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Merci également à Pascal Lafourcade et Jean-Marc Vincent qui m’ont guidée
dans cette voie.
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Chapter 1

Introduction

“Begin at the beginning,” the King said gravely, “and go on till you come to
the end: then stop.”

— Lewis Carroll, Alice’s Adventures in Wonderland

Contents
1.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Characteristics and Differences with Central Systems . . . . . . . . . . . 8

1.1.2 Examples of Motivations and Applications . . . . . . . . . . . . . . . . . 9

1.2 Computation in Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Classical Problems in Distributed Computing . . . . . . . . . . . . . . . 11

1.2.2 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Uncertain Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Fault Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Achieving Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Self-stabilization and Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Variants of Self-stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Expressiveness and Limitations of Self-stabilization . . . . . . . . . . . . 19

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

When Jane wakes up, motion sensors detect her awakening and switch on the lights
with a progressive brightness and heating in the bathroom. During Jane’s ride to work,
her GPS informs her of a road traffic accident signaled by other users. She can adapt her
route to avoid the resulting traffic jam. When she arrives at work, she quickly finds a free
parking spot thanks to the sensors that monitor the parking lot occupation. Throughout
her workday, Jane exchanges emails with her clients on the other side of the world. She
takes part in a video conference meeting with another branch and exchanges data with
her colleagues through the local network of the company. While she is away, the sensors
of her solar panels detect high output at midday and switches on the hot water tank
and the dishwasher. When she comes back home, Jane checks the last news on Internet,
before sharing the photos of her last weekend with her family through a cloud file storing
service.
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Chapter 1. Introduction

Every situation described in the above example involves a distributed system. Those
systems are ubiquitous and unavoidable in our everyday life. With an increasing number
of users, such distributed systems are becoming more and more wide and complex. Thus,
we need efficient algorithms to make these systems work. Moreover, distributed systems
are very diversified and can be used in many varied context such as houses, streets, or
factories as shown in the above example, but also in even more adversarial environments
(e.g., wireless sensor networks deployed in a desert or around a volcano). However, these
contexts may be uncertain, i.e., the context is not fully known a priori or is unsettled.
For instance, wide systems composed of cheap mass-produced devices are highly exposed
to dysfunctions and crashes. These dysfunctions and crashes cannot be foreseen, yet
the service provided by the distributed system must always remain available. Another
example, the nature itself of systems may be highly dynamic, e.g., mobile networks. A
mobile phone user can move around and change of relay mast during a phone call, yet
the call should not be interrupted. Thus, the distributed systems must be resilient to
uncertainty. The development of large-scale social networks, where huge amounts of data
circulate over the world, is coupled with the increasing need of privacy. This need shows
that, in some cases, uncertainty is not a drawback, but rather a requirement (of the user).
The privacy concern has justified the design of solutions for anonymous networks. Par-
tial anonymity can be also obtained in homonymous networks, where identifiers are not
necessarily unique. The need of privacy is usually considered as a security requirement.
Despite security is out of the scope of this thesis, we will nonetheless study various levels
of anonymity in our solutions.

1.1 Distributed Systems

In computer science, a distributed system [Tel00, Lyn96] is any computational appli-
cation where several computers or processors cooperate to achieve some common goal.
More precisely, a distributed system is a set of autonomous yet interconnected compu-
tational units. A computational unit is a computer, a core of a multicore processor, a
process in a multitask operating system, etc. For sake of simplicity, computers, proces-
sors, and processes will be referred as processes in the following. Those processes can
be geographically spread. Autonomous means that each process has its own control. It
does not rely on some central controller. Interconnected means that processes are able
to exchange information, directly or indirectly, e.g., sending messages through wires or
radio-waves, through shared memories. This definition includes parallel computers, com-
puter networks, sensor networks, mobile ad hoc networks (MANETs), robot fleets, etc.

1.1.1 Characteristics and Differences with Central Systems

Distributed systems are often defined in opposition to central systems. Indeed, distributed
systems have particular characteristics:

• No Global Time: In distributed systems, the speed of computation of each process
is heterogeneous and the communication are usually asynchronous. The processes
cannot rely on a global clock. In particular, their local clocks may drift. Hence,
contrary to centralized systems, the actions of processes may not always be ordered.
We can only rely on a causal order [Lam78]. For example, on Figure 1.1, the sending
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1.1. Distributed Systems

p

q

r

〈m〉
〈m′〉

c

Figure 1.1 – Causal order of events.

p1 p2 p3
〈1〉 〈2〉

-1 or 1?

Figure 1.2 – Example of non determinism.

of a message m by p is before the reception of m by q, the local computation c of
q is after the reception of m, but the sending of m by p and the sending of m′ by
r are independent (or concurrent), i.e., from the point of view of a process, it is
impossible to distinguish if the sending of m happens before or after the sending of
m′.

• No Global Knowledge: Contrary to centralized systems, where decisions are
made according to the global state of the system, processes of a distributed systems
must rely on their local knowledge, i.e., their local memory, to decide their next ac-
tions. In particular, even if the local memory of a process can be updated according
to received information, this information may be outdated due to the asynchronism
of the system.

• Non-determinism: Due to the asynchronism of processes and communications,
the execution of a deterministic distributed algorithm may lead to different results
and this result is not always predictable, while the execution of a deterministic
sequential algorithm depends only on its inputs. For example, on Figure 1.2, p1
sends value 1 to p2, p3 sends value 2 to p2, and p2 computes the subtraction of the
first received value by the second received value. If p2 receives 1 first, the computed
result is -1, otherwise, the computed result is 1. Thus, a distinction has been made
between a function and a task [MW87]. More precisely, contrary to a function that
associates only one output vector (i.e., the vector of the outputs of each process)
to each possible input vector (i.e., the vector of the inputs of each process), a task
associates a set of possible output vectors to each input vector.

1.1.2 Examples of Motivations and Applications

Distributed systems have a lot of applications and are ubiquitous in our everyday life.
Depending on the application, distributed systems may simply be necessary or may be
preferred over sequential and central systems for various reasons. Non-exhaustive exam-
ples are exposed below.

Simplify Communications. In 1969, a wide-area network (WAN) called ARPANET
is created between major American universities to facilitate the cooperation and exchange
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Chapter 1. Introduction

of data between these organizations. ARPANET is the ancestor of Internet, that connects
billions of computers and other devices.

Nowadays, our communications rely mainly on distributed systems: emails, voice
over IP (VoIP) technologies (e.g., Skype, Google Talk, Discord), instant messaging ap-
plications (e.g., WhatsApp, Yahoo!Messenger, Google Hangouts), peer-to-peer (P2P) file
sharing networks (e.g., Gnutella, eDonkey), etc.

Faster and Remote Computations. By multiplying the processes, the computation
of some long task may be split among several processes, resulting in a speed up of the
computation. That is the objective of parallel computers. For example, IBM supercom-
puter Deep Blue was designed to compute fast chess moves. But geographically spread
networks can also be used for distributed computing. For example, in volunteer com-
puting projects, everyone can give some computational power or storage of its personal
computer to help at the computation of some hard task, e.g., search for extraterrestrial
radio transmission in SETI@Home project, analyze the structure of proteins for medical
research in Rosetta@Home project.

To facilitate computing on remote distributed networks, a lot of companies propose
cloud services, e.g., Amazon Elastic Compute Cloud, Microsoft Azure. Cloud computing
provides on-demand access to shared computational power and storage. Notice that some
cloud services are dedicated to file hosting, e.g., DropBox, Google Drive.

Monitoring. Wireless sensor networks (WSNs) are composed of numerous sensors gen-
erating data about their environment. Those sensors are equipped of wireless communi-
cation abilities. WSNs can be used to monitor natural disasters, e.g., volcanic eruptions,
earthquakes. Their usage is also gradually increasing in emerging technologies of home au-
tomation and smart cities to monitor power consumption, lighting, etc. Swarm of drones
and robot fleets can also be used to monitor an area and for military applications.

Increase Availability and Resiliency. By duplicating the number of processes ex-
ecuting the same task, the availability of a service is improved against potential failure
of a process. Notice that computational replication requires an arbitration between the
results of the different replicated processes. A similar technique can be used to improve
the availability of data, by replicating them on several storage disks. In particular, data
replication can be made on geographically distant data servers to improve resiliency.

Sharing Resources. As stated before, distributed systems allow to share data, compu-
tational power, storage disks, etc. It may also be needed to share other peripherals, e.g.,
printers among the employees of a company, since these devices are expensive. Usually,
the number of shared resources is far smaller than the number of processes. Thus, every
processes cannot access to the resource they required at the same time, and we must
manage a fair access to resources.
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1.2. Computation in Distributed Systems

sender

recipient

Figure 1.3 – Example of routing.

1.2 Computation in Distributed Systems

Processes of a distributed system aim to fulfill a global task using their local inputs.

1.2.1 Classical Problems in Distributed Computing

Due to the characteristics of distributed computing, the design of distributed algorithms
requires to face fundamental problems in order to solve higher-level distributed tasks.
Some examples are listed below.

Routing. A process is not necessarily directly connected to every other process. Hence,
when it needs to send information to another process, it does so indirectly. The informa-
tion goes from process to process along some path until reaching the destination, see an
example on Figure 1.3.

• Routing: The routing problem consists in building a routing table at each pro-
cess, i.e., for every possible recipient process, to which directly accessible process
the information should be sent. Notice that this table may change over time, in
particular when communications abilities are dynamic.

• Broadcasting: The broadcasting problem consists in dispatching some informa-
tion to every process. The difficulty is to prevent an infinite circulation of the
information in the network.

• Propagation of Information with Feedback: When a process does not only
need to send information to every process but also to get back some response, it
needs to do a propagation of information with feedback (PIF) [Cha82, Seg83]. The
response received by the initiator of the PIF is an aggregate of the responses of
every other processes.

Agreement. Since there is no central control, processes may require to decide and
agree on some information.

• (Binary) Consensus: In the (binary) consensus problem, each process initially
propose a Boolean value, and the processes must agree on a single value among
those proposed. This decision must be irrevocable, i.e., processes cannot change
their decision afterwards, and every process must decide the same value.

11



Chapter 1. Introduction

• k-set Agreement: Numerous variant of the consensus problem have been defined.
For example, the k-set agreement [Cha93] is a variant of the consensus with weaker
conditions, i.e., processes may not agree on the same value, as long as there is no
more than k ≥ 1 different decided values.

• Leader Election: The leader election problem [Lan77] consists in distinguishing a
unique process as the leader. This problem is fundamental in distributed computing,
since it allows the designed leader to make decisions for the whole system, and so
to ensure central control. We study this problem in Chapters 3 and 4.

Resource Allocation. When resources are shared among several processes, e.g., a
printer shared between employees of a company, you want to be sure that a process
needing the resource will be able to eventually access it, e.g., nobody monopolizes the
printer, and you do not want conflicts when accessing the resources, e.g., two files are
not printed at the same time. Resource allocation problems consist then in managing a
fair access to resources. Some examples are given below. We study resource allocation in
Chapter 6.

• Mutual Exclusion: The mutual exclusion problem [Dij65, Lam74] is the simplest
resource allocation problem. Only one resource is shared among every processes
and at most one of them can execute its critical section, i.e., use the resource, at a
time. There are two approaches to mutual exclusion. In the request-based approach,
a central controller manages the requests of processes to access resources. On the
contrary, in the token-based approach, one token circulate among processes and a
process can enter critical section only when it holds the token.

• `-exclusion: In the `-exclusion problem [FLBB79], ` ≥ 1 copies of a reusable
resource are shared among processes. Thus, at most ` processes can concurrently
execute their critical section.

• k-out-of-` Exclusion: The k-out-of-` exclusion problem [Ray91] is a general-
ization of the `-exclusion problem where processes can request and use up to k
resources, 1 ≤ k ≤ `. A direct application of this problem is the management of
the bandwidth, i.e., the total bandwidth cannot exceed ` units, while each process
is allowed to use up to some quota k.

• Dining Philosophers and Local Mutual Exclusion: In the dining philosophers
problem [Dij78], philosophers sit around a round table. Each philosopher has a
fork at his left and at his right, that he shares with its left and right neighbor,
respectively. Every philosopher wants to eat but to do so it must use both its left
and right fork, and then he prevent its neighbors to eat at the same time. The
generalization of this problem is the local mutual exclusion problem, where two
neighboring processes cannot execute their critical section at the same time.

• Group Mutual Exclusion: In group mutual exclusion problem [Jou98], every
process requesting the same resource can use it concurrently, but two processes
requesting different resources cannot execute their critical section at the same time.
The management of a CD player is a good illustration of this problem: when one
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1.2. Computation in Distributed Systems

CD is played, everyone in the room can listen to it, yet if someone wants to listen
to another CD, it cannot do so at the same time.

Building Spanning Structures. The topology of a distributed system, i.e., the com-
munication links between processes, may not be organized. Nonetheless, solving some
problems is easier and/or faster when the system has a certain structure, e.g., doing a
broadcast from the root of a tree. Thus, building spanning structures is a fundamental
problem of distributed computing. Most of the problems cited below were defined in graph
theory, but must be solved with the additional difficulty of the distributed computation.

• Spanning Trees: Building a spanning tree over the network is one of the most
studied problems of distributed computing. It may be required that the resulting
tree has some properties. Breadth First-Search (BFS) spanning trees [Moo57] min-
imize the distance between the root and the other processes. Minimum spanning
trees (MST) [Bor26, Kru56, Pri57] minimize the sum of the weights of communica-
tions links in the resulting tree.

• Clustering: The clustering problem [BEF84] consists in partitioning the network
into clusters. Each cluster is a connected subset of processes with one of them
distinguished as clusterhead. Clustering is often used to design efficient communi-
cation mechanism. Processes that are not clusterhead can communicate with the
other processes inside the same cluster. Communications between clusters are man-
aged by clusterheads. Some variants of the clustering problem have been defined,
e.g., in the k-clustering problem [APHV00], every process inside a cluster is distant
of at most k ≥ 0 hops from the clusterhead.

Coloring. Sometimes, we need to locally differentiate processes by giving them a color.
Again, the examples of problems listed below come from graph theory field.

• (Vertex) Coloring: The (vertex) coloring problem consists in giving a color to
each process such that no two neighbors have the same color. On of the objectives
is to use as less different colors as possible.

• Distance-k Coloring: In the distance-k (vertex) coloring, two processes that are
distant of up to k ≥ 1 hops cannot have the same color. Thus, the vertex coloring
problem is equivalent to the distance-1 vertex coloring problem.

• Edge Coloring: In the edge coloring problem, instead of coloring processes, we
give colors to the communication links such that two communication links of the
same process do not have the same color.

Synchronization. As stated before, communications and processes are typically asyn-
chronous in a distributed system. Nonetheless, it is easier to design algorithms for syn-
chronous systems, since there is less non-determinism. Furthermore, it is impossible to
deterministically solve some problems without hypotheses on the synchrony, e.g., deter-
ministic consensus if one process may crash [FLP85].
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• Synchronizer: The idea of a synchronizer [Awe85] is to simulate pulses, i.e.,
phases of execution where every process sends messages (possibly zero), then re-
ceives messages (possibly zero), then realizes some local computation. In particular,
a synchronizer certifies that messages sent during a pulse are received during the
same pulse.

• Phase Synchronization/Barrier Synchronization: In the phase synchroniza-
tion problem [Mis91], every process holds a (bounded or unbounded) local clock.
The objective is to synchronize those clocks such that a process cannot increment
its clock to c+ 1 until the clock of every other process gets value c ≥ 0. Moreover,
each process must increment its clock infinitely often. This problem is also called
barrier synchronization.

• Asynchronous Unison: The (asynchronous) unison [CFG92] is a weaker variant
of phase synchronization: clocks must be synchronized such that the difference
between the clocks of two neighboring processes is at most one. This problem and
some of its variants are studied in Chapter 5.

1.2.2 Performances

The size of distributed systems increases with the democratization of connected devices.
For example, the number of Internet users in the world moves from one billion users in
2005 (approximately 16% of the worldwide population) to 3.5 billion in 2016 (approxi-
mately 47%). With the growth of distributed systems, their complexity also increases.
Thus, to maintain the usefulness of distributed systems, the designed distributed algo-
rithms must be efficient.

First, the computation should be fast and the provided service must always be avail-
able. In addition, distributed systems contain more and more embedded systems, e.g.,
wireless sensors, which have limited resources (small battery, small computation power,
small memory). Thus, the complexity in memory, the number of exchanged messaged,
and the complexity of the computation itself should be small. Otherwise, the processes
might not be able to execute their algorithm at all, or might drain their battery.

1.2.3 Uncertain Context

In this thesis, uncertain context means that the context of execution of the distributed
system is not fully known a priori or is unsettled. In particular, we focus on non fully
identified systems where faults can occur.

On the contrary, if no fault hits the system, i.e., the system continuously satisfies its
specification, and if processes are identified, i.e., every process has a unique identifier (ID),
most of problems that can be solved in a central system (in particular, static problems1),
can also be solved in a distributed system.

1A static problem is a problem where the expected computation is finite and returns a result according
to the inputs, e.g., building a spanning tree, electing a leader.
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For example, to compute a spanning tree, processes can elect a leader, i.e., a unique
distinguished process. This leader can execute a snapshot to collect the local states,
and in particular the inputs of the problem, of every other process. Thus, the leader
can be aware of the whole topology and inputs of the system and can centrally compute
the result, i.e., the spanning tree, in a central way before broadcasting it to the other
processes.

This technique is very costly and cannot be applied for real systems. Indeed, it
requires a large amount of memory at the leader, a lot of exchanged messages, and a
long computation time. Obviously, there exists far more efficient algorithms to build
a spanning tree and a part of research in distributed computing focuses on designing
efficient distributed algorithms under these conditions. Nonetheless, this technique shows
the feasibility of problems in distributed systems.

Absence of Identifiers. Because of the size and complexity of distributed systems,
assuming that processes are identified may be unrealistic, in particular for cheap and mas-
sively produced and/or deployed devices. Moreover, even when processes are identified,
one may not want to publicly communicate its ID for security or privacy reasons.

However, in an anonymous network where processes do not have IDs, many funda-
mental problems become impossible to solve. In particular, it is impossible to deter-
ministically break symmetries of the network topology. For example, the leader election
problem cannot be deterministically solved in an anonymous network since two processes
cannot be distinguished except by their inputs and their degree, i.e., the number of pro-
cesses with whom they can directly communicate. (In particular, every process has the
same degree if the topology of the system is regular.) Yamashita and Kakugawa propose
a survey of computable problems in anonymous networks in [YK96].

To circumvent these impossibility results, there are two main approaches. First, one
can provides probabilistic solutions. For instance, if two neighboring processes cannot be
distinguished, they can “flip a coin” until getting a different result. However, with this
solution, the specification of the considered problem is only ensured with some probabil-
ity. On the other hand, the second approach consists in considering in-between models of
anonymity, neither (fully) identified (e.g., processes have a unique ID), nor (fully) anony-
mous (e.g., processes do not have IDs). For instance, we can consider the homonym
processes model [YK89] where processes have IDs, but these IDs may not be unique. In
this case, processes with the same identifier are called homonyms.

Presence of Faults. When the size of a distributed system increases, it becomes more
exposed to the failure of some process. Indeed, processes may crash, their memory
may be corrupted, etc. Moreover, the devices that composed distributed systems are
often produced on a large scale and cut-rate, thus they are more vulnerable. Finally,
wireless communications are increasingly used, while they are more vulnerable. In 2016,
the number of “things” connected to Internet was estimated at 7 billion. If we add
computers, smartphones, and tablets, we reach the number of 18 billion of connected
devices. In distributed systems of such a size, it is impossible to assume that no fault
will occur, even during only a couple of hours.
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Now, as explained before, distributed systems are ubiquitous in our everyday life and
people are increasingly dependent of them. If a disruption of service, even temporary,
would hit such a system, the consequences would be severe.

Nonetheless, due to the complexity, the extent, and/or the usage of distributed sys-
tems, ensuring a human maintenance is often too complicated, too slow, or even too
dangerous. Hence, distributed systems should be resilient to faults. In the next section,
we define and detail the considered faults and study the resiliency of distributed systems
against faults.

1.3 Fault Tolerance

In computer science, we say that a fault leads the system to an error that causes a
failure. A component or system suffer from a failure when its behavior is not correct
w.r.t. its specification. An error is a state of the system that may lead to a failure. It can
be a software error, e.g., division by zero, non-initialized pointer, or a physical error, e.g.,
disconnected wire, turned off CPU, wireless connection drop. A fault is an event leading
to an error, i.e., a programming fault leading to a software error or a physical event (e.g.,
power outage, disturbance in the environment of the system) leading to a physical error.
In this thesis, we consider only physical errors.

1.3.1 Fault Classification

The different kind of faults can be classified according to:

• their localization: whether the component hit by the fault is a communication link
or a process.

• their origin: whether the fault is benign, i.e., due to physical problems, or malign,
i.e., due to malicious attacks.

• their duration: whether the fault is permanent, i.e., longer than the remaining
execution time (e.g., a crash), transient, or intermittent. There is a slight difference
between transient and intermittent faults. On average, during an execution, a
transient fault hits the system once, while an intermittent fault hits the system
several times.

• their detection: whether a process can detect according to its local state when it is
hit by a fault.

Some examples of faults are listed below:

• Crash: Process that definitively stops to execute its algorithm. Initially dead pro-
cesses is a subcategory of crashes, i.e., processes that does not execute any compu-
tational step.

• Byzantine: Process with arbitrary behavior. In particular, it may not execute
correctly with respect to its algorithm, e.g., virus.

• Intermittent Loss of Messages: Communication link that frequently looses mes-
sages.
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• Transient faults: Component that temporarily presents a faulty behavior but this
fault does not lead to a permanent damage of the hardware. After the end of
transient faults, the state of hit components may be corrupted, e.g., local memories
corruption, messages corruption.

1.3.2 Achieving Fault-tolerance

Without faults, it is possible to solve in distributed computing (almost) everything that is
possible to solve in sequential computing providing that processes are identified or there
is a leader. (Notice that both assumptions are equivalent since it is possible to elect a
leader in an identified network and it is possible to name processes if there is a leader.)
Nonetheless, faults must be considered to increase the resiliency of distributed systems.

Now, Fischer et al. showed in [FLP85] that, in presence of crashes, it is impossible to
deterministically solve the consensus problem in asynchronous systems, when there is at
most one crash. This result holds despite the network is complete (i.e., each process can
directly communicate with every other processes), and no message is ever lost. This im-
possibility results can be extended to a large class of fundamental problems of distributed
computing [MW87], e.g., atomic broadcast [CT96].

Several approaches are used to circumvent this impossibility. There are two main
solutions, either assuming additional hypotheses or weakening the specification of the
problems.

One can assume a failure detector, i.e., an oracle that informs processes of failures
that previously hit the system. For example, the perfect failure detector [CT91], denoted
P , eventually informs every non-faulty processes of every failure that actually happened,
and does not suspect any non-faulty process. It is also possible to restrain the number
of faults, e.g., in [CHT96], Chandra et al. solves the consensus problem assuming that
a majority of processes are correct and assuming the eventually weak failure detector,
denoted �W , such that, after a while, every faulty process is always suspected by at
least one correct process, and every correct process is no more suspected by other correct
processes. Finally, it is possible to make assumptions on the synchrony of processes, e.g.,
in [DLS88], Dwork et al. solves the consensus problem assuming that the difference of
speed between two processes is bounded.

On the other hand, there are two main approaches to weaken the specification of the
considered problem. First, one can provide a probabilistic solution to the problem, e.g.,
the probabilistic algorithm for consensus that withstand crashes of Ben-Or [Ben83]. In
this latter algorithm, the liveness of consensus is ensured with probability 1. The second
approach is the design of algorithms that satisfy specifications where the safety is relaxed,
i.e., stabilizing algorithms [Dij74].

Robust vs. Stabilizing Algorithms. To sum up, two approaches to design resilient
distributed systems have been studied: a pessimistic approach, i.e., designing robust
algorithms, and an optimistic approach, i.e., designing stabilizing algorithms.

In a robust algorithm, every received information will be suspected in order to guar-
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antee the correct behavior of non-faulty processes. Strategies such as voting to consider
certain information only if enough other processes claimed the receipt of similar informa-
tion are used in these algorithms. Thus, robust algorithms withstand permanent faults
and must be considered when even a temporal interruption of service is unacceptable.

On the contrary, when short and rare interruptions of service can be accepted (short
and rare compare to the overall availability of the service), stabilizing algorithms offer
a lightweight approach to withstand transient faults. Indeed, after the end of tran-
sient faults, the behavior of the system, even of non-faulty processes, may be incorrect.
Nonetheless, stabilizing algorithms ensure a convergence in finite time to a correct behav-
ior, as long as the time between two transient faults periods is longer than the recovery
time. Self-stabilization and its variants presented in Subsection 1.4 are examples of this
approach.

Notice that some algorithms are both robust and stabilizing, e.g., [GP93].

1.4 Self-stabilization and Variants

Self-stabilization [Dij74, Dij86] is a versatile approach that allows distributed systems
to withstand transient faults. After the end of transient faults, the system may be in an
arbitrary configuration. If the system is self-stabilizing, it recovers a correct behavior in
finite time, without any external help (in particular, any human intervention). The con-
figurations where the system has a correct behavior are called legitimate configurations.
Notice that the recovery does not depend on the nature (i.e., if the faults hit processes
and/or communications links) nor the extent (i.e., how many components are hit), with
the exception of modifications of the code.

Nonetheless, this versatility has two main drawbacks. First, the specification of the
system is not ensured during its recovery, i.e., there is no safety guarantee during the
recovery. Moreover, the processes are not able to locally detect the end of the recovery.
Thus, it is not possible to ensure the termination detection.

We propose a self-stabilizing algorithm in Chapter 4.

1.4.1 Variants of Self-stabilization

Self-stabilization led to numerous variants. A non-exhaustive list of related properties is
exposed below.

Stronger Variants. To counter the drawbacks of self-stabilization, some variants en-
suring stronger guarantees have been proposed.

Safe convergence [KM06] ensures safety guarantees during the recovery. More pre-
cisely, after the end of transient faults, a safely converging self-stabilizing algorithm
converges quickly, i.e., it is usually required to converge in O(1) round, to a so-called
feasible configuration, where a minimum quality of service is ensured. Then, it converges
(more slowly) to an optimal configuration, where the (full) specification of the system
is reached. Safe-convergence is mainly used for the computation of optimized structure,
e.g., in [KM06], Kakugawa and Masuzawa propose a safely converging self-stabilizing

18



1.4. Self-stabilization and Variants

algorithm that quickly builds a dominating set, and then converges to a minimal dom-
inating set. Snap-stabilization [BDPV07] ensures even stronger guarantees. Indeed, a
snap-stabilizing algorithm recovers immediately after the end of transient faults. We
propose a snap-stabilizing algorithm in Chapter 6.

Some variants have been defined to converge faster depending on the extent and/or the
nature of the faults. Fault-containment [GGHP96] ensures that, when only a small num-
ber of entities are hit by transient faults, the incorrect behavior is contained within a de-
termined radius around faulty components. This allows a quicker convergence. Similarly,
when k ≥ 0 components are hit by transient faults, a time-adaptative algorithm [KP99]
converges in O(k) time units. Finally, superstabilization [DH97] is a variant of self-
stabilization defined especially for dynamic networks, i.e., networks where processes may
leave or enter the system and communication abilities may change over time. After a
unique topological change, a superstabilizing algorithm recovers very quickly its correct
behavior. Furthermore, a passage predicate is guaranteed during the convergence.

Notice that we propose a variant of superstabilization and safe convergence in Chap-
ter 5.

Weaker Variants. Some variants of self-stabilization ensuring weaker guarantees have
also been defined. For example, a k-stabilizing algorithm [BGK98], k ≥ 1, converges
in a self-stabilizing way provided that there is no more than k faulty processes. More
precisely, we consider a Hamming distance [DH97] between configurations, i.e., the num-
ber of processes whose state is different in the two considered configurations. Then, a
k-stabilizing algorithms converges if the minimum Hamming distance between the initial
configuration and a legitimate configuration is k.

The difference between self-stabilization and the two next variants is more subtle.
Self-stabilization ensures that the system converges in finite time to a correct behavior,
while every execution a pseudo-stabilizing algorithm [BGM93] contains a suffix where the
system has a correct behavior, however we cannot bound the time needed to ensure con-
vergence. Self-stabilization ensures that, every execution starting from a given incorrect
state (resulting of transient faults) converges to a correct state. On the contrary, weak
stabilization [Gou01] ensures that at least one execution starting from this incorrect state
converges.

Finally, notice that every property previously exposed is defined for deterministic
algorithms. Nonetheless, some probabilistic variants were also proposed, e.g., probabilistic
self-stabilization [IJ90].

1.4.2 Expressiveness and Limitations of Self-stabilization

As previously exposed in Section 1.3.2, it is not always possible to solve problems in a
fault-tolerant context. Hence, the expressiveness of self-stabilization has been extensively
studied. In [KP93], Katz and Perry proposed a protocol that transforms almost every non-
stabilizing algorithm written in the message-passing model (i.e., a computational model
where processes communicate by exchanging messages) into a self-stabilizing one. More
precisely, Katz and Perry showed that their transformer works for any problem whose
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specification is suffix-closed.2 They also showed that this condition is necessary. The
principle of their transformer is to let execute the non-stabilizing algorithm concurrently
with a self-stabilizing snapshot algorithm i.e., a protocol that creates a copy of the state
of the entire system at a process. The snapshot algorihm regularly controls if the system
is in a legitimate configuration. If the snapshot protocol detects that the system is in an
illegitimate configuration, then a full reset of the network is made, using a self-stabilizing
reset algorithm. The snapshot and the reset protocols are based on a self-stabilizing PIF
algorithm. Hence, whenever the self-stabilizing PIF algorithm can be designed a given
model, then this self-stabilizing contruction holds and the result applies. However, notice
that the purpose of this construction is only to demonstrate the feasibility of transforming
almost any algorithm to a corresponding self-stabilizing algorithm. As a consequence, the
method, although very general, is clearly inefficient.

Despite this transformer originally requires unbounded process memories (which is not
feasible in real systems) to tackle the unbounded process memories capacity assumption
on links, it can be applied in other models using finite process memories. For example, if
we consider a message passing model with links of bounded capacity, it is possible to use
the self-stabilizing PIF protocol of Varguese [Var00] to design the transformer.

Notice that the transformer of Katz and Perry requires that there is a distinguished
process (the one that executes the snapshots and resets). This process can be computed
by a self-stabilizing leader election algorithm, e.g., [ACD+16], provided that the processes
are identified. If the processes are not identified, the impossibility results on anonymous
networks (see Section 1.2.3) remains true for self-stabilizing solutions.

Most of self-stabilizing algorithms are designed in the locally shared memory model,
i.e., a computational model where processes communicate through shared memories. De-
signing self-stabilizing algorithm using lower level communication models such as asyn-
chronous message passing is more challenging. The key point is that we aim to design
self-stabilizing solutions that only require a bounded memory per process, since an un-
bounded memory would not be feasible in real systems.

Gouda and Multari showed in [GM91] that designing deterministic self-stabilizing
algorithms with bounded memory is impossible for a large class of problems if the com-
munications links are not bounded, i.e., processes do not know how many messages can
transit by a link at a time. This class of problems includes the alternating bit protocol
(ABP), i.e., a communication protocol that withstand message loss. (Notice that these
results assume FIFO links. Nonetheless, they can be extended to non-FIFO links using
the results of Dolev et al. in [DDPT11].) Afek and Brown [AB93] proposed a probabilistic
self-stabilizing ABP that does not require an unbounded memory but an infinite sequence
of random numbers. Nonetheless, we focus here on deterministic solutions. The ABP
problem is fundamental since it allows to remove faulty messages of the communication
links (those that were inside the links initially, and those sent due to reception of faulty
messages).

2We say that a specification SP is suffix-closed if there exists an assertion A in (future) linear
temporal logic such that for every execution e, e satisfies SP if and only if A is True in the terminal
configuration of e, if e is finite, or A is infinitely often True in e, otherwise.
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Thus, to obtain a self-stabilizing algorithm with bounded memory, most problems
requires that processes a priori know a bound on the capacity of communication links,
e.g., [ABB98, HNM99, Var00, AN05, AKM+07]. Nonetheless, for more restricted class
of problems, this assumption is not necessary. For example, in [APV91], Awerbuch et al.
showed that there exists self-stabilizing solutions for a class of problems, called locally
correctable problems, that requires only bounded memory without requiring bounded
communication links. Similarly, Delaët et al. [DDT06] have proved that it is possible
to design silent self-stabilizing algorithms using bounded memory for a class of fix-point
problems even if the communication links are unreliable and their capacity is unbounded.

1.5 Contributions

In this thesis, we study several classical problems of distributed computing under
uncertain contexts and we explore both research axes previously exposed: going to-
wards more anonymity by proposing efficient algorithms for networks with anonymous
or homonym processes, and ensuring greater fault tolerance by proposing self-stabilizing
algorithms ensuring increasing safety guarantees. Notice that we focus on deterministic
solutions.

Chapter 2 detailed the computational models used in this thesis. More precisely, we
formally define distributed systems, and we introduce the message passing and the locally
shared memory models.

Then, we present the contributions.

• Chapter 3 (Leader Election in Unidirectional Rings with Homonym Pro-
cesses): In Chapter 3, we present results from [ADD+16a, ADD+17a, Dur17]. We
study the leader election problem in the model of homonym processes, i.e., the
identifiers of processes may not be unique, in between the (fully) identified and the
(fully) anonymous model. We focus on unidirectional rings networks and we study
in which classes of unidirectional rings the problem can be solved. More precisely,
we show that it is impossible to solve leader election in rings in four different class of
unidirectional rings: rings with symmetric labeling, rings that contains at least one
unique label (class denoted here U∗), rings with asymmetric labeling (denoted A),
and in rings that contains up to k ≥ 1 processes with the same label (denoted Kk).
Then, we propose a leader election algorithm for class U∗ ∩Kk and two algorithms
for A ∩Kk.

• Chapter 4 (Self-stabilizing Leader Election under Unfair Daemon): Chap-
ter 4 summarizes the results of [ACD+14, ACD+15, ACD+16]. Similarly to Chap-
ter 3, we study the leader election problem but in a different context. Indeed, we
focus there on solving the leader election in identified networks of arbitrary con-
nected topology under the distributed unfair daemon, the more general scheduling
assumption of the model. We aim to design silent and self-stabilizing algorithms for
this problem that require no knowledge on the network. More precisely, we propose
the first algorithm working under such assumptions that stabilizes in a polynomial
number of computational steps, and we show that the previous best algorithms of
literature converge in a non-polynomial number of steps.
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• Chapter 5 (Gradual Stabilization under (τ, ρ)-dynamics and Unison): The
results published in [ADDP16] are presented in Chapter 5. We propose a variant
of self-stabilization, called gradual stabilization, designed especially for dynamic
networks. Indeed, a (τ, ρ)-gradually stabilizing algorithm ensures fast convergences
after up to τ ≥ 1 ρ-dynamic steps (i.e., steps containing topological changes that
satisfy predicate ρ) hit the system. We illustrate this new property by proposing
the first self-stabilizing unison algorithm designed for dynamic networks.

• Chapter 6 (Concurrency in Local Resource Allocation): Finally, in Chap-
ter 6, we present the results of [ADD15, ADD16b, ADD17b]. We study there the
question of concurrency in resource allocation problems. We propose a versatile
property that allows to express concurrency in any resource allocation problem.
We illustrate this property by studying a large class of problems, so-called local
resource allocation (LRA). We show that the higher level of concurrency, called
maximal-concurrency, cannot be achieved without violating the fairness of LRA.
Thus, we propose a partial concurrent LRA algorithm, that ensures a high (yet not
maximal) degree of concurrency. This algorithm is additionally snap-stabilizing.

Roadmap. Each contribution chapter is independent. Nonetheless, a generalization of
the computational models used in this thesis is presented in Chapter 2. Thus, we incite
readers to read Chapter 2 before reading a contribution chapter. Figure 1.4 illustrates
the dependencies between chapter.

Notice that the contributions of the thesis are organized by increasing safety guar-
antees order, but it can be read in different orders. Some reading guides are described
bellow.

• Safety guarantees (Figure 1.5): We propose algorithms that provide increasing
safety guarantees. In Chapter 3, we propose algorithms that are not stabilizing,
i.e., we assume a particular initial state. In Chapter 4, we design and study self-
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stabilizing algorithms. Then, in Chapter 5, we propose a variant of self-stabilizing
that offers additional safety guarantees during the convergence in case of topological
changes. Finally, in Chapter 6, we propose a snap-stabilizing algorithm, i.e., the
system immediately recovers a correct behavior after the end of transient faults.

non-stabilizing self-stabilizing gradually stabilizing snap-stabilizing

3 4 5 6

Figure 1.5 – Reading guide according to safety guarantees.

• Anonymity (Figure 1.6): We study different models of anonymity, from the
(fully) anonymous model in Chapters 5 and 6, to the (fully) identified model in
Chapter 4, by way of the in-between model of homonym processes in Chapter 3.

anonymous homonyms identified

3 45 6

Figure 1.6 – Reading guide according to anonymity.

• Considered Problem (Figure 1.7): We can order contributions according to
the considered problems. More precisely, we can differentiate whether the problem
is static, i.e., there is only one computation that ends after some finite time (e.g.,
electing a leader), or dynamic (e.g., token circulation), and whether the considered
system is dynamic, i.e., the topology may change over time, or static. Thus, in
Chapters 3 and 4, we consider a static problem in static networks. In Chapter 6,
we study a dynamic problem in static networks. Finally, in Chapter 5, we study a
dynamic problem in dynamic networks.

Problem

System

static dynamic

static

dynamic

3
4

5

6

Figure 1.7 – Reading guide according to static or dynamic.

• Considered Model (Figure 1.8): Finally, we can differentiate the contributions
according to the considered computational model, i.e., locally shared memory model
or message-passing model, and the considered daemon, i.e., (distributed) weakly fair
or (distributed) unfair. Thus, in Chapter 3, we consider the weakly fair daemon and
the message-passing model. In Chapter 6, we also consider the weakly fair daemon
but in the locally shared memory model. Finally, in Chapters 4 and 5, we consider
the locally shared memory model under the unfair daemon.
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Chapter 2

Computational Model

“Problem-solving is hunting; it is savage pleasure and we are born to it.”

— Thomas Harris, The Silence of Lambs
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This chapter introduces the computational model used in this thesis. We first re-
call some notions from graph theory. Then, we present a model that generalizes every
situation we will consider, namely communications through locally shared variables or
messages, bidirectional or unidirectional networks, dynamic or static topology, anony-
mous or identified processes.

We present a general description of distributed systems (Section 2.2), distributed al-
gorithms (Section 2.3), and their executions (Section 2.4).Then, this general model is
instantiated depending on the proper characteristics of the models used in this thesis.
We first present the message passing model in Section 2.5, the closest one to the im-
plementation of a distributed system. In this model, processes exchange information by
sending messages to each other. But, in this thesis, we mainly use a more abstract model,
the locally shared memory model, presented in Section 2.6. This latter model focuses
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on local state updates, i.e., instead of receiving messages containing information on the
state of a neighboring process q, a process p can directly read the state of q.

Finally, we formally define some fault-tolerant properties of distributed systems in
Section 2.7.

For every notation introduced in this chapter, the subscript Alg referring to the
considered algorithm can be omitted for sake of simplicity when Alg is clear from the
context.

2.1 Preliminaries

In this section, we present some notions and notations from graph theory which are
useful to describe the topology of a network. For every notation introduced in this section,
the subscript G or T referring to the considered graph or tree can be omitted for sake of
simplicity when G or T is clear from the context.

2.1.1 Graph

A (simple) (finite) graph G = (V,E) is a pair composed of a finite set V of vertices (or
nodes) and a finite set E ⊆ V × V of ordered pairs of distinct vertices (i.e., we exclude
self-loops), called edges. We denote by n the number of vertices |V |.

G is undirected if, for every edge (u, v) ∈ E, (v, u) ∈ E. Otherwise, G is said to be
directed. If G is undirected, we can denote by {u, v} both (u, v) and (v, u). We say that
v is a successor of u in G if (u, v) ∈ E. On the contrary, we say that v is a predecessor
of u in G if (v, u) ∈ E. We denote by Γ+

G (u) (respectively, Γ−G (u)) the set of successors
(respectively, predecessors) of u in G. Let ΓG(u) = Γ+

G (u) ∪ Γ−G (u). In an undirected
graph, ΓG(u) = Γ+

G (u) = Γ−G (u) and vertices in ΓG(u) are said to be the neighbors of u in
G.

A sequence v0, v1, . . . , vk of vertices is a path from v0 to vk if ∀i ∈ {0, . . . , k − 1},
(vi, vi+1) ∈ E. The length of a path is the number k of edges it is made of. We say that
v0 (respectively vk) is the initial (respectively, terminal) extremity of the path. A simple
path is a path without any repeated edge. An elementary path is a path without any
repeated vertex. A cycle is a path where the initial and the terminal extremities are the
same vertex. It is often called circuit in directed graphs. A simple circuit is a circuit
without repeated vertex, except the initial and terminal extremity, and without repeated
edge. A simple cycle is a cycle without repeated vertex, except the initial and terminal
extremity, and without repeated edge.

A graph G is connected if, for every pair of vertices u and v, there is a path from u to
v in G. Otherwise, we say that G is disconnected.

G ′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. Given V ′ ⊆ V , the
subgraph of G induced by V ′ is (V ′, E ′), where E ′ = {(u, v) ∈ E : u ∈ V ′ ∧ v ∈ V ′}. A
connected component G ′ = (V ′, E ′) of G = (V,E) is a maximal connected subgraph, i.e.,
G ′ is connected and there is no edge in E between a vertex of V ′ and a vertex of V \V ′.

The distance from u to v in G is the length of a shortest path from u to v and is denoted
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by ‖u, v‖G. If there is no path from u to v, we conventionally define ‖u, v‖G = ∞. The
diameter DG of a graph G is the maximum distance between any two processes in G.
Notice that if a graph is disconnected, we conventionally say that its diameter is infinite.

In an undirected graph, the degree of a vertex u in G denoted δG(u), is the number
of neighbors, i.e., δG(u) = |ΓG(u)|. We denote ∆G = max {δG(u) : u ∈ V }, the degree
of G. In a directed graph, we distinguish the outdegree, denoted by δ+G (u), and the
indegree, denoted by δ−G (u), of vertex u. The outdegree of u is the number of successors
of u, i.e., δ+G (u) =

∣∣Γ+
G (u)

∣∣. The indegree of u is the number of predecessors of u, i.e.,
δ−G (u) =

∣∣Γ−G (u)
∣∣.

A graph G = (V,E) is isomorphic to another graph G ′ = (V ′, E ′) if and only if
there exists a bijective function f : V → V ′ such that for any two processes u, v ∈ V ,
(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E ′.

2.1.2 Rings

A graph R = (V,E) is a directed ring if it is isomorphic to a simple circuit. Similarly, a
graph R = (V,E) is an (undirected) ring if it is isomorphic to a simple cycle.

If the ring is directed, we say that the predecessor of a vertex u is its left neighbor
while its successor is its right neighbor.

2.1.3 Trees and Forests

A graph T = (V,E) is a tree if it is a connected acyclic undirected graph. It is composed
of |V | − 1 edges. A forest is an acyclic graph that may be disconnected, all its connected
components are trees.

A rooted tree is a tree in which a vertex has been distinguished as the root. In a
rooted tree, a vertex v is the parent of a vertex u 6= r if v is the adjacent vertex of u on
the shortest path from u to the root r. In this case, we also say that u is a child of v. A
vertex without children is a leaf. By definition, the root has no parent. Conventionally,
we denote by ⊥ the parent of the root.

If the tree is rooted, it can be oriented, i.e., we can orient the edges either away from
the root, in this case it is called an out-tree, or towards the root, in this case it is called
an in-tree. In this thesis, we will only consider in-trees.

The level of a vertex v in a tree T = (V,E) rooted at r is denoted lvlT (v). lvlT (v)
is the distance from v to r, i.e., lvlT (v) = ‖v, r‖T . The height of a tree is the maximum
level of its vertices.

An ancestor of u is any vertex v on the shortest path from u to r. On the contrary,
a descendant of u is any vertex v such that u is on the shortest path from v to r. The
subtree of v is the subgraph induced by v and its descendants.

T = (V ′, E ′) is a spanning tree of G = (V,E) if T is a tree such that V ′ = V and
E ′ ⊆ E. T is a breadth-first search (BFS) spanning tree of G if, for every vertex v ∈ V , the
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r

(a) BFS spanning tree

r

(b) Non BFS spanning
tree

Figure 2.1 – Example of BFS spanning tree and of non BFS spanning tree rooted at some
vertice r. Dashed edges do not belong to the tree.

distance from v to the root r through T is the exact distance in G, i.e., lvlT (v) = ‖v, r‖G.
See an example on Figure 2.1.

2.2 Distributed System

A distributed system is a set of autonomous but interconnected computational units,
called processes. Autonomous means that there is no central control over the processes
and they do not share a central memory. Interconnected means that they are able to
exchange information.

Communications. Each process p is able to communicate with a subset of processes.
More precisely, a process can get information from its predecessors and can give informa-
tion to its successors. These communication capabilities may change over time. If such
changes are assumed to be possible, the network is said to be dynamic. Otherwise, it is
said to be static.

Furthermore, the communications can be bidirectional, i.e., a process p can give in-
formation to another process q if and only if q can give information to p. Otherwise, we
say that the communications are unidirectional. If the communications are bidirectional,
every predecessor of a process is also one of its successor, and the other way round.
Processors and successors are then called neighbors.

In the message passing model, those communications are carried out by sending infor-
mation through channels. In the locally shared memory model, processes communicates
using locally shared variables.

The topology of the system, and so the communication capabilities of the processes, at
a given time can be modeled by a graph G = (V,E). V is the set of processes that are in
the system. E is the set of communication links, i.e., p ∈ V can give information to q ∈ V
if and only if (p, q) ∈ E. Notice that G is undirected if and only if the communications
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are bidirectional.

Process state. Processes are computational units with a (finite) local memory. They
can store values into a finite number of variables. We denote by p.x the variable x of
process p.

Some of those variables can be inputs, i.e., read-only variables whose value is set, and
may be updated over time. If those variables are not constant, they can only be modified
by the environment of the system (e.g., the user or another algorithm) but not by the
algorithm. We consider that the topology is an input. (Notice that its value may change
if the network is dynamic.) We denote by IAlg the set of input variables of algorithm
Alg.

Variables can also be outputs, i.e., variables used to return the result of the compu-
tation. Variables that are neither inputs nor outputs are called internal variables.

The (local) state of a process is then the vector of values of its variables.

Identities. A process distinguishes its neighbors using local labels. We denote by p.N−
and p.N+ the set of local labels of the predecessors and successors of p, respectively. If
the network is bidirectional, p.N = p.N− = p.N+. By abuse of notation, we denote by
q the local label of process q at its neighbor p.

In addition to the local labeling, each process p may have a name or identity (ID),
p.id. We denote by id the set of all possible IDs. We assume that the number of bits
required to stock an ID is b. We assume that values of ID type can be compared (order
and equality).

• If every process has a unique ID, the system is (fully) identified.

• If several processes have the same ID, there are homonym processes. In this case,
IDs are called labels. For any label `, let mlty(`) be the multiplicity of ` in the
network, i.e., the number of processes whose label is `.

• If every process has the same ID or if there is no ID at all, the processes are (fully)
anonymous. It is impossible to distinguish two processes except maybe by their
degree (i.e., their number of neighbors). In particular, they have the same local
algorithm.

• Processes can also be semi-anonymous, i.e., only some processes are distinguished
(by their role, their inputs, etc.), e.g., the root in a rooted tree network may not
have the same local algorithm than other processes. Notice that semi-anonymous
processes is a particular case of homonym processes.

2.3 Distributed Algorithm

2.3.1 Algorithm

Each process p updates its state according to a local algorithm Algp. A distributed
algorithm Alg is the collection of all local algorithms. Each local algorithm is written as
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a set of guarded actions of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉

The labels are used to identify the actions in the reasoning. The guard of an action
is a Boolean expression. Informally, in the message passing model, the guard involves
the state of the process (i.e., the values of its variables) and on the messages received by
the process. Similarly, in the locally shared memory model, the guard involves the state
of the process and the variables shared with its neighbors. Further details will be given
when the corresponding models will be instantiated. The statement updates the state
of the process, i.e., its (writable) variables. Moreover, in the message passing model,
statements may contain message sending.

When the guard of an action is evaluated to True, the action is said to be enabled.
If at least one action is enabled at a process p, p is also said to be enabled. An action
can be executed only if it is enabled. In this case, the execution of the action consists in
executing its statement. The evaluation of the guards and the execution of the statement
are assumed to be atomic.

Priorities. Some algorithms are designed using priorities to simplify the guards of
actions. In this case, actions have the following form:

〈label〉 (prio. 〈priority〉) :: 〈guard〉 → 〈statement〉

An action is enabled at a process p if its guard is evaluated to True at p and no higher
priority action is also enabled. An action of priority i is said to be of higher priority
(respectively, lower priority) than any action with priority j > i (respectively, j < i).

We can rewrite the local algorithm as an equivalent one without priorities. Consider a
local algorithm of k ≥ 1 actions “Li (prio. Pi) :: Gi → Si”, i ∈ {1, . . . , k}. Let HP (Li) be
the subscripts of actions with a higher priority than Li-action. We denote L′i :: G′i → Si,
i ∈ {1, . . . , k}, the actions of the resulting local algorithm without priorities, where:

G′i ≡ Gi ∧
∧

j∈HP (Li)

¬Gj

Notice that the guard of the highest priority actions does not change.

2.3.2 Configuration

For a given distributed system and a given algorithm Alg, we denote by SAlg the set
of all possible local states. We also denote by LAlg the set of all possible states for a
communication link. A configuration γi of the system under the algorithm Alg is a tuple
γi = (Gi, Vi → SAlg, Ei → LAlg), where:

Gi = (Vi, Ei) is a graph which models the topology of the network in configuration γi.

Vi → SAlg is a function which associates a state to any process of Vi. We denote
by γi(p) ∈ SAlg the state of p ∈ Vi in configuration γi. We denote γ(p).x the value of
variable p.x in configuration γ.
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Ei → LAlg is a function which associates a state to any communication link of Ei.
This parameter is relevant only if the considered model contains channels. We denote
by γi(L(p,q)) ∈ LAlg the state of the link (p, q) in configuration γi. Notice that, in the
locally shared memory model, this function is not relevant, and so is not considered in
the configuration.

We denote by CAlg the set of every possible configurations of the system under algo-
rithm Alg.

2.4 Execution of Distributed Algorithms

Informally, an execution of a distributed algorithm Alg is a sequence of configurations
e = (γi)i≥0. A pair of two successive configurations in e is called a step. During a step, an
adversary, the daemon, triggers the activation of some processes and/or the modification
of some input values.

2.4.1 Step

A step of algorithm Alg is a pair of configurations γi and γi+1 such that we can reach
γi+1 from γi by

• activating some processes

and/or

• performing input value changes, in particular topological changes.

Activation of processes and inputs updates are all performed atomically. The set of
all possible steps induces a binary relation over configurations, denoted 7→Alg⊆ CAlg ×
CAlg.We denote by 7→+

Alg the transitive relation generated by 7→Alg.

Process Activation. A process can be activated during γi 7→Alg γi+1 only if it is
enabled in γi. In a step, activated processes execute one of their enabled actions in Alg.

If the input values also change between γi and γi+1, the execution of actions during
γi 7→Alg γi+1 depends on the input values in γi.

Topological Changes. If the topology of the system changes between γi and γi+1,
i.e., Gi 6= Gi+1, then the step γi 7→Alg γi+1 contains a finite (yet unbounded) number of
topological changes of the following kinds.

A process p can join the system, i.e., p /∈ Vi but p ∈ Vi+1. This event, denoted by joinp,
triggers the atomic execution of a particular action called bootstrap. The bootstrap action
initializes the state of p to a particular state, called bootstate, meaning that the output of
p is meaningless for now. This action is executed instantly, without any communication.
We denote by New(k) the set of processes that are in bootstate in γk. More precisely,
when p joins the system in γi 7→ γi+1, we have p ∈ New(i+1), but p /∈ New(i). Moreover,
until p executes its very first action, say in step γx 7→ γx+1, it is still in bootstate, i.e.,
∀k ∈ {i+ 1, . . . , x}, p ∈ New(k), but p /∈ New(x+ 1).
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A process p can also leave the system, i.e., p ∈ Vi but p /∈ Vi+1. Every communication
link from or to p is also deleted.

Finally, some communication link can appear or disappear between two different pro-
cesses p and q, i.e., (p, q) /∈ Ei ∧ (p, q) ∈ Ei+1 or (p, q) ∈ Ei ∧ (p, q) /∈ Ei+1, respectively.

Classification of Steps. We distinguish different types of steps.

We call dynamic step a step containing at least one topological change. On the
contrary, we call static step a step containing no topological change. We denote by 7→d

Alg

the relation defining all dynamic steps and by 7→s
Alg the relation defining all static steps.

We call activation step a step containing at least one process activation.

The set of steps is partitioned into dynamic and static steps. However, an activation
step can be either a dynamic step, if it contains at least one topological change, or a
static step, otherwise.

We can also differentiate dynamic steps. In particular, we might make assumptions
on allowed dynamic steps, i.e., restrict the set of possible dynamic steps w.r.t. the possi-
ble topological changes. To that goal, we define a binary predicate ρ over graphs, called
dynamic pattern. Let 7→d,ρ

Alg=
{

(γi, γi+1) ∈ C2Alg : γi 7→d
Alg γi+1 ∧ ρ(Gi,Gi+1)

}
be the sub-

relation of 7→d
Alg induced by ρ. Every step in 7→d,ρ

Alg is called a ρ-dynamic step.

2.4.2 Daemon

The asynchronism (whether and when an enabled process is activated) and environment
(whether and when an input value is modified) of the system is modeled by an adversary,
called daemon. We say that an execution e = (γi)i≥0 is driven by a daemon D if e satisfies
the hypotheses D on the asynchronism and the environment of the system.

Locality Constraints. The daemon can be constrained on the locality of the input
value modifications and processes activation. We focus here on the locality constraints on
process activation without any constraint on input value modifications, but the following
definitions can easily be extended.

Let consider an execution e = (γi)i≥0 of algorithm Alg. For every i ≥ 0, we denote
by Acti(e) the set of processes that are activated during step γi 7→Alg γi+1 of e.

From a general point of view, a daemon is said to be k-central [DT11] if it cannot
activate two enabled processes whose distance is lower than k. More formally, ∀e =
(γi)i≥0, ∀i ≥ 0,

(p ∈ Acti(e) ∧ q ∈ Acti(e) ∧ p 6= q)⇔
(
‖p, q‖Gi > k ∧ ‖q, p‖Gi > k

)
Three different locality constraints are mainly used in the literature:

• The 0-central or distributed daemon, i.e., the more general one where the daemon
has no locality constraint.
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• The 1-central or locally central daemon, i.e., two neighbors cannot be activated
during the same step.

• The DGi-central, central, or sequential daemon, i.e., the more constrained one where
only one process can be activated at each step γi 7→Alg γi+1.

Fairness Constraints. We can also constrained the daemon on its fairness, i.e., when
the daemon should activate a process or trigger an input value modification. It models
the speed of the different processes and frequency of the environment change.

The weakest assumption on fairness is the unfair daemon: no fairness constraint is
assumed. The unfair daemon was initially defined for networks where input values (in
particular, the topology) are constant over the execution. In those networks and under
an unfair daemon, an enabled process may never be activated unless it is the only enabled
one.

Nonetheless, in a context where the input values may change over time, we must
extend this definition: the unfairness does not only rely on process activation but also
on input value changes. Hence, we can have executions with an infinite number of input
value changes, and, in particular, an infinite number of dynamic steps. Under these
assumptions, it is trivially impossible to solve any (non-trivial) problem. So, there are
two possibilities: either assuming some fairness constraints on input value changes, see for
example [CFQS12] for fairness constraints on dynamic steps, or bounding their number.
Now, even if we assume some fairness constraints on input value changes, it remains
impossible to solve some problems. For example, in [BDKP16], Braud-Santoni et al.
showed that it is impossible to deterministically solve the building of some classic overlay
structures in dynamic networks where there exists infinitely often a path between any
two processes. Indeed, without any knowledge on the frequency of dynamic steps, the
system cannot converge and maintain a correct structure. So, in the following, we always
assume that the number of input value changes (in particular, the number of dynamic
steps) is bounded or we use some constraints on these changes.

Two other fairness assumptions are also often considered. If the daemon is (weakly)
fair, a process that is continuously enabled along an execution is eventually activated.
Finally, if the daemon is strongly fair, a process that is enabled infinitely often is activated
infinitely often.

Other Constraints. The synchronous daemon is constrained both on the locality and
the fairness since it selects every enabled process at each step.

2.4.3 Execution

An execution of Alg is a sequence of configurations e = (γi)i≥0 such that ∀i ≥ 0,
γi 7→Alg γi+1.

We denote by EτAlg the set of maximal executions of Alg which contains at most τ
dynamic steps. Any execution e ∈ EτAlg is either infinite, or ends in a so-called terminal
configuration, where all processes in the system are disabled. The set of all possible
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maximal executions is therefore equal to ∪τ≥0EτAlg. When clear from the context, E0Alg is
simply denoted by EAlg.

For any subset of configuration X ⊆ CAlg, we denote by EAlg(X) (respectively,
EτAlg(X)) the set of maximal executions in EAlg (respectively, EτAlg) that start from a
configuration of X, i.e.,

EAlg(X) = {(γi)i≥0 ∈ EAlg : γ0 ∈ X}
EτAlg(X) = {(γi)i≥0 ∈ EτAlg : γ0 ∈ X}

For sake of simplicity, we denote by Eτ,ρAlg the set of maximal executions of Alg that
contains at most τ ρ-dynamic steps (and no other dynamic steps).

Static Network. If the algorithm Alg is designed to be executed on a static network,
i.e., the topology of the system remains the same during the whole execution (Gi is equal
to G0 for every i ≥ 1).

In this latter case, we can simplify notations. We denote by:

• G = (V,E) = G0, the graph modeling the topology of the system,

• n = |V |, the number of processes,

• D, the diameter of the network, and

• EAlg, the set of all possible executions.

2.5 Message Passing Model

In the (asynchronous) message passing model [Lyn96, Tel00], processes communicate
by sending messages through communication links. The state of a communication link
(p, q), denoted by L(p,q), is the ordered list of messages it contains. We assume FIFO
links, thus this order satisfies the partial order of insertion into the link, i.e., the messages
already in the link in the initial configuration are the first ones but their order is arbitrary,
the other messages are sorted by their order of appearance.

p.N− may not be known by the process, until receiving messages from its predeces-
sors. p.N+ (or p.N in a bidirectional network) is an input and its value may change if
the network is dynamic. Hence, a process p is aware of the local topology and of topo-
logical changes. In particular, if the communication link between two processes p and q
disappears during step γi 7→Alg γi+1, the messages contained in the channel are lost.

The processes handle messages using functions send and rcv. In this thesis, we
assume that the links are reliable, i.e., no message is lost (except in case of topological
changes), so calls to sendq by p and rcvp by q are the only way to modify L(p,q). Since
the links are assumed to be FIFO, when p executes sendq m, the message m is added at
the tail of L(p,q), and the head of L(p,q) will be the first message processed by q on this
channel.

More precisely, each message has the following form 〈x1, . . . , xk〉, where x1, . . . , xk is
a list of values, each of them of a given data type. We say that x conforms to y if y is a
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value and x = y, or if y is a variable and has the same data type than x. By extension,
we say that a message m = 〈x1, . . . , xk〉 conforms to pattern 〈y1, . . . , yk′〉 if and only if
k = k′ and ∀i ∈ {1, . . . k}, xi conforms to yi.

Then, no message is lost, so a message remains in L(p,q) until q (explicitly) receives it
by a call to rcv. A call to rcvs 〈y1, . . . , yk′〉 considers the head message 〈x1, . . . , xk〉 of
an arbitrary incoming channel L(p,q) of q. This call returns True if and only if:

• s ∈ p.N−

• 〈x1, . . . , xk〉 conforms to 〈y1, . . . , yk′〉.

In a guarded action 〈label〉 :: 〈guard〉 → 〈statement〉 of a process p, the guard holds on
the variables of p and on calls to rcv. The statement modifies the values of the variables
of p and/or calls to send. If the guard contains a call to rcvs 〈y1, . . . , yk〉, there are three
cases:

• If the guard is evaluated to False, even if the call to rcvs returns True, the call
to rcvs does not modify the state of the incoming links.

• If the guard is evaluated to True (in particular, the call to rcvs returns True)
but p is not activated or does not execute this action, the call to rcvs does not
modify the state of the incoming link L(s,p).

• If the guard is evaluated to True (in particular, the call to rcvs returns True)
and p executes this action, the considered head message 〈x1, . . . , xk〉 sent by some
process q is removed from the corresponding channel L(q,p) (a message cannot be
received several times), the value p is assigned to s if s is a variable, and, ∀i ∈
{1, . . . , k}, the value xi is assigned to yi if yi is a variable.

Time Complexity Unit. In the message passing model, we evaluate time complexity
in terms of time units [Tel00], where the message transmission lasts at most one time unit
and the process execution time is zero. Roughly speaking, the time unit is a measure
according to the slowest messages. Indeed, the execution is normalized such that the
longest message delay (i.e., the transmission of the message followed by its processing at
the receiving process) becomes one time unit.

2.6 Locally Shared Memory Model

The locally shared memory model was first introduced by Dijkstra in [Dij74]. In this
model, processes communicate through a finite set of locally shared variables. A process
can read its variables and the ones of its predecessors, but it can only modify the value
of its own variables. p.N− (or p.N in a bidirectional network) is an input whose value
may change if the network is dynamic. Similarly to the message passing model, a process
is aware of its local topology and of topological changes.

Since there is no message channels, a configuration γi is the tuple γi = (Gi, Vi →
SAlg,⊥). Hence, we simply denote by γi = (Gi, Vi → SAlg). The state γi(p) of process p
is the vector of values of all the variables of p. By abuse of notation, we denote by γi(p).x
the value of variable p.x in configuration γi.
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In a guarded action 〈label〉 :: 〈guard〉 → 〈statement〉 of a process p, the guard holds
on the variables of p and its neighbors. The statement modifies the variables of p.

Time Complexity Units. In this model, we mainly use two different time units to
measure the time complexity of a distributed algorithm. The first one is simply the
number of (activation) steps.

We can also measure the time complexity in terms of (asynchronous) rounds. The
asynchronous rounds were first introduced by Dolev et al. in [DIM97], but we use here
the extended definition of Bui et al. in [BDPV07]. Roughly speaking, the round is a
measure according to the speed of the slowest process.

We first need to define the neutralization of a process p during step γi 7→Alg γi+1. p is
neutralized in γi 7→Alg γi+1 if it is enabled in γi but either p is no more in the system in
the next configuration γi+1 (in a dynamic network), or p is no more enabled in γi+1 but
does not execute an action during step γi 7→Alg γi+1.

The first round of an execution e = (γi)i≥0 is the minimal prefix e′ of e where every
enabled process in configuration γ0 either executes an action or is neutralized. Let γj,
j ≥ 0, be the last configuration of e′. The second round of e is the first round of
e′ = (γi)i≥j, and so on.

2.7 Self-stabilization and Snap-stabilization

In this section, we define fault-tolerant properties for distributed systems. Notice that
self-stabilization and snap-stabilization were defined for static networks. Hence, except
stated otherwise, we consider in this section only static networks.

We first define notions classically used in self-stabilization. A specification SP is a
predicate over sequences of configurations. Let Alg be a distributed algorithm, SP be
a specification, and X, Y ⊆ CAlg be two subsets of configurations.

• X is closed under Alg if and only if ∀γ ∈ X, ∀γ′ ∈ CAlg, γ 7→Alg γ ⇒ γ′ ∈ X.

• Y converges to X under Alg if and only if

∀e = (γi)i≥0 ∈ E0Alg(Y ),∃i ≥ 0, γi ∈ X

• Alg stabilizes from Y to specification SP by X if and only if:

1. Closure: X is closed under Alg.

2. Convergence: Y converges to X under Alg.

3. Correctness: ∀e ∈ E0Alg(X), SP (e).

• The convergence time from Y to X is the maximal time (in terms of time units,
steps, or rounds) to reach a configuration of X in every execution of E0Alg(Y ).
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2.7. Self-stabilization and Snap-stabilization

Self-stabilization [Dij74]. Informally, an algorithm is self-stabilizing if, starting from
an arbitrary configuration, the system converges in finite time to a legitimate configura-
tion from which the specification is satisfied.

An algorithm Alg is self-stabilizing w.r.t. SP , if and only if there exists a non-empty
subset of configurations L ⊆ CAlg such that Alg stabilizes from CAlg (the set of every
possible configuration) to SP by L .

A configuration of L is called legitimate. Otherwise, we say that it is an illegitimate
configuration. The stabilization time of Alg is the convergence time from CAlg to L .

Snap-stabilization [BDPV07]. Snap-stabilization is a variant of self-stabilization en-
suring stronger safety guarantees. Indeed, an algorithm Alg is snap-stabilizing w.r.t. SP
if and only if the specification is satisfied in any execution of Alg, i.e., ∀e ∈ E0Alg, SP (e).
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Chapter 3

Leader Election in Unidirectional Rings
with Homonym Processes

“One Ring to rule them all, One Ring to find them, One Ring to bring them
all and in the darkness bind them.”

— J.R.R. Tolkien, The Fellowship of the Ring
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Chapter 3. Leader Election in Unidirectional Rings with Homonym Processes

3.1 Introduction

In this chapter, we consider the leader election problem, i.e., we want to distinguish
a unique process as the leader. More precisely, we consider the (public) leader election
problem, i.e., every process should eventually know the leader ID.

This problem is fundamental in distributed computing and has been extensively stud-
ied. Hence, we give here only the main results.

In 1980, Angluin [Ang80] showed the impossibility of solving deterministic leader
election in networks of anonymous processes. Notice that this result still holds in the
more restrictive bidirectional ring networks [Lyn96] and can trivially be extended to
unidirectional ring networks.

From this negative result, two main lines of research have been considered: designing
randomized solutions to leader election in anonymous networks, e.g., [XS06, KPP+13],
or deterministic solutions to leader election in identified networks, e.g., [Lan77, CR79,
Pet82].

Recently, the model of homonym processes has been introduced as an intermediate
model between the anonymous networks and the identified networks. As stated in Sec-
tion 2.2, homonym processes have IDs, called here labels, that may be not unique. In
this chapter, we focus on the deterministic leader election in static unidirectional ring
networks with homonym processes.

3.1.1 Related Work

Several recent works [YK89, FKK+04, DP04, DFT14, DP16] studied the leader election
problem in networks with homonym processes.

Yamashita and Kameda study in [YK89] the feasibility of leader election in networks
of arbitrary topology containing homonym processes. They propose a process-terminating
(i.e., every process eventually halts) leader election assuming that processes knows the
size of the network.

In [FKK+04], Flocchini et al. study the weak leader election problem in bidirectional
ring networks of homonym processes. This problem consists in distinguishing at least
one process, if possible, and at most two processes. In this latter case, the two elected
processes must be neighbors. Under the assumption that processes a priori know the
number of processes, n, they show that the process-terminating weak leader election is
possible if and only if the labeling of the ring is asymmetric, i.e., there is no non-trivial
rotational symmetry (non multiple of n) of the labels resulting in the same labeling. They
also propose two process-terminating weak leader election algorithms for asymmetric
labeled rings of n processes, assuming that n is prime and that there is only two different
labels, 0 and 1. The first algorithm assumes a common sense of direction, i.e., every
process is able to distinguish its clockwise neighbor and its anti-clockwise neighbor. The
second algorithm is a generalization of the first one, where the common sens of direction
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3.1. Introduction

is removed. No time complexity is given.

In [DFT14], Delporte et al. consider the leader election problem in bidirectional ring
networks of homonym processes. They propose a necessary and sufficient condition on
the number of distinct labels needed to solve the leader election problem. More precisely,
they prove that there exists a solution to message-terminating (i.e., processes do not
halt but only a finite number of processes are exchanged) leader election problem in
bidirectional rings if and only if the number of labels is strictly greater than the greatest
proper divisor of n. Assuming this latter condition, they give two algorithms. The first
one is message-terminating and does not assume any extra knowledge. On the contrary,
the second algorithm is process-terminating but assumes the processes know n. They
show that their second algorithm is asymptotically optimal in messages (O(n log n)).

In [DP04], Dobrev and Pelc study a generalization of the process-terminating leader
election problem in both unidirectional and bidirectional networks of homonym processes.
They assume that processes a priori know a lower bound m and an upper bound M on
the (unknown) number of processes, n. They propose algorithms that decide whether the
election is possible and perform it, if so. They propose two synchronous algorithms, one
for bidirectional and one for unidirectional rings, that both works in time O(M) using
O(n log n) messages. They also propose an asynchronous algorithm for bidirectional rings
using O(nM) messages and they show that it is optimal. No time complexity is given.

Similarly, in [DP16], Dereniowski and Pelc study a generalization of the process-
terminating leader election problem in arbitrary networks of homonym processes where
processes a priori know an upper bound k on the multiplicity of a given label ` that exists
in the network. Precisely, each process knows that ` is the label of at least one but at
most k processes. They propose a synchronous algorithm that, under these hypotheses,
decide whether the election is possible and achieve it, if so. They show that this algorithm
is asymptotically optimal in time (O(kD+D log(n/D))), where D is the diameter of the
network. No space complexity is given.

3.1.2 Contributions

In this chapter, we study the leader election problem in static unidirectional ring networks
with homonym processes under the message-passing model where, contrary to [FKK+04,
DP04, DFT14], processes know neither the number of processes, n, nor any bounds on
n.

We first show that the message-terminating leader election remains impossible to solve
without any extra hypothesis (Section 3.3.1). Indeed, it is impossible to distinguish two
processes with the same label in a symmetric labeled ring during a synchronous execution.
So, we consider the class A of unidirectional ring networks with an asymmetric labeling.

We then show that the process-terminating leader election is impossible to solve in
a unidirectional asymmetric ring where at least one label is unique (Section 3.3.3). We
denote by U∗ this subclass of ring networks. Notice that U∗ ⊆ A.

Hence, we assume an additional knowledge. We assume that processes know an up-
per bound k on the multiplicity of labels. We denote Kk the class of unidirectional
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rings containing no more than k processes with the same label. Under this hypothesis,
the process-terminating leader election becomes possible in asymmetric rings. More pre-
cisely, it is possible to design process-terminating leader election algorithm for A ∩ Kk.
Notice that we also show the impossibility of message-terminating leader election in Kk
(Section 3.3.1).

Then, we show that the message-terminating leader election in class U∗ ∩ Kk, k ≥ 2,
requires the exchange of at least Ω(kn + n2) bits in the worst case. This lower bound is
also valid for the super class A ∩Kk, k ≥ 2.

In addition to the impossibility results, we propose three process-terminating leader
election algorithms.

The first algorithm Uk (Section 3.4) solves the process-terminating leader election
algorithm in U∗ ∩ Kk. Its time complexity is at most n(k + 2) time units, its message
complexity is O(n2 + kn), and it requires dlog(k + 1)e+ 2b+ 4 bits per process, where b
is the number of bits required to store a label.

Furthermore, we show a lower bound of Ω(kn) time units on the time complexity of
process-terminating leader election algorithms in U∗ ∩ Kk. Hence, Uk is asymptotically
optimal. Notice that this lower bound is also valid for the upper class A ∩Kk.

Then, we propose two process-terminating leader election algorithms, Ak (Section 3.5)
and Bk (Section 3.6), for the more general class A ∩ Kk. Those two algorithms achieve
the classical trade-off between time and space. Ak is asymptotically optimal in time,
with at most (2k + 2)n time units, but it requires 2(k + 1)nb + 2b + 3 bits per process
and at most n2(2k + 1) messages are exchanged during an execution. On the contrary,
Bk requires only 2 dlog ke+ 3b+ 5 bits per process (it is asymptotically optimal), but its
time complexity is O(k2n2) and its message complexity is O(k2n2).

The impossibility results of Section 3.3.1 and Uk (Section 3.4) are published in the
proceedings of the 18th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS 2016) [ADD+16a]. The lower bounds on time complex-
ity (Section 3.3.2), the impossibility results of Section 3.3.3, Ak (Section 3.5), and Bk

(Section 3.6), appears in the proceedings of the 31st International Parallel and Dis-
tributed Processing Symposium (IPDPS 2017) [ADD+17a]. A summary of these results
is published in the proceedings of the 19èmes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications (ALGOTEL 2017) [Dur17].

3.2 Preliminaries

In this section, we detail the context, we introduce the considered specifications of
leader election problem, and we formally define the three aforementioned ring classes.

3.2.1 Context

We consider static unidirectional ring networks with homonym processes in the message-
passing model described in Section 2.5. We denote the n ≥ 2 processes p0, . . . , pn−1.
A process pi can only receive messages from its left neighbor, pi−1, and can only send
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messages to its right neighbor, pi+1. Subscripts are modulo n. Hence, in this chapter, we
simply denote send and rcv the function for sending and receiving messages, respectively.

In this chapter, we are not in a self-stabilizing context, hence we consider only execu-
tions that start in a particular initial configuration, where each process is in a designed
initial state and every communication link is empty.

We consider executions driven by a distributed weakly fair daemon.

3.2.2 Leader Election

We consider two classic definitions of the problem of leader election in the message-
passing model: the message-terminating and the process-terminating leader election. In-
formally, in a process-terminating solution, every process eventually halts, whereas, in a
message-terminating solution, processes do not halt but only a finite number of messages
is exchanged.

Definition 3.1 (Message-terminating Leader Election)

An algorithm Alg solves the message-terminating leader election problem in a ring
network R if every execution e of Alg on R satisfies the following conditions:

1. e is finite.

2. Each process p has a Boolean variable p.isLeader such that, in the terminal
configuration of e, L.isLeader is True for a unique process L (i.e., the leader).

3. Every process p has a variable p.leader such that, in the terminal configuration,
p.leader = L.id, where L satisfies L.isLeader.

Definition 3.2 (Process-terminating Leader Election)

An algorithm Alg solves the process-terminating leader election problem in a ring
network R if it solves the message-terminating leader election in R and if every
execution e of Alg on R satisfies the following additional conditions:

4. For every process p, p.isLeader is initially False and never switched from True
to False: each decision of being the leader is irrevocable. Consequently, there
should be at most one leader in each configuration.

5. Every process p has a Boolean variable p.done, initially False, such that p.done
is eventually True for all p, indicating that p knows that the leader has been
elected. More precisely, once p.done becomes True, it will never become False
again, L.isLeader is equal to True for a unique process L, and p.leader is
permanently set to L.id.

6. Every process p eventually halts, i.e., locally decides its termination, after p.done
becomes True.
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3.2.3 Ring Networks Classes

An algorithm Alg solves the message-terminating (resp. process-terminating) leader
election for the class of ring networks C if it solves the message-terminating (resp.
process-terminating) leader election for every ring network R ∈ C. In particular, Alg
cannot be given any specific information about the network (such as its cardinality or
the actual multiplicity of labels) unless that information holds for all ring networks of C.
Indeed, Alg must work for every R ∈ C without any change whatsoever in its code.

A ring network R of n processes is said to be symmetric if a non-trivial rotation of
the labels results in the same labeling, i.e., there is some integer 0 < d < n such that, for
all i ≥ 0, pi and pi+d have the same label. Otherwise, R is said to be asymmetric.

We consider three classes of ring networks:

• A is the class of all asymmetric ring networks.

• U∗ is the class of all ring networks in which at least one process has a unique label.
By definition, U∗ ⊆ A.

• Kk, with k ≥ 1 a given integer, is the class of all ring networks where no more
than k processes have the same label. Notice that k is an upper bound on the
multiplicity of labels in R ∈ Kk.

3.3 Impossibility Results and Lower Bounds

In this section, we present our impossibility results and lower bounds on the time
complexity and the amount of exchanged information.

3.3.1 Symmetric Rings and Class Kk
Theorem 3.1

There is no algorithm that solves message-terminating leader election in symmetric
rings.

Proof : Let R be a symmetric ring of n ≥ 2 processes. Let 0 < d < n such that, for
all i ≥ 0, pi and pi+d have the same label. Assume by contradiction that Alg is a
message-terminating leader election algorithm forR. Let e = (γj)j≥0 be the synchronous
execution of Alg on R. At every step of e, each pi, i ≥ 0, makes exactly the same
actions as pi+d, and thus, every configuration of e is symmetric; i.e., for all 1 ≤ i ≤ n
and for all configurations γj , j ≥ 0, of e, all variables of pi and pi+d have the same
value. Eventually, a terminal configuration γT is reached. Let p` be the elected leader in
γT ; thus γT (p`).isLeader = True. But γT (p`+d).isLeader also, which contradicts the
uniqueness of the leader in a solution, since p`+d 6= p`.

Class Kk, k ≥ 2, contains symmetric rings, e.g., see Figure 3.1. Hence, we have:
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Figure 3.1 – Examples of symmetric ring networks in Kk.
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Figure 3.2 – Illustration of the proof of Lemma 3.1. In gray, the processes of Rn,k that can
have received information from qkn within t ≥ 0 time units.

Theorem 3.2

For any k ≥ 2, there is no algorithm that solves message-terminating leader election
for Kk.

3.3.2 Lower Bounds on Execution Time for Classes U∗ ∩ Kk
and A ∩Kk, with k ≥ 2

Lemma 3.1

Let k ≥ 2 and Alg be an algorithm that solves the process-terminating leader
election for U∗ ∩Kk. ∀R ∈ K1, the synchronous execution of Alg in R lasts at least
1 + (k − 2)n time units, where n is the number of processes.

Proof : Let k ≥ 2 and Alg be a process-terminating leader election algorithm for U∗ ∩Kk.

Let Rn ∈ K1 be a ring of n processes, noted p0, . . . , pn−1 with distinct labels
`0, . . . , `n−1 respectively, see Figure 3.2a. Since K1 ⊆ U∗∩Kk, Alg is correct for Rn and
so, the synchronous execution e = (γi)i≥0 of Alg on Rn is finite and a process is elected.
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Let T be the execution time of e: within T time units in e, pL.isLeader becomes True
for some 0 ≤ L ≤ n− 1, i.e., pL is the leader in the terminal configuration γT of e.

We now build the ring Rn,k ∈ U∗ ∩ Kk of kn + 1 processes, q0, . . . , qkn, with labels
consisting of the sequence `0, . . . , `n−1 repeated k times, followed by a single label X /∈
{`0, . . . , `n−1}, see Figure 3.2b. Let e′ = (γ′i)i≥0 be the synchronous execution of Alg
on Rn,k. Since Rn,k ∈ U∗ ∩ Kk, Alg is correct on Rn,k so e′ is finite and there is no
configuration along e′ such that two processes declare themselves leader.

By construction, after t ≥ 0 time units, only the processes qi, with i ∈ {0, . . . , t− 1},
can have received information from process qkn of label X, see the gray zone on Fig-
ure 3.2b. Hence, we have the following property on e′:

(∗) For every j ∈ {0, ..., kn− 1}, for every t ≥ 0, if t ≤ j, then the state of qj in γ′t is
identical to the state of pj mod n in γt.

Assume, by contradiction, that T ≤ (k−2)n. Let j1 = (k−2)n+L and j2 = (k−1)n+
L. Since L ∈ {0, ..., n−1}, we have j1, j2 ∈ {0, ..., kn−1}, hence T ≤ j1 < j2. Moreover,
j1 mod n = j2 mod n = L. So, by (∗) the states of qj1 and qj2 in γ′T are identical to
the state of pL in γT : in particular, γ′T (qj1).isLeader = γ′T (qj2).isLeader = True. This
contradicts the fact that Alg is a process-terminating leader election algorithm for Rn,k.
(Bullet 5 of the specification is violated in γ′T , see p. 43.) Hence, the execution time T
of the synchronous execution of Alg in Rn is greater than (k − 2)n.

Since K1 ⊆ U∗ ∩ Kk, follows:

Corollary 3.1

Let k ≥ 2. The time complexity of any algorithm that solves the process-terminating
leader election for U∗ ∩ Kk is Ω(k n) time units, where n is the number of processes.

Furthermore, by definition U∗ ⊆ A, and so:

Corollary 3.2

Let k ≥ 2. The time complexity of any algorithm that solves the process-terminating
leader election for A ∩Kk is Ω(k n) time units, where n is the number of processes.

3.3.3 Classes U∗ and A
Theorem 3.3

There is no algorithm that solves the process-terminating leader election for U∗.

Proof : Suppose Alg is an algorithm for U∗. Let Rn be a ring network of K1 with n
processes. Let e be the synchronous execution of Alg on Rn: as K1 ⊆ U∗, Alg is
correct for Rn and, consequently, e is finite. Let T be the number of steps of e. We can
fix some k ≥ 2 such that 1 + (k − 2)n > T .

Since (U∗ ∩Kk) ⊆ U∗, Alg is correct for U∗ ∩Kk. By Lemma 3.1, T ≥ 1 + (k− 2)n,
a contradiction.

Since by definition U∗ ⊆ A, Theorem 3.3 implies the following theorem.
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Figure 3.3 – Ring networks RI and RJ where m = 7, I = `8, `10, `11, `13, `14, and J =
`8, `10, `12, `13, `14 used in the proof of Theorem 3.5.

Theorem 3.4

There is no algorithm that solves the process-terminating leader election for A.

3.3.4 Lower Bounds on the Amount of Exchanged Information

The algorithm proposed by Peterson [Pet82] to solve leader election in identified ring
networks has message complexity O(n log n) and each message contains Θ(b) bits, i.e.,
the amount of exchanged information is O(b n log n). As commonly done in the literature,
we can assume that b = Θ(log n), so O(b n log n) = O(n log2 n). Then, as the algorithm of
Peterson applies for U∗∩K1, we might expect that there exists a leader election algorithm
for class U∗ ∩ Kk whose required amount of exchanged information is O(k n log2 n).
Theorem 3.5 shows that, when k is fixed, the minimum amount of exchanged bits needed
to solve leader election in the worst case is greater than what we might expect when n is
large.

Theorem 3.5

Let k ≥ 2. For any message-terminating leader election algorithm Alg for U∗∩Kk,
there exists executions of Alg during which Ω(kn + n2) bits are exchanged, where n
is the number of processes.

Proof : Let k ≥ 2. Let Alg be a message-terminating leader election algorithm for U∗∩Kk.
Let m ≥ 2 and let n = 2m. Let `1, . . . , `n be distinct labels.

Let L be the set of non-empty proper subsequences of (`m+1, . . . , `n), i.e., () /∈ L
and (`m+1, . . . , `n) /∈ L. For any I ∈ L, RI is the ring network containing m + |I|
processes, denoted p1, p2, . . . , pm, pm+1, . . . , pm+|I|, whose label sequence is ΛI =
`1, `2, . . . , `m, I. More precisely, in RI , for every i ∈ {1, . . . ,m}, pi.id = `i and for every
j ∈ {1, . . . , |I|}, pm+j .id = I[j] (the jth element of I). The ring network RI for m = 7
and I = `8, `10, `11, `13, `14 is illustrated on Figure 3.3a.

Let R = {RI : I ∈ L}. Notice that |R| = 2m − 2 (since the empty sequence and
{`m+1, . . . , `n} are not in L). Furthermore, every label in RI is unique so RI ∈ U∗∩Kk.
Hence, Alg is correct for every RI ∈ R.
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Figure 3.4 – Ring network RpI#J where m = 7, p = 3, I = `8, `10, `11, `13, `14, and J =
`8, `10, `12, `13, `14 used in the proof of Theorem 3.5.

For every I, J ∈ L, let RI#J be the ring network containing 2m+ |I|+ |J | processes
whose label sequence is ΛIΛJ . RI#J can be obtained from RI and RJ as follows
(we denote by q1, . . . , qm+|J | the processes of RJ to avoid confusion). For some p ∈
{1, . . . ,m− 1}, we obtain RpI#J when we join RI and RJ by removing edges (pp, pp+1)
and (qp, qp+1) and replacing them by edges (pp, qp+1) and (qp, pp+1). Figure 3.4 shows
the ring network RpI#J for p = 3, I = `8, `10, `11, `13, `14, and J = `8, `10, `12, `13, `14
obtained by joining RI (see Figure 3.3a) and RJ (see Figure 3.3b).

Claim 1: For every p ∈ {1, . . . ,m− 1}, if I 6= J , then RpI#J ∈ U
∗ ∩ Kk.

Proof of the claim: No label appears more than twice in RpI#J so RpI#J ∈ Kk. Then,
without loss of generality, assume |I| ≤ |J |. So, there is some `j ∈ J\I and `j is
a unique label in RpI#J . Hence, RpI#J ∈ U

∗. �

For every I ∈ L, let eI be the synchronous execution of Alg on RI . For each
p ∈ {1, . . . ,m}, let σI,p be the stream (sequence) of bits sent by pp to pp+1 during eI .

Claim 2: For any I, J ∈ I and any p ∈ {1, . . . ,m− 1}, if σI,p = σJ,p, then I = J .

Proof of the claim: Let I, J ∈ I and p ∈ {1, . . . ,m− 1}. Assume that σI,p = σJ,p.
Let RpI#J the ring network obtained by joining RI and RJ at the edges (pp, pp+1)

and (qp, qp+1). On Figure 3.4, p = 3. Let epI#J be the synchronous execution of

Alg on RpI#J .

First, we show by induction on the steps of epI#J that ∀x ≥ 1, every process
pi, i ∈ {1, . . . ,m+ |I|} (respectively, qj , j ∈ {1, . . . ,m+ |J |}) sends the same
bits during the xth step of epI#J than in the xth step of eI (respectively, eJ).

Base Case: Alg is a deterministic algorithm and every process pi (respectively,
qj) has the same initial state (in particular, the same ID) in epI#J than in eI
(respectively, eJ). Hence every process pi (respectively, qj) sends the same
bits during the first step of epI#J than during the first step of eI (respectively,
eJ).

Induction Step: Assume that every process pi, i ∈ {1, . . . ,m+ |I|} (respec-
tively, qj , j ∈ {1, . . . ,m+ |J |}) sends the same bits during the xth step of
epI#J than in the xth step of eI (respectively, eJ), x ≥ 1. Consider the

(x+ 1)th step of epI#J .
Every process pi, i ∈ {1, . . . , p} ∪ {p+ 2,m+ |I|}, (respectively, qj , j ∈
{1, . . . , p} ∪ {p+ 2, . . . ,m+ |J |}) has the same predecessor in RpI#J than
in RI (respectively, RJ). By induction hypothesis, this predecessor sends
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the same bits during the xth step of epI#J than during the xth step of eI
(respectively, eJ).
Now, the only processes that do not have the same predecessor in RpI#J than
in RI or RJ are pp+1 and qp+1. By induction hypothesis, their predecessor,
respectively qp and pp, send the same bits during the xth step of respectively
epI#J than during the xth step of respectively eJ and eI . Furthermore, σI,p =
σJ,p so they send the exact same bits.
Hence, every process receives the same bits and so send the same bits (since
the algorithm is deterministic) during the (x+1)th step of epI#J than during

the (x+ 1)th step of eI or eJ .

Hence, the processes cannot distinguish epI#J and eI or eJ . So both the
process that declares itself leader in eI and the one that declares itself leader in
eJ also declare themselves leader in epI#J . Now, assume by contradiction that

I 6= J . By Claim 1, RpI#J ∈ U
∗ ∩ Kk. Since two processes declare themselves

leader in epI#J , we have a contradiction with the correctness of Alg for class
U∗ ∩ Kk. �

The rest of the proof is based on a counting argument, i.e., there are not enough bit
streams to distinguish the rings of R, unless those streams have length Ω(n2).

Let a = m − 2. Recall that a set of cardinality m has 2m subsets including 2m − 2
non-empty proper subsets. The number of bit streams of length at most a is:

a∑
l=1

2l = 2a+1 − 1 = 2m−1 − 1 < 2m − 2

Let p ∈ {1, . . . ,m− 1}. Let Lp = {I ∈ L : |σI,p| ≤ a}. By Claim 2, Lp has cardi-
nality less than 2m − 2, so there exists some I ∈ L that is not a member of Lp, for any
p ∈ {1, . . . ,m− 1}. Hence, Ω(m a) = Ω(n2) bits are exchanged during the synchronous
execution of Alg on RI .

Now, at least one message must be exchanged at each step, so, by Corollary 3.1,
there exists executions of Alg where Ω(kn+ n2) bits are exchanged.

Since U∗ ∩ Kk ⊆ A ∩Kk, follows:

Theorem 3.6

Let k ≥ 2. For any message-terminating leader election algorithm Alg for A∩Kk,
there exists executions of Alg during which Ω(kn + n2) bits are exchanged, where n
is the number of processes.

3.4 Algorithm Uk of Leader Election in U∗ ∩ Kk
In this section, we present a process-terminating leader election algorithm Uk for class

U∗ ∩ Kk, for any k ≥ 1, see Algorithm 1.

49



Chapter 3. Leader Election in Unidirectional Rings with Homonym Processes

Algorithm 1 – Actions of Process p in Algorithm Uk.

Inputs.

• p.id ∈ id

Variables.

• p.init ∈ B = {True,False}, initially
True

• p.active ∈ B, initially True

• p.count ∈ {0, . . . , k + 1}, initially 0

• p.leader ∈ id

• p.isLeader ∈ B, initially False

• p.done ∈ B, initially False

Actions.

A1 :: p.init → p.init := False
send 〈p.id, 0〉

A2 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x 6= p.id → send 〈x, c〉
∧ (p.count = 0 ∨ c > p.count)

A3 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x > p.id → send 〈x, c〉
∧ c = p.count ∧ c ≥ 1

A4 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x = p.id → p.count := c+ 1
∧ c = p.count ∧ c ≤ k − 1 send 〈x, c+ 1〉

(Deactivation)
A5 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x 6= p.id → p.active := False

∧ c < p.count send 〈x, c〉
A6 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x < p.id → p.active := False

∧ c = p.count ∧ c ≥ 1 send 〈x, c〉

(Passive Processes)
A7 :: ¬p.init ∧ ¬p.active ∧ rcv 〈x, c〉 ∧ x 6= p.id ∧ c ≤ k → send 〈x, c〉
A8 :: ¬p.init ∧ ¬p.active ∧ rcv 〈x, c〉 ∧ x = p.id → (nothing)

(Ending Phase)
A9 :: ¬p.init ∧ p.active ∧ rcv 〈x, k〉 ∧ x = p.id → p.isLeader := True

∧ p.count = k p.leader := p.id
p.done := True
p.count := k + 1
send 〈x, k + 1〉

A10 :: ¬p.init ∧ ¬p.active ∧ rcv 〈x, k + 1〉 → p.leader := x
p.done := True
send 〈x, k + 1〉
(halt)

A11 :: ¬p.init ∧ p.active ∧ rcv 〈x, k + 1〉 ∧ x = p.id → (halt)
∧ p.count = k + 1
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3.4.1 Overview of Uk

Uk elects the process of minimum unique label to be the leader, namely the process L such
that L.id = min {p.id : p ∈ V ∧mlty(p.id) = 1}. In Uk, each process p has the following
variables.

1. p.id ∈ id, (constant) input of unspecified label type, the label of p.

2. p.init, Boolean, initially True.

3. p.active, Boolean, which indicates that p is active. If ¬p.active, we say p is passive.
Initially, all processes are active, and when Uk is done, the leader is the only active
process. A passive process never becomes active.

4. p.count, an integer in the range 0 . . . k + 1. Initially, p.count = 0. p.count will give
to p a rough estimate of the predominance of its label in the ring.

5. p.leader, of label type. When Uk is done, p.leader = L.id.

6. p.isLeader, Boolean, initially False, follows the problem specification: eventually,
L.isLeader becomes True and remains True, while, for all p 6= L, p.isLeader
remains False for the entire execution.

7. p.done, Boolean, initially False, follows the problem specification: eventually,
p.done = True for all p. p.done means that p knows a leader has been elected;
once true, it will never become false.

Uk uses only one kind of message. Each message is the forwarding of a token which
is generated at the initialization of the algorithm, and is of the form 〈x, c〉, where x is
the label of the originating process, and c is a counter, an integer in the range 0 . . . k+ 1,
initially zero.

The explanation below is illustrated by the example in Figure 3.5. The fundamental
idea of Uk is that a process becomes passive, i.e., is no more candidate for the election,
if it receives a message that proves its label is not unique or is not the smallest unique
label.

Counter Increments. Initially, every process initiates a token with its own label and
counter zero (see (a)). No tokens are initiated afterwards. The token continuously moves
around the ring – every time it is forwarded, its counter and the local counter of the
process are incremented if the forwarding process has the same label as the token (e.g.,
Step (a) 7→(b)). Thus, if the message 〈x, c〉 is in a channel, that token was initiated by
a process whose label is x, and has been forwarded c times by processes whose labels
are also x. The token could also have been forwarded any number of times by processes
with labels which are not x. Thus, the counter in a message is a rough estimate of the
predominance of its label in the ring.
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Figure 3.5 – Example of execution of Uk where k = 3. The counter of a process is in the white
bubble next to the corresponding node. Gray nodes are passive. p.isLeader = True if there is
a star next to the node. The black bubble contains the elected label, p.leader.

Non-unique Label Elimination. If a process p receives a message whose counter is
less than p.count, and p.count ≥ 1, this proves its label is not unique since its counter
grows faster than the one of another label. In this case, p executes A5-action and becomes
passive (e.g., Step (b)7→(c)).

Since the counter in the message initiated by L is never incremented, except by L
itself, every process whose label is not unique becomes passive during the first traversal
of 〈L.id, 0〉.

Non-lowest Unique Label Elimination. Similarly, if a process p has a unique label
but not the smallest one, it will become passive executing A6-action when p receives a
message with the same non-zero counter but a label lower than p.id (e.g., Step (d)7→(e)).

This happens at the latest when the process receives the message 〈L.id, 1〉, i.e., before
the second time L receives its own token. So, after the token of L has made two traversals
of the ring, it is the only surviving token (the others are consumed by A8-action) and
every process but L is passive.

Termination Detection. The execution continues until the leader L has seen its own
label return to it k times, otherwise L cannot be sure that what it has seen is not part
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of a larger ring instead of several rounds of a small ring. Then, L designates itself as
leader by A9-action (see Step (f)7→(g)) and its token does a last traversal of the ring to
inform the other processes of its election (e.g., Step (g) 7→(h)). The execution ends when
L receives its token after k + 2 traversals (see (i)).

3.4.2 Correctness and Complexity Study

To prove the correctness of Uk (Theorem 3.7), we first prove some results on the counters
of the messages (Lemma 3.2). Then, Lemmas 3.3-3.5 prove the properties of the different
phases of Uk (Lemma 3.7). Finally, Theorem 3.8 proves its complexity.

In the following proofs, we write #hop(m) for the number of hops, i.e., how many
times the token has been received, made so far by the token associated to the message
m. Notice that #hop(m) is always of the form an + b where a ≥ 0 is the number of
complete traversal realized by m and 0 ≤ b < n is the shift of the position of m on the
ring compared to the position of the initiator of m.

Lemma 3.2

Let γ 7→ γ′ be a step. Suppose a message 〈x, c〉 such that #hop(〈x, c〉) = an + b in
γ with a ≥ 0 and 0 ≤ b < n is sent in γ 7→ γ′. Then:

a). c ≥ a,

b). if x is a unique label, then c = a, and

c). if x is a not a unique label and a ≥ 1, then c > a.

Proof : Let p be the process which originated the token currently carried by the message
m.

The token has made a complete traversals of the ring, and has visited p a times,
hence its counter has been incremented at least a times. This proves (a).

If p is the only process with label x, then the counter has not otherwise been incre-
mented, and we have (b).

Suppose x is not a unique label, and a ≥ 1. There are at least two processes with
ID x. The token has made at least a full traversals, and thus has been sent by processes
of ID x at least 2a times. Starting at zero, c has been incremented at least 2a times,
hence c ≥ 2a > a. We have (c).

For the next lemma, we recall that a process can become passive only by executing
A5 or A6-action.

Lemma 3.3

L never becomes passive.

Proof : By contradiction, assume L becomes passive during some step γ 7→ γ′. Then L
executes A5 or A6-action, receiving the message 〈x, c〉 for some x 6= L.id. Since the
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label of L is unique, the token it initiated is still circulating in the ring in γ (it cannot
be discarded except by L if it becomes passive). Moreover, since x 6= L.id, #hop(〈x, c〉)
is not a multiple of n in γ. Let #hop(〈x, c〉) = an+ b in γ, where a ≥ 0 and 1 ≤ b < n.
Since the links are FIFO, the token initiated by L has made a full circuits during the
prefix of execution leading to γ, and γ(L).count = a. We now consider two cases.

• Case 1: x is a unique label. By Lemma 3.2(b), c = a = L.count. Thus, L cannot
execute A5-action; since L.id < x, L cannot execute A6-action. Contradiction.

• Case 2: x is not unique. N.b. L.count = a in γ. If a = 0, then L is not enabled
to execute either action. If a ≥ 1, then c > a by Lemma 3.2(c), contradiction.

We define an L-tour as follows. The first L-tour of an execution e = (γi)i≥0 is the
minimum prefix of execution that terminates by a step γj 7→ γj+1 where L receives (and
treats) a message tagged with its own label for the first time. The second L-tour is
the first L-tour of the execution suffix e′ = (γi)i≥j starting in γj, and so forth. From
Lemma 3.3, the code of the algorithm, and the fact that the label of L is unique, we
have:

Corollary 3.3

Any execution contains exactly k + 2 complete L-tours.

Lemma 3.4

For any process p, if p 6= L and p.id is a unique label, then p becomes passive within
the first two L-tours.

Proof : Let x = p.id. By definition of L, x > L.id. Let d = ‖L, p‖. Suppose by contra-
diction that x does not become passive during the first two L-tours (which are defined,
Corollary 3.3). The token t initiated by L is received by p during the first (resp. second)
L-tour while #hop(t) = d (resp. #hop(t) = n + d). p receives the token it initiates
exactly once before receiving t = 〈x, c〉 in γ 7→ γ′ during the second L-tour. So, as x is
unique, we have p.count = 1 in γ. Now, c = 1 in γ (Lemma 3.2(a)). Thus, p becomes
passive by executing A6-action in γ 7→ γ′, contradiction.

Lemma 3.5

If z is a non-unique label, then all processes of label z become passive within the first
two L-tours.

Proof : Let m ≥ 2 be the multiplicity of z, and let P[z] = {x1, x2, . . . xm} be the sequence
of processes of label z in clockwise order from L.

Claim 1: Any process xi with i 6= 1 receives the token initiated by xi−1 of the form
〈z, 0〉 during the first L-tour before receiving 〈L.id, 0〉.

Proof of the claim: L is not between xi−1 and xi, and no process between xi−1 and
xi can stop the message 〈z, 0〉 initiated by xi−1. So, xi will receive 〈z, 0〉 before
receiving 〈L.id, 0〉 during the first L-tour. �

Claim 2: x1 receives 〈z, 0〉 and then 〈z, 1〉 during the first two L-tours, both of them
before receiving 〈L.id, 1〉.
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Proof of the claim: No process between xm and x1 can stop the message 〈z, 0〉 ini-
tiated by xm. Then, by Claim 1, xm receives a message 〈z, 0〉, while satisfying
xm.count = 0. So, xm sends 〈z, 1〉 after 〈z, 0〉, but before receiving 〈L.id, 0〉.
Again, no process between xm and x1 can stop that message. So, x1 receives
〈z, 0〉 and 〈z, 1〉 before receiving 〈L.id, 1〉, i.e., during the first two L-tours. �

Claim 3: Every process xi with i 6= 1 receives 〈z, 1〉 during the first two L-tours before
receiving 〈L.id, 1〉.

Proof of the claim: The first time xi−1 receives 〈z, 0〉 is before xi−1 receives 〈L.id, 1〉
in the first two L-tours, by Claims 1 and 2. In that step, xi−1 sends 〈z, 1〉. No
process between xi−1 and xi can stop that message. So, xi receives 〈z, 1〉 during
the first two L-tours before receiving 〈L.id, 1〉. �

By Claims 2 and 3, each xi receives the message 〈z, 1〉 during the first two L-tours
before receiving 〈L.id, 1〉. Consider the first time xi receives such a message. Then,
xi.count = 1. Either xi is already passive and we are done, or xi.count is set to 2.
Hence, when receiving 〈L.id, 1〉 during the first two L-tours, xi executes A5-action and
we are done.

Lemma 3.6

For any process p, if p 6= L, then p never executes A9-action.

Proof : Assume, by the contradiction, that some process p 6= L eventually executes A9-
action. Let x = p.id. Then, p successively receives 〈x, 0〉, . . . , 〈x, k〉 so that p.active ∧
p.count = k holds when p receives 〈x, k〉. Notice also that p also receives 〈L.id, 0〉 and
〈L.id, 1〉, by Corollary 3.3.

First, p does not receive 〈L.id, 0〉 after 〈x, k〉, because otherwise p received at least
k+ 1 messages tagged with label x during the first L-tour, which is impossible since the
multiplicity of x is at most k and the links are FIFO.

Assume now that p receives 〈L.id, 0〉 before 〈x, k〉 but after 〈x, 0〉. Then, p is de-
activated by A5-action when it receives 〈L.id, 0〉 because p.count > 0 and so before
receiving 〈x, k〉, a contradiction.

So, p receives 〈L.id, 0〉 before 〈x, 0〉. Similarly, p does not receive 〈L.id, 1〉 after 〈x, k〉,
because otherwise p received at least k+ 1 messages tagged with label x during the first
L-tour. Then, p does not receive 〈L.id, 1〉 before 〈x, 0〉 because otherwise p does not
receive any message tagged with x during the first L-tour, now it receives at least 〈x, 0〉
during the first L-tour from either its first predecessor with same label, or itself (if x is
unique in the ring).

If p receives 〈L.id, 1〉 before 〈x, 1〉, then x is unique in the ring and when p receives
〈L.id, 1〉, p is deactivated by A6-action, and so before receiving 〈x, k〉, a contradiction.

Finally, if k > 1 and if p receives 〈L.id, 1〉 after 〈x, 1〉 but before 〈x, k〉, then p is
deactivated by A5-action when it receives 〈L.id, 1〉, because 1 < p.count ≤ k. Hence,
again, p is deactivated before receiving 〈x, k〉, a contradiction.
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Lemma 3.7

In any execution of Uk:

a). For every process p 6= L, p.active becomes False within the first two L-tours.

b). For every process p 6= L, p never executes A9-action.

c). L executes A9-action after exactly k + 1 L-tours. In this action L.leader := L,
L.isLeader := True, and L.done := True.

d). For every process p 6= L is a process, p executes A10-action during the (k+2)nd

L-tour. In this action p.leader := L and p.done := True.

e). L executes A11-action after exactly k+ 2 L-tours, and that is the last action of
the execution.

Proof : Part (a) follows from Lemmas 3.4 and 3.5.

Part (b) is Lemma 3.6.

Parts (c)–(e) follow from Corollary 3.3. The token initialized by L circles the ring
k+ 2 times, each time incrementing L.count once. At the end of the (k+ 1)st traversal,
L executes A9-action, electing itself to be the leader. The message 〈L.id, k + 1〉 then
circles the ring, informing all other processes that L has been elected. Those latter
processes halt after forwarding this message. When that final message reaches L, the
execution is over.

The main theorem of this subsection, Theorem 3.7 below, follows immediately from
Lemma 3.7.

Theorem 3.7

Uk solves the process-terminating leader election for U∗∩Kk, for every given k ≥ 1.

Theorem 3.8

Uk has time complexity at most n(k + 2), has message complexity O (n2 + kn), and
requires dlog(k + 1)e+ 2b+ 4 bits in each process.

Proof : Time complexity follows from Lemma 3.7. Space complexity follows from the defi-
nition of Uk.

Consider now the message complexity of Uk. All tokens, except the one initiated
by L, vanish during the three first L-tours, by Lemma 3.7(a). Consequently, only the
token initiated by L circulates during the k−1 last L-tours. Hence, we obtain a message
complexity of O

(
n2 + kn

)
(O
(
n2
)

for messages transmitted during the 3 first L-tours,
and kn, with k ≤ n for the unique token circulating during the k − 1 last L-tours).
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3.5 Algorithm Ak of Leader Election in A ∩Kk
We now give a solution, Algorithm Ak, to the process-terminating leader election for

the class A ∩ Kk, for fixed k ≥ 1. Ak is based on the following observation. Consider
a ring R of A ∩ Kk with n processes. As R is asymmetric, any two processes in R can
be distinguished by examining all labels. So, using the lexicographical order, a process
can be elected as the leader by examining all labels. Initially, any process p of R does
not know the labels of R, except its own. But, if each process broadcasts its own label
clockwise, then any process can learn the labels of all other processes from messages it
receives from its left neighbor. In the following, we show that, after examining finitely
many labels, a process can decide that it learned (at least) all labels of R and so can
determine whether it is the leader.

3.5.1 Overview of Ak

Sequences of Labels. Given any process p of R, we define LSeq(p), to be the infinite
sequence of labels of processes, starting at p and continuing counter-clockwise forever:

LSeq(pi) = pi.id, pi−1.id, pi−2.id . . . , where subscripts are modulo n.

For example, if the ring has three processes where p0.id = p1.id = A and p2.id = B, then
LSeq(p0) = ABAABA . . .

For any sequence of labels σ, we define σt as the prefix of σ of length t, and σ[i], for
all i ≥ 1, as the ith element (starting from the left) of σ.

If σ is an infinite sequence (resp. a finite sequence of length λ), we say that π = σm is
a repeating prefix of σ if σ[i] = π[1 + (i− 1) mod m] for all i ≥ 1 (resp. for all 1 ≤ i ≤ λ).
Informally, if σ is infinite, then σ is the concatenation πππ . . . of infinitely many copies
of π, otherwise σ is the truncation at length λ of the infinite sequence πππ . . .

Let srp(σ) be the repeating prefix of σ of minimum length.

As R is asymmetric, we have:

Lemma 3.8

Let p be a process and m ∈ {2n, . . . ,∞}. The length of srp(LSeq(p)m) is n.

Proof : Let s be the smallest length of any repeating prefix of σ. LSeqn(p) is a repeating
prefix of σ and thus s is defined, and s ≤ n.

If s < n, then rotation by s is a non-trivial rotational symmetry of R, contradicting
the hypothesis that R is asymmetric.

The next lemma shows that any process p can fully determine R, i.e., p can determine
n, as well as the labeling of R, from any prefix of LSeq(p), provided that prefix contains
at least 2k + 1 copies of any label.
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Lemma 3.9

Let p be a process, m > 0 and ` be a label. If LSeq(p)m contains at least 2k + 1
copies of `, then R is fully determined by LSeq(p)m.

Proof : We note π = LSeq(p)m and assume that it contains at least 2k + 1 copies of `.
First, m > 2n. Indeed, there are at most k copies of ` in any subsequence of LSeq(p) of
length no more than n, by definition of Kk. So, at most 2k copies of ` in any subsequence
of length no more than 2n. Then, by Lemma 3.8, srp(π) = LSeq(p)n. Hence, one can
compute srp(π): its length provides n and its contents is exactly the counter-clockwise
sequence of labels in R, starting from p.

True Leader. We define the true leader of R as the process L such that LSeq(L)n is
a Lyndon word [Lyn54], i.e., a non-empty string that is strictly smaller in lexicographic
order than all of its rotations. In the following, we note LW (σ) the rotation of the
sequence σ which is a Lyndon word.

In Algorithm Ak (see Algorithm 2), the true leader will be elected. Precisely, in Ak,
a process p uses a variable p.string to save a prefix of LSeq(p) at any step: p.string is
initially empty and consists of all the labels that p has received during the execution of
Ak so far. Lemma 3.9 shows how p can determine the label of the true leader. Indeed,
if p.string contains at least 2k + 1 copies of some label, srp(p.string) = LSeq(p)n. If
srp(p.string) = LW (srp(p.string)), then p is the true leader. Otherwise, the label of the
true leader is the first label of LW (srp(p.string)), i.e., LW (srp(p.string))[1].

In Ak, we use the function Leader(σ) which returns True if the sequence σ contains
at least 2k + 1 copies of some label and srp(σ) = LW (srp(σ)), False otherwise.

Overview of Ak. Each process p has six variables. As defined in the specification, p
has the variables p.id and p.leader (of label type), and p.done and p.isLeader (Booleans,
initially False). p also has a Boolean variable p.init, initially True, and the variable
p.string, as defined above. There are two kinds of messages: 〈x〉 where x is of label type
and 〈Finish〉.

Ak consists of two phases, which we call the string growth phase and the finishing
phase.

During the string growth phase, each process p builds a prefix of LSeq(p) in p.string.
First, p initiates a token containing its label, and also initializes p.string to p.id (A1-
action). The token moves around the ring repeatedly until the end of the string growth
phase. When p receives a label, p executes A2-action to append it to its string, and sends
it to its right neighbor. Thus, each process keeps growing p.string.

Eventually, L receives a label x such that L.string • x is long enough for L to
determine that it is the leader, see Lemma 3.9 and the definition of function Leader.
In this case, L executes A3-action: L appends L.string with x, ends the string growth
phase, initiates the finishing phase by electing itself as leader, and sends the message
〈Finish〉 to its right neighbor. The message 〈Finish〉 traverses the ring, informing all
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Algorithm 2 – Actions of Process p in Algorithm Ak.

Inputs.

• p.id ∈ id

Variables.

• p.init ∈ B = {True,False}, initially
True

• p.string, a sequence of labels, initially
empty

• p.leader ∈ id

• p.isLeader ∈ B, initially False

• p.done ∈ B, initially False

Actions.

A1 :: p.init → p.string := p.id
p.init := False
send 〈p.id〉

A2 :: ¬p.init ∧ rcv 〈x〉 ∧ ¬Leader(p.string • x) → p.string := p.string • x
send 〈x〉

A3 :: ¬p.init ∧ rcv 〈x〉 ∧ Leader(p.string • x) → p.string := p.string • x
∧ ¬p.isLeader p.isLeader := True

p.leader := p.id
p.done := True
send 〈Finish〉

A4 :: ¬p.init ∧ rcv 〈Finish〉 ∧ ¬p.isLeader → p.leader := LW (srp(p.string))[1]
p.done := True
send 〈Finish〉
(halt)

A5 :: ¬p.init ∧ rcv 〈x〉 ∧ p.isLeader → (nothing)

A6 :: ¬p.init ∧ rcv 〈Finish〉 ∧ p.isLeader → (halt)

processes that the election is over. As each process p receives the message (A4-action), it
knows that a leader has been elected, can determine its label, LW (srp(p.string))[1], and
then halts. Meanwhile, L consumes every token (A5-action). When 〈Finish〉 returns to
L, it executes A6-action and halts, concluding the execution of Ak.

3.5.2 Correctness and Complexity Study

Theorem 3.9

Ak solves the process-terminating leader election for A∩Kk, for every given k ≥ 1.

Proof : Let M = max {mlty(`) : ` is a label in R} and m = d(2k + 1)/Men. After receiv-
ing at most m messages containing labels (the messages cannot be discarded before the
election of a leader, A5-action), by Lemma 3.9, every process will know R completely.
Hence, by definition, L can determine that it is the true leader. As soon as L realizes
that it is the leader, it will execute A3-action, sending the message 〈Finish〉 around the
ring.

Every process but L will receive the message 〈Finish〉 and execute A4-action, which
will be its final action. Finally L executes A6-action, ending the execution. So Ak solves
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the process-terminating leader election for A ∩Kk.

Theorem 3.10

Ak has time complexity at most (2k+2)n, has message complexity at most n2(2k+1),
and requires at most (2k + 1)nb+ 2b+ 3 bits in each process.

Proof : Let M = max {mlty(`) : ` is a label in R} and m = d(2k + 1)/Men. After at most
m time units, L can determine that it is the true leader and send a message 〈Finish〉.
In n additional time units, 〈Finish〉 traverses the whole ring and comes back to L to
conclude the execution. In the worst case, there are no duplicate labels, i.e., M = 1.
Hence, the time complexity of Ak is at most (2k + 2)n time units.

When the execution halts, all sent messages have been received. So, the number of
message sendings is equal to the number of message receptions. Each token initiated
at the beginning of the growing phase circulates in the ring until being consumed by L
after it realizes that it is the true leader. Similarly, 〈Finish〉 traverses the ring once and
stopped at L. Hence, each process receives at most as many messages as L. L receives
2k + 1 messages with the same label x to detect that it is the true leader (A3-action).
When L becomes leader, the received token 〈x〉 is consumed and L has received messages
containing other labels (at most n − 1 different labels) at most 2k times each. Then,
L receives and consumes all other tokens (at most n − 1) before receiving 〈Finish〉.
Overall, L receives at most n(2k+ 1) + 1 messages and so, the message complexity is at
most n2(2k + 1) + n.

From the previous discussion, the length of L.string is bounded by 2kn+1. If p 6= L,
then p.string continues to grow after L executes A3-action until p executes A4-action
by receiving the message 〈Finish〉. Now, the FIFO property ensures that p.string is
appended at most n − 1 times more than L.string due to the remaining tokens. Thus
the length of p.string is always less than (2k+ 1)n. So, the space complexity is at most
(2k + 1)nb+ 2b+ 3 bits per process.

3.6 Algorithm Bk of Leader Election in A ∩Kk
For any k ≥ 1, we now give another leader election algorithm, Bk, for a ring R in

the class A ∩ Kk. The space complexity of Bk is smaller than that of Ak, but its time
complexity is greater. See Algorithm 3 for its code and Figure 3.6 for its state diagram.

3.6.1 Overview of Bk

Like Ak, Bk elects the true leader of R, namely, the process L such that LSeq(L)n is a
Lyndon word, i.e., LSeq(L)n is minimum among the sequences LSeq(q)n of all processes
q, where sequences are compared using lexicographical ordering.

The processes that are (still) competing to be the leader are said to be active. The
other processes are said to be passive. Initially, the set of active processes contains all
processes: Act0 = {p0, ..., pn−1}. An execution of Bk consists of phases where processes
are deactivated, i.e., become passive. At the end of a given phase i ≥ 1, the set of active
processes is given by: Acti = {p ∈ R : LSeq(p)i = LSeq(L)i}, see Figure 3.7. During
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Algorithm 3 – Actions of Process p in Algorithm Bk.

Inputs.

• p.id ∈ id

Variables.

• p.state ∈ {Init,Compute,Passive,
Shift,Win,Halt}, initially Init

• p.guest ∈ id

• p.inner ∈ {1, . . . , k}, initially 1

• p.outer ∈ {1, . . . , k}, initially 1

• p.leader ∈ id

• p.isLeader ∈ B = {True,False}, ini-
tially False

• p.done ∈ B, initially False

Actions.

A1 :: p.state = Init → p.state := Compute
p.guest := p.id
send 〈p.guest〉

(Computation During a Phase)
A2 :: p.state = Compute ∧ rcv 〈x〉 ∧ x > p.guest → (nothing)

A3 :: p.state = Compute ∧ rcv 〈x〉 ∧ x = p.guest → p.inner + +
∧ p.inner < k send 〈x〉

A4 :: p.state = Compute ∧ rcv 〈x〉 ∧ x < p.guest → p.state := Passive
send 〈x〉

(Phase Switching)
A5 :: p.state = Compute ∧ rcv 〈x〉 ∧ x = p.guest → p.state := Shift

∧ p.inner = k send 〈Phase Shift, p.guest〉
A6 :: p.state = Shift ∧ rcv 〈Phase Shift, x〉 → p.state := Compute

∧ (x 6= p.id ∨ p.outer < k) if p.id = x then p.outer + +
p.guest := x
p.inner := 1
send 〈p.guest〉

(Passive Processes)
A7 :: p.state = Passive ∧ rcv 〈x〉 → send 〈x〉
A8 :: p.state = Passive ∧ rcv 〈Phase Shift, x〉 → send 〈Phase Shift, p.guest〉

p.guest := x

(Ending Phase)
A9 :: p.state = Shift ∧ rcv 〈Phase Shift, x〉 → p.state := Win

∧ x = p.id ∧ p.outer = k p.isLeader := True
p.leader := p.id
p.guest := p.id
send 〈Finish, p.id〉

A10 :: p.state = Passive ∧ rcv 〈Finish, x〉 → p.state := Halt
p.leader := x
p.done := True
send 〈Finish, x〉
(halt)

A11 :: p.state = Win ∧ rcv 〈Finish, x〉 → p.state := Halt
p.done := True
(halt)
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Figure 3.6 – State diagram of Bk.
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Figure 3.7 – Extracts from an example of execution of Bk where k = 3, showing the active (in
white) and passive (in gray) processes at the beginning of each phase. The guest of a process
is in the white bubble next to the corresponding node.

phase i ≥ 1, a process q is removed from Acti, when LSeq(q)[i] > LSeq(L)[i]; more
precisely, when q realizes that some process p ∈ Acti−1 satisfies LSeq(p)[i] < LSeq(q)[i].
When i ≥ n, Acti is reduced to {L}, since R is asymmetric. Using k, Bk is able to detect
that at least n phases have been done, and so to terminate.

As defined in the specification, we use at each process p the constant p.id and the
variables p.leader (of label type), p.done and p.isLeader (Booleans, initially False).
Each process p also maintains a variable p.state ∈ {Init, Compute, Shift, Passive,
Win, Halt}, initially equals to Init. A passive process is in state Passive; other states
are used by (still) active processes; state Halt is the last state for every process.

Three kinds of message are exchanged: 〈x〉 is used during the computation of a phase,
〈Phase Shift, x〉 is used to notify that a phase is over, and 〈Finish, x〉 is used during
the ending phase, where x is of label type. Intuitively, we say that a process is in its ith

phase, with i ≥ 1, if it received (i− 1) 〈Phase Shift, 〉 messages.

Phase Computation. The goal of the ith phase is to compute Acti, given Acti−1,
namely to deactivate each active process p such that LSeq(p)[i] > LSeq(L)[i]. To that
purpose, we introduce, at each process p, a variable p.guest, of label type, such that
p.guest = LSeq(p)[i]. (How p.guest is maintained in each phase will be explained later.)
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During phase i ≥ 1, the value p.guest of every active process p circulates among active
processes: at the beginning of the phase, every active process sends its current guest to its
right neighbor (A1-action for the first phase, A6-action for other phases). Since passive
processes are no more candidate, they simply forward the message (A7-action). When an
active process p receives a label x greater than p.guest, it discards this value (A2-action),
since x > p.guest ≥ LSeq(L)[i]. Conversely, when p is active and receives a label x lower
than p.guest, it turns to be passive, executing A4-action (nevertheless, p forwards x).

A process p, which is (still) active, can end the computation of its phase i once it has
considered the guest value of every other process that are active all along phase i (i.e.,
processes in Acti−1 that did not become passive during phase i). Such a process p detects
the end of the current phase when it has seen the value p.guest (k + 1) times. To that
goal, we use the counter variable p.inner, which is initialized to 1 at the beginning of
each phase (initialization and A6-action) and incremented each time p receives the value
p.guest while being active (A3-action) (once a process is passive the variable inner is
meaningless). So, the current phase ends for an active process p when it receives p.guest
while p.inner was already equal to k (A5-action).

Phase Switching. We now explain how p.guest is maintained at each phase. Initially,
p.guest is set to p.id and phase 1 starts for p (A1-action). Next, the value of p.guest for
every p is updated when switching to the next phase.

First, note that it is mandatory that every active process updates its guest variable
when entering a new phase, i.e., after detecting the end of the previous phase, so that the
labels that circulate during the computation of the phase actually represent LSeq(p)[i]
for process p ∈ Acti−1. Now, FIFO links allow to enforce a barrier synchronization as
follows.

At the end of phase i ≥ 1, Acti is computed, and every still active process p has the
same label prefix of length i, LSeq(p)i, hence the same value for p.guest = LSeq(p)[i].
As a consequence, they are all able to detect the end of phase i. So, they switch their
state from Compute to Shift and signal the end of the phase by sending a message
〈Phase Shift, p.guest〉 (A5-action).

Messages 〈Phase Shift, 〉 circulate in the ring, through passive processes (A7-
action) until reaching another (or possibly the same) active process: when a process
p (being passive or active) receives 〈Phase Shift, x〉:

1. it switches from phase i to (i+ 1) by adopting x as new guest value, and

2. if p is passive, it sends 〈Phase Shift, y〉 where y was its previous guest value;
otherwise, the shifting process is done and so p switches p.state from Shift to
Compute or Win and starts a new phase (A6-action or A9-action).

As a result, all guest values have eventually shifted by one process on the right for the
next phase.

Note that, due to FIFO links and the fact that active processes switch to state Shift
between two successive phases, phases cannot overlap, i.e., when a label x is considered
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in phase i, in state Compute, x is the guest of some process q which is active in phase
i, such that LSeq(q)[i] = x.

How Many Phases? Phase switching stops for an active process p once its guest took
the value p.id (k + 1) times. Indeed, when p.guest is updated for the (k + 1)th times by
p.id, it is guaranteed that the number of phases executed by the algorithm is greater or
equal to n, because p.guest = LSeq(p)[i] and there is no more than k processes with the
same value p.id. In this case, p is the true leader and every other process q is passive.

Again, to detect this, we use at each process p a counter called p.outer. It is initially set
to 1 and incremented by each active process at each phase switching (A6-action). When
p.outer reaches the value k + 1 (or equivalently when p receives p.id while p.outer = k,
see A9-action), p declares itself as the leader and initiates the final phase: it sends a
message 〈Finish, p.id〉; each other process successively receives the message, saves the
label in the message in its leader variable, forwards the message, and then halts. Once
the message reaches the leader (p) again, it also halts.

3.6.2 Correctness and Complexity Analysis

To prove the correctness of Bk (Theorem 3.11), we first establish that phases are causally
well-defined (see Observation 3.1), e.g., they do not overlap. Then, Lemmas 3.10-3.15
prove the invariant of the algorithm, by induction on the phase number. Finally, Theo-
rem 3.12 proves its complexity.

First, a process p is in phase i ≥ 0 if it set i times its variable p.guest. A barrier
synchronization is achieved between each phase using messages 〈Phase Shift, 〉. Hence
we have the following observation:

Observation 3.1

Let i ≥ 1. A message received in phase i has been sent in phase i (it was actually
initiated in phase i). Conversely, if a message has been sent in phase i, it can only be
received in phase i.

Proof : First, we prove some preliminary result.

Claim 1: Between two setting of p.guest, each process p sends and receives at least one
message.

Proof of the claim: A process p can only set p.guest executing A1, A6, A8, or
A9-action. Furthermore, A1-action cannot be executed several times. Assume
p sets p.guest in step γi 7→ γi+1 and then in step γj 7→ γj+1. So, p executes
A6, A8, or A9-action in γj 7→ γj+1. Now, if p executes A8-action, it receives
a message 〈Phase Shift, 〉 and sends 〈Phase Shift, p.guest〉 before updating
p.guest during step γj 7→ γj+1. Similarly, if p executes A6 or A9-action, it
receives a message 〈Phase Shift, 〉 in step γj 7→ γj+1 before updating p.guest.
Moreover, it necessarily executes A5-action beforehand, and so sends a message
〈Phase Shift, p.guest〉. �

Then, assume by contradiction that some process q receives, in phase j ≥ 0, a
message m sent by its predecessor p in phase i ≥ 0 such that i 6= j. Without loss of
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generality, assume this is the first time a messsage is received in a phase different than
the one of its sending.

Claim 2: i ≥ 1 and j ≥ 1

Proof of the claim: p cannot send messages before executing A1-action, i.e., before
setting p.guest to p.id and starting its first phase. Hence, i ≥ 1. Similarly, q
cannot receives any message before executing A1-action, so j ≥ 1. �

Now, since m is the first problematic message and using Claim 1, we can deduce
that j = i− 1 or j = i+ 1. Let consider the two cases.

• If j = i+ 1, then q updates its guest once more than p. Let consider the last time
q updates its guest before receiving m, i.e., the last time q executes A1, A6, A8,
or A9-action to switch from its (j − 1)th to its jth phase. By claim 2, i ≥ 1 so
j ≥ 2, and so, it does no execute A1-action to switch from its (j − 1)th to its jth

phase, since A1 can be executed only once.

Now, if q executes A6, A8, or A9-action, it receives a messsage m′ of the form
〈Phase Shift, 〉 in phase j − 1. Since m is the first problematic message, m′ was
sent by p in phase j − 1. Either p executes A8-action or A5-action to send m′.
In this latter case, p necessarily executes A6-action before sending a new message
after m′. In both cases, p switches to phase j before sending m, a contradiction.

• If j = i− 1, then p updates its guest once more than q. Let consider the last time
p updates its guest before sending m, i.e., the last time p executes A1, A6, A8,
or A9-action to switch from its (i− 1)th to its ith phase. Let consider each cases:

– If p executes A1-action, then i = 1 since A1-action cannot be executed more
than once. Now, by Claim 2, j ≥ 1, a contradiction.

– If p executes A6 or A9-action, it necesserarily executes A5-action beforehand
and so sends a message m′ = 〈Phase Shift, 〉 to q in phase i− 1. Since m is
the first problematic message, q receives m′ in phase i− 1 executing A6, A8,
or A9-action. In every cases, q switches from phase i − 1 to phase i before
receiving m, a contradiction.

– If p executes A8-action, it sends a message m′ = 〈Phase Shift, 〉 before
switching to phase i. Again, since m is the first problematic message, q receives
m′ in phase i− 1 executing A6, A8, or A9-action. In every cases, q switches
from phase i− 1 to phase i before receiving m, a contradiction.

In the following, we say that a process p is deadlocked if p is disabled although a
message is ready to be received by p.

Definition 3.3 (HIi)

Let X = min {x : LSeq(L)x contains L.id(k + 1) times}. For any i ∈ {1, . . . , X},
we define HIi as the following predicate: ∀p ∈ R,∀j, 1 ≤ j < i,

1. p.guest is equal to LSeq(p)[j] in phase j,

2. p is not deadlocked during its phase j, and

3. p ∈ Actj if and only if p exits its phase j using A6 or A9-action.

65



Chapter 3. Leader Election in Unidirectional Rings with Homonym Processes

Lemma 3.10

For all i ∈ {1, . . . , X}, HIi holds.

Lemma 3.10 is proven by induction on i. The base case (i = 1) is trivial. The
induction step (assume HIi and show HIi+1, for i ∈ {1, . . . , X − 1}) consists in proving
the correct behavior of phase i. To that goal, we prove Lemmas 3.11, 3.14, and 3.15
which respectively show Conditions 1, 2, and 3 for HIi+1.

Lemma 3.11

For i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, ∀j < i + 1, p.guest is equal to
LSeq(p)[j] in phase j.

Proof : Let i ∈ {1, . . . , X − 1} such that HIi holds. First note that for every process p, we
have LSeq(p)[1] = p.id = p.guest in phase 1. Hence the lemma holds for i = 1. Now
assume that i > 1. Using HIi, we have that for every 1 ≤ j < i, LSeq(p)[j] = p.guest
at phase j.

We consider now the case when j = i. Note that a process can only change the value
of its variable guest with A6, A8 or A9-action, namely during phase switching. Let p
be a process at phase i and consider, in the execution, the step when p switches from
phase (i−1) to phase i: it receives from its left neighbor, q a message 〈Phase Shift, x〉,
where x was the value of q.guest when q sent the message (see A5 and A8-actions).
From Observation 3.1, and since p receives it at phase (i − 1), q sends this message
at phase (i − 1) also. Hence, x = q.guest at phase (i − 1). Now, when p receives the
message, it assigns its variable p.guest to x (A6, A8, or A9-action): hence, at phase i,
p.guest = LSeq(q)[i− 1] = LSeq(p)[i].

From Observation 3.1, if p receives 〈Phase Shift, 〉 at phase i ≥ 1, it was sent by
its left neighbor in phase i. So by Lemma 3.11, we deduce the following corollary.

Corollary 3.4

For i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, if p exits phase j ≤ i by
A9-action, then LSeq(p)[j] equals p.id.

Lemma 3.12

For i ∈ {1, . . . , X − 1}, if HIi holds, then no A9-action is executed before phase
i+ 1.

Proof : Assume by contradiction that HIi holds and some A9-action is executed before
phase i+ 1. Consider the first time it occurs, say some process p executes A9-action in
some phase j ≤ i.

From Corollary 3.4, by A9-action, p receives a message 〈Phase Shift, x〉 with x =
p.id = LSeq(p)[j].

Furthermore, we have that p.outer = k at phase j. Hence p.id was observed (k + 1)
times since the beginning of the execution: p.guest took k times value p.id and the value
x in the received message is also p.id. By Lemma 3.11, the sequence of values of p.guest
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is equal to LSeq(p)j−1. Adding x = LSeq(p)[j] at the end of the sequence, we obtain
LSeq(p)j . Hence, j = min{x : LSeq(p)x contains p.id (k + 1) times} and n < j (this
implies that j ≥ 2, hence (j − 1) ≥ 1).

As p executes A9-action in phase j, it is active during its whole jth phase and hence
exits its phase (j − 1) using A6-action. By Condition 3 in HIi and since (j − 1) < i,
p ∈ Actj−1. By definition of Actj−1, since j > n, Actj−1 = {L}, hence p = L.

As a consequence, j = X, a contradiction.

In the following, we show that processes cannot deadlock (Lemma 3.14). We start by
showing the following intermediate result:

Lemma 3.13

While a process is in state Compute (resp. Shift), the next message it has to
consider cannot be of the form 〈Phase Shift, 〉 (resp. 〈x〉).

Proof : Assume by contradiction that some process p is in state Compute (resp. Shift),
but receives an unexpected message 〈Phase Shift, 〉 (resp. 〈x〉) meanwhile. We exam-
ine the first case, the other case being similar. The unexpected message was transmitted
through passive processes to p, but first initiated by some active process q (A5-action).

Since A5-action was enabled at process q, q received k messages 〈q.guest〉 during
one and the same phase. By the multiplicity, at least one of those messages, say m, was
initiated by q using A1 or A6-action. So, m traversed the entire ring (A2-A5, A7-
actions). Observation 3.1 ensures that this traversal occurs during one and the same
phase. As a consequence, q.guest ≥ r.guest for every process r that were active when
receiving m. In particular, q.guest ≥ p.guest.

As q executed A5-action, k messages 〈q.guest〉 were sent by q (one action, either
A1 or A6-action, and (k − 1) A3-actions) during the traversal of m, and so during the
same phase again. Hence, p has also received 〈q.guest〉 k times during the same phase.
Thus, p.guest ≥ q.guest since p is still active, and so p.guest = q.guest. Now, counters
inner of p and q counted accordingly during this phase: p.inner should be greater than
or equal to k. Hence p should have executed A5-action before receiving the unexpected
message, a contradiction.

Lemma 3.14

For every i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, p is not deadlocked before
phase (i+ 1).

Proof : Let i ∈ {1, . . . , X − 1} such that HIi holds. Let p be any process. If p is in state
Init or Passive in phase i, then it cannot deadlock since the states Init and Passive
are not blocking by definition of the algorithm. From Lemma 3.12 since HIi holds, p
cannot take state Win before phase (i+ 1). Hence, it cannot take state Halt by A11-
action. As no A9-action is executed during phase i, no message 〈Finish, 〉 circulates
in the ring during this phase (Observation 3.1): A10-action cannot be enabled, hence p
cannot take state Halt by A10-action as well. If p is in state Compute (resp. Shift),
it cannot receive any message 〈Phase Shift, 〉 (resp. 〈x〉) by Lemma 3.13. Moreover,
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it cannot have received any message 〈Finish, 〉 since no such message was sent during
this phase (see Lemma 3.12 which applies as HIi holds). As a conclusion, there is no
way for p to deadlock during phase i.

Lemma 3.15

For every i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, ∀j < i + 1, p ∈ Actj if
and only if p exits its phase j by A6 or A9-action.

Proof : Let i ∈ {1, . . . , X − 1} such that HIi holds.

Claim 1: ∀p, if p ∈ Acti−1 (resp. /∈ Acti−1), p initiates (resp. does not initiate) a
message 〈LSeq(p)[i]〉 (resp. any message) at the beginning of phase i.

Proof of the claim: If i = 1, every process p is in Act0 and starts its phase 1, i.e.,
its execution, by executing A1-action and sending its label p.id = LSeq(p)[1].
Otherwise (i > 1), by Lemma 3.12, no process can execute A9-action before
phase (i + 1). So by HIi, every process p ∈ Acti−1 exits phase (i − 1) (and so
starts phase i) by executing A6-action and sending its label p.guest = LSeq(p)[i]
(Lemma 3.11). By HIi, if p is not in Acti−1, p does not exits phase (i − 1) by
executing A6-action and so it cannot initiates a message with its label at the
beginning of phase i. �

Claim 2: Any process p receives a message 〈LSeq(L)[i]〉 k times during its phase i.

Proof of the claim: Consider a message m = 〈LSeq(L)[i]〉 that circulates the ring
(at least one is circulating since L ∈ Acti−1 initiates one at the beginning of
phase i, see Claim 1). m is always received in phase i (see Observation 3.1) all
along its ring traversal. From HIi and Lemma 3.14, no process is deadlocked
before its phase (i+ 1). Hence, when m reaches a process in state Passive, it is
forwarded (A7-action) and when m reaches a process q in state Compute (with
q.guest = LSeq(q)[i] ≥ LSeq(L)[i], by Lemma 3.11 and definition of L), it is
also forwarded unless A5-action is enabled at q. This occurs at q if LSeq(q)[i] =
LSeq(L)[i], since q.inner is initialized to 1 at the beginning of the phase (A1
or A6-action) and incremented if q receives LSeq(q)[i]. Hence, q has received k
messages 〈LSeq(L)[i]〉 during the phase.

As a consequence, between any two processes q and q′ in Acti−1 (in state
Compute in phase i, see HIi) such that LSeq(q)[i] = LSeq(q′)[i] = LSeq(L)[i],
k messages 〈LSeq(L)[i]〉 circulates during phase i; any process between q and q′

has forwarded them (and so received them). �

By HIi, the lemma holds for all j < i. Let now consider the case j = i.

If p ∈ Acti, then LSeq(p)i = LSeq(L)i and in particular, LSeq(p)[i] = LSeq(L)[i].
As Acti ⊆ Acti−1, p is active at the end of phase (i − 1) and as no A9-action can take
place before phase (i+1) (Lemma 3.12), p is in state Compute during the computation
of phase i. Since p.guest = LSeq(L)[i] ≤ LSeq(q)[i] for any q ∈ Acti−1 (Lemma 3.11,
definition of L), and as any message 〈x〉 that circulates during the phase is initiated
by some process q ∈ Acti−1 with x = LSeq(q)[i] (HIi and Claim 1), p never executes
A4-action during phase i. Furthermore, p receives k times p.guest during the phase
(Claim 2), hence it executes A5-action followed by A6 or A9-action to exit phase i.
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Conversely, if p /∈ Acti, it may be or not in Acti−1. If p /∈ Acti−1, then from HIi, p
exits phase (i−1) with A8-action; it remains in state Passive all along phase i and can
only exit phase i with A8-action. Otherwise, p ∈ Acti−1, i.e., LSeq(p)i−1 = LSeq(L)i−1

but LSeq(p)[i] > LSeq(L)[i]. p executes A4-action at least when receiving the first
occurrence of 〈LSeq(L)[i]〉 (Claim 2) and takes state Passive. Once p is passive, it
remains so and can only exit phase i using A8-action.

Finally, at least L executes A5-action: hence phase switching actually occurs (started
by L or some other process) and causes every process to exit phase i.

This ends the proof of Lemma 3.10.

Theorem 3.11

Bk solves the process-terminating leader election for A ∩Kk.

Proof : By Lemma 3.10 and by definition of X, no process is deadlocked before phase X
and L is the only process that exits phase X executing A6 or A9-action. Now, by
Lemma 3.10 and Corollary 3.4, ∀i ∈ {1, . . . , X}, L.guest = LSeq(L)[i] during phase
i. Hence, when p begins its Xth phase, it is the (k + 1)th time that L sets L.guest to
L.id. Since L.outer is initialized to 1 and incremented when L enters a new phase with
L.guest = L.id, L enters its phaseX by A9-action. So, L sends a message 〈Finish, L.id〉.
L also sets L.isLeader and L.leader to True and L.id, respectively. Every other process
p receives the message in phase X (Observation 3.1) while being in state Passive, since
p exits its (X − 1)th phase executing A8-action (Lemma 3.10). So, p saves L.id in
its variable leader, then transmits the message to its right neighbor, and finally halts
(A10-action). Finally, L receives 〈Finish, L.id〉 and halts (A11-action).

Theorem 3.12

Bk has time complexity O(k2n2), message complexity O(k2n2), and requires 2 dlog ke+
3b+ 5 bits per process.

Proof : A phase ends when an active process sees its guest (k + 1) times. This requires
O((k + 1)n) time units. There is exactly X phases and X ≤ (k + 1)n. Thus, the time
complexity of Bk is O(k2n2).

During the first phase, every process starts by sending its id. Since a phase involves
O((k+1)n) actions per process, each process forwards labels O((k+1)n) times. Finally,
to end the first phase, every process sends and receives 〈Phase Shift, 〉. Hence, O(kn2)
messages are sent during the first phase. Moreover, only processes that have the same
label as L (at most k) are still active after the first phase.

For every phase i > 1, let d = mlty(min{p.guest : p ∈ Acti−1}). When phase i starts,
every active process (at most k) sends its new guest. When the first message ends its first
traversal (O(kn) messages), every process that becomes passive in the phase is already
passive. Then, the variables inner of the remaining active processes increment of d each
turn of ring by a message. So the remaining messages (at most d) do at most k

d traversal
(n hops): O(kn) messages. Overall, the phase requires O(kn) messages exchanged. As
there is at most O(kn) phases, there are at most O(k2n2) messages exchanged.
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Class Proved in

Symmetrical Message-terminating leader election impossible Theo. 3.1
Kk Message-terminating leader election impossible Theo. 3.2
U∗ Process-terminating leader election impossible Theo. 3.3
A Process-terminating leader election impossible Theo. 3.4

Class Lower Bound on Time Algo. Time Nbr of Msgs Memory

U∗ ∩ Kk Ω(kn) (Cor. 3.1) Uk n(k + 2) O(n2 + kn) dlog(k + 1)e+ 2b+ 4

A ∩Kk Ω(kn) (Cor. 3.2)
Ak (2k + 2)n n2(2k + 1) 2(k + 1)nb+ 2b+ 3
Bk O(k2n2) O(k2n2) 2 dlog ke+ 3b+ 5

Table 3.1 – Summary of Chapter 3 results.

Finally, for every process p, p.inner and p.outer are initialized to 1 and they are
never incremented over k. Hence, every process requires 2 dlog ke+ 3b+ 5 bits.

3.7 Conclusion

Summary of Contributions. In this chapter, we have studied the leader election
problem in unidirectional ring networks with homonym processes. The whole results are
sum up in Table 3.1.

We have proven that message-terminating leader election is impossible to solve in
unidirectional ring networks with a symmetrical labelling and in the class Kk, k ≥ 2,
of unidirectionnal rings where no more than k processes share the same label. We have
also proven that process-terminating leader election is impossible to solve in the class
U∗ of unidirectionnal ring networks containing at least one process with a unique label.
This result naturally extends to the class A of unidirectionnal ring networks with an
asymmetrical labelling.

Then, we have proposed three algorithms. Algorithm Uk solves process-terminating
leader election for class U∗ ∩ Kk, for any k ≥ 1, in n(k + 2) time units. Its message
complexity is O(n2 + kn) and it requires dlog(k + 1)e + 2b + 4 bits per process, where b
is the number of bits required to store a label. Uk is asymptotically optimal in time and
memory.

Algorithms Ak and Bk both solves process-terminating leader election for class A∩Kk,
for any k ≥ 1. Ak is asymptotically optimal in time, with at most (2k + 2)n time units,
but it requires 2(k + 1)nb + 2b + 3 bits per process and at most n2(2k + 1) messages
are exchanged during an execution. On the contrary, Bk is asymptotically optimal in
memory since it requires only 2 dlog ke+ 3b+ 5 bits per process, but its time complexity
is O(k2n2) and its message complexity is O(k2n2).

Perspectives. First, the amount of bits exchanged in an execution of Uk is very closed
to the lower bound we proved (Ω(kn + n2)) with O((kn + n2)b) bits exchanged, where
b is the number of bits required to store a label. Notice that b = dlog ne if we consider
that labels are natural integers like commonly done in the litterature.
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Figure 3.8 – Processes elected by both instances of Ak of Bk on bidirectionnal ring. In gray,
the leader designated by the instance running on the clockwise orientation. In black, the leader
designated by the instance runnning on the anticlockwise orientation.

On the contrary, the amount of bits exchanged in an execution of Ak or Bk is greater,
respectively O(n2(2k+1)b) and O(k2n2b) bits exchanged. Whether it is possible to reduce
the amount of exchanged information without degrading the other performances of the
algorithms (time complexity for Ak, memory requirement for Bk) is worth investigating.

Furthermore, we can easily transform Algorithm Uk to solve process-terminating
leader election in bidirectionnal ring networks where at least one process has a unique
label, even if processes do not share a common sense of direction. Indeed, we can execute
two instances of Uk on each process, one for each orientation. More precisely, each pro-
cess executes an instance of Uk managing messages coming from its (local) left neighbor
and another instance managing messages coming from its (local) right neighbor. When
a process receives a message from a neighbor, it sends a message, if needed, to its other
neighbor. Since the rule to choose the leader does not depend on the orientation of the
ring (i.e., the process with the smallest unique label), both instances of the algorithm
designate the same process and the elected process can declare itself leader.

Nonetheless, we cannot generalize Algorithms Ak and Bk with this scheme. Indeed,
the rule to choose the leader in Ak and Bk depends on the orientation of the ring, and
so the two instances may not designate the same process as leader. For example, on
Figure 3.8, the leader chosen by the clockwise orientation is p4 while the leader chosen
by the anticlockwise orientation is p1. Further work is then needed to solve process-
terminating leader election in bidirectionnal rings that do not contain a unique process.
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Chapter 4

Self-stabilizing Leader Election under
Unfair Daemon

“Of all the trees we could’ve hit, we had to get one that hits back.”

— J.K. Rowling, Harry Potter and the Chamber of Secrets
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4.1 Introduction

Similarly to Chapter 3, we consider here the problem of leader election, i.e., we want
to distinguish a unique process, so called leader, and every process eventually knows the
leader ID. But, contrary to Chapter 3, we assume fully identified networks.

We aim to design (deterministic) silent self-stabilizing leader election for connected
identified networks of arbitrary topology. In the locally shared memory model, silent
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means that executions are finite [DGS99].

4.1.1 Related Work

Leader election problem in general and self-stabilizing leader election have been exten-
sively studied. We focus here on self-stabilizing solutions for arbitrary network topologies.

In [DGS99], Dolev et al. showed that silent self-stabilizing leader election requires
Ω(log n) bits per process, where n is the number of processes. Notice that non-silent
self-stabilizing leader election algorithm can be achieved while using less memory, see
for example the non-silent self-stabilizing leader election algorithm for unoriented ring
networks [BT17a] (respectively, for arbitrary networks [BT17b]) of Blin and Tixeui that
only requires O(log log n) space (respectively, O(max(log ∆, log log n)), where ∆ is the
degree of the network) per process.

Some self-stabilizing leader election algorithms for arbitrary connected identified net-
works have been proposed in the message-passing model [ABB98, AKM+93, BK07].

First, in [ABB98], Afek and Bremler propose an algorithm stabilizing in O(n) rounds
using Θ(log n) bits per process. But it assumes that the link-capacity, i.e., the amount
of information that can circulate in the link at any moment, is bounded by a value B,
known by every process.

Two different solutions that stabilizes in O(D) rounds, where D is the diameter of the
network, were proposed in [AKM+93, BK07]. However, both solutions assume that the
processes know an upper bound D on the diameter D and they requires Θ(logD log n)
bits per process.

Several solutions were also proposed in the locally shared memory model [DH97,
AG94, DLP10, DLV11a, DLV11b, KK13].

In [DH97], Dolev and Herman propose a non-silent algorithm working under a strongly
fair daemon. They assume that every process knows an upper bound N on the number
of processes. This solution stabilizes in O(D) rounds using Θ(N logN) bits per process.

The algorithm proposed by Arora and Gouda in [AG94] works under a weakly fair
daemon and also assumes an upper bound N on the number of processes. This solution
stabilizes in O(N) rounds and requires Θ(N logN) bits per process.

The solution of Datta et al. in [DLP10] is the first self-stabilizing leader election
algorithm for arbitrary connected identified networks that is proved under the distributed
unfair daemon. This algorithm stabilizes in O(D) rounds. However, the space complexity
is unbounded. More precisely, the algorithm requires for each process to maintain an
unbounded integer in its local memory.

The three other solutions [DLV11a, DLV11b, KK13] are all asymptotically optimal in
memory, i.e., they requires Θ(log n) bits per process.

In [KK13], Kravchik and Kutten propose an algorithm working under the synchronous
daemon. The stabilization time of this latter algorithm is in O(D) rounds.

Finally, the two solutions proposed by Datta et al. in [DLV11a, DLV11b] assume a
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distributed unfair daemon and have a stabilization time in O(n) rounds. However, even
if these two algorithms stabilizes within a finite number of steps, since they are proved
under an unfair daemon, no step complexity is given.

4.1.2 Contributions

In this chapter, we study the silent self-stabilizing leader election problem in arbitrary
static connected and identified networks. Our solution, denoted LE , is written in the
locally shared memory model and assumes a distributed unfair daemon, the weakest
scheduling assumption. It assumes no knowledge of any global parameter (e.g., an upper
bound on D or n) of the network.

This solution is presented and proved in Section 4.3. Like previous solutions of the
literature [DLV11a, DLV11b], it stabilizes in Θ(n) rounds in the worst case and it is
asymptotically optimal in space. Indeed, it requires Θ(log n+b) bits per process, where b
is the number of bits required to store an ID. If we consider that IDs are natural integers
as it is commonly done in the literature, b = log n and so LE can be implemented
using Θ(log n) bits per process. Yet, contrary to [DLV11a, DLV11b], we show that our
algorithm has a stabilization time in Θ(n3) steps in the worst case.

For fair comparison, we also studied the step complexity of the algorithms given
in [DLV11a, DLV11b], noted here DLV1 (see Section 4.4) and DLV2 (see Section 4.5),
respectively. These latter are the closest to ours in terms of assumptions and performance.
We show that their stabilization time is not polynomial.

Indeed, for n ≥ 5, there exists a network of n processes and a possible execution of

DLV1 that stabilizes in Ω(2b
n−1
4 c) steps.

Similarly, there is no constant α such that the stabilization time of DLV2 is in O(nα)
steps. More precisely, we show that fixing α to any constant greater than or equal to 4,
for every β ≥ 2, there exists a network of n = 2α−1 × β processes in which there exists a
possible execution that stabilizes in Ω(nα) steps.

These results were published in the proceedings of the 16th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS 2014) [ACD+14], in
the special issue of SSS 2014 in Information and Computation [ACD+16], and in the
proceedings of the 17èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications (ALGOTEL 2015) [ACD+15].

4.2 Preliminaries

In this section, we detail the context (Section 4.2.1) and we define the considered
leader election problem (Section 4.2.2).

4.2.1 Context

We consider static bidirectional and identified networks of arbitrary connected topol-
ogy. We assume the locally shared memory model presented in Section 2.6 under the
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distributed unfair daemon. We denote by n ≥ 1 the number of processes and D the
diameter of the network.

We also denote by ` the process of minimum ID. By abuse of notation, we identify a
process with its ID in the explanations, whenever convenient.

4.2.2 Silent Self-stabilizing Leader Election

We define the specification of the leader election problem, denoted SPLE. We denote
Leader : V → id the function defined on the state of any process p ∈ V that returns the
ID of the leader designed by p.

Definition 4.1 (Leader Election)

An algorithm Alg solves the leader election problem if any execution (γi)i≥0 ∈ EAlg

satisfies the following conditions:

1. For each configuration γi, i ≥ 0, for every pair of processes p, q ∈ V , Leader(p) =
Leader(q) in γi and Leader(p) is the ID of an (existing) process.

2. For each configuration γi, i ≥ 1, for every process p, Leader(p) has the same
value in γi and in γ0.

In this chapter, we aim to design a self-stabilizing and silent leader election algorithm.
An algorithm is silent if all its execution are finite. Hence, to prove that a leader election
algorithm is self-stabilizing and silent, it is necessary and sufficient to show that:

1. Every execution is finite.

2. In every terminal configuration, for every pair of processes p, q ∈ V , Leader(p) =
Leader(q) and Leader(p) is the ID of some process.

4.3 Algorithm LE
In this section, we present a silent and self-stabilizing leader election algorithm, called

LE . Its formal code is given in Algorithm 4.

4.3.1 Overview of LE
Starting from an arbitrary configuration, LE converges to a terminal configuration where
the process of minimum ID, `, is elected. More precisely, in the terminal configuration,
every process p knows the identifier of ` thanks to its local variable p.idRoot; moreover
a spanning tree rooted at ` is defined using two variables per process: par and level.
Formally:

1. `.idRoot = `.id, `.par = `, and `.level = 0, and

2. ∀p 6= `.id, p.idRoot = `, p.par points to the parent of p in the tree and p.level is
the level of p in the tree.
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Non Self-stabilizing Leader Election. We first consider a simplified version of LE .
Starting from a predefined initial configuration, it elects ` in all idRoot variables and
builds a spanning tree rooted at `.

Initially, every process p declares itself as leader: p.idRoot = p.id, p.par = p, and
p.level = 0. So, p satisfies the two following predicates:

SelfRoot(p) ≡ p.par = p
SelfRootOk′(p) ≡ (p.level = 0) ∧ (p.idRoot = p)

Note that, in the sequel, we say that p is a self root when SelfRoot(p) holds.

From such an initial configuration, our non self-stabilizing algorithm consists in the
following single action:

J’ :: ∃q ∈ p.N , (q.idRoot < p.idRoot) → p.par := min� {q ∈ p.N}
p.idRoot := p.par.idRoot
p.level := p.par.level + 1

where ∀x, y ∈ V, x � y ⇔ (x.idRoot ≤ y.idRoot) ∧ [(x.idRoot = y.idRoot) ⇒ (x.id <
y.id)].

Informally, when p discovers that p.idRoot is not equal to the minimum identifier,
it updates its variables accordingly: let q be the neighbor of p having idRootminimum.
Then, p selects q as new parent (i.e., p.par := q and p.level := p.par.level + 1) and sets
p.idRoot to the value of q.idRoot. If there are several neighbors having minimum idRoot,
we break ties using the identifiers of those neighbors.

Hence, the identifier of ` is propagated, from neighbors to neighbors, into the idRoot
variables and the system reaches a terminal configuration in O(D) rounds. Figure 4.1
shows an example of such an execution.

Notice first that for every process p, p.idRoot is always less than or equal to its own
identifier. Indeed, p.idRoot is initialized to p and decreases each time p executes J’-action.
Hence, p.idRoot = p while p is a self root and after p executes J’-action for the first time,
p.idRoot is smaller than its ID forever.

Second, even in this simplified context, for each two neighbors p and q such that q is
the parent of p, it may happens that p.idRoot is greater than q.idRoot — an example is
shown in Figure 4.1c, where p.id = 6 and q.id = 3. This is due to the fact that p joins the
tree of q but meanwhile q joins another tree and this change is not yet propagated to p.
Similarly, when p.idRoot 6= q.idRoot, p.level may be different from q.level+1. According
to those remarks, we can deduce that when p.par = q with q 6= p, we have the following
relation between p and q:

GoodIdRoot(p, q) ≡ (p.idRoot ≥ q.idRoot) ∧ (p.idRoot < p.id)
GoodLevel(p, q) ≡ (p.idRoot = q.idRoot)⇒ (p.level = q.level + 1)
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7 4

63

1

5 2

〈7, 0〉
〈4, 0〉

〈6, 0〉〈3, 0〉

〈1, 0〉

〈5, 0〉 〈2, 0〉

(a) Initial configuration.
SelfRoot(p) ∧ SelfRootOk′(p)
holds for every process p.

7 4

63

1

5 2

〈1, 1〉
〈2, 1〉

〈3, 1〉〈3, 0〉

〈1, 0〉

〈1, 1〉 〈2, 0〉

(b) 4, 5, 6, and 7 executed J’-
action. Note that J’-action was
not enabled at 2 because it is a
local minimum.

7 4

63

1

5 2

〈1, 1〉
〈1, 2〉

〈3, 1〉〈1, 1〉

〈1, 0〉

〈1, 1〉 〈1, 2〉

(c) 2, 3, and 4 executed J’-
action. 3 joins the tree rooted
at 1. However, the new value of
3.idRoot is not yet propagated
to its child 6.

7 4

63

1

5 2

〈1, 1〉
〈1, 2〉

〈1, 2〉〈1, 1〉

〈1, 0〉

〈1, 1〉 〈1, 2〉

(d) 6 executed J’-action. The
configuration is now terminal,
` = 1 is elected, and a tree
rooted at ` is available.

Figure 4.1 – Example of execution of the non self-stabilizing leader election algorithm. Process
IDs are given inside the nodes. 〈x, y〉 means that idRoot = x and level = y. Arrows represent
par pointers. The absence of arrow means that the process is a self root.

2 3 4 5

〈1, 1〉 〈3, 0〉 〈4, 0〉 〈1, 1〉

(a) Illegitimate initial configuration,
where 2 and 5 have fake idRoot.

2 3 4 5

〈1, 1〉 〈1, 2〉 〈1, 2〉 〈1, 1〉

(b) 3 and 4 executed J’-action. The
configuration is terminal.

Figure 4.2 – Example of execution that does not converge to a legitimate configuration.

Fake IDs. This previous algorithm is not self-stabilizing. Indeed, in a self-stabilization
context, the execution may start in an arbitrary configuration. In particular, idRoot
variables can be initialized to arbitrary ID type values, even values that are actually not
IDs of (existing) processes. We call such values fake IDs.

The existence of fake IDs may lead the system to an illegitimate terminal configura-
tion. Refer to the example of execution given in Figure 4.2: starting from the configu-
ration in 4.2a, if processes 3 and 4 move, the system reaches the terminal configuration
given in 4.2b, where there are two trees and the idRoot variables elect the fake ID 1.

In this example, 2 and 5 can detect the problem. Indeed, predicate SelfRootOk′
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2 3 4 5

〈2, 0〉 〈1, 2〉 〈1, 2〉 〈5, 0〉

Figure 4.3 – One step after Figure 4.2b, 2 and 5 have reset.

is violated by both 2 and 5. One may believe that it is sufficient to reset the local
state of processes which detect inconsistency (here processes 2 and 5) to p.idRoot :=
p.id, p.par := p and p.level := 0. After these resets, there are still some errors,
as shown on Figure 4.3. Again, 3 and 4 can detect the problem. Indeed, predicate
GoodIdRoot(p, p.par)∧GoodLevel(p, p.par) is violated by both 3 and 4. In this example,
after 3 and 4 have reset, all inconsistencies have been removed. So let define the following
action:

R’ ::
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
→ p.par := p

∨
(
GoodIdRoot(p, p.par) ∧GoodLevel(p, p.par)

)
p.idRoot := p.id
p.level := 0

Unfortunately, this additional action does not ensure the convergence in all cases, see
the example in Figure 4.4. Indeed, if a process resets, it becomes a self root but this
does not erase the fake ID in the rest of its subtree. Then, another process can join
the tree and adopt the fake ID which will be further propagated, and so on. In the
example, a process resets while another joins its tree at lower level, and this leads to
endless erroneous behavior, since we do not want to assume any maximal value for level
(such an assumption would otherwise imply the knowledge of some upper bound on n).
Therefore, the whole tree must be reset, instead of its root only. To that goal, we first
freeze the “abnormal” tree in order to forbid any process to join it, then the tree is reset
top-down. The cleaning mechanism is detailed in the next paragraph.

Abnormal Trees. To introduce the trees, we define what is a “good relation” between
a parent and its children. Namely, the predicate KinshipOk′(p, q) models that a process p
is a real child of its parent q = p.par. This predicate holds if and only if GoodLevel(p, q)
and GoodIdRoot(p, q) are True. This relation defines a spanning forest: a tree is a
maximal set of processes connected by par pointers and satisfying KinshipOk′ relation.

A process p is a root of such a tree whenever SelfRoot(p) holds orKinshipOk′(p, p.par)
is False. When SelfRoot(p) ∧ SelfRootOk′(p) is True, p is a normal root just as in
the non self-stabilizing case. In other cases, there is an inconsistency and p is said to be
an abnormal root:

AbnormRoot′(p) ≡
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) ∧ ¬KinshipOk′(p, p.par)

)
These are the two possible errors identified in the non self-stabilizing algorithm. A tree
is called an abnormal tree (respectively normal) when its root is abnormal (respectively
normal).
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4

3

5

2 6

〈1, 3〉

〈1, 2〉

〈5, 0〉

〈2, 0〉 〈1, 4〉

(a) Illegitimate initial con-
figuration.

4

3

5

2 6

〈1, 3〉

〈3, 0〉

〈5, 0〉

〈1, 5〉 〈1, 4〉

(b) 2 joins the tree. 3 leaves
it.

4

3

5

2 6

〈4, 0〉

〈3, 0〉

〈1, 6〉

〈1, 5〉 〈1, 4〉

(c) 5 joins, 4 leaves.

4

3

5

2 6

〈4, 0〉

〈1, 7〉

〈1, 6〉

〈1, 5〉 〈6, 0〉

(d) 3 joins, 6 leaves.

4

3

5

2 6

〈1, 8〉

〈1, 7〉

〈1, 6〉

〈2, 0〉 〈6, 0〉

(e) 4 joins, 2 leaves.

4

3

5

2 6

〈1, 8〉

〈1, 7〉

〈5, 0〉

〈2, 0〉 〈1, 9〉

(f) 6 joins, 5 leaves. Config-
uration similar to (a).

Figure 4.4 – The first process of the chain of arrows violates the predicate SelfRootOk and
resets by executing R’-action, while another process joins its tree. This cycle of resets and joins
might never terminate.

We now detail the different variables, predicates, and actions of Algorithm 4.

Variable status. Abnormal trees need to be frozen before being cleaned in order to pre-
vent them from growing endlessly. This mechanism (inspired from [BCV03]) is achieved
using an additional variable, status, that is used as follows. If a process is clean (i.e.,
not involved into any freezing operation), then its status is c. Otherwise, it has status
eb or ef and no neighbor can select it as its parent. These two latter states are actually
used to perform a Propagation of Information with Feedback (PIF) [Cha82, Seg83] in the
abnormal trees. Therefore, status eb means “Error Broadcast” and ef means “Error
Feedback”. From an abnormal root, the status eb is broadcast down in the tree. Then,
once the eb-wave reaches a leaf, the leaf initiates a convergecast ef-wave. Once the
ef-wave reaches the abnormal root, the tree is said to be dead, meaning that there is no
process of status c in the tree and no other process can join it. So, the tree can be safely
reset from the abnormal root toward the leaves.

Notice that the new variable status may also get arbitrary initialization. Thus, we
enforce previously introduced predicates as follows.

A self root must have status c, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = c)

To be a real child of q, p should have a status coherent with the one of q. This is ex-
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Algorithm 4 – Actions of Process p in Algorithm LE .

Inputs.

• p.id ∈ id • p.N
Variables.

• p.idRoot ∈ id

• p.par ∈ p.N ∪ {p}
• p.level ∈ N
• p.status ∈ {c,eb,ef}

Functions.

Children(p) ≡ {q ∈ p.N : q.par = p}
RealChildren(p) ≡ {q ∈ Children(p) : KinshipOk(q, p)}
Min(p) ≡ min� {q ∈ p.N : q.status = c}

Predicates.

p � q ≡ (p.idRoot ≤ q.idRoot) ∧ [(p.idRoot = q.idRoot)⇒ (p.id ≤ q.id)]

SelfRoot(p) ≡ p.par = p

SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idRoot = p.id) ∧ (p.status = c)

GoodIdRoot(s, f) ≡ (s.idRoot ≥ f.idRoot) ∧ (s.idRoot < s.id)

GoodLevel(s, f) ≡ (s.idRoot = f.idRoot)⇒ (s.level = f.level + 1)

GoodStatus(s, f) ≡ [(s.status = eb)⇒ (f.status = eb)]
∧ [(s.status = ef)⇒ (f.status 6= c)]
∧ [(s.status = c)⇒ (f.status 6= ef)]

KinshipOk(s, f) ≡ GoodIdRoot(s, f) ∧GoodLevel(s, f) ∧GoodStatus(s, f)

AbnormRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)]
∨ [¬SelfRoot(p) ∧ ¬KinshipOk(p)(p.par)]

Allowed(p) ≡ ∀q ∈ Children(p), (¬KinshipOk(q, p)⇒ q.status 6= c)

Guards.

EBroadcast(p) ≡ (p.status = c) ∧ [AbnormRoot(p) ∨ (p.par.status = eb)]

EFeedback(p) ≡ (p.status = eb) ∧ (∀q ∈ RealChildren(p), q.status = ef)

Reset(p) ≡ (p.status = ef) ∧AbnormRoot(p) ∧Allowed(p)

Join(p) ≡ (p.status = c) ∧ [∃q ∈ p.N , (q.idRoot < p.idRoot)
∧ (q.status = c)] ∧Allowed(p)

Actions.

EB :: EBroadcast(p) → p.status := eb

EF :: EFeedback(p) → p.status := ef

R :: Reset(p) → p.status := c
p.par := p
p.idRoot := p.id
p.level := 0

J :: Join(p) ∧ ¬EBroadcast(p) → p.par := Min(p)
p.idRoot := p.par.idRoot
p.level := p.par.level + 1
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pressed with the predicate GoodStatus(p, q) which is used to enforce the KinshipOk(p, q)
relation:

GoodStatus(p, q) ≡ [(p.status = eb)⇒ (q.status = eb)]
∧ [(p.status = ef)⇒ (q.status 6= c)]
∧ [(p.status = c)⇒ (q.status 6= ef)]

KinshipOk(p, q) ≡ KinshipOk′(p, q) ∧GoodStatus(p, q)

Precisely, when p has status c, its parent must have status c or eb (if the eb-wave is
not propagated yet to p). If p has status eb, its parent must be of status eb because p
gets status eb from its parent and its parent will change its status to ef only after p gets
status ef. Finally, if p has status ef, its parent can have status eb (if the ef-wave is not
propagated yet to its parent) or ef.

Normal Execution. Remark that, after all abnormal trees have been removed, all
processes have status c and the algorithm works as in the initial non self-stabilizing
version. Notice that the guard of J-action has been enforced so that only processes with
status c and which are not abnormal root can execute it, and when executing J-action,
a process can only choose a neighbor of status c as parent. Moreover, remark that
the cleaning of all abnormal trees does not ensure that all fake IDs have been removed.
Rather, it guarantees the removal of all fake IDs smaller than `. This implies that (at
least) ` is a self root at the end of the cleaning and all other processes will elect ` within
the next D rounds.

Cleaning Abnormal Trees. We detail now the cleaning of abnormal trees. Figure 4.5
illustrates this cleaning. In the first phase (see Figure 4.5a), the root broadcasts status
eb down to its (abnormal) tree: all the processes in this tree execute EB-action, switch
to status eb and are consequently informed that they are in an abnormal tree.

The second phase starts when the eb-wave reaches a leaf. Then, a convergecast wave
of status ef is initiated thanks to action EF-action (see Figure 4.5b). The system is
asynchronous, hence all the processes along some branch can have status ef before the
broadcast of the eb-wave is done into another branch. In this case, the parent of these
two branches waits that all its children in the tree (processes in the set RealChildren)
get status ef before executing EF-action (Figure 4.5c). When the root gets status ef,
all processes in the tree have status ef: the tree is dead.

Then (third phase), the root can reset (safely) to become a self root by executing R-
action (Figure 4.5e). Its former real children (of status ef) become themselves abnormal
roots of dead trees (Figure 4.5f) and reset, etc.

Finally, we used the predicate Allowed(p) to temporarily lock the parent of p in two
particular situations — illustrated in Figure 4.6 — where p is enabled to switch its status
from c to eb. These locks impact neither the correctness nor the complexity of LE .
Rather, they allow us to simplify the proofs by ensuring that, once enabled, EB-action
remains continuously enabled until executed.
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EB-action

c

6

2 8

〈1, 0〉

〈1, 1〉 〈1, 1〉

(a) When an abnormal root detects an error, it
executes EB-action. The eb-wave is broadcast to
the leaves. Here, 6 is an abnormal root because
it is a self root and its idRoot is different from its
ID (1 6= 6).

EF-action

c
eb

(b) When the eb-wave reaches a leaf, it executes
EF-action. The ef-wave is propagated up to the
root.

c

eb

ef

9

5

4

7
〈1, 5〉

〈1, 4〉

〈1, 5〉

〈1, 5〉

(c) It may happen that the ef-wave reaches a
node, here process 5, even though the eb-wave is
still broadcasting into some of its proper subtrees:
5 must wait that the status of 4 and 7 become ef
before executing EF-action.

eb
ef

EF-action

(d) eb-wave has been propagated in the other
branch. An ef-wave is initiated by the leaves.

ef

R-action

(e) ef-wave reaches the root. The root can safely
reset (R-action) because its tree is dead. The
cleaning wave is propagated down to the leaves.

efef

R-action

6

2 8

〈6, 0〉

〈1, 1〉 〈1, 1〉

(f) Its children become themselves abnormal
roots of dead trees and can execute R-action: 2
and 8 can clean because their status is ef and
their parent has status c.

Figure 4.5 – Schematic example of the cleaning mechanism of an abnormal tree. Trees and
nodes are filled according to the status of their processes: white for c, gray for eb, black for ef.
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4

9

〈3, 0〉

〈4, 1〉

(a) 4 and 9 are abnormal roots. If 4
executes R-action before 9 executes EB-
action, the kinship relation between 4 and
9 becomes correct and 9 is no more an ab-
normal root. Then, EB-action is no more
enabled at 9.

6 3

4

9

〈3, 1〉

〈2, 5〉

〈2, 3〉 〈3, 0〉

(b) 9 is an abnormal root and Min(4) is
6. If 4 executes J-action before 9 executes
EB-action, the kinship relation between 4
and 9 becomes correct and 9 is no more
an abnormal root. Then, EB-action is no
more enabled at 9.

Figure 4.6 – Example of situations where the parent of a process is locked.

4.3.2 Correctness and Step Complexity

In this section, we prove the correctness and the step complexity of LE (Theorem 4.3).
We first define some useful notions for the proofs. Then, we show that LE converges
to a terminal configuration in finite time (Theorem 4.1) by counting how many times
each action is executed. Finally, we prove that a terminal configuration satisfies the
specification of the leader election problem (Theorem 4.2).

Some Definitions. First, we instantiate the function Leader(p) used in the specifica-
tion of the leader election (Section 4.2.2).

Definition 4.2 (Leader)

For each process p, for every configuration γ, the value Leader(p) in γ is γ(p).idRoot.

The rest of the paragraph is dedicated to introducing and justifying the notion of trees
induced by the KinshipOk relation. We first show that the predicate KinshipOk is an
acyclic relation. To that goal, we define the graph induced by the KinshipOk relation.

Definition 4.3 (Graph of Kinship Relations)

For some configuration γ, let Gkr = (V,KR) be a directed graph such that (p, q) ∈
KR⇔ ({p, q} ∈ E)∧(p.par = q)∧KinshipOk(p, q). Gkr is called the graph of kinship
relations in γ.

We first show that Gkr is a DAG (Directed Acyclic Graph).

Lemma 4.1

Let γ be a configuration. The graph of kinship relations in γ contains no cycle.

Proof : By definition, for all pairs of processes (p, q) such that KinshipOk(p, q) holds, we
have: p.idRoot ≥ q.idRoot and p.idRoot = q.idRoot⇒ p.level = q.level+ 1. Hence, the
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processes along any path in Gkr are ordered w.r.t. the strict lexical order on the pair
(idRoot, level). The result directly follows.

Hence Gkr is a DAG (Directed Acyclic Graph) and even a spanning forest since the
condition p.par = q implies at most one successor per process in KR. Below, we define
the roots and trees of this spanning forest.

Definition 4.4 (Root)

For some configuration γ, a process p satisfies Root(p) (and is called a root in
γ) if and only if SelfRoot(p) ∨ AbnormRoot(p), or equivalently if SelfRoot(p) ∨
¬KinshipOk(p, p.par) holds in γ.

Next, we define the paths, called KPaths, that follow the tree structures in Gkr, i.e.,
the paths linking each process to the root of its own tree.

Definition 4.5 (KPath)

For every process p, KPath(p) is the unique path p0, p1, . . . , pk such that pk = p
and satisfying the following conditions:
• ∀i, 1 ≤ i ≤ k, (pi.par = pi−1) ∧KinshipOk(pi, pi−1)

• Root(p0)

Using Definitions 4.4 and 4.5, we formally define trees as follows.

Definition 4.6 (Tree)

For some configuration γ, for every process p such that Root(p), we define Tree(p),
the tree rooted at p, as follows:

Tree(p) = {q ∈ V : p is the initial extremity of KPath(q)}

This means, in particular, that we identify each tree with the ID of its root.

We give in Observation 4.1 an invariant on KPaths when looking at the status of the
processes. This property is based on the notion of S-Trace defined below.

Definition 4.7 (S-Trace)

For some configuration γ, for a sequence of processes p0, p1, . . . , pk, we define:

S-Trace(p0, p1, . . . , pk) ∈ {c,eb,ef}∗

as the sequence (γ(p0).status).(γ(p1).status) . . . (γ(pk).status).

Observation 4.1

For any configuration, we have:

∀p ∈ V, S-Trace(KPath(p)) ∈ eb∗c∗ ∪ eb∗ef∗.
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Proof : Let p be a process. If |KPath(p)| = 1, Observation 4.1 trivially holds. For
|KPath(p)| ≥ 2, assume by contradiction that S-Trace(KPath(p)) /∈ eb∗c∗ ∪ eb∗ef∗.
Then, ∃s, f ∈ KPath(p) such that s.par = f and S-Trace(f, s) ∈ {c.eb, c.ef, ef.eb,
ef.c}. In all cases, ¬GoodStatus(s, f) holds and so ¬KinshipOk(s, f) also holds. This
contradicts Definition 4.5.

Abnormal Trees. Then, we introduce some notions that refine the concept of trees
and we prove some preliminary results on the behavior of abnormal trees.

Definition 4.8 (Normal/Abnormal Tree)

For every configuration γ and every process p, any tree rooted at p such that
¬AbnormRoot(p) holds in γ is called a normal tree. In this case, SelfRoot(p) ∧
SelfRootOk(p) holds in γ, by Definition 4.4.

Any tree that is not normal is said to be abnormal.

Definition 4.9 (Alive/Dead)

Let γ be a configuration. A process p is called alive in γ if and only if γ(p).status = c.
Otherwise, p is said to be dead. A tree T in γ is called an alive tree in γ if and only
if ∃p ∈ T such that p is alive in γ. Otherwise, it is called a dead tree.

Definition 4.10 (Leave/Join a Tree)

Let γ 7→ γ′ be a step. If a process p is in a tree T in γ, but in a different tree T ′ in
γ′ (namely, the roots of T and T ′ are different), we say that p leaves T and joins T ′
in γ 7→ γ′.

Remark 4.1

No process can join a dead tree.

Lemma 4.2

No alive abnormal root can be created.

Proof : Let p be a process which is not an alive abnormal root in some configuration γ.
This means that p is dead, p is a normal root (SelfRoot(p) ∧ SelfRootOk(p) holds in
γ), or p is not a root (KinshipOk(p, p.par) holds in γ).

Let γ 7→ γ′ be a step. If p executes EB-action in γ 7→ γ′ (respectively EF-action),
then γ′(p).status = eb (respectively γ′(p).status = ef) and, consequently, p is dead in
γ′.

If p executes R-action, the predicate SelfRoot(p) ∧ SelfRootOk(p) holds in γ′. So,
p is a normal root in γ′.

If p executes J-action, let q = Min(p) in γ. By definition of J-action, γ(p).idRoot ≤
p.id (since p is not an abnormal root at γ), γ(q).status = c, and γ(p).status =
γ′(p).status = c. Also, ¬SelfRoot(p) holds in γ′.

• If q does not move in γ 7→ γ′, then γ′(p).par = q, γ′(q).status = γ′(p).status = c,
γ′(p).level = γ(q).level + 1 = γ′(q).level + 1, and γ′(p).idRoot = γ(q).idRoot =
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γ′(q).idRoot < γ(p).idRoot ≤ p.id. Hence, the predicate KinshipOk(p, p.par)
is True in γ′. Now, we already know that ¬SelfRoot(p) holds in γ′. Thus,
¬SelfRoot(p)∧KinshipOk(p, q) holds in γ′: p is not a root in γ′, by Definition 4.4.

• Assume now that q moves during the step γ 7→ γ′. As γ(q).status = c, q can
only execute EB-action or J-action in the step. Consequently, γ′(q).idRoot ≤
γ(q).idRoot. Then, γ′(p).idRoot = γ(q).idRoot ≥ γ′(q).idRoot and γ′(p).idRoot =
γ(q).idRoot < γ(p).idRoot ≤ p.id. So, the predicate GoodIdRoot(p, q) holds in γ′.

If q executes J-action, then γ′(p).idRoot 6= γ′(q).idRoot. Otherwise, q executes
EB-action, so γ′(p).idRoot = γ′(q).idRoot and γ′(p).level = γ(q).level + 1 =
γ′(q).level + 1. Hence, GoodLevel(p, q) holds in γ′.

Finally, γ′(q).status ∈ {c,eb} and γ′(p).status = γ(p).status = c, so the predicate
GoodStatus(p, q) holds in γ′.

Thus, ¬SelfRoot(p) ∧KinshipOk(p, q) holds in γ′ and, so, p is not a root in γ′,
by Definition 4.4.

Assume now that p executes no action in the step γ 7→ γ′. The only way for p to
become an alive abnormal root is that γ(p).par moves during the step, since the property
“alive abnormal root” only depends on p and p.par. Furthermore, as p is not an alive
abnormal root, when p is a normal root in γ, it stays so, in γ′.

Therefore, let us consider the case when p is not a root in γ and γ(p).par moves.
As p changes none of its variables, the only way for it to become an alive abnormal
root is to have status c in γ and thus in γ′. As GoodStatus(p, p.par) holds in γ, this
implies that the status of γ(p).par is either eb or c. Looking at case eb, p is a real
child of p.par in γ with status c; hence EF-action is disabled for p.par in γ. Looking
at case c, p.par can execute EB-action and can only change its status to eb in γ 7→ γ′:
GoodStatus(p, p.par) holds in γ′ and consequently KinshipOk(p, p.par) holds in γ′.
p.par can also execute J-action in γ 7→ γ′. This means that in γ and in γ′, p.par has
status c, hence GoodStatus(p, p.par) holds in γ′. Furthermore, p.par has a smaller value
of idRoot in γ′, so GoodIdRoot(p, p.par) and GoodLevel(p, p.par) are satisfied in γ′, and
consequently KinshipOk(p, p.par) holds in γ′.

Lemma 4.3

No alive abnormal tree can be created.

Proof : Let γ 7→ γ′ be a step. Let p ∈ V . Assume there is no alive abnormal tree rooted at p
in γ. In particular, p is not an alive abnormal root in γ. Then, assume, by contradiction,
that Tree(p) exists and is an alive abnormal tree in γ′.

If γ′(p).status = ef, then every process in the tree has status EF (Observation 4.1)
and the tree is dead, a contradiction.

If γ′(p).status = c, then p is an alive abnormal root in γ′. But no alive abnormal
root is created (Lemma 4.2), a contradiction.

If γ′(p).status = eb. Then, according to the algorithm, there are two possible cases:

• γ(p).status = eb:

– If AbnormRoot(p) holds in γ, then Tree(p) is dead in γ (otherwise, Tree(p)
is an abnormal alive tree in γ, a contradiction). By the definition of J-action,
no process can join Tree(p) in γ 7→ γ′.
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Moreover, as γ(p).status = eb, no process q in Tree(p) satisfies Reset(q) in
γ, by Observation 4.1. Consequently, no process can leave Tree(p) in γ 7→ γ′.
So, every process in Tree(p) still have status ef or eb in γ′, i.e., Tree(p) is
still dead in γ′, a contradiction.

– If ¬AbnormRoot(p) holds in γ, then p does not satisfy SelfRoot(p). Indeed,
the predicate SelfRootOk(p) implies that p.status = c in γ, a contradiction.
So, let q = γ(p).par ∈ p.N . ¬AbnormRoot(p) in γ implies that q.status = eb
and the predicate KinshipOk(p, q) holds in γ. This latter also implies that
p ∈ RealChildren(q) in γ. Now, p ∈ RealChildren(q) and p.status = eb
in γ implies that γ(q).status = eb and so q is disabled in γ. Moreover, as
γ′(p).status = eb, p does not execute any action in γ 7→ γ′. So, the predicate
¬AbnormRoot(p) still holds in γ′, a contradiction.

• γ(p).status = c: ¬AbnormRoot(p) holds in γ (otherwise p is an abnormal alive root
in γ). Then, p executes EB-action in γ 7→ γ′ to get status eb. So, EBroadcast(p)∧
¬AbnormRoot(p) implies that p.par 6= p and p.par.status = eb in γ. Let q =
γ(p).par. Now, p.par 6= p and ¬AbnormRoot(p) implies that KinshipOk(p, q)
holds in γ. So, p ∈ RealChildren(q) and, as γ(p).status = c and γ(q).status = eb,
q is disabled in γ. Moreover, as γ′(p).status = eb, p necessarily executes EB-action
in γ 7→ γ′ which only changes its status to eb. So, ¬AbnormRoot(p) still holds in
γ′, a contradiction.

Finite number of J-actions. To show that every process p executes only a finite
number of J-actions, we prove below that p can only execute a finite number of J-actions
in each segment of execution — a segment being separated from its follower by the death
or the disappearance of some abnormal alive tree.

Definition 4.11 (Disappear/Die)

Let γ 7→ γ′ be a step and let p be a process such that Root(p) in γ.

• Tree(p) disappears during the step γ 7→ γ′ if and only if Tree(p) is no more
defined in γ′ — namely Root(p) does not hold in γ′.

• Tree(p) dies during the step γ 7→ γ′ if and only if Tree(p) is alive in γ, yet
Tree(p) exists — namely Root(p) holds — and is dead in γ′.

Definition 4.12 (Segment of Execution)

Let e = γ0γ1 . . . be any execution. e′ = γi . . . γj is a (segment) of execution e if and
only if e′ is a maximal factor of e, where no abnormal alive tree dies nor disappears.

Figure 4.7 illustrates Definition 4.12. We now show that the number of segments is
finite.

Lemma 4.4

There are at most n+ 1 segments in any execution.

Proof : In the initial configuration, there are at most n abnormal roots (every process)
and, consequently, at most n abnormal trees. As no alive abnormal tree can be created
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γ0 γ1

a segment another segment

an abnormal alive tree dies or disappears

Figure 4.7 – Segments of execution.

(Lemma 4.3), if an abnormal tree is alive, then it is alive since the initial configuration.
So, there is at most n trees that die or disappear and, consequently, there are at most
n+ 1 segments in the execution.

From Lemma 4.4, we have the following remark:

Remark 4.2

There are at most n steps outside segments (more precisely, the steps where at
least one abnormal tree dies or disappears) and these steps necessarily contains an
execution of EB-action.

We now count the number of J-actions processes can execute in a given segment.
For that purpose, we first need to prove intermediate lemmas that identify properties on
computation steps.

Observation 4.2

Let γ be a configuration and let p a process such that Reset(p) is True in γ. Then,
Tree(p) exists and is dead in γ.

Proof : Let γ be a configuration and let p be a process such that Reset(p) is True in γ.
By definition, AbnormRoot(p) holds in γ, hence Tree(p) is defined in γ. Furthermore,
γ(p).status = ef: by Observation 4.1, every process in Tree(p) has status ef in γ, and
we are done.

Lemma 4.5

Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {eb,ef} in γ. Let
T be the tree which contains p in γ.

1. T is an abnormal tree in γ.

2. If T does not disappear during the step γ 7→ γ′, p is still in T in γ′ unless T
was dead in γ.

Proof : Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {eb,ef} in γ.
We note r the root of the tree containing p in γ. As S-Trace(KPath(p)) ∈ eb∗ef∗, by
Observation 4.1, the status of r in γ is either ef or eb. Hence AbnormRoot(r) holds in
γ: Tree(r) is an abnormal tree in γ.
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Assume now that Root(r) holds in γ′ (the tree does not disappear during the step).
If r executes R-action in γ 7→ γ′, Observation 4.2 applies in γ and proves that Tree(r)
is dead in γ.

If r does not (or cannot) execute R-action, its only possible action is EF-action. As
Root(r) holds in γ′, r is still abnormal root in γ′. Let then q ∈ KPath(p) in γ with
q 6= r. By Observation 4.1, γ(q).status ∈ {eb,ef} also. If γ(q).status = eb, q can only
execute EF-action and if γ(q).status = ef, q is disabled, as q 6= r. Executing EF-action
preserves GoodStatus and hence preserves also KinshipOk relations. Therefore, the
KPath from p to r is the same in γ and γ′ and then p ∈ Tree(r) in γ′.

Lemma 4.6

Let p be a process and let γ 7→ γ′ be a step. If p is an abnormal root of status c in
γ, then it is still an abnormal root in γ′.

Proof : Let γ 7→ γ′ be a step and let p be a process such that AbnormRoot(p)∧p.status = c
in γ: p can only execute EB-action. Therefore, γ′(p).status ∈ {c,eb} and every other
variable of p has identical value in γ and γ′.

So, if SelfRoot(p) holds in γ, then SelfRootOk(p) is False in γ, and SelfRoot(p)∧
¬SelfRootOk(p) still holds in γ′.

Otherwise, ¬SelfRoot(p) holds in γ, i.e., p.par 6= p. Then, ¬SelfRoot(p) still holds
in γ′. Let q ∈ V such that q = γ(p).par = γ′(p).par and consider the following cases:

• γ(q).status = ef: Then, ¬GoodStatus(p, q) holds in γ which implies that ¬KinshipOk(p, q)
holds in γ. However, p ∈ Children(q) in γ. So, ¬Allowed(q) holds in γ, and q is
disabled. So, γ′(p).status ∈ {c,eb} and γ′(q).status = ef, which implies that the
predicate ¬GoodStatus(p, q) holds in γ′. Thus, we have ¬KinshipOk(p, q) in γ′.

• γ(q).status = eb: Then, GoodStatus(p, q) holds in γ. So, AbnormRoot(p) in
γ implies that the predicate ¬GoodIdRoot(p, q) ∨ ¬GoodLevel(p, q) holds in γ.
Now, q can only executes EF-action in γ 7→ γ′. So, neither p nor q modify their
variables par, idRoot, or level in γ 7→ γ′, and, consequently, ¬GoodIdRoot(p, q) ∨
¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q) holds in γ′.

• γ(q).status = c: As AbnormRoot(p) holds in γ, ¬KinshipOk(p, q) in γ. Thus,
¬Allowed(q) holds in γ because p ∈ Children(q) and p.status = c in γ. So, q
cannot execute J-action in γ 7→ γ′. Then, γ(q).status = c and γ(p).status = c
implies that GoodStatus(p, q) holds in γ. So, AbnormRoot(p) in γ implies that
¬GoodIdRoot(p, q) ∨ ¬GoodLevel(p, q) holds in γ. As p and q can only modify
their status during the step γ 7→ γ′ (q can only execute EB-action in γ 7→ γ′),
¬GoodIdRoot(p, q) ∨ ¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q)
holds in γ′.

In any cases, ¬KinshipOk(p, q) holds in γ′. As the predicate ¬SelfRoot(p) holds in γ′,
AbnormRoot(p) holds in γ′.
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Lemma 4.7

Let γ be a configuration and let p be a process such that γ(p).status ∈ {eb,ef}. Let
T be the tree which contains p in γ. Let γR be the first configuration, if any, after γ,
such that p executes an R-action γR 7→ γR+1.

Assume γR exists, then T is dead in γR or has disappeared (at least once) between
γ and γR.

Proof : Let γ be a configuration and let p be a process such that p.status ∈ {eb,ef} in γ.
We note r the root of the tree which contains p in γ. Let γ = γ0γ1... be an execution
starting at γ. Let γR be the first configuration, if any, in this execution such that p
executes an R-action during the step γR 7→ γR+1. Assume γR exists.

For every configuration γx, x ∈ {0, ..., R− 1}, the status of p is eb or ef. Hence,
Lemma 4.5 applies iteratively in γx: either Tree(r) disappears during the step γx 7→
γx+1, or, if not, p ∈ Tree(r) in γx+1. Hence, in γR, either Tree(r) has disappeared or,
if not, p ∈ Tree(r).

When p ∈ Tree(r) in γR, by assumption, p executes an R-action between γR and
γR+1. Hence, AbnormRoot(p) holds in γR and thus p = r. Furthermore, Observation 4.2
applies and proves that Tree(r) is dead in γR.

Lemma 4.8

Let p be a process and let γ 7→ γ′ be a step. Let T be the tree that contains p in γ.
If EBroadcast(p) holds in γ, then T is an abnormal alive tree in γ and, if T has not
disappeared in γ′, p still belongs to T in γ′.

Proof : Let γ 7→ γ′ be a step. Let p be a process such that EBroadcast(p) holds in γ. We
note r the root of the tree which contains p in γ.

If AbnormRoot(p) holds in γ, then p = r is the root of an alive abnormal tree, since
γ(p).status = c. Furthermore, if Tree(p) exists in γ′, p ∈ Tree(p) in γ′, trivially.

Otherwise, ¬AbnormRoot(p), p.par.status = eb, and KinshipOk(p, p.par) holds in
γ. Applying Lemma 4.5 to γ(p).par, we have that γ(p).par belongs to an abnormal alive
tree in γ and so does p: Tree(r) is an alive abnormal tree.

Furthermore, first note that γ(p).par = γ′(p).par (p can only change its status to eb
in γ 7→ γ′: either p do not move or executes EB-action). So, still by Lemma 4.5, in γ′,
if Tree(r) exists in γ′, γ′(p).par belongs to Tree(r) in γ′, since Tree(r) is not dead in γ
(γ(p).status = c).

As KinshipOk(p, p.par) holds in γ, we have that p ∈ RealChildren(q) in γ. Since
γ(p).status = c, q is disabled in γ (because of p) and, as p can only modify its status to
eb in γ 7→ γ′ , we still have p ∈ RealChildren(q) in γ′, i.e., p and q belong to the same
abnormal tree, Tree(r), in γ′.
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Corollary 4.1

Let γ be a configuration and let p be a process such that EBroadcast(p) holds in γ.
Let T the tree which contains p in γ. Let γR be the first configuration, if any, since
γ, such that p executes an R-action γR 7→ γR+1.

Assume γR exists, then T is an alive abnormal tree in γ but it is dead in γR or
has disappeared (at least once) between γ and γR.

Proof : Let γ be a configuration and let p be a process such that EBroadcast(p) holds in
γ. We note r the root of the tree which contains p in γ. Lemma 4.8 applies in γ: Tree(r)
is an alive abnormal tree in γ.

Let γ = γ0γ1... be an execution starting at γ. Let γR be the first configuration, if
any, in this execution such that p executes an R-action during the step γR 7→ γR+1. We
assume that γR exists. Then at some step, γi 7→ γi+1, p executes a EB-action, with
i < R.

Lemma 4.8 applies iteratively from γ0 and to γi: either Tree(r) has disappeared in
γ1 (and so between γ0 and γi+1), or p stays in Tree(r) in γ1 (and so between γ0 and
γi+1), and so on.

If Tree(r) has not yet disappeared in γi+1, then p ∈ Tree(r) in γi+1 and γi+1(p).status =
EB. Here, Lemma 4.7 applies and proves that Tree(r) has disappeared in γR or p is in
Tree(r) in γR.

Lemma 4.9

Let p be a process. Let s be a segment of execution. Between any two executions of
J-action by p in s, p can only execute J-actions.

Proof : Let s = γ0γ1 . . . be a segment of execution and p ∈ V . Consider two executions
of J-action by p during s: one in γi 7→ γi+1 and the other in γj 7→ γj+1, with i < j.
Assume by contradiction that p executes an action different from J-action between γi+1

and γj . Let γk 7→ γk+1 be the first step between γi+1 and γj during which p executes
some other action: this is a EB-action. Let γl 7→ γl+1 be the last step between γi+1 and
γj during which p executes some other action: this is a R-action (hence k < l).

Now, Lemma 4.1 applies since in γk, EBroadcast(p) holds, and in some step later
γl 7→ γl+1, p executes a R-action. This proves that in γk, some abnormal tree is alive
and that in γl, this tree is dead or has disappeared. Hence γk and γl are not in the same
segment, a contradiction.

Lemma 4.10

In a segment of execution, there are at most (n−1)(n−2)/2 executions of J-action.

Proof : Let p ∈ V . First, p only executes J-actions between two J-actions in the same
segment (Lemma 4.9). So, using the guard of J-action, it follows that the value of the
p.idRoot always decreases during any sequence of J-actions which means that p cannot
set p.idRoot two times to the same value during the segment.
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Let A be the set of processes q such that q.status = c at the beginning of the
segment. Let B the set of processes q such that q executes an R-action in the segment.
A∩B = ∅. Indeed, pick a process q ∈ A∩B. q switches from status c at the beginning
to status eb, and then to status ef since some step later, it executes R-action. Hence,
there exists a configuration γb in the segment such that EBroadcast(q) is True and
another γr, later on such that R-action occurs: hence Corollary 4.1 applies and proves
that the tree of q in γb is abnormal alive and that it dies or disappears some step before
γr. This contradicts the definition of segment. Hence, |A|+ |B| ≤ n.

Now, p.idRoot can only be assigned to:

1. values which are present in variables idRoot of processes in A at the first configu-
ration of the segment,

2. ID of processes in B.

Let f : V → id be a function such that ∀p ∈ A ∪ B, if p ∈ A, f(p) = x, where x
is the value of p.idRoot at the beginning of the segment; otherwise, f(p) = p.id. Let
p0, . . . pk−1 (with k ≤ n) be the set of processes in A ∪ B in ascending order of f . pi
changes at most i times of idRoot. Hence, in a given segment, the number of executed
J-actions, noted ]J, satisfies the following inequality:

]J ≤
k−1∑
i=0

i ≤
n−1∑
i=0

i =
(n− 1)(n− 2)

2

By Lemmas 4.4 and 4.10, in any execution, there are at most n+ 1 segments, where
processes execute at most (n− 1)(n− 2)/2 J-actions. Hence, follows:

Corollary 4.2

In any execution, there are at most n3

2
−n2+ n

2
+1 J-actions executed inside segments.

Finite Number of Other Actions. Below, we show an upper bound on the number
of executions of other actions.

Lemma 4.11

In any execution, each process can execute at most n R-actions.

Proof : First, by definition, there are at most n abnormal alive trees in the initial configu-
ration. Let ]AbT be that number. Moreover, ]AbT can only decrease, by Lemma 4.3.

Let p be a process. We first show that when p executes R-action for the first time,
]AbT ≤ n − 1. Then, we show that after every subsequent execution of a R-action by
p, ]AbT necessarily decreases. Hence, we will conclude that p cannot execute R-action
more than n, because ]AbT cannot be negative.

Consider the first step γi 7→ γi+1 where p executes R-action. Using Observation 4.2,
Tree(p) exists and is dead in γi. Hence, there are at most n− 1 abnormal alive trees in
γi.

Consider the jth execution of R-action by p, with j > 1. After the (j−1)th R-action
of p, the status of p is c. So, between the (j − 1)th and the jth R-action, the status
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of p thus switches from c to eb and from c to ef, so that p can switch its status from
ef to c when executing its jth R-action. Hence, meanwhile there exists a configuration
γb such that EBroadcast(q) is True and another γr, later on such that p executes its
jth R-action in γr 7→ γr+1: Corollary 4.1 applies and proves that the tree to which p
belongs in γb is abnormal alive and that tree dies or disappears some step before γr, and
we are done.

Let p be a process. p necessarily executes R-action between two executions of EF-
action (resp. EB-action). Hence, we have the following corollary.

Corollary 4.3

In any execution, a process can execute EB-action and EF-action at most n times,
each.

By Remark 4.2, Corollaries 4.2, 4.3, and Lemma 4.11:

Theorem 4.1 (Convergence)

Every execution contains at most n3

2
+ 2n2 + n

2
+ 1 steps.

Terminal Configurations. We now show that in a terminal configuration, there is
one and only one leader process, known by all processes, i.e., for every two processes, p
and q, we have Leader(p) = Leader(q) and Leader(p) is the ID of some existing process.

Lemma 4.12

In a terminal configuration, every process has status c.

Proof : By contradiction, consider a terminal configuration γ where some process p satisfies
p.status 6= c. Then two cases are possible:

1. p.status = eb. By Observation 4.1, ∃q ∈ V such that q.status = eb ∧ (∀q′ ∈
RealChildren(q), q′.status 6= eb)∧p ∈ KPath(q). If RealChildren(q) = ∅, then q
can executes EF-action. Otherwise, there are two cases. If ∀q′ ∈ RealChildren(q)
then, q′.status = ef and q can execute EF-action. Otherwise, there is q′ ∈
RealChildren(q) such that q′.status = c and then q′ can execute EB-action.
Hence, in both cases, γ is not terminal, a contradiction.

2. p.status = ef. By Observation 4.1, ∃q ∈ V such that q.status = ef ∧ (Root(q)∨
(KinshipOk(q, q.par) ∧ q.par.status 6= ef) ∧ q ∈ KPath(p).

If Root(q), then AbnormRoot(q) ∨ SelfRoot(q). Now, q.status = ef implies that
AbnormRoot(q) holds. So, in all cases, q.status = ef ∧ AbnormRoot(q) holds.
If Allowed(q) holds, then R-action is enabled at q, a contradiction. Otherwise,
∃r ∈ Children(q) such that ¬KinshipOk(r, q) ∧ r.status = c. So EB-action is
enabled at r, a contradiction.

If ¬Root(q), either q.par.status = c, AbnormRoot(q) holds and we obtain a con-
tradiction as in the case where Root(q) holds, or q.par.status = eb and using
the same argument as in case 1, we can deduce that some process is enabled, a
contradiction.

Hence, all cases, γ is not terminal, a contradiction.
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Theorem 4.2 (Correctness)

In a terminal configuration, ∀p, q ∈ V, Leader(p) = Leader(q) and Leader(p) is the
ID of some existing process.

Proof : Let γ be a terminal configuration. Assume first, by contradiction, that there are
at least two leaders. As G is connected, ∃p, q ∈ V such that γ(p).leader 6= γ(q).leader
and q ∈ p.N . Now, assume without loss of generality that, in γ:

Leader(p) = γ(p).idRoot < γ(q).idRoot = Leader(q)

By Lemma 4.12, p.status = q.status = c. Then, either EBroadcast(q) is True and q
can execute EB-action or q can execute J-action. Hence γ is not terminal, a contradic-
tion.

Assume now that the leader is not one of the processes, i.e., is a fake ID. Let
p ∈ V such that its level is minimum. Notice that γ(p).status = c by Lemma 4.12.
If SelfRoot(p) holds in γ, γ(p).idRoot 6= p.id. So, AbnormRoot(p) holds and p can
execute EB-action. Otherwise, there is q ∈ p.N such that γ(p).par = q. As the level
of p is minimum, γ(p).level ≤ γ(q).level. So, AbnormRoot(p) holds and p can execute
EB-action. Hence, γ is not terminal, a contradiction.

Using Theorem 4.2, there is exactly one root in a terminal configuration (the leader
elected). So the graph of kinship relations in a terminal configuration contains exactly
one tree. Hence, we can conclude:

Remark 4.3

In a terminal configuration, Gkr is a spanning tree rooted at the leader.

Theorems 4.1 and 4.2 establish the self-stabilization, silence, and step complexity of
Algorithm LE . Moreover, note that idRoot can be stored in b bits and level can be stored
in Θ(log n) bits. Hence, we can conclude:

Theorem 4.3

Algorithm LE is a silent self-stabilizing algorithm w.r.t. SPLE working under a
distributed unfair daemon. Its step complexity is at most n3

2
+ 2n2 + n

2
+ 1 steps. Its

memory requirement is Θ(log n+ b) bits per process.

4.3.3 Complexity Analysis

In this subsection, we study the complexity of Algorithm LE in rounds and we make a
worst-case analysis of its stabilization time both in steps and rounds.

Stabilization Time in Rounds. First, we study the “good” cases, i.e., when the sys-
tem is in a clean configuration (defined below). From such configurations, the execution
consists in building a tree rooted at ` using J-action only. Once, the tree is built, the
system is in a terminal configuration, where every process has elected `.
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Definition 4.13 (Clean configuration)

A configuration γ is called a clean configuration if and only if for every process p,
¬EBroadcast(p) ∧ p.status = c holds in γ. A configuration that is not clean is said
to be dirty.

Remark 4.4

By definition, in a clean configuration, every process p has status C and either p is a
normal root, i.e., SelfRoot(p)∧SelfRootOk(p), or (exclusively) KinshipOk(p, p.par)
holds.

Remark 4.5

Notice that in a clean configuration, the only action a process p can execute is J-
action, provided that Join(p) holds. Note also that Allowed(p) always holds due to
Remark 4.4. Verifying Join(p) then reduces to: ∃q ∈ p.N , (q.idRoot < p.idRoot). In
this case, the value of p.idRoot can only decrease.

Lemmas 4.13 to 4.16 proves that, starting from a clean configuration, the system
reaches in O(D) rounds a terminal configuration (see Theorem 4.4). We first show the
set of clean configurations is closed.

Lemma 4.13

The set of clean configurations is closed.

Proof : Let γ 7→ γ′ be a step such that γ is a clean configuration. By definition, all processes
have status C in γ. So, processes can only execute J-action (Remark 4.5) in γ 7→ γ′,
and consequently all processes have status c in γ′. Now, ∀p ∈ V,¬EBroadcast(p) ∧
p.status = c in γ implies that there is no alive abnormal root in γ. By Lemma 4.2, there
is no alive abnormal root in γ′ too. Now, the fact that all processes have status c and
there is no alive abnormal root in γ′ implies that ∀p ∈ V,¬EBroadcast(p)∧p.status = c
in γ′, i.e., γ′ is clean.

Using Lemma 4.13, we show below that if a process is enabled in a clean configuration
(for the only action it can execute, i.e., J-action) it remains enabled until it executes it.

Lemma 4.14

In a clean configuration, if J-action is enabled at p, it remains enabled until it is
executed by p.

Proof : Let γ 7→ γ′ be a step such that γ is a clean configuration. Assume by contradiction
that J-action is enabled at p in γ and not in γ′, but p did not execute J-action between
γ and γ′. By Lemma 4.13, γ′ is also a clean configuration. So, ¬EBroadcast(p) ∧
p.status = c holds in γ′.

But join(p) must be False in γ′. Using Remark 4.5, this means that there necessarily
exists a neighbor of p, say q, such that γ(q).idRoot < γ(p).idRoot but γ′(q).idRoot ≥
γ′(p).idRoot = γ(p).idRoot. This contradicts Remark 4.5.
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Lemma 4.15

There is no (fake) idRoot smaller than `.id in a clean configuration.

Proof : Let γ be a clean configuration. Assume there exists a process of idRoot smaller
than `. Let p be such a process such that p.idRoot is minimum among all the processes
and p.level is minimum among all the processes having idRoot minimum.

Note that p.idRoot 6= p so SelfRootOk(p) is False in γ. Hence, using Remark 4.4,
the predicate KinshipOk(p, p.par) holds in γ. Since we take p of minimum idRoot
p.idRoot ≤ p.par.idRoot in γ. GoodIdRoot(p, p.par) implies that p.idRoot ≥ p.par.idRoot,
so p.idRoot = p.par.idRoot. Now, GoodLevel(p, p.par) implies that p.level = p.par.level+
1, which contradicts the minimality of p.level.

For any process p, p can only set p.idRoot to its own ID or copy the value of idRoot(q),
where q is one of its neighbors. So, we have the following remark:

Remark 4.6

No fake ID is created during any step.

Lemma 4.16

In a clean configuration, if the idRoot of a process p is `.id, p is disabled forever.

Proof : Let γ be a clean configuration. Let p be a process with γ(p).idRoot = `. By
Remark 4.5, only J-action can be enabled in γ. Moreover, its guard reduces to ∃q ∈
p.N , (idRoot(q) < p.idRoot). But Lemma 4.15 ensures that this cannot be True, hence
p is disabled in γ. Then, by Lemma 4.13 and Remark 4.6, this will be True forever.

Corollary 4.4

A clean configuration where ∀p ∈ V, p.idRoot = `.id, is terminal.

Theorem 4.4

In a clean configuration, the system reaches a terminal configuration where ∀p ∈
V, p.idRoot = ` in at most D rounds.

Proof : Consider any execution e that starts from a clean configuration. In the following,
we denote by ρi the first configuration of the ith round in e. We show by induction
on the distance d ≥ 0 between the processes and ` that ∀p ∈ V such that ‖p, `‖ ≤ d,
ρd(p).idRoot = `.id.

Base case: If ‖p, `‖ = 0, p = `. Notice that if the predicate GoodIdRoot(p, p.par)
holds in ρ0, it would implies that p.idRoot < p.id which is False by Lemma 4.15.
So KinshipOk(p, p.par) cannot hold in ρ0. Hence, SelfRoot(p) ∧ SelfRootOk(p)
holds in ρ0 (by Remark 4.4) and ρ0(p).idRoot = p.id = `.id.

Induction step: Assume the property holds at some d ≥ 0. If ‖p, `‖ = d+ 1, ∃q ∈ p.N
such that ‖q, `‖ = d. By induction hypothesis and by Lemma 4.16, idRoot(q) = `.id
and q is disabled forever since ρd.
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If p.idRoot.id = ` in ρd, it remains so forever (Lemma 4.16). If p.idRoot 6= `.id
in ρd then q.idRoot < p.idRoot (Lemma 4.15). Then, J-action is enabled at p in
ρd and remains enabled until p executes it (Lemma 4.14). As there is no fake ID
smaller than `.id (Lemma 4.15), p.idRoot = `.id after p executes J-action, i.e.,
after at most one round. Hence, p.idRoot = `.id in ρd+1.

As D ≥ max {‖p, `‖ , p ∈ V }, in at most D rounds, the system reaches a configuration
where ∀p ∈ V, p.idRoot = `.id. By Corollary 4.4, this configuration is terminal.

Previously, we proved that, starting from a clean initial configuration, the system
reaches a terminal configuration in at most D rounds. But what happens if the initial
configuration is dirty, i.e., if there is a process p such that the predicate EBroadcast(p)
holds or p.status 6= c. In this section, we prove that starting from a dirty configuration,
the system reaches a clean configuration in at most 3n rounds. More precisely, we show
that a dirty configuration contains abnormal trees that are “cleaned” in at most 3n
rounds. The system will be in a clean configuration afterwards.

Lemma 4.17

In a dirty configuration, there exists at least one abnormal root.

Proof : Let γ be a dirty configuration. Then, ∃p ∈ V such that p.status 6= c∨EBroadcast(p).
We search for an abnormal root.

1. If p.status ∈ {eb,ef}, using Observation 4.1, there is q ∈ KPath(p) such that
q.status ∈ {eb,ef} ∧ Root(q). Then, AbnormRoot(q) ∨ SelfRoot(q) holds in γ.
Now, SelfRoot(q) ∧ q.status ∈ {eb,ef} implies AbnormRoot(q). Hence, in all
cases, AbnormRoot(q) holds.

2. If EBroadcast(p) holds, Lemma 4.8 applies and we are done.

We have just shown that there are abnormal roots (and so abnormal trees) in dirty
configurations. Below, we prove that these abnormal trees will disappear after three
waves of “cleaning”. After the first wave, an abnormal tree becomes dead (Theorem 4.5),
after the second wave any abnormal root gets the status ef (Theorem 4.6) and finally
after the third wave there is no more abnormal trees (Theorem 4.7), hence the system is
in a clean configuration.

The following technical lemma is used in the proof of Theorem 4.5.

Lemma 4.18

When EB-action is enabled at a process p, it remains enabled until p executes EB-
action.

Proof : Assume that EB-action is enabled at a process p in a configuration γ, but p did
not execute EB-action during the step γ 7→ γ′. Notice that p does not execute any
action during this step, as guards are mutually exclusive. As EB-action is enabled in γ,
γ(p).status = c and then, γ′(p).status = c.
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First, assume that the predicate AbnormRoot(p) holds in γ. If SelfRoot(p) ∧
¬SelfRootOk(p) holds in γ and, as these predicates only depends on the local state of
p and as p does not execute any action during the step, it also holds in γ′: the action is
still enabled in γ′. Otherwise, ¬SelfRoot(p)∧¬KinshipOk(p, p.par) holds in γ. These
predicates only depends on the local state of p and its parent. Now, Allowed(p.par)
does not hold in γ because of p, so p.par cannot execute R-action nor J-action during
γ 7→ γ′. Then, either p.par executes EF-action, changes its status to ef and then,
GoodStatus(p, p.par) is False in γ′, or p.par executes EB-action and changes its status
to eb. In these two cases, EBroadcast(p) holds in γ′.

Now, assume p.par.status = eb. p.par can only execute EF-action and change its
status to ef. Then, the predicate GoodStatus(p, p.par) is False in γ′, which implies
that EBroadcast(p) holds in γ′.

Theorem 4.5

In at most n rounds, the system reaches a configuration where every abnormal tree
(if any) is dead.

Proof : Consider any execution e = γ0, . . .. ∀i > 0, we denote by γRi the last configuration
of the ith round and so the first configuration of the (i+ 1)th round of e. Moreover, let
γR0 = γ0 be the initial configuration. We show by induction on the length of the KPaths
that, ∀i ≥ Rd (d ≥ 1), ∀p ∈ V , if p is in an abnormal tree and |KPath(p)| ≤ d in γi,
then p is dead in γi.

Base Case: If p is in an abnormal tree and |KPath(p)| = 1, p is an abnormal root. As
no alive abnormal root is created (Lemma 4.2), if p is alive, it is an alive abnormal
root since γR0 and if predicate (p.status = C∧AbnormRoot(p)) becomes False in
some configuration, then it remains False forever. Hence, it is sufficient to show
that any alive abnormal root is no more an alive abnormal root after one round
(that is, from γR1).

By definition, EB-action is enabled at p in γR0 and p executes EB-action during
the first round (using Lemma 4.18). Hence, p is dead at the end of the first round,
and we are done.

Induction Hypothesis: Let d ≥ 1. Assume that ∀i ≥ Rd, ∀p ∈ V , if p belongs to an
abnormal tree and |KPath(p)| ≤ d in γi, then p is dead in γi.

Induction Step: We first show that for every p ∈ V , for every i ≥ Rd, if (p.status = c∧
|KPath(p)| ≤ d+ 1) is False in configuration γi, then for every j ≥ i, (p.status =
c ∧ |KPath(p)| ≤ d+ 1) is False in configuration γj .

Assume by contradiction that the predicate (p.status = c ∧ |KPath(p)| ≤ d + 1)
is False in γj , but True in γj+1 (j ≥ i). By induction hypothesis, |KPath(p)| =
d+ 1 > 1 in γj+1 (indeed, p is alive in γj+1). So, γj+1(p).par 6= p. So, let q ∈ p.N
such that γj+1(p).par = q. By definition, |KPath(q)| = d in γj+1. By induction
hypothesis, γj+1(q).status ∈ {eb,ef}. Now, p.status = c and |KPath(p)| > 1
in γj+1, so p is not an abnormal root in γj+1. Hence, γj+1(q).status = eb (by
Observation 4.1) and, consequently, γj(q).status ∈ {c,eb}.
• If γj(q).status = eb, then p does not execute any action during the step
γj 7→ γj+1 (otherwise, γj+1(p).status 6= c or γj+1(p).par 6= q). Hence,
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γj(p).status = γj+1(p).status = c. By hypothesis, ‘p.status = c∧|KPath(p)| ≤
d+ 1 is False in γj , so we have |KPath(p)| > d+ 1 in γj .
Now, γj(p).status = c and γj(q).status = eb, so S-Trace(KPath(p)) = eb+c
in γj (Observation 4.1) and p is the only process in its KPath that can execute
an action in γj 7→ γj+1. Hence, for every q such that q ∈ KPath(p) in γj ,
q ∈ KPath(p) in γj+1, and then |KPath(p)| > d + 1 in γj+1. So p.status =
c ∧ |KPath(p)| ≤ d+ 1 is False in γj+1, a contradiction.

• If γj(q).status = c, then q is in an alive abnormal tree in γj (indeed, q executes
EB-action in γj 7→ γj+1, and so Lemma 4.8 applies). As q is alive in γj , we
have |KPath(q)| > d in γj by induction hypothesis. Moreover, q is not an
abnormal root (there is no more alive abnormal root after the first round, see
the base case). Hence, the status of its parent in γj is eb.
Now, |KPath(q)| > d and S-Trace(KPath(q)) = eb+c in γj (Observa-
tion 4.1). So, q is the only one in its KPath that executes an action in
γj 7→ γj+1 and this action is EB-action, that maintains the KinshipOk rela-
tion. Hence, |KPath(q)| > d in γj+1 and consequently, |KPath(p)| > d+ 1 in
γj+1, a contradiction.

Hence, ∀p ∈ V , if (p.status = c ∧ |KPath(p)| ≤ d + 1) is False in some configu-
ration γi with i ≥ Rd, then (p.status = c ∧ |KPath(p)| ≤ d + 1) remains False
forever.

Now, EB-action is continuously enabled ∀p such that p is alive |KPath(p)| = d+1
in γRd

(by induction hypothesis and Lemma 4.18). So, p becomes dead during the
round and, ∀j ≥ Rd+1, γj contains no alive process p such that |KPath(p)| ≤ d+1.

n ≥ max {|KPath(p)| : ∀p ∈ V }. Hence, any process in an abnormal tree becomes dead
in at most n rounds.

Lemma 4.19

If EF-action is enabled at a process p, it remains enabled until p executes EF-action.

Proof : Let γ 7→ γ′ be a step. Assume by contradiction EF-action is enabled at a pro-
cess p in γ and is not enabled in γ′, but p did not execute EF-action during the step
γ 7→ γ′. Notice that p does not execute any action during this step, as guards are
mutually exclusive. As EFeedback(p) holds in γ, γ(p).status = γ′(p).status = eb. As
EFeedback(p) does not hold in γ′ and no process can execute J-action and choose a
process of status eb as parent, ∃q ∈ RealChildren(p) such that γ(q).status = ef and
γ′(q).status 6= ef. Now, because γ(q).status = ef, q can only execute R-action. How-
ever, as q ∈ RealChildren(p), KinshipOk(q, p) holds in γ and then q is not a root. So,
q cannot execute any action and change its status during γ 7→ γ′, a contradiction.

Theorem 4.6

Let γ be a configuration containing abnormal trees and where all abnormal trees are
dead. In at most n rounds from γ, the system reaches a configuration where the status
of all abnormal roots is ef.

Proof : Consider any execution e = (γi)i≥0 starting from a configuration γ0 that contains
abnormal trees and where all abnormal trees are dead. ∀i > 0, we denote by γRi the
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last configuration of the ith round and so the first configuration of the (i + 1)th round.
Moreover, let γR0 = γ0 be the initial configuration.

Claim 1: ∀p ∈ V , ∀i ≥ R0, if γi(p).status 6= eb, then ∀j ≥ i, γj(p).status 6= eb.

Proof of the claim: Assume by contradiction that γj(p).status 6= eb and γj+1(p).status =
eb, with γj 7→ γj+1. Then, p.status = c in γj and EB-action is enabled at p
in γj . So, p is in an alive abnormal tree in γj (Lemma 4.8), a contradiction to
Lemma 4.3. �

In any configuration γ, we denote by MaxLengthKPath(p) = max{|KPath(q)| , q ∈
V ∧ p ∈ KPath(q)}. Again in γ, we define L(p) = MaxLengthKPath(p)− |KPath(p)|
and EBL(p, k) ≡ p.status = eb ∧ L(p) = k.

Claim 2: ∀i ≥ R0, if EBL(p, ki) holds in γi, then ∀j ≥ i,∀kj < ki,¬EBL(p, kj) holds
in γj .

Proof of the claim: If j = i, EBL(p, kj) is False for kj < ki because L(p) cannot
have two different values in a same configuration. Assume now j > i. The case
ki = 0 is direct. Assume ki > 0. Assume by contradiction that EBL(p, ki) holds
in γi and EBL(p, kj) holds in γj with j > i and kj < ki. So, γi(p).status =
γj(p).status = eb and there are two cases:

• p.status = eb in all the configurations between γi and γj . Consider the
step γi 7→ γi+1. Let q be any process such that p ∈ KPath(q) in γi. So,
KPath(q) = q0 . . . qi . . . qk where qi = p and qk = q, and S-Trace(KPath(q)) =
eb+ef∗ in γi. There is a unique process in KPath(q) that can execute an
action in γi 7→ γi+1 (the only one of status eb with children of status ef). If
it executes an action, it is EF-action which maintains KinshipOk relation.
Hence, ∀q′ ∈ KPath(q) in γi, q

′ ∈ KPath(q) in γi+1.
We can apply this latter property to every process r such that p ∈ KPath(r)
and |KPath(r)| = MaxLengthKPath(p) in γi: p ∈ KPath(r) in γi+1 and
the value of |KPath(r)| in γi+1 is greater than or equal to the value of
|KPath(r)| in γi. So, EBL(p, ki+1) holds with ki+1 ≥ ki. Applying the
same argument on step γi+1 7→ γi+2, etc., until step γj−1 7→ γj , we obtain
that EBL(p, kj) is True in γj with kj ≥ ki, a contradiction.

• There is a configuration between γi and γj where p.status 6= eb. So, ∃x,
i < x < j, such that γx(p).status 6= eb and γx+1(p).status = eb. This
contradicts Claim 1.

�

We show by induction that ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d − 1, EBL(p, k) is
False in γi.

Base case: There are three cases:

1. If L(p) = 0 in γR0 and γR0(p).status = eb, then EF-action is enabled at p
in γR0 , p executes EF-action during the first round, by Lemma 4.19 and p
gets status ef. By Claim 1, p.status remains different from eb forever and
EBL(p, 0) is False in γi, ∀i ≥ R1.

2. If γR0(p).status 6= eb, p.status 6= eb forever (Claim 1) and then EBL(p, 0) is
False forever.

3. If EBL(p, k) holds in γR0 with k > 0, EBL(p, 0) is False forever (Claim 2).
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Induction hypothesis: ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is False
in γi.

Induction step: There are four cases:

1. If L(p) = d and γRd
(p).status = eb, then ∀q ∈ RealChildren(p) in γRd

,
L(q) < d by definition and γRd(q).status 6= eb by induction hypothesis. Now,
the trees are dead, so γRd

(q).status = ef. Hence, EF-action is enabled at p in
γRd

. By Lemma 4.19, p executes EF-action during the round and gets status
ef. Then, p.status 6= eb forever (Claim 1), so EBL(p, d) is False at the end
of the (d+ 1)th round and remains False forever.

2. If L(p) = d and γRd
(p).status 6= eb, then, using Claim 1, p.status 6= eb

forever. So, EBL(p, d) is False forever.

3. If L(p) < d, γRd
(p).status 6= eb by induction hypothesis and we conclude as

in case 2.

4. If EBL(p, k) holds in γRd
with k > d, EBL(p, i) is False forever ∀i ≤ d

(Claim 2).

With d = n, we have ∀i ≥ Rn, ∀p ∈ V , ∀k ≤ n− 1, EBL(p, k) is False in γi: hence, in
at most n rounds, there is no more process of status eb in abnormal trees, those ones
being dead. So, all processes (and in particular the abnormal roots) in abnormal trees
have status ef.

Lemma 4.20

If all abnormal trees are dead and R-action is enabled at a process p, then R-action
remains enabled at p until p executes it.

Proof : Let γ be a configuration, where all abnormal trees are dead. Assume, by contradic-
tion, that R-action is enabled at a process p in a configuration γ and is not enabled in
the next configuration γ′, but p did not execute R-action during the step γ 7→ γ′. Notice
that p does not execute any action during this step, as guards are mutually exclusive.

As R-action is enabled in γ and p does not execute an action during the step,
γ(p).status = γ′(p).status = EF .

If SelfRoot(p) ∧ ¬SelfRootOk(p) holds in γ, it also holds in γ′ because p does not
execute an action between γ and γ′ and these predicates only depends on the local state
of p.

Otherwise ¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par) holds in γ. Let q = p.par. If q
does not execute an action between γ and γ′, p is still an abnormal root. Otherwise,
three cases are possible:

• ¬GoodIdRoot(p, q) holds in γ.

1. If γ(p).idRoot < γ(q).idRoot. If q executes EB-action or EF-action during
the step, the idRoot of q does not change, so γ′(p).idRoot < γ′(q).idRoot, and
then AbnormRoot(p) holds in γ′. Otherwise q executes R-action or J-action.
Then γ′(q).status = c, so ¬GoodStatus(p, q) and AbnormRoot(p) holds in γ′.

2. If γ(p).idRoot ≥ p.id, the idRoot is not modified during the step, so γ′(p).idRoot =
γ(p).idRoot ≥ p.id and AbnormRoot(p) holds in γ′.
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• ¬GoodLevel(p, q) holds in γ. Hence, γ(p).idRoot = γ(q).idRoot but γ(p).level 6=
γ(q).level+ 1. First, if q executes EB-action or EF-action, its idRoot and its level
do not change, so γ′(p).idRoot = γ′(q).idRoot and γ′(p).level 6= γ′(q).level + 1,
so AbnormRoot(p) holds in γ′. Otherwise, q executes R-action or J-action and
consequently γ′(q).status = c. So ¬GoodStatus(p, q) and AbnormRoot(p) holds
in γ′.

• ¬GoodStatus(p, q) holds in γ. Then γ(q).status = c, and q can only execute EB-
action or J-action between γ and γ′. If q executes EB-action, then EBroadcast(q)
holds in γ, so q is in an abnormal tree (Lemma 4.8). But, by hypothesis, all
abnormal trees are dead in γ, so γ(q).status 6= c, a contradiction. If q executes
J-action then γ′(q).status = c, so ¬GoodStatus(p, q) and AbnormRoot(p) holds
in γ′.

Thus, γ′(p).status = ef andAbnormRoot(p) holds in γ′ and, consequently, Allowed(p)
is False in γ′. So ∃q ∈ p.N such that q ∈ Children(p) ∧ ¬KinshipOk(q, p) holds in γ′

but γ′(q).status = c. Two cases are possible:

• If q /∈ Children(p) in γ, then q executes J-action during the step γ 7→ γ′ and
Min(q) = p. But γ(p).status = ef, a contradiction.

• Otherwise q ∈ Children(p) in γ and γ(q).status 6= c. q executes either EF-action
and γ′(q).status = ef, or R-action and γ′(q).par 6= p, so q /∈ Children(p) in γ′, a
contradiction.

Definition 4.14 (Abnormal process)

A process p is said to be abnormal if and only if p belongs to an abnormal tree. p is
said to be normal, otherwise.

As no process can join a dead abnormal tree (Remark 4.1) and, by Lemma 4.3, no
alive abnormal tree can be created, we have the following remark:

Remark 4.7

In a configuration where every abnormal tree is dead, the number of abnormal pro-
cesses can only decrease.

Theorem 4.7

Starting from a configuration where every abnormal tree is dead and the status of
their roots is ef, there is no more abnormal processes in at most n rounds.

Proof : Let γ0 be a configuration where all abnormal trees are dead and the status of their
roots is ef. By Observation 4.1, all abnormal processes have status ef in γ0. So, from
γ0, no process can be ever an abnormal process with a status different of ef (such a
process can only execute R-action, then it is a normal process forever, by Lemma 4.3).
Then, by definition, the number of abnormal processes in γ0 is at most n. Moreover,
by Remark 4.7, it is sufficient to show that in any configuration γk reachable from γ0, if
the number of abnormal processes is not null, then at least one of them becomes normal
within the next round.

So, let assume that some process p is abnormal in γk. Then, γk(p).status = ef. By
Observation 4.1 and Lemma 4.20, the initial extremity r of KPath(p) is an abnormal
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process (of status ef) and executes R-action within the next round. After executing
R-action, r is normal (actually, r becomes a self root), and we are done.

By definition, the root of a normal tree has status c. So, by Observation 4.1, we have:

Remark 4.8

Every process has status c in a configuration containing no abnormal processes.
Moreover, this configuration is clean.

Using Lemma 4.17 and Theorems 4.5 to 4.7, we can conclude:

Theorem 4.8

In at most 3n rounds, the system reaches a clean configuration.

Then, using Theorems 4.4 and 4.8 we get:

Theorem 4.9 (Round Complexity)

In at most 3n+D rounds, the system reaches a terminal configuration.

Lower Bound on the Worst Case Stabilization Time in Rounds. We now show
that the bound proposed in Theorem 4.9 cannot be improved. To see this, we exhibit
a construction that gives, ∀n ≥ 4, ∀D, 2 ≤ D ≤ n − 2, a network of n processes whose
diameter is D from which there is a possible synchronous execution that lasts exactly
3n+D rounds. (Recall that every synchronous execution is possible under the distributed
unfair daemon.)

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that
pi has ID i, for i ∈ {1, . . . , n}. Figure 4.8a shows the system in its initial configuration. In
details, processes p1, pn, . . . ,p2 form a chain, i.e., {p1, pn} ∈ E and {pi, pi−1} ∈ E, ∀i ∈
{3, . . . , n}.

We add k edges to p2, with 2 ≤ k ≤ n− 2, as follows:

If k = n− 2, {p2, p1} ∈ E and for ∀i ∈ {4, . . . , n}, {p2, pi} ∈ E,

Otherwise ∀i ∈ {4, . . . , k + 3}, {p2, pi} ∈ E.

Notice that the diameter of the network is n − k and can be adjusted by adding or
removing some edges to p2.

We assume the following initial configuration:

• pi.idRoot = 0, ∀i ∈ {1, . . . , n},

• p1.level = n− 1 and p1.par = pn,

• p2.par = p2 and p2.level = 0,

• pi.level = i− 2 and pi.par = pi − 1, ∀i ∈ {3, . . . , n}.
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Figure 4.8 – An example in 3n+D rounds. (j = k + 3)

We consider a synchronous daemon, i.e., in a configuration γ, every process in Enabled(γ)
is selected by the daemon to execute an action. So, in this case, every round lasts exactly
one step.

The execution is then as follows:

• p2, p3, p4, . . . , pn, p1 sequentially execute EB-action: n rounds. (See Figure 4.8b.)

• p1, pn, pn−1, . . . , p2 sequentially execute EF-action: n rounds. (See Figure 4.8c.)

• p2 and p3 sequentially execute R-action: 2 rounds. (See Figure 4.8d.)

• For i = 4, . . . , n, simultaneously pi and pi−1 respectively executes R-action and
J-action, in particular, pi−1 joins Tree(p2): n − 3 rounds. (See Figures 4.8e and
4.8f.)
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• p1 executes R-action and pn executes J-action simultaneously: 1 round.

• For i = n, . . . , k + 3, i executes J-action to join Tree(1): n − k − 2 rounds. (See
Figure 4.8g.)

• p2 and pk+2 simultaneously execute J-action to join T (1): 1 round. (See Fig-
ure 4.8h.)

• p3, . . . , pk+1 simultaneously execute J-action and then the configuration is terminal:
1 round. (See Figure 4.8i.)

Hence, the execution lasts exactly 3n+ (n− k) = 3n+D rounds. Using Theorem 4.9
we can conclude:

Theorem 4.10

In the worst case, the round complexity of LE is exactly 3n+D rounds.

Lower Bound on the Worst Case Stabilization Time in Steps. We show that
the bound given in Theorem 4.1 can be asymptotically matched, i.e., we give an example
of possible execution that stabilizes in Ω(n3) steps, for every n ≥ 4.

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such
that pi has ID n + i, ∀i ∈ {1, . . . , n}. Figure 4.9a shows the network in this initial
configuration. In details, there are 2n − 3 edges: {pi, pi+1} for i ∈ {1, . . . , n− 2} and
{pi, pn} for i ∈ {1, . . . , n− 1}. (Notice that the diameter of this network is 2.) The initial
configuration is as follows:

• pi.idRoot = i, ∀i ∈ {1, . . . , n− 1}, and pn.idRoot = 2n.

• pi.par = pi, pi.level = 0 and pi.status = c, ∀i ∈ {1, . . . , n}.

We consider the following execution:

• For i = n− 1, n− 2, . . . , 1, we clean Tree(pi) the following way:

1. If i ≤ n− 2, for j = n− 2, n− 1, . . . , i,

a) For k = j + 1, j + 2, . . . , n− 1, pk joins Tree(pj).

Case 1 lasts
∑n−1−i

j=1 j = (n− i− 1)(n− i)/2 steps.

2. pi, pi+1, . . . , pn−1 sequentially execute EB-action: n− i steps.

3. pn−1, pn−2, . . . , pi sequentially execute EF-action: n− i steps.

4. pi, pi+1, . . . , pn−1 sequentially execute R-action: n− i steps.

Figures 4.9e to 4.9h show the cleaning of Tree(pn−3).

• After all abnormal trees have been cleaned, processes pn−1 to p2 join Tree(p1)
similarly as Case 1:

∑n−2
j=1 j = (n− 1)(n− 2)/2 steps (Figure 4.9j).

• pn executes J-action to join Tree(p1): 1 step (Figure 4.9k).
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(a) The initial configuration.
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(b) In three steps, pn−1 becomes
normal.
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(c) pn−1 executes J-action and
joins Tree(pn−2).
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(d) In six steps, the abnormal tree
rooted in pn−2 is cleaned.
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(e) pn−1 executes J-action and joins
the normal tree Tree(pn−2).
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(f) pn−2 executes J-action and
joins the abnormal tree Tree(pn−3)
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(g) pn−1 executes J-action and up-
dates its idRoot to n− 3.
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(h) In nine steps, the abnormal tree
rooted in pn−3 is cleaned.
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(i) There is no more abnormal trees.
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(j) In
∑n−2

j=1 j steps, processes pn−1 to
p2 elect p1.
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(k) In one step, the system reaches a ter-
minal configuration where p1 is leader.

Figure 4.9 – An example in Ω(n3) steps.
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Hence, the complete execution lasts:

3 +
n−2∑
i=1

(
3(n− i) +

(n− i− 1)(n− i)
2

)
+

(n− 1)(n− 2)

2
+ 1 =

n3

6
+

3

2
n2− 8

3
n+ 2 steps

So, there exists an execution in Ω(n3). Using Theorem 4.3, we can conclude:

Theorem 4.11

In the worst case, the step complexity of LE is in Θ(n3) steps.

4.4 Step Complexity of Algorithm DLV1

In this section, we study the step complexity of the algorithm given in [DLV11a],
called here DLV1.

1 Below, we show that its stabilization time is not polynomial in steps.

First, we give the code of algorithm DLV1 and an informal explanation of its main
principles in Subsection 4.4.1. Then, we give in Subsection 4.4.2 an example of a class of
network in which there is a possible execution that stabilizes in Ω(2n) steps.

4.4.1 Overview of DLV1

The formal code of Algorithm DLV1 is given in Algorithm 5.2 This algorithm uses
priorities. Each of its actions is given with priority number. When an enabled process
is selected by the daemon, it only executes its enabled action with the lowest priority
number.

Algorithm DLV1 elects the process of minimum ID, `, and builds a breadth-first
spanning tree rooted at `. IDs are assumed to be natural integers. To ensure that every
process knows which one is elected, it maintains a variable leader in which is saved the
alleged leader. The level of the process in the tree is saved into variable level. The key
of a process p is the combination of its two variables p.leader and p.level. The keys are
ordered using the lexical order. Notice that there is no explicit pointer to the parent but
it can easily be computed with the keys.

Notice that we suppose every ID to be different than 0. When there is a smaller
possible key in the neighborhood of a process p, p may execute A2-action and update its
key accordingly.

As in LE , a “good relation” between a process p and its parent, called V alid(p), is
defined. This predicate ensures that p is either a self root (〈p, 0〉), a zero root (〈0, 0〉), or
its key is greater or equal to the best possible key.

Zero propagation. The main difference between LE and DLV1 is the way to deal with
fake IDs. DLV1 exploits the value 0, smaller than any ID. More precisely, if a process p

1DLV1 stands for “Datta, Larmore, and Vemula.”
2The code given in Algorithm 5 is slightly different from the one given in [DLV11a]. Actually, we

found a flaw in the definition of the V alid predicate. After private communication with the authors, we
agree on the solution proposed here.
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Algorithm 5 – Actions of Process p in Algorithm DLV1 [DLV11a].

Inputs.

• p.id ∈ N • p.N
Variables.

• p.leader ∈ N
• p.level ∈ N

• p.key = 〈p.leader, p.level〉

Functions.

Successor(〈lead, lvl〉) ≡ 〈lead, lvl + 1〉
MinKeyNeighbor(p) ≡ min {q.key : q ∈ p.N}

Predicates.

SelfRoot(p) ≡ p.key = 〈p, 0〉
ZeroRoot(p) ≡ p.key = 〈0, 0〉
V alid(p) ≡ SelfRoot(p) ∨ ZeroRoot(p) ∨ (p.key > MinKeyNeighbor(p))

Is Linked(p) ≡ p.key = Successor(MinKeyNeighbor(p))

Is Good(p) ≡ Is Linked(p) ∨ (SelfRoot(p)⇒ p.key < MinKeyNeighbor(p))
∨ ZeroRoot(p)

Frozen(p) ≡ SelfRoot(p) ∧ (∃q ∈ p.N , q.leader = 0)

ZeroLeaf(p) ≡ p.leader = 0 ∧ (∀q ∈ p.N , (q.key ≤ p.key) ∨ SelfRoot(q))

Actions.

A1 (prio. 1) :: ¬V alid(p) → if p.leader < p.id then
p.key := 〈0, 0〉

else
p.key := 〈p, 0〉

A2 (prio. 2) :: ¬Is Good(p) → p.key := Successor(MinKeyNeighbor(p))
∧ ¬Frozen(p)

A3 (prio. 3) :: ZeroLeaf(p) → p.key := 〈p, 0〉

is not valid and if its leader is smaller than its own ID, i.e., maybe a fake ID, p executes
A1-action and gets key 〈0, 0〉. 0 is then propagated in the network using A2-action and
erase any fake ID. The only processes that can make a barrier to the propagation of 0
are the self roots. Indeed a self root neighbor with a process of leader 0 is said frozen,
i.e., it cannot execute A2-action and get 0 as leader too.

When the growing of zero trees ends, the leaves, i.e., processes of leader 0 that are
surrounded by self roots or processes with smaller key, can reset to self root executing
A3-action.

Example of execution. Figure 4.10 shows an example of execution of DLV1. For an
easy reading of the figure, we explicit the parent pointers. The colors of processes are
used to differentiate the leader. If the node is gray, its leader is an existing ID (we can
infer which one with the parent pointers). If the node is black, its leader is the fake ID
1, smaller than any ID in the network. If the node is white, its leader is 0. We can also
infer the level with the parent pointers.
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Figure 4.10 – Example of execution of algorithm DLV1. Arrows explicit parent pointers. The
leader of white nodes (respectively, black nodes) is 0 (respectively, the fake ID 1, smaller than
any ID in the network). Otherwise, the node is gray and its leader is an existing ID that can
be infered using parent pointers.

In the initial configuration (Configuration (a)), the leader of processes 3, 7, and 8 is
the fake ID 1. Then, in step (a) 7→ (b), 1 is propagated to process 6 that executes A2.
At the same time, 9 also executes A2-action and chooses 5 as leader. 7 corrects its error
and becomes a zero root by executing A1-action during step (b) 7→ (c). The special ID
0 is propagated to processes 3 and 8 in step (c) 7→ (d) and then to process 6 in step (d)
7→ (e). At the same time, 8 can reset itself executing A3-action because it is a zero leaf.
Notice that 0 is not propagated to 5 since 5 is a self root and cannot execute A2-action.
In step (e) 7→ (f), 6 resets itself and 8 executes A2-action to choose 5 as leader. Then, 3
executes A3-action during step (f) 7→ (g). The last process of leader 0, process 7, resets
itself during step (g) 7→ (h). In the same step, 5 and 6 execute A2-action and choose 3
as leader. Notice that the leader of 8 and 9 is still 5 in Configuration (h). Leader 3 is
propagated to 7, 8, and 9 during step (h) 7→ (i). Hence, 3 is elected in Configuration (i).

4.4.2 Example of Exponential Execution

In this subsection, we propose a class of network of n processes, for every n ≥ 5, in which
there exists an execution of DLV1 in Ω(2n) steps.

Network and initial configuration. We consider a network composed of n ≥ 5
processes pk of ID k ∈ {2, . . . , n+ 1}. Notice that 1 is a fake ID smaller than ev-
ery ID in the network. Figure 4.11 shows the network and the initial configuration.
The network is composed of H =

⌊
n−1
4

⌋
diamonds. ∀h ∈ {0, . . . , H − 1}, Diamond h

is made of the following edges:
{
p4(H−h−1)+2, p4(H−h−1)+3

}
,
{
p4(H−h−1)+2, p4(H−h−1)+4

}
,{

p4(H−h−1)+3, p4(H−h−1)+5

}
,
{
p4(H−h−1)+4, p4(H−h−1)+6

}
, and

{
p4(H−h−1)+5, p4(H−h−1)+6

}
.
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Figure 4.11 – Initial configuration for any n ≥ 5.

The remaining processes form a chain linked to p2, i.e., the edges {pi, pi+1} with i ∈
{4H + 4, n}, and the edge {p2, p4H+3}.

We consider the initial configuration where p2.key = 〈1, 0〉, i.e.p2 has the fake id 1 as
leader, and ∀i ∈ {3, . . . , n+ 1}, pi.key = 〈i, 0〉, i.e., pi is self root.

Overview of the execution for n = 11. Figure 4.12 shows an intuitive idea of the
execution for n = 11. Each phase is composed of three waves: the propagation of fake
ID 1, the propagation of special ID 0, and the reset.

During the first phase ((1) in Figure 4.12), the fake ID 1 is propagated to p4, p6, p8,
and p10. The fake ID 1 is also propagated to p3 and p7 to prepare the next phases. Then,
p2 corrects its error executing A1-action and the special ID 0 is propagated along the
same path. The reset starts at p10, and then p8 resets.

p7 still has 1 as leader so, in phase (2), 1 is propagated to p9 and p10. Then, since p6
holds 0, 0 propagated to p7, p9, and p10. Finally, p10, p9, p7, p6 and p4 resets.
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Figure 4.12 – Intuitive idea of the execution for n = 11.

Then, during phase (3), we start again on the right side. p3.leader = 1 so 1 is
propagated to p5, p6, p8, and p10. Then 0 is propagated to p3 and along the same path.
The reset starts from p10 to p8 as in phase (1).

Finally phase (4) is similar to phase (2) with a reset along the right side of the network.

Notice that the additional processes p11 and p12 do nothing.

Generalization for any n ≥ 5. We generalize this idea for any n ≥ 5. We consider
an unfair daemon that selects the enabled processes according to function Daemon given
in Algorithm 6.

Theorem 4.12

For every n ≥ 5, there exists a network of n processes in which there exists a possible

execution of Algorithm DLV1 that stabilizes in Ω(17× (2b
n−1
4 c − 1) steps.

Proof : Let consider the diamond h. When p4(H−h−1)+2 holds 1 as leader, the processes
into diamond h executes the following actions:

• Propagation of 1 on the left: p4(H−h−1)+3, p4(H−h−1)+4, p4(H−h−1)+6 executes A2-
action

• Propagation of 0 on the left: p4(H−h−1)+2 executes ActionA1, p4(H−h−1)+4, p4(H−h−1)+6

executes A2-action

• Reset on the left: p4(H−h−1)+6, p4(H−h−1)+4 executes A3-action

• Propagation of 1 on the right: p4(H−h−1)+5, p4(H−h−1)+6 executes A2-action

• Propagation of 0 on the right: p4(H−h−1)+3, p4(H−h−1)+5, p4(H−h−1)+6 executes
A2-action

• Reset on the right: p4(H−h−1)+6, p4(H−h−1)+5, p4(H−h−1)+3, p4(H−h−1)+2
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Algorithm 6 – Algorithm of the daemon.

1: function Daemon
2: p3 executes A2-action;
3: BuildLeft(H − 1, 1);
4: p2 executes A1-action;
5: BuildLeft(H − 1, 0);
6: ResetLeft(H − 1);

7: function BuildLeft(h, b)
8: p4(H−h−1)+4 executes A2-action;

9: p4(H−h−1)+6 executes A2-action;

10: if h > 0 then
11: if b = 1 then
12: p4(H−h−1)+7 executes A2-action;

13: BuildLeft(h− 1, b);

14: function BuildRight(h)
15: if b 6= 1 then
16: p4(H−h−1)+3 executes A2-action;

17: p4(H−h−1)+5 executes A2-action;

18: p4(H−h−1)+6 executes A2-action;

19: if h > 0 then
20: if b = 1 then
21: p4(H−h−1)+7 executes A2-action;

22: BuildLeft(h− 1, b);

23: function ResetRight(h)
24: if h = 0 then
25: p4∗(H−1)+6 executes A3-action;

26: else
27: ResetLeft(h− 1);
28: p4(H−h−1)+4 executes A3-action;

29: BuildRight(h, 1);
30: BuildRight(h, 0);
31: ResetRight(h);

32: function ResetRight(h)
33: if h = 0 then
34: p4∗(H−1)+6 executes A3-action;

35: else
36: ResetLeft(h− 1);
37: p4(H−h−1)+5 executes A3-action;

38: p4(H−h−1)+3 executes A3-action;

39: p4(H−h−1)+2 executes A3-action;
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So we have 17 actions. Notice that p4(H−h−1)+6 holds 1 as leader twice. Hence, if h ≥ 1,
one such execution on diamond h implies two executions on diamond h− 1. We denote
T (h) the maximum number of actions executed by processes on diamonds h to 0. So
T (h) ≥ 17 + 2T (h − 1), for h ≥ 1. Notice that this execution on diamond 0 does not
imply any other actions, so T (0) ≥ 17.

We can trivially prove by induction that T (h) ≥ 17
∑h

i=0 2i. Hence,

T (H − 1) ≥ 17
H−1∑
i=0

2i = 17(2H − 1) = 17(2b
n−1
4 c − 1)

4.5 Step Complexity of Algorithm DLV2

In this section, we study the step complexity of the algorithm given in [DLV11b], called
here DLV2. Just as for DLV1, we show that its stabilization time is not polynomial in
steps.

First, we give the code of algorithm DLV2 and an informal explanation of its main
principles in Subsection 4.5.1. Then, we give in Subsection 4.5.2 an example of a class of
network in which there is a possible execution that stabilizes in Ω(n4) steps. Finally, in
Subsection 4.5.3, we generalize the previous example to a class of network where there is
a possible execution that stabilizes in Ω(nα) for any α ≥ 4.

4.5.1 Overview of DLV2

The formal code of Algorithm DLV2 is given in Algorithm 7.

The principle of Algorithm DLV2 is very similar to Algorithm DLV1. It elects ` and
builds a breadth-first search spanning tree rooted at `. A variable leader is used to save
the ID of the current leader. Variables par and level are used to define the tree. The key
of a process p is the combination of its two variables p.leader and p.level. Notice that
the keys are ordered using the classical lexical order.

Let p be a process. Let q be its neighbor of smallest key (BestNbrKey(p)). Suppose
the key of process p is not the immediate successor of the q’s key or p.par 6= q. p may
execute J-action to modify its key and its par pointer accordingly. Notice that, contrary
to our algorithm, p can execute J-action and change its parent when there is a neighbor
with the same leader but with a level smaller than p.level−1, in order to build a breadth-
first spanning tree. Note also that the execution of J-action is constrained by the use of
a color, whose goal will be explained later.

As in LE and DLV1, Datta et al. define a “good relation” between a process p and its
parent called IsTrueChld(p). This ensures that the key of p is the successor key of its
parent and that its leader is smaller than its own ID. Then, a maximal set of processes
linked by par pointers and satisfying the IsTrueChld relation defines a tree. The root of
a tree can be a true root (IsTrueRoot(p)), i.e., the key of p is a self key (〈p, 0〉). In this
case, the tree is said to be normal. Otherwise, the root is a false root (IsFalseRoot(p)),
i.e., neither a true root nor a true child, and the tree is said to be abnormal.
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Algorithm 7 – Actions of Process p in Algorithm DLV2 [DLV11b].

Inputs.

• p.id ∈ N • p.N
Variables.

• p.leader ∈ N
• p.level ∈ N
• p.key = 〈p.leader, p.level〉

• p.par ∈ p.N ∪ {p}
• p.color ∈ {1, 2}
• p.done ∈ B

Functions.

SelfKey(p) ≡ 〈p.id, 0〉
SuccKey(p) ≡ 〈p.leader, p.level + 1〉
BestNbrKey(p) ≡ min {q.key : q ∈ p.N ∧ SuccKey(q) < SelfKey(p) ∧ q.color = 2}
TrueChldrn(p) ≡ {q ∈ p.N : q.par = p ∧ q.key = SuccKey(p)}
FalseChldrn(p) ≡ {q ∈ p.N : q.par = p ∧ q.key 6= SuccKey(p)}
Recruits(p) ≡ {q ∈ p.N : q.key > SuccKey(p)}

Predicates.

IsTrueRoot(p) ≡ p.key = SelfKey(p)

IsTrueChld(p) ≡ p.key = SuccKey(p.par) ∧ q.key > p.id

IsFalseRoot(p) ≡ ¬IsTrueRoot(p) ∧ ¬IsTrueChld(p)

Done(p) ≡ Recruits(p) = ∅ ∧ (∀q ∈ TrueChldrn(p), q.done)

ColorFrozen(p) ≡ IsTrueRoot(p) ∧ p.done

Guards.

Join(p, q) ≡ IsFalseRoot(p) ∨ SuccKey(q) < p.key ∧ q.color = 2
∧ q.key = BestNbrKey(p) ∧ FalseChldrn(p) = ∅

Reset(p) ≡ IsFalseRoot(p)

Color1(p) ≡ p.color = 2 ∧ ¬ColorFrozen(p) ∧ p.par.color = 2
∧ Recruits(p) = ∅ ∧ (∀q ∈ TrueChldrn(p), q.color = 1)

Color2(p) ≡ p.color = 1 ∧ ¬ColorFrozen(p) ∧ p.par.color = 1
∧ (∀q ∈ TrueChldrn(p), q.color = 2)

UpdateDone(p) ≡ p.done 6= Done(p)

Actions.

J (prio. 1) :: ∃q ∈ p.N , Join(p, q) → p.key := SuccKey(q)
p.par := q
p.color := 1
p.done := False

R (prio. 2) :: Reset(p) → p.key := SelfKey(p)
p.par := p
p.color := 2
p.done := False

C1 (prio. 3) :: Color1(p) → p.color := 1
p.done := Done(p)

C2 (prio. 3) :: Color2(p) → p.color := 2
p.done := Done(p)

UD (prio. 4) :: UpdateDone(p) → p.done := Done(p)
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(b) 7 can execute C1-action and get color 1.

Figure 4.13 – Guards of color actions. The ID is represented inside the node. The label next
to a node shows its key. The arrows represent par pointers. No arrow exits a node if its parent
is itself. The filling represents the color: gray for 1 and white for 2.

Color waves. The main difference between DLV1 and DLV2 is the way to deal with
these abnormal trees. Instead of using a status and a three-waves cleaning, DLV2 uses
color waves. More precisely, each process has a variable color, whose value is either 1 or
2. A process can only choose as parent a neighbor of color 2 and after executing J-action,
the process gets color 1.

A process can change its color, by executing C1 or C2-action, if it has the same color
than its parent (it is trivially satisfied for every true root) and if all of its true children
have the other color (see Figure 4.13). There is an additional constraint to change a color
to 1: as a process cannot recruit when it has color 1, a process p of color 2 must not
change its color while it can recruit processes (while Recruits(p) 6= ∅).

To add a new level in the tree, the leaves must change their color to 2. Then, the goal
is to propagate up in the tree a first wave of C1-actions initiated by the parents of the
leaves, so that a second wave of C2-actions can be initiated by the leaves. To ensure that,
the root should absorbed a (previous) wave. But, only a true root can absorb a color
wave. Indeed, the priorities on actions prevent a false root to change its color (before it
resets) and, so, to absorb a color wave.

Therefore, the colors of the processes in an abnormal tree eventually alternate, i.e.,
the parents and their true children do not have the same color, and no more process can
join the tree: the tree is color locked. Then, the false root eventually resets by executing
R-action, and so forth. Once all abnormal trees have been removed, ` is a true root and
regularly absorb color waves allowing then the leaves of its tree to recruit processes.

Finally, in O(n) rounds, ` is elected and a breadth-first spanning tree rooted at ` is
built. Notice that the color waves might never end. So, an additional mechanism allow
to ensure the silence by using a Boolean variable done and UD-action. When a process
p believes that the construction of the final tree is finished (because it cannot recruit
processes anymore) and all its true children q (if any) have set their variables q.done to
True, p.done is set to True. Moreover, a true root r cannot change its color once r.done
holds. In this case, we said that r is color frozen. Thus, after the completion of the final
tree construction, the value True is propagated up in the tree into the done variables,
and in O(D) rounds, the system reaches a terminal configuration.
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Figure 4.14 – Example of execution of DLV2.

Example of execution. Figure 4.14 shows an example of execution of DLV2 (for sake
of simplicity, we do not consider the done variables and UD-actions in this example).

In the initial configuration (Configuration (a)), the leader of process 7 is 1, the only
fake id. Moreover, 5 has already chosen 7 as parent. Then, in step (a) 7→ (b), 2 and
3 execute J-action and choose 7 (of color 2) as parent. Note also that 5 has the same
color than its parent (7), has no true child, and cannot recruit any other process. So
5 executes C1-action and gets color 1 in (b) 7→ (c). No more process can join the tree
rooted at 7 and the tree is color locked (7 is a false root and cannot change its color), so
7 resets during (c) 7→ (d). In Configuration (d), 2, 3 and 5 are false roots. In (d) 7→ (e)
they execute R-action in turns. Then, in (e) 7→ (f), processes 4, 5, 6, 7, and 8 execute
J-action to choose 2 as parent. In Configuration (f), 3 cannot join the tree rooted at 2
because all its neighbors have color 1. 2 changes its color to 1 by executing C1-action in
(f) 7→ (g). Then, processes 4, 5, 6, 7, and 8 get color 2 by executing C2-action in (g) 7→
(h). Finally, 3 is allowed to execute J-action and joins the tree rooted at 2 in (h) 7→ (i).

4.5.2 Example of Execution in Ω(n4) Steps

First, we show an execution of DLV2 that lasts Ω(n4) steps.
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Network and Initial Configuration. We consider a network made of n = L × β
processes with L = 8 and β ≥ 2: p(1,1), p(1,2), . . . , p(1,β), p(2,1), p(2,2), . . . , p(2,β), . . . ,
p(8,1), p(8,2), . . . , p(8,β) such that the ID of p(i,j) is (i − 1)β + j,∀i ∈ {1, . . . , 8} ,∀j ∈
{1, . . . , β}. Notice that 0 is a fake ID smaller than every ID in the network.

Figure 4.15a shows the structure of the network and the initial configuration. In
details, the processes form β columns: ∀i ∈ {2, . . . , 8} ,∀j ∈ {1, . . . , β} ,

{
p(i−1,j), p(i,j)

}
∈

E.

There are also three complete bipartite subgraphs: ∀j, j′ ∈ {1, . . . , β} , j′ 6= j,{
p(4,j), p(5,j′)

}
∈ V,

{
p(6,j), p(7,j′)

}
∈ E and

{
p(7,j), p(8,j′)

}
∈ E

These bipartite subgraphs split the network in four layers:

• Layer 1: line 8

• Layer 2: line 7

• Layer 3: lines 5 and 6

• Layer 4: lines 1 to 4

We choose the following initial configuration.

• For i ∈ {1, . . . , 8}, for j ∈ {1, . . . , β}, p(i,j).leader = 0, p(i,j).level = i and
p(i,j).done = False

• For j ∈ {1, . . . , β},
– p(1,j).par = p(1,j)

– p(5,j).par = p(4,1)

– p(7,j).par = p(6,1)

– p(8,j).par = p(7,1)

– For i ∈ {2, 3, 4, 6}, p(i,j).par = p(i−1,j)

• For i ∈ {1, . . . , 8}, p(i,1).color = (i mod 2) + 1

• For j ∈ {2, . . . , β},
– p(8,j).color = 1

– For i ∈ {1, . . . , 7}, p(i,j).color = 2

Overview of the execution. We first give an illustrative execution to understand the
Ω(n4) lower bound.

We start with Configuration (a) of Figure 4.15. Starting from this configuration,
all the processes of the first column and of the last line successively reset. We obtain
configuration (b). This costs at least β steps (since the reset of the last line can be
sequential). Then, all processes p(8,.) can join p(7,2) (which has the fake id 0 as leader).
This leads to Configuration (c). Then, we can reset p(7,2) and the last line (at least β
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steps). Again processes p(8..) can join p(7,3) and we can reset, etc., until we reset p(7,β)
and the last line to obtain Configuration (d). Overall, this costs at least β2 steps.

From Configuration (d), we can rebuilt the tree on p(6,2). The tree is shown in Con-
figuration (e), and we can reset the processes following the order given by the arrow in
Configuration (e). We obtain Configuration (f). Again we can start the succession of
buildings and resets bottom-up just as before, but this time, until resetting a tree rooted
at p(5,β) (Configuration (g)). This costs at least β3 steps.

From Configuration (g), we can rebuild a tree on the second column until reaching
Configuration (h) . This latter is similar to the first one, Configuration (a). The only
difference is that the main tree is now rooted at p(1,2) instead of p(1,1). We can repeat the
same scheme on each column. This leads to an execution of at least β4 steps.

Details of the Execution. Now, let see the details of the execution. We consider
an unfair daemon which selects the enabled processes according to the function Daemon
given in Algorithm 8. In this algorithm, top(i) (respectively bottom(i)) is the number of
the first line (respectively last line) of layer i. More precisely:

top(i) = L− 2i−1 + 1

bottom(i) =

{
top(1) if i = 1

top(i− 1)− 1 if i > 1

In Build(layer, col), all the processes of lines top(layer) to 8 execute line by line J-
action. Notice that every process of line top(layer) chooses the process p(top(layer)−1,col) as
parent.

In Reset(layer, col), all the processes on column col from the one on line top(layer+1)
to the one on line bottom(layer + 1) execute R-action (except for layer 1 where all the
processes of line 8 also execute R-action). Then, Reset(layer − 1, i) and Build(layer −
1, i+ 1) are called for each col i = 1, . . . , β − 1. Finally, Reset(layer − 1, β) is executed.

We count how many times processes p(8,.) executes R-action:

• Each process p(8,.) executes once R-action in Reset(layer, col), when layer = 1 (line
11 of Algorithm 8): at least β processes execute R-action.

• Reset(3, col) is called β times by function Daemon.

• Reset(2, col) is called β times by function Reset(3, col).

• Reset(1, col) is called β times by function Reset(2, col).

Hence, R-action is executed β4 times by the processes of line 8. Now, β = n
8
. Hence we

can conclude:

Theorem 4.13

For every β ≥ 2, there exists a network of n = 8× β processes in which there exists
a possible execution of Algorithm DLV2 that stabilizes in Ω(n4) steps.
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Figure 4.15 – Intuitive idea of the execution. The leader of a process is 0 if the process is
labeled with a star, its own ID otherwise. level is not represented as it is always correct. The
plain gray arrows show the processes that successively reset.
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Figure 4.14 – (continued)
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Algorithm 8 – Algorithm of the daemon.

1: function Daemon
2: for i = 1 . . . β, (i+ +) do
3: Reset(3, i);
4: if i < β then
5: Build(3, i+ 1);

6: function Reset(layer, col)
7: for i = top(layer + 1) . . . bottom(layer + 1), (i+ +) do
8: p(i,col) executes R-action;

9: if layer = 1 then
10: for j = 1 . . . β, (j + +) do

11: p(L,j) executes R-action; . Reset of layer 1

12: else
13: for j = 1 . . . β, (j + +) do
14: Reset(layer − 1, j);
15: if j < β then
16: Build(layer − 1, j + 1);

17: function Build(layer, col)
18: for i = top(layer) . . . bottom(layer), (i+ +) do
19: for j = 1 . . . β, (j + +) do
20: p(i,j) executes J-action;

21: for k = i− 1 . . . 2(i− L
2
), (k −−) do

22: if k ≥ top(layer) then
23: for j = 1 . . . β, (j + +) do
24: p(k,j) executes C1-action;

25: else
26: p(k,col) executes C1-action;

27: for k = i . . . 2(i− L
2
) + 1, (k −−) do

28: if k ≥ top(layer) then
29: for j = 1 . . . β, (j + +) do
30: p(k,j) executes C2-action;

31: else
32: p(k,col) executes C2-action;

33: if layer > 1 then
34: Build(layer − 1, 1);
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4.5.3 Generalization to an Example of Execution in Ω(nα)

We note E4 the graph built for the example in Ω(n4) steps and shown in Figure 4.15a.
Then, starting from Eα−1 (α ≥ 5), we can build Eα, a graph for which there exists
an execution in Ω(nα) steps. The construction is based on the same principle as in
Subsection 4.5.2, by adding a layer. If Eα−1 has Lβ processes p(i,j) (1 ≤ i ≤ L, 1 ≤ j ≤ β),
then Eα has L′ = 2L lines of β processes q(i′,j′) (1 ≤ i′ ≤ L′, 1 ≤ j′ ≤ β). The construction
principle is as follows:

1. We increase the level and the ID of the Lβ processes of Eα−1 as follows: ∀i ∈
{1, . . . , L}, ∀j ∈ {1, . . . , β}, q(i+L,j) = p(i,j). The ID of q(i+L,j) becomes (i+L−1)β+j
and q(i+L,j).level = i + L. The value of variables color and done do not change. If
i 6= 1, the par remains the same. Otherwise, see step 3.

2. At the top of Eα−1, we add L lines of β processes. These new processes satisfy:

• ∀i ∈ {1, . . . , L} ,∀j ∈ {1, . . . , β}:
– q(i,j).id = (i− 1)β + j

– q(i,j).leader = 0

– q(i,j).level = i

– q(i,j).done = False

• ∀i ∈ {2, . . . , L} ,∀j ∈ {1, . . . , β}, {q(i−1,j), q(i,j)} ∈ E and q(i,j).par = q(i−1,j)

• ∀j ∈ {1, . . . , β} , q(1,j).par = q(1,j)

• ∀j ∈ {2, . . . , β} ,∀i ∈ {1, . . . , L}, q(i,j).color = 2

• ∀i ∈ {1, . . . , L}, q(i,1).color = (i mod 2) + 1

3. The former first line of Eα−1 becomes a new bipartite complete subgraph with the
last added line:

• ∀j ∈ {1, . . . , β} ,∀j′ ∈ {1, . . . , β}, {q(L,j), q(L+1,j′)} ∈ E
• ∀j ∈ {1, . . . , β}, q(L+1,j).par = q(L,1)

Figure 4.15 shows the structure of the network for E5 and its initial configuration.

In the execution, the daemon selects processes according to function Daemon(α) (see
Algorithm 9) which is the generalization of the algorithm presented in Section 4.5.2.
In Eα−1, processes p(L,.) execute βα−1 times R-action. Now, we added a new level of
recursion. Then, processes q(L′,.) execute βα times R-action. As β = n

L′
, the execution

lasts Ω(nα) steps. Hence, we obtain:

Theorem 4.14

For every α ≥ 4, for every β ≥ 2, there exists a network Eα of n = 2α−1 × β
processes in which there exists a possible execution of Algorithm DLV2 that stabilizes
in Ω(nα) steps.

We proved that for Eα of size n = L×β (β ≥ 2, α ≥ 4 and L = 2α−1), the execution in
Algorithm 9 stabilizes using at least βα steps. For a fixed size n of network, the value βα
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Figure 4.15 – Initial configuration of the example in Ω(n5) steps.
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4.6. Conclusion

Algorithm 9 – Generalization of the algorithm of the daemon for Eα.

1: function Daemon(α)
2: for i = 1 . . . β, (i+ +) do
3: Reset(α− 1, i); . See Algorithm 8
4: if i < β then
5: Build(α− 1, i+ 1); . See Algorithm 8

may vary, depending on e.g., L. For instance, for L = n/2, we have that α = log2 n and
β = 2 which implies that βα = n. At the opposite of the interval of L (second example),
when L = 8, we have α = 4 and β = n× 2−3. Hence, in this case, βα = 2× n4.

Both costs obtained in those examples are polynomial. But, between them, the func-
tion reaches higher values: the following corollary shows that the highest value of βα is
reached for L =

√
n
2

and is non-polynomial.

Corollary 4.5

The stabilization time of Algorithm DLV2 is in Ω
(

(2n)
1
4
log2(2n)

)
steps.

Proof : We show below that for every α ≥ 4, for every β ≥ 2, there exists a network of size

n = 2α−1 × β for which there exists an execution which stabilizes in Ω

((
2n
) 1

4
log2(2n)

)
steps.

Let β, α and L be positive integers such that n = L×β, β ≥ 2, α ≥ 4, and L = 2α−1

(as for Theorem 4.14). The value of the function βα reaches its maximum when L =
√

n
2 ,

β =
√

2n and α = 1
2(log2 n + 1). (This can be easily proved by cancellation of the

derivative of βα w.r.t. L.) In this case, βα equals (2n)
1
4
log2(2n), and we are done.

4.6 Conclusion

Summary of Contributions. In this chapter, we have proposed a silent self-stabilizing
leader election algorithm, called LE , for static bidirectional connected identified networks
of arbitrary topology. Starting from any arbitrary configuration, LE converges to a
terminal configuration, where all processes know the ID of the leader, this latter being
the process of minimum ID. Moreover, as in most of the solutions from the literature, a
distributed spanning tree rooted at the leader is defined in the terminal configuration.

LE is written in the locally shared memory model. It assumes the distributed unfair
daemon, the most general scheduling hypothesis of the model. Moreover, it requires no
global knowledge on the network (such as an upper bound on the diameter or the number
of processes, for example).

LE requires Θ(log n+ b) bits per process, where n is the size of the network and b is
the number of bits requires to store an ID. If we consider that IDs are natural integers like
it is commonly done in the literature, b = dlog ne. Hence, LE is asymptotically optimal
in memory.

125



Chapter 4. Self-stabilizing Leader Election under Unfair Daemon

We have analyzed its stabilization time both in rounds and steps. We have shown
that LE stabilizes in at most 3n + D rounds, where D is the diameter of the network.
We have also proven that for every n ≥ 4, for every D, 2 ≤ D ≤ n− 2, there is a network
of n processes in which a possible execution exactly lasts this complexity.

Finally, we have proven that LE achieves a stabilization time polynomial in steps.
More precisely, its stabilization time is at most n3

2
+ 2n2 + n

2
+ 1 steps. Then, we have

shown for every n ≥ 4, that there exists a network of n processes in which a possible
execution exactly lasts n3

6
+ 3

2
n2 − 8

3
n + 2 steps, establishing then that the worst case is

in Θ(n3).

For fair comparison, we have studied the step complexity of the previous best algo-
rithms with similar settings (i.e., they do not use any global knowledge and are proven
assuming an unfair daemon) given in [DLV11a, DLV11b] and respectively called here
DLV1 and DLV2. We have shown that for any n ≥ 5, there exists a network in which

there is an execution of algorithm DLV1 that stabilizes in Ω(2b
n−1
4 c) steps. Hence, the

stabilization time of DLV1 is not polynomial.

Similarly, we showed that for a given α ≥ 3, for every β ≥ 2, there exists a network of
n = 2α× β processes in which there is an execution of algorithm DLV2 that stabilizes in
Ω(nα+1). In other words, the stabilization time of DLV2 in steps is also not polynomial.

Perspectives. Perspectives of this work deal with complexity issues. In [DLV11b],
Datta et al. showed that it is easy to implement a silent self-stabilizing leader election
which works assuming an unfair daemon, uses Θ(log n) bits per process, and stabilizes in
O(D) rounds (where D is an upper bound on D). Nevertheless, processes are assumed
to know D. It is worth investigating whether it is possible to design an algorithm which
works assuming an unfair daemon, uses Θ(log n) bits per process, and stabilizes in O(D)
rounds without using any global knowledge. We believe this problem remains difficult,
even adding some fairness assumption.
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Chapter 5

Gradual Stabilization under
(τ, ρ)-dynamics and Unison

“Oh my ears and whiskers, how late it’s getting!”

— Lewis Carroll, Alice’s Adventures in Wonderland
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5.1 Introduction

In this chapter, we propose and study a variant of self-stabilization designed to ensure
fast convergence after topological changes in dynamic networks.

As stated before, self-stabilization [Dij74] is a general paradigm to enable the design
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of distributed systems tolerating any finite number of transient faults. After the end of
transient faults, a self-stabilizing system recovers within finite time, without any external
intervention, a so-called legitimate configuration from which its specification is satisfied.
It stabilizes in a unified manner, whatever the nature and extent of transient faults. Such
versatility comes at a price, e.g., that there is no safety guarantee during the stabilization
phase. Hence, self-stabilizing algorithms are mainly compared according to their stabi-
lization time, the maximum duration of the stabilization phase. For many problems, the
stabilization time is significant, e.g., for synchronization problems [AKM+93] and more
generally for non-static problems [GT02] (such as token passing or broadcast) the lower
bound is Ω(D) rounds, where D is the diameter of the network. By definition, the sta-
bilization time is impacted by worst case scenarios. Now, in most cases, transient faults
are sparse and their effect may be superficial. Recent research thus focuses on proposing
self-stabilizing algorithms that additionally ensure drastically smaller convergence times
in favorable cases.

Defining the number of faults hitting a network using some kind of Hamming distance
(the minimal number of processes whose state must be changed in order to recover a legit-
imate configuration), variants of the self-stabilization paradigm have been defined, e.g.,
a time-adaptive self-stabilizing algorithm [KP99] additionally guarantees a convergence
time in O(k) time-units when the initial configuration is at distance at most k from a
legitimate configuration.

The property of locality consists in avoiding situations in which a small number of tran-
sient faults causes the entire system to be involved in a global convergence activity. Lo-
cality is, for example, captured by fault containing self-stabilizing algorithms [GGHP96],
which ensure that when few faults hit the system, the faults are both spatially and tem-
porally contained. “Spatially” means that if only few faults occur, those faults cannot be
propagated further than a preset radius around the corrupted processes. “Temporally”
means quick stabilization when few faults occur.

Some other approaches consist in providing convergence times tailored by the type of
transient faults. For example, a superstabilizing algorithm [DH97] is self-stabilizing and
has two additional properties when transient faults are limited to a single topological
change. Indeed, after adding or removing one link or process in the network, a supersta-
bilizing algorithm recovers fast (typically O(1) rounds), and a safety predicate, called a
passage predicate, should be satisfied all along the stabilization phase.

5.1.1 Contributions

We introduce a specialization of self-stabilization called gradual stabilization under (τ, ρ)-
dynamics in Section 5.3. An algorithm is gradually stabilizing under (τ, ρ)-dynamics if it is
self-stabilizing and satisfies the following additional feature. After up to τ dynamic steps
of type ρ occur starting from a legitimate configuration, a gradually stabilizing algorithm
first quickly recovers a configuration from which a specification offering a minimum quality
of service is satisfied. It then gradually converges to specifications offering stronger and
stronger safety guarantees until reaching a configuration:

• from which its initial (strong) specification is satisfied again, and
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• where it is ready to achieve gradual convergence again in case of up to τ new
dynamic steps of type ρ.

Of course, the gradual stabilization makes sense only if the convergence to every inter-
mediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchronization
problem respectively called strong, weak, and partial unison. In these problems, each
process should maintain a local clock. We restrict here our study to periodic clocks,
i.e., all local clocks are integer variables whose domain is {0, . . . , α− 1}, where α ≥ 2 is
called the period. Each process should regularly increment its clock modulo α (liveness)
while fulfilling some safety requirements. The safety of strong unison imposes that at
most two consecutive clock values exist in any configuration of the system. Weak unison
only requires that the difference between clocks of every two neighbors is at most one
increment. Finally, we define partial unison as a property dedicated to dynamic systems,
which only enforces the difference between clocks of neighboring processes present before
the dynamic steps to remain at most one increment. The specifications of these problems
are detailled in Section 5.2.2.

We propose in Section 5.5 a self-stabilizing strong unison algorithm SU which works
with any period α ≥ 2 in an anonymous connected network of n processes. SU assumes
the knowledge of two values µ and β, where µ is any value greater than or equal to
max(2, n), α should divide β, and β > µ2. SU is designed in the locally shared memory
model and assume the distributed unfair daemon, the most general daemon of the model.
Its stabilization time is at most n + (µ + 1)D + 1 rounds, where n (resp. D) is the size
(resp. diameter) of the network.

We then slightly modify SU in Section 5.6 to make it gradually stabilizing under
(1,BULCC)-dynamics. In particular, the parameter µ should now be greater than or
equal to max(2, N), where N is a bound on the number of processes existing in any
reachable configuration. Our gradually stabilizing variant of SU is called DSU . Due to
the slight modifications, the stabilization time ofDSU is increased by one round compared
to the one of SU . The condition BULCC restricts the gradual convergence obligation to
dynamic steps, called BULCC-dynamic steps, that fulfill the following conditions. A
BULCC-dynamic step may contain several topological events, i.e., link and/or process
additions and/or removals. However, after such a step, the network should:

1. contains at most N processes,

2. stay connected, and

3. if α > 3, every process which joins the system should be linked to at least one
process already in the system before the dynamic step, unless all of those have left
the system.

Condition 1) is necessary to have finite periodic clocks in DSU . In Section 5.4, we show
the necessity of condition 2) to obtain our results whatever the period is, while we proved
that condition 3) is necessary for our purposes when the period α is fixed to a value
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greater than 5. Finally, we exhibit pathological cases for periods 4 and 5, in case we do
not assume condition 3).

DSU is gradually stabilizing because after one BULCC-dynamic step from a configura-
tion which is legitimate for the strong unison, it immediately satisfies the specification of
partial unison, then converges to the specification of weak unison in at most one round,
and finally retrieves, after at most (µ + 1)D1 + 1 additional rounds (where D1 is the
diameter of the network after the dynamic step), a configuration:

• from which the specification of strong unison is satisfied, and

• where it is ready to achieve gradual convergence again in case of another dynamic
step.

Notice that DSU being also self-stabilizing (by definition), it still converges to a
legitimate configuration of the strong unison after the system suffers from arbitrary other
kinds of transient fault including, for example, several arbitrary dynamic steps. However,
in such cases, there is no safety guarantees during the stabilization phase.

A preliminary version of these contributions presenting conditions on the dynamic
steps and the algorithm for α ≥ 4 is published in the proceedings of the 22nd International
Conference on Parallel and Distributed Computing (Euro-Par 2016) [ADDP16].

5.1.2 Related Work

Gradual stabilization is related to two other stronger forms of self-stabilization, namely,
safe-converging self-stabilization [KM06] and superstabilization [DH97]. The goal of a
safely converging self-stabilizing algorithm is to first quickly (within O(1) rounds is the
usual rule) converge from an arbitrary configuration to a feasible legitimate configura-
tion, where a minimum quality of service is guaranteed. Once such a feasible legitimate
configuration is reached, the system continues to converge to an optimal legitimate config-
uration, where more stringent conditions are required. Hence, the aim of safe-converging
self-stabilization is also to ensure a gradual convergence, but only for two specifications.
However, such a gradual convergence is stronger than ours as it should be ensured after
any step of transient faults,1 while the gradual convergence of our property applies after
dynamic steps only. Safe convergence is especially interesting for self-stabilizing algo-
rithms that compute optimized data structures, e.g., minimal dominating sets [KM06],
approximately minimum weakly connected dominating sets [KK08], approximately mini-
mum connected dominating sets [KIY13, KK12], and minimal (f, g)-alliances [CDD+15].
However, to the best of our knowledge, no safe-converging algorithm for non-static prob-
lems, such as unison for example, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the passage predi-
cate should be ensured only if the system was in a legitimate configuration before the
topological change occurs. In contrast with our approach, superstabilization ensures fast
convergence to the original specification. However, this strong property only considers
one dynamic step consisting in only one topological event: the addition or removal of one
link or process in the network. Again, superstabilization has been especially studied in the

1Such transient faults may include topological changes, but not only.
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context of static problems, e.g., spanning tree construction [DH97, BPRT10, BPR13], and
coloring [DH97]. However, notice that there exist few superstabilizing algorithms for non-
static problems in particular topologies, e.g., mutual exclusion in rings [Her00, KUFM02].

We use the general term unison to name several close problems also known in the
literature as phase or barrier synchronization problems. There exist many self-stabilizing
algorithms for the strong as well as weak unison problem, e.g., [Bou07, GH90, ADG91,
HL98, NV01, JADT02, BPV04, TJH10]. However, to the best of our knowledge, until
now, no self-stabilizing solution for such problems addresses specific convergence proper-
ties in case of topological changes (in particular, no superstabilizing ones). Self-stabilizing
strong unison was first considered in synchronous anonymous networks. Particular topolo-
gies were considered in [HL98] (rings) and [NV01] (trees). Gouda and Herman [GH90]
proposed a self-stabilizing algorithm for strong unison working in anonymous synchronous
systems of arbitrary connected topology. However, they considered unbounded clocks.
A solution working with the same settings, yet implementing bounded clocks, is pro-
posed in [ADG91]. In [TJH10], an asynchronous self-stabilizing strong unison algorithm
is proposed for arbitrary connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in oriented trees
in [JADT02]. The first self-stabilizing asynchronous weak unison for general graphs was
proposed by Couvreur et al. [CFG92]. However, no complexity analysis was given. An-
other solution which stabilizes in O(n) rounds has been proposed by Boulinier et al. in
[BPV04]. Finally, Boulinier proposed in his PhD thesis a parametric solution which gener-
alizes both the solutions of [CFG92] and [BPV04]. In particular, the complexity analysis
of this latter algorithm reveals an upper bound in O(D.n) rounds on the stabilization
time of the Couvreur et al.’ algorithm.

5.2 Preliminaries

In this section, we detail the considered context (Section 5.2.1) and we define the
specifications of the considered synchronization problems (Section 5.2.2).

5.2.1 Context

We consider dynamic and bidirectional networks of anonymous processes. We assume
that G0, the initial topology of the system, is arbitrary yet connected, contains n ≥ 1
processes, and its diameter is D. We consider the locally shared memory model presented
in Section 2.6 and the distributed unfair daemon.

5.2.2 Unison

We consider three close synchronization problems included here under the general term
of unison. In these problems, each process should maintain a local clock. We restrict
here our study to periodic clocks: α, called the period of the clocks, should be greater
than or equal to 2. The aim is to make all local clocks regularly incrementing (modulo
α) in a finite set of integer values {0, . . . , α− 1} while fulfilling some safety requirements.
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All these problems require the same liveness property which means that whenever a
clock has a value in {0, . . . , α− 1}, it should eventually increment.

Definition 5.1 (Liveness of the Unison)

An execution e = (γi)i≥0 satisfies the liveness property Live if and only if:
∀γi ∈ e,∀p ∈ Vi,∀x ∈ {0, . . . , α− 1},

γi(p).clock = x ⇒ ∃j > i, (∀k ∈ {i+ 1, . . . , j − 1} , p ∈ Vk ∧ γk(p).clock = x)
∧ (p ∈ Vj ∧ γj(p).clock = (x+ 1) mod α)

The three versions of unison we consider are respectively named strong, weak, and
partial unison, and differ by their safety property. Strong unison is also known as the
phase or barrier synchronization problem [Mis91, KA97]. The weak unison appeared first
in [CFG92] under the name of asynchronous unison. We define the partial unison as a
straightforward variant of the weak unison suited for dynamic systems.

Definition 5.2 (Safety of the Partial Unison)

An execution e = (γi)i≥0 satisfies the safety property Safepu if and only if ∀γi ∈ e,
the following conditions holds
• ∀p ∈ Vi \New(i), γi(p).clock ∈ {0, . . . , α− 1} and

• ∀p ∈ Vi \New(i),∀q ∈ γi(p).N \New(i),

γi(p).clock ∈ {γi(q).clock, (γi(q).clock + 1) mod α, (γi(q).clock − 1) mod α}

meaning that the clocks of any two neighbors which are not in bootstate2 differ
from at most one increment (modulo α).

Definition 5.3 (Safety of the Weak Unison)

An execution e = (γi)i≥0 satisfies the safety property Safewu if and only if
• ∀γi ∈ e, New(i) = ∅, meaning that no process is in bootstate and

• SafePU(e) holds.

In the next definition, we use the following notation: for every configuration γi, let
CV (γi) = {γi(p).clock : p ∈ Vi} be the set of clock values present in configuration γi.

2Recall that while a process is in bootstate, it has not taken any step and so its output, here its clock
value, is meaningless.
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Definition 5.4 (Safety of the Strong Unison)

An execution e = (γi)i≥0 satisfies the safety property Safesu if and only if ∀γi ∈ e,
the following conditions holds
• New(i) = ∅, meaning that no process is in bootstate,

• ∀p ∈ Vi, γi(p).clock ∈ {0, . . . , α− 1}, and

• |CV (γi)| ≤ 2 ∧ (CV (γi) = {x, y} ⇒ x = (y + 1) mod α ∨ y = (x + 1) mod α),
meaning that there exists at most two different clock values, and if so, these two
values are consecutive (modulo α).

Then, using Definitions 5.1-5.4, we define the specifications of partial unison, weak
unison, and strong unison, denoted SPpu, SPwu, and SPsu, respectively.

Definition 5.5 (Partial Unison)

An execution e of algorithm Alg satisfies the specification SPpu of the partial unison
problem if and only if Live(e) ∧ Safepu(e) holds.

Definition 5.6 (Weak Unison)

An execution e of algorithm Alg satisfies the specification SPwu of the weak unison
problem if and only if Live(e) ∧ Safewu(e) holds.

Definition 5.7 (Strong Unison)

An execution e of algorithm Alg satisfies the specification SPsu of the strong unison
problem if and only if Live(e) ∧ Safesu(e) holds.

The property below sum up the straightforward relationship between the three vari-
ants of unison we consider here.

Property 5.1

For every execution e, we have SPsu(e)⇒ SPwu(e)⇒ SPpu(e).

5.3 Gradual Stabilization under (τ, ρ)-dynamics

Below, we introduce a specialization of self-stabilization called gradual stabilization
under (τ, ρ)-dynamics. The overall idea behind this concept is to design self-stabilizing al-
gorithms that ensure additional properties (stronger than “simple” eventual convergence)
when the system suffers from topological changes. Initially observe the system from a
legitimate configuration, and assume that up to τ ρ-dynamic steps occur. The very first
configuration after those steps may be illegitimate, but this configuration is usually far
from being arbitrary. In that situation, the goal of gradual stabilization is to first quickly
recover a configuration from which a weaker specification offering a minimum quality
of service is satisfied and then make the system gradually re-stabilizes to stronger and
stronger specifications, until fully recovering its initial (strong) specification. Of course,
the gradual stabilization makes sense only if the convergence to every intermediate weaker
specification is fast and each of those weak specifications offers a useful interest.
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5.3.1 Definition

Let τ ≥ 0. For every execution e = (γi)i≥0 ∈ Eτ (i.e., e contains at most τ dynamic
steps), we note γfst(e) the first configuration of e after the last dynamic step. Formally,
fst(e) = min{i : (γj)j≥i ∈ E0}. For any subset E of Eτ , let FC(E) =

{
γfst(e) : e ∈ E

}
be

the set of all configurations that can be reached after the last dynamic step in executions
of E.

Let SP1, SP2, . . . , SPk, be an ordered sequence of specifications. Let B1, B2, . . . , Bk

be (asymptotic) complexity bounds such that B1 ≤ B2 ≤ · · · ≤ Bk. Let ρ be a dynamic
pattern.

Definition 5.8 (Gradual Stabilization under (τ, ρ)-dynamics)

A distributed algorithm Alg is gradually stabilizing under (τ, ρ)-dynamics for (SP1•
B1, SP2 •B2, . . . , SPk •Bk) if and only if ∃L1, . . . ,Lk ⊆ C such that

1. Alg stabilizes from C to SPk by Lk.

2. ∀i ∈ {1, . . . , k},
• Alg stabilizes from FC(Eτ,ρAlg(Lk)) to SPi by Li, and

• the convergence time in rounds from FC(Eτ,ρAlg(Lk)) to Li is bounded by
Bi.

The first point ensures that a gradually stabilizing algorithm is still self-stabilizing for
its strongest specification. Hence, its performances can be also evaluated at the light of
its stabilization time. Indeed, it captures the maximal convergence time of the gradually
stabilizing algorithm after the system suffers from an arbitrary finite number of transient
faults (those faults may include an unbounded number of arbitrary dynamic steps, for
example).

The second point means that after up to τ ρ-dynamic steps from a configuration that
is legitimate w.r.t. the strongest specification SPk, the algorithm gradually converges to
each specification SPi with i ∈ {1, . . . , k} in at most Bi rounds.

Note that Bk captures a complexity similar to the fault gap in fault-containing al-
gorithms [GGHP96]: assume a period P1 of up to τ ρ-dynamic steps starting from a
legitimate configuration of Lk; Bk represents the necessary fault-free interval after P1

and before the next period P2 of at most τ ρ-dynamic steps so that the system con-
verges to a legitimate configuration of Lk and so becomes ready again to achieve gradual
convergence after P2.

5.3.2 Related Properties

Gradual stabilization is related to two other stronger forms of self-stabilization: safe-
converging self-stabilization [KM06] and superstabilization [DH97].

As stated in the related work (Section 5.1.2), the aim of a safely converging self-
stabilizing algorithm is to ensure a gradual convergence, but for only two specifications.
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However, this kind of gradual convergence should be ensure after any step of transient
faults (such transient faults can include topological changes, but not only), while the
gradual convergence of our property applies after dynamic steps only.

Like in our approach, a superstabilizing algorithm ensures fast convergence after a dy-
namic step, if the system was in a legitimitate configuration before the topological changes
(specification recovered in O(1) round, passage predicate during the convergence). In con-
trast with our approach, superstabilization consists in only one dynamic step satisfying
a very restrictive dynamic pattern, noted here ρ1: only one topological event, i.e., the
addition or removal of one link or process in the network. A superstabilizing algorithm
for a specification SP1 can be seen as an algorithm which is gradually stabilizing under
(1, ρ1)-dynamics for (SP0 • 0, SP1 • f) where SP0 is the passage predicate and f is the
superstabilization time.

5.4 Conditions on the Dynamic Pattern

In Section 5.6, we provide a gradually stabilizing algorithm under (1,BULCC)-dynamics
for (SPpu • 0, SPwu • 1, SPsu • B), denoted DSU , where B is a given complexity bound,
starting from any arbitrary anonymous (initially connected) network and assuming the
distributed unfair daemon. The dynamic pattern BULCC (see Definition 5.6 on page 155)
requires, in particular, that graphs remain Connected (i.e., the dynamic pattern C below)
and, if the period α of unison is greater than 3, then the condition Under Local Control
(i.e., the dynamic pattern ULC below) should hold:

• C(Gi, Gj) ≡ if graph Gi is connected, then graph Gj is connected.

Notice that as the initial topology of the system is assumed to be connected, the
topology is always connected along any execution of E1,C.

• ULC(Gi, Gj) ≡ if Vi ∩ Vj 6= ∅ and Gi is connected, then Vi ∩ Vj is a dominating set
of Gj.

A dominating set of the graph G = (V,E) is any subset D of V such that every
node not in D is adjacent to at least one member of D.

ULC permits to prevent a notable desynchronization of clocks. Namely, if not
all processes leave the system during a dynamic step γ 7→d γ′ from an initially
connected topology, then every process that joins the system during that dynamic
step is required to be “under the control of” (that is, linked to) at least one process
which exists in both γ and γ′.

We now study the necessity of conditions C and ULC. We first show that the assump-
tion C on dynamic steps is necessary whatever the value of the period α is (Theorem 5.1).
We then show that the dynamic pattern ULC is necessary for any period α > 5 (Theo-
rem 5.2), while our algorithm shows that ULC is not necessary for each period α < 4.
For remaining cases (periods 4 and 5), our answer is partial, as we show that there are
pathological cases among possible dynamic steps which satisfy C but not ULC (Theorem
5.4 and Corollary 5.1) that make any algorithm fails to solve our problem. In particular,
for the case α = 5, we exhibit an important class of such pathological dynamic steps
(Theorem 5.3).

135



Chapter 5. Gradual Stabilization under (τ, ρ)-dynamics and Unison

General Proof Context. To prove the above results, we assume from now on the
existence of a deterministic algorithm Alg which is gradually stabilizing under (1,ρ)-
dynamics for (SPpu•0, SPwu•1, SPsu•B) starting from any arbitrary anonymous (initially
connected) network under the distributed unfair daemon, where ρ is a given dynamic
pattern and B is any (asymptotic) strictly positive complexity bound. Hence, our proofs
consist in showing properties that ρ should satisfy (w.r.t. dynamic patterns C and ULC)
in order to prevent Algorithm Alg from failing. In the sequel, we also denote by Lsu

the legitimate configurations of Alg w.r.t. specification SPsu.

5.4.1 Connectivity

Theorem 5.1

For every graph G and G ′, we have ρ(G,G ′)⇒ C(G,G ′).

Proof : By contradiction, assume that there exists two graphs Gi and Gj such that ρ(Gi,Gj),
Gi is connected, and Gj is disconnected. Then, there is an execution e = (γi)i≥0 ∈
E1,ρAlg(Lsu) such that G0 = Gi and Gfst(e) = Gj . Let A and B be two connected compo-
nents of Gfst(e). By definition, there exists j ≥ fst(e) such that γj ∈ Lsu and A and B
are defined in all configurations (γi)i≥j . From γj , all processes regularly increment their
clocks in both A and B by the liveness property of strong unison. Now, as no process of
B is linked to any process of A, the behavior of processes in B has no impact on processes
in A and vice versa. So, liveness implies, in particular, that there always exists enabled
processes in A. Consequently, there exists a possible execution of E1,ρAlg(Lsu) prefixed by
γ0 . . . γj where the distributed unfair daemon only selects processes in A from γj , hence
violating the liveness property of strong unison, a contradiction.

5.4.2 Under Local Control

Technical Results. The following property states that, whenever α > 3, once a legit-
imate configuration of the strong unison is reached, the system necessarily goes through
a configuration where all clocks have the same value between any two increments at the
same process.

Property 5.2

Assume α > 3. For every (γi)i≥0 ∈ E0Alg(Lsu), for every process p, for every
k ∈ {0, . . . , α− 1}, for every i ≥ 0, if p increments its clock from k to (k+ 1) mod α
in γi 7→s γi+1 and ∃j > i+ 1 such that γj(p).clock = (k+ 2) mod α, then there exists
x ∈ {i+ 1, . . . , j − 1}, such that all clocks have value (k + 1) mod α in γx.

Proof : Let (γi)i≥0 ∈ E0Alg(Lsu) and p be a process. Let k ∈ {0, . . . , α− 1} and i ≥ 0 such
that p increments its clock from k to (k + 1) mod α in γi 7→s γi+1 and ∃j > i+ 1 such
that γj(p).clock = (k + 2) mod α.

Assume, by the contradiction, that there is a process q such that γi(q).clock = (k−1)
mod α. As the daemon is distributed and unfair, there is a possible static step where
p moves, but not q leading to a configuration where q.clock = (k − 1) mod α and
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p.clock = (k + 1) mod α. This configuration violates the safety of SPsu. Hence, there
exists an execution of E0Alg(Lsu) which does not satisfy SPsu, a contradiction.

Hence, ∀q ∈ V, γi(q).clock ∈ {k, (k + 1) mod α}, by the safety of SPsu. Similarly to
the previous case, while there are processes whose clock value is k, no process (in partic-
ular p) can increment its clock from (k + 1) mod α to (k + 2) mod α. Hence, between
γi+1 (included) and γj−1 (included), there exists a configuration where all processes have
clock value (k + 1) mod α, since γj(p).clock = (k + 2) mod α.

Since Alg is gradually stabilizing under (1,ρ)-dynamics for (SPpu •0, SPwu •1, SPsu •
B), follows.

Remark 5.1

Every execution in E1,ρAlg is infinite.

Lemma 5.1

Let γi 7→d,ρ γi+1 be a ρ-dynamic step such that γi ∈ Lsu and Gi is connected. For
every process p ∈ New(i + 1), p is enabled in γi+1 and if p moves, then in the next
configuration, p is not bootstate and p.clock ∈ {0, . . . , α− 1}.

Proof : As γi ∈ Lsu and Gi is connected, there is an execution E1,ρAlg(Lsu) prefixed by γiγi+1.
Moreover, there are enabled processes in γi+1, by Remark 5.1 and the fact that no more
dynamic step occurs from γi+1. Assume that the daemon makes a synchronous static
step from γi+1. The step γi+1 7→s γi+2 actually corresponds to a complete round, by
definition. So, the execution suffix from γi+2 should satisfy the specification of the weak
unison (any execution of E1,ρAlg(Lsu) prefixed by γiγi+1 should converge in one round
from γfst(e) = γi+1 to a configuration that is legitimate w.r.t. SPwu). Now, if, by the
contradiction, p is disabled in γi+1, or p is not bootstate in γi+2, or γi+2(p).clock /∈
{0, . . . , α− 1}, then the safety of the weak unison is violated in γi+2, a contradiction.

Lemma 5.2

Let c ∈ {0, . . . , α− 1}, G be a connected graph of at least two nodes, and r1 and
r2 be two nodes of G. If α > 3, then there exists an execution e ∈ E0Alg(Lsu) on the
graph G which contains a configuration γT where r1 and r2 have two different clock
values, one being c mod α and the other (c+ 1) mod α.

Proof : Consider an execution e′ in E0Alg(Lsu) on the graph G. The specification of the
strong unison is satisfied in e′ and by liveness and Property 5.2, there is a configuration
γS in e′ where every clock equals c mod α. By liveness again, from γS , eventually there
is a step where either r1, or r2, or both increments to (c+ 1) mod α. Consider the first
step γz−1 7→s γz after γS , where either r1, or r2, or both increments to (c+ 1) mod α.
In the two first cases, let γT = γz and e = e′. For the last case, consider an execution
e′′ of E0Alg(Lsu) with the prefix γ0 . . . γz−1 common to e′, but only r1 moves in the step
from γz−1. Let γT be the configuration reached by this latter step and e = e′′. In either
cases, r1 and r2 have two different clock values in γT , one being c mod α and the other
(c+ 1) mod α.
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Figure 5.1 – Execution e′′ in the proof of Theorem 5.2. The hachured nodes are in bootstate.
The value inside the node is the value of its clock. If there is no value, its clock value is
meaningless.

Lemma 5.3

Let G be any connected graph. There exists γi ∈ Lsu such that Gi = G.

Proof : Alg being designed for arbitrary initially connected networks, there exists at least
one execution e = (γi)i≥0 ∈ E0Alg, where Gi = G, ∀i ≥ 0. By hypothesis, at least one
configuration of e belongs to Lsu.

Main Results.

Theorem 5.2

If α > 5, then for every graphs G and G ′, we have ρ(G,G ′)⇒ C(G,G ′)∧ULC(G,G ′).

Proof : We illustrate the following proof with Figure 5.1. Assume α > 5 and let Gx−1 and
Gx be two graphs such that ρ(Gx−1,Gx). By Theorem 5.1, C(Gx−1,Gx) holds. So, assume,
by the contradiction, that ¬ULC(Gx−1,Gx). Then, C(Gx−1,Gx)∧¬ULC(Gx−1,Gx) implies,
in particular, that both Gx−1 and Gx are connected.

By Lemma 5.3, there exists a configuration γx−1 ∈ Lsu, whose topology is Gx−1.
Consider now the configuration γx of topology Gx, such that γx−1 7→d,ρ γx is a ρ-dynamic
step that contains no process activation. Then, since Gx is connected and Vx−1 ∩Vx 6= ∅
is not a dominating set, we have: ∃p ∈ Vx \ Vx−1 such that

1. ∀v ∈ γx(p).N , v ∈ Vx \ Vx−1 and

2. there is a process q ∈ γx(p).N which has at least one neighbor in Vx−1 ∩ Vx, say r.

Moreover, p and its neighbors (in particular q) are in bootstate in γx. So, by Lemma 5.1,
they all are enabled in γx and if they move, they will be no more in bootstate and their
clock value will belong to {0, . . . , 4} in the configuration that follows γx. Let c be the
clock value of p in the next configuration, if p moves.
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By the liveness property of the strong unison, there exists an execution e in E0(Lsu)
on the graph Gx−1 (n.b., Gx−1 is connected) which contains a configuration γT where r
has clock value (c+ 3) mod α, see Figure 5.1a.

Consider now another execution e′ ∈ E1,ρAlg(Lsu) having a prefix common to e until
γT . Assume that the unfair daemon introduces a ρ-dynamic step (it is possible since
there was no dynamic step until now). Since GT = Gx−1, the daemon can choose a
step γT 7→d,ρ γT+1, where no process moves and GT+1 = Gx. Now, ∀v ∈ VT+1 \ VT ,
γT+1(v) = γx(v), so again, in γT+1, p and all its neighbors (in particular q) are in
bootstate and enabled. Moreover, if they move, they will be not in bootstate and their
clock value will belong to {0, . . . , 4} in γT+2, by Lemma 5.1. Moreover, p is in the same
situation as in γx, so if it moves, its clock is equal to c in γT+2. Then, r is still a
neighbor of q which is still not in bootstate and still with clock value (c+ 3) mod 5, see
Figure 5.1b. By definition, since strong unison is satisfied in γT (by assumption), the
partial unison necessarily holds all along the suffix of e′ starting at γT+1. Assume that
the daemon exactly selects p and its neighbors in the next static step γT+1 7→s γT+2. In
γT+2 (Figure 5.1c), r is still not in bootstate and its clock is still equal to (c+3) mod 5,
since it did not move. Moreover, p is no more in bootstate and its clock equals c. Now,
in γT+2, q is no more in bootstate and its clock value belongs to {0, . . . , 4}. That clock
value should differ of at most one increment (mod 5) from the clocks of p and r since
partial unison holds in γT+1 and all subsequent configurations. If the clock of q equals:

• c or (c + 1) mod α, the difference between the clocks of q and r is at least 2
increments (mod α),

• (c+ 2) mod α, (c+ 3) mod α, (c+ 4) mod α, the difference between the clocks
of q and p is at least 2 increments (mod α),

• any value in {0, . . . , α− 1}\{c, (c+1) mod α, (c+2) mod α, (c+3) mod α, (c+4)
mod α}, the difference between the clocks of q and r is at least 2 increments
(mod α).

Hence, the safety of partial unison is necessarily violated in the configuration γT+2 of
e′, a contradiction.

We now focus on dynamic patterns for which C is True but ULC is False and that
cannot be included into ρ, unless the specification of Alg is violated. Such a pattern is
defined below and will be used for the case α = 5.

Let ζ be the dynamic pattern such that for every two graphs Gi and Gj, ζ(Gi,Gj) if
and only if the following conditions hold:

• both Gi and Gj are connected,

• |Vi ∩ Vj| ≥ 2, and

• ∃p ∈ Vj \ Vi such that γj(p).N ∩ Vi = ∅ and ∃q ∈ γj(p).N , |γj(q).N ∩ Vi| ≥ 2.

Theorem 5.3

If α = 5, then for every graphs G and G ′, we have ζ(G,G ′)⇒ ¬ρ(G,G ′).
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Figure 5.2 – Execution e′ in the proof of Theorem 5.3. The hachured nodes are in bootstate.
The value inside the node is the value of its clock. If there is no value, its clock value is
meaningless.

Proof : We illustrate the following proof with Figure 5.2. Assume, by the contradiction,
that α = 5 but there exists two graphs Gx−1 and Gx such that ζ(Gx−1,Gx) and ρ(Gx−1,Gx)
.

By Lemma 5.3, there exists a configuration γx−1 ∈ Lsu (n.b., Gx−1 is connected, by
definition). Consider now the configuration γx of topology Gx such that γx−1 7→d,ρ γx
and γx−1 7→d,zeta γx, and no process is activated between γx−1 and γx.

Let p and q be two nodes such that

1. p ∈ Vx \ Vx−1,
2. q ∈ Vx \ Vx−1 and q ∈ γx(p).N ,

3. ∀v ∈ γx(p).N , v ∈ Vx \ Vx−1,
4. q has at least two neighbors r1 and r2 belonging to Vx ∩ Vx−1

(By definition of ζ, p, q, r1, and r2 necessarily exist.) Then, p and its neighbors (in
particular q) are in bootstate in γx. So, by Lemma 5.1, they all are enabled in γx and if
they move, they will be not in bootstate and their clock values will belong to {0, . . . , 4} in
the configuration that follows γx. Let c be the clock value of p in the next configuration,
if p moves.

By the liveness of the strong unison and Lemma 5.2, there exists an execution e in
E0Alg(Lsu) on the graph Gx−1 which contains a configuration γT where r1 and r2 are
not in bootstate and have two different clock values, one being (c + 2) mod 5 and the
other (c+ 3) mod 5. Without the loss of generality, assume that γT (r1).clock = (c+ 2)
mod 5 and γT (r2).clock = (c+ 3) mod 5, see Figure 5.2a.

Consider now another execution e′ ∈ E1,ρAlg(Lsu) having a prefix common to e until
γT . Assume that the unfair daemon introduces a ρ-dynamic step (it is possible since
there was no dynamic step until now). Since GT = Gx−1, the daemon can choose a
step γT 7→d,ρ γT+1, where no process moves and GT+1 = Gx. Now, ∀v ∈ VT+1 \ VT ,
γT+1(v) = γx(v), so again, in γT+1, p and all its neighbors (in particular q) are in
bootstate and enabled. Moreover, if they move, they will not be in bootstate and their
clock values will belong to {0, . . . , 4} in γT+2, by Lemma 5.1. Moreover, p is in the same
situation as in γx, so if it moves, its clock is equal to c in γT+2. Then, r1 and r2 are both
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neighbors of q which are still not in bootstate and still with clock values (c+ 2) mod 5
and (c+ 3) mod 5, see Figure 5.2b. By definition, since strong unison is satisfied in γT
(by assumption), the partial unison necessarily holds all along the suffix of e′ starting
at γT+1. Assume that the daemon exactly selects p and its neighbors in the next static
step γT+1 7→s γT+2. In γT+2 (Figure 5.2c), r1 and r2 are still not in bootstate and their
clocks are still respectively equal to (c + 2) mod 5 and (c + 3) mod 5, since they did
not move. Moreover, p is no more in bootstate and its clock equals c. Now, in γT+2, q is
no more in bootstate and its clock value belongs to {0, . . . , 4}. That clock value should
differ of at most one increment (mod 5) from the clocks of p, r1, and r2 since partial
unison holds in γT+1 and all subsequent configurations. If the clock of q equals:

• c or (c + 1) mod 5, the difference between the clocks of q and r2 is at least 2
increments (mod 5),

• (c+ 2) mod 5 or (c+ 3) mod 5, the difference between the clocks of q and p is at
least 2 increments (mod 5),

• (c+4) mod 5, the difference between the clocks of q and r1 is 2 increments (mod 5).

Hence, the safety of partial unison is necessarily violated in the configuration γT+2 of
e′, a contradiction.

Since for every graphs G and G ′, ζ(G,G ′) ⇒ C(G,G ′) ∧ ¬ULC(G,G ′), the following
corollary means that there exist dynamic patterns in ζ (hence in C but not ULC) that
cannot be supported by ρ, unless Alg fails:

The previous theorem states that no ρ-dynamic step can satisfy ζ, unless Alg fails.
Now, by definition, for every graphs G and G ′, ζ(G,G ′)⇒ C(G,G ′)∧¬ULC(G,G ′). Hence,
the following corollary holds.

Corollary 5.1

If α = 5, then there exist graphs G and G ′ such that C(G,G ′) ∧ ¬ULC(G,G ′) ∧
¬ρ(G,G ′).

The theorem below provides the same kind of results as Corollary 5.1 for α = 4.

Theorem 5.4

If α = 4, then there exist graphs G and G ′ such that C(G,G ′) ∧ ¬ULC(G,G ′) ∧
¬ρ(G,G ′).

Proof : We illustrate the following proof with Figure 5.3. Assume, by the contradiction,
that α = 4 but for every two graphs G and G′ we have ¬C(G,G′)∨ULC(G,G′)∨ρ(G,G′),
i.e., C(G,G′) ∧ ¬ULC(G,G′)⇒ ρ(G,G′).

To reduce the number of cases in the proof, we start by fixing a local proof envi-
ronment, without loss of generality. To that goal, we consider a configuration γi in Lsu

such that Gi is connected and contains at least one node. Consider also any ρ-dynamic
step, γi 7→d,ρ γi+1, that adds five nodes u, v, w, x and y to Gi in such way that the
neighbors of v in Gi+1 is {u,w, x, y} and the respective degrees of u, w, x, and y are
1, 2, 2, and 4, see for instance Figure 5.3.(d). Notice that from its local point of view,
v cannot distinguish configuration γi+1 from any other configuration resulting from the
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(f) Proof of Claim 3.

Figure 5.3 – Proof of Theorem 5.4. The hachured nodes are in bootstate. The value inside
a node is its clock value. If no value is given, then the clock value is meaningless. Notation
”deg.” stands for degree.

addition of v and its neighbors, since v and all its neighbors are in bootstate. In γi+1,
due to Lemma 5.1, v is enabled and if v moves, then v.clock ∈ {0, ..., 3} in the next
configuration. Without the loss of generality, we fix the value to 0. Hence, follows.

Local Proof Environment: Let v be a node surrounded by 4 neighbors having re-
spectively degree 1, 2, 2 and 4 such that v and its neighbors are all in bootstate. In such
a configuration, v is enabled and if v moves in the next step, then v sets v.clock to 0.
See Figure 5.3.(a). �

Let G = (V,E) be any connected graph of at least two nodes, p, q. Let F(G) be the
family of graphs G′ = (V ′, E′) obtained by applying a dynamic step on G such that

1. C(G,G′) holds,

2. V ⊆ V ′,

3. {u, y, v} ⊆ V ′ \ V , and

4. E′ contains at least all links in E plus the following additional links.
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• y is a 1-degree node linked to u;

• u has degree 4, it is linked to y, v, and two nodes of V ; and

• v has degree 4 and is, in particular, linked to u.

See Figure 5.3.(b). Notice that for every G′ in F(G), ¬ULC(G,G′) holds, due to node y.
Hence, any dynamic step that transforms G into G′ is a ρ-dynamic step.

Let γ ∈ Lsu whose topology is G. Let γ 7→d,ρ γ′ be a ρ-dynamic step where no
process executes and that transform G into G′ ∈ F(G).

Claim 0: In γ′, process u is enabled (by Lemma 5.1) and, if it executes, the new value
of u.clock is completely determined by γ(p) and γ(q).

Claim 1: If p and q respectively have clock value 2 and 3 in configuration γ, then
for every G′ ∈ F(G), u is enabled in γ′ and if it executes, u.clock has value 3 in next
configuration.

Proof of the claim: By Claim 0, u is enabled at γ′ and its next clock value is fully
determined by γ(p) and γ(q) whatever the graph G′ of F(G). So, to determine
this value, it is sufficient to compute it from a particular graph G′ of F(G). We
build this graph as follows: V ⊆ V ′, {u, v, w, x, y, z} ⊆ V ′ \ V , and E′ contains
all links in E plus the following additional links.

• u has four neighbors: v, y, p and q,

• v has four neighbors: u, w, x, and z,

• w has two neighbors: v and a node in V ,

• x has two neighbors: v and a node in V , and

• y and z have degree one.

See Figure 5.3.(d). Notice that, by definition, G′ ∈ F(G).

We consider γ as the first configuration of an execution in E1,ρLsu
. Then, the

first step of the execution is the step γ 7→d,ρ γ′. Hence in γ′, u and v are both
enabled (see the local proof environment and Claim 0): assume that the daemon
exactly selects u and v for next static step γ′ 7→s γ′′. In γ′′, the states of p and
q have not changed, v and u are no more in bootstate and v.clock = 0, from the
local proof environment. The clock value u.clock should differ from the clocks
of p, q, and v by at most one increment (mod 4) since partial unison holds in γ′

and γ′′. So, u necessarily has clock value 3 in γ′′. �

Using a similar reasoning, we obtain the following two claims.

Claim 2: If p and q respectively have clock value 1 and 2 at configuration γ, then
for every G′ ∈ F(G), u is enabled in γ′ and if it executes, u.clock has value 1 in next
configuration.

Claim 3: If p and q have both clock value 2 in configuration γ, then for every G′ ∈
F(G), u is enabled in γ′ and if it executes, u.clock has value either 1 or 3 in next
configuration.

Consider now any regular3 connected graph G = (V,E) of at least four nodes, r1, r2,
r3 and r4. Let e = (γi)i≥0 ∈ E0,ρLsu

be a synchronous execution of the algorithm on graph
G, such that in γ0 every process has exactly same state. As the execution is synchronous,
the algorithm deterministic, and the graph regular, this property is invariant all along
the execution: in every configuration γi of e, ∀p ∈ V, γi(p) = γi(r1).

3Regular means that all nodes have the same degree.
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Now, by hypothesis, there exists a configuration γi in e such that γi ∈ Lsu. From
γi, every clock in the graph regularly increments (modulo 4). We denote by γx 7→s γx+1

some step in e with x > i such that clock value increments from 1 in γx to 2 in γx+1.
Moreover, let γz 7→s γz+1 the next step in e where clocks increment again, namely clocks
increment from 2 in γz to 3 in γz+1. See Figure 5.3.(e). Notice that in each configuration
between γx (included) and γz+1 (included) every process has the same state. Moreover,
in all configurations between γx+1 (included) and γz (included) all processes have clock
value 2.

For every k ∈ {x+ 1, ..., z}, we build the execution ek ∈ E1,ρLsu
such that e and ek

have the same prefix γ0, ..., γk. But, in γk, ek suffers from a dynamic step γk 7→d γ
′
k

built as follows: no process executes, no node or edge disappears, yet the pattern of
Figure 5.3.(f) is added; namely this step built a graph G′ = (V ′, E′) such that V ⊆ V ′,
V ′ \ V = {p, q, s, t}, E′ contains all links of E plus the following additional links.

• p has four neighbors: r2, r3, q, s,

• q has four neighbors: r1, r4, p, t,

• s has one neighbor: p, and

• t has one neighbor: q.

Again, notice that, by definition, G′ ∈ F(G). Hence any dynamic step that transforms
G into G′ is a ρ-dynamic step.

For every k ∈ {x+ 1, ..., z}, p and q are enabled in γ′k (by Lemma 5.1). We note
γ′k 7→s γ′′k the next static step after the dynamic step where p and q are the only nodes
activated by the daemon. In the following, we are interesting in the value of γ′′k (p) for
k ∈ {x+ 1, ..., z}. Note that for all those values, Claim 3 applies, hence γ′′k (p) is either
1 or 3.

Claim 4: γ′′x+1(p) = 1

Proof of the claim: We consider the execution e′x+1 ∈ E
1,ρ
Lsu

with prefix γ0, ..., γx. In
γx, we introduce a non-synchronous static step γx 7→s ϑx+1 such that every
process but r1 are activated. Hence ϑx+1(r1) = γx(r1) (in particular the clock is
1) and ϑx+1(n) = γx+1(n) for every n 6= r1 (with in particular a clock value equal
to 2). The next step of e′x+1 is a ρ-dynamic step ϑx+1 7→d,ρ ϑ′x+1 that transforms
G into G′ and activates no process; again p and q are enabled in ϑ′x+1 and the
next step is a static step ϑ′x+1 7→s ϑ′′x+1 where the daemon uniquely activates p
and q. Claim 2 applies to q: q is enabled, and ϑ′′x+1(q).clock = 1. Claim 3 applies
to p and ϑ′′x+1(p).clock is either 1 or 3. Hence, to satisfy the partial unison in
ϑ′′x+1, ϑ

′′
x+1(p).clock is necessarily equal to 1.

Now, back to execution ex+1, Claim 0 applies to p in step γ′x+1 7→s γ′′x+1:
γ′′x+1(p) is fully determined by γx+1(r2) and γx+1(r3). As γx+1(r2) (respectively,
γx+1(r3)) has been obtained by executing the local algorithm of r2 (respectively,
r3) and as ϑ′x+1(r2) (respectively, ϑ′x+1(r3)) has been obtained exactly the same
way, they are equal. Hence ϑ′′x+1(p) = γ′′x+1(p) = 1. �

Claim 5: γ′′z (p) = 3.

Proof of the claim: We consider the execution e′z ∈ E
1,ρ
Lsu

with prefix γ0, ..., γz. At
γz, we introduce a non-synchronous static step γz 7→s ϑz+1 such that process r4
only has been activated. Hence ϑz+1(r4) = γz+1(r4) (in particular the clock is 3)
and ϑx+1(n) = γz(n) for every n 6= r4 (with clocks equal to 2). The next step of
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e′z is a ρ-dynamic step ϑz+1 7→d,ρ ϑ′z+1 that transforms G into G′ and activates
no process; again p and q are enabled at ϑ′z+1 and next step is a static step
ϑ′z+1 7→s ϑ′′z+1 where the daemon uniquely activates p and q. Claim 1 applies to
q: q is enabled, hence ϑ′′z+1(q).clock = 1. Claim 3 applies to p and ϑ′′z+1(p).clock
is either 1 or 3. Hence, to satisfy the partial unison in ϑ′′z+1, ϑ

′′
z+1(p).clock is

necessarily equal to 1.

Now, back to execution ez, Claim 0 applies to p in step γ′z 7→s γ′′z : γ′′z (p) is
fully determined by γz(r2) and γz(r3). As γz(r2) (respectively, γz(r3)) has been
obtained by executing the local algorithm of r2 (respectively, r3) and as ϑ′z+1(r2)
(respectively, ϑ′z+1(r3)) has been obtained exactly the same way, they are equal.
Hence ϑ′′z+1(p) = γ′′z+1(p) = 3. �

By Claims 3-5, the sequence of values (γ′′i (p).clock)i∈{x+1,...,z} is only consists of
values 1 and 3, starting with 1 and ending with 3. Hence, there exists an index y ∈
{x+ 1, z − 1} for which the value switches from 1 to 3, i.e., γ′′y (p) = 1 and γ′′y+1(p) = 3.

We consider the execution e′y ∈ E
1,ρ
Lsu

with prefix γ0, ..., γy. In γy, we introduce a
non-synchronous static step γy 7→s ϑy+1 such that all processes are activated, except r2
and r3. Hence, ϑy+1(r2) = γy(r2), ϑy+1(r3) = γy(r3), and ϑy+1(r) = γy+1(r) for every
r /∈ {r2, r3}. The next step of e′y is a ρ-dynamic step ϑy+1 7→d,ρ ϑ′y+1 that transforms G
into G′ and activates no process; again p and q are enabled in ϑ′y+1 and the next step is
a static step ϑ′y+1 7→s ϑ′′y+1 where the daemon uniquely activates p and q.

Claim 0 applies to p (respectively, q) in step ϑ′y+1 7→s ϑ′′y+1: ϑ
′′
y+1(p) is fully deter-

mined by ϑy+1(r2) = γy(r2) and ϑy+1(r3) = γy(r3) (respectively, ϑy+1(r1) = γy+1(r1)
and ϑy+1(r1) = γy+1(r1)). Hence, ϑ′′y+1(p) = γ′′y (p) = 1 and ϑ′′y+1(q) = γ′′y (p) = 3. This
contradicts the fact that the partial unison holds in γ′′y .

5.5 Self-Stabilizing Strong Unison

In this section, we propose an algorithm, called SU , which is self-stabilizing for the
strong unison problem in any arbitrary connected anonymous network. This algorithm
works for any period α ≥ 2 (recall that the problem is undefined for α < 2) and is based
on an algorithm previously proposed by Boulinier in [Bou07]. This latter is self-stabilizing
for the weak unison problem and works for any period β > n2, where n is the number
of processes. We first recall the algorithm of Boulinier, called here Algorithm WU , in
Subsection 5.5.1. Notice that the notation used in this algorithm will be also applicable
to our algorithms. We present Algorithm SU , its proof of correctness, and its complexity
analysis in Subsection 5.5.2. Algorithms WU and SU being only self-stabilizing, all
their executions contain no topological change, yet start from arbitrary configurations.
Consequently, the topology of the network consists in a connected graph G = (V,E) of n
nodes which is fixed all along the execution.4 Moreover, no bootstate has to be defined.
Recall that D is the diameter of G.

4Precisely, for both WU and SU , we have ∀γi ∈ C, Gi = G.
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Algorithm 10 – Actions of Process p in Algorithm WU .

Inputs.

• β ∈ N such that β > n2 • µ ∈ N such that n ≤ µ < β
2

Variables.

• p.t ∈ {0, . . . , β − 1}

Actions.

WU-N :: ∀q ∈ Np, p.t �β,µ → p.t := (p.t+ 1) mod β

WU-R :: ∃q ∈ Np, dβ(p.t, q.t) > µ ∨ p.t 6= 0 → p.t := 0

5.5.1 Algorithm WU
Algorithm WU , see Algorithm 10 for its formal code, has been proposed by Boulinier in
his PhD thesis [Bou07]. Actually, it is a generalization of the self-stabilizing weak unison
algorithm proposed by Couvreur et al. [CFG92]. In Algorithm WU , each process p is
endowed with a clock variable p.t ∈ {0, . . . , β − 1}, where β is its period. β should be
greater than n2. The algorithm also uses another constant, noted µ, which should satisfy
n ≤ µ < β

2
.

Notations. We define the delay between two integer values x and y by the function
dβ(x, y) = min

(
(x−y) mod β, (y−x) mod β

)
. Then, let �β,µ be the relation such that

for every two integer values x and y, x �β,µ y ≡
(
(y − x) mod β

)
≤ µ. (N.b., �β,µ is

only defined for µ < β
2

, see Definition 14 in [Bou07].)

Overview of WU . Two actions are used to maintain the clock p.t at each process p.
When the delay between p.t and the clocks of some neighbors is greater than one, but
the maximum delay is not too big (that is, does not exceed µ), then it is possible to
“normally” converge, using WU-N-action, to a configuration where the delay between
those clocks is at most one by incrementing the clocks of the most behind processes among
p and its neighbors. Moreover, once legitimacy is achieved, p can “normally” increment
its clock still using WU-N-action when it is on time or one increment late with all its
neighbors. In contrast, if the delay is too big (that is, the delay between the clocks of p
and one of its neighbors is more than µ) and the clock of p is not yet reset, then p should
reset its clock to 0 using WU-R-action.

From [Bou07], we have the following theorem.

Theorem 5.5

Algorithm WU is self-stabilizing for SPwu (the specification of weak unison) in an
arbitrary connected network assuming a distributed unfair daemon. Its set of legiti-
mate configurations is

Lwu = {γ ∈ C : ∀p ∈ V, ∀q ∈ Nγ(p), dβ(γ(p).t, γ(q).t ≤ 1}

Its stabilization time is at most n + µD rounds, where n (resp. D) is the size (resp.
diameter) of the network and µ is a parameter satisfying n ≤ µ < β

2
.
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By definition, D < n, consequently we have:

Remark 5.2

Once Algorithm WU has stabilized, the delay between t-clocks of any two arbitrary
far processes is at most n− 1.

Some other useful results from [Bou07] about Algorithm WU are recalled below.

Results from [Bou07]. Algorithm WU is an instance of the parametric algorithm
GAU in [Bou07]: WU = GAU(β, 0, µ). The following five lemmas (5.4-5.8) are used to
establish the self-stabilization of WU for SPwu using the set of legitimate configurations
Lwu. The proof of self-stabilization is actually divided into several steps. The first step
(Lemma 5.5) consists in showing the convergence of WU from CWU to Cµ, where Cµ is
the set of configurations where the delay between the clocks of two neighbors is at most
µ, i.e.

Cµ = {γ ∈ C : ∀p ∈ V, ∀q ∈ γ(p).N , dβ(γ(p).t, γ(q).t) ≤ µ}
Cµ is shown to be closed underWU in Lemma 5.4. (Notice that Lwu ⊆ Cµ.) The liveness
part of SPwu(the clock p.t of every process p goes through each value in {0, . . . , β − 1}
in increasing order infinitely often) is shown for every execution starting from Cµ in
Lemma 5.6.

Lemma 5.4 (Property 8 in [Bou07])

Cµ is closed under WU .

Lemma 5.5 (Theorem 56 in [Bou07])

If n ≤ µ < β
2
, then ∀e ∈ E0WU , ∃γ ∈ e such that γ ∈ Cµ.

Lemma 5.6 (Theorem 21 in [Bou07])

If β > n2, then ∀e ∈ E0WU(Cµ), e satisfies the liveness part of SPwu.

Then, the second step consists of showing closure of Lwu under WU (Lemma 5.7)
and the convergence from Cµ to Lwu (Lemma 5.8). Regarding the correctness, the safety
part of SPwu is ensured by definition of Lwu, whereas the liveness part is already ensured
by Lemma 5.6. Precisely:

Lemma 5.7 (Property 2 in [Bou07])

Lwu is closed under WU .

Lemma 5.8 (Theorems 29 in [Bou07])

If β > n2 and µ < β
2
, then ∀e ∈ E0WU(Cµ), ∃γ ∈ e such that γ ∈ Lwu.

Some performances of Algorithm WU are recalled in Theorems 5.6 and 5.7 below.

Theorem 5.6 (Theorem 61 in [Bou07])

If n ≤ µ < β
2
, the convergence time of WU from CWU to Cµ is at most n rounds.
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Theorem 5.7 (Theorems 20 and 28 in [Bou07])

If β > n2 and µ < β
2
, the convergence time of WU from Cµ to Lwu is at most µD

rounds.

Finally, Lemma 5.9 below is a technical result about the values of t-variables.

Lemma 5.9 (Theo. 20, Lem. 22, Propos. 25, and Property 27 in [Bou07])

If β > n2 and β > 2µ, then ∀e = (γi)i≥0 ∈ E0WU(Cµ), there exists a so-called shifting
function f : C × V → Z such that ∀i ≥ 0, ∀p, q ∈ V ,
• ∀0 ≤ i ≤ j, f(γi, p) ≤ f(γj, p),

• p.t �β,µ q.t if and only if f(γi, p) ≤ f(γi, q),

• ∀i ≥ 0, ∀p ∈ V , f(γi, p) mod β = γi(p).t, and

• |f(γi, p)− f(γi, q)| = dβ(γi(p).t, γi(q).t).

Complexity Analysis. Let Cµ be the set of configurations where the delay between
two neighboring clocks is at most µ. Below, we prove in Lemma 5.10 (resp. Lemma 5.11)
a bound on the time required to ensure that all t-variables have incremented k times.
This bound holds since the system has reached a configuration of Cµ (resp. Lwu).

Lemma 5.10

∀k ≥ 1, ∀e ∈ E0WU(Cµ), every process p increments p.t executing WU-N-action at
least k times every µD + k rounds, where D is the diameter of the network.

Proof : Let k ≥ 1. Let e = (γi)i≥0 ∈ E0WU (Cµ). Using Lemma 5.9, there is a shifting
function f such that ∀i ≥ 0, ∀p, q ∈ V , |f(γi, p)− f(γi, q)| ≤ µD. For every i ≥ 0,
we note fmin

γi = min {f(γi, x) : x ∈ V }. WU-N-action is enabled in γi at every process

x ∈ V for which f(γi, x) = fmin
γi . So, after one round, every such a process x has

incremented its t-variable (by WU-N) at least once. Let γj be the first configuration
after one round. Then, fmin

γj ≥ fmin
γi +1. We now consider γd to be the first configuration

after µD + k rounds, starting from γi. Using the same arguments as for γj inductively,
we have fmin

γd
≥ fmin

γi + µD + k (∗).

Let p be a process in V . By definitions of f and fmin
γi , we have that fmin

γi ≤ f(γi, p) ≤
fmin
γi + µD (∗∗). Assume now that p increments ]incr < k times p.t between γi and γd.

Then,

f(γd, p) = f(γi, p) + #incr < f(γi, p) + k (assumption on #incr)
≤ fmin

γi + µD + k, by (∗∗)
≤ fmin

γd
, by (∗)

So, p satisfies f(γd, p) < fmin
γd

, a contradiction.

Lemma 5.11

∀k ≥ 1, ∀e ∈ E0WU(Lwu), every process p increments its clock p.t executing WU-N-
action at least k times every D + k rounds, where D is the diameter of the network.
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Figure 5.4 – Relationship between variables t and c.

Proof : The proof of this lemma is exactly the same as the one of Lemma 5.10, yet replacing
Cµ by Lwu and µD by D.

5.5.2 Algorithm SU
In this subsection, we still assume a non-dynamic context (no topological change) and
we use the notations defined in Subsection 5.5.1. Algorithm SU is a straightforward
adaptation of Algorithm WU . More precisely, Algorithm SU maintains two clocks at
each process p. The first one, p.t ∈ {0, . . . , β − 1}, is called the internal clock and is
maintained exactly as in Algorithm WU . Then, p.t is used as an internal pulse machine
to increment a second, yet actual, clock of Algorithm SU p.c ∈ {0, . . . , α− 1}, also
referred to as external clock.

Algorithm SU (see Algorithm 11), is designed for any period α ≥ 2. Its actions SU-N
and SU-R are identical to actions WU-N and WU-R of Algorithm WU , except that we
add the computation of the external c-clock in their respective statement.

We already know that Algorithm WU stabilizes to a configuration from which t-
clocks regularly increment while preserving a bounded delay of at most one between two
neighboring processes, and so of at most n−1 between any two processes (see Remark 5.2).
Algorithm SU implements the same mechanism to maintain p.t at each process p and
computes p.c from p.t as a normalization operation from clock values in {0, . . . , β − 1} to

{0, . . . , α− 1}: each time the value of p.t is modified, p.c is updated to
⌊
α
β
p.t
⌋
. Hence, we

can set β in such way that K = β
α

is greater than or equal to n (here, we chose K > µ ≥ n
for sake of simplicity) to ensure that, when the delay between any two t-clocks is at most
n − 1, the delay between any two c-clocks is at most one, see Figure 5.4. Furthermore,
the liveness of WU ensures that every t-clock increments infinitely often, hence so do
c-clocks.

Remark 5.3

Since β > µ2 and µ ≥ 2, we have β ≥ 2µ.
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Algorithm 11 – Actions of Process p in Algorithm SU .

Inputs.

• α ∈ N such that α ≥ 2

• µ ∈ N such that µ ≥ max(n, 2)

• β ∈ N such that β > µ2 and ∃K such
that K > µ and β = Kα

Variables.

• p.c ∈ {0, . . . , α− 1} • p.t ∈ {0, . . . , β − 1}

Actions.

SU-N :: ∀q ∈ Np, p.t �β,µ → p.t := (p.t+ 1) mod β

p.c :=
⌊
α
β p.t

⌋
SU-R :: ∃q ∈ Np, dβ(p.t, q.t) > µ ∨ p.t 6= 0 → p.t := 0

p.c := 0

Remark 5.4

By construction and from Remark 5.3, all results on t-clocks in Algorithm WU also
holds for t-clocks in Algorithm SU .

Theorem 5.8 below states that Algorithm SU is self-stabilizing for the strong unison
problem. We detail the proof of this intuitive result in the sequel.

Theorem 5.8

Algorithm SU is self-stabilizing for SPsu (the specification of the strong unison) in
any arbitrary connected anonymous network assuming a distributed unfair daemon.
Its stabilization time is at most n + (µ + 1)D + 1 rounds, where n (resp. D) is the
size (resp. diameter) of the network and µ is a parameter satisfying µ ≥ max(n, 2).

Correctness. We first define a set of legitimate configurations w.r.t. specification SPsu

(Definition 5.9). Then, we prove the closure and convergence w.r.t. those legitimate
configurations (see Lemmas 5.12 and 5.13). Afterwards, we prove the correctness w.r.t.
specification SPsu in any execution starting in a legitimate configuration, namely, safety
is shown in Lemma 5.16 and liveness is proven in Lemma 5.17.

Definition 5.9 (Legitimate Configurations of SU w.r.t. SPsu)

A configuration γ of SU is legitimate w.r.t. SPsu if and only if

1. ∀p ∈ V , ∀q ∈ γ(p).N , dβ(γ(p).t, γ(q).t) ≤ 1.

2. ∀p ∈ V , γ(p).c =
⌊
α
β
γ(p).t

⌋
.

We denote by Lsu the set of legitimate configurations of SU w.r.t. SPsu.

By definition, µ ≥ n > 0, hence from Definition 5.9, follows.

Remark 5.5

In any legitimate configuration γ ∈ Lsu, ∀p, q ∈ V , dβ(γ(p).t, γ(q).t) ≤ µ.
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Lemma 5.12 (Closure)

Lsu is closed under SU .

Proof : First, from Theorem 5.5 and Remark 5.4, note that the set of legitimate configu-
rations defined for WU is also closed for SU . Hence we only have to check closure for
the second constraint of Definition 5.9, the one on c-variables.

Let γ ∈ Lsu be a legitimate configuration of SU and let γ 7→s γ′ be a static step of

SU . Let p ∈ V . As γ ∈ Lsu, γ(p).c =
⌊
α
β γ(p).t

⌋
. Either p does not execute any action

during step γ 7→s γ′, or p executes SU-N or SU-R-action. These two actions update

p.c according to the new value of p.t. Hence, γ′(p).c =
⌊
α
β γ
′(p).t

⌋
.

Lemma 5.13 (Convergence)

C (the set of all possible configurations) converges to Lsu under SU .

Proof : From Theorem 5.5 and Remark 5.4, the set of legitimate configurations for WU is
also reached in a finite number of steps for SU . Hence, we only have to check that the
second constraint (the one on c-variables) is also achievable within a finite number of
steps.

Again by Theorem 5.5 and Remark 5.4, liveness of Specification SPwu is ensured by
WU and therefore by SU . Hence, after stabilization, each process p updates its internal

clock p.t within a finite time; meanwhile p.c is also updated to
⌊
α
β p.t

⌋
.

Remarks 5.6, 5.7 and Lemma 5.14 are technical results on the values of t- and c-
variables that will be used to prove that the safety of Specification SPsu is achieved
in any execution that starts from a legitimate configuration. For all these lemmas, we
assume that α, β, K are positive numbers that satisfies the constraint declared on the
Inputs section of Algorithm SU , namely β = Kα.

Remark 5.6

Let x ∈ {0, . . . , α− 1} and ξ ∈
{

0, . . . , β
α
− 1
}

. The following equality holds:⌊
α

β

(
x
β

α
+ ξ

)⌋
= x

Remark 5.7

Let x1, x2 ∈ {0, . . . , α− 1} and ξ1, ξ2 ∈
{

0, . . . , β
α
− 1
}

. The following assertion

holds: x1
β
α

+ ξ1 ≤ x2
β
α

+ ξ2 ⇒ x1 ≤ x2

We apply Remarks 5.6 and 5.7 by instantiating the value of the internal clock twith

xβ
α

+ ξ. Since the value of the external clock cis computed as
⌊
α
β
t
⌋

in Algorithm 11, we

have c = x. Now, if we chose β (period of internal clocks) such that it can be written as
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β = Kα with K a positive integer, the value of c =
⌊
α
β
t
⌋

is always a non negative integer

which evolves according to t = cβ
α

+ ξ as shown in Figure 5.4 (p. 149).

Lemma 5.14

Let t1, t2 ∈ {0, ..., β − 1}. The following assertion holds:

∀d < K, dβ(t1, t2) ≤ d⇒ dα(

⌊
α

β
t1

⌋
,

⌊
α

β
t2

⌋
) ≤ 1

Proof : Let t1, t2 ∈ {0, ..., β − 1} such that dβ(t1, t2) ≤ d. Recall that K = β
α . We write

t1 and t2 as t1 = x1K + ξ1 and t2 = x2K + ξ2 where x1, x2 ∈ {0, . . . , α− 1} (resp.
ξ1, ξ2 ∈ {0, . . . ,K − 1}) are the quotients (resp. remainders) of the Euclidean division
of t1, t2 by K. From Remark 5.6, we have that bt1/Kc = x1 and bt2/Kc = x2.

Assume, by contradiction, that dα(x1, x2) > 1. By definition, this means that
min

(
(x1−x2) mod α, (x2−x1) mod α

)
> 1. This implies that both (x1−x2) mod α >

1 and (x2−x1) mod α > 1. As dβ(t1, t2) ≤ d, min
(
(t1−t2) mod β, (t2−t1) mod β

)
≤

d. Without loss of generality, assume that (t1 − t2) mod β ≤ d. There are two cases:

1. If t1 ≥ t2, then (t1 − t2) mod β = t1 − t2. So, t1 − t2 ≤ d.

Now, as t1 ≥ t2, x1 ≥ x2 by Remark 5.7. Hence x1 − x2 = (x1 − x2) mod α > 1.
As x1 and x2 are natural numbers, this implies that x1 − x2 ≥ 2. We rewrite the
inequality as x1K + ξ1 − x2K − ξ2 ≥ 2K + ξ1 − ξ2. Since ξ1, ξ2 ∈ {0, . . . ,K − 1},
we have −K < ξ1 − ξ2 < K and therefore x1K + ξ1 − x2K − ξ2 > K > d. Hence,
t1 − t2 > d, a contradiction.

2. If t1 < t2, then (t1 − t2) mod β = β + t1 − t2. So, β + t1 − t2 ≤ d.

Now, as t1 < t2, x1 ≤ x2 by Lemma 5.7. Hence (x1−x2) mod α = α+x1−x2 > 1.
As x1 and x2 are natural numbers, this implies that α+x1−x2 ≥ 2. We rewrite the
inequality as β+x1K+ξ1−x2K−ξ2 ≥ 2K+ξ1−ξ2. Since ξ1, ξ2 ∈ {0, . . . ,K − 1},
we have −K < ξ1 − ξ2 < K and therefore β + x1K + ξ1 − x2K − ξ2 > K > d.
Hence, β + t1 − t2 > d, a contradiction.

As previous remarks, Lemma 5.14 will be used with the internal clock t = cβ
α

+ ξ:
it expresses that once internal clocks have stabilized at a delay smaller than d, external
clocks are at delay smaller than 1. We now prove that Algorithm 11 achieves the safety
and liveness properties of SPsu in any execution starting from a legitimate configuration.

Remark 5.8 (Safety for α = 2))

Assume α = 2. Every execution e ∈ E0SU(Lsu) satisfies the safety of SPsu. Indeed,
there is only two possible values of clock, so there is at most two (consecutive) values
of clock in the network.

Lemma 5.15 (Safety for α = 3)

Assume α = 3. Every execution e ∈ E0SU(Lsu) satisfies the safety of SPsu.

152



5.5. Self-Stabilizing Strong Unison

0
12

0

β
3
-1

β
32β

3
-1

2β
3

β-1

t0

t1

t2

c

t

K

K
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Proof : If the number of nodes in the network is smaller than 3, trivially there is no more
than two different values for clock c. Otherwise, let γ ∈ Lsu be a legitimate configuration
w.r.t. SPsu under SU . Assume, by contradiction, that there are more than two different
values of variable c in γ: ∃p0, p1, p2 ∈ V such that γ(p0).c = 0, γ(p1).c = 1 and γ(p2).c =
2. We denote tj = γ(pj).t for all j ∈ {0, 1, 2} and using Remark 5.6, there exists
ξ0, ξ1, ξ2 ∈ {0, ..., β/3− 1} such that t0 = ξ0, t1 = β/3 + ξ1 and t2 = 2β/3 + ξ2 (see
Figure 5.5).

As γ is legitimate w.r.t. SPsu, the delay (dβ) between any two internal clocks c is
upper bounded by n− 1 (Remark 5.2) and using the assumption also upper bounded by
K = β/3 (strict upper bound). So in particular

dβ(t0, t1) = β/3 + ξ1 − ξ0 < n < K = β/3

dβ(t1, t2) = β/3 + ξ2 − ξ1 < n < K = β/3

dβ(t2, t0) = β/3 + ξ0 − ξ2 < n < K = β/3

It comes that ξ1 < ξ0 < ξ2 < ξ1, a contradiction.

Finally, as the set Lsu is closed (Lemma 5.12), we are done.

Lemma 5.16 (Safety for α > 3)

Assumes α > 3. Every execution e ∈ E0SU(Lsu) satisfies the safety of SPsu.

Proof : Let γ ∈ Lsu: the delay (β) between any two internal clocks t in γ is upper bounded

by n−1 and for any process, p ∈ V , γ(p).c =
⌊
α
β γ(p).t

⌋
. Hence, using Lemma 5.14 with

d = n− 1 < K, we have ∀p, q ∈ V , dα(γ(p).c, γ(q).c) ≤ 1. As α > 3, this proves that the
variables c in γ have at most two different consecutive values.

Finally, as the set Lsu is closed (Lemma 5.12), we are done.

Lemma 5.17 (Liveness)

Every execution e ∈ E0SU(Lsu) satisfies the liveness of SPsu.
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Proof : Let e = (γi)i≥0 ∈ E0SU (Lsu). Let p be a process. γ0 is a legitimate configuration
of WU so p increments infinitely often p.t using SU-N-action (by Theorem 5.5 and
Remark 5.4). So p.t goes through each integer value between 0 and β−1 infinitely often
(in increasing order). Hence, by Remark 5.6, p.c is incremented infinitely often and goes
through each integer value between 0 and α− 1 (in increasing order).

Proof of Theorem 5.8 : Lemma 5.12 (closure), Lemma 5.13 (convergence), Lemmas 5.16-
5.17 and Remark 5.8 (correctness) prove that Algorithm SU is self-stabilizing for SPsu

in any arbitrary connected anonymous network assuming a distributed unfair daemon.

Complexity Analysis. We now give some complexity results about Algorithm SU .
Precisely, a bound on the stabilization time of SU is given in Theorem 5.9. Then, a delay
between any two consecutive clocks increments, which holds once SU has stabilized, is
given in Theorem 5.10.

Theorem 5.9

The stabilization time of SU to Lsu is at most n + (µ + 1)D + 1 rounds, where n
(resp. D) is the size (resp. diameter) of the network and µ is a parameter satisfying
µ ≥ max(n, 2).

Proof : Let (γi)i≥0 ∈ E0SU . The behavior of the t-variables in SU is similar to that of WU
(Remark 5.4), which stabilizes in at most n+ µD rounds (see Theorems 5.6 and 5.7) to
weak unison. So, in n+ µD rounds, the delay between the t-clocks of any two arbitrary
far processes is at most n− 1 (Remark 5.2). If c-variables are well-calculated according

to t-variables, i.e.if c =
⌊
α
β t
⌋
, then the delay between the c-clocks of any two arbitrary

far processes is at most 1 (Lemma 5.14). In at most D + 1 additional rounds, each
process executes SU-N-action (Lemma 5.11) and updates its c-variable according to its
t-variable. Hence, in at most n+ (µ+ 1)D + 1 rounds, the system reaches a legitimate
configuration.

Theorem 5.10

After convergence of SU to Lsu, each process p increments its clock p.c at least once
every D + β

α
rounds, where D is the diameter of the network.

Proof : If SU converged to Lsu, by Remark 5.4 and Lemma 5.11, after D + β
α rounds, p

increments p.t at least β
α times. Now, by Remark 5.6, if a t-variable is incremented β

α
times, then its corresponding c-variable is incremented once.
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Figure 5.6 – Link addition.

5.6 Gradually Stabilizing Strong Unison

We now propose Algorithm DSU (Algorithm 12), a gradually stabilizing variant of
Algorithm SU . First, to maintain a finite period for internal clocks, we need to assume
that the number of processes in any reachable configuration never exceeds some bound
N ≥ n. Indeed, in compliance with Algorithm SU , the parameter µ in Algorithm DSU
should be fixed to a value greater than or equal to the maximum between 2 and N . Then,
according to the results shown in Section 5.4 (Theorems 5.1-5.2 and Corollary 5.1), we
consider the following dynamic pattern:

BULCC(Gi, Gj) ≡ |Vj| ≤ N ∨ (α > 3⇒ ULC(Gi, Gj)) ∨ C(Gi, Gj)

BULCC stands for Bounded number of nodes, Under Local Control, and Connected.
Precisely, after any BULCC-dynamic step (such a step may include several topological
events) from a configuration of Lsu (the set of legitimate configurations w.r.t. strong
unison) DSU maintains (external) clocks almost synchronized during the convergence to
strong unison, since it immediately satisfies partial weak unison, then converges in at
most one round to weak unison, and finally re-stabilizes to strong unison.

In the following, we present in Subsection 5.6.1 the general principles of the conver-
gence of DSU after a BULCC-dynamic step occurs from a configuration of Lsu. Then,
we show the gradual stabilization of DSU in Subsection 5.6.2.

5.6.1 Overview of Algorithm DSU
We now explain step by step how we modify Algorithm SUto obtain our gradually stabi-
lizing algorithm, DSU . We consider any BULCC-dynamic step γi 7→d,BULCC

DSU γi+1 such that
γi ∈ Lsu, i.e., the set of legitimate configurations w.r.t. strong unison. Since, Lsu is closed
(Lemma 5.12), the set of configurations reachable from Lsu after one BULCC-dynamic
step (which may also include process activations) is the same as the one reachable from
Lsu after BULCC-dynamic step made of topological events only (see Theorem 5.13). At
the light of this result, we consider, without the loss of generality, no process moves during
γi 7→d,BULCC

DSU γi+1.

Assume first that γi 7→d,BULCC
DSU γi+1 contains link additions only. Adding a link (see

the dashed link in Figure 5.6) can break the safety of weak unison on internal clocks.
Indeed, it may create a delay greater than one between two new neighboring t-clocks.
Nevertheless, the delay between any two t-clocks remains bounded by n− 1 (recall that
n is the number of processes initially in the network), consequently, no process will
reset its t-clock (Figure 5.6 shows a worst case). Moreover, c-clocks still satisfy strong
unison immediately after the link addition. Besides, since increments are constrained
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Algorithm 12 – Actions of Process p in Algorithm DSU .

Inputs.

• α ∈ N such that α ≥ 2

• µ ∈ N such that µ ≥ max(N, 2)

• β ∈ N such that β > µ2 and ∃K such
that K > µ and β = Kα

Variables.

• p.c ∈ {0, . . . , α− 1} ∪ {⊥} • p.t ∈ {0, . . . , β − 1}

Predicates.

Locked(p) ≡ p.c = ⊥ ∨ ∃q ∈ p.N , q.c = ⊥

Guards.

NormalStep(p) ≡ ¬Locked(p) ∧ ∀q ∈ p.N , p.t �β,µ q.t
ResetStep(p) ≡ ¬Locked(p) ∧

(
∃q ∈ p.N , dβ(p.t, q.t) > µ ∧ p.t 6= 0

)
JoinStep(p) ≡ p.c = ⊥

Actions.

DSU-N :: NormalStep(p) → p.t := (p.t+ 1) mod β

p.c :=
⌊
α
β p.t

⌋
DSU-R :: ResetStep(p) → p.t := 0

p.c := 0

DSU-J :: JoinStep(p) → p.t := MinTime(p)

p.c :=
⌊
α
β p.t

⌋
bootstrap :: join(p) → p.t := 0

p.c := ⊥

0
0

p0
0
1

p1
0
1

p2

0
1
p3

0
2
p4

Figure 5.7 – Removals.

by neighboring clocks, adding links only reinforces those constraints. Thus, the delay
between internal clocks of arbitrary far processes remains bounded by n−1, and so strong
unison remains satisfied, in all subsequent static steps. Consider again the example in
Figure 5.6: before γi 7→d,BULCC

DSU γi+1, pn−1 had only to wait until pn−2 increments tpn−2 in
order to be able to increment its own t-clock; yet after the step, it also has to wait for p0
until its internal clock reaches at least n− 1.

Assume now that γi 7→d,BULCC
DSU γi+1 contains process and link removals only. By

definition of BULCC, the network remains connected. Hence, constraints between (still
existing) neighbors are maintained: the delay between t-clocks of two neighbors remains
bounded by one, see the example in Figure 5.7: process p2 and link {p0, p3} are removed.
So, weak unison on t-clocks remains satisfied and so is strong unison on c-clocks.
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fying strong unison.
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(b) After one dynamic step:
link {p1, p2} disappears and
link {p1, p6} is created.
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(c) Some steps later, strong
unison is violated.

Figure 5.8 – Example of execution where one link is added and another is removed: µ = 6,
α = 7, and β = 42.

Consider now a more complex scenario, where γi 7→d,BULCC
DSU γi+1 contains link additions

as well as process and/or link removals. Figure 5.8 shows an example of such a scenario,
where safety of strong unison is violated. As above, the addition of link {p1, p6} in
Figure 5.8(b) leads to a delay between t-clocks of these two (new) neighbors which is
greater than one (here 5). However, the removal of link {p1, p2}, also in Figure 5.8(b),
relaxes the neighborhood constraint on p2: p2 can now increment without waiting for p1.
Consequently, executing Algorithm SU does not ensure that the delay between t-clocks
of any two arbitrary far processes remains bounded by n − 1, e.g., after several static
steps from Figure 5.8(b), the system can reach Figure 5.8(c), where the delay between p1
and p2 is 9 while n − 1 = 5. Since c-clock values are computed from t-clock values, we
also cannot guarantee that there is at most two consecutive c-clock values in the system,
e.g., in Figure 5.8(c) we have: p1.c = 1, p6.c = 2, and p2.c = 3. Again, in the worst case
scenario, after γi 7→d,BULCC

DSU γi+1, the delay between two neighboring t-clocks is bounded
by n − 1. Moreover, t-clocks being computed like in Algorithm WU , we can use two of
its useful properties (see [Bou07]):

1. when the delay between every pair of neighboring t-clocks is at most µ with µ ≥ n,
the delay between these clocks remains bounded by µ because processes never reset;

2. furthermore, from such configurations, the system converges to a configuration from
which the delay between the t-clocks of every two neighbors is at most one.

So, keeping µ ≥ n, processes will not reset after that BULCC-dynamic step and the delay
between any two neighboring t-clocks will monotonically decrease from at most n− 1 to
at most one. Consequently, the delay between any two neighboring c-clocks (which are
computed from t-clocks) will stay at most one, i.e., weak unison will be satisfied all along
the convergence to strong unison.

Assume now that a process p joins the system during γi 7→d,BULCC
DSU γi+1. The event

joinp occurs and triggers the new specific action bootstrap that initialized p to its boot-
state: p sets p.c to a specific bootstate value, noted ⊥ (meaning that its output is currently
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(e) p6 executes DSU-J-
action and initializes its
clocks.

Figure 5.9 – Example of execution where the daemon delays the first step of a new process:
µ = 6, α = 6, and β = 42.

undefined), and p.t to 0. By definition and from the previous discussion, the system im-
mediately satisfies partial unison since it only depends on processes that were in the
system before the BULCC-dynamic step. Now, to ensure that weak unison is satisfied
within a round, we add the DSU-J-action which is enabled as soon as the process is in
bootstate. This action initializes the two clocks of p according to the minimum t-clock
value of its neighbors that are not in bootstate, if any. To that goal, we use the function
MinTime(p) given below.

MinTime(p) =

{
0 if ∀q ∈ p.N , q.clock = ⊥,

min {q.t : q ∈ p.N ∧ q.clock 6= ⊥} otherwise.

The value of p.c is then computed according to the value of p.t. Remark that MinTime(p)
returns 0 when p and all its neighbors have their respective c-clock equal to ⊥: if the
BULCC-dynamic step replaces all nodes by new ones, then the system reaches in a con-
figuration where all c-clocks are equal to ⊥, and DSU still ensures gradual stabilization
in this case.

Then, to prevent the unfair daemon from blocking the convergence to a configuration
containing no ⊥-values, we should also forbid processes with non-⊥ c-clock values to
increment while there are c-clocks with ⊥-values in their neighborhood. So, we define the
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predicate Locked which holds for a given process p when either p.c = ⊥, or at least one of
its neighbors q satisfies q.clock = ⊥. We then enforce the guard of both normal and reset
actions, so that no Locked process can execute them. See DSU-N- and DSU-R-actions.
This ensures that t-clocks are initialized first by DSU-J-action, before any value in their
neighborhood increments.

Finally, notice that all the previous explanation relies on the fact that, once the system
recovers from process additions (i.e., once no ⊥ value remains), the algorithm behaves
exactly the same as Algorithm SU . Hence, it has to match the assumptions made for
SU , in particular, the ones on α and β. However the constraint on µ has to be adapted,
since µ should be greater than or equal to the actual number of processes in the network
and this number may increase. Now, this number is assumed to be bounded by N . So,
we now require that µ ≥ max(N, 2).

We now consider the example execution of Algorithm DSU in Figure 5.9. This ex-
ecution starts in a configuration legitimate w.r.t. the strong unison, see Figure 5.9(a).
Then, one BULCC-dynamic step happens (step (a)7→(b)), where a process p6 joins the
system. We now try to delay as long as possible the execution of DSU-J-action by p6.
In configuration (b), p3 and p5, the new neighbors of p6, are locked. They will remain
disabled until p6 executes DSU-J-action. p1 and p4 execute DSU-N-action in (b)7→(c).
Then, p4 is disabled because of p5 and p1 executes DSU-N-action in (c) 7→(d). In config-
uration (d), p1 is from now on disabled: p1 must wait until p2 and p4 get t-clock value 7.
p6 is the only enabled process, so the unfair daemon has no other choice but selecting p6
to execute DSU-J-action in the next step.

5.6.2 Correctness of DSU
Self-stabilization w.r.t. SPsu.

Remark 5.9

By definition, N ≥ n, so, whenever the parameters α, µ, and β satisfy the con-
straints of Algorithm DSU , they also satisfy all constraints of Algorithm SU .

Remark 5.10

In DSU , if all c-variables have values different from ⊥, predicates JoinStep and
Locked are False. Furthermore, no action can assign ⊥ to c during a static step.
Consequently, when all c-variables have values different from ⊥, and as far as no
topological change occurs, Algorithms DSU and SU are syntactically identical. So,
fixing the initial graph and the three parameters α, µ, and β, we obtain that the set
of executions E0SU and the set of executions E0DSU(NoBot) are identical, where

NoBot = {γ ∈ C : ∀p ∈ V, γ(p.c) 6= ⊥}

By Remarks 5.10 and 5.9, results of Algorithm SU about Lsu (see Definition 5.9
page 150) also hold for Algorithm DSU . Hence, follows.
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Lemma 5.18 (Closure and Correctness of Lsu under DSU)

Lsu is closed under DSU , and for every execution e ∈ E0DSU(Lsu), SPsu(e).

Lemma 5.19

For any execution (γi)i≥0 ∈ E0DSU , ∃j ≥ 0 such that ∀k ≥ j, ∀p ∈ V , γk(p).c 6= ⊥.

Proof : Let e = (γi)i≥0 ∈ E0DSU . For any i ≥ 0, we noteBottom(γi) = {p ∈ V : γi(p).c = ⊥}.
AsDSU-N, DSU-R, andDSU-J-action do not create any⊥-value, ∀i > 0, Bottom(γi) ⊆
Bottom(γi−1). Now, assume by contradiction that ∃p ∈ V such that ∀i ≥ 0, p ∈
Bottom(γi). Since, the number of nodes is constant, there is a configuration γs, s ≥ 0,
from which no ⊥-value disappears anymore, i.e.∀p ∈ V , p ∈ Bottom(γs) ⇒ ∀i ≥ s, p ∈
Bottom(γi).

If Bottom(γs) = V , every process is enabled for DSU-J-action. So, the unfair
daemon selects at least one process to execute DSU-J and sets its c-variable to a value
different from ⊥, a contradiction with the definition of γs.

Hence there is at least one process that is not in Bottom(γs). Again, if the only
enabled processes are in Bottom(γs), then the unfair daemon has no other choice but
selecting one of them, a contradiction. So, ∀i ≥ s, there exists a process that is enabled
in γi but which is not in Bottom(γi). Remark that this implies in particular that e is
an infinite execution.

Now, let consider the subgraph G′ of G induced by V \Bottom(γs). G′ is composed of
a finite number of connected components and, as e is infinite, there is an infinite number
of actions of e executed in (at least) one of these components. Let G′′ = (V ′′, E′′) be
such a connected component.

Let e′ = (γ′i)i≥0 be the projection of e on G′′ and t-variable: ∀i ≥ 0, ∀x ∈ V ′′,
γ′i(x).t = γi(x).t. We construct e′′ = (γ′′j )j≥0 from e′ by removing duplicate configura-
tions with the following inductive schema:

• γ′′0 = γ′0,

• and, ∀j > 0, if γ′′0 . . . γ
′′
j represents γ′0 . . . γ

′
k without duplicate configurations,

γ′′j+1 = γ′next, where next = min {l > k : γ′l 6= γ′k}. (Notice that next is always
defined as there is an infinite number of actions executed in G′′.)

Let L = {p ∈ V ′′ : ∃q ∈ Bottom(γs), {p, q} ∈ E} be the set of processes that are
neighbors of a Bottom(γs) process in G. As G is connected, L is not empty. Furthermore,
during the execution e, Locked holds forever for processes in L, hence are disabled. As
a consequence, in execution e′′, no process in L can execute a static step. Now, from
Remark 5.4 and 5.10, and since γ′′0 contains no ⊥-value, e′′ is also an execution ofWU in
graph G′′. The fact that existing processes (from the non-empty set L) never increment
their clocks during an infinite execution e′′ of WU is a contradiction with the liveness
of the weak unison (Specification 5.1), Remark 5.9, and Theorem 5.5 which states that
WU is self-stabilizing for weak unison under an unfair daemon.

Lemma 5.20 (Convergence to Lsu)

C (the set of all possible configurations) converges under DSU to the set of legitimate
configurations Lsu.
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Proof : Let (γi)i≥0 ∈ E0DSU . Using Lemma 5.19, ∃j ≥ 0 such that ∀k ≥ j, ∀p ∈ V ,
γk(p).c 6= ⊥. After γj , the execution of the system, (γk)k≥j , is also a possible execution
of SU (by Remark 5.10). Hence, it converges to a configuration γk (k ≥ j) in Lsu, by
Remark 5.9 and Lemma 5.13.

Using Lemmas 5.18 and 5.20, we can deduce the following theorem.

Theorem 5.11 (Self-stabilization of DSU w.r.t. strong unison)

Algorithm DSU is self-stabilizing for SPsu in any arbitrary connected anonymous
network assuming a distributed unfair daemon.

Theorem 5.12 states the stabilization time of DSU .

Theorem 5.12

The stabilization time of DSU to Lsu is at most n + (µ + 1)D + 2, where n (resp.
D) is the size (resp. diameter) of the network, and µ is a parameter satisfying µ ≥
max(2, N).

Proof : Let (γi)i≥0 ∈ E0DSU . If there are some processes p such that γ0(p).c = ⊥, DSU-J-
action is continuously enabled at p. So, after at most one round p.c 6= ⊥, for every process
p. Afterwards, the behavior of the algorithm is identical to the one of SU (Remarks 5.9
and 5.10), which stabilizes in at most n+(µ+1)D+1 rounds (see Theorem 5.9). Hence,
in at most n+ (µ+ 1)D + 2 rounds, the system reaches a legitimate configuration.

Immediate Stabilization to SPpu after one BULCC-Dynamic Step from Lsu.

Definition 5.10 (Legitimate Configurations of DSU w.r.t. SPpu)

A configuration γi of DSU is legitimate w.r.t. SPpu if and only if

1. ∀p ∈ Vi, γi(p).c 6= ⊥ ⇒ γi(p).c =
⌊
α
β
tγi(p)

⌋
; and

2. if α > 3, then the following three additional conditions hold:

a)
[
∀p ∈ Vi,

(
γi(p).c = ⊥ ⇒ (∀q ∈ γi(p).N , γi(q).c ∈ {0,⊥})

)]
∨
[
∀p ∈ Vi,

(
γi(p).c = ⊥ ⇒ (∃q ∈ γi(p).N , γi(q).c 6= ⊥)

)]
b) ∀p ∈ Vi,∀q ∈ γi(p).N ,

γi(p).c 6= ⊥ ∧ γi(q).c 6= ⊥ ⇒ dβ(γi(p).t, γi(q).t) ≤ µ;

c) ∀p, q ∈ Vi,

γi(p).c 6= ⊥ ∧ (∃x ∈ γi(p).N , γi(x).c = ⊥)∧
γi(q).c 6= ⊥ ∧ (∃y ∈ γi(q).N , γi(y).c = ⊥)⇒

dβ(γi(p).t, γi(q).t) ≤ µ.

We denote by Lpu the set of legitimate configurations of DSU w.r.t. SPpu.
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Lemma 5.21 (Closure of Lpuunder DSU)

Lpu is closed under DSU .

Proof : Let γi 7→s γi+1 be a static step of DSU such that γi ∈ Lpu. By definition, DSU-R
is disabled in γi, for all processes: a process can only execute DSU-N or DSU-J-action
depending whether its c-clock is ⊥ or not.

Point 1 of Definition 5.10. Let p ∈ Vi+1 such that γi+1(p).c 6= ⊥. Two cases are
possible: either p executes no action during γi 7→s γi+1 and the constraint between
p.t and p.c has been preserved, or p executes DSU-J or DSU-N-action. In the
latter case, the assignment of the action ensures the constraint.

For the three next points, we assume that α > 3 (otherwise, those constraints are
trivially preserved).

Point 2a of Definition 5.10. Since γi ∈ Lpu and by Definition 5.10.2a, two cases are
possible.

Assume ∀p ∈ Vi, (γi(p).c = ⊥ ⇒ (∀q ∈ γi(p).N , γi(q).c ∈ {0,⊥})). Neither DSU-N
nor DSU-J-action sets c to ⊥. Then, let p ∈ Vi such that γi(p).c = ⊥. Let q be a
neighbor of p in γi. If γi(q).c = 0, then γi+1(q).c = 0, since q is disabled (Locked(q)
holds in γi because of p). If γi(q).c = ⊥, then γi+1(q).c ∈ {0,⊥} depending on
whether or not q executes DSU-J, since the c-clock values of all its neighbors are
0 or ⊥, by hypothesis, and since the c-clock values of its non-⊥ neighbors are
well computed according to their t-clock values, by Definition 5.10.1. Hence, the
constraint is preserved in this case, and we are done.

Otherwise, ∀p ∈ Vi, (γi(p).c = ⊥ ⇒ (∃q ∈ γi(p).N , γi(q).c 6= ⊥)). Since neither
DSU-N nor DSU-J-action sets p.c to ⊥, this constraint is also preserved in this
case.

Point 2b of Definition 5.10. Let p, q be two neighbors such that γi+1(p).c 6= ⊥ and
γi+1(q).c 6= ⊥.

1. Assume that γi(p).c 6= ⊥ and γi(q).c 6= ⊥. As γi ∈ Lpu, we have dβ(γi(p).t, γi(q).t)
≤ µ, by Definition 5.10.2b. So, p and q can only execute DSU-N-action dur-
ing γi 7→s γi+1. If both p and q, or none of them, execute DSU-N-action,
the delay between p.t and q.t remains the same. If only one of them, say p,
executes DSU-N-action, γi(p).t �β,µ γi(q).t. So, either γi(p).t = γi(q).t and
dβ(γi+1(p).t, γi+1(q).t) = 1 ≤ µ, or the increment of p.tdecreases the delay
between p.tand q.tand again we have dβ(γi+1(p).t, γi+1(q).t) ≤ µ.

2. Assume that γi(p).c = ⊥ and γi(q).c 6= ⊥. Let x be the neighbor of p in
γi such that γi(x).c 6= ⊥ with the minimum t-value (x is defined because
γi(q).c 6= ⊥). Since q and x are both neighbors of p in γi and γi ∈ Lpu,
dβ(γi(x).t, γi(q).t) ≤ µ, by Definition 5.10.2c. Moreover, q is disabled in γi
because of p (Locked(q) holds in γi), so γi+1(q).t = γi(q).t. Necessarily, p
executes DSU-J-action in γi 7→s γi+1, since γi+1(p).c 6= ⊥. Hence, γi+1(p).t =
γi(x).t and dβ(γi+1(p).t, γi+1(q).t) ≤ µ.

3. Assume that γi(p).c 6= ⊥ and γi(q).c = ⊥. This case is similar to the previous
one.

4. Assume that γi(p).c = ⊥ and γi(q).c = ⊥. As γi+1(p).c 6= ⊥ and γi+1(q).c 6= ⊥,
p and q necessarily move during γi 7→s γi+1. Since γi ∈ Lpu, two cases are
possible, by Definition 5.10.2a.
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If ∀v ∈ Vi, (γi(v).c = ⊥ ⇒ (∀w ∈ γi(v).N , γi(w).c ∈ {0,⊥})), then γi+1(p).c =
γi+1(q).c = 0 (owing the fact that the c-clock values of all their non-⊥ neigh-
bors are well computed according to their t-clock values, by Definition 5.10.1),
and we are done.
Otherwise, ∀v ∈ Vi, (γi(v).c = ⊥ ⇒ (∃w ∈ γi(v).N , γi(w).c 6= ⊥)). So, in
γi, we have: ∃x ∈ p.N such that γi(x).c 6= ⊥ ∧ γi(x).t = MinTime(p) and
∃y ∈ q.N such that γi(y).c 6= ⊥∧γi(y).t = MinTime(q), by Definition 5.10.2a.
Moreover, x and y have neighbors whose c-variables equal ⊥ (p and q, respec-
tively), we have dβ(γi(x).t, γi(y).t) ≤ µ, by Definition 5.10.2c. Since p and q
execute DSU-J-action, γi+1(p).t = γi(x).t and γi+1(q).t = γi(y).t, and we are
done.

Point 2c of Definition 5.10. Let p, q be two processes such that γi+1(p).c 6= ⊥, ∃x ∈
γi+1(p).N with γi+1(x).c = ⊥, γi+1(q).c 6= ⊥, and ∃y ∈ γi+1(q).N with γi+1(y).c =
⊥. As no enabled action can set variable c to ⊥, γi(x).c = ⊥ and γi(y).c = ⊥.

1. Assume that γi(p).c 6= ⊥ and γi(q).c 6= ⊥. As γi ∈ Lpu, dβ(γi(p).t, γi(q).t)
≤ µ, by Definition 5.10.2b. Now, p and q are disabled in γi because of x and
y (Locked(p) and Locked(q) hold in γi). Hence, dβ(γi+1(p).t, γi+1(q).t) ≤ µ.

2. Assume that γi(p).c = ⊥ and γi(q).c 6= ⊥. Since γi ∈ Lpu, two cases are
possible, by Definition 5.10.2a.
Assume ∀v ∈ Vi, (γi(v).c = ⊥ ⇒ (∀w ∈ γi(v).N , γi(w).c ∈ {0,⊥})). Then,
since γi(y).c = ⊥, γi(q).c = 0. Then, γi+1(p).c = γi+1(q).c = 0 (p necessarily
moves in γi 7→s γi+1 and gets clock 0 owing the fact that the c-clock values of
all its non-⊥ neighbors are well computed according to their t-clock values, by
Definition 5.10.1; moreover q is disabled in γi since Locked(q) hold because of
y), and we are done.
Otherwise, ∀v ∈ Vi, (γi(v).c = ⊥ ⇒ (∃w ∈ γi(v).N , γi(w).c 6= ⊥)). Then,
∃x′ ∈ γi(p).N such that cγi(x

′) 6= ⊥ ∧ tγi(x′) = MinTime(p) in γi. By
Definition 5.10.2c, dβ(tγi(x

′), γi(q).t) ≤ µ because they have neighbors whose
c-variables equal ⊥ (p and y, respectively). Moreover, q is disabled in γi
because of y: γi+1(q).t = γi(q).t. Finally, γi+1(p).t = γi(x

′).t since p executes
DSU-J-action. So, dβ(γi+1(p).t, γi+1(q).t) ≤ µ.

3. Assume that γi(p).c 6= ⊥ and γi(q).c = ⊥. The case is similar to the previous
one.

4. Assume that γi(p).c = ⊥ and γi(q).c = ⊥. Since γi ∈ Lpu, two cases are
possible, by Definition 5.10.2a.
If ∀v ∈ Vi, (γi(v).c = ⊥ ⇒ (∀w ∈ γi(v).N , γi(w).c ∈ {0,⊥})), then γi+1(p).c =
γi+1(q).c = 0 (owing the fact that the c-clock values of all their non-⊥ neigh-
bors are well computed according to their t-clock values, by Definition 5.10.1),
and we are done.
Otherwise, ∀v ∈ Vi, (γi(v).c = ⊥ ⇒ (∃w ∈ γi(v).N , γi(w).c 6= ⊥)). So,
∃x′ ∈ γi(p).N such that γi(x

′).c 6= ⊥ ∧ γi(x′).t = MinTime(p) in γi and
∃y′ ∈ γi(q).N such that γi(y

′).c 6= ⊥ ∧ γi(y′).t = MinTime(q) in γi. By Def-
inition 5.10.2c, dβ(γi(x

′).t, γi(y
′).t) ≤ µ because they have neighbors whose

c-variables equal ⊥ (p and q, respectively). γi+1(p).t = γi(x
′).t and γi+1(q).t =

γi(y
′).t since p and q execute DSU-J-action. So dβ(γi+1(p).t, γi+1(q).t) ≤ µ.
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Before going into details, we show the following theorem, which allows to simplify
proofs and explanations.

Theorem 5.13

Let X be a closed set of configurations. Let ρ be any dynamic pattern.

∀γi ∈ C, (∃γj ∈ X, γj 7→d,ρ γi)⇔ (∃γk ∈ X, γk 7→donly ,ρ γi)

where 7→donly ,ρ is the set of all ρ-dynamic steps containing no process activation.

Proof : Let γi ∈ C such that γj 7→d,ρ γi with γj ∈ X. If γj 7→donly ,ρ γi, we are done.
Otherwise, let A be the non-empty subset of processes that are activated in γj 7→d,ρ γi.
There exists γj 7→s γu, where A is activated. As X is closed, γu ∈ X. Moreover,
∀x ∈ Gj ∩Gi, x ∈ Gu (since Gu = Gj) and γu(x) = γi(x). Let γu 7→donly ,ρ γk such that
Gk = Gi. ∀x ∈ Gj ∩Gi, x ∈ Gk (since Gk = Gi) and γk(x) = γu(x) = γi(x). Moreover,
∀x ∈ Gi \Gj , x ∈ Gk (since Gk = Gi) and γk(x) = γi(x) because in both cases, x is in
bootstate. Hence, γk = γi, and we are done.

The second part of the assertion is trivial since, by definition, 7→donly ,ρ⊆7→d,ρ.

Lemma 5.22

Let γi ∈ Lsu and γi 7→d,BULCC
DSU γi+1. Then, γi+1 ∈ Lpu.

Proof : By Theorem 5.13 and as Lsu is closed (Lemma 5.18), we can assume, without the

loss of generality that, no process moves during γi 7→d,BULCC
DSU γi+1. Then, the lemma is

obvious by Definition of BULCC, Remark 5.5, and Definitions 5.9-5.10.

Lemma 5.23 (Safety of SPpu in E0
DSU(Lpu))

Every execution e ∈ E0DSU(Lpu) satisfies the safety of SPpu.

Proof : Let γi ∈ Lpu. If α ≤ 3, then by definition, for every two neighbors p and q in γi,
we have

(
γi(p).c 6= ⊥ ∧ γi(q).c 6= ⊥

)
⇒ dα(γi(p).c, γi(q).c) ≤ 1.

Assume now that α > 3. By Definition 5.10.2b, for every two neighbors p and q
in γi we have

(
γi(p).c 6= ⊥ ∧ γi(q).c 6= ⊥

)
⇒ dβ(γi(p).t, γi(q).t) ≤ µ. Furthermore, for

every process p, γi(p).c 6= ⊥ ⇒ γi(p).c =
⌊
α
β γi(p).t

⌋
. Hence, using Lemma 5.14 with

d = µ < K, ∀p ∈ Vi, ∀q ∈ γi(p).N ,
(
γi(p).c 6= ⊥∧γi(q).c 6= ⊥

)
⇒ dα(γi(p).c, γi(q).c) ≤ 1.

Finally, as the set Lpu is closed (Lemma 5.21), we are done.

By Lemmas 5.19 and 5.21, we have the following corollary.

Corollary 5.2

DSU converges from Lpu to Lwu in a finite time.
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Lemma 5.24 (Liveness of SPpu in E0
DSU(Lpu))

Every execution e ∈ E0DSU(Lpu) satisfies the liveness of SPpu.

Proof : Let e = (γi)i≥0 ∈ E0DSU (Lpu). By Corollary 5.2, there exists i ≥ 0 such that
γi ∈ Lwu. By Remarks 5.4, 5.9, and 5.10, we can apply Lemma 5.6: p.t goes through
each integer value between 0 and β − 1 infinitely often (in increasing order), for every
process p. Hence, by Remark 5.6, for every process p, p.c is incremented infinitely often
and goes through each integer value between 0 and α− 1 (in increasing order).

By Lemmas 5.21-5.24, we can deduce the following theorem.

Theorem 5.14

After one BULCC-dynamic step from a configuration of Lsu, DSU immediately
stabilizes to SPpu by Lpu.

Stabilization from Lpu to SPwu by Lwu in at most one Round.

Lemma 5.25

DSU converges from Lpu to Lwu in finite time. The convergence time is at most
one round.

Proof : The finite convergence time is proven by Corollary 5.2. Then, round complexity is
trivial since every process in bootstate is continuously enabled to leave its bootstate by
DSU-J-action, and no process can set its c-clock to ⊥ during a static step.

By Remarks 5.4, 5.9, and 5.10, results of Algorithm WU about Lwu
5 also hold for

Algorithm DSU . Hence, follows.

Lemma 5.26 (Closure and Correctness of Lwu under DSU)

Lwu is closed under DSU , and for every execution e ∈ E0DSU(Lwu) under DSU ,
SPwu(e).

By Lemmas 5.25-5.26 and Theorem 5.14, follows.

Theorem 5.15

After one BULCC-dynamic step from a configuration of Lsu, DSU stabilizes from
Lpu to SPwu by Lwu in finite time. The convergence time from Lpu to Lwu is at
most one round.

5See Theorem 5.5 page 146.
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Gradual Stabilization after one BULCC-Dynamic Step from Lsu.

Lemma 5.27

The convergence time from Lwu to Lsu is at most (µ+ 1)D1 + 1 rounds, where D1

is the diameter of the network after the dynamic step and µ is a parameter satisfying
µ ≥ max(2, N).

Proof : Let e = (γi)i≥0 ∈ E0DSU (Lwu). The behavior of the algorithm is similar to the one
of WU(Remarks 5.4, 5.9, and 5.10). By Theorem 5.7, within at most µD1 rounds the
system reaches a configuration from which ∀q ∈ p.N , dβ(p.t, q.t) ≤ 1 forever, provided
that no dynamic step occurs. By Lemma 5.11, each process increments its clock within
at most D1 + 1 additional rounds, from that point the c-variables are well computed
according to t-variables. Hence, in at most (µ + 1)D1 + 1 rounds, the system reaches
Lsu.

By Theorems 5.11-5.15 and Lemma 5.27, follows.

Theorem 5.16

DSU is gradually stabilizing under (1,BULCC)-dynamics for

(SPpu • 0, SPwu • 1, SPsu • (µ+ 1)D1 + 2)

where D1 is the diameter of the network after the dynamic step and µ is a parameter
satisfying µ ≥ max(2, N).

Theorem 5.17 establishes a bound on how many rounds are necessary to ensure that
a given process increments its c-clock after the convergence to legitimate configurations
w.r.t. SPsu(resp. SPwu).

Theorem 5.17

After convergence of DSU to Lwu(resp. Lsu), each process p increments its clock
p.cat least once every µD1+ β

α
rounds (resp. D1+ β

α
rounds), where D1 is the diameter

of the network after the dynamic step, and α, µ, and β are parameters respectively
satisfying α ≥ 2, µ ≥ max(2, N), β > µ2, and β is multiple of α.

Proof : By Remarks 5.4, 5.9, and 5.10, we can use results on WU for DSU . If DSU
has converged to a configuration γ ∈ Lwu, then γ ∈ Cµ. So, by Lemma 5.10, after

µD1 + β
α rounds, p increments p.t at least β

α times. Now, by Remark 5.6, if t-variable is

incremented β
α times, c-variable is incremented once.

If DSU has converged to Lsu, the result of Theorem 5.10 can be applied (Remarks
5.9 and 5.10). So, after D1 + β

α rounds, p increments p.c at least once.
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5.7 Conclusion

Summary of Contributions. In this chapter, we have proposed a variant of self-
stabilization, called gradual stabilization under (τ, ρ)-dynamics. An algorithm is grad-
ually stabilizing under (τ, ρ)-dynamics if it is self-stabilizing and satisfied the following
additional feature. From a legitimate configuration and after up to τ dynamic steps of
type ρ, a gradually stabilizing algorithm first quickly recovers a configuration from which
a minimum quality of service is satisfied. Then, it gradually converges to specifications
offering stronger and stronger safety guarantees, until reaching a configuration from which
its initial specification is satisfied, and where it is ready to achieve gradual convergence
again if up to τ ρ-dynamic steps hit the system.

This new property is illustrated by considering three variants of unison problem, called
strong, weak, and partial unison. Each process should maintain a local periodic clock of
period α ≥ 2 and regularly increment it. The safety of strong unison requires that at
most two consecutive value of clock exists at any step of the execution. Weak unison only
requires that the difference between the clocks of two neighbors is at most one increment.
Finally, we have defined the partial unison as a property dedicated to dynamic systems:
only the difference of clocks between two neighbors that were present in the network
before the dynamic step is constrained to be at most one increment.

We have proposed a gradually stabilizing algorithm under (1,BULCC)-dynamics, de-
notedDSU , for arbitrary anonymous network (initially connected), designed in the locally
shared memory model, and assuming the distributed unfair daemon. After a BULCC-
dynamic step from a configuration satisfying the strong unison, DSU immediately satis-
fies the partial unison, then in one round the weak unison. It finally converges to strong
unison in (µ+ 1)D1 + 2 rounds, where µ is a parameter greater or equal than max(2, N),
D1 is the diameter of the network after the dynamic step, and N is a bound on the
number of processes in the network at any time of the execution.

A BULCC-dynamic step contains a finite number of topological changes such that,
after such a step, the network:

1. contains at most N processes,

2. is connected,

3. if α > 3, every process joining the system should be linked to at least one process
that was already in the system before the dynamic step, except if all those processes
have left the system.

Condition 1 is necessary to have finite periodic clocks in DSU . We have shown that
condition 2 is necessary. Finally, we have shown that condition 3 is necessary for our
purposes when α > 5. We have exhibited pathological cases for α = 4 and α = 5 if
condition 3 is not satisfied.

Perspectives. The apparent seldomness of superstabilizing solutions for non-static
problems, such as unison, may suggest the difficulty of obtaining such a strong prop-
erty and if so, make our notion of gradual stabilization very attractive compared to
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merely self-stabilizing solutions. For example, in our unison solution, gradual stabiliza-
tion ensures that processes remain “almost” synchronized during the convergence phase
started after one BULCC-dynamic step. Hence, it is worth investigating whether this new
paradigm can be applied to other, in particular non-static, problems.

Concerning our unison algorithm, the graceful recovery after one dynamic step comes
at the price of slowing down the clock increments. The question of limiting this drawback
remains open.

Finally, it would be interesting to address in future work gradual stabilization for
non-static problems in context of more complex dynamic patterns.
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Chapter 6

Concurrency in Local Resource
Allocation

“He who controls the spice controls the universe.”

— Frank Herbert, Dune
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6.1 Introduction

In this chapter, we consider resource allocation problems, i.e., problems were some
resources (e.g., printers, files, memory) are shared among processes. Resource allocation
problems consist in managing the access to ressources according to some usage rules. The
portion of code that manages the access of a process to its allocated resources is called
critical section.

Mutual exclusion [Dij65, Lam74] is a fundamental resource allocation problem, which
consists in managing fair access of all (requesting) processes to a unique non-shareable
reusable resource. This problem is inherently sequential, as no two processes should
access this resource concurrently.

There are many other resource allocation problems which, in contrast, allow several
resources to be accessed simultaneously. In those problems, parallelism on access to
resources may be restricted by some of the following conditions:

1. The maximum number of resources that can be used concurrently, e.g., the `-
exclusion problem [FLBB79], ` ≥ 2, is a generalization of the mutual exclusion
problem which allows use of ` identical copies of a non-shareable reusable resource
among all processes, instead of only one, as standard mutual exclusion. In other
words, up to ` processes can concurrently execute their critical section.

2. The maximum number of resources a process can use simultaneously, e.g., the k-
out-of-`-exclusion problem [Ray91], 1 ≤ k ≤ `, is a generalization of `-exclusion
where a process can request for up to k resources simultaneously.

3. Some topological constraints, e.g., in the dining philosophers problem [Dij78], two
neighbors cannot use their common resource simultaneously.

For efficiency purposes, algorithms solving such problems must be as parallel as pos-
sible, i.e., must allow as many processes in critical section concurrently as possible. As
a consequence, these algorithms should be, in particular, evaluated at the light of the
level of concurrency they permit, and this level of concurrency should be captured by
a dedicated property. However, most of the resource allocation problems are specified
in terms of safety and liveness properties only, i.e., most of them include no property
addressing concurrency performances, e.g., [BPV04, CDP03, GH07, Hua00, NA02].

In this chapter, we especially focus on the concurrency level in resource allocation
problems.

6.1.1 Related Work

As quoted by Fischer et al. [FLBB79], specifying resource allocation problems without
including a property of concurrency may lead to degenerated solutions, e.g., any mutual
exclusion algorithm realizes safety and fairness of `-exclusion. However, at most one
process is in critical section at any time.
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To address this issue, Fischer et al. [FLBB79] proposed an ad hoc property to capture
concurrency in `-exclusion problem. This property is called avoiding `-deadlock and is
informally defined as follows: “if fewer than ` processes are executing their critical section,
then it is possible for another process to enter its critical section, even though no process
leaves its critical section in the meantime.”

Some other properties, inspired from the avoiding `-deadlock property, have been
proposed to capture the level of concurrency in other resource allocation problems, e.g., k-
out-of-`-exclusion [DHV03] and committee coordination [BDP11]. However, until now, all
existing properties of concurrency are specific to a particular problem, e.g., the avoiding
`-deadlock property cannot be applied to committee coordination.

In this chapter, we propose to generalize the avoiding `-deadlock property to any
resource allocation problem.

Then, we focus our study on the Local Resource Allocation (LRA) problem, defined
by Cantarell et al. [CDP03]. LRA is a generalization of resource allocation problems
in which resources are shared among neighboring processes. Dining philosophers, local
readers-writers, local mutual exclusion, and local group mutual exclusion are particular
instances of LRA. In contrast, local `-exclusion and local k-out-of-`-exclusion cannot be
expressed with LRA although they also deal with neighboring resource sharing.

We aim to design a stabilizing solution to LRA achieving a high level of concurrency.
There exist many algorithms for particular instances of the LRA problem. Many of these
solutions have been proven to be self-stabilizing, e.g., [BPV04, CDP03, GH07, Hua00,
NA02].

In [BPV04], Boulinier et al. propose a self-stabilizing unison (i.e., clock synchro-
nization) algorithm which allows to solve local mutual exclusion, local group mutual
exclusion, and local readers-writers problem. In [NA02], Nesterenko and Arora propose
self-stabilizing algorithms for the solving the local mutual exclusion, dining philosophers,
and drinking philosophers problems. There are also many self-stabilizing algorithms for
local mutual exclusion, e.g., [GH07, Hua00].

In [CDP03], Cantarell et al. generalize the above problems by introducing the LRA
problem. They also propose a self-stabilizing algorithm for that problem. To the best of
our knowledge, no other paper deals with the general instance of LRA. Moreover, none of
the aforementioned papers (especially [CDP03]) consider the maximal concurrency issue.

Finally, note that there exist weaker versions of the LRA problem, such as the (local)
conflict managers proposed in [GT07] where the fairness is replaced by a progress prop-
erty, i.e., it does not require that any requesting process eventually execute its critical
section but only that at least one of the requesting processes is satisfied.

6.1.2 Contributions

In this chapter, we first propose a generalization of avoiding `-deadlock to any resource
allocation problems. We call this new property the maximal concurrency (Section 6.3).

We show that maximal concurrency cannot be achieved in a wide class of instances of
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the LRA problem (Section 6.4). This impossibility result is mainly due to the fact that
fairness of LRA and maximal concurrency are incompatible properties: it is impossible
to implement an algorithm achieving both properties together.

As unfair resource allocation algorithms are clearly unpractical, we propose to weaken
the property of maximal concurrency (Section 6.5). We call partial concurrency this
weaker version of maximal concurrency. The goal of partial concurrency is to capture the
maximal level of concurrency that can be obtained in any instance of the LRA problem
without compromising fairness.

Then, we propose in Section 6.6 a LRA algorithm achieving a strong form of par-
tial concurrency in bidirectional identified networks of arbitrary topology. As additional
feature, this algorithm is snap-stabilizing [BDPV07], i.e., after transient faults cease, a
snap-stabilizing algorithm immediately resumes correct behavior, without external inter-
vention. More precisely, a snap-stabilizing algorithm guarantees that any computation
(here, any request to access some shared resources) started after the faults cease will
operate correctly. In our knowledge, it is the first snap-stabilizing algorithm solving LRA
or any particular instance of LRA.

An implementation of this algorithm requires Θ
(

log n+log(max {|Rp| : p ∈ V })
)

bits
per processes where Rp is the set of resources that can be requested and used by a process
p. Futhermore, the request of a process is satisfied in O(nC) rounds, where C is an upper
bound on the execution time of a critical section and n is the number of processes.

These results appear in the proceedings of the 3rd International Conference on Net-
worked Systems (NETYS 2015) [ADD15], in the Journal of Parallel and Distributed
Computing [ADD17b], and in the proceedings of the 18èmes Rencontres Francophones
sur les Aspects Algorithmiques des Télécommunications (ALGOTEL 2016) [ADD16b].

6.2 Preliminaries

We first detail the context (Section 6.2.1). Then we formally define the local resource
allocation algorithm (Section 6.2.2).

6.2.1 Context

We consider static bidirectionnal connected and identified networks of arbitrary topology.
We assume the locally shared memory model under a distributed weakly fair daemon (see
Section 2.6).

We denote by Rp the set of resources that can be requested (and used) by process p.
We consider algorithms interacting with their environment. More precisely, the user or
the application on the process requires the access to some shared resources through some
inputs of the algorithm.

6.2.2 Snap-stabilizing Local Resource Allocation

In the Local Resource Allocation (LRA) problem [CDP03] each process requests at most
one resource at a time. The problem is based on the notion of compatibility between
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resources: two resources X and Y are said to be compatible, and we denote X 
 Y ,
if two neighbors can concurrently access them. Otherwise, X and Y are said to be
conflicting, and we denote X 6
 Y . Notice that 
 is a symmetric relation.

The local resource allocation problem consists in ensuring that every process which
requires a resource r eventually accesses r while no other conflicting resource is currently
used by a neighbor. In contrast, there is no restriction for concurrently allocating the
same resource to any number of processes that are not neighbors.

Notice that the case where there are no conflicting resources is trivial: a process can
always use a resource whatever the state of its neighbors. So, from now on, we will always
assume that there exists at least one conflict, i.e., there are (at least) two neighbors p, q
and two resources X, Y such that X ∈ Rp, Y ∈ Rq and X 6
 Y . This also means that
any network considered from now on contains at least two processes.

Specifying the relation 
, it is possible to define some classic resource allocation
problems in which the resources are shared among neighboring processes.

Example 1: Local Mutual Exclusion. In the local mutual exclusion problem, no
two neighbors can concurrently access the unique resource. So there is only one resource
X common to all processes and X 6
 X.

Example 2: Local Readers-Writers. In the local readers-writers problem, the pro-
cesses can access a file in two different modes: a read access (the process is said to be a
reader) or a write access (the process is said to be a writer). A writer must access the
file in local mutual exclusion, while several reading neighbors can concurrently access the
file. We represent these two access modes by two resources at every process: r for a
“read access” and w for a “write access.” Then, r
 r, but w 6
 r and w 6
 w.

Example 3: Local Group Mutual Exclusion. In the local group mutual exclusion
problem, there are several resources r0, r1, . . . , rk shared between the processes. Two
neighbors can access concurrently the same resource but cannot access different resources
at the same time. Then:

∀i ∈ {0, . . . , k} , ∀j ∈ {0, . . . , k} ,

{
ri 
 rj if i = j,

ri 6
 rj otherwise.

Snap-stabilizing LRA Specification. Let Alg be a distributed algorithm. As stated
in Section 2.7, snap-stabilization has initially been defined as follows: Alg is snap-
stabilizing w.r.t. some specification SP if starting from any arbitrary configuration, all
its executions satisfy SP .

Of course, not all specifications — in particular their safety part — can be satisfied
when considering a system which can start from an arbitrary configuration. Actually,
snap-stabilization’s notion of safety is user-centric: when the user initiates a computation,
then the computed result should be correct. So, we express a problem using a guaranteed
service specification [AD14]. Such a specification consists in specifying three properties
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related to the computation start, computation end, and correctness of the delivered result.
(In the context of LRA, this latter property will be referred to as “resource conflict
freedom.”)

To formally define the guaranteed service specification of the local resource allocation
problem, we need to introduce the following four predicates, where p is a process, r is a
resource, and e = (γi)i≥0 is an execution:

• Req(γi, p, r) means that an application at p requests for r in configuration γi. We
assume that the application cannot change its request, i.e., if Req(γi, p, r) holds
then Req(γj, p, r) holds for any j ≥ i (at least) until p accesses r.

• Start(γ,γi+1, p, r) means that p starts a computation to access r in γi 7→ γi+1.

• Result(γi . . . γj, p, r) means that p obtains access to r in γi−1 7→ γi and p ends the
computation in γj 7→ γj+1. Notably, p released r between γi and γj.

• NoConflict(γi, p) means that, if a resource is allocated to p in γi, then none of its
neighbors is using a conflicting resource.

These predicates will be instantiated with the variables of the local resource allocation
algorithm, see Section 6.6.1 (p. 188). Below, we define the guaranteed service specification
of LRA, denoted SPLRA.

Definition 6.1 (Guaranteed Service Local Resource Allocation)

Let Alg be an algorithm. An execution e = (γi)i≥0 of Alg satisfies the guaranteed
service specification of LRA, noted SPLRA, if the three following properties hold:

• Resource Conflict Freedom: If a process p starts a computation to access a
resource, then there is no conflict involving p during the computation, i.e.,
∀k ≥ 0, ∀k′ > k, ∀p ∈ V , ∀r ∈ Rp,[

Result(γk . . . γk′ , p, r) ∧
(
∃l < k, Start(γl, γl+1, p, r)

)]
⇒

[
∀i ∈ {k, . . . , k′} , NoConflict(γi, p)

]
• Computation Start: If an application at process p requests resource r, then p

eventually starts a computation to obtain r, i.e., ∀k ≥ 0, ∀p ∈ V , ∀r ∈ Rp,[
∃l > k,Req(γl, p, r)⇒ Start(γl, γl+1, p, r)

]
• Computation End: If process p starts a computation to obtain resource r, the

computation eventually ends (in particular, p obtained r during the computa-
tion), i.e., ∀k ≥ 0, ∀p ∈ V , ∀r ∈ Rp,

Start(γk, γk+1, p, r)⇒
[
∃l > k,∃l′ > l,Result(γl . . . γl′ , p, r)

]
Thus, an algorithm Alg is snap-stabilizing w.r.t. SPLRA (i.e., snap-stabilizing for

LRA) if starting from any arbitrary configuration, all its executions satisfy SPLRA.
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6.3 Maximal Concurrency

In [FLBB79], authors propose a concurrency property ad hoc to the `-exclusion
problem. We now define the maximal concurrency, which generalizes the definition
of [FLBB79] to any resource allocation problem.

6.3.1 Definition

Informally, maximal concurrency can be defined as follows: if there are processes that
can access resources they are requesting without violating the safety of the considered
resource allocation problem, then at least one of them should eventually satisfies its
request, even if no process releases the resource(s) it holds meanwhile.

For any configuration γ, we define three sets of processes:

• PCS(γ) is the set of processes that are executing their critical section in γ, i.e., the
set of processes holding resources in γ.

• PReq(γ) is the set of requesting processes that are not in critical section in γ, i.e.,
their request is not yet satisfied in γ.

• PFree(γ) ⊆ PReq(γ) is the set of requesting processes that can access their requested
resource(s) in γ without violating the safety of the considered resource allocation
problem.

For any execution (γi)i≥0, let

ContinuousCS(γi . . . γj) ≡ ∀k ∈ {i+ 1, . . . , j}, PCS(γk−1) ⊆ PCS(γk)
NoRequest(γi . . . γj) ≡ ∀k ∈ {i+ 1, . . . , j}, PReq(γk) ⊆ PReq(γk−1)

ContinuousCS(γi . . . γj) (respectively, NoRequest(γi . . . γj)) means that no resource is
released (respectively, no new request occurs) between γi and γj. Notice that for any
i ≥ 0, ContinuousCS(γi) and NoRequest(γi) trivially hold.

Let e = (γi)i≥0, k ≥ 0 and t ≥ 0. The function R(e, k, t) is defined if and only if the
execution (γi)i≥k contains at least t rounds. If it is defined, the function returns x ≥ k
such that the execution factor γk . . . γx contains exactly t rounds, i.e., the tth round ends
in γx.
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Definition 6.2 (Maximal Concurrency)

A resource allocation algorithm Alg is maximal concurrent in a network G = (V,E)
if and only if
• No Deadlock: For every configuration γ such that PFree(γ) 6= ∅, there exists a

configuration γ′ and a step γ 7→ γ′ such that

ContinuousCS(γγ′) ∧NoRequest(γγ′)

• No Livelock: There exists a number of rounds N such that for every execution
e = (γi)i≥0 and for every index i ≥ 0, if R(e, i, N) exists, then(
NoRequest(γi . . . γR(e,i,N)) ∧ ContinuousCS(γi . . . γR(e,i,N)) ∧ PFree(γi) 6= ∅

)
⇒ (∃k ∈ {i, . . . , R(e, i, N)− 1} ,∃p ∈ V, p ∈ PFree(γk) ∩ PCS(γk+1))

No Deadlock ensures that whenever a request can be satisfied, the algorithm is not dead-
locked and can still execute some step, even if no resource is released and no new request
happens.

No Livelock assumes that there exists a number of round N (which depends on the
complexity of the algorithm, and henceforth on the network dimensions) such that: if
during an execution, there exists some requests that can be satisfied, then at least one
of them should be satisfied within N rounds, even if no resource is released and no
new request happens meanwhile. Notice that the mention “no new request happens
meanwhile” ensures that N uniquely depends on the algorithm and the network; if not,
N would also depend on the scheduling of the requests.

6.3.2 Alternative Definition

We now provide an alternative definition of maximal concurrency: instead of constraining
PFree to decrease every N rounds during which there is neither new request, nor criti-
cal section exit, it expresses that PFree becomes empty after enough rounds in such a
situation.

We introduce first some notations: let e = (γi)i≥0 be an execution and i ≥ 0 be
the index of configuration γi. We note endCS(e, i) (respectively, reqUp(e, i)) the last
configuration index such that no resource is released (respectively, no new request occurs
and no resource is released) during the execution factor γi . . . γendCS(e,i) (respectively,
γi . . . γreqUp(e,i)). Formally,

endCS(e, i) = max {j ≥ i : ContinuousCS(γi . . . γj)}
reqUp(e, i) = max {j ≥ i : NoRequest(γi . . . γj) ∧ j ≤ endCS(e, i)}

Note that endCS(e, i) is always defined (for any e and any i) since ContinuousCS(γi)
holds and any critical section is assume to be finite. Consequently, reqUp(e, i) is always
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PFree = ∅

i reqUp(e, i) endCS(e, i)R(e, i, tMC)

NoRequest(γi, γreqUp(e,i))

ContinuousCS(γi, γendCS(e,i))

tMC rounds

request exit of CS

Figure 6.1 – Illustration of Definition 6.3

defined, since the set {j ≥ i : NoRequest(γi . . . γj) ∧ j ≤ endCS(e, i)} is not empty and
bounded by endCS(e, i).

Definition 6.3 (Maximal Concurrency)

A resource allocation algorithm Alg is maximal concurrent in a network G = (V,E)
if and only if
• No Deadlock: For every configuration γ such that PFree(γ) 6= ∅, there exists a

configuration γ′ and a step γ 7→ γ′ such that

ContinuousCS(γγ′) ∧NoRequest(γγ′)

• No Livelock: There exists a number of rounds tMC such that for every execution
e = (γi)i≥0 and for every index i ≥ 0, if R(e, i, tMC) exists, then

R(e, i, tMC) ≤ reqUp(e, i)⇒ PFree(γR(e,i,tMC)) = ∅

No Deadlock is identical in Definitions 6.2 and 6.3. However, No Livelock assumes now
that there exists a (greater) number of rounds tMC such that if no resource is released
and no new request happens during tMC rounds, then the set PFree becomes empty. As
in the former definition, tMC depends on the complexity of the algorithm. Definition 6.3
is illustrated by Figure 6.1.

Lemma 6.1

Definition 6.2 and Definition 6.3 are equivalent.

Proof : Note first that the No Deadlock part is identical in both definitions.

Consider now the No Livelock part: If Definition 6.2 holds, then Definition 6.3 holds
by letting tMC = n × N ; if Definition 6.3 holds, then Definition 6.2 holds by letting
N = tMC .

Using Definition 6.3, remark that an algorithm is not maximal concurrent in a network
G = (V,E) if and only if:
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• either the property No Deadlock is violated, i.e., there exists a configuration γ such
that PFree(γ) 6= ∅ and for any configuration γ′ such that ContinuousCS(γγ′) ∧
NoRequest(γγ′), there is no possible step of the algorithm from γ to γ′ (γ 67→ γ′);

• or the property No Livelock is violated: for every t > 0, there exists an execution
e = (γi)i≥0 and an index i ≥ 0 such that R(e, i, t) is defined, R(e, i, t) ≤ reqUp(e, i),
and PFree(γR(e,i,t)) 6= ∅.

6.3.3 Instantiations

The examples below show the versatility of our property: we instantiate the set PFree
according to the considered problem. Note that the first problem is local, whereas others
are not.

Below, we denote by γ(p).req the resource requested/used by process p in configuration
γ. If p neither requests nor uses any resource, then γ(p).req = ⊥, where ⊥ is compatible
with every resource.

Example 1: Local Resource Allocation. In the local resource allocation problem,
a requesting process is allowed to enter its critical section if all its neighbors in critical
section are using resources which are compatible with its requested resource. Hence,

PFree(γ) = {p ∈ PReq(γ) : ∀q ∈ p.N , (q ∈ PCS(γ)⇒ γ(q).req 
 γ(p).req)}

Example 2: `-Exclusion. The `-exclusion problem [FLBB79] is a generalization of
mutual exclusion, where up to ` ≥ 1 critical sections can be executed concurrently.
Solving this problem allows the management of a pool of ` identical units of a non-
sharable reusable resource. Hence,

PFree(γ) =

{
∅ if |PCS(γ)| = `,

PReq(γ) otherwise.

Using this latter instantiation, we obtain a definition of maximal concurrency which
is equivalent to the “avoiding `-deadlock” property of Fischer et al. [FLBB79].

Example 3: k-out-of-` Exclusion. The k-out-of-` exclusion problem [DHV03] is
a generalization of the `-exclusion problem where each process can hold up to k ≤ `
identical units of a non-sharable reusable resource. In this context, rather than being the
resource(s) requested by process p, γ(p).req is assumed to be the number of requested
units, i.e., γ(p).req ∈ {0, . . . , k}. Let Available(γ) = ` −

∑
p∈PCS(γ)

γ(p).req be the
number of available units. Hence,

PFree(γ) = {p ∈ PReq(γ) : γ(p).req ≤ Available(γ)}

Using this latter instantiation, we obtain a definition of maximal concurrency which is
equivalent to the “strict (k, `)-liveness” property of Datta et al. [DHV03], which basically
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means that if at least one request can be satisfied using the available resources, then
eventually one of them is satisfied, even if no process releases resources in the meantime.

In [DHV03], the authors show the impossibility of designing a k-out-of-` exclusion
algorithm satisfying the strict (k, `)-liveness. To circumvent this impossibility, they then
propose a weaker property called “(k, `)-liveness”, which means that if any request can
be satisfied using the available resources, then eventually one of them is satisfied, even
if no process releases resources in the meantime. Despite this property is weaker than
maximal concurrency, it can be expressed using our formalism as follows:

PFree(γ) =

{
∅ if ∃p ∈ PReq(γ), γ(p).req > Available(γ),

PReq(γ) otherwise.

This might seem surprising, but observe that in the above formula, the set PFree is
distorted from its original meaning.

6.3.4 Strict (k, `)-liveness versus Maximal Concurrency

As an illustrative example, we now show that the original definition of strict (k, `)-
liveness [DHV03] is equivalent to the instantiation of maximal concurrency we propose
in Example 3 of the previous subsection.

In [DHV03], to introduce strict (k, `)-liveness, the authors assume that a process
can stay in critical section forever. Notice that this assumption is only used to define
strict (k, `)-liveness, critical sections are otherwise always assumed to be finite. Using
this artifact, they express that a k-out-of-` exclusion algorithm satisfies the strict (k, `)-
liveness in a network G = (V,E) as follows:

Let P ⊆ V be the set of processes executing the critical section forever. Let nbFree =
` −

∑
p∈P p.req. If there exists p ∈ V such that p is requesting for p.req ≤ nbFree

resources, then, eventually at least one requesting process (maybe p) enters the critical
section.

Maximal Concurrency ⇒ Strict (k, `)-Liveness. Let Alg be a k-out-of-` exclusion
algorithm which is maximal concurrent in a network G = (V,E). Assume an execution
starting in configuration γ such that there is a set P of processes executing the critical
section forever from γ. Assume by contradiction that from γ, no requesting process
ever enters the critical section although there exists a requesting process p such that
p.req ≤ nbFree.

As the number of processes is finite, the system eventually reaches a configuration
γ′ from which no new request ever occur. By No Deadlock, the execution from γ′ is
infinite. Moreover, the daemon being weakly fair, every round from γ′ is finite. Now,
by No Livelock, after a finite number of rounds, one process enters the critical section
(n.b., PFree is not empty because of p), a contradiction. Hence, Alg satisfies the strict
(k, `)-liveness in G.
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¬ Maximal Concurrency ⇒ ¬ Strict (k, `)-Liveness. Let Alg′ be a k-out-of-` ex-
clusion algorithm which is not maximal concurrent in a network G = (V,E). Assume first
Alg′ does not satisfy No Deadlock: there exists a configuration γ such that PFree(γ) 6= ∅
and for every configuration γ′ such that ContinuousCS(γγ′)∧NoRequest(γγ′), there is
no possible step of the algorithm from γ to γ′. Assume an execution from γ where all
critical sections are infinite and there is no new request. Then, the system is deadlocked
and, consequently, no process of PFree can enter the critical section. Now, PFree is not
empty. So, there exists a requesting process p such that p.req ≤ nbFree. Moreover, only
processes of PFree can enter critical section without violating safety. Consequently, no
process ever enter the critical section during this execution: Alg′ does not satisfy the
strict (k, `)-liveness in G.

Finally, assume Alg′ violates No Livelock: for every t > 0, there exists an execution
e = (γi)i≥0 and an index i ≥ 0 such that R(e, i, t) is defined, R(e, i, t) ≤ reqUp(e, i), and
PFree(γR(e,i,t)) 6= ∅. So, it is possible to build an infinite execution e, where all critical
sections are infinite, no new request happens, and PFree is never empty. As there is
no new request, PFree is never empty, and the number of processes is finite, there is an
infinite suffix s of e where no process leaves PFree (i.e., no process of PFree enters critical
section) although PFree is not empty. In s, there exists a requesting process p such that
p.req ≤ nbFree because PFree is not empty, but no process ever enter the critical section
because only processes of PFree can enter critical section without violating safety. Hence,
Alg′ does not satisfy the strict (k, `)-liveness in G.

Hence, the original definition of strict (k, `)-liveness [DHV03] is equivalent to the
instantiation of maximal concurrency proposed in Example 3 of the previous subsection.

6.4 Maximal Concurrency versus Fairness

Maximal concurrency is achievable in `-exclusion, see [FLBB79]. However, there exist
problems where it is not possible to ensure the maximal degree of concurrency, e.g., Datta
et al. showed in [DHV03] that it is impossible to design a k-out-of-` exclusion algorithm
that satisfies the strict (k, `)-liveness, which is equivalent to the maximal concurrency.
Precisely, the impossibility proof shows that in this problem, fairness and maximal con-
currency are incompatible properties. We now study the maximum degree of concurrency
that can be achieved by a LRA algorithm.

6.4.1 Necessary Condition on Concurrency in LRA

Definition 6.4 below gives a definition of fairness classically used in resource allocation
problems. Notably, Computation Start and Computation End properties of the LRA
specification (see Definition 6.1) trivially implies this fairness property. Next, Lemma 6.2
is a technical result which will be used to show that there are (important) instances of
the LRA problem for which it is impossible to design a maximal concurrent algorithm
working in arbitrary networks (Theorem 6.1).
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Figure 6.2 – Outline of the execution (γi)i≥0 of the proof of Lemma 6.2 on the neighborhood
of p. Black nodes are in critical section, gray nodes are requesting.

Definition 6.4 (Fairness)

Every time a process is (continuously) requesting some resource r, it eventually
accesses r.

We recall that γ(p).req denotes the resource requested/used by process p in config-
uration γ. If p neither requests nor uses any resource, then γ(p).req = ⊥, where ⊥ is
compatible with every resource. We define the conflicting neighborhood of p in γ, denoted
by γ(p).CN , as follows: γ(p).CN = {q ∈ p.N : γ(p).req 6
 γ(q).req}. Note that if p is
not requesting, then γ(p).CN = ∅.

Below we consider any instance I of the LRA problem, where every process can
request the same set of resources R (i.e., ∀p ∈ V,Rp = R) and ∃x ∈ R such that x 6
 x.
Notice that the local mutual exclusion and the local readers-writers problem belong to
this class of LRA problems.

Lemma 6.2

For any algorithm solving I in a network G = (V,E), if |V | > 1, then for any
process p, there exists an execution e = (γi)i≥0, with configuration γt, t ≥ 0, and a
process q ∈ γt(p).CN such that

1. p.N\({q} ∪ q.N ) = γt(p).CN\
(
{q} ∪ γt(q).CN

)
= PFree(γt)

2. and for every execution e′ = (γ′i)i≥0 which shares the same prefix as e between
γ0 and γt (i.e., ∀i ∈ {0, ..., t} , γi = γ′i),

∀t′ ∈ {t, ..., reqUp(e′, t)} , PFree(γt) = PFree(γ
′
t′)

Proof : Consider any algorithm solving I in a network G = (V,E) with |V | > 1. Let
p ∈ V .

First, consider the case when p has a unique neighbor q. Assertion 1 trivially holds
for any configuration γt since p.N\({q} ∪ q.N ) = γt(p).CN\

(
{q} ∪ γt(q).CN

)
= ∅: Let

t = 0 and γ0 be a configuration such that p is requesting a resource, q holds a resource
conflicting with the resource requested by p, and no other process is either requesting
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Figure 6.3 – Neighborhood of p in configuration γ′i+2 in the proof of Lemma 6.2.

or executing its critical section. In this case, PFree(γ0) = ∅ and PReq(γ0) = {p}. Then,
for every possible execution from γ0, as long as q holds its resource and no new request
occurs, PFree remains empty, which proves Assertion 2.

Then, we assume that p has at least two neighbors. We note p.N as {q0, ..., qk} with
k ≥ 1. We fix γ0 such that

• q0 holds some resource x such that x is conflicting with x,

• p requests resource x,

• for all j ∈ {1, ..., k}, qj requests resource x,

• no other process is either requesting or executing critical section,

namely:

PFree(γ0) = γ0(p).CN\
(
{q0} ∪ γ0(q).CN

)
= p.N\({q0} ∪ q0.N )

PReq(γ0) = {p} ∪ {qj : j ∈ {1, ..., k}}

See γ0 in Figure 6.2a.

Again, if PFree(γ0) = ∅, then we let t = 0 and Assertion 1 holds. Moreover, in
this case, every qj , with j ∈ {1, ..., k} is a neighbor of q0. Hence, for any possible
execution from γ0, as long as q0 holds x and no new request occurs, PFree remains
empty: Assertion 2 holds.

Assume now that PFree(γ0) 6= ∅. We build an execution by letting the algorithm
executes, while maintaining q0 in critical section and trigerring no new request (this
is possible by the No Deadlock property). If no neighbor of p ever exits from PFree,
Assertions 1 and 2 are both satisfied.

Otherwise, let i > 0 and j ∈ {1, ..., k} such that qj is the first neighbor of p to exit
PFree and γi 7→ γi+1 is the first step where qj exits from PFree. (See Configuration γi+1

on Figure 6.2b.) We replace step γi 7→ γi+1 by two steps γi 7→ γ′i+1 7→ γ′i+2 such that:

• qj leaves PFree(γi) and has access to x (by assumption) in γi 7→ γ′i+1,

• q0 releases its critical section in γi 7→ γ′i+1 and requests again x in γ′i+1 7→ γ′i+2.

Configuration γ′i+2 is shown in Figure 6.3. Hence,

PReq(γ
′
i+2) = {p} ∪ {ql : l 6= j ∧ l ∈ {0, ..., k}}

PFree(γ
′
i+2) = γ′i+2(p).CN\

(
{qj} ∪ γ′i+2(qj).CN

)
= p.N\({qj} ∪ qj .N )

So, in γ′i+2 the system is in a situation similar to γ0. If this scenario is repeated in-
definitely, the algorithm never satisfies the request of p, contradicting the fairness of
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the LRA specification. Hence, there exists a configuration γt, t ≥ 0 after which PFree
remains equal to γt(p).CN\

(
{ql} ∪ γt(ql).CN

)
= p.N\({ql} ∪ ql.N ) (this proves Asser-

tion 1) and constant for some ql ∈ p.N , until ql releases its resource or some new request
occurs (this proves Assertion 2).

6.4.2 Impossibility Result

Using Lemma 6.2, we show that it is impossible to solve the instances of LRA problem
defined in Section 6.4.1 with a maximal concurrent algorithm in arbitrary networks.

Theorem 6.1

It is impossible to design a maximal concurrent algorithm solving I in every net-
work.

Proof : Assume by contradiction that there is a maximal concurrent algorithm solving I in
every network. Consider a network (of at least two processes) which contains a process
p, such that ∀q ∈ p.N , p.N\({q} ∪ q.N ) 6= ∅. (Take for instance a star network where p
is at the center.)

From Lemma 6.2, there exists e = (γi)i≥0 with a configuration γt, t ≥ 0, and
q ∈ γt(p).CN ⊆ p.N such that PFree(γt) = p.N\({q} ∪ q.N ). Furthermore, for every
execution e′ = (γ′i)i≥0 which shares the same prefix as e between γ0 and γt, ∀t′ ∈
{t, ..., reqUp(e′, t)} , PFree(γ′t′) = PFree(γt).

Using the No Livelock property of maximal concurrency, there also exists tMC > 0
such that for every execution e′ = (γ′i)i≥0, if R(e′, t, tMC) exists and R(e′, t, tMC) ≤
reqUp(e′, t) then PFree(γ

′
R(e′,t,tMC)) = ∅.

We build an execution e′ with prefix γ0...γt. Since PFree(γt) 6= ∅, we are able to a
add step of the algorithm from γt such that no request occurs and no resource is released
(by No Deadlock property from maximal concurrency). By applying the second part of
Lemma 6.2, we have PFree(γ

′
t+1) = PFree(γt) 6= ∅. We repeat this operation until tMC

rounds have elapsed (this is possible since we assumed a weakly fair daemon), so that:
R(e′, t, tMC) ≤ reqUp(e′, t). Hence, PFree(γ

′
R(e′,t,tMC)) = PFree(γt) 6= ∅, contradicting

the No Livelock property of the maximal concurrency.

6.5 Partial Concurrency

We now generalize the maximal concurrency to be able to define weaker degrees of
concurrency that will be achievable for all instances of LRA. This generalization is called
partial concurrency.

6.5.1 Definition

Maximal concurrency requires that a requesting process should not be prevented from
accessing its critical section unless to avoid safety violations. The idea of partial con-
currency is to slightly relax this property by (momentarily) blocking some requesting
processes that nevertheless could enter their critical section without violating safety. We
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define P as a predicate which represents the sets of requesting processes that can be (mo-
mentarily) blocked, while they could access their requesting resources without violating
safety.

Definition 6.5 (Partial Concurrency w.r.t. P)

A resource allocation algorithm Alg is partially concurrent w.r.t. P in a network
G = (V,E) if and only if

• No Deadlock: For every subset of processes X ⊆ V , for every configuration γ,
if P(X, γ) holds and PFree(γ) 6⊆ X, there exists a configuration γ′ and a step
γ 7→ γ′ such that ContinuousCS(γγ′) ∧NoRequest(γγ′);

• No Livelock: There exists a number of rounds tPC such that for every execution
e = (γi)i≥0 and for every index i ≥ 0, if R(e, i, tPC) exists then

R(e, i, tPC) ≤ reqUp(e, i)⇒ ∃X,P(X, γR(e,i,tPC)) ∧ PFree(γR(e,i,tPC)) ⊆ X

Notice that maximal concurrency is equivalent to partial concurrency w.r.t. Pmax,
where ∀X ⊆ V, ∀γ ∈ C,Pmax(X, γ) ≡ X = ∅.

6.5.2 Strong Concurrency

The proof of Lemma 6.2 exhibits a possible scenario for some instances of LRA which
shows the incompatibility of fairness and maximal concurrency: enforce maximal concur-
rency can lead to unfair behaviors where some neighbors of a process alternatively use
resources which are conflicting with its own request. So, to achieve fairness, we must then
relax the expected level of concurrency in such a way that this situation cannot occur
indefinitely.

The key idea is that sometimes the algorithm should prioritize one process p against
its neighbors, although it cannot immediately enter the critical section because some
of its conflicting neighbors are in critical section. In this case, the algorithm should
momentarily block all conflicting requesting neighbors of p that can enter critical section
without violating safety, so that p enters critical section first.

In the worst case, p has only one conflicting neighbor q in critical section and so the
set of processes that p has to block contains up to all conflicting (requesting) neighbors of
p that are neither q, nor conflicting neighbors of q (by definition, any conflicting neighbor
common to p and q cannot access critical section without violating safety because of q).
We derive the following refinement of partial concurrency based on this latter observation.
This property seems to be very close to the maximum degree of concurrency which can
be ensured by an algorithm solving all instances of LRA.
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Definition 6.6 (Strong Concurrency)

A resource allocation algorithm Alg is strongly concurrent in a network G = (V,E)
if and only if Alg is partially concurrent w.r.t. Pstrong in G, where ∀X ⊆ V , ∀γ ∈ C,

Pstrong(X, γ) ≡ ∃p ∈ V, ∃q ∈ γ(p).CN , X = γ(p).CN\
(
{q} ∪ γ(q).CN

)

6.6 Local Resource Allocation Algorithm

We now propose a snap-stabilizing LRA algorithm which achieves strong concurrency
in identified connected networks of arbitrary topology.

6.6.1 Overview of LRA
The overall idea of our algorithm is the following. To maximize concurrency, our algorithm
should follow, as much as possible, a greedy approach: if there are requesting processes
having no conflicting neighbor in the critical section, then those which have locally the
highest identifier are allowed to enter critical section.

Now, the algorithm should not be completely greedy, otherwise livelock can occur at
processes with low identifiers, violating the fairness of the specification.

So, the idea is to make circulating a token whose aim is to cancel the greedy approach,
but only in the neighborhood of the tokenholder (the rest of the network continue to
follow the greedy approach): the tokenholder, if requesting, has the priority to satisfy its
request; all its conflicting neighbors are blocked until it accesses its critical section. To
ensure fairness, these blockings take place even if the tokenholder cannot currently access
its critical section (because maybe one of its conflicting neighbor is in critical section).
Such blockings slightly degrade the concurrency, this is why our algorithm is strong, but
not maximal, concurrent.

Fair Composition. Composition techniques are important in the self-stabilizing area
since they allow to simplify the design, analysis, and proofs of algorithms. Consider an
arbitrary composition operator ⊕, and two algorithms Alg1 and Alg2. Let e be an
execution of Alg1 ⊕ Alg2. Let i ∈ {1, 2}. We say that e is weakly fair w.r.t. Algi if
there is no infinite suffix of e in which a process does not execute any action of Algi
while being continuously enabled w.r.t. Algi.

Our algorithm consists of the composition of two modules: Algorithm LRA, which
manages local resource allocation, and Algorithm T C which provides a self-stabilizing
token circulation service to LRA, whose goal is to ensure fairness. These two modules are
composed using a fair composition [Dol00], denoted by LRA◦T C. In such a composition,
each process executes a step of each algorithm alternately. Recall that the purpose of
this composition is, in particular, to simplify the design of the algorithm: a composite
algorithm written in the locally shared memory model can be translated into an equivalent
non-composite algorithm.
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Consider the fair composition of two algorithms Alg1 and Alg2. The equivalent non-
composite algorithm Alg1 ◦ Alg2 can be obtained by applying the following rewriting
rule: In Alg1◦Alg2, a process has its variables in Alg1, those in Alg2, and an additional
variable b ∈ {1, 2}. Assume now that Alg1 is composed of x actions denoted by

L1,i :: G1,i → S1,i, ∀i ∈ {1, . . . , x}
and Alg2 is composed of y actions denoted by

L2,j :: G2,j → S2,j, ∀j ∈ {1, . . . , y}

Then, Alg1 ◦Alg2 is composed of the following x+ y + 2 actions:

• ∀i ∈ {1, . . . , x} , L′1,i :: (b = 1) ∧G1,i → S1,i; b := 2

• ∀j ∈ {1, . . . , y} , L′2,j :: (b = 2) ∧G2,j → S2,j; b := 1

• L1 :: (b = 1) ∧
∧
i=1,...x ¬G1,i ∧

∨
j=1,...,y G2,j → b := 2

• L2 :: (b = 2) ∧
∧
j=1,...y ¬G2,j ∧

∨
i=1,...,xG2,i → b := 1

Notice that, by definition of the composition, under the weak fair daemon assumption,
no algorithm in the composition can prevent the other from executing, if this latter is
continuously enabled. Rather, it can only slow down the execution by a factor 2.

Remark 6.1

Under the weakly fair daemon, in Alg1 ◦ Alg2 we have: ∀i ∈ {1, 2}, ∀p ∈ V , if
p is continuously enabled w.r.t. Algi until (at least) executing an enabled action of
Algi, then p executes an enabled action of Algi within at most 2 rounds.

Remark 6.2

Under the weakly fair daemon, ∀i ∈ {1, 2}, every execution of Alg1 ◦ Alg2 is
weakly fair w.r.t. Algi.

Token Circulation Module. We assume that T C is a self-stabilizing black box which
allows LRA to emulate a self-stabilizing token circulation. T C provides two outputs to
each process p in LRA: the predicate TokenReady(p) and the statement PassToken(p).1

The predicate TokenReady(p) expresses the fact that the process p holds a token and
can release it. Note that this interface of T C allows some process to hold the token without
being allowed to release it yet: this may occur, for example, when, before releasing the
token, the process has to wait for the network to clean some faults.

The statement PassToken(p) can be used to pass the token from p to one of its
neighbor. Of course, it should be executed (by LRA) only if TokenReady(p) holds.

Precisely, we assume that T C satisfies the three following properties.

1Since T C is a black box with only two outputs, TokenReady(p) and PassToken(p), these outputs
are the only part of T C that LRA can use.
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Property 6.1 (Stabilization)

Consider an arbitrary composition of T C and some other algorithm. Let e be any
execution of this composition which is weakly fair w.r.t. T C.

If for any process p, PassToken(p) is executed in e only when TokenReady(p)
holds, then T C stabilizes in e, i.e., reaches and remains in configurations where there
is a unique token in the network, independently of any call to PassToken(p) at any
process p.

In other words, Property 6.1 means that, even if PassToken is never called, T C
stabilizes.

Property 6.2 (Token Consistency)

Consider an arbitrary composition of T C and some other algorithm. Let e be any
execution of this composition which is weakly fair w.r.t. T C and where T C is stabilized.

Then, ∀p ∈ V , each time TokenReady(p) holds in e, TokenReady(p) is continu-
ously true in e until PassToken(p) is invoked.

Property 6.3 (Fairness)

Consider an arbitrary composition of T C and some other algorithm. Let e be any
execution of this composition which is weakly fair w.r.t. T C and where T C is stabilized.

If ∀p ∈ V ,
• PassToken(p) is invoked in e only when TokenReady(p) holds, and

• if PassToken(p) is invoked within finite time in e each time TokenReady(p)
holds,

then ∀p ∈ V , TokenReady(p) holds infinitely often in e.

To design T C, we proceed as follows. There exist several self-stabilizing token circu-
lations for arbitrary rooted networks [CDV09, DJPV00, HC93] that contain a particular
action,

T : TokenReady(p)→ PassToken(p)

to pass the token, and that stabilizes independently of the activations of action T .

Now, the networks we consider are not rooted, but identified. So, to obtain a self-
stabilizing token circulation for arbitrary identified networks, we can fairly compose any
of them with a self-stabilizing leader election algorithm, e.g., [AG94, DH97, DLV11a,
DLV11b] or [ACD+16] (see Chapter 4 for a more detailled state of the art) using the
following additional rule: if a process considers itself as leader it executes the token
circulation local algorithm for a root; otherwise it executes the local algorithm for a non-
root. Finally, we obtain T C by removing action T from the resulting algorithm, while
keeping TokenReady(p) and PassToken(p) as outputs, for every process p.
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Remark 6.3

Following Properties 6.2 and 6.3, the algorithm, noted T C∗, made of Algorithm T C
where action T : TokenReady(p)→ PassToken(p) has been added, is a self-stabilizing
token circulation.

The algorithm presented in next section for local resource allocation emulates ac-
tion T using predicate TokenReady(p) and statement PassToken(p) given as inputs.

Resource Allocation Module. The code of LRA is given in Algorithm 13. Priorities
and guards ensure that actions of Algorithm 13 are mutually exclusive. We now informally
describe Algorithm 13, and explain how the properties of the specification (Definition 6.1,
page 174) is instantiated with its variables.

First, a process p interacts with its application through two variables: p.req ∈ Rp ∪
{⊥} and p.status ∈ {Out,Wait, In,Blocked}. p.req is an input that can be read and
written by the application, but can only be read by p in LRA. Conversely, p.status can
be read and written by p in LRA, but the application can only read it.

Variable p.status can take the following values:

• Wait, which means that p requests a resource but does not hold it yet;

• Blocked, which means that p requests a resource, but cannot hold it now;

• In, which means that p holds a resource;

• Out, which means that p is currently not involved into an allocation process.

When p.req = ⊥, this means that no resource is requested. Conversely, when p.req ∈
Rp, the value of p.req informs p about the resource the application requests. We assume
two properties on p.req. Property 6.4 ensures that the application:

1. does not request for resource r′ while a computation to access resource r is running

2. does not cancel or modify a request before the request is satisfied.

Property 6.5 ensures that any critical section is finite.

Property 6.4

∀p ∈ V , the updates on p.req (by the application) satisfy the following constraints:
• The value of p.req can be switched from ⊥ to r ∈ Rp if and only if p.status =
Out,

• The value of p.req can be switched from r ∈ Rp to ⊥ (meaning that the appli-
cation leaves the critical section) if and only if p.status = In.

• The value of p.req cannot be directly switched from r ∈ Rp to r′ ∈ Rp with
r′ 6= r.

Property 6.5

∀p ∈ V , if p.status = In and p.req 6= ⊥, then eventually p.req becomes ⊥.
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Algorithm 13 – Actions of Process p in Algorithm LRA.

Inputs.

• p.id ∈ id

• p.N
• p.req ∈ Rp ∪ {⊥}

• TokenReady(p), predicate from T C

• PassToken(p), statement from T C
Variables.

• p.status ∈ {Out,Wait,Blocked, In} • p.token ∈ B

Functions.

Candidates(p) ≡ {q ∈ p.N ∪ {p} : q.status = Wait}
TokenCand(p) ≡ {q ∈ Candidates(p) : q.token}

Winner(p) ≡

{
max {q ∈ TokenCand(p)} if TokenCand(p) 6= ∅,
max {q ∈ Candidates(p)} otherwise.

Predicates.

RsrcFree(p) ≡ ∀q ∈ p.N , (q.status = In⇒ p.req 
 q.req)

IsBlocked(p) ≡ ¬RsrcFree(p) ∨ (∃q ∈ p.N , q.status = Blocked ∧ q.token
∧ p.req 6
 q.req)

Guards.

Request(p) ≡ p.status = Out ∧ p.req 6= ⊥
Block(p) ≡ p.status = Wait ∧ IsBlocked(p)

Unblock(p) ≡ p.status = Blocked ∧ ¬IsBlocked(p)

Enter(p) ≡ p.status = Wait ∧ ¬IsBlocked(p) ∧ p = Winner(p)

Exit(p) ≡ p.status 6= Out ∧ p.req = ⊥
ResetToken(p) ≡ TokenReady(p) 6= p.token

ReleaseToken(p) ≡ TokenReady(p) ∧ p.status ∈ {Out, In} ∧ ¬Request(p)

Actions.

RsT (prio. 1) :: ResetToken(p) → p.token := TokenReady(p)

Ex (prio. 2) :: Exit(p) → p.status := Out

RlT (prio. 3) :: ReleaseToken(p) → PassToken(p)

R (prio. 3) :: Request(p) → p.status := Wait

B (prio. 3) :: Block(p) → p.status := Blocked

U (prio. 3) :: Unblock(p) → p.status := Wait

E (prio. 3) :: Enter(p) → p.status := In
if TokenReady(p) then PassToken(p)
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Figure 6.4 – Example of execution of LRA ◦ T C. The status of a process is represented by
the color of the corresponding node: white for Out, gray for Wait, black for In, hatched for
Blocked. Double circled nodes hold a token. The requesting resource is inside the bubble
next to the node.

Then, we instantiate the predicates used by the specification in Definition 6.1. The
predicate Req(γi, p, r) is given by Req(γi, p, r) ≡ γi(p).req = r.

Remind that ⊥ compatible with every resource. The predicate NoConflict(γi, p) is
expressed by NoConflict(γi, p) ≡ γi(p).status = In ⇒

(
∀q ∈ p.N , γi(q).status = In ⇒

(γi(q).req 
 γi(p).req)
)
.

The predicate Start(γi, γi+1, p, r) becomes true when process p takes the request for
resource r into account in γi 7→ γi+1, i.e., when the status of p switches from Out to
Wait in γi 7→ γi+1 because p.req = r 6= ⊥ in γi:

Start(γi, γi+1, p, r) ≡ γi(p).status = Out ∧ γi+1(p).status = Wait
∧ γi(p).req = γi+1(p).req = r

A computation γi . . . γj where Result(γi . . . γj, p, r) holds means that p accesses re-
source r, i.e., p switches its status from Wait to In in γi−1 7→ γi while p.req = r, and
later switches its status from In to Out in γj 7→ γj+1. So,

Result(γi . . . γj, p, r) ≡ γi(p).status = Wait ∧ γi(p).req = γi+1(p).req = r
∧ ∀k ∈ {i+ 1, . . . , j − 1} ,

(
γk(p).status = In

∧ γj(p).status = Out ∧ γj(p).req = ⊥
)

We now illustrate the principles of LRA with the example given in Figure 6.4. In
this example, we consider the local readers-writers problem. Recall that we have two
resources: r for a reading access and w for a writing access, with r 
 r, r 6
 w and
w 6
 w.
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When the process is idle (p.status = Out), its application can request a resource. In
this case, p.req 6= ⊥ and p sets p.status to Wait by R-action: p starts the computation
to obtain the resource. For example, 5 starts a computation to obtain r in (a) 7→(b). If
one of its neighbors is using a conflicting resource, p cannot satisfy its request yet. So, p
switches p.status from Wait to Blocked by B-action (see 6 in (a)7→(b)). If there is no
more neighbor using conflicting resources, p gets back to status Wait by U-action.

When several neighbors request for conflicting resources, we break ties using a token-
based priority: Each process p has an additional Boolean variable p.token which is used
to inform neighbors about whether p holds a token or not. A process p takes priority over
any neighbor q if and only if

(
p.token ∧ ¬q.token

)
∨
(
p.token = q.token ∧ p > q

)
2. More

precisely, if there is no waiting tokenholder in the neighborhood of p, the highest priority
process is the waiting process with highest ID. This highest priority process is Winner(p).
Otherwise, the tokenholders (there may be several tokens during the stabilization phase
of T C) block all their requesting neighbors, except the ones requesting for non-conflicting
resources until they obtain their requested resources. This mechanism allows to ensure
fairness by slightly decreasing the level of concurrency. (The token circulates to eventually
give priority to blocked processes, e.g., processes with small IDs.)

The highest priority waiting process in the neighborhood gets status In and can use
its requested resource by E-action, e.g., 7 in step (b) 7→(c) or 1 in (a)7→(b). Moreover, if
it holds a token, a tokenholder releases it when accessing its requested resource. Notice
that, as a process is not blocked when one of its neighbors is requesting/using a compat-
ible resource, several neighbors requesting/using compatible resources can concurrently
enter/execute their critical section (see 1, 2, and 7 in Configuration (d)). When the ap-
plication at process p does not need the resource anymore, i.e., when it sets the value of
p.req to ⊥. Then, p executes Ex-action and switches its status to Out, e.g., 8 during
step (e) 7→(f).

RlT-action is used to straight away pass the token to a neighbor when the process
does not need it, i.e., when either its status is Out and no resource is requested or when
its status is In. (Hence, the token can eventually reach a requesting process and help it
to satisfy its request.)

The last action, RsT-action, ensures the consistency of variable token so that the
neighbors realize whether or not a process holds a token. Indeed, the additional vari-
able p.token is necessary when the predicate TokenReady(p) involve variables of some
neighbors of p.

Hence, any request is satisfied in a finite time. As an illustrative example, consider the
local mutual exclusion problem and the execution given in Figure 6.5. In this example,
we try to delay as much as possible the critical section of process 2. First, process 2 has
two neighbors (7 and 8) that also request the resource and have greater IDs. So, they
will execute their critical section before 2 (in steps (a)7→(b) and (e)7→(f)). But, the token
circulates and eventually reaches 2 (see Configuration (g)). Then, 2 has priority over
its neighbors (even though it has a lower ID) and eventually starts executing its critical

2Notice that when two neighbors simultaneously hold the token (only during the stabilization phase
of T C), the one with the highest identifier has priority.
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Figure 6.5 – Example of execution of LRA ◦ T C on the local mutual exclusion problem. The
bubbles mark the requesting processes.

section in (j)7→(k).

6.6.2 Correctness and Complexity Analysis of LRA ◦ T C
In this section, we prove the correctness and we study the complexity of LRA ◦ T C.

Correctness. In this subsection, we prove that LRA ◦ T C is snap-stabilizing w.r.t.
SPLRA (see Definition 6.1, page 174), assuming a distributed weakly fair daemon. First,
we show the safety part, namely, the Resource Conflict Freedom property is always satis-
fied. Then, we assume a distributed weakly fair daemon to prove the liveness part, i.e.,
the Computation Start and Computation End properties.

Remark 6.4

If E-action is enabled at a process p in a configuration γ, then ∀q ∈ p.N ,(
γ(q).status = In⇒ γ(p).req 
 γ(q).req

)

192



6.6. Local Resource Allocation Algorithm

Lemma 6.3

E-action cannot be simultaneously enabled at two neighbors.

Proof : Let γ be a configuration. Let p ∈ V and q ∈ p.N . Assume by contradiction that
E-action is enabled at p and q in γ. Then, γ(p).status = γ(q).status = Wait and both
p = Winner(p) and q = Winner(q) hold in γ. Since by definition, p, q ∈ Candidates(p)
and p, q ∈ Candidates(q), we obtain a contradiction.

Lemma 6.4

Let γ 7→ γ′ be a step. Let p ∈ V . If NoConflict(γ, p) holds, then NoConflict(γ′, p)
holds.

Proof : Let γ 7→ γ′ be a step. Let p ∈ V . Assume by contradiction that NoConflict(γ, p)
holds but ¬NoConflict(γ′, p). Then, γ′(p).status = In and ∃q ∈ p.N such that
γ′(q).status = In and γ′(q).req 6
 γ′(p).req. As a consequence, γ′(p).req ∈ Rp and
γ′(p).req ∈ Rq.

Using Property 6.4,

• The value of p.req can be switched from ⊥ in γ to r ∈ Rp in γ′ only if γ(p).status =
Out. But γ′(p).status = In and it is impossible to switch p.status from Out to
In in one step.

• The value of p.req cannot be switched from r′ ∈ Rp in γ to r ∈ Rp with r 6= r′.

Hence, γ(p).req = γ′(p).req ∈ Rp. We can make the same reasoning on q so γ(q).req =
γ′(q).req ∈ Rq, and γ(q).req 6
 γ(p).req. Now, there are two cases:

1. If γ(p).status = In, as NoConflict(γ, p) holds, ∀x ∈ p.N , (γ(x).status = In ⇒
γ(p).req 
 γ(x).req). In particular, γ(q).status 6= In, since γ(q).req 6
 γ(p).req.
So q executes E-action γ 7→ γ′ to obtain status In. This contradicts Remark 6.4,
since q has a conflicting neighbor (p) with status In in γ.

2. If γ(p).status 6= In, then p executes E-action in step γ 7→ γ′ to get status In. Now,
there are two cases:

a) If γ(q).status 6= In, then q executes E-action in γ 7→ γ′. So E-action is enabled
at p and q in γ, a contradiction to Lemma 6.3.

b) If γ(q).status = In, then E-action is enabled at p in γ although a neighbor of
p has status In and a conflicting request (p is in a similar situation to the one
of q in case 1), a contradiction to Remark 6.4.

Theorem 6.2 (Resource Conflict Freedom)

Any execution of LRA ◦ T C satisfies the resource conflict freedom property.

Proof : Let e = (γi)i≥0 be an execution LRA ◦ T C. Let k ≥ 0 and k′ > k. Let
p ∈ V . Let r ∈ Rp. Assume Result(γk . . . γk′ , p, r). Assume ∃l < k such that
Start(γl, γl+1, p, r). In particular, γl(p).status 6= In. Hence, NoConflict(γl, p) trivially
holds. Using Lemma 6.4, ∀i ≥ l, NoConflict(γi, p) holds. In particular, ∀i ∈ {k, . . . , k′},
NoConflict(γi, p).
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In the following, we assume a weakly fair daemon.

Lemma 6.5

The stabilization of T C is preserved by fair composition.

Proof : By definition of the algorithm, for any process p, PassToken(p) is executed only
in LRA when TokenReady(p) holds (see RlT-action and E-action). Moreover, by
Remark 6.2, every execution of LRA◦T C is weakly fair w.r.t. T C. So, T C self-stabilizes
to a unique tokenholder in every execution of LRA ◦ T C, by Property 6.1.

Lemma 6.6

A process cannot keep a token forever in LRA ◦ T C.

Proof : Let e be an execution. By Lemma 6.5, the token circulation eventually stabilizes,
i.e., there is a unique token in every configuration after stabilization of T C. Assume
by contradiction that, after such a configuration γ, a process p keeps the token forever:
TokenReady(p) holds forever and ∀q ∈ V with q 6= p, ¬TokenReady(q) holds forever.

First, the values of token variables are eventually updated to the corresponding
value of the predicate TokenReady. Indeed, the values of predicate TokenReady do not
change anymore. So, if there is x ∈ V such that x.token 6= TokenReady(x), RsT-action
(the highest priority action of LRA) is continuously enabled at x, until x executes
it. Now, by Remark 6.1, in finite time, x executes RsT-action to update its token
variable. Therefore, in finite time, the system reaches and remains in configurations
where p.token = True forever and ∀q ∈ V with q 6= p, q.token = False forever. Let
γ′ be such a configuration. Notice that RsT-action is continuously disabled from γ′.
Then, we can distinguish six cases:

1. If γ′(p).status = Wait and γ′(p).req 6= ⊥, then TokenCand(p) = {p} and
so Winner(p) = p holds forever, and ∀q ∈ p.N , TokenCand(q) = {p} and
Winner(q) = p 6= q holds forever. E-action is disabled forever at q from γ′.
Now, if ∃q ∈ p.N such that γ′(q).status = In ∧ γ′(q).req 6
 γ′(p).req, then, as
⊥ is compatible with any resource, γ′(q).req 6= ⊥. Using Property 6.5, in finite
time the request of q becomes ⊥ and remains ⊥ until q obtains status Out (Prop-
erty 6.4). So Ex-action is continuously enabled at q, until q executes it. Hence, by
Remark 6.1, in finite time, those processes leave critical section and cannot enter
again since E-action is disabled forever, and so ∀q ∈ p.N , q.status 6= In forever.
So IsBlocked(p) does not hold anymore. Notice that, if p gets status Blocked in
the meantime, U-action is continuously enabled at p until p executes it, so p gets
back status Wait in finite time by Remark 6.1. Then, Winner(p) = p still holds
so E-action is continuously enabled at p, until p executes it. Hence, by Remark 6.1,
in finite time, p executes E-action and releases its token, a contradiction.

2. If γ′(p).status = Out and γ′(p).req 6= ⊥, the application cannot modify p.req until
p enters its critical section (Property 6.4). Hence, RlT-action is disabled until p
gets status In. So, R-action is continuously enabled at p until p executes it, and
p eventually gets status Wait by Remark 6.1. We then reach case 1 and we are
done.

3. If γ′(p).status = Out and γ′(p).req = ⊥. If eventually p.req 6= ⊥, then we retrieve
case 2, a contradiction. Otherwise, RlT-action is continuously enabled at p until p
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executes it. So, by Remark 6.1, in finite time, p executes RlT-action and releases
its token by a call to PassToken(p), a contradiction.

4. If γ′(p).status = Blocked and γ′(p).req 6= ⊥, then p.status = Blocked forever
from γ′, otherwise we eventually retrieve case 1. So, ∀q ∈ p.N such that γ′(p).req 6

γ′(q).req, IsBlocked(q) holds forever so E-action is disabled at q forever. Now, as
in case 1, ∀q ∈ p.N such that γ′(p).req 6
 γ′(q).req, we have q.status 6= In forever
after a finite time. So, eventually U-action is continuously enabled at p until p
executes it. Hence, by Remark 6.1, in finite time, p gets status Wait and we
retrieve case 1, a contradiction.

5. If γ′(p).status ∈ {Wait,Blocked} and γ′(p).req = ⊥. If eventually p.req 6= ⊥,
then we retrieve cases 1 or 4, a contradiction. Otherwise, Ex-action is continuously
enabled at p until p executes it. So, by Remark 6.1, in finite time, p executes Ex-
action and we retrieve case 3, a contradiction.

6. If γ′(p).status = In, either γ′(p).req = ⊥ or in finite time p.req becomes ⊥ (Prop-
erty 6.5) and remains⊥ until p obtains status Out (Property 6.4). Once p.req = ⊥,
Ex-action is continuously enabled at p until p executes it. So, by Remark 6.1 p
eventually gets status Out, and we retrieve case 3, a contradiction.

Lemma 6.6 implies that the hypothesis of Property 6.3 is satisfied. Hence, we can
deduce Corollary 6.1.

Corollary 6.1

After stabilization of the token circulation module, TokenReady(p) holds infinitely
often at any process p in LRA ◦ T C.

Lemma 6.7

If Exit(p) continuously holds at some process p until it executes Ex-action, then p
executes Ex-action in finite time.

Proof : Assume, by the contradiction, that from some configuration Exit(p) continuously
holds, but p never executes Ex-action. Then, remind that RlT-action and E-action
are the only actions allowing p to release a token. Now, Exit(p) is the guard of action
Ex-action whose priority is higher than those of RlT-action and E-action. So, p never
more releases a token, a contradiction to Lemma 6.5 and Corollary 6.1.

Lemma 6.8

If Request(p) continuously holds at some process p until it executes R-action, then
p executes R-action in finite time.

Proof : Assume, by the contradiction, that from some configuration Request(p) contin-
uously holds, but p never executes R-action. Then, remind that RlT-action and E-
action are the only actions allowing p to release a token. Now, Request(p) implies
¬ReleaseToken(p), so RlT-action is disabled at p forever. Moreover, Request(p) is the
guard of action R-action whose priority is higher than the one of E-action. So, p never
more releases a token, a contradiction to Lemma 6.5 and Corollary 6.1.

195



Chapter 6. Concurrency in Local Resource Allocation

Lemma 6.9

Any process p such that p.status ∈ {Wait,Blocked} and p.req 6= ⊥ executes
E-action in finite time.

Proof : Let e be an execution, γ ∈ e be a configuration, and p ∈ V such that γ(p).status ∈
{Wait,Blocked} and γ(p).req 6= ⊥. Then, γ(p).req 6= ⊥ holds while γ(p).status 6= In
(Property 6.4). So, while p does not execute E-action, p.status ∈ {Wait,Blocked}
and p.req 6= ⊥. Now, by Lemma 6.5, the token circulation eventually stabilizes. By
Corollary 6.1, in finite time p holds the unique token. From this configuration, p cannot
keep forever the token (Lemma 6.6) and p can only release it by executing E-action (by
Property 6.2).

Lemma 6.10

Any process of status different from Out sets its variable status to Out within
finite time.

Proof : Let p ∈ V . Let γ be a configuration. Assume first γ(p).status = In. If γ(p).req 6=
⊥, in finite time p.req is set to ⊥ (Property 6.5) and then cannot be modified until p gets
status Out (Property 6.4). So, Exit(p) continuously holds until p executes Ex-action.
Then, Ex-action is executed by p in finite time, by Lemma 6.7: p gets status Out.

Assume now that γ(p).status ∈ {Wait,Blocked}. If eventually p.req 6= ⊥, then
p executes E-action in a finite time (Lemma 6.9). So, p eventually gets status In and
we retrieve the previous case. Otherwise, Exit(p) continuously holds until p executes
Ex-action. Then, Ex-action is executed by p in finite time, by Lemma 6.7: p gets status
Out.

Notice that if a process that had status Wait or Blocked obtains status Out, this
means that its computation ended.

Theorem 6.3 (Computation Start)

Any execution of LRA ◦ T C satisfies the Computation Start property.

Proof : Let e = (γi)i≥0 be an execution. Let k ≥ 0. Let p ∈ V . Let r ∈ Rp. First,
p eventually has status Out, by Lemma 6.10, let say in γj−1 7→ γj (j ≥ k). Now, if
γj(p).req 6= ⊥ holds, it holds continuously while p.status = Out (Property 6.4). So,
Request(p) continuously holds until p executes R-action. By Lemma 6.8, p eventually
executes R-action, let say in γl 7→ γl+1, l ≥ j ≥ k. Then, γl+1(p).status = Wait.
Notice that the application of p cannot modify its request (Property 6.4), so γl(p).req =
γl+1.req = r. Hence, Req(γl, p, r) and Start(γl, γl+1, p, r) hold.

Theorem 6.4 (Computation End)

Any execution of LRA ◦ T C satisfies the Computation End property.

Proof : Let e = (γi)i≥0 be an execution. Let k ≥ 0. Let p ∈ V . Let r ∈ Rp. If
Start(γk, γk+1, p, r) holds, then γk+1(p).status = Wait and γk+1(p).req = r. Using
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Lemma 6.9, in finite time, p executes E-action and gets status In (let say in γl−1 7→ γl,
l > k). Notice that the application cannot modify the value of req until p obtains status
In (Property 6.4) so γl−1(p).req = γl(p).req = γk+1(p).req = r. By Property 6.5 and
from the algorithm, p.status = In while p.req 6= ⊥ and the application sets within
finite time p.req to ⊥ (this is the only modification that can be made on p.req). Then,
p.req = ⊥ until p.status = Out, still by Property 6.5, and from the algorithm, p
can only switch p.status from In to Out. So, p.req = ⊥ continuously and Exit(p)
continuously holds until p executes Ex-action. Then, by Lemma 6.7: there is a step
γl′ 7→ γl′+1 (with l′ ≥ l), where p executes Ex-action to switch p.status from In to Out.
So, γl′(p).status = In and γl′+1(p).status = Out. Consequently, Result(γl . . . γl′ , p, r)
holds.

Using Theorems 6.2, 6.3, and 6.4, we can conclude:

Theorem 6.5 (Correctness)

Algorithm LRA◦T C is snap-stabilizing w.r.t. SPLRA assuming a distributed weakly
fair daemon.

Complexity Analysis. In this subsection, we analyze the waiting time, i.e., the num-
ber of rounds required to obtain critical section after a request. Here, we assume that
the execution of critical section lasts at most C rounds.

Lemma 6.11

In LRA ◦ T C, after stabilization of T C, there are at most 2C + 14 rounds between
a step where TokenReady(p) becomes True and the execution of PassToken(p).

Proof : As PassToken is only executed in the LRA part of LRA◦T C, we focus on counting
rounds from LRA, first. Then, the result has to be multiply by 2 due to the composition
with T C (Remark 6.1).

Let p be a process. After stabilization of the token circulation algorithm, a process
can only release its token by executing either RlT-action or E-action (Property 6.2).

Assume TokenReady(p) holds. In one round, the variables token are correctly eval-
uated thanks to RsT-action executions (remind that RsT-action is the highest priority
action). Then, there are three cases:

1. Assume p is requesting but does not get the critical section yet. In the worst case,
p.status = Out and p.req 6= ⊥. In one round, p executes R-action and gets status
Wait. Then, if there are some neighbors of p in critical section that are using a
conflicting resource, they end their critical section (i.e., their variable req becomes
⊥) within the C next rounds and p executes B-action during the first of these
C rounds. Notice that, as p holds the unique token and the token variables are
correctly evaluated, no other neighbor of p can enter the critical section meanwhile.
In the worst case, every neighbor is out of the critical section (i.e., their variable
req becomes ⊥, which is compatible with any other resource) after these C rounds.
Finally, p is no more blocked and executes U-action in one round before executing
E-action within another round. Executing E-action, p releases its token. Hence,
overall p releases its token within C + 4 rounds in this case.
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2. Assume p.req = ⊥. If p.req becomes different from ⊥ within one round, then this
means that p.status = Out (Property 6.4) and we retrieve the previous case and
overall p releases its token within C + 5 rounds. Otherwise, p satisfies p.status =
Out in one round, by Ex-action if necessary. Again, either p.req becomes different
from ⊥ within the next round, we retrieve the previous case, and overall p releases
its token within C + 6 rounds, or p executes RlT-action during the round. So, in
this latter case, p releases its token within 3 rounds.

3. Assume p.status = In and p.req 6= ⊥. If p.req becomes ⊥ within one round, we
retrieve the case 2. So overall p releases its token within C + 7 rounds. Otherwise,
RlT-action is continuously enabled and executed by p within the round. So, p
releases its token within two rounds in this latter case.

Let TS be the stabilization time in rounds of T C. Let Ttok be a bound on the number
of rounds required to obtain the unique token in T C (the algorithm obtained when adding
action T : TokenReady(p) → PassToken(p) to T C, see Remark 6.3, page 188) after its
stabilization. Let Ntok be a bound on the number of PassToken realized between two
consecutive executions of PassToken at the same process.

Theorem 6.6 (Waiting Time)

A requesting process obtains access to critical section in at most 2(Ts+Ttok)+(2C+
14)× (Ntok + 1) rounds.

Proof : Let p ∈ V such that p.req 6= ⊥ and p.status 6= In. In the worst case, p must wait
to hold a token and be the unique tokenholder to get its critical section. T C stabilizes
in 2TS rounds (the factor 2 comes from the composition, see Remark 6.1). Then, in at
most 2Ttok + (2C + 14) × Ntok, p gets the token, since it has to wait 2Ttok rounds due
to Algorithm T C (again, the factor 2 comes from the composition, see Remark 6.1) and
(2C + 14) × Ntok rounds due to Algorithm LRA. Indeed, while executing action T ::
TokenReady → PassToken is atomic in T C, a process keeps the token at most 2C+ 14
rounds in LRA ◦ T C (Lemma 6.11). Finally, to obtain critical section, it is required
that p executes E-action which also releases the token: by Lemma 6.11 again, this may
require 2C+14 additional rounds. Hence, in at most 2(Ts+Ttok)+(2C+14)×(Ntok+1)
rounds, p obtains its critical section.

For example, if we choose to build T C from the leader election algorithm given
in [ACD+16] and the token circulation algorithm for arbitrary rooted networks intro-
duced by Cournier et al. in [CDV09], then Ts and Ttok are in O(n) rounds, while Ntok is
in O(n) executions of PassToken. Applying these results to Theorem 6.6 shows that the
waiting time is achievable in O(C × n) rounds. Notice also that this implementation of
T C has a memory requirement of Θ(log n) bits per process. Hence, LRA ◦ T C can be
implemented using Θ(log n+ log(max {|Rp| : p ∈ V })) per process p.
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6.6.3 Strong Concurrency of LRA ◦ T C
We first prove No Deadlock.

Lemma 6.12

Algorithm LRA ◦ T C meets the No Deadlock property of strong concurrency: for
every subset of processes X ⊆ V , for every configuration γ, if Pstrong(X, γ) holds
and PFree(γ) 6⊆ X, there exists a configuration γ′ and a step γ 7→ γ′ such that
ContinuousCS(γ . . . γ′) ∧NoRequest(γ . . . γ′).

Proof : (By the contrapositive.) Assume a configuration γ where no action of the algorithm
is enabled. First, if PFree(γ) = ∅, we are done. So from now on, assume PFree(γ) 6= ∅.
In γ, T C has stabilized, by Lemma 6.5. So,

Claim 1: There is a unique tokenholder, t, in γ.

Moreover, as RsT-action is disabled at every process, Claim 1 implies:

Claim 2: For every process p, γ(p).token if and only if p = t.

Claim 3: γ(t).status 6= Wait.

Proof of the claim: If γ(t).status = Wait, then since t = Winner(t) in γ (by Claim
2), either ¬IsBlocked(t) holds in γ and E-action is enabled at t, or B-action is
enabled at t, a contradiction. �

Claim 4: ∀p ∈ PFree(γ), γ(p).status = Blocked.

Proof of the claim: First, by definition, γ(p).status ∈ {Wait,Blocked,Out} and
γ(p).req 6= ⊥. If γ(p).status = Out, R-action is enabled at p, a contradiction.
If γ(p).status = Wait, then, ¬IsBlocked(p) since otherwise B-action is enabled
at p in γ. Consequently, p 6= Winner(p) holds in γ, otherwise E-action is
enabled at p. So, we can build a sequence of processes r0, r1, . . . , rk where r0 = p
and such that ∀i ∈ {1, . . . , k}, ri = Winner(ri−1). (Notice that none of the
ri are the tokenholder, since the tokenholder does not have status Wait, by
Claims 1 and 3.) This sequence is finite because r0 < r1 < · · · < rk (so a
process cannot be involved several times in this sequence) and the number of
processes is finite. Hence, we can take this sequence maximal, in which case,
rk = Winner(rk) and rk is then enabled to execute E-action, a contradiction.
Hence, γ(p).status = Blocked. �

Claim 5: ∀p ∈ PFree(γ), p ∈ γ(t).CN and γ(t).status = Blocked.

Proof of the claim: By Claim 4 and since U-action is disabled at every process, we
have IsBlocked(p) in γ for every process p ∈ PFree(γ). Then, p ∈ PFree(γ)
implies RsrcFree(p) in γ, so by Claims 1 and 2, we can conclude. �

Claim 6: There exists a neighbor q of t whose status is In in γ.

Proof of the claim: By Claim 5, γ(t).status = Blocked, so IsBlocked(t) holds in
γ since U-action is disabled at t. Now, by Claim 2, IsBlocked(t) implies that
¬RsrcFree(t) holds in γ, which proves the claim. �

By definition, a consequence of Claim 6 is that q and every process p ∈ γ(q).CN
do not belong to PFree(γ). Hence, Claims 5 and 6 imply that ∀p ∈ PFree(γ), p ∈
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γ(t).CN \ ({q} ∪ γ(q).CN ). So, by letting X = γ(t).CN \ ({q} ∪ γ(q).CN ), we have
Pstrong(X, γ) and PFree(γ) ⊆ X, and we are done.

We now prove No Livelock.

Lemma 6.13

Let e = (γj)j≥0 be an execution of LRA ◦ T C, i ≥ 0 such that T C is stabilized in
γi (i is defined by Lemma 6.5), and t ∈ V the unique tokenholder in γi. If R(e, i, 6)
exists, R(e, i, 6) ≤ reqUp(e, i), and ∀j ∈ {i+ 1, . . . , R(e, i, 6)}, PassToken(t) is not
executed in step γj−1 7→ γj, then for every k ∈ {R(e, i, 4), . . . , reqUp(e, i)}:
• γk(t).req 6= ⊥, γk(t).status = Blocked, and

• ∃q ∈ γk(t).CN such that γk(q).status = In and ∀p ∈ PFree(γk) ∩ γk(t).CN ,
p /∈ {q} ∪ γk(q).CN .

Proof : Let e = (γj)j≥0 be an execution of LRA ◦ T C and let i ≥ 0 such that T C has
stabilized in γi. Let t ∈ V be the unique tokenholder in γi. Assume that R(e, i, 6) exists,
R(e, i, 6) ≤ reqUp(e, i), and ∀j ∈ {i+ 1, . . . , R(e, i, 6)}, PassToken(t) is not executed
in step γj−1 7→ γj .

Claim 1: ∀j ∈ {R(e, i, 2), . . . , R(e, i, 6)}, ∀p ∈ V , γj(p).token = True if and only if
p = t.

Proof of the claim: By hypothesis, the value of TokenReady(p) is constant between
γi and γR(e,i,6). So, if p.token = TokenReady(p) in some configuration γ between
γi and γR(e,i,2), then p.token = TokenReady(p) holds in all configurations be-
tween γ and γR(e,i,6), since RsT-action is disabled at p in all these configurations.
Since by hypothesis, TokenReady(p) ≡ (p = t) in all configurations between γi
and γR(e,i,6), we are done.

Assume, otherwise, that p.token 6= TokenReady(p) in all configurations be-
tween γi and γR(e,i,2), then RsT-action (the highest priority action) is contin-
uously enabled at p until p executes it. Now, in this case, p executes it within
at most 2 rounds (Remark 6.1), hence, there is a configuration between γi and
γR(e,i,2), where p.token = TokenReady(p), a contradiction. �

Claim 2: γR(e,i,4)(t).status = Blocked.

Proof of the claim: Assume, by the contradiction, that γR(e,i,4)(t).status 6= Blocked.

a). Assume γR(e,i,2)(t).status = In. If t.req = ⊥, then t.req = ⊥ holds in
all configurations between γi and γR(e,i,6), by hypothesis. Moreover, RsT-
action is disabled at t in all configurations between γR(e,i,2) and γR(e,i,6), by
Claim 1. Hence, by Remark 6.1, t executes Ex-action within two rounds
from γR(e,i,2), and then RlT-action within at most two more rounds. By
this latter action, t releases the token by PassToken(t), a contradiction.
Assume now that t.req 6= ⊥ in γR(e,i,2). Then, by hypothesis, t.req 6= ⊥ holds
in all configurations between γR(e,i,2) and γR(e,i,6). Similarly to the previous
case, t releases the token by executing RlT-action within two rounds from
γR(e,i,2), a contradiction.

b). Assume γR(e,i,2)(t).status = Out. If t.req = ⊥, then t.req = ⊥ holds
in all configurations between γi and γR(e,i,6), by hypothesis. Similarly to
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the previous case, t releases the token by executing RlT-action within two
rounds from γR(e,i,2), a contradiction.
Assume now that t.req 6= ⊥ in γR(e,i,2). Then, by hypothesis, t.req 6= ⊥
holds in all configurations between γR(e,i,2) and γR(e,i,6). Moreover, RsT-
action is disabled at t in all configurations between γR(e,i,2) and γR(e,i,6), by
Claim 1. Hence, t sets t.status to Wait by R-action within two rounds from
γR(e,i,2) (Remark 6.1). Then, by Claim 1, t = Winner(t) in all subsequent
configurations until γR(e,i,6). After executing R-action, if IsBlocked(t),
then by Claim 1, there exists q ∈ γ(p).CN such that q.status = In and
q.req 6
 t.req. By hypothesis, q.status = In and q.req 6
 t.req until at least
γreqUp(e,i). So, within at most two more rounds (Remark 6.1), t.status is
set to Blocked and t.status does not change until at least γreqUp(e,i) (with
R(e, i, 6) ≤ reqUp(e, i)) due to q, hence γR(e,i,4)(t).status = Blocked, a
contradiction. Assume otherwise that IsBlocked(t) does not hold after t
executes R-action. E-action is continuously enabled at t until t executes it,
since by Claim 1 t = Winner(t) in all configurations until γR(e,i,6). So, t
executes E-action within two rounds (Remark 6.1), and by this latter action,
t releases the token by PassToken(t), a contradiction.

c). Assume γR(e,i,2)(t).status = Wait. We obtain a contradiction similarly to
the second part of case (b).

d). Assume γR(e,i,2)(t).status = Blocked. We obtain a contradiction similarly
to the second part of Case (b).

�

Claim 3: IsBlocked(t) in all configurations between γR(e,i,4) and γreqUp(e,i).

Proof of the claim: Assume first there a configuration γb between γR(e,i,2)(t) and
γR(e,i,4)(t) such that IsBlocked(t) in γb. Then, IsBlocked(t) implies ¬RsrcFree(t)
in γb, by Claim 1. Now, by hypothesis, no process ends its critical section until
at least γreqUp(e,i). So, IsBlocked(t) holds in all configurations between γb and
γreqUp(e,i), and we are done.

Assume otherwise that ¬IsBlocked(t) in every configuration between γR(e,i,2)(t)
and γR(e,i,4)(t). t cannot executes B-action during γR(e,i,2)(t) . . . γR(e,i,4)(t). So,
if γR(e,i,2)(t).status 6= Blocked, then γR(e,i,4)(t).status 6= Blocked, contra-
dicting Claim 2. Otherwise, Unblock(t) holds in every configuration between
γR(e,i,2)(t) and γR(e,i,4)(t) until t.status = Wait. Then, as RsT-action is dis-
abled at t in all configurations between γR(e,i,2) and γR(e,i,6) (Claim 1), t switches
t.status to Wait by U-action before γR(e,i,4) (Remark 6.1) and again t.status
remains equal to Wait until at least γR(e,i,4), contradicting Claim 2. �

By Claims 2 and 3, t.status = Blocked in all configurations between γR(e,i,4) and
γreqUp(e,i). By Claims 1 and 3, and the hypotheses of the lemma, there is a neighbor q of
p such that q.req 6
 t.req and q.status = In in all configurations γk between γR(e,i,4) and
γreqUp(e,i). By definition, q ∈ γk(t).CN , γk(t).req 6= ⊥, and γk(q).req 6= ⊥. Finally, by
definition of PFree, ∀p ∈ PFree(γk)∩ γk(t).CN , p /∈ {q}∪ γk(q).CN , indeed no process in
PFree can be neighbor of a requesting process with status In (hence in critical section)
using a conflicting resource.
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Lemma 6.14

Let e = (γj)j≥0 be an execution of LRA◦ T C, i ≥ 0 such that T C is stabilized in γi
(i is defined by Lemma 6.5), and t ∈ V the unique tokenholder in γi. If R(e, i, 4n +
2) exists and R(e, i, 4n + 2) ≤ reqUp(e, i) and ∀j ∈ {i+ 1, . . . , R(e, i, 4n+ 2)},
PassToken(t) is not executed in step γj−1 7→ γj, then,

∀k ∈ {R(e, i, 4n+ 2), . . . , reqUp(e, i)} , PFree(γk) \ γk(t).CN = ∅

Proof : Let e = (γj)j≥0 be an execution of LRA◦T C. Let i ≥ 0 such that T C is stabilized
in γi. Let t ∈ V the unique tokenholder in γi. Assume that R(e, i, 4n + 2) exists,
R(e, i, 4n + 2) ≤ reqUp(e, i), and ∀j ∈ {i+ 1, . . . , R(e, i, 4n+ 2)}, PassToken(t) is not
executed in step γj−1 7→ γj .

Claim 1: ∀j ∈ {R(e, i, 2), . . . , R(e, i, 4n+ 2)}, ∀p ∈ V , γj(t).token = True if and only
if p = t, and RsT-action is disabled at p in γj .

Proof of the claim: Identical to the proof of Claim 1 in Lemma 6.13. �

Then, PFree contains only requesting processes p (p.req 6= ⊥) with no neighbor q
using a resource conflicting with the requested one (namely, such that q.status = In and
q.req 6
 p.req). So, no process can enter PFree during γi . . . reqUp(e, i) since no new
request occurs and no critical section is released.

Let j ∈ {R(e, i, 2), . . . , R(e, i, 4(n− 1) + 2)}. If PFree(γj) \ γj(t).CN is empty, then
it remains so until γR(e,i,4n+2). Otherwise, let q = max {x ∈ PFree(γj) \ γj(p).CN}. In
the worst case, q has status Out, it reaches status Wait in at most 2 rounds (by
Claim 1 and Remark 6.1). Either q exited PFree in the meantime, i.e., a process with
status Wait entered its critical section meanwhile and is using a conflicting resource,
or q reaches status In (using E-action) in at most 2 additional rounds (by Claim 1 and
Remark 6.1). Indeed, in the latter case, IsBlocked(q) does not hold since q ∈ PFree
ensures that RsrcFree(q) and since it has no conflicting neighbor holding the token by
assumption; furthermore, q = Winner(q) by definition. Hence, at most 4 rounds later,
q has exited PFree.

Repeating the reasoning n times ensures that in configuration γR(e,i,4n+2) the set
PFree(γR(e,i,4n+2)) \ CN t(γR(e,i,4n+2)) is empty. Then, as long as no critical section is
released and no new request occurs, PFree remains empty.

Lemma 6.15

Let e = (γj)j≥0 be an execution of LRA◦T C and i ≥ 0 such that T C is stabilized in
γi (i is defined by Lemma 6.5). If R(e, i, 6n(Ntok+1)) exists and R(e, i, 6n(Ntok+1)) ≤
reqUp(e, i), then
• either for every k ∈ {R(e, i, 6n(Ntok + 1)), . . . , reqUp(e, i)}, PFree(γk) = ∅, or

• for every k ∈ {R(e, i, 6n(Ntok + 1)− 6), . . . , reqUp(e, i)− 1}, PassToken is not
executed in step γk 7→ γk+1.

Proof : Let e = (γj)j≥0 be an execution of LRA◦T C. Let i ≥ 0 such that T Chas stabilized
at γi. Assume that R(e, i, 6n(Ntok + 1)) exists and R(e, i, 6n(Ntok + 1)) ≤ reqUp(e, i).
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Similarly to the proof of Lemma 6.14, PFree cannot increase, hence if it is empty at
some configuration γk with k ∈ {R(e, i, 6n(Ntok + 1)), . . . , reqUp(e, i)}, we are done.

Let k ∈ {R(e, i, 6n(Ntok + 1)), . . . , reqUp(e, i)}. Assume PFree(γk) 6= ∅ and let p ∈
PFree(γk). We deduce from Lemma 6.13, that if PassToken has not been executed by the
tokenholder, during 6 consecutive rounds, then the token will stay at this process until
reqUp(e, i). Furthermore, properties of T C ensures that after at most Ntok executions
of PassToken the token will reach p. Then, at the latest, at configuration γR(e,k,6Ntok)

(6Ntok rounds later), the token is either blocked until reqUp(e, i) at some process (but
not p) or has passed through p. Let consider the second case: if when the token is at p,
PFree still contains p, then, after at most 6 additional rounds (still by Lemma 6.13), p
has access to critical section and exits PFree.

Repeating this reasoning n times, we have that in at most 6n(Ntok+1) rounds, either
PFree is empty or the token is blocked until reqUp(e, i).

Lemma 6.16

Algorithm LRA ◦ T C meets the No Livelock property of strong concurrency: there
exists a number of rounds TPC > 0 such that for every execution e = (γi)i≥0 and for
every index i ≥ 0, if R(e, i, TPC) exists, then

R(e, i, TPC) ≤ reqUp(e, i)⇒ ∃X,Pstrong(X, γR(e,i,TPC)) ∧ PFree(γR(e,i,TPC)) ⊆ X

Proof : We pose TPC = Ttok + 6n(Ntok + 1) + 4n − 4. Let e = (γi)i≥0 be an execution of
LRA◦T C and let i ≥ 0. Assume that R(e, i, TPC) exists and R(e, i, TPC) ≤ reqUp(e, i).
After Ttok rounds, T C has stabilized. Using Lemma 6.15, we have two cases:

1. After Ttok + 6n(Ntok + 1), PFree is empty and remains so until reqUp(e, i). In this
case, we are done.

2. For every k ∈ {R(e, i, 6n(Ntok + 1)− 6), . . . , reqUp(e, i)− 1}, PassToken is not
executed in step γk 7→ γk+1. Note that this implies that PassToken is not executed
during the last 6 rounds by the tokenholder t. This allows to apply Lemma 6.13:
there exists a conflicting neighbor of t, q, such that ∀p ∈ PFree ∩ γk(t).CN , p /∈
{q} ∪ γk(q).CN .

As t holds the token from configuration R(e, i, 6n(Ntok + 1) − 6) to configuration
reqUp(e, i), and as R(e, i, Ttok +6n(Ntok +1)+4n−4) ≤ reqUp(e, i), we can apply
Lemma 6.14 between configuration R(e, i, Ttok+6n(Ntok+1)−6) and R(e, i, Ttok+
6n(Ntok + 1) + 4n− 4): this proves that

PFree(γR(e,i,Ttok+6n(Ntok+1)+4n−4)) \ γR(e,i,Ttok+6n(Ntok+1)+4n−4)(t).CN = ∅

By Lemmas 6.12 and 6.16, follows.

Theorem 6.7

Algorithm LRA ◦ T C is strongly concurrent.
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6.7 Conclusion

Summary of Contributions. In this chapter, we have characterized the maximal
level of concurrency we can obtain in resource allocation problems by proposing the
notion of maximal concurrency. This notion is versatile, e.g., it generalizes the avoiding
`-deadlock [FLBB79] and (strict) (k,`)-liveness [DHV03] defined for the `-exclusion and
k-out-of-`-exclusion problems, respectively.

From [FLBB79], we already know that maximal concurrency can be achieved in some
important global resource allocation problems.3 Now, perhaps surprisingly, our results
show that maximal concurrency cannot be achieved in problems that can be expressed
with the Local Ressource Allocation paradigm. However, we have shown that strong
concurrency (a high, but not maximal, level of concurrency) can be achieved by a snap-
stabilizing LRA algorithm, called LRA ◦ T C. We have to underline that the level of
concurrency we achieve here is similar to the one obtained in the committee coordination
problem [BDP11].

Perspectives. As a future work, defining the exact class of resource allocation problems
where maximal concurrency (resp. strong concurrency) can be achieved is a challenging
perspective.

The drawback of our highly concurrent algorithm is its waiting time (Θ(n) rounds).
Now, designing a highly concurrent algorithm with a tighter waiting time seems to be
difficult, even maybe impossible. Indeed, it has been shown that the maximal concurrency
and a fast waiting time are incompatible in the `-exclusion problem [CDDL15]. Precisely,
Carrier et al. have shown in [CDDL15] that it is possible to design a `-exclusion algorithm
that is either maximal concurrent, or asymptotically optimal in waiting time (O(

⌈
n
`

⌉
)

rounds), but obtaining an algorithm which achieves both properties is impossible. We
might expect that this latter result can be extended to show the incompatibility of strong
concurrency and fast waiting time in other resource allocation problems, such as LRA.

3By “global” we mean resource allocation problems where a resource can be accessed by any process.
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Chapter 7

Conclusion

“Go now. Our journey is done. And may we meet again, in the clearing, at
the end of the path”

— Stephen King, The Dark Tower
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7.1 Thesis Contributions

In this thesis, we have studied classical problems of distributed computing under
uncertain contexts. By uncertain context, we mean that the context of execution of the
distributed system is not completely known a priori or is unsettled. We focused on two
kinds of uncertainty: incomplete identification of the processes and presence of faults.
More precisely, we explored two axes of research:

• going towards more anonymity by proposing deterministic algorithms for networks
of homonyms and anonymous processes,

• ensuring more safety guarantees during the convergence of deterministic self-stabilizing
algorithms

with efficient solutions.

7.1.1 Chapter 3 – Leader Election in Unidirectional Rings
with Homonym Processes

The first contributions of this thesis focus on leader election in static unidirectional rings
with homonym processes, i.e., processes are identified but several processes may have the
same ID, called label. We considered here the message-passing model.
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We have proven that message-terminating leader election is impossible to solve in a
unidirectional ring with a symmetric labeling. Thus, we have considered unidirectional
rings with an asymmetric labeling. We have showed that it is impossible to solve process-
terminating leader election in the class U∗ that contains every unidirectional rings with
at least one unique label. As a consequence, it is impossible to solve process-terminating
leader election in the class A of all unidirectional rings with an asymmetric labeling. We
have also proven that it is impossible to solve message-terminating leader election in the
class Kk that contains unidirectional rings with no more than k ≥ 1 processes with the
same label since Kk contains symmetric rings. More precisely, k is an upper bound on
the multiplicity of the labels, i.e., the number of processes that have the same label (k is
known by the processes).

Then, we have proposed three algorithms Uk, Ak, and Bk. Algorithm Uk is a process-
terminating leader election algorithm for class U∗∩Kk, for any k ≥ 1. It is asymptotically
optimal in time with Θ(kn) time units and in memory since it requires O(log k+b) bits per
processes, where b is the number of bits required to store a label. Its message complexity
is O(kn). Algorithms Ak and Bk both solves the process-terminating leader election
problem for class A∩Kk, for any k ≥ 1. Algorithm Ak is asymptotically optimal in time
(Θ(kn) time units) but requires O(knb) bits per process and O(kn2) sending of messages.
On the contrary, Algorithm Bk is asymptotically optimal in memory (O(log k + b) bits
per process) but its time complexity is O(k2n2) and its message complexity is O(k2n2).

7.1.2 Chapter 4 – Self-stabilizing Leader Election under
Unfair Daemon

Similarly to Chapter 3, we have considered the leader election problem in Chapter 4,
yet in a different context. We proposed a silent self-stabilizing leader election algorithm,
called LE , for any static and identified network of arbitrary connected and bidirectional
topology. Algorithm LE is written in the locally shared memory model, requires no
global knowledge on the network (e.g., no upper bound on the number of processes or
the diameter), and assumes the distributed unfair daemon.

From an arbitrary configuration, Algorithm LE converges to a terminal configuration
in at most 3n+D rounds, where D is the diameter of the network, and we built a network
for any n ≥ 4 and any D such that 2 ≤ D ≤ n− 2 in which there is a possible execution
that lasts exactly 3n+D rounds. In this terminal configuration, every process knows the
ID of the leader, and a spanning tree rooted at the leader is defined. Algorithm LE is
asymptotically optimal in memory with Θ(log n) bits per processes.

We have showed that Algorithm LE stabilizes in a polynomial number of steps. In-
deed, it converges in Θ(n3) steps. For fair comparison, we studied the step complexity
of the previous best algorithms with similar settings, i.e., no global knowledge required,
proven under a distributed unfair daemon. For any n ≥ 5, we have showed that there ex-
ists a network in which there exists an execution of the algorithm proposed in [DLV11a],

denoted here DLV1, that stabilizes in Ω(2b
n−1
4 c) steps. Similarly, we proved that for a

given α ≥ 3, for any β ≥ 2, there exists a network of n = 2α×β processes, in which a pos-
sible execution of the algorithm proposed in [DLV11b], denoted here DLV2, stabilizes in
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Ω(nα+1). Hence, the stabilization times of DLV1 and DLV2 in steps are not polynomial.

7.1.3 Chapter 5 – Gradual Stabilization under (τ, ρ)-dynamics
and Unison

In Chapter 5, we proposed a variant of self-stabilization, called gradual stabilization un-
der (τ, ρ)-dynamics. This variant is especially designed for dynamic networks. Indeed,
an algorithm is gradually stabilizing under (τ, ρ)-dynamics if it is self-stabilizing and sat-
isfies the following additional feature. After up to τ dynamic steps of type ρ starting
from a legitimate configuration, a gradually stabilizing algorithm first quickly recovers
a configuration from which a minimum safety guarantee is satisfied. Then, it gradually
converges to specifications offering stronger and stronger quality of service, until recover-
ing a configuration from which the two following conditions hold. Its initial specification
is satisfied and, if up to τ ρ-dynamic steps hit the system again, it is ready to achieve
gradual convergence.

We have illustrated this new property by proposing a gradually stabilizing algorithm
denoted DSU for the unison problem. DSU is designed in the locally shared memory
model for any arbitrary anonymous network that is initially connected and assumes the
distributed unfair daemon. It is gradually stabilizing under (1,BULCC)-dynamics. A
BULCC-dynamic step contains a finite yet unbounded number of topological changes
such that, after such a step, the network: (1) contains at most N processes (where N is
an upperbound on the number of processes in the system at any time), (2) is connected,
and (3) if the clock period α is greater than 3, every process that joined the system should
be linked to at least one process that was already in the system before the dynamic step,
except if all those processes have left the system. (We have studied the necessity of these
conditions.) Starting from a configuration satisfying the strong unison (there is at most
two different yet consecutive clock values), if a BULCC-dynamic step hits the system,
DSU immediately satisfies the partial unison (the clocks of two neighboring processes
differ of at most one increment, except for incoming processes). Then, in one round, it
satisfies the weak unison (the clocks of every two neighboring processes differ of at most
one increment) and converges to strong unison in (µ + 1)D1 + 2 rounds, where µ is a
parameter greater or equal than max(2, N), and D1 is the diameter of the network after
the dynamic step.

7.1.4 Chapter 6 – Concurrency in Local Resource Allocation

Finally, in Chapter 6, we have proposed a property called maximal concurrency to char-
acterize the maximal level of concurrency that can be achieved in resource allocation
problems. This notion generalizes similar notions previously defined for specific prob-
lems, e.g., the avoiding `-deadlock [FLBB79] defined for the `-exclusion problem and the
(strict) (k, `)-liveness [DHV03] defined for the k-out-of-` exclusion problem.

We showed that, even if maximal-concurrency can be achieved in some problems such
as the `-exclusion [FLBB79], it cannot be achieved in a wide class of resource allocation
problems called Local Resource Allocation (LRA). Nonetheless, we proved that the strong
concurrency, a high but not maximal level of concurrency can be achieved in the LRA
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problem. More precisely, we have proposed a strongly concurrent snap-stabilizing LRA
algorithm, called LRA, for connected bidirectional networks of arbitrary topology. LRA
is written in the locally shared memory model and assumes a weakly fair daemon.

7.2 General Perspectives

Detailed perspectives are already presented in the conclusion of each contribution
chapter. Thus, in this section, we propose more general perspectives. There are three
main axes of future research.

Homonyms and Self-stabilization. The model of homonym processes has only been
slightly studied. In particular, in our knowledge, no self-stabilizing algorithm has been
proposed for networks containing homonym processes. However, our results of Chapter 3,
in particular Algorithm Ak, seems very promising for an adaptation to self-stabilization.
It is further research to design self-stabilizing algorithms for homonym networks, first for
leader election, and then for other problems.

Gradual Stabilization. In Chapter 5, we propose a new property, the gradual stabi-
lization under (τ, ρ)-dynamics, and we illustrate this property for τ = 1 with a unison
algorithm. The generalization for τ > 1 remains open. Moreover, achieving this prop-
erty for other (dynamic) problems is a natural extension that could lead to a deeper
understanding and then allows the generalization of the approach by the design of a
transformer (i.e., an algorithm that supplies the gradual stabilization property to merely
self-stabilizing algorithms).

Concurrency. As stated in Chapter 6, concurrency is an issue in resource allocation
problems that has not been extensively studied. However, it is fundamental to maximize
the usage of resources and minimize the waiting time of requesting processes. Maybe sur-
prisingly, it has been proven that the maximal level of concurrency (called here maximal-
concurrency) cannot be achieved in various problems, i.e., k-out-of-` exclusion, committee
coordination, and local resource allocation (see Chapter 6). The only problems for which
we know that maximal-concurrency can be achieved are `-exclusion problem [FLBB79]
and trivially the mutual exclusion problem. Thus, the level of concurrency that can be
achieved in other resource allocation problems, for instance, group mutual exclusion or
drinking philosophers problem, is worth investigating.
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Franck Petit. Self-stabilizing leader election in polynomial steps. In Pro-
ceedings of the 16th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’14), pages 106–119, Paderborn, Ger-
many, September 28 - October 1, 2014. (Cited on pp. 21 and 75.)

[ACD+15] Karine Altisen, Alain Cournier, Stéphane Devismes, Anäıs Durand, and
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Annexe A

Résumé en français
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Dans cette annexe, nous résumons les contributions et les perspectives de cette thèse.
Dans un premier temps, nous détaillons le contexte dans lequel s’inscrit cette thèse en
commençant par un exemple.

Lorsque Jane se réveille, des capteurs de mouvements détectent son réveil et allument
les lampes progressivement ainsi que le chauffage de la salle de bain. Lors de son trajet
jusqu’au travail, le GPS de Jane l’informe d’un accident signalé par d’autres utilisateurs.
Elle peut alors changer son itinéraire afin d’éviter les bouchons générés par cet accident.
Quand elle arrive au travail, elle trouve rapidement un place libre où se garer grâce aux
capteurs qui surveillent l’occupation du parking. Pendant sa journée de travail, Jane
échange des emails avec ses clients à l’autre bout du monde. Elle participe à une réunion
par visioconférence avec une autre filiale et échange des données avec ses collègues via
le réseau local de l’entreprise. Pendant qu’elle n’est pas à la maison, les capteurs de ses
panneaux solaires détectent une grande production d’électricité à la mi-journée. Ils al-
lument donc le chauffe-eau et le lave-vaisselle. Quand elle rentre, Jane vérifie les dernières
informations sur Internet et partage les photos du weekend dernier avec sa famille grâce
à un service de partage de fichiers sur le “cloud”.
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Chapitre A. Résumé en français

Chaque situation décrite dans l’exemple précédent utilise un système distribué. Ces
systèmes sont omniprésents et inévitables dans notre vie de tous les jours. Avec de plus
en plus d’utilisateurs, ces systèmes deviennent de plus en plus grands et complexes. Nous
avons donc besoin d’algorithmes efficaces pour les faire fonctionner. De plus, les systèmes
distribués sont très divers et peuvent être utilisés dans de nombreux contextes différents.
Par exemple, les systèmes distribués peuvent être utilisés dans les maisons, les rues, les
usines, comme présenté dans l’exemple précédent, mais aussi dans des contextes beau-
coup plus hostiles (un réseau de capteurs sans-fils déployé dans un désert ou autour d’un
volcan, par exemple). Cependant ces contextes peuvent être incertains, autrement dit le
contexte n’est pas complètement connu au départ ou il est changeant. Par exemple, de
larges systèmes composés de dispositifs bon marché et produits en masse sont très sus-
ceptibles d’être sujets à des dysfonctionnements ou des pannes. Ces dysfonctionnements
et ces pannes sont imprévisibles, néanmoins le service fourni par le système doit toujours
être disponible. La nature des systèmes elle-même peut être très dynamique comme par
exemple dans les réseaux mobiles. En effet, un utilisateur de téléphone portable peut se
déplacer et changer d’antenne-relais au milieu d’un appel, cet appel ne doit néanmoins pas
être interrompu. Il faut donc que les systèmes distribués soient résistants aux incertitudes.
Le développement de réseaux sociaux à grande échelle où des quantités gigantesques de
données sont échangées de par le monde, entrâıne un besoin de confidentialité de plus
en plus important. Ce besoin montre que, dans certains cas, l’incertitude n’est pas un
inconvénient mais plutôt une demande de l’utilisateur. La question de confidentialité a
justifié le développement de solutions pour les réseaux anonymes. Un anonymat par-
tiel peut aussi être obtenu dans les réseaux homonymes. Le besoin de confidentialité est
généralement considéré comme un besoin de sécurité. Même si la sécurité n’est pas le
sujet de cette thèse, nous étudions tout de même plusieurs niveaux d’anonymat dans nos
solutions.

A.1 Contexte de la thèse

En informatique, un système distribué [Tel00, Lyn96] est un système informatique
composé de plusieurs ordinateurs ou processus qui coopèrent pour atteindre un but com-
mun. Plus précisément, un système distribué est un ensemble d’unités de calcul autonomes
mais interconnectées. Une unité de calcul est un ordinateur, un cœur d’un processeur
multi-cœur, un processus dans un système d’exploitation multitâches, etc. Pour simpli-
fier, les ordinateurs, processeurs et processus seront nommés processus par la suite. Ces
processus peuvent être distants géographiquement. Autonome signifie que chaque proces-
sus a son propre contrôle. Il ne dépend pas d’un contrôleur central. Interconnecté signifie
que les processus sont capables d’échanger entre eux des informations, directement ou in-
directement, notamment en envoyant des messages via des câbles ou des ondes radios, ou
via des mémoires partagées. Cette définition inclut les ordinateurs parallèles, les réseaux
d’ordinateurs, les réseaux de capteurs, les réseaux mobiles, les flottes de robots, etc.

222



A.1. Contexte de la thèse

A.1.1 Caractéristiques des systèmes distribués et différences
avec les systèmes centraux.

Les systèmes distribués sont souvent définis par opposition aux systèmes centraux. En
effet, les systèmes distribués ont des caractéristiques qui leurs sont propres :

• Absence de temps global : Dans les systèmes distribués, la vitesse de calcul
de chaque processus est hétérogène et les communications sont généralement asyn-
chrones. Les processus n’ont pas accès à une horloge globale. En particulier, leur
horloge locale peut diverger.

• Absence de connaissances globales : Contrairement aux systèmes centraux
où les décisions sont prises en fonction de l’état global du système, les processus
d’un système distribué n’ont accès qu’à leurs connaissances locales, c’est-à-dire leur
mémoire locale, pour décider de leur prochaine action. En particulier, même si la
mémoire locale d’un processus peut être mise à jour lors de la réception d’informa-
tions, cette information peut être obsolète à cause de l’asynchronisme du système.

• Non-déterminisme : À cause de l’asynchronisme des processus et des communica-
tions, l’exécution d’un algorithme distribué déterministe peut mener à des résultats
différents et le résultat obtenu n’est pas toujours prévisible. Au contraire, l’exécution
d’un algorithme séquentiel déterministe ne dépend que de ses entrées.

A.1.2 Exemples de motivations et d’applications des systèmes
distribués

Les systèmes distribués ont de nombreuses applications et sont omniprésents dans notre
vie de tous les jours. Selon l’application, les systèmes distribués peuvent être tout sim-
plement nécessaires ou peuvent être préférés aux systèmes séquentiels et centraux pour
diverses raisons. Quelques exemples non-exhaustifs sont présentés ci-dessous.

Simplifier les communications. En 1969, un réseau étendu, nommé ARPANET, est
créé entre de grandes universités américaines pour faciliter la coopération et l’échange de
données entre ces organisations. ARPANET est l’ancêtre d’Internet qui connecte aujour-
d’hui des milliards d’ordinateurs et d’autres appareils.

De nos jours, nos communications dépendent grandement des systèmes distribués :
emails, technologies de voix sur IP ou VoIP (par exemple, Skype, Google Talk, Discord),
applications de messagerie instantanée (comme WhatsApp, Yahoo !Messenger, ou Google
Hangouts), réseaux pair-à-pair (P2P) d’échange de fichiers (par exemple, Gnutella, eDon-
key), etc.

Calculs plus rapides et à distance. En multipliant le nombre de processus, le
calcul d’une tâche longue peut être partagée entre plusieurs processus et ainsi le cal-
cul sera plus rapide. C’est l’objectif des ordinateurs parallèles. Par exemple, le super-
ordinateur Deep Blue d’IBM a été conçu pour calculer rapidement des coups aux échecs.
Des réseaux géographiquement étendus peuvent aussi être utilisés pour du calcul dis-
tribué. Par exemple, dans les projets de calcul volontaire, chacun peut offrir un peu de
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la puissance de calcul ou de la mémoire de son ordinateur personnel pour aider au calcul
d’une tâche difficile. Par exemple, le projet SETI@Home recherche des transmissions ra-
dio extraterrestres et le projet Rosetta@Home analyse la structure des protéines pour la
recherche médicale.

Pour faciliter le calcul sur des réseaux distribués distants, beaucoup de compagnies
proposent des services de “cloud”, comme par exemple Amazon Elastic Compute Cloud
ou Microsoft Azure. Le “cloud computing” propose un accès à la demande à une puissance
de calcul et à du stockage distribués. Notez que certains services de “cloud” sont dédiés
au stockage de fichiers, comme par exemple DropBox ou Google Drive.

Surveillance. Les réseaux de capteurs sans fils sont composés de nombreux capteurs
générant des données à propos de leur environnement. Ces capteurs sont équipés de
capacités de communication sans fil. Ces réseaux de capteurs peuvent être utilisés pour
surveiller des catastrophes naturelles comme des éruptions volcaniques ou des séismes.
Ils sont également de plus en plus utilisés dans les nouvelles technologies de domotique
et de villes intelligentes pour surveiller la consommation en énergie, l’éclairage, etc. Les
essaims de drones et les flottes de robots peuvent aussi être utilisées pour surveiller une
zone et pour des applications militaires.

Améliorer la disponibilité et la résilience. En dupliquant une même tâche sur plu-
sieurs processus, la disponibilité d’un service est améliorée face à la panne d’un processus.
Notez que la réplication d’un calcul requiert un arbitrage entre les résultats des différents
processus. Une technique similaire peut être utilisée pour améliorer la disponibilité des
données en les copiant sur plusieurs disques de stockage. En particulier, la réplication de
données peut être réalisée sur des serveurs de données géographiquement distants pour
améliorer la résilience.

Mise en commun de ressources. Comme indiqué précédemment, les systèmes dis-
tribués permettent de partager des données, de la puissance de calcul, des disques de
stockage, etc. Il est parfois nécessaire de partager d’autres périphériques, par exemple des
imprimantes entre les employés d’une entreprise, car ces équipements sont coûteux.

A.1.3 Problèmes classiques des systèmes distribués

Les processus d’un système distribué cherchent à réaliser une tâche commune en utilisant
leurs entrées locales. À cause des caractéristiques des systèmes distribués, la concep-
tion d’algorithmes demande de faire face à des problèmes fondamentaux afin de pouvoir
résoudre des tâches de plus haut niveau. Quelques exemples sont listés ci-dessous.

• Routage : Un processus ne peut pas forcément communiquer directement avec
n’importe quel autre processus. Lorsqu’un processus a besoin d’envoyer des infor-
mations à un autre, il le fait donc de manière indirecte. L’information passe de
processus en processus jusqu’à atteindre sa destination. Ainsi, le but de certains
problèmes est de déterminer par quel chemin doit passer l’information.
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• Accords : En l’absence de contrôle central, les processus peuvent avoir besoin de
décider et de se mettre d’accord sur certaines informations. C’est par exemple le
cas dans les problèmes du consensus (binaire) et de l’élection de leader.

• Allocation de ressources : Quand des ressources sont partagées entre plusieurs
processus, comme par exemple, une imprimante partagée entre les employés d’une
entreprise, vous voulez vous assurer qu’un processus ayant besoin d’une ressource
finit par y accéder (personne ne monopolise l’imprimante par exemple) et vous ne
voulez pas qu’il y ait des conflits d’accès (par exemple, deux fichiers ne doivent
pas s’imprimer en même temps). En général, le nombre de ressources partagées est
beaucoup plus petit que le nombre de processus. Les problèmes d’allocations de
ressources consistent à gérer un accès aux ressources qui soit équitable.

• Construction de structures couvrantes : La topologie d’un système distribué,
c’est-à-dire les liens de communications entre processus, peuvent ne pas être or-
ganisés. Néanmoins, résoudre certains problèmes est plus simple et/ou plus rapide
quand le système a une certaine structure, comme par exemple réaliser une diffusion
depuis la racine d’un arbre. Par conséquent, construire une structure couvrante est
un problème fondamental en algorithmique distribuée. Il peut s’agir par exemple de
construire un arbre couvrant ou un clustering, c’est-à-dire des grappes de processus.

• Coloriage : Il est parfois nécessaire de différencier localement les processus. Il faut
alors attribuer des couleurs aux processus selon certaines contraintes (par exemple,
pas deux processus voisins de la même couleur) en utilisant un minimum de couleurs
différentes.

• Synchronisation : Comme indiqué précédemment, les communications et les pro-
cessus sont généralement asynchrones. Néanmoins, il est plus simple de concevoir des
algorithmes pour des systèmes synchrones puisqu’il y a moins de non-déterminisme
dans ces systèmes. De plus, il est impossible de résoudre certains problèmes sans
hypothèses sur le synchronisme comme par exemple le consensus déterministe dans
le cas où un processus peut tomber en panne [FLP85]. Par conséquent, certains
problèmes s’intéressent à la synchronisation des processus.

Performances. La taille des systèmes distribués augmente avec la démocratisation des
appareils connectés. Par exemple, le nombre d’utilisateurs d’Internet dans le monde est
passé d’un milliard d’utilisateurs en 2005 (environ 16% de la population mondiale) à 3,5
milliards en 2016 (environ 47%). Avec l’essor des systèmes distribués, leur complexité
augmente également. Par conséquent, pour que ces systèmes restent utilisables, il faut
concevoir des algorithmes efficaces.

Premièrement, le calcul doit être rapide et le service fourni doit toujours être dispo-
nible. De plus, les systèmes distribués contiennent de plus en plus de systèmes embarqués,
par exemple des capteurs sans fil, qui ont des ressources limitées (petite batterie, faible
puissance de calcul, petite mémoire). Par conséquent, la complexité en mémoire, le nombre
de messages échangés, et la complexité du calcul en lui-même doivent être faibles. Si ce
n’est pas le cas, les processus risquent de ne même pas pouvoir exécuter leur algorithme
ou de vider leur batterie.
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A.1.4 Contexte incertain

Dans cette thèse, le contexte d’exécution du système distribué est dit incertain s’il n’est
pas complètement connu au départ ou s’il est changeant. Nous nous intéressons à des
systèmes qui ne sont pas complètement identifiés où des pannes peuvent se produire.

Dans le cas contraire, si aucune panne n’affecte le système, autrement dit le système
satisfait continûment sa spécification, et si les processus sont identifiés, c’est-à-dire, ont
un identifiant (ID) unique, la plupart des problèmes qui peuvent être résolus dans un
système central, peuvent également être résolus dans un système distribué. Par exemple,
pour calculer un arbre couvrant, les processus peuvent élire un leader (c’est-à-dire un
unique processus distingué parmi les autres). Ce leader peut exécuter un snapshot pour
collecter les états locaux, et en particulier les entrées du problème, de tous les autres
processus. Par conséquent, le leader peut connâıtre toute la topologie et toutes les entrées
du système, et il peut calculer le résultat (autrement dit, l’arbre) de façon centralisée,
avant de l’envoyer à tous les autres processus.

Cette technique est très coûteuse et ne peut pas être appliquée dans des systèmes réels.
En effet, elle nécessite une grande mémoire pour le leader, un grand nombre de messages
échangés et un long temps de calcul. Bien évidemment, il existe des algorithmes beaucoup
plus efficaces pour construire un arbre couvrant (par exemple, [DLV11a], [DLV11b] ou
[ACD+16]), et une partie de la recherche en algorithmique distribuée se concentre sur la
conception d’algorithmes efficaces sous ces conditions. Néanmoins, la technique présentée
ci-dessus montre la solvabilité des problèmes dans les systèmes distribués.

Absence d’identification. À cause de la taille et de la complexité des systèmes dis-
tribués, supposer que les processus sont identifiés peut être irréaliste, en particulier pour
des appareils bon marché et massivement produits. De plus, même si les processus sont
identifiés, quelqu’un peut ne pas vouloir communiquer publiquement son ID pour des
raisons de sécurité ou de confidentialité.

Cependant, dans un système anonyme où les processus n’ont pas d’IDs, beaucoup
de problèmes fondamentaux deviennent impossible à résoudre. En particulier, il est im-
possible de casser les symétries de la topologie du réseau. Par exemple, le problème de
l’élection de leader ne peut pas être résolu de manière déterministe dans un réseau ano-
nyme puisque deux processus ne peuvent être distingués l’un de l’autre hormis par leurs
entrées et leur degré (autrement dit, le nombre de processus avec qui ils peuvent commu-
niquer directement). Yamashita et Kakugawa proposent un état de l’art des problèmes
calculables dans les réseaux anonymes [YK96].

Pour contourner ces résultats d’impossibilité, il y a principalement deux approches.
La première approche est la conception de solutions probabilistes. Par exemple, si deux
processus voisins ne peuvent être distingués, ils peuvent “jeter une pièce” jusqu’à ob-
tenir un résultat différent. Cependant, avec cette solution, la spécification du problème
considéré est seulement assuré avec une certaine probabilité. D’autre part, la seconde
approche consiste à considérer des modèles d’anonymat intermédiaires, ni complètement
identifiés (où les processus ont un ID unique), ni complètement anonymes (où les pro-
cessus n’ont pas d’ID). Par exemple, il est possible de considérer le modèle des processus
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homonymes [YK89] dans lequel les processus ont des identifiants, mais ces identifiants
ne sont pas nécessairement uniques. Dans ce cas, les processus ayant le même identifiant
sont dits homonymes.

Présence de pannes. Quand la taille d’un système distribué augmente, il devient de
plus en plus susceptible de subir la défaillance d’un processus. En effet, un processus peut
tomber en panne, sa mémoire peut être corrompue, etc. De plus, les appareils composant
les systèmes distribués sont souvent produits en masse et à coût réduit. Ils sont donc
plus fragiles. Finalement, les communications sans fil sont de plus en plus utilisées alors
qu’elles sont plus vulnérables. En 2016, le nombre d’objets connectés à Internet était
estimé à 7 milliards. En ajoutant les ordinateurs, les smartphones et les tablettes, on
atteint le nombre de 18 milliards d’appareils connectés. Dans des systèmes distribués de
cette taille, il est impossible de supposer qu’aucune panne ne va se produire, ne serait-ce
que pendant quelques heures.

Comme expliqué précédemment, les systèmes distribués sont omniprésents dans notre
vie de tous les jours et les gens sont de plus en plus dépendants d’eux. Si une coupure
de service, même temporaire, venait à toucher un tel système, les conséquences seraient
importantes. Néanmoins, à cause de la complexité, de l’étendue et/ou de l’utilisation
des systèmes distribués, assurer une maintenance humaine est souvent trop compliquée,
trop lente ou même trop dangereuse. Par conséquent, les systèmes distribués doivent être
résistants aux pannes. Nous détaillons les pannes considérées et étudions la tolérance aux
pannes dans la section suivante.

A.1.5 Tolérance aux pannes

En informatique, une panne entrâıne une erreur du système qui cause une défaillance.
Un composant ou un système subit une défaillance lorsque son comportement n’est pas
correct vis-à-vis de sa spécification. Une erreur est un état du système pouvant entrâıner
une défaillance. Il peut s’agir d’une erreur logicielle (par exemple, une division par zéro ou
un pointeur non-initialisé) ou une erreur physique (par exemple, un câble débranché, une
unité centrale éteinte, une coupure de connexion sans fil). Une panne est un évènement
entrâınant une erreur : soit une faute de programmation entrâınant une erreur logicielle,
soit un évènement physique (par exemple, une coupure de courant ou des perturbations
dans l’environnement du système) entrâınant une erreur physique. Dans cette thèse, nous
considérons seulement des erreurs physiques.

Classification des pannes. Les pannes peuvent être classées selon

• leur localisation : si le composant touché par la panne est un lien de communication
ou un processus ;

• leur origine : si la faute est bénigne (due à un problème physique) ou maligne (due
à une malveillance) ;

• leur durée : si la faute est permanente (plus longue que la durée restante du calcul),
transitoire ou intermittente. Il y a une légère différence entre les pannes transitoires
et les pannes intermittentes. En moyenne, durant une exécution, une panne transi-
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toire n’affecte le système qu’une seule fois, alors qu’une panne intermittente affecte
le système plusieurs fois.

• leur détection : selon si les processus peuvent détecter ou non en fonction de leur
état local s’ils sont touchés par une panne.

Quelques exemples de pannes : la panne définitive d’un processus (c’est-à-dire un pro-
cessus qui stoppe l’exécution de son algorithme), un processus Byzantin (autrement dit,
qui a un comportement arbitraire) ou une panne transitoire (c’est-à-dire un composant
qui a temporairement un comportement incorrect, mais cette panne ne provoque pas de
dommage permanent au matériel).

Algorithmes robustes vs. algorithmes stabilisants. Deux approches principales
ont été étudiées pour concevoir des systèmes distribués résistants aux pannes : une ap-
proche pessimiste (la conception d’algorithmes robustes) et une approche optimiste (la
conception d’algorithmes stabilisants). (Notez qu’il existe des algorithmes à la fois ro-
bustes et stabilisants, voir par exemple [GP93].) Dans un algorithme robuste, toute infor-
mation reçue est suspectée afin de garantir un comportement correct des processus qui
ne sont pas défaillants. Des stratégies sont utilisées dans ces algorithmes comme le vote
permettant de considérer des informations uniquement si un nombre suffisant d’autres
processus déclarent avoir reçu une information similaire. Par conséquent, les algorithmes
robustes permettent de résister aux pannes permanentes et doivent être considérés quand
une interruption de service, même temporaire, est inacceptable. Au contraire, quand des
interruptions de service à la fois courtes et rares peuvent être acceptées (courtes et rares
comparées à la disponibilité globale du service), les algorithmes stabilisants offrent une
approche plus légère pour résister aux pannes transitoires. Un exemple de cette approche
est l’autostabilisation.

L’autostabilisation [Dij74, Dij86] est une approche polyvalente qui permet aux systèmes
distribués de résister aux pannes transitoires. Après la fin des pannes transitoires, les pro-
cessus, même ceux n’ayant pas été frappés par une panne, peuvent avoir un comportement
incorrect. Si le système est autostabilisant, il retrouve en temps fini un comportement
correct, sans aucune aide extérieure (en particulier, sans intervention humaine). Notez
que la récupération ne dépend ni de la nature (c’est-à-dire, si les pannes affectent des
processus et/ou des liens de communications) ni de leur étendue (c’est-à-dire, combien
de composants sont touchés). Seules les modifications du code des processus sont exclues.
La polyvalence de l’autostabilisation a deux principaux inconvénients. Premièrement, la
spécification du système n’est pas assurée pendant la convergence, autrement dit il n’y a
pas de garanties de sûreté pendant celle-ci. De plus, les processus ne sont pas capables
de détecter localement la fin de la convergence. Il est donc impossible d’assurer une
détection de terminaison. Pour contrer les inconvénients de l’autostabilisation, plusieurs
variantes ont été proposées, comme par exemple, la stabilisation instantanée [BDPV07]
ou la superstabilisation [DH97].

A.2 Contributions

Dans cette thèse, nous étudions des problèmes classiques de l’algorithmique distribuée
dans des contextes incertains. Par incertain, nous désignons des contextes d’exécution de
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systèmes distribués qui ne sont pas complètement connus au départ ou qui sont chan-
geants. Nous nous focalisons sur deux types d’incertitudes : les processus qui ne sont pas
complètement identifiés et la présence de pannes. Plus précisément, nous explorons deux
axes de recherche :

• aller vers plus d’anonymat en proposant des algorithmes déterministes pour les
réseaux de processus homonymes et anonymes,

• assurer plus de garanties de sûreté pendant la convergence d’algorithmes déterministes
autostabilisants.

tout en proposant des solutions efficaces.

Après avoir introduit le contexte et un état de l’art élargi dans le chapitre 1, le cha-
pitre 2 présente les modèles de calcul sur lesquels se base l’ensemble des contributions.
Nous détaillons dans la suite de ce résumé les contributions (sections A.2.1-A.2.4) cor-
respondant aux chapitres 3 à 6, avant de conclure par des perspectives en section A.3
(chapitre 7).

A.2.1 Élection de leader dans des anneaux unidirectionnels de
processus homonymes

La première contribution de cette thèse se focalise sur l’élection de leader dans des
anneaux statiques unidirectionnels contenant des processus homonymes, autrement dit
les processus sont identifiés mais plusieurs processus peuvent avoir le même ID, appelé
étiquette dans ce contexte. Nous utilisons ici le modèle à passage de messages.

Nous prouvons que l’élection de leader avec terminaison implicite est impossible à
résoudre dans un anneau unidirectionnel dont l’étiquetage est symétrique. Par conséquent,
nous considérons les anneaux dont l’étiquetage est asymétrique. Nous montrons qu’il est
impossible de résoudre l’élection de leader avec terminaison explicite dans la classe U∗
qui contient tous les anneaux unidirectionnels avec au moins une unique étiquette. Par
conséquent, il est impossible de résoudre l’élection de leader avec terminaison explicite
dans la classe A de tous les anneaux unidirectionnels avec un étiquetage asymétrique.
Nous prouvons également qu’il est impossible de résoudre l’élection de leader avec termi-
naison implicite dans la classe Kk qui contient les anneaux unidirectionnels ne contenant
pas plus de k ≥ 1 processus ayant la même étiquette. En effet, Kk contient des anneaux
symétriques.

Par la suite, nous proposons trois algorithmes Uk, Ak et Bk. L’algorithme Uk est un
algorithme d’élection de leader avec terminaison explicite pour la classe U∗ ∩ Kk, pour
tout k ≥ 1. Il est asymptotiquement optimal en temps avec Θ(kn) unités de temps
et en mémoire puisqu’il nécessite O(log k + b) bits par processus, où b est le nombre
de bits nécessaires pour stocker une étiquette. Sa complexité en message est O(kn).
Les algorithmes Ak et Bk résolvent tous les deux l’élection de leader avec terminaison
explicite pour la classe A ∩ Kk, pour tout k ≥ 1. Ak est asymptotiquement optimal en
temps (Θ(kn) unités de temps) mais requiert O(knb) bits par processus et O(kn2) envois
de messages. Au contraire, Bk est asymptotiquement optimal en mémoire (O(log k + b)
bits par processus) mais sa complexité en temps est O(k2n2) et sa complexité en message
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est O(k2n2).

A.2.2 Élection de leader autostabilisante sous démon
inéquitable

Tout comme dans le chapitre 3, nous considérons dans le chapitre 4 le problème de
l’élection de leader, mais dans un contexte différent. Nous proposons un algorithme
d’élection de leader autostabilisant silencieux, nommé LE , pour tout réseau statique et
identifié de topologie arbitraire, connectée et bidirectionnelle. L’algorithme LE est écrit
dans le modèle à états, ne requiert aucune connaissance globale sur le réseau (par exemple,
aucune borne supérieure sur le nombre de processus ou le diamètre) et suppose le démon
distribué inéquitable.

Depuis une configuration arbitraire, LE converge vers une configuration terminale en
au plus 3n + D rondes, où D est le diamètre du réseau, et nous exhibons un réseau
pour tout n ≥ 4 et tout D tel que 2 ≤ D ≤ n − 2 dans lequel il existe une exécution
durant exactement 3n+D rondes. Dans cette configuration terminale, tous les processus
connaissent l’ID du leader et un arbre couvrant enraciné au leader est défini. LE est
asymptotiquement optimal en mémoire avec Θ(log n) bits par processus.

Nous montrons que LE stabilise en un nombre polynomial de pas de calcul. En effet,
il converge en Θ(n3) pas. Nous étudions la complexité en pas de calcul des algorithmes
précédents ayant les meilleurs performance sous les mêmes conditions, c’est-à-dire, sans
connaissance globale exigée et prouvés sous démon distribué inéquitable. Pour tout n ≥ 5,
nous prouvons qu’il existe un réseau dans lequel il y a une exécution de l’algorithme

proposé dans [DLV11a], noté ici DLV1, qui stabilise en Ω(2b
n−1
4 c) pas. De même, nous

prouvons que pour un α ≥ 3 donné, pour tout β ≥ 2, il existe un réseau de n = 2α × β
processus dans lequel il y a une exécution possible de l’algorithme proposé dans [DLV11b],
noté ici DLV2, qui stabilise en Ω(nα+1). Par conséquent, les temps de stabilisation de
DLV1 and DLV2 en nombre de pas de calcul ne sont pas polynomiaux.

A.2.3 Stabilisation progressive sous (τ, ρ)-dynamicité et
unisson

Dans le chapitre 5, nous proposons une variante de l’autostabilisation, nommée stabilisa-
tion progressive sous (τ, ρ)-dynamicité. Cette variante est spécialement conçue pour les
réseaux dynamiques. En effet, un algorithme est progressivement stabilisant sous (τ, ρ)-
dynamicité s’il est autostabilisant et s’il satisfait les propriétés supplémentaires suivantes.
Après au plus τ pas dynamiques de type ρ en partant d’une configuration légitime, un
algorithme progressivement stabilisant retrouve tout d’abord très rapidement une confi-
guration depuis laquelle une garantie de sûreté minimum est assurée. Ensuite, il converge
progressivement vers des spécifications offrant une qualité de service de plus en plus im-
portante, jusqu’à retrouver une configuration depuis laquelle les deux conditions suivantes
sont vérifiées. Sa spécification initiale est satisfaite et, si au plus τ pas ρ-dynamiques af-
fectent à nouveau le système, il est prêt à réaliser une convergence progressive.

Nous illustrons cette nouvelle propriété en proposant un algorithme progressivement

230



A.3. Perspectives

stabilisant, noté DSU , pour le problème de l’unisson. DSU est conçu dans le modèle à
états pour tout réseau anonyme de topologie arbitraire initialement connectée et il sup-
pose le démon distribué inéquitable. Il est progressivement stabilisant sous (1,BULCC)-
dynamicité. Un pas BULCC-dynamique contient un nombre fini mais non-borné de chan-
gements topologiques tel que, après un tel pas, le réseau : (1) contient au plus N processus
(N est une borne supérieure sur le nombre de processus dans le système à tout moment),
(2) est connecté et (3) si la période des horloges α est strictement plus grande que 3,
tous les processus ayant rejoint le système doivent être liés à au moins un processus qui
était déjà dans le système avant le pas dynamique (sauf si tous ces processus ont quitté
le système). (Nous étudions la nécessité de ces conditions.) En partant d’une configura-
tion satisfaisant l’unisson fort (il y a au plus deux valeurs différentes d’horloges et ces
valeurs sont consécutives), si un pas BULCC-dynamique affecte le système, DSU satisfait
immédiatement l’unisson partiel (les horloges de deux processus voisins diffèrent d’au plus
un incrément, sauf pour les processus entrants). Puis, en une ronde, il satisfait l’unisson
faible (les horloges de tous processus voisins diffèrent d’au plus un incrément) et converge
vers l’unisson fort en (µ + 1)D1 + 2 rondes, où µ est un paramètre supérieur ou égal à
max(2, N) et D1 est le diamètre du réseau après le pas dynamique.

A.2.4 Concurrence et allocation de ressources

Finalement, dans le chapitre 6, nous proposons une propriété appelée concurrence maxi-
male pour caractériser le niveau de concurrence qui peut être réalisé dans les problèmes
d’allocation de ressources. Cette notion généralise des notions similaires préalablement
définies pour des problèmes spécifiques, par exemple, `-interblocage [FLBB79] définie
pour la `-exclusion et la (k, `)-vivacité [DHV03] définie pour la k-parmi-` exclusion.

Nous montrons que, même si la concurrence maximale peut être réalisée dans cer-
tains problèmes comme la `-exclusion [FLBB79], il est impossible de l’atteindre dans
une grande classe de problèmes d’allocation de ressources nommée allocation de res-
sources locales (LRA). Néanmoins, nous prouvons que la concurrence forte, un niveau
de concurrence haut mais pas maximal, peut être réalisé dans le problème de la LRA.
Plus précisément, nous proposons un algorithme fortement concurrent et instantanément
stabilisant de LRA, nommé LRA ◦ T C, pour les réseaux connectés bidirectionnels de
topologie quelconque. LRA ◦ T C est écrit dans le modèle à états et suppose un démon
faiblement équitable.

A.3 Perspectives

Les perspectives de cette thèse comportent trois axes de recherche principaux.

Homonymes et autostabilisation. Le modèle des processus homonymes a été très
peu étudié. En particulier, à notre connaissance, aucun algorithme autostabilisant n’a été
proposé pour les réseaux contenant des processus homonymes. Cependant, nos résultats
du chapitre 3, en particulier l’algorithme Ak, semblent très prometteur pour un passage à
l’autostabilisation. Ainsi, une perspective de cette thèse est la conception d’algorithmes
autostabilisants pour les réseaux homonymes, tout d’abord pour l’élection de leader, puis
pour d’autres problèmes.
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Stabilisation progressive. Dans le chapitre 5, nous proposons une nouvelle propriété
pour les réseaux dynamiques, la stabilisation progressive sous (τ, ρ)-dynamicité et nous
illustrons cette propriété pour τ = 1 avec un algorithme d’unisson. La généralisation
pour τ > 1 reste une question ouverte. De plus, réaliser cette propriété piur d’autres
problèmes (dynamiques) est une extension naturelle qui pourrait mener à une meilleure
compréhension et donc permettre la généralisation de l’approche par la conception d’un
transformateur (c’est-à-dire un algorithme qui procurerait la propriété de stabilisation
progressive à des algorithmes simplement autostabilisants).

Concurrence. Comme indiqué dans le chapitre 6, la question de la concurrence dans
les problèmes d’allocation de ressources a été peu étudiée. Pourtant, elle est fondamentale
pour maximiser l’utilisation des ressources et minimiser le temps d’attente des processus
demandeurs. Il a été prouvé que le niveau maximal de concurrence (appelé ici concur-
rence maximale) ne peut être réalisé dans de nombreux problèmes, plus précisément en
k-parmi-` exclusion, en coordination de comités et en allocation de ressources locales
(voir chapitre 6). Les seuls problèmes pour lesquels nous savons que la concurrence maxi-
male est réalisable sont la `-exclusion [FLBB79] et trivialement l’exclusion mutuelle. Par
conséquent, le niveau de concurrence qui peut être obtenu dans d’autres problèmes d’al-
location de ressources, l’exclusion mutuelle de groupe ou le problème des philosophes qui
boivent, mérite d’être étudié.
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Abstract

Distributed systems become increasingly wide and complex, while their usage extends to
various domains (e.g., communication, home automation, monitoring, cloud computing).
Thus, distributed systems are executed in diverse contexts. In this thesis, we focus on
uncertain contexts, i.e., the context is not completely known a priori or is unsettled. More
precisely, we consider two main kinds of uncertainty: processes that are not completely
identified and the presence of faults. The absence of identification is frequent in large
networks composed of massively produced and deployed devices. In addition, anonymity
is often required for security and privacy. Similarly, large networks are exposed to faults
(e.g., process crashes, wireless connection drop), but the service must remain available.

This thesis is composed of four main contributions. First, we study the leader election
problem in unidirectional rings of homonym processes, i.e., processes are identified but
their ID is not necessarily unique. Then, we propose a silent self-stabilizing leader election
algorithm for arbitrary connected network. This is the first algorithm under such conditions
that stabilizes in a polynomial number of steps. The third contribution is a new stabilizing
property designed for dynamic networks that ensures fast and gradual convergences after
topological changes. We illustrate this property with a clock synchronizing algorithm.
Finally, we consider the issue of concurrency in resource allocation problems. In particular,
we study the level of concurrency that can be achieved in a wide class of resource allocation
problem, i.e., the local resource allocation.

Keywords. Distributed algorithms, fault-tolerance, self-stabilization, anonymity, dynamic
networks.

Résumé

Les systèmes distribués sont de plus en plus grands et complexes, alors que leur utilisa-
tion s’étend à de nombreux domaines (par exemple, les communications, la domotique, la
surveillance, le “cloud”). Par conséquent, les contextes d’exécution des systèmes distribués
sont très divers. Dans cette thèse, nous nous focalisons sur des contextes incertains, au-
trement dit, le contexte n’est pas complètement connu au départ ou il est changeant. Plus
précisément, nous nous focalisons sur deux principaux types d’incertitudes : une identi-
fication incomplète des processus et la présence de fautes. L’absence d’identification est
fréquente dans de grands réseaux composés d’appareils produits et déployés en masse. De
plus, l’anonymat est souvent une demande pour la sécurité et la confidentialité. De la même
façon, les grands réseaux sont exposés aux pannes comme la panne définitive d’un processus
ou une perte de connexion sans fil. Néanmoins, le service fourni doit rester disponible.

Cette thèse est composée de quatre contributions principales. Premièrement, nous
étudions le problème de l’élection de leader dans les anneaux unidirectionnels de processus
homonymes (les processus sont identifiés mais leur ID n’est pas forcément unique). Par la
suite, nous proposons un algorithme d’élection de leader silencieux et autostabilisant pour
tout réseau connecté. Il s’agit du premier algorithme fonctionnant sous de telles condi-
tions qui stabilise en un nombre polynomial de pas de calcul. La troisième contribution est
une nouvelle propriété de stabilisation conçue pour les réseaux dynamiques qui garantit
des convergences rapides et progressives après des changements topologiques. Nous illus-
trons cette propriété avec un algorithme de synchronisation d’horloges. Finalement, nous
considérons la question de la concurrence dans les problèmes d’allocation de ressources. En
particulier, nous étudions le niveau de concurrence qui peut être atteint dans une grande
classe de problèmes d’allocation de ressources, l’allocation de ressources locales.

Mots-clés. Algorithmes distribués, tolérance aux pannes, autostabilisation, anonymat,
réseaux dynamiques.
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