi.ak and oj.ak be two bbas defined on objects oi and oj, respectively,

and defined on the attribute ak such that oi.ak = {100, 200} and oj.ak = {250, 300}. We

have bel(oj.ak ≤ oi.ak) = 0 since 200 < 250. Thus oj 6�b oi.

Intuitively, an object is in the believable skyline if it is not believably dominated by

another object. Based on the b-dominance relationship, the notion of b-skyline is defined

as follows.

Definition 3.2. (Belief skyline) The believable skyline of O, denoted by b-skyline, com-

prises those objects in O that are not b-dominated by any other object, i.e., b-skyline =

{oi ∈ O | @ oj ∈ O, oj �b oi}.

Property 3.3. Given two belief thresholds b and b′, if b < b′ then the b-skyline is a subset

of the b′-skyline, i.e., b < b′ ⇒ b-skyline ⊆ b′-skyline.

Proof. Assume that there exists an object oi such that oi ∈ b-skyline and oi /∈ b′-skyline.

Since oi /∈ b′-skyline, there must exists another object, say oj, that b′-dominates oi. Thus,

∀ak ∈ A : bel(oj.ak ≤ oi.ak) > b′. But, b < b′, therefore, ∀ak ∈ A, bel(oj.ak ≤ oi.ak) > b

holds also. Hence, oj �b oi, which leads to a contradiction as oi ∈ b-skyline.

Property 3.3 indicates that the size of the b-Skyline is smaller than the b′-Skyline if

b < b′. Roughly speaking, this means that the threshold b constitutes a tool to control the

size of the believable skyline.

Example 3.4. In Table 3.1, one can observe that t1, t2 and t3 can not be in the 0.5-skyline

since they are 0.5-dominated. However, we have t4 �0.4 t5 and t5 �0.2 t4. Thus, the 0.5-

skyline comprises t4 and t5 since they are not 0.5-dominated by any other object, while the

0.4-Skyline contains only t4 as t5 is 0.4-dominated by t4. 0.4-skyline ⊆ 0.5-skyline
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3.2.2 Plausible Skyline

Given a set of objectsO = {o1, o2, . . . , on} defined on a set of attributesA = {a1, a2, . . . , ad},
with oi.ak denotes the bba of object oi w.r.t. attribute ak. According to Definition 2.1,

the degree of plausibility that an object oi is better than or equal (or strictly better) to

another object oj w.r.t. an attribute ak writes :

pl(oi.ak ≤ oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A≤∃B

mjk(B)) (3.3)

Where A ≤∃ B means for every a ∈ A, ∃b ∈ B such that a ≤ b.

pl(oi.ak < oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A<∃B

mjk(B)) (3.4)

Where A <∃ B means for every a ∈ A, ∃b ∈ B such that a < b.

Example 3.5. In Table 3.1, one can check that pl(t1.d ≤ t2.d) = 0.3, pl(t1.a ≤ t2.a) = 0.3,

pl(t2.d ≤ t1.d) = 1, pl(t2.a ≤ t1.a) = 0.7 and pl(t5.d < t4.d) = 0.6

Let us now present the notion of the plausible skyline. This later aims at retrieving the

most interesting objects in O that are not plausibly dominated by any other object.

Let us first introduce the notion of the plausible dominance, denoted by p-dominance,

and then the plausible skyline, denoted by p-skyline.

Definition 3.3. (Plausible dominance) Given two objects oi, oj ∈ O and a plausibility

threshold p, oi p-dominates oj, denoted by oi �p oj, if and only if oi is plausibly as good or

better than oj in all attributes ak in A (1 ≤ k ≤ d) and strictly plausibly better in at least

one attribute ak0 (1 ≤ k0 ≤ d) according to a plausible threshold p, i.e.,

∀ak ∈ A : pl(oi.ak ≤ oj.ak) ≥ p and ∃ak0 ∈ A : pl(oi.ak0 < oj.ak0) ≥ p.

Example 3.6. Let us again consider the evidential objects depicted in Table 3.1, we have

t4 �p=0.4 t5 since pl(t4.d ≤ t5.d) = 0.8 and pl(t4.a < t5.a) = 0.4, however, t5 �p=0.6 t4 since

pl(t5.d < t4.d) = 0.6 and pl(t5.a ≤ t4.a) = 0.6

Property 3.4. The p-dominance relationship does not satisfy the property of transitivity

as well.

Proof. One can check that ty �p=0.5 tz, tz �p=0.5 tx but ty does not dominate at all tx since

pl(ty.d ≤ tx.d) = 0. Thus, the p-dominance relationship is not transitive.
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Definition 3.4. (Plausible skyline) The plausible skyline of O, denoted by p-skyline, com-

prises those objects in O that are not p-dominated by any other object, i.e., p-skyline =

{oi ∈ O | @ oj ∈ O, oj �p oi}.

Property 3.5. Given two plausible thresholds p and p′, if p < p′ then the p-skyline is a

subset of the p′-skyline, i.e., p < p′ ⇒ p-skyline ⊆ p′-skyline.

Proof. Similar way as Property 3.2.1.

Example 3.7. From Table 3.1, one can check that the 0.7-skyline = {t4, t5} while the

0.6-skyline = {t5} thus 0.6-skyline ⊆ 0.7-skyline

For comparison purposes, the algorithms and the experiments of this evidential skyline

model are presented and discussed in chapter 6.

3.3 Evidential Skyline oriented Knowledge States

In this section, first, we propose an extension of Pareto dominance to evidential data by

representing an evidential object U as a set of instances, also called states of knowledge.

Each knowledge state is associated with a mass function, which reflects the degree of belief

to which it represents the real world, i.e., the object U . This section is organized in

three parts; we first introduce the basic notions about knowledge states of an evidential

object. Second, we describe the dominance relationship between two knowledge states.

In the third part, we define the new semantics for the evidential dominance between two

evidential objects.

3.3.1 Knowledge states

A knowledge state is an instance of an evidential object. An instance reflects a part of

evidence of an evidential object defined on the set of attributes A = {a1, a2, .., ad} and on

the joint frames of discernment denoted by Θ where Θ =
∏d

k=1 Θak where Θak stands for

the domain of the attributes ak.

Definition 3.5. (Knowledge State) A knowledge state u of an object U is a combination

of focal elements defined on the different Θak in Θ. The mass of a knowledge state u is

computed using the conjunctive rule of combination of the extended bba’s evidential values.

m : Θ→ [0, 1]
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m(∅) = 0∑
u∈U

m(u) = 1

The mass of a knowledge state is the cross product of all the focal elements masses.

m(u ∈ U) = mΘak
↑Θ(uΘak

↑Θ)

m(u ∈ U) =
d∏

k=1

m(uΘak
↑Θ)

Definition 3.6. (Evidential Object) An evidential object U is a set of knowledge states,

i.e, U = {u1, u2, . . . , un} where n =
∏d

k=1 |Fak | and |Fak | is the number of focal elements on

the kth attribute. The frame of discernment of an object is the joint frames of discernment

denoted by Θ =
∏

k≤d Θak .

Example 3.8. To illustrate the previous definitions, we present here the knowledge states

that constitute object 1 in the database example provided in Table 3.3.

Table 3.3: Evidential database

Object A B C

U 〈A1, 0.6〉 B1 〈C2, 0.2〉
〈A2, 0.4〉 〈{C1, C2}, 0.8〉

V 〈A1, 0.2〉 B1 〈C1, 0.5〉
〈{A2, A3}, 0.8〉 〈C2, 0.5〉

The frame of discernment Θ is the cross product of all the attributes’ domains Θak .

Since knowledge states represent all possible combinations, thus the evidential object U is

a set of knowledge states {u1, u2, u3, u4} where:

u1 = A1B1C2, u2 = A1B1{C1, C2}, u3 = A2B1C2 and u4 = A2B1{C1, C2}. In a first

step, we extend the bba of each evidential value composing the object U . For example, the

extended knowledge states that correspond to the attribute A in the line 1 are:

mΘA↑Θ(A1ΘBΘC) = 0.6 and mΘA↑Θ(A2ΘBΘC) = 0.4

Once we have the extended bba of all evidential values, we combine them via the conjunctive

rule, we obtain:

m1(A1B1C2) = m1(A1ΘBΘC)×m1(ΘAB1ΘC)×m1(ΘAΘBC2) = 0.6× 1× 0.2 = 0.12,
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m1(A1B1{C1, C2}) = 0.6× 1× 0.8 = 0.48,

m1(A2B1C2) = 0.4× 1× 0.2 = 0.08 and

m1(A2B1{C1, C2}) = 0.4× 1× 0.8 = 0.32.

As a result, the object U corresponds to the following knowledge states:

U = {u1 : 〈{A1, B1, C2}, 0.12〉, u2 : 〈{A1, B1, {C1, C2}}, 0.48〉,
u3 : 〈{A2, B1, C2}, 0.08〉, u4 : 〈{A2, B1, {C1, C2}}, 0.32〉}

3.3.2 Belief skyline oriented knowledge states

In this section, we define the belief dominance relationship between knowledge states. We

then extend this dominance to evidential objects, which plays a key role to define the belief

skyline.

Belief dominance between knowledge states

Given two evidential objects represented by their knowledge states U = {u1, u2, . . . , un}
and V = {v1, v2, . . . , vm} defined on d attributes which the joint frame of discernment is

Θ =
∏

k≤d Θak . The belief dominance is our belief that a state of knowledge ui dominates

vj. We say that ui believably dominates (or not) vi. The belief dominance is defined as

follows:

Definition 3.7. (Belief dominance) Let ui ∈ U , and vj ∈ V be two knowledge states whose

mass functions are mui
,mvj : 2Θ → [0, 1] respectively. Let ui.ak and vj.ak denote the part

of knowledge states ui and vj respectively, defined on the attribute ak.

The knowledge state ui believably dominates vj denoted by ui �bl vj if and only if ui is

believably as good or better than vj in all attributes ak in A (1 ≤ k ≤ d) and believably

strictly better in at least one attribute ak0 (1 ≤ k0 ≤ d), i.e., ∀ak ∈ A : ui.ak ≤∀ vj.ak and

∃ak0 ∈ A : ui.ak0 <
∀ vj.ak0

Table 3.4: Evidential Objects

Target Distance Altitude

U 〈{90, 100}, 0.7〉, 〈{1, 2, 3}, 0.9〉,
〈{65}, 0.3〉 〈{2}, 0.1〉

V 〈{100}, 1〉 〈{1, 2}, 0.8〉,
〈{3, 4}, 0.2〉
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Example 3.9. Assume we have the evidential objects of Table 3.4. Let’s now derive the

knowledge states of U and V :

u1 = 〈{90, 100}, {1, 2, 3}, 0.7× 0.9 = 0.63〉, u2 = 〈{90, 100}, {2}, 0.7× 0.1 = 0.07〉
u3 = 〈{65}, {1, 2, 3}, 0.3× 0.9 = 0.27〉, u4 = 〈{65}, {2}, 0.3× 0.1 = 0.03〉
v1 = 〈{100}, {1, 2}, 0.8〉, v2 = 〈{100}, {3, 4}, 0.2〉
Applying definition 3.7, one can write:

u1 6�bl v1 since {1, 2, 3} 6<∀ {1, 2}. Also, u1 6�bl v2 because {90, 100} ≤∀ {100} and

{1, 2, 3} ≤∀ {3, 4}, but {90, 100} 6<∀ {100} and {1, 2, 3} 6<∀ {3, 4}.
u2 �bl v2 since {90, 100} ≤∀ {100} and {2} <∀ {3, 4}
u3 �bl v2 since {65} <∀ {100} and {1, 2, 3} ≤∀ {3, 4}
u4 �bl v2 since {65} <∀ {100} and {2} ≤∀ {3, 4}.

Belief dominance between evidential objects

The belief dominance between two evidential objects is based on the belief dominance

between their instances.

Definition 3.8. Given two evidential objects U and V defined on a set of attributes A.

{u1, u2, . . . , un} and {v1, v2, . . . , vm} represent the knowledge states of the objects U and V ,

respectively, defined on d attributes whose discernment frame is Θ =
∏

1≤k≤d Θak . Let ui ∈
U , and vj ∈ V be two knowledge states whose mass functions are mui

,mvj : 2Θ → [0, 1],

respectively. The degree of belief that U believably dominates V is defined as follows:

bel(U � V ) =
n∑

i=1

m(ui)
m∑

j:ui�blvj

m(vj) (3.5)

where ui �bl vj means that ui believably dominates vj

Example 3.10. One can see that bel(U � V ) = 0.07×0.2+0.27×0.2+0.03×0.2 = 0.074.

One can also easily check that: bel(V � U) = 0.8×(0+0+0+0)+0.2×(0+0+0+0) = 0.

This means that the degree of belief that U dominates V is equal to 0.2 (while V does not

dominate U at all).

Modelling the dominance operator on the basis of the interpretations (instances) of the

compared evidential objects seems of a great interest. Indeed, an efficient way to imple-

ment a database operator (here the dominance operator), is to manipulate the compact

form of the database (such in example 2.1). Generating the whole candidate instances to
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compare two evidential objects would produce an important requirement in terms of CPU

computation and memory consumption. In this context, we introduce Theorem 3.1, to

provide an alternative representation of the belief dominance operator, based on the com-

pact form of the evidential objects. We’ll show that the introduced formula is equivalent

to definition 3.8.

Theorem 3.1.

bel(U � V ) =
d∏

k=1

bel(U.ak ≤ V.ak)−
d∏

k=1

bel(U.ak ≤ V.ak and U.ak 6< V.ak) (3.6)

Proof.

bel(U � V ) =
n∑

i=1

m(ui)
m∑

j:ui�blvj

m(vj)

=
n∑

i=1

m(ui)
m∑

j:(∀k, ui.ak≤∀vj .ak and ∃k,ui.ak<vj .ak)

m(vj)

=
n∑

i=1

m(ui)
m∑

j:(∀k, ui.ak≤∀vj .ak and not(∀k,ui.ak 6<vj .ak))

m(vj)

=
n∑

i=1

m(ui)

 ∑
j:∀k, ui.ak≤∀vj .ak

m(vj)−
∑

j:(∀k, ui.ak≤∀vj .ak and ui.ak 6<vj .ak)

m(vj)


=

n∑
i=1

m(ui)
∑

j:∀k, ui.ak≤∀vj .ak

m(vj)−
n∑

i=1

m(ui)
∑

j:(∀k, ui.ak≤∀vj .ak and ui.ak 6<vj .ak)

m(vj)

=
n∑

i=1

d∏
k=1

mik(uΘk↑Θ)
∑

j:ui≤blvj

d∏
k=1

mjk(vΘk↑Θ)−

n∑
i=1

d∏
k=1

mik(uΘk↑Θ)
m∑

j=1

d∏
∀k, ui.ak≤∀vj .ak and ui.ak 6<vj .ak

mjk(vΘk↑Θ)

=
d∏

k=1

 n∑
i=1

mik(uΘk↑Θ)
∑

j:ui≤blvj

mjk(vΘk↑Θ)

−
d∏

k=1

 n∑
i=1

mik(uΘk↑Θ)
∑

∀k, ui.ak≤∀vj .ak and ui.ak 6<∃vj .ak

mjk(vΘk↑Θ)


=

d∏
k=1

bel(U.ak ≤ V.ak)−
d∏

k=1

bel(U.ak ≤ V.ak and U.ak 6< V.ak)
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(3.7)

Table 3.5: Targets Observations

Target Distance Altitude

U 〈{5, 20}, 0.1〉, 〈{20, 30}, 0.1〉,
〈{30}, 0.9〉 〈{70}, 0.9〉

V 〈{30}, 0.1〉 〈{70}, 0.1〉,
〈{5}, 0.9〉 〈{30}, 0.9〉

Illustration 3.1. Consider the targets observations depicted in Table 3.5. We propose to

compute the belief degree that U dominates V (Theorem 3.1).∏2
k=1 bel(U.ak ≤ V.ak)−

∏2
k=1 bel(U.ak ≤ V.ak and U.ak 6< V.ak) =

((0.1× 0.1 + 0.9× 0.1)× (0.1× (0.1 + 0.9) + 0.9× 0.1))−
((0.9× 0.1)× (0.1× 0.9 + 0.1× 0.9))

=0.0028

Based on the definition 3.8, to compute the degree bel(U � V ), it is necessary to derive the

knowledge states of U and V .

U = {u1 = {{5, 20}, {20, 30}, 0.01}, u2 = {{5, 20}, {70}, 0.09},
u3 = {{30}, {20, 30}, 0.09}, u4 = {{30}, {70}, 0.81}}
V = {v1 = {{30}, {70}, 0.01}, v2 = {{30}, {30}, 0.09}, v3 = {{5}, {70}, 0.09},
v4 = {{5}, {30}, 0.81}}
bel(U � V ) = 0.01× (0.01 + 0.09) + 0.09× 0.01 + 0.09× 0.01

=0.0028

Definition 3.9. (b-dominance) Given two objects U, V ∈ O and a belief threshold b, U

believably b-dominates V , denoted by U �bl
b V if and only if bel(U � V ) ≥ b.

Example 3.11. In Table 3.4, U �bl
0.1 V since bel(U � V ) = 0.2 ≥ 0.1, however, V does

not believably 0.1-dominates U denoted by V 6�bl
0.1 U

Belief Skyline

Definition 3.10. (b-skyline) The belief skyline of the evidential databases, denoted by b-

skyline, comprises those objects that are not b-dominated by any other object. Thus, we

define the notion of b-skyline as follows:

b-skyline = {U ∈ O |6 ∃V ∈ O, V �bl
b U}.
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Proposition 3.1. Given two belief thresholds b and b′, if b < b′ then the b-skyline is a

subset of the b′-skyline, i.e., b < b′ ⇒ b-skyline ⊆ b′-skyline.

Proof. Assume that there exists an object U such that U ∈ b-skyline and U /∈ b′-skyline.
Since U /∈ b′-skyline, there must exists another object, say V , that b′-dominates U . Thus,

bel(V � U) > b′. But, b < b′. Therefore, bel(V � U) > b. Hence, V �bl
b U , which leads to

a contradiction as U ∈ b-skyline.

Proposition 3.1 indicates that the b-skyline size is smaller than the b′-skyline size if

b < b′. Roughly speaking, from proposition 3.1, we can see that users have a flexible tool

to control the size of the retrieved evidential skyline by varying the belief threshold.

Table 3.6: Evidential database: Example of targets.

Target Distance Altitude

t1 〈{150, 160, 180}, 0.1〉, 〈{190, 200}, 0.9〉 〈60, 0.3〉, 〈100, 0.7〉
t2 〈100, 0.7〉 〈Θ, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
t3 〈{50, 60}, 0.8〉, 〈{65}, 0.2〉 60

t4 〈{50}, 0.5〉, 〈{60}, 0.5〉 〈{60}, 0.6〉, 〈{70}, 0.4〉

Example 3.12. Consider the set of evidential objects presented in Table 3.6. 0.5-skyline =

{t3, t4} since t3 and t4 are not believably 0.5-dominated by any other objects in O. However,

{t1, t2} 6∈ 0.5-skyline since t4 �bl
0.88 t1 and t3 �bl

0.7 t2. The 0.1-skyline only contains the ob-

ject t3 (0.1-skyline = {t3}), t4 is discarded because it is 0.16-dominated by t3 (t3 �bl
0.16 t4).

Thus, 0.1-skyline ⊆ 0.5-skyline

3.3.3 Plausible skyline oriented knowledge states

In this section, we define the plausible dominance operator between knowledge states. We

then extend it to evidential objects. We define then the notion of the plausible skyline.

Plausible dominance between knowledge states

Given two evidential objects U = {u1, u2, . . . , un} and V = ({v1, v2, . . . , vm} defined on d

attributes which the joint frame of discernment is Θ =
∏

k≤d Θak . To check if a state of

knowledge ui plausibly dominates vj or not, we proceed as follows.
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Definition 3.11. (Plausible dominance) Let ui ∈ U , and vj ∈ V be two knowledge states

whose mass functions are mui
,mvj : 2Θ → [0, 1], respectively. Let ui.ak and vj.ak denote

the part of knowledge states ui and vj, respectively, defined on the attribute ak.

The knowledge state ui plausibly dominates vj denoted by ui �pl vj if and only if ui is

plausibly as good or better than vj in all attributes ak in A (1 ≤ k ≤ d) and plausibly

strictly better in at least one attribute ak0 (1 ≤ k0 ≤ d), i.e., ∀ak ∈ A : ui.ak ≤∃ vj.ak and

∃ak0 ∈ A : ui.ak0 <
∃ vj.ak0

Example 3.13. Let us consider the Table 3.4 again. The knowledge states of the objects

U and V are already derived in example 3.9. Applying definition 3.11, we can say that:

u1 �pl v1 since {90, 100} ≤∃ {100} and {1, 2, 3} <∃ {1, 2}
u3 �pl v1 since {65} <∃ {100} and {1, 2, 3} ≤∃ {1, 2}
u4 �pl v1 since {65} <∃ {100} and {2} ≤∃ {1, 2}

Plausible dominance between evidential objects

Definition 3.12. Given two evidential objects U and V defined on a set of attributes A.

{u1, u2, . . . , un} and {v1, v2, . . . , vm} represent the knowledge states of the objects U and V ,

respectively, defined on d attributes whose discernment frame is Θ =
∏

1≤k≤d Θak . Let ui ∈
U , and vj ∈ V be two knowledge states whose mass functions are mui

,mvj : 2Θ → [0, 1],

respectively. The degree of plausibility that U plausibly dominates V is defined as follows:

pl(U � V ) =
n∑

i=1

m(ui)
m∑

j:ui�plvj

m(vj) (3.8)

where ui �pl vj means that ui plausibly dominates vj

Theorem 3.2.

pl(U � V ) =
d∏

k=1

pl(U.ak ≤ V.ak)−
d∏

k=1

pl(U.ak ≤ V.ak and U.ak 6< V.ak) (3.9)
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Proof.

pl(U � V ) =
n∑

i=1

m(ui)
m∑

j:ui�plvj

m(vj)

=
n∑

i=1

m(ui)
m∑

j:(∃k, ui.ak≤∃vj .ak and ∃k,ui.ak<vj .ak)

m(vj)

=
n∑

i=1

m(ui)
m∑

j:(∃k, ui.ak≤∃vj .ak and not(∀k,ui.ak 6<vj .ak))

m(vj)

=
n∑

i=1

m(ui)

 ∑
(j:∃k, ui.ak≤∃vj .ak)

m(vj)−
∑

j:(∃k, ui.ak≤∃vj .ak and ∀k, ui.ak 6<vj .ak)

m(vj)


=

n∑
i=1

m(ui)
∑

(j:∃k, ui.ak≤∃vj .ak)

m(vj)−
n∑

i=1

m(ui)
∑

(j:∀k, ui.ak 6<vj .ak)

m(vj)

=
n∑

i=1

d∏
k=1

mik(uΘk↑Θ)
∑

(j:∃k, uΘk↑Θ.ak≤∃vΘk↑Θ.ak)

d∏
k=1

mjk(vΘk↑Θ)−

n∑
i=1

d∏
k=1

mik(uΘk↑Θ)
m∑

j=1

d∏
∀k, uΘk↑Θ.ak 6<∀vΘk↑Θ.ak

mjk(vΘk↑Θ)

=
d∏

k=1

pl(U.ak ≤ V.ak)−
d∏

k=1

pl(U.ak ≤ V.ak and U.ak 6< V.ak)

(3.10)

Example 3.14. Le us consider the evidential database example shown in Table 3.5. We

propose to compute the plausibility that U dominates V according to Theorem 3.2.

pl(U � V ) =
∏2

k pl(U.ak ≤ V.ak) −
∏2

k pl(U.ak ≤ V.ak and U.ak 6< V.ak) = 0.0361 −
0.0162 = 0.0199

Using the definition 3.12, that consists in comparing the instances of U and V , we obtain

the same result:

U = {u1 = {{5, 20}, {20, 30}, 0.01}, u2 = {{5, 20}, {70}, 0.09},
u3 = {{30}, {20, 30}, 0.09}, u4 = {{30}, {70}, 0.81}}
V = {v1 = {{30}, {70}, 0.01}, v2 = {{30}, {30}, 0.09}, v3 = {{5}, {70}, 0.09},
v4 = {{5}, {30}, 0.81}}
pl(U � V ) = 0.01×(0.01+0.09+0.09+0.81)+0.09×(0.01)+0.09×(0.01+0.09) = 0.0199
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Definition 3.13. (p-dominance) Given two objects U, V ∈ O and a plausible threshold p,

U plausibly dominates V , denoted by U �pl
p V according to the threshold p if and only if

pl(U � V ) ≥ p.

Example 3.15. As we can see in example 3.5, U 6�pl
0.9 V since pl(U � V ) = 0.0199,

however, V plausibly 0.9-dominates U since pl(V � U) = 0.9639 > 0.9

Plausible skyline

Definition 3.14. (p-Skyline) The plausible skyline is the set of evidential objects that are

not plausibly dominated by any other objects in O, we define the notion of p-skyline as

follows:

p-skyline= {U ∈ O |6 ∃V ∈ O, V �pl
p U}.

Proposition 3.2. Given two plausible thresholds p and p′, if p < p′ then the p-skyline is

a subset of the p′-skyline, i.e., p < p′ ⇒ p-skyline ⊆ p′-skyline.

Proof. Assume that there exists an object U such that U ∈ p-skyline and U /∈ p′-skyline.
Since U /∈ p′-skyline, there must exist another object, say V , that p′-dominates U . Thus,

pl(V � U) > p′. But, p < p′. Therefore, pl(V � U) > p. Hence, V �pl
p U , which leads to

a contradiction as U ∈ p-skyline.

3.3.4 Analysis of the evidential dominance

In this part, we introduce several fundamental properties of dominance relationship be-

tween imperfect objects modeled by the evidence theory. These properties are used later

to efficiently perform the main operations on evidential skyline computation, essentially,

to minimize the dominance checks.

Table 3.7: Evidential data example.

Target Distance Altitude

tx 〈{90, 120}, 0.7〉, 〈{150, 160}, 0.3〉 〈80, 0.1〉, 〈{90, 100}, 0.9〉
ty 〈{170, 180}, 1〉 〈{60, 70}, 0.6〉, 〈100, 0.4〉
tz 〈{100, 110}, 0.5〉, 〈{190, 200}, 0.5〉 〈70, 0.3〉, 〈{80, 90}, 0.7〉

Property 3.6. The b-dominance relationship does not satisfy the property of transitivity.
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Illustration 3.2. Consider the objects depicted in Table 3.7. We have, bel(tx � ty) = 0.4,

bel(ty � tz) = 0.3 and bel(tx � tz) = 0.035. Observe that, tx �bl
0.4 ty and ty �bl

0.3 tz, but tx
does not 0.3-dominate tz. Thus, the b-dominance relationship is not transitive.

Property 3.7. The p-dominance relationship does not satisfy the property of transitivity.

Illustration 3.3. Consider the objects depicted in Table 3.7. We have, pl(ty � tz) = 0.3,

pl(tz � tx) = 0.5 and pl(ty � tx) = 0. Observe that, ty �pl
0.3 tz and tz �pl

0.5 tx, but ty does

not dominate tx at all. Thus, the p-dominance relationship is not transitive.

Given an object U , we denote by U.a−k and by U.a+
k respectively the minimum value

and the maximum value of U.ak, i.e, its bba defined on attribute ak. For example, in Table

3.7, tz.d
− = 100 and tz.d

+ = 200

Property 3.8. if ∃akl ∈ A such that V.a+
kl
< U.a−kl then bel(U � V ) = 0 since bel(U.akl ≤

V.akl) = 0.

Property 3.9. if ∃akl ∈ A such that V.a+
kl
< U.a−kl then pl(U � V ) = 0 since pl(U.akl ≤

V.akl) = 0.

Property 3.10. Let U.ak and V.ak be two bba of the evidential objects U and V , respec-

tively, defined on attribute ak. Let b be a threshold.

If ∃ak ∈ A such that bel(U.ak ≤ V.ak) < b then U does not b-dominate V .

Proof. We have bel(U.ak ≤ V.ak) = xk ∈ [0, 1]. Suppose ∃k0 ∈ {1, d}/xk0 < b and ∀
attribute ak ∈ A \ {ak0}, xk = 1. Then bel(U � V ) =

∏d
k=1 xk = x1 × x2 × · · · × xk0 ×

· · · × xd = xk0 × 1 = xk0 < b

3.4 Evidential Skyline Computation

In this section, we develop efficient algorithms to tackle the problem of evidential skyline

computation. In particular, we provide appropriate comparison methods between two

evidential objects through reducing the number of dominance checks and hence improving

the performance of the proposed algorithms.

3.4.1 Belief skyline computation

A straightforward algorithm to compute the belief skyline (denoted by BBS) is to compare

each object U against the other objects. If U is not b-dominated, then it belongs to the
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b-skyline. However, this approach results in a high computational cost (see Section 3.5) as

it needs to compare each object with every other object in O.

Also, while the b-dominance relationship is not transitive (see Property 3.6), an object

cannot be eliminated even if it is b-dominated since it will be probably useful to eliminate

other objects.

For this reason, we propose the algorithm 2 that follows the principle of the two scans

algorithm (Chan et al., 2006).

Our proposed algorithm, named BS, computes the belief skyline through two phases.

In the first phase (lines 2–13), a set of candidate objects b-skyline is selected by comparing

each object U in O with those selected in b-skyline. If an object V in b-skyline is b-

dominated by U , then V is removed from the set of candidate objects as it is not part of

the believable skyline. At the end of the comparison of U with objects of b-skyline, if U is

not b-dominated by any object then, it is added to b-skyline as a candidate object. After

this first phase, the b-skyline comprises a set of objects that may be part of the b-skyline.

To avoid the situation illustrated by the example in Table 3.7, a second phase is

needed (lines 14–17). To determine if an object U in the set b-skyline is indeed a skyline

point, it is sufficient to compare U with those in O \ {b-skyline ∪undom(U) ∪ {U}} that

occur earlier than U since the other ones have been already compared against U , where

undom(U) is the set of objects that occur before U and that do not b-dominate V . This set

is computed in the first phase in order to reduce the dominance checks in the second phase.
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Algorithm 2: Belief Skyline BS

Input: Objects O; belief threshold b;

Output: Belief skyline b-skyline;

1 begin

2 foreach U in O do

3 isSkyline← true;

4 foreach V in b-skyline do

5 if isSkyline then

6 if V �bl
b U then

7 isSkyline← false;

8 else

9 undom(U)← undom(U) ∪ {V };

10 if U �bl
b V then

11 remove V from b-skyline;

12 if isSkyline then

13 insert U in b-skyline;

14 foreach U in b-skyline do

15 foreach V in O \ (b-skyline∪undom(U) ∪ {U}), pos(V ) < pos(U) do

16 if V �bl
b U then

17 remove U from b-skyline;

18 return b-skyline

The algorithm denoted BS has a quadratic time complexity, i.e, T (n) = O(n2).
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Algorithm 3: b-dominates(U, V, b)

Input: Objects U ,V ; belief threshold b;

1 foreach ak in A do

2 if U.a−k > V.a+
k then

3 return false;

4 Dom← 0, bel← 1, eqbel← 1;

5 foreach ak in A do

6 if U.a+
k ≥ V.a−k then

7 bel← bel × bel(U.ak ≤ V.ak);

8 if bel < b then

9 return false;

10 foreach ak in A do

11 eqbel← eqbel × bel(U.ak ≤ V.ak and U.ak 6< V.ak);

12 Dom← bel − eqbel;
13 if Dom > b then

14 return true;

Even if BS minimizes the number of dominance checks, it also may result in a high com-

putational cost, in particular, when the average number of focal elements and the number

of attributes per object are large. Thus, it is crucial to optimize the operator bel(A ≤ B)

(line 7 in algorithm 3) in order to reduce the dominance checks and improve the perfor-

mance of the BS algorithm. We devise an efficient method that overcomes this problem

using the minimum and maximum values of each bba w.r.t. each attribute, according to

Property 3.8. The method b-dominates(U, V, b) denoted by �bl
b in the algorithm 2 (line 6)

is detailed in algorithm 3. Here after some details about this method.

To reduce the complexity of the knowledge states dominance computation, we essentially

rely on Theorem 3.1. For each attribute ak ∈ A, if the condition U.a−k > V.a+
k holds, then

we are sure that U could not dominate V (Property 3.8). The function returns false (line

3). If this first scan ends without satisfying the above-mentioned condition, then we do a

second scan (line 5). For each attribute, if U.a+
k < V.a−k is true, then bel(U.ak ≤ V.ak) = 1.

In this case, we should not modify the value bel (already initialized to 1 in line 4). The

contrary case, however, should be processed (i.e., when U.a+
k ≥ V.a−k is true) by multiplying

bel by bel(U.ak ≤ V.ak). If the obtained bel does not reach the threshold b (line 8), then it

is useless to continue, and the function returns false (according to Property 3.10). In lines

10 to 12, we compute the dominance degree following Theorem 3.1 and check if it exceeds

the threshold b (line 13).
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3.4.2 Plausible skyline computation

To compute the plausible skyline, we refer to the PS algorithm presented in algorithm 4,

in which we follow the same steps as BS algorithm using an efficient method to compute

the p-dominance between objects in O.

Algorithm 4: Plausible Skyline PS

Input: Objects O; plausible threshold p;

Output: p-skyline;

1 begin

2 foreach oi in O do

3 isSkyline← true;

4 foreach oj in p-skyline do

5 if isSkyline then

6 if oj �pl
p oi then

7 isSkyline← false;

8 else

9 undom(oi)← undom(oi) ∪ {oj};

10 if oi �pl
p oj then

11 remove oj from p-skyline;

12 if isSkyline then

13 insert oi in p-skyline;

14 foreach oi in p-skyline do

15 foreach oj in O \ (p-skyline ∪ undom(oi) ∪ {oi}), pos(oj) < pos(oi) do

16 if oj �pl
p oi then

17 remove oi from p-skyline;

18 return p-skyline;

The algorithm denoted PS has a quadratic time complexity, i.e, T (n) = O(n2).

In fact, in algorithm 4, the p-dominance method denoted by �pl
p can recall the principle

of the b-dominance represented in algorithm 3.
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Algorithm 5: p-dominates(U, V, p)

Input: Objects U ,V ; plausible threshold p;

1 foreach ak in A do

2 if U.a−k > V.a+
k then

3 return false;

4 pDom← 0, pl← 1, eqpl← 1;

5 foreach ak in A do

6 if U.a+
k ≥ V.a−k then

7 pl← pl × pl(U.ak ≤ V.ak);

8 if pl < p then

9 return false;

10 foreach ak in A do

11 eqpl← eqpl × pl(U.ak ≤ V.ak and U.ak 6< V.ak);

12 pDom← pl − eqpl;
13 if pDom > p then

14 return true;

To reduce the complexity of the knowledge states dominance computation, we used

Theorem 3.2. Algorithm 5 computes the p-dominance, exactly in the similar way of algo-

rithm 3. The only difference is in line 7 where we compute the plausibility of the attributes’

comparison, instead of the belief. The pruning techniques are exactly the same.

3.5 Experimental Evaluation

In this section, we have performed an extensive experimental evaluation of the proposed

framework. We report empirical study to examine the effectiveness and the efficiency of

the evidential skyline analysis on uncertain data modeled by the evidence theory. More

specifically, we focus on two issues: (i) the size of the evidential skyline; we show how

the p-skyline is more significant than the b-skyline and (ii) the scalability of our proposed

techniques for computing the evidential skyline. We implemented two efficient functions,

i.e., b-dominates(U,V,b) and p-dominates(U,V,p), to show how perform the b-skyline and

the p-skyline algorithms.

For comparison purpose, we implemented the baseline algorithms for computing the b-

skyline and the p-skyline referred to as BBS (basic b-skyline) and BPS (basic p-skyline),

respectively. BBS and BPS do not use the two phases algorithm, and compare each object
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U in O against all the other objects in O. In addition, BBS and BPS algorithms do not

use the methods b-dominates() and p-dominates() and iterate all propositions in a focal

element to compute the dominance degrees between objects.

3.5.1 Experimental Setup

The generation of evidential databases is controlled by the parameters in Table 3.8. It

lists their notations, range of examined values, and default values. In each experimental

setup, we investigate the effect of one parameter, while we set the remaining to their

default values. For the data generation, we have considered that an evidential object is

an ArrayList of bba defined on d dimensions. Each bba is represented by an ArrayList of

focal elements f whose number is a random value in [1..Max Nbr of focal elmts]. A focal

element is a set of random values to which we attribute a mass function.

The data generator and the algorithms, i.e., BBS, BPS, BS and PS were implemented

in Java, and all experiments were conducted on a 2.3 GHz Intel Core i7 processor, with

6GB of RAM.

Table 3.8: Parameters for the Skyline Computation.

Parameter Symbol Values Default

Number of objects n 1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K 10K

Number of attributes d 2, 3, 4, 5, 6 3

Max Nbr of focal elmts/attr f 2, 3, 4, 6, 8, 9, 10, 11 5

belief threshold b 0.01, 0.1, 0.3, 0.5, 0.7, 0.9 0.5

plausible threshold p 0.5, 0.6, 0.7, 0.8, 0.9 0.7

Theta cardinality/attr t 10, 50, 100, 150, 200 100

3.5.2 Skyline result size

Figures 3.1, 3.2, 3.3 and 3.4 show the b-skyline size (i.e., the number of objects returned

in the skyline set) and the p-skyline size w.r.t. n, d, b, p, t and f . Figures 3.1b, 3.2b

present the percentage of objects returned by the belief skyline BS and the plausible skyline

PS algorithms while varying the parameters in question.

Figure 3.1a shows that the size on the belief and the plausible skyline increases with
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Figure 3.1: Skyline Size with varying n
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Figure 3.2: Skyline Size with varying d

higher n since when n increases, more objects have chances to be not dominated. As

shown in Figure 3.2a the cardinality of the b-skyline as well as the p-skyline, significantly

increases with the increase of d. This is because with the increase of d, an object has better

opportunity to be not dominated in all attributes. Figure 3.3 shows that the size of the

belief skyline increases with the increase of b since the b-skyline includes the b′-skyline if

b > b′; (see Proposition 3.1). Figure 3.3 also shows that size of the plausible skyline

increases with the increase of p since the p-skyline contains the p′-skyline if p > p′; (see

Proposition 3.2). Similarly to n, d, and b, as shown in Figure 3.4a, increasing f results

in a high number of knowledge states which decreases the object chance to be dominated

and thus to be in the skyline.

We also varied the theta cardinality for each attribute, i.e., number of possible propo-

sitions for each attribute. In contrast to n, b, p, f and d, the size of the evidential skyline

is not affected by the parameter t, as shown in Figure 3.4b.
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Figure 3.3: Skyline Size with varying the thresholds b and p
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Figure 3.4: Skyline Size with varying f and t

We can clearly remark that using the p-skyline is more significant than the b-skyline

since for all figures, with varying all the parameters, the p-skyline size is significantly

smaller than the b-skyline size which can helps more and more the decision maker. In the

following, we explain how can the p-skyline be more significant.

Suppose we have four evidential objects in O such that O = {o1, o2, o3, o4}. We study the

belief degrees and the plausibility degrees that an object in O dominates the others. Table

3.9 shows the belief degrees that each object in lines dominates another object in columns.

Table 3.10 shows the plausibility degrees that each object in lines dominates another object

in columns. As we can observe, the degrees returned by the plausible dominance are either

equal or larger than those returned by the belief dominance. That is because, as we have

shown above, the plausibility function gives more chance to objects to dominate the others.

For example, o1 0.2-believably dominates o2, however, it 0.3-plausibly dominates o2. Let

us compute the skyline objects with the following belief and plausible thresholds: b = p =

0.3

In Table 3.9, o1 cannot be in the b-skyline since o2 �0.4 o1. However, o2, o3 and o4 are not

0.3-dominated by any other object. Thus, b-skyline = {o2, o3, o4}.
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In Table 3.10, o2 cannot be in the p-skyline since o3 �0.5 o2 and o4 �0.4 o2. As well as o4

can not be in the p-skyline since o1 �0.4 o4, o2 �0.4 o4 and o3 �0.5 o4. Thus, the p-skyline

only contains o3 since it is not plausibly dominated by any other object with p=0.3 and

the p-skyline= {o3}.

Table 3.9: Belief Dominance

Objects o1 o2 o3 o4

o1 - 0.2 0.2 0.3

o2 0.4 - 0.1 0.3

o3 0.1 0.3 - 0.2

o4 0.1 0.1 0.15 -

Table 3.10: Plausible Dominance

Objects o1 o2 o3 o4

o1 - 0.3 0.25 0.4

o2 0.4 - 0.2 0.4

o3 0.2 0.5 - 0.5

o4 0.35 0.4 0.15 -

3.5.3 Scalability

In this subsection, we first show that the b-skyline algorithm BS is more scalable than the

basic b-skyline algorithm BBS, and then. In addition, the p-skyline PS algorithm is more

scalable than the basic p-skyline algorithm BPS and even than BS.

Figures 3.5, 3.6, 3.7 and 3.8 depict the execution time and the used memory percentage

of the implemented algorithms with respect to various parameters (n, d, b, p, t and f).

Overall, BS outperforms BBS. More specifically, BS is faster than BBS, which in turn is

faster than Basic p-BPS. As expected, Figure 3.5 shows that the performance of all the

algorithms decreases with the increase of n. Observe that PS is one order of magnitude

faster than BS. In fact, it can quickly identify if an object is plausibly dominated or not. In

addition, although the BS algorithm contains more dominance checks than PS algorithm,

it outperforms the BBS thanks to properties already presented in section 3.3. In contrast
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Figure 3.5: Skyline queries with varying n. a. CPU time, b. Used memory (%)
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Figure 3.6: Skyline queries with varying d. a. CPU time, b. Used memory (%)

to CPU time, varying all parameters has no apparent effect on used memory as shown in

Figures 3.5b, 3.6b and 3.7b.

As shown in Figure 3.6, the running time of the algorithms increases when the number

of dimensions increases. That is because when d increases, the number of knowledge states

increases which explains the increase of dominance checks. BBS and BPS perform a large

number of dominance checks. Even if BS performs the same number of dominance checks

than BBS, BS is more efficient than BBS since it can detect immediately whether an object

does not dominate another. The same logic is used to compare PS and BPS performances.

We can note that there is a slight difference in term of CPU time between BS and PS. In

addition, varying d has no effect on used memory (Figure 3.6b).

Figure 3.7 shows that, with the increase of f , BS algorithm outperforms the BBS (see

Figure 3.7a). The same observation is valid for PS and BPS; PS is more than one order

of magnitude faster than BPS. In addition, observe there is a slight difference between BS
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Figure 3.8: Skyline queries with varying b, p and t.

and PS algorithms. As shown in Figure 3.8a, the more b and p increase, the more the

computation cost increases. In this case, the dominance between objects takes more time,

the number of skyline objects increases and consequently the number of dominance checks

increases.

3.6 Conclusion

In this chapter, we extended the well-known skyline analysis to imperfect data modeled by

the evidence theory. We proposed two main models: a first evidential skyline model which

is based on the classic skyline definition and, the evidential skyline oriented knowledge

states.

The key concept of this second extension is the states of knowledge derived from each
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imperfect object that represents the real world. We explored the belief skyline framework as

well as the plausible skyline one. We studied the properties of the belief dominance as well

as the plausible dominance and provided efficient methods for performing the dominance

checks using some pruning techniques.

We also developed two efficient algorithms to tackle the problem of the evidential skyline

computation. On the other hand, we demonstrated the effectiveness of the evidential

skyline and the efficiency and scalability of our algorithms.

In the next chapter, we address the following problems:

• Based on the skyline query over centralised imperfect data where imperfection is

modeled by the evidence theory, we propose to efficiently compute the global skyline

from distributed local sites.

• The maintenance of the skyline objects of frequently updated evidential databases.

In particular, we propose algorithms for maintaining evidential skyline in the case of

object insertion or deletion.



Section 3.6 – Conclusion 62



Chapter 4
Two Variations of the Evidential Skyline

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Marginal Points: Ideal Point and Header Point . . . . . . . . 65

4.3 Distributed Evidential Skyline (DES) . . . . . . . . . . . . . . 66

4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Local Evidential Skyline . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Efficient DES Computation . . . . . . . . . . . . . . . . . . . . . 71

4.3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Evidential Skyline Maintenance . . . . . . . . . . . . . . . . . . 77

4.4.1 Object Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Object Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

63



Section 4.1 – Introduction 64

4.1 Introduction

With the fast development of computing infrastructures and easily available network ser-

vices, data management and storage have become inevitably more distributed (Hevner &

Yao, 1979; Park, Min, & Shim, 2013). Dealing with skyline analysis over the distributed

environments faces important challenges. Interestingly enough, many real-life applications

where uncertain, imprecise, noisy and error-prone data inherently exist, are distributed,

e.g., multiple geographic data sources in road networks (Deng, Zhou, & Tao, 2007), dis-

tributed sensor networks with imprecise measurements (Deshpande, Guestrin, Madden,

Hellerstein, & Hong, 2004), etc. Distributed skyline computation over uncertain data has

received an increasing attention (Endres & Kieling, 2015). Ding et al. (Ding & Jin, 2010)

studied the skyline query on probabilistic data from multiple and distributed environments.

In (Li et al., 2009), authors were interested in the fundamental problem of retrieving the

global top-k objects from uncertain distributed data with minimum communication cost.

Despite of the fact that the two research lines often arise concurrently in many applications,

uncertainty modeled by the evidence theory and distributed skyline query processing, have

been studied separately.

In section 4.3, we first recall the skyline semantic over evidential data and then, we

study the problem of distributed skyline queries over imperfect data where imperfection is

modeled by the evidence theory.

This contribution is published in the 28th IEEE International Conference

on Tools with Artificial Intelligence(Elmi, Tobji, Hadjali, & Yaghlane, 2016a).

The skyline maintenance is not an easy task when the queried database is updated and

unfortunately, there exist not much works that can handle skyline queries under database

updates. The maintenance of the skyline set is then very useful since it allows users to get

informed about the new interesting objects.

Let us mention the work done in (Papadias, Tao, Fu, & Seeger, 2005; Wu, Agrawal,

Egecioglu, & Abbadi, 2007) where the authors introduce an optimal skyline deletion main-

tenance for certain data. Xia et al. (Xia & Zhang, 2006) present efficient update algorithms

for compressed skyline Cubes. Closely relating to the maintenance of skyline results, let us

point out the study related to the progressive skyline query evaluation and maintenance

done in (Zhenjie et al., 2009). However, up to our knowledge, there is no work about the

skyline maintenance issue in the uncertain/evidential databases context.

In section 4.4, we address the problem of the maintenance of the skyline objects of fre-

quently updated evidential databases. In particular, we propose algorithms for maintaining

evidential skyline in the case of object insertion or deletion.
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This work is published in the 16th International Conference on Informa-

tion Processing and Management of Uncertainty in Knowledge-Based Systems

(Elmi, Tobji, Hadjali, & Yaghlane, 2016b).

In the next section (section 4.2), we define the notion of the marginal points which

are used to prune the research space for the distributed skyline computing and the skyline

maintenance computation.

4.2 Marginal Points: Ideal Point and Header Point

An Ideal Point IP and a Header Point HP summarize the region of data explored in earlier

iterations required to compute the evidential skyline. This approach is used in (Elmi, Tobji,

et al., 2016b) to efficiently maintain the evidential skyline if a newly object is inserted in

the evidential database Oi, and in (Elmi, Tobji, et al., 2016a) to prune the research space

for the distributed skyline computation. Let us first present the local marginal points.

The Ideal Point is a virtual object having the most interesting values across all at-

tributes.

Definition 4.1. (Ideal Point) Let b-SKY (Oi) = {s1, s2, . . . , su} be the set of objects being

in a local believable skyline. An Ideal Point IP of b-SKY (Oi) is a certain object defined

such as: < MIN(val.a1), MIN(val.a2), . . . ,MIN(val.ad) >,∀sj ∈ b-SKY (Oi) where

MIN(val.ak) is the function which returns the minimum certain value defined on the

attribute ak and val.ak is the set of distinct values defined on ak.

Skyline Objects sj Distance Altitude

s1 〈{50, 51}0.7〉, 〈{55, 56}0.3〉 20

s2 {40, 41} 〈{30}0.9〉, 〈{31}0.1〉
s3 {10, 11} {60}

Table 4.1: 0.4-SKY (Oi)

Example 4.1. Suppose we have the 0.4-SKY (Oi) objects presented in Table 4.1. The

most interesting values defined on distance and altitude attributes, are returned by the

MIN() function and appear in an underlined form in Table 4.1. Thus, the Ideal Point is

IP (10, 20).

Let O∗ ⊆ SKY (Oi) be the set of local skyline points having the most interesting values

in one or more attributes, i.e, O∗i = {s ∈ SKY (Oi)/∃item ∈ s.ak, item = MIN(val.ak)}
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Figure 4.1: Marginal Points

where val.ak is the set of distinct values in attribute ak occurring in the skyline and item

is a single proposition in the bba ”s.ak”.

Example 4.2. In Table 4.1, O∗i comprises the local skyline objects s1 and s3 since they

have the interesting values 10 and 20 defined respectively on distance and altitude.

Definition 4.2. (Header Point) Let O∗i be the set of local skyline points having the most

interesting values. A Header Point HP of SKY (Oi) = {s1, s2, ..., su} is a certain virtual

object defined such as:

∀sj ∈ O∗i , such that, < MAX(val.a1),MAX(val.a2), . . . ,MAX(val.ad) >.

Example 4.3. One can check that in Table 4.1, O∗i = {s1, s3}. The maximum values

defined on distance and altitude for s1 and s3 are 56 and 60, respectively. Then the Header

Point is HP (56, 60). In Figure 4.1, we present the local skyline region of a given database

Oi mainly presented by the marginal points IP (10, 20) and HP (56, 60). All objects in the

crosshatch area can not be in the local evidential skyline and the skyline region is represented

by the rectangular including the points IP and HP .

4.3 Distributed Evidential Skyline (DES)

In this section, we tackle the problem of conducting advanced analysis by means of skyline

queries on uncertain data from distributed environments. We address the following major

challenges:

• We first recall our new semantics for the evidential dominance by extending the

dominance relationship of Pareto to the evidential context. We then present the

local evidential skyline.
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• We introduce efficient approach for querying and processing the evidential skyline

over multiple and distributed servers. This approach is mainly based on the notions

of: (i) increasing the parallelism to improve the efficiency and the effectiveness of the

distributed evidential skyline computation and (ii) marginal points to resume the

dominance regions of each local evidential skyline. We also propose the distributed

architecture scheme of our distributed skyline processing.

• We develop efficient algorithms to compute the local evidential skylines, and the

global evidential skyline. We conduct extensive experiments to show the efficiency

and the effectiveness of our approach.

Figure 4.2: Distributed Skyline

Let us recall the example of acoustic sensors (e.g., microphones), they are often used to

detect presence of a given object, its altitude, its distance, speed, etc. Due to the nature

of acoustic sensing, values returned by microphones are intrinsically ambiguous, noisy and

error-prone. Ideally, we want to find the most interesting objects which can meet the

user needs in all dimensions. However, the size of data sets become larger and larger,

and the skyline computation become more complex and expensive. Hence, to improve its

performance, the skyline computation need to be processed on many servers instead of

being limited to one. For instance, Figure 4.2 shows the skyline results when the objects

are distributed over two servers.

This section is organised as follows. We start by defining the problem and presenting

the distributed architecture scheme in section 4.3.1. In section 4.3.2, we first recall the

semantics for the dominance relationship over evidential data. Then, we define the problem

of the local evidential skyline. In section 4.3.3, we describe our efficient approach to

compute the global skyline from multiple servers using the local and global marginal points.

We also present our algorithms. An experimental study is reported in section 4.3.4. Finally,

at the end of this section, we recall the main contributions.
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4.3.1 Problem Definition

Figure 4.3: Distributed Architecture Scheme

The global skyline is deployed in a share-architecture as shown in Figure 4.3. The

servers communicate the local skylines to the coordinator server H. For the remainder

of the chapter, we use the notation shown in Table 4.2. Given a set of m distributed

servers S = {S1, S2, .., Sm}, each possessing an evidential database Oi (1 ≤ i ≤ m) and a

coordinator server H which is responsible for the final execution query and for the global

skyline computation. Based on the semantics of the evidential skyline over a centralized

database and the independence of those local databases Oi, H efficiently computes the

global skyline as shown in section 4.3.3.

Table 4.2: Frequently Used Symbols.

Symbol Interpretation

H The central server (coordinator)

m The number of local servers

Si The ith local server

Oi The ith evidential database of server Si

O The global evidential database

b-SKY (H) The global skyline objects retrieved by H
b-SKY (Oi) The local skyline objects from by Oi

SR(Oi) The skyline region of the database Oi

A first step is to increase parallelism as shown in Figure 4.3. The local skylines derived

from different servers are computed in parallel to improve performance. The coordinator

server, in a second step, combines the skyline sets and returns the global skyline.
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4.3.2 Local Evidential Skyline

In this section, we first present the problem definition for the local evidential skyline, then,

we describe the local skyline computation.

Given a set of objectsOi = {o1, o2, . . . , on} defined on a set of attributesA = {a1, a2, . . . , ad},
with ot.ar denotes the bba of object ot w.r.t. attribute ar.

To extend the dominance relationship to the evidential data, we refer to the definition

3.1 described in chapter 3.

All properties stated and proved in the previous chapters are always meaningful for the

local evidential skyline.

Intuitively, an object is in the believable skyline if it is not believably dominated by any

other object. Based on the believable dominance relationship, the notion of b-SKY (Oi) is

defined as follows.

Definition 4.3. (The local skyline b-SKY (Oi)) The believable skyline of Oi denoted by

b-SKY(Oi), comprises those objects in Oi that are not believably dominated by any other

object, i.e.,

b-SKY (Oi) = {ot ∈ Oi |6 ∃ oh ∈ Oi, oh �b ot}.

For the local skyline, we use the same properties and proofs.

Local Skyline Computation

A straightforward algorithm to compute the local evidential skyline denoted by BLSE,

is to compare each object ot against the other objects. If ot is not b-dominated by any

other object, then it belongs to the evidential skyline. However, this approach results in

a high computational cost (see Section 4.3.4). Also, since the b-dominance relationship is

not transitive as proved in the previous chapters, an object cannot be eliminated from the

comparison even if it is b-dominated since it will be useful for eliminating other objects.

For this reason, we propose an algorithm denoted by LSE (see Algorithm 6) in which we

follow the principle of the two scans algorithm cited in (Chan et al., 2006) in order to

efficiently compute the evidential skyline.

The algorithm denoted LSE has a quadratic time complexity, i.e, T (n) = O(n2). First,

LSE algorithm computes the evidential skyline through two phases. In the first phase

(lines 2–13), we compare, each object ot in Oi with those selected in b-SKY (Oi). If an

object oh in b-SKY (Oi) is b-dominated by ot, we remove oh from the set of candidates
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Algorithm 6: Local Skyline over Evidential Data (LSE)

Input: Objects Oi; belief threshold b

Output: b-SKY (Oi);

1 begin

2 foreach ot in Oi do

3 isSkyline← true;

4 foreach oh in b-SKY (Oi) do

5 if isSkyline then

6 if oh �b ot then

7 isSkyline← false;

8 else

9 undom(ot)← undom(ot) ∪ {oh};

10 if ot �b oh then

11 remove oh from b-SKY (Oi);

12 if isSkyline then

13 insert ot in b-SKY (Oi);

14 foreach ot in b-SKY (Oi) do

15 foreach oh in Oi \ (b-SkyOi
∪ undom(ot) ∪ {ot}), pos(oh) < pos(ot) do

16 if oh �b ot then

17 remove ot from b-SKY (Oi);

18 return b-SKY (Oi)

objects since it is not part of the evidential skyline. At the end of the comparison of ot
with objects of b-SKY (Oi), if ot is not b-dominated by any object then, it is added to

b-SKY (Oi). To avoid the situation illustrated by the example in Table 3.7, a second phase

is needed (lines 14–17). To determine if an object ot in b-SKY (Oi) is indeed in the b-

SKY (Oi), it is sufficient to compare ot with those in O\{b-SKY (Oi)∪undom(ot)∪{ot}}
where undom(ot) is the set of objects that occurs before ot and that do not b-dominate

oh. Even if, LSE minimizes the number of dominance checks, it also may result in a high

computational cost. In particular, when the average number of dimensions is large. Thus,

it is crucial to optimize the dominance checks to improve the performance of the local

evidential skyline computation and therefore the LSE computation. In the following, in

order to check the b-dominance between objects, we devise an efficient method (algorithm

7) that overcomes this problem using the minimum and the maximum values of each bba

w.r.t. each attribute, according to the property stated in the previous chapters.



Section 4.3 – Distributed Evidential Skyline (DES) 71

Algorithm 7: b-dominates(ot, oh, b)

1 strict← False;

2 while ar in A and strict=False do

3 if ot.a
−
r > oh.a

+
r then

4 return false;

5 if bel(ot.ar ≤ oh.ar) < b then

6 return false;

7 if bel(ot.ar < oh.ar) ≥ b then

8 strict← True;

9 if strict = False then

10 return false;

11 return true;

4.3.3 Efficient DES Computation

In this section, we introduce the notions of the global marginal points based on the notion

of the local marginal points. Then, we present our methods to efficiently compute the

DES.

Because the believable dominance relationship is intransitive as previously proved, a

naive approach to retrieve the global skyline from different local skylines from multiple

servers, is to compare all objects in the coordinator server H. This way results in a very

costly procedure. To avoid the full scan of the database in H, one has to prune the search

space in some cases.

We present in this section an approach for optimizing the DES by using the notions of

local marginal points: ”IdealPoint” and ”HeaderPoint” which keep up a concise summary

of the skyline region of eachOi, denoted by SR(Oi). A skyline region includes the candidate

objects that can be in the skyline and excludes the already visited objects (the dominated

objects). This summary allows a fraction of objects in each Oi to be pruned from the

global evidential skyline processing phases required in the naive approach, thus reducing

the overall cost of the expensive dominance checks.

In this section, we use the local marginal points to define the global skyline region of O,

i.e., we define the global marginal points of objects in H. Our goal is to leverage the global

skyline regions to determine whether an object in H should be considered as a candidate

object for the global skyline or be pruned in advance from the expensive skyline processing

phases.
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Global Marginal Points

In this section, we define the global skyline over evidential data from multiple and different

databases. A key property gives: b-SKY (H) = b-SKY (∪1≤i≤mb-SKY (Oi)). A straight-

forward method to compute the global skyline (algorithm BGES) b-SKY (H) is to consider

the local skyline sets (∪b-SKY (Oi),∀i ∈ {1..m}) as an input for the algorithm 6 to retrieve

the final skyline objects, but this approach can result in a high computational cost.

Our proposition is that the coordinator server H computes the global skyline using the

global marginal points of O to improve the performance of our approach. As shown in

Figure 4.3, each local skyline is presented by its marginal points, i.e., its skyline region.

Our goal is to define the global marginal points derived from O1∪O2 to determine whether

a local skyline set should be considered as interesting or be pruned in advance from the

expensive global skyline processing phases.

Let ∀i ∈ {1..m}, IPi and HPi be the ideal point and the header point, respectively,

of b-SKY (Oi). IPi.ar (resp. HPi.ar) denotes the IP (resp. HP) value defined on the

attribute ar.

Definition 4.4. (Global Ideal Point GIP) The global ideal point is a certain and virtual

point which its coordinates are the minimum values defined on the attributes ar ∈ A, i.e.,

∀ar ∈ A, GIP.ar = min(IPi.ar,∀i ∈ {1..m})

(a) Case 1 (b) Case 2 (c) Case 3

Figure 4.4: Skyline Regions and Global Marginal Points

Definition 4.5. (Global Header Point GHP) The global header point is a certain and

virtual point which its coordinates are the maximum values defined on the attributes ar ∈ A,

i.e.,

∀ar ∈ A, GHP.ar = max(HPi.ar,∀i ∈ {1..m})
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Suppose we have two skyline sets of the databases O1 and O2. Let IP1 and HP1 (resp.

IP2 and HP2) be the marginal points of the database O1 (resp. O2).

Example 4.4. In Figure 4.4a, we have IP1(10, 10) and HP1(20, 30). Also, IP2(30, 35)

and HP2(40, 50). Thus, GIP (10, 10) and GHP (40, 50). Also, in Figure 4.4b, we have

GIP (10, 10) and GHP (40, 40) since IP1(10, 20), HP1(30, 40) and IP2(20, 10), HP2(40, 30).

In Figure 4.4b, we have GIP (10, 10) and GHP (50, 40). Observe that the global skyline re-

gion of O1 and O2 is described by the rectangle including the marginal points GIP and

GHP .

In Figure 4.4a, one can check that any object skyline in SR(O2) can dominate those in

SR(O1).

Let Oi and Oj be two evidential databases.

Property 4.1. If (GIP = IPi and GHP = HPj) ∧ (∀ar ∈ A, HPi.ar < IPj.ar) then

b-SKY (H) = b-SKY (Oi)

Example 4.5. In Figure 4.4a, one can observe that IP2 is the best point in SR(O2), and

HP1 is the worst point in SR(O1). One can check that IP2 6� HP1, then b-SKY (H) = b-

SKY (O1).

Property 4.2. If (GIP 6= {IPi, IPj} and GHP 6= {HPi, HPj} (Fig. 4.4b)) ∨ (GIP = IPi

and GHP = HPi (Fig. 4.4c)), then b-SKY (H) = b-SKY (b-SKY (Oi) ∪ b-SKY (Oj))

Example 4.6. In Figure 4.4b and Figure 4.4c, all objects in SR(O1) ∪ SR(O2) can be

candidates for the global skyline.

Global Evidential Skyline Computation

The properties already described in section 4.3.3 are used in algorithm 8 whose inputs are

the marginal points of all Oi ∈ O, the best IP and the Best HP denoted by BIP and

BHP , respectively. ∀ak in A, BIP.ak and BHP.ak are both initialized by the maximum

value in Θak . In lines(2- -6), algorithm 8 returns the best skyline region from O presented

by BIP and BHP . In lines (7- -11), if a given skyline region SR(Oi) is worst than the

best skyline region BSR, i.e., ∀ak ∈ A, BHP.ak < IPi.ak, (see property 4.1), objects in

SR(Oi) are pruned in advance from the expensive global skyline processing.

The algorithm denoted GES has the complexity of O(S × d) where S is the number of

servers and d the number of attributes.
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Algorithm 8: Global Evidential Skyline (GES)

Input: BIP ; BHP ; IPi; HPi

Output: b-SKY (H);

1 begin

2 foreach Oi in O do

3 foreach ak in A do

4 if IPi.ak ≤ BIP.ak and HPi.ak ≤ BHP.ak then

5 BIP.ak ← IPi.ak;

6 HIP.ak ← HPi.ak;

7 foreach Oi in O do

8 foreach ak in A do

9 if IPi.ak < BHP.ak then

10 SkyCan← SkyCan ∪ {b-SKY (Oi)} ;

11 HIP.ak ← HPi.ak;

12 b-SKY (H)← b-SKY (SkyCan)

13 return b-SKY (H)

4.3.4 Experimental Evaluation

For our evaluation, we use a generated data-sets. We control the generation of evidential

data by the parameters in Table 4.3, which provides us with the parameters and their

default values.

Table 4.3: Examined Values for the Distributed Skyline Computation.

Parameter Symbol Values Default

|Oi| n 1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K 10K

|A| d 2, 3, 4, 5, 6 3

|F| f 2, 3, 4, 6, 8, 9, 10, 11 5

belief threshold b 0.01, 0.1, 0.3, 0.5, 0.7, 0.9 0.5

|Θak | t 10, 50, 100, 150, 200 100

Servers S 3, 5, 10, 15, 20 10

In each experimental setup, we evaluate the effect of one parameter, while we set the

other to their default values. |F| represents the maximum number of focal elements per
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attribute. |Θak | represents the number of proposition in Θak .

The data generator and the algorithms, i.e, GES, BGES, LSE and BLSE were imple-

mented in Java, and all experiments were conducted on a 2.3 GHz Intel Core i7 processor,

with 6GB of RAM.

Figures 4.5a, 4.5b, 4.5c, 4.5d and 4.5e depict the execution time the implemented algo-

rithms LSE and BLSE with respect to various parameters (n, d, b, t and f). Overall, LSE

outperforms BLSE. More specifically, LSE is faster than BLSE. As expected, Figure 4.5a

shows that the performance of the algorithms deteriorates with the increase of n.
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Figure 4.5: Distributed Evidential Skyline

As shown in Fig. 4.5b, the running time of the algorithms increases until the number of
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dimensions increases. That is because when d increases, the number of dominance checks

increases. Even if LSE performs the same number of dominance checks than BLSE, LSE

is more efficient than BLSE since it can detect immediately whether an object does not

dominate another.

Figure 4.5d shows that, with the increase of f , LSE algorithm outperforms the BLSE. As

shown in figure 4.5c, the more b increases, the more the computation cost increases because

the more we have a large number of skyline objects, the more the number of dominance

checks increases. In contrast to n, d, b and f , the execution time of the algorithms is large

for small number of propositions in Θak (Figure 4.5e). As expected, Figure 4.5f shows that

the performance of the algorithms deteriorates with the increase of the servers number.

Overall, GES outperforms BGES. More specifically, it is faster than the basic algorithm

thanks to the proposed approach.

In this section, we have addressed the problem of the distributed skyline over evidential

data. We presented the centring/local skyline analysis when data are imperfect and mod-

eled by the evidence theory. We then defined the global evidential skyline which returns

the most interesting objects from distributed environments.

Our experimental evaluation demonstrated the performance of the proposed algorithms.

An interesting future direction is to use Hadoop in the distributed evidential skyline pro-

cessing.

4.4 Evidential Skyline Maintenance

In chapter 3, we introduced a method for extracting skyline objects from an evidential

database. When evidential data are updated, the skyline set could be computed, again

from the overall updated database. It is the trivial maintenance of the skyline set. In this

chapter, the aim is to incrementally maintain the skyline set, without starting from the

scratch. Our objective is to reduce the computation cost of the maintenance by using the

skyline set already computed. We address then the following major challenges:

• We propose efficient methods to maintain the skyline results in the evidential database

context when an object is inserted or deleted.

• We perform an extensive experimental evaluation to demonstrate the scalability of

the algorithms proposed for the evidential skyline maintenance.

This section is organised as follows. In subsections 4.4.1 and 4.4.2, we formally propose
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a new approach for the incremental maintenance of evidential skyline. Our experimental

evaluation is reported in subsection 4.4.3. Finally, we recall the main contributions.

4.4.1 Object Insertion

In this subsection, we discuss the maintenance problem of the evidential skyline after an

insertion occurs in the evidential database EDB.

Approach Proposed

Because the dominance relationship is intransitive as proved in (Elmi et al., 2014), a naive

approach to see if a new object has an impact on the evidential skyline, is to compare all

objects in O against this inserted object. This way results in a very costly procedure. To

avoid the full scan of the database, one has to prune the search space in some cases.

We present in this section an approach for optimizing the evidential skyline updating by

using the notions of ”IdealPoint” and ”HeaderPoint” already defined in section 4.1. These

points keep up a concise summary of the already visited regions of the objects’ space. This

summary allows a fraction of objects in O to be pruned from the skyline processing phases

required in the naive approach, thus reducing the overall cost of expensive dominance

checks.

An IdealPoint and a HeaderPoint summarize the region of data explored in earlier

iterations. They enable a newly inserted object to be compared against this summary

rather than to perform multiple comparisons against the whole objects in the b-skyline.

Our goal is to leverage these two points to determine whether a newly inserted object should

be considered as a candidate skyline object or be pruned in advance from the expensive

skyline processing phases.

Our goal with the Header Point and the Ideal Point is to determine whether the newly

inserted object should be considered as a candidate skyline object or be pruned in advance

from the expensive skyline processing phases. As shown in Figure 4.1, if the newly inserted

point denoted by P+ is in the hatched area, i.e, is strictly better than IP in at least one

dimension, then it is directly added to the evidential skyline. In this case, P+ should be

compared to all skyline’s points because it could dominate one or several of them. We

also propose another pruning strategy by adapting the notion of Header Point (HP ) to

the evidential database context. If P+ is in the crosshatch area, then it cannot be in the

evidential skyline because it has a value attribute which is worse than the HP . In other

words, if a newly inserted object is not better than the Ideal Point in at least one dimension
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and it is worse than the Header Point, then, the new object cannot be a skyline object and

can be discarded.

If an evidential object is inserted, we have to refer to definition 2.1 in order to compare

the new object against the Header Point and the Ideal Point. Let P+.ak be the new object

value defined on attribute ak. Let also b be the threshold introduced by the user. Note

that b is already considered to compute the original set of skyline points b-skyO.

Property 4.3. If ∃ak ∈ A such that bel(P+.ak < IP.ak) ≥ b, then P+ is added to the

b-skyline.

Property 4.4. If property 4.3 is not satisfied and ∃ak ∈ A such that

bel(P+.ak ≤ HP.ak) < b then P+ cannot be in the b-skyline.

Proof. Suppose ∀ai ∈ A, bel(P+.ai ≤ HP.ai) = 1 and ∃ak ∈ A such that bel(P+.ak ≤
HP.ak) = x < b.

We have bel(P+ � HP ) =
∏d

i=1 bel(P
+.ak ≤ HP.ak) = 1 ∗ 1 ∗ · · · ∗ 1 ∗ x = x < b. Thus P+

does not b-dominates HP.

Computation Method

Algorithm 9: Incremental maintenance after Insertion (MAI)

Input: b-SkyO, P+: the object to insert; HP(a1, a2, . . . , ad): Header Point,

IP(a1, a2, . . . , ad): Ideal Point

1 begin

2 var1← true;

3 while ak in A and var1 do

4 if bel(P+.ak < IP.ak) ≥ b then

5 b-SkyO′ ← P+;

6 Compare P+ to all point in b-SkyO;

7 var1← false;

8 else

9 if bel(HP.ak < P+.ak) ≥ b then

10 P+ cannot be in the b-skyline;

11 var1← false;

12 else

13 Execute b-SkyO();
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The algorithm denoted MAI has the complexity of O(d) where d is the number of

attributes.

A naive approach for skyline insertion maintenance is to recompute from scratch the b-

skyO considering the newly inserted object (Baseline Maintenance Algorithm after Insertion

denoted by BMAI). Clearly, this approach may result in a high computational cost since

we recompute the b-dominance relationship between all objects in {O}∪{P+}. Algorithm

9 shows the algorithmic description of the proposed method in order to decrease the check

space.

As shown in algorithm 9, we compare the bbas of the inserted object defined on each

attribute against all values of the Ideal Point and the Header Point defined on the set

of attributes A. If it does exist an attribute ak ∈ A such that bel(P+.ak < IP.ak) ≥ b,

then the newly inserted object is added to the b-skyline and is compared to all skyline

points since it may dominate some of them. If property 4.3 is not satisfied and it does

exist an attribute ak ∈ A such that bel(HP.ak <P+.ak) ≥ b, then the newly inserted

object is directly discarded from the b-skyline since the Header Point b-dominates the new

object P+ in at least one dimension. Else, because of the well-known non transitivity of

the b-dominance relationship, we have to re-compute the b-skyline from scratch which is

represented by the function ”b-SkyO()”.

4.4.2 Object Deletion

In this subsection, we discuss the maintenance problem of the evidential skyline after a

deletion occurs in the evidential database EDB.

Approach Proposed

In this section, we study the impact of skyline object deletion on the set of skyline points.

Two simple approaches are discussed here. The most straightforward method for skyline

deletion maintenance is to recompute from scratch (represented by the Baseline Deletion

Algorithm BMAD) the b-SkyO. Clearly, this approach is overly simplistic and may result

in a high computational cost because a considerable portion of evidential objects is not

affected by the deleted point at all. This BMAD computation can be easily optimized for

the purpose of deletion maintenance.

For a given skyline object Si ∈ b-SkyO, we define its b-dominance region designed by b-

DR(Si) as the whole objects space that is dominated by Si, and its exclusive b-dominance

region, designed by EDR(Si), which contains the objects space that is only dominated by

Si. For instance, in Figure 4.6, the b-DR(a) can be represented as rectangle ahfe. However,
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Figure 4.6: Exclusive Dominance Region Example.

objects d1 and d2 are exclusively b-dominated by object a. Thus, the exclusive b-dominance

region of skyline object a is defined as follows: EDR(a) = {d1, d2}. As a result, both d1

and d2 are promoted in the skyline after object a is deleted. EDR(Si) presents the smallest

region that may contain the new skyline objects after deletion of Si. Intuitively, EDR(Si)

contains those points that must be added to the new skyline after Si is deleted, since those

points are exclusively dominated by Si.

Let b-SkyO denotes the original skyline, b-SkyO’(Si) denotes the new skyline after the

deletion of skyline object Si, i.e, Si ∈ b-SkyO. Let ∆S denotes the skyline objects that

are expected to be added in the new skyline b-SkyO’, then b-Sky′O - b-SkyO = ∆S. ∆S is

exactly the exclusive dominance region of deleted object. The key issue now is to compute

the EDR of the skyline object Si in order to find the exact b-SkyO’ with optimal I/O

performances.

Skyline Objects Si b-DR(Si)

S1= o2 {o1, o3}
S2 = o4 {o3}
S3 = o6 {o5}

Table 4.4: b-Dominance Region

Example 4.7. Suppose we have an evidential database that contains a set of objects O=

{o1, o2, . . . , o6} and b-SkyO = {o2, o4, o6}. Table 4.4 gives the objects that are dominated

by each object in b-SkyO, i.e, the b-dominance region of skyline objects. Suppose o2 is

deleted, only objects that are exclusively dominated by o2 are promoted as new skyline

objects. However, o3 can not be promoted to the b-skyline because it is dominated by one or

more other objects. Table 4.5 shows that o2 exclusively b-dominates o1. It is then promoted

to be in the new skyline b-SkyO’. As a result, b-SkyO’= {o1, o4, o6}
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Object Skyline Si EDR(Si)

o2 {o1}
o4 ∅
o6 {o5}

Table 4.5: Exclusive b-dominance region of skyline points.

Computation Method

To compute the b-skyline over an evidential database, we refer to the algorithm proposed

in section 3 called BS. In BS algorithm, while computing the b-dominance degrees between

objects in O, one can automatically save the exclusive b-dominance region of each skyline

point EDR(Si).

Algorithm 10: Incremental maintenance after Deletion (MAD)

Input: O: evidential database, b-SkyO: evidential skyline, Si: the skyline point to

delete;

Output: b-SkyO’: the new evidential skyline;

1 begin

2 b-Sky′O ← b-SkyO ∪ EDR(Si);

3 return b-Sky′O;

As it can be seen, once information about exclusive b-dominance region of each skyline

object is available, we can detect via algorithm 10, which object can be directly promoted

as a new skyline object.

4.4.3 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approaches. More

specifically, we focus on the scalability of our proposed methods for maintaining the evi-

dential skyline. For comparison purpose, we also implemented the baseline algorithms for

maintenance after insertion and after deletion referred to as BMAI and BMAD.
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Experimental Setup

The generation of evidential data sets is controlled by the parameters in Table 4.6. In each

experimental setup, we investigate the effect of one parameter, while we set the remaining

ones to their default values. K means a thousand of evidential objects.

Parameter Symbol Values Default

Skyline size S 1K, 3K, 5K, 7K, 10K 10K

Number of objects in O n 10K, 30K, 50K, 70K, 100K 10K

Number of attributes d 2, 4, 6, 8 4

Number of focal elements/attribute f 3, 5, 7, 9 5

Table 4.6: Parameters for the Skyline Maintenance Computation

Performance Evaluation

Fig. 4.7 depicts the execution time of the implemented algorithms MAI and BMAI w.r.t.

S, d and f . Overall, MAI outperforms BMAI. More specifically, MAI is faster than BMAI

since it can detect immediately whether an inserted object is better or not than another

existing in the b-SkyO. A simple comparison between the attributes values of P+ and the

certain points IP and HD, makes the algorithm MAI more efficient than BMAI. This later

aims at comparing P+ against all objects in the skyline set in order to check if the newly

inserted object is in the evidential skyline or not.

However, MAI decreases the research space by discarding points which are worst than

the Header Point on the one hand, and inserting P+ in the b-skyline if it is better than

the Ideal Point on the other hand. As expected, Fig. 4.7a shows that the performance of

the algorithm BMAI deteriorates with the increase of the skyline size S. This is because

when S increases the number of dominance checks becomes larger. Observe that MAI is

one order of magnitude faster than BMAI since it can quickly identify if an object can

be in the skyline or not with a simple operation of comparison with both Header Point

and Ideal Point. As shown in Fig. 4.7b, and Fig. 4.7c, MAI is not affected by increasing d

and f as it makes a simple check. However, BMAI does not scale with d and f . Fig. 4.7

depicts also the execution time of the implemented algorithms MAD and BMAD w.r.t. n,

d and f . Fig. 4.7d shows that the execution time of the algorithm MAD slightly increases

with the increase of n as we have to check more and more objects in O, but it outperforms
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Figure 4.7: Elapsed Time for Maintenance operations.
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BMAD. Observe that BMAD has a high computational cost if we increase all parameters.

It is not the case for MAD.

4.5 Conclusion

In this chapter, based on the marginal points, i.e., the ideal point and the header point,

we have addressed, on the one hand, the problem of the distributed evidential skyline and,

on the other hand, the problem of the evidential skyline maintenance.

Our solutions guarantees I/O optimality and can be easily implemented. Experimental

results show that our methods outperform the naive methods.

In the next chapter, we will introduce the top-k evidential skyline. We particularly

tackle the problem of the evidential skyline ranking, i.e., retrieve the k skyline objects

that are expected to have the highest score with considering the confidence level (CL) of

the objects. We also study the impact of CL on the top-k results. The efficiency and

effectiveness of our proposal are verified by extensive experimental results.
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5.1 Introduction

How to conduct advanced analysis, particularly skyline analysis, remains an open problem

at large. In many application domains where data are pervaded with uncertainty, end-users

are often interested in the top-k query answers within a potentially large space answer.

This requires to introduce a rank-order between the evidential skyline objects.

The skyline ranking has received an increasing importance (Lian & Chen, 2013; Yi,

Li, Kollios, & Srivastava, 2008; Yong, Jin, & Seung, 2008; Amagata et al., 2016). Skyline

ranking queries has been proposed in classic databases as well as uncertain databases

such as probabilistic databases (Liu, Zhang, Xiong, Li, & Luo, 2015). Zhang et al (Ying,

Wenjie, Xuemin, Bin, & Jian, 2011), propose to compute the top-k skyline objects for

discrete cases. In addition, authors in (Ilaria et al., 2014) tackle the problem of developing

a ranking semantics in a probabilistic databases. Moreover, a new approach introducing

the skyline ranking for uncertain data with maybe confidence, is proposed in (Yong et al.,

2008). Also, Lian and Chen in (Lian & Chen, 2013) provide an effective pruning method for

computing the probabilistic top-k dominating queries in uncertain databases. In addition,

the authors (Yiu & Mamoulis, 2007) introduce the concept of Top-k dominating queries

on certain database to rank skyline objects. In (Ge, Zdonik, & Madden, 2009), authors

propose to rank results according to some user-defined score.

5.1.1 Motivating Example

The need to manage uncertain data arises in several real-life applications. For example,

acoustic sensors (e.g., microphones) are often used to detect presence of a given object,

its altitude, its distance, speed, etc. Ideally, we want to find the most interesting objects

which can meet the user needs in all dimensions, suppose that objects having the smaller

distance and the smaller altitude are the most interesting objects. The skyline analysis is

meaningful here since it discloses the trade-off between the merits of multiple aspects. An

object oi is in the skyline if there exists no object oj such that oj is better than oi in (at

least) one dimension, and is not worst than oi in all other aspects. We argue that skyline

analysis is also meaningful on imperfect data. Due to the nature of acoustic sensing, values

returned by microphones are intrinsically ambiguous, noisy and error-prone. Add to that,

an object in a database may have a confidence level (Bell et al., 1996)(i.e., probability of

existence in a table). Often, a query over such data has a large number of result objects.

In this context, the top-k query has proven to be useful.
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5.1.2 Contributions

In this chapter, we tackle the problem of conducting advanced analysis by means of skyline

queries on uncertain data modeled by the evidence theory. We address the following major

challenges:

• We recall the evidential dominance relationship, then, the skyline over evidential

objects.

• Based on this dominance relationship, we propose a score function reflecting the

confidence level of each object. This score function aims at retrieving k objects that

are expected to believably dominate the more the other objects.

• We develop efficient algorithms to the evidential skyline computation and the top-k

query. We conduct extensive experiments to show the efficiency and the effectiveness

of our approach. In addition, our extensive experiments reflects the impact of the

confidence level on the top-k skyline results.

This chapter is published in the 13th IEEE/ACS International Conference of

Computer Systems and Applications (Elmi, Hadjali, Bach Tobji, & Ben Yagh-

lane, 2016).

5.1.3 Chapter Organisation

The rest of the chapter is organized as follows. In section 5.2, we recall the evidential

dominance definition and the evidential skyline. We conclude the section by defining a

score function in order to retrieve the top-k skyline. Section 5.3 is devoted to the top-k

skyline computation. An experimental study is reported in section 5.4. Finally, Section 5.5

recalls the main contributions.

5.2 Top-k Skyline over evidential objects

In this section, we present the notion of the evidential skyline. This later aims at retrieving

the most interesting objects in O that are not dominated by any other objects. We first

present the concept of the evidential dominance denoted by the b-dominance and then the

evidential skyline denoted by the b-skyO. We finally define the score function that allows
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us to retrieve the top-k skyline objects in a given database O. The score function is based

on the confidence level.

Given a set of objectsO = {o1, o2, . . . , on} defined on a set of attributesA = {a1, a2, . . . , ad},
with oi.ar denotes the bba of object oi w.r.t. attribute ar. The degree of belief that an

Table 5.1: Evidential database example.

Object Distance Altitude Confidence Level CL

o1 〈{150, 160, 180}, 0.1〉, 〈{190, 200}, 0.9〉 〈60, 0.3〉, 〈100, 0.7〉 [0.1, 0.3]

o2 〈100, 0.7〉 〈Θ, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉 [0.1, 0.2]

o3 70 Θ [0.2, 0.5]

o4 〈{50, 60}, 0.8〉, 〈{65}, 0.2〉 60 [0.7, 0.7]

o5 〈{50}, 0.5〉, 〈{60}, 0.5〉 〈{60}, 0.6〉, 〈{70}, 0.4〉 [0.9, 1]

object oi is better than or equal (or strictly better) to other object oj w.r.t. an attribute

ar is given by (Bell et al., 1996):

bel(oi.ar ≤ oj.ar) =
∑

A⊆Θar

(mir(A)
∑

B⊆Θar ,A≤∀B

mjr(B)) (5.1)

Where A ≤∀ B stands for a ≤ b, ∀(a, b) ∈ A×B.

bel(oi.ar < oj.ar) =
∑

A⊆Θar

(mir(A)
∑

B⊆Θar ,A<∀B

mjr(B)) (5.2)

Where A <∀ B stands for a < b, ∀(a, b) ∈ A×B.

Example 5.1. In Table 5.1, one can check that1 bel(o1.d ≤ o2.d) = 0, bel(o1.a ≤ o2.a) =

0.3, bel(o2.d < o1.d) = 0.7, and bel(o2.a ≤ o1.a) = 0.7

To extend the dominance relationship to the evidential data, we refer to the definition

3.1 described in chapter 3.

All properties related to the b-dominance relationship already presented in the previous

chapters are meaningful.

Intuitively, an object is in the believable skyline if it is not believably dominated by

any other object. Based on the b-dominance relationship, the notion of b-skyO is defined

as follows.
1For short, we use d and a to denote the distance and the altitude attributes, respectively
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Definition 5.1. (The b-skyline) The b-skyline of O denoted by b-skyO, comprises those

objects in O that are not b-dominated by any other object, i.e.,

b-skyO = {oi ∈ O |6 ∃ oj ∈ O, oj �b oi}.

For each object Si in the b-skyline, we need to know how much does it dominate other

objects in the b-skyline set. We first introduce the notion of the object dominance score

denoted by µ(Si). We then introduce a new score function reflecting the confidence level

impact.

Definition 5.2. (Dominance score) Let Si be in the b-skyO. The dominance score that

reflects how much Si dominates other skyline objects denoted by µ(Si) is defined as follows:

µ(Si) =
∑

∀Sj∈b−skyO,Si 6=Sj

bel(Si � Sj)×
1

|b− skyO| − 1
(5.3)

where

bel(Si � Sj) =
∏
ar∈A

bel(Si.ar ≤ Sj.ar) (5.4)

Unfortunately, the semantics of dominance score in such data is unclear, due to the fact

that both scores and probabilities of objects (confidence level) must be taken in account.

For example, it is unclear whether it is better to report highly scored objects with a

relatively low belief of existence or a lower -scored objects with high belief of existence.

Therefore, we introduce a score dominance with confidence level denoted by σ(Si).

Definition 5.3. (Dominance score with confidence level) Let Si be a skyline object. Let

CL[bl(Si), pl(Si)] be the confidence level of the object skyline Si where bl(Si) and pl(Si) are

the belief and plausible degrees, respectively, of the object existence in O. σ(Si) presents

the score dominance that reflects the belief degree of the object existence. σ(Si) is defined

as follows:

σ(Si) = µ(Si)× bl(Si) (5.5)

Example 5.2. In Table 5.1, we have 0.5-skyO = {o4, o5}. bel(o4 � o5) = 0.4 since

bel(o4.d ≤ o5.d) = 0.4 and bel(o4.a ≤ o5.a) = 1, thus, µ(o4) = 0.4 and σ(o4) = 0.4× 0.7 =

0.28

bel(o5 � o4) = 0.36 since bel(o5.d ≤ o4.d) = 0.6 and bel(o5.a ≤ o4.a) = 0.6, thus, µ(o5) =

0.36 and σ(o5) = 0.36× 0.9 = 0.324

Definition 5.4. (Top-k Skyline query) A top-k skyline query selects the k objects in b-skyO
with the largest dominance score µ. A TOPk-CL query selects the k objects in b-skyO with

the largest dominance score with confidence level σ.
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Example 5.3. Let us recall the example, 0.5-skyO = {o4, o5}. One can observe that top-

1 = {o4} since µ(o4) > µ(o5) and top-1-CL= {o5} since σ(o5) > σ(o4)

5.3 Top-k Skyline Computation

In this section, we first discuss how our top-k skyline algorithm can highlight the properties

of dominance relationship mentioned in section 5.2. Then, we propose an efficient method

in order to reduce the complexity of belief function operations.

A straightforward algorithm to compute the top-k skyline denoted by BTOPk-CL (Ba-

sic TOPk-CL) is to compare each object oi against the other objects. If oi is not b-

dominated, then it belongs to the b-skyline and can be in the top-k objects. However, this

approach results in a high computational cost (see Section 5.4).

Also, since the b-dominance relationship is not transitive, an object cannot be elimi-

nated from the comparison even if it is b-dominated since it will be useful for eliminating

other objects.

For this reason, we propose an algorithm denoted by TOPk-CL (see Algorithm 11). In

lines (2–21), we follow the principle of the two scan algorithm cited in (Chan et al., 2006)
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in order to efficiently compute the evidential skyline.

Algorithm 11: Top-k skyline with CL (TOPk-CL)

Input: Objects O; belief threshold b; a retrieval size k

Output: TOPk-CL;

1 begin

2 foreach oi in O do

3 isSkyline← true;

4 s← 0;

5 foreach oj in b-SkyO do

6 if isSkyline then

7 if oj �b oi then

8 isSkyline← false;

9 else

10 undom(oi)← undom(oi) ∪ {oj};
11 s← s+ bel(oi � oj);

12 if oi �b oj then

13 remove oj from b-SkyO;

14 if isSkyline then

15 insert oi in b-SkyO;

16 µ(oi)← s/(|b-skyO| − 1) ;

17 σ(oi)← µ(oi)× bl(oi) ;

18 foreach oi in b-SkyO do

19 foreach oj in O \ (b-SkyO ∪ undom(oi) ∪ {oi}), pos(oj) < pos(oi) do

20 if oj �b oi then

21 remove oi from b-SkyO;

22 TOPk-CL← top-k(b-skyO, k);

23 return TOPk-CL

The algorithm denoted TOPk-CL has the complexity of O(n2) where n is the number

of evidential objects.

To compute the TOPk-CL skyline query over evidential data, we need to first compute

the evidential skyline. After that, we rank the objects in the skyline according to the

dominance score function with CL (σ()) as defined in the previous section. First, TOPk-

CL algorithm computes the evidential skyline through two phases. In the first phase (lines

2–17), we compare in the one hand, each object oi in O with those selected in b-SkyO and
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we compute the score dominance attributed for each object. If an object oj in b-SkyO is

b-dominated by oi, we remove oj from the set of candidate objects since it is not part of

the evidential skyline. At the end of the comparison of oi with objects of b-SkyO, if oi is

not b-dominated by any object then, it is added to b-SkyO with a final score.

To avoid the situation illustrated by the example in Table 3.7, a second phase is needed

(lines 18–21). To determine if an object oi in b-SkyO is indeed in the b-skyO, it is sufficient

to compare oi with those in O \ {b-SkyO ∪ undom(oi) ∪ {oi}} that occur earlier than oi
since the other ones have been already compared against oi, where undom(oi) is the set of

objects that occurs before oi and that do not b-dominate oj.

Each object in the b-skyO has a score dominance computed in line 16 and a score

dominance withe CL computed in line 17. The method top-k(b-skyO, k) shown in line 22,

returns k objects in b-skyO that are expected to have the largest score dominance value

σ(). Even if, TOPk-CL minimizes the number of dominance checks, it also may result in

a high computational cost. In particular, when the average number of dimensions is large.

Thus, it is crucial to optimize the dominance checks to improve the performance of the

b-skyline computation and therefore the TOPk-CL computation. In the following, in order

to check the b-dominance between objects, we devise an efficient method that overcomes

this problem using the minimum and the maximum values of each bba w.r.t. each attribute.

Algorithm 12: b-dominates(oi, oj, b)

1 strict← False;

2 while ar in A and strict=False do

3 if oi.a
−
r > oj.a

+
r then

4 return false;

5 if bel(oi.ar ≤ oj.ar) < b then

6 return false;

7 if bel(oi.ar < oj.ar) ≥ b then

8 strict← True;

9 if strict = False then

10 return false;

11 return true;

To efficiently check if a given object oi b-dominates or not another object oj, we propose

an efficient method (see Algorithm 12). To determine if an abject b-dominates another, it

is not necessary to iterate all bbas defined on all attributes.

The details of the b-dominates() function are as follows. For each attribute ar ∈ A,
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oi.a
−
k is compared against oj.a

+
k . If there is any attribute ar for which oj.a

+
k < oi.a

−
k

holds then return false (If in line 4); since oi cannot b-dominate oj. The method returns

“false” as soon as the degree of belief that oi.ar is less or equal than oj.ar denoted by

bel(oi.ar ≤ oj.ar), is less than the threshold b; since that does not satisfy the principle

of the b-dominance. Finally, the method returns “false” as well as if it does not exist an

attribute where oi is strictly better than oj.

5.4 Experimental Evaluation

In this section, we have performed an extensive experimental evaluation of the proposed

framework. We report empirical study to examine the effectiveness and the efficiency of

the top-k skyline query with confidence level on evidential data. More specifically, we

focus on the following important issues: (1) the scalability and the performance of our

proposed techniques for computing the TOPk-CL algorithm. For comparison purposes, we

implement a baseline algorithm for the TOPk-CL referred to as BTOPk-CL. In addition,

we implemented an efficient method; b-dominates function to show how does it perform the

TOPk-CL algorithm. (2) We implement the top-k query without confidence level referred

to as TOPk and we conduct an analysis about the impact of the confidence level on the

top-k skyline results.

5.4.1 Experimental Setup

For our evaluation, we use a generated data-sets. We control the generation of evidential

data by the parameters in Table 5.2, which provides us with the parameters and their

default values. In each experimental setup, we evaluate the effect of one parameter, while

we set the other to their default values.

The data generator and the algorithms, i.e, TOPk, TOPk-CL and BTOPk-CL were

implemented in Java, and all experiments were conducted on a 2.3 GHz Intel Core i7

processor, with 6GB of RAM.

5.4.2 Performance and Scalability

In this section, we show on the one hand, that the TOPk-CL algorithm is more scalable

than the BTOPk-CL algorithm.

Figure 5.1 depicts the execution time of the implemented algorithms with respect to
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Parameter Symbol Values Default

Number of objects n 1K, 5K, 10K, 50K, 100K 10K

Number of attributes d 2, 3, 4, 5, 6 3

Nbr of focal elmts/attr f 2, 3, 4, 6, 8, 10 4

belief threshold b 0.1, 0.3, 0.5, 0.7, 0.9 0.5

Theta cardinality t 10, 50, 100, 200 100

Top-k size k 10, 20, 30, 40, 50 10

Table 5.2: Examined Values for the Top-k Skyline Computation.

various parameters (n, d, f , b, t and k). Overall, TOPk-CL outperforms BTOPk-CL.

More specifically, it is faster than the basic algorithm. As expected, figure 5.1 shows

that the performance of all the algorithms deteriorates with the increase of n, d, f and

b. That is because the more these parameters increase, the more the dominance checks

increase. Observe that TOPk-CL is one order of magnitude faster BTOPk-CL since it can

quickly identify whether an object is b-dominated. For example, as shown in figure 5.1b,

when d increases, the size of the evidential skyline becomes larger, thus a large number of

objects will be selected to the second phase. Hence, BTOPk-CL performs a large number

of dominance checks with a basic function. Even if TOPk-CL performs the same number

of dominance checks than BTOPk-CL, TOPk-CL is more efficient than BTOPk-CL since

it can detect immediately whether an object dominates or not another. In contrast to n,

d, f and b, varying t and k, has no apparent effect on CPU Time as shown in figure 5.1e

and figure 5.1f, respectively.

5.4.3 Topk-CL VS Topk

In this section, we study the impact of the confidence level which reflects the belief and

plausibility degrees of the objects existence in the database. For each parameter value, we

first obtain the skyline set b-skyO, we then implement two algorithms: TOPk-CL skyline

and TOPk skyline which have the same input (b-skyO). The TOPk skyline algorithm is

based on the dominance score function µ() to rank the skyline set. However, the TOPk-

CL skyline is based on the dominance score function with confidence level σ(). For each

parameter value, we study the impact of the confidence level by returning the number of

common objects between the two result sets denoted by TOPk∩TOPk-CL. Note that for

figures 5.2a, 5.2b, 5.2c, 5.2d and 5.2e, we are interested in the top-10 query, i.e., the result

set size is k = 10.

For example, in figure 5.2a, TOP10-CL and TOP10 have 6 common objects when
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Figure 5.1: Performance of Top-k Skyline varying the parameters

n = 1K, i.e., the confidence level changes 40% of the final result.
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Figure 5.2: TOPk-CL VS TOPk

However, in figure 5.2b, the same result is returned by both TOPk-CL and TOPk when
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d = 2 (10 common objects). In figure 5.2d, ∀b ≥ 0.3, the skyline size is larger than k = 10.

However, when the skyline size is less than k, the TOPk-CL as well as the TOPk skyline

return the skyline set as shown in figure 5.2d when b = 0.1. Figures 5.2c and 5.2e show

that the confidence level may change up to 50% of the TOPk skyline results. Figure 5.2f

shows that the more k increases, the more the number of common objects increases.

5.5 Conclusion

In this chapter have addressed the problem of top-k skyline with confidence level on eviden-

tial data. After introducing new semantics for the imperfect skyline analysis, we defined

the top-k skyline operator which ranks the skyline results and returns the most interest-

ing k objects. We also integrated the notion of the confidence level and we conducted an

analysis about its impact on the top-k results.

Our experimental evaluation demonstrated the flexibility of the proposed top-k skyline

query over evidential data and the scalability of our algorithms.

In the next chapter, we particularly tackle an important issue, namely the skyline stars

(denoted by SKY2) over the evidential data. This kind of skyline aims at retrieving the

best evidential skyline objects (or the stars). Efficient algorithms have been developed to

compute the SKY2. Extensive experiments have demonstrated the efficiency and effective-

ness of our proposed approaches that considerably refine the huge skyline set. In addition,

the conducted experiments have shown that our algorithms significantly outperform the

basic skyline algorithms in terms of CPU and memory costs.
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6.1 Introduction

In this chapter, we address the issue of refining the skyline on evidential databases.

6.1.1 Motivating example

Let us recall the example presented in chapter 1, we consider again plane sensor analysis.

If observation-by-observation data are considered, we can answer many questions such as:

which target should be in the skyline. However, the previous studies analysing the skyline

size, prove that it is worthwhile to refine this huge skyline set, i.e., among the skyline

targets, which targets are considered the most dangerous.

6.1.2 Contributions

In this chapter, the following contributions are made:

• We first give a reminder about the evidential skyline models: the believable skyline

(denoted by the b-skyline) and the plausible skyline (denoted by the p-skyline).

• Since the evidential skyline size is often too large to be analyzed, we define the set

SKY 2 to refine the evidential skyline and retrieve the best evidential skyline objects

(or the stars).

• We develop suitable algorithms based on scalable techniques to efficiently compute

the b-skyline and the p-skyline, on the one hand, and the evidential SKY2 on the

other hand. We also perform an extensive experimental evaluation to demonstrate

the scalability of the proposed algorithms.

These chapter contributions are published in the International Journal of

Applied Soft Computing (Elmi, Tobji, Hadjali, & Yaghlane, 2017).

6.1.3 Chapter Organization

This chapter is organized as follows. In section 6.2, we recall the main notions of the

believable skyline and and the plausible skyline, while in section 6.3, we propose the concept

of the b-SKY2 and p-SKY2. Section 6.4 describe our algorithms to retrieve the skyline stars.
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Details about the experimental evaluation are reported in section 6.5. Finally, section 6.6

concludes the chapter and outlines some perspectives for future work.

6.2 Evidential skyline

In this section, we present the notion of the believable skyline, and then, we introduce the

notion of plausible skyline over evidential databases.

Given a set of objectsO = {o1, o2, . . . , on} defined on a set of attributesA = {a1, a2, . . . , ad},
with oi.ak denotes the bba of object oi w.r.t. attribute ak. According to Definition 2.1,

the degrees of belief and plausibility that an object oi is better than or equal (or strictly

better) to another object oj w.r.t. an attribute ak write :

bel(oi.ak ≤ oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A≤∀B

mjk(B)) (6.1)

Where A ≤∀ B stands for a ≤ b, ∀(a, b) ∈ A×B.

bel(oi.ak < oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A<∀B

mjk(B)) (6.2)

Where A <∀ B stands for a < b, ∀(a, b) ∈ A×B.

Example 6.1. In Table 6.1, one can check that1 bel(t1.d ≤ t2.d) = 0, bel(t1.a ≤ t2.a) = 0.3,

bel(t2.d < t1.d) = 0.7, and bel(t2.a ≤ t1.a) = 0.7

Table 6.1: Evidential data for the skyline stars computation.

Target Distance (103.km) Altitude (103.km)

t1 〈{150, 160, 180}, 0.1〉, 〈{190, 200}, 0.9〉 〈60, 0.3〉, 〈100, 0.7〉
t2 〈100, 0.7〉 〈ΘDistance, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
t3 70 ΘAltitude

t4 〈{50, 60}, 0.8〉, 〈{65}, 0.2〉 60

t5 〈{50}, 0.5〉, 〈{60}, 0.5〉 〈{60}, 0.6〉, 〈{70}, 0.4〉

pl(oi.ak ≤ oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A≤∃B

mjk(B)) (6.3)

1d and a denote the distance and the altitude attributes, respectively
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Where A ≤∃ B means for every a ∈ A, ∃b ∈ B such that a ≤ b.

pl(oi.ak < oj.ak) =
∑

A⊆Θak

(mik(A)
∑

B⊆Θak
,A<∃B

mjk(B)) (6.4)

Where A <∃ B means for every a ∈ A, ∃b ∈ B such that a < b.

Example 6.2. In Table 6.1, one can check that pl(t1.d ≤ t2.d) = 0.3, pl(t1.a ≤ t2.a) = 0.3,

pl(t2.d ≤ t1.d) = 1, pl(t2.a ≤ t1.a) = 0.7 and pl(t5.d < t4.d) = 0.6

Let us now discuss how can we extend the dominance relationship to evidential data.

6.2.1 The believable skyline

In this section, we present the notion of the believable skyline. This later aims at retrieving

the most interesting objects in O that are not believably dominated by any other objects.

We first present the concept of the believable dominance denoted by the b-dominance and

then the believable skyline denoted by the b-skyline.

Definition 6.1. (The believable dominance) Given two objects oi, oj ∈ O and a belief

threshold b, oi b-dominates oj denoted by oi �b oj if and only if oi is believably as good or

better than oj in all attributes ak in A (1 ≤ k ≤ d) and strictly believably better in at least

one attribute ak0 (1 ≤ k0 ≤ d) according to a belief threshold b, i.e.,

∀ak ∈ A : bel(oi.ak ≤ oj.ak) ≥ b and ∃ak ∈ A : bel(oi.ak < oj.ak) ≥ b.

In order to define the b-skyline, it is essential to illustrate a key property of the b-

dominance.

Property 6.1. The b-dominance relationship does not satisfy the property of transitivity.

Given an object oi, we denote by oi.a
−
k and by oi.a

+
k respectively the minimum value

and the maximum value of oi.ak.

Property 6.2. if ∃ak ∈ A where oi.a
+
k < oj.a

−
k then oj does not dominate oi, i.e., oj 6� oi

since bel(oj.ak ≤ oi.ak) = 0.

Intuitively, an object is in the believable skyline if it is not believably dominated by

another object. Based on the b-dominance relationship, the notion of b-skyline is defined

as follows.
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Definition 6.2. (The believable skyline) The believable skyline of O, denoted by b-skyline,

comprises those objects in O that are not b-dominated by any other object, i.e., b-skyline =

{oi ∈ O | @ oj ∈ O, oj �b oi}.

Property 6.3. Given two belief thresholds b and b′, if b < b′ then the b-skyline is a subset

of the b′-skyline, i.e., b < b′ ⇒ b-skyline ⊆ b′-skyline.

Property 6.3 indicates that the size of the b-Skyline is smaller than the b′-Skyline if

b < b′. Roughly speaking, from Property 6.3, we can see that users have the flexibility to

control the size of the retrieved believable skyline by varying the believable threshold b.

6.2.2 The plausible skyline

In this section, we present the notion of the plausible skyline which retrieves the most

interesting objects in O that are not plausibly dominated by any other objects. Note that

the plausible skyline is semantically different from the believable skyline. The believable

skyline returns the objects that are not surely dominated by any other object with respect

to some threshold. However, the plausible skyline returns the objects that are not plausibly

dominated by any other object according to a threshold. In the following, we show how

they are semantically different, and later in section 6.5, we will show how this difference

affects on the skyline size.

Let us first introduce the notion of the plausible dominance denoted by the p-dominance

and then the plausible skyline denoted by the p-skyline.

Definition 6.3. (The plausible dominance) Given two objects oi, oj ∈ O and a plausibility

threshold p, oi p-dominates oj denoted by oi �p oj if and only if oi is plausibly as good or

better than oj in all attributes ak in A (1 ≤ k ≤ d) and strictly plausibly better in at least

one attribute ak0 (1 ≤ k0 ≤ d) according to a plausible threshold p, i.e.,

∀ak ∈ A : pl(oi.ak ≤ oj.ak) ≥ p and ∃ak ∈ A : pl(oi.ak < oj.ak) ≥ p.

Property 6.4. The p-dominance relationship does not satisfy the property of transitivity

as well.

Definition 6.4. (The plausible skyline) The plausible skyline of O, denoted by p-skyline,

comprises those objects in O that are not p-dominated by any other object, i.e., p-skyline =

{oi ∈ O | @ oj ∈ O, oj �p oi}.

Property 6.5. Given two plausible thresholds p and p′, if p < p′ then the p-skyline is a

subset of the p′-skyline, i.e., p < p′ ⇒ p-skyline ⊆ p′-skyline.
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6.3 SKY2: Skyline stars over evidential databases

In this section, we introduce the notion of evidential SKY2 which allows refining the evi-

dential skyline results (believable skyline and plausible skyline already introduced in sec-

tion 6.2). To refine the objects in b-skyline (resp. p-skyline), we first compute the average

score (called the dominance score and denoted by score1) that every object Si in the b-

skyline (resp. p-skyline) dominates all objects in O. We then compute its average score

of being dominated denoted by score2. Let us first give the definition of b-SKY2.

6.3.1 b-SKY2: The believable skyline stars

In this section, we present the notions of different score functions used to compute the

b-SKY2. Let us first introduce the concept of the dominance score.

Definition 6.5. (Believable dominance score) Given an evidential database O, a believable

dominance score, denoted by b-score1(Si), reflects how much the skyline object Si believably

dominate the rest of objects in O.

b− score1(Si) =
∑

∀oj∈O,Si 6=oj ,Si∈b−skyline

bel(Si � oj)×
1

|O| − 1
(6.5)

where 1
|O|−1

is used for the normalisation need and the belief degree that a skyline

object Si dominates an object oj ∈ O, denoted by bel(Si � oj), is defined as follows:

bel(Si � oj) =
∏
ak∈A

bel(Si.ak ≤ oj.ak) (6.6)

Example 6.3. Let us come back to Table 6.1. Since bel(t2.d ≤ t1.d) = 0.7 and bel(t2.a ≤
t1.a) = 0.7, the belief degree that t2 dominates t1 is given by bel(t2 � t1) = 0.7 ∗ 0.7 = 0.49

Let us now introduce the concept of the being-dominated score.

Definition 6.6. (Believable being-dominated score) Given an evidential database O, a

believable being-dominated score, denoted by b-score2(Si), reflects how much the skyline

object Si is believably dominated by the rest of objects in O.

b− score2(Si) =
∑

∀oj∈O,Si 6=oj ,Si∈b−skyline

bel(oj � Si)×
1

|O| − 1
(6.7)

where bel(oj � Si) recalls the principle of equation 6.6.
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One way to select the best objects from the believable skyline (i.e., the skyline stars),

is to retrieve those have the highest dominance scores on the one hand, and the smallest

scores of being-dominated on the other hand.

Definition 6.7. (b-SKY2) The refined believable skyline denoted by b-SKY2 comprises

those objects in the b-skyline such that they have the highest values returned by b-score1

and the smallest values returned by b-score2. To compute the b-SKY2, it suffices to compute

the classical skyline over the data set S∗ containing all the object Si of b-skyline with their

degrees b-score1 and b-score2.

See the example bellow for more illustration.

Example 6.4. Suppose we have the following set of believable skyline objects: b-skyline =

{S1, S2, S3, S4, S5}. For each skyline point Si, we give its dominance score b-score1(Si)

and its being-dominated score b-score2(Si) as described in Table 6.2. One can check that

skyline object S2 dominates skyline objects S1 and S4. Skyline objects S2, S3 and S5 do

not dominate each other. They thus form the skyline of S∗. As a result, we have b-

SKY2={S2, S3, S5}

Table 6.2: The database S∗ for the b-SKY2 example

Skyline objects b-score1(Si) b-score2(Si)

S1 0.16 0.71

S2 0.65 0.4

S3 0.5 0.23

S4 0.23 0.69

S5 0.6 0.3

6.3.2 p-SKY2: The plausible skyline stars

In this section, we propose how can we refine the plausible skyline results and get the

skyline stars.

Definition 6.8. (Plausible dominance score) Given an evidential database O, a plausible

dominance score, denoted by p-score1(Si), expresses how much the skyline objects plausibly

dominate the rest of objects in O.

p− score1(Si) =
∑

∀oj∈O,Si 6=oj ,Si∈p−skyline

pl(Si � oj)×
1

|O| − 1
(6.8)
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where the degree of plausibility that a skyline object Si dominates an object oj ∈ O, denoted

by pl(Si � oj), is defined as follows:

pl(Si � oj) =
∏
ak∈A

pl(Si.ak ≤ oj.ak) (6.9)

Example 6.5. From Table 6.1, we have pl(t2.d ≤ t1.d) = 1 and pl(t2.a ≤ t1.a) = 0.7. The

plausibility that t2 dominates t1 is then given by pl(t2 � t1) = 1 ∗ 0.7 = 0.7. One can also

check that pl(t1 � t2) = 0.3 ∗ 0.3 = 0.09

Let us now introduce the concept of the being-dominated score.

Definition 6.9. (Plausible being-dominated score) Given an evidential database O, a plau-

sible being-dominated score, denoted by p-score2(Si), expresses how much the skyline objects

are plausibly dominated by the rest of objects in O.

p− score2(Si) =
∑

∀oj∈O,Si 6=oj ,Si∈p−skyline

pl(oj � Si)×
1

|O| − 1
(6.10)

Definition 6.10. (p-SKY2) The refine plausible skyline, denoted by p-SKY2, comprises

those objects in the p-skyline such that they have the highest values returned by p-score1(Si)

and the smallest values returned by p-score2(Si). To compute the p-SKY2, it suffices to

compute the classical skyline over the data set S∗∗ containing all the object Si of p-skyline

with their degrees p-score1 and p-score2.

6.4 Skyline Stars Computation

In this section, we first discuss how our evidential SKY2 algorithms can highlight the

properties of dominance relationship mentioned in section 3. Then, we propose an efficient

method to reduce the complexity of belief function operations as well as the plausibility

function operations.

6.4.1 b-SKY2 computation

In this section, we describe how can we obtain the skyline stars. In a first part, we describe

the b-SKY2 algorithm which returns from the b-skyline the skyline stars.

A straightforward algorithm to compute the b-skyline is to compare each object oi
against the other objects. If oi is not b-dominated, then it belongs to the believable

skyline. However, this approach results in a high computational cost (see Section 6.5).
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Also, while the b-dominance relationship is not transitive, (see Property 6.1), an object

cannot be eliminated from the comparison even if it is b-dominated since it will be useful

for eliminating other objects.

For this reason, we propose an algorithm (see Algorithm 13) that follows the principle

of the two scan algorithm cited in (Chan et al., 2006) in order to efficiently compute the

evidential skyline.

First, algorithm 13 computes the believable skyline through two phases. In the first

phase (lines 2–20), we compare each object oi in O with those selected in b-skyline and

we compute the several scores attributed for each object. If an object oj in b-SkyO is

b-dominated by oi, we remove oj from the set of candidate objects since it can not be

a part of the believable skyline. At the end of the comparison of oi with the objects of

b-skyline, if oi is not b-dominated by any object then, it is added to b-skyline with two

scores (b.score1 and b.score2).

To avoid the situation of non-transitivity, a second phase is needed (lines 21–24). To

determine if an object oi in b-skyline is indeed in the believable skyline it is sufficient to

compare oi with those in O \ {b-skyline ∪ undom(oi) ∪ {oi}} that occur earlier than oi
since the other ones have been already compared against oi, where undom(oi) is the set of

objects that occur before oi and that do not b-dominate oj.

In lines 19 and 20, we compute the scores of each skyline object oi. b-score1 is recov-

ered by summing the belief degrees that oi b-dominates oj ∈ O where oi 6= oj. Even,

if b-SKY2 algorithm minimizes the number of dominance checks, it also may result in a

high computational cost. In particular, when the average number of focal elements per

object is large. Thus, it is crucial to more optimize the dominance checks to improve the

performance of b-SKY2. In the following, we devise an efficient method that overcomes

this problem using the minimum and the maximum values of each object w.r.t. each

attribute, according to Property 6.2. To determine if an object oi b-dominates another

object oj, Property 6.2 shows that it is not necessary to iterate all focal elements of each

bba. To efficiently check that a given object oi b-dominates or not another object oj,

it suffices to compare for each attribute ak ∈ A, oi.a
−
k against oj.a

+
k .(see Algorithm 14)

which is based on property 6.2. The method returns false (in line 4), if there is any

attribute ak for which oi.a
−
k > oj.a

+
k ; since oi cannot b-dominate oj according to Prop-

erty 6.2. Otherwise, if the belief degree that oi.ak is as good or better than oj.ak, is less

than the threshold b, then oi does not b-dominate oj (line 6). The method returns “false”

as soon as it does not exist an attribute ak0 where oi is strictly better than oj (line 7–10).
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Algorithm 13: b-SKY2

Input: Objects O; belief threshold b;

Output: b-SKY2;

1 begin

2 foreach oi in O do

3 isSkyline← true;

4 s1 ← 0;

5 s2 ← 0;

6 foreach oj in b-skyline do

7 if isSkyline then

8 if oj �b oi then

9 isSkyline← false;

10 else

11 undom(oi)← undom(oi) ∪ {oj};
12 s2 ← s2 + bel(oj � oi);

13 if oi �b oj then

14 remove oj from b-skyline;

15 if isSkyline then

16 insert oi in b-skyline;

17 foreach ox in O do

18 s1 ← s1 + bel(oi � ox);

19 oi.b-score1 ← s1/(|O| − 1);

20 oi.b-score2 ← s2/(|O| − 1);

21 foreach oi in b-skyline do

22 foreach oj in O \ (b-skyline ∪ undom(oi) ∪ {oi}), pos(oj) < pos(oi) do

23 if oj �b oi then

24 remove oi from b-skyline;

25 b-SKY2 ←SKY-OF(b-skyline);

26 return b-SKY2;

The algorithm denoted b-SKY2 has the complexity of O(n2) where n is the number of

evidential objects.

The method SKY-OF() described in algorithm 15 aims at retrieving the skyline stars

which have the highest dominance score and the smallest being-dominated score. As shown

in algorithm 15, this set of stars is computed by a simple classic skyline on a data set with
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Algorithm 14: b-dominates(oi, oj, b)

1 strict← False;

2 while ak in A and strict=False do

3 if oi.a
−
k > oj.a

+
k then

4 return false;

5 if bel(oi.ak ≤ oj.ak) < b then

6 return false;

7 if bel(oi.ak < oj.ak) ≥ b then

8 strict← True;

9 if strict = False then

10 return false;

11 return true;

Algorithm 15: SKY-OF(b-skyline)

1 Sorted-SKY ← SORT (b-skyline, score1);

2 pred← 1;

3 foreach Si in Sorted-SKY do

4 if Si.score2 ≤ pred then

5 pred← Si.score2 ;

6 SKY2 ← SKY 2 ∪ {Si} ;

7 return SKY2;

only two dimensions (i.e., b-score1 and b-score2).

A two-dimensional skyline can be computed by sorting the data (line 1 in algorithm 15). If

the data is topologically sorted according to one attribute of the database (here in line 1,

we sort the skyline points according to the attribute score1), the test of whether an object

is a part of the skyline stars does not result in a high cost: we simply need to compare an

object with its predecessor. More precisely, we need to compare an object with the last

previous object which is part of the skyline stars. Table 6.3 illustrates this approach. Note

that the skyline objects are sorted according to the first attribute, i.e., b-score1(Si). So,

S2 can be eliminated because it is dominated by S1, its predecessor. Likewise, S3 can be

eliminated because it is dominated by S1, its predecessor after S2 has been eliminated.
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Table 6.3: The database S∗

Skyline objects b-score1(Si) b-score2(Si)

S1 0.9 0.3

S2 0.8 0.5

S3 0.6 0.4

S4 0.4 0.2

6.4.2 p-SKY2 computation

To compute the plausible skyline stars, we refer to the p-SKY2 algorithm. In this algorithm,

we follow the same steps as in b-SKY2 algorithm using an efficient method to compute the

p-dominance between objects in O.

In fact, in algorithm 16, the p-dominance method, denoted by �p, can recall the prin-

ciple of the b-dominance discussed in algorithm 14. However, computing the plausibility

function can result in a high cost computation because it requires the intersection opera-

tions between two bbas. In the following, we propose a way to reduce this cost computation.

To detect the intersections between two bba, it is necessary to iterate all propositions in

each focal element.

In the following, we represent a focal element as a decimal number and we reduce the

set operations to bit-wise operations2. The plausibility function can be then equivalently

expressed as follows:

pl(A) =
∑

A&B 6=0

m(B) (6.11)

where A and B are two decimal numbers and & stands for the logic operator ”and”.

In this context, we denote the frame of discernment of an attribute ak as Θak = {p1, p2, . . . , pn}
and {p1, p2, . . . , pn} represent the set of propositions in Θak. A focal element f can have

a relational representation R where R is a binary number such as R = r1r2 . . . rn where

ri =

{
1 if pi ∈ f
0 if pi 6∈ f

However, it is necessary to fix the order of propositions in Θak to have a one-to-one corre-

spondence between propositions and n-bits binary numbers.

Example 6.6. Let Θak = {tall, short, small, big}. The following focal element f =

{tall, short, small, big} can be equivalently represented by the binary representation R =

2This approach is introduced by (Haenni & Lehmann, 2003) for the purpose of reducing the evidential

functions computation.
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1111. This binary code can be converted to decimal code denoted by cod such that f.cod =

(20 ∗ 1) + (21 ∗ 1) + (22 ∗ 1) + (23 ∗ 1) = 15. Suppose now we have the focal element

f ′ = {tall, big}, its representation as a binary code is R = 1001. This later can be con-

verted to decimal as follows: 1001 = (20 ∗ 1) + (21 ∗ 0) + (22 ∗ 0) + (23 ∗ 1) = 9. Thus

f ′.cod = 9.

In order to detect if there is an intersection between the focal elements f and f ′, it is just

sufficient to check if (f.cod&f ′.cod) equals or not to zero.

The correspondence between subsets and decimal codes lies not only at the format but

also the operations and relations. Bit-wise operations include intersection AND (&), union

OR and complement.
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Algorithm 16: p-SKY2

Input: Objects O; plausible threshold p;

Output: p-SKY2;

1 begin

2 foreach oi in O do

3 isSkyline← true;

4 s1 ← 0;

5 s2 ← 0;

6 foreach oj in p-skyline do

7 if isSkyline then

8 if oj �p oi then

9 isSkyline← false;

10 else

11 undom(oi)← undom(oi) ∪ {oj};
12 s2 ← s2 + pl(oj � oi);

13 if oi �p oj then

14 remove oj from p-skyline;

15 if isSkyline then

16 insert oi in p-skyline;

17 foreach ox in O do

18 s1 ← s1 + pl(oi � ox);

19 oi.p-score1 ← s1/(|O| − 1);

20 oi.p-score2 ← s2/(|O| − 1);

21 foreach oi in p-skyline do

22 foreach oj in O \ (p-skyline ∪ undom(oi) ∪ {oi}), pos(oj) < pos(oi) do

23 if oj �p oi then

24 remove oi from p-skyline;

25 p-SKY2 ←SKY-OF(p-skyline);

26 return p-SKY2;

The algorithm denoted p-SKY2 has the complexity of O(n2) where n is the number of

evidential objects.

With relational representation, we can immediately reduce the complexity of plausibility

function (see algorithm 17 where f.mass and f ′.mass are the masses attributed for the focal

elements f and f ′, respectively.) and hence reduce the complexity of p-SKY2 algorithm.
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We show in section 6.5, that the results clearly indicate that this method significantly save

the cost of the plausibility function computation.

Algorithm 17: pl(oi.ak ≤ oj.ak)

1 pl← 0;

2 foreach f in oi.ak do

3 foreach f ′ in oj.ak do

4 if (f.cod & f ′.cod) 6= 0 then

5 pl← pl + (f.mass ∗ f ′.mass);

6 return pl;

The complexity of b-SKY2 and p-SKY2 is of the order of O(n2) where n is the database

size. However, algorithm complexity copes with the worst algorithm scenario (a complete

database scan). That is why we conduct in section 6.5 an extensive experimentation

evaluation, where we consider several aspects of the evidential database to mainly assess

the performance of our methods.

6.5 Experimental Evaluation

In this section, we have performed an extensive experimental evaluation of the proposed

framework. We report empirical study to examine the effectiveness and the efficiency

of computing the skyline stars over evidential data. More specifically, we focus on two

issues: (i) the size of the skyline stars; and (ii) the scalability of our proposed techniques

for computing the skyline stars. For comparison purposes, we implement the baseline

algorithms for b-SKY2 and p-SKY2 referred to as BBS and BPS, respectively. In addition,

we implement two efficient methods b-dominates function and p-dominates function to

show how do they perform the b-SKY2 and the p-SKY2 algorithms, respectively.

6.5.1 Experimental Setup

We control the generation of evidential data by the parameters provided in Table 6.4, which

lists the parameters and their default values. In each experimental setup, we evaluate the

effect of one parameter, while we set the other to their default values.

For the number of focal elements, the values listed in Table 6.4, refer to the maximum

number of focal elements that a bba may contain. This means that the number of focal
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Table 6.4: Examined Values for the Skyline Stars Computation.

Parameter Symbol Values Default

Number of objects n 1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K 10K

Number of attributes d 2, 3, 4, 5, 6, 10, 15 3

Max Nbr of focal elmts/attr f 2, 3, 4, 6, 8, 9, 10, 15, 20 5

belief threshold b 0.01, 0.1, 0.3, 0.5, 0.7, 0.9 0.5

plausible threshold p 0.5, 0.6, 0.7, 0.8, 0.9 0.7

Theta cardinality/attr t 10, 50, 100, 150, 200 100

elements is in [1..f ].

In addition, we mean by the theta cardinality, the number of possible propositions for each

attribute.

We refer to the work introduced by (Bousnina et al., 2016) to design the evidential

database. The data generator and the algorithms, i.e., BBS, BPS, b-SKY2 and p-SKY2

were implemented in Java and all experiments were conducted on a 2.3 GHz Intel Core i7

processor, with 6GB of RAM.

Note that the baseline algorithms do not use the methods b-dominates() and p-dominates()

and iterate on all the propositions in a focal element to compute the dominance degrees

between objects.

6.5.2 Size of the Skyline Stars

Skylines are generally of large size for large sets of objects as well as attributes A. It is

larger if the attributes values are uncertain.

Table 6.5: Belief Dominance

Objects o1 o2 o3 o4

o1 - 0.2 0.2 0.3

o2 0.4 - 0.1 0.3

o3 0.1 0.3 - 0.2

o4 0.1 0.1 0.15 -
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Table 6.6: Plausible Dominance

Objects o1 o2 o3 o4

o1 - 0.3 0.25 0.4

o2 0.4 - 0.2 0.4

o3 0.2 0.5 - 0.5

o4 0.35 0.4 0.15 -

The goal of the experiments in this section is twofold. First, we demonstrate that

using p-skyline to model the skyline results over evidential data is more significant than

the b-skyline in terms of size. Second, we show that the reduction of query result size is

more and more significant if we compute the p-SKY2 and the b-SKY2. More specially, the

p-SKY2 size is smaller than the b-SKY2 size.

First of all, let us show how the p-skyline results can be more significant in terms of

size than the b-skyline results. Suppose we have four evidential objects in O such that

O = {o1, o2, o3, o4}. We study the believable dominance and the plausible dominance of

each object oi in O. Table 6.5 shows the belief degrees that each object in lines dominates

another object in columns. Table 6.6 shows the plausibility degrees that each object in

lines dominates another object in columns. As we can observe, the degrees returned by the

plausible dominance are either equal or larger than those returned by the belief dominance.

That is because, as we have shown in Table 6.5 and Table 6.6, the plausibility function gives

more chance to objects to dominate the others. For example, o1 0.2-believably dominates

o2, however, it 0.3-plausibly dominates o2. Let us compute the skyline objects with the

following belief and plausible thresholds: b = p = 0.3

In Table 6.5, o1 can not be in the b-skyline since o2 �0.4 o1. However, o2, o3 and o4 are not

0.3-dominated by any other object. Thus, b-skyline = {o2, o3, o4}.
In Table 6.6, o2 can not be in the p-skyline since o3 �0.5 o2 and o4 �0.4 o2. As well as o4

can not be in the p-skyline since o1 �0.4 o4, o2 �0.4 o4 and o3 �0.5 o4. Thus, the p-skyline

only contains o3 since it is not plausibly dominated by any other object with p=0.3 and

thus the p-skyline= {o3}.

Fig. 6.1 shows the size (i.e., the number of objects returned) of the b-skyline, p-skyline,

b-SKY2 and p-SKY2 w.r.t. n, d, b, p, t and f . All figures show the difference in the size of

the results of p-skyline and b-skyline. In all cases, the p-skyline returns less objects than

the b-skyline.

Add to that, as the figures suggest, using the b-SKY2 and the p-SKY2 has a significant
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Figure 6.1: Size on the skyline stars

reduction in the size of skyline query results, in comparison with b-skyline and p-skyline,

respectively. In particular, the p-SKY2 algorithm returns less objects in the skyline stars

set. For example, in Figure 6.1a, for a high size of data set (n=500K), the b-skyline

algorithm returns 0.04% of the database size (200 objects). However, the b-SKY2 returns

only 0.002% of the database size (less than 10 objects). In addition, the p-skyline algorithm

returns 0.003% (15 objects) of the database size. However, the b-SKY2 returns only 0.001%
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Figure 6.2: Effect of d on Size.

(5 objects), which is interesting for the user.

In general and in all cases, the p-SKY2 retrieves the best result size for the user (the

smallest size). It can be observed in Fig. 6.1b, because using larger sets of attributes A
generally results in a high result size. In this figure, as the linear scale does not reflect the

difference on the skyline size between algorithms, we present data on a logarithmic scale

in Fig. 6.2. The cardinality of the b-skyline and p-skyline increases significantly with the

increase of d. This is because with the increase of d an object has better opportunity to

be not dominated in all attributes. However, it does not affect the p-SKY2 size because

for larger attribute sets, p-SKY2 size grows slowly. The same observation can be done for

the f effect in Fig. 6.1c and t effect in Fig. 6.1d.

Another important observation in Fig. 6.1a, is that when varying n, the p-SKY2 size is

always smaller than the b-skyline size, the p-skyline size and also the b-SKY2 size. Moreover,

the figure 6.1c shows that the size of the b-skyline and the p-skyline increases with higher

values of n since when n increases, more objects have chances to be not dominated.

Fig. 6.1f shows that the size of the p-skyline increases with the increase of the p since

the p-skyline contains the p′-skyline if p > p′; see Theorem 6.5. In contrast to d, p and b,

f and t have no apparent effect on the size of the b-skyline and the p-skyline as shown in

Fig. 6.1c and Fig. 6.1d since varying f and t, some objects have better chances to be not

dominated, while other have better chances to be dominated.

6.5.3 Performance and Scalability

To show the efficiency and the scalability of our algorithms, four algorithms are evaluated

(the b-SKY2, the p-SKY2 and their baseline algorithms referred to BBS and BPS) w.r.t.

n, d, b p, t, and f .
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Figure 6.3: Elapsed time to compute the skyline stars

Fig. 6.3 investigates the run-time of the algorithms with respect to the plausible and

belief threshold. The results clearly indicate that the pruning techniques in those two

methods significantly reduce the cost of the skyline stars computation.

Overall, p-SKY2 outperforms BBS and BPS. Fig. 6.3a shows that the performance of

the algorithms deteriorates with the increase of n. In Fig. 6.4, we use the logarithmic scale

to well perceive the effect of n. Observe that p-SKY2 is one order of magnitude faster
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Figure 6.4: Effect of n on CPU Time

than b-SKY2, BPS and BBS since it can quickly identifies if an object is dominated or not.

Moreover, p-SKY2 performs b-SKY2 since the p-dominates() method reduces intersection

operations to bit-wise operations which improves the computation cost.

According to Fig. 6.3b, the running time of the algorithms increases when the number

of dimensions increases. Moreover, BBS and BPS do not scale with d. This is because

when d increases the size of the skyline stars becomes larger, thus a large number of

objects will be selected for the the second phase. Hence, BPS performs a large number of

dominance checks with a basic function. Even if the p-SKY2 performs the same number

of dominance checks than BPS, p-SKY2 is more efficient than BPS since it can detect

immediately whether an object dominates or not another.

As shown in Fig. 6.3e and Fig. 6.3f, the more b and p increase, the more the computation

cost increases. That is because there is more and more dominance checks. The four

algorithms are not affected by t as the skyline stars computation is independent of the

number of propositions for each attribute.

Fig. 6.3c shows that the execution time of the algorithms p-SKY2 and b-SKY2 slightly

increase with the increase of f . It is not the case of the BBS and BPS as the baseline

algorithms must iterate all focal elements to check if an object dominates other objects or

not.

Fig. 6.5 shows the same experiments, but reports the memory cost instead. As we

show in Fig. 6.5a, we can note that there is a slight difference in term of memory cost

between b-SKY2 and p-SKY2. In addition and as expected, larger cardinality increases the

percent of used memory because the higher the number of objects, the sparser the data

set. However, varying d has no effect on used memory as shown in Fig. 6.5b. The same if

varying the parameter f .
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Figure 6.5: Used Memory

6.6 Conclusion

In this chapter, we have addressed the problem of selecting skyline stars over evidential

data. We introduced new semantics for the skyline analysis over evidential data and we

developed efficient algorithms for computation purpose.

Our experimental evaluation demonstrated the interest of the proposed evidential sky-

line stars and the scalability of our algorithms. In the context of frequently updated

database, new methods of maintaining the skyline stars, without restarting the analysis

process from the scratch, should be introduced. Thus, the skyline stars computation if the

queried database is frequently updated, is left for future work.

Also, another interesting future direction is to include the level confidence of an evi-

dential object in the skyline stars computation in the spirit of (Yong et al., 2014). The

confidence level represents the uncertainty of the tuple level in a database.

In the next chapter, we conclude this thesis by summarizing the achieved contributions



Section 6.6 – Conclusion 123

and outlining some future works.
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Chapter 7
Conclusion and Future Work

7.1 Conclusion

It has been recognized that the Skyline analysis rapidly gains popularity and constituting

an integral part of many real-world applications. Therefore, enhancing the capabilities of

the current Skyline operator engines with effective and efficient techniques for the Skyline

retrieval and selection is an important issue.

In this dissertation, we provided optimization strategies to enable users to select the

most interesting database objects in a flexible way based on their preferences. Mainly, we

have discussed some aspects related to the skyline analysis over imperfect data modeled by

the belief function theory. In addition, we have deeply study the effect of some parameters

on the skyline size on the one hand, and the execution time on the other hand, when data

are uncertain, imprecise and incomplete. We summarize below our major contributions:

• The evidential skyline: we modeled the skyline operator over imperfect data modeled

by the evidence theory. We proposed how can we compute the dominance relationship

between the objects of an evidential database and to retrieve the objects that are

not dominated by any other objects, i.e., the skyline objects. In particular, we

define a first evidential skyline model which is based on the classic skyline definition

and second, we propose new semantics for the evidential skyline where objects are

considered as a set of knowledge states. Furthermore, we provided new techniques

to efficiently compute the skyline on evidential data.

• The evidential skyline maintenance: We proposed efficient methods to maintain the

skyline results in the evidential database context when an object is inserted or deleted.
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In addition, we performed an extensive experimental evaluation to demonstrate the

scalability of the proposed algorithm.

• The Top-k skyline: We proposed a novel ranking criterion based on the evidential

dominance relationship, to select the most relevant objects in the evidential database.

We proposed a score function reflecting the dominance degree of each object. This

score function aims at retrieving k objects that are expected to believably dominate

the more the other objects. In a second step, we developed a suitable algorithm to

the evidential skyline computation and the top-k query. We evaluated our approach

through a set of thorough experiments. In addition, our extensive experiments reflects

the impact of the confidence level on the top-k skyline result.

• The distributed evidential skyline: We then introduced efficient approach for query-

ing and processing the evidential skyline over multiple and distributed servers. We

proposed the notions of the marginal points to resume the dominance regions of each

local evidential skyline. We the developed efficient algorithms to compute the global

evidential skyline. We conducted extensive experiments to show the efficiency and

the effectiveness of our approach.

• The skyline stars: Since the evidential skyline size is often too large to be improved,

we define the set SKY 2 to refine the evidential skyline and retrieve the best evidential

skyline objects (or the stars). In addition, we developed suitable algorithms based

on scalable techniques to efficiently compute the evidential SKY2. We evaluated our

approach through a set of experiments.

7.2 Future Work

This dissertation leads to various fertile grounds for future research. In the following, we

present some ideas which show the direction that future research could follow.

• Interestingly enough, many real-life applications where uncertain, imprecise, noisy

and error-prone data inherently exist. By the advent of such applications, the sup-

port of advanced analysis queries such as the skyline for imperfect data has become

important. Since location based services and GPS devices can easily connect users

and make groups, the skyline queries can not answer a users group needs and are

not sufficient to obtain a good choice for all group members. As future work, we

can propose an imperfect spatial skyline query for group of users located at different

positions. For example, if a group wants to find a restaurant, it is important to select
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the interesting place for all users of the group. Thus, the skyline computation under

this constraint is an interesting future direction.

• Context is an important concept to customize the objects selection. It is thus in-

teresting to consider the context in the object skyline selection. I addition, taking

account a user-defined satisfaction functions in the skyline computation seems an

interesting direction to rank the objects retrieved by the evidential skyline .

• An interesting future direction is to introduce the notion of confidence level to b-

skyline computing and updating in the spirit of (Yong et al., 2008).
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Appendix A
The Evidential Skyline System (eSKY)
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A.1 Introduction

This annex presents an Evidential Skyline System (eSky) designed to extract the most

interesting (skyline) objects over imperfect data. Such data are managed in the evidential

databases. eSky proposes a graphical interface including five main modules: (1) Computing

the skyline objects over evidential data, (2) Maintaining the skyline set (3) Computing the

global skyline from the distributed environments and (4) Retrieving the top-k skyline

objects and (5) Retrieving the skyline stars. We also show that the efficiency we achieved

is good enough to be used in practice.

A.2 eSKY’S Architecture

The main technical problems addressed by the system eSKY, depicted in Figure A.1, are

described in the following.

Figure A.1: eSKY’s Architecture
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A.2.1 Evidential Skyline Computation (ESC)

ESC component is designed to return the skyline objects from an evidential database.

This component associates to each object, a belief degree of dominance. The believable

dominance, denoted by b-dominance, expresses the extent to which oi dominates oj, were

defined in the previous chapters.

A.2.2 Evidential Skyline Maintenance (ESM)

The role of ESM component is to compute the new skyline of frequently updated evidential

databases. In particular, this component provides the maintaining of the evidential skyline

in the two main cases: the object insertion and the object deletion. ESM component is

used to efficiently maintain the skyline set. A straightforward method to find the new

skyline after insertion (resp.deletion) is to recompute from scratch the b-SkyO, represented

by the Basic Maintenance After Insertion Algorithm BMAI (resp. Basic Maintenance After

Deletion Algorithm BMAD). However, this approach incurs a high computational cost. To

avoid this cost, we have provided in chapter 4, an optimization technique to recompute the

skyline. This technique allows decreasing the number of dominance checks.

A.2.3 Distributed Evidential Skyline (DES)

DES component allows users to efficiently compute the evidential skyline from multiple

and distributed sources.

Given a set of m distributed servers S = {S1, S2, .., Sm}, each possessing an evidential

database Oi (1 ≤ i ≤ m) and a coordinator server H which is responsible for the final

execution query and for the global skyline computation as shown in Figure A.1.

DES component is based on ESC component to compute the evidential skyline over

independent local databases Oi. A key property gives b-SKY (H) = b-SKY (∪1≤i≤mb-

SKY (Oi)). But, this approach results in a high computational cost. In chapter 4, we have

presented new techniques to improve our algorithms.

A.2.4 The Top-k Evidential Skyline (TES)

As shown in Figure A.1, all the result sets of the others components can be an input for

TES component to rank the skyline set and retrieve the k skyline objects that are expected
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to have the highest score of dominance.

For each object Si in the b-skyline, we need to know how much does it dominate others

objects in the b-skyline set. To this end, we introduce the notion of the object dominance

score, denoted by µ(Si) as described in chapter 5.

A.2.5 The Evidential Skyline Stars (ESS)

The evidential skyline set computed by the ESC component can be an input for ESS com-

ponent to retrieve the best evidential skyline objects called the skyline stars and denoted

by SKY2 since there is a double skyline ranking. Our proposed approaches considerably

refine the huge skyline set. The conducted experiments have shown in chapter 6.

A.3 Demo Scenarios

(a) EDB Parameters (b) Generated EDB

Figure A.2: EDB Generation

We illustrate in Figure A.2 how users can generate the evidential database and control

the generation by the parameters in Figure A.2a. n is the number of objects in the

evidential database, d is the attributes number, f presents the number of focal elements

in a basic belief assignment bba, and b is the belief threshold to compute the b-dominance.

Figure A.3, presents the user interface of the Evidential Skyline system. Users choose

one of the component already described in section A.2. The system components ESM and

TES are not active until the users compute the skyline over an independent or multiple

databases.

DEMO 1: A straightforward algorithm to compute the b-skyline for the ESC component
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Figure A.3: eSKY Platform

Figure A.4: Evidential Skyline Computation

(denoted by algorithm BA), is to compare each object oi against the others objects. If oi is

not b-dominated, then it belongs to the evidential skyline. However, this approach results

in a high computational cost as it needs to compare each object with every others. For this

reason, we propose a two phase algorithm (denoted by EvSky) that follows the principle of

the two scan algorithm (Chan et al., 2006). As shown in Figure A.4, we mainly evaluate

the effect of the parameter n (number of objects in O) on the skyline size and the execution

time.

(a) Maintenance Platform (b) Experiments

Figure A.5: Evidential Skyline Maintenance

DEMO2: In Figure A.5, we present the maintenance platform in the main following

cases: object insertion and object deletion. Figure A.5b illustrates that the algorithms

(MAI (Maintenance After Insertion) and MAD (Maintenance After Deletion)) using the

proposed pruning strategies outperform the basic algorithms (BMAI and BMAD, respec-

tively.)
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Figure A.6: Distributed Evidential Skyline

DEMO 3: As shown in Figure A.6, the coordinator server H has as an input the local

marginal points of the different database Oi∀i ∈ {1..m}. The DES component computes

the global marginal points and retrieves the global skyline. We evaluate the effect of

servers number and the dimensions/attributes number on the CPU time. Our experiments

demonstrated the performance of the proposed algorithm GES (Global Evidential Skyline).

DEMO 4: In the Figure A.7, we show the skyline size effect on the CPU Time for

the top-k algorithm. The larger skyline set, the larger execution time because the more

we have a large number of skyline objects, the more the TES component computes the

dominance score of the skyline objects.

Figure A.7: Top-k Evidential Skyline

A.4 Conclusion

In this annex, we have proposed our evidential skyline system and have shown some demo

scenarios. We have proved that our experimental results achieved in the previous chapters

are efficient enough to be used in practice.
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Appendix A
Uncertainty Models

Data uncertainty is inherent in many real-life applications. Several theories were proposed

to handle the data imprecision, uncertainty and imperfection. In this appendix, we present

the basic notions about the probability theory as well as the possibility theory, the main

uncertainty models.

A.1 Basic Probability Theory

Probability theory began in seventeenth century France when the two great French mathe-

maticians, Blaise Pascal and Pierre de Fermat, corresponded over two problems from games

of chance. Problems like those Pascal and Fermat solved continued to influence such early

researchers as Huygens, Bernoulli, and De Moivre in establishing a mathematical theory

of probability. Today, probability theory is a well established branch of mathematics that

finds applications in every area of scholarly activity from music to physics, and in daily

experience from weather prediction to predicting the risks of new medical treatments. This

appendix is designed for an introductory probability reminder.

The probabilities assigned to events by a distribution function on a sample space ω

satisfy the following properties:

1. P (E) ≥ 0 for every E ⊂ ω.

2. P (ω) = 1.

3. If E ⊂ F ⊂ ω, then P (E) ≤ P (F )
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4. P (A∼) = 1− P (A) for every A ⊂ ω.

5. If A and B are disjoint subsets of ω, then P (A ∪B) = P (A) + P (B).

Suppose next that A and B are disjoint subsets of ω. Then every element w of A∪B
lies either in A and not in B or in B and not in A. It follows that

P (A ∪B) =
∑

w∈A∪B

m(w) =
∑
w∈A

m(w) +
∑
w∈B

m(w) = P (A) + P (B) (A.1)

In summary probability theory

• Dedicated to random phenomena

• Unable to model uncertainty due to lack of knowledge or missing information

• Information demanding (requires to known W or prior probabilities)

• A pure numeric model (very difficult in the case of subjective probabilities)

• Complex computation and reasoning

• Additive: error propagation and amplification

• A single measure to represent uncertainty, i.e., P (A) implies P (Ac), (Ac complemen-

tary of A).

A.2 Basic Possibility Theory

The theory of possibility (Zadeh, 1978; Dubois & Prade, 1988) described in this appendix

is related to the theory fuzzy sets by defining the concept of a possibility distribution as a

fuzzy restriction which acts as an elastic constraint on the values that may be assigned to

a variable.

The importance of the theory of possibility stems from the fact that-contrary to what

has become a widely accepted assumption much of the information on which human deci-

sions are based is possibilistic rather than probabilistic in nature.

The basic building blocks of possibility theory originate in Zadeh’s paper (Zadeh, 1978)

and have been more extensively described and investigated in books by Dubois and Prade

(Dubois & Prade, 1988). Zadeh starts from the idea of a possibility distribution, to which

he associates a possibility measure.
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Let U be a set of states of affairs (or descriptions thereof), or states for short. This

set can be the domain of an attribute (numerical or categorical), the Cartesian product of

attribute domains, the set of interpretation of a propositional language, etc.

A possibility distribution is a mapping π from U to a totally ordered scale S, with top

denoted by 1 and bottom by 0. In the finite case S = {1 = λ1 > ...λn > λn+1 = 0}.
The possibility scale can be the unit interval as suggested by Zadeh, or generally any finite

chain, or even the set of non-negative integers. It is assumed that S is equipped with an

order-reversing map denoted by λ ∈ S → 1− λ.

The function π represents the state of knowledge of an agent (about the actual state

of affairs), also called an epistemic state distinguishing what is plausible from what is less

plausible, what is the normal course of things from what is not, what is surprising from

what is expected. It represents a flexible restriction on what is the actual state of facts

with the following conventions (similar to probability, but opposite to Shackle’s potential

surprise scale which refers to impossibility):

• π(u) = 0 means that state u is rejected as impossible.

• π(u) = 1 means that state u is totally possible (= plausible).

The larger π(u), the more possible, i.e., plausible the state u is.

In the Boolean case, π is just the characteristic function of a subset E ⊆ U of mutually

exclusive states, ruling out all those states outside E considered as impossible. Possibility

theory is thus a (fuzzy) set-based representation of incomplete information.

Given a simple query of the form ”does event A occur?” (is the corresponding proposi-

tion a true?), where A is a subset of states, the set of models of a, the response to the query

can be obtained by computing degrees of possibility (Zadeh, 1978) and necessity (Dubois

& Prade, 1988), respectively:

π(A) = supu∈Aπ(u); (A.2)

N(A) = infs6∈A = 1− π(u). (A.3)

π(A) evaluates to what extent A is consistent with π, while N(A) evaluates to what

extent A is certainly implied by π. The possibility-necessity duality is expressed by N(A) =
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1 − π(Ac), where Ac is the complement of A. Generally, π(U) = N(U) = 1 and π(∅) =

N(∅) = 0 (since π is normalized to 1). In the Boolean case, the possibility distribution

comes down to the disjunctive (epistemic) set E ⊆ U , and possibility and necessity are

then as follows:

• π(A) = 1 if A ∩E = ∅, and 0 otherwise: function π checks whether proposition A is

logically consistent with the available information or not.

• N(A) = 1 if E ⊆ A, and 0 otherwise: function N checks whether proposition A is

logically entailed by the available information or not.

Possibility measures satisfy the characteristic ”maxitivity” property

π(A ∪B) = max(π(A), π(B)) (A.4)

Necessity measures satisfy an axiom dual to that of possibility measures, namely

N(A ∩B) = min(N(A), N(B)) (A.5)

On infinite spaces, these axioms must hold for infinite families of sets. As a consequence,

of the normalization of π, min(N(A), N(Ac)) = 0 and max(π(A), π(Ac)) = 1, where Ac

is the complement of A, or equivalently π(A) = 1 whenever N(A) > 0, which totally fits

the intuition behind this formalism, namely that something somewhat certain should be

first fully possible, i.e. consistent with the available information. Moreover, one cannot be

somewhat certain of both A and Ac, without being inconsistent. Note also that we only

have N(A∩B) ≥ max(N(A), N(B)): This goes well with the idea that one may be certain

about the event A ∩ B, without being really certain about more specific events such as A

and B.

In this appendix, we have presented the basic notions about the probability theory as

well as the possibilistic theory. These theories aim at modeling the uncertainty in data.

In summary, the probability theory is dedicated to random phenomena, unable to model

uncertainty due to lack of knowledge or missing information. It is really a pure numeric

model, thus, very difficult in the case of subjective probabilities. In addition, when talking

about the possibilistic setting, it is necessary to note that the knowledge can be then

encoded in a pure qualitative way while the probabilistic knowledge must be numeric.
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