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Abstract
Computational Methods for Event-Based signals and Applications: abstract

Computational Neurosciences are a great source of inspiration for data processing and com-
putation. Nowadays, how great the state of the art of computer vision might be, it is still way less
performant that what our brains or the ones from other animals or insects are capable of. This
thesis takes on this observation to develop new computational methods for computer vision and
generic computation relying on data produced by event-based sensors such as the so called “silicon
retinas”.

These sensors mimic biology and are used in this work because of the sparseness of their data
and their precise timing: information is coded into events which are generated with a microsec-
ond precision. This opens doors to a whole new paradigm for machine vision, relying on time
instead of using images. We use these sensors to develop applications such as object tracking or
recognition and feature extraction. We also used computational neuromorphic platforms to better
implement these algorithms which led us to rethink the idea of computation itself.

This work proposes new ways of thinking computer vision via event-based sensors and a new
paradigm for computation. Time is replacing memory to allow for completely local operations,
enabling highly parallel machines in a non-Von Neumann architecture.

Méthodes de Calcul pour les Signaux Événementiels et Applications : résumé

Les neurosciences computationnelles sont une grande source d’inspiration pour le traitement
de données. De nos jours, aussi bon que soit l’état de l’art de la vision par ordinateur, il reste moins
performant que les possibilités offertes par nos cerveaux ou ceux d’autres animaux ou insectes.
Cette thèse se base sur cette observation afin de développer de nouvelles méthodes de calcul pour
la vision par ordinateur ainsi que pour le calcul de manière générale reposant sur les données
issues de capteurs événementiels tels que les “rétines artificielles”.

Ces capteurs copient la biologie et sont utilisés dans ces travaux pour le caractère épars de leurs
données ainsi que pour leur précision temporelle : l’information est codée dans des événements
qui sont générés avec une précision de l’ordre de la microseconde. Ce concept ouvre les portes
d’un paradigme complètement nouveau pour la vision par ordinateur, reposant sur le temps plutôt
que sur des images. Ces capteurs ont été utilisés pour développer des applications comme le
suivi ou la reconnaissance d’objets ou encore de l’extraction de motifs élémentaires. Des plate-
formes de calcul neuromorphiques ont aussi été utilisées pour implémenter plus efficacement ces
algorithmes, nous conduisant à repenser l’idée même du calcul.

Les travaux présentés dans cette thèse proposent une nouvelle façon de penser la vision par
ordinateur via des capteurs événementiels ainsi qu’un nouveau paradigme pour le calcul. Le temps
remplace la mémoire permettant ainsi des opérations complètement locales, ce qui permet de
réaliser des machines hautement parallèles avec une architecture non-Von Neumann.
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Introduction

SINCE the late 1980s with the work of Carver Mead [1, 2, 3], the field of Neuromorphic
Engineering has been a growing field focusing on several applications [4, 5, 6, 7, 8],
from auditory processing to vision and processing chips. This Ph.D. work is however
mainly focused on biomimetic event-driven time-based vision sensors such as the ones

developped in [9, 10].

Event Based cameras - like the biological retina - are driven by events happening within the
visual scene instead of artificially created timings like conventional vision sensors. When my
Ph.D. work started, we were using the DVS silicon retina [11] to begin exploring this frame-
less acquisition principle. We started rapidly rethinking and translating standard computer vision
algorithms from the conventional concept of frames to a pure time based framework.

During this work, it became clear that a deep understanding of the sensor was necessary to
develop robust processing event based techniques. We were then joined by chip designers who
had been developing their own silicon retina: the ATIS [12, 13]. My involvement in the proto-
typing of the different versions of the ATIS PCB enabled me to know more about the chip and
brought me useful insights in its principle of operations. This also fueled the idea of developing
a multithreaded software architecture to develop algorithms for these cameras. This led to the
development of kAER, a SDK able to manage event based processing, easy prototyping and real-
time implementation of all the algorithms developed in the team. During my Ph.D., I continued
updating and improving the software, until its recent acquisition by the Lab’s spinoff Chronocam.

The beginning of my Ph.D. was focused on tracking moving object and defining some new
kind of features adapted to event-based signals.

In Chapter 1, we focus on object tracking and introduce two methods using the dynamic con-
tent of a stream of events produced by an asynchronous camera such as the DVS or the ATIS.
The change detection properties of the sensor natively allow these techniques to be very robust to
different lighting conditions thus allowing unprecedented performances.

The first technique introduced in this work is to approximate cluster of events by mathematical
objects such as Gaussian shapes. It enables to simultaneously track the position and the shape of
an object in the focal plane.

The second technique extends the method to any arbitrary kernel. The process only needs few
requirements to operate. The trackers are then not only tracking objects but are also detecting
shapes in the field of view of the sensor. This detection is made possible by the organization of
the trackers in a pool. Prototypes of trackers are covering the whole focal plane, ready to track an
object that would match their kernels. If such an object is detected, the tracker gets activated and
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starts following this particular object or feature in the scene until it disappears and the tracker is
destroyed. Very low computational power is needed by each tracker, this then allows to compute
in real-time a larger number of such trackers. Several pools of trackers can be used at the same
time to either track different objects or different scales of the same object.

In the work of Chapters 2 and 3, we focused on feature extraction. Similarly to existing
computer vision concepts, common feature extraction techniques are adapted to frames, and more
than not being directly applicable on events, they completely ignore the dynamics of a scene.
Exploiting both spatial and temporal information contained in the output of neuromorphic sensors
was then a key point of the features we have developped.

In Chapter 2, we use an unsupervised neural network based on a set of Echo-State Networks
(ESN). These recurrent neural networks are capable of extracting dynamics from their input. The
proposed architecture consists of a number of these networks where events are sent to their inputs.
Each ESN goal is to predict the evolution of its input. ESN also compete, only the best predictor is
allowed to learn the presented input at a given time. This selection process results in the special-
ization of each network in the prediction of particular patterns. One can then deduce the presence
of a particular pattern, or feature, in the input scene when a given network is selected. Because of
the recurrent connections of the ESNs, the extracted feature is not only spatial but also temporal.

In Chapter 3, we pushed the idea further by directly including this temporal information in a
representation of the events. Each input spike from the sensor is associated to a context describing
the recent history of its neighboring pixels. All contexts can be clustered in an unsupervised
manner around a given number of centers. These centers can then be seen as a set of spatio-
temporal features describing the scene that the camera is looking at. From these, it is possible to
build a hierarchical architecture relying on several layers of such context building and clustering.
This increases the complexity of the contexts by increasing their timescale and spatial size. At the
end, the feature activation of the last layer of this architecture contains a high-level spatio-temporal
information about the presented stimuli.

The proposed algorithms are very promising and well adapted to the event-based representa-
tion of the visual information produced by neuromorphic cameras. However, they are not well
suited for computation on standard computers. Their local properties and asynchronous nature al-
low them to be natural candidates for highly-parallel platforms. Standard off-the-shelf computers
are mostly linear pipelines processing all the input events sequentially. This lack of adequation
between our algorithms and the platforms used to implement them motivated us to start looking
in other directions. The first step was to find new computing platforms, highly-parallel and as
asynchronous as possible. A good candidate is the SpiNNaker platform [14]. This platform is
consituted of numerous small processors (the final version aims at embedding 1 million proces-
sors) linked together on a fabric designed for high-speed communication of small packet, from one
end of the system to another. To enable fast prototyping with this platform, the SpiNNaker team
provides a SDK allowing to implement neural networks and to configure a SpiNNaker machine.
Unfortunately, the available SDK did not cover all our needs, we therefore started exploring and
extending the SDK ourselves. This is the main focus of the 2 following chapters.

In Chapter 4, we worked on an improvement of the implementation of plasticity implemen-
tation on SpiNNaker, learning having such a central part in several of our algorithms. Instead of
mixing the code simulating neural populations and the code managing synaptic weights in the net-
work, we separated the two in different processors. This allows to optimize the memory accesses
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needed to route spikes between cores for simulating the network itself and the ones needed to
update the weights and connections. The capabilities of this method were demonstrated on several
examples of the literature and results show a large improvement over the standard implementation
of plasticity provided with the official SpiNNaker software.

In Chapter 5, we tackled the problem of time resolution. When designing the official SpiN-
Naker software, the choice was made to simulate all the neural networks with a millisecond time
precision as a trade-off between several constraints of the machine. This is enough for lots of appli-
cations but very limiting for others such as auditory applications. Sound localization for instance,
requires a time precision in the order of the hundred of microseconds or less. After characterizing
the time constraints of the communication fabric of the SpiNNaker machines, we proposed a new
implementation of the simulation infrastructure to obtain fully asynchronous models which can
then cope with a microsecond time resolution. To continue on what was achieved in the previous
chapter, plasticity was also reimplemented usng these time scales.

Being able to use such a highly-parallel platform as SpiNNaker brought us a very interesting
insights into the problems encountered with such systems. It was clear, we had to go further and
take another step forward. Taking standard processors and linking them together, even as smartly
as the SpiNNaker team does is not enough. The machine itself has to be thought again.

No more memory, only time.

This is the focus of Chapter 6. Using a time-based representation of data and neuron-like units
(using the same principles and basic rules as biological neurons), we derive neural-like circuits
able to compute using data expressed as time intervals. This lays the development of a non von
Neumann architecture of a neuromorphic computer. The framework uses spiking neurons to store
data, compute any linear or non linear operators and relational tools. From there any algorithm can
be implemented easily. The computing system is parallel, neuromorphic and it produces data only
when necessary. This framework offers a way to systematically program large neural circuits.

All of the chapters presented in this document have led to publications [15, 16, 17, 18] as well
as many rewarding collaborations [19, 20, 21, 22, 23]. A full list of publications, including some
not yet published papers can be found in Appendix A as well as a list of patents related to the work
I have done during my Ph.D. in Appendix B.
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Chapter 1

Asynchronous Event-Based
Multi-kernel Algorithm for High Speed

Visual Features Tracking
This chapter presents a number of new methods for visual tracking using the output of

an event-based asynchronous neuromorphic dynamic vision sensor. It allows the
tracking of multiple visual features in real-time, achieving an update rate of several

hundred kilohertz on a standard desktop PC. The approach has been specially adapted
to take advantage of the event-driven properties of these sensors by combining both
spatial and temporal correlations of events in an asynchronous iterative framework.

Various kernels, such as Gaussian, Gabor, combinations of Gabor functions and
arbitrary user-defined kernels are used to track features from incoming events. The
trackers described in this work are capable of handling variations in position, scale

and orientation through the use of multiple pools of trackers. The tracking performance
was evaluated experimentally for each type of kernel in order to demonstrate the

robustness of the proposed solution.
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1.1 Introduction

Visual object recognition and tracking is useful in many applications, such as video surveillance,
traffic monitoring, motion analysis, augmented reality and autonomous robotics. Most object
tracking techniques rely on sequences of static frames which limits algorithmic efficiency when
dealing with highly dynamic scenes. Conventional frame-based video cameras can acquire data at
frequency as high as several tens of kilohertz, nevertheless this amount of data remains difficult
to process in real-time due to the large amount of redundant acquired information. Real-time
processing at high acquisition rates usually requires different techniques such as: sub-sampling
of the field of view [24], the use of specific hardware implementations or a restriction to simple
tracking algorithm such as image’s centroid and moments computation [25].

This chapter presents an event-based approach to fast visual tracking of features using the
output of an asynchronous neuromorphic event-based camera. Neuromorphic cameras (sometimes
called silicon retinas) mimic the biological visual systems [10][9]. The Asynchronous Time-based
Image Sensor (ATIS) camera used in this work reacts to changes of scene contrast and records only
dynamic information, thus reducing the data quantity [13][12]. The presented algorithms rely on
the change detection circuit of the ATIS, namely it only deals with relative change events. It can
also be applied to other sensors such as the Dynamic Vision Sensor (DVS) [9] on which the ATIS
is based.

The presented tracking algorithm is computationally inexpensive and is thus capable of track-
ing objects and updating their properties at rates in the order of hundreds of kilohertz. Firstly,
an asynchronous event-based Gaussian blob tracking algorithm is developed and examined. The
properties of the Gaussian kernel allow adaptation to the events’ spatial distribution by contin-
uously correcting the Gaussian size, orientation and location with each incoming event. This
provides the object’s position, size, and orientation simultaneously. In a second stage, the model
is extended by using oriented Gabor kernels that allow tracking specific oriented edges. This work
also considers the combination of several oriented kernels that are useful in tracking specific focal
plane structures such as corners. Finally, a general kernel approach is presented. It can use almost
any arbitrary kernel and can be seen as a generalization of the process, with the only constraint
that their center of mass has to be aligned with the center of the kernels (see section 1.3.3.4).

1.2 Time encoded imaging

Biomimetic event-driven time-based vision sensors are a novel class of vision device that - like
the biological retina - are driven by "events" happening within the visual scene. They are not like
conventional vision sensors, which are driven by artificially created timing and control signals (e.g.
frame clock) that have no relation whatsoever to the source of the visual information [26]. Over
the past few years, a variety of these event-based devices has been developed, including temporal
contrast vision sensors that are sensitive to relative luminance change [13, 27, 26], gradient-based
sensors sensitive to static edges [28], and optical-flow sensors [29]. Most of these vision sensors
output visual information about the scene in the form of asynchronous address events using the
Address Event Representation (AER) protocol [30] and encode the visual information in the time
dimension rather than as a voltage, charge, or current. The presented pattern tracking method is
designed to work on the data delivered by such a time-encoding sensor and takes full advantage of
the high temporal resolution and the sparse data representation.
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The ATIS used in this work is a time-domain encoding vision sensors with 304x240 pixels
resolution. [12]. The sensor contains an array of fully autonomous pixels that combine an illumi-
nance relative change detector circuit and a conditional exposure measurement block.
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3.3 The A T IS sensor 

Besides limited temporal resolution, data redundancy is another major drawback of 

conventional frame-based image sensors where each frame carries the information from all 

pixels, regardless of whether or not this information has changed since the last frame had been 

acquired. This approach obviously results, depending on the dynamic contents of the scene, in a 

more or less high degree of redundancy in the recorded image data, unnecessarily inflating data 

rate and volume. The adverse effects of this data redundancy, common to all frame-based image 

acquisition techniques, can be tackled in several different ways. The biggest conceivable gain 

however is achieved by simply not recording the redundant data in the first place, thus reducing 

energy, bandwidth/memory requirements, and computing power in data acquisition, 

transmission and processing.  

Again biology is leading the way to a more efficient style of image acquisition. In addition 

to a 3-layer model of the Magno-cellular pathway like in the DVS, a simplified functional 

Parvo-cellular pathway model is built into the pixel circuit. ATIS (Asynchronous, Time-based 

Image Sensor) is the first image and vision sensor that combines several functionalities of the 

biological "where" and "what" systems with multiple bio-inspired approaches such as event-

based time-domain imaging, temporal contrast dynamic vision and asynchronous, event-based 

information encoding and data communication [27]-[29]. 

 

F ig. 3  Functional diagram of an AT"#$%&'()*$+,-$./%(0$-1$20/3456-3-70$80%&9(:$(;(3.0<$(34-=&3>$4523>($

and brightness information, are generated and transmitted individually by each pixel in the imaging array.  

 

The sensor is based on an array of fully autonomous pixels that combine a change detector 
and a conditional exposure measurement device. The change detector individually and 

asynchronously initiates the measurement of a new exposure/grayscale value only if ! and 

immediately after ! a brightness change of a certain magnitude has been detected in the field-of-

view of the respective pixel. The exposure measurement circuit in each pixel encodes the 

absolute instantaneous pixel illuminance into the timing of asynchronous spike pulses, more 

precisely into inter-spike intervals (Fig. 3). This principle, sometimes referred to as 

asynchronous pulse-width-modulation (PWM) imaging [32], is based on direct photocurrent 

integration and employs a newly developed time-domain correlated double sampling technique 

for noise and offset suppression [33]. The pixel does not rely on external timing signals and 

autonomously requests access to an asynchronous and arbitrated output channel only when it 

Figure 1.1: Functional diagram of an ATIS pixel [13]. Two types of asynchronous events, encod-
ing change and brightness information, are generated and transmitted individually by each pixel

in the imaging array.

As shown in the functional diagram of the ATIS pixel in Fig. 1.1, the relative change detector
individually and asynchronously initiates the measurement of an exposure/gray scale value only
if - and immediately after - a brightness change of a certain magnitude has been detected in the
field-of-view of the respective pixel. The exposure measurement circuit in each pixel individually
encodes the absolute instantaneous pixel illuminance into the timing of asynchronous event pulses,
represented as inter-event intervals.

Since the ATIS is not clocked like a conventional camera, the timing of events can be conveyed
with a very accurate temporal resolution in the order of microseconds. The time-domain encoding
of the intensity information automatically optimizes the exposure time separately for each pixel
instead of imposing a fixed integration time for the entire array, resulting in an exceptionally high
dynamic range and improved signal to noise ratio. The pixel-wise change detector driven operation
yields almost ideal temporal redundancy suppression, resulting in a maximally sparse encoding of
the image data.

In what follows we will rely only on change detector events as the timings of events is the
main needed information to perform tracking.

1.3 Multi kernel event-based features tracking

This section describes the tracking algorithms developped in this work. After reviewing the state
of the art of asynchronous tracking using event-base silicon retinas, we describe how bivariate
normal distributions are used to track clouds of events. Then, we will generalize our approach to
more arbitrary kernels. The next two sub-sections tackle the problem of tracking several objects
at once in a scene and how several trackers interact with one another in a pool mechanism. To
conclude this section, a global algorithm is presented and a number of possible optimizations are
proposed.
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1.3.1 State of the Art

Image segmentation, feature extraction, optical flow and high level motion filters are usually used
to track moving objects but they are known to be computationally expensive tasks. Real-time
processing with frame rates reaching several hundreds of hertz can lead to more robust tracking
algorithms [31]. However, it is currently an almost impossible task to perform such tasks in
real-time unless dedicated hardware is used. Dedicated hardware solutions introduce additional
implementation complexity that limits the efficiency of such vision algorithms. Processing at such
a high frame rate is only applicable for tackling simple tasks such as the detection of the center of
mass (or centroid) of moving objects [32, 33].

The newly developed event-based silicon retinas (Dynamic Vision Sensor [26], Asynchronous
Time-based Image Sensor [13]) inspired by the physiology of biological retinas are promising
sensors for fast vision applications. These sensors convey a sparse stream of asynchronous time-
stamped events suitable for object tracking as only dynamic information is captured. Several
tracking algorithms have been developed for this type of sensor. An event clustering algorithm is
introduced for traffic monitoring, where clusters can change in size but are restricted to a circu-
lar form [34, 35]. A fast sensory motor system has been built to demonstrate the sensor’s high
temporal resolution properties in [36]. Several event-based algorithms and a remarkable JAVA
framework for the Dynamic Vision Sensor can be found at [37]. In [38], a pencil balancing robot
is developed to stabilize a pencil using a fast event-based Hough transform. The sensor has been
recently applied to track particles in microrobotics [39] and in fluid mechanics [40]. It was also
used to track a micro-gripper’s jaws to provide a real-time haptic feedback from the micro meter
scale world (lengths and sizes of objects around 1e-6m) [41].

To date, the currently developed methods that operate on events focus on the extraction of
features such as lines in the whole focal plane. In other cases, they are too general to deal with
particular cases where trackers should locally follow a specific oriented edge or a local shape.
We will thus extend this methods to provide a more general framework allowing the tracking of
specific local features using an event-based methodology. The tracking approach proposed here
is inspired by the mean-shift technique that has also been extensively used in conventional frame-
based visual tracking [42, 43, 44].

1.3.2 Gaussian Blob tracking

A stream of visual events can be mathematically defined as follows: let ev(u, t) = [u, t, pol]T be a
quadruplet giving the pixel position u = [x,y]T , the time t of the event and pol, its polarity that can
be �1 or 1. When an object moves, the pixels generates events which geometrically form a point
cloud that represents the spatial distribution of the observed shape. A moving object generates
events that follow a spatial distribution that can be, in a first stage, roughly approximated by a
bivariate normal distribution N (µ,S), also called bivariate Gaussian distribution). The parameters
of N (µ,S) provide the object’s position, size and orientation. The Gaussian mean µ indicates the
object’s position while the covariance matrix S represents its size and orientation. Let us suppose
that several Gaussian trackers have already been initialized on the focal plane’s locations of several
moving objects. When a new event occurs, it is assigned a score (up to the normalization term) for
each tracker, inspired by the probability this event would be generated by the Gaussian distribution
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associated to this tracker which can be calculated by :

pi(u) =
1

2p

|Si|�
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2 e�
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2 (u�µi)T

S

�1(u�µi) (1.1)

where u = [x,y]T is the pixel location of the event. µi = [µix,µiy]T represents the ith tracker’s
location and Si 2 R2⇥2 is its covariance matrix:
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Fig. 1.2 is showing an example of a ellipse shape tracked by such a Gaussian tracker.
If one of the computed scores is superior to a predefined threshold pi(u) > dp (usually set to

0.1), then this tracker will adapt its parameters to follow this incoming event. If several trackers
respond to the same event, the one with the maximum score is always chosen. After the most
probable tracker has been selected, its parameters can be updated using a simple weighting strategy
by integrating the last distribution with the current event information (see Eq (1.3) and (1.4)).
Since only the chosen tracker is examined hereafter, the subscript i indicating the tracker number
is omitted for clarity. The position and size of a Gaussian tracker can be updated as follows:

µt = a1µt�1 +(1�a1)u (1.3)

St = a2St�1 +(1�a2)DS (1.4)

where a1 and a2 are the update factors. They should be adjusted according to the event rate and
the nature of the observed scene. These values are typically set between 10�2 and 10�1 and are
chosen according to the size and velocity of the tracked objects. Namely how many events should
be received to drag the shape from its old position to the new one and to change its size and shape
according to the incoming events’ rates.
The covariance difference DS is computed using the current tracker’s location µt = [µtx,µty]T and
event’s location u:

DS =


(x�µtx)2 (x�µtx)(y�µty)

(x�µtx)(y�µty) (y�µty)2

�
. (1.5)

Finally, we define the activity of each tracker Ai that is updated at each incoming event ev(u, t),
following an exponential decay function which describes the temporal dimension of the Gaussian
kernel.

Ai(t) =

8
>>>><

>>>>:

Ai(t�Dt)e�
Dt
t + pi(u),

if ev(u, t) belongs to tracker i
Ai(t�Dt)e�

Dt
t ,

otherwise.

(1.6)

where Dt is the time difference between current and previous events and t tunes the temporal ac-
tivity decrease. This activity measure is useful for inhibition and repulsion procedures that will be
explained latter. It allows us to shape the interaction between trackers.
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Figure 1.2: Error ellipse of the covariance matrix of a Gaussian tracker following a black ellipse
moving under a white background. Position, size and orientation of the tracker automatically adapt

to the visual stimuli. Black and white dots represent respectively OFF and ON events.

Remark

The object’s size and orientation can be retrieved by computing the principal components of the
covariance matrix. Computationally, the lengths of the error ellipse’s axes are the two principal
components of the covariance matrix, which can be explicitly calculated by decomposing the two
eigenvalues lmin and lmax. The semi-axes a and b and the orientation angle a of the ellipse can be
computed as follows:

a = K
p

lmax (1.7)

b = K
p

lmin (1.8)

a =
1
2

arctan(
2sxy

s

2
y�s

2
x
) (1.9)

where K is a scaling factor describing the distribution’s confidence level. K is given by the con-
fidence intervals, it provides a tuning parameter linking the Gaussian distribution parameters to
the size of the event cloud it is fitted to in the image plane. In practice, this value can be set to 1.
Readers wishing to know more about the computation of confidence intervals should refer to [45].

Computing these parameters can provide additional information if the trackers are used to
identify unknown objects in a scene. The size and orientation of the Gaussian distributions yield
information about the shape or orientation of the tracked objects and can be used either to dis-
criminate between interesting and irrelevant objects or to build more complex objects from several
trackers.

1.3.3 Multi-kernel features tracking

1.3.3.1 Principle

the principle is very similar to the Gaussian tracker, except that the Gaussian kernel is replaced
by various other kernels. The examples that will be illustrated here are Gabor oriented kernels,
combinations of Gabor functions, Laplacian of Gaussian and more general handmade kernels such
as a triangle and a square. Some of these kernels are shown in Fig. 1.3.
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Figure 1.3: Examples of kernels used for tracking. (a) to (d) Gabor oriented kernels. (e) and
(f) Combinations of Gabor kernels. (g) Laplacian of Gaussian. (h) Gaussian kernel. (i) and (j)

Handmade arbitrary kernels.

The feature tracker generalizes to almost any kernel even for kernels with no analytical form.
If Ki has no closed form, then it is a numericaly defined function. In this case, the update of size
and orientation cannot be performed easily as this implies the estimation of rotation and scaling
that go beyond the scope of this work. We chose, in this case, to restrict kernels to a fixed size
(scale) and orientation. Due to the low computational cost, this can easily be supplemented by the
use of multiple layers of kernels of different scales and orientations as will be shown in section 1.4.

We introduce a local inhibition procedure that prevents the tracker from being active if the
same localized area of the kernel is always excited. The activity of tracker i, is then given by
Eq (1.10).

Ai(t) =
8
>>>><

>>>>:

Ai(t�Dt)e�
Dt
t +

Ginhib,i(ev,u)Ki(xi� x,yi� y),
if ev(u, t) occurs into receptive field of tracker i

Ai(t�Dt)e�
Dt
t ,otherwise,

(1.10)

where u = [xi,yi]T , is the position of tracker i, Ki is the matrix representing the tracker’s kernel
and Ginhib, the inhibition gain, is computed as follows :

Ginhib,i(ev,u) = 1� e�Dtev,u/tinhib (1.11)

Local inhibition is ensured considering Dtev,u as the temporal difference between event ev and
the last occurrence of an event into a small spatial neighborhood of the point [xi� x,yi� y]T in
matrix Ki (we usually considered a neighborhood of one or two pixels radius). This mechanism
is equivalent to a local inhibition of neighboring locations of matrix Ki where the event occurred.
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Namely the activated location of the filters and its surrounding will no longer be able to drive the
tracker even if an event reactivates that location. In that case, Dtev,u will go towards 0 thus leading
Ginhib to 0. As the temporal distance increases, Ginhib will gradually tend towards 1. This ensures
that a kernel needs to receive events in all its area to lead to the tracker’s activation. This inhibition
is followed by an exponential reactivation of the inhibited area thus allowing the filter to be active
to events arriving at that location.

1.3.3.2 Gabor oriented kernels and combinations of Gabors

it is well known that some areas of our visual cortex V1 respond preferentially to oriented stimuli
[46]. Consequently, we used Gabor functions to build a model of orientation selective kernels. The
response of a q-oriented Gabor kernel KGq

(v,s) located at position v = [xG,yG]T to the incoming
event ev(u, t) is given by Eq (1.12):

G(e,KGq

(v,s)) = e

✓
� x2u,v+g

2y2u,v
2s

2

◆

cos
⇣

2p

xu,v
l

⌘
, (1.12)

where xu,v = (x� xG)cosq+(y� yG)sinq and yu,v =�(x� xG)sinq+(y� yG)cosq.
To ensure a correct orientation selectivity, we set the parameters g = s

15 and l = 4s. Gabor kernels
are illustrated in Fig. 1.3 (a) to (d). To track a particular feature like a cross, we also built kernels
by combining Gabor functions following orthogonal orientations, as shown Fig. 1.3 (e) and (f).

1.3.3.3 Laplacian of Gaussian kernel

this kernel is inspired by center-surround biological structures and can be represented by the Lapla-
cian of Gaussian function (LoG), shown in Fig. 1.3(g). This kernel has a behavior similar to Gaus-
sian kernels shown in Fig. 1.3(h) but is also sensitive to the size of the tracked events’ cloud. A
cloud whose size exceeds the bright central ring (see Fig. 1.3(g)) will induce negative contribu-
tions to the activity of events occurring in the dark ring area. This compensates for the effect of
centered events, preventing the tracker from being activated.

1.3.3.4 General kernels

in fact the algorithm can use any kernel, with the only constraint being that the center of mass
of the matrix that represents the kernel has to be aligned with the center of the kernel. This is a
weak constraint since any general kernel can be spatially shifted to meet this restriction arising
from the position’s update principle. Since the tracker is attracted by the neighboring events, its
position will naturally match the local events’ center of mass. To test if the events’ cloud matches
the desired feature, both must share the same spatial locations.
As an example, general kernels are shown using a square and a triangle (see Fig. 1.3 (i) and (j)).
These kernels are generated using a binary representation of a simple geometric shape (+1 on
lines, -1 elsewhere) followed by a dilatation algorithm and a smoothing.

1.3.4 Multi-target tracking

The algorithm is first initialized with a hidden layer of pre-constructed trackers that are uniformly
distributed among the whole field of view. Hidden trackers refer to those not displayed on the
screen as active trackers. A hidden tracker is one that does not represent a real object but serves to
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Figure 1.4: Activation scheme of trackers (Gaussian tracker in the example). (a) A tracker is
initialized in the hidden layer with default parameters. (b) It starts to follow the event cloud from
a moving object and adapts to its shape. (c) When its activity goes above Aup the tracker is
upgraded to the visible layer and a new independent tracker is created in the hidden layer with
its initial position and parameters. (d) The tracker follows the event cloud. (e) When its activity
decreases and falls under Aup, the tracker is downgraded to the hidden layer but keeps its current
parameters and position. (f) Another step of tracking. (g) Eventually, the activity may rise again
over Aup and the tracker can be upgraded again. (h) Finally, if its activity falls under Adown, the

tracker is deleted.

seed a potential tracker.
A tracker will be automatically attracted to the nearest events’ cloud. When a new event occurs,
and no active tracker responds to it, it directly feeds the nearest hidden tracker with the same update
rule as described by equation (1.3) (see Fig. 1.4(b)). When the activity of a hidden tracker increases
above a predefined threshold Aup (Fig. 1.4(c)), the tracker is upgraded to the visible layer, and a
new hidden tracker is added with default parameters so that the hidden layer always has a fixed
number of trackers distributed across the scene. When its activity falls under Adown, the visible
tracker is deleted (Fig. 1.4(h)). In the intermediary step, between Aup and Adown (Fig. 1.4(f)),
the tracker is downgraded to the hidden layer but keeps its actual parameters and position. The
evolution criteria combines both spatial and temporal correlation of events. Parameters Adown, Aup
and the temporal decrease constant t have to be tuned according to the event rate and the desired
behavior.

1.3.5 Mutual repulsion and attraction to initial position

In case of strong localized activity, all neighboring trackers can be attracted to the same location.
In order to prevent the different trackers following the same cloud, a mutual repulsion process
is added. Each time a tracker is activated by an event, the distance between each tracker pair
is computed and the trackers that are too close are shifted away from each other, following the
weighted repulsion function described in equation (1.13). The location µi of a tracker is updated
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compared to the location of another tracker at µ j as follows:

µi µi�arepe�
kµi�µjk

drep
A2

j

A2
i +A2

j
(µj�µi), (1.13)

where parameters arep and drep set the repulsion behavior. The mutual repulsion between trackers
i and j is designed to ensure a correct repartition of trackers based on the distance that separates
them but also on the activity of both trackers. The more a tracker is active (i.e. is efficiently
tracking an event cloud), the less it will be influenced by its neighbors.
Due to this mutual repulsion, inactive trackers are often pushed far from their initial position by
moving active trackers. Thus empty areas could grow on the field of view. To compensate this
possibility, we also added an attraction force that impacts on each inactive tracker in the following
way:

µi 
(

µ0
i , if kµi�µ0

i k> dmax

µi +aatt(µ0
i �µi), otherwise.

(1.14)

where µ0
i is the initial position of tracker i. Thus, an inactive tracker that moved too far away from

its initial position without being activated will be reset to its initial position.
Two additional constraints are added. Trackers that are near the border and about to move

out of the focal plane are deleted. The borders are one pixel thick and a tracker is deleted if the
distance of the its center to the border is below its typical size. For a Gaussian blob this typical size
is the length of the ellipse’s smallest axis (axis b in Fig. 1.2). For a symetric tracker (e.g. square,
triangle) the size is the circumscribed circle’s radius. The second constraint prevents the S matrix
going below a low threshold value for the Gaussian trackers to limit the tracking to objects with
a reasonable size. These additional constraints do not have much impact on the overall tracking
performance as the sensor is usually configured to capture the scene in center of the focal plane.

1.3.6 Global algorithm

To summarize, the whole process of event-based features tracking is given by the following algo-
rithm 1.

1.3.6.1 Remarks

For simplicity, repulsion and attraction are computed every time a new event occurs, but as trackers
do not move that fast, it is possible to perform computation less frequently. When adding this
optimization, processing the repulsion and attraction step can usually be done every millisecond
and still yield good performances.
Events are considered regardless of their polarity as we are interested in the global position and
orientation of the object. In what follows we will focus on a single polarity. This will be carried
out to provide a precise measure of accuracy of the positionning of a tracker for a thin contour.

1.4 Results

The experiments have been carried out using the ATIS camera considering only its change detec-
tion output and gray levels have not been used. All programs have been written in C++ under
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Algorithm 1 Event-based features tracking Algorithm
for every incoming event ev(u, t) do

Update the activity Ai of each tracker of the visible layer using Eq (1.6) or (1.10).
Update the best candidate tracker’s position (and size) using equations (1.3) (and (1.4)).
for every tracker of both layer do

if Ai > Aup then
Upgrade tracker to visible layer.

else if Ai < Adown then
Delete tracker i

else
Downgrade tracker to hidden layer, and keep the same parameters and position.

end if
end for
for every pair of trackers of both layers do

Update tracker position using repulsion equation (1.13)
end for
for every tracker of hidden layer do

Update tracker position using attraction equation (1.14)
end for

end for

a) b)

c) d)

Figure 1.5: Events cloud accumulated over 15ms (for each subfigure), ON and OFF events are
represented by white and black points respectively. Gaussian trackers are attracted and deformed
in response to the distribution of events clouds corresponding to different objects. (a) The activity
of a hidden tracker crosses the Aup threshold, it then becomes visible. (b) The tracker rapidly
adapts to the events cloud’s distribution. (c) While the first tracker matches the rectangle object,

another object starts to move, causing a second tracker to update (d).
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Figure 1.6: Gaussian tracker accuracy in position and angle. (a) Object position in x (dashed
line with circle markers) and y (dashed line with square markers). Underlying dots represent the
tracker’s positions. They are hardly distinguishable from the GT measure. (b) Object’s angle
(dashed line) and tracker’s angle (underlying dots). (c) and (d) Tracking error respectively in posi-
tion and angle computed every millisecond. On top are shown snapshots (accumulation of events
during 10ms) of the segment at different timestamps during motion and the ellipse representing

the active Gaussian tracker’s position, size and orientation.

linux. We experimentally set the parameters related to the activity of trackers to Aup = 0.15 and
Adown = 0.1. Parameters related to the extraction of orientations from the covariance matrix have
been set to K = 1 [see (1.7),(1.8)] and t = 20 ms (1.6). The repulsion and attraction rates have
been set to dmax = 40 (Eq (1.14)) and drep = 20 (Eq (1.13)). These have been set according to
the mean size of observed objects. The repulsion and attraction rates have been set to aatt = 0.01
(Eq (1.14)) and arep = 0.1 (1.13). Parameters t = 5ms (1.10) and tinhib = 10µs (1.11) have low
values so that trackers adapt to fast motions.
As in every low level image processing technique, these values can unfortunately only be exper-
imentally adjusted from the statistics of observed scenes. We found these values to be optimal
for all performed experiments. They appear to comply with a large variety of conventional indoor
environments for fast and slow stimuli.
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1.4.1 Gaussian blob trackers

Fig. 1.5 shows the Gaussian trackers growth and adaptation to events clouds for two independently
moving objects (a rectangle and a disc, note that the rectangle only produces two lines of events
because it moves in a parallel direction to its two missing edges). The settings of parameters were
adjusted experimentally to: a1 = 0.2 (Eq (1.3)), a2 = 0.01 (Eq (1.4)). The adjustment factors
have been set smaller for the covariance matrix so that the trackers’ size does not collapse in case
few events are generated by the target. In practice, the value of the position of the tracker has to
move fast to keep up with the motion, while we assume that the shape of the object will change at
a slower rate.

We evaluated the Gaussian tracker accuracy, for position, angle and size. In a first experiment,
the object tracked is a segment rotating along a circle at constant speed. During ten rotations, only
one Gaussian tracker activated and followed the segment. As shown in Fig. 1.6, ground truth (GT)
position in x and y (respectively lines with circle and square markers) are barely distinguishable
from the tracker’s position which is output every millisecond for display purpose but internally
updated asynchronously every time an event occurred. The position tracking error is computed
as the euclidian distance between the segment’s ground truth position and the tracker’s position
every millisecond: (2.61 ± 0.62 pixels, mean ± ST D). The segment angle (dashed line Fig. 1.6
(b)) is also tracked (underlying points) with a very high precision (1.59 ± 0.26 degree). Due to
symmetries, angles are shown from 0 to 180 degree. Ground truth’s position, angle and scale were
measured by hand-clicking the segment’s extremities periodically on reconstructed frames.

To measure the tracking error using the Gaussian tracker, we moved the same line segment
closer and further in front of the retina so that its length changes as we moved closer and farther
away. Fig. 1.7 shows the ground truth evolution of the length of the line segment (black dashed
line) and the corresponding Gaussian tracker’s major axis (small dots). The corresponding tracking
error (bottom curve) is 1.9±1.6 pixel.

Finally we performed an experiment where a pen is thrown in front of the camera. The result
of its real-time tracking is shown in Fig. 1.8. The pen is successfully tracked in real-time. Some
trackers are activated by the person’s motion, such as his head and hand that are then also tracked.
The mean error of tracking is 1.2 pixel, it corresponds to the distance between the gravity center
of the pen and that of the tracker. The ground truth has been performed by manually labeling the
gravity center of the pen on reconstructed frames.

1.4.2 Gabor kernels

All Gabor trackers size have been initially set to s = 3 (Eq (1.12)) with g = s/15 (Eq (1.12)) and
l = 4s (Eq (1.12)). The kernel for each orientation has a size of 17⇥ 12 pixel and is constant
through the experiment (so the size and orientation of each filter will not change during tracking).
Four Gabor oriented kernels (see Fig. 1.9) are used to track the thrown pen. As shown by Fig. 1.9,
the oriented trackers successfully track the rotating pen. From a handmade ground truth we found
that the mean distance between the position of tracked oriented edges and the center of trackers
has a mean value of 1.4 pixel. The oriented filters show a 100% of success in detecting orientation.

1.4.3 Gabor combinations and general kernels

In order to evaluate the spatio-temporal precision of the algorithm, we tested it with more complex
kernels. We used combinations of Gabor functions (crosses, Fig. 1.3 (e) and (f)) and more general
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Figure 1.7: Gaussian tracker accuracy in size. (a) Object’s ground truth size (black dashed line),
and Gaussian tracker’s major axis (underlying dots). (b) Size’s error computed every millisecond.
On top are shown snapshots (accumulation of events during 10ms) of the segment at different

timestamps during motion. The Gaussian tracker is shown as en ellipse.

handmade kernels (triangle and square Fig. 1.3 (i) and (j)) were used with a 6⇥ 3 initialization
grid of hidden trackers for each type of kernel. As in previous experiments, active trackers are
represented in Fig. 1.10 by corresponding superimposed shapes. The stimuli were printed on a
sheet of paper that was held by hand and moved in front of the sensor. During the experiment, one
unique tracker per feature was active, it successfully followed its corresponding shape.

Fig. 1.11 shows the spatiotemporal precision of the algorithm, showing the ground truth (line
with circle markers) and the corresponding active tracker’s positions over time (small dots). The
ground truth is computed every 10ms (line with circle markers) accumulating OFF events between
two measures and hand-clicking the feature center. We used a single polarity to provide a precise
measurement of the accuracy of the trackers when following a single contour. In order not to
overload Fig. 1.11, the tracker’s position is showed every 1ms. The activities and positions are
updated asynchronously every time an event occurs.

The tracking error is computed as the euclidian distance between the tracker’s position and the
ground truth. It is shown in Fig. 1.12 for all used kernels. The two crosses kernels show a low
error of 0.81 ± 0.42 pixel and 0.70 ± 0.38 pixel (mean ± STD). The error of the square kernel
is a bit higher (1.12 ± 0.66 pixel) but remains lower than one pixel. However, the last kernel
(triangle) has a significantly higher tracking error. This is again due to the event-based acquisition
mechanism. When the relative motion is parallel to a segment of the shape, no event is acquired
from this segment. As shown in Fig. 1.13, during vertical motion, the vertical segments of the
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Figure 1.8: From top to down and left to right: sequence of snapshots where the Gaussian blob
trackers follow a pen thrown in the air. The trackers stick to the pen’s position. Blobs are also
activated when the person on the left of the scene is moving. They are successfully tracking the

person’s features and eventually disappear in absence of motion.

Figure 1.9: From top to down and left to right: sequence of snapshots where oriented Gabor
trackers follow the rotation of a pen thrown in the air. The orientation of the pen is successfully
tracked. This experiment uses four pools each containing one particular Gabor tracker with a given
size and orientation (though tracking a total of four different orientations independently). Oriented
trackers are activated sequentially while the pen performs a full 360� rotation. The orientation
filters are also activated by the person’s movements when they happen. Note how the kernels track

the pen but never overlap. This is due to the repulsion mechanism.
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Figure 1.10: Tracking results for specific features using combinations of Gabors and general
kernels. Each active kernel is represented by the corresponding shape. The snapshot has been

created accumulating events (black dots) during 10ms.

Figure 1.11: Horizontal position of the first active tracker (straight cross in top left corner of
Fig. 1.10) over time (small dots), and the ground truth position of the tracked shape (line with

circle markers).

triangle, rectangle and straight cross disappear.

Fig. 1.13 shows the motion of the object (dashed circle), and the different positions (segments
along the circle). These positions are also reported on Fig. 1.12 and correspond to the configura-
tions that lead to an increase of the triangle tracking error (bottom plot).
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Figure 1.12: Tracking errors for all used features. The error is computed as the euclidian distance
between the tracker’s position and the ground truth position of the corresponding shape. Gray
areas show the periods of time of a single rotation. When the motion direction is parallel to one of
the triangle’s segments, this leads to an increase of the tracking error. This is an expected result.

1.4.4 Computational cost

We estimated the average time per event spent to update each tracker by measuring the total com-
putation time required by the algorithm in experiments showing a uniform event rate when using
a single computation thread. On the computer used in the experiments (Intel Xeon E5520 at 2.27
GHz), this time is approximately 25ns per event and per tracker for a kernel size of 70x70 if the ker-
nel’s matrix has been pre-computed and processing regulation steps (trackers’ repulsion/attraction
every millisecond) when running on a single core. Consequently, in a typical natural scene (that
statistically generates 200000 events per second), we estimate that it is possible to compute in
real-time around 200 of these kernels with one single core of our cpu. The total performance of a
multi-threaded implementation using all of the cpu’s cores has not been verified experimentally.

The Gaussian trackers are obviously the most computationally expensive ones due to the need
to provide a value of the exponential. For the other filters, the computation costs are similar. We
precomputed the kernel matrices changes for every position of the incoming event in the kernel.
This turns out to be computationally inexpensive as the cost becomes that of accessing a lookup
table in memory.
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Figure 1.13: Active trackers’ positions (straight shapes) and the corresponding ground truth (black
dots). Dashed circle indicates the approximate triangle’s motion. Segments on this circle represent
the positions where motion is parallel to one side of the triangle, leading to an increase of tracking

error.

1.4.5 Retrieving feature scale and orientation

Feature trackers use kernels with fixed size and orientation but it is also possible to track a feature
even if its size and orientation evolve during time by computing in parallel multiple layers of
trackers. Each layer behaves as described in previous sections. This allows to track features’ size
and orientation in a discretized space. In Fig. 1.14 we show the continuous tracking of a cross that
rotates around its center at a constant speed. Due to the cross radial symmetry, we discretized the
orientation space into 10 orientations from 0 to 180 degree and also added the ground truth.

The orientation of active tracker regularly alternates to follows the feature’s orientation. We
can in principle merge the 10 oriented trackers used here into a single rotation-invariant tracker
for this cross by computing a global activity as the maximum of each oriented tracker activity.
Similarly, we can create scale-invariant feature trackers by combining multiple trackers whose
kernels represent a unique feature at different scales. Fig. 1.15 shows the continuous tracking of a
square that was moved back and forth in front of the camera. Six scaled square trackers were used
corresponding to sizes of 16, 32, 48, 64, 80 and 96 pixels.

1.5 Conclusion and Discussion

This chapter presents an event-based methodology to track shapes. It allows the following of
specific shapes at a very low computational cost thus matching the high temporal resolution of
event-based vision sensors. It can adapt to orientation and change of scale. Experiments have
shown the stability and repeatability of the algorithm. Because of its low computational cost, the
method can track multiple targets in parallel. The same technique is also used to make the al-
gorithm scale and orientation invariant. The method is particularly adapted to applications such
as robotics vision based navigation, Simultaneous Localization And Mapping (SLAM) or object
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Figure 1.14: Continuous tracking of a rotating cross. Each point on the lower plot represents
the activation of an oriented tracker. Its orientation is represented by its level. The orientation’s
ground truth (black line) was measured every 100ms and interpolated considering constant ro-
tational speed. Upper images represent accumulations of OFF events during 10ms at different
timestamps and corresponding active trackers. Only OFF events are used here to ensure a precise

measurement of trackers to a single contour.

recognition. These usually impose tight constraints on computation times and energy consump-
tion.

The method relies on several parameters that need to be tuned. This is generally the case for
almost every image processing method. Free-parameters techniques in computer vision is still an
open problem. In this work we provided a set of parameters that we have shown to be efficient for
a wide variety of applications including highly dynamic scenes.
This work is currently being extended to link trackers together in a coherent spatial arrangement to
match complex shapes such as faces and human body. These techniques are known as part-based
approaches [47], they are currently too computationally greedy in the conventional frame-based
approach to be implemented at several kilohertz. Finally, it is important to emphasize the particular
innovation of the method. The architecture avoids the N2 operations per event associated with
conventional kernel-based convolutional operations with N ⇥N kernels. Our transfer function
based approach enables us to compute (or retrieve from a look-up table) only one value per tracker
for each incoming event which is dependant on the position of the event with respect to the center
of the trackers. This is a major feature as, due to the number of incoming events, a full convolution
would prevent from real-time implementation on current off-the-shelf computers.
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Figure 1.15: Continuous tracking of a moving square. Each point on the lower plot represents the
activation of a specific scale tracker. Its size is represented by its level. The Ground truth (black

line) was measured every 10ms. Upper images represent accumulations of events during 10ms.
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Chapter 2

Spatiotemporal Features for
Asynchronous Event-based Data

Approaches for higher-level computer vision often rely on the realiable detection of
features in visual frames, but similar definitions of features for the novel dynamic and

event-based visual input representation of silicon retinas have so far been lacking. This
chapter addresses the problem of learning and recognizing features for event-based
vision sensors, which capture properties of truly spatiotemporal volumes of sparse

visual event information. A novel computational architecture for learning and encoding
spatiotemporal features is introduced based on a set of predictive recurrent reservoir

networks, competing via winner-take-all selection. Features are learned in an
unsupervised manner from real-world input recorded with event-based vision sensors.
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2.1 Introduction

Humans learn efficient strategies for visual perception tasks by adapting to their environment
through interaction, and recognizing salient features. In contrast, most current computer vision
systems have no such learning capabilities. Despite the accumulated evidence of visual feature
learning in humans, little is known about the mechanisms of visual learning [48]. A fundamental
question in the study of visual processing is the problem of feature selection : which features of
a scene are extracted and represented by the visual cortex? Classical studies of feature selectivity
of cortical neurons have linked neural responses to properties of local patches within still images
[49, 46]. Conventional artificial vision systems rely on sampled acquisition that acquires static
snapshots of the scene at fixed time intervals. This regular sampling of visual information im-
poses an artificial timing for events detected in a natural scene. One of the main drawbacks of
representing a natural visual scene through a collection of snapshot images is the complete lack
of dynamics and the high amount of redundancy in the acquired data. Every pixel is sampled con-
tinuously, even if its output value remains unchanged. The output of a pixel is then unnecessarily
digitized, transmitted, stored, and processed, even if it does not provide any new information that
was not available in preceding frames. This highly inefficient use of resources introduces severe
limitations in computer vision applications, since the largely redundant acquired information lead
to a waste of energy for acquisition, compression, decompression and processing [11].

Biological observations confirm that still images are largely unknown to the visual system.
Instead, biological sensory systems are massively parallel and data-driven [50]. Biological retinas
encode visual data asynchronously through sparse firing spike trains, rather than as frames of pixel
values [51]. Current studies show that the visual system effortlessly combines the various features
of visual stimuli to form coherent perceptual categories relying on a surprisingly high temporal
resolution: the temporal offsets of on-bistratified retina cells responses show an average standard
deviation of 3.5ms [52, 53]. Neurons in the visual cortex also precisely follow the temporal dy-
namics of the stimuli up to a precision of 10ms.
In order to bridge the gap between artificial machine vision and biological visual perception, com-
putational vision has taken inspiration from fundamental studies of visual mechanisms in animals
[46, 54]. One main focus of these approaches have been various computational models of simple
and complex cells in the primary visual cortex (V1) [46, 55, 56], which are characterized by their
preferred response to localized oriented bars. Typically, this orientation-tuned response of V1
cells has been modeled with Gabor Filters [57], which have been used as the first layer of feature
extraction for visual recognition tasks [58, 59]. The most well-known example of biologically
inspired, although still frame-based model of object recognition is the HMAX model [56, 60, 61].
It implements a feedforward neural network based on a first layer of Gabor filters followed by dif-
ferent layers realizing linear and nonlinear operations modeled on primate cortex cells. However,
HMAX like other approaches implementing neural networks to perform visual tasks [62] are still
based on processing still images and therefore cannot capture key visual information mediated by
time.
This chapter introduces an unsupervised system that allows to extract visual spatiotemporal fea-
tures from natural scenes. It does not rely on still images, but on the precise timing of spikes
acquired by an asynchronous spike-based silicon retina [11]. The development of asynchronous
event-based retinas has been initiated by the work of Mahowald and Mead [1]. Neuromorphic
asynchronous event-based retinas allow new insights into the capabilities of perceptual models
to use time as a source of information. Currently available event-based vision sensors [10, 13]
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produce compressed digital data in the form of time-stamped, localized events, thereby reduc-
ing latency and increasing temporal dynamic range compared to conventional imagers. Because
pixel operation is now asynchronous and pixel circuits can be designed to have extremely high
temporal resolution, silicon retinas accomplish both the reduction of over-sampling of highly re-
dundant static information, as well as eliminating under-sampling of very fast scene dynamics,
which in conventional cameras is caused by a fixed frame rate. Pixel acquisition and readout times
of milliseconds to microseconds are achieved, resulting in temporal resolutions equivalent to con-
ventional sensors running at tens to hundreds of thousands of frames per second, without the data
overhead of conventional high-speed imaging. The implications of this approach for machine vi-
sion can hardly be overstated. Now, for the first time, the strict temporal resolution vs. data rate
tradeoff that limits all frame-based vision acquisition can be overcome. Visual data acquisition si-
multaneously becomes fast and efficient. A recent review of these sensors can be found in [10, 63].

Despite the efficiency of the sensor representation, it is far from straightforward to port meth-
ods that have proven successful in computer vision to the event-based vision domain. Much of
the recent success of computer vision comes from the definition of robust and invariant feature
or interest point extractors and descriptors [64, 65, 66]. Although such methods have proven to
be very useful for static image classification, they require processing of the whole image, and
do not take temporal information into account. Dynamical features for event data should instead
recognize features only from novel visual input, and recognize them as they appear in the sparse
input stream. This requires a model that can continuously process spiking inputs, and maintain a
representation of the feature dynamics over time, even in the absence of input. Here we present
an architecture for feature learning and extraction based on reservoir computing with recurrent
neural networks [67], which integrate event input from neuromorphic sensors, and compete via a
Winner-Take-All (WTA) technique to specialize on distinct features by predicting their temporal
evolution.

A proof of concept for the performance of the architecture is demonstrated in three experiments
using natural recordings with event-based vision sensors. In the first experiment, we present a set
of oriented bars to the camera in order to the show the capacity of the model to extract simple
features in an unsupervised manner, using a big spatial receptive field to emphasize the graphical
visualization of the learnt features. In the second experiment, the full capacity of the method
is demonstrated by mapping the field of view to several small receptive fields, and showing that
the model is still capable of reliably extracting features from the scene. The last experiment
applies the architecture to complex object features. All experiments were conducted with real-
world recordings from DVS cameras [11], and thus are subject to the standard noise distribution
of such sensors.

2.2 Material and Methods

2.2.1 Event-based asynchronous sensors

In our experiments we used asynchronous event-based input signals from a Dynamic Vision Sen-
sor (DVS) [11], whose pixels are based on the same principle as the change detectors of the ATIS
camera [13][12] described Section 1.2. It encodes visual information using the Address-Event
Representation (AER), and has a spatial resolution of 128⇥128 pixels. We define an event occur-
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Figure 2.1: Architecture for unsupervised spatiotemporal feature extraction: spikes from the DVS
are transformed by filtering into analog input signals that are sent to a set of ESN networks. Each
ESN is trained to predict future input activations based on current and past activities. The predic-
tion is compared to the actual inputs, and the output signal Sp

k , which is a representation of the
ESN’s prediction performance is fed into a Winner-Take-All (WTA) network. This WTA selects
the best predicting ESN and enables it to train on the present input sequence. A predictability
minimization process promotes orthogonality of predictions between the different ESNs during
the WTA selection. The combination of temporal prediction and competition through the WTA
allows each ESN to specialize on the prediction of a distinct dynamical feature, which thus leads

to learning of a set of different feature detectors.

ring at time t at the pixel (x,y)T as:

e(x,y, t) = |p| = 1 , (2.1)

where p is the polarity of the event. p equals 1 ("ON") whenever the event signals an intensity
increase, or �1 ("OFF") for a decrease, but for the purposes of this work the polarity is not used.

2.2.2 General architecture

Fig. 2.1 shows the general architecture of the feature selection process. In the following we briefly
describe the overall architecture, with more detailed descriptions of the individual components
below. To capture the temporal dynamics of spatiotemporal features, we use Echo-State Networks
(ESN) [68] that act as predictors of future outputs. To achieve unsupervised learning of distinct
features we use multiple ESNs that compete for learning and detection via a WTA network. As
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the first stage, the signal coming from the DVS retina is preprocessed, by converting the DVS
output into analog signals as required by the ESNs’ structure. In the second stage, labeled ESN
layer in Fig. 2.1, each ESN receives the converted output of the DVS to predict its evolution one
timesteamp in the future. The readout of each ESN is trained for this task, and each network
should learn to predict different temporal dynamics. To achieve this, the next layer of the archi-
tecture, labeled WTA with Predictability minimization in Fig. 2.1, implements a Winner-Take-All
(WTA) neural network, which selects the best predictor from the available set of predicting ESNs.
Through competition, the WTA inhibits poorly predicting ESNs to ensure that the best predic-
tor has sufficient time to learn a particular spatiotemporal sequence. This layer also contains a
predictability minimization process to promote orthogonality of predictions between the different
ESNs. The selected ESN is then trained to recognize the spatiotemporal pattern, and learns to
predict its temporal evolution. The WTA competition ensures that each ESN specializes on an in-
dependent feature, thus preventing two ESNs from predicting the same pattern. Consequently, at
any given time, the winning network in the WTA layer indicates the detected feature. Through ran-
dom initialization of ESNs and WTA competition, the architecture extracts distinct spatiotemporal
features from event-based input signals in a completely unsupervised manner.

For the experiments described in this article, the architecture has been fully implemented in
software, using DVS recordings of real-world stimuli as inputs. In particular, the visual inputs for
all experiments contain the typical noise for this kind of sensor, and do not use idealized simulated
data.

2.2.3 Signal pre-processing

t

t

X

Y

x
y

RF (x, y, t1, t2)

t1
t2

C(xc, yc)
t

A(xc, yc, t1, t)

C(xc, yc)

DVS

Figure 2.2: Illustration of signal pre-processing to convert DVS events into equivalent analog
input for ESNs. In order to reduce the number of input channels to the system and reduce com-
putational load, the input from retina pixels is first spatially subsampled into cells C(xc,yc). Each
set of ESNs then receives input from a particular receptive field RF(x,y, t1, t2). To compute the
equivalent analog input, an exponential kernel finally is applied to each event contained in the

receptive field.

The DVS retina has approximately 16K pixels in total. Directly using each pixel as an input
to the ESN reservoir would require a network with 16K input neurons, and, in typical reservoir
computing setups, 10 to 100 times more hidden neurons. Since this is a prohibitevily large size
for real-time simulation of neural networks on conventional current computers, a pre-processing
stage is introduced to downsample the dimensionality of the input. Please note that this is not a
fundamental requirement, since especially future large-scale neuromorphic processors and other
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dedicated hardware platform could potentially handle real-time execution of such large networks
(see Discussion), but this is beyond the scope of our proof-of-principle study.

Fig. 2.2 provides a more detailed view of the first layer of the architecture, named layer (0) in
Fig. 2.1. To reduce the input dimensionality of the DVS signal, the retina pixels are first spatially
resampled into cells C(xc,yc) of dx⇥ dy pixels, each integrating pixels around the center (xc,yc)
according to:

C(xc,yc) =

⇢
(x,y) | x 2 [xc�dx,xc +dx]

y 2 [yc�dy,yc +dy]

�
. (2.2)

Next, the signals are quantized by introducing spatiotemporal receptive fields RF(x0,y0, t1, t2),
covering Dx⇥Dy subsampling cells, which collect all events in a spatiotemporal volume in the
time interval [t1, t2] according to:

RF(x0,y0, t1, t2) =

⇢
e(x,y, t) | t 2 [t1, t2], (x,y) 2C(xc,yc),

|xc� x0| Dx
|yc� y0| Dy

�
. (2.3)

Conversion of events into analog signals is achieved by filtering with a causal exponential filter
with time constant t, defined as G(t, ti) = e�(t�ti)/t ·H(t�ti), where H(t) is the Heaviside function,
which is 1 for t � 0 and zero otherwise. This filter is applied to all spikes coming from pixels (x,y)
contained in a receptive field RF(x0,y0, t0, t), yielding the analog output signal A, which is fed into
the ESNs:

A(x,y, t0, t) =
Â

e(xi,yi, ti) 2 RF(x0,y0, t0, t)
xi = x, yi = y

G(t, ti) , (2.4)

where t0 is a chosen time origin.
The complete preprocessed input at time t fed into the ESN layer is the vector formed by all

outputs A(x,y, t0, t) of pixels contained in RF(x0,y0, t0, t). For clarity, we will in the following only
consider a single receptive field denoted as A(t) :

A(t) =

0

B@
A(x1,y1, t0, t)

...
A(xM,yM, t0, t)

1

CA (2.5)

2.2.4 ESN layer – Input prediction

This layer (Fig. 2.1-(1)) computes the prediction of input signals for N different ESNs [68]. The
kth ESN is defined by its internal state sk, and the three weight matrices W k

out (for output or read-
out weights), W k

in (for input weights), W k
back (for feedback weights), and the recurrent weights W k

r .
These weight matrices are initialized randomly for each ESN and encoded as 64 bit floating-point
numbers. The internal state sk of the ESN and its output (outk) are iteratively updated, and evolve
according to :

sk(tn) = f
⇣

W k
r · sk(tn�1)+W k

in ·A(tn)+W k
back ·outk(tn�1)

⌘
, (2.6)

outk(tn) = f out
⇣

W k
out · sk(tn)

⌘
. (2.7)
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In our experiments, the logistic function is used as the nonlinearity f for the internal state evolu-
tion, and a linear readout is used as f out. Every ESN is trained to predict its future input at one
timestep ahead (i.e. at tn +dt), thus the output of the ESN according to Eq. 2.7 creates a prediction
Âk(tn + dt) = outk(tn), which should match A(tn + dt). As is usual for ESNs, only the readout
weights W k

out are adapted, the recurrent and other weights are kept at their random initial values
which are drawn from uniform distributions.

As suggested in [69], training of the readout weights W k
out can be achieved with a standard

recursive least squares algorithm (here a version described in [70] was used). This algorithm
recursively adapts W k

out so as to minimize a weighted linear least squares cost function, computed
from the prediction error:

e

p
k (tn) = |Âk(tn)�A(tn)|. (2.8)

This method is well suited for online learning, since the coefficients of W k
out can be updated as

soon as new data arrives.
The output of the ESN layer into the subsequent WTA layer is a similarity measure Sp

k (tn) for
each ESN, which indicates the quality of each prediction for the currently observed input:

Sp
k (tn) =

Âi
��A(tn)i.Âk(tn)i

��

Âi |A(tn)i| .Âi
��Â(tn)i

�� , (2.9)

where i is summing over all components of A(tn) and Â(tn), which have been properly normalized
to take on values between 0 and 1.

2.2.5 Winner-Take-All selection

Based on the indicators of prediction quality Sp
k (tn) computed by the ESN layer, the third layer of

the model (Fig. 2.1-(2)) selects the best predictor among the N ESNs through a WTA mechanism.
The WTA network consists of a set of N neurons {n1, . . . ,nN} plus an inhibitory neuron, which
is recurrently and bi-directionally connected with the excitatory neurons, as detailed in [71, 72,
73, 74]. The task of the WTA is to select from the pool of ESNs the one whose prediction best
matches the actual dynamics of the present input, and which thus has the highest similarity Sp

k (tn),
as computed by layer (1) in Fig. 2.1.

Inputs to the WTA neurons are generated from the Sp
k values using non-leaky Integrate-and-

Fire (IF) neurons, which transform the analog values into spike trains. To make the WTA network
more robust to the variations in the similarity measure, a sigmoid function is applied to the Sp

k
values to compute the input current fed to the IF neurons:

gIF(S
p
k ) = Gmin +

Gmax�Gmin

1+ exp(�(Sp
k � x0)/l)

. (2.10)

Gmin and Gmax define the interval in which the output firing rates of the IF neurons are taking
values. They are set experimentally to achieve spike rates spanning from 5kHz to 15kHz. l sets
the selectivity of the sigmoid which is an increasing function of l (l has been experimentally
tuned to 5.0e�5 in our experiments). The value of the offset x0, which is subtracted from the Sp

k is
managed by a proportional controller. Its input reference is set such that x0 approaches the value of
Sp

k output by the selected best predictor. This ensures that whatever the current state of the system
is, the sigmoid gIF is always centered on the current value of interest, giving the best selectivity
possible to detect changes in the best predictor. The update period of this controller is set to 0.5
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ms. The index of the spiking neuron from the WTA network then corresponds to the best predictor
W (t) satisfying :

W (t) = argmax
k2{1,...,N}

gIF(Sp
k (t)) . (2.11)

The obtained index W (t) is used to drive the learning process of the ESN layer. Only the ESN
selected by the WTA network (ESN with index W (t)) is trained on the input signal. This adaptive
WTA achieves good performance in the selection of the best predictor even if the similarity mea-
surement has a large variance (this happens for instance if the system is exposed to a set of very
different stimuli).

This setup of the WTA architecture always generates outputs, even if no input is present. This
potential inefficiency can be avoided by adding another output layer, which computes a gating
function that depends on the global input activity. Using this mechanism, output neurons driven
by the output of the WTA will only fire if in addition the input activity is bigger than a defined
threshold. The threshold can be either defined on the average event rate, or the average value of
A(tn).
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Figure 2.3: Experimental recording setup: (a) A DVS records patterns moving on a treadmill. (b)
Current input pattern (top) and predictions of the different ESNs at a given time. The best predictor
is highlighted in red. (c) Results of ESN training. The left column shows a snapshot from each of
the nine different patterns. The plots to the right show different predictions for different time steps
in the future, obtained from the ESN which is specialized in the given pattern. The time difference

between the five predicted patterns is 0.01 seconds.

2.2.6 Predictability minimization

The third layer implements, in addition to the WTA selection, a predictability minimization al-
gorithm, which ensures that each ESN specializes in predicting different features in the input. It
implements a criterion suggested by [75, 76] to evaluate the relevance of the prediction of each
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patterns. Red lines indicate when an ESN was selected by the WTA network. Dashed vertical
lines mark time points when the input presented to the DVS changed from one pattern to another
(the 9 patterns are shown on top of the figure). Shaded areas indicate times when no stimulation
was present. Every ESN learns to respond to only a small subset of input patterns (typically exactly

one pattern). This response is reproducable over different stimulus presentations.

ESN: an ESN’s prediction is considered relevant if it is not redundant given the other ESNs’ pre-
dictions. This predictability minimization step promotes orthogonality of predictions between the
individual ESNs, and encourages a maximally sparse representation of the learned input classes,
thereby achieving good coverage of the presented input space. For each ESN k, an estimator Ŵk
of the WTA output is used, which receives only the similarity measures Sp

k0 of the other ESNs as
input. For a consistent framework of estimators and predictors, we chose to use ESNs (named
PM1, . . . ,PMN in Fig. 2.1) to implement the Ŵk estimator. This also allows taking into account the
highly dynamic information contained in the input data recorded with the DVS. Training of the
ESNs follows the same principles as described in section 2.2.4.

If the estimator Ŵk and the WTA output agree, i.e. Ŵk(tn) = W (tn), then this means that the kth

ESN is not currently learning a new feature, because the same information can also be deduced
from the output of the other ESNs. In this case, the corresponding neuron of the WTA is inhibited
to prevent this ESN from learning the currently presented input patter. The inhibition also causes
the output of the WTA to stop responding to the input, thus promoting another one.

2.3 Results

2.3.1 Experimental setup

The experiments presented in this article were performed with the setup shown in Fig. 2.3(a). It
consists of a DVS retina observing a treadmill, on which moving bars with 9 different orientations
move across the field of view of the DVS at constant speed. For the experiments, the recurrent
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Figure 2.5: Prediction error of the 8 ESNs during several presentations of the input stimulus.
Red lines below each plot shows the output of the WTA neuron corresponding to each ESN, thus
indicating times when each ESN was selected as the best predictor. We can observe that ESNs are

correctly selected when their prediction error is minimal amongst all the networks.
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Figure 2.6: Predictions of the ESNs when the camera’s field of view is divided into multiple
receptive fields (RFs). (a) Output of the DVS for a bar moving across the field of view. (b)
Predictions of ESNs processing different RFs (indicated by red boxes). (c) Index of the best
predicting ESN in every RF at the timepoints of the snapshots. Indices are only shown if the input

activity in the RF exceeds a given threshold.

connectivity matrix Wr for each ESN was initialized randomly, and rescaled to have spectral radius
0.7, which fulfills the Echo State Property [68]. The other weight matrices were randomly chosen
from a uniform distribution in [�0.4;0.4] for Win, [�0.02,0.02] for Wback and [�0.01,0.01] for
Wout. The pre-processing uses exponential kernels with a time constant of 10 ms.

2.3.2 Single receptive field

The first experiment uses 8 ESNs, each composed of 15 analog neurons, randomly connected
in the reservoir. Only one RF, consisting of 17⇥ 17 cells C(xc,yc) spanning 5⇥ 5 pixel is used
as input to each ESN. Fig. 2.3(b) shows the different predictions of the ESNs in response to an
input signal. The WTA succeeds in selecting the best predicting network for the current input.
Fig. 2.3(c) shows for each stimulus the best predictions and the associated ESN. As expected,
the results confirm that every network has specialized in the prediction of the temporal evolution
of a specific oriented moving pattern. Since natural scenes contain many independent features,
which are likely to occur in larger numbers than the number of available ESNs, we tested here the
performance of an architecture with only 8 ESNs for 9 different patterns of moving oriented bars.
The results indicate that some of the ESNs tend to learn more than one dynamic feature, so that
the system can represent all input features as accuractely as possible. In order to select the most
appropriate number of predictors, additional control mechanisms could be employed. An exam-
ple of this is the response of ESN1, which is the best predictor both for pattern 8 and 9 (Fig. 2.3(c)).

Fig. 2.4 shows the output of the same system for three successive testing presentations of the
stimulus. We can see that each ESN is responding to a specific orientation of the bars. Moreover,
the process is repeatable over the three presentations with a difference in the temporal span of
the responses. This is due to the increase of the translation speed of the bars during the recording
to show that the networks effectively respond to the bar’s orientations independently of their speed.

Fig. 2.5 shows the prediction error of each ESN during several presentations of the stimulus.
The output of the WTA network is shown below each curve, indicating when a particular ESN is
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central RFs (see Fig. 2.6) during the presentation of a series of 9 moving bars with different ori-
entations (see snapshots on top). Dots indicate the times of output spikes for 5 repeated stimulus
presentations, which are drawn on different coordinates along the y-axis, but grouped by WTA
neuron. Each ESN, depending on its index in the RF, is associated with a color used to represent
the dots corresponding to its output. The results show a highly reproducable response of the fea-
ture detectors for different trials, and also similar time delays for different stimulus presentations.
Because the input stimulus moves horizontally, the outputs of the WTA circuits are similar, with
a little time delay. Note that only one ESN can be active at any given time in each RF. Apparent
simultaneous spikes from multiple WTA neurons are due to the scaling of time in the horizontal

axis of the figure.

selected as the best predictor. An ESN is correctly selected whenever its prediction error is the
lowest. Periods in which all prediction errors are close to zero correspond to periods without input
(shown as gray regions in the figure). This is a result of the approximate linearity of the ESNs
and their low spectral radius: when only weak input is fed into the network, the ESNs readout
output also approaches zero, which results in a low prediction error for times when no stimulus is
presented (the only input to the networks then is background noise from the DVS pixels).

2.3.3 Multiple receptive fields

In the second experiment, the field of view of the DVS is split into 3⇥3 smaller RFs of identical
size (9⇥ 9 cells of 3⇥ 3 pixels), as shown in Fig. 2.6. This shows the full intended behavior of
the system as a local spatiotemporal feature detector, in which different features can be assigned
to small receptive fields covering the entire field of view of the sensor (instead of being covered
by only one big one RF like in Fig. 2.3). For each RF 8 ESNs are used as feature detectors. In the
learning phase, they are trained only with the input to the central RF. Subsequently, their weights
are copied and the ESNs are used independently for all 9 RFs. Thus, all RFs have ESNs with iden-
tical weights (and so detects the same features), but receive different inputs and therefore evolve
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independently. Fig. 2.6(a) shows different snapshots of the DVS recording for an oriented bar
moving across the field of view. The output of the predictors for each RF is shown in Fig. 2.6(b),
while Fig. 2.6(c) indicates for each RF the index of the ESN selected. The figure also shows that
ESN predictors are only selected when there is substantial input activity in the RF. As in the pre-
vious experiment, dynamic feature selection is reproducable and exhibits precise timing, as shown
in Fig. 2.7. Here, only the 3 RFs on the middle line of the input space are shown. Because the
input stimulus moves horizontally, the outputs of the WTA circuits are similar, with a little time
delay. Using multiple smaller RFs instead of one is also a potential solution to represent more
features with a finite set of ESN. The feature descriptor is then a combination of the outputs of all
available ESNs, which need to be processed by another layer. This is however, beyond the scope
of the present work.
Choosing the right number of ESNs for the feature detection architecture is not always straightfor-
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Figure 2.8: Number of learning samples per reservoir for two different architectures applied to the
same input. Every step where training of the ESN readout was activated is counted as a learning
sample. (a) Learning samples for 8 ESNs trained on 9 different input patterns. (b) Learning
samples for 20 ESNs trained on the same 9 input patterns. The results show that when the pool of
ESNs is bigger that the number of features present in the input, only a necessary subset of ESNs
from the pool is used to learn these features. The remaining ESNs are not trained, and can be used

to learn new features from future inputs.

ward, and depends on the number of distinct features present in a scene. In Fig. 2.4 it was shown
that when the number of ESNs is smaller than the number of features, an ESN can learn multiple
features instead of one. Fig. 2.8(a) shows the number of steps in which each ESN is trained if
8 ESNs are trained on 9 different input patterns. It is shown that all networks are trained for a
similar number of epochs. When instead the number of ESNs exceeds the number of features, we
find that only the minimum necessary number of predictors is selected, and the remaining ESNs
are still available to learn new features, should there be distinct future visual inputs. Fig. 2.8(b)
a clear specialization of ESNs, if 20 networks are used to encode the same 9 features that were
used in Fig. 2.8(a). Only 9 out the 20 ESNs show increased activation during the stimulation
presentations.

2.3.4 Complex input stimulus

In the last experiment, the ability of the architecture to represent more complex features was tested.
Instead of using oriented bars, we now present digits (from 1 to 9) to the camera, with a single
receptive field covering the whole stimulus. Nine ESNs were used in the system, which matches
the number of distinct patterns. To make them visible for DVS recordings, the nine digits were
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(a) (b) (c) (d) (e)

Figure 2.9: Learning of more complex feature detectors, showing the output of the system when
presented with stimuli composed of digits from 1 to 9. Each snapshot on the top left shows the
analog input to the ESN, obtained by filtering the DVS events. The top right shows the prediction
of the best ESN, as selected by the WTA circuit. Below, the current predictions of all nine ESNs
used in the experiment are shown. A white square around the prediction indicates the ESN that was
selected by the WTA. The snapshots show the progession of learning, starting with an untrained
network in (a), which only produces random predictions. (b), (c), (d) show the output of the
same networks after the presentation of patterns “1”, “2” and “3” (respectively). A white mark
underneath an ESN prediction indicates that this ESN has learned a feature. Finally (e) shows its

output after the end of the learning process where all networks have learnt an input stimulus.

animated, by hand, with a random jittering movement around a central spatial position. This was
intended to simulate what would be seen by the retina when the eye follows microsaccadic move-
ments. Because the jitter is random, the input stimulus mainly contains spatial information. This
experiment allows us to test the robustness of the proposed method to several spatiotemporal pat-
terns, including the degenerate case where only one spatial information is relevant for the feature.
Some snapshots of the system’s output are shown in Fig 2.9.

In the first stage of the experiment, the system is presented with visual stimuli of the digits 1
to 9, in this order. The images at the top of the plot shows the input to the receptive field at the
time of the vertical dotted lines. Each number is presented for five seconds, followed by a pause of
three seconds, in which no input is presented. In Fig 2.10 the learning phase is marked by a gray
shaded background. Next, two test sequences are presented to the DVS: The Test 1 sequence is
composed of the random sequence “1 3 5 7 9 2 4 6 8”, using the same presentation and pause times
as in the learning phase. The Test 2 sequence is composed of another random sequence “9 8 7 6
5 4 3 2 1”, this time without pauses between digit presentations (which still last for five seconds).
These sequences are represented as the ground truth for the experiment by blue horizontal lines
in Fig 2.10. For clarity, we re-ordered the ESNs such that the ESN index corresponds to the digit
it represents. Successful learning means that the blue lines should align as much as possible with
the red dots, representing the output of the WTA network. Occasional deviations are due to noise.

Fig 2.10 shows that each ESN manages to learn complex features, and reliably recognizes them
when the respective feature is presented again. This was achieved with raw, noisy DVS inputs, and
fully random jitter of the digits during presentation. The experiment shows that complex features
can be extracted and recognized also in the absence of characteristic spatiotemporal structure in
input patterns.
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Figure 2.10: Learning complex features from DVS inputs. The DVS records digits from 1 to 9,
each animated with random jitter simulating the effect of microsaccades in the biological eye. Blue
horizontal lines show the ground truth, indicating when each number was present in the input, and
thus when a specific ESN should fire. The corresponding pattern presented to the camera at that
time is represented on top of the figure. Red dots show time points where each ESN is selected
by the WTA network. The gray shaded area marks the learning phase, in which every digit from
1 to 9 was presented once to the system. Subsequently, two series of testsare shown: First, in the
period marked as Test 1, the 9 digits are presented in random order, but with short pauses between
stimulus presentations. Then, in the period marked as Test 2, the digits are presented again in a
different random order, but without pauses in between. The results show that also for complex

features like digits, every ESN can learn to specialize and represent a distinct feature.

2.4 Discussion

This article presents a new architecture for extracting spatiotemporal visual features from the sig-
nal of an asynchronous event-based silicon retina. The spatiotemporal signal feeds into the system
through a layer of Echo-State Networks, which compute predictions of future inputs. An unsuper-
vised learning process leads to specialization of ESNs to different features via WTA competition,
which selects only the best predictors of the present input pattern for training. Whenever an already
learned pattern is presented again, the system can efficiently and reliably detect it. Experimental
results confirm the suitability of the feature extraction method for a variety of input patterns. The
spatiotemporal feature extraction leads to robust and reproducable detection, which is a key re-
quirement for its use in higher-level visual recognition and classification. A central characteristic
of the presented technique, in contrast to conventional computer vision methods, is that it does not
depend on the concept of representing visual inputs as whole image frames. Instead, the method
works efficiently on event-based sparse and asynchronous input streams, which maintain the tem-
poral dynamics of the scene due to the highly precise asynchronous time sampling ability of the
silicon retina. Thus, also the extracted spatiotemporal features contain richer dynamic informa-
tion, in addition to recognizing spatial characteristics.
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Central to the definition of spatiotemporal features in our architecture is the presence of mul-
tiple models for prediction, which compete already during learning, such that specialization can
occur. Similar concepts are used by various well known machine learning frameworks, most no-
tably the mixture-of-experts architecture [77, 78, 79], in which a gating function creates a soft
division of the input space for multiple local “expert” models. The output of the whole network
is then a combination of the expert predictions, weighted according to their responsability for the
present input. These architectures have been extended in brain-inspired architectures for reinforce-
ment learning and control [80, 81, 82], where multiple forward models and controllers are learned
simultaneously, and the prediction performance of the forward model determines the selection
of the most appropriate local controller. Mixture-of-experts architectures are closely related to
learning mixture models with the EM algorithm [83, 78], where the E-step computes a soft assign-
ment of data points to models. [84] and [85] have proven that this can be implemented in spiking
neural networks, using a soft WTA circuit to compute the E-step, and an STDP learning rule to
implement the M-step. Compared to these related architectures, our new model advances in three
important aspects: Firstly, whereas EM and mixture-of-experts address static input distributions,
we here extend this to multiple feature predictors for spatiotemporal sequences. Secondly, our
architecture allows online learning of independent features, which contrasts with batch methods
like PCA or ICA that operate on the full dataset after its collection. Thirdly, our neural network
architecture is specifically designed to work with spiking inputs and for implementation with spik-
ing neurons, thus maintaining the precise dynamics of event-based vision sensors. Other spiking
neural network architectures for processing DVS inputs such as spiking ConvNets [86, 87], and
spiking Deep-belief networks [88] do not explictly model the dynamics of the features extracted
within the networks, but instead rely on different conversion mechanisms from analog to spiking
neural networks, without taking sensor dynamics into account. The features they extract are thus
characterizing a current snapshot of the input, and do not take its future trajectory into account
like the ESN predictors of the presented model, but nevertheless are very useful for fast recogni-
tion. This is also true for approaches that directly classify spatiotemporal spike patterns, see e.g.
[89, 90]. Spiking network models that represent spatiotemporal dynamics by emulating Hidden
Markov Models have recently been introduced [91, 92]. Compared to our approach, these net-
works do not directly learn dynamic input features, but rather identify hidden states to determine
the position within longer sequences.

The combination of visual sensing with bio-inspired artificial retinas and event-based visual
feature extraction, as presented in this article, opens new perspectives for apprehending the mech-
anisms of visual information encoding in the brain. It is clear that the traditional views of visually
selective neurons as static image filters for receptive fields, e.g. as Gabor-like orientation filters,
which are central to many classical vision models like HMAX or Neocognitron [93, 55], fails to
explain how these neurons deal with the highly dynamic and sparse spike inputs from biologi-
cal retinas. In the presented approach, features are naturally learned and adapted to the task. In
Fig. 2.8 it was shown that if the number of available ESNs exceeds the number of features neces-
sary to describe a scene, only the minimum necessary number of networks are trained. This has
the desireable effect that whenever a new scene with new features is encountered, the previously
unused ESNs can be trained to predict novel stimulus features. This behavior has several benefits:
firstly, the number of ESNs does not have to be precisely tuned, but can be set to the highest ac-
ceptable number, and only the minimum number of networks is actually recruited and trained as
feature detectors by the system. Alternatively, one could employ a different strategy in which new
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networks are recruited to the pool, whenever all current ESNs have specialized on features. Sec-
ondly, training of feature detectors works completely unsupervised, so no higher-level controller
is needed to identify what the elementary features for a scene should be. Although the precesence
of a supervisor is not necessary, having such information available would still be beneficial. For
instance, another processing layer could use the outputs of the WTA to control the survival of each
network. If such processing layer determines that a particular network does not provide enough
interesting information, the supervisor could decide to reset and release the associated ESN, so
that it can detect more relevant features.

The presented method has great potential for use in event-based vision applications, such as
fluid and high-speed recognition of objects and sequences, e.g.in object and gesture recognition
[88, 94], or for high-speed robotics [38, 95].

The presented architecture is almost entirely based on computation with spikes. Inputs come
in the form of AER events from DVS silicon retinas, providing an event-based representation of
the visual scene. The WTA circuit for choosing between feature extractors is also working with
spikes, and produces spike outputs, which indicate the identity of the detected feature. The only
component of the system which does not entirely use spikes is the layer of ESNs that predict
the visual input, but this restriction could be lifted by replacing ESNs with their spiking counter-
parts, called Liquid State Machines (LSMs) [96], which are computationally at least equivalent to
ESNs [97, 98]. The reasons why we have chosen to use ESNs for this proof-of-principle study
are the added difficulty of tuning LSMs, due to the larger number of free parameters for spiking
neuron models, delays, or time constants, in addition to the higher computational complexity in-
volved in the simulation of spiking neural networks on conventional machines, which makes it
hard to simulate multiple LSMs in real-time. Overall, we expect the improvement due to using
fully spike-based feature detectors and predictors to be rather minor, since the ESNs can be effi-
ciently simulated at time steps of 1ms, which is also the time interval at which the silicon retina
is sending events through the USB bus. However, a fully spike-based architecture does have great
advantages in terms of efficiency and real-time executing if it can be implemented entirely on
configurable neuromorphic platforms with online learning capabilities [20, 99, 100], which is the
topic of ongoing research.
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Chapter 3

HOTS: A Hierarchy Of event-based
Time-Surfaces for pattern recognition

This chapter describes novel event-based spatio-temporal features called time-surfaces
and how they can be used to create a hierarchical event-based pattern recognition
architecture. Unlike existing hierarchical architectures for pattern recognition, the

presented model relies on a time oriented approach to extract spatio-temporal features
from the asynchronously acquired dynamics of a visual scene. Similarly to cortical
structures, subsequent layers in our hierarchy extract increasingly abstract features
using increasingly large spatio-temporal windows. The central concept is to use the

rich temporal information provided by events to create contexts in the form of
time-surfaces which represent the recent temporal activity within a local spatial

neighborhood.
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3.1 Introduction

Feature selection for object recognition is a fundamental problem in the study of visual process-
ing. The open issue is always to determine how features of an image should be extracted and
characterized. In traditional computer vision, visual features are typically defined as a function
of the static luminance information within a local spatial neighborhood of an image [65][101].
Different feature types differ only in the function they apply to the image. The temporal content
of features has rarely been explored or tackled, mainly due to the three underlying hypotheses on
which machine vision is based. The first hypothesis is that scenes are observed using a strobo-
scopic acquisition which produces a collection of static images (frames). Images are currently at
the core of the whole field of artificial vision. So far, everything that has been developed has been
designed to acquire, operate on, and display frames. A major drawback of frame-based acquisition
is that it acquires information in a way that is independent of the dynamics of the underlying scene
[63]. Scene illumination is measured at unnatural fixed time periods (frame-rate), resulting in ac-
quisition of huge amounts of redundant data because most pixels will not change from one frame
to the next. Massive redundancy in the acquired data is what allows video compression algorithms
to achieve such impressive compression ratios (often around 50:1 [102]). However, before com-
pression, this redundant data is still unnecessarily sampled, digitized, and transmitted, inducing a
waste of resources, before expending even more resources to implement compression. This pro-
cess sets important limitations on artificial perception that might one day be surmounted by using
faster and more powerful computing devices (e.g. GPUs, clusters, etc.), but always at the cost of
increasing power consumption. Nevertheless, the lack of dynamic content and the acquisition of
both relevant and non-relevant data will always be the fundamental limit of images.

The second hypothesis of machine vision is that absolute pixel illumination (gray levels or
colors) is the main source of information. However illumination is not an invariant property of a
scene [65]. Most current algorithms fail to operate in uncontrolled lighting conditions. The ability
to accurately measure luminance is also limited by the low dynamic range of conventional cameras
[103].

The third hypothesis is that real-time operation implies a minimum of 24 images per second
(the frame rate of common video formats [102]). There is currently a widespread belief in the field
of artificial vision that high visual acquisition rates are only useful for cases where a fast changing
stimulus must be observed. It is true that sensations of dynamic motion can be observed at 24
fps. However, it has been recently shown that biological retinas operate at temporal precision of
1kHz (see [104]) because that is where most of the information of everyday scenes are [105]. If
conventional scenes are processed at low temporal acquisition rates (30-60Hz), it has been shown
that there is a loss of 75% of valuable information leading to a poor separability between classes of
objects [105]. Currently it is computationally and energetically expensive to process visual input
in real time using conventional cameras at above 100Hz. This because the amount of data which
must be processed grows linearly with the frame rate, while the amount of information captured
only grows sublinearly [105].

However, the field of Neuromorphic Engineering [3] has been developing bio-inspired event-
driven, time-based vision sensors which operate on a very different principle [5]. Instead of cap-
turing static images of the scene, these sensors record pixel intensity changes with high temporal
precision. This high temporal precision provides information about scene dynamics which can aid
in recognition and increase class separability [105]. In the last decade these sensors have matured
to a point where they are now commercially available and can be operated by laymen. Event-
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driven time-based vision sensors promise to allow for power efficient low latency visual sensing in
real world moving scenes, which has the potential for major impact in robotics, as well as mobile
and wearable devices.

Event-driven time-based vision sensors provide data in the Address Event Representation
(AER) format [30] which differs significantly from frames, and therefore conventional Machine
Vision algorithms cannot be directly applied. For the task of object recognition, accuracy us-
ing event-driven time-based vision sensors still lags behind traditional approaches. Previous no-
table works on object recognition using event-driven time-based vision sensors include the Con-
volution AER Vision Architecture for Real-time (CAVIAR) project [106] which recognizes and
tracks circles of different sizes using a hierarchical spiking network running on custom hardware.
Later work progressed to differentiation between different shapes (circle, square, triangle) using
an HMAX inspired algorithm also on custom silicon hardware [107]. Targeting more complex
shapes, Perez-Carrasco et al. introduced a card pip recognition task which has been tackled in
real-time using FPGAs running different hierarchical spiking models inspired by Convolutional
Neural Networks (CNNs) [108] and HFirst [109].

Inspired by the popularity of the MNIST database (Mixed National Institute of Standards
and Technology database) [101] in traditional machine vision, there has been a recent focus on
character recognition using event-driven time-based vision sensors, which has been tackled using
CNNs [108], Hierarchical like models [109], and Deep Belief Networks (DBNs) [110]. Perez
Carrasco et al. showed how recent advances in training frame based CNNs can be leveraged by
converting frame based CNNs to spiking CNNs for recognition [108]. Moving past shape and
character recognition, similar hierarchical models have been developed for application to human
posture detection [111]. Frame-based CNNs have also been applied for discriminating between
vehicles and pedestrians in a traffic scene, and recognizing household objects [112].

This work serves to advance the state of the art for performing recognition using event-driven
time-based vision sensors. To provide comparison to previous works, we tackle the previously
published card pip dataset [108] and character recognition tasks [109], achieving near perfect
accuracy on both. As a first step towards performing human user recognition using event-driven
time-based vision sensors, we introduce a new, more challenging, facial recognition task on which
we achieve 79% accuracy, providing room for improvement in future work.

This chapter begins with an introduction to the operation of event-driven time-based vision
sensors in Section 3.2, followed by a description of the hierachical time-surface feature extraction
technique in Section 3.3. We then describe performance of the technique in Section 3.4, before
wrapping up with a discussion of results and a conclusion in Section 3.5 and Section 3.6.

3.2 Event-driven time-based vision sensors

In this work, we use event-driven time-based vision sensors as described in Section 1.2. The
novel features we propose are thus designed to take advantage of the high temporal resolution data
representation provided by event-based cameras, which is not provided by frame-based sensors.

We use datasets recorded by different event-based sensors [113, 26] and previously used in
other publications [108, 109]. Due to the high accuracy we achieve on these dataset, we introduce
a new set of recordings acquired using the Asynchronous Time-based Image Sensor (ATIS) [12].
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Figure 3.1: Definition of a time-surface from the spatio-temporal cloud of events. A time-surface
describes the recent time history of events in the spatial neighborhood of an event. This figure
shows how the time-surface for an event happening at pixel x0 = [x0,y0]T at time t0 is computed.
The event-driven time-based vision sensor (a) is filming a scene and outputs events shown in
(b) where ON events are represented on the left hand picture and OFF events on the right hand
one. For clarity, we continue by only showing values associated to OFF events. When an OFF
event evi = [x0, ti,�1] arrives, we consider the times of most recent OFF events in the spatial
neighborhood (c) where brighter pixels represent more recent events. Extracting a spatial receptive
field allows to build the event-context Ti(x, p) (d) associated with that event. Exponential decay
kernels are then applyed to the obtained values (e) and their values at ti constitute the time-surface
itself. (f) shows these values as a surface. This representation will be used in the following figures

and the label of the axes will be removed for better clarity.

3.3 Model Description

In this section we describe the construction of our architecture for object recognition. We be-
gin by formally defining time-surfaces (Section 3.3.1), and how time-surface prototypes can be
learnt from input data (Section 3.3.2). Then we show how these time-surface prototypes can be
arranged to form a hierarchical model (Section 3.3.3). Finally, in Section 3.3.4 we describe how
classification is performed on the model output.

3.3.1 Time-surface

The process of building a time-surface from the output of an event-driven time-based vision sensor
is illustrated in Fig. 3.1 and described hereafter.

Consider a stream of visual events (Fig. 3.1(b)) which can be mathematically defined as

evi = [xi, ti, pi]T , i 2 N (3.1)
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where evi is the ith event and consists of a location (xi = [xi,yi]T ), time (ti) and polarity (pi), with
pi 2 {�1,1}, where �1 and 1 represent OFF and ON events respectively. When an object (or
the camera) moves, the pixels asynchronously generate events which form a spatio-temporal point
cloud representing the object’s spatial distribution and dynamical behavior. Fig. 3.1(b) shows
such events generated by an object rotating in front of the sensor ((Fig. 3.1(a)) where ON and OFF
events are represented respectively by white and black dots.

Because the structure of this point cloud contains information about the object and its move-
ment, we introduce the time-surface Si of the ith event evi to keep track of the activity sur-
rounding the spatial location xi just before time ti. We can then define Ti(u, p) a time-context
around an incoming event evi as the array of most recent events times at ti for the pixels in the
(2R+1)⇥ (2R+1) square neighborhood centered at xi = [xi,yi]T as:

Ti(u, p) = max
ji

�
t j | ||xj = (xi +u), p j = p

 
, (3.2)

where u = [ux,uy]T is such that ux 2 {�R, . . . ,R}, uy 2 {�R, . . . ,R} and p 2 {�1,1} Ti(x, p) is
shown in Fig. 3.1(d) where intensity is coding for time values: bright pixels show recent activity
whereas dark pixels received events further away in the past (only time values corresponding to
OFF events are represented in the figure for clarity).

Let Si(u, p), be the time-surface around an event evi (shown in Fig. 3.1(e)), it is defined by
applying an exponential decay kernel with time constant t on the values of Ti(u, p).

Si(u, p) = e�(ti�Ti(u,p))/t. (3.3)

Si provides a dynamic spatiotemporal context around an event, the exponential decay expands
the activity of passed events and provides information about the history of the activity in the
neighborhood. The resulting surface Si(u, p) is shown in Fig. 3.1(f) for the OFF events represented
all along Fig. 3.1. In the following sections Si(u, p) will be referred to directly as Si to simplify
notations. In the figures it will be represented as a surface showing the values of each of its element
at their corresponding spatial positions.
Fig. 3.2 shows examples of time surfaces for simple moving edges. One can see, that a time
surface is composed of two halves corresponding to the two polarity of incoming events. The first
half has positive values, showing points corresponding to the ON events (p = 1) and the second
half has negative values showing points corresponding to the OFF events (p =�1).

3.3.2 Learning Time-surface prototypes

Time-surface prototypes take the form of time-surfaces themselves, but whereas each incoming
event will have a different surface, the time-surface of each prototype remains constant (except
during an initial learning phase). Time-surface prototypes are the set of elementary surfaces that
are encountered in the observed scenes. The process of learning a time-surface for each prototype
is described below, it relies on an incremental clustering process [114].

When an input event arrives at a bank of time-surface prototypes, the time-surface associated
to the incoming event is calculated and compared to the time-surface of each prototype. The
prototype with the time-surface most closely matching the surface of the input event will then
generate an output event. We begin with a set of N inital time-surface prototypes, Cn, n 2 J1,NK,
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Figure 3.2: Examples of some time-surfaces for simple movements of objects. First column
shows a representation of the stimulus. The second column shows corresponding data from the
ATIS sensor where white dots are ON events and black dots are OFF events. The third column
shows the time-surface obtained from these events: the first, positive, half is obtained from the
ON events and the second, negative, half is obtained from the OFF events. (a) A horizontal bar

moving downwards. (b) A vertical bar moving rightward. (c) Corner moving to the top-right.

where Cn takes the same form as Si in (3.3). For initialization we simply use the first N time-
surfaces as our initial values for the N prototypes. More formally:

Cn = Sn n 2 J1,NK (3.4)

We then implement learning using the online clustering algorithm described in [114].
For each input event, evi, we calculate the time-surface, Si, and find Ck, the time-surface

prototype closest to Si according to the Euclidian distance. Ck is then updated using:

Ck Ck +a(Si�bCk) (3.5)

with

b = cos(Ck,Si) =
Ck ·Si

||Ck|| · ||Si||
(3.6)

a =
0.01

1+ pk
20000

(3.7)

where pk is the number of time-surfaces which have already been assigned to Ck.
The full clustering process is summarized in Algorithm 2.
After this learning process, each time-surface can be associated to a particular prototype Ck.

In this manner, the stream of input events is transformed into a stream of prototype activations:

f eati = [xi,yi, ti,ki]
T (3.8)

where ki is the index of the cluster center Cki .
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Algorithm 2 Online clustering of time-surfaces
Ensure: N cluster centers Cn, n 2 J1,NK

Use the first N events’ time-surfaces as initial values for Cn, n 2 J1,NK
Initialize pn 1, n 2 J1,NK
for every incoming event evi do

Compute time-surface Si
Find closest cluster center Ck
a 0.01/(1+ pk/20000)
b Ck ·S/(||Ck|| · ||S ||)
Ck Ck +a(S �bCk)
pk pk +1

end for

3.3.3 Creating a Hierarchical Model

Fig. 3.3 illustrates the hierarchical model we introduce in this work. Steps (a) to (g) sum up the
process described in the previous sections. As shown in Fig. 3.3, a moving digit (a) is presented to
the ATIS camera (b) which produces ON and OFF events (c). Time-surfaces are built by convolv-
ing them with an exponential kernel of time constant t1 (d) and considering spatial receptive fields
of sidelength (2R1 + 1). These time-surfaces are then clustered into N1 prototypes represented as
surfaces (e) in the Layer 1 box. When a cluster center is matched, an event is produced, resulting
in the activations shown in (f). These events are merged to form the output of Layer 1 (g). One can
see that each incoming event from the observed pattern is associated with the most representative
prototype surface.
The nature of the output of Layer 1 is exactly the same as its input: Layer 1 outputs timed events.
Once a prototype matches the temporal surface around the incoming event it immediately emits an
event. Thus, the same steps used in Layer 1 (from (d) to (g)) can be applied in Layer 2. However
the emitted event is now representing the temporal activity of a prototype surface, it thus carries
more meaning than the initial camera event. The prototype surfaces of Layer 2 represent the tem-
poral signature of the activity of complex features. Layer 2 uses different constants for space-time
integration of features (R2, N2 and t2). The goal is to introduce stability of the perceptual rep-
resentation and sensitivity to the accumulation of sensory evidence over time. This integration
over longer and longer time period will thus be able to accumulate evidence in favor of alternative
propositions in a recognition process. When alternatives with a barely discernible difference in
their sensory inputs are presented over an extended period of time, longer time and spatial inte-
gration scales can accumulate the small differences over time until it becomes eventually possible
to discriminate the alternatives through its ever growing output. This accumulation dynamics is at
the heart of the HOTS model, the difference between time scales can be substantial and can start
from 50ms for Layer 1 to 250ms for Layer 2 to finally reach 1.25 s for Layer 3.
Layer 3 receives input from Layer 2, it is the last layer of the system and it provides the highest
level information integration, as shown in Fig. 3.3(i) time-surface prototypes are also larger both
spatially and temporally. The output of the temporal activity of Layer 3 can finally be used for
object recognition by being fed to a classifier (shown in Fig. 3.3(j)).

As stated above, each layer is then defined by only a few parameters (we add an index l for
the lth layer of the system):
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• Rl, which defines the size of the time-surface neighborhood

• tl, the time constant of the exponential kernel applied to events

• Nl, the number of cluster centers (prototypes) learnt by the clustering algorithm.

To increase the information extracted by each subsequent layer, we make these parameters
evolve between subsequent layer. For each layer, we define the parameters KR, K

t

, KN so that:

Rl+1 = KR ·Rl (3.9)
tl+1 = K

t

· tl (3.10)
Nl+1 = KN ·Nl (3.11)

The obtained architecture consists in a Hierarchy Of Time-Surfaces (HOTS) which is building
and extracting a set of features (the prototypes from the final layer) out of a stream of input events.
The time-surface prototypes will then be called time-surface features in the rest of the chapter.

Fig. 3.2 shows what these features could be for the first layer of the achitecture where its input
basis is constituted of only two vectors: ON events and OFF events. The other layers have input
bases constituted of more vectors (as many as the number of features extracted by their previous
layer), thus we could represent their features by a serie of surfaces each corresponding to one
feature of the previous layer. Because this representation is harder to relate to the actual input from
the camera activating the feature, we chose to fuse these surface into their corresponding activity
of ON and OFF events. The features of every layer of the architecture will then be represented as
a set of two surfaces such as in Fig. 3.2, showing an image of the activity of ON and OFF events
associated to the feature.

3.3.4 Classification

In this section we describe how the output of Layer 3 can be used as features for object recognition.
Training of the recognition algorithm consists of two main steps. In the first step, different stimuli
are presented to the model to learn the time-surface prototypes (referred to in the next sections as
features) computed as described in the previous section. This is the training phase of the algorithm
(model). In a second step, the same learning stimuli are presented to the trained model and a
histogram of the time-surface feature activations in the final layer is built for each object class.
This is the training phases referred to as the classifier. A similar histogram is built for each test
stimulus, it can then be compared to trained histograms to determine which object is present in the
scene. The choice of the histogram is to show the robustness of the method, historams of activities
as we will show are sufficient to provide reliable recognition scores. More complex classifier could
be used specially time oriented ones such as Echo State Networks [115] or reccurent networks
[116], these would allow the learning of the temporeal dynamics of activated features. However,
as we will show in the experiment section, this is not necessary as the mean activity of features
activation is sufficient to achieve high recognition scores.
When an object is presented to the camera between instants tstart and tend , the time-surface feature
activations form the set:

F (tstart , tend) = { f eati | ti 2 [tstart , tend ]} (3.12)

From this set, it is possible to build a histogram H counting how many times each feature has been
activated, independently of its spatial position. This will constitute the signature of the observed
objects.
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Figure 3.4: Flipped cards experiment: Pattern database.
The database for this experiment consists of the four suits (spades, hearts, clubs, and diamonds)
found in a card deck. They are captured by a sensitive DVS sensor as the cards are flipped in front

of it (white dots represent ON events and black dots OFF events).

To estimate the distance between two histograms, we use three different distances. We will
refer to the standard distance when we will use the euclidian norm of the difference between two
histograms (by looking at histograms as vectors in which the kth coordinate is the number of times
feature k was matched):

d(H1,H2) = ||H1�H2|| (3.13)

We will refer to the normalized distance when we will use the euclidian norm of the difference
between two histograms which have each been normalized by the number of generated features:

dN(H1,H2) =

����

����
H1

card(H1)
� H2

card(H2)

����

���� (3.14)

where card(Hk) is the total number of features counted in Hk. We will also use the Bhattacharyya
distance [117] defined as:

dB(H1,H2) =� ln
Â

i

s
H1(i)

card(H1)
· H2(i)

card(H2)
. (3.15)

Because these histograms are characteristics of the classes to recognize, we will refer to them
as signatures in the rest of the chapter.

3.4 Testing

The proposed method has been tested on three different tasks. The first consists of recognizing
pips on poker cards as they are shuffled in front of the sensor to identify their suit. This task,
which will be referred to as the flipped card deck recognition task (Section 3.4.1), has already
been tackled by [118] and [109]. The second task is a simulated reading task in which characters
are recognized as they move across the field of view of the sensor. This task, which will be referred
as the letters & digits recognition task (Section 3.4.2), has already been tackled by [109]. These
first two tasks have been chosen to provide comparison to previously published work. The third
task is a face recognition task, which will be referred as the Face recognition task (Section 3.4.3).
The data used for these different tasks are illustrated in Figs. 3.4, 3.7, and 3.11 respectively.

3.4.1 Flipped card deck recognition task

The first experiment is run on the card dataset provided by Linares-Barranco [118] who captured
the data using the sensitive DVS [113]. It represents a set of playing cards which are being flipped
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Figure 3.5: Flipped cards experiment: Patterns’ signatures.
Histograms of feature activation numbers for the four suits moving in front of the camera. X axis is
the index of the feature shown in the supplemental material, Y axis is the number of activations of
the feature during the stimulus presentation. Each column corresponds to one suit. The snapshots
show how the pips evolve during one particular presentation (each snapshot is taken at a regular

time interval). Each pattern outputs a different signature that allows its recognition.
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Testing
    presentations

Normalized distance

Figure 3.6: Flipped cards experiment: Distance measurements between learning and testing
presentations of patterns.

The system is presented with nine different presentations of each learnt pattern. Each line presents
data related to a particular trained pattern. Each section in between dashed vertical lines corre-
sponds to the presentation of a test stimulus. Histograms show normalized distances obtained
during the experiment so that the recognized objects is the smallest bar in each column (marked
with a star). White bars code for standard distance, grey bars for normalized distance and black
bars for Bhattacharyya distance. These three distances lead to respective performances of 94%,

100% and 97%.

in front of the sensor (see Fig. 3.4 and Fig. 3.5). The pip representing the suit of the card has been
isolated from the recording and the classifier has to determine the suit of the presented card. The
data consists of ten presentations of each of the four suits, in the following, one presentation will
be used for learning and the other nine for testing. Because the cards are being flipped by hand at
high speed during the recording, an important deformation of the symbols occurs.

We use the hierarchical system described in the previous section with 3 layers. The parameters
for the first layer are:

• R1 = 2,

• t1 = 20ms,

• N1 = 4.

To go from one layer to the next, we use the following parameters:

• KR = 2,

• K
t

= 10,

• KN = 2.

The sensor feeds spiking data into the first layer of the hierarchical model and histograms
are built from the third layer’s output. All four suits are used to train the model and each layer
is trained sequentially. The features extracted in each layer are presented in the supplemental
material.
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Training stimuli (a single presentation for each suit) are then presented to the system again to
train the classifier. Examples of the classifier histograms are shown in Fig. 3.5. The rest of the
stimulus examples (nine presentations) for each object are used for testing. The results can be seen
in Fig. 3.6. In Fig. 3.6 the model and classifier have both been trained with only one presentation
of each of the four suits. The nine other stimulus examples for each suit are used for testing.

The four rows along the vertical axis each show results for a different suit during testing. Each
section between dashed lines shows histogram distances for one card flipped in front of the sensor.
The different bars encode the histogram distances where white, gray, and black bars code for the
standard, normalized, and Bhattacharyya distances respectively. The recognized class is the one
with the smallest bar in each column, and is marked with a star. This particular experiment leads to
performances of 94%, 100% and 97% with the standard, normalized, and Bhattacharyya distances
respectively.

Running some cross validation tests on the data gave us performances of 95%�100% with all
three distances.

3.4.2 Letters & Digits recognition task

Figure 3.7: Letters & Digits experiment: Pattern database.
The database for this experiment consists of the 26 letters of the roman alphabet and the digits 0
to 9. They are captured by a DVS sensor as the characters are moving in front of it (white dots

represent ON events and black dots OFF events).
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Feature #

Times activated

Feature #

Feature #

Feature #Feature #
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Figure 3.8: Letters & Digits experiment: Pattern signatures for some of the input classes.
For each letter and digit the trained histogram used as a signature by the classifier is shown.
The snapshot shows an accumulation of events from the sensor (White dots for ON events and
black dots for OFF events). The histograms present the signatures: X axis is the index of the
feature shown in Fig. C.2, Y axis is the number of activations of the feature during the stimulus
presentation. The signatures of all the letters & digits are presented in the supplemental material.
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Normalized distance

Testing presentations

Figure 3.9: Letters & Digits experiment: Distance measurements between learning and testing
presentations of patterns.

one presentation of each learnt pattern is shown to the system. Each line presents data related to a
particular trained pattern. Each section in between dashed vertical lines corresponds to the presen-
tation of a test stimulus. Histograms show normalized distances obtained during the experiment
so that the recognized objects is the smallest bar in each column (marked with a star). White bars
code for standard distance, grey bars for normalized distance and black bars for Bhattacharyya

distance. These three distances all lead to a 100% recognition rate.
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(a) Layer 1 feature activation

(b) Layer 2 feature activation

(c) Layer 3 feature activation

(d) Examples of layer outputs

Layer 1 Layer 3Layer 2

Events Feature activation Layer output

Figure 3.10: Letters & Digits experiment: Activation of features in the different layers.
(a), (b) and (c) activation of the different features extracted by each of the three layers for some
chosen characters: E, B and 8. The last column shows the superposition of the different features
(each color corresponds to a particular feature). The other columns show the independent activa-
tion of the different features with their associated surface representation. Each of the three line of
activations presents a different character.(a) shows the output of the first layer, (b) of the second
and (c) of the third. Differences in the information offered by each layer to differentiate between
these similar classes can be observed. (d) Examples of outputs of the three layers for a set of rec-
ognized objects. We can see how the information becomes more abstract when increasing layers,
going from orientation of contours of a given polarity (ON or OFF events) to contours of a given

curvature.
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The second experiment is run on a dataset provided by Orchard [109]. A DVS camera [26] is
presented with the 10 digits from 0 to 9 and the 26 letters from the roman alphabet (see Fig. 3.7)
printed on a barrel which was rotated at 40rpm. The goal is to be able to classify correctly these
36 objects. This dataset consists of 2 presentations for each of the 36 patterns.

We use the same hierarchical system described previously with the same parameters as in the
previous section.

The camera is feeding data into the first layer and the third layer’s output is used by the clas-
sifier to recognize the letters and digits. Only the objects F, V, O, 8 and B are used to train the
model. Each layer is trained sequentially. The trained features are available in the supplemen-
tal material. Then, for each digit or character, we use one example to train the classifier. Some
examples of the classifier histograms are provided in Fig. 3.8. All the signatures are also avail-
able in the supplemental material. One testing presentation is then used for each object to test the
classifier. The results can be seen Fig. 3.9. Each row along the vertical axis shows results for a dif-
ferent class during testing. Each section between dashed lines shows histogram distances for one
character presented to the sensor. The different bars encode the histogram distances where white,
gray, and black bars code for the standard, normalized, and Bhattacharyya distances respectively.
The recognized class is the one with the smallest bar in each column, and is marked with a star.
Each character is presented once to the sensor in the order we gave to the classes so that perfect
results correspond to stars only on the main diagonal. In this experiment, all distances lead to a
recognition performance of 100%.

We ran a cross validation test by randomly choosing for each pattern which presentation would
be used for learning (both the model and classifier), and the other is then used for testing. Every
trial amongst the hundred we ran gave a recognition accuracy of 100%.

This experiment is run on a dataset composed of objects with very distinct spatial character-
istics. Because of that, it is the best one to try to interpret the features learnt by the architecture.
Fig. 3.10 presents the activation of all three layers’ features for three different characters. We
can observe on panels (a), (b) and (c) how the information available in different layers allow us
to discriminate between three similar characters: E, B and 8. Each column shows the response
of a given feature (its associated surface representation is shown at the top) when the characters
are presented (each line), with the last column showing all these data at once. We can see the
difference in activation of the features corresponding to the differences in the input stimuli.

Panel (d) shows the accumulated feature activations for a set of objects used in this task. We
can clearly see that the information encoded by each feature is becoming more and more abstract
as we go from one layer to the next. In the second layer, features seem to respond to particular
orientation of edges constituted of either ON or OFF events. In the third layer however, it seems
that these features were pooled in order to recognize the line drawing the characters with features
being tuned to its curvature. We can also see that the feature activations are very reproductible
from one character to another containing the same inner shapes.

3.4.3 Face recognition task

The results obtained in the previous sections encouraged us to run the proposed method on more
complex data. For our last experiment, we use a dataset consisting of the faces of seven subjects.
Each subject is moving his or her head to follow the same visual stimulus tracing out a square path
on a computer monitor (see Fig. 3.11). The data is acquired by an ATIS camera [13]. Each subject
has 20 presentations in the dataset of which one is used for training and the others for testing.
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Times activated (log)

Feature #Time

Figure 3.11: Faces recognition experiment: Pattern database and signatures.
The database is constituted of 7 faces moving their gaze by following a dot in a square movement.
The snapshots show the obtained stimulus with successive positions in time of the faces (white dots
represent ON events and black dots represent OFF events; snapshots are taken every 350 ms.). The
last column presents the signature learnt by the classifier for each face using the 32 features of the
third layer of the system: X axis is the index of the feature shown in the supplemental material,
Y axis is the number of activations of the feature during the stimulus presentation (in logarithmic

scaling).
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Figure 3.12: Face recognition experiment: Recognition results.
Subfigure show the recognition results for the three different distances used. (a) Standard dis-
tance: 37% accuracy. (b) Normalized distance: 78% accuracy. (c) Bhattacharyya distance: 79%
accuracy. The system is presented with 19 testing presentations of each learnt class. These 19
presentations are merged into the columns and the numbers are indicating how many matches are
obtained for the different learnt patterns. Perferct results would fill the diagonal (gray background

cells) with values 19, numbers in other cells correspond to classification errors.
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We again use the same hierarchical system described previously with the following parameters:

• R1 = 4,

• t1 = 50ms,

• N1 = 8.

• KR = 2,

• K
t

= 5,

• KN = 2.

Because the faces are bigger and more complex objects, we use bigger receptive fields to
define the time-surfaces and we set the layers to cluster twice as many features as in the previous
experiments. These parameters lead to recognition performances of 37%, 78% and 79% when
using the standard, normalized and Bhattacharyya distances respectively.

3.5 Discussion

In this chapter we have described a hierarchical architecture for object recognition using a new
type of feature relying on time-surfaces. These time-surfaces use the high temporal resolution of
event-driven time-based vision sensors to associate a descriptor to every event based on its relative
timings to recent activity in its spatial neighborhood. The model then clusters this space to extract
features. Successive layers perform this operation again and again, incorporating larger and larger
spatial and temporal scales in the process. This allows for features of these successive layers to
acquire more information, from bigger spatial receptive fields and from longer timescales.

Every layer also automatically learns its own features from its predecessor’s output, removing
the need for supervision. The process of training the model is thus completely unsupervised.
Supervision only takes place when training the classifier, which inherently requires knowledge of
the object class.

Other object recognition methods such as HMAX [60] or HFirst [109] extract orientations as
a first step using oriented Gabor filters, thus only looking at the spatial repartition of the input
data or events to build features. HFirst does make use of time in computation, but it uses time to
encode signal strength of spatial features rather than capturing scene dynamics. In contrast, time-
surfaces use both spatial and temporal information to build features which are then not only spatial,
but spatio-temporal features. Time-surfaces are, by design, encoding spatial information such as
shapes and temporal information such as motion in the feature space. This makes them interesting
features for recognition in dynamic environments. More than recognizing moving objects, these
features should be able to extract the intrinsic relative inner movements of objects to help the
recognition process.

Masquelier et al. [119] used STDP to learn features as event patterns. But STDP can only
extract the co-activation of different input neurons and thus cannot extract the exact order of ac-
tivation. Because time-surfaces encodes relative timings, they can distinguish between different
orders of activation which is important for real spatio-temporal features. Moreover because time-
surfaces are generated around every event, we also do not need to stabilize or track objects for
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their recognition and features will be recognized whatever their position in the field of view of the
sensor.

The letters & digits experiment demonstrates the generalization strength of the feature extrac-
tion process. To recognize the 36 characters constituting the dataset, we only used a subset of 5
characters representative of the whole. When the different layers were learning features, they were
only shown the characters F, V, O, 8 and B. Then, signatures were obtained for all of the 36 char-
acters of the dataset to train the classifier stage. This still leads to a recognition performance of
100% which is showing us than the system can recognize objects without the need for its features
to be specifically trained on those objects.

Recognizing a time-surface essentially consists of performing coincidence detection on input
event arriving in a specific spatial and temporal pattern. For instance, this could be implemented
by using leaky integrate and fire neurons and delay lines. Thus, the model described in this chapter
can be seen as a Spiking Neural Network and could be implemented on neuromorphic hardware
for neural simulation. Moreover, every pixel is considering its own receptive field to build its as-
sociated time-surface. This can allow most of the processing to be parallelized to be implemented
on platforms such as FPGAs or new, highly parallel, computer architectures such as SpiNNaker
[120].

Author Cards dataset Letters & Digits Faces
Perez-Carrasco et al. [118] 90.1%�91.6% � �
Orchard et al. [109] 97.5%±3.5% 84.9%±1.9% �
Lagorce et al. (Hereby) 95%�100% 100% 37%Standard distance
Lagorce et al. (Hereby) 95%�100% 100% 78%Normalized distance
Lagorce et al. (Hereby) 95%�100% 100% 79%Bhattacharyya distance

Table 3.1: Comparison with state of the art

3.6 Conclusion

We have presented a hierarchical recognition architecture using a new way of representing features
in the spatio-temporal output of asynchronous change detection vision sensors. These features are
using relative timings of events, enabled by the high temporal precision of these sensors’ output, to
give contextual information to events, which we have called time-surfaces. The proposed architec-
ture matches or improves the current state of the art on two previously published recognition tasks
and results for a third, more difficult task have been presented. This comparison is summed-up in
Table 3.1.
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Chapter 4

A framework for plasticity
implementation on the SpiNNaker

neural architecture

Many of the precise biological mechanisms of synaptic plasticity remain elusive, but
simulations of neural networks have greatly enhanced our understanding of how

specific global functions arise from the massively parallel computation of neurons and
local Hebbian or spike-timing dependent plasticity rules. For simulating large portions
of neural tissue, this has created an increasingly strong need for large scale simulations

of plastic neural networks on special purpose hardware platforms, because synaptic
transmissions and updates are badly matched to computing style supported by current
architectures. Because of the great diversity of biological plasticity phenomena and the
corresponding diversity of models, there is a great need for testing various hypotheses
about plasticity before committing to one hardware implementation. Here we present a

novel framework for investigating different plasticity approaches on the SpiNNaker
distributed digital neural simulation platform. The key innovation of the proposed

architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker,
dedicating a subset of them exclusively to process synaptic plasticity updates, while the

rest perform the usual neural and synaptic simulations.
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4.1 Introduction

Learning is crucial for the survival of biological organisms, because it allows the development
of new skills, memories, and behaviors, in order to adapt to the information acquired from their
local environment. Such high-level changes of behavior are the manifestation of an intricate inter-
play of synaptic plasticity processes, which lasts from early development throughout the adult life,
and is taking place simultaneously and continuously in all parts of the nervous system. Although
neuroscience has developed an increasingly better insight into the local plasticity mechanisms at
specific types of synapses, we still have a poor understanding of the global effects of plasticity that
lead to the emergence of our astonishing cognitive capabilities. Clearly, this is one of the great
unsolved questions, not only for neuroscience, but with great implications for fields like philoso-
phy, psychology, medicine, and also for engineering disciplines concerned with the development
of artificial intelligent systems that can learn from their environment.

Much of our understanding of the functional effects of local plasticity comes from theoretical
and simulation studies of simplified learning rules in neural network models. Most influential
is the hypothesis of [121], which says that synaptic connections strengthen when two connected
neurons have correlated firing activity. This has inspired many classical models for associative
memory [122], feature extraction [123], or the development of receptive field properties [124].
Later, the discovery of Spike-timing Dependent Plasticity (STDP) [125, 126] has led to a number
of models that have exploited the precise timing properties of spiking neurons for receptive field
development [127, 128], temporal coding [129, 130], rate normalization [131, 132], or reward-
modulated learning [133, 134, 135, 136]. It has also been realized that there is not one standard
model for STDP, but that there is a huge diversity of learning rules in nature, depending on species,
receptor, and neuron types [137, 138], the presence or absence of neuromodulators [139, 140], but
also on other factors like post-synaptic membrane potential, position on the dendritic arbor, or
synaptic weight [141].

The discovery that basic effects can be achieved with local learning rules has had a big influ-
ence on the development of larger scale learning models that have mapped methods from machine
intelligence onto spiking neural networks. Examples include supervised learning methods for clas-
sification of visual (e.g. [142, 143]), or auditory stimuli [144], and unsupervised learning methods
like Expectation Maximization [145, 146], Independent Component Analysis [147], or Contrastive
Divergence [148]. This has opened up the possibility of using spiking neural networks efficiently
for machine learning tasks, using learning algorithms that are more biologically plausible than
backpropagation-type algorithms typically used for training artificial neural networks.

The increased interest in spiking neural networks for basic research and engineering applica-
tions has created a strong interest for larger, yet computationally efficient simulation platforms for
trying out new models and algorithms. Being able to easily and efficiently explore the behavior
of different learning models is a very desirable characteristic of a such platform. The major prob-
lem for computation with spikes is that it is a resource-intensive task, due to the large number
of neurons and synapses involved. Synaptic activity, and specifically synaptic plasticity, which
might be triggered by every spike event, is dominating the computing costs in neural simulations
[149, 150], partly because the communication and processing of large numbers of small messages
(i.e. spikes), is a bad match for current von Neumann architectures. Different strategies to improve
the scale and run-time efficiency of neural simulations either rely on supercomputer simulations
[151, 152], parallel general-purpose devices such as GPUs [153] and FPGAs [154], or special
purpose neuromorphic hardware [155]. Each solution involves a trade-off between efficiency,
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reconfigurability, scalability and power consumption.
In this context we present a framework for studying arbitrary plasticity models on a paral-

lel, configurable hardware architecture such as SpiNNaker. The SpiNNaker system [156, 120]
has been designed as a massively parallel, highly reconfigurable digital platform consisting of
multiple ARM cores, which optimally fits the communication requirements for exploring diverse
synaptic plasticity models in large-scale neural simulations. Previous implementations of plas-
ticity on SpiNNaker have been limited in their ability to model arbitrary spike- and rate-based
learning rules. Here, we present a new approach for implementing arbitrary plasticity models on
SpiNNaker, using a dedicated plasticity core that is separated from other cores that process other
neural and synaptic events. Specifically we demonstrate the implementation of three synaptic
plasticity rules with very different requirements on the trigger events, and on the need to store
or access additional variables for computing the magnitude of updates. We show that the same
architecture can implement the rate-based BCM rule [124], an implementation of standard STDP
based on a model by [157], and a voltage-dependent STDP rule suggested by [142]. We compare
the efficiency and correctness of the STDP rule to previous implementations on SpiNNaker, and
provide the first implementation of BCM and the learning rule of [142] on this platform. All the
experimental results presented in this work come from implementations of learning rules on a
4-chip SpiNNaker board.

The ability to implement different rules with very different requirements, that are either based
purely on spike-timing, on the correlation of firing rates, or on additional voltage signals indicates
that the framework can be used as a generic way of implementing plasticity in neural simulations.
This new architecture therefore provides an efficient way for exploring new network models that
make use of synaptic plasticity, including novel rules and combinations of different plasticity rules,
and pave the way towards large-scale real-time learning systems.

This article is organized as follows: the next Section introduces different approaches to model
learning, from a theoretical and an implementation point of view. Section 4.3 describes the SpiN-
Naker system, the previous solutions for plasticity on SpiNNaker and our novel approach pre-
sented in this work. The flexibility of the framework introduced is demonstrated by the imple-
mentation of three different rules, presented in Section 4.4, 4.5 and 4.6: Spike-Timing Dependent
Plasticity [129], the rate-based BCM rule [124] and the voltage-dependent variation of the STDP
rule [142]. We validate the implementation by replicating classical plasticity experiments, and
discuss the performances of each rule in Section 4.7. The chapter is concluded in Section 4.8,
which also provides an outlook towards future applications.

4.2 Learning in spiking platforms

The use of parallelization to mitigate the computational costs and difficulties of modeling large
plastic networks has been exploited using different tools and strategies. Using many processors in
a supercomputer is an important exploratory solution, which can be used to rapidly implement and
test learning rules. However, setting up a Message Passing Interface (MPI) mediating the spike
communication is a challenging process on a distributed von-Neumann architecture, because the
network infrastructure is optimized for large-frame transfers [151, 152] as opposed to small spike
packets.

Dedicated neuromorphic [2] systems are natural candidates for emulating parallel neural com-
putation. On these systems, circuits modeling neurons and synapses can be replicated using Very
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Large Scale Integration technology (VLSI, [155]). Synapses usually take up the majority of the
resources, in terms of computation and chip area. It is also particularly challenging to design
plastic hardware synapses. In the FACETS wafer-scale hardware [158], for example, the area of
plastic synapses is minimized by separating the accumulator circuit for the spike-timing depen-
dency and a global weight-update controller, which drives the update of multiple synapses [159].
Having a separate plasticity engine makes the update slower, but adds flexibility to the plasticity
algorithms that can be implemented. The trade-off in this case relates to the controller frequency
update, which evolves slower than the neural dynamics, and the precision of the synapses, limited
to 4-bits. Despite these limitations the system is capable of modeling a variety of plasticity mod-
els, characterized by different weight dependencies. Also, the synaptic resolution is shown to be
not-critical in the simulation of a series of network benchmarks. [160] have introduced a general
system where synapses are stored in digital memory with a processor implementing the synaptic
update mechanism, while a separate set of ASICs implement the neural integration process. While
they demonstrate STDP, more general functions can be implemented using the same scheme.

[142] proposed a learning rule that captures biological properties such as memory preservation
and encoding. Furthermore, it is optimized for efficient implementation in a neuromorphic system.
The rule is dependent on the post-synaptic neuron membrane potential and recent spiking activity
at the time of a pre-spike arrival. Every synapse has internal dynamics, which drives the weight
towards a bistable state. Its advantage for VLSI implementations [99, 161, 162] lies in its ability
to smooth device mismatch by applying a threshold to the internal state variable, in order to set the
synapses to one of two possible states. The bistable representation of memory has the additional
advantage of being power efficient. The fact that the rule can be computed when a pre-synaptic
spike is received reduces the chip area required by a synapse, and consequently increases the
number of synapses that can be modeled. This assumes that the synapses are located on the
post-synaptic neuron, and have access to the neural and synaptic state variables when a spike is
received. This is the case in the VLSI devices mentioned above and also in SpiNNaker [163].
A review of different neuromorphic approaches and challenges in designing plastic synapses can
be found in [164], which discusses power consumption, area requirements, storing techniques,
process variation and device mismatch.

Recently, Resistive Random Access Memories, commonly referred as memristors, have raised
interest in the neuromorphic community. They are small, power-efficient devices that can be used
to store weights and thereby increase the amount of neurons and synapses that can be integrated in
a chip. Weight change can be induced by controlling the voltage at the terminals of a memristor,
inducing a change in its state and thus modeling a learning rule such as STDP [165] or triplet-
based STDP [166]. In [167] memristors are used directly to model synaptic dynamics, using them
both for computation and memory storage.

There are also difficulties when implementing synaptic plasticity in general purpose hardware.
Regarding GPUs [153], for example, propose a simplified nearest-neighbor pairing scheme with a
time-limited STDP window. They continuously accumulate STDP statistics that are then used to
update synapses at fixed intervals. In such implementation, increasingly shorter intervals impact
performance, lowering the overall spike throughput of the platform. Weight change accumulation
is commonly used in other GPU approaches, e.g. in [168], where the synaptic kernel update is
applied every second, and in software simulations [169].

The diversity of approaches for studying synaptic plasticity in hardware, indicates a need for
general purpose, massively parallel, and reconfigurable computing platforms. Only this will allow
fast prototyping of plasticity rules, and their exploration in large scale models, which can in a

Computational Methods for Event-Based signals and Applications



70 A framework for plasticity implementation on the SpiNNaker neural architecture
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Figure 4.1: High-level view of the SpiNNaker chip, showing: the ARM cores with their Instruc-
tion and Data Tightly coupled memory (DTCM and ITCM, 32 and 64 Kbyte respectively) to run
applications and locally store data; the Multicast (MC) router responsible of spike transmission;

the port to the 128 Mbyte SDRAM off-chip memory, containing the synaptic data.

second stage directly lead to dedicated hardware implementations.

4.3 A novel framework for plasticity implementation on SpiNNaker

SpiNNaker [170, 120] is a digital multi-core, multi-chip architecture designed for the simulation
of large neural networks in real time. Each SpiNNaker chip is equipped with a 1Gbit SDRAM
and 18 programmable ARM968 cores embedded in a configurable packet-switched asynchronous
fabric [171].

The SpiNNaker network infrastructure is designed with spiking communication in mind: every
chip contains an on-chip Multicast (MC) router capable of handling very efficiently one-to-many
communication of spikes (MC packets). The router links every chip to its six neighbours. Each
core has a small local tightly-coupled memory (32 kByte instruction and 64 Kbyte data, ITCM and
DTCM respectively). The massive synaptic data required for neural simulations is stored in the
shared, off-die SDRAM 128 MByte chip that can be accessed by the cores through DMA requests,
for an aggregate read/write bandwidth of 900 MBytes/s [172]. The system is designed to scale up
to 60,000 chips for a total of over one million ARM cores. The goal of the system is to simulate
1% of the human brain in real time.

A high level view of the main chip components is presented in Figure 4.1. When simulating
neural networks, spikes are delivered and processed by the ARM cores, which update the states
of the neurons and synapses. A C-based API is used to program neural kernels [173]. The API
offers an accessible interface to the hardware substrate and to real-time event scheduling facili-
ties, and can be used to write applications that are executed in parallel on the machine. The API
promotes an event-driven programming model: the neural kernels are loaded into the ARM cores
and are used to configure callbacks that respond to events. A timer event allows the periodic ex-
ecution of functions, such as neuron state update. A packet event signals the arrival of an MC
packet (spike) and can be used to initiate a request to transfer synaptic data from SDRAM. Fi-
nally, a memory event indicates that the requested data is available for processing. The neural
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Figure 4.2: (A-B) current STDP implementation on SpiNNaker, following the Deferred Event
Driven model (C-D) the proposed novel implementation framework for plasticity implementation.

kernels are parameterizable and can support different classes of neural models and connectivity
patterns. Model specification, system mapping and run-time control is obtained through the PArti-
tion and Configuration MANager (PACMAN, [174]), which offers interfaces with two languages
extensively used in the neural modeling community: PyNN [175], a simulator-independent speci-
fication language, and Nengo [176], the simulation tool implementing the principles of the Neural
Engineering Framework.

Figure 4.2(A-B) shows the current implementation of a neural kernel, highlighting the pro-
cesses involved: every millisecond, a timer event triggers the evaluation of the neural dynamics.
A spike is then emitted if a configurable threshold of the membrane potential has been reached.
Spikes travel as MC packets through routers on the interconnection fabric and are delivered to the
destination cores, triggering a packet event. Whenever a packet is received, a memory look-up is
initiated to retrieve the relevant synaptic information (such as weight, delay, destination neurons
on the core, and type of synapse) from SDRAM, where the connectivity matrix, indexed by pre-
synaptic neuron, is stored. When the requested data arrives this creates a memory event, and the
spike is processed by every post-synaptic core. Due to the limited memory available in the ARM
cores, the synaptic weights are only locally available to the core right after a memory transfer from
DMA has occurred as a consequence of the arrival of a spike. Therefore, the time available for the
weight update process is very short; moreover, since delays are reintroduced at the post-synaptic
end, the update process relies on information which might concern the future state of the neuron.
This has limited the flexibility of previous approaches for implementing plasticity on SpiNNaker.

4.3.1 The Deferred Event Driven Model

The STDP algorithm requires computation whenever a pre spike is received or a post spike is
emitted. This causes two relevant issues for the cores running neural simulation on SpiNNaker:

1. Weights are only available in local memory upon the reception of a MC packet signaling
that a spike has occurred in one of the pre-synaptic neurons. At the time of a post-synaptic
spike such information is stored in SDRAM, which is indexed by pre-synaptic neuron and
therefore is not easily accessible for a fast update.

2. A spike packet is delivered to the post-synaptic core as soon as it is emitted, and biological
delays (stored in SDRAM as well) are re-introduced by the core modeling the post-synaptic
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neuron after the relevant information has been retrieved from memory; the delay itself is
stored into memory, and can be different for different post-synaptic neurons on the same
core. [163]. The weight value is stored in a circular buffer which rotates with the timer
event interval, and lumps all the synaptic contributions for one millisecond in a way similar
to that described in [149]. The consequence of delaying the input into the future is that when
a synapse is processed, the state of the post-synaptic neuron (e.g., its membrane potential or
the presence of a post-synaptic spike) is not available.

The Deferred Event Driven Model (DED) for computing plasticity was introduced in [177]
to circumvent these problems. DED enables computation of STDP at the time when a pre spike
is received by deferring the weight update process into the future, until enough information is
gathered. Post spikes are collected in a spike window, stored in the local core memory, while pre
spikes are stored in SDRAM, along with the rest of the synaptic information. Upon the retrieval
of the weights related to a pre spike, these two time windows are compared and weight update is
performed. Plasticity is therefore always computed on the next pre spike arrival, and only if enough
time has passed, to guarantee that all the necessary information is available. This poses restrictions
on the pre-to-post firing rates: if a pre-synaptic neuron fires with a low rate, the spike information
of the post-synaptic neuron might have already expired. Thus, the algorithm loses a pre-post spike
pair, even if they were close in time, if the next pre spike arrives after the expiration of the post
spike window. Furthermore, because the algorithm needs to check every spike pair, its efficiency
depends on the length of the history and on the number of the pre-post pairs. Such limitations
are discussed in [178], where the trade-offs between spike-history, efficiency and correctness are
analyzed.

[179] try to address the problem from a different angle, using the Time To Spike (TTS) strategy:
STDP is computed only upon the reception of a pre spike, using the current membrane potential
as a predictor of future spiking activity. By doing so, weight updates can be performed while
synaptic information is in local memory, addressing the first of the two problems mentioned above.
However, as mentioned earlier, spikes are delivered to the post-synaptic neurons as soon as they
are emitted, and the biological delays are reintroduced at the post-synaptic end. This creates errors
when using delays, as reported in the original work presenting the TTS approach: the membrane
potential used as a predictor of the post neuron firing is the one corresponding to the time of
spike emission by the pre neuron, rather than that of spike reception by the post neuron (after the
propagation delay). Such problem makes the TTS algorithm usable and efficient when delays are
constant and short, but cannot deal correctly with longer delays. This also creates problems for
detecting temporal patterns where delays play an important role [169], such as in the experiments
in Section 4.6.2.

4.3.2 The Dedicated Plasticity Core Approach

The previous implementations of plasticity are not limited by the SpiNNaker hardware, but rather
by their software implementation. Therefore, we present an alternative approach: instead of hav-
ing a single core evaluating neural dynamics and plasticity, we divide the job into two parallel
processes. One core performs the neural updates and spike integration, while the second core
deals with plasticity (see Figure 4.2(C-D)). Plasticity operates as a slower process in the back-
ground. It processes the whole synaptic block in SDRAM and the information about spike timing,
and modifies the weights according to the chosen plasticity mechanism. The proposed approach
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takes inspiration from previous work where plasticity effects are accumulated and evaluated pe-
riodically [169, 168, 153, 159]. Plasticity is thus updated less frequently than neural dynamics,
which is radically different from the previously described DED model on SpiNNaker.

In our novel approach, the PACMAN mapping tool automatically instantiates a twin plastic-
ity core alongside each neural core whenever it detects a neural population with incoming plastic
connections. Neural and plasticity cores have access to the same portion of SDRAM through repli-
cation, in their local memories, of the look-up tables used to index it. The neural core performs the
usual operation that a non-plastic core would perform, thus eliminating all the overheads required
by the DED model. The neural core is also in charge of trivially updating a bitmap pre-spike
window whenever a pre spike is received, as shown by the dashed arrow in Figure 4.2(C). The
plasticity core is concerned solely with the weight update process, which can be performed by
walking the local SDRAM weight matrix and computing plasticity at a slower pace. When a neu-
ron in the neural core emits a spike, the corresponding packet is delivered to the plasticity core,
and to the post-synaptic neurons as under normal conditions. Because the plasticity and neural
core always reside on the same chip, this process does not add overhead to the routing process.
This allows to keep track of the post-synaptic spiking history. Here we decided to update the
weights every 128 ms and store the spike times with a resolution of 2 ms, as a compromise be-
tween performance, platform-specific limitations and precision. Pre-synaptic spikes are stored at
the beginning of each synaptic row as spike-history bitmaps. The plasticity process needs to know
all the spikes which happened in its considered 128 ms window. This data has been stored by the
neural core in one of the spike windows (0 or 1 in the Figure) during the previous 128 ms before
the update. For the plasticity core to be able to read this buffer while the neural core is storing the
next 128 ms of spikes, we use a double buffer technique: when the plasticity core is reading spike
window 0, the neural core is storing the spikes in spike window 1 and viceversa. This has been
emphasized in the Figure 4.2(C) by using different color codes for the two different processes.
The double buffers contain data for different time slots and therefore do not need to be accessed
concurrently by the neural and plasticity core, so there is no need for mutual exclusion or locks.
Memory contention is eliminated by the fact that the neural core operates in the current 128 ms
window, while the plasticity core works in the previous 128 ms time window. The same technique
used for the spike windows could be used on the whole synaptic matrix to ensure coherency of the
whole matrix during the entire simulation. Because this method only switches the pointer used
to lookup the data between consecutive plasticity periods, this would not change the approach or
performances. Whenever a portion of memory is ready for computation, the request for the next
row of the synaptic matrix is issued and weight updates of the current synaptic row are performed,
thus masking memory access costs through parallelization. This separation of neural and plastic-
ity operations gives rise to an environment where weight update rules can be easily programmed
separately. This leverages the reprogrammability of the general processors used by SpiNNaker
and the generality of the event-driven API presented in [173]. While it is worth noting that the
difference between neural and the plasticity processes is only in the software running on the ARM
cores, they can be thought of as hardware threads. The SpiNNaker software infrastructure does not
support threads. If software threads were available, besides the costs related to thread switching,
the neural and synaptic update threads would need to split between them the limited local memory
(DTCM) and the processor cycles. In SpiNNaker, clock cycles are also limited in order to meet
real-time targets. The proposed solution, on the other hand, uses hardware threads (cores), one for
neural update and one for synaptic update, with each thread owning all of its local resources. This
results in a more efficient use of the available resources. In fact, depending on the relative com-
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Figure 4.3: (A) Algorithm for STDP learning implementation on the plastic core (B) STDP func-
tion (C) Implementation of pair-based STDP with local traces and delays, as suggested by [157]:
potentiation occurs at post-synaptic spike times and corresponds to the value of the pre-synaptic
trace; conversely, depression happens at pre-synaptic spike times and corresponds to the value of
the post-synaptic trace. d represents the delay, reintroduced at the post-synaptic end; black and
red lines represent the traces and spike timings when the delay is reintroduced (red) as opposed to

using the presynaptic spike time as reference (black).

plexity of the neural and synaptic update processes, the ratio of hardware threads can be adjusted,
using N neural update for every M synaptic update threads (cores). The plasticity core has access
to the pre- and post-synaptic spike activity history of the previous 128 ms time window; the first is
stored in SDRAM and the second one in DTCM. Such information can be used to compute rates,
traces, timing differences or other required variables for different learning rules, as shown by the
three rules implemented in this work.

4.4 STDP

Derived from biological observations that synaptic plasticity depends on the relative timing of
pre- and post-synaptic spikes [125, 126], Spike-Timing Dependent Plasticity (STDP) [129, 131]
has become a popular model for learning in spiking neural networks. In its standard form, STDP
weight-updates are expressed by the double-exponential form

F(Dt) = A+e
Dt
t+

Dt < 0 (4.1)

F(Dt) =�A�e
�Dt
t�

Dt � 0 (4.2)

where Dt = tpre� tpost is the time difference between a pair of pre- and post-synaptic spikes, A+

and A� are scaling factors for potentiation and depression, and t+ and t� are the time constants
of the plasticity curves. The weight update rule is illustrated in Figure 4.3. There are different
strategies for computing the total amount of weight change after seeing multiple pre- and post-
synaptic spikes [157], e.g. by considering only nearest neighbor spike pairs, or summing the
weight changes F(Dt) for all pairs. Here we adopt a form of STDP proposed by [157] to compute
the weight change using local variables in the form of pre- and post-synaptic traces. Each trace xi
has the form
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dxi

t
=�xi

t

+A
Â

t f
i

d(t� t f
i ) , (4.3)

where xi is the value of the trace for neuron i, A is the amplitude by which the trace increases with
each new spike at time t f

i , and t is the exponential decay time constant. The concept is illustrated
in Figure 4.3: potentiation occurs at post-synaptic spikes, using the value of the pre-synaptic trace
as the weight increase; conversely, depression happens at pre-synaptic spike times, and reduces
the weight by the value of the post-synaptic trace.

4.4.1 Methods: Implementation of STDP on the Plasticity Core

The plasticity core is in charge of computing all traces, using the spike timing information col-
lected during the simulation. Weight changes are then computed by walking through all the synap-
tic block. The pre-trace is computed every time a portion of memory is received through a DMA
process using the information in the spike window, while the post trace is computed at the be-
ginning of each plastic phase starting from the spike history bitmap collected during the packet
received callback. Traces can have longer time scale than the plasticity window, as the exponential
filtering is updated at the beginning of each phase, and the previous value of the exponential filter
carries over from one plasticity window to the next. Delay needs to be reintroduced at the post-
synaptic end, and can be used to compute the amount of shift required to correctly compute weight
de/potentiation, as shown in Figure 4.3, where the black part shows the spike timing and traces
using the presynaptic spike time as the reference, while the red part shows how this reference is
shifted once delay has been reintroduced. Not considering the delay generates substantial errors
in the weight update.

A simple experiment in which STDP, implemented with the above scheme achieves synaptic
potentiation and depression is shown in Figure 4.4 (A) and (B). The final part of the Figure presents
a classical experiment where a plastic neuron can reduce the latency of its firing to a repeatedly
presented pattern [131, 180]: a (red) neuron receives connections from 10 inputs neurons (blue)
which fire at 2 ms from each other; during the first repetition all the 10 input neurons are required
to make the target neuron fire. After repeated presentations, due to potentiation, only three input
neuron spikes are needed to elicit activity in the post neuron, which responds with a lower latency
to the onset of the pattern.

4.4.2 Results: pre-post pairing using a teacher signal

In Figure 4.5 we reproduce results of a classical stimulation protocol for potentiation induced by
pre-post synaptic pairing. The network comprises a stimulus population and a target population,
each separately driven by two different Poisson sources emitting spike bursts at high frequency
(350 Hz) for short periods of time (20 ms). Both populations also receive independent background
noise. The Poisson and noise source populations are interconnected with a one-to-one connec-
tivity pattern to their respectiv inputs and outputs. The stimulus and the target populations are
interconnected with a 50% probability.

At the beginning of the simulation, external stimulation coming from the stimulus population
is not strong enough to trigger activity in the target post-synaptic population (0  t  1500 ms).
Afterward (1500  t  3000 ms) the stimulus and target populations are stimulated together by
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Figure 4.4: Shift of post-synaptic firing onset via STDP. (A) Potentiation: The spike raster plot
(bottom) shows that at the beginning of the stimulation 3 input spikes (blue) are needed to make
the target neuron (red) fire; after 400ms, potentiation has made the synapse strong enough so that
the post-synaptic neuron fires after only 2 spikes. This is also visible in the membrane potential
(top) and post-synaptic currents (PSC; middle). (B) Depression: (bottom) The green neuron is
made to spike consistently after the target (red) neuron, hence its weight gets depressed, as can
be observed by its decreasing contribution in the membrane potential (top) and PSC (middle).
(C) Reduced spike latency: at the beginning of the simulation (upper-left panel) 10 spikes from 10
different input neurons (blue) are needed to make the post-synaptic (red) neuron fire; after repeated
stimulation (upper-right-panel), potentiation via STDP makes the red neuron fire already after 3
spikes, hence firing closer to the pattern’s start, which is also shown by the latency plot (bottom

panel).
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Figure 4.5: STDP with a teacher signal: (A) Network structure: two different Poisson spike
sources (red) are used as supervisor signals to individually stimulate the Stimulus (top) and Target
(bottom) populations at different times (blue), which also received noise from two separate sources
(green). (B) Initially (between 0 and 1000 ms), only the pre-synaptic population is stimulated, but
the synaptic weights are weak, thus the resulting spikes (blue) do not elicit post-synaptic spikes.
Between 1500 and 3000 ms, both populations are stimulated with a 10 ms time difference, such
as to induce synaptic potentiation. The effect can be seen between 3500 and 4500 ms, when the
teacher signal for the post-synaptic population is removed: after the potentiation the pre-synaptic

spikes are able to drive the post-synaptic neurons by themselves.

their respective Poisson inputs, so that the target population spikes 10 ms after the stimulus popu-
lation, hence inducing potentiation. Finally, for 3500 t  4000 ms, the Poisson process feeding
the post-synaptic population is removed, and the post-synaptic population is only stimulated by in-
puts from the pre-synaptic population. It can be seen that because of the induced potentiation, the
pre-synaptic input is now strong enough to make the target population fire without any supervisor
input.

4.4.3 Results: balanced excitation

[131] have shown that STDP can establish a state of balanced excitation in the post-synaptic neu-
ron, which makes it more likely to fire with a controled output rate in response to fluctuations in
its input. This is achieved by competition between the synapses that project onto the post-synaptic
neuron, induced by STDP. The characteristic effect described by [131] is that STDP creates a
bimodal distribution of input weights, pushing them either towards the minimum or maximum
values, and creating groups of strong and weak synapses. In Figure 4.6 we simulate a group of
1000 input neurons, firing independently according to a Poisson process at 20 Hz, and project-
ing onto a single output neuron. The weights are initialized uniformly, and then undergo STDP.
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Figure 4.6: Competition between synapses undergoing STDP: In the experiment introduced by
[131], 1000 pre-synaptic, uncorrelated pre-synaptic neurons, firing at a Poisson-rate of 20 Hz,
project onto a single post-synaptic neuron. (A) Initial uniform weight distribution before plasticity.
(B) After 300 seconds of stimulation STDP has divided the synaptic weights into weak and strong
ones, thereby regulating the activity of the post-synaptic neuron. The red line shows the mean of

the initial weights. (C) Scatter plot of the final weight distribution.

After 300 s of simulation, the distribution of synaptic weights in Figure 4.6 shows clearly the
characteristic separation into two groups of very different strengths.

4.5 BCM

The BCM rule, named after their inventors Bienenstock, Cooper, and Munro [124], is a rate-
based synaptic plasticity rule, introduced to model binocular interactions and the development
of orientation selectivity in neurons of the primary visual cortex. The BCM rule is based on
Hebbian principles, but introduces synaptic competition by correlating the pre-synaptic rate with
a non-linear function of the post-synaptic rate. In its simplest form the BCM rule computes this
non-linearity as the product of the post-rate with its deviation from the mean post-synaptic activity
(see Figure 4.7(B)):

dw
dt

= [rpost(rpost �q)rpre]d� e ·w . (4.4)

Here w denotes the synaptic weight and dw/dt its change, rpost and rpre are the firing rates of
the pre- and post-synaptic neurons, q is the modification threshold, which is computed here as the
mean firing rate of the post-synaptic neuron, d is a learning rate, and e a weight-decay parameter.
If rpost exceeds the mean firing rate q, the weight is potentiated; conversely, for lower activity
(rpost < q) the weight is depressed. The learning rate parameter d can be used to normalize the
magnitude of the synaptic weight change according to the neural model used. Many variations of
the BCM rule have been studied since its introduction, using different kinds of non-linearities, but
here we study only the basic version from [124].
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Figure 4.7: Implementation of BCM plasticity. (A) Algorithm for BCM learning on the plasticity
core. (B) Illustration of the BCM rule: normalized weight change as a function of the pre- and
post-rates, with q = 35 Hz. (C) Potentiation experiment using a teaching signal: when stimulation
is paired with a teacher signal that forces the post-synaptic neurons in the target population to fire,

the weights get potentiated and become strong enough to drive the post-synaptic neuron.

4.5.1 Methods: Implementation of BCM on the Plasticity Core

Since the BCM rule only requires firing rates, the plasticity core just has to increment a counter
whenever a post-spike is received, and to use a low-pass filtered version of the rate. Analogously,
when processing a row relative to an afferent neuron, the number of spikes received during the pre-
vious phase is used to update the pre-synaptic rate information. At the end of each plasticity phase
q (the threshold parameter representing the mean rate) is updated using a configurable exponential
moving average, and the pre spike windows are reinitialized.

In Figure 4.7(C) we show a classical potentiation protocol using the BCM rule. For the first
600 ms the target population is only receiving spikes from the stimulus population, but the weights
are too weak to cause firing in the target population. Between 600 and 1200 ms, a teacher popu-
lation is activated which is strong enough to drive the target population, thereby potentiating also
the simultaneously active stimulus-target connections. Afterwards, when the teacher population is
switched off, the stimulus population alone is able to drive the target population without teacher
input.

4.5.2 Results: Emergence of orientation selectivity with BCM

The BCM rule has been originally proposed in [124] to explain how neurons in the primary visual
cortex can acquire their feature selectivity from sensory stimulation. As a test of our implemen-
tation of BCM on SpiNNaker we replicate a simple neural network with lateral inhibition which
undergoes plasticity while receiving monocular visual input in the form of oriented bars.

The network consists of 2 layers, an input layer which comprises 16⇥ 16 neurons and an
output layer with 4 neurons. Each neuron in the input layer projects, in an all-to-all fashion, to
the output neurons. All synapses are initialized with random weights and delays. Each neuron in
the output layer has an inhibitory projection to every other neuron, forming a network of lateral
antagonism [181]. The aforementioned connectivity pattern matches anatomical data, for example
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Figure 4.8: Emergence of orientation selectivity with the BCM learning rule. (A) and (B): the
top row represents the input stimuli bars presented in different orientations, the total firing rate
for each stimulus is 1,000 Hz; the middle row shows the weight matrix for the output neurons,
with (A) random initial weights and (B) results after the training, where it can be observed that
neurons have developed their receptive fields according to the input stimulation; the bottom row
shows the firing rates of the output neurons, where each color codes for a different neuron which
has learned a preferred orientation. (C) Orientation tuning curves obtained by rotating a horizontal

bar counter-clockwise with a step size of 10 degrees.

the lateral plexus of the Limulus’s eye, as originally found by [182]. [124] themselves point out
that no selectivity is achieved without lateral inhibition.

For this experiment four images of oriented bars are used as input stimuli, each rotated by 45
degrees. Bars are 3 pixels thick and 12 pixels in length, and the intensity of each pixel is a random
value between 0.8 and 1.0. Each pixel is converted to Poisson spike trains, in order to simulate
spikes coming from the retina or LGN. The firing rates are proportional to the value of the pixels,
while all firing rates are scaled such that the input layer generates approximately 1,000 spikes per
second. During the simulation each orientated bar is presented to the network in a random order
for 1 second and for 80 repetitions. Learning takes place in the synapses between the input and
output layer, while the inhibitory synapses in the output layer are static and set to a weight of -9
nA.

The results are summarized in Figure 4.8. Figure 4.8(A) shows that the weights and neuronal
responses to input stimuli are initially random. At the end of the simulation, Figure 4.8(B) shows
that each output neuron has developed via BCM plasticity a receptive field that corresponds to
one particular orientation. In Figure 4.8(C) we show the orientation tuning curves of each neuron,
measured by rotating the stimulus bar counter-clockwise in 10 degrees steps. The results show
that each neuron has successfully learned to respond best to one preferred orientation, which is in
line with previous modeling studies and experimental and anatomical data [183, 184].

4.6 Voltage-gated STDP

[142] have presented an STDP rule that is triggered by the arrival of pre-synaptic spikes, and
in which the change in synaptic efficacy is a function of post-synaptic depolarization and of an
internal variable at the spike arrival time. The rule is motivated by the necessity to design learning
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Figure 4.9: Implementation of voltage-gated STDP. (A) Concept for implementing voltage-gated
STDP on the plasticity core. (B) Example of synaptic potentiation: three pre-synaptic spikes
(blue) arrive while the membrane potential is greater than qV and q

h
down  C(tpre) < q

h
up (red-

shaded area in bottom row). Initially, the post-synaptic neuron (red) fires after the third spike,
after potentiation only two spikes are needed to make the target neuron fire. (C) Depression
example: three pre-synaptic spikes (blue) arrive while the membrane potential is less than qV
and q

l
down  C(tpre) < q

l
up (blue-shaded area in bottom row). After depression takes place, the

post-synaptic neuron (red) no longer fires after receiving the 3 input spikes.

rules which are at the same time biologically plausible, but also compatible with implementation
constraints on neuromorphic devices. Several studies have demonstrated the ability of the learning
rule to discriminate complex spatio-temporal patterns [185, 186, 187], even if the synapses are
allowed to take on only one of two stable states. Every time the post-synaptic neuron emits a
spike an internal variable C(t), representing calcium concentration due to back-propagating action
potentials, is incremented by a value JC and then decays with a time constant tC according to the
dynamics described by

dC(t)
dt

=�C(t)
tC

+ JC
Â

i
d(t� ti) , (4.5)

where ti are the post-synaptic spike times. Potentiation and depression happen only if C(t) is in
an appropriate interval [qh

down,q
h
up] for potentiation and [ql

down,q
l
up] for depression. Post-synaptic

membrane depolarization V (t) influences this plasticity rule, triggering potentiation (or depres-
sion) only if the membrane potential of the post-synaptic neurons is higher (lower) than a threshold
value qV at the time of arrival of a pre-synaptic spike (tpre). Modification of the synaptic efficacy
w can then be summarized by the following equations:

w = w+a if V (tpre) > qV and q

h
down C(tpre) < q

h
up (4.6)

w = w�b if V (tpre) qV and q

l
down C(tpre) < q

l
up (4.7)

where a and b represent the constant weight increase and decrease values respectively.
If none of the conditions in (4.6) and (4.7) are met, or if no spike is received in the period

of time considered, then the weight drifts towards one of two stable values (wmin and wmax). The
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direction of the drift is determined by comparing the current weight w to a threshold qW , and speed
of the drift towards the minimum and maximum stable states is determined by the constants a and
b respectively. This leads to the following dynamics:

dw(t)
dt

= a if w(t) > qW (4.8)

dw(t)
dt

=�b if w(t) qW (4.9)

4.6.1 Methods: Implementation of voltage-gated STDP on the plasticity core

The voltage-gated STDP rule needs further information from the post-synaptic neuron, as the
membrane potential gates potentiation or depression. The cores communicate this information as
means of shared memory in SDRAM, using a double buffer technique so that they always work
on different phases. This induces a slight overhead in the neural core, which has to perform the
check against qV and saves the result for each millisecond in a bitmap stored in memory. The
plasticity core retrieves the results of the comparison at the beginning of each plasticity phase, and
uses them in the weight update process. At the same time the function C(t) is computed starting
from the post neuron spike timings, similarly to computing the STDP traces.

The basic dynamics of this voltage-gated STDP rule are shown in Figure 4.9: The bottom
row shows the trace of the calcium variable V (t), which is increased by JC whenever the post-
synaptic neuron fires, and then exponentially decays with time constant tm. The central part
shows the potentiation of a synapse, because here the pre-spikes arrive when V (tpre) > qV and
q

h
down C(tpre) < q

h
up), and thus fewer spikes are needed to drive the target neuron. Conversely, on

the right we observe the depression of a synapse, because pre-spikes arrive when V (tpre)  qV
and q

l
down C(tpre) < q

l
up). After depression, the synaptic input is too weak to make the target

neuron fire.

4.6.2 Results: Learning temporal patterns

To verify our implementation of the voltage-gated STDP rule by [142], we implemented the model
by [188] for learning temporal structures in auditory data, which has originally been implemented
on a neuromorphic chip in [144]. The study focused on learning dynamical patterns in the con-
text of a sound perception model by tuning auditory features through presentation of stimuli and
learning using the STDP rule implemented in VLSI.

The proposed network learns to respond to particular input timing patterns. The network com-
prises 3 layers of tonotopically organized frequency channels, representing different positions on
the basilar membrane. The first layer A represents a spiking signal produced by an artificial cochlea
(such as the one in [189]); each neuron in the A layer projects to a neuron in 2 layers, B1 and B2
through excitatory synapses, while B1 projects to B2 through inhibitory synapses. Each neuron in
B2 also receives plastic connections from all the neighboring B1 neurons, with delays proportional
to the distance, as shown in Figure 4.10. Since delays are programmable in SpiNNaker we incor-
porated them directly in the B1 to B2 connection, and not through a separate neural population as in
the original model. This delay property is essential for learning: correlation between the delayed
feedback arriving from other B1 neurons to the B2 neurons is detected by the plasticity rules, and it
controls synaptic potentiation and depression by coincidence detection. To implement the model
on SpiNNaker while coping with the 1 ms time resolution used in the current neural kernels we
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Figure 4.10: Learning temporal patterns with the model by [188] and [144]. (A) Network struc-
ture: each frequency channel f comprises three neurons A, B1 and B2, and is connected to other
frequency channels (dashed in figure), arranged in a tonotopical way, with distance-based delays
and plastic connections. (B) Delay matrix (top) and example of initial random weight matrix (bot-
tom). (C-E) Input spikes (top) and resulting weight matrix (bottom) after learning for a forward,

backwards and forked frequency swipe respectively.

multiplied all the time quantities by 10. For learning we use the same three input patterns that were
used in the original model (see Figure 4.10): Pattern (C) is a forward frequency sweep, where ev-
ery frequency (and therefore every A neuron) is activated in order, with a short delay between one
presentation and the next. For pattern (D) we perform the same frequency sweep, but we move
backwards through the frequency space. Finally for pattern (E) we perform a forked frequency
sweep, starting from the middle frequency. We present the stimulus multiple times to the network
and analyze what it has learned by examining the B1/B2 weight matrix. The results are presented
in Figure 4.10, and can be compared with the results in Figure 7 and 8 in [144]. After repeated
presentations of the target patterns, the weight matrix, initialized randomly, converges to a state
where it is only sensitive to the spike-timing pattern presented, by coincidence detection through
delay lines.

4.7 Performance analysis and discussion

In [190], the authors describe an STDP variation of the DED which follows the strategy proposed
in [157] by storing traces in SDRAM, rather than performing spike pairing as proposed in [178].
The authors evaluate the performance of their implementation as well as the one present in the
stable release of the SpiNNaker software package1 in terms of synaptic events processed per sec-
ond, as done in [191] and [192]. They do so by feeding a leaky integrate-and-fire population of
50 neurons with a neural population of variable size that produces spikes at ⇡250 Hz, according
to a Poisson process, with a 20% connection probability. They report that their implementation
of plasticity is capable of handling around 500K synaptic events per second per core (using 150
input neurons), while the original SpiNNaker implementation is limited to 50K events.

We adopt a similar strategy to evaluate our plasticity algorithms, but in more stringent condi-
tions, and with a larger connectivity range. Rather than testing a single core we test a full chip
(16 cores). In this way, we can also evaluate the effects of memory contention between different

1
https://spinnaker.cs.man.ac.uk/tiki-index.php?page=SpiNNaker+Package+(quarantotto)
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cores, as memory access can be a bottleneck for simulations on SpiNNaker. We model a popula-
tion of 800 neurons in a single SpiNNaker chip (8 cores modeling neurons and 8 cores dedicated to
plasticity) fed by an input Poisson neural population of 150 neurons with a variable rate, and and
measure the maximum firing rate at which the simulation can run in real time. We take as a starting
point the connectivity levels reported by [190] (20% interconnection probability, 150⇥ 50⇥ 0.2
synapses, for a total of 1,500 per core and 24,000 per chip if considering 16 cores) and increase the
connectivity level up to 100% (7,500 synapses per core, 120,000 per chip). This results in synaptic
rows which are 5 times longer, as every pre-synpatic neuron is connected to every post-synaptic
neuron in each core, rather than only 20% as in the original experiment. We then scale the model
further up by adding more pre-synaptic neurons so as to reach a total of 156,000 synapses. The
performance analysis of the algorithms proposed in this work uses the same leaky integrate-and-
fire current based neuron. To be able to scale the rate while maintaining the post-synaptic activity
constant, we set all the weights and all the weight increments in the plasticity rules to 0, similarly
to the approach in [192]. This means that plasticity is normally computed, but the weight is clipped
to 0 and stored back in SDRAM. Such values are set at runtime and cannot therefore by optimized
by the compiler; we have also ensured that setting these values to 0 would not bypass part of the
code by removing some optimization tests (like not updating weights which do not change), thus
ensuring that the code behaves in our test case as the worst possible real case. Post-synaptic activ-
ity is induced by feeding the leaky integrate-and-fire neurons with a current inducing an activity
of ⇡ 22 Hz.

We check if at any moment any core is lagging behind real time as this would make the
simulation incorrect and unrepeatable. We also check if a walk through of the weight matrix is
completed before the end of the plasticity period or, in other words, if the plasticity process is
finished before the next one starts, as overlapping in this sense is not possible when operating in
real time. This allows us to measure the maximum number of synaptic events that can be handled
in real time by a single SpiNNaker chip, using the three learning rules proposed in this chapter
(STDP, BCM and voltage-gated STDP), and to understand if the performance is limited by the
neural or the plasticity core.

Results are shown in Figure 4.11; for each given connectivity level (number of synapses)
pre-synaptic firing rates are increased until the limit after which real-time simulation is no more
possible. Each point of the plot hence represents the limits of the approach for a given connectivity,
for each of the plasticity rules implemented. From the Figure it can be observed that the three
learning rules implemented within this framework have similar performances untill the limit of
96,000 synapses (corresponding to scaling up to 80% connectivity the model by [190]). This
is due to the fact that, up to that point, all three learning rules are limited by the neural cores
lagging behind real time, rather than by the plasticity process taking too long. Such limit peaks
just below 1,5 million synaptic events per second per core for all three rules (23 million events for
the full chip). In a non-plastic performance analysis, [192] measured a maximum throughput of
⇡ 2.38 million synaptic events per second per core. After this connectivity level the complexity
of the two STDP models (standard and voltage-gated) becomes the limiting factor, and a complete
walk of the synaptic matrix is not possible anymore within the 128 ms period used in this work.
The BCM algorithm is not affected by this, as the algorithm is computationally less intense, and
keeps improving above 1,6 M synaptic events per second per core. The decay in performances
reflects the complexity of the algorithm considered: standard STDP, being more complex than the
voltage-gated version, has a sharper decrease in performances.

When comparing these scenario results with the previous plasticity models based on the DED
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Figure 4.11: Performance evaluation of the three learning rules in terms of synaptic event pro-
cessed per core per second as a function of different number of synapses.

by [178] and [190] (around 50k and 500k synaptic events per second per core respectively in the
20% case - the leftmost part of Figure 4.11), it must be remembered that these algorithms work
with a 1 ms spike-window resolution, while the experiments proposed in this work have adopted a
resolution of 2 ms. Also the former algorithms might lose spikes, while in the approach presented
here the contributions from all the spikes are accumulated (or, in other words, no spike is lost).

While our approach was designed for maximal flexibility, there might be tradeoffs in terms of
efficiency for some scenarios, depending on connectivity and firing rates. One limitation of our
approach is, for example, that every plasticity event triggers an update of the complete synaptic
matrix. For the rules proposed in this chapter is not possible to selectively update only some rows.
For pre/post sensitive rules (such as STDP) destinations are encoded in the synaptic row, which is
stored in SDRAM, so it is not possible to know if a pre neurons connect to a post neuron which
has fired (thus inducing LTP) before retrieving the row itself. In rate based models such as BCM,
where the firing rate is considered as a moving average, the absence of spikes is not sufficient to
ensure there is no plasticity in act. Finally for rules with relaxation towards one (BCM) or multiple
(voltage-gated STDP) states require a weight update even in the absence of a spike.

Since in our implementation plasticity updates occur every 128 ms, pre-synaptic firing rates
should be at least on the order of⇡ 7�8 Hz to avoid having to update silent synapses regularly. In
scenarios with lower firing rates, a purely event-driven update would be more efficient. However,
a main motivation for our approach is to ensure real-time performance, even in situations with
momentarily high load, e.g. if multiple neurons are firing in bursts. Such scenarios are common
when using natural inputs with coincident input spikes or models with oscillatory background
signals. In such cases the plasticity core approach offers greater flexibility to process plasticity
in real time: instead of having to process neural and synaptic updates of all simultaneous spikes
within the 1ms time step of the neural core, which might be challenging for complex plasticity
rules or for complex neural models, our approach accumulates events over the longer time window
of the plasticity core.

This decoupling enables the neural cores to maintain the real-time constraints, and opens up
new possibilities for trade-offs to reduce the load on the plasticity cores if necessary. The simplest
possibility is, as in the DED model, to lower the number of neurons simulated by each neural core
(and therefore also by its associated plasticity core). Other options, although not implemented in
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the first proof-of-concept presented in this work, are possible. For the initial results presented in
this work we maintain a 1:1 ratio between neural and plasticity cores, but this will likely not be
optimal for all scenarios. When looking at Figure 4.11 it can be see that the two STDP models
show a sweet spot for performance at around 80% connectivity. Before such maximum the perfor-
mance is limited by the neural cores, while after that is the plasticity core which is not able to keep
up with the real-time requirements. An interesting alternative would be to allocate more plasticity
cores to a single neural core, and adapt the plasticity:neural core ratio according to the network
characteristics and to the computational complexity of the neural and plasticity algorithms and the
associated workload.

A limiting hardware factor for any implementation of plasticity on SpiNNaker is the memory
bandwidth, because rows of the synaptic matrix need to be written back to SDRAM. It was shown
in Fig. 9 of [172] that writing is the main bottleneck, since the read bandwidth is twice as high.
Our approach reduces the write load, since rows are only written back to SDRAM at most once
every plasticity interval, rather than once every pre-synaptic spike as in the DED model. This
means that, for example, if pre-synaptic neurons are firing at 24 Hz each synaptic row would be
transferred back to SDRAM 24 times per second using the DED model, but only 8 times with our
approach.

Finally another possibility is to increase the duration of plasticity intervals, which increases the
time available for computing the updates, but comes at the cost of larger memory requirements for
storing traces in the core-local DTCM. For long plasticity intervals this might grow beyond what
can be stored in DTCM (64 Kbytes for each ARM core, of which some space needs to be reserved
for other parameters and buffers). The capacity can be increased by lowering the precision for
storing the traces, or using a coarser time resolution. All these possible trade-offs, although not
fully explored in this initial work, show the versatility of the approach, which can be adapted to
different situations and modeling needs, and constitutes one of its key features, as discussed in the
last Section.

4.8 Discussion

Current research on understanding the relationship between the local electrochemical processes
of synaptic plasticity and their manifestations as high-level behavioral learning and memory is in-
creasingly relying on theoretical modeling and computer simulations [193]. Because of the great
diversity of plasticity phenomena observed in biology and the resulting diversity of proposed math-
ematical models, as well as the computational complexity of spiking neural network simulations
dominated by the costs of synaptic processing, it is necessary to create simulations tools that pro-
vide both the flexibility to try out new models easily, and the speedup of specialized hardware.
This meets the demand of increasingly large neural network simulations, both for studying brain
function, and for applications in artificial intelligence [194]. SpiNNaker has proven to be a well-
suited platform for massively parallel large-scale simulations of spiking neural networks, and is
flexible enough to let researchers implement and test their own computational models in standard
programming languages. The previous Deferred Event Driven Model of handling events in SpiN-
Naker has made it difficult to implement plasticity rules with arbitrary triggering events (pre-, or
post-synaptic, or at regular time intervals), rules which depend on third factors available only at
the post-synaptic neuron, or plasticity in networks with variable axonal delays. We have presented
here a framework which uses the modular architecture of SpiNNaker and delegates weight updates

Computational Methods for Event-Based signals and Applications



Discussion 87

to dedicated plasticity cores, while the network simulation operates on the remaining neural cores.
We have shown that a variety of commonly used plasticity rules can be exactly replicated on this
framework, with a greatly increased capacity of processing plasticity events in real-time, by run-
ning experiments on a 4-chip SpiNNaker board. The separation of neural from plastic concerns is
the feature that enables the great flexibility of the architecture. The two cores work in parallel on
different time scales and phases, and the plasticity core has all the information to compute plas-
ticity for the recent past, can access the weight matrix shared with the neural core, and any other
information that can be passed through means of shared memory, e.g. membrane potentials and
spike timings of the pre- and post-synaptic neurons. All this information can be pre-processed be-
fore plasticity is computed, which allows e.g. the computation of rates in an otherwise spike-based
simulation. The architecture can be configured easily, using PyNN scripts. This standard, high-
level neural language makes it easy to integrate and explore new learning rules into the SpiNNaker
architecture.

The approach presented in this chapter is tailored to SpiNNaker and to its specific architecture,
design and constraints. Nonetheless the same principles could be applied to other digital-analog
hybrid architectures, where efficient neural simulation could be realized on one neuromorphic
chip, whereas complex plasticity rules could be realized off-chip on computers or FPGAs. Re-
garding GPUs it appears to be more favorable to let each kernel perform the same operation fol-
lowing the SIMD paradigm. [195] sequentially use two different kernels, one for neural updates
and one for applying plasticity updates. Such kernels do not run in parallel on the same GPU, but
serially. This does not constitute a problem when running accelerated simulations, which is the
common case for GPUs, but can raise difficulties when running in closed-loop real-time scenarios,
as in neurally inspired robotics [196]. In fact concurrent kernel execution is a feature that has only
recently been introduced in GPUs, with the NVIDIA Fermi architecture. Using such technique, a
plasticity and a neural kernel could be instantiated concurrently on the same GPU, in a similar way
to what is done in our approach. Memory access patterns, and the possibility of accessing contigu-
ous portions of memory is a key factor when programming a GPU [197]. It could be speculated
that applying an approach like the one proposed in this work would have the benefit of guarantee-
ing memory coalescence, as the synaptic matrix is sequentially accessed when walking through
it. Multi-core or cluster architectures could also in theory benefit of separating neural simulation
and plasticity, running either on different threads or on different cores, and with different time
scales. However, clusters are equipped with more powerful processing units than SpiNNaker, so
computing neural and synaptic updates in different cores could introduce unnecessary overheads
and synchronization difficulties, particularly regarding memory bandwidth and access patterns.

In our experiments we have deliberately chosen to reproduce classical results, in order to com-
pare the run-time performance of the novel framework to previous implementations of plasticity
on SpiNNaker. The examples of BCM, STDP, and voltage-gated STDP learning provide templates
for constructing further experiments with rate-based, spike-timing-based, and voltage-dependent
learning rules. Our approach can be easily extended to include additional third factors to modulate
plasticity, e.g. neuromodulators [133, 136], or weight-dependency [145, 157], can model home-
ostatic effects [198], or handle different synaptic delays [199, 89]. It can also combine different
models of plasticity in one simulation, a feature which is used in several recent models, where
network function arises from the interaction of different synaptic plasticity rules that are specific
to particular cell types [200, 147, 201, 202]. In fact, we have provided a tool that should be general
enough to model long-term potentiation rules, but is not restricted only to phenomenological ones.
Other biological structures i.e. glial cells are considered to have a fundamental role in plasticity,
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and can enhance learning capabilities [203]. The plasticity core, by leveraging this functional
segregation already present in biology, is a natural candidate to model such structures.

The results presented in this work and the possibilities opened by this approach point to the
efficiency and to the generality of the framework introduced: a modular, flexible and scalable
tool for the fast and easy exploration of learning models of very different kinds on the parallel
SpiNNaker system.
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Chapter 5

Breaking The Millisecond Barrier On
SpiNNaker: Implementing

Asynchronous Event-Based Plastic
Models With Microsecond Resolution
The spikes produced by neuromorphic sensors usually have a time resolution in the
order of microseconds. This high temporal resolution is a crucial factor in learning

tasks. It is also widely used in the field of biological neural networks. Sound
localization for instance relies on detecting time lags between the two ears which, in

the barn owl, reaches a temporal resolution of 5 microseconds. Current available
neuromorphic computation platforms such as SpiNNaker often limit their users to a

time resolution in the order of milliseconds that is not compatible with the asynchronous
outputs of neuromorphic sensors. To overcome these limitations and allow for the
exploration of new types of neuromorphic computing architectures, we introduce a
novel software framework on the SpiNNaker platform. This framework allows for

simulations of spiking networks and plasticity mechanisms using a completely
asynchronous and event-based scheme running with a microsecond time resolution.
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5.1 Introduction

The ability of neurons to fire stereotypical action potentials with a very high temporal resolution,
observed both in vivo [204, 205] or in vitro [206], points at the importance of temporal precision
in neural coding. [207] analyzed the temporal properties of neurons in the medial temporal (MT)
area of monkeys by using single-cell recordings. They demonstrated that 80% of the cells in
area MT are capable of responding with a jitter of less than 10 ms, while the most precise cells
have a jitter of less than 2 ms. At the sensory end, ganglion cells are known to emit action
potentials with a time resolution in the range of milliseconds [208, 209]. However some neurons
can encode signals which are even faster than their own dynamics. [210] suggests that dendritic
trees can be responsible for high-temporal coincidence detection with time constants faster than
the ones of their neural membrane. [129] have addressed this apparent paradox by using as an
example the auditory system of the barn owl. They can locate a target sound with a precision of
a couple of degrees, corresponding to a resolution of 5 µs. They show how neurons, which have
synaptic and membrane time constants orders of magnitude larger, can phase-lock and respond to
signals arriving coherently in a short time window. Learning plays a crucial role in shaping such
connectivity, and in tuning cells to preferential input phases. Plasticity also mediates cross-modal
interactions to give rise to the precise sound localization system in the owl [211, 212], where visual
and auditory inputs are combined together to shape the neural circuitry responsible of such great
temporal precision.

As the extent of the precision needed by models of spiking neural networks is still a matter
of debate, having neural platforms capable of rapidly acquiring and generating sensory data at
high temporal resolution becomes a valuable asset for scientific research. While mixed-mode
VLSI multi-neuron chips can support high temporal resolutions by processing continuous analog
signals [99, 213, 214], time-stepped digital platforms are bounded by the operating frequency of
the global clock [215, 216]. In order to investigate questions about required temporal precision
in neural networks, we introduce a novel programming framework for SpiNNaker [120], a digital
parallel architecture oriented to the simulation of large scale models of neural tissue. The approach
introduced in this work leverages the event-driven nature of the platform to perform simulations
with increased temporal resolution. We introduce a new collection of tools (spike sources and
monitors, neural and plasticity models) oriented to sub-millisecond event-driven simulations and
characterize the temporal behavior of the platform at different levels.

The chapter is organized as follows: Section 5.2 describes the hardware and software archi-
tecture of SpiNNaker and its current limitations. Section 5.3 introduces our novel programming
framework and the components provided for sub-millisecond simulation. Section 5.4 reports the
time characterization of the platform using a new method for measuring latencies. It also present
results from two example network models (sound localization and learning of temporal patterns)
which require sub-millisecond precision. The networks are implemented in real-time on a 48-chip
SpiNNaker board using the novel set of tools presented in this work. Finally the Conclusion sec-
tion summarizes the key temporal aspects of the software and models introduced in this chapter.

5.2 The SpiNNaker platform

This section describes the hardware and software aspects of the SpiNNaker platform and the cur-
rent limitations of the software implementation related to time resolution.
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Figure 5.1: System overview: (a) shows a plot of the SpiNNaker chip die, while (b) shows the
largest prototype which consists of 48 SpiNNaker chips

5.2.1 Hardware

The SpiNNaker chip is an application specific integrated circuit (ASIC) designed to realize large-
scale simulations of heterogeneous models of spiking neural networks in biological real-time
[120]. Each SpiNNaker chip, Fig. 5.1(a), comprises 18 identical ARM968 cores each with its
own local tightly-coupled memory (TCM) for storing data (64 kilobytes) and instructions (32
kilobytes). All cores have access to a shared off-die 128 megabytes SDRAM, where the relevant
synaptic information is stored, through a self-timed system network-on-chip (NoC).

At the center of the chip lies a packet-switched multi-cast (MC) router [217] responsible for
communicating the spikes to the local cores or to neighbouring chips through 6 asynchronous
bi-directional links. The router is capable of handling one-to-many communications efficiently,
while its novel interconnection fabric allows it to cope with very large numbers of very small
packets. Spikes are transmitted as 40 or 72 bit MC packets implementing the Address-Event
Representation (AER) [7] scheme, where the information transmitted is the address of the firing
neuron. Each packet consists of an 8 bit packet header, a 32 bit routing key identifying the neuron
that fired and an optional 32 bit payload which is not normally used for neural applications [217].
Every core within a SpiNNaker chip includes a communications controller which is responsible for
generating and receiving packets to and from the router through an asynchronous communications
NoC.

By combining multiple SpiNNaker chips together larger systems are formed. The SpiNNaker
board with 48 chips (SpiNN-4), Fig. 5.1(b), is the largest prototype system available to-date and is
currently being used as the building block for forming larger SpiNNaker machines. The SpiNN-
4 board has 864 ARM9 cores, 768 of which can be used for neural applications, while 1 core
per chip is dedicated for monitoring purposes and an additional one for fault-tollerant purposes
[218]. Additionally, there are 3 Xilinx Spartan-6 field programmable gate arrays (FPGA) chips
that are used for inter-board communication purposes through the 6 high-speed SATA links. A
previous study [219] demonstrated that a SpiNN-4 board is capable of handling up to a quarter of
a million neurons (with millisecond update), with millions of current-based exponential synapses
generating an activity of over a billion synaptic events per second, while each chip dissipating less
than 1 Watt. The final SpiNNaker machine will utilize approximately 1,000 SpiNN-4 boards and
it aims at simulating a billion neurons with trillions of synapses in biological real-time.
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5.2.2 Software

The SpiNNaker software can be divided into two parts, the software running on the chips and on
the host. Each SpiNNaker chip runs an event-based Application Run-time Kernel (SARK) that
has two threads, the scheduler and the dispatcher. The scheduler is responsible for queuing tasks
based on a user-defined priority, while the dispatcher de-queues and executes them starting with
the highest-priority task. Tasks with priorities set to minus one are pre-emptive, zero task priorities
are non-queueable and are executed directly from the scheduler, while tasks with priorities set to
one and above are queueable [173].

The SpiNNaker application programming interface (API) is built on top of SARK and allows
users to write sequential C code to describe event-based neuron and synapse models by assigning
callback functions that respond to particular system events. Some example events are:

• Timer Event: A user-defined periodic event, usually set to 1 ms, which is used to solve the
neural equations and update the synaptic currents.

• Packet Received Event: An event is triggered every time a core receives a spike (MC
packet). It initiates a Direct Memory Access (DMA) transfer in order to fetch the pre-
synaptic information from the SDRAM to the local memory. This DMA operation is au-
tonomous, the ARM core may handle pending events or enter into a power-saving sleep
mode.

• DMA Done Event: This event is generated by the DMA controller to inform the core that
a DMA transfer has been completed. Each synaptic weight and conductance delay gets
updated.

If there are no pending tasks the cores enter a low-power “sleep” mode.
On the host side PyNN [220], a high-level simulator-independent neural specification lan-

guage, is used that allows users to described neural topologies and parameters using abstractions
such as populations and projections. A tool named partition and configuration management (PAC-
MAN) [221] is responsible for mapping a PyNN description to a SpiNNaker machine based on
the available resources, generating and uploading the relevant binary files, initiating a simulation
and fetching the results to the host for further analysis.

5.2.3 Limitations of the current implementation

In the SpiNNaker software available at the time of this work, neural models are implemented in a
time-driven fashion. These models use the Timer event (see Section 5.2.2) to periodically update
the state of the simulated neurons with a given timestep. Parallel to that update process, incoming
spikes to the implemented neural population are processed through the Packet Received Event
(see Section 5.2.2). This event looks up the different synaptic weights and delays relative to each
connection. When the synaptic delay has been retrieved, the future contribution of the spike to
the membrane potential of a given neuron is stored in its associated Post-Synaptic Potential buffer
(PSP buffer). To implement the actual delay, the PSP buffers are ring buffers comprising one cell
per simulation timestep. The periodic update process can then read this value at the timestep they
need to be applied. This process is represented in Figure 5.2.

This implementation implies a trade-off between time resolution and memory usage. The
memory space required by the PSP buffers is proportional to :
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Figure 5.2: Working principle of the PSP buffers: (a) a MC packet is received, carrying an in-
coming spike. It triggers a DMA transfer. (b) As a result, the DMA Done event is triggered when
the synaptic data associated with the spike is retrieved from SDRAM. (c) Synapses related to this
spike are processed and their contributions are stored in the PSP buffers of the targeted neurons
in the cell of the buffer corresponding to the synaptic delays. (d) When the next Timer Event
is issued, the update process reads the contributions of previously received spikes for the current
timestep and adds them to the neurons’ membrane potential after updating its value (according to

the used neural model).

• the number of neurons simulated by the core (one buffer per neuron),

• the maximum synaptic delay allowed

• the resolution of the timestep

The standard implementation uses a maximum delay of 16 ms with a time resolution of 1 ms
to simulate 100 neurons per core.

These values have been chosen taking into account spike propagation delays and the memory
footprints of the synaptic buffers. Spike propagation in large SpiNNaker machines is guaranteed
to happen within 1 millisecond. Original time-driven neural models on SpiNNaker therefore have
a 1 millisecond time resolution.

If we want to introduce a time resolution of 1 µs and to keep the same maximum delay, the
memory requirements of the PSP buffers increase a thousand times. Moreover, increasing the
time resolution means that the periodic update process will be executed more often and thus will
have less time to update the state of the population. Going from a millisecond to a microsecond
resolution will reduce the time available for state update by a factor of 1000.

It is possible to consider these trade-offs but this results in an dramatic decrease of the number
of neurons which can be simulated on a core, going from 100 neurons to only a handful of neurons.
Implementing huge neural networks with microseconds resolution is thus not practical with the
current available implementation.
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5.3 Going beyond the millisecond

This section describes the changes to the standard SpiNNaker software package we implemented
to allow simulation with microsecond precision. The changes to the base tools are first discussed,
then new neural models are introduced.

5.3.1 Tools and support

5.3.1.1 SpiNNaker API

Applications written for the SpiNNaker cores rely on an Application Programming Interface (API)
provided by SpiNNaker’s builders. This API provides a set of support functions and a framework
allowing the use of the different resources offered by the hardware platform.

Firstly, measuring time with microsecond resolution had to be added to the API which nor-
mally measures time with a resolution corresponding to the timestep of the simulation (1 ms by
default). This can be easily implemented by using the more precise value of the hardware counter
already used by the API to deduce the number of microseconds which have elapsed since the last
simulation timestep. This allows precise time measurements without an extra cost in resources.

Secondly, all SpiNNaker events related to timings are based on the simulation clock and thus
inherit the timestep resolution. To solve this problem, we use the second hardware timer available
in the SpiNNaker cores to generate interrupts with a user settable number of microseconds delay.
This allows the scheduling of events which will be triggered with microsecond resolution using
the existing framework.

5.3.1.2 Monitoring spikes

To record spikes from a neural simulation in SpiNNaker, a monitoring core runs a special applica-
tion which collects spikes from the populations selected for recording by the user and sends them
to a host computer, in charge of collecting simulation results, while the simulation is running. This
is done using a special type of packet which can carry a payload of 256 bytes.

The current implementation of this monitoring application sends a packet of spikes every mil-
lisecond. The timestamps of the spikes are indicated in the header of the packet which can then
carry a total of 64 spikes. The same scheme cannot be used for microsecond resolution: it would
require sending up to a packet every microsecond, potentially containing only one spike. This
would dramatically increase the overhead due to the packet headers and would require the emis-
sion of too many packets.

To overcome this problem, we implemented a new monitoring application. This core now
stores incoming events as a pair of values: (key, timestamp). The key corresponds to the ID of
the neuron which spiked and the timestamp indicates the time, in microseconds, when this spike
has been received. These pairs are stored in buffers of 256 bytes (32 spikes), which are sent to the
shared SDRAM of the chip when full, using DMA. Another process then reads these buffers from
SDRAM and sends packet containing the events to the host computer when needed.

This allows more events to be recorded per millisecond than the previous implementation,
while allowing microsecond resolution in their time of arrival. Moreover, the events can be stored
in SDRAM quicker than they are sent to the host computer, allowing to increase the total amount
of data which can be acquired during the simulation (The user will just have to wait for the data
to be completely transferred to the host computer after the end of the simulation). This scheme of
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pairing addresses and timestamps is also used in other programs such as the jAER program [222]
and thus facilitates integration with such tools for real-time software implementation.

5.3.1.3 Generating input spikes

A dedicated application exists to generate input spike trains which appear to come for another
population of neurons. The application provided in the standard SpiNNaker implementation uses
a particular format to store this information. Spikes are stored in bitmaps. For every simulation
timestep, a chunk of memory is read. In this memory portion, each bit codes for one neuron of the
source population. If the bit is set to 1, this particular neuron has to produce a spike in the current
timestep. If the bit is set to 0, it has to remain silent.

Considering the usual sparseness of spike data, it would be really inefficient to use the same
scheme with microsecond resolution. This would require an enormous amount of memory directly
proportional to the number of microseconds in the simulation. To improve this process, we im-
plemented a new spike source application. This application represents spikes as pairs of values:
(ID, timestamp). The information is stored in SDRAM by the host computer before the start of
the simulation and read via DMA throughout the simulation. When a spike is produced, the appli-
cation reads the time when the next spike should be produced. This allows us to compute the wait
time before producing this next spike. An event is then scheduled in the API to happen after this
delay. This process goes on during the whole simulation time until the end of the spike data. A
pipelined process using a double buffer technique allows one to read the spike data from memory
using DMA without adding delays in the replay process sending them to the other neural models
of the simulation.

5.3.2 Neural models

5.3.2.1 Dendritic delays

As we can see from the standard implementation provided with SpiNNaker, managing synaptic
delays when simulating neurons can lead to an important memory usage. To solve this problem,
we chose to implement these delays independently from the rest of the neural simulation.

One dendritic delay core implements one particular delay value. When a packet containing a
spike is received, it is stored in a ring buffer in DTCM (local memory of the core). Then, a second
process schedules events to dispatch these spikes after the given delay of the core has elapsed.
This allows very compact and efficient code because events are output in their order of arrival.

Because there are a large number of cores available in a typical SpiNNaker machine, using
one core per delay value is not troublesome. Moreover, one could configure a network where a
spike goes several times through the same delay core to implement multiples of a base delay: if
one core implements a delay of 100 µs, it can be used to realize a delay of 300 µs by routing events
three times through the core before delivering the spike to its target neuron.

5.3.2.2 Synchrony detectors

Detecting temporal coincidence between two spikes is a widely used feature in spiking neural net-
works [223, 188]. As a consequence we decided to implement a dedicated core for this task instead
of using standard integrate and fire neurons which would introduce an unnecessary overhead.
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Each neuron simulated by this core has two types of synaptic input and a time window. When
an incoming spike is received on one input, the core will output a spike if another spike was
received on its second input in the given time window. We added a refractory period to this
process to limit the maximum firing rate of the neurons if required.

5.3.2.3 Leaky integrate and fire neurons

While an ad hoc solution can be introduced in the case of synchrony detection, for the rest of the
network simulation we need to simulate standard neural models. This is done through a new core
which implements leaky integrate and fire models with exponential kernels. These neurons are
completely event-driven and have microsecond resolution.

As in the standard models, incoming packets carrying input spikes are received and queued in
memory for processing (this process has to be done as soon as possible to ensure no back-pressure
signal is propagated to the SpiNNaker router by not reading packets, as described in the next
Section). In addition to this standard processing, we also timestamp the spike on arrival to be sure
to it is processed correctly even if events are queued for a variable amount of time. When such a
spike is processed, a DMA call is issued to get the associated synaptic information from SDRAM.

Upon receiving the synaptic data from memory, the membrane potential of the post-synaptic
neuron is updated with the exponential kernel and the spike’s contribution is added to this potential.
Its value is then tested for an output spike which is immediately produced if necessary.

It is worth noting that an output spike can only be produced at the time of an input spike which
is compatible with an exponential kernel and with the absence of synapse dynamics (the contribu-
tion of a spike is an instantaneous addition/subtraction to the membrane potential according to the
synaptic weight).

To optimize the process, the exponential kernels are precomputed by the core before the be-
ginning of the simulation via two look-up tables. When we update the membrane potential, we
need to compute the kernel decay over the time Dt which has elapsed from its last update:

e�Dt/t = e�(Dms
t +D

µs
t )/t = e�D

ms
t /te�D

µs
t /t, (5.1)

where D

ms
t is the maximum multiple of milliseconds contained in Dt , D

µs
t is the remaining number

of microseconds and t is the time constant of the neuron. To reduce the memory footprint required
by the look-up table, we compute one table with microsecond resolution for the e�D

µs
t /t part over a

timespan of 1 ms and a second one with millisecond resolution for the e�D

ms
t /t part over a timespan

which can be configured in the code depending on the available local memory and time constant
t.

5.3.2.4 Plasticity

Implementing plasticity on the SpiNNaker system is not a trivial task, due to its peculiar set of
constraints and architectural characteristics. Rules that rely on spike timing can be triggered by
the arrival of a pre-synaptic spike, inducing depotentiation, or the emission of a post-synaptic
spike signaling depotentiation. This is for instance the case for spike timing-dependent plasticity
(STDP) [126]. On SpiNNaker, weights from SDRAM are only available in the local memory of
an ARM core upon the receipt of a MC packet. This triggers a lookup in memory fetching all
the weights associated with the incoming spike. Weights are therefore available in memory only
when a packet is received. Due to the nature of how delays are normally implemented on the
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SpiNNaker architecture (see Section 5.2.3), this time does not correspond to the time the spike
arrives at the post-synaptic neuron, as the delay is reintroduced post-synaptically. Moreover, when
a post-synaptic spike is produced weights are in SDRAM, with no local pointer to them; retrieving
them selectively would be difficult as they are indexed by pre-synaptic neuron, hence scattered
when considering post, leading to unoptimized memory transfers.

The deferred event-drive model (DED) [177] was introduced to circumvent these problems.
The approach consists in gathering information about spike timing and deferring plasticity into the
future, once all the information required is available. In our implementation, we decided to use
the voltage-gated STDP variant introduced by [142]. This rule is particularly appealing for neu-
romorphic implementation (see for example [186]) because it is only triggered on the arrival of a
pre-synaptic spike, solving the first of the two problems associated with plasticity implementation.
Our novel delay cores take care of solving the second problem, the reintroduction of the delay at
the post-synaptic end. By using these cores, the time of arrival of a MC packet corresponds to
the time when a spike needs to be computed at the post-synaptic end. This rule depends on a
post-synaptic trace C(t) representing the calcium concentration and which evolves accordingly to
the firing activity of the neuron:

dC(t)
dt

=�C(t)
tC

+ JC
Â

i
d(t� ti) , (5.2)

where ti are the post-synaptic spike times. C(t) triggers potentiation and depression as follows: if
C(t) is in an interval [qh

down,q
h
up] potentiation is triggered; otherwise if C(t) is between [ql

down,q
l
up]

depression is triggered. This variable is computed using an exponential LUT in a similar way as
done with the membrane potential. The plasticity rule depends also on the post-synaptic membrane
depolarization V (t) according to a threshold value qV , sampled at the time of arrival of a pre-
synaptic spike (tpre). Weight dynamics w(t) can then be summarized as follows:

w = w+a if V (tpre) > qV & q

h
down C(tpre) < q

h
up (5.3)

w = w�b if V (tpre) qV & q

l
down C(tpre) < q

l
up, (5.4)

where a and b represent the constant weight increase and decrease values respectively.
The plasticity rule provides relaxation towards two stable states, if none of the conditions in

(5.3) and (5.4) are fulfilled. The weight w drifts linearly with rate a towards wmax if its value is
greater than a threshold qW ; conversely it drifts linearly towards wmin with rate b leading to the
additional dynamics:

dw(t)
dt

= a if w(t) > qW (5.5)

dw(t)
dt

=�b if w(t) qW (5.6)

Using this system we can efficiently compute weight updates upon the arrival of a pre-synaptic
spike, as all the information required by the algorithm are locally available in the neural core.

5.4 Results

This section presents the time characterization of the platform and of the novel software infras-
tructure introduced. The section concludes by showing two simple experiments which use the new
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features: a binaural model for sound localization and a plastic model capable of learning precise
temporal relationships in spike trains.

5.4.1 Intra- and Inter-Chip MC Packet Latencies

The MC router is responsible for communicating the spikes to its internal cores or to other chips
through six asynchronous bi-directional links. Its pipelined implementation enables it to route one
packet per clock cycle to all or a desired number of output links in an uncongested network. If
any of the output links is busy, the router will retry to route the packet at every clock cycle until
it reaches a predefined number of clock cycles after which it will attempt emergency routing via
the link which is rotated one link clockwise from the blocked link (not applicable for destinations
internal to a SpiNNaker chip). Similarly, if the emergency route fails the router will retry emer-
gency routing at every clock cycle until it reaches a second user-defined number of cycles when it
finally drops the packet.

This section describes a series of experiments conducted in order to investigate the intra- and
inter-chip MC packet latencies as a function of the router’s waiting time and synthetic traffic going
through a link. For these experiments, a parametrised software was developed using the SpiN-
Naker API. The packet received callback priorities were set to minus one (pre-emptive) in order to
ensure that packets were cleared from the communications controller immediately upon receipt.
The timer tick callback priority, which was used by the cores for terminating the simulation after
60 seconds, was set to zero (non queueable priority). Finally, the priority of the callback func-
tion developed to generate MC packets was set to two (lowest queueable priority). The processor
clocks were set to 200 MHz, routers and system buses to 100 MHz, while the off-die memory
clocks to 133 MHz.

5.4.1.1 Intra-chip MC packet latency

The first experiment was aimed at demonstrating the core-to-core packet latency within a SpiN-
Naker chip as a function of a congested internal link and the wait time of the router before dropping
a packet. Congested link means that a core has received more packets than it can process on time
and a back-pressure signal will propagate to the router through that link. For this experiment, 17
cores were used. One core was dedicated to measuring the core-to-core MC packet latency within
a SpiNNaker chip. By sending a packet to the router every 500 milliseconds using the “timer tick”
callback function and receiving it back. The second hardware timer, available on each core, was
used to count the clock cycles between sending and receiving the MC packet (with nanosecond
resolution). Each of the remaining 15 cores would generate approximately 1.7 million packets per
second, which would be routed to one particular consumer core (C) whose sole task was to count
the received packets, Figure 5.3. The logged MC packet latencies during the simulation, the values
of the software counters and additional diagnostic information from the router were uploaded to
the SDRAM when the simulation was over and fetched by the host for further analysis.

Figure 5.4 shows the mean and standard deviation of the intra-chip MC packet round-trip delay
time (RTD) as a function of the total number of MC packets per second the router has issued to
the consumer core (C) and for various router wait times. What can be observed from this figure is
that in an uncongested network, the intra-chip round-trip delay time is constant at 0.825 µs, Figure
5.4(a). Within this time is included the software overhead of the SpiNNaker API required to write
the MC packet to the communication controller, the time needed for the packet to traverse through
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Figure 5.3: Block diagram showing the topology used to measure the intra-chip packet latency as
a function of a congested link and the router’s waiting time before dropping a packet. Cores 1 to
15 were used to generate synthetic MC packets and the router would redirect these packets to a
consumer core (C). An additional core was used to measure the MC packet latency (L) by sending
a packet to the router periodically and receiving it back. A hardware timer was used to measure

the time passed from sending a MC packet to receiving it back.

the internal link to the router, the time required for the packet to go through the router and again
through the internal link to the communication controller of the target core and finally the software
overhead of receiving the packet from the communication controller. The aforementioned times
can be expressed as:

tIntra
RTD = tSW

Send +2 · t local
Link + tR + tSW

Receive , (5.7)

where tSW
Send is the software overhead of the API required to write the key of a MC packet to the

communication controller, tSW
Receive is the time passed from handling the interrupt raised by the

communication controller to branching to the callback function assigned to handle the packet
received events, tR is the time required by the router to process a single MC packet, and finally
t local
Link is the time a single MC packet needs to go through the local links.

The mean tSW
Send and tSW

Receive times (averaged over 4 trials) were found to be 0.415 µs and 0.13 µs
respectively, by utilising the second hardware timer. Assuming that the time consumed by a MC
packet to traverse through the local links is much smaller than the time spent by the router to
process a packet, the t local

Link can be ignored. Solving equation 5.7 for tR, the time the router requires
to process a single MC packet is 0.28 µs.

As soon as congestion occurs, which for this experiment happens when the consumer core (C)
receives more than 3.6 million packets per second, the communication controller of the consumer
core (C) starts adding back-pressure on the router, which attempts to resend the packet at every
clock cycle until it reaches a predefined number of cycles (240 default) at which point the packet
is finally dropped, Figure 5.4(b). This back-pressure signal propagates back along the pipeline
and the router stops receiving new packets until back pressure has been released [217]. As a
consequence, the MC packet latency increases and the hardware buffers of the communication
controllers of the cores generating the MC packets are not emptied; this explains why the total
number of generated packets plateaus, as seen in Figure 5.4 (c), while failed packets increase
(software buffer full), see Figure 5.4 (d). For the router’s default waiting time (240 cycles) and
for waiting 60 cycles no packets were dropped in any of the trials but the worst-case round-trip
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Figure 5.4: (a) shows the mean intra-chip MC packet round-trip delay time as a function of
the total number of packets per second the router issued to the consumer core (C), for different
router wait times (default value is 240 cycles). (b) shows the total number of packets per second
the router dropped as a function of the number of cores participating in the simulation and for
different router wait times. (c) shows the total number of packets per second that were successfully
generated by the communication controller as a function of the number of cores participating in
the experiment and for different wait times. Finally, (d) shows the total number of packets per
second the communications controller was not able to send to the router due to the back-pressure
of a congested link, for different wait times. Each core attempted to inject 1.7 million packets per

second to the consumer core through the router.

delay time went up to 6.5 µs. For router wait times of 20 cycles and below, the worst-case round-
trip delay time drops below 4 µs but the total number of dropped packets per second increases
dramatically. This trade-off between intra-chip MC packet latency, packets being dropped or not
being sent to the router at all, requires further investigation as it depends on the requirements of a
particular application.

5.4.1.2 Inter-chip MC packet latency

The router of a SpiNNaker chip can communicate packets to neighbouring chips through six self-
timed bi-directional links. The average bandwidth (transmit/receive) of each link is 6 million
packets per second (240 gigabits per second) and this may vary with the temperature, voltage
or silicon properties. An experiment was conducted to determine the inter-chip RTD of a MC
packet transmitted through one of the 6 bi-directional links as a function of the link’s outgoing and
incoming traffic. For this experiment a core (L1) generates a MC packet every 500 milliseconds
and the router routes it to a neighbouring chip through one of the six bi-directional self-timed
links. Upon receiving the packet the second router would route it to a particular core (L2), whose
sole task was to change the key of the packet and retransmit it back to the router which had an
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Figure 5.5: Block diagram showing the topology used to measure the inter-chip MC packet la-
tency as a function of synthetic traffic going through a link.

appropriate routing entry to route it back to the originating core, Figure 5.5.
Seven cores on each chip were used to generate packets which were routed to seven consumer

cores (C) on the adjacent chip following a one-to-one mapping. This way the total number of
packets per second a consumer core receives remains below 3.6 million packets per second, (which
is the maximum number of packets a core can receive) ensuring that no additional pressure is added
to the routers.

The generated packets were controlled by an inter-packet interval (IPI) parameter, which is
a delay in microseconds before transmitting the next MC packet. Results are presented as the
percentage of the utilisation of the incoming and outgoing packets going through a link per second,
with 100% utilisation meaning 6 million packets per second.

The mean and standard deviation of the round-trip delay times of MC packets are presented in
Figure 5.6. When there is no traffic the round-trip delay time of a MC packet is 2.535 µs. Within
this time is embedded the time required for the packet to go through each router twice, twice
through the external link, and also two software processing overheads of sending and receiving
the packet back to the router. This can be expressed as:

tInter
RTD = 2 · tSW

Send +4 · t local
Link +4 · tR

+2 · tSW
Receive +2 · texternal

Link (5.8)

where texternal
Link is the time a MC packet requires to traverse through an external link to a neigh-

bouring chip. Solving for an RTD time of 2.535 µs and by using the results of equation 5.7 for
tR and by ignoring the time of t local

Link , the time a MC packet needs to go through an external bi-
directional link is 0.1625 µs.

For a link utilisation of 60%, for both outgoing and incoming traffic, there is a 3% increase in
the RTD time. When both the incoming and outgoing link utilisation reaches 80% a very small
number of packets were dropped as both routers attempted to reroute the packets for the default
wait times (240 cycles), hence the dramatic increase in the RTD times. Results are summarised in
Table 5.1.

5.4.2 Time characterization

To test latencies in the system we build and simulate a very simple network composed of three
populations:

• a spike source, producing spikes with microsecond resolution,
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Figure 5.6: Mean and standard deviation of round-trip delay times of MC packets as a function
of the percentage of a link’s utilisation. Top figure shows the mean round-trip delay time, while
bottom figure shows the standard deviation in microseconds. 100% utilisation means 6 million

outgoing/incoming packets per seconds going through a bi-directional link.

Table 5.1: Experimental results of the SpiNNaker latencies.
Parameters Values Units

tSW
Send 0.415 µs

tSW
Receive 0.13 µs

tR 0.28 µs

texternal
Link 0.1625 µs
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• a dendritic delay population which delays spikes with a tunable delay,

• a population of integrate and fire neurons in which synaptic plasticity is enabled or not in
the implementation.

We add to the global architecture the monitoring application which records spikes from these 3
populations. All these applications run on the same SpiNNaker chip. From here, we can char-
acterize timings and latencies by either looking at timestamps generated by the monitoring core
which gives us a common clock for all of the activity on the chip or by keeping track of the timings
directly in the different cores by adding debug instructions to their processing.

We start by characterizing the spike source application. By adding debug instructions in the
code, we can output the time at which spikes would be sent without this debugging overhead
and compare them to what is asked from the core. Our measurements show that every spike is
reliably emitted with a 2 µs delay after the timestamp set in the simulation script in conditions
where no delays are introduced by congestion due to too much activity in the chip. Looking at
the same events in the output of the monitoring application, we can see that they are consistently
timestamped with a 3 µs. The 1 µs difference between the two numbers is due to the overhead
of the API when sending a spike, that is, the time it needs to travel from one core of the chip to
another one (which has been characterized in the previous subsection) and the time needed by the
receiving core to timestamp the spike. From the results of the previous subsection (5.4.1.1), we
can consider than under normal operational conditions (no excessive load of events in the system),
this time will be constant for every population on the same chip because they use the same code to
send packets to the system. Thus, from now on, we can use the timestamps from the monitoring
application to know when spikes are emitted by each core recorded during our simulations.

We then look at the dendritic delay population. This population directly receives input from the
spike source and the delayed output is recorded by the monitoring application. By comparing the
timestamps of the spikes received from the spike source and the ones received from the dendritic
delay core, we can compute the actual delay introduced by this population. By removing its set
delay, we obtain the overhead introduced by the implementation. For different delays and input
spikes, we reliably get an overhead of 2 µs which can be compensated when specifying a desired
delay in a simulation.

This delay population is then connected to a population of integrate and fire neurons imple-
menting plasticity as described in the previous section. The connection between these two pop-
ulations is an all-to-all connection. This allows us to vary the size of the synaptic data fetched
from memory, which directly depends on the number of post-synaptic neurons associated to each
pre-synaptic one. This enables us to vary the amount of processing each incoming spike requires
(more post-synaptic neurons means more neurons to update when receiving a spike), thus allowing
easy characterization of the following latencies:

• the initial latency, corresponding to the time required to receive the spike and fetch the
synaptic data from memory. This time has been measured to be 4 µs,

• the time required to update each post-synaptic neuron targeted by the incoming spike. This
time has been measured to be 1.6 µs,

• the time required to send a spike which has been measured to be 0.4 µs.
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Figure 5.7: Model used to detect sub-millisecond spike synchrony for sound localization. The
model consists of three synchrony detectors where each is activated by a different input interaural
time difference (ITD). To achieve this result, each detector is directly connected to one ear whereas
the second input comes from a dendritic delay population. For positive ITDs, spikes from the right
ear are delayed. For negative ITDs, spikes from the left ear are delayed. In this experiment, spike
trains from the two ears are simulated for three sound sources localized at positions producing

expected ITDs.

These timings allow to compute the required update time Tu required by a spike for a given
network topology with the following formula:

Tu = 4+2 ·Npost
max µs, (5.9)

in the worst case scenario where every pre-synaptic spike produce a spike in each one of its post-
synaptic neurons and where Npost

max is the maximum number of post-synaptic neurons a pre-synaptic
one connects to.

If we remove the plasticity computation from the model, the initial latency and the time needed
to produce a spike stay the same. The only modification can be found, as expected, in the time
needed to process a spike which drops to 0.5 µs.

5.4.3 Detecting sub-millisecond spike synchrony in a model of sound localization

To test the dendritic delay and synchrony detector models, we simulate a standard network used for
sound localization. This model is presented in Figure 5.7 and results are presented in Figure 5.8.
For each ear, we consider a population of neurons representing 10 different frequency channels
(Panel (a) in Fig. 5.8). We start by generating spike trains with an interspike interval (ISI) of 100
µs for each of these channels and we feed them in the right ear (red dots). Then, this simulated
sound is shifted in time according to the input interaural time differences (ITDs) corresponding
to values compatible with human hearing: �30 (phase (1)), 0 (phase (2)) and 30 µs (phase (3))
to generate the input spikes for the left ear (blue dots). Some noise is then added independently
to spikes from each ear and each channel by jittering each spike randomly between �5 and 5
µs to get the actual input presented in Figure 5.8(a). Each ear is then input in delay lines and
synchrony detectors such as to detect the corresponding ITDs, synchrony detectors are, because
of their associated delay lines, centered around �30, 0 and 30 µs with a window of 15 µs. These
detectors are color coded in Fig. 5.8(b) with detectors for ITDs �30, 0 and 30 µs respectively
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Figure 5.8: Top plot (a) shows the input spikes to the system. It is comprised of the spikes (5
channels, red dots) from the right ear and the spikes (5 channels, blue dots) from the left ear. They
correspond to a sound source positioned at ITD �30 µs for the first third (phase (1)) of the input
stimulus, then ITD 0 µs for the second third (pahse (2)) and 30 µs for the last part (phase (3)).
Bottom plot (b) presents the outputs of the three synchrony detectors of the network configured to
respond to ITDs �30 µs (red), 0 µs (blue) and 30 µs (green). We can see that for each channel, the

detector with its preset ITD fired correctly in each phase of the experiment.

corresponding to red, blue and green dots. We can see that the different input ITDs are correctly
extracted by the architecture for each phase of the input patern.

5.4.4 Learning temporal patterns with sub-millisecond precision

The model presented in the previous section describes how synchrony detection can be exploited
through delay lines to localize the source of a sound. In this section, we use the model introduced
by [188] to learn spatio-temporal patterns with sub-millisecond precision. The model shown in
Figure 5.9(a), can be described as tonotopically organized channels, as it is in the auditory system.
Each frequency channel consists of three neurons (A, B1, B2) interconnected through delay lines C.
Within a channel, neuron A, representing inputs from a channel of a silicon cochlea for e.g. [224],
connects to both neurons B1 and B2 through excitatory synapses while neuron B1 is connected to B2
through an inhibitory synapse and neuron B2 receives excitatory plastic input connections from the
neighboring B1 neurons. These connections are mediated by the delay populations, implemented
with the model described in Section 5.3, so as to have a delay proportional to the tonotopic distance
between two channels. This delay line is the feature that enables learning of temporal patterns
through coincidence detection.

To test our newly introduced SpiNNaker infrastructure for microsecond precision and delays,
we reproduce the results published by [144] on the implementation of the model on a plastic
neuromorphic analog VLSI multi-neuron chip. We present the same three spiking patterns as in
the paper: a forward, a backward and a forked frequency sweep, activating all channels in rapid
succession but with different time dynamics. Each channel is activated with 10 spikes with an ISI
of 250µs and each channel is activated with a delay of 500µs after the previous channel. Each
frequency sweep has been repeated 20 times, resulting in the connectivity matrices presented in
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Figure 5.9: Learning sub-millisecond time patterns: (a) network structure: input spikes are pro-
duced by neurons A, which represent frequency channels of a simulated silicon cochlea; they
drive neurons B1 and B2 with excitatory synapses; B1 is connected to the B2 neuron of its own
channel with an inhibitory synapse, while it is connected to the other channels through the delay
populations C with plastic connections. Delays are proportional to the tonotopic distance between
channels. (b) Input raster plot (left) and final weight distribution (right) when stimulating the net-
work with a forward frequency sweep, activating all channels in rapid succession. (c) Input raster
plot (left) and final weight distribution (right) when stimulating the network with a backward fre-
quency sweep, activating all channels in rapid succession; (d) input raster plot (left) and final
weight distribution (right) when stimulating the network with a forked frequency sweep starting

from the central channels.
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Figure 5.9(b)-(d) which can be compared with Figures 7 and 8 in [144]. In each case training
took approximately 4 seconds. The resulting weight matrices, initialized randomly, show how the
network was able to learn a precise spatio-temporal pattern through coincidence detection. The
learning process potentiates the synapses detecting the temporal features of the presented stimulus
thanks to the tonotopic delays lines, converging in an emergent connectivity matrix which tunes
the network to the presented stimulus.

The same experiment has also been replicated on SpiNNaker using the framework introduced
in [20], but with important differences in the temporal resolution and in the methodology to what is
presented here. The temporal resolution of the former work is limited to the millisecond precision
because of the structure of the neuron models and plasticity framework used. This new framework
allows us to compute plasticity with a time resolution of less than a millisecond, which was not
possible with the previous plasticity methods implemented on SpiNNaker.

When comparing our resulting weight matrices to the ones from [144], it can be noted that
our results are not impacted by 2 important factors of the hardware system used in the original
work: the precision of the synaptic weights and the mismatch between neurons. Since SpiNNaker
is a digital platform, the precision of the weights can be changed depending on the application.
As a result, our results show a finer scale in the weight matrix. Similarly, SpiNNaker neurons
and synapses are not affected by hardware mismatch because of the digital implementation which
results in less noisy weight matrics in our implementation.

This work matches the temporal resolution of the experiments in [144]. Regarding the method-
ology, in this work we use a purely event-driven approach, that is plasticity is computed as soon as
a spike is received, leveraging the simplification introduced by the separation of synaptic delays
and neural models. This work hence constitutes the first implementation of plasticity on SpiN-
Naker where the weight update is not deferred into the future.

5.5 Discussion

In this chapter, we showed that the current software package provided with the SpiNNaker plat-
form was insufficient for certain applications requiring temporal resolution below a millisecond.
To overcome this limitation, we introduced new software tools and models allowing to go beyond
the millisecond barrier and reach microsecond precision.

To assert these new functionalities, we needed information about the timing involved at the
level of SpiNNaker’s fabric itself. We characterized the timing requirements of the hardware on
one hand and of the software API on the other. This allowed us to fully characterize our imple-
mentation and provide insights about its computational limits for an user wanting to simulate a
given network. We then demonstrated that our newly introduced architecture can simulate net-
works implementing sub-millisecond tasks and using plasticity by achieving, in real-time, sound
localization and sound patterns extraction with realistic spike trains.

It should be noted that these new tools do not change the way in which events are transferred
in the global SpiNNaker architecture. They are just making the best of real-time to increase the
time resolution of implemented models. Thus, they are fully compatible with the already existing
models on SpiNNaker. This means that if a user wants to build a sensory processing neural network
in which microsecond resolution is only needed in the early processing stages, he or she can
use these microsecond precision models in these stages and then feed their output to standard
neural models which will then compute with millisecond resolution for the later stages. This
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allows resources to be exploited maximally by tuning the time resolution to the requirements of
the running model.

Notably we have introduced learning in our framework as it is a key process in developing pre-
cise coincident detectors. Furthermore in the already mentioned owl auditory system, cross-modal
interaction of different sensory systems appears to be crucial: visual cues guide the formation of a
precise sound localization neural circuit [211, 212]. These studies point at the importance of rep-
resenting sensory inputs with high temporal resolution. In fact our newly introduced framework is
much oriented to exploiting the enhanced temporal properties given by neuromorphic event-driven
sensors [8], as silicon retinas [63, 13, 11] and cochleas [224] which can seamlessly be interfaced
with SpiNNaker [225, 226]. In this regard we have presented here a platform which offers a wide
range of trade-offs in simulating spiking neural networks with different time-scales efficiently, and
can be used for cross-modal learning.
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Chapter 6

STICK: Spike Time Interval
Computational Kernel

The paradigm shift introduced by new event-based algorithms designed to process data
from neuromorphic sensors is well suited for implementation on new hardware

platforms designed for highly parallel processing. But these platforms still are a
remnant of standard machines which were designed to execute a very different kind of
algorithms. Re-thinking our approach of processing algorithm is the first step towards
a new way of sensing the world but we need to go beyond this step by also re-thinking

the platforms we are using to implement these algorithm. Going towards new
architectures, free from the current memory bottleneck introduced by the Von Neumann

architecture and natively parellelizing computation is the next logical step. This
chapter proposes a possible framework for such a new kind machine.
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6.1 Introduction

More than 50 years after the first Von Neumann single processor, it is becoming more and more
evident that this sequential power greedy architecture scales poorly to multiprocessors. Despite
the increase of the size of on-chip cache to stay away from RAM and to put the data closer to the
processor, major processor manufacturers have run out of solutions to increase performances. The
current solutions to use multicore devices and hyperthreading tries to overcome the problem by
allowing programs to run in parallel. This parallelism is however limited as hyper-threaded CPUs
even if they include extra registers still have only one essential element of most basic CPU features
[227].
The quest for a more power efficient alternative has seen a major breakthrough these last years,
specially in asynchronous brain like dataflow architectures. Recent endeavours, such as the SyNAPSE
DARPA program, led to the development of silicon neuromorphic neural chip technology that al-
lows to build a new kind of computer with similar function, and architecture to the brain. The
advantage of these systems is their power efficiency and the scaling of performance with the num-
ber of neurons and synapses used. There are currently several available platforms, to cite the most
sucessful: IBM TrueNorth [228], Neurogrid [229], SpiNNaker [14], FACETS [230]. These ma-
chines seem to be primarly intended to simulate biology, their main application being currently
in the field of machine learning and more specifically running deep learning architectures such
as deep neural networks, convolutional deep neural networks, deep belief networks and recurrent
neural networks. These techniques have shown to be efficient in several fields such as machine
vision, speech recognition and natural language processing. Other options exists such as the Neu-
ral Engineering Framework (NEF), that has shown to be able to simulate brain functionalities and
provides networks that can accomplish visual, cognitive, and motor tasks [231]. NEF intrinsically
uses a spike rate-encoded information paradigm and a representation of functions using weighted
spiking basis funtions; it thus requires a very large number of neurons to compute simple func-
tions. Other methods synthetize spiking neural networks for computation using Winner-Take-All
(WTA) networks [232], or more vision dedicated spiking structures such as convolutional neural
networks [233]. Linear Solutions of Higher Dimensional Interlayers networks [234] are another
class of approaches that are currently used to derive what is called Extreme Learning Machine
(ELM) [235]. Recently the Synaptic Kernel Inverse Method (SKIM) framework [89] has been
introduced, it uses multiple synapses to create the required higher dimensionality for learning
time sequences. These methods use random nonlinear projections into higher dimensional spaces
[236, 237]. They create randomly initialized static weights to connect the input layer to the hidden
layer, and then use nonlinear neurons in the hidden layer (which in the case of NEF are usually
leaky integrate-and-fire neurons, with a high degree of variability in their population). The linear
output layer allows for easy solution of the hidden-to-output layer weights; in NEF this is com-
puted in a single step by pseudoinversion, using singular value decomposition.

Our method goes beyond the classical point of view that neurons transmit information ex-
clusively via modulations of their mean firing rates [238, 239, 240]. There seems to be growing
evidence that neurons can generate spike-timing patterns with millisecond temporal precision in
[241, 242, 243, 244, 245, 246, 247]. Converging evidence suggests also that neurons in early
stages of sensory processing in primary cortical areas (including vision and other modalities) use
the millisecond precise time of neural responses to carry information [52, 248, 249, 250, 251].
Our approach will also make use of precisely timed transmission delays. The propagation delay
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between any individual pair of neurons is known to be precise and reproducible with a submillisec-
ond precision [252, 253]. Axonal conduction delays in the mammalian neocortex [252, 254, 255]
are known to range from 0.1 ms to 44 ms. Finally we will also use the property of biological
neurons that states the same presynaptic axon can give rise to synapses with different properties,
depending on the type of the postsynaptic target neuron [256, 257, 258].

In this chapter we are interested in deriving a new paradigm for computation using neuron
like units and precise timing. The goal is to design micro neural circuits operating in the precise
timing domain to perform mathematic operations. We show that when using computation units
that have common properties with biological neurons such as precise timing, transmission delays,
and synaptic diversity, it becomes possible to derive a Turing complete framework that can com-
pute every known mathematical function using a non Von Neumann architecture. The presented
framework allows to derive all mathematical operators whether they are linear or non linear. It also
allows relational operations that are essential to develop algorithms. The precise timing framework
has a compact representation and it uses a low number of neurons to solve complex equations. Ex-
amples will be shown on first and second order differential equations.
The developed methodology is in adequation with scalable neuromorphic architectures that make
no distinction between memory and computation. Every synapse of each computational unit of the
model simultaneously stores information and uses this information for computation. This contrasts
with conventional computers that separate memory and processing thus causing the von Neumann
bottleneck where most of the computation time is spent in moving information between storage
and the central processing unit rather than operating on it [259]. The developed approach is easily
scalable and is designed to naturally operate using an event-driven massive parallel communica-
tion similar to biological neural networks.

The next section describes the neural model used in this work and the encoding scheme chosen
to represent values in the exact timing of spikes. It also describes neural networks implementing
elementary operations that can be assembled to implement arbitrary calculus. We then present
results of applications of such networks, followed by a discussion on the methods proposed in this
work and a conclusion.

6.2 Methods

6.2.1 Neural model

These neuron-like computational units use the following neural model:
8
><

>:

tm.dV
dt = ge +gate.g f

dge
dt = 0

t f .
dg f
dt = �g f

(6.1)

V is the membrane potential of the neuron. We consider here that there is no leakage of the
membrane potential (or that the time constant of this leakage is much slower than all the other
time constants considered in this work, in which case it can be neglected). ge represents a constant
input current which can only be changed by synaptic events. g f represents input synapses with
exponential dynamics. These synapses are gated by the gate signal which is triggered by synaptic
events. For the experiments presented in this work, we use tm = 100s and t f = 20ms.

We thus distinguish 4 type of synapses, where w is the weight of the synapse:
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• V � synapses directly modify the membrane potential value: V  V +w,

• ge� synapses directly modify the constant input current: ge ge +w,

• g f � synapses directly modify exponential input current: g f  g f +w,

• gate� synapses : w = 1 activate the exponential synapses by setting gate 1; w = �1
deactivate the exponential synapses by setting gate 0.

All synaptic connections are also defined by a propagation delay between the source and target
neurons.

A neuron spikes when its membrane potential reaches a threshold, i.e.:

V �Vt (6.2)

it then emits a spike and is reset by putting back its state variables to:

V  Vreset (6.3)
ge  0 (6.4)
g f  0 (6.5)

gate  0 (6.6)

without loss of generality, we will consider Vt = 10mV and Vreset = 0 to simplify the following
equations.

In the following subsections, we use the following notations. Tsyn is the propagation delay be-
tween two neurons for standard synapses. Tneu is the time needed by a neuron to emit a spike when
triggered by an input synaptic event; it can model, for instance, timesteps of a neural simulator. In
the experiments presented in this work, we use Tsyn = 1ms and Tsyn = 10us. We define we as the
minimum excitatory weight for V � synapses required to trigger a neuron in its reset state, and wi
the inhibitory weight of counteracting effect:

we = Vt (6.7)
wi = �we (6.8)

Standard weights for ge� synapses will be defined in the next subsection.

6.2.2 Signal representation

The main idea of the method proposed in this work is to represent values as the precise time
interval in between two spikes.

If the series en(i) is the list of times at which neuron n emitted spikes, with i the index of the
spike in the series, neuron n encodes the signal u(t) by:

u(en(i)) = f�1(en(i+1)� en(i)),8i = 2.p, p 2N, (6.9)

with i an even number and f�1 the inverse of the encoding function f of our choice.
The encoding function f :R!R can be chosen depending on the considered signals in a par-

ticular system and adapted to the required precision. f computes the interspike time Dt associated
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with a particular value. In the following work, we chose to represent values using the following
linear encoding function:

Dt = f (x) = Tmin + x.Tcod, (6.10)

with x 2 [0,1] and Tcod the elementary time step.
This representation allows us to encode any value between a minimum and a maximum inter-

spike (of Tmin and Tmax = (Tmin + Tcod)). We chose to use a minimum interspike to encode zero
for several reasons. If the two spikes encoding a value originate from one unique neuron or are
received by a single neuron, this minimum interspike gives time to recover from the first spike
before spiking again. Tmin allows networks to react to the first input spike and propagate a state
change before the second encoding spike is received. In the experiments presented in this work,
we use Tmin = 10ms and Tcod = 100ms.

We could also choose a logarithmic function to allow encoding a large range of values with
dynamic precision (precision would be smaller for large values).

To represent signed values, we use two different pathways for the two different signs. Positive
values will be encoded by causing a neuron to spike and negative values by eliciting another neuron
to spike. We arbitrary chose to represent zero as a positive value.

To ease the understanding and the routing of several networks, each implementing simple op-
erations, we add some interface neurons to these networks. For instance, the input of the networks
are materialized by special input neurons. Their output by some output, output + or output -
neurons. Other special neurons used for interaction between networks are also marked. In all
the following figures describing networks, neurons in blue will be input neurons to the networks
whereas neurons in red will be output neurons of the circuit.

Figure 6.1: A network generating a constant value when required. When the recall neuron is
activated, the output neuron will generate a pair of spikes coding for value x.

The simple network presented in Fig. 6.1 encodes a constant value. It shows the design prin-
ciples which will be used in the rest of this section. In the network shown in Fig. 6.1, the recall
neuron is an input. When a spike is received by recall, the constant value encoded in the network is
output to the output neuron. In this example, the output is generated by two different synaptic con-
nections from recall to output. They generate two output spikes with the interspike corresponding
to the encoded value.

We define standard weights for ge� synapses. Let wacc be the weight value for ge synapses to
cause a neuron to spike from its reset state after time Tmax = Tmin+Tcod. According to Eq. 6.1, we
have:

Vt =
wacc

tm
.Tmax (6.11)
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such that:
wacc = Vt .

tm

Tmax
(6.12)

We also define weight w̄acc as the ge value necessary to have a neuron spiking from its reset state
after time Tcod. The same equation gives us:

w̄acc = Vt .
tm

Tcod
(6.13)

We can now describe different neural networks implementing elementary operations such as
: memories, synchronizer, linear combination or non-linearities such as multiplications, directly
operating on inter spike intervals.

6.2.3 Storing data: memory

Figure 6.2: Inverting Memory: this network stores a value encoded in a pair of input spikes x
(to the input neuron) by integrating current on the ge dynamics of neuron acc during the input
interspike. The value, stored in the membrane potential of the acc neuron is read out when the
recall neuron is triggered. Releasing a pair of spikes with neuron output corresponding to 1� x.

Blue, red and black neurons are, respectively, input, output and internal neurons.

Inverting Memory Fig. 6.2 presents an Inverting Memory network. This network is constituted
of two input neurons (in blue): input and recall, one output neuron (in red): output and 3 internal
neurons (in black): first, last and acc. Details and proof of the inner working of the network can be
found in Appendix D.1.1. The chronogram of spikes during operation of this network is presented
in Fig. 6.3. When a pair of spikes arrives at the input neuron, they are sorted by the first and
last neurons. Their synaptic connections are such that first will only spike in response to the first
encoding spike of the pair (at time t1

in) and last will only spike in response to the second encoding
spike of the pair (at time t2

in), thus seperating the two input spikes.
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Figure 6.3: Inverting Memory: chronogram of network operation for an input at times t1
in and t2

in
and a recall at time t1

recall. (Input spikes are drawn in blue, output spikes in red. Green plots show
the membrane potential of interesting neurons.)

first and last are then respectively starting and stopping the integration of the membrane po-
tential of neuron acc at times t1

st and t1
end such that the value of acc’s membrane potential after the

second input spike is, with DTin = t2
in� t1

in the input interspike:

Vsto =
wacc

tm
.(DTin�Tmin) (6.14)

When the recall neuron is triggered, the integration starts again until reaching Vt such that we get
an output interspike DTout = t2

out� t1
out following:

Vt =
wacc

tm
.(DTin�Tmin)+

wacc

tm
.DTout (6.15)

Considering the definition of wacc, we have Vt .tm/wacc = Tmax, such that

DTout = Tmax� (DTin�Tmin) (6.16)

We thus obtain an output spike corresponding to the maximum temporal representation of a value
(Tmax) minus the actual coding time (DTin�Tmin) of the input value. Chaining two of these Invert-
ing Memory networks, can store and recall a value without modification.

We can also notice that the value is stored in the inter spike timing needed to represent the
value and can be recalled as soon as the value has been completely fed into the Inverting Memory
network.
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Figure 6.4: Memory: this network stores a value stored in the inter spike timing of two input
spikes (to the input neuron) similarly to the Inverting Memory network. Two accumulators, acc
and acc2 are used to output on the output neuron the same value as previously received on the

input neuron. Blue, red and black neurons are, respectively, input, output and internal neurons.

Memory Fig. 6.4 presents a Memory network. Detailed explanations and a chronogram of the
network’s operations can be found in Appendix D.1.2. This network is based on the Inverting
Memory network introduced in the previous paragraph, 2 accumulator neurons acc and acc2 are
added to invert the stored value twice. If we follow the same reasoning as in the previous para-
graph, acc spikes Tmax after the first encoding spike is received and acc2 starts integrating when
the second encoding spike is received. Because acc stops acc2’s integration process, the value
stored in acc2’s membrane potential after acc spikes is, with DTin the input interspike (we present
here a simplifyed result to ease the notations, the full result is available in Appendix D.1.2):

Vsto =
wacc

tm
.(Tmax�DTin) (6.17)

Note that the time at which acc2 ends its integration happens after the input value has been com-
pletely fed into the Memory network. This is the reason why we added the ready neuron which
is triggered when the input value has been stored in the Memory network and is ready to be read
out. We then have the output interspike DTout following:

Vt =
wacc

tm
.(Tmax�DTin)+

wacc

tm
.DTout (6.18)

such that
DTout = DTin (6.19)

Signed Memory Fig. 6.5 presents a Signed Memory network. This network uses a Memory
network to store a value and a small state machine, implemented by neurons ready + and ready -,
to store the sign of the input. Detailed equations and the chronogram of the network’s operations
can be found in Appendix D.1.3. The internal Memory network is linked in parallel to the pos-
itive and negative pathways of the Signed Memory. When an input is fed into one of these two
pathways, only the corresponding ready neuron receives some excitation. When the recall neuron
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Figure 6.5: Signed Memory: this network is using a Memory network to store a signed value and
its sign. Depending on the sign of the input (i.e. if it is received on the input + or input - neuron),
the wrong output neuron (output + if the input is negative) is inhibited so that the output of the
internal Memory network is directed to the output corresponding to the input sign. Blue, red and

black neurons are, respectively, input, output and internal neurons.

is triggered, only the ready neuron corresponding to the sign of the input spikes (because of the
excitation contributed by the stored input). The ready neuron will then inhibit the wrong output
such that only the output neuron corresponding to the correct sign will fire.

Synchronizer Fig. 6.6 presents a Synchronizer network. This network receives N different in-
puts and synchronizes their first encoding spikes on the output end. Detailed equations and the
chronogram of the network’s operations can be found in Appendix D.1.4. It is implemented using
N Memory networks. The sync neuron keeps track of the number of received inputs. When all
the N inputs have been received, this neuron spikes, starting the readout process of the different
memories at the same time, thus synchronizing all the outputs.

Furthermore, the same principle can be used with Signed Memory networks to obtain a Signed
Synchronizer network.

6.2.4 Relational operations

Minimum Fig. 6.7 presents a Minimum network. This network implements the minimum op-
eration on 2 inputs. It outputs the smallest of its 2 inputs as well as an indicator of which input
was the smallest one. If the two inputs, input1 and input2, are synchronized and because our
encoding function is increasing with its input value, the minimum of the 2 inputs is the one for
which the second encoding spikes arrives first. This is what the smaller1 and smaller2 neurons are
extracting. This information is also used to inhibit the excitatory contribution of the largest input
to the output neuron in order to output only the smallest of the input values. Detailed proof and
the chronogram of operations can be found in Appendix D.2.1.
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Figure 6.6: Synchronizer: this network is synchronizing a set of input values so that the first
spikes encoding every value on its output side happen at the exact same time. It can be used to
resynchronize values before networks requiring this condition. It uses a set of Memory networks
to store the different input values and a sync neuron which recalls all these stored values as soon
as the last one of them has been stored. Blue, red and black neurons are, respectively, input, output

and internal neurons.

Maximum Fig. 6.8 implements the maximum operation on 2 inputs. This networks follows the
same principle as in the Minimum network, it differs by inverting the detection relation: when the
first input is the smallest, it triggers larger2 because the second input must then be the largest. The
drive of the output neuron is simpler in this case as the inputs are synchronized. The maximum
value corresponds to the one for which the second encoding spike is the latest. Detailed proof and
the chronogram of operations can be found in Appendix D.2.2.

6.2.5 Linear operations

Subtractor Fig. 6.9 presents a Subtractor network. It is here presented in its simplest form. It
will be expanded in a second stage. This network computes the difference between input1 and
input2 and directs the output depending on its sign either to the output + or output - neuron. If
the two inputs are synchronized, the difference between the two is directly given by the interspike
between the two second encoding spikes. This is the information sync1 and sync2 neurons are
extracting. It also implements the same idea as in the Minimum network (see Fig. 6.7) to compute
the sign of the output. When the output sign is known, sync1 or sync2 inhibits the pathway to the
wrong output neuron such that the output spikes are directed to the correct one. The detailed proof
and the chronogram of operations can be found in Appendix D.3.1.
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Figure 6.7: Minimum: this network outputs the smallest of its two inputs, which have to be
synchronized, and an indicator signal on neuron smaller1 or smaller2 corresponding to which
input has been considered as the smallest one. Because we chose an encoding function f which
output increases with its input, the smallest input corresponds to the one for which the second
encoding spike arrives first. This is what the output neuron is extracting. Blue, red and black
neurons are, respectively, input, output and internal neurons. This network only contains V �

synapses

A more robust version of the Subtractor network is presented in Fig. 6.10. The networks
adds the zero neuron and its connections (in magenta in the figure). In the previous ’simple’
implementation shown in Fig. 6.9, when both inputs are equals, the two parallel pathways of the
network are triggered at the same time and the lateral inhibition has no time to select a winning
pathway. In that case, the output is emitted both on output + and output - which can be problematic
for the following networks expecting only one of the two pathways to be activated. To solve this
problem, we add the zero neuron with a set of fast synaptic connections. They allow to detect the
case of equality between the two inputs. In this case, the output - pathway is quickly inhibited to
produce spikes coding for the zero output only on the output + neuron.

Linear Combination Fig. 6.11 presents a Linear Combination network. It computes the linear
combination of N signed inputs with arbitrary coefficients a0, ...aN�1 :

s =
N�1

Â

i=0
ai.xi, (6.20)

where xi, i 2 0, ...,N�1 are the different inputs of the network. It uses the same principle as in
the Memory network to store values in an accumulator. To implement the coefficients of the sum,
we multiply the synaptic weight of the accumulation current by the coefficient corresponding to
the input. To handle the signs of the inputs and coefficients, we use 2 accumulators. The first one
is storing intermediate results which are positives (i.e. when the sign of the input is the same as
the one of its associated coefficient) while the second stores negative values (i.e. when the sign
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Figure 6.8: Maximum: this network outputs the largest of its two inputs, which have to be
synchronized, and an indicator signal on neuron larger1 or larger2 corresponding to which input
has been considered as the largest one. Because we chose an encoding function f which output
increases with its input, the largest input corresponds to the one for which the second encoding
spike arrives last. This is what the output neuron is extracting. Blue, red and black neurons are,

respectively, input, output and internal neurons.

of the input is different from the one of its associated coefficient). When all the inputs have been
fed into the network, the sync network is triggered, causing the readout process of these accumu-
lators. Their content are inverted as for the Memory network and then synced before entering a
Subtractor network. This last network computes the difference between the positive and negative
contributions of the different inputs and produces a signed output. A start neuron is then triggered
to spike to indicate that the computation has ended. This signal can be used to trigger further
networks. All details and proofs can be found in Appendix D.3.2.

6.2.6 Non-linear operations

Natural Logarithm Fig. 6.12 presents a Log network capable of computing the natural log-
arithm of its input value by exploiting the dynamics of a g f � synapse. Detailed proof and the
chronogram of operations can be found in Appendix D.4.1. When an input value is fed into
the input neuron, this value is first stored in the membrane potential of acc by integrating with
weight w̄acc between the spike of first and last. Because the spike from first is delayed by an ad-
ditional Tmin compared to the one from last, the value stored in acc’s membrane potential is, with
DTin = Tmin +DTcod the input interspike:

V =
w̄acc

tm
(DTin�Tmin) =

w̄acc

tm
.DTcod = Vt .

DTcod

Tcod
(6.21)
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Figure 6.9: Subtractor (simple): this network substracts its two inputs, which have to be syn-
chronized. The resulting value is directed to two different neurons, output + or output -, depending
on its sign. Because the two inputs are synchronized, the difference is directly given by the inter-
spike between the second spikes of both inputs. The sign is determined using the same idea as in
the Minimum network (see Fig. 6.7). Blue, red and black neurons are, respectively, input, output

and internal neurons. This network only contains V � synapses

When this integration process is stopped by last’s spike, a synaptic event is also triggered on a
g f � synapse of acc with weight gmult (another synaptic event also enables the g f dynamics by
activating the gate state). acc’s membrane potential thus follows the evolution given by solving
the differential system Eq. (6.1):

V = Vt .
DTcod

Tcod
+gmult

t f

tm
(1� e�t/t f ) (6.22)

If we chose gmult such that:

gmult = Vt .
tm

t f
(6.23)

We obtain

V = Vt .
DTcod

Tcod
+Vt .(1� e�t/t f ) (6.24)
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Figure 6.10: Subtractor (full): this nework implements the same operation as the one presented
in Fig. 6.9. The simple version requires that the input are not equal so that the inhibition resulting
from the sign determination has time to propagate. The added zero neuron and its connections (in
magenta) detects this particular case and drives the network to output a zero on neuron output + if
the two inputs are equal. Blue, red and black neurons are, respectively, input, output and internal

neurons. This network only contains V � synapses

Considering neuron acc will then spike at time ts where V = Vt , we get:

Vt = Vt .
DTcod

Tcod
+Vt .(1� e�ts/t f ) (6.25)

DTcod

Tcod
= e�ts/t f (6.26)

ts = �t f . log
✓

DTcod

Tcod

◆
(6.27)

which is a positive value because DTcod  Tcod by definition. Adding the delays of the synaptic
connections to the output neuron, we get an output interspike DTout :

DTout = Tmin + t f . log
✓

Tcod

DTcod

◆
(6.28)

We thus obtain a network capable of generating an output proportional to the natural logarithm of
its input.

Exponential Fig. 6.13 presents the Exp network that computes the exponential of its input value
by exploiting the dynamics of a g f �synapse. The detailed proof and the chronogram of operations
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Figure 6.11: Linear Combination: this network computes the linear combination of a set of
inputs with given coefficients a0, ...,aN�1: s =

Â

N�1
i=0 ai.xi. The network is accumulating positive

and negative sub-operations (i.e. ai.xi) in 2 distinct accumulators. Synaptic connections in the
network are shown for a0 � 0 and aN < 0. The two resulting values are then read out by the sync
neuron when all inputs are known, synchronized and substracted from one another to obtain the
full, signed, result s. An indicator neuron start is provided to notify when the result is ready. Blue,

red and black neurons are, respectively, input, output and internal neurons.

can be found in Appendix D.4.2. When an input value is fed into the input neuron, a synaptic event
is triggered on a g f �synapse of the acc neuron with weight gmult as defined in Eq. 6.23 by neuron
first. acc’s membrane potential thus follows the evolution given by solving the differential system
Eq. 6.1 until last spikes:

V = gmult
t f

tm
(1� e�t/t f ) = Vt .(1� e�t/t f ) (6.29)

This synaptic activity is then gated when neuron last is triggered and blocks acc’s membrane
potential value to :

V = Vt .(1� e�DTcod/t f ), (6.30)

with DTin = Tmin + DTcod the input interspike (Because of the additional delay of Tmin in first’s
pathway in comparison to the one of last). The spiking of last also triggers a readout of acc’s
membrane potential by initiating a ge synaptic event with weight w̄acc such that acc spikes after
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Figure 6.12: Log: this network computes the natural logarithm of its input by using the g f dy-
namics of neuron acc. The input value is first stored in the membrane potential of the acc neuron.
When the second encoding spike arrives, a g f � synapse is used to obtain a delay function of the
log of the current value of acc’s membrane potential. Blue, red and black neurons are, respectively,

input, output and internal neurons.

Figure 6.13: Exp: this network computes the exponential of its input by using the g f dynamics
of neuron acc. A value function of the exponential of the input value is first stored in neuron acc’s
membrane potential by gating a g f � synapse to acc on the second encoding spike of the input.
acc’s membrane potential is then read out to obtain the result. Blue, red and black neurons are,

respectively, input, output and internal neurons.

time ts following:

Vt = Vt .(1� e�DTcod/t f )+
w̄acc

tm
.ts (6.31)

Vt = Vt .(1� e�DTcod/t f )+Vt .
ts

Tcod
(6.32)

ts = Tcod.e�DTcod/t f (6.33)
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Adding the delays of the synaptic connections to the output neuron, we get an output interspike
DTout :

DTout = Tmin +Tcod.e�DTcod/t f (6.34)

We thus obtain a network capable of generating an output proportional to the exponential of its
input.

Going back to the Log network from the previous paragraph, its output was :

DT log
cod = DT log

out �Tmin = t f . log
✓

Tcod

DTcod

◆
(6.35)

If this output is fed into an Exp network, we obtain the output:

DT exp
out = Tmin +Tcod.e�DT log

cod /t f (6.36)
= Tmin +Tcod.elog(DTcod/Tcod) (6.37)
= Tmin +DTcod (6.38)

The Exp network is thus capable of inverting the Log network. One can take advantage of
that to implement several common non-linearities by applying simple operations in between the
Log and Exp networks. For instance, summing two logarithms will allow multiplication, subtract-
ing them will implement division, multiplying a logarithm by a constant will compute a power
function, ...

Multiplier Fig. 6.14 presents a network we name Multiplier. The detailed proof and the chrono-
gram of the network’s operations can be found in Appendix D.1.3. This network is based on the
principles used in the Log and Exp networks. The product s of the 2 inputs x1 and x2 is obtained
using the well known following equation:

s = x1.x2 = exp(logx1 + logx2). (6.39)

Neurons acc_log1 and acc_log2’s membrane potentials are first loaded with the two inputs (input1
and input2). When the 2 inputs have been received, an exponential circuit is triggered through
acc_exp. To obtain the product of the input, this circuit has to be stopped after a time correspond-
ing to the sum of the natural logarithm of the 2 inputs. Because the absolute value of the natural
logarithm can be larger than 1 for small inputs (i.e. it is larger than the maximum value repre-
sentable by our encoding scheme), we cannot use a Linear Combination network to sum the logs.
To overcome this problem, we sum these values by triggering the logarithm computation of the 2
inputs successively: the sync neuron, which is detecting the end of the second input, it activates
at the same time the exponential circuit and the logarithm of the first input. When the first input’s
logarithm is output, it triggers the logarithm of the second input which, when computed, stops the
exponential circuit. At that point in time, the acc_exp neuron contains in its membrane the product
of the 2 inputs. It is then read out to compute the actual output of the network.

Signed Multiplier Fig. 6.15 presents a Signed Multiplier network. It computes the product of
two inputs independently of their sign. In parallel, a set of neurons: sign1, sign2, sign3 and sign4
are used as a truth table to determine the sign of the output from the sign of the inputs. When

Computational Methods for Event-Based signals and Applications



126 STICK: Spike Time Interval Computational Kernel

Figure 6.14: Multiplier: this network multiplies its two inputs. It computes the logs of its inputs
through neurons acc_log1 and acc_log2, sum them up and gets the exp of this value through
neurons acc_exp to obtain the product : s = x1.x2 = exp(logx1 + logx2). Blue, red and black

neurons are, respectively, input, output and internal neurons.

the output sign is known, the wrong output pathways (either output + or output -) is inhibited to
direct the output of the Multiplier network to the right output neuron. The different sign neurons
implement a truth table with the excitatory connections they receive from the input neurons. Input
connections and weights are designed such that only one sign neurons spikes when an input is fed
into the circuit. This “winning” neuron can then be associated to an output sign. Lateral inhibition
between the sign neurons is present to suppress residual activations by the input of non-winning
sign neurons (this allows all the sign neurons to go back to their reset state once the output sign is
computed).

6.2.7 Differential equations

Integrator Fig. 6.16 presents a Integrator network that allows to reconstruct a signal from its
derivative fed into its input. It is using a multiplier and an accumulation network with a Linear
Combination network. The output of this accumulator network is looped into its first input with
a unit gain. The input, composed of input + and input -, is fed into this accumulator with a gain
dt corresponding to the chosen integration timestep. Each time an output is produced on output +
and output -, the indicator neuron new_input is triggered to notify that the integrator is ready to
receive its next input. This system is thus driven by its input: every time an input is provided, the
corresponding output is computed. Two auxiliary input neurons are also provided. The init neuron
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Figure 6.15: Signed Multiplier: this network computes the result and the sign of the multipli-
cation of its two inputs. A Multiplier network is used to compute the absolute value of the result.
This value is then directed to the correct output (output + or output -) by a small truth-table im-
plemented in neurons sign1, sign2, sign3 and sign4 which are determining the sign of the output
from the signs of the two inputs. Blue, red and black neurons are, respectively, input, output and

internal neurons.

loads the integrator with its initial value. This allows the internal state of the integrator (through
the Linear Combination network) to be set to an initialization value. The start neuron feeds a zero
into the input of the integrator, thus computing its first output.

System design All the networks presented in this section can be assembled to achieve more
complex computational tasks. Multiplier and Linear Combination networks can be associated to
compute arbitrary functions on some state variables. Integrator networks can then be used to solve
systems of differential equations. Examples of such network will be demonstrated in the next
section.

6.3 Results

We implement in this section different computational tasks. We start by implementing linear
differential equations with a first order and a second order system. In a second stage, we implement
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Figure 6.16: Integrator: this network integrates an input over time. The init and start neurons
are used to initialize the inner state of the integrator. The network is then driven by its input.
Everytime an input is received, it is integrated and added to the latest value of the output. When a
new value is output, the new_input neuron spikes, requesting for a new input. Blue, red and black

neurons are, respectively, input, output and internal neurons.

a more complex set of non-linear differential equations from Edward Lorenz.

6.3.1 Linear differential equations

First order system We first implement a first order differential system. This system solves the
following equation:

t.
dX
dt

+X(t) = X
•

(6.40)

We implement this network as shown in Fig. 6.17 using 3 of the networks described in the previous
section:

• a Constant network is providing the input X
•

to the system,

• a Linear Combination network is computing dX/dt,

• an Integrator network is computing X from its derivative.

The init and start neurons enable to initialize and start the integration process. init has to be
triggered before the integration process can take place to load the initial value of the Integrator
network. start has to be triggered to output the first value from the Integrator network. When an
output is provided by the Integrator network, the Constant network is activated using the new_input
neuron of the Integrator. Hence feeding two values into the Linear Combination computing the
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Figure 6.17: Neural network implementing a first order differential equation. It is composed of a
Constant network providing the input, a Linear Combination network computing the derivative of

X and an Integrator network computing X from dX/dt.

(a) Different values of t (b) Different values of X
•

Figure 6.18: Neural implementation of a first order filter. Blue curves show the input values to
the filter, red curves show the output values of the filter for different parameters. (Horizontal axis

is time, every circle correspond to an actual output encoded by spikes of the network.)

new derivative of the output. This derivative is then integrated by the Integrator to obtain a new
output. With the implementations presented in the previous section, this network requires 118
neurons. Results of its simulation with different set of parameters for t and X

•

and for dt = 0.5
are presented Fig. 6.18.
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Figure 6.19: Neural network implementing a second order differential equation. It is composed
of a Constant network providing the input, a Linear Combination network computing the second
derivative of X and two Integrator networks computing dX/dt and X from d2X/dt2. (Signs of the

different signals have been omitted to increase readability.)

(a) Different values of w0 (b) Different values of x

Figure 6.20: Neural implementation of a second order filter. Blue curves show the input values to
the filter, red curves show the output values of the filter for different parameters. (Horizontal axis

is time, every circle correspond to an actual output encoded by spikes of the network.)

Second order system To add complexity, we now implement a second order differential system.
This system solves the following equation:

1
w

2
0
.
d2X
dt2 +

x

w0
.
dX
dt

+X(t) = X
•

(6.41)

We implement this network as shown in Fig. 6.19 using 4 of the networks described in the previous
section:

• a Constant network is providing the input X
•

to the system,
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• a Linear Combination network is computing d2X
dt2 ,

• a first Integrator network is computing dX/dt from the second derivative of X ,

• a second Integrator network is computing X from its first derivative.

With the implementations presented in the previous section, this network requires 187 neurons.
Results of its simulation with different set of parameters for x and w0 and for dt = 0.2 are presented
Fig. 6.20.

6.3.2 Lorenz attractor

Figure 6.21: Neural network implementing Edward Lorenz’s non-linear differential equation sys-
tem. (Signs of the different signals have been omitted to increase readability.)

We now implement the set of non-linear differential equation proposed by [260]:

dX
dt

= s(Y (t)�X(t)) (6.42)

dY
dt

= rX(t)�Y (t)�X(t).Z(t) (6.43)

dZ
dt

= X(t).Y (t)�bZ(t) (6.44)

using s = 10, b = 8/3 and r = 28 to ensure chaotic behavior of the system. We also use a variable
substitution to obtain state variables X , Y and Z evolving in [0,1] so that they can be represented
by our framework. The initial state of the system is set to X = �0.15, Y = �0.20 and Z = 0.20.
We use an integral step of dt = 0.01.

We implement this network as shown Fig. 6.21 by using 9 of the networks described in the
previous section:
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Figure 6.22: Neural implementation of a set of non-linear differential equations. These equations
converge to the Lorenz attractor. The plot shows the evolution of the system in the phase space,
every axis being one of the state variables X , Y , Z. Fixed points of the system are shown in blue,
the origin point is shown in green. Every circle corresponds to an actual output encoded by spikes

of the network.

• 2 Signed Multiplier networks compute the non-linarities contained in Y and Z’s derivatives,

• 3 Linear Combination networks compute the derivatives of X , Y and Z,

• a Signed Synchronizer network allows to wait for the three derivatives to be computed before
evolving the system’s state,

• 3 Integrator networks compute the new state from the derivatives of X , Y and Z.

With the implementations presented in the previous section, this network requires 549 neurons.
Results of its simulation are presented Fig. 6.22. We can observe that the system is behaving as
expected, following the strange attractor described by Lorenz.

6.4 Discussion

In this work, we choose a linear encoding function to map values into inter spikes. In this case, it
results in a direct trade-off between the time needed to represent a value and the time precision of
the system. A finer time precision leads to a larger number of possible different values in a given
maximum representation time. In this work we chose to set time scales that are compatible with
neuroscience evidence. However, current hardware allows much faster time scales up to nanosec-
onds. In that case not only can we obtain higher precision but also faster computation times.
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The number of neurons used in the current implementation of the examples given in this chap-
tercan be reduced in size. They have been designed to ease comprehension and to be easy to plug
into each other. In almost all the networks, the first and second encoding spikes for the output
are generated by different neurons of the network. All the networks have a pair of first and last
neurons which task is to separate the two incoming spikes. By directly routing these two spikes
independently, the whole implementation would be much more efficient and would require much
less neurons. Less neurons would also imply less spikes and therefore less energy requirements
and less latency in signal propagation.

For feedforward architectures, the different layers of computation could also be pipelined.
This means that if a task is composed of a series of operations which can be considered as lay-
ers, the full operation would require data to go through all the layers, with all layers being active
only a fraction of the time. But at every point in time, one layer could also be computing its
operation on a different input, such that all of the layers are always active. In the end, one can
get one output per pipeline period, even if the whole computation takes several pipeline period to
be completed (as many pipeline period as there are steps in the computation, the pipeline period
being the longest time needed by one stage to output its result). This means better throughput for
feedforward computation, but imposes a minimum delay on feedback (because the result to be fed
back is not available before a certain number of pipeline periods).

The developed framework can be used to compute any algorithm, it is intersting to notice
that it is naturally compatible with all type of time oriented AER (Address Event Representation
[30]) data and all kind of AER sensors [10]. The use of interspike makes the framework particu-
larly adapted to process luminance time encoded events data from the neuromorphic camera ATIS
("Asynchronous Time-based Image Sensor") [13, 12]. Thus every event-based machine vision al-
gorithm developed so far could be systematically implemented on neural boards.

A question outside the scope of this chapter relates to the architecture of the platform that
should implement this computation paradigm. Several solutions could be possible. A pure analog
chip could be used. Analog design is known to be a difficult endeavour, moreover we would
need to robustify the framework to overcome mismatch. Several options are possible, the most
straightforward is to use regularization techniques such as the one introduced in [19] or simply
using calibration techniques to provide a precisely timed output from analog chip similar to what
has been introduced in [261, 262].
A mixed-signal integrated circuit mixing both analog circuits and digital circuits could also be
considered. Exponential decays could be generated using analog circuits while the remaining
operations could use digital circuits. Finally the last solution could be a pure digital architecture
preserving the principles introduced in this work such as inter spike encoding, local computations
that allow to overcome the Von Neumann bottelneck. In this case, we could use local binary
computation units to perform conventional computation rather than using membrane potentials,
synapses, delay,. . . . Everything being local to the units, the architecture would still be efficient.
This by far is the less elegant solution, but it could be a rapid and an intermediate step toward a
full true neuromorphic implementation.
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6.5 Conclusion

This work introduced a new clockless framework to build a multipurpose neuromorphic computer.
Instead of representing values as a set of bits in a register or a part of some central memory,
values are coded in the precise timing between events happening in the system. This dataflow
framework we called STICK (Spike Time Interval Computational Kernel) offers a new method
to design computing platforms where memory and computation are intertwined. By removing
the numerous accesses to a central memory, inherent to standard computers, we free ourselves
from the Von Neumann bottleneck. The systems scales naturally, the more neurons are available
the more computation can be performed. Building a large machine consisting of several small
elementary computational units allows to build natively massively parallel machines which rely
on neuromorphic engineering principles to reduce their power consumption: energy is needed to
produce events which only happens when information is produced.

Moreover, the STICK framework offers a way to design large neural networks that accomplish
complex tasks by design of their architecture instead of only exploiting the randomness of a given
connectivity topology. It also defines all the weights necessary to obtain a functional solution
without the need for a costly (in terms of energy, time or computational power) learning process.
A hardware fabric consisting of a large number of the proposed computational units with dynamic
connection could then be used and adapted to successively solve different tasks.
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In all the work presented throughout this document, we showed that event-based vision has real
potential. Even if standard computer vision has been obtaining interesting results for a long time
now, we showed that a paradigm shift from images to events is offering many advantages.

Standard cameras enable computer vision to solve a lot of tasks, but this very quickly fails in
uncontrolled conditions. The independance to luminance variation and the high dynamic range
of asynchronous neuromorphic cameras allow to solve several problems faced by conventional
machine vision. Moreover, the event-based acquisition process of such sensors, by adapting the
sampling rate of data to their actual dynamics is optimizing the acquisition process. If some part of
the visual field changes very slowly, it will be sampled at a low rate. If other pixels are observing
a fast changing phenomenon, they will sample light at a much higher rate. This process allows to
acquire a visual scene without under-sampling and over-sampling it at the same time.
The sparseness of the resulting data is a key component of the success of event-based algorithms.
By only processing relevant information, it becomes possible to run algorithms at several kHz.

During my Ph.D. work, we have demonstrated that event-based vision is opening new perspec-
tives in machine vision. The data representation allows for simpler algorithms which obtain better
performances than the state of the art of computer vision. Because these algorithms are simpler,
they can be computed much faster and consume less resources.

The next challenge is now to move from controlled scenes in the lab to unconstrained environ-
ments and real-world applications. Nowadays, the progress in event-based vision and processing
are sufficient to initiate a movement towards the industry. Thinking without frames is new for
most people but event-based vision is starting to be slowly accepted.

This is why we developed the kAER framework for event-based computing. This software
framework is designed for use with standard computers1. It offers a standard way to implement
and reuse event-based algorithms for realtime computation. Algorithms can be picked from a
library of filters and assembled together to solve a particular task. Many different algorithms are
available such as object tracking, motion flow, 3D reconstruction, ...

Filters can be automatically parallelized in a pipelined architecture to make use of the several
processors of the machine it runs on. The modular approach aims at fast prototyping with event-
based sensors, enabling new actors in the field to test ideas or architectures even without knowing
much about neuromorphic engineering or event-based processing.

The next decade will certainly see more and more of these sensors in consumer products.
Hopefully, the spread of the sensors will push for the development of computation platforms

1It can be used on standard computers or embedded platforms.
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adapted to them. The different systems, such as the SpiNNaker platform, that we have been able
to use during my Ph.D. are only at the early stages of a new kind of computation.

The data representation offered by neuromorphic sensors is very well suited for distributed,
massively parallel architectures. With the speed of current electronic devices, coding information
in time is a very promising possibility. High temporal resolution of devices allows for a trade-off
between the accuracy of computation and the time needed to obtain a result to stay in relevant
boundaries for concrete applications.

We can imagine a system, computing very quickly a first approximation of a task while cor-
recting it later on with a much more precise result without changing its core architecture and
without having to accumulate and integrate approximations for a long period of time.

The STICK framework we propose in this work is offering a real alternative to standard com-
puters. Most of today’s highly parallel machines are based on the same computational principles
as standard computers. They are just adding more and more processors together with smart ar-
chitectures allowing for better communication in-between these units. But they always face the
same problem: memory. Whatever the algorithm they try to implement, it has to work on data
and parameters. Accessing this data and the parameters of the algorithm then becomes a huge
bottleneck known as the Von Neumann bottleneck.

This is why we propose a radically different approach. By merging computation and memory,
there is no longer any need to move data between storage spaces and computing spaces. This
spares a lot of time and energy for actual computation and saves resources.

Implementing this framework on standard processors does not make sense from a purely com-
putational point of view but I believe that its full potential can be unlocked by designing a mixed-
analog-digital system where its neuron-like units are implemented in analog circuitry with an
underlying fabric of digital communication.

Another question that this framework raises is its biological plausibility. When designing its
units, care has been taken to stay as close as possible from biological behaviors and to make use
of processes which can be found in real neurons. In the interest of developing a possible next
generation of computers, it is best to go beyond the limitations that biology imposes to us like the
maximum time precision of events in the system. But going back to this neural inspiration would
be of great interest.
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Appendix C

HOTS: Supplemental figures

This appendix regroups some detailed figures about the experiments contained in Chapter 3.
Fig. C.1 and Fig. C.2 presents the features learnt by the three layers of our architecture for the
flipped cards and letters & digits experiments respectively. Fig. C.3 and Fig. C.4 show the sig-
natures obtained for all the characters in the letters & digits task. Finally, Fig. C.5 and Fig. C.6
present the obtained for the face recognition experiment.
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(a) Layer 1

(b) Layer 2

(c) Layer 3

Figure C.1: Flipped cards experiment: Reconstructed features extracted by the different layers.
This figure presents the obtained cluster centers for the three successive layers used in the cards
recognition task (4 features for layer 1, 8 for layer 2, 16 for layer 3). The first layer is directly
obtained from events generated by the event-driven time-based vision sensor. Each feature is
represented as a time-surface like in Fig. 3.2, the first, positive, half corresponds to the ON events
and the second, negative, half corresponds to the OFF events. Each layer is then using the features
of its preceding layer to interpret its own features as a pattern of event produced by the camera. As
the position of the layer increases, the size of the feature increases. So does its complexity. The

actual features used by the classifier are the features from layer 3.
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(a) Layer 1

(b) Layer 2

(c) Layer 3

Figure C.2: Letters & Digits experiment: Reconstructed features extracted by the different
layers.

This figure presents the obtained cluster centers for the three successive layers used in the letters
& digits recognition task (4 features for layer 1, 8 for layer 2, 16 for layer 3). The first layer
is directly obtained from events generated by the event-driven time-based vision sensor. Each
feature is represented as a time-surface like in Fig. 3.2, the first, positive, half corresponds to the
ON events and the second, negative, half corresponds to the OFF events. Each layer is then using
the features of its preceding layer to interpret its own features as a pattern of event produced by
the camera. As the position of the layer increases, the size of the feature increases. So does its

complexity. The actual features used by the classifier are the features from layer 3.

Computational Methods for Event-Based signals and Applications



144 HOTS: Supplemental figures
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Figure C.3: Letters & Digits experiment: Pattern signatures (Letters from A to R).
For each letter and digit the trained histogram used as a signature by the classifier is shown.
The snapshot shows an accumulation of events from the sensor (White dots for ON events and
black dots for OFF events). The histograms present the signatures: X axis is the index of the
feature shown in Fig. C.2, Y axis is the number of activations of the feature during the stimulus

presentation.
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Figure C.4: Letters & Digits experiment: Pattern signatures (Letters from S to Z and digits).
For each letter and digit the trained histogram used as a signature by the classifier is shown.
The snapshot shows an accumulation of events from the sensor (White dots for ON events and
black dots for OFF events). The histograms present the signatures: X axis is the index of the
feature shown in Fig. C.2, Y axis is the number of activations of the feature during the stimulus

presentation.
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(a) Layer 1

(b) Layer 2

Figure C.5: Face recognition experiment: Reconstructed features extracted by layers 1 and 2.
This figure presents the obtained cluster centers for the first two layers used in the face recognition
task (8 features for layer 1, 16 for layer 2, 32 for layer 3). The first layer is directly obtained from
events generated by the event-driven time-based vision sensor. Each feature is represented as a
time-surface like in Fig. 3.2, the first, positive, half corresponds to the ON events and the second,
negative, half corresponds to the OFF events. Each layer is then using the features of its preceding
layer to interpret its own features as a pattern of event produced by the camera. As the position of
the layer increases, the size of the feature increases. So does its complexity. See Fig. C.6 for the

third layer.
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Figure C.6: Face recognition experiment: Reconstructed features extracted by layer 3.
This figure presents the obtained cluster centers for the third and last layer used in the face recog-
nition task (8 features for layer 1, 16 for layer 2, 32 for layer 3). The first layer is directly obtained
from events generated by the event-driven time-based vision sensor. Each feature is represented as
a time-surface like in Fig. 3.2, the first, positive, half corresponds to the ON events and the second,
negative, half corresponds to the OFF events. Each layer is then using the features of its preceding
layer to interpret its own features as a pattern of event produced by the camera. As the position of
the layer increases, the size of the feature increases. So does its complexity. The actual features

used by the classifier are the features from layer 3. See Fig. C.5 for the first two layers.
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Appendix D

STICK: Chronograms and detailled
proofs

This appendix presents the detailed proofs of all the networks described in Section 6.2

D.1 Storing data: analog memories

D.1.1 Inverting Memory

The Inverting Memory network (see Fig. 6.2) receives 2 spikes on the input neuron at times t1
in and

t2
in such that DTin = t2

in� t1
in encodes its input value. When input spikes at t1

in, synaptic connections
are activated towards neurons first and last. Because of the synaptic delays and weights, last’s
membrane potential is set to Vt/2 and first spikes at time t1

first = t1
in + Tsyn + Tneu, Tneu being the

time needed by first to produce a spike. When first spikes, an inhibitory connection to itself sets
its potential to �Vt while a second connection triggers the integration of neuron acc after a delay
Tsyn +Tmin with weight wacc. We then have:

t1
st = t1

first +Tsyn +Tmin (D.1)
= t1

in +2.Tsyn +Tneu +Tmin. (D.2)

When input spikes for the second time at time t2
in, first’s membrane potential gets back to its

reset value while last reaches its threshold. This produces a spike from neuron last at time t1
last =

t2
in +Tsyn +Tneu. The connection to acc with delay Tsyn and weight �wacc stops acc’s integration at

time:

t1
end = t1

last +Tsyn (D.3)
= t2

in +2.Tsyn +Tneu. (D.4)

During this integration window we had, for neuron acc, ge = wacc such that, the membrane poten-
tial of acc at time t1

end is:

Vsto =
wacc

tm
.(t1

end� t1
st) (D.5)

=
wacc

tm
.(t2

in� (t1
in +Tmin)) (D.6)

=
wacc

tm
.(DTin�Tmin) (D.7)
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Figure D.1: Inverting Memory: chronogram of the network for an input at times t1
in and t2

in and
a recall at time t1

recall. (Input spikes are drawn in blue, output spikes in red. Green plots show the
membrane potential of interesting neurons, recall of Fig. 6.3)

When the recall neuron receives an input at time t1
recall, acc’s integration starts again at time

t2
st = t1

recall +Tsyn. At the same time, its second connection triggers a spike of the output neuron at
time:

t1
out = t1

recall +(2.Tsyn +Tneu)+Tneu (D.8)
= t1

recall +2.Tsyn +2.Tneu (D.9)

The integration stops again when acc reaches its threshold at time t2
end, giving the following equa-

tion:

Vt =
wacc

tm
.(t2

end� t2
st)+Vsto (D.10)

t2
end = (t1

recall +Tsyn)� (DTin�Tmin)+Vt .
tm

wacc
, (D.11)

By definition of wacc, we have Vt .tm/wacc = Tmax,so :

t2
end = t1

recall +Tsyn +Tmax� (DTin�Tmin), (D.12)

Because acc1 then needs the time Tneu to produce a spike, we get:

t1
acc = t2

end +Tneu (D.13)
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We thus get the second spike of output at time:

t2
out = t1

acc1 +Tsyn +Tneu (D.14)
t2
out = t1

recall +2.Tsyn +2.Tneu +Tmax� (DTin�Tmin) (D.15)

such that:

DTout = t2
out� t1

out (D.16)
= Tmax� (DTin�Tmin). (D.17)

D.1.2 Memory

Figure D.2: Memory: chronogram of the network for an input at times t1
in and t2

in and a recall at
time t1

recall. (Input spikes are drawn in blue, output spikes in red. Green plots show the membrane
potential of interesting neuron.)

The Memory network (see Fig. 6.4) receives 2 spikes on the input neuron at times t1
in and

t2
in such that DTin = t2

in � t1
in encodes its input value. With the reasoning used in the previous
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subsection, we get:

t1
first = t1

in +Tsyn +Tneu (D.18)
t1
last = t2

in +Tsyn +Tneu. (D.19)

When first spikes, it triggers integration in acc’s membrane potential. Because of the synaptic
delay, we get:

t1
st = t1

first +Tsyn = t1
in +2.Tsyn +Tneu (D.20)

Neuron acc continues to integrate its wacc input until reaching its threshold. This gives us the
following equation:

Vt =
wacc

tm
.(t1

end� t1
st) (D.21)

by definition of wacc, we thus get:

t1
end = t1

st +Tmax (D.22)
= t1

in +Tmax +2.Tsyn +Tneu (D.23)
t1
acc = t1

end +Tneu (D.24)
= t1

in +Tmax +2.Tsyn +2.Tneu (D.25)
t1
end2 = t1

acc +Tsyn (D.26)
= t1

in +Tmax +3.Tsyn +2.Tneu (D.27)

At the same time, integration starts in acc2’s membrane potential after last spikes, which corre-
sponds to:

t1
st2 = t1

last +Tsyn = t2
in +2.Tsyn +Tneu (D.28)

The membrane potential of acc2 after the end of the first integration phase is thus:

Vsto =
wacc

tm
.(t1

end2� t1
st2) (D.29)

=
wacc

tm
.(Tmax + t1

in� t2
in +Tsyn +Tneu) (D.30)

=
wacc

tm
.(Tmax�DTin +Tsyn +Tneu) (D.31)

When the recall neuron is triggered, it starts acc2’s integration again at time:

t2
st2 = t1

recall +Tsyn (D.32)

Which then produces the first output spike at time:

t1
out = t1

recall +Tsyn +Tneu. (D.33)

This second integration phase of acc2 finishes when its threshold is reached:

Vt =
wacc

tm
.(t2

end2� t2
st2)+Vsto (D.34)

Tmax = tend2� t1
recall�Tsyn +Tmax�DTin +Tsyn +Tneu (D.35)

t2
end = t1

recall +DTin�Tneu (D.36)
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We thus get a spike from acc2 at time:

t1
acc2 = t2

end2 +Tneu = t1
recall +DTin (D.37)

leading to the second output spike at time:

t2
out = tacc2 +Tsyn +Tneu = t1

recall +DTin +Tsyn +Tneu (D.38)

such that:

DTout = t2
out� t1

out (D.39)
= DTin (D.40)

D.1.3 Signed Memory

Figure D.3: Signed Memory: chronogram of the network for an input at times t1
in and t2

in and a
recall at time t1

recall. (Input spikes are drawn in blue, output spikes in red. Green plots show the
membrane potential of interesting neurons). (a) Depicts the case of a positive input whereas (b)

depicts the case of a negative input.

The Signed Memory network (see Fig. 6.5) receives 2 spikes on the input neuron at times t1
in

and t2
in such that DTin = t2

in� t1
in encodes its input value and the receiving neuron encodes the sign
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of the input (input + for positive inputs, input - for negative inputs). Let’s consider, without loss
of generality, the case where the input is positive (Fig. D.3(a)). For each of the 2 input spikes, the
ready + neuron receives a synaptic contribution of 0.25we. When the input has been completely
fed into the network, ready +’s membrane potential is thus resting at a value of Vt/2 while ready -
’s is still resting at its reset potential. At the same time, the input spikes are fed into the central
Memory network (see previous subsection) independently of its sign. When the value is stored in
the Memory network, it outputs a spike on its Rdy output, which is propagated to the ready neuron.

When the recall neuron is triggered, its connections contribute to ready + and ready -’s mem-
brane potentials with a weight of 0.5we. This leads to a spike of the ready + neuron at time t1

sign
while ready -’s membrane potential moves to Vt/2. The lateral inhibition between the 2 ready
neurons then sets ready - back to its reset potential. When ready + spikes, it triggers the recall of
the Memory network and at the same time inhibits the output neuron corresponding to a negative
value, output -, setting its potential to �2.Vt . When the Memory network outputs its stored value,
spikes are transmitted to both output. Because of their respective potential at this moment, only
the positive output output + spikes, while output -’s membrane potential is set back to its reset
potential by the 2 output spikes of the Memory network.

Fig. D.3(b) shows the same principle applied to a negative input. One can notice that the
ready + and ready - neurons are implementing a small state machine routing the spikes produced
by the central Memory network to different output neurons depending on the input neurons.

D.1.4 Synchronizer

The Synchronizer network (see Fig. 6.6) for N inputs uses N Memory networks. Fig. D.4 presents
the chronogram of this network for N = 2. Every time an internal memory has finished storing an
input, its Rdy output activates the sync neuron with a weight we/N. Thus, after i inputs have been
presented, sync’s membrane potential V i

sync is:

V i
sync =

i
N

.Vt . (D.41)

The sync neuron thus spikes after the Nth and last memory is ready. It then recalls the values stored
in all Memory networks at the same time, effectively synchronizing the first encoding spikes of all
its outputs.

D.2 Relational operations

D.2.1 Minimum

The Minimum network (see Fig. 6.7) receives 2 different inputs (a pair of spikes) from each input
neurons input1 (t1

in1 and t2
in1) and input2 (t1

in2 and t2
in2) such that DTin1 = t2

in1� t1
in1 and DTin2 =

t2
in2� t1

in2 encode its 2 inputs. Let us consider, without loss of generality, the case where the first
input (input1) is smaller than the second one as shown in Fig. D.5. Assuming the inputs to be
synchronized, we have:

t1
in1 = t1

in2, (D.42)

When input1 and input2 are triggered by the first encoding spike of each input, smaller1 and
smaller2’s membrane potentials are set to Vt/2 and the output neuron spikes after a delay due to
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Figure D.4: Synchronizer: chronogram of the network for inputs at times t1
in0, t2

in0 and t1
in1, t2

in1.
(Input spikes are drawn in blue, output spikes in red. Green plots show the membrane potential of

interesting neuron.)

the connection from input1 and input2 such that:

tout1 = t1
in1 +2.Tsyn +2.Tneu. (D.43)

When the smallest input (in this case input1) receives its second encoding spike at time t2
in1, the

smaller1 neuron reaches its threshold and emits a spike at time:

t1
smaller1 = t2

in1 +Tsyn +Tneu. (D.44)

The spike from smaller1 inhibits the other input (here input2) such that it will not be triggered by
its second encoding spike (as can be seen in the chronogram). It also inhibits the smaller2 neuron
such that its membrane potential goes back to its reset potential. The second encoding spike from
input1 and the spike from smaller1 are, in addition, enough contribution to trigger a second spike
in the output neuron at time:

t2
out = min

�
t2
in1 +2.Tsyn +Tneu, tsmaller1 +Tsyn

 
+Tneu (D.45)

= min
�

t2
in1 +2.Tsyn +Tneu, t2

in1 +2.Tsyn +Tneu
 

+Tneu (D.46)

= t2
in1 +2.Tsyn +2.Tneu. (D.47)
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Figure D.5: Minimum: chronogram of the network for inputs at times t1
in1, t2

in1 and t1
in2, t2

in2.
(Input spikes are drawn in blue, output spikes in red. Green plots show the membrane potential of

interesting neuron.)

We thus get an output pair of spikes spaced in time such that:

DTout = t2
out� t1

out = t2
in1� t1

in1 = DTin1. (D.48)

The output is thus corresponding to the smallest of the 2 inputs of the network while the indicator
provides which of the two inputs is the smallest (smaller1). The same reasonning can be applied
to the case where the second input (input2) is the smallest.

D.2.2 Maximum

The Maximum network (see Fig. 6.8) receives 2 different inputs (a pair of spikes) from each input
neurons input1 (t1

in1 and t2
in1) and input2 (t1

in2 and t2
in2) such that DTin1 = t2

in1� t1
in1 and DTin2 =

t2
in2� t1

in2 encode its 2 inputs. Let’s consider, without loss of generality, the case where the second
input (input2) is larger than the first one as depicted Fig. D.6. The 2 inputs being synchronized as
a prerequisite of the network, we have:

t1
in1 = t1

in2, (D.49)

When input1 and input2 are triggered by the first encoding spike of each input, larger1 and
larger2’s membrane potentials are set to Vt/2 and the output neuron spikes after a delay due to the
connection from input1 and input2 such that:

tout1 = t1
in2 +Tsyn +Tneu. (D.50)

When the smallest input (in this case input1) receives its second encoding spike at time t2
in1, we

know that the other input has to be the larger one. Hence, the larger2 neuron reaches its threshold
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Figure D.6: Maximum: chronogram of the network for inputs at times t1
in1, t2

in1 and t1
in2, t2

in2.
(Input spikes are drawn in blue, output spikes in red. Green plots show the membrane potential of

interesting neuron.)

and emits a spike at time:
t1
larger2 = t2

in1 +Tsyn +Tneu. (D.51)

The spike from larger2 inhibits the larger1 neuron such that its membrane potential goes down to
�Vt/2, while the connection input1 to output raises output’s membrane potential to Vt/2. When
the second encoding spike from input2 is received, the connection from input2 to larger1 moves
back larger1’s membrane potential to its reset potential while its connection to output triggers a
spike at time:

t2
out = t2

in2 +Tsyn +Tneu. (D.52)

We thus get an output pair of spikes spaced in time such that:

DTout = t2
out� t1

out = t2
in2� t1

in2 = DTin2. (D.53)

The output is thus corresponding to the largest of the 2 inputs of the network.while the indicator
provides which of the two inputs is the largest (larger1). The same reasonning can be applied to
the case where the first input (input1) is the largest.

D.3 Linear operations

D.3.1 Subtractor

The Subtractor network (see Fig. 6.9) receives 2 different inputs (a pair of spikes) from each input
neurons input1 (t1

in1 and t2
in1) and input2 (t1

in2 and t2
in2) such that DTin1 = t2

in1� t1
in1 and DTin2 =

t2
in2� t1

in2 encode its 2 inputs. Let us consider, without loss of generality, the case where the first
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Figure D.7: Subtractor: chronogram of the network for inputs at times t1
in1, t2

in1 and t1
in2, t2

in2.
(Input spikes are drawn in blue, output spikes in red. Green plots show the membrane potential of

interesting neuron.)

input (input1) is larger than the second one as depicted Fig. D.7. Assuming the inputs to be
synchronized, we have:

t1
in1 = t1

in2. (D.54)

When input1 and input2 are triggered by the first encoding spikes of each input, they activate the
sync1 and sync2 neurons such that their membrane potentials are now set to Vt/2. When the second
encoding spike of the smallest input (here, input2) is received, the activation from input2 to sync2
is sufficient to trigger a spike at time:

t1
sync2 = t2

in2 +Tsyn +Tneu. (D.55)

This spike inhibits the inb1 neuron after a time Tsyn, moving its membrane potential to �Vt and,
because the sign of the output is now known, it triggers and output spikes on output + at time:

t1
out = T 1

sync2 +3.Tsyn +2.Tneu +Tneu = T 2
in2 +4.Tsyn +4.Tneu. (D.56)

It also contributes to output -’s membrane potential with an activation of we at time t1
sync2 +Tmin +

3.Tsyn + 2.Tneu. But before this contribution reaches output -, the inb2 neuron is triggered and
produces a spike at time:

t1
inb2 = tsync +Tsyn +Tneu (D.57)
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which inhibits output - with weight 2wi at time t1
inb2 + Tsyn = t1

sync2 + Tsyn + Tneu. This inhibition
thus happens before the direct excitation from sync2, which then leads to output - not emitting a
spike and its membrane potential to be set to �Vt after receiving these 2 spikes.

When the second encoding spike of the largest input is received, the spike from input1 triggers
a spike from sync1 at time:

t1
sync1 = t2

in1 +Tsyn +Tneu. (D.58)

This spike leads to the inhibition of inb2 to a membrane potential of �Vt and an excitation of
inb1 back to its reset potential. It also activates output + back to its reset potential and triggers an
output spike at time:

t2
out = tsync1 +Tmin +3.Tsyn +2.Tneu +Tneu = t2

in1 +Tmin +4.Tsyn +4.Tneu (D.59)

We thus get a positive output as expected and an output value:

DTout = t2
out� t1

out (D.60)
= Tmin + t2

in1� t2
in2 (D.61)

= Tmin +(t2
in1� t1

in1)� (t2
in2� t1

in2) (D.62)
= Tmin +(DTin1�DTin2) (D.63)
= Tmin +(DTin1�Tmin)� (DTin2�Tmin). (D.64)

Knowing that for each value x, we encode it as a time interval f (x) = Tmin + x.Tcod, we have:

DTout = Tmin + xin1.Tcod� xin2.Tcod (D.65)
= Tmin +(xin1� xin2).Tcod (D.66)

which corresponds to the encoding of the result input1� input2.

D.3.2 Linear Combination

The first part of the Linear Combination presented Fig. 6.11 can be decomposed in a series of
simpler circuits to what has been presented before for the inverting memory. For each of the N
inputs, one branch is managing positive inputs while the other one is managing negative inputs
(only one of these 2 can be activated in any computation). The architecture of each of these
branches can be seen as an inverting memory (see Fig. 6.2) storing a value either in acc1+ or
acc1-. The targeted accumulator is chosen depending on the sign of the input and the sign of
its associated coefficient ai to represent the sign of the input’s contribution to the result. acc1+
is accumulating all positive contributions (positive inputs with positive coefficients and negative
inputs with negative inputs) and acc1- is accumulating all negative contributions (negative inputs
with positive coefficients and positive inputs with negative coefficients). With the same reasoning
leading to Eq. (D.7) we can get the contribution of an input i to its associated accumulator, if DT i

in
is the input interspike associated to the considered input:

V i
sto = |ai|.

wacc

tm
.(DT i

in�Tmin), (D.67)
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The integration in the accumulators being linear, we obtain the membrane potential stored in the
2 accumulators after all inputs have been fed into the network:

V acc1+
sto =

Â

i2I +

V i
sto (D.68)

=
Â

i2I +

|ai|.
wacc

tm
.(DT i

in�Tmin) (D.69)

V acc1�
sto =

Â

i2I�
V i

sto (D.70)

=
Â

i2I�
|ai|.

wacc

tm
.(DT i

in�Tmin) (D.71)

where I + is the set of inputs contributing positively to the output and I� is the set of inputs
contributing negatively to the output. When the N inputs have been fed into the network, the sync
neuron finally receives enough excitation to produce a spike at time t1

sync. This spike triggers the
readout process of acc1+ and acc1- and, at the same time, starts integrating in neurons acc2+ and
acc2-. This process is similar to the one used in the Memory network (see Appendix D.1.2). If
we consider the positive accumulator, we obtain spikes from acc1+ and acc2+ at time t1

acc1+ and
t1
acc2+ respectively with the following conditions, where t1

st = t1
sync + Tsyn is the time at which the

integration begins: (
Vt = wacc

tm
.(tacc1+� t1

st)+V acc1+
sto

Vt = wacc
tm

.(tacc2+� t1
st)

(D.72)

By definition of wacc, we thus get:
tacc2+ = t1

st +Tmax (D.73)

and

Tmax = tacc1+� t1
st + Â

i2I +

|ai|.(DT i
in�Tmin) (D.74)

tacc1+ = t1
st +Tmax�

Â

i2I +

|ai|.(DT i
in�Tmin) (D.75)

Neuron inter+ is thus producing 2 spikes with an interspike DT +
inter such that:

DT +
inter = tacc2+ +Tmin +Tsyn +Tneu� (tacc1+ +Tsyn +Tneu) (D.76)

=
Â

i2I +

|ai|.(DT i
in�Tmin)+Tmin (D.77)

The same reasoning on acc1- and acc2- leads to a pair of spikes on neuron inter- with an interspike
DT�inter:

DT�inter =
Â

i2I�
|ai|.(DT i

in�Tmin)+Tmin (D.78)

This two values are then synchronized by a Synchronizer network described previously and sub-
tracted from one another such that the output is, according to Eq. (D.63):

DTout = DT +
inter�DT�inter +Tmin (D.79)

=
Â

i2I +

|ai|.(DT i
in�Tmin)�

Â

i2I�
|ai|.(DT i

in�Tmin)+Tmin (D.80)

=
N�1

Â

i=0
ei.ai.(DT i

in�Tmin)+Tmin (D.81)
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where ei is +1 if input i is positive and �1 otherwise. This is the expected result of the linear
combination.

D.4 Non-linear operations

D.4.1 Natural Logarithm

Figure D.8: Log: chronogram of the network for an input at times t1
in and t2

in. (Input spikes are
drawn in blue, output spikes in red. Green plots show the membrane potential of interesting

neurons).

The Log network (see Fig. 6.12) receives 2 spikes on the input neuron at times t1
in and t2

in such
that DTin = t2

in� t1
in encodes its input value. The same reasoning leads us to obtain the spike times

of the first and last neurons at:

t1
first = t1

in +Tsyn +Tneu (D.82)
t1
last = t2

in +Tsyn +Tneu (D.83)

The acc neuron is thus integrating from time:

t1
st = t1

first +Tsyn +Tmin (D.84)
= t1

in +2.Tsyn +Tmin +Tneu (D.85)

to time:

t1
end = t1

last +Tsyn (D.86)
= t2

in +2.Tsyn +Tneu (D.87)
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The membrane potential of neuron acc at the end of this integration phase is thus:

Vsto =
w̄acc

tm
(t1

end� t1
st) (D.88)

=
w̄acc

tm
(t2

in� t1
in�Tmin) (D.89)

=
w̄acc

tm
(DTin�Tmin) (D.90)

If we name DTcod = DTin�Tmin and considering the definition of w̄acc, we have:

Vsto = Vt .
DTcod

Tcod
. (D.91)

The other synaptic connections from last to acc also activate the g f dynamics of the acc neuron at
time t1

end. When the g f � synapse gets activated, acc’s membrane potential follows the following
evolution obtained by solving the differential system Eq. (6.1):

V = Vsto +gmult
t f

tm
(1� e�(t�t1

end)/t f ) (D.92)

for t � t1
end. According to Eq. (6.23), we chose gmult = Vt .

tm
t f

so that:

V = Vt .
DTcod

Tcod
+Vt .(1� e�(t�t1

end)/t f ) (D.93)

The acc neuron will then spike at time t1
acc when the condition V = Vt is met. This gives us:

Vt = Vt .
DTcod

Tcod
+Vt .(1� e�(t1

acc�t1
end)/t f ) (D.94)

DTcod

Tcod
= e�(t1

acc�t1
end)/t f (D.95)

t1
acc = �t f . log

✓
DTcod

Tcod

◆
+ t1

end (D.96)

The first output spike is generated by the connection from last to output, thus:

t1
out = t1

last +Tneu +2.Tsyn (D.97)

While the second output spike is generated by the connection from acc to output, thus:

t2
out = t1

acc +Tneu +Tsyn +Tmin (D.98)

= �t f . log
✓

DTcod

Tcod

◆
+ t1

end +Tneu +Tsyn +Tmin (D.99)

= �t f . log
✓

DTcod

Tcod

◆
+ t1

last +Tneu +2.Tsyn +Tmin (D.100)

This gives us the output DTout :

DTout = t2
out� t1

out (D.101)

= �t f . log
✓

DTcod

Tcod

◆
+Tmin (D.102)

= Tmin + t f . log
✓

Tcod

DTcod

◆
(D.103)
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D.4.2 Exponential

Figure D.9: Exp: chronogram of the network for an input at times t1
in and t2

in. (Input spikes
are drawn in blue, output spikes in red. Green plots show the membrane potential of interesting

neurons).

The Exp network (see Fig. 6.13) receives 2 spikes on the input neuron at times t1
in and t2

in such
that DTin = t2

in� t1
in encodes its input value. The same reasoning leads us to obtain the spike times

of the first and last neurons at:

t1
first = t1

in +Tsyn +Tneu (D.104)
t1
last = t2

in +Tsyn +Tneu (D.105)

The first neuron then triggers the g f dynamics of neuron acc at time:

t1
st = t1

first +Tsyn +Tmin = t1
in +Tneu +2.Tsyn +Tmin (D.106)

Solving the differential system Eq. (6.1), acc’s membrane potential is following the evolution:

V = gmult
t f

tm
(1� e�(t�t1

st)/t f ) (D.107)

= Vt .(1� e�(t�t1
st)/t f ) (D.108)

This evolution is stopped at t1
end by the connection from last to acc through its action on the gate

signal:
t1
end = t1

last +Tsyn = t2
in +Tneu +2.Tsyn (D.109)
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At the end of this phase, acc’s membrane potential is thus equal to:

Vsto = Vt .(1� e�(t1
end�t1

st)/t f ) (D.110)

= Vt .(1� e�(t2
in�t1

in�Tmin)/t f ) (D.111)
= Vt .(1� e�(DTin�Tmin)/t f ) (D.112)
= Vt .(1� e�DTcod/t f ) (D.113)

with DTcod = DTin � Tmin. At the same time, last is starting a second integration process of a
ge� synapse. acc’s membrane potential is then following the evolution:

V = Vsto +
w̄acc

tm
.(t� t1

end) (D.114)

This behavior leads to a spike at time t1
acc when the condition V = Vt is met:

Vt = Vsto +
w̄acc

tm
.(t1

acc� t1
end) (D.115)

Vt = Vt .(1� e�DTcod/t f )+
Vt

Tcod
.(t1

acc� t1
end) (D.116)

t1
acc = t1

end +Tcod.e�DTcod/t f . (D.117)

The first output spike is produced by the connection from last to output, thus:

t1
out = t1

last +Tneu +2.Tsyn (D.118)

The second output spike is produced by the connection from acc1 to output, thus:

t2
out = t1

acc +Tneu +Tsyn +Tmin (D.119)

= Tcod.e�DTcod/t f + t1
end +Tneu +Tsyn +Tmin (D.120)

= Tcod.e�DTcod/t f + t1
last +Tneu +2.Tsyn +Tmin (D.121)

This gives us the output DTout :

DTout = t2
out� t1

out (D.122)
= Tcod.e�DTcod/t f +Tmin (D.123)

D.4.3 Multiplier

The Multiplier network (see Fig. 6.14) receives 2 different inputs (a pair of spikes) from each
input neurons input1 (t1

in1 and t2
in1) and input2 (t1

in2 and t2
in2) such that DTin1 = t2

in1� t1
in1 and DTin2 =

t2
in2� t1

in2 encode its 2 inputs. The first layers of the network, composed of the neurons input, first,
last and acc_log for each inputs are similar to the Logarithm network. Considering the results from
Appendix D.4.1, when the 2 inputs have been fed into the network, we get 2 potentials stored in
acc_log1 and acc_log2 (respectively Vsto1 and Vsto2):

(
Vsto1 = Vt .

DTcod1
Tcod

Vsto2 = Vt .
DTcod2

Tcod

(D.124)
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Figure D.10: Multiplier: chronogram of the network for inputs at times t1
in1, t2

in1 and t1
in2, t2

in2.
(Input spikes are drawn in blue, output spikes in red. Green plots show the membrane potential of

interesting neurons).

When the 2 inputs have been fed into the network, spikes from last1 and last2 activate the sync
neuron which spikes at time t1

sync. This triggers the readout of the log of input1 in the acc_log1
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neuron at time:
t1
st1 = t1

sync1 +Tsyn. (D.125)

Results from Appendix D.4.1 tell us that this neuron will thus spike at time:

t1
log1 =�t f . log

✓
DTcod1

Tcod

◆
+ t1

st. (D.126)

A spike from the acc_log1 neuron will then trigger the readout of the log value of input2 in the
acc_log2 neuron at time:

t1
st2 = t1

log1 +Tsyn. (D.127)

acc_log2 will then produce a spike at time:

t1
log2 =�t f . log

✓
DTcod2

Tcod

◆
+ t2

st. (D.128)

Which will trigger the first output spike at time:

t1
out = t1

log2 +2.Tsyn. (D.129)

At the same time, the sync neuron also started the g f dynamics of neuron acc_exp at time:

t1
st3 = t1

sync +3.Tsyn. (D.130)

This process is stopped by the spike from neuron acc_log2 at time:

t1
end3 = t1

log2 +Tsyn (D.131)

Results from Appendix D.4.2 tell us that the potential stored in acc_exp at that time is thus:

Vsto3 = Vt .(1� e�(t1
end3�t1

st3)/t f ) (D.132)

and that the integration process started by the second connection from acc_log2 to acc_exp (acting
on ge) will result in a spike at time:

t1
exp = t1

end3 +Tcod.e�(t1
end3�t1

st3)/t f . (D.133)

This will result in the second output spike at time:

t2
out = t1

exp +Tsyn +Tmin. (D.134)

The output of the network is thus the interspike DTout such that:

DTout = t2
out� t1

out (D.135)
= Tmin + t1

exp� t1
log2�Tsyn (D.136)

= Tmin +Tcod.e�(t1
end3�t1

st3)/t f + t1
end3�Tsyn (D.137)

= Tmin +Tcod.e�(t1
end3�t1

st3)/t f (D.138)
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From previous equations, we get:

t1
end3� t1

st3 = tlog2� t1
sync�2.Tsyn (D.139)

= �t f . log
✓

DTcod2

Tcod

◆
+ t2

st� t1
sync�2.Tsyn (D.140)

= �t f . log
✓

DTcod2

Tcod

◆
+ t1

log1� t1
sync�Tsyn (D.141)

= �t f . log
✓

DTcod2

Tcod

◆
� t f . log

✓
DTcod1

Tcod

◆
(D.142)

= �t f . log
✓

DTcod1.DTcod2

Tcod

◆
. (D.143)

Which then gives us:
DTout = Tmin +DTcod1.DTcod2 (D.144)

which corresponds to the encoded value of the produce of the value encoded by the 2 inputs.
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