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Résumé en Français

La caractérisation des dynamiques de sous-mésoéchelle (<10km) à la surface de
l’océan et leurs impacts sur les processus océaniques globales sont des enjeux sci-
entifiques majeurs. L’utilisation des données d’observation ”directes”, recueillies
in situ, pose des difficultés et des limitations multiples pour aborder ce type de
problématique. Les principales difficultés sont liées notamment à la couverture
spatiale très peu dense desdites données. L’observation des océans repose désor-
mais sur l’utilisation d’une multitude d’outils. Depuis une vingtaine d’années, des
mesures de caractéristiques physiques de la surface des océans sont disponibles à
partir d’instruments embarqués sur des satellites. Ces satellites sont soit défilants
soit stationnaires. Avec des échantillonnages spatiaux et temporels différents, des
techniques de mesures parfois différentes, l’ensemble de ces observations est devenu
essentiel pour la description de la dynamique océanique. Le développement de ces
instruments a été accompagné par des avancées importantes des algorithmes de
traitement des données collectées.

Dans le cas des observations de la température de surface (SST), les capteurs
infrarouges fournissent des observations de haute-résolution (∼1-10km) mais sont
généralement associées à un taux très élevé de données manquantes du fait de la
présence des nuages. À l’inverse, les capteurs micro-ondes sont peu sensibles à la
présence des nuages mais représentent des résolutions spatiales très faibles (∼25-
50 km). À titre d’exemple, les figures 1(a-b) et 1(c-d) comparent des observations
de SST acquises simultanément par un capteur infrarouge et micro-onde dans la
région du Gulf-Stream le 31 Octobre et 07 Novembre 2006 respectivement. Dans
cet exemple, les images haute-résolution (∼1km) ont été acquises par MODIS et
les images basse-résolution (∼50km) par AMSR-E. Notons que ces deux capteurs
sont embarqués sur la plateforme AQUA. On remarque clairement dans la deuxième
situation (Fig.1c), un taux très élevé de données manquantes dans l’image acquise
par MODIS à cause de la couverture nuageuse.

Toutefois, l’imagerie satellitaire haute-résolution de la température de surface de
l’océan (SST) mettent en évidence de nombreuses structures dites de petites échelles
de 1-100 km à la surface de l’océan : tourbillons, filaments, méandres, fronts (Fig.2).

L’utilisation de ces données est devenu cruciale pour la compréhension et la car-
actérisation des dynamiques de l’océan aux petites échelles, dynamiques qui jouent
un rôle primordial dans la compréhension des dynamiques globales et également
du forçage opéré par les dynamiques physiques sur les dynamiques biochimiques
et écologiques des systèmes marins. La capacité à tirer pleinement partie des dif-
férentes modalités d’observation disponibles pour produire des champs d’observation
haute-résolution constitue un enjeu majeur, mais reste un problème ouvert. Les
principales limitations sont: 1) la présence d’artefacts d’acquisition dans les don-
nées de SST haute-résolution et 2) la capacité de reconstruction à partir de données
partiellement observées. Dans ce contexte générale, nous proposons 4 contributions
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(a) (b)

(c) (d)

Figure 1: Comparaison de données SST haute et basse résolution pour la zone Gulf
Stream (a)-(c) MODIS, (b)-(d) AMSR-E

(a) (b)

Figure 2: SST MODIS (a) et AMSR-E (b) pour la zone du courant des Aiguilles .
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principales: 1) le prétraitement d’artéfacts géométriques dans les observations satel-
litaires haute-résolution de SST par une approche conjointe Fourier-Ondelette, (2)
la modélisation stochastiques des variabilités inter-échelles de champs 2D de SST,
(3) la super-résolution stochastique appliquées aux images de SST et (4) la carac-
térisation de la variabilité géométrique dans les observations satellitaires de SST par
des processus de type marche aléatoire.

Dans ce qui suit, nous présentons une synthèse des contributions majeurs de cette
thèse. Ce résumé est organisé comme suit. La première section présente l’algorithme
développé pour le destriping d’images satellitaires haute-résolution. Dans la deux-
ième section, nous présentons la méthode proposée pour la reconstruction stochas-
tique de champs de SST haute-résolution à partir d’images basse-résolution. Une
caractérisation spatiale de ces observations est proposée dans la dernière section à
travers une analyse des lignes de niveaux de champs de SST haute-résolution en
utilisant des processus SLE.

Algorithme de filtrage pour le destriping d’images satel-

litaires

Les satellites d’observation infrarouge de la surface de l’océan font l’acquisition
d’images par l’intermédiaire de barrettes de détecteurs, formant une ligne de l’image;
l’avancement du satellite dans une direction orthogonale à ces barrettes permettent
à chaque détecteur de former une colonne de l’image. En pratique, les détecteurs
possèdent certains défauts, ce qui peut produire sur l’image un effet de rayures
(stripes). Ces artefacts sont visibles sur les images de temperature (SST) et né-
cessitent un prétraitement spécifique avant de pouvoir utiliser les images pour des
fins scientifiques ou opérationnels. Beaucoup de travaux ont été menés pour pro-
poser des algorithmes de filtrage efficaces permettant d’éliminer ce type d’artefacts.
Ces méthodes exploitent des a priori sur la régularité géométrique du bruit à élim-
iner. On peut notamment citer les méthodes qui se basent sur l’utilisation de filtres
passe-bas. Ces méthodes peuvent être implémentées dans le domaine spatial ou
fréquentiel (i.e., domaine de Fourier) [6, 7, 8, 9, 10]. Le principal inconvénient de
ces approaches est de flouter les images, faisant perdre les petits détails ainsi que
les contours. Afin de mieux réduire ces artefacts de lissage, les recherches se sont
alors tournées vers des décompositions multi-échelles, notamment des décomposi-
tions en ondelettes dyadiques [11]. Une adaptation des filters pass-bas a été conçue
pour modifier uniquement les sous-bandes des détails [4, 12] tout en conservant les
coefficients d’approximations.

Le but du Chapitre 4 de cette thèse et de poursuivre l’étude et le développement
de ces méthodes de débruitage, en particulier en ce qui concerne les algorithmes de
filtrage dans le domaine des ondelettes. Nous proposons une méthode de débruitage
basée sur un filtrage de Fourier des sous-bandes d’ondelettes. En effet, les méthodes
classiques se basent sur l’utilisation des ondelettes dyadiques, ce qui peut causer
des artefacts lors de la reconstruction de l’image à partir des coefficients filtrés.
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Nous nous pencherons donc sur des algorithmes de décomposition en ondelettes
beaucoup plus adaptés à des problématiques de reconstructions. Nous utilisons
notamment des décompositions en ondelettes stationnaires. Le choix de l’ondelette
adaptée (type et ordre) à l’analyse n’est pas une chose aisée pour arriver à des
résultats parfaits. En effet, l’algorithme de l’état de l’art [4] repose sur l’utilisation
d’ondelettes possédant un certain nombre de moments nuls, ce qui peut augmenter
la complexité calculatoire. Le choix des décompositions en ondelettes stationnaires
nous permettra l’utilisation du filtre de Haar à support compact, qui correspond a
une ondelette discontinue à un seul moment nul.

Synthése de textures par simulation de champs Gaussiens

aléatoires: Application à la super-résolution stochastique

de champs de SST

Champs Gaussiens pour la synthèse de textures multivariées: La synthèse
de textures consiste à donner en entrée une image de texture, et ensuite produire
une image de sortie qui soit à la fois visuellement similaire et différente pixel à pixel
de l’image d’entrée. Dans cette thèse, nous nous sommes intéressés à des méthodes
de synthèse par simulation de champs aléatoires Gaussiens. En particulier, nous
considérons des méthodes de synthèse simples, rapides et qui permettent de cibler
des caractéristiques spectrales et statistiques. Le modèle dit ”bruit à phase aléatoire
(RPN)” et ”Spot noise discret asymptotique (ADSN)” [2] semblent être les bons
candidats. Ces deux processus aléatoires se basent sur la définition d’une image ap-
pelée ”spot” définit comme l’image de synthèse normalisée. La synthèse par ADSN
consiste alors à convoluer cette image avec une réalisation de bruit blanc Gaussien.
La simulation par RPN consiste à apprendre les amplitudes de la transformée de
Fourier de l’image ”Spot” et d’associer des phases aléatoires à chacune de ces com-
posantes. La synthèse se fait ensuite par une transformée de Fourier inverse. Nous
pouvons facilement montrer que ces méthodes de synthèse préservent les structures
du second ordre. Ces modèles peuvent être étendre pour la modélisation et la syn-
thèse de textures multivariés. Étant donné un vecteur de textures, l’objectif est de
synthétiser un autre vecteur de textures tout en préservant les structures du second
ordre de chaque texture ainsi que les covariances croisées entre textures. Comme
applications, on peut citer par exemple la synthèse de textures en couleur, la simula-
tion d’images multispectrales ou, comme considéré dans cette thèse, la modélisation
et la simulation des coefficients d’ondelettes. En ce qui concerne l’extension multi-
variée, l’approche existante dans l’état de l’art [2] consiste à convoluer chaque ”spot”
séparément avec la même réalisation de bruit blanc Gaussien dans le cas de l’ADSN.
Pour le RPN, la synthèse multivariée se fait en ajoutant la même phase aléatoire à
chacune des phases originales des textures. Dans cette thèse, nous avons développé
une approche qui permet de faire la synthèse de champs multivariés tout en partant
de réalisations différentes de bruits blancs. Cette formulation consiste à simuler un
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système d’équation, ici illustré pour le cas trivarié
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où Wi=1,··· ,3 est un vecteur de bruits blancs Gaussiens et les opérateurs matriciel
fij sont obtenues en ciblant les structures de corrélations et corrélations croisées des
images d’apprentissage.

Outre son intérêt applicatif dans la synthèse de textures multivariées par-
tiellement observées, cette approche présente deux avantages majeurs: 1)
L’interprétabilité en terme des structures de covariances et covariances croisées, ce
qui rend la considération des modèles paramétriques dans ce cas envisageable, 2) la
compacité: notre approche se base sur la définition d’opérateurs liés aux structures
de covariances et non pas l’image ”spot”.

Application à la super-résolution d’images satellitaires de SST: La prob-
lématique considérée ici est la suivante: étant donné une image basse-résolution,
l’objectif est de pouvoir générer une version haute-résolution qui soit visiblement
réaliste et qui possède des caractéristiques similaires à celles des images haute-
résolution. On s’intéresse à des caractéristiques visuelles, notamment l’augmentation
du contenue de texture de manière réaliste, le rehaussement du contraste (i.e., pro-
duction des gradients forts) et également à des caractéristiques spectrales (i.e,.
reproduction du spectre de Fourier) et statistiques (ie., reproduction des his-
togrammes).

La figure 3 propose une analyse qualitative et quantitative des images haute-
résolution par le biais de la composante inter-échelle (i.e., différence entre observa-
tion haute et basse-résolution) et du champs des gradients. L’analyse de la com-
posante inter-échelle met en évidence la présence de structures de petites échelles.
Ces structures sont caractérisées par une distribution statistique non-Gaussienne.
L’analyse du spectre de Fourier montre la concordance du spectre de la composante
inter-échelle avec celui de l’image haute-résolution dans les échelles plus petits que
∼20 km. Ces spectres sont caractérisés par une loi de puissance. En ce qui concerne
les champs du gradient, à haute-résolution les structures des gradients sont fines,
avec des valeurs élevées comparées à celles des gradients basse-résolution. Les gra-
dients les plus forts dans la haute-résolution restent présents dans la version bass-
résolution mais dans une version lissée. Ce dernier point est observé quantitative-
ment en analysant les distributions statistiques associées. Notons qu’en comparant
l’aspect géométrique de la composante inter-échelle avec le champ des gradients
basse-résolution, on remarque une variabilité forte dans les zones de gradients forts
qui sont visibles dans la basse résolution. Ce dernier point suggère une dépendance
de la variance de la composante inter-échelle aux gradients basse résolution. Une
autre caractéristique importante des images haute-résolution est l’information con-
tenue dans la phase de Fourier. Pour illustrer l’importance de cette composante,
la figure 4 illustre une simulation d’un champ turbulent qui contient des structures
géométriques marquées, en utilisant seulement la structure du second ordre (i.e.,
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 3: (a) SST MODIS haute-résolution, (b) SST basse-résolution , (c) la com-
posante inter-échelle associée, (d) Gradient de SST MODIS, (e) Gradient de SST
basse-résolution, (f) Histogramme marginale normalisée de la composante inter-
échelle, (g) spectres de Fourier associés à (a), (b) et (c) .
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amplitudes de Fourier). Cette simulation montre que l’absence de contrainte sur
la phase, on peut obtenir une image qui a le bon spectre, (i.e., la même distribu-
tion de la variance selon les échelles que l’image originale), mais cette énergie n’est
pas placée aux bons endroits et l’information géométrique (i,e., contours) est com-
plètement détruite. Ces observations empiriques nous ont suggéré l’utilisation de
l’information de phase contenue dans la basse-résolution pour la reconstruction des
champs inter-échelles. Cela permettra de placer la part d’énergie (ou variance) aux
gradients basse-résolution encore visibles.

Figure 4: (a) Champ turbulent 2D, (b) synthèse de (a) par apprentissage du spectre
avec des phases aléatoires. L’image (b) a exactement le même spectre que l’image
(a) mais sans information de phase, l’énergie n’est pas placée aux ”bons endroits”.

Pour traiter cet enjeu de modélisation inter-échelle, on propose la méthodologie
suivante: Tout d’abord, une approche multi-échelle est adoptée. On utilise no-
tamment des décompositions en ondelette stationnaires. Ce choix est motivé par
l’importance des facteurs d’échelle recherchés. Dans notre contexte applicatif, ces
facteurs sont de l’ordre de 20-32. Le problème de la modélisation inter-échelle
est ensuite formulé dans le cadre de la synthèse de texture multivariées avec des
contraintes spectrales. Pour pouvoir produire des champs réalistes, notamment les
structures géométriques marquées, un conditionnement vis-à-vis la basse-résolution
est introduit. Ce conditionnement est explicite en imposant la phase de Fourier de
l’image basse-résolution à la composante inter-échelle simulée. Etant donnée une im-
age basse-résolution, le problème de la super-résolution est ensuite posé comme étant
la problématique de la simulation de composante inter-échelle. Dans le domaine des
ondelettes, étant donnée les coefficients d’approximation (i.e., basse-résolution), le
modèle ADSN, appliqué aux coefficients d’ondelettes, est cascadé. Partant des co-
efficient d’approximation de départ, à chaque niveau de reconstruction, la phase de
l’image obtenue au niveau précédent est imposée.

La figure 5 présente des résultats obtenus sur la base d’un champ de tempéra-
ture de surface acquis par MODIS. Remarquons que l’image reconstruite présente
des caractéristiques similaires à l’image haute-résolution réelle, avec une variabil-
ité plus importante que l’image basse résolution. On constate également que les
structures géométriques reconstruites sont cohérentes et présentent des irrégularités
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(a) (b)

(c)

(d)

(e)

Figure 5: Application à des observations de la température de surface de l’océan
(SST). (a) et (b) représentent l’image basse-résolution et son gradient. (d) De
gauche à droite: image haute-résolution, gradient haute-résolution et composante
inter-échelle. (e) Résultats de reconstruction sans contraintes de phase (même ordre
que (d)).
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visuellement réalistes.

Caractérisation de la variabilité géométrique dans les ob-

servations satellitaires de SST par processus SLE

Le principe général est que les observations satellitaires instantanés (snapshot) d’un
traceur géophysique à la surface de l’océan (e.g., SST, Chlorophylle...) contiennent
des informations sur les dynamiques sous-jacentes. À titre d’exemple, la figure 6

(a) hiver (b) été

Figure 6: SST MODIS pour la région de Benguela.

illustre deux images de SST dans une zone d’upwelling (la région de Benguela) qui
présentent des différences visuellement importantes et dont on peut supposer qu’elles
sont liées aux dynamiques sous-jacentes (en particulier, la saisonnalité de l’activité
de l’upwelling). La question posée est de savoir quelles sont les caractéristiques de la
dynamique qu’on l’on peut extraire de ces images. L’état de l’art propose différents
descripteurs classiques. Les figures 7(a) et 7(b) montrent un exemple d’analyse à
travers les caractéristiques spectrales et des distributions des intensités du gradient.
L’analyse spectrale ne révèle pas de différences avec des pentes spectrales identiques
de -3. A contrario, l’observation des distributions des gradients met en évidence des
gradients plus fort en été.

Visuellement on note également une géométrie plus irrégulière en hiver, comme
illustrée en Fig8(a) par la représentation en lignes de niveaux. La question
qu’on s’est posée est de savoir comment décrire quantitativement cette régularité
géométrique. Et ensuite d’envisager des modèles de cette régularité géométrique.

Dans cette thèse, on s’est intéressé à des processus de marche aléatoire et plus
particulièrement la classe des processus SLE (Stochastic Loewner Evolution) [13].
Ces processus sont décrit par l’équation différentielle stochastique suivante

∂tgt(z) =
2

gt(z)− ξ(t)
, g0(z) = z, (2)

Cette équation est définie dans le plan complexe et correspond à des itérations de
compositions de transformations conformes gt(z) forcées par un mouvement Brown-
ien ξ(t). Ce mouvement Brownien est caractérisé par une diffusivité κ qui contrôle la
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(a) (b)

Figure 7: Estimation des spectres de Fourier (a) et les distributions des gradients
(b) des images de SST représentées en 6.

(a) (b)

Figure 8: Représentation en lignes de niveaux des images de SST représentées en 6.

régularité géométrique de la courbe. à titre d’exemple, la figure 9 illustre différents
niveaux d’irrégularité géométrique en fonction de κ. Typiquement entre des valeurs

(a)

Figure 9: Exemple de régularité géométrique des courbes SLE en fonction de κ.
Dessin extrait de [14].

entre 4 et 8 on observe des courbes avec des points doubles, une valeur supérieur à
8 correspond à des courbes qui remplissent tout l’espace. Il est important de noter
qu’il est possible d’estimer la fonction directrice à partir d’une courbe observée.
Ces processus SLE, associés à des caractéristiques d’invariance conforme, apparais-
sent naturellement dans plusieurs système physique : Percolation, Turbulence 2D ,
Modèle d’ising...

L’analyse SLE est un outil qui semble particulièrement adapté à notre problé-
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matique et qui offre un cadre théorique générale vis-à-vis d’autres approches plus
empiriques comme: L’analyse des ”winding angles” ou l’analyse des fonctions de
structures. Il a été montré que ces processus apparaissent naturellement dans sys-
tèmes de turbulence 2D [15].

La figure 11 illustre un exemple d’analyse SLE réalisé sur un champs de SST
LandSAT haute-résolution au large de la côte bretonne (Fig10). L’analyse SLE a
été appliquée à l’ensemble des lignes de niveaux de l’image.

Figure 10: Image satellitaire de température de surface aquise par Landsat TIRS
avec un zoom sur une zone d’intérêt.

Figure 11: Exemple d’analyse SLE appliquée à l’ensemble des lignes de niveaux
de l’image illustrée en figure 10. (a) Variance des fonctions directrices en fonction
du (pseudo) temps, (b) la distribution statistique de la fonction directrice à deux
instant différents.

La figure 11 illustre les caractéristiques moyennes des fonctions directrices ex-
traites. Nous remarquons que l’évolution de la variance des fonctions directrices
en fonction du (pseudo) temps n’est pas linéaire. On note un comportement non-
Brownien. Le comportement Brownien correspond à une relation linéaire. De la
même manière, la distribution statistique des incréments ne suit pas une loi gaussi-
enne. Cela nous a conduit à explorer des facteurs qui pourraient contraindre les
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caractéristiques des fonctions génératrices.
En particulier, il apparaît assez nettement que les lignes de niveaux ne partagent

pas les mêmes caractéristiques.

Figure 12: (a) Les deux portions de lignes de niveaux sur lesquelles l’analyse SLE
a été effectuée, (b) les fonctions directrices extraites, (c) Spectres de Fourier, (d) la
fonction d’autocorrélation des incréments des fonctions directrices.

La figure 12 illustre un exemple d’analyse SLE appliquée sur deux lignes de
niveaux particulières avec des niveaux de régularité très différents. L’analyse des
fonctions directrices des deux lignes de niveau montre clairement un niveau de vari-
abilité très différent. Par contre, comme illustré en figure 12(c), après normalisation
par l’écart type des incréments, les deux courbes présentent des caractéristiques
similaires en terme des pentes spectrales des fonctions directrices et en terme des
distributions statistiques des incréments. On note que les deux courbes ne corre-
spond pas aux mêmes niveaux du gradient. Plus largement, on observe visuellement
des différences de régularité géométrique entre les zones de fort gradient et les zones
de plus faible gradient. Ceci nous amène à explorer un conditionnement des proces-
sus SLE par le gradient basse résolution.

Ce type de conditionnement nous a conduit à une analyse des fonctions directri-
ces par classe d’intensité du gradient. On met clairement en évidence l’effet du gra-
dient sur la variance de la fonction génératrice. Avec des variances fortes à gradient
faible et inversement pour les gradients forts des variances faibles. Ceci correspond à
l’observation empirique d’une régularité géométrique contrôlée par le gradient. Par
ailleurs, les fonctions génératrices présentent des caractéristiques spectrales en loi
de puissance peu corrélée du gradient.

Nous proposons donc de formaliser les lignes de niveaux d’un champ de SST
comme des processus SLE conditionnels dont les fonctions directrices sont des pro-
cessus Brownian fractionnaires conditionnés par la norme du gradient. En outre,
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nos résultats suggèrent de poursuivre l’étude des processus SLE pour caractériser la
variabilité des dynamiques superficielles à petites échelles.





Chapter 1

Introduction and Context

The development of both satellite-based sensors for the remotely sensed observations
of geophysical tracers at ocean surface and the associated processing algorithms has
significantly improved over the last twenty years. Among the observed ocean sur-
face variables, Sea Surface Temperature (SST) is recognized as Essential Climate
Variables (ECVs). Rather than its temporal evolution, the most important feature
of the SST, as well as the other oceanic variables, is how it varies spatially. Its ob-
served spatial distribution is constrained by the spatial resolution of the instrument
which the parameter is captured from. This means that the spatial scale of the
satellite product determines the physical processes (e.g., eddies, currents...) which
can be studied. It is clear that as the resolution of the SST products increases,
it will become possible to unveil and study small scale oceanic features (i.e., sub-
mesoscales) and the way that it may well be impacting large scale processes (i.e.,
mesoscales). Notice, that until recently, most models assume that scales smaller
than the largest mesoscale eddies were negligible. However, recent numerical and
observational studies have demonstrated that the upper ocean is rich in structures
and processes at small scales [16, 17, 18]

Satellite-based sensors involve spatial and temporal resolutions, as well as differ-
ent sensitivities to weather conditions, especially cloud coverage and heavy rainfall.
For instance, regarding SST observations, high rates of missing data may occur in
high-resolution infrared observations (1kmx1km) unlike low-resolution microwave-
based data (25-50 km). In other words, direct observation of the upper ocean at
small-scales is very challenging. According to the targeted applications, one may
need a realistic reconstruction at high-resolution of the the SST fields in the pres-
ence of clouds from only the available low-resolution measurements. Describing and
parametrizing these small scale features is very challenging from a statistical point of
view. Indeed the modeling has to be sophisticated enough to handle these patterns
but computationally tractable to keep the estimation and simulation feasible.

Stochastic methods and statistical learning algorithms have been introduced to
address both issues [19]. In this thesis, we focus on two problems: the reconstruc-
tion of high-resoluton SST fields from low-resolution observations, referred to as
SST super-resolution, and the characterization of the turbulence-related geometri-
cal patterns exhibited by SST fields. Our general objective is to identify random
models, which can mimic statistical properties exhibited by real observations, and
to explore possible parameterization variabilities. It may be noted that, unlike
classical reconstruction issues in image processing, the actual reconstruction of the
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true high-resolution fields may not be meaningful given the randomness of the pro-
cesses. As such, SST fields may rather be considered as textural fields and our
study relates to texture synthesis and analysis. The intrinsically multi-scale nature
of the underlying dynamical processes naturally leads us to consider multi-scale and
scale-invariant random processes, namely spectrally-constrained random processes
and conformally-invariant random processes. Beyond the theoretical and compu-
tational analysis of the considered models, We give more emphasis to parametric
representations with a view to making easier their geophysical interpretation.

The introduction is organized as follow: In section 1.1, we present a brief descrip-
tion of the various sources of remotely sensed SST data considered in this thesis. We
focus our discussion on their underlying characteristics and challenges. We briefly
present our contributions in terms of data characterization and pre-processing. In
Section 1.2, we describe the class of Gaussian texture-based models that we use
to build stochastic generators that encompass the features of the considered data.
We briefly introduce the considered directions for embedding in such models the
patterns exhibited by SST data, especially multi-scale patterns. The following sec-
tion 1.3 further introduce the use of the described models in the super-resolution
framework. We finish in Section 1.4 by a description of the proposed work.

1.1 Considered SST data and related issues

In order to provide global coverage of SST with dense spatial and temporal resolu-
tions, in situ measurements from buoys and ships are inadequate. Despite the fact
that these (direct) measurements are very accurate, their spatial coverage is sparse,
which makes their exploitation limited for the observation submesocale phenomena
at the ocean surface. Earth-observing satellite instruments provide such capabil-
ity. Satellite-derived sea surface temperature fields are often rich in small-scale
structures reflecting very important underlying oceanic processes related to eddies,
currents [20]. However, direct observation of the various upper ocean phenomena
and processes at fine-scales, using satellite-based instruments, remains challenging
for two reasons:

1. Because of the Cloud cover, SST fields obtained using high-resolution infrared
sensors [21] are significantly impacted by a high rates of missing data. This is
because the black body spectrum of the infrared emission from Earth is almost
absorbed by the water vapor and aerosol composing the clouds. The typical
resolution of the infrared SST data varies between 1km to 10km, while the
temporal sampling varies from a few minutes to several hours. For instance,
geostationary sensors (e.g., SEVERI, GOESS...) provide high temporal res-
olutions but only for regional coverage. By contrast, near polar-orbiting in-
struments (e.g., VIIRS, MODIS, AVHRR...) provide a global coverage with
repeat time from 12 hours to several days.

2. The low-resolution data obtained using micro-wave instruments are insensi-
tive to the cloud cover and can represent an alternative to those obtained by
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the infrared sensors to observe ocean parameters even under cloudy-sky con-
ditions. The reason is that the emitted micro-wave signal penetrates clouds.
However, the passive microwave signal is affected by other phenomena such
as precipitations. Unfortunately, because of the coarser resolution of the as-
sociated products, the use of this type of data is limited to the observation of
large-scale phenomena (i.e., mesoscale, global fronts...) of the global ocean. As
an example of the SST micro-wave sensors, we limit ourselves here to AMSR
sensors.

To illustrate the above remarks, we proceed as follows. First, we calculate and
compare the probability of occurrences of clear-sky pixels (i.e., missing data statis-
tics) associated to the two types of SST products. To this end, we use one year
of daily L3 gridded data obtained respectively from the MODIS-only and AMSR-
E-only sensors. Both instruments are on-board the NASA Aqua platform and the
spatial resolutions of the considered (processed) products are respectively 4km and
25km. The resulting probability maps are shown in Fig.1.1. Each pixel value of
these fields represents the probability that the underlying pixel is cloud-free for
MODIS (resp. rain-free for AMSR-E) over one year. It is clear from these proba-
bility maps that the micro-wave data are less impacted by gaps. It is worth noting
that cloud-free pixels for MODIS are likely localized near coastal areas.

(a) (b)

Figure 1.1: Probability of occurrences of clear-sky pixels during 2004 in (a) Modis
L3 data (b) AMSR-E

We further illustrate the characteristics of the various type of remotely-sensed
SST data from real data in Fig.1.2. In the first example, we show satellite-derived
SST snapshots captured simultaneously (and independently) by, respectively, in-
frared and micro-wave senors under clear sky conditions. The second example in-
volves a cloudy weather. Whereas more than 75% of data were missing for IR
MODIS snapshot (Fig.1.2(c)), the AMASR-E (Fig.1.2(d)) snapshot is unaffected by
clouds. The high mission date rates point out the need for super-resolution algo-
rithms with a view to reconstructing realistic high-resolution SST fields from the
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(a) (b)

(c) (d)

Figure 1.2: Example of satellite-derived SST snapshots acquired by MODIS ((a)
and (c)) and AMSR-E ((b) and (d)) on Aqua platform in the Malvinas region. The
snapshots of the first row were acquired on Aug. 25, 2010 and depict a cloud-free
scenario. By contrast, the snapshots second row images were acquired 3 days later
under a heavily cloudy conditions.
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observed low-resolution conditions. This is the core of this thesis with an empha-
sis on the introduction of novel stochastic models, along with their theoretical and
computational characterization in Chapters 2 & 3 and on the application to SST
field in Chapter 6.

Besides missing data rates, the reported examples stress the remarkable richness
of the fine-scale structures observed in real SST fields. As pointed out by Fig.1.2,
IR MODIS snapshot reveals such ocean turbulence patterns, which are widely
filtered out by AMASR-E snapshots. These fine-scale structures are expected to
have a critical role in the geophysical and ecological processes at ocean’s surface
[22]. A natural question, therefore, is to ask how we can objectively describe
and characterize the small-scale heterogeneities of this images. For that purpose,
traditional methods based on the spectral analysis, leading to the estimation of the
scaling properties, may be considered. Unfortunately, the underlying multi-scale
oceanic processes and the related features cannot be characterized by a single
scaling exponent (i.e., the slope of the Fourier spectrum) and more sophisticated
methods are required. Chapter 4 addresses this issue. We follow some recent
attempts to characterize turbulent dynamics based on numerical simulations [15] to
focus on the analysis of the geometrical regularity of satellite-derived SST level lines.

Yet another drawback of working with high-resolution infrared datasets is the
presence of undesired noise patterns contained in the various products. The super-
resolution methods developed in this thesis belong to the family of the learning-
based methods which consists on direct sampling image priors from high-resolution
fields. Prior to the learning step, we shall need to eliminate or at least reduce the
amount of undesired noise patterns. In chapter 5, we deal with the suppression of
the striping noise contained in SST L2 products. We propose a combined Fourier-
wavelet filtering method and adapt it to the case of gaped datasets. We demonstrate
the benefits of the proposed scheme with respect to state-of-the-art methods for
different datasets.

1.2 Sample-based texture analysis and synthesis

In what follows, we consider a class of textures associated with geophysical dynamics.
Building models and synthesis algorithms for these kind of textures is a challenging
problem that has received much attention over the past years. Non-stationary mod-
els are often needed since traditional stationary (and isotropic) assumptions appear
too restrictive for capturing the complex patterns observed in remotely sensed SST
fields. Furthermore, SST fields contain features at various levels of detail, i.e., at
different scales. A multiresolution analysis and synthesis seems necessary. A great
deal of the potential candidate models is how to manage all the observed scales.
Sample-based stochastic texture models have been developed to simulate, in a sta-
tistical framework, possible realizations of the considered geophysical fields at given
scales. Assuming that the fields are stationary and normally distributed, which is
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not a realistic hypothesis in the case of textures associated with turbulent flows, all
we need to specify is an appropriate second order function.
For the standard Gaussian Random Field Texture prior models, the prior model is
classically specified by covariance functions. A covariance function of an homoge-
neous (or stationary) RF is defined by a continuous positive definite function that
depends on the relative position of pixels.

Cov(X(~x), X(~y)) = f(~x− ~y) = f(~h) (1.1)

where X is the RF, ~x and ~y are the spatial locations and ~h = ~x − ~y is the relative
position. In the case of isotropic fields, the covariance function only depends on the
distance lag between points. As already mentioned, under the Gaussian setting, the
covariance function completely defines the stationary field. A variety of classical
covariance models, including exponential and Gaussian models, may be considered.
Formally, a Gaussian field relates to the following multivariate p.d.f.:

p(x|Q,µ) = (2π)(n/2)det(Q)(1/2) exp(
1

2
(x− µ)tQ(x− µ)) (1.2)

where Q = Σ−1 is the precision matrix (i.e. the inverse of the covariance matrix
Σ). Limitations of the covariance-based methods, related to the so-called ’the big
n problem’, are known for both the inference and synthesis setting. In fact, as we
can see from the likelihood (1.2), the formula involves finding the inverse of the
(dense) covariance matrix. As an example, consider the problem of synthesizing a
50×50 pixel random field, it gives rise to the inversion of 2500×2500 pixel matrix.
Therefore, this method leads to a huge computational and memory complexity. In
this thesis, we deal with high-resolution satellite-based data and we are interested in
the simulation of relatively large fields (typically, 512x512 fields for a global scale)
Recently, [2] presents another set of approaches based on statistical constraints (i.e.,
Second order statistics). The various methods were then adapted to the context
of texture synthesis with a special focus on the color texture. Both randomization
processes can be expressed in the Fourier domain. The proposed corresponding
synthesis algorithms are fast and reliable since the corresponding algorithms rely
on the Fast Fourier Transforms (FFT). Despite the fact that both models are non-
parametric and homogeneous, equivalent parametric formulations can be derived
through the selection of appropriate parametric models for the spectrum. Starting
from an exemplar image, and assuming that the selected prior theoretical model
holds, the parameters can be estimated by fitting empirical spectrum to the consid-
ered theoretical model. Moreover, using the fact that both models can be written
as convolution product, non-stationary extensions are possible by allowing the con-
volution operator to spatially vary. To the extent of our knowledge, this extension
must be performed in the spatial domain and has no Fourier-based formulation.
This leads to relatively more computational and/or memory complexity compared
to the standard stationary case, but still more efficient than the covariance-based
method described above. In the non-stationary case, the prediction of the statistical
features exhibited by realizations of the random model may also be a complex issue.
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Another way of pursuing good prior models with fast computations and low
memory requirements is through the use of pseudo-differential operators. In this
approach, the random image is expressed as a solution of a Stochastic Partial Dif-
ferential equation (SPDE). The sparsity of the resulting precision matrices makes
storage and computation manageable. Recently, [23, 24] studied such operators from
a statistical point of view. The considered operator is a Laplacian-like operator of
the form L = (κ − ∆)α/2, with κ and α are positive real parameters. The main
important results of their contributions are the following: First, they establish the
explicit link between the above differential operator and the class of Matérn covari-
ance family. Secondly, they built a link with the class of the (discrete) Gaussian
Markov fields. The established Markovian propriety is very useful and leads to very
sparse precision matrix. It was followed by some extensions to take into account
non-stationarity [25], non-Gaussianity [26] and to generate multivariate fields [27].
Notice that various applications were also considered. In [28], we considered a di-
rect application of the non-homogeneous Matérn SPDE class to the problem of the
exemplar-based super-resolution with a focus on satellite-based imagery.

The above-mentioned models do not explicitly address the multi-scale patterns
exhibited by natural textures and textures associated to geophysical fields. This is
a key contribution from Chapter 2, where we explore such extensions with a focus
on cross-spectral constraints.

Figure 1.3: (a) The sparsity structure of the matrices involved in the inference and
the synthesis of textures using the SPDE and equivalent approaches comparing with
(b) the dense matrices using the classical covariance-based method. Even using the
covariance tapering [1] to approximate the likelihood (1.2), the resulting matrices
are relatively less sparse than (a).

1.3 The use of systems of texture-based models as a pri-

ors in image super-resolution

In this thesis, we consider the application of the various stochastic texture-based
models developed in Chapter 2 to the super-resolution of textured images. We aim
at simulating a high-resolution textured image given a low-resolution sample. For-
mally, image super-resolution is stated as the conditional sampling of a stochastic
model with respect to a low-resolution condition. Our specific interest is in the state-
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ment of different image priors to constrain the spectral, statistical and geometrical
aspects and proprieties of the reconstructed high-resolution image conditionally to
the low-resolution observation. Specifically, we consider the multi-scale stochastic
texture-based models and the associated algorithms developed in Chapter 2. Chap-
ters 3 & 6 explore different parameterizations. In Chapter 3, we shall concentrate
on the classical univariate models in the spatial domain. In this setting, the first
and the second order moments, at various scales, are controlled. Following the ideas
from [29], we consider additional constraints on the phase information of the recon-
structed fields, the phase being a key feature of the exhibited geometrical patterns.
In Chapter 6, we embed the stochastic models from Chapter 2 within a multi-scale
wavelet-based representation and focus on real SST fields.

Figure 1.4: Illustration of the Exemplar-based super-resolution as considered in this
thesis.

1.4 Outline of the thesis

This thesis is divided in two parts. The first Part is devoted to the theoretical
and algorithmic study of considered textural-based models. In Chapter 2, after
a brief state-of-the-art of the existing texture models and synthesis methods, we
extend the second-order models reviewed by [2] to the multivariate case. Chapter
3 addresses an application to image super-resolution with additional phase-related
constraints. The second Part of the manuscript focuses on the modeling and analysis
of satellite-derived SST fields with three contributions: the pre-processing of striping
noise patterns (Chapter 4), the statistical characterization and modeling of the
geometrical patterns of high-resolution SST fields (Chapter 5) and the simulation of
high-resolution SST fields conditionally to low-resolution observations (Chapter 6).
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In this chapter, we explore the mathematical results of two exemplar-based tex-
ture models. Namely, random phase noise (RPN) and asymptotic discrete spot noise
(ADSN). Both models allow us to synthesize stationary Gaussian textures that does
not exhibit macro geometric details. This mathematical and experimental study is
completed by two contributions for both categories of texture synthesis models. The
RPN and ADSN models are first extended to the multivariate framework. Second,
parametric SPDE-based representations are introduced.

2.1 Introduction

2.1.1 The texture synthesis problem

The goal of the Example-based (or sample-based) texture synthesis is to develop an
efficient generation procedure to produce new textures from a given input sample.
The success of the synthesis procedure is determined by the visual fidelity of the
synthesized textures with respect to the given samples and also by the capability
of reproducing the textural quantitative characteristics of the original sample (e.g.,
histograms, spectra, high order statistics...). The process of synthesizing new tex-
tures from a sample has received great attention over the last few years in the image
processing field and associated applications, including realistic texture rendering in
computer graphics, denoising and inpainting of textured images...

In this thesis, we deal with the synthesis of the stochastic gray-scale textures.
Using a given (single) model, the more difficult part of the synthesis problem is the
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ability to deal with the wide variety of the scale-dependent features exhibited by
a given sample. The superposition of all these scales (e.g., Fourier modes, wavelet
subbands) gives rise to non-Gaussian scenarios with non-homogeneous anisotropic
patterns, what leads to complex parametrization.

2.1.2 Previous work (Parametric and non-parametric approaches)

We restrict ourselves to statistical models and may refer the reader to [30, 31] a wider
review of textural models. Broadly speaking, one can divide the texture synthesis
methods in two main categories. The first category embed non-parametric methods,
among which patch-based methods introduced in [32] are the most popular and
efficient. A second category of approaches involve parametric models, and mainly
statistical models, including for instance, auto-regressive models, Markov random
fields, Gaussian processes....These models requiring learning on large-scale datasets
seem less appropriate to our application context.

Parametric models: A variety of parametric models have been introduced
for texture synthesis. 2D auto-regressive and Gibbs random fields for instance rely
on the explicit modeling of the conditional likelihood of a pixel given some neigh-
borhood. Different local parameterizations may be considered (e.g., co-occurrence-
based [33], response to filters [34]). The simulation of textured images generally
relates to Gibbs sampling strategy and model calibration resorts to classical statis-
tical criterion (e.g., Maximum Likelihood, Maximum Entropy,...). Other parametric
models are associated with specific textural features such as spectral constraints [2]
or marginals of wavelet decomposition [35]). It may be noted that parametric models
may be stated in the original image domain as well in a transformed domain (Fourier
transform, wavelet decomposition,...). In this respect, covariance-related and asso-
ciated Fourier-based representations will be of particular interest in our study. They
are introduced more precisely in the following section. Overall, the main limitation
of parametric methods may be their limited capabilities the wide range of textural
patterns as they are, by nature, expected to (only) reproduce some predefined spe-
cific textural characteristics. Conversely, they provide a compact representations of
textures, which may make easier their interpretation.

Non-parametric models: From the early 2000’s, non-parametric models, es-
pecially patch-based ones, have gained much interest for texture synthesis. They
rely on some patch-wise copying scheme to resample a new textured image from
an exemplar [36]. Later enhancements and extensions on this idea led to dynamic
(or volumetric) texture synthesis as well as application to missing data interpola-
tion for satellite-derived missing data interpolation [37, 38]. It may be noted that
patch-based models can be restated as Markov Random Fields [39]. Despite the fact
that the synthesis results obtained by this method are visually very satisfactory in
the case of very structured texture examples, the resulting textures are almost ob-
tained by a simple juxtaposition of small patches directly sampled from exemplars,
which means that these methods have a limited innovation capacity. Besides, such
non-parametric schemes offer little interpretation possibilities.
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Recently, the combination of parametric and non-parametric frameworks provide
new solutions, which may be of interest for future work. We may cite [40, 37] the
combination of patch-based models to spectral and marginal features as a mean
to better control the textural samples synthesized by patch-based models. The
application of deep learning architectures [41] to texture synthesis may also viewed
as an example of a similar strategy, whose benefits for the considered application
would require additional analysis.

2.1.3 Contribution of the Chapter

In this paper, we introduce the generalization of the RPN and ADSN models to mul-
tivariate case. We develop fast synthesis algorithms for both multivariate random
processes. The models allow us to impose spectrum and cross spectrum constraints
on the synthesis as demonstrated in the experimentation sections. The approach is
compared to the classical method [2] and the benefit of the proposed constraints is
demonstrated. One of the rather interesting aspects of the proposed approaches is
that they can be written as solution of parametric SPDE equations. That will be
of importance in the case of synthesis of partially-observed textures.

The plan of this chapter is as follows. In Section 2.2 we introduce the basic
results of the spot noise model. The asymptotic limit of this model, know as ADSN,
is presented in 2.3. In section 2.4 we present the RPN model. Both models are
extended to the multivariate case in 2.5. SPDE-based formulations and associated
possible parametrizations are discussed in 2.6. We present the conclusion of this
chapter in Section 2.7.

2.2 Shot (Spot) noise model

(a) n=10 (b) n=10
2 (c) n=10

3

Figure 2.1: Spot noise associated with the Gaussian kernel with different values of
n. A stationary texture is obtained as n increase.

The shot noise model is the most elementary strategy to simulate and obtain a
2D stationary (Gaussian) random field. Fundamental results of this model go back
to Rice [42]. The idea consists in superposing a large number of identical but shifted
copies of an elementary kernel, a deterministic function called spot, whose centers
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are randomly (uniformly) chosen over the domain. Formally, the spot noise process
is given by

Xn(x) =

n
∑

i=1

h(x− xi) (2.1)

where h is the deterministic spot and the random set (n, xi=1,··· ,n) is generally mod-
eled the realization of a Poisson point process on a rectangular domain of intensity
λ > 0. The convergence to a (stationary) Gaussian process as the intensity increases
is well known [43] . Fig.2.1 shows several realizations of 2.1 using a Gaussian kernel
for different values of n. It may be stressed that the obtained images converge to
an homogeneous texture-like image. This limit object, called ADSN, was rigorously
defined in [2] and will be studied in the next section. We now consider the spectral
representation of the spot noise process. By taking the Fourier transform of 2.1 and
exploiting its linearity we obtain

X̂n(k) =
n
∑

i=1

ĥ(k)exp(−jkxi) (2.2)

=

n
∑

i=1

|ĥ(k)|exp(j(ρ(k)− kxi)) (2.3)

where ρ(k) is the phase of the spot h. Remark that the spatial shift of the original
spot does not shift the corresponding Fourier transform at all, but rather multiplies
the output by a linear phase.

2.3 ADSN

In this section, we investigate the interesting limit process of the Spot noise model
described in the latest section. For this purpose, we proceed as follows. Let us
consider an uniform random variable X on Ω and H(x) = h(x − X), where h is
a deterministic spot function. One can verify by a direct computation that the
expectation value of H(x) is E(x) = µ1Ω, where 1Ω is the indicator function over
Ω. The autocovariance function is given by

CovH(x, y) = Cov(H(x),H(y)) (2.4)

= Cov(h(x−X), h(y −X)) (2.5)

= E((h(x−X)−m)(h(y −X)−m)) (2.6)

=
1

|Ω|
∑

u∈Ω
(h(x− u)−m)(h(y − u)−m)) (2.7)

= Cov(h(x), h(y)) (2.8)

= Covh(x, y) (2.9)

In view of 2.9 the autocovariance function of H is exactly the same as that of
the spot function h. This property is particularly important. One consequence of



2.4. Random phase noise model (RPN) 33

the central limit theorem applied to the random sequence {Hn}n≥1 as n → ∞ is
that

√
n(Hn−mµ1) converge in distribution towards the multi-dimensional normal

distribution N (0, Covh(x, y). We can now introduce the ADSN (Asymptotic discrete
spot noise) associated with the spot h to be a centered random Gaussian field whose
autocovariance function is given by Covh(x, y) [2].

In the following, we show that the ADSN associated with the spot h can be
simulated by a convolution of a normalized copy of h with a Gaussian white noise
whose components are i.i.d with distribution N (0, 1). Let W(x, y) be a Gaussian
white noise with E(W) = 0 and E(W(u)W(v)) = 1u=v. The idea of this construction
is that the random field defined by Y = h̃ ∗W is a random Gaussian field with the
same distribution as the ADSN process associated with the sport h [2]. Since the
convolution is a linear operator, it is immediate that Y is Gaussian. In order to
properly establish the relationship between the ADSN and the convolution process,
we have to prove that E(Y ) = 0 and CovY (x, y) = Covh(x, y).

In the Fourier domain, the ADSN process is easily defined since the convolution
operator is given by a pointwise multiplication. It is known that a Gaussian white
noise image has a uniform independent random phase and its Fourier modulus is an
uncorrelated Rayleigh noise. Thus the the phase of the obtained ADSN is a uniform
random whereas its Fourier modulus is the pointwise multiplication of the Fourier
modulus of the spot h by a Rayleigh noise.

2.4 Random phase noise model (RPN)

The random phase noise model has been introduced as a stationary texture synthesis
technique by [44]. The idea consists in obtaining a texture from a given Fourier
magnitude (e.g., obtained from a texture example or trough parametric model)
by setting the phase as (uniform) random [45]. For a given real-valued image u,
the associated RPN representation is defined by a random image with the same
Fourier module as u and a random phase θ. As the random part θ of the RPN
is constrained to be a Fourier phase (angle) of a real-valued image, it must satisfy
specific conditions. Begin by recalling that the Fourier transform of a real-valued
image involves a complex conjugate symmetry (i.e., û(−k) = û∗(k). It follows that
the phase is an odd function of the frequency. In practice, it is often convenient
to simply generate a realization of a Gaussian white noise and then to consider its
phases.

Since the RPN is by nature defined in the Fourier domain, it is easy to compare
it with the ADSN process. The Fourier modulus of the RPN is by definition equal to
the Fourier modulus of the spot h while the Fourier modulus of the ADSN process
are the same modulus degraded by a pointwise multiplication by a white Rayleigh
noise [2].
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(a) Input Gaussian spot

(b) RPN (c) ADSN

(d) (e)

Figure 2.2: Differences between the outcomes of the RPN and the ADSN associated
with a Gaussian spot (a). (b) RPN outcome and (c) ADSN simulation. The Fourier
modulus of the various simulations are represented in (d) and (e) and. Let us point
out that the modulus of the ADSN is the pointwise multiplication of the modulus
of RPN by a white Rayleigh noise.
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2.5 Multivariate extension

A natural question to ask is whether the models and related results that we have
presented in the previous sections extend naturally to the multivariate framework.
Such a multivariate framework is of interest for the multivariate (e.g., colour or
multispectral) texture simulation, as well as application to multiscale image de-
composition as investigated in Chapter 6. Our goal here is to generate a vector
of textures while preserving the covariance structure of each image as well as its
cross-covariance with all the rest of images.

In the context of color texture synthesis, [2] addresses a multivariate extension of
the RPN and ADSN algorithms. The color ADSN process is obtained by convolving
each color channel with the same realization of a Gaussian white noise. While the
RPN is defined by adding the same random phase to the phase of each color channel
of the vector spot. One can easily verify that the covariance and cross-covariance
structures for the different color channels are preserved with these two multivariate
extensions. Convincing synthesis results are reported for color textures. In [46, 47],
a compact formulations are proposed using the so-called ”Texton”. In our applica-
tion context to ocean remote sensing data, these two formulations involve a critical
limitation. They assume that a multivariate spot image is available. The synthesis
procedures cannot straighforwardly extended to partially-observed images. Ocean
remote sensing data typically involve missing data and land mask, such that the
derivation of reference multivariate spots may be an issue. We also aim at guaran-
teeing the interpretability of the considered representative in terms of covariance and
cross-covariance models. Hence, we follow in this thesis the framework considered in
[27] for the multivariate SPDE processes. It relies on a system of equations, and we
adapt it to the case of ADSN and RPN processes. The resulting formulation does
not impose the same noise for each channel. The associated matrix- valued represen-
tation of the system may be parametrized by the covariances and cross-covariances
of the sample vector images, which can be derived from partially-observed as well as
irregularly-sampled images. Besides these parametric extensions, applications to the
joint analysis of multi-source and multi-resolution remote sensing data, with possi-
bly only partially overlapping spatial supports, may also be considered for instance
for the interpolation of high-resolution sea surface geophysical fields.

In this section, we explore the proposed multivariate RPN and ADSN models.
The texture synthesis algorithms used in Chapter 6 are based on these results.

2.5.1 Multivariate RPN

In this section we analyze the multivariate random phase noise (MRPN). We will use
this process as a mean to synthesize multivariate stationary textures with expected
spectral properties.

Definition 1. The multivariate RPN associated with a vector-valued image h =

(h1, h2, · · · , hn) is a random vector-valued image g = (g1, g2, · · · , gn) obtained using
a vector of independent uniform random phase θ = (θ1, · · · , θn) by the following
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system











ĝ1(ξ)

ĝ2(ξ)
...

ĝn(ξ)











=

[

Lij(h)

]

1≤i,j≤n











eiθ1(ξ)

eiθ2(ξ)

...
eiθn(ξ)











(2.10)

Such that Sg(ξ) = Sĥ(ξ).
where Lij(h) are matrix-valued operators which only depend on the vector-valued
image h. Sg and Sh denote respectively the power spectrum matrix of the vector-
valued images h and g.

Under this definition, the MRPN associated with a vector-valued image depends
on the spectra and cross-spectra of this vector. This definition embeds the case where
n =1. Another trivial case consists of identically zero matrix-valued operators for
i 6= j. In this case, we define the univariate RPN associated to a vector-valued
image h as a vector-valued image obtained by replacing the phase of the discrete
Fourier transform (DFT) of each component of h by a different realization of random
uniform phase.

Theorem 1. (Simulation of the MRPN). Let W = (W1, · · · ,Wn) be a vector of

independent Gaussian white noise constrained such that their Fourier modulus are

set to unity. Let L(h) = {Lij(h), 1 < i, j ≤ n} be matrix-valued operators related to

spectra and cross spectra of the vector-valued image h. Under a judicious choice of

L(h), the solution of the following system of equations
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L11(h) L12(h) · · · L1n(h)
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...

...
. . .

...

Ln1(h) Ln2(h) · · · Lnn(h)





















Ŵ1

Ŵ2
...

Ŵn











(2.11)

is the MRPN associated with h.

For the proof of theorem, we will focus on the construction of the trivariate
system of RPN i.e., n = 3. To simplify the system (2.11), we shall consider lower
triangular matrix by setting L12(h) = L23(h) = L23(h) = 0. In this case, the system
of RPNs in the spectral domain becomes





ĝ1
ĝ2
ĝ3



 =





L11(h) 0 0

L21(h) L22(h) 0

L31(h) L32(h) L33(h)









W1

W2

W3



 (2.12)

and the solution g = (g1, g2, g3)
T (after an inverse Fourier transform) to this system

of equations is a trivariate RPN textures. One can make (2.12) on the following
compact form

ĝ(ξ) = L(h)Ŵ (2.13)
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Our aim is to find a way to compute all the components of L(h) to directly target
the spectral and cross-spectral characteristics of the vector-valued image h. Direct
calculations exploiting (2.13) show that

Sg(ξ) = E(ĝĝH) (2.14)

= L(h)E(ŴŴH)L(h)H (2.15)

= L(h)SW(ξ)L(h)H (2.16)

where L(h)H denotes the Hermitian of the operator matrix L(h), SW(ξ) is the power
spectrum of the noise processes. Since this noise processes are mutually independent,
SW(ξ) is a block diagonal matrix and can be written in a compact form as

SW(ξ) = diag(SW1
(ξ),SW2

(ξ),SW3
(ξ)) (2.17)

Moreover, the noise processes are white with Fourier modulus equals to unity. A
direct computation shows that SWi

(ξ) = 1 (∀i = 1 · · · 3), where 1 is the image whose
components are all equal to 1.

We can now develop the system of equations (2.16) taking into account the above
observations. We resort to the following matrix-based system

Sg(ξ) =





L11L∗
11 L11L∗

21 L11L∗
31

L21L∗
11 L21L∗

21 + L22L∗
22 L21L∗

31 + L22L∗
32

L31L∗
11 L31L∗

21 + L32L∗
22 L31L∗

31 + L32L∗
32 + L33L∗

33



 (2.18)

As we have already noted, our goal is to relate each component of the right-hand
side of (2.18) to the cross-spectral matrix of the initial vector image h. It is achieved
by imposing the following equality

Sg(ξ) = Sh(ξ) (2.19)

This is equivalent to resolve the following system

L11L∗
11 = ĥ11ĥ

∗
11 (2.20)

L21L∗
11 = ĥ21ĥ

∗
21 (2.21)

L31L∗
11 = ĥ31ĥ

∗
31 (2.22)

L21L∗
21 + L22L∗

22 = ĥ22ĥ
∗
22 (2.23)

L21L∗
31 + L22L∗

32 = ĥ23ĥ
∗
23 (2.24)

L31L∗
31 + L32L∗

32 + L33L∗
33 = ĥ33ĥ

∗
33 (2.25)

where ĥij = F(hij) is the Fourier transform of the vector-valued image h.
Using (2.21) and proceeding by recursive substitutions, the solutions of this system
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of equations is given by

L11 = ĥ11 (2.26)

L21 =
ĥ21ĥ

∗
21

ĥ11
(2.27)

L31 =
ĥ31ĥ

∗
31

ĥ11
(2.28)

L22L∗
22 = ĥ22ĥ

∗
22 −

ĥ21ĥ
∗
21

ĥ11
(
ĥ21ĥ

∗
21

ĥ11
)∗ (2.29)

L∗
32 =

ĥ23ĥ
∗
23 − L21L∗

31

L∗
22

(2.30)

L33L∗
33 = ĥ33ĥ

∗
33 − L31L̂∗

31 − L32L∗
32 (2.31)

This completes the proof of Theorem 1 for the trivariate case. The extension to
greater values of n follows from the same principles.

2.5.2 Multivariate ADSN

Similar arguments to those used above to define and characterize the multivariate
RPN can be used to extend the ADSN process to the multivariate case. One of
the facts we learned about the (univariate) ADSN process was that if the spot h

has the autocovariance of the form Covh(x, y) then the associated ADSN process is
completely defined by the random Gaussian process N (0, Covh(x, y)).

Definition 2. Let H = (h1, h2, · · · , hn) be a vector of spot functions. The multivari-
ate asymptotic discrete spot noise (MADSN) associated with H is the multi-normal
distribution N (0,CH) with

CH =











C(h1, h1) C(h1, h2) · · · C(h1, hn)

C(h2, h1) C(h2, h2) · · · C(h2, hn)
...

...
. . .

...
C(hn, h1) C(hn, h2) · · · C(hn, hn)











(2.32)

By analogy with the univariate ADSN process, the simulation of the MADSN
can be obtained by a spatial filtering of a vector of noise images. We show in the
subsequent that the MADSN associated with a vector of spots H = (h1, h2, · · · , hn)
can be simulated as a system of convolution processes between normalized spot
vector and a vector of realizations of independent Gaussian white noises.

Theorem 2. (Simulation of MADSN). Let W = (W1, · · · ,Wn)
T be a vector of

independent Gaussian white noises. Let H̄ be the normalized zero-mean copy of H.

Then there exists a family of functions {fij}1≤i,j≤n such that the random multivari-

ate image

(fijH̄)1≤i,j≤n ∗W (2.33)

is the MADSN associated with H (i.e., has the same multi-normal distribution de-

fined in (2.32)).
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Figure 2.3: Example of correlated texture-like satellite images provided by the mul-
tispectral LANDSAT 7 ETM sensor and sampled respectively with channels 2,3,4
(first row). The outcome of the trivariate RPN algorithm is displayed in the sec-
ond row. Independent simulations using the univariate RPN model of the three
image are shown in the third row. The trivariate model aims at reproducing the
autocorrelations and cross correlations of the three texture samples.

(a) (b) (c)

Figure 2.4: Comparison between the autocorrelation and cross-correlations obtained
from (a) the input texture sample, (b) from the trivariate RPN outcome and (c)
from images depicted in (Fig.2.3 third row).
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Proof. We proceed similarly to the MRPN and consider the trivariate case (i.e.,
n = 3) and limit ourselves to a lower triangular block matrices in (2.33). In this
case, (2.33) is reduced to





g1
g2
g3



 =





f11(h) 0 0

f21(h) f22(h) 0

f31(h) f32(h) f33(h)



 ∗





W1

W2

W3



 (2.34)

Notice that our goal here is to obtain an explicit representations for the family of
functions {fij}1≤i,j≤n so that we have

g ∼ N
(

0,





C(h1, h1) C(h1, h2) C(h1, h3)

C(h2, h1) C(h2, h2) C(h2, h3)

C(h3, h1) C(h3, h2) C(h3, h3)





)

(2.35)

where C(hi, hj) = hi ∗ hj .
The system (2.34) can be written as











g1 = f11(Ĥ) ∗W1

g2 = f21(Ĥ) ∗W1 + f22(Ĥ) ∗W2

g3 = f31(Ĥ) ∗W1 + f32(Ĥ) ∗W2 + f33(Ĥ) ∗W3

(2.36)

We can easily check two properties: i) the vector-valued image g is Gaussian, and ii)
E(g) = 0. All this comes from the fact that the noise processes are centered Gaussian
processes and from the fact that the convolution product is linear which preserves
the Gaussianity. To complete the proof, we need to determine the expression of the
covariance structure of g.

C(g1, g1) = E(
[

f11 ∗W1

][

f11(Ĥ) ∗W1

]

) (2.37)

= E(
[

∑

u∈Ω
f11(u− x)W1(u)

][

∑

v∈Ω
f11(v − y)W1(v)

])

(2.38)

=
∑

u∈Ω
f11(u− x)f11(u− y) (2.39)

= f11 ∗ f11 (2.40)

C(g2, g1) = E(
[

f21 ∗W1 + f22 ∗W2

][

f11(Ĥ) ∗W1

]

) (2.41)

= E(
[

f21 ∗W1

][

f11 ∗W1

]

+
[

f22 ∗W1

][

f11 ∗W2

]

) (2.42)

= f21 ∗ f11 (2.43)

In the same way, one can prove the following formulas

C(g3, g1) = f31 ∗ f11 (2.44)

C(g2, g2) = f21 ∗ f21 + f22 ∗ f22 (2.45)

C(g3, g2) = f31 ∗ f21 + f32 ∗ f22 (2.46)

C(g3, g3) = f31 ∗ f31 + f32 ∗ f32 + f33 ∗ f33 (2.47)
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We now have everything we need to develop explicit formulas for
[

fij
]

1≤i,j≤3
. Sim-

ilarly to the proof of Theorem 2.11, we shall compare each term of the covariance
matrix (2.35) with those calculated using the system (2.36). We begin with the
observation that the solution of the first equation is trivial

f11 ∗ f11 = h̄11 ∗ h̄11 (2.48)

and one can impose f11 = h̄11. From the substitution of these terms in (2.44) and
(2.45), the inverse Fourier transform leads to

f21 = F−1 ĥ
2
21

ĥ11
(2.49)

f31 = F−1 ĥ
2
31

ĥ11
(2.50)

A similar computations shows that

f22 = F−1
√

ĥ222 − f̂2
21 (2.51)

f32 = F−1 ĥ
2
32 − f̂31f̂21

f̂22
(2.52)

f33 = F−1
√

ĥ233 − f̂2
31 − f̂2

32 (2.53)

Hence, using this family of functions {fi,j}i,j , g exhibits the expected covariance
structure, which completes the proof for the trivariate case. The extension to the
n-variate case follows from the same development.

Figure 2.5: Example of the outcome of the trivariate ADSN algorithm. The input
images (first row) are texture-like satellite snapshots provided by LANDSAT 8 and
taken respectively from channels 1,2 and 5.



42
Chapter 2. Texture synthesis using univariate and multivariate

sample-based stochastic models.

(a) (b)

Figure 2.6: Demonstration of the capability of the trivariate ADSN model to produce
the correlation and cross correlation of the sample vector images. (a) sample-based
kernels (b) Outcomes of the MASN algorithm.

2.5.3 Differences between the MRPN and MADSN

The comparison of the two considered processes is simpler in the univariate case.
Given a spot image h the difference of the outcomes of the models lie only in the
modulus of their Fourier transforms. As already mentioned, the Fourier magnitudes
of the ADSN process are corrupted by a multiplicative Rayleigh white noise. In
the case of multivariate models, we will follow the manner in which we have con-
structed the two processes. In particular, we will rely on equations (2.12) and (2.35).
The MADSN is obtained by a point-wise multiplication of each Fourier modulus of
terms in the summation (2.12) by a Rayleigh white noise. Given the fact that the
matrices are triangular, the difference between the first component of the vector-
valued MRPN and MADSN resorts to the univariate case (Fig.2.7). No such direct
correspondence can be derived for the other components.

2.6 Parametric representations and associated SPDE-

based formulations

We want to address parametric representations of the different models considered in
this chapter. In view of the definitions of the univariate (resp. multivariate) RPN
and ADSN models in the spectral domain, one can select appropriate parametric
models for the power spectrum (resp. cross power spectrum). This selection may
be based on a prior knowledge (e.g., Fitting a model to a sample). In the spatial
domain, this is equivalent to select appropriate models for the covariance (resp.
cross covariance) kernels. In this section we briefly present an important class of
the parametric forms of covariance functions which can be associated to a solution
of certain SPDE equations.
As a starting point, we recall the definition of the ADSN process presented in section



2.6. Parametric representations and associated SPDE-based
formulations 43

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5

200

400

600

800

1000

1200

1400

1600

1800

SADSN /SRPN

F
re

q
u
e
n
c
y

(c)

Figure 2.7: Difference between the MRPN and MADSN processes. The Fourier
modulus of the first component of the vector image simulated using (a) the MRPN
and (b) MADSN algorithm. The modulus of the MADSN is the pointwise multipli-
cation of the modulus of MRPN by (c) a white Rayleigh noise.
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2.3 as the spatial convolution of a spot function with a Gaussian white noise

X(s) = G(s) ∗W(s) (2.54)

It follows by taking the Fourier transform of both sides of the above equation that

X̂(k) = Ĝ(k)Ŵ(k) ⇐⇒ Ĝ−1(k)X̂(k) = Ŵ(k) (2.55)

⇐⇒ L̂(k)X̂(k) = Ŵ(k) (2.56)

⇐⇒ L(s) ∗X(s) = W(s) (2.57)

If the matrix-valued function L can be written as operator-valued (pseudo) differ-
ential operators, one can rewrite (2.57) as an SPDE

LX(s) = σW(s) (2.58)

where L is a given (pseudo) linear differential operator, W is white Gaussian noise
and σ is the variance parameter.
All the main results established for the ADSN processes are valid for the SPDEs
and drive from the same principles using the duality between (2.58) and (2.54).
The matérn covariance model and its SPDE representation. We study a
special parametric class of (2.58). Namely, the Matérn class of SPDE. Before giving
the explicit formulas of the associated operator L, we introduce the Matérn family of
covariance function models. This family is very popular in environmental statistics
[48]. The Matérn covariance function has a shape parameter ν, a scale parameter
κ, and variance parameter, σ2, and can be parametrized as:

C(~h) =
21−νσ2

(4π)d/2Γ(ν + d/2)κ2ν
(κ||~h||)Kν(κ||~h||) (2.59)

where Kν is the modified Bessel function of the second kind of order ν > 0. Special
cases resort to a Gaussian and exponential covariance models.
One can analytically establish processes associated with the Matérn covariance fam-
ily and their SPDE representations. More precisely, as detailed in [49], every cen-
tered Gaussian process with a continuous Matérn covariance function has a repre-
sentation of the form:

(κ−∆)α/2X(s) = σW(s) (2.60)

where α = ν/2 − 1/2. The proof of this result relies on the theory of the pseudo-
differential operators and their related spectral representation. We may refer the
reader to Samko et al [50] which provides an excellent and remarkably readable
treatment of the topic. The fractional operator in (2.60) reduces by Fourier trans-
forms to multiplication by the power (κ + ‖k‖)α/2. Rather interestingly, explicit
formula for the inverse Fourier transform of its inverse are also established. This
gives us the analytic form of the associated convolution operator G in (2.54), which
is one of the rather interesting aspects of the class of Matérn family.

G(h) = F−1(1/L̂κ,ν,σ) = C(κ,ν/2−1/2,
√
σ)(h) (2.61)
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where C is a Matérn-like covariance function. In addition to this result, one may be
tempted to conclude that

C(κ,α,κ,σ) = C(κ,ν/2−1/2,
√
σ) ∗ C(κ,ν/2−1/2,

√
σ) (2.62)

This is an other result from [50]. Recall that we already know from the above sections
that the autocovariance function of random field is just an auto-convolution of the
associated spot kernel. the Matérn example is the only case, to our knowledge, when
such analytic correspondence is known.
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Figure 2.8: (a) Isotropic Matérn covariance function obtained from model (2.59),
(b) Realizations of random field with the covariance function shown in (a)

Various extensions. The Matérn covariance function considered in (2.59) is
isotropic and involves circular constant-correlation contours. One can extend such
functional to account for locally anisotropic image features. The simplest method
to perform this extension consists in applying a linear transformation (shear and
rotation) to the coordinates system of the standard isotropic Matérn kernel. Such
convariance kernels result in elliptical constant-correlation contours. Formally, it
resorts to applying the following transformation to the original coordinate system:

[

x
′

y
′

]

=

[

1 0

0 R

] [

cos θ − sin θ

sin θ cos θ

]

×
[

x

y

]

(2.63)

where R is the anisotropy ratio, θ is the orientation of the principal axis. Notice
that the correlation length along the principal axis is controlled by parameter κ in
(2.59).

Given a texture sample X, under the assumption that model (2.58) holds, model
parameters can be estimated directly from this sample. A non-parametric approach
for the identification of the anisotropic correlations in spatially-sampled datasets is
developed in [51]. The calibration framework focuses on the so-called Covariance
Hessian Matrix (CHM) defined, for differentiable covariance model, as follows:

Hij(r) = −∂2C(r)

∂ri∂rj
, i, j = 1, 2 (2.64)
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Figure 2.9: Anisotropic Matérn covariance function obtained by applying the trans-
formation (2.63) to the covariance function shown in Fig.2.8(a) with R = 1/2 and
θ = π/4, (b) A realization of random field with the given covariance function.

We determine the parameters of geometric anisotropy from the analysis of the ex-
pectation of the Gradient Kronecker Product:

Qij(r) = E(∂iX(s)∂jX(s)) (2.65)

with E denoting statistical expectation.
Swerling has proved in [52] that the Covariance Hessian Matrix (CHM) is related to
the expectation of the Gradient Kronecker product (Q) by the following equation:

Hij(r)|r=0 = Qij (2.66)

The CHM H∗
i,j(0), evaluated at zero lag, in the principal coordinate system is a

diagonal matrix given by

H∗
i,j(r)|r=0 = − δij

2ξiξj
∆C̃(0) (2.67)

where ∆C̃(0) =
∑2

i=1 δ
2C̃(0)/δr2i is the Laplacian of the isotropic covariance func-

tion C̃(r) evaluated at zero lag. This function is obtained by rotation and rescaling
of the axes.The ξi, ξi (i, j = 1, 2) are the correlation lengths in the respective prin-
cipal directions and δij is the Kronecker delta function, defined by δij = 1, if i = j

and δij = 0 for i 6= j.
Our numerical scheme is based on the diagonalization of the CHM, where the

latter is estimated from the sample by means of Q̂ using (2.65). Then, the square
roots of the eigenvalues ratio correspond to the anisotropic ratio, while the orienta-
tion angles can be obtained from the elements of the diagonalizing transformation
matrix. More precisely, we have

R̂ =
√

Q∗
11/Q

∗
22 (2.68)
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This approach can be extended to the estimation of the fractional exponent α,
associated with the fractal dimension of the field. This parameter, usually hard to
estimate from a sample, may provides an additional degree of freedom to constrain
the spectral density of the generated field.

Despite this method is very fast and efficient for texture synthesis thanks to
Fast Fourier Transforms (FFT), it only accounts for stationary fields and the defini-
tion of non-stationary and conditional versions might not be straightforward. The
relatively intuitive idea to introduce non-stationary version where the parameters
of the SPDE (2.58) may spatially vary. One can investigate different options to
state these parameter fields. A conditional setting w.r.t. an external field may be
considered. The resolution of the non-stationary SPDEs is then implemented as a
non-stationary convolution similar to (2.54) with locally-varying kernels. We report
in Fig.2.10 synthetic examples of non-stationary fields by varying the parameters of
(2.8). We applied such models to the super-resolution of SST fields in [28]. How-
ever, such models were experimentally proven difficult to parameterize with respect
to expected global features, which motivates the alternatives considered in Chapter
3 & 6.

To conclude this section about SPDEs, notice that in the same way we defined the
multivariate ADSN processes, the equivalent multivariate forms of SPDE equations
were studied in [27].

2.7 Conclusion

In this chapter we have presented some approaches of texture synthesis based on
spectral constraints. We have showed how it is possible to extend the considered
models to the multivariate framework using system of equations. As demonstrated
in the experimentation sections, these models allow us to impose cross spectrum
constraints on the synthesis. SPDE-based formulations and associated possible
parametrizations are also discussed in the last section of this Chapter.
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Figure 2.10: Texture synthesis using non-stationary SPDEs for different geomet-
rical patterns: (a) rotational and (b) hyperbolic orientation field using a constant
parameters for α, κ, σ and R. The texture in (c) is obtained by (smoothly) jointly
varying κ and σ parameters of an isotropic covariance model.
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Abstract We present a method for multi-scale exemplar-based texture mod-
eling and synthesis using spectral texture priors, namely the Random phase noise
(RPN) and the ADSN processes. The targeted application is the super-resolution
of textured images. These images exhibit different statistical and spectral charac-
teristics. Existing algorithms based on stationary models do not produce realistic
results in the case of highly-structured textures. A cascade scheme, formulated in
the Fourier domain, is proposed. This scheme is based on learning the spectrum
magnitude from a sample while the phase is extracted and imposed from the low
resolution image. The proposed methodology is demonstrated using various texture
samples.
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3.1 Introduction

Super-resolution is the process of estimating a high-resolution image from a low-
resolution input by recovering or inventing realistic high-frequency image informa-
tion [53, 54]. It has received great attention over the last few years in the image
processing field as well as in the different application-oriented contexts (e.g., med-
ical images, geophysical remote sensing...). One of the most difficult aspect of the
super-resolution of the textured images is the ability to deal, at the same time, with
small-scale oscillations areas and the low-frequency regular patterns (i.e., edges) us-
ing a single model.
Super-resolution is also known to belong to the family of ill-posed inverse prob-
lems. To restrict the vast set of all possible solution images one need to introduce
a prior knowledge. Sample-based approaches assume that the desired solution is
represented via their similarity to exemplars of previously experienced images (i.e,
training datasets). The similarity here refers to the underlying properties and char-
acteristics (e.g., statistical distributions, spectra...) of interest and not to pixel-by-
pixel similarity measures. Loosely speaking, we first learn a set of correspondence
between the low-resolution and high-resolution patches.
A variety of other techniques have been already proposed in the literature. Some of
these approaches focus only on the importance of edges in the textured images [55].
The edge-directed interpolation method described in [56] consists on the estimation
of a local covariance coefficients from a low-resolution image and then use these
estimates to adapt the interpolation at a higher resolution based on the geometric
duality between the low-resolution covariance and the high-resolution one. Besides
of the high computational complexity of this method, the resulting super-resolved
samples are mostly cartoon-like images. A statistical modeling framework of the
edges using the maximum likelihood estimate is proposed in [57]. This approach is
crucial for preserving the local anisotropy while obtaining a sharp edges. However,
in the textured images edges are not the only key feature and one need, in addition,
to generate the small-scale oscillation patterns. Recently, [58] proposes a super-
resolution method for the textured images featuring the statistical scale-invariance
proprieties. The proposed method exploits a family of stochastic processes, namely
the compound Poisson cascade [59], that allows to extrapolate the power spectrum
as well as the higher order scale invariant properties to the unresolved high fre-
quencies. One limitation may be that there is any conditioning with respect to the
low resolution image and the resulting generated texture details are spatially sta-
tionary. Patch-based super-resolution may involve some implicit conditioning but
it is seldom made explicit to our knowledge. In this Chapter, we draw upon the
non-parametric sampling approaches in texture synthesis [2] and consider an image
prior model based on the targeted features taken from other textured images.
The Chapter is organized as follow. In section 3.2 we briefly review the role of
both the magnitude and the phase information in stochastic textures. Section 3.3
presents our approach in details and explains the super-resolution scheme. Section
3.4 studies the behavior of this approach using different type of textures. Section
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3.5 summarize our main results and points out limitation of the proposed approach.

3.2 Fourier magnitude and phase in stochastic textured

images

A stochastic texture is considered as the realization of a spatial random processes. In
the Fourier domain, the phase and magnitude play different roles. The randomness is
manifested by the fact that only the phase information is random. Synthesizing the
so-called random micro-texture, textures that exhibit fast-range dependencies, by a
phase randomization technique produces a similar images and do not destroy the
visual structural aspect of the image [2]. However, the same randomization approach
fails to capture the visual appearance of stochastic textures characterized by a long-
range dependencies. This class of textures contains important edge structures (see
Fig.3.2). The main motivation of this Chapter is to propose the computationally-

(a) (b)

Figure 3.1: Example of texture synthesis by phase randomization [2]. (a) The
original sample (b) synthesized texture using the RPN algorithm

efficient method to combine both the Fourier magnitude and phase information
to generate a visually high-resolution (HR) images from given low-resolution (LR)
input.

3.3 Exemplar-based Super-resolution algorithm

3.3.1 Problem formulation

The super-resolution problem considered in this chapter consists on the following
form: A high-resolution textured image is degraded by a low-pass (blurring) filter,It
is followed afterwards by a sub-sampling operation. The noise measurement can also
be added to the sub-sampled blurred image to create more realistic low-resolution
images. In this chapter, we consider noise-free case-studies. Let X and X̃ denote
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Figure 3.2: Failure example of texture synthesis by phase randomization. (a) The
original texture (b) synthesized using the RPN algorithm

the original HR image and the observed LR degraded image. The model can be
represented formally as follows:

X̃ = (L ∗ X ) ↓ +n(σ) (3.1)

The low-pass blurring filter L (e.g., averaging window or Gaussian filter) along with
the sub-sampling function (e.g., Dirac comb) gives rise to linear underdetermined
system of equations (fewer equations than unknowns) with a many solutions. Thus,
the super-resolution problem is an ill-posed inverse problem. To restrain the solution
set, one needs to take into account additional prior assumptions about the solution
X .
To address this problem, a prior over the high-resolution image is often considered.
Our method relies on the use of a prior on the spectral properties of the inter-scale
component between the signal and its augmented (bicubic interpolated) degraded
version δX = X − X̃ .

3.3.2 A model for textured image

In this section, we recall the main definitions and properties of the proposed texture
model. The proposed model is divided in two parts. The high frequencies are
obtained from homogeneous ADSN process [2, 60]. The low frequencies are given
by an image ILR. The resulting textured image is then obtained by the superposition
of the both parts as follows:

I = ILR +H(F−1(|ÎHR| exp(i∠FILR)) (3.2)

where H is a high-pass filter, F and F−1 refer to the direct and inverse Fourier
transform. Notice that the high frequency part of the resulting image has the same
phase as the low-resolution component. This property is derived from the well-
established importance of phase in images [29, 61].
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3.3.3 Superresolution procedure

In this section we detail the elementary steps of the proposed superresolution
method. Let r0 and rn(= r0/2

n) be respectively the coarse and the desired res-
olution. First, we need to resample the original low-resolution image at the inter-
mediate resolution r1, with r1 = r0/2. For this purpose, we use a bicubic interpo-
lation scheme giving rise to a smoothed image X r0

s without a considerable addition
of small-scale information. The associated Fourier spectrum quickly falls down at
scales below r0 and does not involve a realistic decay (for instance, a power law
decay for scale-invariant processes).

The new detail information at scales smaller than r0 are then modeled and added
using the convolution-based process.

Dr1
r0 (x, y) = Gr1

r0 (x, y) ∗ Br1(x, y) (3.3)

where Br1 is a Gaussian white noise generated at resolution r1 and Gr1
r0 is the con-

volution kernel giving rise to the desired Fourier power spectrum of the inter-scale
component. The kernel used in (3.3) is computed using the following formula

Gr1
r0 (x, y) = F−1(

√

S̃r1
r0 (w)) (3.4)

where F−1 is the inverse Fourier transform and S̃r1
r0 (w) is an estimate of the power

spectrum.
We estimate the power spectrum of the exemplar using the periodogram-based
method. The periodgram is defined as the magnitude squared of the Fourier trans-
form [62]. This definition is based on the Fourier transform. However, the Fourier
transform of a non-periodic images suffers from a boundary problem, which causes
several artifacts. In particular a well-known cross-shaped artifact in the estimated
power spectrum. An efficient way to avoid this problem is the use of Fourier trans-
form of the periodic component as defined by [63].

The generation of the new detail information yields to the following intermediate
image:

X r1
r0 = X r0

s + σ(Dr1
r0− < Dr1

r0 >) (3.5)

In some sense, the method, at this stage, reconstructs high frequency textural miss-
ing details but does not perform the edge and contour enhancement. In our model
this is done by exploiting the Fourier phase information.

X r1
r0 = X r0

s + σ(F−1(|D̂r1
r0 | exp(i∠X̂ r0

s ))− < Dr1
r0 >) (3.6)

where F−1 refers to the inverse Fourier transform. The proposed procedure affects,
however, the low frequencies supposed to be contained in X r0

s . In order to keep the
low frequency energy unchanged and to magnify only the missing small wavelength
components, a high-pass filter is applied to the reconstructed inter-scale component.
In our implementation, we use 2D discrete wavelet transforms as a high-pass filter.
The low-frequency energy conservation constraint resorts to keeping only the detail
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coefficients of the discrete wavelet transform of the simulated inter-scale component
while approximation coefficients at this stage are given by those of the low-resolution
observation X r0

s . In our algorithm, we use Daubechies wavelets. Notice that the
same scheme was recently used in [64].

This elementary magnification procedure (× 2) is iteratively performed by cas-
cading the above model until the desired resolution rn.

3.4 Illustrations

To test the performance of our spectral texture-based prior model and compare it
with that of RPN prior (prior only on the Fourier magnitude), we show results of the
algorithm on a variety of texture examples. We divide the set of the selected images
to the ’ground-truth’ 512x512 pixel high-resolution images and the set of train-
ing images, each accompanied by corresponding 32x32 pixel low-resolution images
generated using 3.1. First, we begin with the case of the micro-textures, defined
according to [2], for which the phase information is less important and textures
are well-synthesized by phase randomization technique. Our goal here is to check
whether this property is also valid in the super-resolution framework, and so the
super-resolution scheme, presented in the previous section, could be simplified by
working only with the Fourier magnitude without imposing any phase constraint.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Super-resolution of canvas texture: (a) Original image (ground truth).
(b) LR image. (c) Bicubic interpolated result. (d) Super-resolution enhanced image
obtained using the cascade model with phase randomization. (e) Result obtained
without considering cascading. (f) Super-resolution image obtained using phase
constraints.
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Figure 3.4: Quantitative comparison of results obtained in Fig.3.3. (a) The prob-
ability density functions of the marginal cross-scale component of the generated
images compared with the ground truth. (b) The spectra of cross-scale components
(coarser-to-fine scale).

(a) (b) (c)

(d) (e) (f)

Figure 3.5: The same as Fig.3.3 for the stone texture.

The first two examples of a stone and canvas textures are shown respectively in
Fig.3.3 and 3.5. The results obtained by the processing of both examples through
the proposed super-resolution algorithm are compared with those obtained by the
phase-free algorithm. Our experiments show that the main improvement in the
resolution of this type of textures comes from the learned spectrum (i.e., First and
second order statistics) and the combined framework does not seem appropriate. In
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Figure 3.6: The same as Fig.3.4 for the stone texture example.

both examples, the structures of the enhanced texture images resembles that of the
ground truth image, even by using only within-scale model without cascading. For
such examples, no additional phase constraints seems necessary and all the relevant
information is captured by the cross-scale spectrum.

Figure 3.7: Super-resolution of tree bark texture: the first row depicts the ground
truth image and the blurred versions using various box filters of size 2n × 2n with n

ranging from 1 to 3 (from left to right). The super-resolution results are illustrated
in the second row for various enlargement factors ranging from ×2 to ×8 (from right
to left).

In a second study case, Fig.3.7 displays an example of tree bark texture with
highly-structured patterns. This type of texture is characterized by a quasi-
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Figure 3.8: Outcome of the RPN algorithm
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Figure 3.9: The same as Fig.3.4 for the example depicted in Fig.3.7
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unidirectional anisotropy direction. We choose a high resolution sample and divide
it into a learning and test patches. We carry out constructions exactly as we did for
the previous examples (resolution has been artificially degraded by factor 8). The
obtained results show that the combined method (i.e., cross-spectrum prior + phase
constraints) offer a qualitative improvement comparing to Fig.3.8, obtained by the
phase-free model, especially in the edge areas and sharp patterns. Fig.3.9 compares
the statistical and spectral characteristics of the ground truth texture the model
output.

3.5 Concluding discussion

An important challenge in modeling and enhancement of stochastic textures is to
combine second-order statistics (i.e., spectrum) with the phase information. This
Chapter raises the question of weather these can combined in a simple form solution
to realistically reproduce high-resolution textures from low-resolution inputs. We
demonstrated that assumptions about (only) second-order structure provide a good
results in the case of homogeneous Gaussian micro-textures. Phase constraints are,
however, needed in the case of textures containing important edge structure. In
this Chapter, we proposed the simplest possible framework which put together both
Fourier spectrum constraint and a phase constraint on the detail synthesis. This
approach seems to give good results in the case of textures that exhibits unidirec-
tional patterns. The Fourier spectrum, however, is a global representation of the
texture patterns. It cannot unveil their local frequency contents or their local regu-
larity. Thus, one negative aspect of this approach is that we have not been able to
develop an analogue for highly-structured textures with locally varying anisotropy
direction. Transformation domain techniques, involving image decomposition into a
set of spatially oriented frequency channels [65], may be necessary. Such approaches
will be explored in Chapter 6 with an application to super-resolution of real satellite
images.
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Abstrat In this chapter, we investigate the extent to which the geometrical
features of satellite-derived observations of sea surface temperature conform to
Schramm-Loewner evolution (SLE) curves. Theoretical and numerical evidence
that, for turbulent flows, including SQG dynamics, the level-lines of advected tracers
may depict SLE behavior (i.e. curves, which can be mapped into a one-dimensional
Brownian motion). By contrast, satellite-derived high-resolution SST observations
for active ocean regions are shown to involve more general processes, with Loewner
evolution driven by non-homogeneous fractional Brownian motion. The extracted
driving forces exhibit a regime-switching behavior, in particular regarding volatili-
ties. We report empirical evidence of an underlying latent state (or regime) given
by the magnitude of the gradient and of a regime-independent spectral slope of the
Brownian process s = −2.

4.1 Introduction

High resolution satellite-derived sea surface images (sea surface temperature, re-
flectance and/or roughness) often reveal numerous small scale patterns, as eddies



62
Chapter 4. SST-derived geometrical characterization of ocean surface

dynamics using Schramm-Loewner Evolution

and filaments. These oceanic features with scales smaller than the first baroclinic
deformation radius (roughly 20-40 km away from the equator and high latitudes)
have drawn increasing attention over the last few years. An important motivation
is that wide regions of the ocean are often filled with surface fronts that produce
intricate but seemingly organized patterns, likely associated with enhanced horizon-
tal and vertical transports. Traditionally, the characterization of the instantaneous
(Eulerian) submesoscale activity involves probability density functions (pdf) and
power spectra for the flow variables (momentum, vorticity, tracer) or their gradi-
ents. Using large-swath satellite data, observations can help revealing this wide
variety of patterns. This textural richness often leads to continuous spectral esti-
mates that span a very wide range of spatial scales. Variances at these different
scales are then further often found to follow power-law distributions. Spectral anal-
ysis then plays an important role to analyze these observations. It stresses that sea
surface temperature and velocity variance distributions in the real ocean can sig-
nificantly differ from those anticipated from QG arguments ([66]) which could not
properly reproduce frontogenesis and the induced strong vertical velocities. In turn,
these findings have stimulated research efforts on surface quasi-geostrophy (SQG,
[67]), where surface tracer and velocity spectra depict theoretical slopes rolling off
as -5/3, much shallower than QG prediction, and indeed corresponding more closely
to observations ([68]).

Yet, analyzing satellite images, it can be rapidly tested that the original signals
can be recovered, although deteriorated, by only using its Fourier phase information
while setting its Fourier amplitude information to unity. In contrast to that, if only
the amplitudes are obtained and the phases are set to zero or randomly distributed,
the recovered image information is almost completely indiscernible ([69]). Indeed,
the phase information determines the location and orientation of image features and
boundaries, while the module provides only information on their intensity. This in-
dicates that the resulting tracer distribution must thus possess a certain degree of
coherence. More specifically, large-scale and small-scale harmonics are likely not
statistically independent. Accordingly, power spectra are not solely sufficient at
characterizing some important properties of the underlying flow shaping the spatial
distribution of the tracer. More particularly, the spectra cannot directly inform
about the complexity of front arrangements that can locally arise. A further un-
derstanding of tracer mixing related to the proper characterization of its spatial
variability thus requires statistical information beyond power spectra. At small
scales, tracers can both be organized by large scale motions into thin and relatively
smooth filaments, and further stirred by small scale (sub-mesoscale ageostrophic)
motions. As such, the degree of regularity of the tracer can be locally impacted,
and the analysis of the curvature along tracer field contours certainly suggested to
better characterize the competition between the bending and stretching properties
of the underlying flow [70, 71]. Our goal here is thus to explore and apply alternative
effective means for the analysis of spatial variability depicted by a trace to possibly
unveil the importance of submesoscale stirring based on the resulting tracer geomet-
rical properties. Following recent theoretical and numerical evidences that turbulent
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flows may involve specific geometrical features characterized by SLE curves [15], we
investigate a SLE-derived strategy for the characterization of sea surface dynamics.
It comes to the statistical analysis and decomposition of the geometry of isolines of
the considered tracer according to the driving function of Loewner map. Loewner
maps provide a mean to map 2D isolines to a one-dimensional signal. As such,
random 2D curves may be characterized by the associated one-dimensional random
walks.

The chapter is organized as follows. The data used in this study are presented
in section 4.2.1. The SLE-based analysis method is briefly described in 4.2.2. The
results are presented and discussed in 4.3 and 4.4 respectively.

4.2 Materials and Methods

4.2.1 Sea surface temperature Data

As geophysical tracer, we first consider ultra high resolution Landsat 8 Level 1 Ther-
mal Infrared Sensor (TIRS band 10) images provided by the United States Geological
Survey (USGS) EROS Center (http://earthexplorer.usgs.gov/). The product is con-
verted from spectral radiance to brightness temperature (BT) [72]. The resolution
of the TIRS thermal sensor is 100m and the data are resampled to 30m to match
multispectral bands. As an example, we select the whole cloud-free image data
received on September 11, 2014 (8021 × 8131 pixels). The scene covers the North
Atlantic Ocean near the Brittany coast in the north-west of France (Fig. 4.1). In our
study, we are particularly interested in areas where the activity of the upper ocean
dynamics is very important (e.g, frontal areas) and the signal-to-noise performance
is improved. We also consider high-resolution L2 level SST snapshots provided by
the infrared VIIRS sensor at 0.75km resolution onboard the Suomi National Polar-
Orbiting Partnership (NPP) and by the infrared MODIS sensor at 1km resolution
from Aqua and Terra satellites.

4.2.2 Schramm-Loewner Evolution and geometrical features of
turbulent processes

The Schramm (or Stochastic) Loewner evolution (SLE) was introduced by Oded
Schramm [13] to find scaling limits of various probabilistic discrete processes in the
2D plane (e.g., Loop-erased random walks). SLE has been shown to describe many
conformally-invariant (i.e., locally scale invariant) 2D complex systems, especially in
statistical physics (e.g., percolation). Recently, this theory has found applications
in areas close to that considered in this paper [73, 74, 15]. The SLE theory is
the only analytic framework (to our knowledge) that allows for modeling the non-
self-touching-like random curves by mapping them recursively using a succession of
conformal mappings onto a one-dimensional Brownian motion parametrized by a
single parameter κ, called the diffusivity.

Here, we give a brief introduction to SLE curves and their related numerical
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Figure 4.1: Upper panel: Brightness temperature snapshot provided by the infrared
TIRS sensor on board Landsat8. Lower panel: The power spectral density of the
selected study area.

computation. Let us consider a random non self-touching curve γ(t), parametrized
by a dimensionless time t, in the upper half plane starting from the origin z0 and
growing to the infinity z∞ (a point sufficiently far from the origin). According to
the Riemann mapping theorem, it is possible, as illustrated in Fig.4.2, to define a
unique conformal map gt at any time t from H\γ[0, t] (the whole domain minus the
trace of the curve up to time t) onto H itself such that there exists a continuous real
function ξ(t) and gt satisfies the stochastic Loewner differential equation,

∂tgt(z) =
2

gt(z)− ξ(t)
, g0(z) = z, (4.1)

where ξ(t), called the driving function, is a one-dimensional Brownian motion with
zero mean and σ2(t) = κt. In addition, the mapping gt satisfies the following
conditions:

• gt(γ(t)) = ξ(t)

• lim|z|→∞ gt(z) = z
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Figure 4.2: Illustration of the Schramm-Loewner evolution idea. The conformal
mapping gt, which satisfies Loewner’s equation, maps the upper half plane without
the curve up to time t, H\γ([0, t]), onto the whole upper half plane.

Under the SLE assumption, the diffusivity parameter κ drives a set of geometrical
proprieties of the curve such as the distribution of the winding angles and the fractal
dimension. In turn, different methods may be considered to estimate the diffusion
constant κ that characterizes SLE curves:

• Winding angle statistics: For a given random curve γ(t) in the upper-half
plan, we often consider γ(t) as a discrete set of points z(ti) at a discrete times,
the continuous (SLE object) curve is obtained by connecting the neighboring
sites with line segments. The winding angle along the curve, denoted by θ(γ)

and defined at each point z(ti) can be computed iteratively as θi+1 = θi + αi,
where αi is the turning angle between the two consecutive points z(ti) and
z(ti+1). [75] derive the exact probability distribution of the winding angle for
a random SLE curve. This gives a Gaussian distribution with variance:

var(θ(γ)) =
κ

4
ln(Ly) + c (4.2)

with κ is the diffusivity parameter, c is a constant and Ly is the vertical axis
size. According to this relation, κ/4 corresponds to the slope of the variance
of θ(γ) against Ly.

• Direct SLE computation: The computation of the distribution of the winding
angle is an indirect measurements of the diffusivity κ. Therefore, one can
extract and analyze the properties of the underlying driving function ξ(t)

directly to see if it corresponds to a Brownian motion. By discretizing the
equation 4.1, we can numerically solve it by considering the driving function
to be constant within a small (Loewner) time interval δt. One can easily verify
that the following map equation is a solution to 4.1:

gt(z) = ξ(t) +
√

(z − ξ(t))2 + 4δt (4.3)

Notice that we can compare those estimates to the prediction κ = min(2, 8(df − 1))

[76] by measuring the fractal dimension df .
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Figure 4.3: Illustration of the an iteration of the slit map algorithm. The portion
of the curve between z0 and z1 is approximated by a vertical slit (red segment).
The algorithm consists of transforming the vertical slit to the abscissa axis. This
elementary transformation is iterated for the whole curve.

Slit map algorithm To extract the driving function from a given 2D curve, we use
the iterative slit map algorithm described in [77]. For a candidate SLE curve γ([0, T ])
given by its discrete points {z00 = 0, z01 , ..., z

0
n}, we subdivide the interval [0, T ] into

⋃i=N
i=0 [ti, ti+1) with t0 = 0 and tN = T and we consider the driving function as a

constant within each time subinterval (i.e., ξ([ti, ti+1)) = ξi). We then construct
the mapping gti by a composition of infinitesimal elementary conformal mappings
g̃ti,ti−1

◦ g̃ti−1,ti−2
· · · g̃t1,t0 . In this case the value of the driving function ξ(ti) is given

by gti(z(ti)). The idea of the slit map algorithm is to approximate the portion of
the curve (at iteration j) between the first point zi0 = (xi0, 0), which belongs to the
abscissa axis, and the next closest point, zi1 = (xi1, y

i
1), by a vertical segment (called

slit). The algorithm then consists in mapping all the points of the curve, obtained
at iteration i− 1, except the first by the mapping gti(z) = δξi +

√

(z − δξi)2 + 4δti
by taking δξi = xi1 and δti = y21/4. One can verify easily that this conformal map
removes the vertical slit by sending the top of the segment zi1 = (xi1, y

i
1) to the

abscissa axis [see Fig.4.3 for an illustration]. The number of points in the resulting
curve after each iteration is reduced by one point. We recursively repeat this process
till the whole curve is transformed. This procedure has been checked on an ensemble
of Gaussian Free Field (GFF) level lines where it yielded the correct theoretical value
κ = 4 [78] (see Fig.4.4).

4.2.3 SLE-based analysis of SST level-lines

We apply the proposed SLE-based analysis to the level lines of the selected ocean
brightness temperature (BT) image with a view to characterizing the underlying
turbulent dynamics. A specific aim is to evaluate whether the driving processes
obtained by mapping the BT level lines using the Loewner equation conform to
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(a) (b)

(c)

Figure 4.4: SLE-based characterization of the level lines of a Gaussian Gaussian Free
Field: (a) realization of the 2D Gaussian Free Field simulated using the spectral
method [3] (b) A selected level line of from the simulated snapshot, theoretically
proven to resort a realization of a SLE(4) process (κ = 4) (c) Statistics of the
extracted driving functions: variance of the driving functions as a function of the
Loewner time. The diffusion coefficient κ is given by the slope of this curve.

Brownian process hypotheses as expected for the inverse turbulent cascade [15].

To verify directly this hypothesis, we proceeded as follows. For the given tracer
image, we extract and isolate a large number of level lines. After a simple coordinate
transformation (rotation and translation) such that each curve starts from the origin
and the rest of points belong the upper half plane, we extract the Loewner driving
functions from the transformed level line sample using the slit map algorithm. To
verify whether the extracted driving functions (ξt)1,..,N are well described by a one-
dimensional Brownian motion, we calculate the associated diffusion behavior (i.e.,
the variance σ2(t) for each t) and analyze the associated probability density functions
P (ξt). In addition, we perform a spectral analysis of the obtained SLE driving
functions as well as a statistical analysis of their increments.
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Figure 4.5: Statistics and the diffusive behavior of the extracted driving functions
from an ensemble of BT level lines. (a) The variance of ξt against the Loewner time.
(b) The probability density of ξt for t = 104, 4× 104.

4.3 Results

We report in this section the application of the proposed SLE-based analysis to
the high resolution Landsat 8 TIRS BT snapshot off Brittany in the north-west of
France.

SLE-based analysis of the considered BT snapshot: Figure 4.5(a) reports
the statistics of the driving functions extracted from a large sample of level lines.
We observe a linear scaling of the variance for short (Loewner) time. At somewhat
higher time of 0.5 × 104, it exhibits a deviation from the linear behavior. The
instantaneous probability distribution functions of the driving function P (ξt) at two
different times are shown in Figure 4.5(b). They do not appear to match a Gaussian
hypothesis.

Figure 4.7 reports the SLE-based analysis obtained from two different pieces of
a selected long level line (see Fig.4.6). Panel 4.7(b) reports the extracted driving
functions for both contour pieces. We proceed to check if scaling is observed for
the Fourier spectrum of the driving functions and whether the extracted slopes are
similar for both curves. In panel 4.7(c) we show the log-log plots of the power
spectral densities. The power law relations certainly appear to hold true. Moreover,
the empirical spectral slopes are almost the same for both curves. In addition,
we statistically analyze the increments of the driving functions. In the inset of
Fig.4.7(c) we report the associated probability density functions. We point out a
common quasi-Gaussian shape of the normalized distributions. In panel 4.7(d), we
plot the mean auto-correlation functions of the increment signals. The correlation
function is characterized by a long range dependence for both level lines and does
not vanish after a few time steps.
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Figure 4.6: The gradient magnitude field of the selected study region with the two
selected level lines

BT gradient magnitude as latent driver of the SLE process: The ex-
amples reported previously show that BT level-lines do not obey to the standard
homogeneous stochastic Loewner evolution SLE, for which the SLE driving func-
tions involve a Brownian motion hypothesis. Fig.4.6 suggests a strong dependence
between the local geometrical variabilities of the level-lines and the magnitude of
the gradient of the underlying tracer field. This issue is clearly illustrated in the
previous example since the two level lines pieces were selected from large (resp. low)
gradient magnitude areas (see Inet of Fig.4.7(a)). The driving functions associated
with these two curves clearly depict different variabilities.

These observation support the hypothesis of a generalized regime-switching SLE
process with BT gradient magnitude acting as a latent driver: the lower the gra-
dient, the greater the diffusivity coefficient κ, i.e. the variance of the SLE driv-
ing functions. We further investigate this hypothesis from a quantitative point of
view. We aim at determining how BT gradient magnitude may act on the spectral
slope of the driving functions and on the marginal distribution of their increments.
We proceed as follows. In a first step, we compute a moving-window variance of
the driving function increments extracted from a non-homogeneous long level-line.
Non-homogeneity here means that the distribution of the along-level-line gradient
magnitude is not unimodal. We report in Fig.4.8(c) the result of this analysis. We
observe a clear strong dependence between the gradient magnitude and the local
diffusivity coefficient κ, estimated as the variance of the SLE driving function. The
variance increases in the flat regions (i.e., small gradient) to reach values close to
3. Notice that value of k = 4 was empirically demonstrated for level lines of the
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Figure 4.7: Results of the SLE-based analysis of the two selected level lines in
Fig.4.6. (a) Level lines transformed to the upper half plane and starting from the
origin. Inset: the distribution of the along level line BT gradient magnitude. (b)
Driving functions corresponding to the considered level lines. (c) Power spectral
density of the extracted forcing function. Inset: The probability density of the
driving increments rescaled by its variance. (d) The auto-correlation functions of
the driving increments with an approximation of the confidence bounds using the
Box-Jenkins-Reinsel approach.

temperature in SQG dynamics model [73]. Conversely, the variance decreases to
zero in the frontal areas (i.e., large gradient) as a result of the existence of almost
1D segments. We proceed to check whether the gradient magnitude act on the
spectral slope of the driving functions. For this purpose, we sample a large set of
BT level-lines extracted from different regions of the image. For each level-line, we
also extract the along-level-line BT gradient magnitude. This signal is segmented
into homogeneous segments using the algorithm described in [79]. This algorithm
is chosen for its performances in capturing well state changes (i.e. jumps i.e). An
example of this procedure is illustrated in Figure 4.8(a). Given this gradient-based
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segmentation, we carry out a quantitative SLE-based analysis, piece by piece.We
report the results in Fig.4.9. Regarding the spectral characteristics of the SLE driv-
ing functions, interestingly the dominant pattern is a power decay. The associated
spectral slope shows a clear modal distribution around -2.
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Figure 4.8: Illustration of the gradient-based regime-switching behavior of the driv-
ing function. (a) The BT gradient magnitude extracted and segmented from a
typical long BT level line. (b) The extracted driving force as function of Loewner
time. (c) The moving-window variance of the driving function increments. The
variance shows clear dependence on the local gradient magnitude. It increases to
reach values between 1.5 and 3 for the low gradient intensities (The two first shaded
bar). Conversely, it decreases to zero for large gradients as a result of the existence
of a long almost 1D segments.

4.4 Discussion

In this chapter, we investigated the geometrical patterns depicted by a sea sur-
face tracer, namely brightness temperature (BT), as a mean to characterizing the
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Figure 4.9: (a) Spectral analysis of driving functions extracted from a large ensemble
of gradient-based homogeneous portions of BT level lines. (b) The distribution of
the empirical fitted spectral slopes. The fitting is done using the normalized spectra
in the wavelength bandwidth determined by the blue segment.

underlying submesoscale-mesoscale turbulent dynamics from high-resolution remote
sensing observations (100m-1km spatial resolution). Previous works mainly explored
empirical statistical features such as spectral analyses or curvature-based analyses
[71]. Here, following recent theoretical and numerical advances [15], we propose to
analyze the level-lines of the considered tracer as realizations of 2D random walks,
and more specifically Schramm-Loewner Evolution processes. Such processes have
been shown to arise from turbulent flows, including SQG dynamics. SLE processes
relate to conformal invariance properties and are driven by a Brownian motion,
whose diffusivity κ controls the geometrical properties of the SLE curves (e.g. frac-
tal dimension, winding angle...). We develop and apply a SLE-based analysis to the
level-lines of real high-resolution BT observations. We rely on split algorithm [77]
for the identification of the SLE driving functions for any level-line and perform a
statistical and spectral analysis of the resulting SLE driving functions.

Our experimental results support the hypothesis of BT level-lines as realizations
of SLE-related processes. Whereas Bernard and al. [15] exhibited homogeneous SLE
processes driven by standard Brownian motions for numerical simulations of turbu-
lent flows, we show that such homogeneous SLE processes may not be consistent for
real sea surface tracers. We here reveal conditional fractional SLE processes, whose
driving functions in (Eq.4.1) may be modeled as

ξ(t) =

∫ t

0
dW (t, κ(‖∇BT (t)‖)) (4.4)

where dW (t) is a quasi-Gaussian correlated white noise. Diffusivity coefficient κ,
which controls the regularity of the curve, is a function of the magnitude of the
gradient of the field: the lower the gradient magnitude, the greater the diffusivity
coefficient. The latter implies that, in homogeneous regions (resp. frontal areas),
BT level-lines are more irregular (resp. regular). This is an expected behavior in
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relation to along-front stretching [80]. Interestingly, for low gradients, the estimated
diffusivity coefficient κ is close to 4 as shown by [15] for the SQG dynamics in the
inverse turbulent cascades. Random process W (t) is characterized by its modal
spectral slope of about -2, and its increments exhibit heavier tails than a Gaussian
process. A first explanation may lie in the underlying multifractal nature of the
tracer field unlike the analytic predictions of SLE theory (simple fractal). It may
be noted that a similar SLE-based analysis was applied to MODIS and VIIRS SST
datasets and led to the same observations. This supports the validity of the proposed
SLE-based model for the submesoscale-to-mesoscale range.

Overall, our work reveals, to our knowledge for the first time, evidences of non-
homogeneous SLE processes driven by fractional noise in real remote sensing obser-
vations. Up to now, all known examples of SLE analysis were found using statistical
physics models (e.g. Percolation) or fluid mechanics equations (e.g. SQG). This
study opens new research avenues from a theoretical point of view in terms of sta-
tistical properties of conditional fractional SLE processes and of turbulent flows.
Regarding ocean turbulence, it also provides a novel framework for the characteri-
zation of ocean turbulence from the geometry of high-resolution sea surface obser-
vations, including extension to multi-tracer analyses. Future work should further
explore the potential of the proposed SLE-based analysis for the characterization of
the space-time variabilities of fine-scale upper ocean dynamics (e.g., seasonal and
regional variabilities).
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Abstract This chapter introduces a new destriping algorithm for remote sensing
data based on combined Haar Stationary Wavelet transform and Fourier filtering.
Stripping noise is common in ocean remote sensing observations. The State-of-
the-Art methods based on the DWT may not be effective and may cause different
visual artifacts when the image is reconstructed. In this context, our contribution
is three-fold: i) to avoid as much as possible the shortcoming of the classical DWT,
we propose to use the Undecimated Wavelet transform (UWT) known as the most
appropriate decomposition for reconstruction purposes; ii) we combine a spectral
filtering and UWT using the simplest possible wavelet, the Haar basis; iii) we handle
2D fields with missing data as ocean remote sensing observations may involve large
missing data rates due to atmospheric conditions (e.g., clouds). The performances
of the proposed filter are tested and validated on the suppression of horizontal strip
artifacts in cloudy L2 Sea Surface Temperature (SST) and ocean color snapshots.

5.1 Introduction

Passive sensors on board remote sensing platforms use several scanning methods to
generate land and sea surface imagery. Images provided by the Sun-synchronous



76
Chapter 5. Removing Striping Noise from Cloudy Level 2 Sea Surface

Temperature and Ocean Color Datasets

Earth orbit satellites are achieved by a combination of progressive scanning lines
in the cross-track direction while the sensor platform motion is along the in-track
direction. The provided images are often contaminated by several types of noise.
These undesired artifacts have an impact on the visual quality of the provided
images. If not corrected, these noises will cause processing errors. In this chapter
we will deal with striping noise patterns. This type of noise are often present in
sea surface temperature and ocean color images provided by infrared and optical
imaging spectrometers (e.g. MODIS, VIIRS...). It consists in sharp repetitive
patterns which take the form of stripes over the entire image [81] (See Fig.5.1).

The reduction of these stripe artifacts is an important research topic. A large
number of destriping algorithms have been recently suggested. All the scene-based
methods of the destriping literature exploits geometrical priors about the noise.
These priors are related to the regular periodicity of the noise. One may cite a variety
of approaches based on low-pass filtering implemented in the spatial or frequency
domain [6, 7, 8, 9, 10]. A common feature shared by these methods is that they give
rise to blur artifacts. More sophisticated filtering approaches have been proposed.
Multiresolution analyses using wavelet decompositions were investigated in [4, 12].
More recently, variational methods were introduced and explored in [82, 83, 5].
These methods may however be prohibitively expensive for large datasets. Reducing
striping artifacts in an effective manner without blurring the images still remains
challenging. Moreover, the considered case-study applications, infrared sea surface
temperature and ocean color observations, do not involve cloud-penetrating sensors,
What may result in a very high rate of missing data (gaps) in the provided images.
These gaps make the use of the traditional Fourier or wavelet filtering techniques
not feasible and requires modifications. In this paper, we address the removal of
striping noise in ocean remote sensing images involving missing data as illustrated
in Fig.. We develop a destriping algorithm based on a combined wavelet-Fourier
filtering. Our algorithm can be regarded as an extension of [4]. We evaluate our
contribution for real ocean satellite-derived images with a focus on both SST and
ocean color imagery.

This paper is organized as follows. In section 5.2, we provide a short review of
the assumptions required by the wavelet decomposition and Fourier transform. In
section 5.3, we provide a detailed technical description of the proposed destriping
algorithm. We report numerical experiments with real ocean remote sensing data,
including a comparison to state-of-the-art approaches in Section 5.4. Section 5.5
concludes this chapter.

5.2 Problem statement

Let us consider an observed image usn(i) defined in a rectangular domain i ∈ Ω,
affected by an additive stripe-type noise. The image degradation model can be
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Figure 5.1: Destriping of an ocean brightness temperature snapshot obtained by
TIRS Lanndsat 8 on September 11, 2014. The original data are shown in panel (b)
while the destriped data are shown in panels (b), (d), (e) and (f) using respectively
our method, [4] with Haar wavelet, [4] with Daubechies-4 and using a variationnal
approach proposed by [5].

expressed by the following equation

usn(i) = u(i) + sn(i) (5.1)

where u(i) would be the true value at pixel i and sn(i) is the striping noise perturba-
tion. The analysis of satellite images shows that the striping noise can be considered
as a structured noise in which the large variability is along the y axis of the image,
as illustrated in Fig.5.1.

By exploiting this prior on the spatial structure of the undesired noise, the filter-
ing problem consists in removing the striping noise of the images without introducing
any blurring effects. Following [4], the proposed approach relies on an appropriate
decomposition of the image usn(i) so that the striping noise effect can be isolated
from the original hidden image. Notice that we will not deal with other stationary
noise, which may be present in the images and removed using appropriate methods.
Several filtering approaches have been developed for the removal of striping noise in
satellite images. Following the idea that striping noise is a superposition of quasi-
perfect periodic signals and can be easily identified in the 2D Fourier spectrum, one
can construct a filter for removing it at a given frequency in the Fourier domain [10].
The weak point of this method is the fact that this filter does not only remove part
of the spatial frequency component related to the undesired stripe noise, but also
eliminates and reduces the part of the same component present in the real (physi-
cal) signal. In order to avoid this over-denoising effect, [4] proposes to perform this
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spectral filtering method after a first finite-level discrete dyadic wavelet transform.
In this algorithm only the wavelet coefficients (details) are assumed to contain the
undesired striping noise and are filtered in the Fourier domain. All the approxima-
tion coefficients are kept and the resulting image is obtained by the inverse wavelet
transform using the denoised coefficients. The decimated Wavelet analysis (DWT)
takes advantage of scaling and directional properties to detect and remove striping
patterns in the wavelet domain. The DWT is a non-redundant decomposition [11].
This is particularly interesting for storage and computational efficiency purposes.
Nevertheless, for reconstruction-related applications, which is our use case here, the
DWT does not fulfill the translation-invariance property, what may lead to a large
number of artifacts when modifying its wavelet coefficients.

5.3 Proposed destriping approach: THE UWT-Fourier

based destriping scheme

Following [4], we propose to tackle the problem of removing striping noise through
a combined wavelet-Fourier approach. As previously mentioned, destriping with
the traditional (orthogonal) discrete wavelet transform sometimes exhibits visual
artifacts. These artifacts are caused by the sensibility of these algorithms to
translation. The Undecimated wavelet transform (also called stationary wavelet
transform) was designed to overcome the lack of translation-invariance of the DWT
[11]. This property is achieved by removing the decimation step in the orthogonal
wavelet transform.

Haar-based UWT decomposition: In the proposed Desptriping scheme, the
2D Haar wavelet transform is the proposed analysis technique. The Haar basis
function is well known as the first and the simplest wavelet analysis. The associated
scaling and wavelet functions (denoted respectively by φ(x) and ρ(x)) are illustrated
in Fig. 5.2.
The major advantages with the use of the Haar analysis are the following:

1. Interpretability: the form of Haar filter is simple and easy to implement;

2. Computational efficiency: unlike the continuous wavelets, fast calculations are
obtained, which is important for large satellite derived data products;

3. The inverse transform is performed without any edge effect artifacts. This a
key feature in our case as we deal with images involving missing data.

Notice that for applications where reconstruction is needed, the Haar transform also
has limitations. Images reconstructed with the Haar filter may exhibit block-like
artifacts when the decimation is involved. The considered UWT approach resolve
this problem.

The original image usn is represented in the UWT domain by a sequence of
details at different scales and orientations along with an approximation image at a
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predefined coarsest scale.

Ũ = (UJ
0 ,UJ−1, · · · ,U1) (5.2)

where UJ
0 represents the approximation image at the lowest scale J and

Uk, k = 1 · · · J − 1 represent the detail images at level k. Each of these
component consists of three orientation bands Uk =

[

Uk,v,Uk,h,Uk,d
]

. The original
image can be obtained using its coefficients by the inverse UWT.
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Figure 5.2: The Haar filter. (a) Scaling function (low-pass filter) and (b) Wavelet
function (High-pass filter)

Fourier filtering: We assume that the noise is periodic, invariant along the
x-axis and distributed over several spectral component. Given the Haar UWT de-
composition of the noisy image usn, we further assume that the striping noise is only
present in the vertical and diagonal bands of the UWT decomposition and perform a
Fourier filtering independently for each detail image of these two components U i,v,d

sn .
Let us denote by gα the considered filter in the Fourier domain. The filtered detail
image for band (k, θ) is given by

F−1(gα ×FUk,θ
sn ) (5.3)

where F and F−1 refer, respectively, to the Fourier and the inverse Fourier trans-
form. The denoised image ũ then resorts to

ũ(i) = W−1(U0
sn,U1,h

sn , · · · ,Un,h
sn ,F−1(gα ×FUk,θ

sn )k=1:n) (5.4)

where W−1 is the inverse UWT transform, k and θ are, respectively, the scale level
and the orientation of the wavelet subband and n is the number of decomposition
levels.

Fourier filter design: In the 2D wavenumber domain ~k = (kx, ky) the ideal
horizontal (resp. vertical) stripes are almost located near the high frequency part in
the vertical (resp. horizontal) direction, i.e (0, ky) [see Fig. 5.3 for an illustration].
The destriping Fourier filter is designed to remove this wavelengths from the Fourier
transform of the noisy UWT coefficients. For this purpose, we apply a band-pass



80
Chapter 5. Removing Striping Noise from Cloudy Level 2 Sea Surface

Temperature and Ocean Color Datasets

X

Y

 

 

−3

−2

−1

0

1

2

3

(a)

k
x

k
y

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

(b)

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

g
α

 

k
x

α 

(c)

Figure 5.3: (a) A simulated perfect vertical Gaussian striped sheet. (b) The asso-
ciated 2D power spectrum. All non-zero values are located near the high frequency
part in the horizontal direction (c) The inverted Gaussian function considered as
the Fourier filter in our algorithm
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filter around ky = 0. This can be achieved by the pointwise multiplication of the
FFT coefficients with an inverted Gaussian function

g(kx, ky) = 1− exp(−kx/σ
2) (5.5)

where σ controls the width of the filter in the kx-direction. Fig.5.3 shows an example
of such a function. Since the observed striping artifacts are almost horizontal (resp.
vertical), the value of σ must be small so that the Fourier coefficients are set to
zero only at kx = 0 (resp. at ky = 0). Thereby, the filtering process is expected to
eliminate striping artifacts without producing blur effects.

We define the method noise of u as the image difference

ns(i) = usn(i)− ũ(i) (5.6)

This method noise (or noise residue) should be as similar as possible to an image
composed only of striping patterns.

Destriping in presence of missing data: Destriping in the presence of miss-
ing data is a very challenging task, especially when considering a Fourier and wavelet
analysis. These decompositions cannot handle images with missing data and require
the images to be interpolated prior to the computation of the decompositions. A
classical zero-padding strategy may result in a poor estimation of the decomposi-
tion and may produce severe visual artifacts due to the introduced discontinuities.
It may be noted that we do not address the joint removal of striping noise and inter-
polation of missing data areas. The goal is rather to apply as preprocessing step an
appropriate interpolation scheme, which will result in no noticeable discontinuities
of the denoised image at the boundaries of missing data areas. For this purpose, we
consider the harmonic image inpainting as described in [84]. The method smoothly
interpolates inward from the pixel values on the outer boundary of the missing re-
gions. In the following, we will briefly explain the method. Let us consider an image
denoted by f and defined in a rectangular domain denoted by Ω. Suppose that this
image is only known at a subset Ωk ⊂ Ω. The harmonic inpainting method consists
in filling in the missing region by solving the following Dirichlet boundary value
problem







∆u = 0 on Ω\Ωk

u = f on Ωk

∂nu = 0 on ∂Ωk

(5.7)

where ∂n denotes the derivative operator normal to the boundaries. We can also con-
sider higher-order differential operators as interpolant (e.g the biharmonic operator
∆2).

5.4 Experimental Results

Experimental setting: Several BT, SST and ocean color snapshots acquired by
MODIS Aqua/Terra, VIIRS NPP and TIRS Landsat8 were selected to illustrate



82
Chapter 5. Removing Striping Noise from Cloudy Level 2 Sea Surface

Temperature and Ocean Color Datasets

 

 

 

 

 

 

01234567
8

10

12

14

16

18

20

log(Wavelength)

lo
g

(S
p

e
c
tr

u
m

)

 

 

Original image

Destriped image

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
(a) (b) (c)

(d) (e) (f)

Figure 5.4: Illustration of the destriping of ocean color products: (a) chlorophyll-a
concentration obtained by Modis Terra on December 22, 2015 around 06:20 UCT
in the Arabian sea region. The destriped data are shown in panel (b). The gradient
magnitude of the original image and the destriped image are shown respectively in
panel (d) and (e). Comparison of the averaged Fourier power spectrum is illustrated
in panel (f).
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Figure 5.5: Illustration of the Destriping of ocean color products: (a) chlorophyll-a
concentration obtained by Modis Terra on December 22, 2015 around 06:20 UCT
in the Arabian sea region. The destriped data are shown in panel (b). The gradient
magnitude of the original image and the destriped image are shown respectively in
panel (d) and (e). Comparison of the averaged Fourier power spectrum is illustrated
in panel (f).
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and validate the performance of the proposed algorithm. We choose scenes heavily
affected with striping noise.

Examples of destriping The visual improvement of Modis-Terra ocean color
snapshots is illustrated in Fig.5.4 and Fig.5.5. Smaller images (≈ 400× 400 pixels)
compared to the entire received granule was selected. The reason is that the striping
effect is visually hard to observe on significantly large images. Visually, the proposed
preprocesing result in a clear improvement of the visual quality of the snapshots.
They do not contain any residual horizontal stripes and do not reveal any blur effect.
Fronts and sharp gradients areas are degraded by stripe noise in the original images.
This occurs because stripes lead to larger vertical gradients. These geometrical
features are significantly enhanced in the resulting destriped snapshots. In panels
Fig.5.4(f) and Fig.5.5(f), we plotted the averaged Fourier power spectrum. The
stripes are revealed in the Fourier spectrum by several impulses (or pics) located at
different wavelengths, often at Mid and High frequency components. We can observe
from the analysis of the the spectral densities before and after the destriping process
that striping noise components are no more observed in the spectra of the processed
images.

We also applied our algorithm to SST snapshots provided Modis sensor onboad
Aqua platform. As shown in Fig.5.12, we reported similar to those obtained for
ocean colour snapshots.

Influence of the key parameters of the proposed scheme.

The results of our destriping method suggest that both the variance of the Fourier
filter and the number of decomposition levels in UWT transform do have an effect
on the quality of the obtained images. Fig.5.8 shows the joint influence of these key
parameters. It suggests that the typical variance parameter must be small. Large
values produce a blurring effect. In the various results illustrated in this paper,
the default value for the σ parameter is set to 5. Notice that even with smaller
values the algorithm gives good performances. Regarding the UWT, a suitable
number of decomposition shall not exceed 5 levels. To deal with the missing data
issue while using the Fourier filtering, our method uses a preprossing step which
consists in filling in the missing areas using the Laplacian inpainting method. Fig.5.7
stresses the benefit of such an interpolant comparing with the classical zero-padding
method. This method has been chosen for a practical considerations, since it is
parameter-free and inexpensive in computer storage space (relatively sparse matrices
to invert) compared to inpainting method based on high-order differential operators
(e.g,. biharomic inpainting) This method is especially suitable for images involving
high rate of missing data where the discretisation of Laplace operator gives rise to
large matrices. From the reported experiment here using a bi-harmonic interpolant,
we expect other inpainting methods based in diffential operator (e.g., AMLE) to lead
to similar destriping performances, at the expense of an increased computational
complexity.

Comparison to state-of-the-art algorithms:

We performed a comparisons to two recent state-of-the-art algorithms, namely
the Fourier-wavelet scheme proposed by [4] and the non-local variational approach
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Figure 5.6: Destriping results an ocean brightness temperature snapshot using dif-
ferent values of the variance related to the Fourier filter gα (Eq.5.3) and for different
wavelet decomposition levels.
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Figure 5.7: Destripng results of the image shown in Fig.5.1(a) using different method
for filling the missing areas before destriping; (a) zero-padding; (b) harmonic inpaint-
ing (c) biharmonic inpainting.

proposed by [5].
Compared to our approach, [4] uses the decimated wavelet transform (DWT)

which is less effective, especially in the heavy stripped image. In addition, the use
of the Haar filter is not suitable and the number of taps (i.e., nonzero coefficients) for
the chosen wavelet form must be large. This is illustrated by the results reported
in Fig.5.8. The quality of the image generated by our method is superior to the
images obtained using [4]. Unlike panels Fig.5.8(d)-(e), all the stripes was removed
and the image contains no artifacts.

Fig.5.8 also shows the improved destriping performance of our algorithm com-
pared to [5]. We further compare in Fig.5.9 the method noise resulting from our
algorithm and [5]. The visual inspection of the associated Fourier power spectra
shown in panels Fig.5.9(c)-(d) suggests that the energy of our method noise is al-
most distributed in the narrow horizontal wavenumbers band near ky = 0. By
contrast, the energy related to the method noise of the destriped image using [5] is
distributed over a broad spectral band and does not conform to the prior assumption
about the geometrical nature of the undesired noise. A direct impact of this obser-
vation can be seen in the averaged Fourier spectrum reported in panel Fig.5.9(e).
In fact, the signal spectral magnitude is attenuated for frequencies located near the
mid-wavenumber region.

To achieve a quantitative comparison with the considered sate-of-the-art meth-
ods for the ocean color maps we compute the mean of the cross-track profiles of
each image. This quantitative metric measurement gives a good indication of the
strength of the striping noise present in a given image. It consists in calculating
the average value along each scan line. The presence of stripes translates to the
mean cross-track profile by a strong periodicity. Using this metric, the goodness
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of a given destriping algorithm is described in terms of its ability to remove this
periodic component and obtain a smooth signal. We plot in Fig.5.10 the cross-track
profiles of images displayed in Fig.5.4 and Fig.5.5. As expected, the original de-
striped image exhibits a strong periodicity. The profiles of the destriped images
using our approch as weel as [4] and [5] are also reported. While our approach and
[4] resort to slow-varying profiles with no periodic pattern, [5] does not sufficiently
remove these periodic components which are still visible at the end of the scan.
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Figure 5.8: (a) Original brightness temperature image from TIRS Landsat 8. (b)
Destriped image using our method. (c) The removed residual component. (d)
Destriped image with [4] using Haar function. (e) [4] using db4. (f) Destriped
image with [5]

Impact of the destriping for the analysis of SST and Ocean Color

snapshots: We illustrate the potential of the proposed destriping algorithm for an
operational use of the resulting sea surface fields. The fist application deals with the
application of our algorithm as a preprocessing step in the automatic detection of
SST fronts [85]. For this purpose, we apply a Sobel filter to a subset of an original
Modis SST maps at full sensor resolution of ≈ 1km and using a downsampled
resolution of ≈ 4km (Notice that in [85] the edge detection algorithm is performed
using data at ≈ 4km). We perform the same operation using the destriped version
of the considered image. Fig.5.11 illustrates the results obtained for this experiment.
As expected, in both the full and downsampled resolution of the real image, strong
gradients are exhibited for real SST fronts and also caused by the vertical stripes.
As such, an automatic detection algorithm would hardly be able to discriminate
these two classes of gradient patterns. By contrast, the effect of the destriping is
clear in the processed images. It reveals more clearly the geometry of the SST fronts,
which were occluded in some cases by the striping artifacts. This example illustrates
that our destriping scheme can enhance the detection of thermal fronts using simple
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Figure 5.9: The method noise of the original image shown in Fig 5.8 associated to
(a) Our method (b) [5]. Panel (c) and (d) report respectively the Fourier power
spectrum of (a) and (b). The averaged Fourier power spectrum of the obtained
results in Fig 5.8 are plotted in (e), the legend inside refers to Fig.5.8
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automatic front detection algorithms.

(a) (b)

(c) (d)

Figure 5.11: Illustration of the impact of the striping noise in the detection of ther-
mal fronts from SST snapshots. The magnitude gradient field of a Modis snapshot
computed using the Sobel operator using (a) the full image resolution (b) down-
sampled version at 4km (c) destriped image at the full sensor resolution (d) the
destriped image at 4km resolution.

The retrieval of Level-2 SST products from a Level 1 brightness temperature data
may be considered as a second potential use of the proposed destriping approach.
The linear (resp. nonlinear) SST retrieval algorithms are typically based on linear
(resp. nonlinear) combination of brightness temperature extracted from several
channels. Brightness temperature datasets are also involved with stripe artifacts.
Thus, it is more convenient to reduce stripe noise before performing the retrieval.
Here we report such an application using VIIRS data. Brightness temperatures from
the 375 m resolution Imagery Bands (I-Band) are used with 750 m resolution SST
fields obtained from the VIIRS Moderate Resolution Bands (M-Band) to obtain
375 m SST fields. The algorithm consists in computing regression coefficients by a
rolling-window analysis. We report two examples in Fig.5.13. They illustrate the
benefits of the destriping prior to the application of SST retrieval algorithm.



90
Chapter 5. Removing Striping Noise from Cloudy Level 2 Sea Surface

Temperature and Ocean Color Datasets

5.5 Conclusion

In this chapter, we addressed the removal of striping noise artifacts in ocean remote
sensing images. Such artifacts are common due to the scanning process underlying
the formation of satellite-derived sea surface observations. We proposed a novel
destriping scheme, which combines a UWT decomposition of the image to a Fourier
filter. Contrary to most state-of-the-art techniques, our scheme also deals with miss-
ing data. On different real satellite-derived images, we demonstrated the relevance
of the proposed approach compared to previous work. The use of the UWT is re-
garded as a key component, which brings clear benefit compared to the DWT [4]
and variational prior [5]. We also illustrated the impact of the proposed destriping
scheme for the further analysis of satellite-derived sea surface fields.
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(a) (b) (c) (d)

Figure 5.12: Illustration of the destriped results for SST snapshots derived from
Aqua Modis sensor.(a) Original images (b) Destriped images with the proposed
algorithm. (c) Gradient magnitude of the original fields. (d) Gradient magnitude
of the Destriped images
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(a) VIIRS SST 750 m (b) Destriped SST 750 m (c) VIIRS SST 375 m

Figure 5.13: Illustration of the potential use of the proposed destriping algorithm.
The destriped VIIRS SST data are used along with the I-Band BT at 375 m to
produce SST product at 375 m.
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(a) (b)

(c) (d)

Figure 5.14: Power spectral density (PSD) plots for SST snapshots in Fig 5.6. The
frequency components related to the periodic stripes in VIIRS 750 m (Black curves)
are extremely attenuated. The graphs have been artificially translated for sake of
clarity .
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Abstrat The characterization of submesoscale dynamics and their impact on
the global ocean surface processes is not well understood in part because of the
difficulty in addressing it with satellite-based instrumentation. Measurements of
fine scales structures over the world oceans are limited by the coarse-resolution
of microwave-based sensors on one hand and the sensitivity to cloud coverage of
infrared instruments on the other hand. In this chapter, we investigate the possibil-
ity of generating high-resolution SST (infrared-like) images using a low-resolution
(microwave-like) observations along with an empirical parametrization of the un-
resolved scales. We consider multivariate random field models based on statistical
priors from high-resolution infrared images. The method enhances the resolution
of the SST images by exploiting the joint multi-scale statistics of the small-scale
details in the wavelet domain using a random cascade model together with an im-
posed Fourier-phase constraint. Our model is tested and validated using infrared
high-resolution satellite SST images provided by Aqua Modis sensor.

6.1 Introduction

Because of its importance to the ocean as well as to the atmosphere, SST is recog-
nized as one of the ocean surface Essential Climate Variables (ECVs). The impor-
tance of SST (and the others ECVs) derives primarily from its spatial distribution;
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how the parameter varies spatially. To demonstrate this point, we briefly mention
some applications: SST is used as the lower boundary condition in the operational
Numerical Weather Predicton (NWP) models (i.g., ECMWF). The study of Chelton
and Wentz [86] argue that an accurate knowledge of the global SST field is essential
for accurate representation of the ocean-atmosphere interaction in the numerical
models.

The amount of the available observed variability is, of course, constrained by the
spatial resolution of the instruments used to produce maps of the interest variables.
Today, it is hard to resolve a 10km (and less) eddy in an SST field. Consequently,
the spatial resolution of the data product determines the (physical) processes that
may be studied and unveiled. As the resolution of the remotely sensed SST data
products has improved it has become increasingly clear that the small-scale fea-
tures, previously ignored and less-known, may well be impacting large scale ocean
processes.

Today, thanks to satellites, a large set of multiscale SST data has been col-
lected using passive satellite sensors. Under certain atmospheric conditions, high-
resolution multi-band passive infrared imagery provides a detailed observations of
ocean variables. The richness of the provided images allows us to analyze and un-
derstand the spatial heterogeneity of the ocean surface. As already mentioned, an
extremely important issue, which can be treated and become accessible using the
high-resolution data is the characterization of the submesoscale dynamics and their
impact on the global ocean surface processes. Unfortunately, however, the infrared
measurements has the disadvantage of being restricted to a clear-sky conditions.
The low-resolution micro-wave measurements may be considered as an alternative
for the retrieval of SST data in the presence of clouds. In addition to the sensibility
to heavy rain, the disadvantage using this type of data is the much coarser resolu-
tion. The typical pixel size of microwave SST images is ≈ 25−50km. Therefore, this
makes microwave observations rather useful for observing and characterizing global
scale ocean processes like major ocean fronts. For the identification of small-scale
frontal structures high-resolved fields are required.

The desire for high-resolved SST maps have always been a strong motivation to
explore algorithms for optimal enhancement of available low-resolution datasets into
more complete high-resolution fields with much more small-scale-resolved details.
The Optimal interpolation scheme is the common approaches used to combine all
available observations. As a result of smoothing effects, the spatial resolution of the
interpolated sea surface temperature product is dramatically degraded. [86] clearly
shows the significant dramatic impacts of the optimally interpolated SST fields,
used as the lower boundary condition for the European Center for Medium-range
Weader Forecasting (ECMWF) global weather model, on the accuracy the surface
wind stress in the high SST gradient regions (i.g., Gulf Stream).

To estimate high-resolution geophysical tracers at the ocean surface, given one
or multiple sources of low-resolution measurements, a priori information about the
multi-scale statistics of the interest variable is essential. In this chapter, we in-
vestigate a multi-scale textural-based models for the conditional synthesis of high-



6.2. SST data and Elementary statistics 97

resolution geophysical tracers from a low-resolution observation and possible partial
high-resolution observations. The information content associated to textures plays
an important role in remotely-sensed SST images. The spatial properties of the these
images are almost represented by this content, in particular, the truly-resolved scale.
It is clear that the point spread function (PSF) associated to low-resolution instru-
ments eliminates or at least reduces the amount of this information. A relevant
super-resolution scheme would be expected to realistically reproduce this textural
content conditionally to the degraded version of the images. One can learn the
shape and the statistics of these textures from observed high-resolution cloud-free
fields. The most challenging task while dealing with the synthesis of the observed
textures using a given model is the ability to synthesize textures simultaneously
at all observation scales (and orientations). As reviewed in Chapter 2, this issue
relates to texture synthesis. Spectrally-driven approaches are particularly appeal-
ing for SST fields, as they are expected to embed spectral features associated with
fine-scale ocean turbulence. Recently, in [2], it is shown that a new texture can be
synthesized in a fast and reliable manner by imposing a spectrum directly sampled
from an example image. However, this model is restricted to Gaussian textures that
exhibit small-sale oscillations and do not contain structured patterns (i.e., edges).

The key contributions of this chapter are: i) the demonstration that SST images
(locally) exhibit some remarkably regular multiscale spectral proprieties, mainly re-
lated to inter-scale and scale-to-scale dependencies, ii) the definition of a modeling
framework based on multivariate wavelet-based texture models, and iii) the formu-
lation of an additional inter-scale phase constraint. We illustrate from applications
to both synthetic and real SST snapshots (Infrared Aqua Modis dataset) collected
from different and independent oceanic regions, the relevance of the proposed model
to capture important multiscale statistical features of SST fields.

This chapter is organized as follows: Section 6.2 is devoted to a brief discussion
of key statistical features of SST images in the Wavelet and Fourier domains. In
the context of SST image superresolution, the proposed multivariate texture-based
model is described in 6.3 and 6.4. We also discuss different practical aspects of its
implementation in 6.5. Section 6.6 reports experimental results. Section 6.7 presents
a summary of the study and points out some future research.

6.2 SST data and Elementary statistics

The SST data used in this study have been obtained by Modis thermal infrared sen-
sor on board the Aqua and Terra satellites (NASA Earth Science satellites mission).
Data are in Level-2 ungridded orbital swath format and are available on NASA’s
OceanColor Web supported by the Ocean Biology Processing Group (OBPG) at
NASA’s Goddard Space Flight Center. We choose relatively cloud-free scenes (typ-
ically, no more than 10% of missing data). Fig.6.1 shows locations of the study area
where data were collected.

Data pre-processing The collected SST data are processed to reduce the most
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(a)

Figure 6.1: Spatial locations of collected SST snapshots in the Malvinas region
considered as the area of study

obvious undesired noise. The method described in Chapter 5 is applied to detect
and remove the striping noise. In addition, to reduce the amount of the stationary
noise, while preserving the sharpness of the fronts, a 3 × 3 pixel median filter is
applied. The data were then gridded, i.e., mapped from the satellite coordinate
system onto a regular longitude-latitude grid with a 1km spacing.

Different studies investigated the statistical features of SST fields. [87] and
[88] studied the statistical structure of sea surface temperature images using high-
resolution satellite-based datasets. Fourier and wavelet-based analyses provide a
sparse description and parametrization across a wide range of spatial scales. Re-
garding the averaged Fourier spectrum, it was unveiled that it generally follows a
power law. As shown in Fig.6.2(d) this scaling behavior is not far from k−3. The
statistical distribution of the wavelet coefficients is characterized by a symmetric
and sharp distribution around the mean value with an extended heavy tails signif-
icantly heavier that the standard Gaussian case (see Fig.6.2(e)). Note that such
non-Gaussian statistical properties are widely acknowledged features of turbulent
fields [89] and natural images [90].

6.2.1 Wavelet Decomposition and Marginal Statistics

The representation of images from their wavelet coefficients, illustrated in Fig.6.3,
has been proven meaningful for a variety of image processing applications, including
image simplification or compression [91], texture characterization and recognition
[92]. In the field of geophysics, wavelets decomposition may also appear as powerful
tools to characterize the turbulent flows [93]. As derived in [11], an image may be
decomposed as a tree wavelet subbands. This representation provides a full and
sparse (but not necessarily non-redundant) representation of the image, in the sense
that the original image may be exactly reconstructed from this tree of coefficients
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(a) (b)

(c) (d)

(e)

Figure 6.2: Fourier and Wavelet characterization of SST data (a) Snapshot of
MODIS SST in the Malvinas region (b) AMSR-E snapshot (c) degraded version
of the Modis snapshot to AMSR-E resolution (d) The associated averaged Fourier
power spectra (e) Probability density function (PDF) of the horizontal subbands
(details) coefficients of the first, second and third levels of the wavelet decomposi-
tion of image (a).
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(a) (b)

Figure 6.3: Modis SST snapshot (a) and the corresponding Wavelet decomposition
at level 4 using db4.

using an inverse transform.

u = RWu (6.1)

where W and R refer, respectively, to the direct and inverse wavelet transform.
Following Chapters 2 and 3, we further explore such decomposition-based represen-
tations with a view to modeling the inter-scale component of SST images.

6.2.2 Joint Statistics of the Wavelet Coefficients: inter-scale and
across-scale Dependencies

SST anomaly snapshots are characterized by non-trivial two-dimensional (marginal)
correlation structures (see Fig.6.7). Fitting theoretical parametric models to such
empirical highly-oscillating anisotropic kernels is not a trivial task. Furthermore,
simulation based only on second-order statistics priors (i.e., magnitude Fourier spec-
trum) do not lead to realistic fields. Fig.6.4 demonstrates that an image generated
from a Gaussian process with the same power spectrum as a turbulence-like reference
image is easily visually-distinguishable from images of this class. This demonstrates
that higher order non-Gaussian statistical properties and non-stationary geomet-
ric patterns (e.g., fronts) are contained in the Fourier-phase information [29]. In
Fig.6.5, we perform the same experiment as [29], which consists in reconstructing
an image from its Fourier coefficients by setting the phase and magnitude compo-
nents, respectively, to ones. The obtained results shows the importance of the phase
information. It may be noticed that we can still distinguish the global geometrical
aspect of the image reconstructed with only the Fourier phase part. By contrast, a
noisy image is obtained when the phase information is destroyed.

Following these observations, we investigate the (undecimated) wavelet trans-
form, as a mean to perform a sparse decomposition of the strong spatial depen-
dencies observed at different scales. The multi-scale decomposition considered here
can be justified in many different ways. As illustrated in Fig.6.3 (for DWT), UWT
separates the high resolution input image into different sub-band images.
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Figure 6.4: Statistical analysis of a 2D turbulent flow field: (a) example of two-
dimensional turbulent flow field (b) Synthesized Gaussian image obtained by im-
posing the spectrum of (a). Comparison of the power spectra. (inset) Comparison
of the PDFs.
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(a) (b)

(c) (d)

(e)

Figure 6.5: Demonstration of the importance of the phase information in the SST
images: (a) original SST snapshot provided by Aqua Modis sensor captured on
29-Apr-2010 (b) synthesized image obtained using the inverse Fourier transform by
keeping only the phase information (c) image reconstructed by imposing a constant
Fourier phase using the same Fourier magnitudes as the original. (d) image obtained
by the random phase noise process (RPN) (e) image obtained by using only the phase
information from the original image while the magnitude is learned and imposed
from another clear-sky SST snapshot captured on 02-May-2010. Remark that the
edge information still present in (b) and a realistic image is obtained in (e)
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(a)

Figure 6.6: Power Fourier spectra of images reported in Fig.6.3

(a)

Figure 6.7: Autocorrelation function associated to the inter-scale component of
Fig.6.2(a)
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6.3 Multivariate texture-based models for the Wavelet

Coefficients of SST images
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Figure 6.8: (a) The lowpass and highpass analysis filters associated to Symlet
wavelet (Sym4), also known as Daubechies least asymmetric wavelets. In order
to illustrate the difference with the classical Fourier analysis, a simple sine wave is
shown in (b).

As described in [11, 94], the multi-resolution analysis (MRA) allows an orthonor-
mal (energy-conserving) transformation of an original signal into a scale space. This
theory was formulated based on the study of orthonormal, compactly supported
wavelet bases. This decomposition is quite similar to a signal transformation into
the classical Fourier wavenumber space. The difference lies in the fact that the no-
tion of scale in the MRA is spatially localized while the wavenumber, in the Fourier
transform, has a global extent (see Fig.6.8). We formally define the length scale in
the MRA as:

Ln = 2nL0 (6.2)

where n is the index of a given scale and L0 is the original or desired scale length
in, respectively, the analysis and reconstruction case. In our algorithm, we set
L0 = 1km.
The main idea of the MRA analysis is to expand the original signal/image, at
L0, into two complementary spaces called the scale and wavelet space. Roughly
speaking, one can decompose the original signal s(x, y) as s(x, y) = s̃(x, y)+ ε(x, y)

where s̃(x, y) is a mean smooth part which belongs to the scale space, i.e., L1 and
ε(x, y) refers to residual field in the wavelet space. Furthermore, one can iterate this
operation on the newly obtained scale field into multiple wavelet spaces.

s(x, y) = s̃n(x, y) +
n
∑

k=0

εk(x, y) (6.3)

where the index of summation k denotes that the scale of the component is Lk =

2kL0 and n is the largest scale of the decomposition. As an example, the length scale
of Modis datasets is L0 = 1km, for n = 5 the coarsest scale will be approximately
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30km which approximately corresponds to the AMSR-E resolution. Notice that the
finer details of the SST field are captured in (εk(x, y))k=1,··· ,n at the smaller indices.
Each component in 6.3 can be developed separately as follows:

εk(x, y) =
∑

(i,j)

d
(k)
ij χ

(k)
ij (x, y), j = 1, · · ·n (6.4)

s̃n(x, y) =
∑

(i,j)

a
(n)
ij φ

(n)
ij (x, y) (6.5)

where d
(k)
ij and a

(n)
ij are the wavelet coefficients. Respectively, they are called details

and approximation coefficients. The basis functions in 6.5 are defined as

χ
(k)
ij (x, y) =

1

2k
χ(

x

Lk
− i)χ(

y

Lk
− j) (6.6)

φ
(k)
ij (x, y) =

1

2k
φ(

x

Lk
− i)φ(

y

Lk
− j) (6.7)

where χ is one dimensional function called the wavelet function (or the mother
wavelet) and φ is the scaling function (or the father wavelet). From 6.7 one
can assume that the wavelet basis are self-similar functions since each basis func-
tion is a scaled and translated version of either the mother or father wavelet function.

Our model exploits the undercimated wavelet transform (UWT) instead of the
classical DWT. The UWT filter is carried out without the downsamplers by a factor
2j at each level j for the decomposition as well as for the reconstruction using the
inverse transform. This gives rise to coefficient fields with the same size as the
original image to decompose. Notice that the choice of the UWT is motivated by:

1. Overcoming the shift dependency of the discrete wavelet transform (DWT)
[11].

2. Computational Statistical Inference: to properly estimate the empirical cross-
correlation and joint probability distributions, fields should have the same di-
mensionality. DWT is a non-redundant decomposition which transforms data
into wavelet space preserving cardinality. This can be seen as a direct result
of downsampling by a factor 2 at each level and as a consequence subbands, at
different levels, do not share the same size. This makes the calculation of the
cross-correlation and the joint statistics complex. Redundant transformations,
namely the Undecimated wavelet transform, seems here more appropriate.

6.3.1 Cascaded Gaussian random field models on Wavelet Trees

We propose regarding image wavelet sub-bands as realizations of Gaussian Texture-
based model. Following Chapter 2, we consider the following formulation

εθi = G ∗ W̄ (6.8)
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where G is a spot kernel previously learned from an available sample and W̄ is a noise
process. i and θ refer, respectively, to the level and the orientation of the wavelet
sub-band. As already seen in Chapter 2, the sampled spot allows us to impose
the spectrum of the synthesized sub-bands. Remark that both univariate processes
described previously, namely the RPN and the ADSN [2], can be represented by
the equation (6.8). The difference lies only in the noise process. Whereas W̄ is a
standard Gaussian white noise for the ADSN process, which is defined in the Fourier
domain as the process whose Fourier modulus are i.i.d Rayleigh random variables
and the phases are distributed according to the circular uniform distribution, the
Fourier modulus associated to the RPN process are set to ones. Surprisingly, the
wavelet sub-bands we deal with are visibly not susceptible to pointwise multiplica-
tion of their Fourier components by a Rayleigh noise. We illustrate this point in
6.9. Of course, the same property is not true for the original image, nor should it
be. Thus, both models are valid and applicable in our case.

Figure 6.9: Illustration of the effect of the pointwise multiplication of the Fourier
modulus by a Rayleigh noise. The SST image (top) is corrupt whereas the associated
wavelet sub-bands (bottom) are visually robust to this multiplication. Here, we
illustrate this effect using the vertical wavelet sub-band at the level 2.

The above correlated random field model could be employed to model a sin-
gle sub-band component. Sub-bands are however clearly mutually dependent, at
least at the same or closest levels, and applying the above model independently to
each component would not make sense. The key idea of our work is to introduce a
stochastic multivariate texture-based model, able to model and capture the cross-
dependence structures of the wavelet sub-bands (details) of the image, such that
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each sub-band is characterized by a texture-based model similar to 6.8. We pro-
pose regarding sub-band wavelet (details) coefficients as realizations of multivariate
texture-based model as developed in Chapter 2. For a given decomposition length
scale Ln, let us denote by ε = {εv1, εh1 , εd1, · · · , εvn, εhn, εdn} the wavelet coefficients.
Within a continuous setting, such model can be stated according to:
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(6.9)

where Gij is a variant of the cross-correlation function, auto-correlation in the case
of i = j, between εi and εj . W̄ is a vector of independent white noise process. As
has already been noted in Chapter 2, we shall limit ourselves to a triangular block
matrix for

(

Gij

)

ij
.

6.4 Super-resolution model

Given the above model, we now address the problem of texture-based super-
resolution as the problem of sampling from a conditional multivariate density con-
strained by an ensemble of statistical and spectral prior measurements taken from
a high-resolution example images. The stochastic multivariate texture-based model
proposed in 6.3 naturally applies, in the wavelet domain, to consider correlation
and cross-correlation priors of the sub-bands wavelets coefficients. In addition, to
synthesize the low frequency regularity of the wavelet sub-bands with respect to the
low-resolution image (i.e., the structured parts), we impose the Fourier phase of the
approximation coefficients.

The considered super-resolution model resorts to:



















(εv,h,di )i=1,··· ,n =
[

Gij(θ)
]

1≤i,j≤3×n
∗W⊤

ˆ̄εv,h,di = |ε̂v,h,di |exp(j × ∠ŝn)

Ĩ = R
[

sn, (ε̄i
v,h,d)i=1,··· ,n

]

where W = (W1, · · · ,W3×n) is a vector of independent white noises, sn the approx-
imation coefficients and θ is the exemplar image used to calibrate the various spot
kernels. In this model we start with a multivariate independent Gaussian white
noises, and force this noises to satisfy the constraints listed above. Notice that the
projection constraint is naturally satisfied since we do not change the approximation
coefficients.
This super-resolution scheme clearly constrains the geometry of the high-resolution
sample Ĩ from the geometry of the low-resolution image (UWT approximation co-
efficients) through the Fourier phase spectrum.
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6.5 Numerical resolution

The proposed super-resolution model involves two steps: i) a learning step from
an example and ii) the generation of a sample of the multivariate sub-bands model.
Regarding the learning step, we consider a non-parametric offline estimation method.
Specifically, we apply the following procedure:

1. We first collect exemplar images and for each sample, the wavelet expansion
is performed.

2. Kernels Gij are all computed with respect to the relationships already estab-
lished in Chapter 2. In particular, these kernels are functionals of the spectral
and cross-spectral densities (i.e., correlation and cross-correlation functions)
of the wavelet sub-bands. As already mentioned in Chapter 3, we estimate
the power spectrum of the exemplar images using the periodogram. The es-
timation requires only a single exemplar, but unfortunately this gives rise to
noisy spectrum. To overcome this problem we compute a mean periodgram by
averaging multiple peridograms using several exemplars. The cross-spectrum
of two exemplar images is defined as the Fourier transform of their cross-
covariance function [95]. However, from the Wiener-Khinchin theorem, it can
be implemented more efficiently as the complex-valued product of the Fourier
transforms of the two images [96]. In the case of learning from samples involv-
ing missing data, instead of directly calculating the spectra, we can compute
the correlation and cross-correlation functions, the kernels being then obtained
by a Fourier transform of the these functions. Once these kernels have been
calculated and normalized, it is possible to go to the simulation step.

3. In this step, we assume that we are only provided with a low-resolution version
of a new image (not included in the training set), i.e., approximation coeffi-
cients. Based on the estimated kernels in the previous offline learning step,
we simulate the wavelet details coefficients using Eq.(6.9).

6.6 Results and Discussion

In Fig.6.10 we provide an example of how the new superresolution scheme works
using daily synthetic sea-surface temperature observations. Data are generated over
a 90 day period for several test regions with infrared resolution ≈ 1km. Panel (b)
shows a high-resolution (L0 = 1km) SST snapshot which we aim at reconstruct-
ing. Here we set the length scale parameter from which the reconstruction will be
performed to Ln = 16km i.e., n = 4. In the obtained low-resolution image, the
loss of many small-scale features can be clearly observed. There is also a weakening
of the gradient magnitude due to the low-pass filter. We reconstruct the virtual
high-resolution field, at L0 = 1km, through our super-resolution scheme starting
from the low-resolution image. Using this method, we obtain Fig.6.10(c), which is
visually similar to the real image, especially in terms of generated realistic small
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Snapshots of the sea-surface temperature (SST) anomaly in a 250km×
250km subregion of the Equatorial Pacific. (a) The low-resolution observation, (b)
truly observed high-resolution snapshot and (c) the reconstructed image. The second
row depicts respectively the gradient magnitude field of the three images.
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(a) (b) (c)

Figure 6.11: zooms into subareas of the image considered in Fig.6.10. (a) Low-
resolution patches, (b) true High resolution observatiosn and (d) reconstructed
patches.
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Figure 6.12: Quantitative results showing the Effectiveness of the proposed method.
(a) Fourier power spectra. (b) Marginal PDF of the magnitude of SST gradient
fields illustrated in Fig.6.10 (second row). (d) Marginal PDF of the inter-scale
components.
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Figure 6.13: (First row) The three ’ground truth’ detail subbands at Level 3 (hori-
zontal, vertical, and diagonal, respectively). (b) The reconstructed detail subbands
(Second row).

Figure 6.14: The same as Fig.6.13 for level 1.
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Figure 6.15: The spectra (first row) and the cross-spectra (second row) of the detail
subbands at Level 1 for the original SST snapshot (black) and the reconstructed
field (red).
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Figure 6.16: The same as Fig.6.15 for the Level 3.
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scales structures. A zoomed-in comparison between the reconstructed field using
our method and the original high-resolution snapshot, shown in Fig.6.11, reveals
similarities in the recovered texture details.

To check whether the model is effective in terms of the reconstruction of marked
fronts and gradient enhancement, we examine the obtained gradient fields. We also
analyze the front enhancement capability of the model through the statistics of the
magnitude gradient |∇θ| quantified by the probability density function (PDF). In
Fig.6.10, panels (d) to (f), we compare the intensity of the SST gradients for the
three fields. For the low-resolution snapshot, as expected, it is apparent that this
field is considerably smoothed and the small-scale gradients are removed. Consider-
ing the intensity gradients of the reconstructed field, we observe that the production
of small-scale structures and sharp edges is clearly visible. Moreover, the PDFs of
SST gradients of the reconstructed snapshot are much more similar to those of the
original field (see Fig.6.12(b)). This underlines the potential of the proposed tech-
nique for the reproduction of the statistical and geometrical SST fields, especially at
SST fronts. We conclude the qualitative characterization of our method by giving
realisations of the reconstructed wavelet sub-bands. In Fig.6.13 and Fig.6.14, the
reconstructed sub-bands at level 3 (i.e., large scales) and level 1 (i.e., small-scales)
from the full model is given. We report in the same figures sub-bands from the orig-
inal snapshot. Thanks to the use of the phase constraint, the geometrical aspects of
the reconstructed fields are satisfactory reproduced even though there are some dif-
ferences at small-scale (i.e., level 1) between the ground truth and the reconstructed
fields.

In order to get more quantitative characterization of the effectiveness of our
method, we turn now to spectral and statistical proprieties of the reconstructions.
In Fig.6.12(a) we report the radially averaged wavenumber spectrum of the recon-
structed high-resolution field. In the same figure, we also show the spectra computed
for the original low-resolution field. First, we clearly observe the effect of the fil-
tering: beyond k ≃ 30km, the spectrum of the low-resolution field falls heavily as
a result of the elimination of the small-scales, while at larger scales it is indistin-
guishable from the spectrum of the original high resolution image. The issue of
improving resolution and reconstructing small-scale missing details allows to extend
the spectrum at higher wavenumbers (k ≥ kd). We observe that the small-scale
energetic content is widely rebuilt in the reconstruction example. The slope of the
log-log spectrum is significantly closer to that obtained for the original snapshot. As
already pointed out, the super-resolution scheme, formulated in the wavelet domain,
allows to impose spectral and cross-spectral constraints within and between differ-
ent sub-bands. In order to check this last remark, we perform a spectral analysis
of the reconstructed sub-band wavelet coefficients. We compute the wavenumber
power spectrum and the cross power spectrum (i.e., The Fourier transform of the
cross correlation). These spectra are then averaged over all directions. In Fig.6.15
and Fig.6.16, we report, respectively, the result of such analysis using the sub-band
coefficients at levels 1 and 3. In both cases, a good agreement has been found be-
tween the power spectra of the reconstructed field and those of the original high
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resolution snapshot.
In order to evaluate the benefits of the various imposed spectral constraints,

fig.6.17 shows the results obtained for an SST snapshot using our method and a
reconstruction method based on running separate models of the form (6.8) for each
sub-band component. The uni-variate model constrains the second-order statistics
(i.e., power spectrum) but does not allow to produce the dependency structures
(i.e., cross spectra) between different reconstructed components. In addition, there
is no conditioning with respect to the low resolution observation. This makes the
obtained image noisy and does not add textured small-scale details in a plausible
manner. In our method, the conditioning is done through the imposed constraint
on the Fourier phase of the simulated sub-bands.

We also apply our super-resolution scheme to satellite images provided by the
infrared Modis instrument in the Malvinas region. Fig.6.18 compares the ground
truth of an SST snapshot at the infrared resolution (≈ 1km) with the result of our
super-resolution procedure applied to the low-resolution observation. The resolu-
tion of the original image has been artificially degraded by factor 32 (≈ resolution of
micro-wave instruments). We compare the reconstruction result of the proposed ap-
proach to that of a model with no cross-spectral and phase constraints. This example
further stresses the relevance of the proposed model. By looking at the intensity of
gradient fields of the reconstructed field, one can see that the frontal structures are
satisfactory recovered and enhanced.The benefits of the proposed approach is clear
in terms of generating non-homogeneous high-structured patterns (see Fig.6.18(h)).
In Fig.6.21, we show one-dimensional horizontal sections at arbitrary points.

6.7 Conclusion

In this chapter, we have presented a novel superresolution image method which
exploits low-resolution temperature observations as inputs of a multivariate ran-
dom field model, formulated in the wavelet domain, for the reconstruction of high-
resolution images, which involve realistic small-scale structures. The prior of our
model explicitly states the second order structure of the wavelet subbands coeffi-
cients. The imposed phase constraint allows us to control geometrical features of
the resulting image, in terms of local regularity of frontal structures.

Our future work will particularly investigate parametric models. Regarding the-
oretical aspects, the major item is parameter estimation. Besides applications to
the texture-based interpolation of missing data, spatio-temporal extensions of the
proposed model are also of interest.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.17: Synthesis result when dropping the cross-spectral constraints. (a) The
low-resolution image, (b) the original high resolution image, (c) the constructed
image using our approach and (c) the image synthesized by an independent simu-
lation of the model (6.8) for each sub-band. (e) to (g) represent, respectively, the
inter-scale component for the tree images in the middle.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 6.18: Application of our super-resolution scheme on a low-resolution satellite-
based image: (a) low-resolution image and (b) the associated magnitude gradient
field. Second row shows, respectively, the original high resolution image provided by
Modis sensor along with the magnitude of its gradient field and the associated inter-
scale component. In the same order, the third row reports the result obtained using
our method. Results obtained with the uncorrelated stationary Gaussian model for
the wavelet sub-bands without imposing the phase constraint is shown in the fourth
raw.
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(a) (b) (c) (d)

Figure 6.19: Zoomed-in comparisons of the results obtained in 6.18 (a) LR patch, (b)
original high resolution patch, (c) proposed model (d) model with no cross-spectral
and phase constraints (Fig.6.18(i))
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Figure 6.20: Averaged Fourier power spectra estimated from images in 6.18 and
from corresponding super resolved versions for various enlargement factors ranging
from ×2 to ×16.
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Various satellites provide images of multiple ocean parameters at different res-
olutions. Among all the observed parameters, Sea Surface Temperature (SST) is
a peculiar example. Microwave-based radiometry provides low-resolution observa-
tion (≈ 50 km) while infrared-based instruments deliver high resolution SST mea-
surements (≈ 1km). In addition to their intrinsic resolution, the different satellite
sensors also differ in their sensitivity to the atmospheric conditions, and especially
the cloud coverage. Whereas microwave estimates of SST are unaffected by (non-
precipitating) clouds and provide measurements in all weather conditions, infrared
sensor may result in high missing data rates (up to 90% over several consecutive
days in some regions).
In this thesis, we have focused on two problems: the reconstruction of high-
resolution SST fields from low-resolution observations, and the characterization of
the turbulent-related geometrical patterns exhibited by SST fields. We have pro-
posed several textural-based super-resolution models and their multi-scale formula-
tion. Such scale-dependent methods are expected to depict geophysically consistent
features, with a view to conforming to the underlying ocean turbulence characteris-
tics, especially: i) consistent high-resolution geometric textured patterns, ii) specific
spectral signatures, iii) non-Gaussian marginal distributions.
In what follow we discuss the proposed work and give some perspectives.

• Stochastic models for textured images
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We have proposed in this work several stochastic texture-based models and as-
sociated synthesis algorithms. In first time, we have explored the mathematical and
algorithmic results of two exemplar-based texture models. The two randomization
processes are the RPN and ADSN models. Both are Gaussian, homogeneous and
valid for textures that does not exhibit macro-geometric patterns. The specificity of
these models is to synthesize a texture sample by imposing constraints on its Fourier
spectrum using random phase noise. In Part I of this thesis, we have extended the
above-mentioned models to the multivariate framework. The originality of this ex-
tension is the ability to take into account additional cross-spectrum constraints.
In Chapter 3, we proposed a straightforward application to sample-based super-
resolution of textured images. Textures may exhibit highly-structured patterns (i.e.,
edges). The most defining characteristic of textures is their underlying geometry. It
remain however a challenge to model and reproduce such patterns. In Chapter 2, we
have not yet developed tools for handling this type of macro-geometric structures.
Second-order forms (i.e., spectrum) may only be very weak constraints concerning
the structure of the underlying patterns, as coherent structures essentially sign in
the phase information. We then have formulated the super-resolution problem as a
texture synthesis guided by the phase information of the low-resolution image. The
conclusions of this Chapter are: 1) Not surprisingly, free-phase constraint model
seems to provide a good results for homogeneous Gaussian micro-textures; 2) The
phase constraints are needed to handle the coherent structures; 3) Unfortunately,
this procedure is limited to highly unidirectional anisotropic textures and can not be
directly applied to directional varying anisotropic textures, at least using the consid-
ered unsophisticated formulation. This last remark gives us the idea of considering
multi-orientation analysis by decomposition of textures into components having ori-
entation selectivity characteristics. The multiresolution wavelet framework gives
us such framework. The way to handle these problems is essentially presented in
Chapter 6 with an application to super-resolution of satellite-based SST snapshots.

• Modeling fine-scale spatial variabilities of high-resolution SST fields

In Chapter 4 in the second part of this thesis, we have addressed the characteriza-
tion of the submesoscale dynamics captured by IR satellite-based SST snapshots. In
this study, we used untraditional tools that have been heavily used in the context of
numerical simulations of turbulent flows. We focused in particular on the analysis
of the regularity of satellite-derived SST level lines in terms of the SLE analysis.
It consists on mapping the (2d)curves on one dimensional signal using conformal
maps that satisfy the so-called Loewner equation. The one-dimentional signal is,
under the SLE hypothesis, the classical Brownian motion which is characterized by
a single parameter κ called diffusivity. Curves are then classified according to the
value of this parameter. We have found empirical evidence that the SST level lines
may be regarded as non-homogeneous SLEs (i.e., with varying κ) unlike results
found for the temperature snapshots in (numerical) SQG models or the vorticity
field for the Navier-stocks equations, where the κ parameter is a constant. In Fu-
ture works, we will first focus on selecting study regions so as to cover a variety of
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upper ocean scenarios: western boundary currents, upwelling regions, the Mediter-
ranean, high latitudes and equatorial. Secondly, temporal series may be considered.
We can extend such studies to test their ability to capture expected mesoscale sea-
sonal variations and evaluate the relevance of the κ statistics to perform a robust
classification of ocean dynamical regimes. We will also address the extension of the
proposed SLE-based analysis to other ocean tracers (e.g., salinity, chlorophyll...).

• Reconstruction of high-resolution geophysical fields from satellite-

derived observations

In Chapter 5 of this thesis, we first deal with the pre-processing issues of the
satellite data. Remote sensing images are contaminated by different type of noises.
Prior to any processing or knowledge extraction using these data, all noises must
be eliminated or at least reduced. In this context, we have dealt with the striping
noise which is an ubiquitous phenomenon in the IR satellite-based SST. We have
proposed a combined Fourier-wavelet Filtering approach. Our primary interest lies
in cloudy datasets. Hence, we mainly propose an adaptation of the spectral filtering
to the case of gaped data. Comparative studies are explained and experiments are
carried out for different State-of-the-art methods.

In terms of application, we have developed a super-resolution technique for ocean
satellite images. This work originates in particular from the observation of Sea
Surface Temperature by infrared and microwave passive instruments but could have
applications to other remote sensing observations. The main purpose is not to
predict the true hidden fine scale information, but rather to propose a realistic
prediction of this information with a focus on both gradient enhancement and small-
scale oscillating patterns generation. The present approach aims at using a priroi
about the cross-spectral proprieties of the multi-scale level of details. In this context,
the framework of the multiresolution analysis is used to handle various observed
geometrical patterns at different scales. We show that the multivariate texture-
based models, described in Chapter 2, combined with Fourier-phase constraints are
the most able to reproduce these features across all the observable scales. Thanks
to the numerical experiments we have shown that the results are visually quite
satisfactory. Thanks to the phase constraints the highly-structured areas (i.e., edges)
are recovered. Moreover, The expected spectral and cross-spectral proprieties are
indeed quantitatively well produced. In Chapter 3, we have seen that the spatial
based model is not able to reproduce well these patterns.

A lot of research work remains on. From a methodological point of view, our fu-
ture work will also explore several extensions. In particular, parametric models may
be considered. The SPDE equations and their multivariate extensions introduced
in Chapter 2 seems to be a good candidates. Our future work will further explore
this framework. Regarding theoretical aspects, we will focus on the parameter es-
timation methods and non-stationary formulations. The proposed super-resolution
algorithms are then of key interest to address the missing data interpolation in
high-resolution images given the associated low-resolution observation. The use of
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the phase information in such potential application is under investigation and yet
to be accomplished. The extension to spatio-temporal fields will also be of key in-
terest. Regarding the application to ocean remote sensing data, the extension of
the proposed model to the joint interpolation of two or more data sources should
be investigate. Beyond the joint processing of multi-sensor data for same geophys-
ical fields (here, SST), one could also explore the relevance of the proposed model
for the joint analysis of different geophysical fields for which a mutual conditioning
might be expected, but difficult to explicit model. The joint interpolation of SST
and ocean colour data may provide a typical example, where could expect to bene-
fit from multi-sensor SST data to constrain the interpolation of ocean colour data,
which often involve very large missing data rate in temperate areas.
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