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Abstract

In this thesis we mainly use the density functional tight-binding method (DFTB) to investigate

the effect of high pressure on carbon nanotubes (CNTs). We start by investigating the

collapse behavior of individualized CNTs, either empty or filled with water and carbon

dioxide molecules. Then we study the collapse process of bundled few-wall (double, triple

wall) carbon nanotues as the function of pressure, combining theoretical and experimental

studies. Afterwards, we investigate the electronic and magnetic properties of a monolayer

MoS2 on the Ni(111) surface accounting for van der Waals interactions in the frame work

of the density functional theory (DFT). The manuscript is structured in 7 chapters and the

following paragraphs summarize the content by chapter of this document.

Chapter 1 is our introduction of this thesis, including the motivation and background of

our topic as well as our important findings and results.

Chapter 2 introduces the main concepts and definitions of CNTs. Then we describe the

electronic properties of CNTs as well graphene as a comparison. We also present a brief

bibliographic review over high pressure physics applied to CNTs.

Chapter 3 consists of the theoretical framework used for our study. Firstly, a short

introduction of Density Functional Theory (DFT) is presented. Next we list two mainly

used exchange-correlation functions in DFT, then followed by an overview of van der waals

functions which normal DFT cannot account for. Finally, we briefly introduces the Density

Functional Tight-Binding method (DFTB) which we use for our CNTs modeling simulation.

In chapter 4, we present simulations of the collapse under hydrostatic pressure of carbon

nanotubes containing either water or carbon dioxide. We show that the molecules inside

the tube alter the dynamics of the collapse process, providing either mechanical support

and increasing the collapse pressure, or reducing mechanical stability. At the same time

the nanotube acts as a nanoanvil, and the confinement leads to the nanostructuring of the

molecules inside the collapsed tube. In this way, depending on the pressure and on the

concentration of water or carbon dioxide inside the nanotube, we observe the formation of

1D molecular chains, 2D nanoribbons, and even molecular single and multi-wall nanotubes.

The structure of the encapsulated molecules correlates with the mechanical response of the

nanotube, opening opportunities for the development of new devices or composite materials.
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Our analysis is quite general and it can be extended to other molecules in carbon nanotube

nanoanvils, providing a strategy to obtain a variety of nano-objects with controlled features

cells. For the perfect empty CNTs, collapse behavior theoretically is barely affected by the

pressure transmitting medium (PTM) environment under high pressure but only mainly is

determined by the CNTs diameter. Our simulation using DFTB method gives good agreement

both for the d dependence predicted by continuum mechanics models and for the deviation

at small d which is at least partly due to the atomistic nature of the carbon nanotubes. The

bending stiffness D of graphene sheet is determined to be D = 1.7 ± 0.1 eV.

In chapter 5, we present a theoretical study of the collapse process of single-, double- and

triple-wall CNTs as a function of pressure. Our theoretical simulations were performed using

DFTB for inner tube diameters ranging from 0.6 nm to 3.3 nm. When the walls are separated

by the graphitic distance, we show that the radial collapse pressure, Pc, is mainly determined

by the diameter of the innermost tube, din and that its value significantly deviates from the

usual Pc ∝ d−3
in Lévy-Carrier law. A modified expression, Pcd3

in = α(1−β 2/d2
in) with α and

β numerical parameters, which reduces the collapse pressure for low diameters is proposed.

For din � 1.5 nm a further enhanced stability is found which may be assigned to the intertube

interactions of deformed tubes. If the inner and outer tubes are separated by a larger distance,

the collapse process is more complex, exhibiting different regimes as a function of pressure.

In chapter 6 we investigate the electronic and magnetic properties of a monolayer of

MoS2 deposited on a Ni(111) surface using DFT method. Accounting for van der Waals

interactions is found to be essential to stabilize the chemisorbed MoS2 monolayer. The

interface is metallic due to Mo d states positioned at the Fermi energy, with a Schottky

barrier of 0.3 eV and a high tunneling probability for electrons. Small magnetic moments are

induced on Mo and S atoms, while we measure a significant demagnetization of the Ni layer

at the interface.

Finally the last chapter synthesizes the main results of this work presenting also some

perspectives.



Résumé

Le sujet principal de cette thèse est l’utilisation de la Théorie Fonctionnelle de la Densité dans

sa variante à liaisons fortes (DFTB) pour l’étude de l’effet de la pression sur des nanotubes

de carbone. Nous commençons par étudier l’effondrement radial sous l’effet de la pression

de nanotubes de carbone (CNTs) individualisés, soit dans leur forme originale (vides), soit

remplis avec des molécules d’eau ou de dioxyde de carbone. Nous étudions à continuation

le processus d’effondrement radial de fagots de nanotubes de carbone a faible nombre de

parois (double ou triple-parois) en fonction de la pression combinant modélisations et études

expérimentales. Finalement nous présentons une étude sur les propriétés électroniques et

magnétiques d’une monocouche de MoS2 déposée sur une surface de Ni (111) dans le cadre

de la Théorie Fonctionnelle de la Densité incluant des interactions de van der Waals. Le

manuscrit est structuré en 7 chapitres. Les paragraphes qui suivent résument le contenu de

chacun d’entre eux.

Le chapitre 1 est notre introduction à cette thèse, incluant les motivations, les connais-

sances préalables sur nos sujets que nous intéressent ici, ainsi que notre contribution et

principaux résultats.

Le chapitre 2 présente les principaux éléments et définitions sur les CNTs. Nous décrivons

ensuite les propriétés électroniques des CNTs et celles du graphène qui constitue un système

de référence. Nous présentons également une brève revue bibliographique sur la physique à

haute pression des nanotubes de carbone.

Le chapitre 3 contient les éléments théoriques de notre étude. D’abord nous faisons une

courte introduction à la Théorie Fonctionnelle de la Densité (DFT). Ensuite nous présentons

deux des fonctions d’échange-corrélation les plus utilisées, suivi d’une revue sur les fonctions

de van der Waals dont la DFT ordinaire ne peut rendre compte. Finalement, nous faisons une

brève introduction à la méthode DFTB que nous utilisons dans nos modélisations des CNTs.

Dans le chapitre 4 nous présentons nos modélisations sur l’effondrement radial sous

pression hydrostatique de nanotubes de carbone contenant soit de l’eau doit du dioxyde de

carbone. Nous montrons que la présence de ces molécules à l’intérieur des tubes modifie la

dynamique du processus d’effondrement radial, donnant lieu soit à un support mécanique

et repoussant la pression d’effondrement radial soit réduisant leur stabilité mécanique. Au
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même temps, le nanotube agit comme une nano-enclume et le confinement conduit à une

nanostructuration des molécules à l’intérieur du tube effondré. De cette manière, suivant la

pression appliquée et la concentration à l’intérieur du tube d’eau ou de dioxyde de carbone,

nous observons la formation de chaines moléculaires 1D, des rubans 2D et même des

nanotubes moléculaires mono- ou multi-parois. La structure des systèmes moléculaires

encapsulés est corrélée avec la réponse mécanique des nanotubes de carbone, ouvrant des

opportunités de développement des nouveaux composants ou des matériaux composites à

base de nanotubes de carbone.

Notre analyse est générale et peut être étendue à d’autres molécules encapsulées dans

des nano-enclumes à base de nanotubes de carbone ouvrant la possibilité au développement

d’une stratégie pour l’obtention d’une variété de nouveaux nano-objets avec des cellules

caractéristiques contrôlées. Pour les CNTs vides, l’effondrement radial est très peu affecté par

la nature du milieu transmetteur de pression, mais déterminé par le diamètre des nanotubes de

carbone. Nos modélisations avec la méthode DFTB sont en excellent accord avec les modèles

de milieux continues sur la dépendance de la pression d’effondrement radial avec le diamètre

du tube, d, mais montrent également une déviation de ce modèle pour les petites valeurs de

d, ce qui est dû au moins en partie à la nature atomistique des nanotubes de carbone. Nous

avons obtenu une valeur du module de flexion du graphène, D, de D = 1.7±0.1 eV .

Dans le chapitre 5, nous présentons une étude théorique de l’effondrement radial en

fonction de la pression pour des nanotubes de carbone à parois simple, double et triple. Nos

modélisations sont réalisées par DFTB pour des diamètres internes allant de 0.6 à 3.3 nm.

Quand les parois sont séparées par la distance graphitique, nous montrons que la pression

d’effondrement radial, Pc, est déterminé par le diamètre du tube interne, din, mais avec un

important écart par rapport à une loi à la Lévy-Carrier, Pc ∝ d−3
in . Nous proposons une

expression modifiée, Pcd3
in = α(1−β 2/d2

in) où α et β sont des paramètres numériques. Cette

expression modifiée donne lieu à une réduction de la pression d’effondrement radiale pour

les petits diamètres. Pour din supérieurs à environ 1.5 nm, un effet de stabilisation structural

supplémentaire est obtenu qui peut être attribué à l’interaction entre nanotubes déformés. Si

les nanotubes interne et externe sont séparés par une distance plus importante, le processus

d’effondrement radial est plus complexe, présentant différent régimes en fonction de la

pression.

Dans le chapitre 6 nous étudions par DFT les propriétés électroniques et magnétiques

d’une monocouche de MoS2 déposée sur une surface de Ni (111). La prise en compte des

interactions de van der Waals s’est avérée essentielle afin de stabiliser la monocouche de

MoS2. L’interface est métallique en raison de la présence sur le niveau de Fermi d’états d du

Mo. Elle présente une barrière Schottky de 0.3 eV et une probabilité tunnel pour les électrons
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élevée. Des faibles moments magnétiques sont introduits sur les atomes de molybdène et de

soufre, tandis que nous observons une démagnétisation significative sur la couche de nickel à

l’interface.

Enfin le dernier chapitre constitue une synthèse des derniers résultats et la présentation

de quelques perspectives.
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Chapter 1

Introduction

Carbon has many allotropes due to its ability to form sp-, sp2- and sp3- hybridized bonds. It

can either form soft opaque graphite or hard transparent diamond. In addition to these and

other "macro"-scopic carbon materials, several "nano"-carbon materials have been discovered

in the past few decades, opening new paths for novel materials exploration. It all started

with C60 molecule (fullerene), which was synthesized for the first time in 1985 by Richard

Smalley [1], followed by the observation of carbon nanotubes (CNTs) by Iijima in 1991 [2],

and two-dimensional graphene by Geim and Novoslov [3] in 2004. Among the three types of

nanocarbon materials, CNTs attract great attention from both industry and academia. One of

the reasons why CNTs are so popular is due to their excellent mechanical properties. They

are considered the strongest and stiffest material on earth. For example, the Young’s modulus

of CNTs is estimated in the terapascal range [4] along the axial direction, however CNTs are

also known to have a remarkable flexibility in their radial direction. These properties offer

high potential for many kinds of applications, such as reinforcement of composite materials,

fabrication of nano-optomechanical systems and so on. It has been widely accepted that the

mechanical deformation of CNTs can lead to considerable changes in electric, optical, and

chemical properties. Nevertheless, a complete understanding of their mechanical behavior is

still lacking, limiting the design and application of CNT-enhanced materials [5].

Another important application of CNTs is to use them as host vessels for biology and

chemistry to achieve nano-confinement, thanks to their hollow and cylindrical structure at

the nanoscale. The application of CNTs for nano-confinement creates possibilities for new

devices, including membranes [6], nanofludic [7] and thermophoretic channels [8]. Filler

inside CNTs can be for instance argon [9], polyiodides [10], C70 (peapods) [11], C60 [12–14],

water [15–17], or even other nanotubes [18, 19]. Generally, the filling effect is two-fold: On

the one hand, behavior and properties of guest compounds can differ significantly from bulk
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matter [20–22] due to strong nano-confinement effect. On the other hand, guest molecules

can also influence the electronic and mechanical properties [14, 15, 23].

It is well known that pressure can significantly influence the properties and stability

of materials. Specifically, pressure can drive CNTs to undergo radial transformation from

circular to ovalization, and even collapse (the ultimate configuration) [24]. Furthermore, this

kind of structural deformation is thought to narrow the band gap, leading to nanotubes that

behave as metals or semimetals [25]. Thus, one of the goals for this thesis is to investigate the

high pressure effect on the stability of single wall carbon nanotubes (SWCNTs) in different

hydrostatic pressure transmitting medium (PTM). At the same time, the nano-confinement

effect is also studied when the PTM enters the CNTs as a "foreigner molecule". For this

purpose, SWCNTs, either empty or filled with water, carbon dioxide and argon, were used to

investigate the role of filling and environment on the pressure stability. Double wall carbon

nanotubes (DWCNTs) viewed as a SWCNT filled with another single-wall tube were also

prepared and simulated, to compare the results with those of the SWCNTs.

Besides the above mentioned one dimensional nanostructures, two dimensional (2D)

layered materials also ignited intensive interest, as well as prospects for technological

breakthroughs in many diverse applications since the observation of graphene in 2004 [3].

These emerging 2D materials and their heterostructures offer tremendous opportunities in

the exploration of fundamental condensed matter phenomena and the development of novel

technologies [26]. Especially, the past few years have seen the rapid development of 2D

materials research focusing on the family of transition metal dichalcogenides (TMDs), such as

MoS2 [27, 28]. The weak van der Waals interactions between neighboring layers allow much

more flexible integration of different materials without the limitation of lattice matching, and

facilitate the isolation of individual layers by exfoliation or vapor deposition methods [29, 30].

The isolation of a monolayer (ML) causes dramatic changes in material properties compared

with those of the bulk counterpart, due to the confinement of charge carriers in two dimensions

(x- and y- directions) and the absence of interaction in the z- direction. For example, the bulk

indirect bandgap of MoS2 (∼1.2 eV) can be tuned into the monolayer direct bandgap after

isolation. Moreover, compared with zero-bandgap graphene and the large indirect bandgap

hexagonal BN sheet (∼ 6 eV), ML MoS2 nanosheets are more promising candidates for

applications in various domains, such as electronics, photonics or spintronic devices, due

to their direct bandgap of around 1.9 eV [27], their high quantum efficiency [28] and good

electron mobilities [31]. In a real device, semiconducting 2D MoS2 needs a contact with

metal electrodes, and a Schottky barrier is often formed on semiconductor-metal interfaces,

hindering the transport of charge and spin carrier. Thus another goal of this thesis is to find

low-resistance metal contacts with MoS2, which can have at the same time a potential for
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spintronic applications. In this context, Ni, a room-temperature ferromagnetic metal was

chosen as the most promising candidate for high-temperature spintronics devices made of

TMD. This thesis, with the above discussed goals, is organized as follows:

Chapter 2 presents basic concepts on CNTs, including the electronic properties of

graphene and how it relates to the electronic properties of CNTs. It also presents a bibli-

ographic review on high pressure physics applied to carbon nanotubes. The third chapter

gives an introduction to the theoretical framework used for the present study. DFT method is

firstly described, then followed by an overview of van der Waals functionals in DFT. Finally,

we discuss the Density Functional Tight-Binding method (DFTB), which we mainly used

for CNTs theoretical simulations. Chapter 4 analyzes and discusses in detail the important

findings of the present work on the effect of the inner filler on the mechanical stability of

SWCNTs under pressure. Combining experimental and theoretical results, the radial stability

of double and triple wall CNTs under pressure is presented in chapter 5. Chapter 6 presents

the magnetism and contact properties of ML MoS2 deposited on a Ni(111) surface. Finally,

Chapter 7 gives a brief summary of the most import findings of this thesis and a perspective

on future work.





Chapter 2

Carbon nanotubes under high-pressure

This chapter mainly introduces some historical background and the physics of carbon nan-

otubes (CNTs) under pressure. It also presents how to calculate the electronic properties of

CNTs using a tight binding approach.

2.1 Carbon nanotubes

CNTs are unique nanostructures characterized by a cylindrical geometry with a nanoscale

diameter. They can be viewed as rolled graphene sheets. They can also be assimilated as

elements of the fullerene structure family: in fact, CNTs are also called cylindrical fullerenes.

While the fullerene molecule, buckminsterfullerene C60 (Fig. 2.1 (a)) was first discovered by

Richard Smalley in 1985 [1], the first observation of multi-wall CNTs was reported by Sumio

Iijima in 1991 [2] (Fig. 2.1 (b)). Two years later, his group [32] discovered experimentally

also the important single wall carbon nanotube structure (SWCNT), which opened the way

to extensive theoretical and experimental studies. Theory predicted [33, 34] that CNTs can

be metallic or semiconducting depending on the details of the tube structure, characterized

by its chirality. In 1998 this prediction was finally confirmed by experiments [35, 36].

In the following, we will provide a brief introduction to the structural and electrical

properties of CNTs.

From the early study with transmission electron microscopy (TEM) and scanning tun-

neling microscopy (STM) techniques [37], CNTs were viewed as the result of rolling up a

single honeycomb layer of crystalline graphite, i.e. a graphene sheet (Fig. 2.3 (c)). Graphene

is a two-dimensional carbon structure, where carbon atoms are arranged on a honeycomb

network (Fig. 2.3 (a)). Fig. 2.2 (a) shows the Bravais lattice of graphene which is spanned by

the two lattice vectors, a1 and a2, with a basis of two atoms per unit cell. The basis vectors

(a1, a2) (see Fig. 2.2) have the same length a0 =
√

3b, where b is the carbon-carbon bond
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(a) (b) (c)

Figure 2.1 (a) fullerene C60. (b) The first observation by TEM of multi-wall coaxial nanotubes

by Iijima in 1991 [2]. (c) graphite structure.

length (1.42 Å). The way in which the graphene sheet is rolled up is described by the vector

Ch and T in Fig. 2.3 (a).

The circumference of any carbon nanotube can be represented by the chiral vector Ch

using a pair of indices (n,m), Ch = n a1 + m a2, where a1 and a2 are the unit vectors of

the hexagonal honeycomb lattice. (n,m) are called the chiral indexes. Fig. 2.3 (a) shows

the chiral angle θ between the chiral vector Ch and a1. In the regular Cartesian coordinate

system (x,y), a1 and a2 are respectively:

a1 =
a0

2

(√
3

1

)
, a2 =

a0

2

(√
3

−1

)
(2.1)

and the corresponding reciprocal space vectors (Fig. 2.2 (b)) are b1 and b2 (with respect to

the coordinate system (Kx,Ky)) which can be written respectively as:

b1 =
2π
a0

( 1√
3

1

)
, b2 =

2π
a0

( 1√
3

−1

)
(2.2)

The lattice vectors respect the condition:

⎧⎨
⎩ai ·b j = 2πδi j i, j = 1,2

Ag ·Bg = (2π)2
(2.3)
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Figure 2.2 The crystal lattice of graphene. (a) Bravais lattice; (b) Reciprocal lattice

where Ag and Bg are the area of of the real and reciprocal unit cell, respectively. The nanotube

diameter dt and the chiral angle θ are given by

dt =
|Ch|
π

=

√
a0(m2 +mn+n2)

π

θ = tan−1[

√
3n

2m+n
]

(2.4)

According to the value of θ , three categories of CNTs (see Fig. 2.3 and Fig. 2.5) can be

defined:

(1) zigzag nanotubes (n,0) (θ = 0◦);

(2) armchair nanotubes (n,n) (θ = 30◦ or n = m);

(3) chiral nanotubes (n,m) with n > m > 0 (0 ≤ θ ≤ 30◦);

Both zigzag and armchair nanotubes can be considered as achiral because of their mirror

symmetry. In Fig. 2.3 (a), we have indicated another vector T, called translation vector,

defined as the shortest repeat distance along the tube axis, normal to Ch:

T = t1a1 + t2a2 (2.5)
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The rectangle defined by the vectors Ch and T represents the unit cell of the CNT. From

the condition:

Ch ·T = 0 (2.6)

we obtain

t1 =
2m+n

dR
, t2 =−2n+m

dR
(2.7)

and

|T|= a0

√
3(n2 +nm+m2)

dR
(2.8)

here, dR is the greatest common divisor of (2n+m) and (2m+n) which is given by

dR =

{
d, if n−m is not a multiple of 3d

3d, if n−m is a multiple of 3d
(2.9)

We can also calculate the number of hexagons N, per unit cell of a chiral nanotube . First,

the area Ag of the primitive unit cell can be easily obtained:

Ag = |a1 ×a2|
= a2

0sin(
π
3
) = 0.05245nm2

(2.10)

Then, as we know the primitive unit cell contains two carbon atoms, we obtain

N =
|Ch ×T|
|a1 ×a2| =

2(n2 +mn+mn)
dR

(2.11)

Fig. 2.4 gives another classification according to the result of of mod(n−m,3). We

will discuss later how (n,m) correlates with the electronic properties of the CNTs (metal or

semiconductor).

For completeness, it should be mentioned that the CNTs do not only exist SWCNTs

but also come in other species as ropes of multi-wall carbon nanotube (MWCNTs), which

consist of multiple rolled layers of graphene. According to the number of graphene layers,

we distinguish double wall carbon nanotubes (DWCNTs) (two concentric carbon nanotubes),

triple wall (TWCNTs), and quadruple (QWNTs) wall carbon nanotubes (see Fig. 2.6), and

so on. In certain respects, MWCNTs are similar to SWCNT, but they also have their own

characteristics. The interlayer distance in multi-walled nanotubes is in general close to the

distance between graphene layers in graphite, approximately 3.4 Å. Compared with SWCNTs,
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(a)

(b) (c)

Figure 2.3 (a) The rolling up from the honeycomb lattice to build the (6,3) SWCNT. Ch and

T are the chiral and the translation vectors of the SWCNT, respectively. The chiral angle θ is

defined as the angle between Ch and the a1 vector, which defines the zigzag (n,0) direction.

(b) The unit cell of the (6,3) CNT. (c) A layer of graphite (graphene).
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Figure 2.4 Chiral vectors of general carbon nanotubes, including zigzag, armchair, and chiral

nanotubes specified by pair indices (n,m). Colored hexagons represent different results of

mod(n-m,3).

MWCNTs can have in some respects improved properties that make them specifically

interesting for the industry:

• High electrical conductivity (like copper). It is worth to note that only the outer-wall

conduction is relevant and the inner walls are not instrumental to conductivity.

• Large mechanical strength. Defect-free, individual MWNTs have an excellent tensile

strength and are easier to produce than SWCNTs.

2.2 Electronic properties of graphene

The electronic properties of CNTs can be in first approximation deduced from those of

graphene by mapping the band structure of the 2D hexagonal lattice onto a cylinder. It is

hense necessary to introduce the band structure of graphene first.

In the 2D hexagonal lattice, every carbon atom has three nearest neighbors and four

valence orbitals (2s, 2px, 2py and 2pz). The first three valence states are hybridized to form

the sp2 σ bonds with adjacent carbon atoms constructing the skeleton of the local structure,

while the fourth state (2pz) gives origin to the π band, which is oriented perpendicularly

to the plane of the graphene lattice. The π band cannot couple with σ/σ∗ states due to
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(a) (b) (c)

Figure 2.5 Chirality of SWCNTs (a) armchair (7,7) (b) zigzag (15,0) (c) chiral (6,4). The red

line corresponds to the rolling axis of armchair and zigzag in Fig. 2.4.

symmetry. Interactions between neighboring pz orbitals are strong and create a manifold of

delocalized π/π∗ orbitals in the planes above and below the atomic sheet. The delocalized π
states form the highest occupied valence band at the Fermi level. The π and π∗ states are

degenerated at Brillouin zone corners points K. The π/π∗ states close to the Fermi energy

are dominant to conducting band, in contrast, the σ/σ∗ bands are far from the Fermi energy

and contribute little to conduction. Fig. 2.7 (a) shows the band structure of an ideal graphene

layer according to a tight-binding model which includes 2 pairs of σ and σ∗ bands, and one

pair of π and π∗ bands. Fig. 2.7 (c) shows the energy spectrum of graphene and zoom-in of

the energy bands at the highlighted points of K and K′.

The Brillouin zone of graphene is shown in Fig. 2.2 (b), and presents a hexagonal structure

with two nonequivalent K and K′ points at the corner of the Wigner-Seitz cell. The first

Brillouin zone is defined by the high symmetry Γ, K, and M as the center, the corner, and the

center of the edge, respectively. The two corners points K and K′ are of particular interest for
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(a) (b) (c)

Figure 2.6 Example of multiple wall carbon nanotubes (a) DWCNT (5,5)@ (10,10) (b)

TWCNT (5,5)@ (10,10)@ (15,15) (c) QWCNT (5,5)@ (10,10)@ (15,15)@ (20,20)

(a) (b)

(c)

Figure 2.7 (a) Band structure of graphene. The energy dispersion along the high symmetry

directions ΓMK of the 2D Brillouin zone ( [38, 39]). (b)Vectors definition in the reciprocal

lattice. k‖ and k⊥ are along the circumferential and nanotube axis direction, respectively. (c)

The conduction band touches the valence band at the K and K′ points.



2.2 Electronic properties of graphene 13

the physical properties of graphene. These two points are called Dirac points. The reason for

giving this name will be explained later.

As mentioned above, the pz orbitals forming the π energy bands can be treated indepen-

dently in graphene. The electronic band structure of graphene π states is derived from the

Schrödinger equation:

HΨ(k) = Eg(k)Ψ(k), (2.12)

where H is the Hamiltonian, Eg(k) the eigenvalues, and Ψ(k) is the eigenfunctions at wave-

vector k. From the periodicity of the atom network, the eigenfunctions are written as a linear

combination of Bloch functions of each sublattices (Φ j):

Ψ(k) = ∑
j=A,B

c j(k)Φ j((k,r)). (2.13)

In the tight binding model [40], the Bloch functions can be expressed as a linear combi-

nation of the atomic wave function. Within this π-band approximation, the pz electrons are

described by the wave functions of ϕz(r−RA) and ϕz(r−RB), respectively, in sub-lattice A

and B (see Fig. 2.2 (a)). Therefore, the Bloch functions for sublattices A and B are

ΦA(k,r) =
1√

Ncells
∑
RA

eik·RAϕz(r−RA),

ΦB(k,r) =
1√

Ncells
∑
RB

eik·RBϕz(r−RB),

(2.14)

where Ncells is the number of unit cells in the graphene plane associated with atoms A and B.

By substituting the expression of the eigenfunctions |Ψ〉 (Dirac’s notation) in the Schrödinger

equation (2.12), and multiplying the left side by 〈ΨA| or 〈ΨB|, the eigenstates are derived by

solving the system

(
HAA(k)−Eg(k)SAA(k) HAB(k)−E(k)SAB(k)
HBA(k)−Eg(k)SBA(k) HBB(k)−E(k)SBB(k)

)(
cA(k)
cB(k)

)
= 0

here the matrix elements are as follows:

Hi j = 〈Φi|H
∣∣Φ j

〉
Si j = 〈Φi|Φ j〉, i, j = A,B

(2.15)
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the carbon atoms A and B are equivalent, thus

HAA = H∗
BB, SAA = S∗BB

HAB = H∗
BA, SAB = S∗BA

(2.16)

With further the nearest-neighbor approximation and neglecting the overlap matrix element

between wavefunctions SAB, the eigenvalues are:

E±(k) = HAA ∓HAB. (2.17)

The first term is a constant for self-interaction of each atom in atom A. Here we set HAA = 0

as the reference. The second term means the interaction between the atom A and its nearest

neighbors B. An atom A has 3 nearest neighbors (B1, B2 and B3) at the positions:

RB1 = a0

(
0
1√
3

)
,RB2 =

1

2
a0

(
1
1√
3

)
,RB1 =−1

2
a0

(
1
1√
3

)
. (2.18)

Thus the matrix elements can be expressed as,

HAB(k) =−γ0(e−ik·RB1 + e−ik·RB2 + e−ik·RB2) (2.19)

here -γ0 is nearest neighbor hopping (approximately, -3.0 eV [41]). Finally, we get the

valence (-) and conduction (+) π bands of graphene close to the Fermi energy.

E±
g (k) =±γ0

√
1+4cos(

a0kx

2
)sin(

√
3a0ky

2
)+4cos2(

a0kx

2
). (2.20)

The valence and conduction bands cross at the K and K′ points, where the Fermi energy

EF = 0. Development of the cosines around these high-symmetry points yields

E±
g (k+K) = E±

g (k+K′) =±
√

3γ0a0

2

√
k2

x + k2
y (2.21)

showing a peculiar quasi-linear dispersion of graphene band structure in the K and K′ valleys.

The points close to the point K, which specify six locations in momentum space are called

Dirac points (see Fig. 2.7 (c)). The "massless Dirac fermions" describe the linear dispersion

realization in Eq. (2.21). They have the same dispersion as massless Dirac particles near

the K and K′ points. The linear relation of electrons energy and momentum leads to them

propagating through graphene like massless Dirac fermions. This is the reason why we refer

to them as Dirac points.
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2.3 Electronic properties of CNTs

2.3.1 Zone folding approximation

The band structure of carbon nanotubes can now be derived from the one of graphene. As

mentioned above, a nanotube is constructed from the graphene sheet by defining its chiral

vector Ch. Along Ch, a periodic boundary condition imposed on the graphene wave function

yields Ψ(r+Ch) = Ψ(r), which is satisfied if and only if exp(ir ·Ch) = 1. Along the main

axis of the nanotube, the reciprocal lattice wave vector k‖ (see Fig. 2.7 (b)) is determined

by the translational vector. k‖ remains continuous in the approximation of infinitely long

tube, and its length falls in the interval [−π/|T|,π/|T|]. Along the circumference of the

nanotube, i.e. parallel to Ch, the wave vector k⊥ is quantized according to the periodic

boundary condition:

|Ch|
λ

= |Ch| · k⊥
2π

= integer (2.22)

we obtain

k⊥,q =
2π
|Ch|q =

2

dt
q q =−N

2
+1, · · · ,−N

2
, (2.23)

where N is the number of hexagons in the nanotube unit cell (N = NC/2). In the reciprocal

space of graphene, the couple (k⊥,k‖) (see Fig. 2.7 (b)) defines 1D cutting lines corresponding

to the 1D energy subbands of nanotubes. This method, so-called zone-folding, is sketched

in Fig. 2.9 for armchair and zigzag nanotubes. The quantized wave vectors k⊥ and the

reciprocal lattice vector k‖ are derived from

Ch ·k⊥ = 2π, Ch ·k‖ = 0,

T ·k‖ = 2π, T ·k⊥ = 0.
(2.24)

Thus, k⊥ and k‖ can be expressed as

k⊥ =
1

N
(−t2b1 + t1b2), k‖ =

1

N
(mb1 −nb2) (2.25)

The first Brillouin zone of CNTs consists of N k-lines (Fig. 2.9) of length 2π/|T| and 2/dt is

the step size in k⊥ direction. In other words, the cutting lines in the graphene conduction and

valence bands are defined by:

kq = qk⊥+ k
k‖
|k‖|

, (2.26)



16 Carbon nanotubes under high-pressure

where q ∈ [−N,N], k ∈ [−π/|T|,π/|T|]. k⊥ gives the discrete k values in the direction of Ch.

Another reciprocal lattice vector k‖ is along the nanotube axis and it is usually considered

continuous. Finally the one-dimensional dispersion of the band q is obtained by inserting

Eq. (2.26) in the dispersion of graphene Eq. (2.20):

E±
q (k) = E±(k)(qk⊥+ k

k‖
|k‖|

) (2.27)

Close to Fermi level, i.e. close to K-point, the energy dispersion is linear in a first approxi-

mation. Hence, the dispersion of subband q can be expressed as

E±
q (k)≈±

√
3γ0a0

2
|kq −kF|, (2.28)

where kF is the Fermi wave vector. As in the case of graphene, K between K′ has a two-fold

degeneracy in the subbands. Due to symmetry, subbands with k⊥ = |k0| and k⊥ =−|k0| have

exactly the same dispersion relation except that one is close to K point and the other close to

K′ point.

2.3.2 Semiconducting and metallic nanotubes

We can find that the reciprocal lattice k⊥ is much smaller because of the larger nanotube

unit cell in real space. Thus, using the zone-folding method we map out the whole Brillouin

zone and get the electronic band structure of SWCNT. Due to the quantization of k⊥, the

energy band of carbon nanotubes are not so continuous like that of graphene. Fig. 2.8 gives

a sketch zone folding approximation and cutting of the bands of graphene close to Dirac

point. The green dashed line goes along the chiral vector Ch direction and the black dashed

line indicates the axis direction (that is translation vector T) and have constant k⊥ values.

On the other hand, the angle between Γ K and k⊥ is the chiral angle θ . From 2D band

structure of graphene in Fig. 2.7 (a), we know that k⊥ nearest the K point which dominates

the fermi level and determines the conductivity of carbon nanotubes. It is also known that

band structure of graphene does not have bandgap at K points. If one of the k⊥ of nanotubes

goes through K points, the nanotube will be metallic. Otherwise, the tube is semiconducting

with a bandgap.

It is easy to show that one third of all nanotubes are metallic. If k⊥ line crosses the point

K, the distance between Γ and the intersection point is (4π/3a)cosθ . From Eq. (2.23), we

get q value and introduce d and θ from the Eq. (2.4):

q =
d
2

k⊥ =
d
2
· 4π

3a
cosθ =

2n+m
3

= n− n−m
3

(2.29)
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Figure 2.8 Sketch of the determination the band structure of nanotubes from the one of

graphene

Thus, if (n−m)/3 is integer, then k⊥ = (2/d) ·q = 2(2n+m)/(3d) will pass through the K
point and give a gapless dispersion relation. If (n−m)/3 is not an integer, then the tubes

are semiconducting. That is, 1/3 nanotubes are metallic and 2/3 are semiconducting. In this

view, carbon nanotubes can be further classified based on the result of μ = mod(n−m,3)

(Fig 2.4):

(1) μ = 0 → metallic

(2) μ =+1 → semiconducting type I

(3) μ =−1 → semiconducting type II.

The cutting lines in the vicinity of the K point are shown in Fig. 2.9 for three different

cases, μ = 0, μ =+1 and μ =−1. Fig. 2.9 (a) corresponds to the cutting lines crossing the K
point, resulting in metallic behavior. The Brillouin zone of a carbon nanotube is represented

by the cutting line which passes through the highest symmetry point Γ. In (b) and (c), the K
points are located at 1/3 and 2/3 distance of in units k⊥ and the cutting lines do not cross the

K and K′ points. We also calculate the corresponding reciprocal vectors of three types of

nanotubes in Fig. 2.9. More precisely, armchair CNTs are always metallic, whereas zigzag

and chiral CNTs can be either metallic or semiconducting.

Fig. 2.10 shows schematic band dispersions and corresponding densities of states of (a)

armchair (n = m) and (b) semiconducting (μ =±1) nanotubes. The metallic tube presents

one valence and one condition band crossing the Fermi energy. Close to the Fermi energy

(EF ) the dispersion relation can be expressed as

E± ≈
√

3

2
γ0|k−kF|, (2.30)
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(a) (b) (c)

Figure 2.9 Three different configurations of the the cutting lines in the vicinity of the K

points. (a) μ = 0. The CNT (5,5) is metallic. The vectors k⊥ and k‖ are reciprocal lattice

vectors corresponding to Ch and T respectively. Ch = (5,5), T = (1,-1), k⊥ = (b1 + b2)/10,

k‖ = (b1 −b2)/2 and N = 10. (b) μ =+1. The CNT (7,0) with vector Ch = (7,0), T = (1,-2),

k⊥= (2b1 + b2)/14, k‖ = -b2/2, and N = 14. (c) μ =−1. The CNT (8,0) with vector Ch =

(8,0), T = (1,-2), k⊥ = (2b1 + b2)/16, k‖ = -b2/2, and N = 16. (b) and (c) are semiconducting

nanotubes of types I and II, respectively.

Figure 2.10 Schematic electronic band structure of (a) metallic (n = m) and (b) semiconduct-

ing (μ =±1) carbon nanotubes, in the tight binding approximation with linear dispersion of

graphene [42].
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Figure 2.11 The band structure of densities of states (DOS) of the armchair (5,5), zigzag

(9,0), (10,0) and chiral nanotube (8,2) as calculated using the π/π∗ tight-binding model

under the zone-folding approximation [43].

where k is wave-vector, yielding a linear energy momentum relation. For semiconducting

CNTs, the highest valence subband and the lowest conduction are separated by an energy

gap, whose value is estimated as:

ΔE1
g =

2πa0γ0√
3|Ch|

=
2ac−cγ0

dt
. (2.31)

The ΔE1
g is estimated to decrease with the inverse of the tube diameter dt [43]. In fact,

trigonal warping leads to a band gap not only relying on the diameter but also on the (n,m)

chiriality [44].

We give complete band structures and densities states of the armchair (5,5), zigzag (9,0),

(10,0) and chiral (8,2) in Fig. 2.11. For (5,5) armchair, six conduction and six valence bands

have been presented with mirror symmetry. Moreover, four of them are degenerate including

10 electrons together. For all armchair nanotubes, the energy bands have a large degeneracy

at the zone boundary (X point, k =±π/a).

The electronic density of the states (DOS) is defined by ΔN/ΔE counting the number

of available states ΔN in given energy span ΔE(ΔE → 0). As a CNT is a one-dimensional

system, the DOS diverges as 1/
√

E, with van Hove singularities (VHs) [45] at energies close
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to band edges. For all the metallic CNTs, the density of the states per unit length along the

nanotube axis is a constant at the Fermi energy (EF ):

ρ(EF) =
2
√

3ac−c

πγ0|Ch| (2.32)

The DOS of zigzag carbon nanotubes (9,0) is also shown in Fig. 2.11 (b). As discussed

before, it is metallic, whereas for (10,0) there is a small band gap at the Γ point, which

is approximately 0.6 eV for CNTs with diameter of 1 nm [35, 46]. The band structure

and DOS of the chiral nanotube (8,2) are also illustrated in the same figure. Because of

mod(n−m) = 0, the nanotube shows a metallic behavior, with a band crossing at the Fermi

energy level. Moreover, the DOS of metallic chiral nanotubes also exhibits van Hove

singularities.

The DOS of both metallic and semiconducting nanotubes (achiral or chiral) have first

been determined by scanning tunneling microscopy (STM) [47]. Meanwhile, resonant Raman

scattering [48], optical absorption and emission measurements [49, 50] also confirmed the

van Hove singularities of the density of states of SWCNT.

2.3.3 Phonon modes and Raman spectroscopy

The phonon dispersion relations of graphene similarly to the electronic properties, can be

calculated by tight-binding or ab initio methods. The phonon dispersion relations in SWNTS

have been obtained from those of the 2-D graphene sheet by using the same zone-folding

approach of the Eq. (2.27):

ωmq(k) = ωm(qk⊥+ k
k‖
|k‖|

) (2.33)

where m = 1, 2, · · · , 6; q = 0, 1, · · · , N-1; -π/|T| < k < π/|T|. All 2N carbon nanotubes in the

unit cell can produce 6N phonon modes, because of three degrees of freedom of each atom.

Among the 6N branches only a few modes are Raman active. The number of the Raman

active modes can be calculated [51] from the crystal lattice and symmetry by group theory,

as listed below:

armchair: 2A1g + 2E1g + 4E2g

zigzag: 2A1g + 3E1g + 3E2g

chiral: 2A1g + 3E1g + 3E2g

Here we use the force constant model [52] and the zone-folding method [53] to calculate

the phonon dispersions of the armchair (10,10) CNT of Fig 2.12. For the 2N = 40 carbon

atoms of the (10,10) CNT per circumferential strip, we can obtain 120 phonon branches with
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(a) (b)

Figure 2.12 The calculation for phonon dispersion of armchair (10,10) SWCNT: (a) Force

constant method [52] (b) zone-folding method [53].

a large number of phonon modes doubly degenerate. There are a longitudinal acoustic (LA)

mode, corresponding to motion of the atoms along the tube axis, two degenerate transverse

acoustic (TA) modes, corresponding to atomic displacements perpendicular to the nanotube

axis (a combination of in-plane and out-of plane TA modes in graphene), and a twist mode

corresponding to a torsion of the tube around its axis. Another important mode is radial

breathing mode (RBM), which is the strongest low frequency mode, describing the radial

expansion-contraction of CNTs. The calculated energy of the RBM mode of the (10,10)

CNT is 21.7 meV [54].

Experimentally, the force constants fitted on the phonon frequencies can be measured

by inelastic Raman scattering in graphite [55]. Moreover, Raman spectroscopy is one of the

most powerful and widespread techniques to study the characteristics of carbon nanotubes

at extreme conditions (high pressure). Raman spectroscopy is the inelastic scattering of

(optical) photons from a material. In general, when a beam of light interacts with the

target matter, a photon is absorbed, exciting an electron to an empty state, which decays

emitting another photon almost immediately. If the scattered (emitted) photon has the same

energy (frequency/wavelength) of the incident (absorbed) photon, the scattering is elastic

(Rayleigh scattering, Fig. 2.13 (a)). On the other hand, if the emitted photon has a slightly

different wavelength, we talk about Raman scattering. When the incident photon loses

energy and emits a longer wavelength photon, the red-shifted Stokes scattering occurs in a
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Figure 2.13 Sketch of diagram of Rayleigh scattering (elastic) and Raman (inelastic)

higher vibrational state (Fig. 2.13 (b)). If the electron is already in a higher vibrational state,

resulting in the emission of a lower wavelength photon (Fig. 2.13 (c)), that phenomenon is

called blue-shifted anti-Stokes scattering.

Due to the uniqueness of characteristic bonds and vibrational modes of each material,

the Raman spectra can be used as fingerprint to identify different molecules, crystals and

disordered systems. As a consequence of their unique 1-D phonon bands, resonant Raman

scattering spectroscopy is a powerful technique for the characterization and study of CNTs.

The most widely used and intense Raman-active vibrational modes to study and characterize

CNTs are shown in Fig. 2.14. The lowest frequency mode (≈ 120-300 cm−1) for CNTs with

diameter between 0.9 and 2.0 nm, which only appears in CNTs and fullerene structures is

the RBM [56], corresponding to the coherent vibration in the radial direction. It is one of

the most used methods to determine optically the tube diameter, since its frequency varies

inversely with the nanotube diameter [56]:

ωRBM =
A
dt

+B. (2.34)

Where A and B are sample and environment dependent parameters, given by experiments. The

excitation energy dependence of specific RBMs can be determined by the laser source. The

energy at which the RBM Raman intensity reaches a maximum corresponds to the incident

and scattered photon resonances with the SWCNT optical transition. Consequently, both

diameter and optical transition energy can be determined from RBM Raman measurements,

allowing for assignment of RBM Raman features to specific (n,m) SWCNTs. The RBM
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Figure 2.14 A typical resonant Raman spectrum of a bulk SWCNT showing important

features like RBM, D-band, G-band and G’-band, taken at 785 nm excitation [54].

intensity profile with a tunable laser can give directly the electron transition energy within ±3

meV [48, 57]. Both diameter and transition energies can be determined from RBM Raman

measurements, then they can be used to assign the chiral index (n,m).

As shown in Fig. 2.14, the G-band of a SWCNT, ranging from 1500 to 1600 cm−1 is

another typical intense vibration mode, originated from folding of the the Raman active

optical phonon mode E2g of 2-D graphene . Due to the phonon wave vector confinement

along the SWCNT circumferential direction and the curvature-induced inequality, the G-band

is discomposed into G+ and G− peaks. Depending on the difference of lineshape (intensity),

it is possible to distinguish metallic or semiconducting nanotubes (see Fig. 2.14). Other

bands as the D-band (characteristic of the presence of defects) or the double resonant G’

band are discussed in many works [51, 58].

2.4 Carbon nanotubes under high pressure

Coupled to its one-dimensional nanomaterial, CNTs exhibit fascinating mechanical and

electronic properties. Their robust mechanical properties are due to the strong sp2 covalent

bonds between carbon atoms. Theoretical prediction as well as experimental results indicate

a Young’s modulus close to 1 TPa for SWCNTs along their symmetry axis [4, 59]. However,

the radial stability of the nanotubes is much lower. The unique structures and special

characteristics have led to intense research on this material over the last decade. These

outstanding properties suggested a lot of potential applications of the usage of CNTs, i.e.
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Figure 2.15 Different shapes of bundled SWCNTs [63]. (a) circular shape stable at ambient

pressure. (b) hexagonal polygonization (c) ovalization (d) mixture of racetrack and peanut

shape (e) interlinked racetrack shape

hydrogen storage [60], gas sensors [61], nanochemical devices [62] and so on. On the other

hand, high pressure can serve as an effective means to create new structures and new phases

by varying the interatomic distance of a substance. It is really an intriguing and important

topic to employ high pressure to study the structure and the property of CNTs. In the context

of carbon nanotubes, the pressure can induce the change of the vibrational characteristics,

and consequently, CNTs can undergo phase transitions. Such phase transitions corresponds

to changes of radial shape and collapse of the tubes.

With different calculation methods, including classical molecular dynamics , ab-initio
calculations, or a combination of different techniques, one obtains different results due to

the approximation of different models and limit for the method of calculation. However,

a common result is that the SWCNTs undergo a structural phase transition and the cross-

section of bundled CNTs evolve from circular to oval, or hexagonal to peanut-like, and even

race-track-like at high pressures, as shown in Fig. 2.15.

The nature of the phase transition and the deformation paths are extremely complex. It

is expected that the value of collapse pressure Pc decreases with the increasing nanotube

diameter, following the function of Pc ∼ 1/d3 [64, 65] or Pc ∼ 1/d [66], as shown in Fig. 2.16

and Fig. 2.17, respectively.

The structural deformation further induces the change of electronic properties. Charlier et
al. [25], through simple tight-binding models calculations, reported that the polygonization

from the circular shape induces strong σ∗−π∗ hybridization effects due to the high curvature

effect near the edges of the cross section for zigzag nanotubes. Lower symmetry and curvature

effects narrow the band gap. Furthermore, Lammert et al. [67] revealed that the deformation

of nanotubes can produce two greatly different behaviors: metal nanotubes (n,n) and (3n,0)
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Figure 2.16 Collapse pressure as a function of the diameter of nanotube (zig-zag, armchair

and chiral nanotubes) fitted by Pc = α/(β +d)3 with density-functional tight-binding study

from Ref. [65]

.
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Figure 2.17 Collapse pressure of SWCNT bundles as a function of tube diameter. The inset

shows a fit using Pc, Pc = A/d, of classical molecular dynamic calculations from Ref. [66].

are extremely sensitive to deformation. Thus the radial deformation in the SWCNTs could

lead to open or close the band gap, causing an insulator to metal transition or, on the contrary,

a transition of metallic into small-gap nanotubes [67–70].

Nanotubes collapse has been experimentally investigated by X-ray diffraction [71, 72],

Raman spectroscopy [73–77], neutron diffraction and optical absorption [78] for decades.

Studies in literature disagree on the pressure of collapse, measured as the point of disap-

pearance of RBMs. Most of the works agree on critical pressures of around 2 GPa [74, 79].

However, it is also reported that the RBMs still can be observable even up to 10 GPa, thus

RBM disappearance cannot be the phase transition signal [77]. Cailler et al. [14] observed a

change of sign in the pressure derivative of the G-band Raman shift which showed to be a

signature of the collapse pressure (see Fig. 2.18 (a)). Also Yao et al. [80] observed a G-band

frequencies "plateau" under pressure clearly in Fig. 2.18 (b). Both the G-band inflexion in

its pressure evolution [14] or the plateau [80] have been then identified as signatures of a

structure change and as the onset of the collapse. A recent work of Torres-Dias et al. [15]

has shown that the penetration of pressure transmitting medium inside the tubes can play a

significant role in the pressure evolution of the G-band energy with pressure and could then

explain the observed difference in various experiments.
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Although the way of characterizing the collapse phase transition pressure is still under

debate, large diameter collapsed nanotubes at ambient pressure have been observed by High

Resolution Transmission Electron Microscope (HRTEM) imaging, as shown in Fig. 2.19.

Van der Waals forces are in that case responsible for the collapse.

High pressure theoretical and experimental studies have not only been conducted for

SWCNTs, but also for DWCNTs. With classical molecular dynamics simulation, Gadagkar

et al. [83] obtained that the collapse pressure followed Pc ∼ 1/R3, where R is the effective

radius as 1/R3
e f f = (1/n)∑n

i=1(1/R3
i ), and n is the number of MWCNT walls. They also

demonstrated that the inner tube supports mechanically the outer tube, while the outer

tube screens the environment. However, Pc in double-wall CNTs, was reported to depend

mainly on the diameter of the inner tube [84]. Experimentally, Aguiar et al. observed that

the collapse of DWCNTs can be divided into two steps: The first step corresponds to the

deformation of outer tube with 1.56 nm at ∼ 21 GPa, then followed by the collapse of the

inner tube with a diameter of 0.86 nm at ∼ 25 GPa [18]. Later, these authors investigated

the effect of intercalation and inhomogeneous filling on the collapse of bromine-intercalated

CVD-grown DWCNTs, and observed that a saturation or downshift of the G band denotes

the onset of the collapse at 12-13 GPa [81] as shown in Fig. 2.20. With a shock wave

compression study, Mases et al. [85] observed structural damage between 19 and 26 GPa,

indicating the collapse of the tubes. These discrepancies can be attributed to the difficulty in

working with double-wall CNT samples, due to the large diameter distribution or the purity

of samples.

Nearly at the same time, Aguiar et al. also [82] observed theoretically that DWCNTs

first transform by polygonizing the outer tube, while the inner tube keeps an oval shape until

simultaneous collapse of the outer and inner tube, as shown in Fig. 2.21.

Besides studies of pure nanotubes (including SWCNTs, DWCNTs and MWCNTs),

the introduction of foreign species into nanotubes have also attracted a great interest. For

example, when polyiodides are confined into SWCNTs under high pressure, modifications

occur in two steps: first between 1 and 2.3 GPa, polyiodides are modified, second between

7 and 9 GPa, the nanotubes are modified. The great change in the Raman mode intensities

indicates the formation of new phase of iodides [86].

Moreover, for nanotubes filled with C70 (peapods) [14] molecules, transitions were

observed under pressure, indicated by modifications of the Raman spectra, concerning

RBM and G-band modes. One first transition occurs at about 2-2.5 GPa, corresponding to

ovalization or polygonization of the nanotubes (Fig. 2.23). The other transition takes place at

10-30 GPa and is due to the deformation of the peapods and the flattening of the tubes (see

Fig. 2.18 (a)). For C60 molecules confined in nanotubes, polymerization can be achieved and
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(a)

(b)

Figure 2.18 (a) Raman frequency evolution of the TM maximum intensity with pressure

in different PTM. Filled and hollow symbols represent the peapods and empty nanotubes,

respectively [14]. (b) The frequencies of two RBM (circles) and the most intense G+ peak

(squares) about SWCNTs (with diameter 0.6-1.3 nm) are plotted with pressure from Ref. [80].
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Figure 2.19 HRTEM images of collapsed CNTs, including single, double and triple wall

CNTs from Ref. [73].

measured by the distance of C60-C60 as a function of pressure until formation of a corrugated

tubule [12, 13] (see Fig. 2.24).

In conclusion, many spectroscopic techniques, like Raman spectroscopy, and theoretical

studies, based on classical molecular dynamics, density functional theory or tight-binding

have been used to investigate the collapse behavior of CNTs under high pressure. We will

show in the next chapters our original contributions to this topics and try to understand the

effect of diameter, the chirality, the PTM as well as filling on the collapse of CNTs.
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Figure 2.20 (a) The plots of G+ components of inner and outer tubes of DWCNTs. (b)

Bromine-intercalated DWNTs (c) peapod-derived DWNTs and (d) samples from Ref. [81].
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Figure 2.21 Bundle volume of SWCNTs as a function of pressure. The insert presents the

snapshots of the evolution of different phases. A) The configuration of DWCNTs under

ambient pressure, with circular shape both for inner and outer tube. B) The configuration

with polygonization for the outer tube and circular for inner tube. C) The configuration with

polygonization for the outer tube and oval shape for the inner tube. D) The configuration

with peanut/oval shapes for outer and inner tubes from Ref. [82].
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Figure 2.22 Raman shift as a function of pressure of I@SWCNT. The grey regions correspond

to the modification of the polyodides and SWCNTs during the compressing procedure from

Ref. [86].

Figure 2.23 RMB linewidth of C70 in different pressure transmitting medium (PTM), oil

(filled triangles), alcohol (filled circles) and argon (filled stars) [14].
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Figure 2.24 Coalescence of C60 molecule. Left images are obtained by MD simulations,

noting that the outer (10,10) tube is not depicted for visualization purposes. The middle

images are the HRTEM simulations corresponding to the left temperature and right images are

the experimental sequences of C60 peapods. Four phases are visible at different temperatures:

(a) 1800 K (b) polymerization (2400 K), (c) rearrangement (3000 K) (d) coalescence (3600

K) into a corrugated tubule from Ref. [12].





Chapter 3

Theoretical background

Density-Functional Theory (DFT) is by now the most successful and popular quantum

mechanical method for condensed matter ab initio simulations of, e.g. band structure of

solids, superconductivity and magnetic properties of alloys. DFT attributes its versatility to

the generality of its fundamental concepts and the flexibility one has in implementing them.

In spite of this flexibility and generality, DFT is based on quite a rigid conceptual framework.

In this chapter, I introduce the basic concepts underlying density functional theory and

some recent developments in exchange correlation functionals. In the following, a basic

introduction on van der Waals functional will be presented , as normal DFT functional

cannot account for van der Waals interactions. At the end, I give a description of the density

functional tight-binding method (DFTB), an approximation to DFT method, which allows

for faster calculation for larger system sizes. A series of models that are derived from Taylor

series expansions of the DFT total energies and some approximations of DFTB are also

introduced.

3.1 The Solution of the Schrödinger Equation

We will be primarily concerned with the calculation of the ground state energy of a collection

of atoms. The energy may be computed by solution of the Schrödinger equation, which, in

the time independent, non-relativistic, Born-Oppenheimer approximation (assumption that

the motion of atomic nuclei and electrons in a molecule can be separated) reads:

ĤΨ(r1,r2, . . . ,rN) = EΨ(r1,r2, . . . ,rN). (3.1)
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The Hamiltonian operator Ĥ consists of a sum of three terms: the kinetic energy, the

interaction with the external potential (V̂ext) and the electron-electron interaction (V̂ee):

Ĥ =−
N

∑
i=1

1

2
∇2

i +V̂ext +
N

∑
i< j

1

|ri − r j| . (3.2)

In our case the external potential is simply the Coulomb interaction of the electrons with

the atomic nuclei;

V̂ext =−
N

∑
i=1

vext(ri) , (3.3)

with

vext(ri) =−∑
I

ZI

riI
and riI = |ri −RI| . (3.4)

Here, ri is the coordinate of electron i and the charge on the nucleus at RI is ZI . In order

to simplify the notation and to focus the discussion on the main features of DFT, the spin

index is omitted here and throughout the whole chapter. In principle, Eq. (3.1) can be solved

for a set of {Ψ} subject to the condition that {Ψ} are antisymmetric – they change sign if

the coordinates of any two electrons are interchanged. The lowest energy eigenvalue E0 is

the ground state energy and the probability density of finding an electron at {r1, · · · ,rN} is

|Ψ0|2.

The average total energy for a state specified by a particular Ψ, not necessary one of the

eigenfunctions of Eq. (3.1), is the expectation value of Ĥ, that is:

E[Ψ] =
∫

Ψ∗ĤΨdr ≡ 〈Ψ |Ĥ|Ψ〉, (3.5)

The notation [Ψ] emphasizes the fact that the energy is a f unctional of the wavefunction.

The energy in Eq. (3.1) is higher than that of the ground state, unless Ψ corresponds to Ψ0 –

which gives the variational theorem:

E[Ψ]≥ E0. (3.6)

The ground state wave function and energy may be found by searching all possible wave

functions for the one that minimizes the total energy. The Hartree-Fock theory consists of an
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ansatz for the structure of Ψ - it is assumed to be an antisymmetric product of functions {ϕi}
which depend on the coordinates of a single electron, that is:

ΨHF =
1√
N!

det[ϕ1(r1)ϕ2(r2)ϕ3(r3) · · ·ϕN(rN)] (3.7)

where, det indicates a matrix determinant. Substitution of this ansatz for Ψ into the

Schrödinger equation results in an expression for the Hartree Fock energy:

EHF =
∫

ϕ∗
i (r)[−

1

2

N

∑
i=1

∇2
i +Vext]ϕi(r)dr

+
1

2

N

∑
i, j

∫ ϕ∗
i (r1)ϕi(r1)ϕ∗

j (r2)ϕ j(r2)

|ri − r j| dr1dr2

− 1

2

N

∑
i, j

∫ ϕ∗
i (r1)ϕ j(r1)ϕi (r2)ϕ∗

j (r2)

|ri − r j| dr1dr2

(3.8)

The second term is simply the classical Coulomb energy written in terms of the orbitals and

the third term is the exchange energy. The ground state orbitals are determined by applying

the variational theorem to the energy expression in Eq. (3.8) under the constraint that the

orbitals are orthonormal. This leads to the Hartree-Fock or SCF (self-consistent functional)

equations:

[
−1

2
∇2 +Vext(r)+

∫
n(r′)
|r− r′|dr′

]
ϕi(r)+

∫
VX (r,r′)ϕi(r′)dr′ = εiϕ1(r), (3.9)

where the non-local exchange potential VX is such that

∫
VX(r,r′)ϕi(r′)dr′ =−

N

∑
j

∫ ϕ j(r)ϕ∗
j (r′)

|r− r′| ϕi(r′)dr′. (3.10)

The Hartree-Fock equations describe non-interacting electrons under the influence of a

mean field potential consisting of the classical Coulomb potential and a non− local exchange

potential. From this starting point better approximations (correlated methods) for Ψ and E0

are readily obtained, but the computational cost of such improvements is very high and scales

prohibitively quickly with the number of electrons treated (for an excellent introduction

see Ref. [87]). In addition, accurate solutions require a very flexible description of spatial

variation of the wave function, i.e. a large basis set is required, which also adds to the expense

for practical calculations. In other words, it is not possible to solve the Schrödinger equation

and determine the “exact” 3N dimensional wavefunctions even for small atomic systems.
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3.2 The Hohenberg-Kohn Theorems

For a N-electron system with a non-degenerate ground state, in 1964 Hohenberg and Kohn

proved two theorems [88], which we state below.

Theorem1
For any system of interacting particles in an external potential Vext , the density is uniquely

determined. In other words, the external potential is a unique functional of the ground state

of electron density n0(r).
To prove this theorem, we use reductio ad absurdum in the case of a non-degenerate

ground state. Assume that there exist two potentials V
(1)
ext and V

(2)
ext that differ by more

than a constant, producing the same ground state density n0(r). Each potential has its own

Hamiltonian, H
(1)
ext and H

(2)
ext , and wavefunctions Ψ(1)

ext and Ψ(2)
ext .

For H
(1)
ext , no wavefunction can give an energy that is less than the energy E(1) associated

to Ψ(1)
ext , according to the variational principle:

E(1) =
〈

Ψ(1)
∣∣∣ Ĥ(1)

∣∣∣Ψ(1)
〉
<
〈

Ψ(2)
∣∣∣ Ĥ(1)

∣∣∣Ψ(2)
〉

(3.11)

Supposing no degeneracy for the ground state, we can rewrite the expectation value as

〈
Ψ(2)

∣∣∣ Ĥ(1)
∣∣∣Ψ(2)

〉
=
〈

Ψ(2)
∣∣∣ Ĥ(2)

∣∣∣Ψ(2)
〉
+

∫
dr

[
V (1)

ext (r)−V (2)
ext (r)

]
n0(r) (3.12)

Exchanging labels from 1 to 2

〈
Ψ(1)

∣∣∣ Ĥ(2)
∣∣∣Ψ(1)

〉
=
〈

Ψ(1)
∣∣∣ Ĥ(1)

∣∣∣Ψ(1)
〉
+

∫
dr

[
V (2)

ext (r)−V (1)
ext (r)

]
n0(r) (3.13)

Adding Eq. (3.12) and Eq. (3.13), we obtain

E(1) +E(2) < E(2) +E(1) (3.14)

which is an obvious contradiction. Thus the theorem has been proven by reductio ad
absurdum.

Theorem2
The total energy E[n(r)] can be defined as a function of density. For any positive definite

trial density n(r), with
∫

n(r)dr = N then:

E[n(r)]≥ E0 (3.15)
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where E0 is the ground state energy, which can be obtained by minimizing E[n(r)]:

E0 = min
{n}

E[n(r)] . (3.16)

Eq. (3.16) also can be written as

δ [E[n(r)]−μ(
∫

n(r)dr−N)] = 0 (3.17)

The ground state energy and density correspond to the minimum of the functional E[n(r)]
with the normalization of density to the total number of electrons N. μ is the Lagrange

multiplier represents the electronic chemical potential.

Since the external potential is uniquely determined by the density, and the potential

determines uniquely in turn the ground state wave function, it means that the Hamiltonian
operator in Eq. (3.2) is uniquely determined by the electron density. Thus, in principle, all

material properties could be uniquely determined by the ground state charge density. For

instance, the total energy E[n(r)] including the ion-ion interaction (EII) can be written in the

following way:

E[n(r)] = 〈Ψ|T̂ +V̂ext +V̂ee|Ψ〉 +EII

= FHK[n(r)]+
∫

n(r)Vext(r)dr+EII (3.18)

and

FHK[n(r)] = T [n(r)]+Vee[n(r)] (3.19)

The HK functional F is unknown, but it must be a universal functional of only the electron

density. Correspondingly, the Hamiltonian can be written as

Ĥ = F̂ +V̂ext (3.20)

where F̂ is the operator FHK and can be expressed as

F̂ = T̂ +V̂ee (3.21)

Ground state energy is defined by the unique ground state n0(r),

E0 = E[n0] = 〈Ψ0| Ĥ |Ψ0〉 (3.22)
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According to the variational principle, another density n1(r) will necessarily produce a higher

energy:

E0 = E[n0] = 〈Ψ0| Ĥ |Ψ0〉< 〈Ψ1| Ĥ |Ψ1〉= E1 = E[n1] (3.23)

3.3 Kohn-Sham Equations

In the Schrödinger equation (Eq. (3.1)) the energy functional contains three terms – the kinetic

energy, the interaction with the external potential and the electron-electron interaction:

E[n(r)] = T [n(r)]+Vext[n(r)]+Vee[n(r)] (3.24)

The external potential term can be written as a local functional of the density;

Vext[n(r)] =
∫

V̂ext[n(r)]dr (3.25)

Note that the Kinetic T [n(r)] and electron-electron interactions Vee[n(r)] are difficult to

determine, and we need therefore to approximate these functionals. Kohn and Sham [89]

induced a fictitious system containing N non-interacting electrons (Vee = 0). For the non-

interaction system, the many-body ground-state wave-function can be described as a Slater

determinant of single particle wavefunctions ϕi:

Ψs(r1,r2, . . . ,rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN(r2)
...

...
. . .

...

ϕ1(rN) ϕ2(rN) · · · ϕN(rN)

∣∣∣∣∣∣∣∣∣∣
. (3.26)

The kinetic energy can be known exactly as

Ts[n] =−1

2

N

∑
i
〈ϕi|∇2|ϕi〉. (3.27)

Here the suffix s emphasizes the kinetic energy of a non-interacting electrons system. The

ground state density can be obtained as:

n(r) =
N

∑
i
|ϕi|2. (3.28)

The construction of the ground state density involves the N lowest occupied orbitals, which

can be constructed from an antisymmetric wavefunction.
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Now we turn our attention again to the interacting system. A contribution to the electron-

electron interaction is the classical Coulomb interaction – i.e. the Hartree energy, which is

simply the second term of Eq. (3.8) written as the functional of density:

VH[n(r)] =
1

2

∫ ∫ n(r1)n(r2)

|r1 − r2| dr1dr2, (3.29)

Correspondingly, the energy functional can be written as:

E[n] = Ts[n]+Vext[n]+VH[n]+Exc[n], (3.30)

where Exc is the exchange− correlation functional:

Exc[n] = (T [n]−Ts[n])+(Vee[n]−VH[n]). (3.31)

Eq. (3.30) is built explicitly in terms of the density of non-interacting orbitals (see Eq. (3.28)).

When applying the variational theorem, we obtain:

[
−1

2
∇2 +Vext(r)+

∫ n(r′)
|r− r′|dr′+Vxc(r)

]
ϕi(r) = εiϕi(r). (3.32)

We here introduced the exchange-correlation, potential defined as:

Vxc(r) =
δExc[n]

δn
. (3.33)

This set of non-linear equations, known as Kohn-Sham equations, describes the behavior of

non-interacting electrons in an effective local potential. If the local exchange-correlation
potential is known, the "orbitals" will generate the exact ground state density and exact

ground state energy. Even if the exact Vxc is unknown, a number of excellent approximations

have been developed. Thus, the quality of the theory rests on the approximation chosen for

Exc.

3.4 Exchange-Correlation functionals

This section will roughly introduce the history of the development of the two mostly used

exchange-correlation functionals, the local-density approximation (LDA) and the generalized

gradient approximation (GGA).
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3.4.1 LDA

The first and most important approximation for the development of DFT is the local-density

approximation (LDA) [90]. LDA is an approximation that only depends on the value of the

electronic density of each point of space. First, we need to understand the non-interacting

kinetic energy Ts[n] in the Thomas-Fermi approximation.

In a homogeneous system, the kinetic energy of per volume is

thom
s (n) =

3h̄2

10m
(3π2)2/3n5/3, (3.34)

where n = const. But for inhomogeneous system, n = n(r), in the local approximation

ts(r)≈ thom
s (n(r)) =

3h̄2

10m
(3π2)2/3n(r)5/3, (3.35)

and the full kinetic energy

T LDA
s =

∫
d3rthom

s (n(r)) =
3h̄2

10m
(3π2)2/3

∫
d3rn(r)5/3. (3.36)

The same approximation and procedure can also be applied for the exchange-correlation

energy Exc. The exchange energy per unit volume of homogeneous electron gas is exactly

known [91]:

ehom
x (n) =−3q2

4
(

3

π
)1/3n4/3. (3.37)

As

Exc =
∫

drn(r)εxc(n(r)), (3.38)

where n(r) is the electronic density and εxc is the exchange-correlation energy per particle,

we define:

ELDA
x [n] =−3q2

4
(

3

π
)1/3

∫
n(r)4/3dr. (3.39)

This is the Ex of LDA. While, for the correlation energy Ec, it is much more complicated

without knowing the analytic expression ehom
c (n). In the early times, the perturbation theory

was adopted to approximate ehom
c (n) [91]. Nowadays, this method is replaced by using

precise Quantum Monte Carlo (QMC) simulations and parameterizing ehom
c (n) functionals

from these data [92].



3.4 Exchange-Correlation functionals 43

Independently of the parametrization, the Exc[n] of LDA [90] is

Exc[n]≈ ELDA
xc =

∫
ehom

xc (n)dr|n→n(r) =
∫

ehom
xc (n(r))dr, (3.40)

where ehom
xc = ehom

x + ehom
c .

This approximation for Exc has been greatly successful. One possible explanation is

that LDA underestimates Ec but overestimates Ex, leading to systematic error cancellation.

Moreover, LDA exactly satisfies the sum rule
∫

drnxc(r,r′) = −1 [93]. The LDA can

calculate rather accurate bond lengths and lattice constants, but it seriously overestimate

atomization energies of molecules and solid.

3.4.2 GGA

In LDA, the correlation energy only depends on the density at a specific point. For any

real system, the density is inhomogeneous and it is possible to include information on

the rate of the density variation of the functional. The first attempt was the ’gradient-

expansion approximation’ (GEA). It tried to include gradient-dependent terms |∇n(r)|,
|∇n(r)|2, ∇2n(r), etc., in the energy functional. This leads for the kinetic energy term to

Ts[n]≈ TW
s [n] = T LDA

s [n]+
h̄2

8m

∫
d3r

|∇n(r)|2
n(r)

, (3.41)

The integral term is called the von Weizsäker term [94] and the Ex for GEA approximately

equals

Ex[n]≈ EGEA
x [n] = ELDA

x [n]− 10q2

432π(3π2)1/3

∫
d3r

|∇n(r)|2
n(r)4/3

. (3.42)

The integral term is the lowest-order gradient correction for the EGEA
x [n]. In fact, when

introducing the low-order gradient corrections, we don’t improve the LDA as expected, and

we can even get worse results. We note that it is more difficult to introduce higher-order

gradient corrections. In this case, the solution was the development of the generalized gradient

approximation (GGA). Instead of higher-order gradient expansion terms, one considers more

in general functions of n(r) and ∇n(r) [95]:

EGGA
x [n] =

∫
d3r f (n(r),∇n(r)). (3.43)
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There exist many different GGA functionals, depending on different choices of the

function f (n,∇n). Among the most popular GGAs we find B88 [96] and PBE [95]:

EB88
x =− ∑

σ=α,β

∫
nσ4/3

[
3

4
(

6

π

1/3

+
βx2

σ
1+6βxσ sinh−1xσ

]
dr, (3.44)

EPBE
x =−

∫
n4/3

[
3

4
(

3

π
)1/3 +

μs2

1+μs2/κ

]
dr. (3.45)

where x = |∇n|/n4/3. GGA improves on atomization and cohesive energies for molecules

and solids [97], however, there still exist problems. GGA almost always overestimates the

lattice constants of solids, while LDA usually underestimates them. Another problem is

that LDA and GGA cannot predict the quasiparticle band gap correctly. Consistently, the

band gap is strongly underestimated for most semiconductors and insulators. Furthermore,

common GGA and LDA do not account for van der Waals interactions.

3.5 Van der Waals functionals in density functional theory

Van der Waals (vdW) forces refer to attraction and repulsions between atoms, molecules,

and surfaces which are not due to covalent and ionic bonds. These interactions include

dipole-dipole, dipole-induced dipole, and instantaneous dipole-induced dipole forces (also

called London dispersion force). The London dispersion force is an attractive force arising

from non-local electron correlation. Van der Waals density functional (vdW-DF) [98] was

developed to include this kind of interaction. The correlation energy in the density functional

theory can be divided into two pieces, local density approximation LDA, and a nonlocal (nl)

part Enl
c

Ec[n] = E0
c [n]+Enl

c [n], (3.46)

where the E0
c [n] is taken approximately equal to ELDA

c . The second term is treated in the full

potential approximation:

Enl
c [n] =

∫ ∞

0

du
2π

Tr[ln(1−V χ̃)− lnε] (3.47)

where χ̃ is the fully self-consistent density response to a potential. V is the Coulomb

interaction, ε is an approximate dielectric function and u is the imaginary frequency [98].

Calculations usually use the self-consistent charge density from Perdew-Burke-Ernzerhof
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(PBE) or revised PBE (revPBE) functionals. Eq. (3.47) can be expanded to second order in

S ≡ 1− ε−1 as:

Enl
c [n]≈

∫ ∞

0

du
4π

Tr
[

S2 −
(

∇S ·∇V
4πe2

)]
. (3.48)

To approximate S, one can be inspired by the plasmon-pole model [99] and obtain

Sq,q′ =
1

2
[S̃q,q′ + S̃−q,−q′ ], (3.49)

where

S̃q,q′ =
∫

d3re−i(q−q′)·r 4πn(r)e2/m
[ω +ωq(r)][−ω +ω ′

q(r])
. (3.50)

In Eq. (3.50), ω(r) is a function of the local density and its gradient at the point r, which we

will choose. Here the form we use is

ωq(r) =
q2

2m
1

h[q/q0(r)]
(3.51)

define q2
0 = γ/l2, and γ = 4π/9 and h(y) = 1− e−γy2

. The choice of ω(r) functional is

somewhat arbitrary. Here, it depends on a single length scale l, resulting in ωq values in the

range from 1/2ml2 to q2/2m. Finally, with this choice, we define the exchange-correlation

energy as

E0
xc =

∫
d3rε0

xc(r)n(r)≈
∫ ∞

0

du
2π

Tr(lnε)−Esel f ≈
∫ ∞

0

du
2π

TrS−Esel f , (3.52)

where Esel f is the internal Coulomb self-energy of each electron. Introducing the approxima-

tion from Eq. (3.50), we obtain the exchange correlation energy density

ε0
xc(r) =

e2q0(r)
π

∫ ∞

0
dy[h(y)−1] =−3e2

4π
q0(r) (3.53)

and

q0(r) =
ε0

xc(r)
εLDA

x (r)
kF(r), (3.54)

with kF the Fermi wave vector and LDA exchange value εLDA
x are

kF = (3π2n)1/3, εLDA
x =−3

4
e2(

3n
π
)1/3, (3.55)
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and with

ε0
xc ≈ εLDA

xc − εLDA
x

[
Zab

9

(
∇n

2kFn

)2
]
. (3.56)

Here Zab =−0.8491 is defined as the "screened exchange" parameter [100].

Finally, the Enl
c in a plane-wave representation is

Enl
c =

1

2

∫ ∫
d3rd3r′n(r)φ(r,r′)n(r′), (3.57)

where φ , the integration kernel, is given by

φ(r,r′) =
2me4

π2

∫ ∞

0
a2da

∫ ∞

0
b2dbW (a,b)×T (ν(a),ν(b),ν ′(a),ν ′(b)), (3.58)

and

W (a,b) = 2[(3−a2)bcosbsina+(3−b2)acosasinb

+(a2 +b2 −3)sinasinb−3abcosacosb]/a3b3,
(3.59)

T (w,x,y,z) =
1

2

[
1

w+ x
+

1

y+ z

][
1

(w+ y)(x+ z)
+

1

(w+ z)(y+ x)

]
, (3.60)

ν(y) = y2/2h(y/d),

ν ′(y) = y2/2h(y/d′),
(3.61)

with
d = |r− r′|q0(r),

d′ = |r− r′|q0(r′).
(3.62)

Obviously, φ in Eq. (3.58) depends on r and r′ only through d and d′. We can define d and d′

as the sum and difference of the variables D and δ : d = D(1+δ ) and d′ = D(1−δ ). With

the value 0 ≤ D < ∞ and 0 ≤ |δ |< 1, for large d and d′

φ →− C
d2d′2(d2 +d′)

(3.63)

where C = 12(4π/9)3me4 and φ has the r−6 asymptotic dependence. In conclusion, the

form of the exchange correlation energy for vdW [98] consists of the exchange energy EGGA
x

through the GGA approximations and correlation energy ELDA
c and a nonlocal (nl) part Enl

c

given by Eq (3.57). The vdW functional has been applied successfully to a variety of systems,
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in particular, molecules adsorbed on surfaces, molecular solids, and layered solids [101–103].

However, the double spatial integral Eq. (3.57) leads to prohibitive computational request for

large systems. To solve this problem, Román-Pérez and Soler [104] simplified Eq. (3.57) by

fixing some parameters. Thus, φ can be interpolated as

φ0(r,r′)≈ ∑
αβ

φ0(qα ,qβ , |r− r′|)pα(q0(r))pβ (q0(r′)), (3.64)

where qα are fixed values which are chosen to give a good φ , and pα is a cubic spline.

Correspondingly, the original non-local functional can be expressed as

Enl
c =

1

2
∑
αβ

∫
d3rd3r′θα(r)φαβ (|r− r′|)θβ (r′)

=
1

2
∑
αβ

∫
d3kθ ∗

α(k)φαβ (k)θβ (k′).
(3.65)

Here θα(r) = n(r)pα(q0(n(r),∇n(r))). θα(k) is Fourier transform of θα(r) and φαβ (k) is

the Fourier transform of φαβ (r)≡ φ(qα ,qβ , |r− r′|).
With this factorization of the integration kernel φ plus the fast Fourier transforms, a six-

dimensional integral is simplified as three-dimensional. The vdW self-consistent potential,

total energy and atomic forces can be quickly evaluated with a O(NlogN) algorithm [104],

where N is the number of atoms in the system.

This implementation is successful for first-principles calculations of large systems. Nowa-

days, the current vdW-DF calculations for large systems with this method have a negligible

time difference if compared with standard GGA calculation [104].

In this thesis, we use the vdW-optB88 method [101], which applies the optB88 exchange

functional which has two parameters fit to the S22 dataset [105] (a set of 22 weakly interacting

dimers mostly of biological importance). This method has been proven successfully to obtain

accurate lattice constants, bulk moduli and atomization energy of solids [102].

3.6 Density Functional Tight-Binding Method

DFT is a very successful method for accurate and efficient calculations of physical and

chemical properties in most systems. However, faster but more approximate methods are

still required for larger systems. For instance, molecular mechanics with classical force

field methods can be several orders of magnitude faster than DFT and allowing calculations

of thousands to millions of atoms in a nanosecond time scale. Such classical molecular

dynamics force field contains a large number of empirical parameters and can be very accurate
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for specific system on which the parameters were fitted, but with a limited transferability for

other new systems.

The density functional based tight-binding (DFTB) method [106, 107] combines compu-

tational efficiency and transferability, because its parametrization is mainly related to DFT

calculations. Based on DFT calculations, which guarantee a large transferability, it has been

applied to large molecules, clusters, nanostructures and and condensed-matter systems with a

wide range of elements. The energy functional is derived directly from the expectation value

of the Kohn-Sham hamiltonian (Eq. (3.32)):

E[n] =
N

∑
i
〈ϕi|− ∇2

2
+ vext(r)+ vH[n](r)+ vxc[n](r) |ϕi〉+EII, (3.66)

where EII is the ion–ion interaction energy. For clarity, first, we simplified the notation∫
dr → ∫

,
∫

dr′ → ∫ ′ , [n(r)]→ [n] and [n(r′)]→ [n′]. Next we need to approximate: we

consider the true charge density n(r) = n0(r)+ δn(r), where n(r) is composed of atomic

densities and δn(r) is a small charge fluctuation. With this notation and simplification, we

expand E[n] at n0(r) to second order in the fluctuation δn(r) as;

E[δn]≈
N

∑
i
〈ϕi|− ∇2

2
+ vext(r)+

1

2

∫ ′ n′0
|r− r′| + vxc[n0] |ϕi〉

− 1

2

∫ ∫ ′ n′0n0

|r− r′| +Exc[n0]−
∫

vxc[n0]n0 +EII

+
1

2

∫ ∫ ′
(

1

|r− r′| +
δ 2Exc

δnδn′

∣∣∣∣
n0

)
δnδn′ .

(3.67)

The first line of Eq. (3.67) is the band-structure energy, EBS. It is usually written in a

compact form as

EBS =
N

∑
i
〈ϕi| Ĥ[n0] |ϕi〉 . (3.68)

The second line is called the repulsive energy, Erep, mainly from the ion–ion repulsion term

EII and last line is called Ecoul mainly from the Coulomb interaction but with exchange and

correlation contributions as well. Exc[n0] is a complicated term which we can deal with as

it is done in DFT: we put the most difficult physics here and approximate it with a sum of

terms over atom pairs, because each term only depends on elements and their distance, then

the repulsive energy can be approximated as

Erep = ∑
I<J

V IJ
rep(RIJ) . (3.69)
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We have to note that the repulsive functions V IJ
rep(R) are obtained by fitting to large amount

of DFT calculations.

Finally we need to approximate Ecoul. In fact, for the standard DFTB model without

self-consistency [108], this term is simplify neglected. Therefore, the calculations of the

total energy do not depend on the electronic-density fluctuations δn, and accordingly, it

doesn’t have to be interactively calculated. However, this term has to be involved when the

chemical bonds in the system are controlled by a more delicate charge balance between

atoms, i.e. heteronuclear molecules and polar semiconductors. In order to include the density

fluctuation effect in a simple yet efficient way, we can decompose δn(r) in the superposition

of normalized atom contribution δnI [109]:

δn = ∑
I

ΔqIδnI , (3.70)

with the extra electron population on atom I

ΔqI ≈
∫

VI

δn . (3.71)

and
∫

VI
δnI = 1.

The charge fluctuation interactions can be written as

Ecoul =
1

2
∑
IJ

γIJ(RIJ)ΔqIΔqJ , (3.72)

where

γIJ(RIJ) =

⎧⎨
⎩U1, I = J

er f (CIJRIJ)
RIJ

, I �= J
(3.73)

γIJ only depends on the distance RIJ and the Hubbard parameters UI and UJ .

Now, we expand the single-particle wave-functions ϕi using a minimal local basis, which

means having only one radial function for each angular momentum state: one for s-states,

three for p-states, five for d-states, and so on;

ϕi(r) = ∑
μ

ci
μφμ(r) . (3.74)

with this expansion, the final DFTB energy expression (Eq. (3.67)) can be written as;

E = ∑
i

∑
μυ

ci∗
μ ci

υH0
μυ +

1

2
∑
IJ

γIJ(RIJ)ΔqIΔqJ + ∑
I<J

V IJ
rep(RIJ) . (3.75)
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By variations of δ (E −∑i εi〈ϕi|ϕi〉), where εi is Lagrange multipliers, we obtain

M

∑
μ

ci
μ(Hμυ − ε iSμυ) = 0, ∀ υ , i (3.76)

with

Hμυ = H0
μυ +

1

2
Sμυ ∑

K
(γIK + γJK)ΔqK,

= H0
μυ +H1

μυ ,

(3.77)

here

Sμυ =
〈
ϕμ

∣∣ ϕυ
〉
, H0

μυ =
〈
ϕμ

∣∣H0 |ϕυ〉 ∀ μ ∈ I, υ ∈ J . (3.78)

Now we discuss how to calculate the matrix elements Sμυ and H0
μυ . First we construct

the minimal basis functions ϕμ in the Eq. (3.74) as:

ϕμ(r′) = Rμ(r)Ỹμ(θ ,ϕ)(r′ = RI + r,μ ∈ I) (3.79)

with real spherical functions Ỹμ(θ ,ϕ) which should strongly represent bound electrons of a

solid or molecules in our simulating systems. The orbitals thus cannot come from free atoms,

as they would be too diffuse. For this purpose, we adopt the orbitals from a pseudo-atom,

where we add an additional confinement potential Vcon f into the Hamiltonian. The pseudo-

atom is calculated with DFT only once for this confined potential. Once we get the localized

basis functions ϕμ , the Sμυ and H0
μυ are calculated and tabulated as a function of the distance

between atomic pairs RIJ . Thus, it is not necessary to recalculate any integrals during a

geometry optimization or molecular dynamics simulations. In the beginning part of our work

in this thesis, we perform the DFTB calculations using DFTB+ software package [110]. The

ab initio DFT calculations part as implemented in VASP [111] code are also presented at the

end.



Chapter 4

Filling and PTM effect on carbon
nanotubes collapse

4.1 Introduction

Since their observation in 1991 by Iijima [2], carbon nanotubes (CNTs) have been at the

center of a considerable research effort. CNTs can be produced in a large number of diameters

and chiralities, they can have a single or multiple walls, they can have their extremities open

or closed, be empty or filled with several substances, they can be isolated, dispersed in a

solution or in a composite material, appear in bundles, etc [112]. Of course, this remarkable

variety allows to tune and engineer the already unique, and highly anisotropic, electronic,

mechanical and transport properties of CNTs, making them a cornerstone material for a

wealth of possible applications, ranging from electronics to their use as nanoprobes for

biological investigations [5]. Among the different applications, CNTs are studied as vessels

for host–guest chemistry thanks to their inner cavity which can be filled with different

molecular entities. Up to now CNTs have been used as passive nanovessels for chemical

reactions or storage capabilities. We propose here to provide CNTs with an active role in

the elaboration of novel molecular structures through the control of the geometry of the

nanocavity by applying hydrostatic pressure.

Theoretical and experimental studies have shown that CNTs can undergo drastic radial

deformations under hydrostatic pressure [65, 66, 82, 113–115], going from a circular cross-

section to an oval or polygonal one, and from this to a fully collapsed, peanut-like, shape [114].

The exact details of the collapse process are however still under debate. Several contradicting

values for the collapse pressure of CNTs have been obtained experimentally. The source

of such discrepancies probably resides in the interactions with the pressure transmitting
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medium [14, 15]. On the other hand, theoretical calculations show that the chirality has

only a small effect on the collapse pressure Pc, which is mainly determined, for single-wall

tubes, by the tube diameter [65, 66, 82] (going as Pc ∼ 1/d3, where d is the diameter of the

tube). Furthermore, the electronic structure of CNTs is strongly dependent not only on its

chirality but also on the modification of its radial cross-section geometry [116–123], which

can be affected by external forces like van der Waals interactions with a surface [124, 125]

or hybridization with an interface [126].

In the rest of this Chapter, we will first focus on the theoretical study of the effect of high-

pressure in the nano-confinement of molecular systems inside isolated CNTs. In particular

we are interested in the effect of the nanotube radial collapse, which imposes extremely

anisotropic constrains to the filling material. We will consider two guest molecules, namely

H2O and CO2. Afterwards, we will examine the effect of different pressure transmitting

medium (PTM) on the collapse of empty CNTs, considering in water, CO2 and argon

environment.

We chose to apply the density-functional based tight-binding method (DFTB) [107, 107]

introduced in Chapter 2. The DFTB balances the precision problem of classical potentials

and calculation complexity of density-functional theory. Thus, it has the advantage of being

considerably faster than a standard density-functional theory (DFT) calculation, but at the

same time it retains much of the accuracy of this latter theory. Moreover, and as it is a fully

quantum approach, it can describe reliably the different hybridization states of carbon, and

in particular the increase/reduction of sp3 content during the collapse process. This method

was successfully applied for carbon in previous works [65, 107, 127–129]. We will adopt

therefore the same parameters [65].

4.2 Nanostructured molecules inside collapsing filled nan-
otubes

We will deal with the collapse process of CNTs which encapsulate a molecular “foreign

material”. In fact, we can fill CNTs with several guest molecules, such as argon [9, 130–134],

neon [134], helium [132], fullerenes [14, 135], water [14–17, 20–22, 135–149], etc. The

effect of the filling is two-fold. On the one hand, guest compounds can differ significantly

from bulk matter [20–22, 139] due to the strong bilateral confinement at the nanometer scale.

Moreover, the behavior and properties of the inclusion compound can be strongly influenced

by the tube diameter [147, 150]. On the other hand, guest molecules can also influence the

electronic and mechanical properties of the host CNTs [14, 23, 135]. For example, recent
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experimental studies demonstrated that water filling can increase substantially the collapse

pressure of CNTs [15], while the structure of enclosed C60 [151], C70 [14] or iodine [10] can

be modified by the tube radial cross-section evolution.

A particularly interesting example is given by water filling. Theoretical calculations have

shown that, for small diameter nanotubes (0.54 < d < 0.811 nm) encapsulated water cannot

move freely and forms a single-file water structure [147, 152]. This fact was experimentally

confirmed using Raman spectroscopy by Cambré et al. [16] who observed the single-file

water chain down to a (5,3) CNT (with a diameter of 0.548 nm). For larger tubes the situation

is considerably more complicated. Noon et al. [22] and Liu et al. [141] found that water

molecules form a very ordered spiral-like chain along the CNT axis. On the other hand,

Koga et al. [21] found n-membered rings of water inside CNTs under pressure (in the range

0.05–0.5 GPa), where the n value depends on the diameter of the tube. Similar structures

were also found inside a (9,9) CNT by Mashl et al. [143] Furthermore Shiomi et al. [153]

and Wang et al. [147] found that ice-like structures formed inside CNTs. Finally, Paineau

et al. [154] discovered in X-ray scattering experiments that the structure of water in CNTs

depends on its percentage in mass: if the water content is larger than 5% in mass, water filling

is no more homogeneous and the molecules form 3 layers [154]. Also closely related is a

recent outstanding experiment reporting a novel form of water, named “square ice”, formed

between two layers of graphene due to nano-confinement [136], although this finding has

already been questioned [155].

All these studies were performed either at ambient conditions or at very low pressure.

High pressures, on the other hand, is a much less explored subject, even if it is well know

that pressure can affect considerably the structural properties of materials.

Our simulations of the collapse of empty and filled CNTs were performed using the

density-functional tight-binding (DFTB) technique, as implemented in the DFTB+ software

package [110]. DFTB has the advantage of being considerably faster than a standard density-

functional theory (DFT) calculation, retaining at the same time much of the accuracy of this

latter theory. Moreover, as it is a fully quantum approach, it has no problem to describe the

different hybridization states of carbon, and in particular the modification of sp3 content

during the collapse process. The parameters describing the carbon-carbon interaction were

taken from the matsci-0-3 set [156], while the rest of the parameters were taken from the

mio-1-1 set [108]. In order to account for possible charge transfer processes we used the

self-consistent charge DFTB scheme [108]. Concerning the validation of the parameters,

the carbon-carbon Slater-Koster parameters we used have been extensively applied for the

study of CNTs since at least 2003 [157]. We recently used these parameters to study the

collapse of bundles of single-wall/ CNTs [65]. The parameters required to describe water
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have also been extensively tested [158, 159]. The excellent agreement that we find in the

present work on the evolution of the CNT collapse pressure in empty and water filled CNTs

with the experimental work of Ref. [15] further validates our set of parameters.

We carried out our simulations using a periodic hexagonal supercell containing 4 (10,10)

CNTs (d=1.36 nm, 160 carbon atoms). The a and b lattice constants are chosen such that

tubes are separated by at least 10 Å in order to minimize interactions between neighbors. The

tubes are surrounded with enough water (200 molecules) or CO2 (150 molecules) to fill the

unit cell. Moreover, we consider the inclusion of guest molecules inside the CNT, exploring

a range of concentration from 3% to 40%, which covers the experimental range. All the

starting cells are first thermalized at 370 K, and then rapidly quenched to 10 K. Finally,

individual atomic positions and cell vectors are fully optimized until all forces are smaller

than 10−4 Ha/Bohr. From these starting geometries, we then perform quasi-static simulations

by increasing the pressure in small steps of 0.2 GPa up to 15 GPa, unless the tube collapses

before. At each pressure step the geometry is again fully optimized. We remark that high

temperature may help CNTs to overcome energy barriers leading to a plastic collapse [160],

however we want to focus here on the effect of hydrostatic pressure and we will therefore

disregard temperature effects.

The electronic structures were then analyzed with DFT as implemented in the Vienna ab

initio Simulation Package (VASP) code [111]. We used the Perdew–Burke–Ernzerhof [95]

approximation to the exchange correlation, a plane wave energy cutoff of 700 eV and 2×2×3

k-meshes.

Before discussing our results, it is worthwhile defining how to calculate the volume of

deformed CNTs. The critical point is to calculate the area of the cross-section. To this end

we project all the positions of carbon atoms on a plane perpendicular to the axis. Second, we

delete atoms with the same projected positions (within a small tolerance distance). Then, we

choose one reference point on the plane (for example outside the tube) and we connect it to all

projected atoms. We define in this way a set of ordered vectors vi with a common end point,

and whose other end points draw in the plane a close chain of N points. These vectors divide

the plane in triangles. The cross section area of the tube can now be calculated by adding

the half of (positive and negative) values of the cross products of all couples of neighboring

vectors: 1
2 ∑N

i=1 vi × vi+1 with vN+1 = v1. Once we have calculated the cross-section area, the

volume can be easily obtained by multiplying it by the length of the tube along its axis.

We study an isolated (10,10) CNT, using either H2O or CO2 both as filling and pressure

transmitting medium. Experimentally, the water filling of arc-type single-wall CNT [which

are comparable in diameter to the (10,10) tube used here] was estimated to be between 11%

to 29% of the total weight fraction of fully filled nanotubes [154]. Therefore, to cover the
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Figure 4.1 Binding energy per atom for the (10,10) nanotubes as a function of the water

concentration. Red crosses are filled tubes in vaccum, green circles mark the cases where we

also calculated the tube in water.

whole experimental range we studied concentrations of water of 3.8%, 13.1%, 21.6%, 30%,

and 39.4%. This corresponds respectively to 4, 14, 23, 32, and 42 molecules of H2O in

our simulation supercells. The binding energies (Eb) of the tubes filled with water were

calculated (Fig. 4.1) and compared with experiment [65].

Eb = E f illed −Eempty −EH2O ×NH2O (4.1)

where E f illed is the tube energy filled with NH2O, Eempty is the energy of the empty, isolated

tube and EH2O is the energy of one water molecule. we deduce from Fig. 4.1 that the optimum

filling ratio for (10,10) tubes according to our calculation is from 17% to 35%. we remark

that, due to finite length (4 unit cell length) of the nanotube, a more precise estimation with

longer nanotubes is necessary.

It’s time to focus on the effect of water-filling on the collapse. In Fig. 4.2 we plot the

volume of the tube (normalized to its volume at zero pressure) as a function of pressure.

The volume is calculated as described above. The upper panel contains results for CNTs
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Figure 4.2 Variation of volume as a function of pressure for (10,10) CNTs filled with a

different amount of molecules of H2O (a) and CO2 (b). The letters label different regimes for

which we show snapshots of the nanotube structure in Fig. 4.5, Fig. 4.6, and Fig. 4.7.
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Table 4.1 Number of H2O and CO2 molecules inside the tubes per unit cell, corresponding

H2O to carbon and CO2 to carbon mass percentage (%wt), onset pressure (Po in GPa) and

collapse pressure (Pc in GPa) of (10,10) CNTs filled with H2O and CO2 in H2O or CO2

environments, respectively. We did not observe any collapse up to the maximum pressure

of 15 GPa for the cases of 42 H2O or 30 CO2 molecules inside the CNTs. For these same

filling rations, the Po incertitude is very high and the values are not included in the table. If

not specified, the estimated error for the computed collapse or onset pressure is of ±0.3 GPa.

nH2O %wt Po(GPa) Pc(GPa) nCO2 %wt Po(GPa) Pc(GPa)

0 0.0 3.4 4.8 0 0.0 3.0 4.2

4 3.8 1.2 4.8 5 11.5 4.2 4.6

14 13.1 3.0 5.8 10 22.9 3.6 5.0

23 21.6 4.8 5.8 15 34.4 5.2 6.8

32 30.0 4.0±1 6.2 20 45.8 5.4 8.4

42 39.4 > 15 25 57.3 11.4 11.6

30 68.8 > 15

filled with H2O, while the lower panel refers to CO2 filling. The bulk modulus B0 of

the non-collapsed (10,10) nanotube can be estimated from the linear regime variation of

V/V0, yielding a value of B0 � 250 GPa, independently of the filler. In empty tubes, the

collapse process to a peanut-like shape is abrupt [65], as it can be clearly seen from the large

discontinuity of the corresponding curves. Upon tube filling the collapse process changes

considerably. First, the compressibility curves start to deviate progressively from a straight

line, marking a difference between the pressure onset of the tube deformation (Po), and

the pressure at which the collapsed shape is found (Pc). The final volume of the collapsed

tube increases with filling, simply because the tube can not completely collapse due to the

presence of the guest molecules. Finally, the collapse process becomes less abrupt, until it

becomes inhibited for large enough filling concentration in the pressure domain of our study.

Due to this complex behavior, it is necessary to define how to measure the deformation

onset and the collapse pressure. The onset of the radial deformation can be well established by

monitoring the evolution with pressure of the distance of two pairs of carbon atoms belonging

to the nanotube, which define perpendicular segments of length approximately equal to the

tube diameter as shown in Fig. 4.3. Information and corresponding CNTs structures are

displayed in Fig. 4.4. The difference between the length of the two segments becomes larger

at Po. The values of Po obtained following this criterium to define the ovalization pressure

are shown in Table 4.1. Only in the case of 42 H2O and 30 CO2, the method did not allow

for determining a clear value of Po , whereas visually a slight deformation of the carbon

nanotube cross-section could be observed at high pressure.
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Figure 4.3 (a) Variation of distance from two pairs of C atoms belonging to the (10,10) CNTs

filled with different amount of H2O and (b) CO2 molecules as a function of pressure. The

segments formed by the pairs of C atoms are approximately perpendicular and their length is

approximately equal to the tube diameter. The numbers indicate the onset pressure for the

tube deformation Po.
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(a)

(b)

Figure 4.4 (a) CNTs structures for filling with different amounts of, H2O and (b) CO2

molecules, as in Fig. 4.3, before reaching the collapse pressure Pc.
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It is noticeable that whereas a CO2 filling provides mechanical support [Po(n)> Po(n =

0)], in the case of H2O filling, the enclosed molecules favor the deformation of the tube, at

least at low and moderate filling [Po(n)< Po(n = 0) for n ≤ 23]. We will discuss again later

the implications of this observation in the light of the geometries of the molecular structures

that form inside the CNTs.

In order to measure the collapse pressure, one can search for a discontinuity in V/V0 or in

the Gibbs free energy. This method works well for empty tubes or at low-filling. For higher

filling ratios, on the other hand, the collapse process is more continuous, and the collapse

pressure is difficult to identify precisely. In this case, we decided to define the collapse

pressure as the first obvious discontinuity of the volume of the CNT, corresponding to the

end of the first “step” of the V/V0 curve.

In Table 4.1 are also shown the collapse pressures calculated using this procedure as a

function of H2O and CO2 content. The first result we can read from the table regards the

dependence of the collapse pressure with the pressure transmitting medium. Empty (10,10)

tubes collapse at around 4.8 GPa (when the transmitting medium is water) and 4.2 GPa (when

the transmitting medium is carbon dioxide). These values of pressure are very close to the

value calculated for the same (10,10) nanotubes in a bundle geometry (4.5 GPa) [65]. Our

result for the (10,10) tube (of diameter 1.36 nm) using water as pressure transmitting medium

is also quite close to the 3.9 GPa measured experimentally in Ref. [15] for individualized

single-wall (SW) CNTs with an average diameter of 1.32 nm immersed in a water medium

containing surfactant molecules. These agreement confirms the validity of our model and

approximations.

For tubes filled with 4 and 14 water molecules, we observe two main discontinuities in

the volume/pressure curves. A closer inspection of the intermediate structures reveals that the

first is mainly related to the transformation of the nanotube cross-section, while the second

corresponds to a structural modification of the guest molecules to a more compact geometry.

For larger filling the collapse process consists in a series of smaller steps, which correspond

to changes of the cross-section of the tube and/or modifications of the structures of the guest

molecules as the applied pressure increases. Finally, tubes containing 40 H2O molecules per

unit cell or 30 CO2 molecules per unit cell do not collapse in the range of explored pressures,

i.e. until 15 GPa.

From Fig. 4.2 and Table 4.1 it is clear that the collapse pressure increases with increasing

filling, indicating that the guest molecules provide overall mechanical support to the CNT.

This is in qualitative agreement with recent experimental findings on water filled tubes [15]:

by filling with water a SWCNT with 〈d〉 = 1.32 nm, and with a measured Pc of 3.9 GPa when

empty, the collapse onset moves to 14 ± 2 GPa and ends at 17 GPa. This is in agreement
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empty 4 H2O 14 H2O

a: 4.8 GPa b1: 4.8 GPa c1: 5.8 GPa

↓ ↓

b2: 7.0 GPa c2: 9.6 GPa

23 H2O 32 H2O

d1: 5.8 GPa e1: 6.2 GPa

↓ ↓

d2: 9.0 GPa e2: 8.8 GPa

Figure 4.5 Snapshots of cross sections of collapsed CNTs filled with various quantities of

H2O. Under each figure we display a label to specify the corresponding curve and pressure

range of Fig. 4.2 (a).
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with our findings. In fact, once that the extremities of the tube have been opened, one can not

prevent water from entering the tube due to the effect of pressure, until the solidification of

the pressure transmitting medium (water with a surfactant), which was observed at around

2 GPa. At this pressure liquid water increases its density by 33%, corresponding in our

modeling to a water filling larger than 42%wt. For this filling we did not observe any collapse

up to the maximum pressure of 15 GPa.

We show in Fig. 4.5 snapshots of the collapsed water-filled nanotubes, corresponding

to the positions marked in the volume/pressure curve of Fig. 4.2. For low water content,

we find that the tubes still collapse to the peanut-like shape [see Fig. 4.5 (b1) and (c1)] that

they would assume if they were empty [see Fig. 4.5 (a)]. At larger filling [Fig. 4.5 (d1) and

(e1)] steric effects prevent the full collapse of the tube, which conserves a highly deformed,

ovalized, cross-section. Even more interesting is what happens to the water molecules inside

the tube. In Fig. 4.5 (b1) and Fig. 4.6 (b1) we see the formation of a water rhombus, while in

Fig. 4.5 (c1) and Fig. 4.6 (c1) we can clearly see the appearance of 2D water nanoribbons,

which resemble the “square ice” found in Ref. 31. In these structures the O–O distance

is between 2.78 Å to 2.96 Å (significantly smaller than the experimental value of 3.3 Å at

ambient pressure), while the O–H distance (O from the acceptor molecules and hydrogen

from the donor) lies between 1.81 Å and 1.98 Å (to be compared with 2.4 Å at ambient

pressure). [152] The 2D confinement imposes a H–O–H angle of around 107◦, inbetween

the angle of 104.47◦ of gaseous water and the tetrahedral angle of 109.47◦ of hexagonal

ice. However, the angle formed by hydrogen bonds is greatly reduced to values between

50◦ and 90◦, depending on the degree of planarity of the hydrogen bonds. At larger water

content, as shown in Fig. 4.5 (d) and (e), we find that the guest molecules form water

nanotube-like structures, which support the outer carbon tubes, making it more difficult

to undergo a significant transformation. This action is similar to the one present in, for

example, double-wall CNTs, where the inner tubes provide mechanical support to the outer

tube [18, 161].

The second row of Fig. 4.5 depicts the structures of water-containing collapsed CNTs

at pressures which correspond to the second discontinuity of the volume/pressure curves of

Fig. 4.2 (a). There are some notable differences. In the case of a nanotube containing only

4 water molecules, the rhombus breaks down and a single zigzag chain of water molecules

is formed on one of the sides of the tube (see Fig. 4.6). In this case the hydrogen atoms

are all in the same plane, and the distance between neighboring molecules becomes 2.71 Å.

When the nanotube is filled with 14 water molecules [Fig. 4.5 (c2) and Fig. 4.6 (c2)], there

is no large deformation of the water sheet, but now the 2D structure is more planar, with a

better alignment of hydrogen atoms in the plane. Increasing even further the water filling,
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b1: 4 H2O c1: 14 H2O g: 5 CO2

b2: 4 H2O c2: 14 H2O h: 10 CO2

Figure 4.6 Top view of water and CO2 structures inside collapsed CNTs. The labels refer to

those of Fig. 4.5 and Fig.4.7.
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empty 5 CO2 10 CO2

f: 4.2 GPa g: 4.6 GPa h: 5.0 GPa

15 CO2 20 CO2 25 CO2

i1: 6.8 GPa j1: 8.4 GPa k1: 11.6 GPa

↓ ↓ ↓

i2: 11.4 GPa j2: 10.8 GPa k2: 12.8 GPa

Figure 4.7 Snapshots of cross-section of collapsed CNTs filled with various quantities of

CO2. Under each figure we display a label to specify the corresponding curve and pressure

range of Fig. 4.2 (b).

we observe that water inside the CNT of Fig. 4.5 (e2) forms a nearly perfect collapsed

water-nanotube. The case in Fig. 4.5 (d2) is a mixed case, as there is not enough water to

form a collapsed water nanotube, but there is too much for it to form a 2D water nanoribbon.

A very similar situation arises when we replace water molecules with CO2. In Fig. 4.7

we show snapshots of collapsed CNTs after the first and the second discontinuities of the

volume/pressure curves of Fig. 4.2 (b). Depending on the content of molecules inside the

tubes we find planar structures, collapsed nanotubes, and even nanoribbons inside collapsed

CO2 nanotubes inside CNTs. We find that the CO2 collapsed nanostructures are substantially

more planar than those made of water. This fact can be simply explained by the absence of

the two lone pairs and the two hydrogen bonds of water, that favor a tetrahedral environment.

In spite of this difference, the behavior of water and CO2 inside tubes is remarkably similar,

which makes us believe that the main effect of the nano-confinement is purely geometrical

and does not have an electronic nature. This was confirmed by performing electronic structure

calculations within DFT. It turns out that the density of electronic states of the combined

system can be obtained as a simple superposition between the density of states (DOS) of
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(a) (b)

Figure 4.8 The DOS of some collapsed tubes. (a) and (b) are the DOS of c1 (see Fig. 4.5)

and g (see Fig. 4.7) , respectively. The vertical dash lines denote the fermi energy level.

the collapsed tube, the pressure transmitting medium, and the encapsulated molecules (see

Fig. 4.8).

In Fig. 4.9 we summarize the results by plotting the collapse pressure and the onset

pressure for radial deformation as a function of filling. We observe that the effect of the

filling on the collapse pressure follows two different regimes. Indicating with n the number

of molecules contained in the tube unit cell and with nc the critical filling number, for n < nc

Pc increases at a rate of less than 0.1 GPa per n unit whereas for n > nc, Pc increases at least

4−5 times faster. This critical filling is filler dependent with values of nH2O
c ≈ 32−42 and

nCO2
c ≈ 10−15 in our case. These two different regimes of evolution of Pc(n) can be better

understood if we consider the molecular structure inside the CNTs. In the case of CO2, the

critical value nc corresponds to the number of molecules needed for the nanostructuration of

an internal molecular nanotube which provides important mechanical support. The linear

structure of the CO2 molecule allows for a molecular nanotube structuration with a lower

number of molecules than what is needed for water, explaining why nCO2
c < nH2O

c . The case

of water is more complicated because the water nanotubes (d1 and e1) do not seem to provide

a support as good as the one of CO2 nanotubes. The different nature of the inter-molecular

interactions in H2O and CO2 should certainly play an important role in determining the

nc value. In fact, in water the structure of ice is driven by the hydrogen-bond interactions,

whereas in CO2 quadrupole-quadrupole interactions are essential. These interactions lead to

pentameric H2O bulk ice arrangements, on one hand, and to zig-zag arrangements of CO2

molecules on the other hand.

The dependence on the filling factor of the onset pressure for radial deformation Po is

similar to the dependence of the collapse pressure, and it can be explained by the same
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Figure 4.9 Collapse pressure (filled symbols) and pressure for the onset of radial deformation

(empty symbols) as a function of molecular filling (water in blue and CO2 in red). Two

regimes can be depicted. The first one corresponds to the low-slope linear evolution of

Pc which corresponds to the formation of planar structures. The second regime in which

Pc increases more rapidly is associated to the formation of tubular molecular structures

that can support the external CNT. The inset shows the evolution of the onset pressure of

radial deformation with respect to the empty nanotube. The negative values correspond to

non-symmetric filling.

mechanism. In fact, the nanostructures of CO2 at low filling are more planar and favor a more

symmetric filling, yielding therefore a better support to a symmetric collapse. In the case

of water, a non planar clustering at low concentration leads to a non-symmetric incomplete

filling of the CNT, favoring a radial deformation already at pressures lower than the onset of

the empty tube. This is due to the inhomogeneous strain field introduced by the asymmetric

filling. We can observe this effect in the inset of Fig. 4.9, where the negative values of

Po(n)−Po(0) correspond indeed to incomplete (non-symmetric) filling of the CNT.
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Figure 4.10 Collapse pressure as a function of the nanotube diameter of bundles (Ref. [65])

and individualized CNTs in water and argon environment

In this section, we investigate the effect of PTM (water and argon) on the pressure stability

of empty individualized SWCNTs. The parameters used for the DFTB simulation of water are

the same used in the section above. We observe that there are no DFTB parameters avaliable

for Ar-Ar and Ar-C pairs. However, we can only account for the van der Waals forces with

Lennard-Jones potentials as the argon is an inert gas. The parameters were therefore taken

from Ref. [9]. To describe the empty CNTs surrounded with molecules, we selected the

armchair and zigzag nanotubes with diameters in the range 0.7 –1.4 nm, considering the

computational complexity and available experiment here. For the case of argon, we included

diameters are up to 3.132 nm due to the fact that calculation of Lennard-Jones potential are

computationally efficient. We take 12 and 32 empty tubes in water and argon environment,

respectively. As defined above, the calculated collapse values are corresponding to the end of

collapse process. The collapse pressure Pc and diameter (d) of CNTs are fitted according to

Pc = a/(b+d)3 (4.2)

as is proposed for bundled CNTs [65]. We obtain a = 16.78 GPa nm3, b = 0.18 nm for water

and a = 17.56 GPa nm3, b = 0.20 nm for argon. As a comparison we also present the fitting

values for bundles from Ref. [65], where a = 24.6 GPa nm3 and b = 0.42 nm.
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Figure 4.11 (upper panel) Variation of distance from two pairs of C atoms belonging to the

(10,10) and (22,0) empty CNTs surrounding by different amount of H2O and (blue diamond)

argon (red circle) molecules as a function of pressure. The segments formed by the pairs of

C atoms are approximately perpendicular and their length is approximately equal to the tube

diameter. (low panel) The corresponding snapshots.
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Table 4.2 Parameters for the bending stiffness, D, determined from the fits of Fig. 4.12. Fits

to the data produce α , β and D. Note that 1 GPa nm3 = 6.242 eV.

β α D
(nm) (eV)

DFTB Ar 0.46 1.5 2.34

DFTB H2O 0.45 1.5 2.33

DFTB bundles [65] 0.41 1.5 1.72

Experiment [15] 0.51 1 1.7

From Fig. 4.10, we find a similar behavior in comparison with bundles. The collapse

pressure of individualized CNTs with these three PTMs perfectly follows the d−3 law. Effects

of the nanotubes chirality on the collpase are not observed. This behavior is again consistent

with the previous calculations for bundles [65]. Surprisingly, the collapse pressure of SWCNT

depends barely on the PTM, but it is mainly determined by diameters. Experimentally, for the

open-ended SWCNTs using different PTM (like paraffin oil, argon , methanol ethanol. etc.),

we could not stop the liquid filling into the CNTs. This kind of penetration of liquid PTM will

influence the signal of x-ray diffraction [11] and Raman spectra [162], therefore affecting

the estimation of collapse. Another note is that the collapse pressure of individual CNTs

is slightly higher than the bundles in the small diameter region. Some snapshots of empty

CNTs with argon and water are given in Fig. 4.11. We find that most of the DFTB bifurcation

cures show discontinuous jumps to the completely collapsed state. It was confirmed again

that CNTs undergo phase transition from the circular to a ovalized-shape and then collapse

to a peanut shape[73, 163].

On the other hand, theoretical studies had previously proposed a collapse of single-wall

CNTs following the Lévy Carrier law PC ∝ d−3 [165, 166]. We have proposed a modified

version according to the polygon model by introducing the parameter β in the recent work

Ref. [164], taking into account for deviations for small diameters (∼ 1 nm), which leads

to PCd3 ∝ (1−β 2/d2). With this modification, we replot the normalized collapse pressure

PN = PCd3 as a function of collapse pressure shown in Fig. 4.12. The experiment data

(including start and end of collapse) [15] and bundled nanotubes without PTM [65] are also

fitted as a comparison. All pressures are normalized by d3 for the continuum mechanics

elastic ring prediction PCd3 = 24D corresponds to a horizontal straight line, where D is

graphene bending modulus. We find empirically that both small and larger tubes follow the

Lévy-Carrier formula as PCd3 = 24αD(1−β 2/d2), where α is a correction factor with a

value of 1 and 1.5 for onset or the end of collapse, respectively. Fitting this expression to all

data in Fig. 4.12, we obtained the values of β and D given in Table 4.2.
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Figure 4.12 The normalized collapse pressure as a function of the diameter. The lines

from our DFTB calculations correspond to the end of collapse by fitting to the data using

PCd3 = 24αD(1− β 2/d2), in which α is 1 for the onset of collapse and 1.5 for the end.

The onset and end of collapse from experiment [164] and DFTB bundle [65] are also fit for

comparison.
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From the Table 4.2, we find a remarkable agreement on β , describing the deviation from

the d−3 behavior among the theoretical and experimental data. All the values in Table 4.2 are

consistent with β = 0.44 ± 0.03 nm. That means that in individualized and bundled tubes, β
is not greatly affected by the details of the interatomic potentials between the tube and the

environment (water, argon, other tubes in DFTB). Within the statistical error bars the effect of

β on the collapse pressure begins to be important for diameters below ∼ 1 nm, distinguishing

the regimes of nano- and meso-scale mechanics. The graphene bending modulus D from the

DFTB results on bundles [65] is excellently agreement with experimental [15] data. Larger

D values for the DFTB modeling with argon and water are consistent with the solidification

and the observed tube-like structure of the first shell of the PTM around the tube, which

confers an additional mechanical support [167].

4.4 Conclusions

In summary, we investigated how to use collapsing carbon nanotubes as active nanoavils

to engineer exotic molecular structures. By encapsulating water and carbon dioxide, and

varying the filling factor and the external hydrostatic pressure, we could easily produce one-

dimensional molecular chains, two-dimensional nanoribbons, and even molecular nanotubes

that can collapse together with the external carbon nanotube. It is easy to control which

structure is formed by varying the density of guest molecules in the nanotube as well the

pressure parameter. The procedure described here seems to be quite general, and it can be used

to create novel exotic nano objects from a variety of different molecular systems. Moreover,

we have shown that depending on the details of the confined molecular nanostructures,

they can either favor the deformation of the carbon nanotube cross-section with pressure

or, on the contrary, provide support, leading to a strengthening of the nanotube mechanical

stability under compressive forces. An important enhancement of the collapse pressure is

observed beyond a critical molecular filling ratio characteristic of each molecule. Thanks to

the strong dependence of the electronic properties of carbon nanotubes on modifications of

their radial cross-section geometry, the molecular filling of carbon nanotubes under pressure

appears as an attractive method to tune the electronic structure of nanodevices or composite

materials. In the case of nanotubes with large diameters, i.e. with lower radial stability, there

is in particular a potential for using the observed phenomena for the development of high

sensitivity manometers or gas detectors.

For perfect empty CNTs, collapse under high pressure is barely affected by the PTM

environment, but it is mainly determined by the CNTs diameter. However, experimentally,

unavoidable liquid penetration and PTM filling the CNTs will significantly influence the
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Raman spectra and x-ray diffraction. Depending on the different filling ratio, it will increase

the collapse pressure correspondingly. This may explain why some experiments do not

observe any phase transitions of CNTs at low pressures.

Adopting the modified Lévy-Carrier law PCd3 ∝ (1−β 2/d2), β is suggested to depend

only on the geometry of the tubes. The bending stiffness of graphene is given as D =

1.7± 0.2 eV combining theoretical and experimental studies. These studies confirm the

underlying Lévy-Carrier d−3 dependence of the collapse pressure as in continuum mechanics,

with a progressive deviation from d−3 at smaller diameters as a consequence, at least in part,

of the atomistic nature of the carbon nanotubes.



Chapter 5

Radial collapse in few-wall carbon
nanotubes

In this chapter, we will apply the DFTB method to investigate the high-pressure behavior on

few (single, double and triple) wall CNTs combining theoretical and experimental studies.

The first section presents the basic introduction about the previous experimental and theo-

retical study of single and double wall carbon nanotubes. The second section describes the

methodology, including the theoretical methods and experimental setup, as well as the sample

characteriztion. The third section will present the results and our discussion, comparing

theoretical simulations and experimental characterization. The last section is the conclusion

for this chapter.

5.1 Introduction

A double-wall CNT can be viewed as a single-wall tube filled by another single-wall tube.

As such, it is reasonable to expect that the inner tube provides mechanical support, while

the outer tube screens the environment [161, 168, 169]. Therefore, double-wall tubes are

believed to show higher mechanical stability than single-wall CNTs. Unfortunately, at

the beginning of this thesis, it was difficult to extract from the different experimental and

theoretical works published up to now a coherent picture on the collapse of CNTs having

more than one wall.

Some theoretical results indicate that Pc in double-wall CNTs depends mainly on the

diameter of the innter tube din [84]. In contrast, other studies obtain that Pc is a function

of the average of din and dout, respectively the inner and outer tube diameters [170]. This

result implies that not only din, but also the distance between the walls, are relevant factors
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in the collapse process. By averaging over samples having din varying from 0.5 to 1.9 nm,

some experimental studies proposed that geometrical changes happen already at pressures

as low as 3 GPa [171], and the response is elastic up to pressure of at least 10 GPa [172].

Other dynamic high-pressure experiments found that only minor tube structure damage

occurs below 19 GPa, with the collapse of the double-wall CNT occurring at ∼ 26 GPa [85].

However, other works which considered similar diameter distributions reported collapse or

large structural modifications at different pressures ranging from ∼ 13–15 GPa [173, 174]

to ∼ 25 GPa [19, 168]. Such important discrepancies can be attributed to the difficulty in

working with double-wall CNT samples, mainly due to the large diameter distribution, the

effect of the environment on the resonance conditions, and the presence of defects, which

depend on synthesis, preparation and handling of the samples.

In this chapter we shed some light on this problem by performing systematic simulations

of a large number of few-wall (1, 2, and 3 walls) CNTs, including tubes having different

inter-wall separation. These simulations are performed using density-functional tight-binding

theory (DFTB) [106], that once again provides an excellent compromise between accuracy

and numerical efficiency for carbon-based systems. We compare our results with experimental

measurements of the mechanical response and collapse of double-wall CNTs as a function

of pressure for samples having inner and outer diameter distributions (as well inter-wall

separation) larger than those previously reported.

5.2 Methodology

5.2.1 Calculation details

Density functional tight-binding [106] calculations were performed using the DFTB+ soft-

ware package [107] with the matsci-0-3 parameter set [175]. This method and the set of

parameters are particularly good for carbon compounds, as demonstrated in the previous

chapter. Since carbon nanotubes are relatively inert structures where no significant charge

transfer is expected [127], we decided to adopt the non-self-consistent charge scheme of

DFTB.

Hexagonal unit cells containing two nanotubes with periodic boundary conditions in the

three directions were used for a better description of the bundle geometry [65]. To keep

calculations feasible, we chose only armchair nanotubes with diameters ranging from 0.6 nm

to 3.3 nm: 24 single wall, 22 double wall and 5 triple wall (results for single-wall CNTs

with diameter below 1.9 nm were taken from Ref. [65]). Triple-wall nanotubes with inner

diameters larger than ∼1.2 nm were unfortunately too large to be handled in this work. The
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inter-tube distance of the multi-wall CNTs was chosen to be 0.335 nm, except when studying

the effect of inter-tube distance, for which larger values were used. Quasi-static simulations

were performed as follows: For each value of pressure, a random displacement of 0.002 nm,

was applied on each atom in order to break all symmetries. Atomic positions and cell

vectors were optimized until the magnitude of all forces became smaller than 10−4 Ha/Bohr.

The applied pressure was increased in steps of 0.2 GPa up to 30 GPa or until collapse.

The collapse of the tubes is abrupt in the large majority of the cases and was identified

by a discontinuity in the enthalpy, that corresponds to the transformation to a peanut-like

geometry. In some rare cases this discontinuity was not found and the collapse pressure was

determined by inspection, i.e., we assigned the collapse to the first peanut-like geometry

found. According to this method the obtained collapse pressure corresponds to the end of the

collapse process.

5.2.2 Experimental setup and sample characterization

Prof. San-Miguel, Dr. Alencar and Dr. Torres-Dias performed the experiment at Institut

Lumière Matière (Lyon).

Samples were prepared by catalytic chemical vapor deposition. A detailed description

of the synthesis methodology can be found in Ref. [176]. The histograms in Fig. 5.1(a) and

b show the distribution of the number of walls and diameters for the double-wall CNTs

studied in this work. A large majority of the tubes (80%) has been observed with an average

diameter of 1.5 nm and 2.0 nm for the inner and outer tubes, respectively. Therefore, the

signal originated from these tubes is expected to dominate the resonant Raman spectra [176].

High pressure experiments were carried out using a diamond anvil-cell device, with

low-fluorescence diamond anvils, having culet sizes of 600 μm. The sample was loaded in a

cylindrical pressure chamber with a diameter of 250 μm and thickness of ∼90 μm drilled in

a pre-indented stainless steel gasket. In-situ Raman measurements were performed using

an Acton 300i system, with the excitation energy provided by a 2.41 eV (514.5 nm) laser,

having the output power controlled to avoid temperature effects. NaCl was used as pressure

transmitting medium to avoid any accidental filling of the tubes [15]. A small ruby chip was

loaded with the sample to calibrate the pressure by using the standard ruby luminescence R1

line [177].
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Figure 5.1 Distribution of the (a) number of wall and (b) the inner din and outer dout diameters

in the samples used in Raman experiments. These distributions were obtained from HRTEM

image analysis on 100 observed tubes. Numbers given in the label of b) correspond to mean

values.

5.3 Results and discussion

5.3.1 Numerical simulations

To clarify the role of the diameter on the collapse in few-walled CNTs we performed

DFTB [106] calculations for a selection of armchair (n,n) CNTs. Figure 5.2 shows the

calculated normalized collapse pressures, as function of the inner tube diameter, for the

single-wall (green triangles), double-wall (blue circles), and triple-wall (red squares) CNTs.

This normalized collapse pressure, PN , corresponds to PN = Pcd3
in allowing then to better

observe deviations from the Lévy-Carrier law which in then represented by a horizontal line.

As discussed above, our calculated values correspond to the end of the tube collapse process.

Figure 5.2 puts into evidence deviations from the Lévy-Carrier behavior in practically all the

domain of explored diameters. We can nevertheless distinguish two clearly different regions.

First of all we consider the region for din � 1.5 nm. In this region the collapse pressure

appears to evolve with independence of the number of tube walls and can be fitted with a

same model already proposed for SWCNT[164]:

PN = Pcd3
in = α

(
1− β 2

d2
in

)
GPa nm3 , (5.1)

This model corrects from deviations from continuum mechanics by introducing a value

of β �= 0 which accounts for the discretization of compliances for low tube diameters[164].

The value of β can be also interpreted as the lowest diameter self-sustained stable carbon
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Figure 5.2 Calculated normalized collapse pressure as a function of the diameter (SWCNT)

or inner diameter (for double and triple-wall tubes) of bundled few-wall CNTs. All tubes

are armchair, i.e.(n,n). The corresponding (n,n) indexes for the innermost tube is given in

the upper scale. The continuous line corresponds to the fit using the modified Lévy-Carrier

formula in Eq. (5.1) on the calculated data up to ∼ 1.5 nm. The dotted line is its extrapolation

for larger diameters. The dashed line (in blue) is the linear fit to the deviations from the Lévy-

Carrier formula for the double-wall tubes data given by PN = a+bdin with a =−15±5GPa

nm3 and b = 20±2GPa nm2.
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nanotube which of course has no lower limit in a continuum medium theory. The value

of α on its side is related to the bending rigidity, D, of the tube material in the continuum

mechanics model and to the one of a graphene foil for SWCNT[164]. We obtain when

fitting altogether the data of one- two- and three-walled tubes values of α = 13.8±1.2 GPa

nm3 and β = 0.48±0.03 nm. The obtained value of β is in very good agreement with the

published result for SWCNT on individualized tubes β = 0.44±0.04 nm obtained combining

experiments and models[164]. The α value will correspond to associated bending rigidities

of the tube-walls of 2.1, 2.5 and 2.1 eV when fitting independently the data for one- two- and

three-walled tubes respectively. Those values do not correspond to a logical progression and

we prefer then just consider here the average value of α as a fitting parameter.

We may consider now the second region in Fig. 5.2, corresponding to internal tube

diameters beyond ∼ 1.5 nm. In this regions deviations from the extrapolated curve from Eq.

(5.1) become very significant. Even if there is a strong scattering in the calculated values,

they increasingly differ to the expected extrapolation of the the values given by Eq. (5.1)

(discontinuous line in Fig. 5.2) which in that region correspond well to the Lévy-Carrier

expectations. These deviations appear to be linear with pressure in the case of DWCNT

but are much more scattered for SWCNT. To explain such deviation, there is a need for a

stabilizing energy contribution which is not included in a continuum medium models or even

in Eq. (5.1) - which only corrects that model for low diameter tubes. The collapse process

involves the modification of the tube curvature leading in the case of an isolated tube to a

transition structure having important regions with zero curvature [178]. In the case of carbon

nanotube bundles, the hexagonal symmetry can lead to the observation of tube hexagonalized

cross-section due to pressure application as it has been proposed from neutron diffraction

experiments [78]. The contribution of tube-tube interaction between deformed tubes will

increase linearly with their diameter and can be proposed as a possible explanation for the

observed deviations from the Lévy-Carrier law for bundled tubes having internal diameters

larger than ∼ 1.3 nm. In fact, as it is shown in Fig. 5.3 we do observe such polygonization

even for internal tube diameters of 1.1 nm in both double-wall or triple-wall tubes.

In Fig. 5.4(a) we show the collapse process as a function of the number of walls for

the case of a (8,8) single-wall tube (green curve), a (8,8)@(13,13) double-wall tube (blue

curve), and a (8,8)@(13,13)@(18,18) triple-wall tube (red curve). For single-wall CNTs

our calculations show a collapse transition usually quite abrupt [65], with a sharp transition

to a peanut shape following a (small) compression of the tube. For double- and triple-walls

there is a greater reduction of the volume before the collapse (see Fig. 5.4(a)), with the outer

(larger) tube starting to deform at lower pressures, but being supported by the innermost

(smaller) tube (see Fig. 5.3). The cross-section modification of the outermost tube causes an
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Figure 5.3 Snapshots before and after collapse. (a) and (b) are for (8,8)@(13,13) tubes.

(c) and (d) are the (8,8)@(13,13)@(18,18) before and after collapse, respectively. The

polygonization of the structure before the collapse can be clearly appreciated.
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Figure 5.4 (a) Collapse pressure as function of the number of walls. DFTB calculated

volume variation up to the onset of the collapse for (8,8) single-wall tube (green curve), a

(8,8)@(13,13) double-wall tube (blue curve), and a (8,8)@(13,13)@(18,18) triple-wall

tube (red curve). (b)-(d) Collapse pressure as function of the tube-tube interwall distance.

Calculated collapsed configurations and respective collapse pressures (labeled at the bottom)

of double-wall tubes having a (9,9) inner tube, but three different larger outer tubes.

inhomogeneous strain on the innermost tube, which can then favor the collapse process with

respect to the single-wall nanotube case.

Finally, we investigated the collapse of a double-wall CNT as a function of the distance

between the inner and the outer tube. We chose as the inner tube a (9,9) CNT with a diameter

of 1.22 nm, and for the outer tubes a (14,14), a (15,15), and a (17,17) CNT, leading to a

inter-tube spacing of 0.34, 0.41, and 0.54 nm. The calculated collapse pressures for the three

cases were 6.4, 5.0, and 4.0 GPa respectively, and the geometry of the collapsed tubes are

depicted in Figs. 5.4 (b)-(d). As we can see, there is a considerable decrease of the collapse

pressure with increasing inter-wall separation. This observation can again be explained by

the larger ovalization of the outer tube, leading to an inhomogeneous compression of the

inner tube favoring collapse.

The different elements arising from the discussion of Fig. 5.4 illustrate a more complicate

image of the tube collapse process when increasing the number of walls which justifies then

that the α parameter in Eq. (5.1) deviates from a simple association to a tube bending rigidity

interpretation.

Finally, in Fig. 5.5 we compare experimental collapse pressures for double-wall CNTs

with the theoretical curves obtained by fitting our DFTB results. In the graph is represented
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Figure 5.5 DWCNT normalized collapse pressure as a function of the inner diameter. Symbols

correspond to our experimental data as well as data from A. Aguiar et al. (Ref. [168]) and

S. You et al. (Ref. [19]). The solid red line is a fit of Eq. (5.1) (α =13.8 GPa nm3 and

β =0.48 nm) and the solid blue line is the linear fit shown in Fig. 5.2 calculated in this work.

The dashed black line corresponds to the continuum mechanics prediction by taking β = 0.

The solid lines from our DFTB calculations correspond to the end of collapse. The onset

of collapse obtained from our experiments is also shown for comparison. The inset shows

the difference in collapse pressure between the the calculated DFTB data and the continuum

medium model.
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the normalized collapse pressure as function of the inner tube diameter. It is included in

continuous line the modified Lévy-Carrier law following Eq. (5.1), as well as the linear

variation found from the high diameter deviations shown in Fig. 5.2. The continuous lines

represent then our prediction for the collapse pressure dependence on tube diameter. The

collapse pressures obtained experimentally in our work and in Refs. [168] and [19] are also

included in the graph. The large incertitudes in the experimental points at low diameters

arise both from incertitudes in the collapse pressure and on the tube diameter determination.

We should remind the reader that the experiment of Ref. [19] was performed on double-

wall CNTs solubilised in sodium-cholate water solution (not bundles) which also worked

as the pressure-transmitting medium. It is also important to remark that open single-wall

CNTs having diameters as small as 0.55 nm become filled with water in surfactant-water

solutions [16]. Also, a study on empty and water-filled single-wall CNTs showed that the

collapse pressure increases significantly upon water filling [15]. Therefore, the higher values

of the collapse pressure in Fig. 5.5 of Ref. [19] could be explained by an unintentional filling

of the CNTs. At such high pressures, the non-hydrostaticity of the pressure transmitting

medium can also have an effect in the values of the collapse pressures, making more difficult

the comparison between experimental and calculated values. In all cases, Fig. 5.5 makes

clear that the present precision on the study of the collapse of DWCNT does not allow to

discriminate between the predictions of continuum mechanics (horizontal line in Fig. 5.5) and

the corrections introduced either by atomic discretization or intertube interactions. The inset

in Fig. 5.5 shows the difference in collapse pressure between the continuum mechanics model

and our calculations. These differences clearly indicate that very precise measurements

are needed to be able to discriminate between models. The study of samples with selected

diameters or chiralities - in a similar way as was done in SWCNT[164] - or the study of well

characterized individual tubes appears then as the most promising strategy.

In Fig. 5.5 we have also included the pressure corresponding to the onset of the collapse

in our Raman experiment (triangle symbol). The recent analytic solution for the collapse of

the simple elastic ring under pressure [179, 180] showed a progressive process starting at Pc

and finishing at 1.5 Pc. Our experimental results for double-wall carbon nanotubes having

inner and outer diameters averaging 1.5 nm and 2.0 nm, respectively show a progressive

collapse extending between 2 and 5 GPa which corresponds to an extension up to 2.5 Pc, i.e.,

significantly more important than the predictions of continuum mechanics. This difference

could be attributed to the sequential process of the pressure induced collapse in double-wall

CNT[168] related to the non continuum nature of their structure.
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5.4 Conclusions

We performed a combined experimental and theoretical study on the collapse of few-wall

carbon nanotubes bundles under pressure. Calculations show that the collapse pressure

does not follow a simple 1/d3
in law, corresponding to the Lévy-Carrier continuous medium

prediction. Deviations of distinct origin and opposite directions have been found both in the

low diameter regime, due to atomic discretization effects[164] (collapse pressure reduction)

and for diameters higher than ∼ 1.5 nm, attributed to inter-tube interactions (collapse pressure

enhancement) . The collapse process is, however, more complex for the case of few-wall

tubes (with respect to their single-wall counterparts), as the outer tube cross-section can be

modified at lower pressures, leading then to an inhomogeneous compression of the inner

tubes. This can, in turn, reduce the mechanical stability of the few-walled tube. This effect

seems to be particularly important when the distance between inner and outer walls increases.

Experimentally we have determined the onset and end of collapse of DWCNT having

1.5 nm internal diameter and graphite-like distance between the tubes. Our experimental

values of the collapse pressure as well as others find in the literature for smaller tubes do

agree with our findings but can also be compatible with a continuum mechanics model.

Experiments in samples with well characterized single diameters will be needed to observe

the predicted deviations from the predictions of continuum mechanics. All these results

appear of particular importance in view of an engineering of composite materials or devices

through strain engineering.





Chapter 6

Magnetism and contact properties of the
ML MoS2/Ni(111) interface

6.1 Introduction

Transition-metal dichalcogenides (TMDs) such as MoS2 (as illustrated in Fig. 6.1) crystallize

in layered hexagonal structures, with strong in-plane covalent bonds and weak inter-plane

interaction due to Van der Waals forces. Each slab is composed of a single plane of tran-

sition metal sandwiched between two chalcogen layers. Similarly to the case of graphene

and hexagonal boron nitride (hBN), these materials can be easily exfoliated through mi-

cromechanical cleavage [29], or produced by chemical vapor deposition [30], leading to

the fabrication of single- and multi-layer structures. If compared with the zero-bandgap

graphene and the large indirect bandgap hBN sheet (Eg= 5.995 eV) [181], the monolayer

(ML) of MoS2 appears more interesting for applications in multifunctional electronics and

optics thanks to its direct band gap of about 1.9 eV [27], its high quantum efficiency [28]

and good electron mobilities [31]. When bulk MoS2 is thinned down to the monolayer, the

appearance of strong photoluminescence [27, 28] marks the transition from the bulk indirect

band gap (1.2 eV) to the monolayer direct band gap, with six-fold degenerate band edges in

two non-equivalent valleys K+ and K−. More generally, ML TMDs like MoS2, WS2, MoSe2,

WSe2, MoTe2 are proposed to be used in electronics as transistors, and in optics emitters

or detectors. ML MoS2 transistors have already been demonstrated, with a high mobility

200 cm2/(V s) and a room-temperature current on /off ratio 1×108 [182]. Single-layer MoS2

phototransistor have also shown unique properties, with an improved photoresponsivity in

comparison with graphene-based devices [26]. Moreover, the main advantage of MoS2 with

respect to graphene, is that electron valleys and spin-states can be selectively excited by
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(a) (b)

Figure 6.1 Geometry of MoS2 (space group P63/mmc). (a) Side view of a bulk unit cell

(dash line). (b) Top view of a monolayer of MoS2 (2×2 unit cells). The Mo and S atoms are

shown with magenta and yellow color, respectively.

a laser of specific circular polarization and energy, thanks to the valley dependent optical

selection rules imposed by the crystal symmetry, together with the strong spin-orbit splitting

of the top valence band. The K-valley index becomes therefore a new controllable degree of

freedom for the charge carriers, opening the way to the new field of valleytronics [183–185],

while the spin-orbit splitting allows control of the electron spin, as proposed by spintronics,

by tuning the excitation laser photon energy.

In consideration of importance of inducing and manipulating the magnetism in two-

dimensional materials for their applications in low-dimensional spintronic devices, the effects

of strain and defects have been already considered in literature [186–188]. Doping with

transition metals (Mn, Fe, Co, and Zn) [189] can produce two-dimensional diluted magnetic

semiconductors, however the predicted Curie temperatures are below room temperature, and

the introduction of dopants raises issues of physical and chemical stability. We will therefore

explore a different approach to inject spin-polarzied charge in MoS2, through growth or

deposition of the ML TMD on a magnetic substrate.

Another important technological issue that needs to be considered for spintronic applica-

tions, is the difficulty to establish low resistance metal contacts with 2D TMDs and metal

electrodes, especially when the device architecture requires to build top contacts, i.e. 2D

semiconductor metal interfaces. In fact, when 2D materials are interfaced to metals a large

Schottky barrier height (SBH) can form at the interface [190–195], hindering the transport

of charge and spin carriers. Low-resistance metal contacts are therefore a key challenge to

enable the full potential of devices based on 2D TMDs. This explains why several calcula-

tions using density functional theory on specific metal-TMD contacts have recently appeared

in literature. Transport properties of MoS2 contacts with Ti and Au were calculated using
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DFT without including van der Waals interactions [196]. The physics of contact between

Ti, In, Al, Ag and monolayer WSe2 is discussed in Ref. [197], combining experiments and

DFT calculations. The results indicate that the d-orbitals of the contact metal play a key

role in forming low resistance ohmic contacts with the 2D TMD. Experiments proved also

excellent performances for Sc contacts with multilayer MoS2 [191] and chemically-doped

Pd contacts with single-layer WSe2 [198]. In terms of process robustness and electrical

reliability, bulk metals appear still the best option to obtain (quasi) Ohmic contacts with 2D

TMDs, compared to the 2D metals proposed by Gan and coworkers [199]. The elementary

metals that are usually considered for their excellent physical properties (melting point,

electrical conductivity, thermal conductivity) and physical properties (oxidation, stability,

toxicity) are Al, Ti, Cr, Ni, Cu, Pd, Ag, In, Pt, and Au. Some of them (In, Pd, Ti, Au)

have been thoroughly investigated as contacts for 2D MoS2 and WS2 in a recent complete

computational study by Kang and coworkers [200].

Going back to the magnetic properties of this family of interfaces, recent studies have

shown that a strong interfacial hybridization in MoS2/Fe4N(111) [201] and MoS2/Gd(0001) [202]

leads to magnetic moments on the Mo atoms. Using x-ray magnetic circular dichroism, it was

also proved that a magnetic moment can be induced in carbon atoms at the graphene/Ni(111)

interface due to strong hybridization between C π and Ni 3d orbital [203], while DFT cal-

culations [204] predicted magnetic moments on carbon atoms of 0.021 μB/atom and 0.027

μB/atom for the up and down spin states, respectively. Zhang et al. [205] also calculated the

induced magnetism of graphene/Ni interfaces, considering different interface configurations

with very similar total energies. They obtained similar values for the induced magnetic

moments on carbon, with however a significant effect due to the different configurations.

In this context, nickel (Ni), a room-temperature ferromagnetic metals, appears as a

particularly promising candidate electrode for high-temperature spintronics devices made

of TMDs. In fact, it can combine good electric properties to be used as an electrode with

ferromagnetic behavior at high temperatures. Some recent studies have indeed pointed to

the use of Ni, among other metals, as a contact for MoS2 [206, 207]. However, the large

lattice mismatch between Ni and MoS2 (9.1%) [206] has to be taken cautions. Moreover, the

magnetic properties of this interface have not been addressed yet.

In this work we investigate thoroughly the electronic and spin properties of ML MoS2/Ni(111)

interfaces using density functional theory including van der Waals interactions. Our results

point to the opportunity to investigate further the use Ni contacts for spintronic applications.
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(a) (b)

Figure 6.2 Top (a) and side view (b) of the MoS2/Ni(111) interface. The three uppermost

nickel layers are shown with blue (Ni 1), red (Ni 2) and green balls (Ni 3). Mo atoms are

magenta and S atoms (S 1 and S 2) are yellow.

6.2 Computational Details

We performed spin-polarized density functional theory calculations (DFT) using the Vienna

ab initio simulation package (VASP) [111] within the projector augmented-wave (PAW)

method [208, 209]. Bulk MoS2 has a layered hexagonal structure with space group P63/mmc
(see Fig. 6.1). The single layer of MoS2 is composed of a plane of Mo, sandwiched between

two planes of S, maintaining the prismatic coordination of the bulk. The symmetry of the

monolayer is reduced to P6̄m2 due to the loss of the inversion symmetry. Nickel crystallized

in a closed-packed face-centered cubic crystal structure. We simulate the contact between the

mono-layer of MoS2 and the (111) Ni surface using a 4×4 Ni surface supercell and a 3×3

MoS2 supercell with 123 atoms (including 9 Mo atoms, 18 S atoms and 96 Ni atoms). We

considered a Ni slab made of six atomic layers. The interface model is depicted in Fig. 6.2.

This choice gives the acceptable lattice mismatch of 3.8% at a reasonable supercell size.

A plane-wave basis set with a cutoff of 450 eV and a 4×4×1 Monkhorst-Pack k-point

grid were used for the geometry optimizations of the interface supercell with a force tolerance

of 0.01 eV/Å. The vacuum space along the z direction was taken to be larger than 15 Å and

the convergence criterion in the self-consistency process set to 10−4 eV. It is well known that

traditional DFT exchange-correlation functionals, namely in the local density approximation

(LDA) [90] or in the general gradient approximations (GGA) [95], can give reliable structural

parameters when covalent and ionic bonding are involved. However these functional fail to

describe layers that are weakly bound by van der Waals forces. As van der Waals interaction

are expected to play a crucial role in the adhesion of MoS2 on the metallic surface [207],

we applied the optB88-vdW functional [101, 102], designed for dispersion bonded systems.

Furthermore, we compared with calculations performed using a GGA exchange-correlation
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potential, the Perdew-Burke-Ernzerhof (PBE) functional [207], and with the van der Waals

interaction [205, 206]. The optimized lattice parameters of bulk Ni and the free monolayer

MoS2 are 3.52 Å and 3.186 Å using PBE, consistently with previous work [202, 205, 207].

During the optimization, only the top three layers of Ni are free to move, while the three

bottom layers are fixed [196, 206]. In the final relaxed geometry (see Fig. 6.2 three S and

three Mo atoms composing an hexagon sit on top of six Ni atoms, arranged on the (111)

surface in an hexagonal pattern. The distance with PBE and opt88-vdW is 9.83 Å and

9.75 Å, resulting in the MoS2 a small 3% and 2% lattice strain, respectively which is even

better than the initial unrelaxed structure construction.

We calculate the binding energy per S surface atom, between the Ni surface and the

monolayer of MoS2, as Eb =1/NS(EI–ENi–EMoS2
), where NS is the number of S atoms at the

interface, while EI, ENi, and EMoS2
represent the total energies of the Ni/MoS2 interfaces, the

Ni(111) slab, and the ML MoS2, respectively. A negative Eb indicates that the interface is

stable.

6.3 Results and Discussion

We discuss now the quality of the Ni/MoS2 contact, analyzing several criteria.

First of all we consider the metal-adsorbant binding distance and binding energy. A good

description of these quantities is essential to obtain an accurate interface potential profile. We

will therefore compare thoroughly results obtained with different functionals. As we can see

in Table 6.1, PBE and the vdW functional give very similar binding distances, defined as the

length separating bottom S atoms from the topmost Ni atoms, while LDA underestimate this

length by almost 10%. The calculated interlayer distance in bulk MoS2 defined by Mo-Mo

interlayer separation is 6.11 Å consistent with previous theoretical work [210]. The distance

between Ni and MoS2 defined by the distance of the first top layer Ni atoms and Mo atoms is

3.61 Å , which is much smaller than the MoS2-MoS2 distance in the bulk, confirming that

there is not only vdW interaction between the layers, but also some covalent bonding.

However, the situation is reversed if we consider binding energies Eb: in this case LDA

is closer to the value obtained with the opt88-vdW functional, while PBE accounts only for

less than half of the binding energy. These results indicate that it is essential to include van

der Waals interactions in these calculations. The binding energy including van der Waals

interaction is of -0.38 eV per S atoms, which indicates a relatively strong adhesion of the

ML on the Ni surface. We can compare this result with the binding energy of -0.14 eV per

atom of graphene on a Ni(111) surface, using the same Van der Waals functional [205]. We



90 Magnetism and contact properties of the ML MoS2/Ni(111) interface

observe that the binding energy is significantly smaller for graphene, consistently with the

fact that the graphene monolayer is even less chemically reactive than MoS2.

We observe that the values of dS-Ni and Eb are also sensitive to the choice of the supercell,

which determines the strain. In fact, we can see in Table 6.1 the comparison with previous

calculations that consider different supercells from Refs. [206] and [207]. Note that in the

case of Ref. [206], the mismatch is as high as 9.1%. We have to note that, in Ref. [207] the

equilibrium distance is chosen from the initially constructed structure in a way to minimalize

binding energy. After optimization, the distance is slightly modified. Sulfur atom and

nickel atoms thus have an average displacement 0.017 and 0.089 Å, respectively. The

comparison with results in literature gives in any case the same qualitative picture, with a

clear confirmation of the importance of including van der Waals interaction.

We can conclude that we can expect a significant orbital overlap, and therefore a small or

vanishing tunneling barrier. We can be sure that the tunneling barrier will be thin, thanks to

the small MoS2-Ni binding distance. For comparison sake, we remember that the binding

distance (see Table. 6.1, dS−Ni, 2.09 Å) that we have calculated is smaller than the one of ML

MoS2 with Au (dS−Au >2.5 Å) [196].

Table 6.1 calculated binding energy (Eb) per surface S atom, the equilibrium distance dS-Ni

in the stable structure of MoS2/Ni(111) system using different methods.

LDA PBE opt88-vdW vdW-DF(PW91)

dS-Ni 1.91 2.06 2.05 2.09 [206]

Å 2.2 [207] 2.2 [207]

Eb -0.33 -0.18 -0.38

(eV) -0.125 [207] -0.255 [207] 0.83 [206]

We discuss now the calculations of band structures performed with the van der Waals

functional. The ML of MoS2 is a semiconductor, according to our PBE calculations, with

a direct band gap of 1.7 eV at K. This value compares well with reported PBE values (1.7

eV) [186], and it is only slightly underestimated with respect to experimental values (1.88 eV

from Ref. [27] and 1.85 eV from Ref. [28]. Ni is a metal, with a marked spin asymmetry of

the DOS between majority and minority spin channels. We consider now the electronic states

at the interface, comparing the density of states (DOS) projected on Mo, S, and Ni orbitals of

the MoS2/Ni(111) supercell with the projected DOS of ML MoS2 and the projected DOS of

the Ni surface in vacuum. The results are shown in Fig. 6.3.
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Figure 6.3 Spin-dependent DOS projected on the Mo (a) and S (b) atoms for free-standing

ML MoS2. (c) Spin-dependent DOS projected on the Ni atoms for bulk Ni. DOS of the

MoS2/Ni(111) interface projected on: (d) Mo atoms, (e) S atoms, (f) the topmost layer of Ni

atoms. The zero is set at the Fermi energy.
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Figure 6.4 Band structure of free-standing ML MoS2 (3×3) projected on Mo d-states (a) and

S p-states (b), with circle sizes proportional to the projection weights. Band structure of the

MoS2/Ni interface (c). The red circle indicates the states coming mainly from MoS2. The

zero of energy is set at the Fermi level.
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The d orbitals of Ni change largely when we compare the free surface and the junction.

This is true especially for occupied dxy and dyz orbitals at the Fermi level.

In Fig. 6.4, we plot the band structure of the pristine ML MoS2 in the (3×3) supercell.

The panel (a) shows the projection of the bands on Mo d-states, while panel (b) show the

projection on S p-states. Panel (c) displays the band structure of the MoS2/Ni interface. The

bands of MoS2 are still recognizable, even if there is a strong hybridization with Ni d-states.

This is very different from the case of the weakly hybridized MoS2/Au interface [196].

We can observe that the MoS2/Ni junction is metallic, with a significant amount of Mo, S,

and Ni states extending in the band gap of MoS2. The fact that also Mo and S states appear

in the band gap is a clear indication of the hybridization of these states with the ones of Ni.

The orbital overlap is particularly relevant between d states, as suggested by the projected

DOS. We note that a high electron density at the interface is a necessary requirement for

a good injection of charge into the MoS2 layer. In order to explore the possible charge

transfer between the interface and isolated Ni and MoS2 subsystems, we show the charge

density difference in Fig. 6.5 (a). We can find a depletion of charge density in Ni 3d-states

of the topmost layers of nickel atoms and an increase of charge density in p-states of the

closest S atoms, which implies that the electrons transfer from the substrate to adsorbed ML

MoS2. That also can be concluded by the quantum analysis of Bader charge [211] shown in

Table 6.2. The S 1 and S 2 do not gain the same electrons, while the S 2 accepts an extra

∼ 0.10 electron charge from the first layer of Ni atoms. This fact is explained by the Ni-S

covalent interaction. The excess electrons populate the majority spin channel, resulting in

the enhanced Mo 4d and S 2p magnetic moments shown in Fig. 6.5 (b).

Table 6.2 Average bader Charges for MoS2/Ni(111) system. Negative (positive) sign

indicates an electron loss (gain) for the particular atom. S1 and S2 are atoms far and close to

the the first nickel layer (Ni 1), respectively (see Fig. 6.2(b)).

Atoms Original charge value δ (e)
(e)

Mo 6.0 -1.0416

S 1 6.0 +0.5441

S 2 6.0 +0.6244

Ni 1 10.0 -0.9792

Ni 2 10.0 -0.01224

Ni 3 10.0 -0.00087

We further focus on the magnetic properties of the MoS2/Ni(111) interface using different

functional (see Table 6.3). Due to the underestimation of the magnetism of bulk Ni in LDA

calculations (0.557 μB) compared with experimental value (0.6 μB) [212], we focus on PBE
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(a) (b)

Figure 6.5 (a) Side view of the charge density difference due to the interaction of Mo2/Ni(111)

interface. The yellow and cyan isosurfaces (2.96×10−3 e/Å3 )indicate the electron gain

and loss, respectively. (b) Side view spin density difference for the Mo2/Ni(111) interface

with isosurfaces value 5.37× 10−3 e/Å3 . Blue color indicated the cross section through the

isosurface.

and optB88-vdW results, which are in agreement with experiment for bulk Ni. Mo and S

atoms on the surface gain a small magnetic moments, while the substrate nickel atoms reduce

their magnetic moments. As shown in Table 6.3 from optB88-vdw (PBE) calculations, Mo

and S 2 (close to Ni atoms) atoms carry the magnetic moments ∼-0.019 (-0.022) μB and

0.018 (-0.015) μB per atom, respectively , where -(+) represents for antiparallel (parallel)

orientation of the magnetic moment with respect to the magnetic moments in the Ni-slab.

The topmost S (S 1) layers are not influenced due to lack of hybridization with Ni atoms,

which further demonstrated that the hybridization induced the magnetic moments on Mo and

S atoms. On the other hand, Ni atoms carry average magnetic spin moments per atom of

0.434 (0.5) μB and 0.567 (0.625) μB for the 1st (Ni 1) and 2nd (Ni 2) Ni layers, compared

with the value of 0.632 (0.666) μB for the clean Ni surface. It is also noteworthy that the

magnetic moments of the Ni clean surface are larger by about 4% using the opt88-vdW

functional than the bulk.

We conclude that the magnetic moments are due to the hybridization between Mo 3d
and Ni 3d valence band states. The observed magnetism in the MoS2 layer induced by a

ferromagnetic substrate is of crucial importance for the design of new spintronic devices.

Also in C/Ni [205] it was observed strong hybridization of graphene π and Ni 3d valence

band states with partial charge transfer of the spin-polarized electrons on the graphene π∗

unoccupied states.

To conclude, we focus on the quality of the contact. When the interface is created, due

to the high work function of Ni (5.04-5.335 eV), electronic charge is transferred from the
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Table 6.3 calculated average Magnetic moment (μB/atom) of Mo and surface Ni atoms in

the stable structure of MoS2/Ni(111) system using different methods.

Atoms LDA PBE optB88-vdw

Mo -0.02 -0.022 -0.019

S 1 0.001 0.002 0.001

S 2 0.011 0.015 0.018

Ni 1 0.349 0.500 0.434

Ni 2 0.524 0.625 0.567

clean (Ni 1) - 0.666 0.632 (0.645 [205] )

bulk 0.557 0.603 0.606

bulk 0.6 [212]

metal to the MoS2 layer. These electrons populate the interface states, which pin the Fermi

level inside the band gap, close to the bottom of the conduction band of MoS2. In this way,

a Schottky barrier ΦB forms at the interface, i.e. a potential energy barrier for electrons at

the metal-semiconductor junction. For many applications an ohmic contact, and therefore

ΦB = 0, is desired, so that the electrical charge can be transported easily between the active

region of a transistor and the external circuitry. Several authors have considered how to

decrease the Schottky barrier by destroying the interface states, without reducing the overlap

of the orbitals, which is essential to remove the tunneling barrier and facilitate charge carrier

injection. The proposed solution is to insert a monolayer of graphene or BN [213, 214]. We

will not consider here this possibility, because the analysis of previous works can be applied

directly a posteriori to our case.

We move now to the evaluation of the band alignment, which determines the height of the

Schottky barrier ΦB. This is a key factor to determine a contact resistances in semiconductor

MOSFETs, especially for the MoS2 transistors [215]. The vertical n-type (or p-type) Schottky

barrier for the medium (Ni) can be obtained by measuring the energy difference between EF

and original conducting band minimum (CBM) (or VBM (valence band maximum)) of ML

MoS2 [200]. To calculate the Schottky barrier, we have to align the band structures of ML

MoS2 and MoS2/Ni(111) interface via the vacuum level Evac. The aligned band structures of

MoS2 and MoS2/Ni(111) are shown in Fig. 6.6. The Schottky barrier ΦB is about 0.2 eV. If

we directly calculate the difference from Fig. 6.4 (c) between EF and the identifiable CBM

of ML MoS2, as some previous work did [206, 207, 214], the Schottky barrier is about 0.1

eV larger. Now compare with other examples [196], the small 0.2-0.3 eV Schottky barrier is

small and good for spintronic devices design.

Finally, we evaluate the tunnel barrier at the contact, plotting in Fig. 6.7 the effective

potential averaged in the plane perpendicular to the interface Veff as a function of the position
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Figure 6.6 The band structure of Mo-MoS2 system with gray curve. Original band structure

of MoS2 without contact is also plotted for reference(green curves) which is aligned via

vacuum level.

Figure 6.7 (a) and (b) are the average electronic potential and charge along the z direction,

respectively. The dot lines indicate the location of Ni and Sulfur layer position at the interface.

The blue line indicates the Fermi level
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coordinate z in the direction across the interface. The electron density profile is also shown.

The higher the electron density at the interface, the higher can be the electron injection. If

we define the tunneling barrier as the potential energy above the Fermi energy between the

MoS2 and metal surfaces, we deduce that as expected by the previous analysis, our contact

does not present any tunneling barrier.

6.4 Conclusion

In summary, we have investigated systematically the electronic and magnetic properties of

ML MoS2 absorbed on a Ni(111) surface from first principles using density functional theory

and accounting for vdW interactions. The van der Waals interaction plays an essential role in

stabilizing the interface. The induced magnetism of Mo and S atoms are observed meanwhile

reducing magnetic moments of Nickel surface. The small Schottky barrier and tunneling

barrier make the MoS2/Ni(111) interface a low resistance contact, with interesting potential

for spintronic applications.

Our study may provide an opportunity for the design of new type of memory-switching

or logic devices by using earth-rich nonmagnetic materials MoS2.





Chapter 7

Summary and conclusions

In this thesis, we investigated the radial collapse under high pressure of carbon nanotubes

using the density functional tight-binding method. We considered many different scenarios :

individual nanotubes and bundles, single-wall and few-wall nanotubes, different transmitting

medium (water, CO2 and argon) and also the effect of filling of the tubes . We also studied

the electronic and magnetic properties of a 2D material: the monolayer of MoS2/Ni(111)

interface using density functional theory, including van der Waals interactions. In the

following, we will present the summary of these work.

Filling and PTM effect on carbon nanotubes collapse We investigated the effect of

filling and pressure transmitting medium on collapse of carbon nanotubes with density

functional tight-binding method. For filled CTNs, we find the collapsing/collapsed nan-

otubes can serve as active nanoanvils. By tuning the density of filling factor and external

hydrostatic pressure, one dimensional molecular chains, two-dimensional nanoribbons, and

even nanotube-like molecules. Moreover, depending on the details of confined molecular

nanostructures, they can either favor the deformation of the carbon nanotubes cross-section

with pressure or, on the contrary, provide mechanical support. For the empty tubes, the

collapse behavior is barely affected by the pressure transmitting medium environment but

mainly by the tubes diameter, which further confirmed the underlying Lévy-Carrier d−3

dependence of the collapse pressure with a progressive deviation for smaller diameters (∼ 1

nm).

Radial collapse in few-wall carbon nanotubes In a combined experimental and theo-

retical study, we investigated the collapse of few-wall carbon nanotubes bundles under

pressure. Calculations show that the collapse pressure does not follow a simple 1/d3
in law,

corresponding to the Lévy-Carrier continuous medium prediction. Deviations of distinct
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origin and opposite directions have been found both in the low diameter regime, due to

atomic discretization effects [164] (collapse pressure reduction) and for diameters higher

than ∼ 1.5 nm, attributed to inter-tube interactions (collapse pressure enhancement) . The

collapse process is, however, more complex for the case of few-wall tubes (with respect

to their single-wall counterparts), as the outer tube cross-section can be modified at lower

pressures, leading then to an inhomogeneous compression of the inner tubes. This can, in

turn, reduce the mechanical stability of the few-walled tube. This effect seems to be particu-

larly important when the distance between inner and outer walls increases. Experimentally

we have determined the onset and end of collapse of double wall carbon nanotubes having

1.5 nm internal diameter and graphite-like distance between the tubes. Our experimental

values of the collapse pressure as well as others studies in the literature for smaller tubes

do agree with our findings but can also be compatible with a continuum mechanics model.

Experiments in samples with well characterized single diameters will be needed to observe

the predicted deviations from the predictions of continuum mechanics. All these results

appear of particular importance in view of an engineering of composite materials or devices

through strain engineering.

Magetism and contact properties of the ML MoS2/Ni(111) interface We investigated

systematically the electronic and magnetic properties of monolayer MoS2 absorbed on a

Ni(111) surface from first principles, using density functional theory and accounting for vdW

interactions. The van der Waals interaction plays an essential role in stabilizing the interface.

The induced magnetism of Mo and S atoms are observed, with a concomitant reduction of

the magnetic moments on the Ni surface. The small Schottky barrier and tunneling barrier

make the MoS2/Ni(111) interface the low resistance contact. Our study may provide an

opportunity for the design of new type of memory-switching or logic devices by using

earth-rich nonmagnetic materials MoS2 .
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