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Abstract

Security policy provides a way to define the constraints on behavior of the members belonging to a system, organization or other entities. With the development of IT technology such as Grid Computing and Cloud Computing, more and more applications and platforms exchange their data and services for cooperating. Toward this trend, security becomes an important issue and security policy has to be applied in order to ensure the safety of data and service interaction. In this thesis, we deal with one type of security policy: access control policy. Access control policy protects the privileges of resource's utilization and there exist different policy models for various scenarios. Our goal is to ensure that the service customer well expresses her security requirements and chooses the service providers that fit these requirements.

The first part of this dissertation is dedicated to the service provider selection. In case that the security policies of the service provider are accessible to the service customer, we provide a method for measuring the similarity between security policies.

The approach proposed supports different policy models and its correctness is proved by the brute-force based test. Another case is that security policies are not accessible to the service customer or not specified explicitly. Our solution is proposing a policy-based framework which enables the derivation from attribute-based security requirements to concrete security policies. The current framework is used to allocate virtual resource in IaaS Cloud and we have developed an OpenStack-based proof-of-concept.

The second part of the dissertation focuses on the security policy negotiation. We investigate the process of reaching agreement through bargaining process in which negotiators exchange their offers and counter-offers step by step. The positive result of the negotiation generates a policy contract. Our current approach supports the negotiation between two negotiators with the same policy model. We use specifically, the policy tree as configuration to store and manage security-aware preferences and require- 

Motivation and Challenges

Nowadays, data and service exchange across multiple actors becomes an emerging demand to provide dynamic ecosystems. This process involves a large number of actors such as service provider (SP) and service customer (SC). For example, lots of Cloud service providers (CSP) such as Amazon, Microsoft and Orange provide their various services (SaaS, PaaS and IaaS) to Cloud service customers (CSC). Before the implementation of the service, the SC should 1) choose the SP (s) which is compliant with SC's preferences on service terms. 2) reach agreement with SP(s) chosen in order to guarantee the service level and provide fixed service terms for future monitoring.

With respect to SP selection, from SC's point of view, it is always difficult to decide whose service should be chosen so they use brokering technology to rank and select the suitable SPs based on user's requirements. However, most of the current service ranking technologies [7] do not consider the security aspect or they only measure security parameters such as encryption methods [8] and security levels offered by SPs (quantitative and qualitative evaluation) [9,[START_REF] Taha | AHP-based quantitative approach for assessing and comparing cloud security[END_REF]. Among various criteria that need to be considered for the SP selection, security policy is a critical concern and it addresses the constraints on behaviour of the members in a system, organization or other entity. Unlike other measurement criteria, security policies are usually based 1. Introduction on first-order logic which contains predicates and quantification. For example, an access control policy consists of multiple elements and they collectively determine whether a user is allowed to take some actions on certain objects. Thus, existing brokering technologies are difficult to apply on security policies.

Regarding reaching agreement, negotiation is one of the main mechanisms and the output is usually a service contract. Current negotiation technologies cover mainly non-security terms such as QoS and security terms such as trust. In the field of Trust Negotiation (TN), lots of models such as

TrustBuilder [11] and XeNA [START_REF] Abi Haidar | XeNA: an access negotiation framework using XACML[END_REF] have been developed. These models implement negotiation by disclosing credentials step by step. When it comes to security policy, the solution is limited and restricted. Solutions to negotiate security policies are currently based on syntactic mapping: typically the same attribute must have the identical name. Therefore, negotiation fails when the mapping is not successful. Another difficulty is the implementation and development of this complex integration process for ecosystems. Some related implementations are provided by WS-Security (Web Services Security) [START_REF] Nadalin | Web services security. SOAP Message Security[END_REF] and WS-Trust (Web Services Trust) [START_REF]Web services trust language[END_REF] which are in the protocol level.

Similarly, Liberty Alliance [START_REF] Madsen | Liberty metadata description and discovery specification[END_REF] concerns the overall framework of contract and "metadata" which describes some properties of a SP such as "Organi-zationDisplayName", "contactType" and "validUntil". Some researches offer more flexible solutions to negotiate security policies. The work in [16] is a useful starting point but still limited because it supposes that the semantic mapping between different security policies to be negotiated has previously been performed. Moreover, it does not consider situations where different requirements to be negotiated may have different privileges. More related works on security policy negotiation can be found in Section 5.4. However, none of the security policy negotiation solutions provides a complete framework covering policy definition, negotiation configuration, proposal evaluation and negotiation protocol.

Contributions

The main contributions of this thesis are summarized in three aspects:

Improvement of similarity measure for security policies: We propose a generic and light-weight method [START_REF] Li | Similarity measure for security policies in service provider selection[END_REF] to compare and evaluate security policies belonging to different models. Our technique enables a SC to quickly locate SPs with potentially similar policies. The contribution is twofold. On one hand, our method is policy-agnostic and can be applied to various types of policy models. On the other hand, we propose integrating our policy similarity measure algorithm in the SP selection process and the implementation proves that the integration can enrich the services offered.

Enhancing policy expression and enforcement in multi-cloud environments:

The work [18] is based on a formal model that applies organizationbased access control (OrBAC) [19] policy to IaaS resource allocation. We first integrate the attribute-based security requirements in service level agreement (SLA) contracts. After transformation, the security requirements are expressed as OrBAC rules and these rules are treated together with other non-security demands during the enforcement of resource allocation. We have implemented a prototype for VM scheduling in OpenStack-based multicloud environments and evaluated its performance.

Developing a new policy negotiation framework: Based on the meaning negotiation [START_REF] Burato | The process of reaching agreement in meaning negotiation[END_REF] and the bargaining model [21], we propose a framework [22] to negotiate security policy. The model proposed manages from indisputable to flexible preference. In addition, we advance an approach for comparison and evaluation of security policies: negotiator makes a proposal and evaluates the opponent one. Dissimilar results of evaluation lead to different proposals. The great advantage of our method is that it integrates security policy in the negotiation process by developing an exhaustive framework which covers policy evaluation, negotiation configuration, negotiation protocol and negotiation algorithm.

1. Introduction

Organization

The remainder of the dissertation is composed of two parts. The first part (Chapters 2, 3, 4) deals with the SP selection problem which takes security policy into consideration. The second part (Chapters 5, 6) handles the issues of security policy negotiation.

Chapter 2 provides a comprehensive background on security policies, particularly the access control policy. It also gives an overview of the service level agreement (SLA) contract and the related frameworks. Moreover, this chapter introduces the basic techniques for policy similarity measure (PSM). Finally, it reviews virtual resource allocation approaches in Cloud

Computing, including those taking security issues into consideration.

Chapter 3 presents a new security policy measure approach for SP selection. The generic PSM method is introduced at first. Then the experiments with our PSM algorithm and some related results are given. Finally, this chapter demonstrates a prototype which executes the SP selection towards resource allocation on Cloud storage.

Chapter 4 deals with a formal approach to express and enforce security policy for virtual resource allocation in IaaS Cloud. Based on the WS-Agreement [START_REF] Andrieux | Web services agreement specification (WS-Agreement)[END_REF] template, we integrate security requirements in SLA contract then the related security policies can be derived. The deployment solution is also generated from the security policy and non-security constraints.

The chapter is ended by our Openstack-based implementation with evaluation.

Chapter 5 provides more comprehensive background on the negotiation paradigm with a focus on trust negotiation (TN), access negotiation, access control policy negotiation and meaning negotiation (MN). Although meaning negotiation does not concern the security aspect, the belief fusion technology handles the process of reaching agreement and this technology is adopted in security policy negotiation presented in the next chapter.

Chapter 6 shows how an agreement can be reached in security policy negotiation by our framework. The core negotiation algorithm is also illustrated with some theoretical results. The chapter ends with a detailed negotiation scenario between a vehicle and a service station.

Chapter 7 concludes the dissertation and provides our perspectives and future work.

Part I Service Provider Selection

Chapter 2

State of the Art 2.1 Introduction

Security policy are gaining a prominent place in research and industry domains. Access control policy is one type of security policies and its enforcement guarantees the usage privilege of the system. In an environment where exist SCs and SPs, the first thing to do for a SC before enforcement of security policies is to choose SP(s) which meet SC's requirement and preference.

The SLA contract, although be widely used to specify QoS requirements, is also used to carry security-related preference. In this chapter, we are interested in the related work of SP selection. To this end, we firstly introduce different access control policy models. A comprehensive background on SLA contract is then given. Next, we provide a brief overview of relevant work on Policy Similarity Measure (PSM) which is helpful in the process of SP selection. Finally, we close this chapter with an overview on concrete SP selection approaches in the field of Cloud Computing.

Access Control Model

Access control, more precisely, authorization, is a basic and critical mechanism often used for operating systems. It provides a control solution for some entities (called subjects) to access some other entities (called objects) 10 2. State of the Art through some actions in the system. Usually presented as a software module, access control is a traditional mechanism by means that software applications (originally operating systems) answer the question (request) "can the entity identified as S manipulate the object O via the action A?". Here the verb "can" should be regarded as privileges but not as capabilities. At the same time, this question can be contextualized with respect to the trust issue as "can I trust S enough to allow him performing the action A on the object O?". In this section, we present the different access control models and languages that have been proposed to answer such questions. The abstract model of access control mechanism is depicted in Figure 2.1. • The subject, is the abstract entity (a human, a program or an artificial agent) requiring authorization.

• The object represents the resource that the requester wants to interact with (e.g. a file, a service).

• The engine is the decision module that determines if the requester is authorized to perform the requested interaction.

• The decision is the reply from the engine regarding the request (e.g. accept, refuse).

Discretionary Access Control (DAC)

Discretionary access control (DAC) is one of the most widespread access control models. It is a decentralized solution. Each object is controlled by its owner and an action enables subjects to have direct access to objects.

In DAC, security policy is limited to permissions which specify relations between subjects, objects and actions. The access matrix model provides a framework for describing DAC. Formalized by Harrison, Ruzzo, and Ullmann, the HRU model [START_REF] Michael A Harrison | Protection in operating systems[END_REF] is such a framework which applies to subjects, objects and actions.

The Access control list (ACL) is an implementation of the HRU model and it is the oldest and most basic form of access control policies. It is commonly deployed in operating systems such as UNIX. In the most general form, a permission is a triple (s, o, a), stating that a user s is permitted to perform an action a on an object o. Let S be the set of all users of the system, O the set of all objects and A the set of all possible actions. The ACL policies represent a function f : S × O → A. Consequently, f (s, o) determines the list of actions that the subject s is permitted to perform over the object o. Although an ACL model is easy to implement, the approach is not suitable when the number of users largely increases. When future subjects, objects or actions are inserted in the system, the security policies must be updated. As a result, it is difficult to administrate the system and the amount of memory will be largely increased with the insertion of users and resources. Moreover, access control decisions are not related to any characteristic of the resource
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and it makes such an approach very vulnerable to attacks such as identity usurpation [START_REF] Chen | Analyzing and Developing Role-Based Access Control Models[END_REF].

Lattice-based Access Control (LBAC or MAC)

Unlike DAC models, the lattice-based access control (LBAC) model, also known as the mandatory access control model (MAC), is deployed when the access to an object depends on its characteristics and those of the subject, and not the wills of the object owner [START_REF] Sandhu | Lattice-based access control models[END_REF]. As illustrated in Figure 2.2, subjects' and objects' characteristics are represented by security labels (or levels) which are assigned to users and resources of the system. The objects' labels reflect the sensibility of a resource and the subject's label classifies the category of objects she is permitted to access. Systems implemented by LBAC models are often called multi-level security systems as the labels used represent a partial order (e.g. Top Secret, Secret, Confidential, Unclassified) which is assumed to form a lattice. In LBAC, the process of access control is reduced to the control of data flow and its objective is to guarantee that data coming from a higher level object never flows to a lower level subject, and that data coming from a lower level subject never flows up to an object of a higher level. For example, a read operation on a resource is represented as a data stream from the object to the subject, while a write access represents a flow of data from the subject to the object. These two security principles are respectively called "no-read-up" and "no-write-down".

The Bell-LaPadula [START_REF] Bell | Secure computer system: Unified exposition and multics interpretation[END_REF] is the most famous model implementing LBAC and it has been used in both military and commercial applications. LBAC models are quite efficient and remain relatively manageable in systems with a small number of labels. Nevertheless, its principal limitation is the lack of flexibility and scalability.

Role-based Access Control (RBAC)

The development of the Role-based Access Control (RBAC) was motivated by the fact that in most cases, sensitive resources were generally not owned by ducted to the proposition of a whole family of models [START_REF] Ferraiolo | Role-based access controls[END_REF][START_REF] Sandhu | Role-Based Access Control Models[END_REF][START_REF] Nyanchama | The role graph model and conflict of interest[END_REF][START_REF] Sandhu | The NIST model for role-based access control: towards a unified standard[END_REF][START_REF] Dimmock | Using trust and risk in role-based access control policies[END_REF][START_REF] Ferraiolo | Proposed NIST standard for rolebased access control[END_REF][START_REF] Li | Design of a role-based trust-management framework[END_REF]35,36,[START_REF] Finin | Rowlbac: representing role based access control in owl[END_REF]. Among those models, RBAC 0 is the main and the simplest model. RBAC 1 extends RBAC 0 with the capability to specify hierar-2. State of the Art chies of roles and permissions' inheritance between roles. RBAC 2 extends RBAC 0 with constraints to enforce separation of duties, while RBAC 3 is a combination of RBAC 1 and RBAC 2 .

Although RBAC is widely used in many commercial and government applications, it can not cover all the different requirements from the real world scenarios. For instance, the role inheritance mechanism proposed in RBAC 1

may not be sufficient to model some existing relationships. For example, an assistant may need to be authorized to execute some operations during the absence of her boss, but her role can not inherit all the privileges of the role of her boss. Towards the limitation, different ways of privilege propagation (delegation) should be supported and developed.

Attribute-based Access Control (ABAC)

The main idea of the attribute-based access control (ABAC) model is using policies which combine attributes together instead of identities, roles or clearances for authorizations [START_REF] Yuan | Attributed based access control (ABAC) for Web services[END_REF][START_REF] Lee | Towards Practical and Secure Decentralized Attribute-Based Authorisation Systems[END_REF]. Unlike DAC, MAC and RBAC, the decision making of ABAC policies is based on disclosing credentials issued by third party attribute certifiers (e.g. organizations, companies, institutions).

Consequently, the privilege of access can be obtained by subjects without being priorly known by the system administrator (or the resource owner).

As illustrated in Figure 2.4, there exist four types of attributes.

Subject attributes. Subjects are the entities requesting access to objects.

Each subject can be characterized via an atomic attribute or a set of attributes without explicitly referring to its identity. Almost all information associated with a subject can be considered as an attribute such as name, role, affiliation and address.

Action attributes. Actions are the operations that the user wants to perform. Common action attributes in authorization requests are "read"

and "write". In more complex scenarios, the action may be described by a combination of attributes. The main components of XACML 3.0 policy language [START_REF] Rissanen | extensible access control markup language (XACML) version 3[END_REF] are rule, policy and PolicySet. • Policy Administration Point (PAP): manages and defines the policies that will apply.

• Policy Decision Point (PDP): evaluates and makes authorization decisions.

• Policy Enforcement Point (PEP): intercepts access requests from a user to a resource and enforces the PDP decision.

• Policy Information Point (PIP): provides external information to PDP, such as environment and resource attribute information.

• Context Handler: converts access requests from the native request format to the XACML format and also converts XACML authorization decisions to the native response format. At the same time, it collects attribute information and resends it to PDP. Regarding the policy evaluation, the effect indicates the consequence of a rule. Rules may optionally contain a condition, which consists in a Boolean expression that further limits the rule applicability. There exist four values of access control decision: Permit, Deny, NotApplicable and Indeterminate.

The latter two values are returned when an error occurs and no decision can be made or when the request can not be answered by the queried service, respectively. In order to decide the final result of composed decisions in PolicySets, various policy combining algorithms are used. For example, the Deny-overrides algorithm gives priority to deny rules. In XACML 3.0 [START_REF] Rissanen | extensible access control markup language (XACML) version 3[END_REF],

there exist 12 types of policy combining algorithms.

The ABAC brings flexibility and interoperability for policy definition and it can be used in lots of application scenarios such as web service [START_REF] Yuan | Attributed based access control (ABAC) for web services[END_REF] and Cloud Computing. Nevertheless, the flexibility and interoperability make policy administration more difficult: a potentially large number of attributes must be understood and managed, and attributes must be selected by experts. In addition, attributes have no meaning until they are associated with subject, object or environment, thus it is not practical to audit [START_REF] Coyne | ABAC and RBAC: scalable, flexible, and auditable access management[END_REF]. At the same time, the XACML standard is still not widely adopted by large enterprises by developing their authorization engines and commercial support such as software library is limited.

Organization-Based Access Control (OrBAC)

The OrBAC model [19] is an extension of the RBAC model. By defining a conceptual and industrial framework, it meets the needs of information security and sensitive communication and allows the policy designer to define a security policy independently. The concept of organization is fundamental in OrBAC. An organization is an active entity that is responsible for managing a security policy. Each security policy is defined for an organization.

The model is not limited to permissions, but also includes the possibility to specify prohibitions and obligations. Besides, the security rules do not apply statically but their activation may depend on contextual conditions. Context [START_REF] Coma | Context ontology for secure interoperability[END_REF] is defined through logical rules and it can be combined in order to express conjunctive context, disjunctive context and negative context. An

OrBAC policy is defined as: security_rule (organization, role, activity, view, context) where security_rule belongs to {permission, prohibition, obligation}. Once a security policy has been specified at the organizational level, it is possible to instantiate it by assigning concrete entities to abstract entities by the predicates which assign a subject to a role, an action to an activity and an object to a view (Shown in Figure 2.7). Meanwhile, all the operations are related to a specified context:

• empower(org, subject, role) : in organization org, subject is empowered in role.

• consider(org, action, activity) : in organization org, action implements activity.

• use(org, object, view) : in organization org, object is used in view.

• hold(org, subject, action, object, context) : in organization org, subject does action on object in context. 

Service Level Agreement (SLA)

With the development of Web Service, QoS between the SC and the SP becomes an important element which needs to be specified, measured and monitored. A SLA is such a contract between human-human, human-service and service-service. Given the diversity of disciplines using SLAs and the numerous interpretations that have been developed in recent years, we propose to start by presenting different SLA languages and frameworks then introduce the security aspect in SLA.

WSLA

Proposed by IBM in 2003, Web Service Level Agreement (WSLA) [3] covers the specification, enforcement and monitoring of SLAs. The WSLA language is based on XML and it allows the creation of machine-readable SLAs in the Web Service environment. Shown in Figure 2.9, a SLA created by WSLA contains typically the following components: • Service Definition: specifies the characteristics of the service and its observable parameters.

• Obligations: define various guarantees and constraints that may be imposed on SLA parameters.

As an initiative attempt, WSLA proposes a SLA language and a global framework for SLA management. However, related negotiation protocol has not been developed and the specification has not been updated since 2003.

WS-Agreement

WS-Agreement [START_REF] Andrieux | Web services agreement specification (WS-Agreement)[END_REF] is developed by the Grid Resource Allocation Agreement Protocol (GRAAP) Working Group of the Open Grid Forum. The specification is an XML based language. The structure of WS-Agreement consists of three parts: name, context and terms. Context contains the meta-data for the entire agreement. It specifies the participants in the agreement and the lifetime of this agreement. There exist two term types: service description terms that describe the functionality delivered and guarantee terms outline the assurance on service quality for each piece of functionality. Unlike the WSLA, the WS-Agreement language is extensible by allowing the definition of domain-specific service level objectives. For example, different term description languages such as the Job Submission Description Language (JSDL) [START_REF] Anjomshoaa | Job submission description language (jsdl) specification, version 1.0[END_REF] could be used to describe service terms and guarantee terms. Such flexibility makes WS-Agreement widely used by lots of research and industrial projects such as BREIN [START_REF] Muñoz | Flexible sla negotiation using semantic annotations[END_REF], IRMOS [START_REF]Irmos project[END_REF], and OPTIMIS [START_REF] Ziegler | OPTIMIS SLA framework and term languages for SLAs in cloud environment[END_REF].

Besides the WS-Agreement language, the WS-Agreement negotiation protocol [4] is also proposed. A negotiation may then result in the creation of an agreement using the WS-Agreement specification. During the negotiation, the input is a template which describes service capacity of a SP, the messages 

SLAng

SLAng [START_REF] Skene | Precise service level agreements[END_REF] • Hosting: between service provider and host.

• Persistence: between a host and storage service provider.

• Communication: between application or host and Internet service providers.

Horizontal SLAs are:

• Service provision: between an application or service and service provision.

• Container: between container providers.

• Networking: between network providers.

For each kind of SLA, a general structure is defined, including responsibilities of the SC, SP and their mutual responsibilities.

The SLAng language proposes a global architecture used to define the SLA contract for inter-organisational service provision. However, it stays in the language level due to the lack of related framework and negotiation protocol.

Security related SLA

Although traditional SLA focuses on the issues of QoS and performance, SLAbased trust and security management have been investigated in recent literature. The concept of security service level agreement is first proposed by Henning [START_REF] Henning | Security service level agreements: quantifiable security for the enterprise?[END_REF] as a mechanism to specify the security services required for an effective enterprise. SLA is used to explicitly state the obligation of the providers in terms of implemented security mechanisms, their effectiveness and the implication of possible mismanagement [START_REF] Bernsmed | Security SLAs for federated cloud services[END_REF]. There have been some

initiatives in the field of Cloud Computing that consider security aspects in SLAs. In [5], the authors present a framework (Figure 2.11) for security issues of SLAs in Cloud Computing. The objective of the framework is to help potential Cloud service customer (CSC) to identify the necessary protection mechanisms and facilitate automatic service composition based on a set of predefined security requirements. Chen-Yu et al. describe an ontology [START_REF] Lee | Ontology of secure service level agreement[END_REF] for representing security SLAs (SSLA). Based on 13 classes, the proposed ontology can be used to understand the security agreements of a provider, to negotiate the desired security levels, and to audit the compliance of a provider with respect to federal regulations such as HIPAA standards [START_REF] Borkin | The HIPAA final security standards and ISO/IEC 17799[END_REF].

State of the Art

Figure 2.11: Framework for security mechanisms in Cloud SLAs [5] The Cloud Security Alliance (CSA) [START_REF]Cloud Security Alliance[END_REF] The first thing to measure the similarity between security policies is to give the mathematical definition of PSM. In [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF], Lin et al. propose Equation (2.1) for PSM. In the equation, p 1 and p 2 are two security policies for measure; Sreq denotes the quantity of the access requests with the same decisions from p 1 and p 2 ; Req is the quantity of the access requests applicable to either p 1 or p 2 :

S policy (p 1 , p 2 ) = |Sreq|/|Req| (2.1)
In an example that we will use in Chapter 3, we consider three XACML policies P 1 , P 2 and P 3 illustrated in [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF]. These policies are defined for man- aging an information system of a research laboratory. From a user's perspective, P 1 is more similar to P 2 than P 3 because most activities described by P 1 for the data owner are allowed by p 2 . Our motivation is to quickly compute similarity scores S policy (P 1 , P 2 ) and S policy (P 1 , P 3 ) with the expectation that the former is higher than the latter. The expected result is to indicate that the similarity between P 1 and P 2 is much higher than the similarity between P 1 and P 3 .

Use Cases

The following three PSM related scenarios are extracted from [START_REF] Pham | Policy filtering with XACML[END_REF] and [START_REF] Lin | Data protection models for service provisioning in the cloud[END_REF].

• Federation: There are a number of organizations that are currently in a federation with common security policies. A new organization is possible to join the federation by negotiating with the existing members in order to reach certain agreements. One step of the negotiation process is to achieve a common understanding about security policies. To this end, PSM may be helpful to quickly find out the organization whose security policies are relevant to policies owned by the federation and filter the dissimilar ones.

State of the Art

• Delegation transaction: In some context, an organization needs to delegate its privileges to others. From the delegator's point of view, it is necessary to know if its security policy is similar to the one of the delegatee. Thus PSM technology is capable to affect the decision of the delegation.

• Service provisioning in the cloud: In Cloud Computing, as an user's data is usually processed remotely in unknown machines that she does not own or operate, it is necessary to select a SP whose security policy is close to the one required by the user. With PSM technology, the user is capable to estimate the similarity between two given policies and rank the SPs. After that, policy integration and policy enforcement will be executed.

Existing Approaches

Most existing approaches to evaluate the policy similarity are based on XACML [START_REF]OASIS Standard. extensible access control markup language (XACML) version 2[END_REF] policies. Lin et al. [START_REF] Lin | An approach to evaluate policy similarity[END_REF] propose an algorithm to evaluate policy similarity by calculating the similarity score between two XACML policies. This is indeed a pioneering work and it effectively distinguishes between categorical predicate and numerical predicate. The second version of the algorithm [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF] advances the measure algorithm for numerical predicate and integrates ontology matching. However, the work has two limitations.

Firstly, the algorithm only focuses on the literal level (semantic distance calculation) but not logic aspect of security policy. As a result, the similarity score computed may have a large difference with the test value in real cases (presented in Appendix B). Secondly, the algorithm contains 9 weight parameters which need to be configured. Choosing the proper values is not easy.

In addition, there are two variants of the former work. Bei et al. [65] investigate the opposite of similarity: dissimilarity. In order to address the rule relationship comparison, they apply fuzzy theory to compute rule dissimilarity. Pham et al. [START_REF] Pham | Policy filtering with XACML[END_REF] improve the similarity computing approach specified by Lin et al. [START_REF] Lin | An approach to evaluate policy similarity[END_REF] and also propose a mechanism to calculate a dissimilarity score by identifying related policies which are likely to produce different ac-cess decisions. The PSM technique is then integrated in various scenarios.

Lin et al. [START_REF] Lin | Data protection models for service provisioning in the cloud[END_REF] present a novel data protection framework in which the policy similarity comparison approach is applied to the policy ranking model. Cho et al. [START_REF] Cho | Privacy-preserving similarity measurement for access control policies[END_REF] propose a technique that allows similarity evaluation of encrypted policies. Shaikh et al. [START_REF] Rizwana | Dynamic parameter for selecting a cloud service[END_REF] suggest using similarity measure to select services in a distributed and heterogeneous environment. Bertolino et al. [START_REF] Bertolino | Similarity testing for access control[END_REF] put forward a new approach for access control test prioritization based on similarity. C V are logical formulas that define the allowed combinations of deployment conditions for H and V . Find the mapping p

Virtual Resource Allocation

C H ={C h1 , C h2 , ...C hm }, a set of constraints for VMs C V ={C v1 , C v2 , ...C vn }. C H and
:{v 1 , v 2 , ..., v m } → {h 1 , h 2 , ..., h n } where p(v i ) = h j (1 ≤ i ≤ m, 1 ≤ j ≤ n).
Unfortunately, virtual resource allocation suffers from a lack of homogeneity: lots of Cloud virtual resources can not be deployed due to deficien-

State of the Art cies in (1) unified expression; (2) interoperability. Lack of unified expression

results in vendor lock-in: services are tightly coupled with the provider and depend on its willingness to deploy them. Lack of interoperability stems from heterogeneous services, and more importantly of service-resource mapping, not compatible across providers. For better interoperability and control, Cloud brokering is nowadays the rising approach towards the user-centric vision. It may be seen as a paradigm in delivering Cloud resources (e.g. compute, storage, network). With the help of brokering technology, user's security needs will be necessarily considered in the cloud and these security requirements can be included in a SLA contract which is a legal document where the service description is formally defined, delivered, and charged.

Existing Approaches

Although virtual resource scheduling problems are NP-complete, it is wellstudied by the research community by proposing various heuristic and approximate approaches for addressing different issues. Among three service models (SaaS, PaaS and IaaS) of Cloud Computing, virtual resource allocation in IaaS Cloud has been investigated by some works in the literature. Some of these works [START_REF] Ferreira Leite | Automating resource selection and configuration in inter-clouds through a software product line method[END_REF][START_REF] Nathani | Policy based resource allocation in IaaS cloud[END_REF] focus on the capacity of CSP. In this case, some strategies like immediate, best effort and Nash equilibrium [START_REF] Wei | A game-theoretic method of fair resource allocation for cloud computing services[END_REF] have been applied to allocation algorithms in order to optimize the deployment algorithm with constraints such as QoS and energy [START_REF] Beloglazov | Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[END_REF]. Another effort is SLA-oriented resource management [START_REF] Buyya | SLAoriented resource provisioning for cloud computing: Challenges, architecture, and solutions[END_REF]. Wu et al. [START_REF] Wu | SLA-based resource allocation for software as a service provider (saas) in cloud computing environments[END_REF] propose a resource allocation algorithm for SaaS provider to minimize infrastructure cost and SLA violation. In [START_REF] García García | SLA-driven dynamic cloud resource management[END_REF], a SLA-aware PaaS Cloud platform that manages the complete resource life cycle is developed. With the WS-Agreement specification, a CSP defines a generic SLA model to deal with high-level metrics, close to end-user perception, and with flexible composition of the requirements from multiple actors in the computational scene. Among lots of CSC's requirements, security is a critical issue to be taken into account. Bernsmed et al. [5] present a security SLA framework for Cloud Computing to help potential CSCs to identify necessary protection mechanisms and facilitate automatic service composition. Based on some existing frameworks such as ENISA [START_REF]Cloud Computing: Benefits, risks and recommendations for information security[END_REF] and CAIQ [START_REF] Csa | Consensus assessment initiative questionnaire (CAIQ)[END_REF] developed in Europe, Cayirci et al. [START_REF] Cayirci | A cloud adoption risk assessment model[END_REF] design a Cloud adoption risk assessment model (CARAM) for CSCs to assess the risks that they face by selecting a specific CSP. Berger et al. [START_REF] Berger | Security for the cloud infrastructure: Trusted virtual data center implementation[END_REF] take isolation constraint and integrity guarantee into consideration and implement controlled access to network storage based on security labels. In [START_REF] Bijon | Virtual resource orchestration constraints in cloud infrastructure as a service[END_REF], different virtual resource orchestration constraints are classified and expressed by attributebased paradigm. Regarding these constraints, a conflict-free strategy is developed to mitigate risks in IaaS Cloud [START_REF] Bijon | Mitigating multitenancy risks in IaaS cloud through constraints-driven virtual resource scheduling[END_REF]. Most of the above works have been motivated by security requirements expressed by CSCs. In [START_REF] Jhawar | Supporting security requirements for resource management in cloud computing[END_REF], a CSP specifies its security requirements including forbid constraint which forbids a set of VM instances from being allocated on a specified HOST. However, in multi-cloud environment, as CSCs and CSPs do not have a vision of each other before establishing their contracts, specifying security requirements can be very tricky for both sides. The main focus of these efforts is scheduling VMs either for the purpose of high-performance computing or satisfying security constraints according to the requirements of CSCs.

Conclusion

We have introduced the main types of security policy models for access control systems. We have seen that different models hold different specifications for abstract and concrete levels. Besides, we have seen that a SLA contract can be used to specify QoS requirements and there exist some efforts to integrate security parameters in it. However, putting security issues in a SLA contract suffers from the lack of integration of the security policy. In terms of security policy, the current PSM approach is not accurate enough and its configuration is complicated. This can affect the result of the SP selection.

To end this chapter, approaches for virtual resource allocation have been presented with their advantages and limitations.

Motivated by the limitations of the current PSM method and virtual resource allocation approaches, we present in the following chapters, two 2. State of the Art propositions on the SP selection for two use cases. In the first use case, SPs specify directly their security policies in SLA contracts and SC should choose the one(s) compliant with its security requirements. Towards this end, we develop a generic and light-weight method to compare and evaluate security policies belonging to different models. The second use case concerns the SLA contract with security requirements which can be transformed to concrete security policies. In order to fulfill the second use case, a policy-based framework for the CSP selection and virtual resource allocation in Cloud Computing is presented with a related implementation and some statistical evaluations.

Chapter 3

Similarity Measure for Security Policies

Introduction

A higher score (Formula 2.1) between policies p 1 and p 2 indicates that they are more likely to share an equivalent security level and yield the same decisions. As presented in section 2.4.3, existing approaches cover from semantic to numerical dimensions and the main work focuses mainly on XACML policies. However, few efforts have been made to extend the measure approach to multiple policy models and apply it to concrete scenarios. In this chapter, we propose a new algorithm to calculate the similarity score between two policies. The rest of the chapter is organized as follows. Firstly we introduce the policy similarity measure algorithm with an exhaustive calculation example. Then we illustrate an experiment in which the accuracy of our algorithm is demonstrated. Finally, we give an implementation in which our algorithm works for SPs ranking before the SP selection.

A Generic Policy Similarity Measure Method

The PSM assigns a similarity score S policy for any two given policies, which approximates the percentage of the rule pairs having the same decision. The denotes the number of the rule pairs having the same decision for the same access requests and N um(allDecision(r 1i , r 2j )) denotes the amount of the total decision pairs for access requests which are applicable to either policy p 1 or policy p 2 .

S policy

(p 1 , p 2 ) ≈ N um(sameDecision(r 1i , r 2j )) N um(allDecision(r 1i , r 2j )) , r 1i ∈ p 1 , r 2j ∈ p 2 (3.1)
The similarity score is a value between 0 and 1. Two equivalent policies are expected to obtain a similarity score equal to 1. We mention that the definition of the policy similarity score in [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF] focuses on the percentage of the access requests obtaining the same decisions. Comparing with the former work, our definition of PSM is more fine-grained because the same decision from two policies can be derived from one or multiple rule pairs. Consequently, by considering decisions of rule pairs but not final policy decisions, our PSM is more accurate from both calculation and test aspects. More details are shown in Section 3.3.

Policy Structure

As a generic algorithm, our PSM can be applied on different policy models.

This requires a transformation process before calculation. Policies are firstly split into different rules and each rule is expressed in the form of:

decision_effect(attr_name 1 : attr_value 1 , ..., attr_name n :

attr_value n ) (3.2)
where decision_effect is a decision effect such as permit and deny; attr_name denotes the name of an attribute and attr_value represents an attribute value. We define (attr_name i : attr_value i ) as a rule element and it can be divided into the following two types:

• Categorical element: Attribute value belongs to the string data type or is a set of string. For example "Role : admin" and "Action : [read, write, create]" are categorical atomic elements.

• Numerical element: Attribute value can be integer, real, date/time data types. The value can be single one or a set or an interval. For example, elements "T ime : {3pm, 4pm, 5pm}", "F ileSize : (5, +∞) GB", T ime : [8 : 00, 18 : 00] are numerical atomic elements.

Example of Policy Transformation

In an example that we use throughout the chapter, we consider three XACML policies mentioned in Section 2. It is worth noting that some numerical elements which have not been explicitly specified but hold their default values should be written explicitly in the rule structures after the transformation. For example, time element with the value of [0 : 00, 24 : 00] is inserted in the rule r 11 after transformation as other rules specified explicitly their time elements.

Overview of PSM Algorithm

Illustrated in Figure 3.1, the PSM algorithm takes two policies as the inputs and generates a similarity score as the output. The calculation process can be divided into four steps. 

S d (r 1i , r 2j ) = k S(e 1i_k , e 2j_k ), r 1i ∈ p 1 , r 2j ∈ p 2 (3.3) 
Step 3: Decision effect calculation. Each S d (p 1 , p 2 ) equals the sum of all the similarity scores of rule pairs in one decision effect (Equation (3.4)).

S d (p 1 , p 2 ) = i j S d (r 1i , r 2j ), r 1i ∈ p 1 , r 2j ∈ p 2 (3.4)
Step 4: Total score calculation. Shown in Equation (3.5), the total score is based on the scores from different decision effects S d (p 1 , p 2 ) and the total amount of rule pairs from all the decision effects.

S policy (p 1 , p 2 ) = d S d (p 1 , p 2 ) d N um(d) , d ∈ (permit, deny, ...) (3.5) 

Similarity Score of Rule Elements

The score of a rule element pair can be calculated when two elements belong to the same decision effect and share the same attribute name. In Equation (3.3), the score of a rule pair is based on the rule elements having the same attribute name. When an element's attribute name does not appear in 40 3. Similarity Measure for Security Policies another rule, the access decisions from the two rules are not affected. For this reason, we consider that the score of such element pair is 1. Rule elements can be divided into two types: categorical elements and numerical elements.

Similarity Score for Categorical Elements.

For categorical elements, we measure the exact match of two values. A higher score indicates that the two elements share more common attribute values. Equation for similarity score computing between two categorical elements e 1 and e 2 is defined as follows:

S c (e 1 , e 2 ) = num(v 1 ∩ v 2 ) num(v 1 ∪ v 2 ∪ v 3 ... ∪ v n ) (3.6)
S c (e 1 , e 2 ) presents the exact percentage of the same decision for one element pair extracted from the two rules. num(v 1 ∩ v 2 ) denotes the quantity of common attribute values between element e 1 and e 2 ; num( Another application of the tree architecture is to represent the inheritance relation. The inheritance mechanism is defined in object-oriented programming as an efficient way to design an application. In Java, a class which is derived from another class is called a subclass. A similar mechanism for roles is used in the RBAC [START_REF] Ravi S Sandhu | Role-based access control models[END_REF] and the hierarchy of roles is associated with inheritance of permission. The role inheritance mechanism is extended in the OrBAC model [START_REF] Cuppens | Inheritance hierarchies in the OrBAC model and application in a network environment[END_REF]: hierarchies of roles, views and activities are formally defined associated with inheritance relationships. In an inheritance tree, child elements can inherit the privileges of their parent elements. For example, the Role elements of a research laboratory may possess an inheritance tree for permission (Figure 3 Secondly, the two elements should be checked if their intersection is empty.

v 1 ∪ v 2 ∪ v 3 ... ∪ v n ) is
The algorithm returns 0 as similarity score when the intersection is empty (lines 4,5). Otherwise, there are three cases:

• • Other cases: As calculation between two different forms is difficult, we assign a fuzzy value 0.5 as the similarity score. 0.5 is chosen because it is the average value of similarity score.

Example of Calculation

Here we present an exhaustive example to illustrate how the PSM works.

Continuing with the three policies P 1 , P 2 , P 3 defined in section 2.4. P ermit : Applying the same process, we can also calculate the similarity score between policies P 1 and P 3 : S policy (P 1 , P 3 ) = 0.004. The result meets our expectation expressed in Section 2.4.1: the two scores S policy (P 1 , P 2 ) and S policy (P 1 , P 3 )

S rule (r 11 , r 21 ) = 5 8 × 1 × 9 11 × 1 2 × 1 = 0.256 S rule (r 11 , r 22 ) = 1 8 × 1 × 9 11 × 1 × 3 24 = 0.013 Deny : S rule (r 12 , r 23 ) = 2 8 × 1 × 9 11 × 1 × 2 3 = 0.136 S rule (r 12 , r 24 ) = 4 8 × 1 2 × 0 × 1 × 2 24 = 0
shows clearly that policy P 1 is more similar to P 2 than P 3 in terms of the percentage of rule pairs having the same decision. In the next section, an exhaustive experiment will be conducted to prove the correctness of our algorithm.

Experiment Results

In order to verify if our algorithm is applicable to real cases, we compare the percentage of the same decision pairs with the PSM score. Firstly, we implement a random policy generator which takes rule elements as inputs then generates access control policies in Form 3.2. Secondly, we extract rule elements from four policies with different models and each of them is related to a real scenario: RBAC for project management [START_REF]Configuring keystone[END_REF], Net-RBAC for firewall configuration [START_REF] Hachana | Mining a high level access control policy in a network with multiple firewalls[END_REF], OrBAC for hospital management [START_REF] Autrel | MotOrBAC 2: a security policy tool[END_REF], ABAC for administration of research laboratory [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF]. Thirdly, these rule elements are input to the policy generator and each policy pair generated obtains a similarity score by our algorithm. Finally, we input various combinations of elements as access control requests into the four policies and count the percentage of the same decision pair between rules from the outputs. We mention that the test method which we used is brute-force based: for categorical elements, we take all the combinations of string values; for numerical elements, enumerating all the numerical based attribute values in an interval (For example 

Implementation

Our PSM algorithm can be applied to different SPs selection use cases such as network configuration, compute allocation and Cloud storage. This section presents a concrete scenario about Cloud storage. In this case, two CSPs' security policies should be combined and the policy after composition is also calculated by PSM and ranked. Benefiting from the Conjunction operation, the storage space after composition is increased by combining the space from each CSP. At the same time, the security policy is stricter by eliminating the action which is not shared by the two sides.

Scenario Description

Architecture

The implementation is based on the CloudSim [6] There exist mainly four components which relate to the implementation:

• DataCenter Broker (DB): it models a broker, which is responsible for mediating negotiations between a CSC and a CSP. 

Performance

The implementation is programmed in Java and it runs on an Intel machine having the configuration: 2.2 GHz with 4 GB of RAM running Windows 8 and JDK 8. We measure the execution time needed until the client receives a SP ranking list. 

Conclusion

The main objective of this chapter is to expose our proposition to show how to measure the similarity between two security policies. The proposition gives mainly a generic and light-weight algorithm with which we can calculate a similarity score between two access control policies. After introducing the categorical measure and numerical measure, we tested our algorithm on four different security policy models in different scenarios and the output of our algorithm approximates to the test result. We demonstrated that our algorithm can be integrated in the SP selection process such as the SP(s) selection for Cloud storage. In the selection process, security policies belonging to different SPs are accessible to a SC so that the SC could make the evaluation and the comparison. At the same time, the implementation proved that this integration can enrich the services offered with efficiency.

We decide to work on another use case where SP's security policies are not exposed directly. In this case, both SPs and SCs can express their security requirements and those requirements could be automatically derived and transformed to concrete security policies. More detail will be found in the next chapter. 8). 1 In the chapter, CSC stands for the end customer of Clouds. 57

Expression of Security Policy

SLA Contract Expression

To generate security policies for CSCs and CSPs, we suggest, as a first step, to specify a generic document, which describes the requirements for service capacity, quality of service (QoS) and security constraints. The SLA contract is such a document used in service negotiation and management. Based on a well-formatted template, CSPs and CSCs exchange their proposals until reaching an agreement [22]. Among existing SLA specifications, we choose the WS-Agreement because the format is open so it can integrate various service parameters. Hence a WS-Agreement contract consists of name, context, service terms, guarantee terms and negotiation constraints, CSCs and CSPs can also integrate service capacity, QoS and security requirement in its structure.

As Definition 1, we use H={h 1 , h 2 , ..., h m } to represent a set of HOSTs and V={v 1 , v 2 , ..., v n } to denote a set of VMs. Note that, VM and HOST may have multiple attributes, each with their own values, and these attributes can be assigned either manually by a user or automatically by the system. In terms of security requirements, as CSCs and CSPs do not know the information of each other, they express their security constraints by using attribute-based expressions in Formulas 4.1, 4.2 and 4.3.

permission([H attr_name

: H attr_value ], [V attr_name : V attr_value ]) (4.1) permission([H attr_name : H attr_value ], [v i ]) (4.2) separation(v i , v j ) (4.3)
In the three formulas, H attr_name and V attr_name indicate the attribute name for HOST and VM respectively; H attr_value and V attr_value denote separately the attribute value for HOST and VM; each of v i , v j represents a unique virtual machine ID (VMID). Formulas 4.1 and 4.2 are used to specify the permission

Expression and Enforcement of Security Policy

for VM allocation: HOST(s) with attributes assigned is (are) permitted to deploy VM(s). The difference is that in the first formula, the CSC describes VM property by attribute and in the second formula, VMID is given directly. These two options give the CSCs more flexibility to express their security requirements. In addition, the CSC declares the coexistence constraint by Formula 4.3: v i and v j can not be allocated on the same HOST. Formula 4.4 is used by the CSP to express the deployment prohibition. Similar with Formula 4.2, HOST with HOSTID h i is not permitted to deploy VM(s) assigned with attribute.

prohibition([h i ], [V attr_name : V attr_value ]) (4.4)
In an example that we will use throughout the chapter, we consider a De-vOps [START_REF]Devops[END_REF] use case. DevOps is an emerged software development methodology that enhances collaboration between development, quality assurance (QA) and IT operations. Numerous companies are actively practicing De-vOps since it aims at helping them to maximize the predictability, efficiency, security, and maintainability of operational processes. Adoption of DevOps is being driven by many factors including using public IaaS. Suppose that a software company has to deploy 3 VMs (v 1 , v 2 , v 3 ) in the cloud for a development project. Each VM contains its metadata such as properties, required volume, QoS specification and security constraints. We suppose that each VM runs a project server and there exist three types of VM: production (prod), development (dev), and test. P rod server runs live applications supporting the company's daily business and the data is public for e-business customers; Dev server consists of the development environment accessible only to developers having the specific access privilege; T est server is used to conduct software tests between development and production phase and it is accessible by testers with their private login accounts. At the same time, there exist 2 CSPs (h 1 , h 2 ) and each has its own metadata such as price, location and state indicating if it is certified by security audit organizations.

A readable illustration of the VM and HOST configuration is shown in Fig- 59 ure 4.2. In the scenario, each CSP has one security-related requirement: CSP1 does not want to deploy the VM which will be used for test; CSP2 does not welcome the server for development. At the same time, the software company has four security-related requirements:

• All the VMs should be deployed on certified HOST for the purpose of security.

• As most clients are from Europe, HOST which deploys the virtual machine v 2 should be in Europe in order to reduce the response delay.

• To better protect business assets, VM which is used to test should be deployed in Europe.

• Regarding the backup mechanism, the virtual machines v 1 and v 3 should not be co-located on the same HOST. In case of disaster of HOST, the project server can be quickly recovered from the other HOST. 

Expression and Enforcement of Security Policy

Derivation of Security Policy

Security constraints need to be transformed to concrete security policies including VMID and HOSTID. Here we suggest using the OrBAC [START_REF] Abou | Policies for Distributed Systems and Networks[END_REF][START_REF] Cuppens | Modeling contextual security policies[END_REF] model which supports the expression of permission and prohibition. Derivation of the OrBAC policy from security constraints requires the policy mining technology which parses the configured rules and automatically reaches an instance of high level model corresponding to the deployed policy. Most of the existing RBAC based mining methods [START_REF] Hachana | Mining a high level access control policy in a network with multiple firewalls[END_REF][START_REF] Vaidya | The role mining problem: finding a minimal descriptive set of roles[END_REF] generate abstract policy by taking concrete rules as inputs. However, in our scenario, both abstract and concrete rules should be derived from the attribute-based description.

The following is the problem definition. ID_h_list ← get relevant HOSTID(s) from l h 6: 

ID_v_list ← get

Enforcement of Security Policy

QoS Filtering

The process of policy generation in Algorithm 2 does not consider QoS constraints. In the next step, permissions which are not compliant with the QoS requirements should be eliminated during the policy enforcement phase.

Shown in

Step 2 of Figure 4.2, this process aims to disable the permission which does not satisfy the QoS constraints. To this end, an evaluation between the VM's performance requirements and the HOST's capacity will be conducted. For example, in our scenario, QoS requirements contain the term of availability and the deployment permission between VM2 and HOST1 is disabled.

Conflict Management

After generating OrBAC policies from security constraints and executing the QoS filtering, the broker aggregates permission rules for the CSC and prohibition rules for CSPs like:

is_permitted({h i }, v k ) (4.5) is_prohibited(h j , {v l }) (4.6)
In Formula 4.5, each VM v k has a set of hosts {h i } which allows it to be deployed and in Formula 4.6, a set of VM {v l } are not permitted to be deployed on HOST h j . The rewriting of rules is used to detect conflicts between permissions and prohibitions. A conflict corresponds to the situation where a subject HOST is permitted and prohibited simultaneously to perform a given action deploy on a given object V M . We divide conflicts into the following two types and for each type an allocation solution is proposed.

Type I: conflict with concession space. Defined in Formula 4.7, HOST h j is permitted and prohibited simultaneously to deploy VM v k . In fact, except for h j , VM v k has other allocation solutions. In this case, we disable h j from the allocation permissions of v k (Formula 4.8). For example, in step 3 of Figure 4.2, is_permitted({h 1 , h 2 }, v 3 ) and is_prohibited(h 1 , v 3 ) belong to this type and the solution is disabling is_permitted(h 1 , v 3 ).

conf lict_T ypeI(h j , v k ) ← is_permitted({h i }, v k ) ∧ is_prohibited(h j , {v l }) ∧ h j ∈ {h i } ∧ v k ∈ {v l } ∧ ({h i } \ h j ) = φ (4.7) disable(is_permitted(h j , v k )) ← conf lict_T ypeI(h j , v k ) (4.8)
Type II: conflict without concession space. Shown in Formula 4.9, compared with the conflict of type I, the difference is that in Type II, except for h i , VM v k has no other deployment solution. In this case, we adopt a priority based approach proposed in [START_REF] Cuppens | High level conflict management strategies in advanced access control models[END_REF] and introduce two labels p(v) and p(h) as priorities of VM and HOST. p 1 ≺ p 2 means that p 2 has higher priority than p 1 .

As the virtual resource allocation is related to different factors such as risk and trust, the priorities could be predefined by users or determined by the broker. For example, some of the CSPs' prohibitions can be disabled by the broker in case that the CSC has a lower risk score. Making decisions on the priority is beyond the scope of this chapter. A possible priority judgement method can be based on the maturity level which defines how well are the security issues treated within an organisation and evaluates the experience that the security administrators have [START_REF] Kamel | A trust-based virtual collaborative environment[END_REF]. Here we suppose that the CSPs obtain a higher priority to fulfill all their security requirements. Thus, in Formula 4.10, the current conflict resolution is disabling the permission of h i . For example, the solution for the conflict between is_permitted(h 3 , v 1 ) and is_prohibited(h 3 , v 1 ) is disabling the former rule.

conf lict_T ypeII(h i , v k ) ← is_permitted(h i , v k ) ∧ is_prohibited(h j , {v l }) ∧ (h i = h j ) ∧ v k ∈ {v l } (4.9) disable(is_permitted(h i , v k )) ← conf lict_T ypeII(h i , v k ) ∧ p(v k ) ≺ p(h i ) (4.10)

Execution of Virtual Resource Allocation

The aim of the previous steps is to generate the final VM allocation solution.

Without loss of generality, we demonstrate the generation of the allocation solution from a security policy by considering the CSC's preference on price.

Algorithm 3 shows the resource allocation process. It takes permission policy p, VM list l v , HOST list l h and separation constraint c (Formula 4.3) as input and generates the deployment solution which maps VMs to HOSTs.

In each permission rule, VMID and a list of its possible target HOSTs are extracted (line 1-4). To satisfy the price preference of the CSC, the target HOSTs are ranked from lower price to higher price (line 5) thus the one with the lower price will be chosen preferentially. The final deployment solution depends on mainly two factors (line 9): (1) if the VM has a coexistence conflict with the VMs which have been already deployed on the HOST. ( 2 if r i is active then 3:

ID vi ← get object in r i 4:
ID_h_list ← get all the HOSTIDs permitted for ID vi in r i

5:

Rank ID_h_list from lower price to higher price 

Implementation and Evaluation

In the SUPERCLOUD [START_REF]Supercloud project: User-centric management of security and dependability in clouds of clouds[END_REF] project, one use case is to develop a middleware layer between CSCs and CSPs and this middleware could allocate virtual resources on physical infrastructures. In this context, there is a need to consider multi-cloud environments with security constraints. For example, virtual resources should not be mapped to physical resources that do not comply with their security requirements; physical resources should not deploy virtual resources that are potentially harmful to their operation; or virtual resources should not coexist on the same physical resource as another 66 4. Expression and Enforcement of Security Policy potentially malicious virtual resource [START_REF] Nuno | Preliminary architecture of the multi-cloud network virtualization infrastructure[END_REF].

In order to implement and evaluate our virtual resource allocation framework, we setup an IaaS Cloud environment on a physical machine (Intel(R) Core(TM) i7-4600U 2.7 GHz with 16 GB of RAM running Windows 7). Then different VMs (2 cores and 2 GB of RAM) are created on a VirtualBox platform with a Ubuntu system. We now install a DevStack [START_REF] Devstack | [END_REF] based Cloud framework, a quick installation of OpenStack [START_REF]Openstack open source cloud computing software[END_REF] ideal for experimentation.

Each VM is regarded as a physical HOST for the purpose of experimentation. At the same time, a Java based program runs as the Cloud broker and connects to the VirtualBox platform by SSH protocol. The OrBAC policy is generated and managed by the Java-based OrBAC API [START_REF] Autrel | MotOrBAC 2: a security policy tool[END_REF]. 

Experiment 1: contract processing

This experiment measures the duration for contract processing which is the runtime required by the broker to process the JSON [START_REF] Json | [END_REF] based WS-Agreement file (see Appendix C) and generates VM and HOST lists. Since there does not exist a great difference between the SLA contracts of VM and HOST, here we measure the contract processing time for VMs. We vary the VM number from 0 to 125 and for each number we randomly generate service attributes in different quantities from 5 to 20. Figure 4.10 shows the result. For a small scope of VM and attribute number, the runtime is very low (30ms). The time increases with a bigger scope of VM and attribute number.

The maximum duration of the experiment is less than 100ms which indicates that the runtime is acceptable.

Experiment 2: policy generation

In the second experiment, we analyze the required time for the OrBAC policy generation (Algorithm 2 for permission and similar algorithm for prohibition generation) once contracts are processed by the broker. In Figure 4.11, we study the amount of time the broker takes to generate security policies with an increasing number of VMs and HOSTs. For example, 60 as the value in the x-axis and y-axis indicates that there exist 60 VMs and HOSTs and the corresponding value in z-axis (400ms) shows the short time needed to generate the OrBAC policies.

Experiment 3: allocation latency

Our third experiment investigates the impact of VM number and HOST number on the execution time of Algorithm 3. In Figure 4.12, VM and HOST number vary from 10 to 60. Given 60 as VM and HOST number, the allocation latency takes about only 1 second. In the real case, as the HOST number is limited, the estimation of the allocation latency is acceptable and it confirms the efficiency of our resource allocation algorithm.

Experiment 4: price

The experiment measures the cost for a CSC after the VMs allocation. We generate the VMs randomly from 10 to 60 and configure 8 HOSTs. For simplicity, each HOST is supposed to provide only one type of IaaS solution with a fixed price from 0.02 dollars/hour to 0.08 dollars/hour 1 . Then we compare the total price between two allocation solutions. The first solution is illustrated in Algorithm 3 which concerns CSC's price preference by ranking the HOSTs from lower price to higher price (Algorithm 3: line 4); The second solution is also based on the Algorithm 3 without considering the price preference, thus VMs are randomly allocated on HOSTs. As a result, Algorithm 3 shows a great advantage in reducing the deployment cost. 1 The prices are inspired from the current IaaS Cloud solution of Amazon EC2 and Microsoft Azure. For example, in Amazon EC2, the price for the instance of m4.xlarge (4 cores, 16G RAM) is 0.239$/h and it costs 0.308$/h (4 cores, 7G RAM) for the instance of A3 in Microsoft Azure. 

Conclusion

In this chapter, we have presented, formalized and enforced security requirements for virtual resource allocation. Our approach is to capture security and non-security requirements from both CSC and CSP, and apply a formal policy model to drive virtual resource allocation. We first presented the SLA contracts for CSCs and CSPs which contain service capacity, QoS and security constraints. We then transformed the attribute-based SLA contracts to concrete OrBAC policies. Finally, we allocated virtual resources after resolving conflicts in policies and demonstrated the efficiency and reliability of our solution by an OpenStack-based implementation. In particular, our solution tackles the lack of application of existing policy models that can support security-related expression when dealing with multiple Clouds.

Part II

Negotiation between Service

Customer and Service Provider

Chapter 5

State of the Art

Introduction

We have seen in the first part of this dissertation that some security related issues must be treated during the SPs selection phase. In this second part, we will focus on the process of reaching agreement toward security related issues such as the usage control and service options. In fact, negotiators at this moment have already established their trust relationship and shared a common vocabulary. Since the usage control and service options are related directly to access control policies, the agreement on these policies should be reached and guaranteed from both sides. The following sections of this chapter outline the main preliminaries and related work needed to present our contribution. We begin with trust negotiation and the existing systems.

Then, we present the notion of access negotiation and its related negotiation systems. After that, we outline the classification of access control policy negotiations and the development of negotiation paradigms. At the end, we introduce the meaning negotiation with a focus on the belief fusion paradigm.

Trust Negotiation

Over the past decade, trust negotiation (TN) as proposed by [START_REF] William H Winsborough | Negotiating disclosure of sensitive credentials[END_REF][START_REF] William H Winsborough | Automated trust negotiation[END_REF] has been acknowledged as an effective mechanism for two entities to establish • Policy: a statement that specifies under which conditions an entity (human or artificial) can be trusted for a specific issue (e.g. resource action, task delegation).

• Negotiation protocol: defines rules managing the negotiation interactions. Applying the negotiation protocol, negotiators exchange their messages in an orderly way.

• Strategy: implemented by an algorithm, it determines how the local resource should be disclosed. There exist mainly two kinds of strategies: non-policy-exchange strategy and policy-exchange strategy [START_REF] Zhang | Remembrance of local information status for enforcing robustness of policy-exchanged strategies for trust negotiation[END_REF].

The former strategy allows two participating entities to exchange as many credentials as possible. Sensitive credentials unlocked can be disclosed by the credentials sent from the counterpart [START_REF] William H Winsborough | Negotiating disclosure of sensitive credentials[END_REF]. In a policy-exchange strategy, entities disclose explicitly the policies protecting the relevant local sensitive credentials. Disclosure of local sensitive credentials is only available when the credentials sent from the counterpart fulfil the relevant local policies.

TrustBuilder [11] is the first implemented TN system which can be used in open distributed systems. Based on the ABAC [START_REF] Yuan | Attributed based access control (ABAC) for Web services[END_REF][START_REF] Lee | Towards Practical and Secure Decentralized Attribute-Based Authorisation Systems[END_REF] model, the access control policies for resources are written as a declarative specification of the attributes needed in order to gain access to these resources. The system contains three modules: the credential verification module, the negotiation strategy module and the policy compliance checker. The core element of the architecture is the negotiation strategy module which enforces negotiation strategies to minimize credentials disclosure. Two different compliance checkers and two communication protocols have been implemented in TrustBuilder. Based on the TrustBuilder system, an extension called Trust-Builder2 [START_REF] Adam J Lee | Trustbuilder2: A reconfigurable framework for trust negotiation[END_REF][START_REF] Adam | Trustbuilder2 user manual version 0.1[END_REF] is proposed. Compared with the previous TrustBuilder system, it adds many improvements: support for arbitrary policy languages, arbitrary credential formats, interchangeable negotiation strategies, flexible policy and credentials store.

Trust-X [START_REF] Bertino | X-tnl: An XML-based language for trust negotiations[END_REF][START_REF] Bertino | Trust-x: A peer-topeer framework for trust establishment[END_REF] has been developed as an XML-based framework for trust negotiation, specially conceived for peer-to-peer environment. In such environment, both the negotiating parties are equally responsible for negotiation management and can drive the negotiation process by selecting the appropriate strategy. The system implements an XML-based language, named X-TNL, to specify certificates and policies. A novel aspect of X-TNL is the support for trust ticket which is used to certify that the two parties have already successfully negotiated a resource so the subsequent negotiations can be simplified. Once TN is successful, each entity will generate an issued trust ticket and send it to the counterpart to avoid repeating authorization over a certain period. The negotiation process consists of four phases: the 5. State of the Art introductory phase, the sequence generation phase, the certificate exchange phase and the caching of trust sequences phase. The main strategy used in Trust-X consists in releasing policies to minimize the disclosure of credentials. As a result, only credentials necessary for the success of a negotiation are effectively disclosed [START_REF] Squicciarini | PP-trust-X: A system for privacy preserving trust negotiations[END_REF].

PROTUNE [START_REF] Bonatti | A rule-based trust negotiation system[END_REF] is a rule-based trust negotiation system. PROTUNE's language is based on normal logic program rules: A ← L 1 , ..., L n where A is the head of the rule and L 1 , ..., L n is the body of the rule. In addition, the standard function-free logic programming language can be adopted as the internal format of the PROTUNE's language. PROTUNE rules are used to define access control and release policies. Before the negotiation, PRO-TUNE agents need to share a few built-in predicates and rule semantics.

Policy authors are free to define and use high-level abstraction. During the negotiation process, agents exchange their requirements by disclosing selected parts of their policies in the form of logic programming rules. At the same time, according to the release policies, credentials are disclosed step by step. Different strategies can be adopted by negotiators. Current PRO-TUNE provides a cooperative strategy: at each step, all the releasable information which appears to be relevant to the success negotiation is disclosed.

Another feature of PROTUNE is its facility in supporting the automated creation of high-quality documentation: "how-to", "why/why-not" and "what-if" queries can be answered by contextualized explanations.

Access Negotiation

So far, negotiation has been mainly used for trust establishment which can be served as a precondition for access. The next step may concern the concrete access permissions of service terms. In access negotiation, a requester negotiates the access attributes with resource holder and a successful negotiation generates an access authorization (Figure 5.2). There exist some related systems as follows.

XeNA [START_REF] Abi Haidar | XeNA: an access negotiation framework using XACML[END_REF] is an XACML-based negotiation system which brings trust ne- main character is that the system uses a resource classification methodology which concerns three classes of resources: resources with a direct access, resources with a direct negotiated access and resources with an indirect negotiated access. Thus, for different types of resources, different negotiation processes take place before the access control management. In XeNA, the negotiation module is in charge of collecting resources required to establish a level of trust and to ensure a successful evaluation of access. The access control management is based on an extended RBAC profile of XACML [START_REF] Abi Haidar | An extended RBAC profile of XACML[END_REF]. This extended profile responds to advanced access control requirements and allows the expression of several access control models within XACML. In [START_REF] Sabir Idrees | Car2x communication-putting security negotiation into practice[END_REF], authors propose putting security negotiation into practice by applying the XeNA framework to Intelligent Transportation Systems (ITS). For a vehicular communication system, negotiable resources can be security policies, digital credentials and privacy preferences. Those resources can be specified by OrBAC [19] permissions as a negotiation policy. After classifying different types of services, the vehicle service contract can be negotiated 5. State of the Art by the XeNA framework. [111] is a fine grained access control system for web services.

WS-AC

The system allows users to express, validate and enforce ABAC policies. Consists of service parameters, negotiation triggers and attribute conditions, an access control policy can be used to evaluate if an access request is granted, refused or negotiable. A request is compliant with a policy if all the conditions over the attributes specified in the policy are evaluated to true after comparing with the attributes taken by the request. An access request is rejected if it does not comply with any of the existing policies for the request service; an access will be granted if the parameters papering in the access request are all and only the parameters specified in the policy and their values are compatible with the values admitted by the policy; an access request is not fully acceptable by a policy and may be negotiated if (1) the access request and the policy are specified using a different set of parameters or (2) one or more clusters appearing in the policy do not have a corresponding tuple of parameter values in the access request. Meanwhile, if a negotiation trigger is defined in the policy, the negotiation is carried out in sending a negotiated access proposal (NAP) including a set of acceptable parameters.

The negotiation process may take multiple rounds until (1) the request is acceptable thus the access is granted or (2) the request is not acceptable without other possible proposals then the access is denied. In addition, the system encapsulates WS-AC policies in WS-Policy [START_REF] Bajaj | Web services policy 1.2framework (ws-policy)[END_REF].

Access Control Policy Negotiation

In trust negotiation and access negotiation, access control policies do not change. Nevertheless, they are changeable during access control policies negotiation in which different parties negotiate in order to commonly share resources (Figure 5.3). Gligor et al. [START_REF] Virgil D Gligor | On the negotiation of access control policies[END_REF] define the problem as the common access state negotiation. The common access state is the state where different parties achieve a common objective by sharing some resources. The shared resource means that access privilege of the owner is granted. There exist three types of common state negotiation: • Negotiation with global constraint: although all the negotiators have a complete knowledge of each other's objectives, some of their objectives may not coincide with each other's.

• Negotiation with local constraints: different from the second type, negotiators may not have a complete knowledge from each other.

Towards automated negotiation of access control policies, the work in [START_REF] Vijay | Towards automated negotiation of access control policies[END_REF] examines the problem of negotiating a shared access state, assuming all negotiators use the RBAC policy model. Based on a mathematical framework, negotiation is modelled as a Semiring-based Constraint Satisfaction Problem (SCSP) [START_REF] Bistarelli | Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison[END_REF]. SCSP is an extension of the Constraint Satisfaction
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Problem (CSP). A CSP problem consists of a set of variables, a domain of possible values for each variable, and a set of constraints specifying acceptable combinations of values for one or more variables. A solution for CSP is to find out an assignment of values to the variables that satisfy all the constraints of the problem. SCSP extends CSP by considering that constraints are not Boolean but belong to an appropriate semiring. With semiring-based constraint logic, the framework is expressive enough to represent a large class of policies such as RCL2000 [START_REF] Ahn | Role-based authorization constraints specification[END_REF] and RBAC [START_REF] Ravi S Sandhu | Role-based access control models[END_REF]. Khurana et al. [START_REF] Khurana | A model for access negotiations in dynamic coalitions[END_REF] then propose a negotiation agent which implements a round robin negotiation protocol: a coalition state will be reached if all other negotiators agree on it, otherwise the other negotiators make counter-proposals. The negotiation agent consists of a constraint compiler, a constraint evaluator and an optimizer. In the constraint compiler, the negotiator's access control constraints are expressed in the form of SCSP. In [START_REF] Xue | Access control policy negotiation for remote hot-deployed grid services[END_REF], authors argue that the guidance provided by constraints is not enough to bring practical solutions to automatic negotiation. Thus, they define an access control policy language which is based on Datalog1 with constraints and the language can be used to define the formal semantics of XACML [START_REF] Rissanen | extensible access control markup language (XACML) version 3[END_REF]. Then they use the language to specify the access control policies in real cases such as remote and hot grid service deployment: a SC deploys services on remote grid nodes after negotiating access control policies. A negotiation procedure and three types of meta-policies are designed for the creation of proposals, the conflict resolution and the policy validation during the negotiation. Meta-policies are used to select different combining algorithms and validate queries according to both side's requirements. Towards the need for human consent in organizational settings, Mehregan et al. [START_REF] Mehregan | Policy negotiation for co-owned resources in relationship-based access control[END_REF] develop an extension of the Relationship-Based Access Control (ReBAC) model [START_REF] Philip | Relationship-based access control: protection model and policy language[END_REF] to support multiple ownership, in which a policy negotiation protocol is in place for co-owners to come up with and give consent to an access control policy. Such multiple ownership is modelled by a social network graph in which vertexes represent users, edges represent interpersonal relationships and edge labels denote the type of relationships that the edges signify (e.g., friend, parent, etc). The spirit of ReBAC is that the requested access graph shall satisfy some graph theoretic properties imposed by the access control policy. During negotiation, the draft policy is assessed by formally defined availability criteria: policy satisfiability, resiliency and feasibility.

Meaning Negotiation

Meaning negotiation (MN) is a negotiation process in which negotiators propose definitions and properties about a set of terms then accept or reject the definitions. MN has received significant attention in the Artificial Intelligence community. One of the paradigms to model MN is called belief fusion.

Its scope is to construct a commonly accepted knowledge as the process of merging information from different sources. Belief is information held by human or artificial agents about the world that can be false, uncertain, have an elementary nature or involve a complex logical structure. Contrary to belief, knowledge is usually defined as an unquestionable piece of information about the world [START_REF] Grégoire | Logic-based approaches to information fusion[END_REF]. The basic problem of belief fusion is that how should an agent change her beliefs and how to bridge the gap of reaching consistency [START_REF] Booth | A negotiation-style framework for non-prioritised revision[END_REF]. To this end, belief negotiation process is needed and Figure 5.4 illustrates a typical MN negotiation system. Booth et al. [START_REF] Booth | Social contraction and belief negotiation[END_REF] propose dividing the negotiation process into stages. The first stage is weakening the individual pieces of information into a form in which they can be consistently added together; in the second stage, the information obtained is added together.

As MN may involve a different number of negotiators, various models in the Game Theory literature have been investigated, for example Bargaining [21], Pleading [START_REF] Thomas F Gordon | The pleadings game[END_REF] and English Auction [START_REF] Peter R Wurman | A parametrization of the auction design space[END_REF]. In the Bargaining Game, two agents discuss how to share one dollar. They make simultaneously proposals and send other proposals if their initial proposals are not compatible.

The Pleadings Game is a normative formalization and computational model of civil pleading, founded in theory of legal argumentation and conflicts be- Burato et al. [START_REF] Burato | The process of reaching agreement in meaning negotiation[END_REF][START_REF] Burato | Contract clause negotiation by game theory[END_REF] apply the Bargaining and the English Auction models to MN negotiation and propose a general negotiation framework.

The agreement outcome is reached by testing the compatibility relation between the proposal by agents and the outcome can be an agreement or a disagreement. The framework contains mainly three components as follows:

• Negotiation configuration: based on the theory tree which presents agent's preferences about terms.

• Proposal comparison system: compares the proposal received with the current local one and concludes one of the four relations: equivalence, restriction, compatibility and inconsistence.

• Negotiation algorithm: specifies the sequence of negotiation mes-sages including counter-offers and decisions. The counter-offer is made according to the relation concluded by the proposal comparison system. The algorithm can be used for two kinds of negotiation scenarios:

Bargaining and English Auction.

The Bargaining negotiation consists of three phases:

1. Initialization: the system keeps the initial view-points of the two agents as their current local definition.

2. Demand stage: each agent sends its term proposition and receives the others'. Messages exchanged are evaluated by each side to find if an agreement is reached. In case of an agreement, the negotiation ends with a common term. Otherwise, the negotiation goes into the third stage. The English Auction negotiation involves n (n ≥ 3) agents and the target is to obtain a viewpoint shared by α (1 < α ≪ n) agents. α is called the degree of sharing which is fixed by the auctioneer. The auctioneer is the first bidding agent which controls and decides the process development. In the negotiation process, only the auctioneer receives proposals from the other players after broadcasting its proposal. Negotiation between auctioneer and other agents is still conducted by the Bargaining negotiation mode. The auctioneer evaluates the counter-proposals by deciding if the α degree is satisfied. If it is, the agreement on a common term is reached, otherwise, the auctioneer will check if the negotiation should continue.

Conclusion

We have seen the essential preliminaries concerning the negotiation approaches with a focus on trust, access, access control (AC) policy and meaning negotiation. A comparison of different negotiation types is shown in Table 5.1. It is worth noting that "N/A" in the row of trust negotiation means that the knowledge of others' constraints depends on the negotiation strategy. A negotiator knows the constraints of others' credentials if the constraints are disclosed at the same time with credentials [START_REF] William H Winsborough | Negotiating disclosure of sensitive credentials[END_REF][START_REF] William H Winsborough | Automated trust negotiation[END_REF]. However, none of the solutions presented for the AC policy negotiation provides a complete framework covering policy definition, negotiation configuration, proposal evaluation and negotiation protocol. Meanwhile, in most of the solutions, the so-called negotiation is just a one-round process without possibility to exchange messages in multi-rounds. To overcome these limitations, we will present, in the next chapter, the process of negotiation related to the access control policy and propose a framework and an algorithm based on MN negotiation. 

Chapter 6

The Process of Reaching Agreement in Security Policy Negotiation

Introduction

In the part I, we presented approaches for SPs selection by considering the security policy and the security requirement. After selecting the SP(s) which meet SC's preferences, the SC and the SP may need to negotiate some more fine-grained security policies. In case that SC has no other SPs to choose

or it has been already assigned to a SP, the SC may also need to reach an agreement in security policy. In this chapter, we propose a framework and an algorithm to negotiate a security policy such as an OrBAC policy. The negotiation mechanism is based on a policy evaluation approach. For that, we put forward the whole architecture that we consider to negotiate an Or-BAC policy. Our whole framework is based on the bargaining model which manages indisputable and flexible preference. We advance an approach for comparison and evaluation of security policies: a negotiator makes a proposition and evaluates the opponent one. Dissimilar results of an evaluation lead to different reactions. The chapter is structured as follows. We firstly review the relation between policy entities. Based on the entity relationship, 88 6. The Process of Reaching Agreement in Security Policy Negotiation we specify an approach to be used for rule comparison and evaluation. Then we propose the policy negotiation framework and give examples of its configuration. Finally we explain the negotiation algorithm and show a concrete scenario and the related prototype.

Relation between OrBAC Entities

In OrBAC, it is possible to consider the inheritance relation of roles and also of activities, views and organizations. We present the inheritance relation by using the predicates sub_role, sub_activity, sub_view and sub_organization introduced in [START_REF] Cuppens | Inheritance hierarchies in the OrBAC model and application in a network environment[END_REF]. Besides, we also define the sub_context predicates for the context entity. The five predicates belong to two types of relations:

• Hierarchy relation: sub_role presents the hierarchy relation. For example, sub_role(org, r 1 , r 2 ) indicates that in organization org, role r 1 is a sub role of r 2 . Suppose that in a company, r 1 is a staff member and she guides a trainee r 2 . Then r 1 could inherit all the permissions of r 2 .

• Specialization relation: sub_activity, sub_view and sub_context belong to the specialization relation. For example, concerning the document management, activity manage may be specialized into three activities: create, consult and update. Thus, update is a sub_activity of manage.

For instance, in a hospital, a physician is permitted to manage medical records of her patients and we can derive that she is also permitted to update the medical records. Similarly, a medical_record can be a sub_view of hospital_f ile and context 1 = certif icate can be a sub_context

of context 2 = (certif icate ∧ IDCard).
It is possible that predicate sub_organization belongs to either hierarchy or specialization relations. For example, departement1 may be hierarchically higher than departement2. Thus, role in departement1 can inherit all the privileges in departement2. Another example regarding the specialization relation is that market_departement can be one of the sub_organization of the business_departement, thus role in market_departement can inherit all the privileges in business_departement. An exhaustive relationship for each Or-BAC entity is shown in TABLE 6.11 . Table 6.1: Relationship between OrBAC entities

Predicate Definition

sub_role(org,r 1 , r 2 ) ∀org,∀r 1 ,∀r 2 ,∀a,∀v,∀c,Permission(org,r 2 ,a,v,c) ∧sub_role(org,r 1 ,r 2 ) →Permission(org,r 1 ,a,v,c) sub_activity(org,a 1 , a 2 ) ∀org,∀r,∀a 1 ,∀a 2 ,∀v,∀c,Permission(org,r,a 2 ,v,c) ∧sub_activity(org,a 1 ,a 2 ) →Permission(org,r,a 1 ,v,c)

sub_view(org,v 1 , v 2 ) ∀org,∀r,∀a,∀v 1 ,∀v 2 ,∀c,Permission(org,r,a,v 2 ,c) ∧sub_view(org,v 1 ,v 2 ) →Permission(org,r,a,v 1 ,c) sub_context(org,c 1 , c 2 ) ∀org,∀r,∀a,∀v,∀c 1 ,∀c 2 ,Permission(org,r,a,v,c 2 ) ∧sub_context(org,c 1 ,c 2 ) →Permission(org,r,a,v,c 1 ) sub_organization(org 1 ,org 2 ) ∀org 1 ,∀org 2 ,∀r,∀a,∀v,∀c,Permission(org 2 ,r,a,v,c) ∧sub_organization(org 1 ,org 2 ) ∧relevant_role(org 1 ,r) ∧relevant_activity(org 1 ,a)∧relevant_view(org 1 ,v) →Permission(org 1 ,r,a,v,c)
We denote sub relation by the symbol: "<". e 1 <e 2 indicates that e 1 is a sub entity of e 2 . Based on the sub relation, we propose three other relations: equivalent, relevant and inconsistent. Along with the sub relation, the four relationships will be used to define relations between OrBAC rules in the next section. Let e 1 and e 2 be two related entities 2 of OrBAC policy, the other three relations between e 1 and e 2 are:

Equivalent: if e 1 is semantically equal to e 2 , they have the equivalent relation denoted with e 1 = e 2 ;

Relevant: e 1 <e 2 or e 2 <e 1 or e 1 =e 2 , in this case we say that e 1 and e 2 have a relevant relation and denote it with e 1 ∼e 2 . We note that both the equivalent relation and the sub relation are the subcases of relevant relation;
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Inconsistent: if e 1 has not a relevant relation with e 2 , the two entities have an inconsistent relation and we denote this with e 1 ≁e 2 .

Relation between OrBAC Rules

In the negotiation process, the comparison and the evaluation of a received proposition with the current local offer are necessary for a negotiator to make its decision. In [START_REF] Coma | Interoperability of context based system policies using o2o contract[END_REF], Coma et al. define four relation patterns between the contract grantor and the contract grantee in a contract compatibility session. Those relations are used to generate an interoperability contract which contains a set of policies. Based on the entity relations we previously defined, we apply the relation patterns to the comparison between two OrBAC permission rules. Let r i and r j be two OrBAC rules, e ik , e jk rule entities belong to r i and r j respectively, five relations between rules are:

Restriction: r i ≺ r j ⇐ ∀e ik ∀e jk (((e ik < e jk ) ∨ (e ik = e jk )) ∧ ∃e ik ∃e jk (e ik < e jk )).

If at least one entity of r i is a sub entity of r j and other related entities have an equivalent relation, then r i is a restriction of r j denoted with r i ≺ r j . At the same time, we say that r j is a generalization of r i . Example: r i ≺ r j ⇐ staff < trainee, r i : permission(company_A, staff , read, document, def ault), r j : permission(company_A, trainee, read, document, def ault)

Total compatibility (T _compatibility): r i = r j ⇐ ∀e ik ∀e jk (e ik = e jk ). If all the related entities in r i and r j are equivalent, then r i and r j have a total compatibility relation denoted with r i = r j .

Symmetric compatibility (S_compatibility): r i ≃ r j ⇐ ∀e ik ∀e jk ((e ik ∼ e jk ) ∧ ∃e ik ∃e jk (e ik ≺ e jk ) ∧ ∃e ik ∃e jk (e jk ≺ e ik )). All the related entities are relevant, at least one entity in r i is a sub entity of r j and at least one entity in r j is a sub entity of r i . This relation is denoted with r i ≃ r j . Example: r i ≃ r j ⇐ staff < trainee, update < read, r i : permission(company_A, staff , read, document, def ault), r j : permission(company_A, trainee, update, document, def ault)

Partial compatibility (P _compatibility): r i ⊲⊳ r j ⇐ ∀e ik ∀e jk (∃e ik ∃e jk (e ik ∼ e jk ) ∧ ∃e ik ∃e jk (e ik ≁ e jk )). At least one pair of related entities is relevant and there exists at least one pair of entities having an inconsistent relation. In this case, the rules are partially compatible but not comparable. We denote it with r i ⊲⊳ r j . Example:

r i ⊲⊳ r j ⇐ f inancial_f ile ≁ technical_f ile, r i : permission(company_A, staff , read, f inancial_f ile, def ault), r j : permission(company_A, staff , read, technical_f ile, def ault)
No compatibility (N o_compatibility): r i ⊣⊢ r j ⇐ ∀e ik ∀e jk (e ik ≁ e jk ). If all the related entities have inconsistent relations, the two rules are not comparable and they have a no compatibility relation denoted with r i ⊣⊢ r j .

Negotiation Configuration

Entity Chain

Before negotiation, two participants should have already shared their vocabulary and held their entity chains which register the sub relation between entities. Five types of entities: organization, role, activity, view and context, may possess their entity chains.

Definition 3. Entity Chain

Given different entities e i , e j (i, j = [0, n]) which belong to the same type of entity (organization, role, activity, view, context) and e i < e j (i < j), an entity chain is a chain EntityChain = V, E (V denotes a vertex and E denotes an edge) where:

i) e 0 is the head; ii) V ⊆ {e i };

The Process of Reaching Agreement in Security Policy Negotiation

iii) E ⊆ {(e i , e j )}, where both e i and e j are in V and e i <e j .

Example 1. An entity chain of Role entity is shown in Fig. 6.1. In a company, an employee has more privileges than a trainee but less authority than a boss. Hence employee is a sub role of trainee and boss is a sub role of employee. 

Policy Tree

Before negotiation, different participants should have their own configuration indicating their preferences. In [START_REF] Burato | The process of reaching agreement in meaning negotiation[END_REF], the negotiation configuration is based on the theory tree which presents the preference on term definition. However, a theory tree contains only comparable terms but not noncomparable ones. Two comparable terms share some common elements and one term is a restriction of the other. For example, terms T 1 = p and T 2 = p∨q are two comparable terms and T 1 is a restriction of T 2 . Conversely, T 3 = s and T 4 = h ∧ f are two non-comparable terms. Indeed, in some negotiation cases, the presentation of preferences should not only focus on comparable terms but also on non-comparable terms. In our model, we distinguish policy tree into the related policy tree for comparable policies and the distant policy tree for non-comparable policies.

Definition 4. Related Policy Tree

For rule r 0 which holds some option rules r i , r j (i, j = [1, n], i < j), its related policy tree is a finite graph P olicyT ree = V, E (V denotes a vertex and E denotes an edge) where:

i) The initial rule r 0 is the root which is the most preferred ; ii) V ⊆ {r i } where for every r i , r 0 ≺ r i or r 0 ≃ r i ;

iii) E ⊆ {(r i , r j )}, where both r i and r j are in V and r i ≺ r j or r i ≃ r j ; iv) all the leaves are stubborn rules which are unquestionable and the least preferred.

By definition, the configuration is characterized by the degree of preference.

We assume that each related policy tree has at least an initiate rule and a stubborn rule. An exceptional case is that the negotiation configuration for a related policy tree has only a head rule which indicates that this rule is absolutely stubborn and it can not give up itself by redirecting to another proposition.

Example 2. A possible configuration for a related tree of an OrBAC rule r 0 is shown in Fig. 6.2. r 11 has S_compatibility relation with r 0 which indicates that if r 0 can not be agreed by the opponent, r 11 could be proposed by weakening some entities and strengthening other ones. r 12 and r 21 are two stubborn rules. r 21 is a generalization of r 11 ; r 12 has S_compatibility relation with r 0 . In the example, the tree has two directions: {r 0 , r 11 , r 21 } and {r 0 , r 12 }. Each direction is designed with the aim of weakening one or some entities. A distant policy tree of r 0 which contains rules r i , r j (i, j = [0, n], i < j) is a finite graph P olicyT ree = V, E (V denotes a vertex and E denotes an edge) where: i) r 0 is the root which prefers to be replaced by other rules; ii) V ⊆ {r i } where for every r i , r i ⊲⊳ r 0 or r i ⊣⊢ r 0 ;

iii) E ⊆ {(r i , r j )}, where both r i and r j are in V and r i ⊲⊳ r j or r i ⊣⊢ r j .
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A distant policy tree could be treated as a trigger because rules of lower depth could be proposed as counter-offers of the root rule. The condition to activate or deactivate a distant tree depends on the negotiation strategy which gives more flexibility to the negotiation configuration. The distant policy tree will be useful when multiple rules are negotiated at the same time since a counter-offer may be comparable with other proposed rules. An example of this case is shown in Section 6.6.2. In case that only one rule is negotiated in a policy, the distant policy tree does not need to be configured.

Example 3. The distant tree of r 0 is presented in Figure 6.3. r 0 and r 1 have N o_compatibility relation, r 0 and r 2 have P _compatibility relation. In the example, r 1 and r 2 are more preferred than r 0 and it indicates that if r 0 is proposed, r 1 or r 2 could be proposed as counter-offers. 

Algorithm Description

This section describes the core negotiation algorithm for our framework. We suppose that negotiation participants prefer to reach an agreement which is in their configuration space. Besides, in order to ensure the security level during the transaction, negotiators do not usually refuse a restriction of its current rule. We show how a service provider and a requester negotiate an OrBAC policy contract. Compatible with the WS-Agreement negotiation protocol [4], our algorithm contains five actions: propose, receive, create agreement, agreement, refuse and also four stages: information stage, demand stage, bargaining stage, contract establishment stage.

The Process of Reaching Agreement in Security Policy Negotiation

Algorithm 5 searchDistantTree(i, r i , r cur loc , r cur rec ) 1: i ← i + 1; 2: r i ← nextM ove(r cur loc , r cur rec , T distant p ); 3: r cur loc ← r i ; 4: Send r i to opponent; Algorithm 6 searchRelatedTree(i, r i , r cur loc , r cur rec ) 1: if r cur loc ⊂ T related p then 2:

i ← i + 1; Send r i to opponent;

13: else 14:

return Ref use;

15: end if exchange some information in order to establish their ontological mapping.

Consequently, the two sides have a common knowledge of entities.

Demand stage: (Algorithm 4, lines 5-10) at the beginning of the negotiation process, each participant sends its initial rule proposition r i to its opponent. When both participants receive the opponent's initial offer r j , the relation between current local rule r cur loc and received rules r cur rec is evaluated. If two rules have a T _compatibility relation or if a received rule is a restriction of the current local rule, a CreateAgreement message is sent, then the negotiation will enter the contract establishment stage. Otherwise, participants begin the bargaining stage.

Bargaining stage: (Algorithm 4, lines 11-35) at the beginning of the bargaining stage, the stubbornness conditions r stub loc , r stub rec of both sides are tested.

The loop will be executed until one side makes a decision or both sides reach their stubborn rules. After receiving a current proposal rule r cur rec , one of the five possible reactions will be made: Otherwise, a new proposition r i will be proposed by calling the proposition method nextM ove(r cur loc , r cur rec , T related p ): r i is generated by weakening some entities (rule of lower depth is proposed) or changing branch. r cur rec will be accepted if it is a restriction of r i or has a T _compatibility relation with it. If the related tree does not exist, the received proposition will be refused. 

Theoretical Results

This part deals with some results obtained by our formalization. We say that the algorithm is complete if it could reach an agreement when there is a positive outcome; The algorithm is correct when the positive outcome is a shared policy between negotiators.

Theorem 1. The negotiation algorithm is correct and complete.

Suppose that there does not exist a possible final agreement. In such a case, a negotiator, after visiting all nodes of its policy tree (the related tree and the distant tree), reaches one leaf node that constitutes its cur- Consider the case in which there is no possible agreement. Since the stubborn rules of the two negotiators can not make an agreement, we shall visit at least all the nodes of one direction of a policy tree and at most all the trees. In the latter case, stubborn rules of these trees will not be achieved except for the last tree visited. The searching strategy depends on the nextM ove method which is not specified in this dissertation (line 2 in Algorithm 5 and line 6 in Algorithm 6). Moreover, if such an agreement can be found, negotiation necessarily terminates before. Therefore the case in which both sides reach their stubborn rules holds the highest complexity.

Application

The framework and algorithm above could be applied to different negotiation cases from agent-agent to agent-human. The difference between the two cases is that for the agent-agent case, each side should configure its negotiation framework and for the latter case, only the agent side should configure it. In this section, we illustrate a concrete scenario between two agents. By default, a custom_user is a free user who can benefit from only basic services and a business_user should pay extra amount for the additional specified services. A business_user could also have access to basic services at the same time. Thus, the role business_user can be considered as a sub role of custom_user. Bob is a custom_user but he does not want to lose the CSA_service (S3) and he also does not want to pay an extra amount to have that service. Hence, he will try to negotiate the operator's policy based on his initial proposition. Our negotiation framework will be applied to the negotiation scenario. In the scenario, Bob negotiates a contract which contains seven OrBAC rules and those rules will be negotiated at the same time instead of one by one. For the purpose of synchronization, we assume that the agreement will be reached when all the rules are agreed simultaneously by the message CreateAgreement. Otherwise the negotiation continues.

Scenario Description

Process of Security Policy Negotiation

As service terms are based on a common service vocabulary and the vocabulary is accessible for users, we suppose that Bob and the Chinese ITS station hold the same entity chains shown in Fig. 6.4. The negotiation configurations of Bob and the Chinese ITS station contain 1) initial proposition, 2) related policy tree, 3) distant policy tree. Shown in Fig. 6.5 and Fig. 6.6, Bob's empty related policy tree indicates that he does not want to weaken any entity of the policy in the process of negotiation. However, the ITS has its related policy tree which shows the possibilities to weaken the roles of S3 by S3 1 , S3 3 and to weaken its view by S3 2 . In the current negotiation algorithm for the vehicle and ITS station (Algorithm 4, line 18), a counter-offer from the distant tree will be trigged when 1) r cur rec has not been previously received and has a T _compatibility relation with the current local rule r cur loc ; 2) r cur loc belongs to a distant tree. In fact, different negotiation strategies could have different conditions to activate or deactivate the distant tree.

At the demand stage, the ITS station and Bob exchange their initial propositions. However, the initial rules could not be agreed on. As a consequence, the bargaining stage takes place. Upon receiving S3 ′ , S4 ′ and S5 ′ , the ITS 

Prototype

We have developed a Java-based prototype to demonstrate the scenario. From the negotiator's point of view, the negotiator needs to configure the (1) initial contract, (2) entity chain, (3) preference on security policy.

Initial contract contains different OrBAC rules which can be written in the form of XML. An initial contract including the rule of S1 is showed as follows. 

Example of initial contract

107

The entity chain can be also written in the form of XML. Following is an example of an entity chain for role and it indicates that in a role entity chain, business_user is a sub entity of custom_user and custom_user is a sub entity of any_user.

Example of an entity chain for the Role entity 

Conclusion

The main objective of this chapter is to expose our proposition to show how to negotiate security policies. The proposition gives mainly a framework with which we can configure negotiable policies by presenting preferences. The preferences related to security policies are configured in the form of tree architecture. Introducing five relationships, we showed how the security rules are compared and evaluated. An algorithm was also given to the negotiation process. In addition, we integrated OrBAC policies in our negotiation model.

The proposed algorithm also deals with the tree search module which makes the next proposition. Detail of this module is a part of future work which concerns the negotiation strategy and the Game Theory may be applied.

Chapter 7

Conclusion and Perspectives

The emerging service mode with multiple SPs brings more flexibility and efficiency to SCs regarding choosing services. In the process of data and service exchange, the security policy plays a fundamental role in the privilege management. With security policy, actors are able to edit their own privileges and specify the one which restricts permissions for visitors. For example, it can be applied to define service contents for a vehicle station, or to express preferences from CSPs and CSCs in virtual resource allocation.

Although the security policy offers several benefits, its evaluation and negotiation still present a variety of challenges, especially among different security policy models and between negotiators with their own preferences.

In this sensitive context, the first objective of this thesis is to provide a general method for security policy evaluation. We hope that our approach will be helpful in the SP selection. By similarity score, the similarity level between two security policies is quantified. We have shown that the scores produced by the PSM method are related to the similarity rates from our test. A particular prototype is made for cloud-storage-based SPs selection. However, the assumption that both parties disclose their security policies for evaluation does not suffice in all the scenarios. In case that the security policies are not expressed explicitly, we proposed a framework that derives security requirements to security policies. Meanwhile, the framework is used in a scenario where VMs are allocated in an IaaS infrastructure.

The second objective of this thesis is to introduce guidelines for the pro-112

Conclusion and Perspectives

cess of the security policy negotiation between two actors, typically negotiators aiming to reach agreement on access control policy. We have integrated the bargaining game and the meaning negotiation in our proposition.

Main Results

The main results of this dissertation are stated as follows:

A new similarity measure method for security policies: A generic and light-weight method [START_REF] Li | Similarity measure for security policies in service provider selection[END_REF] is proposed to compare and evaluate security policies belonging to different models. With the method, a SC is able to quickly locate SPs with potential similar policies. At the same time, our method shows more accuracy through the brute-force based tests. We propose integrating the policy similarity measure algorithm in the SP selection process A model for security policy negotiation: Based on the bargaining game [21] and the meaning negotiation, a framework and an algorithm [22] are developed to negotiate a common security policy. A prototype is also developed to simulate vehicle negotiation process. With policy tree based configurations, two negotiators are possible to reach their agreement step by step.

Compared with other works, our method is indeed the pioneering one which integrates the security policy in the negotiation process with a complete support of configuration, protocol, algorithm and strategy.

Perspectives

We give a set of future research directions that could be investigated as a continuation of the results presented in this thesis.

Integrating the PSM technology in security policy negotiation: As a PSM score presents the similarity level between two policies, it may be useful in the security policy negotiation process. After introducing the PSM score, relationships between security policies are not only classified but also quantized. Consequently, more strategies can be executed according to the PSM score. Besides, the decision making can be also based on PSM score which brings more fine-grained control to the negotiation process.

Introducing contextual based policy in virtual resource allocation:

Our current solution for policy-based virtual resource allocation is based on the OrBAC policy which holds "default" for the context. A context is viewed as an extra condition that must be satisfied to activate a given security preferences that will be enforced during the service discovery process [START_REF] Trabelsi | Context-aware security policy for the service discovery[END_REF].

As mentioned in [START_REF] Coma | Context ontology for secure interoperability[END_REF], context requirements are possible to cover different aspects such as time, space and history. By this way, a user's deployment requirement is enriched and more diverse.

Applying AI technologies and strategy to policy negotiation: The proposed process of reaching agreement in security policy negotiation is based on the bargaining game and the meaning negotiation. A general framework and a tree search strategy are specified and illustrated. However, the current negotiation model is only suitable for one-one negotiation. In order to negotiate security policies among a SC and multiple SPs, our model can be extended by using other models in the Game Theory such as the English auction [START_REF] Peter R Wurman | A parametrization of the auction design space[END_REF]. Another direction is to diversify negotiation strategies: different policy tree search strategies can be applied by negotiators for different scenarios.

Improving interoperability between different policy models during policy negotiation:

As different access control policy models have their advantages and limitations, users may take different models to specify the privileges. When different policies belonging to different models are needed to be negotiated, interoperability becomes an important issue to be overcome. Although some work such as [START_REF] Jin | A unified attribute-based access control model covering DAC, MAC and RBAC[END_REF] has proposed using the ABAC model to unify the DAC, MAC and RBAC models, there exist lots of investigations to do regarding (i) unifying more AC policy models; (ii) developing an interoperable policy engine and integrating it in policy negotiation.

Extending policy-based resource allocation framework to more scenarios: Presented in Chapter 4, our current allocation framework can be used for the VM deployment scenario which belongs to the "compute" aspect of Cloud Computing. In addition, our solution can be used in more related aspects such as "storage" and "network". Regarding the "storage" aspect, the policy-based framework enables users to express their security requirements for their data; at the same time, SPs which offer their stor-age space also specify their preferences on the characteristics of data. The result of execution of our framework is that a user's data is stored by multiple distributed SPs. Another possible application in the "network" aspect, is that the user expresses their traffic routing requirements and sends them where e i is an atomic rule element and each rule element has five properties:

• Type: e.type ∈ {subject, action, object, context}. Each network rule should contain elements belonging to subject, action and object type. The context type is an option.

• Domain: e.domain ∈ {protocol, time...}. Domain restricts the unit of an element.

• Value: e.value. There are two types of values: variable to be assigned and non-variable which are already assigned. We used x i to present a variable. Both variable and non-variable can be assigned by three kinds of data types:

-constant: numeric value or semantic value. For example e.value : T CP .

-interval: numeric interval. For example, e.value : [8 : 00, 20 : 00].

-set: numeric or semantic set. For example e.value : {15 : 00, 16 : 00, 17 : 00}, e.value : {U DP, T CP, ICM P }

• Public preference (pub pre ): A variable can possess its public preference which is accessible as public information. Interval (numeric) and set (numeric, semantic) can be used for preference specification.

• Private preference (pri pre ): A variable can possess its private preference which is the local configuration for negotiation and can not be disclosed to others. The expression is similar to the one for pub pre .

For the rule without context type element, we add a context element with e.domain = ⊤ and e.value = ⊤. "⊤" indicates that all the propositions are acceptable. The intersection between any value and "⊤" is the value itself. In terms of preference, coexistence of pub pre and pri pre introduces the possibility of lying which makes negotiation more complicated. For simplicity, in our current proposal, a value should not hold pub pre and pri pre at the same time.

We intend to specify different types of network security policies classified in [START_REF] Laborde | A formal approach for the evaluation of network security mechanisms based on RBAC policies[END_REF]: consume/produce policies for end-system, propagate policies for communication, transf orm policies for protocol and f ilter policies for firewall. In the rule expression, variables can expressed in two status: assigned and not assigned. 2 Service Level Agreement 

Framework pour allouer des ressources virtuelles

Implémentation

Framework de négociation

Le Framework de négociation (Figure 8) comporte trois parties : protocole de négociation, configuration de négociation et module de négociation.

Protocole de négociation

Le protocole de négociation est compatible avec WS-Agreement : au début, le service demandeur demande l'offre de fournisseur de services. Après avoir reçu l'offre, le demandeur échange des propositions avec le fournisseur de services jusqu'à une décision (accepter ou refuser). 

Configuration de négociation

Module de négociation

Le module de négociation prend en charge l'application du protocole de négociation.

Il reçoit une proposition de règle et évalue la relation entre la règle reçue avec celle de locale. Après l'exécution de l'algorithme de négociation, une contre-offre ou une décision finale sera prise et envoyée. 

Perspectives

Nous donnons un ensemble de futures directions de recherche qui pourraient être étudiés comme suite aux résultats présentés dans cette thèse. 

Résumé

  Suite au développement des technologies de l'information, et en particulier au déploiement d'infrastructures telles que le Grid Computing et le Cloud Computing, de plus en plus d'applications et plateformes coopèrent en échangeant des données et des services. Cette tendance renforce l'importance de la gestion de la sécurité. Afin d'assurer la sécurité des données et de l'interaction de service une politique de sécurité doit être appliquée. En effet, les politiques de sécurité permettent de définir des contraintes sur le comportement des membres appartenant à un système, une organisation ou d'autres entités. Dans cette thèse, nous nous intéressons aux politiques de contrôle d'accès. Ce type de politique spécifie les privilèges de l'utilisation des ressources et est implémentée par différents modèles selon différents scénarios. Notre objectif ici est d'aider le client du service à bien exprimer ses exigences de sécurité et à choisir les fournisseurs de services qui peuvent la déployer. La première partie de cette thèse est dédiée à la sélection des fournisseurs de service. Dans le cas où les politiques de sécurité du fournisseur sont accessibles au client, nous proposons une méthode pour mesurer la similarité entre les politiques de sécurité. L'approche proposée prend en charge des modèles de politiques différents et son exactitude est prouvée par un test qui se fonde sur la force brute. Dans le cas où les politiques de sécurité ne sont pas accessibles au client ou ne sont pas explicitement spécifiées, nous proposons un cadre à base de règles permettant la dérivation à partir des exigences de sécurité aux politiques de sécurité concrètes. Ce cadre est utilisé pour allouer des ressources virtuelles dans une infrastructure de type IaaS Cloud et nous y avons développé une preuve de concept en utilisant la brique OpenStack. La seconde partie de la thèse porte sur la négociation de politiques de sécurité. Nous étudions le processus permettant aux parties en négociation de parvenir à un accord par une série d'échanges d'offres et de contreoffres. Lorsque le résultat de la négociation est positif, un contrat incluant la politique de sécurité acceptée par les parties est généré. L'approche vi actuelle prend en charge le mode de négociation entre deux parties utilisant le même modèle de politique. Plus spécifiquement nous utilisons une structure d'arbre de politiques comme configuration locale pour stocker et gérer les préférences et exigences de sécurité.
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 225 Figure 2.5: XACML 3.0 policy language model [1]
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 2 Figure 2.6 shows the data flow diagram which consists of some major actors:
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 26 Figure 2.6: Data-flow diagram of XACML 3.0 policy language[START_REF] Rissanen | extensible access control markup language (XACML) version 3[END_REF] 
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 210 Figure 2.10: Asymmetric mode of WS-Agreement negotiation[4] 
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 3 Similarity Measure for Security Policies formal definition is given in Equation (3.1), where N um(sameDecision(r 1i , r 2j ))

4 . 1 .r 12 :policy2 (p 2 ) r 21 :r 24 :policy3 (p 3 ) r 31 : 3 .r 32 :

 411222124331332 The policies after transformation to the Form 3.2 are: policy1 (p 1 ) r 11 : P ermit(Role : {prof essor, postDoc, student, techStaff }, Action : {read, write}, Resource : {source, documentation, executable}, F ileSize : all, T ime : [0 : 00, 24 : 00]) Deny(Role : {student, postDoc, techStaff }, Action : write, Resource : {source, documentation, executable}, F ileSize : all, T ime : [19 : 00, 21 : 00]) P ermit(Role : {student, f aculty, techStaff }, Action : {read, write}, Resource : all, F ileSize : (-∞, 120]M B, T ime : [0 : 00, 24 : 00]) r 22 : P ermit(Role : techStaff Action : {read, write}, Resource : all, F ileSize : all, T ime : [19 : 00, 22 : 00]) r 23 : Deny(Role : student, Action : write, Resource : all, F ileSize : all, T ime : [19 : 00, 22 : 00]) Deny(Role : {student, f aculty, staff }, Action : {read, write}, Resource : media, F ileSize : all, T ime : [0 : 00, 24 : 00]) P ermit(Role : businessStaff , Action : {read, write}, Resource : xls, 38 Similarity Measure for Security Policies F ileSize : (-∞, 10]M B, T ime : [08 : 00, 17 : 00]) Deny(Role : student, Action : {read, write}, Resource : all, F ileSize : all, T ime : [0 : 00, 24 : 00])
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 311 Figure 3.1: The process of similarity score calculation

p 1 :

 1 permit(e 1i_1 , e 1i_2 , ...), permit(e 2i_1 , e 2i_2 , ...), ... deny(e 1i_1 , e 1i_2 , ...), deny(e 2i_1 , e 2i_2 , ...), ...

p 2 :Step 2 :

 22 permit(e 1j_1 , e 1j_2 , ...), permit(e 2j_1 , e 2j_2 , ...), ... deny(e 1j_1 , e 1j_2 , ...), deny(e 2j_1 , e 2j_2 , ...), .. Score calculation for the rule pair. Scores of each rule pair belonging to the same decision effect d (permit, deny...) between two policies are calculated. In Equation (3.3), the score for each rule pair is the product of the scores of all the element pairs. Product operation is chosen because any mismatch of element pair may cause different replies from two policies. Details for element pair calculation are shown in Section 3.2.4.
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 3233 Figure 3.2: Abstraction tree for the Role element

  Bounded intervals (lines 7,8): Two elements' values are both bounded intervals. Length of an interval equals the distance between its endpoints. To compute the score, we divide the length of the conjunction of two intervals by the length of their disjunction. For example, the score for time elements in r 12 and r 23 specified in Section 3.2.2 is: S n (e r_12(T ime) , e r_23(T ime) ) = Len(21 -19)/Len(22 -19) = 0.67. • Sets (lines 9,10): Two elements' values are both sets. To compute the score, we divide the cardinality of the intersection of two sets by the cardinality of their union. For example, T ime 1 = [3 am, 4 am, 5 am], T ime 2 = [4 am, 5 am, 6 am], S n (T ime 1 , T ime 2 ) = 2/4 = 0.5.

1 1 5 8

 15 Scores of element pairs between rules r 11 and r 21 are: S c (e r_11(Role) , e r_21(Role) ) = , S c (e r_11(Action) , e r_21(Action) )=1, S c (e r_11(Resource) , e r_21(Resource) )= 9 11 , S n (e r_11(F ileSize) , e r_21(F ileSize) ) = 1 2 , S n (e r_11(T ime) , e r_21(T ime) ) = 1.
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 34 Similarity Measure for Security Policies 3. Decision effect calculation: By Equation (3.4), scores of each decision effect are: S permit = S rule (r 11 , r 21 ) + S rule (r 11 , r 22 ) = 0.269 S deny = S rule (r 12 , r 23 ) + S rule (r 12 , r 24 ) = 0.136 Total score calculation: The final similarity score between two policies is calculated by Equation (3.5):S policy (P 1 , P 2 ) = S permit + S deny N um(permit) + N um(deny)
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 3 Figure 3.5 and Figure 3.6 show the policy similarity score (y-axis) and the same decision percentage for rule pairs (x-axis) in the set-4 and set-8 experiments. Each test set contains 1000 pairs of policies. In the set-4 experiment, each policy has four rules and each policy has eight rules in the set-8 experiment. The configurations of elements for each policy model are shown in
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 337 Figure 3.7 illustrates a scenario of our implementation. In the multi-cloud

  Figure 3.8 presents the architecture of the CloudSim toolkit. It consists of two layers: the CloudSim layer and the user code layer. The CloudSim layer supports the simulation of virtualized data center's environments which include dedicated management interfaces for VMs, memory, storage, and bandwidth. The layer handles the fundamental issues such as provisioning of VMs, managing the application execution and monitoring the dynamic system state. At the top position, the user code layer exposes basic entities for hosts (number of machines, their specification, and so on), applications (number of tasks and their requirements), VMs, number of users and their application types, and broker scheduling policies. By extending the basic entities in this layer, developers can perform the following activities: (i) generate a mix of workload request distributions, application configurations; (ii) model Cloud availability scenarios and perform robust tests based on the custom configurations;(iii) implement custom application provisioning techniques for Clouds and their federations[6].
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 38 Figure 3.8: CloudSim architecture [6]

50 3 .

 3 Similarity Measure for Security Policies • Policy Gateway (PG): an additional policy-based component developed by us. The component delegates some policy related tasks from the DataCenterBroker. • Cloud Information Service (CIS): an entity that registers, indexes and discovers the resources. • DataCenter (DC): it models the core hardware infrastructure offered by a CSP. It encapsulates a set of compute hosts. Here we regard each DataCenter as a CSP. The messages exchanged between different components are illustrated within the sequence diagram in Figure 3.9. In this sequence of execution, DCs are previously registered in the CIS (Step 1). The exchanged messages at step 2 and step 3 contain the security policy and the storage volume required by a CSC then the CIS returns all the registered DCs (Step 4). In step 5, the PG filters the DCs by storage volume. That is, the DCs whose storage volumes are more than the required volume are chosen. After that, at step 6, the PG makes combination of two DCs in the same domain among DCs which can't fit the volume requirement. The volume after combination is the sum of each volume and the combined policy is the conjunction of each policy. The combination of the DCs simulates the Cloud federation: two combined DCs can be seen as a virtual DC (VDC) and the VDCs which fit the volume requirement are found out. Then the similarity scores between CSC's and each (V)DCs' security policy are computed and ranked in step 7. Receiving the (V)DC list with similarity scores, the DB chooses the (V)DC with the highest score and deploys VMs on the target (V)DC (Steps 8-11).
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 333103 Figure 3.9: The sequence diagram of implementation
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 44142 Figure 4.1: The proposed policy based framework to allocate virtual resources

Figure 4 . 2 :

 42 Figure 4.2: A DevOps use case of virtual resource allocation

Definition 2 .

 2 Policy Mining Problem. Given a set of attributes of Subject S (HOST), a set of attributes of Action A, a set of attributes of Objects O (VM), and SAO_attr an attribute-based subject-action-object assignment relation (Formulas 4.1, 4.2, 4.4), find a set of ROLES, a subject-to-role assignment SR, a set of activity ACTIVITIES, an action-to-activity assignment AA, a set of VIEWS, an object-to-view assignment OV and RAV⊆ROLES× ACTIVITIES×VIEWS, a many-to-many mapping of role-to-activity-to-view assignment relation 1 . Definition 2 formalizes the policy mining problem by taking HOST related attributes and VM related attributes as the input and generating the OrBAC policy as the output. Algorithm 2 is the concrete realization and it explains the generation of the permission policy. First of all, after receiving contracts from a CSC and CSPs, the broker extracts the attribute information of each VM and HOST then generates three kinds of structures as the input: (1) VM list: storing all the attributes of the related VMs; (2) HOST list: storing all the attributes of the related HOSTs; (3) VM security constraint list: storing all the security constraints of the CSC. After initialization of policy p, the concrete action deploy is assigned to a new activity (lines 2,3).Then the relevant HOSTID list ID_h_list and relevant VMID list V M _v_list are generated from each term in the VM security constraint list c v (line 4-6). For example, the relevant HOSTID and VMID for the security constraint permission(["certif icate" : "true"], ["purpose" : "dev"]) are HOST1 and VM1.After finding the relevant VMID(s) and HOSTID(s), an abstract permission with a new role currentRole and new view currentV iew is created (line 7-9). Finally, all the HOSTIDs in ID_h_list are assigned to currentRole and all the VMIDs in V M _v_list are assigned to currentV iew (line 10-15). The prohibition policy for a CSP is generated in the same way by taking input of the VM list, the HOST list and the HOST security constraint list. Step 1 in Figure4.2 demonstrates an example of permission and prohibition generation.
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 4 Expression and Enforcement of Security Policy Algorithm 2 permissionGeneration(l v , l h , c v ): permission policy generation Input: VM list l v , HOST list l h , VM security constraint list c v Output: OrBAC policy p 1: Initiate p 2: p.activity ← create new activity 3: p.consider("deploy", p.activity) 4: for c vi in c v do 5:

Output: deployment solution 1 :

 1 ) if the HOST has enough volume to deploy the VM. Step 4 in Figure 4.2 shows an example of the resource allocation. Algorithm 3 resourceAllocation(p, l v , l h , c): virtual machine allocation Input: OrBAC permission p, VM list l v , HOST list l h , separation constraint c for each concrete rule r i in p do 2:

  Figure 4.3 illustrates our experimental architecture.
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 4346 Figure 4.3: Implementation for virtual resource allocation

Figure 4 . 4 shows

 44 the rules after the WS-Agreement processing. Permission and prohibition rules are derived respectively from the security requirements of the CSC and the CSPs. Shown in Figure 4.5, after QoS filtering, the deployment permission concerning VM2 and HOST 1 is disabled. After Step 3, the con-flict is resolved by disabling permission rules related to HOST1 and VM3 (Figure 4.6).
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 44 Figure 4.4: Policy generated after Step 1: SLA contract processing
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 45 Figure 4.5: Policy generated after Step 2: QoS filtering
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 464 Figure 4.6: Policy generated after Step 3: Conflict resolution
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 47 Figure 4.7: Final resource allocation solution graph
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 48 Figure 4.8: Deployment of VM on HOST1

  Figure 4.10: Time for contract processing
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 413 Figure 4.13: Total price for VM allocation
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 5 Figure 5.1, a typical TN system contains four parts:
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 51 Figure 5.1: Typical TN system
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 52 Figure 5.2: Typical access negotiation system
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 53 Figure 5.3: Typical AC policy negotiation system
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 54 Figure 5.4: Typical MN system

3 .

 3 The war of attrition stage: conducted by negotiation strategies, two agents exchange their offers by choosing nodes in their theory trees.The node can be reached by weakening, changing action or by renewing the previous proposal. This stage ends when an agreement is reached or each agent holds the node which is non-negotiable then the negotiation fails.

Figure 6 . 1 :

 61 Figure 6.1: An entity chain example for Role

Figure 6 . 2 : 5 .

 625 Figure 6.2: Example of a related policy tree

Figure 6 . 3 :

 63 Figure 6.3: Example of a distant policy tree

1 .(Algorithm 4 ,

 14 The received message r cur rec is CreateAgreement (Algorithm 4, line 16): the message indicates that the opponent agrees on the current local rule r cur loc , the negotiation goes to contract establishment stage. 2. r cur rec activates the condition to trigger distant tree T distant p line 18): a new proposition r i will be proposed by calling the proposition method nextM ove(r cur loc , r cur rec , T distant p ) (Algorithm 5). In fact, different negotiation strategies could contain different conditions to trigger the distant tree. 3. Rule received r cur rec has a T _compatibility relation with the current local rule r cur loc or is a restriction of it (Algorithm 4, line 20): r cur rec is accepted by sending the message CreateAgreement.

4 .

 4 The received rule r cur rec has a S_compatibility relation with the current local rule r cur loc or r cur loc is a restriction of r cur rec (Algorithm 4, line 22): the related tree will be searched if such a tree exists (Algorithm 6). If r cur loc achieves a stubborn rule, the current proposition will be maintained.

5 .

 5 For other cases (Algorithm 4, line 24): message Ref use is sent. Contract establishment stage: the CreateAgreement message indicates that the rule is agreed by the sender. At the same time, a policy contract based on an agreement is generated by the agreement maker and sent to the opponent. Here a policy contract is composed of OrBAC rules. Upon 6. The Process of Reaching Agreement in Security Policy Negotiation receiving the CreateAgreement message and generating the policy contract, the opponent evaluates it and replies by the message Agreement or Ref use.

Theorem 2 .

 2 rent local proposition. The same happens for its opponent. Each negotiator can not propose another rule because the current local rule is stubborn. By executing the line 34 in Algorithm 4, the negotiator will send the message Ref use then the negotiation fails. Suppose that the final agreement exists and the process starts with the proposal of a negotiator, it continues to compare the propositions received with the local rule which is assumed as the current one (lines 9, 16, 18, 20, 22, 31 in Algorithm 4 and line 9 in Algorithm 6). It makes a new proposal (line 4 in Algorithm 5 and line 12 in Algorithm 6) until a proposition received from the opponent is a restriction or has a T _compatibility relation with its current one. Then the negotiation is successful with the negotiators sharing an agreement about a rule. In case that only one rule is negotiated, the negotiation algorithm solves the negotiation problem in O(n × c) where n is the maximum number of nodes among negotiator's policy trees and c is the number of trees.

  Figure 6.8 presents its architecture. The prototype contains two major components: the negotiation module and the local configuration component.

Figure 6 . 8 : 6 .

 686 Figure 6.8: Architecture of the prototype

  We need the Policy Tree Editor to configure the related tree and the distant tree. The policy is saved in a local file (.tr) which can be opened and visualized by the Policy Tree Editor.

Figure 6 .

 6 9 shows the GUI interface of thePolicy Editor with which we can load, save and edit a policy.

Figure 6 . 9 :

 69 Figure 6.9: Using the policy tree editor to visualize and edit policy

Figure 6 .

 6 Figure 6.10 is an example of a message sent during the negotiation.

  and a prototype has been developed to execute the algorithm in the Cloud storage selection process.A policy-based framework for the expression and enforcement of security policies in multi-cloud environments:The framework[18] applies OrBAC[19] policy to IaaS resource allocation. The attribute-based security requirements in a SLA contract can be derived to concrete OrBAC rules then these rules are considered together with other non-security demands during the enforcement of resource allocation. The contribution meets keyfunctional requirements for user-centric as (i) it addresses the SLA configuration options at the IaaS layer from service capacity to security constraint.(ii) it considers multiple requirements of security and applies the OrBAC model to translate attribute-based security constraints to concrete policies.(iii) it provides a conflict management mechanism to detect and handle the contradictory requirements from a CSC and CSPs, with the possibility to judge the policy priority by evaluating users' profiles. (iv) it proposes a resource allocation algorithm which takes account of resource capacity, QoS and security policy. A prototype for VM scheduling in an OpenStack-based multi-cloud environments is developed.

7 .

 7 rule. The capacity to express context conditions enables users to integrate context-based requirements in their WS-Agreement template then those requirements can be derived to context-based OrBAC policies. A context-aware security policy also offers the possibility for the users to specify their security 114 Conclusion and Perspectives

7 .

 7 to the SDN controller. Then the controller selects a routing path among switches which hold security related preference of a SP. The final solution of the routing path is the one which satisfies the user's and SPs' requirements simultaneously.Our current work concentrates on the resource allocation and the security configuration in SDN networks. The context is the same as the one defined in Chapter 4. With the evolution of hardware, network services and data, Cloud Computing becomes one of the key technologies that satisfies the growing demands of software and hardware resources with its availability and efficiency for the requested resources. At the same time, SDN is becoming the backbone of the cloud infrastructure. It offers many advantages such as programmability, agility, abstraction, centralization, visualization and flexibility. As a result, many cloud providers select SDN as a cloud network service and offer it to customers. However, due to the rising number of network cloud providers and their offers, network cloud customers must find the provider which best satisfies their requirements. In this context, based on network security policy, we propose a negotiation and an enforcement framework for SDN service provider selection. Our solution is a pioneering attempt to tackle this issue, specifically in terms of security policy. We integrate it in an existing SDN security environment. Our solution transforms the customer's security requirements into SDN firewall rules and deploys them as OpenFlow rules in the SDN infrastructure. Figure 7.1 shows a negotiation scenario of our proposal. SDN orchestrator works as a broker between client and SPs. The scenario consists of steps as follows. Firstly both the NSC and the NSPs specify their security requirements related to the infrastructure in order to ensure end-to-end security across different components (Steps 1,2). After receiving security requirement expressions from the NSC, the SDN Orchestrator assesses the expressions by comparing them with service templates of NSP then starts a negotiation process with 116 Conclusion and Perspectives NSC when necessary (Step 3). A successful negotiation generates an agreement about security expression (Step 4) which will be derived to high-level security policies of the infrastructure (Step 5). Particularly, the high-level policies are translated to OpenFlow rules when the NSP adopts the Open-Flow protocol [132] (Step 6). In the end, the SDN orchestrator deploys the generated OpenFlow rules on the chosen NSP (Step 7).

Figure 7 . 1 :

 71 Figure 7.1: A scenario of expression and negotiation service contract for SDN networks
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 2 Figure 2: Experiment of similarity score (set-4).
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 11 Figure 1 : Contrat entre fournisseur et consommateur de services

Figure 2 : 2 . 1 . 3

 2213 Figure 2 : Le processus de calcul du score de similarité Etape 1 : transformation de la politique. Les politiques sont divisées en règles atomiques.
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 322 Figure 3 : expérience du score de similarité (set-4) Figure 4 : expérience du score de similarité (set-8)
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 5 Figure 5 : Le Framework proposé pour allouer des ressources virtuelles
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 6331 Figure 6 : implémentation pour l'allocation des ressources virtuelles

Figure 7 . 3 . 2 . 1 3 . 2 . 2

 7321322 Figure 7. Modèle de politique OrBAC

  Le module de configuration possède une architecture d'arbre. Deux types d'arbres sont introduits : « related tree » et « distant tree ». « Related tree » contient les règles avec trois types de relations: « restriciton », « total compatibility » et « symmetric compatibility », les règles de niveau supérieur sont préférées à celles de plus bas niveau. La proposition sur une règle reçue dépend de la stratégie de recherche. Par exemple, une règle reçue qui est plus stricte que celle locale sera acceptée ; en revanche pour une règle reçue qui est moins stricte, une autre règle de niveau inférieur sera envoyée en tant que contre-offre. Le deuxième type d'arbre est « distant tree » qui contient des règles avec deux types de relations : « partial compatibility » et « no compatibility ». « Distant tree » peut être utilisé dans le scénario où plusieurs règles sont négociées en même temps. La proposition d'une règle peut déclencher la proposition d'une autre règle dans son « Distant tree ».

Figure 8 : Framework de négociation 4 . Conclusion et perspectives 4 . 1 Conclusion

 8441 Figure 8 : Framework de négociation
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 21422423424 'intégration de la technologie de PSM dans la négociation de la politique de sécurité Comme le score de PSM présente le niveau de similarité entre deux politiques, il peut être utile dans le processus de négociation de la politique de sécurité. Après l'introduction de ce score de PSM, les relations entre les politiques de sécurité ne sont pas seulement classées mais aussi quantifiées. Dès lors, des stratégies peuvent être exécutées en fonction du score de PSM. Par ailleurs, la prise de décision peut également faire appel au score de PSM et affiner ainsi le contrôle du processus de négociation. 'introduction de la politique contextuelle dans l'allocation des ressources virtuelles: Notre solution actuelle d'allocation des ressources virtuelle est appliquée à une politique OrBAC possédant «default» comme contexte. Un contexte est considéré comme une condition supplémentaire qui doit être satisfaite pour activer une règle de sécurité. La capacité d'exprimer la condition de contexte permet d'intégrer des exigences (temps, espace, histoire…) contextuelles dans les modèles de WS-Agreement puis ces exigences dont peuvent être dérivées des politiques OrBAC . Améliorer l'interopérabilité entre les modèles politiques différents au cours de la négociation politique. Comme les différents modèles de politiques de contrôle d'accès ont leurs avantages et leurs limitations, les utilisateurs peuvent utiliser différents modèles pour spécifier les privilèges. Lorsque les politiques appartiennent à différents modèles, l'interopérabilité devient une difficulté à surmonter. Bien que certains travaux ont proposé d'utiliser le modèle ABAC pour unifier les modèles DAC, MAC et RBAC, des travaux de recherche doivent être menés pour (i) l'unification de plusieurs modèles de politiques; (ii) le développement de moteurs interopérables de politique et leur intégration dans la négociation de politique. 'extension du Framework d'allocation des ressources aux plusieurs scénarios. Notre Framework d'allocation à base de politique peut être utilisé pour le scénario de déploiement de VMs dans le domaine du Cloud Computing. En outre, notre solution peut être utilisée dans d'autres contextes tels que le stockage et le réseau. En ce qui concerne l'aspect stockage, le Framework permet aux utilisateurs d'exprimer leurs exigences de sécurité pour leurs données; en même temps, les fournisseurs de services qui offrent leur espace de stockage peuvent également spécifier leurs préférences sur les caractéristiques des données. Avec notre Framework, les données de l'utilisateur sont stockées par des fournisseurs de services distribués. Une autre application possible dans le réseau est la possibilité donnée à l'utilisateur d'exprimer ses besoins de routage de trafic auprès du contrôleur SDN (software defined networking). Le contrôleur sélectionne alors le chemin de routage entre les commutateurs en considérant la préférence de sécurité du fournisseur de services.
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1 illustrates (as a matrix A = |S| × |O|) the access control list of a system where S = {s 1 , s 2 , s 3 }, O = {o 1 , o 2 , o 3 } and A = {a 1 , a 2 , a 3 }.

Table 2 .

 2 

1: Example of an ACL policy

4 Policy Similarity Measure (PSM) 2.4.1 Problematic

  

	is being carried out by ISO/IEC on "19086 -Information Technology (Cloud
	Computing) SLA Framework and Terminology". This prospective standard
	will address (i) the definition of a standardized framework for Cloud SLAs in-
	cluding both a vocabulary and comprehensive catalogue of commonly used
	Service Level Objectives (SLOs); (ii) the definition of Cloud SLA-related met-
	rics; (iii) core requirements for implementation; (iv) security and privacy in
	Cloud SLAs [59].
	2.Today the use of similarity measure for comparing security policies becomes
	a crucial technique in a variety of scenarios, such as finding the SP(s) which
	satisfies SC's security concerns. Before a collaboration is conducted be-
	tween different actors, an actor A may need to know if the other actor guar-
	antees a similar level of A's security policies. In case that SPs expose their
	security policies for a SC to evaluate and select, policy comparison is one is a non profit organization that of the main mechanisms to that end. It consists in measuring the similarity aims at promoting the use of best practice to increase the security level of Cloud infrastructures. CSA has designed a self-assessment questionnaire between two security policies and giving an evaluation score.
	framework to define the security information contained in a Security Level
	Agreement (SecLA): the Consensus Assessments Initiative Questionnaire (CA
	IQ) [57] which is destined to Cloud service provider (CSP) to document the
	implemented security measures. Containing more than 200 security relevant
	questions, CAIQ helps a CSC to understand security coverage and guaran-
	tees of Cloud offers. In 2014, the European Commission published stan-
	dardization guidelines for Cloud Computing SLA [58]. In order to improve
	the clarity and increase the understanding of SLAs for Cloud services in the
	market, the guidelines provide general recommendations to CSP and CSC
	about what they could agree on using SLAs. In terms of security SLA, it cov-
	ers 8 aspects such as authentication, authorization, cryptography and vul-
	nerability management. Recently, a key Cloud SLA standardization activity

2.5.1 Problematic

  

	Today Cloud Computing is essentially provider-centric. An increasing num-
	ber of fiercely competing CSPs operate multiple heterogeneous Clouds. In
	terms of infrastructure as a service (IaaS), each provider offers its own,
	feature-rich solutions for customer virtual machines (VMs). More signifi-
	cantly, in Cloud IaaS, physical hardware is usually shared by multiple virtual
	resources for maximizing utilization and reducing costs.
	In Cloud Computing, a SP's system can be viewed as a large pool of in-
	terconnected physical hosts and we use H to present the finite set of hosts
	from a CSP. V is a VM to be allocated. h i and v i represent an unique virtual
	machine ID and HOST ID separately. With these definitions, virtual resource
	allocation problem can be summarized as follows:

Definition 1. Virtual Resource Allocation Problem Given

  a set of HOSTs H={h 1 , h 2 , ..., h m }, a set of VMs V={v 1 , v 2 , ..., v n }, a set of constraints for HOSTs

2 Similarity Score for Numerical Elements.

  S n (e 1 , e 2 ): numerical similarity score calculation Input: two numerical elements e 1 and e 2

	3.2.4.The calculation for numerical elements is more complex because numerical
	attribute values may have different forms such as a single value, a set, a
	bounded interval and an unbounded interval. Here we propose a unified
	method defined in Algorithm 1 for computing the similarity score between
	two numerical elements. The algorithm takes two numerical elements with
	Algorithm 1 Output: numerical similarity score
	5:	return 0
	6: else
	11:	else
	12:	return 0.5
	13:	end if
		student
		postDoc technicalStaff
		professor
		Figure 3.4: Inheritance tree for the Role element

.4). When applying Equation

(3.6)

, all the attribute values having the inheritance relationship in the same inheritance tree should be treated as identical ones. 1: if e 1 = e 2 then 2: return 1 3: end if 4: if e 1 ∩ e 2 = φ then 7: if both e 1 and e 2 are bounded intervals then 8: return Len(e 1 ∩e 2 ) Len(e 1 ∪e 2 ) 9: else if both e 1 and e 2 are sets then 10: return N um(e 1 ∩e 2 ) N um(e 1 ∪e 2 )

14: end if the same attribute name as inputs. Firstly, if two elements have the same attribute name, operator(s) and attribute value(s), the score is 1 (lines 1,2).

  for F ileSize : (10, +∞) MB, inputs are 9 MB and 11 MB.

	T ime : [19 : 00, 21 : 00]) is impossible. Without loss of generality, we make
	equidistant sampling for bounded intervals and bilateral sampling for un-
	bounded intervals. For example, inputs are all the integers from 1 to 24 for
	11-20 T ime : [0 : 00, 24 : 00]; 0-10 21-30 31-40 41-50 51-60 Test result of policy similarity (%) 61-70 71-80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Similarity score computed project-admin(RBAC) firewall-admin (Net-RBAC) hospital-admin(OrBAC) lab-admin (ABAC)	81-90	91-100	Similarity score computed	0-10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	11-20 firewall-admin (Net-RBAC) 21-30 31-40 41-50 51-60 Test result of policy similarity (%) 61-70 71-80 project-admin(RBAC) hospital-admin(OrBAC) lab-admin (ABAC)	81-90	91-100
	Figure 3.5: Experiment of similarity	Figure 3.6: Experiment of similarity
	score (set-4)			score (set-8)		

Table 3 .
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	Policy	Model	Categorical Element	Numerical Element	Effect
	project-admin	RBAC	15	0	permit
	firewall-admin Net-RBAC	4	28	permit
	hospital-admin	OrBAC	15	6	permit,deny
	lab-admin	ABAC	19	0	permit,deny

1: Policies tested

Table 3 .

 3 1. For example, laboratory administration policies are written in the 3. Similarity Measure for Security Policies ABAC model and these policies contain 19 categorical elements with permit and deny effects. We observe that the score increases when the similarity between two policies increases. At the same time, the experimental values approach to the scores calculated and the quantity of test rules has no impact on the variation of the output curves. The test results enable us to conclude that the PSM score well approximates the similarity between policies.

  The composition operation depends on concrete use cases. Here we apply the Conjunction (&)

	operation proposed in [87] for our Cloud storage scenario. An example is as
	follows:
	Policies before composition
	CSP 1 : 50 GB, P ermit(Action : [upload, download], T ime : [8 : 00, 23 : 00])
	CSP 2 : 50 GB, P ermit(Action : [upload, download, delete], T ime : [7 : 00, 22 : 00])
	Policy after composition
	CSP 1 &CSP

2 : 100 GB, P ermit(Action : [upload, download], T ime : [8 : 00, 22 : 00])

  relevant VMID(s) from l v 7: p.currentRole ← create new role for HOSTs in ID_h_list 8: p.currentV iew ← create new view for VMs in ID_v_list 9: p i ← create permission: permission(p.currentRole, p.activiy, p.currentV iew)

	10:	for ID hi in ID_h_list do
	11:	p.empower(ID hi , p.currentRole)
	12:	end for
	13:	
	14:	p.use(ID vi , p.currentV iew)
	15:	end for
	16: end for
	17: return p
	.	

for ID vi in ID_v_list do

  i ← get VM from l v by ID vi 8: h j ← get HOST from l h by ID hj 9:if ID vi not in separation constraint c and h j has enough volume for v i and v i has not been allocated then

	10:	add (v i attaches host h j ) to solution
	11:	end if
	12:	end for
	13:	end if
	14: end for

6:

for ID hj in ID_h_list do 7: v 15: return solution

Table 5 .

 5 1: Comparison of different negotiation types

	Negotiation types	Message	Objective	knowledge of other's constraints
	Trust negotiation	Credential, Policy Trust relationship	N/A
	Access negotiation	Credential, Policy	Access privilege	No
	AC policy negotiation	Policy proposal	AC policy	No
	Meaning negotiation	Term proposal	Term definition	No

  6. The Process of Reaching Agreement in Security Policy Negotiation S3 ′ is a generalization of S3; S4 ′ and S5 ′ are restrictions of S4 and S5. According to the negotiation algorithm, S5 ′ could be accepted. After visiting the related policy tree of S3 and the distant policy tree of S4 ′ , new propositions S3 1 and S2 ′ with an initial proposition S5 ′ are sent to Bob. For Bob, S3 1 and S2 ′ are considered as acceptable rules because they are restrictions of S3' and S2 which are his current local rules. Besides, S5 ′ has its distant policy tree which contains S4 ′ . As a result, the second proposition of Bob is a combination of S3 1 , S2 ′ and S4 ′ . From the point of S3 1 and S2 ′ have a total compatibility relation with its current local rules and S4 ′ is a restriction of S4. According to the ITS's condition to trigger the distant tree search, the distant tree of S4 ′ will not be searched again because it is the second time that the ITS station receives the proposal S4 ′ . Consequently, the ITS station accepts the second proposition from Bob by sending the message CreateAgreement. The ultimate policy contract is established after that Bob replies Agreement. All the negotiation process is presented in Fig.6.7 and the final policy contract is a combination

	Role: view: Context: Initial proposition business user CSA service Bob in China, digital certificate, location data Figure 6.4: Entity chains of Bob and Chinese ITS station custom user any user all services Bob in China default S1, S2, S3', S4', S5', S6, S7 S3': permission(Operator_B, custom_user, access, CSA_service, Bob_in_China) S4': permission(Operator_B, business_user, access, DrivingAssistance_CooperativeAwareness, Bob_in_China) S5': permission(Operator_B, business_user, access, Location_based_services, Bob_in_China) Related policy tree -Distant policy tree S5' S4' Figure 6.5: Bob's negotiation configuration station makes an evaluation: S4' S2' Initial proposition S1, S2, S3, S4, S5, S6, S7 Related policy tree S31: permission(Operator_B, custom_user, access, CSA_service, Bob_in_China & digitalCertificate & locationData) S32: permission(Operator_B, business_user, access, all_services, urgent) S33: permission(Operator_B, any_user, access, CSA_ service, urgent) Distant policy tree S2': permission(Operator B, business user, access, Safety_service, Bob_in_China) S4': permission(Operator_B, business_user, access, DrivingAssistance_CooperativeAwareness, Bob_in_China) S3 S31 S33 S32 Figure 6.6: Chinese ITS station's negotiation configuration Bob_in_China) S6 : permission(Operator_B, business_user, access, IT SStationlif eCycleM anagement, Bob_in_China) S7 : permission(Operator_B, business_user, access, Communities_services, view of the ITS station, S5 : permission(Operator_B, custom_user, access, Location_based_services, Bob_in_China)
	正式修改版本

A concrete prohibition policy is_prohibited(subject, action, object) can be derived by the same way from prohibition(org, role, activity, view, context).

State of the Art

Similarity Measure for Security Policies

All the rules share the same action ("deploy"), organization ("superCloud") and context ("default"). For reasons of simplicity, we do not illustrate organization and context in our algorithm and the derived policy.

Datalog is a declarative logic programming language and a subset of Prolog and it is often used as a query language for deductive databases.

relevant_a(org, c) means that entity c which belongs to abstract entity a is defined in organization org.

We remark that two entities are related if they belong to the same type of abstract entity. For example, teacher and administrator are related entities because they belong to the same abstract entity: role.
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Chapter 4 Expression and Enforcement of

Security Policy

Introduction

In this chapter, to overcome the aforementioned issues in section 2.5, we enhance the brokering technology by developing a configuration management process to allocate VMs in IaaS Clouds. Our method is evaluated by setting up a Cloud Computing environment to conduct the virtual resource allocation process. Experimental results show that our approach demands minimal user (CSC and CSP) intervention and enables unskilled Cloud users to have access to complex deployment scenarios. The remainder of this chapter is organized as follows. We first outline the expression of security policies by a CSCs and CSPs with an exhaustive example. Then, we illustrate the enforcement of the security policy for VM allocation. Finally, we describe an implementation integrated with our solution and evaluate four experiments. while not ((r stub loc = true) and (r stub rec = true)) do This service contract gives him a set of privileges to gain access to different services. Bob travels to another country (China for example) and wants to use the same services with the same privileges offered by the French ITS.

Algorithm 4 Negotiate Security Policy

On the one hand, the service contract provided by the Chinese ITS is not the same as the one provided by the French ITS. On the other hand, there is an agreement between the French ITS and the Chinese ITS, which allows clients of both service providers to use services while traveling in another region. Table 6.2 shows the service mapping in this agreement which combines the services proposed in France with ones meaning the same in China. 

Appendix B

Brute-force based test for existing work

Figure 2 shows the brute-force test result of policy similarity score by using the same test environment illustrated in Section 3.3. The y-axis represents the PSM score computed by the algorithm proposed in [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF]; the x-axis shows the test result of policy similarity defined by Equation (2.1). We remark that the similarity score computed does not approximate to the test result. The main reason is that, firstly, as a brute-force based test method, our input requests are more exhaustive than the ones generated by other test tools such as MTBDD [START_REF] Lin | Exam: a comprehensive environment for the analysis of access control REFERENCES policies[END_REF]. Secondly, the PSM algorithm defined in [START_REF] Lin | A similarity measure for comparing XACML policies[END_REF] focuses only on the literal level but not logic aspect of security policy. As a result, two security rules sharing the majority of common elements are considered to hold a higher similarity score. However, the rest of elements may cause totally different decisions which indicates that the two rules are not similar in terms of output.

JSON-based WS-Agreement contracts WS-Agreement contract specified by CSC

1 {"name":"clientTemplate", 2 "context":"VM-deployment", "VM1 _ purpose":"dev", 14 "VM1 _ data":"private", 15 "VM1 _ application":"internal",

["permission",{"location":"Europe"},{"ID":"VM2"}],

["permission",{"location":"Europe"},{"Purpose":"test"}],

["separation",{"ID":"VM1"},{"ID":"VM3"}] ],

}

WS-Agreement contract specified by CSP1

{ "name":"HOST1", "context":"VM-deployment", "serviceDescription": { "volume":"100 _ GB", "price":"0.2 _ dollar", "location":"France" "certificate":"true", }, "guaranteeTerm": { "availability":"more _ 97 _ percentage" } . Appendix C "creationConstraint":

[ ["prohibition",{"ID":"HOST1"},{"purpose":"test"}] ],

}

WS-Agreement contract specified by CSP2

{ "name":"HOST2", "context":"VM-deployment", "serviceDescription": { "volume":"100 _ GB", "price":"0.