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Introduction

Helium is unique in Nature, being the only element that remains a liquid all
the way down in temperature to absolute zero at saturated vapor pressure. In
the low temperature regime, both the liquid and solid phases of helium exhibit
remarkable properties. Some of them will be detailed in Chap.I.

Our group was initially interested in the metastable solid helium at low tem-
perature, as it is considered as a possible candidate for the new quantum phase
“supersolid”. In our long term research project, our group has completed the first
step: the former Ph.D student F. Souris has successfully brought solid helium
to a metastable phase, and has observed an unexpected instability [1, 2]. Since
the work of my thesis is a continuation of this experimental study, I began my
thesis by determining the exact appearance time of the instability. This part is
presented in Chap.III.

Then we were supposed to continue this study by measuring the local sound
velocity of the metastable solid using stimulated Brillouin scattering. But due
to the limitation of our instruments, I turned to the study of the metastable
superfluid helium. In particular, I have studied the cavitation limit of superfluid
helium under negative pressure. Because superfluid is a model liquid at low
temperature, it is regarded as an ideal object for testing the nucleation theories.
Using an interferometric method, we are able to directly measure the cavitation
density of metastable superfluid helium, expecting new insights in this topic. To
our surprise, we found an inconsistency amongst our result and the others, as it
will be discussed in Chap.IV.

Before performing the measurement of the local sound velocity, we could not
confirm either results of the cavitation limit of metastable helium. Nevertheless,
we found another interesting phenomenon triggered by the cavitation. Every
cavitation in metastable helium will end by creating a vapor bubble, and the du-
ration of the bubbles has a dramatic transition as helium passes the λ−transition
between normal and superfluid liquid. In order to understand it, we have studied
the dynamics of the bubble and successfully explained most behaviors of bubble.
This part will be presented in Chap.V.
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Chapter I

Helium at low temperature and
its metastable phases

I.1 Basic properties of solid 4He and supersolid . . . . . 1
I.1.1 Supersolid . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.1.2 Experimental search for supersolidity . . . . . . . . . . 3
I.1.3 Activation energy of vacancies . . . . . . . . . . . . . 4

I.2 Our search for supersolidity . . . . . . . . . . . . . . . 5
I.3 Superfluid 4He . . . . . . . . . . . . . . . . . . . . . . . 7

I.3.1 Two fluid model . . . . . . . . . . . . . . . . . . . . . 9
I.4 Metastable phases and nucleation theory . . . . . . . 10

I.4.1 Standard nucleation theory . . . . . . . . . . . . . . . 10
I.4.2 Nucleation theory in helium . . . . . . . . . . . . . . . 12

At the beginning of my thesis, a presentation of the helium properties is
necessary. For more detail about helium, one may refer to the book of Wilks
[3]. It provides a very informative summary of the basic properties of liquid and
solid helium. In this chapter, I will first present the properties of solid 4He, as it
is related to the previous research of our group. Then I will describe the famous
superfluid state of 4He. To have a better understanding of the metastable phases,
an introduction of the nucleation theory is presented in the last section.

I.1 Basic properties of solid 4He and supersolid
In this section, I start with a very brief introduction of some of the properties of
solid 4He. With regard to solid helium, a recent overview was given by M.H.W.
Chan et al. [4].

1
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Fig.I.1 – Phase diagram

Helium exist as one of two stable isotopes, 3He and 4He. 4He is the most
common isotope on Earth, and it is also our experimental object. The phase
diagram for 4He Fig.I.1 shows that there are two primary phases of solid 4He at
relatively low pressure: a hcp phase and a narrow region of bcc phase. Under
pressure, 4He remains a liquid until a pressure just above 25 bars is applied, and
the transition pressure between the solid and superfluid helium barely depends
on the temperature below 1.5 K. It is because the zero point motion of helium
atoms is large compared to their thermal motion at low temperature. It implies
that solid helium has a significant quantum behavior. In solid physics, we can
characterize the quantum nature of solid by the de Boer parameter Λ [5].

Λ = h

σ
√
mε

where h is Planck’s constant and m the mass of the molecule. The constants σ
and ε are obtained by assuming that the force field of most molecules may be
represented by a Lennard-Jones potential:

v(r) = 4ε[(σ/r)12 − (σ/r)6]

This de Boer parameter Λ could be regarded as a measure of the ratio of the
de Broglie wavelength to the typical distance between two atoms. If Λ < 0.5,
quantum effects are not very important, most elements are in this regime. On
the contrary, helium has the largest de Boer parameter, in the case of solid 4He,
Λ = 2.7. Therefore, helium is the element with the most significant quantum
character.

Another unusual behavior of solid helium is that the Lindemann criterion of
melting does not hold. The criterion states that melting is expected when the
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root mean square of atomic vibration amplitude exceeds a threshold value of the
order of the interatomic separation. For most solids, this ratio is less than 10%.
X-ray diffraction study of the Debye-Waller factor of hcp solid 4He shows that
this ratio is as large as 26% [6]. This property clearly illustrates that the helium
atoms are not well localized.

These remarkable properties of solid helium, as well as its coexistence with a
superfluid phase, make it a possible candidate for a new state of matter: a solid
with superfluid properties.

I.1.1 Supersolid
In 1969, Andreev and Lifshitz proposed a new quantum phase that combines
the solid and the superfluid properties, then Chester developed the same idea
independently in the same year [7, 8]. They described the possibility that the
solid 4He might contain vacancies as an intrinsic property of the system. As solid
helium has a large quantum nature, a vacancy can easily exchange its position
with an adjacent helium atom through tunnel effect. If the gain in kinetic energy
due to delocalization of the atom is larger than the cost of creating a vacancy, then
the total energy of the system will be lowered by the presence of such vacancies.
Therefore, the system contains a non-zero density of vacancies, which might be
considered as weakly interacting. As the atoms of solid are bosons, the vacancies
could form a Bose-Einstein condensate and present a superfluid behavior. This
is the so-called Andreev-Lifshitz-Chester (ALC) scenario of supersolidity.

I.1.2 Experimental search for supersolidity
Different groups have attempted to detect a supersolid state in helium-4 solid.
The early experiments by Andreev, Suzuki and Tsymbalenko measured the mo-
tion of objects immersed in the crystal [9, 10, 11]. Other measurements had
attempted to detect the supersolid phase through mass flows [12], or with the
help of torsional oscillators [13]. A detailed review of these experiments was
provided by Meisel et al. in 1992 [14]. However, nothing unusual was found at
this early stage.

The experiment in 2004 by Kim and Chan showed a rotational anomaly in
solid helium, and they interpreted it as the possible appearance of a supersolid
state [15, 16]. The measured effect is a decrease in the period of their torsional
oscillator containing solid helium at temperature lower than 200 mK. This ex-
periment led to a new surge of searching supersolidity, and the explained that
as a sign that a fraction of the solid inside this oscillator had become supersolid
and had decoupled from the oscillator. Following this experiment, other proper-
ties of the crystal were measured and these results have been summarized by S.
Balibar et al. in [17]. In order to search for other traces of the supersolid, Day
and Beamish showed that a variation in shear modulus exists in solid helium at



4 Chapter I. Helium and its metastable phases

a temperature similar to that of the rotational anomaly [18]. They explained it
by the dislocations of the crystal and the impurities of 3He. Dislocation lines can
be regarded as moving lines. At low temperature the 3He atoms are trapped on
these lines with a binding energy of the order of 0.73 K [19] and prevent their
displacement, which causes stiffening of the crystal. At higher temperatures, the
thermally-activated 3He atoms detach and the shear modulus decreases. The
origin of the elastic anomaly is therefore related to the presence of crystalline
defects (dislocations) in the crystal. Later, more and more evidence led to the
same conclusion [20, 21, 22, 23]. At last, in 2013, in the review paper of Chan
et al. [4], he mentioned “...the torsional oscillator results reported have been
dominated by effects associated with the stiffness of the solid helium.”

So far, the experimental results led to a simple conclusion: the ALC supersolid
state does not exist in solid helium. A possible reason for this could be that the
activation energy of vacancies is too large in solid helium.

I.1.3 Activation energy of vacancies

Fig.I.2 – The figure is extracted from [24]. It summarized the existing
experimental results for Ev as a function of the molar volume. There is a
big difference between different data points, because they crucially depend
on the vacancy model used to analyze the measurements.

The ALC scenario is based on the non-zero density of vacancies in the crystal
at zero temperature. At finite temperature, the solid always contains a number
of thermally activated vacancies. Their density varies with the temperature T
as S(T ) exp(−Ev/kBT ), where S(T ) is an entropy contribution depending on
the vacancy state density, and Ev is the activation energy of one vacancy which
directly determines the vacancy density in the crystal [24]. Experimentally, there
are two main methods to measure the density of vacancies in crystal. One is to
directly measure the mesh parameter by neutron or X-ray diffraction. Another
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is to measure the variation of the heat capacity as a function of temperature,
which contains the contribution of vacancies. A review of these measures can be
found in a review by Simmons [24].

Fig.I.2 is directly extracted from [24], it is a summary of the activation en-
ergy of vacancy as a function of the molar volume of solid 4He. The figure
clearly shows a decrease in Ev when the molar volume Vm increases. Since the
vacancy density exponentially depends on −Ev, the maximum density should
appear at the largest molar volume. For a stable solid 4He, its melting limit is
Vmf = 20.97cm3 (for temperature 1 K), which corresponds to a Ev about 7 K
to 15 K. This value is too high at temperature below 1.5 K, and the vacancy
density is therefore very small. Thus the stable solid 4He does not seem to ful-
fill the conditions of the ALC scenario for supersolidity. But if it were possible
to increase Vm beyond the melting limit Vmf by retaining the solid phase, we
might expect to attain the situation where Ev is small enough to allow the ALC
scenario. But first it has to be proven that it is possible to have solid 4He at
Vm > Vmf , which is metastable solid 4He.

I.2 Our search for supersolidity

In 2010, our group launched a long term project of searching supersolidity in
metastable solid helium. A metastable phase of solid helium is the state where
helium remains solid out of its equilibrium conditions. Most metastable solid
are realised by superheating, because in classical crystals the pressure barely
influences the melting temperature. There are more details in the review of
melting and superheating by Mei et al. [25]. However, as indicated above, the
melting temperature of solid helium is nearly independent of the pressure at
temperatures below 1.5 K. Instead of superheating the crystal, we can control
the pressure so as to produce a metastable solid helium.

Metastable phase is highly related to the nucleation theory, which will be
described briefly in the next section. And metastable phase is very susceptible
to perturbation including thermal fluctuation and impurity in the medium. In
order to exclude the influence of heterogeneous nucleation/cavitation in helium,
we used a hemisphere-like piezoelectric transducer (PZT) to generate and focus
an acoustic wave. As shown in Fig.I.3, we prepare solid 4He at a pressure slightly
above the melting pressure. The sound waves sent by the internal surface of the
piezoelectric transducer (PZT) cause a pressure modulation δPsurf . During the
sound propagation, the amplitude of the pressure modulation increases. At the
acoustic focus, the pressure modulation δPfocus may pass transiently into the
metastable regime, which is below the melting pressure. Experimentally creating
and measuring such a metastable state was the goal of our group’s former Ph.D
student F. Souris [1]. He succeeded in doing so and developed a “time-resolved
quantitative multiphase interferometric method” to reconstruct the variation of
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for both solid and superfluid helium.

the local density due to the sound waves. This method will be described in
detail in Chap.II. As a result, our group has observed and measured that during
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Fig.I.4 – Images of the instability’s appearance, extracted from the thesis
of F. Souris [2]. Nothing appears in image 0, but in image 1 it shows up.
The instability appears in image 1 as an oval defect at the center of the
image. The size of this defect is of the order of 0.1 mm.

negative oscillations of the pressure modulation, solid 4He was carried to the
molar volume of 21.32 cm3, which corresponds to a local pressure 4.4 bar below
the melting pressure (the absolute local pressure is about 20.9 bar). And we
have also observed an unexpected instability of this metastable solid helium. The
crystal will break once the local pressure goes below 20.9 bar, and a small region
(∼ 0.1 mm) is irreversibly damaged. Whereas H. Maris predicted that perfect
helium crystals should remain metastable down to 35 bar below the melting
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pressure [26].
Fig.I.4 shows an image of this defect. As concluded by F. Souris: the insta-

bility diffuses the incident light rather strongly, which implies that the structure
of the defect is quite different from its neighbouring crystal. The defect first
appears at a certain PZT tension threshold, and it will expand in the crystal as
the sound waves goes on. If the sound is gone, the defect will gradually fade at
a speed dependent on the static pressure. It is noteworthy that after a defect
has faded and became undetected in the camera, it will appear again for a lower
PZT tension. This fact means that the defect is irreversible.

Since the dynamics of this instability is unknown, we may wonder whether it
could be related to the supersolid? This interesting instability was the start of
my thesis’ work.

I.3 Superfluid 4He

Liquid helium has even more remarkable properties compared to its solid phases.
For example, because of the relatively high zero point motions, it remains in
liquid phase even at extreme low temperature. This makes liquid helium be the
purest liquid in the universe, because the only impurity it contains is its isotope.
Furthermore, below the temperature Tλ 4He turns to the superfluid phase, which
has zero viscosity! So many researchers considered superfluid helium is a model
liquid in many domains. In this section, I describe only a few properties of
superfluid helium. For a more complete description, one can look at the book
written by J. Wilks [3].

Fig.I.5 – The specific heat of liquid 4He under the saturated vapor pressure
[27].
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4He becomes the so-called superfluid and displays very remarkable properties
below the lambda temperature Tλ = 2.17 K at saturated vapor pressure. The
name of “lambda” comes from a characteristic anomaly of the specific heat. The
specific heat of 4He rises to a very high value at Tλ, if we draw it as a function
of temperature, we will see a λ-shape as shown in Fig.I.5. For the same reason,
the normal liquid/superfluid transition is also called the “lambda transition”.

Another anomaly of superfluid helium is the thermal conductivity. If we look
at liquid helium in a dewar, while pumping on it so as to cool it below Tλ, the
liquid stops boiling when crossing Tλ. This is because the thermal conductivity
of liquid helium has suddenly increased so much that the temperature becomes
very homogeneous. The walls of the dewar are no longer warmer than the surface
of the liquid. They do not provide efficient nucleation sites for bubbles any more.
As a result, superfluid helium evaporates from its free surface, instead of showing
bubble nucleation on hot defects.

Fig.I.6 – If an empty beaker is lowered into a bath of superfluid helium,
the liquid flows over the surface of the beaker until the levels are equalized.
If the beaker is then lifted above the bath, the helium flows out over the
rim, drops off the bottom of the beaker, and returns to the bath.

The viscosity of superfluid helium, as determined by its rate of flow through
narrow slits, is vanishingly small: at least 106 times less than the viscosity of
normal liquid helium. This is the so-called superfluidity of helium. A striking
example is provided by “film flow”. Any solid surface in contact with the liquid
is covered by a film of liquid, about 30 nm in thickness as a result of van der
Waals attraction between the helium atoms and the substrate. This is true in
principle for any liquid, but in helium, a flow of the superfluid through the very
thin film becomes possible. An illustration of the film flow on beakers is shown
in Fig.I.6.
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I.3.1 Two fluid model
At first glance these properties present a confusing picture, but many of the
unusual properties of the liquid may be correlated with each other and with the
thermodynamic functions by a mathematical picture known as the “two fluid
model”. This model was first proposed by Landau [28], and it serves as a pure
phenomenological description. Landau postulated that superfluid liquid helium
behaves as if it were a mixture of two fluids freely intermingling with each other
without any viscous interaction. These two fluids are the normal fluid and the
superfluid, and have densities ρn and ρs such that:

ρn + ρs = ρ

where ρ is the ordinary density of liquid helium. The normal density fraction
increases from zero at T = 0 to ρ at the lambda point, whereas the superfluid
fraction behaves inversely. In addition, the superfluid carries zero entropy and
has zero viscosity. Therefore, we can write the equations of motion for the
fluid model. And we have the continuity equation for entropy. By using basic
continuity equations for both momentum density and entropy density we have:

∇ · j = −∂tρ
∇ · (ρS vn) = −∂t(ρS)

where j = ρnvn+ρsvs is the total momentum density. The entropy is conserved,
because in the approximation of zero viscosity, the motions of the two fluids are
reversible.

Then we write the Euler’s equation of liquid and ignore the viscosity terms:

∂tv + v · ∇v = −∇P/ρ

The last equation involves the increase of the internal energy:

dU = TdS − PdV +GdM

where G is the Gibbs energy density of liquid and dM is the change in the mass.
Since dS = 0, and we let dV = 0, and we have dU = GdM . The increase of U
is due to the change of the superfluid fraction so that:

dvs/dt = −∇G = S∇T −∇P/ρ

Landau also proposed to treat these equations in the small velocity approxima-
tion by ignoring the quadratic terms in v. And he obtained two equations of
wave propagation:

∂2
t ρ = (∂P/∂ρ)S∇2ρ+ (∂P/∂S)ρ∇2S

∂2
t S = (ρsS2/ρn)[(∂T/∂ρ)S∇2ρ+ (∂T/∂S)ρ∇2S]
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The solutions of these two equations allows two modes of longitudinal wave
propagation. The two fluids can oscillate in phase, giving rise to usual sound,
here called “first sound”; or they can oscillate in anti-phase, giving rise to “second
sound”. First sound is a pressure or density wave, similar to ordinary sound in
a fluid. It propagates at a speed of typically 230 m/s. Second sound involves a
change in the proportions of the two fluids. It is a temperature wave that obeys
the wave equation rather than the diffusion equation. According to the measured
properties of helium [29], the speed of second sound around 1 K is about 20 m/s.

The two fluid model is effective to explain the phenomenon that involves heat
transport, even it can be applied in superconductors. But this model fails when
the flow velocities exceed certain critical values.

I.4 Metastable phases and nucleation theory

Besides the metastable solid phase, helium exhibits many other metastable phases,
such as the over-pressurized superfluid or the superfluid at negative pressure.
Meanwhile superfluid helium is a model material at low temperature, its metastable
phases have been studied experimentally and theoretically (see the review arti-
cles of S.Balibar et al. [30, 31]). Since our experimental set-up allows to perform
similar measurements in studying the metastable superfluid helium, after mea-
suring the exact appearance time of the instability in metastable solid helium, I
turned to study the metastable superfluid helium.

I.4.1 Standard nucleation theory

F(R)

Rc0 R

E

Volume energy

Surface energy

Total free energy

Fig.I.7 – An illustration of the nucleus free energy F (R). The total free
energy is the sum of the surface term and the volume term. It reaches the
maximum energy barrier at Rc.
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The metastable phase, or more precisely, the thermodynamic metastable state
is a state outside of the stability region in the phase diagram. An ordinary
example is water. Pure water can be supercooled down to −40◦C at atmospheric
pressure, or be overheated up to 200◦C [32]. The metastability is possible because
the liquid/solid transition and the liquid/gas transition are discontinuous phase
transitions, or the first order transitions.

To understand this phase transition and metastable state, we can consider
the simple case of cavitation in a liquid. In the standard nucleation theory, as
explained by Landau and Lifshitz [33], we can model cavitation by calculating
the free energy of a spherical vapor bubble inside the metastable liquid. This
bubble is always considered as a “nucleus”. We respectively denote Vv the volume
of the bubble and sv its surface, and it is filled with a gas at a pressure Pv inside
a liquid of volume Vl and pressure Pl. Before the nucleus appears, the volume of
the metastable phase will be equal to Vl +Vv and its potential Ω = −Pl(Vl +Vv).
After the nucleus has appeared the potential Ω for the whole system becomes
−PlVl − PvVv + σsv where σ is the surface tension. Then the free energy F of
creating a bubble is the difference in the potential Ω:

F = ∆Ω = −(Pv − Pl)Vv + σsv

The nucleus may be considered to be spherical in isotropic phases, so the free
energy can be written as a function of the bubble radius R:

F (R) = 4πR2σ − 4
3πR

3(Pv − Pl) (I.1)

On the right side of Eq.(I.1), the positive term is the cost in surface free energy,
and the second one is a gain in volume energy. Fig.I.7 presents the curve of
F (R). We can see that F (R) has a maximum value E for a “critical radius”:
Rc = 2σ/(Pv − Pl). And E equals to

E = 16πσ3

3(Pv − Pl)2

We can consider the following scenario: because of some fluctuations in the liquid,
small nuclei will randomly appear and disappear. If the nucleus’ radius is smaller
than Rc, the local minimum free energy is at R = 0, then nucleus will eventually
shrink and vanish. On the contrary, if its radius is larger than Rc, the bubble
will grow, and the phase transition occurs. So we can regard the maximum value
E as the energy barrier for the cavitation.

Using the expression of E, we can write a nucleation rate per unit volume
and per unit time as:

Γ = Γ0 exp(−E/kBT )
Γ0 is called the “prefactor”. As stated by S. Balibar [30], it is the product of
an “attempt frequency” by a “density of independent sites”. By integrating this
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nucleation rate, we can obtain the probability of the nucleation in a volume V
during a time τ :

Σ = 1− exp[−Γ0V τ exp(−E/kBT )]

In most cases, the gas density is negligible, then this probability varies exponen-
tially as a function of −Pl. So we can define the nucleation threshold by setting
the probability Σ to be one half. This threshold could be a critical pressure Pc
such as:

Pc = −
[ 16πσ3

3kBT ln(Γ0V τ)

]1/2

Estimating Γ0 is difficult. D. Oxtoby explained in his review that a rigorous
calculation only exists in the condensation of a supersaturated gas [34]. Turnbull
and Fisher have also given a phenomenological estimation [35].

Although we only modeled the particular case of the cavitation in liquid, the
physical scenario is general for all the metastable phases. By substituting the
explicit forms of the free energy terms, we could calculate the nucleation rate in
other cases.

I.4.2 Nucleation theory in helium
To check the standard theory further, Sinha et al. proposed to extend the study
inside liquid 4He in the negative pressure [36]. Sinha et al. used a bismuth crystal
immersed in normal liquid 4He. By sending a pulse through the crystal, they
could heat the liquid so as to create bubbles in the bulk of liquid helium. They
measured the nucleation rate around 4 K and found a good agreement with the
standard nucleation theory.

However, at lower temperature, the nucleation theory fails. We remind the
expression of the critical pressure that Pc is proportional to T−0.5 and it diverges
as T tends to zero. How could a liquid stand an infinite stress? Meanwhile, the
critical radius of nucleus Rc = 2σ/|P | also tends to zero, and it is not realistic
either. The direct modeling of the nucleation threshold in superfluid helium
seems difficult. But we can still find a critical pressure. In 1989, H. Maris
estimated the spinodal limit of superfluid helium [37, 38]. Here, the “spinodal
limit” means once the matter passes this limit, it will be totally unstable and
eventually turns to other phases. He considered the graph of the energy E(V )
of a system with molar volume V . E diverges to plus infinity as V tends to
zero. It has a minimum for a value of V , and tends to zero when V tends to
infinity. We can assume E is a continuous function of V , then there must be
an inflexion point at a value Vsp. The pressure P is the derivative dE/dV , and
it has a minimum value at Vsp. The compressibility around Vsp should tends to
infinity. Since the sound velocity c is , it should vanish near Psp. This is the
spinodal pressure. Maris also proposed an equation of state which was corrected
by F. Caupin et al. for superfluid helium at negative pressure, and found -9.6
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bar in 4He. This value could be experimentally checked. Nucleation theories will
be further mentioned at the end of Chap.IV.
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Introduction
Our experimental objects are solid and superfluid helium. These two states of
helium have barely the same equilibrium temperature, which is between 0 to
2.2 K. So the experimental conditions of both solid and superfluid helium are
very similar. In the first two sections, I will introduce our main experimental

15
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devices which are the optical cryostat and the acoustic transducer. Then I will
discuss how we prepare our helium sample in these two different states. At last, I
will show the core technique of measuring the local density of metastable helium.

II.1 Optical Cryostat

enclosure
cell surrounding evaporator

capillary

Helium bath

4He

microvalve

Fig.II.1 – This design plan of the cryostat shows its main parts, such as
helium bath, evaporator, optical ports and protection enclosures. The
experimental cell (not shown in this figure) will be mounted below the
evaporator. The optical port on the bottom was initially planned but is
not used in this work.

To avoid the boiling noise and pollution of nitrogen, our group designed and
manufactured a nitrogen-free optical cryostat in 2004 [39]. As shown in Fig.II.1,
to reduce heat transfer from outside, the cryostat is equipped with four protection
layers including two radiation insulation layers and two vacuum enclosures. The
inner enclosure, which is called cell surrounding, is filled with a small amount of
Neon gas instead of keeping a vacuum inside, so as to significantly increase cooling
efficiency at temperatures between 100 K and 25 K. There are four circular optical
ports on each layer. Their size and position permit us to observe the experimental
cell in two orthogonal directions with a large open angle of 25 degree. A helium
bath of 29 liters stands above the cell surrounding. This big bath and good
protection layers ensure a long self-sufficient time up to 60 hours. The cooling
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system consists of a three-pump system1 and an evaporator of liquid helium,
which is isolated in the center of the cell surrounding. This evaporator is also
connected to the helium bath through a capillary with a micro valve, in order to
control the liquid flow and keep the evaporator’s temperature stable. If regularly
maintained, the cryostat can work at a stable temperature from 0.9 K to 5 K for
long time.

II.1.1 Experimental Cell

Fig.II.2 – Photo and blueprint of experimental cell. Its inner cavity is like
a hollow cylinder with four circular ports. The floor of the cavity is flat
and polished to allow free growth of helium crystals. There is a copper
cover on top of the cell. The total inner volume is 30 cm3.

The experimental cell is a small cubic copper chamber suspended below the
evaporator. In Fig.II.2, we can see an optical window on each side, which provides
a good view of the cell. Those small windows have a diameter of 25.4 mm with a
thickness of 5 mm, and are anti-reflection coated for 400 ∼ 1100 nm wavelength.
Each window is fixed on the copper wall by a stainless steel flange, a Teflon joint
and an indium joint. The cell can sustain a high pressure up to 40 bar.

As shown in Fig.II.3, the upper part of this cell is a thick copper disk with
some small tunnels. On one hand, this disk serves as a thermally conductive
cover to seal the cell cavity. On the other hand, the tunnels on the disk allow the
passage of wires for electronic devices. Of course, to keep the cell well isolated
from vacuum, we are obliged to put wires in a Teflon2 tube which is fixed in the
tunnel, and then seal the tunnels by vacuum adhesive Stycast.

There is an injection capillary of helium welded on the cell cover. It links
directly the cell to the helium reservoir outside of the cryostat through a long
tube at room temperature. This reservoir consists of five main parts, they are
respectively a high pressure helium bottle, a pressure regulator, a micro flow con-
troller, a Keller X35 pressure transmitter. In order to condense other impurities,

1The three-pump system consists of two parallel primary pumps and one root pump.
2Teflon and Stycast are the names of commercial products
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Nucleator

Pressure
gauge

PZT

Injection
capillary

Cell

Evaporator

Cell cover

Fig.II.3 – Left: Photo of the cell cover, there are six tunnels on this cover.
The one on the left is an injection capillary for helium. The other five are
tunnels for wires. This cover is used in solid helium experiments, so we
have three additional tunnels for nucleator (see Sect.II.3.2) and pressure
gauge (see Sect.II.1.2); Right: Photo of the entire experimental cell part.
On the top are the evaporator and wires. Cell cover serves as an important
junction between them and the cell. On the photo, the cell (at bottom) is
temporarily wrapped with cling film for protection purpose.

before helium gas goes into the experimental cell, the gas will pass through an
active carbon trap which is cooled by liquid nitrogen.

II.1.2 Temperature and pressure sensors

The electronic devices related to experimental cell are mainly pressure and tem-
perature gauges, heating resistors, electronic nucleator, and piezoelectric trans-
ducers. Most of them are well described in the thesis of Mathieu Mélich [39]. The
piezoelectric transducer is a core part of our actual experiments, I will describe
it in Sect.II.2.

Depending on the intended temperature range, we have three different types
of thermometers. At the higher temperature interval 300 K to 20 K, we use
platinum resistors3 to monitor the cooling process of the cryostat. At lower tem-
perature interval 20 K to 1 K, platinum resistor becomes less sensitive, so some
carbon resistors4 are placed near the evaporator. The third type of thermome-

3Correge PT-1000 PTFD102B Sensor Type
4Allan-Bradley Carbon resistor, 22 and 100 Ω
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ters is a germanium resistor5. There are two such resistors placed respectively
on the bottom of the evaporator and against the cell. A Lakeshore Temperature
Controller (Model 332) keeps evaporator’s temperature steady by a heating re-
sistor with a PID loop feedback. The return value is used as a measure of the
cell temperature.

While we do the superfluid experiments, measuring pressure in experimental
cell can be done with a pressure gauge at room temperature. As the cell is in
a stable state, the whole system is always in hydrostatic equilibrium, the pres-
sure difference between cell and gauge is equivalent to the hydrostatic pressure
of several centimeters of vapor helium, which is negligible compared to our ex-
perimental pressure. This pressure gauge, as a part of the helium reservoir, is a
commercial Keller Series 35X pressure transmitter. It measures pressure in the
range from 0 to 30 bar with an accuracy of 15 mbar (given by the manufacturer).

In solid helium experiments, the cell is filled with crystal that is away from
the liquid/solid coexistence condition. The injection capillary would probably
be blocked by crystal. Consequently, the cell pressure may be different from that
measured by the pressure gauge at room temperature. Therefore we decided
to put a capacitive pressure gauge of Straty Adams type [40]. This gauge has
two bronze electrodes sandwiching a thin insulated void (Mylar paper thickness
25 µm). Its capacity is sensitive to external pressure, and this relation has been
measured by the former PhD student F. Souris [2].

II.2 Acoustic Transducer

The principle of creating metastable helium has been discussed in the last chapter
(see Sect.I.2). In this section, I will discuss how to manufacture and process a
good transducer in superfluid and solid helium.

II.2.1 Hemispherical PZT for superfluid helium
For the purpose of maximizing focalization effect, an ideal PZT should be able
to make the wave front arrive at focus synchronously. Since superfluid helium is
an isotropic medium, a spherically symmetric acoustic wave front will not be de-
formed during its propagation. So a hemispherical PZT meets our requirement.
Fortunately, poled ceramic PZT is a common device, there are many available
commercial suppliers. We thus bought some 401-type PZT from Morgan Tech-
nical Ceramics. Their inner diameter is dinner = 12 mm, and thickness is 2 mm
(that gives douter = 16 mm) . The resonant frequency of the first thickness vi-
bration mode is about 1.15 MHz. They are also poled and silver-coated on inner
and outer surfaces.

5Lakeshore GR-200A-250-0.5D
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Equatorial part

Lathe

PZTFixed cutter

Cutting direction

Fig.II.4 – Our first attempt of manufacturing PZT. Left: PZT is fixed
on faceplate of lathe, and cutter is placed on carriage. We cut PZT with
an attacking angle of 10 degree; Right: A small equatorial part of height
1.4 mm is removed from PZT.

Although this transducer is well made, there are still two steps before applying
the PZT in our experiments. Our local density measurement (see Sect.II.4)
uses a parallel laser beam to illuminate the acoustic focus zone, and this focus
zone should always remain unobstructed. Accordingly, a circular part along the
equator of the transducer was removed. Considering our cryostat has a maximum
open angle of 25◦, we decided to manufacture a transducer of θ = 10◦ half
observation angle. It gives the thickness to be removed δinner = sin θ · dinner/2 =
1.04 mm and δouter = sin θ·douter/2 = 1.39 mm. Fig.II.4 shows our first attempt of
PZT manufacturing. In order to keep the spherical symmetry of the transducer,
the cutting direction is towards the sphere center which is also the acoustic
focus. We had successfully manufactured two such transducers, and used them
to observe the crystal nucleation in metastable superfluid helium (see Sect.IV.1).

However, during the study, we found that the focalization effect of sound
wave was not as good as expected. It is also considered that the ceramic trans-
ducer is too fragile to be machined, and the manufacturing precision is not good
enough. We decided to make a new transducer and to grind it with sandpaper.
Grinding move is very moderate, so this method does not break the transducer,
and it also leaves a smooth sectional plane after grinding. Since the grinding
direction is not towards the center, a too much grinded transducer would lower
the spherical symmetry and probably affect the transducer’s thickness vibration.
We decided to reduce the observation angle and we only grinded 0.9 mm height
of the equatorial part. There is also a hole on the top of PZT to suspend it. This
type of transducer was used in the observation of cavitation in superfluid helium
(see Sect.IV.2).

The second step is to make a suitable support to fix the transducer in our
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experimental cell. Our local density measurement (see Sect.II.4) uses a Jamin
interferometer. It sends two parallel laser beams into the cell through the small
windows to measure the variation of refractive index. The beam’s height deter-
mines the position of the acoustic focus, which is about 20 mm below the copper
ceiling. It is easy to conclude the requirements for transducer support: first, it
should be isolating. Second it should not deform at low temperature. Third,
it must be easy to manufacture. Fig.II.5 presents our final plan for transducer
support, which is made of PVC. Support is like a hollow cone inside a cylinder.
This design eases manufacturing and control of symmetry, and it also provides
a solid support to hemispherical transducer. On support’s both sides, there are
two little insulated holder to keep transducer from dropping or shaking. This
PVC support is mounted on two brass sticks which are fixed directly on the
copper disk.

Grinded transducer

PVC supports

Copper connector

Silver paper
electrode

Copper
connector

Detection and
power wires

Insulated holders

Spring

Fig.II.5 – Left: Unmounted PZT and PVC supports. Two silver paper
electrodes are already stuck on each transducer. The connector is made
of copper paper. All these electric parts have small holes for screws. On
PVC support, there are two black plastic tube for insulating bronze sticks.
Right: Mounted transducers and support. All connections and fixations
are made by springs and screws.

For electrical measurements and power supply of the transducer, we used a
4-wire system with two wires for detection and the other two for power supply.
The wires connect directly to measuring devices and signal generators outside
the cryostat at room temperature. On the other side, in the cell, they are welded
to two electrodes. Those electrodes are made of aluminum paper so that they
are small and light enough to keep transducer vibration mode unchanged. To
ensure a good contact at low temperature, electrodes are glued on transducer by
a conductive low temperature adhesive “Stycast”.

Our support is initially designed for two face-to-face PZT so that they could
generate a more intense acoustic wave. In this case, two PZT should be mounted
in parallel. Then in the consideration of making a removable support system,
we made a cooper connector as presented in Fig.II.5. However this connector is
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made of copper paper (thickness ∼ 80µm), it is too elastic to keep transducer
in its position. As a result, we observed two separated focuses in experiments.
So later we changed our plan. This support can also be used with a single PZT
by simply removing one of them. Actually, at least half the experiments of this
thesis were carried with a single PZT.

II.2.2 PZT for solid helium
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Fig.II.6 – Left: Plan of PZT in solid helium. This sectional profile can com-
pensate the anisotropy of ultrasound velocity. Acoustic focus is marked
with black cross. Black arrows represent poling direction. Right: Photo
of mounted support and PZT in solid helium. Compared to the one in
superfluid, we added a capacitive pressure gauge and a nucleator.

This part of work was mainly done by F. Souris [2]. In solid helium, the case
becomes more complex. The hexagonal closest packing solid helium (hcp solid
helium) has a uniaxial symmetry. We take this uniaxis parallel to the vertical
Oz direction in our coordinate system. Then this uniaxial symmetry has the
property that ultrasound velocity is isotropic in the plane (Ox,Oy) and only
depends on the angle between the wave vector and the z axis (see Fig.II.6).
As a result, a hemispherical transducer does not allow to effectively focus a
sound wave in such an anisotropic medium. To compensate the anisotropy of
ultrasound velocity, we need a specific PZT of new geometry. This geometry
takes the anisotropy of sound speed into account, and it can be obtained by
reconstructing the ultrasound wave front inversely from the acoustic focus.

In Fig.II.6, we can clearly see that this geometry of transducer is no longer
a hemisphere but similar to a semi-ellipse. No commercial supplier was willing
to provide such a transducer, so it was necessary to make one in our laboratory.
In 2011, based on raw material PZT 401 of Morgan Ceramics, our group had
successfully manufactured such a transducer [2]. As for the hemispherical PZT, a
small part has been grinded away around the equator. A hole on the top allows
for the growth of the crystal inside the transducer. Accordingly, the support
is different from the one for superfluid case. It was made by moulding non-
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conductive Stycast on transducer. Two transducers are also placed face-to-face,
and their wire junction is very small, so it has a unique focal centre.

II.2.3 Thermal Dissipation in helium
PZT converts income power into two different energies, one is acoustic energy
that propagates in helium, and the other is thermal energy that dissipates in the
transducer. This electric-thermal transfer of energy would probably change the
temperature of helium medium. We have to estimate this heating effect and its
influence to the metastable helium. Our former group member F.Souris already
gave an estimation in the case of the solid [2]. His conclusion is that temperature
variations at the transducer’s surface is on the order of 6.5 mK; for solid helium
at 1 mm distance from the surface, thermal dissipation makes temperature raise
about 0.4 mK. This heating effect is thus very weak, and negligible. In superfluid
case, the fluid has an enormous thermal conductivity, then temperature can be
considered identical everywhere in the cell. And the heating effect also gives a
negligible change to temperature.

Thus we can safely ignore thermal dissipation in helium introduced by the
transducer, and the temperature at focus is always the one measured by the cell
thermometer.

II.3 Preparation of experimental helium

Similar to the case of PZT, the preparation of superfluid and solid helium are
not exactly the same. For superfluid, there is only one step: filling the cell with
liquid helium. If we want to make solid helium, then we need to do another
additional step: grow a single-crystal of helium.

II.3.1 Filling the cell with superfluid helium
In order to fill the cell with superfluid helium two ways are possible. One could
first lower the temperature to our working temperature, that is 1 K, and then
fill the cell with gas that directly condenses to superfluid. Or we can first fill the
cell with normal fluid and then cool it to 1 K, ending again with superfluid as
described above. The later way is probably less prone to produce vortices. The
filling process is performed at constant pressure and temperature.

II.3.2 Creating a single-crystal and making it grow
Compared to the filling process, the growth of a helium single-crystal is not sim-
ple. Our objective is to bring superfluid helium to solid phase at a temperature
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C axis

C facetA facet

Fig.II.7 – This figure shows hcp solid helium structure. The C-axis in
red is perpendicular to C facet, and parallel to A facet. This structure
is visible below temperature T = 1.30 K. On the right side is a photo of
crystal during its growth at 1 K, the contact line between two A facets is
then visible.

1 K and at the pressure Psolid ' 25.9 bar which is 560 mbar higher than the solid-
ification/fusion pressure Ps/f = 25.34 bar. First, we bring superfluid helium to a
pressure slightly below Ps/f such as Psuperfluid ' 25.3 bar. Then we use a small
device called “nucleator” to create a small crystal seed. This technique has been
used many times in the work of Mélich and Souris [39, 2]. The mechanism is as
follow: because of electrostriction, an electric field will locally cause an increase
of pressure. When our “nucleator” is turned on, it will locally apply an electric
field, and increase the local pressure by δP ' 100 mbar. The local pressure
near the “nucleator” will be Plocal = Psuperfluid + δP ' 25.4 bar which is more
than the fusion pressure Ps/f . Once a crystal seed is created near the nucleator,
we slightly and slowly increase the pressure in the cell, the seed will grow and
eventually fall down like a snow flake. Then we switch off the nucleator. Usually,
the crystal orientation will be perturbed during its falling. After each creation
of a crystal seed, we measure its orientation in two directions, in order to ensure
the C-axis of this hcp-type crystal is parallel to the cell vertical axis. Otherwise,
the anisotropic crystal structure would greatly affect the focalization of acoustic
wave. If the orientation is not good, we melt the crystal by lowering the pressure
and start again the whole process.

Once we, by chance, have got a good crystal seed, we will inject helium slowly
into the experimental cell from the reservoir. Since helium is at the solid-fluid co-
existence, the pressure will remain constant at Ps/f . However, a direct isothermal
process from initial state (Ti = 1.0 K, Pi = 25.34 bar) to final state (Tf = 1.0 K,
Pf ' 26 bar) needs to push solid into the hollow of the PZT and this breaks the
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Fig.II.8 – A presentation of the crystal’s growth process on the phase
diagram. We bring the crystal seed from its initial state (Ti, Pi) to a
higher pressure state (Tc, Pc), and grow the crystal at this state until the
cell is filled with crystal. Then we slowly reduce the temperature so that
the crystal follow the red isochoric line and finally reach the final state
(Ti, Pf ).

crystal so that the helium crystal loses its single-crystal character. So we decided
to grow crystals at a higher temperature, Tc = 1.4 K. By pushing more helium
into the cell, solid is produced in the injection capillary and acts as a mechanical
plug. Then we can cool the cell through an isochoric process. Such a process
is illustrated in Fig.II.8. Finally, after manipulating carefully during 3 hours, a
good single-crystal can be produced. More details can be found in [2].

II.4 Local density measurement and Optical sys-
tem

In 2011, our group had developed a “time-resolved quantitative multiphase inter-
ferometric imaging method” [1] to measure the local density of helium. Although
our original objective was to investigate the metastable solid phase of helium,
this method is also usable for metastable superfluid. There are many existent
results in this domain, for example, Nissen et al. [41] used the diffracted light
intensity and a modified Raman-Nath theory to calculate the local pressure. And
Chavanne et al. [42, 43] have measured the instantaneous density at the acoustic
focus on a glass plate. Compared to their cases, our method is purely homoge-
neous. It provides a new perspective for studying metastable phases of helium.
In 2010, F. Souris et al. [44] have compared between the local density measured
by our method and the one measured by a hydrophone in water, their results
agreed within 5%.
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Because local density measurement is the first step of our investigation for
metastable helium, this method has determined the protocol of our optical sys-
tem. For the comfort of reading, the presentation of our optical system is com-
bined with the local density measurement. In this section, we will first present
the local density measurement in both theoretical and technical aspects. Then I
will show the original optical system and a typical experimental process.

II.4.1 From phase shift to density
The idea of measuring helium density initially comes from the relation between
optical refractive index and local density variation. In electromagnetic theory,
the Clausius–Mossotti relation relates the refractive index of a substance to its
polarizability. Let n, ρ, m, and α be respectively the refractive index, the density,
the single molecule mass, and the mean polarizability, then:

n2 − 1
n2 + 2 = 4πα

3m ρ

We write it in perturbative form:

6n δn
(n2 + 2)2 = 4πα

3m δρ

We divide both sides by ρ then this equation reduces to:

6n δn
(n2 + 2)(n2 − 1) = δρ

ρ

When the polarizability is small, that is |n− 1| � 1 which is the case of helium,
we finally have:

δn

n− 1 = δρ

ρ
(II.1)

This formula shows that measuring helium local density is equivalent to measur-
ing its local refractive index. Then our measurement of the local density of the
metastable helium becomes an optical problem.

Our local density measurement is based on an interferometric technique. Let
us consider a simplified case: Fig.II.9 is a sketch of a double path interferometer
and the PZT. We take the acoustic focus as original point O, the propagation
direction of the laser beam as the y-axis, and the x-axis to be perpendicular to
the paper surface. Then the hemispherical-like PZT is axially symmetric with
respect to z-axis. The observed interference fringes are directly related to the
variation of phase shift δφ between the two separated beams. And it is an integral
of the refractive index δn(r) along y-axis, then δφ is a function of coordinates
(x, z) such as:

δφ(x, z) = 2π
λ

∫
L
δn(r)dr (II.2)
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Fig.II.9 – A simplified plan of the interferometer. The incident laser beam
is separated into two beams. One passes through the sound field induced
by the PZT, and the other passes through an unperturbed zone. We can
detect the interference at the end. A detailed description of the optical
setup is given in Sect.II.4.3.2.

where δn is a function of position vector r, and the integral is along the optical
path L. In fact, we have to consider the diffraction of the light due to the sound
field. In Sect.II.4.3.3, I will discuss the validity of the inverse Abel transform.
Fig.II.10 is a figure of sectional plan x-O-y including the sound field, the z-axis
is normal to the paper surface. We know that δn(r) is due to the sound wave
excited by the hemispherical-like PZT. Because of the rotational invariance of
the sound field around the z-axis, δn(r) depends only on the coordinate z and
on the distance r to the z-axis. The extended laser light line is an optical path
at coordinate (x, z). The observed phase shift at this point is the integral of δn
from −A(x) to A(x). Then using Eq.(II.2), we have:

δφ(x, z) = 2π
λ

∫ A(x)

−A(x)
δn(

√
x2 + y2, z)dy, with x2 + A(x)2 = R2

which is also:
δφ(x, z) = 4π

λ

∫ R

x

δn(r, z)√
r2 − z2

rdr (II.3)

Apart from a factor 2π/λ, the right side of this equation is the Abel transform
of δn. And we can calculate δn by inverting Eq.(II.3) as explained in ref. [2]:

δn(r) = − λ

2π2

∫ R

r

∂δφ(x)
∂x

dx√
x2 − r2

(II.4)

Finally, from Eq.(II.1) to Eq.(II.4), we establish the relation between local density
and local phase shift.

δρ = − λ

2π2
ρ0

(n0 − 1)

∫ R

r

∂δφ(x)
∂x

dx√
x2 − r2

(II.5)
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Acoustic Field

Laser Light

Fig.II.10 – The sectional plan of Fig.II.9, they share the same coordinate
system. Laser beam propagates along y-axis. The sound field induced by
the PZT is shown as blurred gray circles. The dotted circle R is the limit
of the PZT, it defines the range of the sound field. On the right side of
the figure, is the profile of δφ as a function of coordinate x.

where n0 and ρ0 are the initial values of refractive index and local density. The
process of actually calculating this integral from experimental data is not at all
simple, and is described in details in Fabien Souris’ thesis [2].

II.4.2 Interferometer and multiphase technique
Eq.(II.5) converts phase shift into local density variation, so the former step has
to be measuring the local phase shift induced by the sound wave. However a
simple interferometer has the important disadvantage that it is very sensitive
to the environmental noise and parasitic phase shifts due to, for example, dust
on the windows. In order to circumvent this, the multiphase technique was
developed. In this section, as the first part of our “time-resolved quantitative
multiphase interferometric method”, I will present our interferometer and phase
plates in detail, which are used to precisely measure the local phase shift at a
given time.

II.4.2.1 Jamin Interferometer

Amongst various types of interferometer, the Jamin interferometer was chosen.
Compared to a Mach-Zehnder interferometer which has a minimum of 4 optics,
a Jamin interferometer has only 2 thick mirrors. So it is less sensitive to external
vibrations and eases the adjustment and installation.

Our Jamin interferometer is made up of two identical mirrors. These mirrors,
with a thickness of tl = 15.75 mm and a diameter of 50 mm, are made of BK7
whose refractive index is n = 1.519 at wavelength 532 nm. The back surface has
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Fig.II.11 – Schematic plan of a typical Jamin interferometer. The two
mirrors are parallel. While the first mirror separates the incident light
into two beams, the second mirror combines them. In the figure, the
second reflection of the two beams are marked with different colors and
respectively noted by t2, rt, tr and r2. In reality, the rt and tr beams
coincide and interfere.

high-reflection coating with reflection ratio more than 99.5%. The front surface
is not coated and has a reflection ratio of 9.6% for light of incident angle around
45◦. These two mirrors are placed at the same height with the same inclination
angle 45◦ relative to the horizontal plane. Once an incident laser beam comes
along the vertical direction, light undergoes multiple reflections inside the thick
mirrors. If we only consider the first order reflection and transmission of the
first mirror, incident light will be separated into a reference beam and another
sample beam. These two separated beams will generate four output beams after
passing through the second mirror. We respectively note r and t the reflective
and transmissive amplitude rate (r2 + t2 = 1) which correspond to reference
and sample beams. Let the incident beam be of unit electromagnetic amplitude.
Then the four output beams can be marked as r2, rt, tr, and t2. If the two mirrors
are adjusted to be parallel to each other, two of these four output beams, rt and
tr would overlap and interfere. In this case, interference fringes are directly
observable and phase shift between sample beam and reference beam could be
measured.

II.4.2.2 Phase plate

Phase plates are also a device made by our group, which is used to quantitatively
change the relative phase shift between the two beams of the Jamin interferom-
eter. If we put a flat transparent glass (phase plate) on the path of one beam of
the interferometer, it will increase its optical path length and change the phase
shift between the two beams. As the refractive index of glass and thickness of the
phase plates are known, this phase shift is a known function of the incident angle
of light with respect to the phase plate. By controlling the inclination angle of
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Movable parts

Laser

Phase plates

Fig.II.12 – Photo and schematic plan of phase plates and their support.
Each phase plate is a half circle of 4 mm thickness and 40 mm diameter.
Each pair of phase plates are made by cutting a flat circular glass window
so that they have the same thickness and flatness.

the phase plate, we can quantitatively control the phase shift of the two parallel
beams.

As shown in Fig.II.12, four transparent phase plates made of BK7 are mounted
on two mechanical supports. Each support has a pair of symmetric phase plates.
It is to compensate the vertical shift due to a single phase plate. In addition, the
coherence length of our light source6 is about 7 mm, which is on the same order
as the optical thickness of two phase plates. So we also put another pair of phase
plates on the other beam in order to have a better contrast of the interference
fringes. This is why we have four phase plates in total.

On top of the support, there is a rotary shaft that connects two phase plates,
so that they can rotate relative to each other around the shaft. The rotation of
the phase plates is made by a vertically movable spacer which is at the bottom
of the support. The spacer is a solid metal cube that is always in close contact
with support. When we lift the spacer towards the shaft, it will push the two
plates away and increase the open angle between two phase plates. The spacer
is mounted on a numerical translation table which has a total translation length
of 25 mm with a step of 0.1 µm. One pair of phase plates is fixed as reference,
and its open angle is 5.5◦. The other pair is equipped with the spacer. We can
adjust its open angle from 5◦ to 6.5◦, and give an additional phase shift to the
Jamin interferometer up to 10× 2π rad with a precision of 1 µrad.

To obtain the expression of the phase shift added by the phase plates as

6A pulsed Nd:YAG laser
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Fig.II.13 – Left: A horizontal laser beam passes through the inclined phase
plate of thickness d. The incident angle α is the same as the open angle
of phase plate. Right: The schematic plan of the spacer and phase plates’
support. Blue lines show two different positions of phase plates, which
correspond to two different open angles α0 and αp. H0 is the initial dis-
tance between the spacer and the shaft axis, and h is the change of the
spacer’s height.

a function of spacer height, we first consider a simple optical model: a light
beam passes through a thick glass. In the left side of Fig.II.13, the horizontal
laser beam passes through the glass plate of thickness d. The incident angle is
α. Let the refracted angle inside glass be β. Air and glass refractive index are
respectively n0 and n. Then the optical path δ added by one pair of phase plate
is given by:

δ(α) = 2n0d

cos β
[ n
n0
− cos(α− β)

]
≈ 2n0d

[
( n
n0
− 1) + (1− n0

n
)α

2

2
]

(II.6)

The right side expression is valid within the small angle approximation. In our
case this condition is valid as the open angle is about 5◦. Obviously, δ only
depends on the phase plates’ open angle α. By adjusting the position of spacer
h(p)7, we can control the open angle of the phase plates α(h). Let D be spacer’s
width and H0 is the initial distance between spacer and rotary shaft. We have:

α0 = D

2H0
, and αp = D

2(H0 − h)

As described above, two pairs of phase plates are respectively mounted on each
path of the interferometer, the total optical path added to the interferometer is

7p is the step number of spacer, it can be regarded as a parameter that directly controls
the spacer height h.
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the difference of δ(α0) and δ(αp), which is:

∆ = δ(αp)− δ(α0)

Using Eq.(II.6), and the relation h� H0, we immediately have:

∆ = n0dD
2

4H2
0

(1− n0

n
)h(p)
H0

(1 + h(p)
2H0

)

By substituting all the constant variables, we can deduce the phase shift ψ in-
duced by the phase plates as a function of phase plate spacer height h(p):

ψ(p) = 2π
λ

∆ = 2πh(p)
a

(1 + s
h(p)
a

) (II.7)

where ψ0 is the initial phase, a ≈ 3.7 mm and s ≈ 0.04, which are determined
by the geometry. However, the parameters a and s both depend on the inci-
dent angle of the beam which is not easy to measure. So we regard them as
free parameters in the regression analysis which will be explained in the next
paragraph.

II.4.2.3 Quantitative multiphase technique

Experimentally, the phase shift due to the sound wave is obtained by measuring
the laser intensity I(p) as a function of the spacer height h(p). Let us consider
the signal received by the camera at a given time t. Although the entire image
received by the camera has thousands of pixels, we only consider one pixel.
Because the following reasoning is valid for all pixel if the conditions for the
inverse Abel transform are valid. As already mentioned once, I will discuss these
conditions in the end of this section.

In ideal case, which means there is no background noise light and the light is
monochromatic, the intensity of the combined beam can be written as:

I = (I1 + I2)
[
1 + 2

√
I1I2

I1 + I2
cos(∆φ)

]
where I is the observed intensity, and I1, I2 are the sample and reference beam
intensities, ∆φ is the phase shift between the two beams. In fact, because of
parasitic terms, this formula is not exact. But it can always be written in a
general form:

I = Ieff
[
1 + Ceff cos(∆φ)

]
(II.8)

where Ieff is the effective intensity and Ceff is the effective contrast.
In our experiment, the total phase shift ∆φ is the difference of two terms8:

∆φ(p) = φ− ψ(p) (II.9)
8The minus sign is because φ and ψ are respectively added to the sample beam and the

reference beam.
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ψ(p) is the phase shift brought by the phase plates, which is a function of the
spacer position, and we denote it by the position number p. And φ is the phase
shift between the two beams , which can be decomposed to two terms:

φ = φstatic + φsound

where φstatic is the static phase shift between two beams, and φsound is the one
added by the sound field. Then using (II.9), we can rewrite (II.8) by developing
its cosine term:

I(p) = Ieff
[
1 + Ceff cosφ cosψ(p) + Ceff sinφ sinψ(p)

]
(II.10)

As mentioned in Sect.II.4.2.2, the value of ψ(p) is determined by Eq.(II.7). And
we extract the variables a and s from a regression analysis. We first measure
the interference intensity by changing the position of the spacer without sending
any sound in helium. Experimentally, we measure 25 images corresponding to 25
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Fig.II.14 – The cross data points are the measured intensity I(p) as a
function of p. The green curve is the corresponding sinusoidal regression
of the free parameters in Eq.(II.7). These two parameters depend on the
inclination angle between the phase plates and the laser beam, which is
very difficult to measure.

gradually increasing values of h(p) = {h1, h2, h3 . . . h25}. Eq.(II.7) shows that the
corresponding ψ(p) will also increase. Consequently, the observed intensity I(p)
will change periodically as the cosine term cosψ(p) does. Fig.II.14 is a typical
result of this regression analysis. Once we have obtained ψ(p), we also use the
same regression analysis to extract the phase shift φ from the interference images
taken with sound. For the convenience of computation, we replace Ieff , Ceff ,
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and φ terms by D, E, and F , and rewrite Eq.(II.10) in the following form:

I(p) = D + E cosψ(p) + F sinψ(p)

The simplest way is to measure I(p) at three different p, as Eq.(II.10) has three
unknown variables. However, one advantage of our multiphase technique is the
efficiency, as we can implement dozens of measurements in a very short time
by repeating the experiment for different p. More measurements bring a more
precise result. So in fact, in a series of measurement, we measure I(p) for 25
different p, then a simply linear regression will gives D, E and F so that we can
compute:

φstatic + φsound = arctan F
E
, Ceff =

√
E2 + F 2

D
, Ieff = D

The phase shift φstatic can be measured by taking images without any sound wave,
and we can obtain φsound. Finally, by substituting the result into Eq.(II.5), the
local density of helium comes to light immediately.

II.4.3 Time-resolved technique and imaging system
Sect.II.4.1 showed how we calculate the local density from the local phase shift
by the inverse Abel transform for a given pixel of the camera at a given time t. In
numerical computation, the precision of the inverse Abel transform is determined
by the spatial and temporal resolution of the data. In this section, I will discuss
these two kinds of resolution in our experiments.

II.4.3.1 Time-resolved technique

The acoustically driven metastable phase of helium is a state far from equilibrium
conditions. Its observation is determined by the duration of the sound wave.
In our set up, sound frequency is 1.15 MHz, so the observation of a typical
metastable phase is on the order of a microsecond.

The acquisition frequency of our CCD camera is 10 Hz, which is much longer
that the duration of the metastable phase of helium. The camera is not able
to continuously record the local density at the microsecond scale. However, as
acoustically bringing helium in metastable states is a reproducible phenomenon,
we can still obtain a movie of the metastable event at microsecond scale using a
so-called time-resolved technique. We use a pulsed laser to measure the sample at
a given time t. Note that this laser pulse duration 9 ns is much shorter than the
lifetime of metastable helium event, so during this detection time, we consider
the detected signal as a snapshot of sample at time t. Then we repeat a series
measurements at successive delays t+ δt, t+ 2δt,. . . etc.. At last we can rebuild
the complete time evolution of this event. Here δt is the time interval between
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two successive detections, which is also the temporal resolution of our system.
We choose it to be equivalent to 1% of the duration of the metastable phase,
that is about 0.05 µs.

II.4.3.2 Imaging system

Laser Amplifier AFG

PZT

Cryostat

Camera

Interferometer
Phase plates

z

yx

Fig.II.15 – Scheme of the entire optical system. At the center of the
transducer, the small star is the acoustic focus. A CCD camera monitors
the focus plane through a lens.

Fig.II.15 shows a scheme of the entire optical system. We use a pulsed
Nd:YAG laser (λ = 532 nm) as a light source to directly illuminate the sam-
ple. Its pulse duration is 9 ns, the repetition frequency is 20 Hz. After passing
through the first interferometric mirror and the phase plates, two parallel beams
go into the experimental cell. The square in the center of figure represents the
optical cryostat and the experimental cell. Inside the cell, the PZT excites and
focuses acoustic waves in helium at frequency of 1.15 MHz. One side of the
transducer is grounded and the other side is connected to the output of a RF
amplifier driven by an arbitrary function generator (AFG). This generator is a
core device for time-resolved technique and the synchronization of the system. In
fact, it is enabling for adjusting the time delay between input and output signal
from 1 ns to 1000 ms with a precision up to 1 ns.

As described above, incident light is separated into two beams. The sample
beam passes through the acoustic focal region while the reference beam crosses
the cell in an unperturbed zone. These two beams merge and interfere after
being reflected by the second interferometric mirror. The center plane x-O-z of
the sound field, which we also call the “focal region”, is imaged onto the CCD
camera by an appropriate lens system. This lens system has been designed so that
its spatial resolution does not exceed 25 microns. Our group also experimentally
checked that this spatial resolution is δx ' 20 µm [2]. Compared to the sound
wavelength in liquid helium, λs ' 0.20 mm, this resolution is high enough.
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II.4.3.3 The conditions of the inverse Abel transform

We have already mentioned that the model used in Section.II.4.1 is valid only if
the diffraction of light due to the sound wave is negligible. In the acousto-optics,
the diffraction due to sound wave can be divided into two different regimes, one
is called the Bragg regime, the other is the Raman-Nath regime. Each of them
has different criteria. So our first step to investigate the diffraction of light is to
check if the sample can be considered as a thin optical grating. This is called
the Raman-Nath condition [45, 46], which states that the light diffracted at the
beginning of the grating does not shift more than half the spatial period of the
grating.

Laser Light

Fig.II.16 – Diagram of the simplified sound field. The amplitude of phase
modulation radially increases as 1/r. Roughly speaking, only the central
red zone contributes to the light diffraction. Then we can further simplify
that in the dashed line zone, the phase modulation is uniform.

To check if it is indeed the case, we consider the following scenario. First,
we compute the different diffractive orders as if the sample were effectively thin.
Let the real thickness of the sample be L. In our case, as the radial sound
field is concentrated towards the center and the amplitude varies reciprocally as
1/r. So the sound amplitude away from the focus center is very small, we can
then neglect this part. And also, if the sound wave front is perpendicular to the
incident direction, it will make a low contribution to the diffraction, and we can
also neglect this part. As shown in Fig.II.16, after neglecting these two parts,
we simplify the radial sound field to sinusoidal grating with Λ being the sound
wavelength, which is perpendicular to the laser beam and can be written as:

φ(x) = φ0 sin(2πx
Λ )
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We get three ordersrepresented by a diffraction angle α such as α = λ/Λ where
λ is the laser wavelength. The Raman-Nath condition is then:

Lα = Lλ

Λ <
Λ
2

Since the sound field is highly concentrated at the focus, whose typical length is
serveral Λ, only a zone of thickness of the order of Λ will effectively contribute
to the diffraction, so the Raman-Nath condition reduces to:

λ <
Λ
2

and with λ = 532 nm, Λ ≈ 200 µm, this is, by far, true.
As the phase modulation amplitude grows, we have to take into account

higher diffraction orders. Indeed, we can consider that side orders diffracted at
the beginning of the thick grating will be diffracted again by the neighboring
slices of the thick grating. Higher orders of diffraction are thus gradually ”pop-
ulated” as light travels through the grating. Eventually, if the phase modulation
amplitude is high enough, high orders that do not pass through the collecting
optics because their scattering angle is too high will have to be considered. Fa-
bien Souris has proposed a very simple way to address this problem. Consider
the same sinusoidal phase modulation as above:

φ(x) = φ0 sin(2πx
Λ )

This corresponds to a modulation of the wavefront function:

z(x) = λ

2πφ(x)

And the maximum slope of this modulation corresponds to the highest implicated
diffraction orders. This slope is:

α = dz
dx = λ

2πφ0
2π
Λ cos(2πx

Λ )

Its maximum value is:
αm = φ0

λ

Λ
This should remain lower than the angular aperture of the optics, which is related
to its spatial resolution δx by θ = λ/δx. The condition on φ0 is then:

φ0
λ

Λ <
λ

δx

that is:
φ0 <

Λ
δx
' 10 rad

As we will see, this is always the case.



38 Chapter II. Experimental devices and preparations

prelase TTL

laser pulse

camera exposure

AFG trigger

excitation pulse

sound at focus

170  s

1ms

t

t t

AFG

d

µ

flight∆

Fig.II.17 – The time line in a single measurement. The time arrow is
towards right. 1) Initial trigger at t0, it precipitates the camera the AFG
and the amplifier. 2) After the delay tAFG, the sound wave sent by the
PZT. 3) After the time of flight tflight, the sound wave arrives at the focus.
4) The laser pulses at the pre-lasing time tpulse, and an image is captured
at this time.

II.4.4 Experimental process

Our experimental protocol consists of the two main parts that was described in
the last two sections. It is the “time-resolved quantitative multiphase interfer-
ometric method”. Before performing any measurement, we need to synchronize
our complex optical system.

A single measurement is to take an image of the focal region at a given
time t and spacer position p of phase plates. Fig.II.17 gives the timing of a
single measurement. Our pulsed laser has a pre-lasing signal that will be sent
tpulse = 170 µs before the laser pulse. This signal is set as the initial trigger of the
entire system. And it will precipitate three actions. The first one is the exposure
of the CCD camera, which has a much longer duration than 170 µs. The second
is a TTL gate signal sent by AFG, which is used for activating the RF amplifier.
The last one is a RF burst signal also sent by AFG, which is amplified by the
RF amplifier and then excites the PZT, it determines the time of sending the
sound wave.

The opening of the camera and the TTL gate signal are both executed at
the initial trigger time. So only the time of sending the sound wave concerns
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us the most. Let the initial trigger time be time zero. Then the laser pulse
is at time tpulse = 170 µs. If we want to capture the instantaneous image of
the first arrival of sound wave at focus, we have to consider the time of flight
of sound wave. In superfluid helium, for pressure 1 bar, this time is about:
∆tflight = R/csound ≈ 26 µs, where R is the PZT radius, and csound the sound
velocity. So we should send the RF burst at time tpulse −∆tflight. We call this
time tAFG, as it is controlled by the AFG.

Let td be the time interval between the arrival of the sound wave at focus and
the laser pulse. Keep in mind that the discussion above is made to capture the
instantaneous image of the arrival of the sound wave at focus, which is td = 0.
If we want to capture an earlier or a later time, we can simply change the delay
tAFG. And from the above discussion, we can write:

td = tpulse −∆tflight − tAFG (II.11)

This equation shows that td could be considered as the time reference of how long
it has been since the first sound wave front arrived at the focus. This notation
is very practical when we study the bubble lifetime in helium in Chap.V.

Next step is to measure a series of images at different times and a constant
spacer position p. By adjusting tAFG, we can easily change td at every single
measurement. As mentioned earlier, our temporal resolution of measurement
is about 0.05 µs, so a typical series of measurement consists of hundreds of
single measurements at successive time delays td = {td1, td2, td3, . . .}. After that,
we will perform 24 other series of measurement at 24 different values of p =
{p1, p2, p3 . . . p24}.

To summarize our experimental process, we have 25 series of measurement at
different spacer position p, and each series is composed of hundreds of images at
successive delays. Because our default sound burst repetition frequency is 10 Hz,
if there are 200 images to record in a series of measurement, and we take the
initializing of the spacer position into account, then it takes about 30 s for one
run. Then the total experimental time for 25 runs is about 15 minutes. If we
want to have a higher temporal resolution measurement, we should use a smaller
time step, and it will significantly increase the amount of images in each run.
Consequently, the total experiment time will increase up to several hours.
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Introduction
The former PhD student of our group, F. Souris had succeeded in bringing solid
helium into a metastable state [1]. This is a very interesting experiment, because
metastable solid helium in a low density state seems to be a good candidate for
a possible supersolid state (see Chap.I). As already mentioned, the metastable
solid helium was achieved by using our manufactured PZT to focus sound wave
in solid helium. We found that the crystal breaks only 4.4 bar below the melting
pressure, and a small region (∼ 0.1 mm) is irreversibly damaged. However, this
experimental result does not match the theoretical expectation of H. Maris who
predicted that perfect helium crystals should remain metastable down to 35 bar
below the melting pressure [26]. This instability was studied in numerous crystals
at various temperatures between 0.9 K and 1.4 K. The existing imaging protocol
allowed us to precisely locate the damaged region at the very focus of the sound
wave, where shear is zero and pressure swing maximum [2]. However, it was
based on a standard CCD camera and was neither suitable for determining the
appearance time of damage, nor its growth dynamics. In particular, it remained
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unproven that the instability occurs during a negative swing of the pressure
oscillation. For that purpose, a different detection method had to be developed.

III.1 Experimental method
The new imaging system allows us to precisely determine when the instability
occurs and, to some extent, its growth dynamics. Interesting conclusions can be
drawn from their dependence on the amplitude of the sound wave. To detect
events at a microsecond time scale, we have implemented a standard Schlieren
imaging technique.

III.1.1 Schlieren method

Stop

Plane O

Laser

PZT

Cryostat

L1 L2 L3

Camera

Photodiode

Fig.III.1 – Experimental arrangement to monitor the light scattered by the
damaged region (plane O) at a microsecond time scale. The beam of a CW
laser, expanded by two lenses (L1 and L2), illuminates the region where
the instability occurs. The unscattered light is focused by L3 and absorbed
by a beam stop, while the light scattered by the damage is collected by a
fast photodiode. Using a semi-transparent plate, images of plane O can
be simultaneously recorded on a standard CCD camera.

Unlike the 10 Hz pulse laser (8 ns width) used in the previous protocol, we
use a continuous wave (CW) laser beam (λ = 532 nm) to illuminate the focal
region. The detector of the present experiment is a fast photodiode (∼ 5 MHz
bandwidth) instead of the CCD camera. This photodiode is placed at the image
plane of the sound focus through a corrected lens assembly. This lens focuses the
parallel laser beam onto an opaque beam stop (diameter 1.8 mm). Consequently,
only the light scattered by the damage would be detected. The entire set-up
is shown in Fig.III.1. In addition, a semi-transparent mirror allows us to get
simultaneously an image of the region of interest on a CCD camera. It is used
to check whether the instability really occurs.
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In order to increase the signal to noise ratio, care is taken to avoid parasitic
light by illuminating only the region of interest. To that end, a two lens beam
expander combined with an adjustable diaphragm is used. The waist after L2
is located ∼ 100 cm downstream which is near the PZT focal region, and its
divergence is ∼ 0.6 mrad. The Rayleigh range is about 150 cm. Note that
the stop diameter is larger than what is required by the beam divergence. It is
designed to stop also the light scattered by the sound wave in the focal region at
an angle 2λ/λs ' 2.5 mrad.

III.1.2 Experimental process
All the experiments were performed at T = 1.06 K and Pstatic = 25.50 bar.
The static pressure is 0.12 bar above the fusion pressure at this temperature.
The experimental process is also slightly different from the protocol described in
Chap.II. First, we prepare a single crystal in the experimental cell so that the
PZTs are completely immersed in it. The crystal is then brought to the chosen
state by the technique described in Sect.II.3.2. The crystal quality is controlled
by checking the focalization of sound waves using the interferometric method
described previously. This is done at a low enough driving voltage (VPZT ∼ 40 V)
that the crystal remains undamaged. Typical lowest local pressures achieved are
about 2 bar below the melting line. The position of the sound focus is then
determined on the interferometric images.

The CW laser beam used in the Schlieren imaging measurement is centered
on the sound focus. The beam diameter measured at plane O is d = 0.7±0.1 mm,
while the typical maximal size of the damaged region is 250 µm.

The synchronization of the system is also slightly different to the protocol
described in Sect.II.4.4. Because the pulsed laser was not used in this study, we
used a generator as initial trigger instead of the pre-lasing signal. As mentioned
before, it triggers the camera, the AFG, and the RF burst. In addition, it
triggers a mechanical chopper that opens the CW laser beam during 50 ms.
This time is small enough to avoid cell heating, and long enough to detect any
forthcoming scattering event and assess the long term evolution of the damage. A
few milliseconds later, the two PZT receive a four oscillation electrical excitation
at their resonance frequency 1.25 MHz. In the solid the sound velocity is between
300 and 500 m/s depending on its propagation direction so that ∆tflight = 12µs.

The photodiode output is recorded on a digital oscilloscope, triggered at t = 0
by the beginning of the radio frequency excitation. Fig.III.2(a) displays several
signal examples corresponding to different driving voltages of the PZT. Due to
non linear effects, this voltage is not directly proportional to the wave amplitude
but is used only for benchmarking. For every signal, the contribution of the
background stray light is measured at lower driving voltage and then subtracted
from the actual signal. A sharp increase of the scattered light signals the damage
occurrence at t0.
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III.1.3 Determining t0

To determine precisely t0, we have fitted the beginning of curves like those of
Fig.III.2(a) with a quadratic function :

Vphoto(t) = H(t− t0) a (t− t0)2 + b

where a, b and t0 are free parameters and H is the Heaviside function. The fit
is performed for each instability on a time interval from 0.8 µs before the signal
rise to the point where it reaches half the first relative maximum. In the limit
of Huygens-Fresnel diffraction, the intensity of the light scattered by a damaged
region of diameter d is expected to be proportional to d2. If d grows linearly in
time, we thus expect that the signal first starts growing as (t− t0)2. The inset of
Fig.III.2(a) gives an example of such a fit. Typical uncertainty on t0 is 0.02 µs,
i.e. less than 2.5% of the sound period. The value t0 given by the fit is taken to
be the time of occurrence of the instability.

To provide a temporal reference for the sound pressure at the focal point,
Fig.III.2(b) represents the pressure variations of the crystal previously recorded
using the interferometric method at lower driving voltage. This signal is used
for time calibration.

III.2 Experimental results
On the recordings shown in Fig.III.2, the instability starts on a depression, i.e. in
a domain of the helium phase diagram where the stable phase is the liquid phase.
Once the damaged region is created, its size oscillates with the wave pressure.
But it does not come back to zero afterwards, having undergone an irreversible
growth. Its size remains finite at the end of the pressure wave. The crystal is
irreversibly damaged.

We have reproduced this kind of measurement to determine the time of birth
for 20 instabilities at different driving voltages of the PZT. The results are shown
in Fig.III.3. They confirm that the instabilities always start on a depression
swing of the sound wave. This result gives strong support to the hypothesis that
this instability corresponds to the nucleation of some ‘drop’ of another phase,
presumably the liquid one, inside the bulk of solid helium. We also remark that
for a given driving voltage, the times of birth of the instabilities are all within the
same negative swing of the sound pulse. But, as the driving voltage is increased,
t0 jumps from one negative swing to an earlier one.

III.3 Discussion
We attribute this behavior to the existence of a pressure threshold triggering
the instability: this threshold would be reached earlier in the sound wave as the
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Fig.III.2 – a) Photodiode voltage as function of time for 3 experiments
creating solid helium instabilities at different PZT driving voltages. The
sharp increase of the signal corresponds to the appearance of damage. The
open circles give the time of birth t0. Inset: Typical fit of the photodiode
voltage as function of time using Eq.(III.1.3). b) Pressure variations at
sound focus in arbitrary units for temporal reference.

wave amplitude is increased. Moreover, at low excitation driving voltage (50 V
or less), thousands of sound pulses can be sent into the crystal without damaging
it [1]. It seems to support the existence of a pressure threshold.

However, the results shown in Fig.III.3 are not consistent with such a simple
scenario. For the seven experiments performed at the lowest driving voltage
(VPZT = 57 V), the instability systematically starts during the oscillation after
the one of minimum pressure. If a threshold did exist, the 57 V instabilities would
have nucleated at least one oscillation before the one observed. Even if we assume
that there is only some probability of breaking during a certain swing, as soon as
the amplitude is large enough, this result doesn’t seem compatible with a simple
threshold. Indeed, the two preceding oscillations have amplitudes equal or larger
than the one where events are observed. Attributing equal probabilities for a
nucleation event in each of these oscillations (which is a conservative hypothesis),
the probability for 7 events lying in the last oscillation would be only (1/3)7 '
5 × 10−4. This is rather unlikely and we thus conclude that the instantaneous
pressure is not the only physical quantity which triggers the instability.

Looking for a physical quantity which remains constant for the different ob-
served events, one may remark that the time spent under stress compensates in
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Fig.III.3 – Times of birth t0 of 20 instabilities at different driving voltages
of the PZT. For clarity, the symbols for a given excitation voltage are
slightly horizontally dispersed around their nominal values. Error bars
are within the data point sizes. Gray areas: Time intervals of negative
swings of the pressure wave at sound focus.

some way a lower depression amplitude. This is reminiscent of fatigue effects,
more precisely of Wöhler fatigue curves [47]. In a fatigue test, a piece of mate-
rial is submitted to an alternating stress of amplitude Sr until it breaks after N
cycles. The Wöhler curve presents Sr as a function of N in log-log coordinates.
It decreases from the static rupture stress towards the plasticity threshold of the
material for very large N .

In conclusion, we have shown experimentally that the observed instability
in metastable hcp solid helium indeed appears during the depression swing of
the sound wave for which the stable phase is the liquid phase. Moreover, we
have found that this instability cannot be associated with a simple depression
threshold. This part of work was published on [48].
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Introduction
Although our “time-resolved quantitative multiphase interferometric method"
was initially developed for studying metastable solid helium, it can be used to
study the metastable superfluid phase. As already mentioned in Sect.I.3, super-
fluid helium is a model liquid for investigating condensed matter theory. Espe-
cially, the metastable superfluid helium has been studied in detail in order to
check the nucleation theory (see the review article [30]).
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There are two kinds of metastable phases for superfluid helium. One is the
over-pressurized liquid phase, in which we squeeze the superfluid intending to
observe the nucleation of a helium crystal. The other is to bring the liquid to a
negative pressure so as to create helium vapor bubbles. The later one is related
to the spinodal limit of the liquid, in which the condensed liquid phase become
totally unstable. This limit is usually deduced from the equation of state of the
superfluid helium at negative pressure. Many theorists used different approaches,
and obtained similar equations of state at zero temperature. Since our method
could measure the local density of the metastable helium, we decided to study
the stability limits of the superfluid helium hoping to find a cavitation density
being consistent with others.

This chapter is organized as follow: I will first present the preliminary study
about two different metastable phases of the superfluid helium. It is followed
by the detailed study of cavitation limit in superfluid helium. To our surprise,
during the study of the cavitation limit, we found an interesting problem which
will be discussed in the end of this chapter.

IV.1 Over-pressurized superfluid helium

IV.1.1 Existing experimental results

In the past few years, to our knowledge, there have been only a few studies of
homogeneous nucleation of the solid helium in over-pressurized superfluid helium.
Most of them were performed by the group of S. Balibar in Paris1. In 2004, F.
Werner et al. focused bursts of 1 MHz acoustic waves by a hemispherical PZT
[49], and they studied the possible nucleation of bubbles or crystals by shining
laser light through the acoustic focal region, and by using a photomultiplier as
a detector to capture the scattered light due to the nucleation. Since they could
not measure directly the local pressure of the helium, they estimated the pressure
at the focus by assuming the pressure to be proportional to the driving voltage of
the PZT. Then by analyzing the dependence between the critical driving voltage
and the static pressure, they could find out whether the signals is due to a bubble
or a crystal. But to their surprise, they found no evidence of the nucleation of
a helium crystal up to about 160 bar. This value is much larger than the one
predicted by the standard nucleation theory (65 bar) [50].

Later, in 2006, R.Ishiguro et al. (the group of S. Balibar) implemented a
similar experiment and criticized the result of F. Werner et al., at last they
came to an opposite conclusion. They mentioned “...we now think that this (the
conclusion of F. Werner et al.) needs to be further checked and their conclusion
possibly corrected...”, and attributed this to the possible non-linear effect of the

1Laboratoire de Physique Statistique de l’ENS, Paris, France
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acoustic waves which weakens their estimation of the local pressure. Therefore,
for the same reason, they did not give the threshold of the nucleation pressure.

For now, this problem is still open, and it also becomes one of the starting
points of our study.

IV.1.2 Experimental set up
Our preliminary experiment is based on the local density measurement described
in Chap.II. In principle, we would observe the acoustic focus without the interfer-
ometer so as to see whether a crystal/bubble appears. Once we found something
unusual, we would launch a local density measurement.

As mentioned in Sect.II.2.1, two face-to-face grinded hemispherical PZT fo-
cuses acoustic waves in liquid helium. They are held by the PVC support in the
experiment cell. The pulsed laser is synchronized with the AFG and the camera,
so as to take a snapshot at a given delay.

As a preliminary observation, our goal was to find any possible evidence
for a crystal in the images. To do so, we repeated the experiment in different
conditions. Since there are many controllable variables, such as the temperature
and static pressure, driving voltage applied on the PZT, and observation delay,
our group developed a program to display the camera images in real time. It
allows to rapidly repeat the experiment at different driving voltages and time
delays.

In addition, differing from the experiments of the S. Balibar’s group, we
did not need to estimate the local pressure of the liquid through the driving
voltage applied on the PZT. The direct measurement of this driving voltage is
then unnecessary. Moreover, in order to precisely control the driving voltage
of the PZT2, we fixed the signal amplifier gain factor at 390, and adjust only
the AFG voltage amplitude with a relative accuracy of 10−4. Hence we use the
AFG voltage V as the scale to indicate the threshold voltage instead of the PZT
driving voltage.

IV.1.3 The equation of state
However, a simple result of the local density does not allow to compare it with
the result given by the theories or other experiments (they all give the threshold
pressure instead of density). So we have to convert the density to pressure by
the equation of state which was initially given by H.Maris et al. [37, 38]. The
one we used in the context is the later one fitted by F. Caupin et al. [51].

P − Pc = b2

27(ρ− ρc)3 (IV.1)

2A small reminder: the RF burst is amplified before it is sent to the PZT.
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where P and ρ are helium pressure and density. For liquid 4He , b = 1.4030 ×
106g−1cm4s−1, Pc = −9.6435 bar and ρc = 0.094175 g.cm−3. Because this equa-
tion is mainly intended to describes the behavior of 4He at negative pressure,
perhaps its not accurate enough for the over-pressurized helium. Actually, there
are not many results dedicated in the equation of state for over-pressurized he-
lium. So far we only found one given by L. Vranjes et al. [52]. It is obtained by
a Monte Carlo simulation and gives a pressure value larger than the extrapola-
tion of the experimental equation of state from the low pressure region. So the
converted pressure should only be regarded as an estimation.

IV.1.4 Results
However, the search of crystal nucleation in superfluid did not go well. In fact,
we use a CCD camera to capture helium images. Differing from the experiments
done by the photodiode [53, 49], what we observed is the entire image of the focus
zone. We have tried hundreds of combination of static temperature, pressure,
driving voltage and time delay. We did not find any obvious trace of crystal
nuclei. But we still found some suspicious signals. We call them suspicious
because we did not have full evidence to prove the appearance of a crystal.

Fig.IV.1 – A raw image taken at T = 1.05 K and Pstatic = 25.14 bar (the
solidification pressure is 25.37 bar), time delay td = 20.13 µs. The AFG
voltage V = 745 mV. The upper stripe is the border of the PZT. The
acoustical focus is on the right side of the image. The sound wavefront is
also shown in the image.

Fig.IV.1 is a typical raw image in this experiment. We noticed that there are
some triangular structures which are indicated in the image. They are suspected
to be the shadow of sound wavefronts, because these structures would move
forward or backward as we increase or decrease the observation delay, and they
always propagate on radial direction. But, since the phase modulation due to the
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sound amplitude is usually too small to scatter the light, why would we observe
shadows of the wavefront? I think there could be two reasons. One is our highly
focused sound wave has non-linear effects, possibly shock waves, that scatters
the incident light. In fact, C. Appert et al. has reported strong non-linear effects
found in the simulation of focused large amplitude sound waves [43]. Due to the
non-linear effects, the gradient of the sound amplitude could be large enough to
scatter the light, so we observed the shadow. The other reason is our grinded
PZT. Perhaps it is too much grinded and loses the spherical symmetry. As the
geometry of the wavefront changed, it would possibly change the way it scatters
the light.
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Fig.IV.2 – Partial zoom of the acoustic focus of two raw images. Both
images are taken at T = 1.05 K and Pstatic = 25.14 bar, time delay
td = 3.73. µs. But their AFG voltage are different: left V1 = 745 mV;
right: V2 = 820 mV. The left one is the same one shown in Fig.IV.1. The
color bar is an arbitrary unit indication of the light intensity.

Fig.IV.2 shows the partial zoom of the acoustic focus region for two different
AFG voltages. They were taken at the same td = 3.73 µs, which corresponds to
the maximum over-pressurized swing. As already mentioned in Sect.II.4.4, it is
the delay between the observed time and the arrival time of the sound wavefront.
We found that, at lower AFG voltage V1 = 745 mV (the image at left of Fig.IV.2),
there was no evident structures at the focus. At higher voltage V2 = 820 mV,
there was some small fringes at the focus (the one at right of Fig.IV.2). In order to
clearly show this signal, I present the profiles of the intensity on Fig.IV.3. In the
profile of 820 mV, there is a peak around the pixel (405,191) which corresponds
to the sound focus of the upper PZT. As indicated on the right side of the figure,
there is another similar anomaly around the pixel (420,150). These anomalies
only appear at higher AFG voltage in the two focal regions, so we suspected
them to be a possible nucleation of the crystal.

In addition, the two separated focuses are due to the two PZTs being not
perfectly con-focal which has already been mentioned in Sect.II.2.1.
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Fig.IV.3 – The profiles of light intensity for the same row of the two images
shown in Fig.IV.2. Because the sound wave amplitudes are different in the
images, we normalized the light intensity by multiplying one image by a
factor so that most pixels of the curves are overlapped. The red dotted
line is the profile of V1 = 745 mV, and the blue line is the profile of
V2 = 820 mV. There is an abnormal peak around the pixel (405,191). On
the right side, the horizontal line shows the position of the row. And the
two circles are the two separated focuses.

IV.1.5 Discussion

Unfortunately, we did not find any decisive evidence of the crystal nucleation
in over-pressurized superfluid helium. We attribute the inconclusive result to
two main reasons. The first one is that the highly deformed sound wavefront
greatly influenced the image contrast, which makes the event signal difficult to
be detected. The second one is that the upper and lower sound wave fronts are
not perfectly aligned. The two focuses are separated apart from each other a
distance of 400 µm, and it is about one and a half sound wavelength. This defect
makes the two counter propagating sound wave no longer in-phase, and weakens
focusing.

Nevertheless, we could still measure the local density when the suspicious
structure appears and then convert it to local pressure by using Eq.(IV.1). We
found that, at T = 1.05 K, the pressure range at which we obseve the suspicious
structure varies from 44 bar to 62 bar depending on the static pressure. We also
noticed that the threshold pressure of the nucleation crystal predicted by the
standard nucleation theory is about 65 bar at zero temperature.
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Fig.IV.4 – Image of a cavitation bubble, taken at Pstatic = 0.05 bar, T =
0.93 K, td = 20.0 µs, the AFG voltage V = 660 mV. The lower dark strip
is the PZT border.

IV.2 Cavitation bubble in superfluid helium

After the inconclusive search for crystal nucleation, we turned to study the cav-
itation in superfluid helium. In theoretical aspects, many researchers studied
the so-called spinodal limit of superfluid helium, which could be experimentally
examined. At zero temperature, various theoretical approaches [54, 55, 56, 57]
have produced quite similar equations of state. So a direct measurement of the
cavitation limit could possibly help us to give more insights to this study. All the
existing results in this domain were given as cavitation pressures. So in order to
compare with other experimental results, we also have to convert our measured
density to pressure using an equation of state. To our surprise, our converted
pressure does not quite agree with previous estimations. Thus we also repro-
duced the pressure extrapolation of F.Caupin and S.Balibar [51], and found a
reasonable agreement with their data. After discussion of various sources of un-
certainties in our measurements, we compare our results with various theoretical
estimates of the cavitation pressure.

IV.2.1 Preliminary observation
In this series of experiments, we slightly modified the experimental set up. In-
stead of using two over grinded PZT, we put only one single PZT on the support.
The new PZT was only grinded a small part of 0.9 mm height along the equator
(see Sect.II.2.1), so it could keep the sound wavefront quite spherical.

It is known that cavitation in superfluid helium will give birth to a helium
bubble. In our experiments, without exception, when we increase the driving
voltage on PZT above some value, we observed a helium vapour bubble at the
acoustic focus. Our time-resolved technique allows to observe the image of bubble
at any give delay. Fig.IV.4 shows a typical photo of bubble. Similar to the case
described in last section, these photos are taken without interferometer.
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In our preliminary experiments, we learned that cavitation is a temperature
dependent stochastic process. This result has already been predicted in the
standard nucleation theory, and other groups have already observed the same
behavior [58, 51]. What we do is to verify this result by our own devices. As
expected, we found that, around a critical driving voltage, the probability to
see a bubble is not always 1. Our result on the cavitation probability will be
presented in next section.

IV.2.2 Determining the cavitation voltage
Our measurement of local density by interferometry requires a completely repro-
ducible phenomenon. If bubbles appear randomly, it is impossible to measure the
optical phase shift δφ(t) for the pixels involved. In other words, this method only
allows us to measure the local density just below the cavitation density where
no cavitation process occurs (or the cavitation probability is very low). Then
the measured local density should be very close to the real cavitation density
and a linear extrapolation to the cavitation voltage would introduce only a small
correction.

Thus, before performing any density measurement, we have to precisely de-
termine the cavitation voltage. Other groups have observed that bubble life time
in superfluid helium depends on the static pressure Pstatic and is of the order of
some tens of microseconds [41, 59].

According to our recent research about bubble lifetime of helium liquid, this
lifetime in superfluid helium mainly depends on the hydrostatic pressure. In
our case bubble can be clearly seen by camera ∼ 10µs after the minimum pres-
sure wave front passed the acoustic focus, because bubbles will expand to about
100 µm and are easily observed on the CCD camera. In 1998, H. Lambaré et
al. [58] proposed to fit the cavitation probability by an “asymmetric S-curve
formula”:

Σ(V ) = 1− exp[− ln 2 exp(ξ(V/Vc − 1))] (IV.2)

where V is the excitation voltage, Vc the cavitation voltage and ξ is the inverse
width of the curve.

In order to determine Vc, we proceed as follows. For a given static pressure,
the bubble probability is determined for 5 different excitation voltages. Each
voltage point corresponds to 1000 trials (1000 sound pulses) and the probability
is then simply given by the number of positive events (creation of bubble) divided
by the number of trials. To simplify the counting of bubbles, we made a com-
puter program, which calculates a mean light intensity of a small region around
the acoustic focus. Because the bubble is always created and then collapses at
the acoustic focus3, once a bubble appears in this small region, the total light
intensity will significantly decline. By choosing a proper threshold of the mean

3The behavior of the bubble will be described in Chap.V.
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intensity, the program could easily count the bubble probability. We also noticed
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Fig.IV.5 – Cavitation probability at 0.96K for three different pressures
Pstatic: circles 0.15 bar, triangles 0.65 bar, crosses 1.26 bar. The corre-
sponding lines are fits according to Eq.(IV.2).

that, as the cavitation is a thermally activated process, the probability is very
sensitive to the temperature changes. To avoid heating, 10 bursts of 100 sound
pulses at 10 Hz repetition rate were shot, waiting 100 s between each burst.

The cavitation voltage is the value corresponding to a bubble probability of
1/2 according to Eq.(IV.2). As can be seen in Fig.IV.5, the relative width of the
curves is about 1% of Vc. These curves are indeed very sharp. So if we want
to make a local density measurement without bubbles, the available maximum
AFG voltage Vmax should be about 2% below Vc, such as

Vmax ≈ 0.98Vc

In this situation, the probability Σ(Vmax) is about 10−3.

IV.2.3 Cavitation density
Fig.IV.6 is a radial density profile at Pstatic = 0.15 bar at a given time td, it is
obtained by the local density measurement. The local density at zero radius is
the minimum density at Pstatic and td. Then the minimum density in time and
space ρmin was measured for several voltages below the cavitation threshold. An
example is shown in Fig.IV.7. Assuming a local linear dependence of ρmin to V
near Vmax, and taking into account the error bars, we can safely consider ρcav is
ρmin(Vmax).

Finally, the cavitation density was reached from three different static pres-
sures: 0.15 bar, 0.65 bar and 1.26 bar, and at the same temperature 0.96K as
shown in Fig.IV.8.

Fig.IV.9 is the same 13 data, and they are averaged for each static pressure.
Within the error bars we find that ρcav is independent of Pstatic. We com-

puted the mean of these measurements and their mean squared error to deter-
mine, respectively, the cavitation density of helium and its uncertainty. Our
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Fig.IV.6 – Typical radial density profile for Pstatic = 0.15 bar at the time
when the density is minimum at acoustic focus. The static density corre-
sponding to Pstatic is shown by the horizontal dashed line.

0 100 200 300 400 500
0.132

0.134

0.136

0.138

0.14

0.142

0.144

0.146
ρ0= 0.1454 g.cm-3

PZT voltage (mV)

D
en

si
ty

 (
g.

m
-3
)

Vmax

Vc

Fig.IV.7 – Experimental measurements of minimum densities ρmin for dif-
ferent driving voltages V at T = 0.96K and Pstatic = 0.15 bar. The data
points in the blue circle are the measurements at Vmax. The dashed red
line represents the cavitation voltage Vc.

final result is that the cavitation density of superfluid 4He at 0.96 K ρcav =
0.1338±0.0002 g.cm−3. In these three different pressures, the static density does
not change much and has the value of about ρstatic ≈ 0.146 g.cm−3. The relative
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Fig.IV.8 – 13 measurements of the cavitation density at three different
Pstatic. For more clarity, the different measurements are shifted from their
actual Pstatic values.

difference of ρcav and ρstatic is:

∆ρ
ρstatic

= ρstatic − ρcav
ρstatic

= 8.4%

And we can state that superfluid helium around 1 K will break when its local
density is lowered by about 8.4%.

In addition, we many ask whether the cavitation density is really independent
of the pressure. As shown in Fig.IV.9 the data points can also be fitted by a
slightly inclined straight line. If we accept such assumption that ρcav depends on
Pstatic, we will find the difference between the fit line and the data points is too
small compared to the error bars. Normally, a such a fit should be considered as a
coincidence. In fact, with these data points, we can not deny either assumption,
and in the near future, we will perform more experiments to check this.

IV.2.4 Uncertainty analysis
Before analyzing the measurement uncertainties, we should first discuss the con-
dition of the inverse Abel transform. As already mentioned in Sect.II.4.3.3,
the amplitude of the phase modulation due to the sound wave should satisfy
φ0 < 10 rad. Whereas the measured minimum density corresponds to a maxi-
mum phase modulation φ0 ≈ 5 rad. So the inverse Abel transform is valid in our
case.

The measurement uncertainties can be divided in two parts: the statistical
ones which come mainly from the extraction process of the optical phase shift
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Fig.IV.9 – Same data as Fig.IV.8, but data points are averaged for each
pressures.

induced by the acoustic wave, and the systematic errors arising from an imperfect
cylindrical symmetry of the pressure wave.

As we mentioned in Sect.II.4.3, for each time and for each pixel, the phase
shift value δφ (t) is obtained by applying a fit on intensities using Eq.(II.10). We
use a computer program to extract these phases with 95% confidence bounds.
This gives the phase shift uncertainties mainly due to shot noise, camera reading
noise and laser power fluctuations. Once the phase shift map is determined, an
inverse Abel transform is applied to recover the refractive index local variation
induced by the acoustic wave(see Sect.II.4.1). Then, the density variations are
deduced from the optical index variations using Eq.(II.1). The inverse Abel
transform is a linear transformation, from its expression Eq.(II.4) we can see
that the calculation of the optical index at a given pixel i depends linearly on
the phase shift values for all pixels on the same line. The local density variation
at this pixel is thus in the form:

δρi =
jmax∑
j=i

αijδφj

where j is the pixel index and αij is a weight. The errors ∆δρi on δρi can be
computed from the error ∆δφj on δφj and the weights αij which could be in
principle extracted from the Abel inversion program. Instead we used a simpler
empiric method, assuming that the phase uncertainty is about the same for
each pixel, and is not correlated from one pixel to an other. In that case, the
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uncertainty of the density variation at the pixel i is:

(∆δρi)2 =
jmax∑
j=i

α2
ij (∆δφj)2 = (∆δφ)2

jmax∑
j=i

α2
ij

Then, we performed N = 1000 density calculations, for the same treated line
while adding a Gaussian noise to the phase shifts for every calculation. The
standard deviation of the added noise is chosen to be the same as the phase shift
uncertainty ∆δφ. Once we have these N treatments, the statistical uncertainty
(∆δρi)N of the radial density variation is calculated for each pixel of the line.
By construction, this uncertainty is equal to

√
2 times the original unknown

statistical uncertainty ∆δρi of the density variation, because:

(∆δρi)2
N =

jmax∑
j=i

α2
ij

[
(∆δφ)2 + (∆δφ)2

]
= 2 (∆δρi)2

Applying this method, we found that the statistical uncertainty δstat around
the cavitation density is on the order of 2 × 10−4 g.cm−3, while the maximum
value of δρ is of order 125× 10−4 g.cm−3.

The inverse Abel transform assumes that the symmetry axis is exactly known.
Actually, it is unknown and has to be determined experimentally by searching a
symmetry axis in the phase maps. But the phase noises as well as any possible
asymmetry of the acoustic wave locally perturb the left-right symmetry of the
phase shift maps. This perturbation will add an uncertainty in the calculation
of density variations. The difference between the Abel inversion applied to the
left and to the right of this axis gives an order of magnitude of this uncertainty.

The symmetry axis for a given phase map is found by fitting a straight line
through all symmetry centers when the amplitude of the sound pulse at focus is
maximum. Then the mean and the standard deviation for the position of these
axis are computed.The uncertainty on the symmetry axis is about 3 µm, giving a
contribution to the density variation uncertainty on the order of 3×10−4 g.cm−3.
To this systematic uncertainty we add another incertitude due to the difference
between the left and right parts of the Abel inversion. This gap varies from one
image to another and it is on the order of 5 × 10−4 g.cm−3. So the uncertainty
of the symmetry axis is about δsym = 8× 10−4 g.cm−3

At last, we have the total uncertainty for one single measurement: ∆δρ =√
δ2
sym + δ2

stat ≈ 10−3 g.cm−3.
This analysis is an example of how we deal with the uncertainty. The value

given here might change in different measurements. In fact, we have respectively
calculated the uncertainty for every single measurement. The error bars of the
three data points shown in Fig.IV.9 are calculated independently. The final
uncertainty is calculated by assuming that the cavitation density is independent
of the static pressure. Therefore, we have ∆δρtotal = 2× 10−4 g.cm−3

Note that, this value compared to the density variation δρ gives a relative
uncertainty about 2%. Concerning the reliability of this measurement, it may
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be interesting to recall that a comparison with a hydrophone [44] was made in
water in 2010. It was found that the deviation between the two methods is less
than 5%.

IV.2.5 Discussion
Previous results [51, 60] about cavitation in liquid helium were given as cavitation
pressures instead of cavitation densities. The equation of state (EOS) of liquid
helium in its metastable state (density and pressure below the boiling curve
values) is needed to convert the ρcav to a corresponding Pcav. Although such an
equation of state has never been measured experimentally, as I mentioned earlier
in Sect.IV.1.3, some have been proposed. H. Maris has pointed out that, in the
stable phase at T = 0.1 K, the sound velocity pressure dependence could be fit
very well by the law c3 = b(P −Pc) with c the sound velocity, P the pressure, Pc
the spinodal pressure and b a constant [61]. He proposed that this relationship
holds in the metastable state (negative pressure).

P − Pc = b2

27(ρ− ρc)3

where P and ρ are helium pressure and density. For liquid 4He , b = 1.4030 ×
106g−1cm4s−1, Pc = −9.6435 bar and ρc = 0.094175 g.cm−3. Bauer et al.
have performed Path-integral Monte Carlo simulations of liquid helium in the
metastable state at finite temperature and found the same dependence of sound
velocity on pressure [56]. Dalfovo et al. have calculated the EOS of metastable
liquid helium at T = 0 K using density-functional approach [55], and Boronat
et al. using a quadratic diffusion Monte Carlo method to achieve a similar EOS
[54]. The EOSs at 0 K agree within a few percent. Moreover, using the density-
functional theory of Dalfovo et al., Maris and Edwards have shown that in the
temperature range 0 < T < 1 K, the EOS is nearly independent of temperature
[57].

So in order to compare our cavitation density result to cavitation pressure
results of other experiments, we use the well established EOS of metastable
liquid helium at T = 0 K and assume it holds for T = 0.96 K. By doing so, our
cavitation pressure is Pcav(0.96K) = −5.1± 0.1 bar.

At temperatures ∼1 K, in addition to the present experiment, there are to our
knowledge only two experiments which studied the cavitation of liquid helium.
Both also used focused acoustic wave. Xiong et al. [60] found the cavitation
pressure at 1 K is ∼ −3 bar. The incertitude mentioned in this paper is about
±10% and comes mostly from the difficulty of estimating the pressure at acoustic
focus knowing the displacement of the emitter. Non-linear effects were not taken
into account in their calculation. So this incertitude is likely to be underesti-
mated. Caupin et al. [51] studied the dependence of cavitation voltage to the
static pressure. They claim that this method enables them to set an upper limit
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for the actual cavitation pressure. Modelling a linear response of their emitter
to voltage, they also give a lower limit for the cavitation pressure. Their result
is −9.8 < Pcav(0.9K) < −7.7 bar. According to the data points published in
[50], the result at T ∼1 K is almost the same. One can see that there are large
discrepancies among these experiments.

We have tried to reproduce the experiment of F.Caupin et al. using their
extrapolation method on Pstatic [51] (see Sect.IV.2.6). The upper limit of Pcav we
found is about −8 bar which agrees pretty well to the one of F.Caupin et al. (see
next section). But the disagreement with our density measurement converted to
pressure remains.

Jezek et al. [62] have calculated the cavitation pressure of liquid helium as
a function of temperature, by using a density functional method and assuming
the absence of defects (especially vortices). In order to compute the cavitation
pressure, the volume υ and the time τ in which nucleation is likely to occur
are needed. We take υ = (λs/2)3 and τ = 0.1 µs is the 1/10 of the sound
period. This gives υτ ∼ 10−13 cm3s. Using this υτ value, Jezek et al. calculated
P Jezek
cav (0.96K) ∼ −6.9 bar. This value is just between our result (−5.1 bar) and

the central value (−8.8 bar) of F.Caupin et al..
Finally, we would like to point out that Maris has developed a model of

cavitation in the presence of quantized vortices in liquid helium [63]. For a vortex
density ranging from 104 to 1012 cm−2, he founds that −5.8 < P vortices

cav (0.96K) <
−5.1 bar. Although Maris can not estimate the error bar on this simulation, we
note that our result does lie in this range. Besides, Pettersen et al. [64] have
proposed that the vortex density in the high amplitude sound wave should be of
the order of 108 ∼ 1010 cm−2. The presence of vortices might be a possible way to
conciliate our experimental result with simulations. However, this would imply
that, in the presence of vortices, the Pstatic extrapolation method of reference
[51] does not give an upper limit of Pcav.

IV.2.6 Cavitation pressure by extrapolating the static
pressure

In 2001, F.Caupin et al. implemented an extrapolation method [51] to investigate
the behavior of helium in negative pressure. They imagined an environment with
a “stable” negative static pressure. In this situation, the required driving voltage
for achieving cavitation would be less than the one in null static pressure. Then
the very negative static pressure corresponding to zero cavitation voltage would
be the cavitation pressure. That can be expressed as:

Pcav = Pfocus = Pstatic + ∆P (ρstaticVc)

where Pcav, Pstatic and Pfocus are respectively the cavitation pressure, the static
pressure of helium and the pressure at acoustic focus. ∆P (ρstaticV ) is the vari-
ation of pressure induced by the sound wave and ρstatic is the static density.
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This equation holds when the driving voltage V reaches the cavitation voltage
Vc. Assuming that the cavitation pressure is independent of Pstatic, we measure
the different cavitation voltages at different static pressures, and then extrapo-
late linearly at zero cavitation voltage 4. Numerical simulations [65] have shown
that in absence of vortices the true curve is concave toward negative pressures.
The linear extrapolation gives an upper limit of the true cavitation pressure.
The Fig.IV.10 shows our extrapolation corresponding to our measurements of
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Fig.IV.10 – Reproduction of reference [51] experiment. Pstatic as function
of ρstaticVc. The 3 data points(black circles) correspond to static pressures
of 0.15 bar, 0.65 bar, 1.26 bar. Cavitation voltage are the ones shown in
Fig.IV.5. The dotted line is the linear extrapolation of the data points.

(Pstatic,Vc) values at T = 0.96 K (see Fig.IV.5). The upper limit of cavita-
tion pressure obtained in this way is −7.9 ± 0.3 bar. This is in agreement with
F.Caupin et al.’s value which is Pcav < −7.7 bar at 1 K.

IV.3 Conclusion

We have preliminarily investigated two different metastable phases of superfluid
helium expecting to observe the nucleation/cavitation phenomenon.

Regarding the over-pressurized superfluid helium, due to the mentioned ex-
perimental difficulties, we are not able to draw clear conclusions about the nu-
cleation limit of superfluid helium.

Then in the metastable superfluid helium of negative pressure, we observed
the cavitation bubble as expected, so we further studied its cavitation density.
Using an interferometric set up, we have measured the cavitation density of liquid
4He at T = 0.96K and the result is ρcav = 0.1338 ± 0.0002 g/cm3. This means

4Although we use the AFG generator voltage, it is strictly proportional to the real driving
voltage so that the extrapolation result will not be affected.
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that superfluid helium around 1 K will break when its local density is lowered
by 8.4%.

In order to compare it to other theoretical results, we converted this density
to pressure by using an equation of state which was initially given by H. Maris
then corrected by F. Caupin et al.. Meanwhile, different theoretical or simula-
tion approaches gave a similar cavitation pressure at 0 K. And below 1 K, this
cavitation pressure is nearly independent of temperature. So we used this well
established EOS and obtained Pcav to be −5.1± 0.1 bar. However, F. Caupin et
al. has proposed another experimental result. They used a far-fetched extrap-
olation method and found Pcav between −9.8 bar and −7.7 bar. Their method
seems very logic, but is not compatible with our converted Pcav. Therefore, the
method of F. Caupin et al., our local density measurements and the EOS are not
compatible together. For now, there maybe several possibilities for this paradox.
First, in our experiments the quantum vortex density is much larger than the one
in F. Caupin’s experiment. Second, the equation of state is not correct. Third,
the cavitation density maybe dependent of the static pressure, which makes the
result of F. Caupin et al. would have to be reinterpreted. However, any of
these statements requires much more study. Besides performing more cavitation
density measurements, we have another way to study this problem which will
be discussed in the general conclusion of this thesis. This study of metastable
superfluid helium was partially published in [66].
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Introduction

We have already studied the acoustic cavitation limit of 4He in last chapter.
Acoustical cavitation will give birth to a vapor bubble, then this bubble will grow
and collapse. Our grinded PZT and imaging system provide an excellent chance
to study bubble properties by imaging the bubbles, such as measuring their

65
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lifetime. And we found it very interesting that bubble lifetime has a dramatic
transition as helium passes the λ−transition. By lifetime of the bubble, one
means the time interval during which the bubble is created, grows, collapses and
eventually disappears.

In superfluid helium, bubbles vanish quickly, their lifetime is on the order of
one millisecond. On the contrary, in normal liquid helium, the lifetime is much
longer and varies from ten to hundreds of milliseconds depending on temperature.
Apparently, the large difference of bubble lifetime in the two different liquids is
due to the λ−transition, but the dynamics is not that obvious.

As already discussed many times in this thesis, because of its extreme purity,
liquid 4He is a model liquid for the fluid dynamics. There are many studies about
homogeneous cavitation bubble in superfluid helium [58, 41, 67]. All of them used
a similar PZT to achieve acoustic cavitation, and they measured the scattering of
an incident laser beam by the bubble using a fast photodiode. Surprisingly, none
of them is dedicated to the bubble dynamics. The only one we are aware of is
that of Roche et al. [67] who studied the bubble lifetime dependence on applied
external pressure at very low temperature (∼ 70 mK). Compared to their work,
our set up allows a direct measurement of the diameter of bubbles.

This chapter is organized as follow: The first section is dedicated to experi-
mental preparations. It is followed by the observation of bubbles in two different
temperature ranges. At last we try to interpret and conclude on these results by
analyzing the bubble dynamics.

V.1 Experimental preparation

Laser Camera

Vapor helium

Liquid helium Lens

h

Fig.V.1 – Experimental set-up. PZT is immersed in liquid helium. The
height of liquid above the sound focus is marked by h. The CCD camera
focuses on the focus plane through a lens.

The detail experimental conditions have already been presented in Sect.II.4.3.2.
However, our experimental cell is not originally designed for studying bubble
lifetime. We had to make some changes to adapt to the new experimental envi-
ronment.
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V.1.1 Experimental set-up

A scheme of the set-up is shown in Fig.V.1. We still use a Nd:YAG pulsed laser
as a light source. A parallel laser beam directly goes into the cell, and is scattered
by bubbles created by the PZT. A lens system images the acoustic focus plane
onto a CCD camera. The interferometer and phase plates have been removed,
as the density measurement is no longer needed in this study.

V.1.2 Modified filling process

The standard filling process was already presented in Chapter.II. But it is not
suitable for the measurement of bubble lifetime. As shown in Sect.II.1.1, the
experimental cell is connected to the injection capillary. Because the lifetime
of bubble is very sensitive to the exterior pressure1, if the cell is over-filled, a
small quantity of helium will stay in this slim capillary, and significantly rise the
hydrostatic pressure inside the cell, which makes the pressure inside the cell very
difficult to control. So we decided to keep the cell half filled so that the pressure
around the bubble is the saturated vapor pressure plus the hydrostatic pressure.
In this way, the bubbles will stay longer and are more easily detected.

Our actual PZT support is made for interferometry, and it hangs the trans-
ducer on the upper part of the cell. As shown in Sect.II.1.1, the cell window is
too small to observe the upper half of the cell. As shown in Fig.V.1 we need to
immerse the PZT entirely below the vapor-liquid interface, which is out of vision
and difficult to determine. In order to overcome this problem, we chose to modify
the filling process. Using the micro fluid flow controller and the Keller pressure
transmitter which are outside the cryostat, we can fill the experimental cell at
a constant pressure. Because the temperature in the cell is regulated by the
thermal controller, all the injected helium vapor will turn to liquid at a constant
temperature, so the vapor pressure can be considered as constant too. There-
fore the filling process is stationary, and the condensation rate of the injected
helium vapor is then constant. It is possible to calculate this rate by measuring
vapor-liquid interface when it is in our field of vision.

Fig.V.2 shows two pictures taken during the filling process, the vapor-liquid
interface is clearly seen. The structure of the cell is already known2, if we consider
the cell as a hollow cylinder, and neglect the volume of the PZT and its support,
then by measuring the liquid height as a function of time, we can calculate at
which time the PZT is totally immersed in liquid. In fact, this estimation has
an important uncertainty. A typical value is h = 10± 10 mm.
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Vapor-liquid
Interface

PZT support

PZT

Metal stick

Window frame

Fig.V.2 – Pictures of the experimental cell being filled with liquid helium.
As marked in the left one, the support of the PZT occupies most of the
visible zone through the circular window. The ceramic PZT is hung on the
upper part of the PZT. Vapor-liquid interface is indicated by the dotted
red lines.

V.1.3 The timing problem
In Sect.II.4.4, we presented the experimental protocol including the timing of
the optical system. In the following paragraphs, I will use the same notations
to denote the time line. Before applying it to the measurement of the bubble
lifetime, we have to modify the synchronization process. The problem comes
from measuring the time td. Eq.(II.11) gives the expression of td.

td = tpulse −∆tflight − tAFG

It involves three different times: the RF signal burst departure time tAFG, the
laser pulse time tpulse, and the time of flight of the sound wave ∆tflight. The
generator of the RF signal—AFG is triggered by the initial TTL signal, so that
tAFG can’t be negative. tpulse and ∆tflight are two constant values. Eq.(II.11)
restricts td not to exceed tpulse −∆tflight:

td ≤ tpulse −∆tflight

We know that tpulse = 170 µs and ∆tflight ∼ 26 µs, so td ≤ 144 µs. Therefore,
the protocol does not allow to observe any bubble who lasts longer than 144 µs.
However the observed bubble lifetime is largely distributed from one to hundreds
of milliseconds, which requires that td should also be widely tunable. Here is the
timing problem.

In order to solve this problem, we decided to make a time shift on the time
line. It is considered that the time-resolved measurement has a default repetition

1The reason for this will be explained later in Sect.V.4.2.
2see Sect.II.1.1
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Fig.V.3 – The diagram of the modified time line, which is based on
Fig.II.17. We shift all the measurements by the period time T , so as
to observe the bubbles who last longer than 170 µs.

rate of 10 Hz. This frequency is adjustable through the AFG. Let the periodic
time of the repetition to be tp. We can shift every observation to the next
measurement. Fig.V.3 shows a diagram of this modified time line. We can also
express this modification by adding tp to both sides of Eq.(II.11) and it becomes:

tdm = tpulse + tp −∆tflight − tAFG

where tdm stands for modified td. This new expression requires that tdm ≤
tpulse + tp, which depends on the adjustable value of tp. Because tAFG is widely
tunable by the AFG, so is tdm. If we want to observe a bubble which lasts 150 ms,
we can simply set tp = 200 ms and tAFG = 50 ms3.

V.2 Behavior of bubbles in superfluid helium

At first glance, the behavior of bubbles is not simple, we observed that the
diameter and the lifetime of bubbles are both statistical quantities, as their
values are distributed in some interval. In this section, I will respectively present
our observations about bubble diameter and its lifetime. Then, we use statistical
tool to measure the typical bubble lifetime in superfluid helium.
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1.56 ms 1.84 ms 2.12 mstd=1.00 ms

1 mm 1 mm 1 mm 1 mm

Fig.V.4 – Determining the lifetime of cavitation bubbles: data for T0 =
0.87 K. Images of typical bubbles at different times td (see text). The
upper black stripe is the shadow of the PZT.

V.2.1 Distribution of bubble’s diameter
Fig.V.4 is a typical set of images of collapsing bubbles at T0 = 0.87 K (< Tλ)
recorded at different times td. Note that, these 4 images are of 4 different bub-
bles: the repetition rate of the camera does not allow to record continuously the
evolution of a single bubble. In fact, for each setting of td we take many images of
bubbles so as to do a statistical analysis. The images here are the typical bubbles
for each time setting. Here, as mentioned in last section, td = 0 is the time at
which the sound wave arrives at the PZT focus (the duration of the sound burst
is one percent of the total bubble lifetime, therefore we consider the arrival of the
sound wave as an instantaneous event). We can see that the center of the bubble
stays at the same position, whereas its radius is decreasing with time: the bubble
is collapsing where it was created. This point is important because it enables
us to perform statistics on the lifetime of a bubble. In addition, the motion of
bubble is another topic which will be described in the section of buoyancy effect.

Another noteworthy point is that the first left side image in Fig.V.4 is a
bubble at its maximum radius. Its is obviously not a perfect sphere. We can
attribute its cause to the so-called Rayleigh-Taylor instability [68, 69]. This phe-
nomenon is a fingering instability of an interface between two fluids of different
densities, which occurs when the light fluid is pushing the heavy fluid. In a
review paper about this instability by D.H. Sharp [70], the author mentioned
the complexity of the instability analysis in curved geometries, and it “depends
strongly on compressibility and the acceleration history of the interface.” Be-
cause the expansion of bubble is a fast dynamic process, the irregular spherical
form of bubble is probably due to the Rayleigh-Taylor instability. There is a
quantitative estimation about the surface acceleration in Sect.V.3.1.

We found that the diameter of bubbles is randomly distributed around a
mean value. We supposed it could be caused by the fluctuations of the boundary
conditions when the bubbles are created. For example, the fluctuation of the local
density in superfluid helium, or the signal fluctuation of the electric devices, such

3tpulse is too small compared to 50 ms and is neglected.
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as the amplifier and the AFG. Although the exact source of fluctuation is unlikely
to be found, those fluctuations obey a Gaussian distribution, which is to say the
observables such as bubble diameter have a statistical behavior. To quantify
these fluctuations, we measured 200 bubbles in the same conditions, and drew
the histograms in Fig.V.5. All the data are taken at the same AFG voltage,
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Fig.V.5 – Histograms of 200 bubbles in the same conditions. The three
curves are respectively horizontal length, vertical length, and average di-
ameter of bubbles. The mean values and standard deviations written in
red are corresponding Gaussian parameters.

static pressure and temperature, and time delay. Because bubbles are irregular
spheres, our way of measuring bubbles’ diameter is to measure respectively their
horizontal and vertical length, then we calculate their mean value.

Fig.V.5 shows that the distribution of bubbles’ diameter is roughly Gaussian
with a relative standard deviation of about 3%. So it is reasonable to state that
the maximum bubble diameter also obeys a Gaussian distribution.

V.2.2 Measuring bubble lifetime
The lifetime τ of a cavitation bubble is expected to depend on several independent
parameters. In a simplified model, we only consider the collapsing process of
a vacuum bubble, and neglect the liquid-surface tension and viscosity. Then
the equation of motion is determined by the time t, the liquid density ρ, the
hydrostatic pressure P as Rayleigh shown as early as 1917 [71]. In fact, we can
obtain a similar relation from a dimensional analysis. If we only consider the
collapsing process, then the corresponding collapsing time τcollapse depends on
three independent parameters: P , ρ, and the initial radius R0. We can write:
τcollapse = C P xρyRz

0, where x, y, z are three exponents to be determined, C is a
constant. By using dimensional homogeneity, we obtain three equations about
x, y, z, and have: τcollapse = C

√
ρ/P R0 In the calculation of Rayleigh, he got:

τcollapse = 0.91468
√
ρ

P
R0 (V.1)
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In our experiments, the cavitation trigger—the sound burst—only lasts a few
microseconds, which is only 1% compared to the observed total bubble lifetime.
So the bubble growth can be regarded as a free expansion in liquid, which is the
reverse process of the bubble collapse. We can thus write the total lifetime τ as:

τ ≈ 2 τcollapse

Therefore, the bubble lifetime is proportional to the maximum radius R0 the
bubble can reach. As described in the last section, the maximum radius obeys a
Gaussian distribution, so τ(R0) is also Gaussian distributed. We denote p(t) as
the probability of having a bubble at time t, and the probability density of τ is
Gaussian distributed, then p(t) should be:

p(t) = 1
2
[
1− erf(t− 〈τ〉

ξ
)
]

(V.2)

where erf is the error function, 〈τ〉 the mean lifetime of the bubble and ξ its
standard deviation.

Experimentally, before determining the bubble lifetime, there are two prob-
lems to be solved. The first one is how to count the bubbles. The other is how
to determine the threshold driving voltage of the PZT in order to compare the
result amongst different temperatures.

V.2.2.1 Counting the bubbles

In order to measure the probability p(t), it is inevitable to count the bubbles
amongst thousands of images, which is far beyond my capability. And I decide
to count it by computer program. But this is not easy neither. Fig.V.4 has
shown a very clear image of small bubble(td = 1.84 ms), which is at the end
of its collapse. However this image is only an outstanding example. In most
cases, we will see a much less clear image like in Fig.V.6. The bubble intensity is
almost the same order as the background noise. In fact, the signal-to-noise ratio
is terribly low in this image, I have to process the image to accurately count the
bubble in such condition. And I learned that the convolution of the image with
a proper function will greatly increase the signal-to-noise ratio. In fact, this kind
of imaging processing is called spatial filtering. More details can be found in
any books of numerical signal treatments. My imaging processing is as follow:
I firstly measured the background by taking an image without any bubbles and
sound waves. Then, I subtracted the background signal from the bubble image,
and got Fig.V.7. Here, the signal-to-noise ratio is roughly 4.

At last, after some trials, I chose a Laplacian of Gaussian as a spatial fil-
ter, with a width of 20 pixels. And the result of the convolution is shown in
Fig.V.8. After processing, the signal-to-noise ratio is increased to 400, which
is two orders of magnitude higher than the original value. By setting a simple
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Fig.V.6 – Raw image captured by the CCD camera, the color bar at right
side indicates the light intensity. x, y-axis represent the pixel coordinate
of the camera. We can roughly find a small bubble around the pixel (300,
100).
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Fig.V.7 – Pretreated image, after subtracting the background noise from
the raw image, the bubble signal becomes more evident. The color bar
at right side is regularized by taking the maximum intensity of the raw
image as unit.

240 260 280 300 320 340 360 380 400

40

60

80

100

120

140

160

180

200

×10-4

0.5

1

1.5

2

2.5

3

3.5

4

Fig.V.8 – The convolution of the pretreated image and the spatial filter.
It shows a significant signal of bubble.

threshold value, and counting the number of pixels above this value, the bubble
can be accurately counted. I have checked its accuracy manually—by manually
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counting 1000 images—and have confirmed this method to be very efficient. In
this way, counting bubbles amongst thousands of images becomes possible.

V.2.2.2 Driving voltage of the PZT

Another problem to be solved is to determine the threshold of the PZT driv-
ing voltage. As we already mentioned in the last chapter, the cavitation phe-
nomenon is also distributed around a threshold driving voltage of the PZT.
We can’t measure the bubble lifetime if there is no bubble. So in the mea-
surement of bubble lifetime, there must be a precondition, which is to mea-
sure bubble lifetime at the PZT driving voltage corresponding to the cavitation
probability 1. If we denote the driving voltage corresponding to the cavitation
probability= 0.5 by V (Proba = 0.5). Then the threshold voltage Vthreshold should
be: Vthreshold > V (Proba = 0.5). However, V (Proba = 0.5) is a function of tem-
perature. In order to have a consistent precondition of the threshold voltage in
different temperatures, we finally chose this threshold to be the minimum driving
voltage corresponding to the cavitation probability 1, which is:

Vthreshold = 1.02 V (Proba = 0.5)

This value is given by the “asymmetric S-curve formula”(see Sect.IV.2.2). Be-
cause the width of the curve is about 2% of its mid value, the minimum driving
voltage is: V (Proba = 1)min ≈ 102%V (Proba = 0.5).

t (ms)

0 0.5 1 1.5 2 2.5

p
(t
)

0

0.5

1

Fig.V.9 – Determining the lifetime of cavitation bubbles: data for T0 =
0.87 K. Probability of existence of a bubble at time t. The solid line is a
fit assuming that the lifetime of the bubble is gaussian distributed. The
mean value 〈τ〉 = 1.65 ms, the half height length ξ = 0.10 ms.

Figure V.9 is one measured probability curve of p(t). Every data point in
the figure is composed of 200 images taken at the same conditions. The blue fit
line is given by Eq.(V.2). It shows that such a fit reproduces the data pretty
well and enables us to determine the bubble mean lifetime. We obtain, at this
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temperature T0 = 0.87 K, 〈τ(T0)〉 = 1.65 ms, with a relative standard deviation
of 6%. We notice that, this uncertainty is on the same order as the one on
R0, which is 3% and is given in Sect.V.2.1. We could say that the fluctuations
have the same influences on both the bubble’s diameter and lifetime, which is
consistent with the proportional relation between R0 and τ (see Eq.(V.1)).

Then we have performed these experiments at several temperatures below
the λ-point. The results are shown on the left part of Figure V.10. In this
temperature range, the lifetime of bubbles is roughly independent of T0 and its
value is 1.5 ± 0.2 ms. This is the statistical uncertainty which comes from the
average of all data.

T0 (K)
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<
τ>

(m
s)

1 
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Fig.V.10 – Lifetime of bubbles in liquid helium as a function of tempera-
ture. The vertical dashed line marks the superfluid transition temperature
(Tλ = 2.17 K). Above Tλ, we can only estimate the lower bound of the
lifetime.

V.3 Behavior of bubbles in normal liquid he-
lium

The bubble lifetime at T0 > Tλ is much longer (up to 600 ms). In this temperature
regime, because of the long lifetime of bubbles, which is already on the order of
100 ms, we are obligated to lower the repetition rate of the measurement. If
not, some bubbles will survive till the next sound burst arrives and re-expand.
At last, bubbles will fill the vision, such as the photo shown in Fig.V.11. This
should be avoided.
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Sound focus

PZT border

Bubbles
Fig.V.11 – Cavitation bubbles at T0 = 2.19 K. The big bubble is acous-
tically created at the PZT focus. Other small bubbles are the survivors
from previous sound bursts. This photo was taken at a much higher PZT
driving voltage. The variation of refractive index is so high that sound
wave deflects much light out of sight, and so makes fringes visible.

Fig.V.12 shows images of bubbles taken at different time. Although bubbles
are always born at the focus of the acoustic wave, we have seen that, at later
times, they become randomly distributed over the field of view. At a given
time, there is a chance for a bubble to escape the imaged region and become
undetected. Then we can’t count the probability p(t) in this regime. The only
statement we can make is that the lifetime of bubbles in these experiments is
bounded by a lower value corresponding to the highest value of t where p(t) 6= 0.

V.3.1 Bubble radius and the surface acceleration
Another observed phenomenon is that during the long lifetime, the radius of
the bubble is quite stable. In Sect.V.2.1, I have mentioned the Rayleigh-Taylor
instability, because in the superfluid regime, we observed that the bubble’s radius
changes very fast, and the surface acceleration is not negligible in its expansion, so
the instability occurs while the fluid is accelerating. Whereas in the normal fluid,
the observed bubble’s radius does not change much, which is already shown in the
figure above. The acceleration is thus much smaller. Here we can quantitatively
estimate this acceleration. We only consider the simplest case, in which we
assume the surface expansion is a uniform accelerated process. By using the
corresponding equation of motion: R = at2/2, where R, a, t are respectively
the bubble radius, estimated acceleration and time. The following table gives a
quantitative comparison about this estimated surface acceleration.

Radius(µm) Lifetime(ms) Acceleration(m · s−2)
Superfluid 300 1.5 270
Normal 100 40 0.125
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Fig.V.12 – Cavitation bubbles at T0 = 2.19 K. The maximum diameter is
about 200 µm. At first five milliseconds, bubbles are at the PZT focus.
Later, bubbles become randomly distributed in the vision.

The surface acceleration of the normal liquid helium bubble is three magnitudes
lower than the one of the superfuild helium bubble. So the Rayleigh-Taylor
instability has much less influence on the surface profile of the normal liquid
helium bubble, and they are more spherical.

All these aspects clearly indicate that the cavitation regime in the T0 > Tλ
range is strongly different from the one in the superfluid case. This difference is
especially remarkable when looking at the bubble lifetime as shown in Fig.V.10.

V.4 Dynamics analysis
In this section, we will try to explain what we have observed about bubble lifetime
in two different regimes, and especially to understand the evolution of bubble
during its lifetime. First, let us consider the influence introduced by acoustic
wave. From our observed result, the lifetime of bubbles is longer than 1 ms. As
a comparison, our acoustic burst time is less than 10 µs, which is only less than
1% of total bubble lifetime. So, although acoustic pressure gives birth to bubble,
compared to its long time evolution, acoustic wave effect could be neglected in
the later evolution of bubble.

Then, after the acoustic wave passed away, bubbles will grow and collapse
in a stable environment, where two classical processes become dominating. One
is the growth and collapse of bubble in its inertial reference as described by the
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so-called Rayleigh-Plesset equation, and another is the motion of bubble in the
laboratory reference. We can reasonably suppose the later one is mainly caused
by buoyancy.

V.4.1 Buoyancy effect and turbulence effect
Buoyancy is an upward force exerted by a fluid that opposes the weight of an
immersed object. In our case, the buoyancy effect is the main cause of bubble
motion. Here we try to estimate bubble displacement due to buoyancy during
its lifetime. From Archimedes’ principle we can write this upward force by:

Fup = −ρlV g

where ρl is the liquid helium density, V is bubble volume, g is gravity acceleration.
If we neglect viscosity in helium, as it is quite small in low temperature, bubbles
will be accelerated. In fluid mechanics an accelerating body must remove some
volume of surrounding fluid as it moves through it. This effect gives an additional
inertia to the bubble which is generally called added mass. If we assume bubbles
are perfect spheres, this added mass is

madded = 2
3πR

3ρl = 1
2ρlV

where R is bubble radius. So the bubble’s equation of motion is:

Fup +mbg = (mb +madded)a

where mb is bubble vapor mass. As bubble vapor density in our temperature
range is negligible compared to liquid helium density, we obtain a = −2g. Then,
the maximum bubble displacement due to buoyancy is:

h = |g|τ 2

We apply this result to our observed result. In the superfluid case, bubble lifetime
is about 1.5 ms. During this time, the maximum displacement of the bubble due
to buoyancy is gτ 2 = 20 µm, which is very small compared to the size of visible
zone (∼ 1 mm). In fact, this maximum displacement is equivalent to only 2
pixels on our CCD camera whereas the entire vision length is at least 500 pixels.
It means the displacement of bubble is quite negligible during this short lifetime.
So this is the reason why we observed the bubble is collapsing where it was
created.

On the other case, in normal liquid helium, the observed bubble lifetime is
at least on order of 20 ms. The vertical displacement due to the buoyancy effect
is at least 4 mm. So during bubble lifetime, bubble will probably move outside
of vision. But in fact, we can still see the bubble after 20 ms. I think this is
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because of the turbulence induced by the displacement of bubbles in the liquid.
By simply calculating the Reynolds number in this case, we can have a qualitative
comprehension about this phenomenon. The Reynolds number Re is defined as:

Re = ρvD

µ

where v is the maximum velocity of the bubble, D is the diameter of the bubble,
ρ and µ are the density and viscosity of the liquid. Their corresponding values
are about gτ ≈ 0.1 m/s, D ≈ 0.2 mm, ρ = 146 kg/m3, and µ ≈ 10−6 kg/m/s4.
And we have the Re for the moving bubble in normal liquid helium:

Re ≈ 2900

This Re value means the turbulence is inevitable. More precisely, in fluid me-
chanics, this Re value implies that the bubble will undergo the vortex shedding
flow [72]. In this flow, vortices are created at the back5 of the bubble and detach
periodically from either side of the body. The fluid flow past the bubble will
create alternating low-pressure vortices on the downstream side of the bubble.
Then the bubble will tend to move toward the low-pressure zone. It is to say the
rising bubble will be perturbed by the vortices, so as to swing on the horizontal
direction. If the bubble touches the PZT wall, it will probably bounce away, and
then reappear in the vision. This conclusion is consistent with our observation.
Therefore, we can no longer measure the bubble lifetime, since we would never
know when the bubble totally disappears.

V.4.2 Rayleigh-Plesset equation
Another process that governs bubble’s evolution is the growth and collapse of
bubble in its inertial reference. If we assume the bubble is a sphere, then its
expansion and collapse are both radial. We can derive the equation of motion of
the bubble surface from the Navier-Stokes equation.

In the ideal case, we consider the incompressible Navier-Stokes equations.

ρ
(∂u
∂t

+ u · ∇u
)

= −∇P + µ∇2u (V.3)

where u is the fluid velocity, ρ the density, P the pressure in liquid, µ the shear
viscosity of the liquid. We notice that in the bubble’s inertial reference, the fluid
velocity is purely radial that u = u(r), then the velocity can be represented by
a potential, with u = ∇φ. Eq.(V.3) becomes:

ρ
[∂φ
∂t

+ 1
2
(∂φ
∂r

)2]
= −P (V.4)

4The value of the viscosity will increase one magnitude as the temperature goes from 2.17
K to 4 K. This given value is an mean estimation.

5Back is the direction opposite from the one bubble is traveling.
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where r is the radial distance to the bubble center. Let U = u(r = R) be the
thin layer velocity at the bubble surface, where R is the radius of the bubble, it
is a function of time. Near the bubble, the incompressible liquid flow obeys the
conservation of mass:

u(r) = R2

r2 U = R2

r2
∂R

∂t

which leads to:
φ = −R

2

r

∂R

∂t
+ C(t) (V.5)

where C(t) is a free constant, which is determined by the pressure boundary
condition at infinity of Eq.(V.5). Now we consider the pressure term of Eq.(V.4).
The contribution of pressure comes from four terms: the liquid pressure outside
the bubble P0, the vapor pressure in the bubble pv, the pressure due to the shear
viscosity and the pressure due to the surface tension:

P = pv − P0 −
4µ
R

∂R

∂t
− 2σ
R

(V.6)

The equation of motion of the bubble surface is given by Eq.(V.4), Eq.(V.5), and
Eq.(V.6), where r is replaced by R. And it is noticed that pv is the saturated
vapor pressure, and only depends on the temperature T inside the bubble gas.
Then we have:

R
∂2R

∂t2
+ 3

2
(∂R
∂t

)2
= 1
ρ

[
pv(T )− P0 −

2σ
R
− 4µ
R

∂R

∂t

]
(V.7)

This is the Rayleigh-Plesset equation. It is widely applied in many domains,
such as bubble collapse and sonoluminescence [73, 74, 75]. Solving the equation
requires knowing P0 and pv. The former one could be regarded as the hydrostatic
pressure. The later one depends on the heat transfer across the bubble surface
[76]. We can consider the following scenarios: while the bubble is expanding, a
small quantity of liquid helium near the bubble wall will evaporate. Since the
vaporization lowers the liquid temperature, the faster the bubble expansion is, the
more heat it consumes. On the contrary, instead of lowering the temperature, the
collapse will lead to the condensation of the vapor, which rises the temperature,
and the heat has to be dissipated.

V.4.3 Superfluid helium bubble
The bubble lifetime in superfluid helium is quite short, and its motion in the lab-
oratory reference could be neglected. So, the bubble behavior should be mainly
described by the Rayleigh-Plesset equation. As mentioned once, to solve this
equation is to find P0 and pv. In the superfluid state, the thermal conductivity is
extremely large. We will show in the following paragraph that the temperature
T in the gas is always the static temperature T0 of the liquid far away from the
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Fig.V.13 – A diagram of the temperatures and pressures in liquid and in
bubble.

bubble, and the Rayleigh-Plesset equation becomes a purely mechanical equa-
tion.

The scenario is presented in Fig.V.13. Let the spherical bubble be at its
maximum radius R0 = 300 µm, and filled with helium vapor at T0. The number
of moles in the bubble nv is given by the equation of state for ideal gas:

nv = 4πR3
0

3RgT
pv(T0)

where Rg = 8.31 J/mol/K is the gas constant. The molar latent heat of vapor-
ization of helium is on the order of Lv(1.9 K) = 93.2 J/mol and varies by less
than 16% between 0.9 K and 4 K [29]). Therefore, the total heat to be transfered
Qv will be:

Qv = nvLv

The next step is to estimate the increase of temperature in the surrounding liquid
induced by the condensation. In superfluid helium, heat is transfered by second
sound [3, 77], whose velocity is about v2 ' 20 m/s between 0.9 K to Tλ [29]. We
can consider the heat transfer as a radial transport process, with a typical radius
rheat = v2τ , where τ is the bubble lifetime. And the temperature of the liquid
within this radius can be regarded as uniform. So the increase of temperature
is the total latent heat divided by the heat capacity of the surrounding liquid
which equals to the molar number times the volume of the liquid:

∆T = Qv

n2 C(T0) , with n2 = 4π r3
heat

3MHe

where C(T0) the molar heat capacity of the liquid at T0, andMHe the molar mass
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of helium. n2 is the number of mole inside the typical radius6. By substituting
Qv in the equation above, we get:

∆T = MHeR
3
0

Rgr3
heat

pv(T0)Lv(T0)
C(T0) (V.8)

Because the values of pv, Lv(T0), and C(T0) are already given in [29], we can
directly calculate the value of ∆T as a function of T0. The result is shown in
Fig.V.14. We find that for 0.9 K < T0 < Tλ, ∆T is about 10 nK. This results
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Fig.V.14 – The calculated ∆T as a function of T0 using Eq.(V.8).

in a rise of the vapor pressure of about 10−4 Pa which is certainly negligible
compared to pv(T0), as the smallest value of pv in this temperature is about
5.4 Pa. Therefore the condensation heat of the vapor does not influence the
temperature in the bubble, and it always remains at the equilibrium temperature
T0.

According to the two-fluid model of superfluid helium, the superfluid fraction
will turn to normal fraction if the heat flow is too big. So there remains one
question: is the heat flow small enough to be sustained by the superfluid fraction
converting to normal fraction at the bubble interface? Shimazaki et al. have
measured the heat transfer by second second for fluxes as high as 5 W/cm2 [78].
In our case, this flux is given by:

φheat = Qv

4πR2
0 τ

The maximum value of φheat is 0.2 W/cm2, which is much smaller than the result
of Shimazaki 5 W/cm2.

6The bubble radius is extremely small compared to this typical radius, so the volume of the
bubble is neglected.
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Hence, the heat flow is moderate enough for superfluid fraction, and it is also
fast enough to transfer the latent heat. As a result, we can safely state that in
the superfluid case, the heat transfer is very fast, and the pressure in the bubble
is always pv(T0).

Another pressure term of the RP equation is the hydrostatic pressure in
the liquid P0. Since we have modified our filling process, the pressure in the
experimental cell is always pv. The expression P0 is:

P0 = pv(T0) + ρgh

where ρ is the liquid density g the gravity acceleration, and h the height of liquid
above the bubble (see Fig.V.13). By substituting P0, Eq.(V.7) simply becomes:

R
∂2R

∂t2
+ 3

2
(∂R
∂t

)2
= 1
ρ

(
− ρgh− 2σ

R
− 4µ
R

∂R

∂t

)
(V.9)

of which the solution is called the Rayleigh solution.
This equation can be solved numerically. In fact, we used the MATLAB

application to do so. Based on the Runge-Kutta method [79, 80], MATLAB
provides a specific function called “ODE” to solve ordinary differential equations,
Since Eq.(V.9) contains the first and second order derivatives of R, the ODE
function requires to input a couple of the initial values (R, dR/dt), which are
the bubble radius and the velocity of bubble surface. However there is not any
direct measures of the velocity, but it is clear that the velocity is zero when
the bubble is at its maximum radius. So our first attempt of solving Eq.(V.9)
was to only compute the collapsing evolution. And by assuming the growth and
collapse are symmetric with respect to time, we can rebuild the evolution of R as
a function of time. As a result we found that the hydrostatic term −ρgh on the
right side of Eq.(V.9) is dominant in the total collapse time. This is reasonable
if we compare the values of the terms on the right side: in the temperature
range 0.9 K < T < Tλ, the hydrostatic pressure is on the order of 20 Pa, and
σ ∼ 3.0×10−4 N/m and µ ∼ 1.3×10−6 [29]. If we assume the maximum velocity
of the bubble surface vsurf is the sound speed in helium, then the two later terms
of Eq.(V.9) only become considerable when R ∼ 10 µm and vsurf ∼ 200 m/s.
At this time, the bubble will close in 50 ns, compared to the total lifetime of 1.5
ms, it is the very end of the collapse.

But one question arises, as mentioned in Sect.V.1, our experimental cell does
not allow to precisely measure the value h. Although we performed the modified
filling process, the value h can only be estimated with a great uncertainty h =
15±10 mm. So we have to set h as a free parameter in order to fit our measured
diameter. As shown in Fig.V.15, we plot the mean radius of the bubble as a
function of time, which are determined by the bubble images, and compare it
to the Rayleigh solution with the fitted h = 14mm. We can find the Rayleigh
solution fits quite well with the measured radius, and this results clearly support
our assumption which is given at the beginning of this section.
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Fig.V.15 – Bubble radius as a function of time at T0 ∼1 K. Circles are the
data obtained from the bubble images (see Sect.V.2.1). The black curve
is the solution of Eq.(V.9).

V.4.3.1 The rebound bubble

However, at the end of the bubble lifetime, there are two abnormal data points
which could not be fitted by the Rayleigh solution. We attribute them to rebound
bubbles. The rebound bubble, as a classical fluid phenomenon, has already
been observed many times in the study of the cavitation in different liquids
[81, 67, 82, 83]. The collapse of the primary bubble gives birth to the rebound
bubble. Our imaging method can’t distinguish whether the observed bubble is
primary or rebound.

In addition,there is no data for the early growth of the bubble, because those
images were initially taken for measuring the bubble probability. At early stage
of this study, we did not plan to plot the R(t) curve. In order to increase the
efficiency of measuring the probability, we chose to only measure the bubbles
at the end of its lifetime, as all the measurements at early time have the same
probability of 1. Nevertheless, we have performed another series of measurements
to check the rebound bubble issue.

In order to overcome the limit of the camera imaging method, and to follow
the full evolution of a single bubble and also to further validate our results, we
have performed the same experiment with a fast photodiode, instead of using
the camera.

Fig.V.16 is the experimental setup of such a measurement. We put the pho-
todiode at the focus of the lens so as to capture the parallel laser light. Once the
bubble is created, the laser beam will be partially scattered, and the recorded
intensity is lowered as can be seen on Fig.V.17.

Assuming the scattered light intensity ∆Ibubble is proportional to the the
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Fig.V.16 – Experimental set-up. The cavitation bubble induced by the
focused acoustic wave produced by the piezoelectric transducer (PZT) is
imaged by a lens onto a CCD camera.

square of bubble radius:
∆Ibubble ' Cst R(t)2

where Cst is a constant to be determined, and by subtracting the signal with a
bubble to the signal without a bubble, we can obtain ∆Ibubble. Since we have
already measured the maximum radius of the bubble by the camera, it is not
difficult to find Cst. In Fig.V.18, we see a bubble followed by a rebound bubble.
This rebound bubble also obeys the Rayleigh-Plesset equation. The figure on the
right side is a superposition of 30 measurements without an evident rebound. As
expected, those 30 signals start at the same time, but end differently, each of them
being well described by the Rayleigh-Plesset equation. This is consistent with
the conclusion that the bubble lifetime is randomly distributed. We observed
that not every primary bubble is followed by a rebound. The probability of such
a rebound is about 70 %. According to the result in sonoluminescence [84], the
rebound is inherent to the cavitation phenomenon. Perhaps in our case, some
signals of the rebound are too small to be seen in the background noise.

V.4.3.2 Discussion

For now, we have almost explained the dynamics of the bubble in superfluid
helium, but there are still two unsolved questions.

The first one is the divergent velocity in the Rayleigh solution. If we consider
the velocity of the surface at the start and at the end of the lifetime, the velocity
is divergent in both cases. In fact, despite the type of liquid, there is already
some study about the divergent velocity during the collapse. Barber et al. have
studied the ultrasonic collapse of the bubbles in water [84], and they state that
because of the ultrasonic collapse, a part of the bubble energy is dissipated due
to the shock wave of the collapse. This provides a good interpretation of why
the rebound bubble is always smaller than the original one. But we are unaware
of the divergent velocity at the start of the bubble lifetime. In the solution
of the Rayleigh-Plesset equation for the superfluid bubble, instead of choosing
the measured boundary conditions (R = Rmax, vsurf = 0), we could manually
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Fig.V.17 – Raw signals of the photodiode. The red line is the signal
without a bubble, and the blue one is the signal with a bubble. The
bubble scatters light so that it lowers the light intensity received by the
photodiode.

find another couple of the boundary conditions, and get the same curve. If we
assume the maximum value of vsurf is the sound speed at static pressure, then
we found the possible initial bubble radius is Rinit = 5 µm. This means after
being triggered by the sound waves, the bubble has a initial radius of 5 µm and
a initial surface velocity of 230 m/s. We know that the duration of the sound
bursts is on the order of 1 µs, and the mean velocity of the surface at the start
of the bubble lifetime is about 5 m/s.

Therefore we could consider the following scenario: once the local pressure
exceeds the critical value of cavitation, the bubble will grow and the local sound
speed. And this speed will tend to zero as the local pressure tends to critical
pressure7. As the local pressure changes very quickly, the mean velocity of the
bubble surface can be regarded as an average of the local sound speed on time.
So it seems reasonable to assume that the bubble will grow at the sound speed.
In fact, to calculate the very beginning of the bubble behavior is very difficult.
Since this problem is highly related to the cavitation process, I tried to look
for the answer in the literature of nucleation theory. However, this theory only
provides a statistical description of the cavitation process, and we can’t find any
clue about our dynamics problem.

The second question is related to the bubble size. In our experiments with
superfluid helium, we performed thousands of measurements in different con-
ditions, but to our surprise, we have never successfully observed any primary

7The sound speed is strictly zero when pressure reaches the spinodal limit.
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Fig.V.18 – Bubble radius as a function of time at T0 ∼ 1 K. On all figures,
black solid line is the Rayleigh solution of the Rayleigh-Plesset equation
(eq:V.9). Left: Gray curve is one typical photodiode measurement. After
the bubble has collapsed, a second bubble is created. Right: Gray curves
is the superposition of 100 measurements of the bubble evolution.

bubble which lasts less than 1 ms, which we can call a small bubble. The kinetic
energy of bubble Ebubble is proportional to its volume [85]. Eq.(V.1) gives τ ∝ R
so that:

Ebubble ∝ τ 3

Then its energy spectrum should be continue, so why isn’t it. In addition the
rebound bubble is actually a small bubble, so why can’t we create a small bubble
by the cavitation? I still don’t know.

At last, our conclusion is that for T0 < Tλ, the cavitation dynamics is purely
mechanical, a conclusion supported by the fact that the bubble lifetime is inde-
pendent of temperature. Note that Roche and coworkers have reached a similar
conclusion but for liquid helium at much lower temperature (70 mK) [67]. At
such a low temperature, the vapor pressure of liquid helium is essentially zero so
that bubbles can be considered as empty cavities in which of course no thermal
effects can occur.

V.4.4 Normal liquid bubble
For T0 > Tλ, the bubble lifetime is higher by at least 1 or 2 orders of magnitude
larger than in the superfluid state.

In the normal state, heat is transported by thermal diffusion. A gradient of
temperature appears so as to maintain the pressure inside the bubble equal, but
for the Laplace term, to the external pressure. This dramatically slows down the
collapse of the bubble. This problem has been addressed theoretically by Plesset
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and Zwick for boiling water [86]. Using the approach of Plesset, Florschuetz and
Chao have addressed the symmetric problem of collapsing vapor bubbles in an
undercooled liquid [87]. To our knowledge, this work is the only one looking
theoretically at heat transport in a non-acoustically driven collapse of a vapor
bubble. Florschuetz and Chao make the assumption of a temperature gradient
concentrated at the bubble interface. We solved their equations, slightly adjusted
to our case of a depressurized rather than undercooled fluid and found lifetimes
as high as 3000 s. In a review on cavitation [73], Plesset and Prosperetti have
questioned the validity of the approximation used by Florschuetz and Chao.
With the opposite approximation of a gradient extending to infinity, we find
more reasonable times of ∼ 40s. Whether these calculated lifetimes strictly
correspond to reality cannot be checked experimentally because of the buoyancy
of the bubbles. Indeed, for such a long lifetime, the inertial velocity of the bubble
will reach the stationary regime under the action of the gravity and the viscosity
which is approximately:

v = 2R2
0ρg

9µ
As a result, the expected change in height is given by H = vt which is about
200 m for t = 40 s. It is unlikely to measure the bubble’s behavior in any existing
cryostat. However it is clear that heat transport is the mechanism that governs
the dramatic transition in the bubble lifetime at Tλ.

V.5 Conclusion
We have experimentally studied the lifetime of bubbles produced by acoustic cavi-
tation in liquid 4He. We found that this lifetime undergoes a dramatic transition
when the liquid crosses the normal to superfluid transition. In the superfluid
state, the bubble lifetime is found to be consistent with the Rayleigh model in
which heat effects are ignored. On the contrary, in the normal state of the liq-
uid, one has to take into account the diffusion of the latent heat of condensation.
The temperature-dependent Rayleigh-Plesset equation is likely to describe much
better the real dynamics of the collapsing bubble.

Liquid helium offers a unique opportunity to study the transition from the
Rayleigh regime to the Rayleigh-Plesset regime in analyzing and modeling col-
lapsing vapor bubbles. The present experiment is a first step in such a study
which is of interest for both the helium and the acoustic cavitation communities.
This work was published in [88].



Conclusion and prospects

We have measured the exact appearance time of the instability in the metastable
solid 4He using the Schlieren method, and confirmed that it only appears during
low pressure swing of the acoustic wave. This instability was never predicted
by any theories. According to the dependence of the vacancy activation energy
and the molar volume, we probably observed an instability in the low vacancy
activation energy regime. This is a potential candidate for supersolidity. In order
to further check the properties of this metastable solid helium, we intended to
measure its local sound velocity by the stimulated Brillouin scattering (SBS),
which is the next step of our long term research project.

In the metastable superfluid 4He, we have investigated its cavitation density
using the “time-resolved quantitative multiphase interferometric method”, and
found that at T = 0.96K ρcav = 0.1338 ± 0.0002 g/cm3, which is about 8.4%
lower than its static density. We converted this result to pressure by the well-
established equation of state of helium, and obtained the cavitation pressure Pcav
to be −5.1 ± 0.1 bar. But this result is not compatible with the one measured
by F. Caupin et al. [51]. Actually, we could not find a satisfying explanation for
this problem. More data are needed, and one of these being the experimental
study of the EOS for superfluid helium in the negative pressure domain.

Following the study of cavitation limit in superfluid helium, we further stud-
ied the evolution of bubbles in both superfluid and normal liquid helium. By
introducing the Rayleigh-Plesset equation and considering the heat transport in
two different cases, we successfully explained the dramatic transition of bubble
lifetime when helium passes the λ-transition. However, we still found some un-
solved questions about the short lifetime bubbles, and we are planning to perform
some new measurements to check it.

The future: experimental determination of the
EOS

As explained in this thesis, the EOS of metastable liquid/solid helium plays a
crucial role in converting the density measurements to pressure values. There-
fore, measuring this EOS experimentally is mandatory. Stimulated Brillouin
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scattering (SBS) will be used for this purpose.
Here I will give a short introduction of this technique. It involves the inter-

action of photons and phonons in a medium. We consider a light beam prop-
agating in a medium. At non-zero temperature, the medium contains many
thermal phonons. A small part of photons will be reflected by these phonons.
The reflected and incident light beams are counter-propagating and will form a
stationary light wave inside the medium. Due to electrostriction, the electric field
of the stationary light wave will cause a modulation of the medium density and
hence of the refractive index. This index modulation acts as a Bragg reflector
and increases the intensity of the reflected light. The amplitude of the station-
ary wave is then increased, and so is the index modulation, thus increasing again
the reflected intensity... and so on. Above some threshold, the incident light is
totally reflected. This is the so-called stimulated Brillouin scattering. It must be
noted that the Bragg reflector created by this process is traveling at the speed
of sound and due to the Doppler effect, the frequency of the reflected light will
be slightly shifted with respect to the incident light. By measuring this shift, we
could extract the local sound velocity. It is known that the sound velocity is an
expression of local pressure and density:

c =
√(∂P

∂ρ

)
S

where P ρ S are respectively the local pressure density and entropy. As our
interferometric method enables to measure the local density of the metastable
helium, by combining with the direct measurement of local sound velocity, we
can obtain the local pressure of the metastable helium. Then we can further
check the equation of state for both solid and superfluid helium.

In order to realise the SBS in the cryostat, we are planning to focus an
intense pulsed laser at the acoustic focus. Because the size of this acoustic
focus is typically 100 µm, it is very difficult to precisely focalize the laser at the
acoustic focus. It is noteworthy that the study of the bubble evolution gives a lot
of information about bubble’s position, size, and even its surface curvature. If
we take the bubble as a reference while adjusting the focalization of laser, these
informations will help to ease the adjusting process. This challenging experiment
will be performed by the next PhD student of the group and hopefully open a new
perspective to the fascinating properties of metastable liquid and solid helium.
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Sujet : Étude expérimentale de l’hélium-4 solide et
superfluide en phase métastable

Résumé : L’hélium solide métastable est un candidat possible pour la superso-
lidité. Notre équipe a démontré en 2011 que l’on pouvait obtenir de l’hélium solide
métastable à des pressions inférieures à la pression de fusion à l’aide d’une onde
acoustique focalisée. Cependant, une instabilité inattendue apparaît lorsque la pres-
sion locale du crystal atteint ∼ 21 bar c’est à dire 4 bar sous la pression de fusion.
J’ai donc commencé ma thèse en étudiant le temps d’apparition de l’instabilité, et
j’ai confirmé qu’elle apparaît toujours dans des phases de décompression de l’onde
sonore, c’est à dire à une pression inférieure à la pression de fusion.
Ensuite, j’ai étudié la limite de cavitation de l’hélium superfluide à pression néga-
tive. En utilisant une méthode interférométrique développée par mon prédécesseur
Fabien Souris, j’ai mesuré directement la densité de cavitation de l’hélium super-
fluide métastable. J’ai trouvé que, à 1 K, l’hélium superfluide cavite lorsque sa
densité locale a diminué de 8.4%. En utilisant une équation d’état bien établie
théoriquement, on peut convertir ce résultat en pression de cavitation pour le com-
parer avec ceux obtenus par d’autres groupes. À ma grande surprise, mon résultat
n’est pas compatible avec ces derniers. Cette incompatibilité soulève des questions
intéressantes quant à la possibilité de nucléation de la bulle sur des vortex quantifiés.
Enfin, j’ai étudié la dynamique de la bulle d’hélium déclenchée par la cavitation. En
analysant l’équation du mouvement de la bulle et le transfert de chaleur correspon-
dant, j’ai expliqué avec succès pourquoi la durée de vie de la bulle a une transition
dramatique quand l’hélium passe de liquide normal à superfluide.

Mots clés : hélium métastable, instabilité, cavitation, durée de vie de bulle

Subject : Experimental study of metastable solid and
superfluid helium-4



Abstract: Metastable solid helium is a possible candidate for supersolidity. In
2011, our group has demonstrated that we could obtain the metastable solid helium
at pressures below the melting pressure using a focused acoustic wave. However, an
unexpected instability occurs when the local pressure of the crystal reaches 21 bar
which is ∼ 4 bar below the melting pressure. So I started my thesis by studying
the appearance time of the instability, and I confirmed that it always appears at
the low pressure swing of the acoustic wave.
Then, I studied the cavitation limit of superfluid helium at negative pressure. Us-
ing an interferometric method developed by my predecessor Fabien Souris, I directly
measured the cavitation density of metastable superfluid helium. I found that at
1 K, superfluid helium cavitates when its local density is lowered by 8.4%. Using
a theoretically well-established equation of state, this result can be converted to a
cavitation pressure in order to compare our results with those obtained by others
groups. To my surprise, my result is not consistent with the others’. This incompat-
ibility raises interesting questions about the possibility of nucleation of the bubble
on quantified vortices.
Finally, I studied the dynamics of the helium bubble triggered by cavitation. By
analyzing the equation of motion of bubble and the corresponding heat transfer, I
have successfully explained why the bubble’s lifetime has a dramatic transition as
the helium passes from normal liquid to superfluid.

Keywords : metastable helium, instability, cavitation, bubble lifetime


