
HAL Id: tel-01593257
https://theses.hal.science/tel-01593257

Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interoperability and Negotiation of Security Policies
Yanhuang Li

To cite this version:
Yanhuang Li. Interoperability and Negotiation of Security Policies. Networking and Internet Ar-
chitecture [cs.NI]. Ecole Nationale Supérieure des Télécommunications de Bretagne - ENSTB, 2016.
English. �NNT : 2016TELB0414�. �tel-01593257�

https://theses.hal.science/tel-01593257
https://hal.archives-ouvertes.fr

N° d’ordre : 2016telb0414

SSoouuss llee sscceeaauu ddee ll’’UUnniivveerrssiittéé BBrreettaaggnnee LLooiirree

Télécom Bretagne

En accréditation conjointe avec l’Ecole Doctorale Matisse

Ecole Doctorale – MATISSE

Interoperability and Negotiation of Security Policies

Thèse de Doctorat

Mention : Informatique

Présentée par Yanhuang LI

Département : LUSSI

Laboratoire : Lab-STICC

Directrice de thèse : Nora Cuppens-Boulahia

Soutenue le 24 Novembre 2016

Jury :

M. Yves ROUDIER, Professeur, Université Nice Sophia Antipolis (Rapporteur)
M. Abdelmalek BENZEKRI, Professeur, Université Toulouse III Paul Sabatier (Rapporteur)
M. Mario SUDHOLT, Professeur, École des Mines de Nantes (Examinateur)
M. Zonghua ZHANG, Maître de conférences (HDR), Télécom Lille (Examinateur)
M. Vincent FREY, Resp. Programme de recherche, Orange Labs-Cesson (Examinateur)
M. Jean-Michel CROM, Architecte de services, Orange Labs-Cesson (Examinateur)
M. Frédéric CUPPENS, Professeur, Télécom Bretagne (Examinateur)
Mme. Nora CUPPENS-BOULAHIA, Professeur, Télécom Bretagne (Directeur de recherche)

Acknowledgements

First, and foremost, I would like to thank my supervisors Nora

Cuppens-Boulahia, Jean-Michel Crom, Frédéric Cuppens and Vin-

cent Frey for their inspiring guide and support during the past

years. Their rich experience and extensive expertise in field of

research and industry, combining with their passion and rigor-

ous attitude, motivate and encourage me to explore and conquer

the world of security. They have not only guided me on technical

issues, but also taught me the research paradigms. The cooper-

ation between Télécom Bretagne and Orange is well organized.

From the side of Télécom Bretagne, I have learned lots of theo-

ries and research methodology. Meanwhile, the support of Orange

enables me to participate in some industry projects and training

programs.

Besides my supervisors, I would like to thank Dr. Ruan He. Thank

you for bringing me into the gates of SDN, NFV and especially

Cloud Computing which becomes one of the most beautiful parts

in my thesis.

I am particularly grateful for the help I received from Xiaoshu

Ji, who made an internship in Orange during my second year of

PhD. My contribution on similarity measure for security policies

may not have been achieved without her participation and pro-

gramming. Here I wish that she could achieve more glories in her

research career.

I am deeply obliged to my colleagues in Télécom Bretagne and Or-

ange for their support and help during my PhD program. Regard-

ing Télécom Bretagne, my thoughts go to Fabien Autrel, Mariem

Graa, Samiha Ayed, Muhammad Sabir Idrees, Anis Bkakria, Tarek

Bouyahia, Said Oulmakhzoune, Nada Essaouini, Tarik Moataz, Saf-

aa Hachana, Reda Yaich and Lyes Bayou. I have learnt a great

deal of knowledge about security and research methodology from

them. From the side of Orange, I would say thanks to the PIA

(Projects for Identity Anticipation & Research) team: Joël Evain,

Johann Vincent, Nicolas Allery, Julie Bertrand, Boris Pinatel, Sahin

Kale, Amine Khalil, Louis Philippe Sondeck, Kevin Corre, Marco

Lobe Kome, Simon Becot, Olivier Guillemin, Stephane Labat,

Bruno Lezoray, Jean-Michel Magret, Patrick Maroche, Laurent Pif-

feteau. They supported me during my work in Orange Labs and

provided me with a great comfort with their kindness, generosity

and humor.

My gratitude also goes to my friends in Rennes: Yue li, Hao Lin,

Bihong Huang, Han Yan, Zhe Li, Feng Yan, Ping Yan, Yangyang

Chen, Miaojing Shi, Jialong Duan, Qipeng Song, Wenjing Shuai,

Tuo Zhang, Bing Xiao, Zaiqian Wang, Quancheng Zhao. I appre-

ciate the time with you in Rennes and thanks for your kindly help

in my daily life.

Finally, I am deeply indebted to my family: my parents always

support and advise me in every thing I have chosen to do. Their

unflagging care, endless love and faith in me have always been a

beacon of confidence and a source of perseverance.

Abstract

Security policy provides a way to define the constraints on behav-

ior of the members belonging to a system, organization or other

entities. With the development of IT technology such as Grid Com-

puting and Cloud Computing, more and more applications and

platforms exchange their data and services for cooperating. To-

ward this trend, security becomes an important issue and security

policy has to be applied in order to ensure the safety of data and

service interaction. In this thesis, we deal with one type of secu-

rity policy: access control policy. Access control policy protects

the privileges of resource’s utilization and there exist different

policy models for various scenarios. Our goal is to ensure that the

service customer well expresses her security requirements and

chooses the service providers that fit these requirements.

The first part of this dissertation is dedicated to the service

provider selection. In case that the security policies of the ser-

vice provider are accessible to the service customer, we provide

a method for measuring the similarity between security policies.

The approach proposed supports different policy models and its

correctness is proved by the brute-force based test. Another case

is that security policies are not accessible to the service customer

or not specified explicitly. Our solution is proposing a policy-based

framework which enables the derivation from attribute-based se-

curity requirements to concrete security policies. The current

framework is used to allocate virtual resource in IaaS Cloud and

we have developed an OpenStack-based proof-of-concept.

The second part of the dissertation focuses on the security policy

negotiation. We investigate the process of reaching agreement

through bargaining process in which negotiators exchange their

offers and counter-offers step by step. The positive result of the

negotiation generates a policy contract. Our current approach

supports the negotiation between two negotiators with the same

policy model. We use specifically, the policy tree as configura-

tion to store and manage security-aware preferences and require-

ments.

v

Résumé

Suite au développement des technologies de l’information, et en particulier

au déploiement d’infrastructures telles que le Grid Computing et le Cloud

Computing, de plus en plus d’applications et plateformes coopèrent en

échangeant des données et des services. Cette tendance renforce

l’importance de la gestion de la sécurité. Afin d’assurer la sécurité des

données et de l’interaction de service une politique de sécurité doit être

appliquée. En effet, les politiques de sécurité permettent de définir des con-

traintes sur le comportement des membres appartenant à un système, une

organisation ou d’autres entités. Dans cette thèse, nous nous intéressons aux

politiques de contrôle d’accès. Ce type de politique spécifie les privilèges de

l’utilisation des ressources et est implémentée par différents modèles selon

différents scénarios. Notre objectif ici est d’aider le client du service à bien

exprimer ses exigences de sécurité et à choisir les fournisseurs de services

qui peuvent la déployer.

La première partie de cette thèse est dédiée à la sélection des four-

nisseurs de service. Dans le cas où les politiques de sécurité du fournisseur

sont accessibles au client, nous proposons une méthode pour mesurer la sim-

ilarité entre les politiques de sécurité. L’approche proposée prend en charge

des modèles de politiques différents et son exactitude est prouvée par un

test qui se fonde sur la force brute. Dans le cas où les politiques de sécu-

rité ne sont pas accessibles au client ou ne sont pas explicitement spécifiées,

nous proposons un cadre à base de règles permettant la dérivation à partir

des exigences de sécurité aux politiques de sécurité concrètes. Ce cadre est

utilisé pour allouer des ressources virtuelles dans une infrastructure de type

IaaS Cloud et nous y avons développé une preuve de concept en utilisant la

brique OpenStack.

La seconde partie de la thèse porte sur la négociation de politiques de

sécurité. Nous étudions le processus permettant aux parties en négocia-

tion de parvenir à un accord par une série d’échanges d’offres et de contre-

offres. Lorsque le résultat de la négociation est positif, un contrat inclu-

ant la politique de sécurité acceptée par les parties est généré. L’approche

vi

actuelle prend en charge le mode de négociation entre deux parties utilisant

le même modèle de politique. Plus spécifiquement nous utilisons une struc-

ture d’arbre de politiques comme configuration locale pour stocker et gérer

les préférences et exigences de sécurité.

Contents

Contents vii

List of Figures xi

Nomenclature xii

1 Introduction 1

1.1 Motivation and Challenges . 1

1.2 Contributions . 3

1.3 Organization . 4

I Service Provider Selection 7

2 State of the Art 9

2.1 Introduction . 9

2.2 Access Control Model . 9

2.2.1 Discretionary Access Control (DAC) 11

2.2.2 Lattice-based Access Control (LBAC or MAC) 12

2.2.3 Role-based Access Control (RBAC) 12

2.2.4 Attribute-based Access Control (ABAC) 14

2.2.5 Organization-Based Access Control (OrBAC) 18

2.3 Service Level Agreement (SLA) 21

2.3.1 WSLA . 21

2.3.2 WS-Agreement . 22

2.3.3 RBSLA . 24

vii

viii CONTENTS

2.3.4 SLAng . 24

2.3.5 Security related SLA . 25

2.4 Policy Similarity Measure (PSM) 27

2.4.1 Problematic . 27

2.4.2 Use Cases . 29

2.4.3 Existing Approaches . 30

2.5 Virtual Resource Allocation . 31

2.5.1 Problematic . 31

2.5.2 Existing Approaches . 32

2.6 Conclusion . 33

3 Similarity Measure for Security Policies 35

3.1 Introduction . 35

3.2 A Generic Policy Similarity Measure Method 35

3.2.1 Policy Structure . 36

3.2.2 Example of Policy Transformation 37

3.2.3 Overview of PSM Algorithm 38

3.2.4 Similarity Score of Rule Elements 39

3.2.4.1 Similarity Score for Categorical Elements. 40

3.2.4.2 Similarity Score for Numerical Elements. 42

3.2.5 Example of Calculation . 43

3.3 Experiment Results . 44

3.4 Implementation . 46

3.4.1 Scenario Description . 46

3.4.2 Architecture . 48

3.4.3 Performance . 50

3.5 Conclusion . 52

4 Expression and Enforcement of Security Policy 55

4.1 Introduction . 55

4.2 Overview of the User-centric Policy-based Framework 56

4.3 Expression of Security Policy . 57

4.3.1 SLA Contract Expression 57

4.3.2 Derivation of Security Policy 60

ix

4.4 Enforcement of Security Policy 62

4.4.1 QoS Filtering . 62

4.4.2 Conflict Management . 63

4.4.3 Execution of Virtual Resource Allocation 64

4.5 Implementation and Evaluation 65

4.5.1 Experiment 1: contract processing 69

4.5.2 Experiment 2: policy generation 69

4.5.3 Experiment 3: allocation latency 70

4.5.4 Experiment 4: price . 70

4.6 Conclusion . 72

II Negotiation between Service Customer and Service

Provider 73

5 State of the Art 75

5.1 Introduction . 75

5.2 Trust Negotiation . 75

5.3 Access Negotiation . 78

5.4 Access Control Policy Negotiation 80

5.5 Meaning Negotiation . 83

5.6 Conclusion . 86

6 The Process of Reaching Agreement in Security Policy Negotia-

tion 87

6.1 Introduction . 87

6.2 Relation between OrBAC Entities 88

6.3 Relation between OrBAC Rules 90

6.4 Negotiation Configuration . 91

6.4.1 Entity Chain . 91

6.4.2 Policy Tree . 92

6.5 Negotiation Algorithm . 94

6.5.1 Algorithm Description . 94

6.5.2 Theoretical Results . 98

x CONTENTS

6.6 Application . 99

6.6.1 Scenario Description . 99

6.6.2 Process of Security Policy Negotiation 101

6.6.3 Prototype . 105

6.7 Conclusion . 109

7 Conclusion and Perspectives 111

7.1 Main Results . 112

7.2 Perspectives . 113

Appendix A 119

Appendix B 123

Appendix C 125

List of Publications 131

References 133

List of Figures

2.1 Basic access control model . 10

2.2 LBAC model . 13

2.3 RBAC model . 13

2.4 ABAC model . 15

2.5 XACML 3.0 policy language model [1] 16

2.6 Data-flow diagram of XACML 3.0 policy language [1] 17

2.7 OrBAC model . 19

2.8 The MotOrBAC tool architecture [2] 20

2.9 Overview of main WSLA concepts [3] 21

2.10Asymmetric mode of WS-Agreement negotiation [4] 23

2.11Framework for security mechanisms in Cloud SLAs [5] 26

3.1 The process of similarity score calculation 38

3.2 Abstraction tree for the Role element 40

3.3 Abstraction tree for the Resource element 41

3.4 Inheritance tree for the Role element 41

3.5 Experiment of similarity score (set-4) 45

3.6 Experiment of similarity score (set-8) 45

3.7 Service provider selection for Cloud storage 47

3.8 CloudSim architecture [6] . 49

3.9 The sequence diagram of implementation 51

3.10Execution time of SP ranking (domain number=5) 52

3.11Execution time of SP ranking (domain number=5∼30) 52

4.1 The proposed policy based framework to allocate virtual resources 56

xi

xii LIST OF FIGURES

4.2 A DevOps use case of virtual resource allocation 60

4.3 Implementation for virtual resource allocation 66

4.4 Policy generated after Step 1: SLA contract processing 67

4.5 Policy generated after Step 2: QoS filtering 67

4.6 Policy generated after Step 3: Conflict resolution 67

4.7 Final resource allocation solution graph 68

4.8 Deployment of VM on HOST1 . 68

4.9 Deployment of VMs on HOST2 69

4.10Time for contract processing . 71

4.11Time for policy generation . 71

4.12Latency for VM allocation . 71

4.13Total price for VM allocation . 71

5.1 Typical TN system . 76

5.2 Typical access negotiation system 79

5.3 Typical AC policy negotiation system 81

5.4 Typical MN system . 84

6.1 An entity chain example for Role 92

6.2 Example of a related policy tree 93

6.3 Example of a distant policy tree 94

6.4 Entity chains of Bob and Chinese ITS station 102

6.5 Bob’s negotiation configuration 102

6.6 Chinese ITS station’s negotiation configuration 103

6.7 Negotiation between Bob and the Chinese ITS station 104

6.8 Architecture of the prototype . 105

6.9 Using the policy tree editor to visualize and edit policy 107

6.10A message sent during negotiation 108

7.1 A scenario of expression and negotiation service contract for

SDN networks . 116

2 Experiment of similarity score (set-4). 124

Chapter 1

Introduction

1.1 Motivation and Challenges

Nowadays, data and service exchange across multiple actors becomes an

emerging demand to provide dynamic ecosystems. This process involves a

large number of actors such as service provider (SP) and service customer

(SC). For example, lots of Cloud service providers (CSP) such as Amazon,

Microsoft and Orange provide their various services (SaaS, PaaS and IaaS)

to Cloud service customers (CSC). Before the implementation of the service,

the SC should 1) choose the SP (s) which is compliant with SC’s preferences

on service terms. 2) reach agreement with SP(s) chosen in order to guaran-

tee the service level and provide fixed service terms for future monitoring.

With respect to SP selection, from SC’s point of view, it is always difficult

to decide whose service should be chosen so they use brokering technology

to rank and select the suitable SPs based on user’s requirements. However,

most of the current service ranking technologies [7] do not consider the se-

curity aspect or they only measure security parameters such as encryption

methods [8] and security levels offered by SPs (quantitative and qualitative

evaluation) [9, 10]. Among various criteria that need to be considered for

the SP selection, security policy is a critical concern and it addresses the

constraints on behaviour of the members in a system, organization or other

entity. Unlike other measurement criteria, security policies are usually based

1

2 1. Introduction

on first-order logic which contains predicates and quantification. For exam-

ple, an access control policy consists of multiple elements and they collec-

tively determine whether a user is allowed to take some actions on certain

objects. Thus, existing brokering technologies are difficult to apply on secu-

rity policies.

Regarding reaching agreement, negotiation is one of the main mecha-

nisms and the output is usually a service contract. Current negotiation tech-

nologies cover mainly non-security terms such as QoS and security terms

such as trust. In the field of Trust Negotiation (TN), lots of models such as

TrustBuilder [11] and XeNA [12] have been developed. These models imple-

ment negotiation by disclosing credentials step by step. When it comes to se-

curity policy, the solution is limited and restricted. Solutions to negotiate se-

curity policies are currently based on syntactic mapping: typically the same

attribute must have the identical name. Therefore, negotiation fails when

the mapping is not successful. Another difficulty is the implementation and

development of this complex integration process for ecosystems. Some re-

lated implementations are provided by WS-Security (Web Services Security)

[13] and WS-Trust (Web Services Trust) [14] which are in the protocol level.

Similarly, Liberty Alliance [15] concerns the overall framework of contract

and “metadata” which describes some properties of a SP such as ”Organi-

zationDisplayName", ”contactType" and ”validUntil". Some researches offer

more flexible solutions to negotiate security policies. The work in [16] is a

useful starting point but still limited because it supposes that the semantic

mapping between different security policies to be negotiated has previously

been performed. Moreover, it does not consider situations where different

requirements to be negotiated may have different privileges. More related

works on security policy negotiation can be found in Section 5.4. However,

none of the security policy negotiation solutions provides a complete frame-

work covering policy definition, negotiation configuration, proposal evalua-

tion and negotiation protocol.

3

1.2 Contributions

The main contributions of this thesis are summarized in three aspects:

Improvement of similarity measure for security policies: We propose a

generic and light-weight method [17] to compare and evaluate security poli-

cies belonging to different models. Our technique enables a SC to quickly

locate SPs with potentially similar policies. The contribution is twofold. On

one hand, our method is policy-agnostic and can be applied to various types

of policy models. On the other hand, we propose integrating our policy simi-

larity measure algorithm in the SP selection process and the implementation

proves that the integration can enrich the services offered.

Enhancing policy expression and enforcement in multi-cloud environ-

ments: The work [18] is based on a formal model that applies organization-

based access control (OrBAC) [19] policy to IaaS resource allocation. We first

integrate the attribute-based security requirements in service level agree-

ment (SLA) contracts. After transformation, the security requirements are

expressed as OrBAC rules and these rules are treated together with other

non-security demands during the enforcement of resource allocation. We

have implemented a prototype for VM scheduling in OpenStack-based multi-

cloud environments and evaluated its performance.

Developing a new policy negotiation framework: Based on the meaning

negotiation [20] and the bargaining model [21], we propose a framework [22]

to negotiate security policy. The model proposed manages from indisputable

to flexible preference. In addition, we advance an approach for comparison

and evaluation of security policies: negotiator makes a proposal and eval-

uates the opponent one. Dissimilar results of evaluation lead to different

proposals. The great advantage of our method is that it integrates security

policy in the negotiation process by developing an exhaustive framework

which covers policy evaluation, negotiation configuration, negotiation proto-

col and negotiation algorithm.

4 1. Introduction

1.3 Organization

The remainder of the dissertation is composed of two parts. The first part

(Chapters 2, 3, 4) deals with the SP selection problem which takes security

policy into consideration. The second part (Chapters 5, 6) handles the issues

of security policy negotiation.

Chapter 2 provides a comprehensive background on security policies,

particularly the access control policy. It also gives an overview of the ser-

vice level agreement (SLA) contract and the related frameworks. Moreover,

this chapter introduces the basic techniques for policy similarity measure

(PSM). Finally, it reviews virtual resource allocation approaches in Cloud

Computing, including those taking security issues into consideration.

Chapter 3 presents a new security policy measure approach for SP selec-

tion. The generic PSM method is introduced at first. Then the experiments

with our PSM algorithm and some related results are given. Finally, this

chapter demonstrates a prototype which executes the SP selection towards

resource allocation on Cloud storage.

Chapter 4 deals with a formal approach to express and enforce secu-

rity policy for virtual resource allocation in IaaS Cloud. Based on the WS-

Agreement [23] template, we integrate security requirements in SLA con-

tract then the related security policies can be derived. The deployment solu-

tion is also generated from the security policy and non-security constraints.

The chapter is ended by our Openstack-based implementation with evalua-

tion.

Chapter 5 provides more comprehensive background on the negotiation

paradigm with a focus on trust negotiation (TN), access negotiation, access

control policy negotiation and meaning negotiation (MN). Although mean-

ing negotiation does not concern the security aspect, the belief fusion tech-

nology handles the process of reaching agreement and this technology is

adopted in security policy negotiation presented in the next chapter.

Chapter 6 shows how an agreement can be reached in security policy

negotiation by our framework. The core negotiation algorithm is also il-

lustrated with some theoretical results. The chapter ends with a detailed

5

negotiation scenario between a vehicle and a service station.

Chapter 7 concludes the dissertation and provides our perspectives and

future work.

6 1. Introduction

Part I

Service Provider Selection

7

Chapter 2

State of the Art

2.1 Introduction

Security policy are gaining a prominent place in research and industry do-

mains. Access control policy is one type of security policies and its enforce-

ment guarantees the usage privilege of the system. In an environment where

exist SCs and SPs, the first thing to do for a SC before enforcement of secu-

rity policies is to choose SP(s) which meet SC’s requirement and preference.

The SLA contract, although be widely used to specify QoS requirements, is

also used to carry security-related preference. In this chapter, we are inter-

ested in the related work of SP selection. To this end, we firstly introduce

different access control policy models. A comprehensive background on SLA

contract is then given. Next, we provide a brief overview of relevant work on

Policy Similarity Measure (PSM) which is helpful in the process of SP selec-

tion. Finally, we close this chapter with an overview on concrete SP selection

approaches in the field of Cloud Computing.

2.2 Access Control Model

Access control, more precisely, authorization, is a basic and critical mech-

anism often used for operating systems. It provides a control solution for

some entities (called subjects) to access some other entities (called objects)

9

10 2. State of the Art

through some actions in the system. Usually presented as a software mod-

ule, access control is a traditional mechanism by means that software ap-

plications (originally operating systems) answer the question (request) “can

the entity identified as S manipulate the object O via the action A?”. Here

the verb “can” should be regarded as privileges but not as capabilities. At

the same time, this question can be contextualized with respect to the trust

issue as “can I trust S enough to allow him performing the action A on the ob-

ject O?”. In this section, we present the different access control models and

languages that have been proposed to answer such questions. The abstract

model of access control mechanism is depicted in Figure 2.1.

Figure 2.1: Basic access control model

• The request represents the type of interaction for which an authoriza-

tion is requested (e.g. read, use or login).

• The subject, is the abstract entity (a human, a program or an artificial

agent) requiring authorization.

• The object represents the resource that the requester wants to interact

with (e.g. a file, a service).

• The engine is the decision module that determines if the requester is

authorized to perform the requested interaction.

• The decision is the reply from the engine regarding the request (e.g.

accept, refuse).

11

2.2.1 Discretionary Access Control (DAC)

Discretionary access control (DAC) is one of the most widespread access

control models. It is a decentralized solution. Each object is controlled by

its owner and an action enables subjects to have direct access to objects.

In DAC, security policy is limited to permissions which specify relations be-

tween subjects, objects and actions. The access matrix model provides a

framework for describing DAC. Formalized by Harrison, Ruzzo, and Ullmann,

the HRU model [24] is such a framework which applies to subjects, objects

and actions.

The Access control list (ACL) is an implementation of the HRU model and

it is the oldest and most basic form of access control policies. It is commonly

deployed in operating systems such as UNIX. In the most general form, a

permission is a triple (s, o, a), stating that a user s is permitted to perform

an action a on an object o. Let S be the set of all users of the system, O

the set of all objects and A the set of all possible actions. The ACL policies

represent a function f : S × O → A. Consequently, f(s, o) determines the

list of actions that the subject s is permitted to perform over the object o.

Table 2.1 illustrates (as a matrix A = |S| × |O|) the access control list of a

system where S = {s1, s2, s3}, O = {o1, o2, o3} and A = {a1, a2, a3}.

❳
❳

❳
❳
❳
❳
❳
❳
❳
❳
❳

subject

object
o1 o2 o3

s1 a1, a2, − a2 a2
s2 a2, a2 − −
s3 a1, a1, a2 a1, a2 a1, a2

Table 2.1: Example of an ACL policy

Although an ACL model is easy to implement, the approach is not suitable

when the number of users largely increases. When future subjects, objects or

actions are inserted in the system, the security policies must be updated. As

a result, it is difficult to administrate the system and the amount of memory

will be largely increased with the insertion of users and resources. Moreover,

access control decisions are not related to any characteristic of the resource

12 2. State of the Art

and it makes such an approach very vulnerable to attacks such as identity

usurpation [25].

2.2.2 Lattice-based Access Control (LBAC or MAC)

Unlike DAC models, the lattice-based access control (LBAC) model, also

known as the mandatory access control model (MAC), is deployed when the

access to an object depends on its characteristics and those of the subject,

and not the wills of the object owner [26]. As illustrated in Figure 2.2, sub-

jects’ and objects’ characteristics are represented by security labels (or lev-

els) which are assigned to users and resources of the system. The objects’

labels reflect the sensibility of a resource and the subject’s label classifies

the category of objects she is permitted to access. Systems implemented

by LBAC models are often called multi-level security systems as the labels

used represent a partial order (e.g. Top Secret, Secret, Confidential, Unclas-

sified) which is assumed to form a lattice. In LBAC, the process of access

control is reduced to the control of data flow and its objective is to guaran-

tee that data coming from a higher level object never flows to a lower level

subject, and that data coming from a lower level subject never flows up to

an object of a higher level. For example, a read operation on a resource is

represented as a data stream from the object to the subject, while a write

access represents a flow of data from the subject to the object. These two se-

curity principles are respectively called “no-read-up” and “no-write-down”.

The Bell-LaPadula [27] is the most famous model implementing LBAC and

it has been used in both military and commercial applications. LBAC mod-

els are quite efficient and remain relatively manageable in systems with a

small number of labels. Nevertheless, its principal limitation is the lack of

flexibility and scalability.

2.2.3 Role-based Access Control (RBAC)

The development of the Role-based Access Control (RBAC) was motivated by

the fact that in most cases, sensitive resources were generally not owned by

13

Figure 2.2: LBAC model

users but by the institution where users act in the capacity of a role for a job

function. The RBAC policy holds an assignment relation that associates users

to roles, and the roles to permissions granted. In this way, a role represents

an intermediate layer between subjects and permissions and it brings scala-

bility as the complexity of policy specification and administration is reduced.

When a subject joins or leaves the system, only the links between the user

and her related roles have to be updated. Therefore, the key components in

RBAC are subjects, roles and permissions as illustrated in Figure 2.3.

Figure 2.3: RBAC model

RBAC received in the last twenty years considerable attention that con-

ducted to the proposition of a whole family of models [28, 29, 30, 31, 32,

33, 34, 35, 36, 37]. Among those models, RBAC0 is the main and the sim-

plest model. RBAC1 extends RBAC0 with the capability to specify hierar-

14 2. State of the Art

chies of roles and permissions’ inheritance between roles. RBAC2 extends

RBAC0 with constraints to enforce separation of duties, while RBAC3 is a

combination of RBAC1 and RBAC2.

Although RBAC is widely used in many commercial and government ap-

plications, it can not cover all the different requirements from the real world

scenarios. For instance, the role inheritance mechanism proposed in RBAC1

may not be sufficient to model some existing relationships. For example, an

assistant may need to be authorized to execute some operations during the

absence of her boss, but her role can not inherit all the privileges of the role

of her boss. Towards the limitation, different ways of privilege propagation

(delegation) should be supported and developed.

2.2.4 Attribute-based Access Control (ABAC)

The main idea of the attribute-based access control (ABAC) model is us-

ing policies which combine attributes together instead of identities, roles

or clearances for authorizations [38, 39]. Unlike DAC, MAC and RBAC, the

decision making of ABAC policies is based on disclosing credentials issued by

third party attribute certifiers (e.g. organizations, companies, institutions).

Consequently, the privilege of access can be obtained by subjects without

being priorly known by the system administrator (or the resource owner).

As illustrated in Figure 2.4, there exist four types of attributes.

Subject attributes. Subjects are the entities requesting access to objects.

Each subject can be characterized via an atomic attribute or a set of

attributes without explicitly referring to its identity. Almost all informa-

tion associated with a subject can be considered as an attribute such

as name, role, affiliation and address.

Action attributes. Actions are the operations that the user wants to per-

form. Common action attributes in authorization requests are "read"

and "write". In more complex scenarios, the action may be described

by a combination of attributes.

15

Figure 2.4: ABAC model

Object attributes. Objects are resources that the subject wishes to manip-

ulate. Object attributes can affect the type of the permission granted.

They may include the resource’s name, type (e.g. text, image). The

owner and the information of an object can be extracted automatically

from its metadata.

Environment attributes. Unlike DAC, MAC and RBAC, in ABAC, the con-

text (environment) of the interaction affects the access control deci-

sion. Context attributes can be time, date, location and so on.

The eXtensible Access Control Markup Language (XACML) is an access

control policy language specified by the Organization for the Advancement of

Structured Information Standards (OASIS). Based on XML, XACML specifies

(i) a common security policy language; (ii) a processing model that describes

how to interpret the policies; (iii) a request/response protocol to express

access queries and reply to those queries.

The main components of XACML 3.0 policy language [1] are rule, policy

and PolicySet. Figure 2.5 presents the language model. A rule is the most

elementary unit of policy and it consists of a target, an effect, a condition,

obligation expressions and advice expressions. The ABAC model can be im-

plemented in XACML rules by placing subject attributes, resource attributes,

16 2. State of the Art

Figure 2.5: XACML 3.0 policy language model [1]

action attributes and environment attributes. PolicySet contains a set of poli-

cies. In order to map the relevant policies to a given request, targets can be

explicitly specified for rules, policies, and PolicySet. A target defines the

set of requests to which the rule is intended to apply in the form of logical

expressions by attributes. Moreover, obligation expressions may be added

by the rule editor. An obligation is a directive from the policy decision point

(PDP) to the policy enforcement point (PEP) (Figure 2.6) on what must be

carried out before or after an access is approved. If the PEP is unable to

comply with the directive, the approved access may or must not be realized.

Figure 2.6 shows the data flow diagram which consists of some major actors:

• Policy Administration Point (PAP):manages and defines the policies

that will apply.

• Policy Decision Point (PDP): evaluates and makes authorization de-

cisions.

17

• Policy Enforcement Point (PEP): intercepts access requests from a

user to a resource and enforces the PDP decision.

• Policy Information Point (PIP): provides external information to PDP,

such as environment and resource attribute information.

• Context Handler: converts access requests from the native request

format to the XACML format and also converts XACML authorization

decisions to the native response format. At the same time, it collects

attribute information and resends it to PDP.

Figure 2.6: Data-flow diagram of XACML 3.0 policy language [1]

In a typical XACML usage scenario, a subject wants to take some actions on

a particular target. The access request is firstly submitted to the PEP. Then

the context handler forms an XACML request message with attributes of the

18 2. State of the Art

subject, action, target, and any other relevant information and sends it to the

PDP. After analyzing the request and determining whether the access should

be granted or denied according to the XACML policies, the PDP returns the

response context (including the authorization decision) to the context han-

dler. Finally, context handler translates the response context to the native

response format and sends to the PEP.

Regarding the policy evaluation, the effect indicates the consequence of

a rule. Rules may optionally contain a condition, which consists in a Boolean

expression that further limits the rule applicability. There exist four values

of access control decision: Permit, Deny, NotApplicable and Indeterminate.

The latter two values are returned when an error occurs and no decision can

be made or when the request can not be answered by the queried service,

respectively. In order to decide the final result of composed decisions in

PolicySets, various policy combining algorithms are used. For example, the

Deny-overrides algorithm gives priority to deny rules. In XACML 3.0 [1],

there exist 12 types of policy combining algorithms.

The ABAC brings flexibility and interoperability for policy definition and

it can be used in lots of application scenarios such as web service [40] and

Cloud Computing. Nevertheless, the flexibility and interoperability make

policy administration more difficult: a potentially large number of attributes

must be understood and managed, and attributes must be selected by ex-

perts. In addition, attributes have no meaning until they are associated with

subject, object or environment, thus it is not practical to audit [41]. At the

same time, the XACML standard is still not widely adopted by large enter-

prises by developing their authorization engines and commercial support

such as software library is limited.

2.2.5 Organization-Based Access Control (OrBAC)

The OrBAC model [19] is an extension of the RBAC model. By defining a

conceptual and industrial framework, it meets the needs of information se-

curity and sensitive communication and allows the policy designer to define

a security policy independently. The concept of organization is fundamental

19

in OrBAC. An organization is an active entity that is responsible for man-

aging a security policy. Each security policy is defined for an organization.

The model is not limited to permissions, but also includes the possibility to

specify prohibitions and obligations. Besides, the security rules do not apply

statically but their activation may depend on contextual conditions. Con-

text [42] is defined through logical rules and it can be combined in order

to express conjunctive context, disjunctive context and negative context. An

OrBAC policy is defined as: security_rule (organization, role, activity,

view, context) where security_rule belongs to {permission, prohibition,

obligation}. Once a security policy has been specified at the organizational

level, it is possible to instantiate it by assigning concrete entities to abstract

entities by the predicates which assign a subject to a role, an action to an

activity and an object to a view (Shown in Figure 2.7). Meanwhile, all the

operations are related to a specified context:

• empower(org, subject, role) : in organization org, subject is empowered in

role.

• consider(org, action, activity) : in organization org, action implements activity.

• use(org, object, view) : in organization org, object is used in view.

• hold(org, subject, action, object, context) : in organization org, subject does

action on object in context.

Figure 2.7: OrBAC model

20 2. State of the Art

Based on the above definitions, a concrete permission policy can be derived

by the following rule 1:

permission(org, role, activity, view, context)

∧ empower(org, subject, role) ∧ consider(org, action, activity)

∧ use(org, object, view) ∧ hold(org, subject, action, object, context)

→ is_permitted(subject, action, object)

The MotOrBAC tool [43] enables us to visualize OrBAC policies, it imple-

ments the OrBAC model and its administration model AdOrBAC [44]. De-

veloped by the SFIIS team of Telecom Bretagne, it provides an user-friendly

interface (GUI) to specify and manage OrBAC policies and also AdOrBAC

policies. Shown in Figure 2.8, the MotOrBAC tool is composed of two sepa-

rate modules: MotOrBAC GUI and OrBAC API. The former displays policies

with the associated entities and the latter can be used to create and manage

security policies by programming. The OrBAC API uses a custom inference

engine which uses the join/fork framework from java 7 to provide an effi-

cient derivation process. The policy is saved in an XML document where the

abstract and concrete entities are stored [2].

Figure 2.8: The MotOrBAC tool architecture [2]

1A concrete prohibition policy is_prohibited(subject, action, object) can be derived by the

same way from prohibition(org, role, activity, view, context).

21

2.3 Service Level Agreement (SLA)

With the development of Web Service, QoS between the SC and the SP be-

comes an important element which needs to be specified, measured and

monitored. A SLA is such a contract between human-human, human-service

and service-service. Given the diversity of disciplines using SLAs and the

numerous interpretations that have been developed in recent years, we pro-

pose to start by presenting different SLA languages and frameworks then

introduce the security aspect in SLA.

2.3.1 WSLA

Proposed by IBM in 2003, Web Service Level Agreement (WSLA) [3] covers

the specification, enforcement and monitoring of SLAs. The WSLA language

is based on XML and it allows the creation of machine-readable SLAs in the

Web Service environment. Shown in Figure 2.9, a SLA created by WSLA

contains typically the following components:

Figure 2.9: Overview of main WSLA concepts [3]

22 2. State of the Art

• Parties: identify the signing parties (SC and SP) and supporting par-

ties (third parties). Third parties include monitoring providers, condi-

tion evaluators and management providers.

• Service Definition: specifies the characteristics of the service and its

observable parameters.

• Obligations: define various guarantees and constraints that may be

imposed on SLA parameters.

As an initiative attempt, WSLA proposes a SLA language and a global frame-

work for SLA management. However, related negotiation protocol has not

been developed and the specification has not been updated since 2003.

2.3.2 WS-Agreement

WS-Agreement [23] is developed by the Grid Resource Allocation Agreement

Protocol (GRAAP) Working Group of the Open Grid Forum. The specifica-

tion is an XML based language. The structure of WS-Agreement consists of

three parts: name, context and terms. Context contains the meta-data for

the entire agreement. It specifies the participants in the agreement and the

lifetime of this agreement. There exist two term types: service description

terms that describe the functionality delivered and guarantee terms outline

the assurance on service quality for each piece of functionality. Unlike the

WSLA, the WS-Agreement language is extensible by allowing the definition

of domain-specific service level objectives. For example, different term de-

scription languages such as the Job Submission Description Language (JSDL)

[45] could be used to describe service terms and guarantee terms. Such flex-

ibility makes WS-Agreement widely used by lots of research and industrial

projects such as BREIN [46], IRMOS [47], and OPTIMIS [48].

Besides the WS-Agreement language, the WS-Agreement negotiation pro-

tocol [4] is also proposed. A negotiation may then result in the creation of an

agreement using the WS-Agreement specification. During the negotiation,

the input is a template which describes service capacity of a SP, the messages

23

Figure 2.10: Asymmetric mode of WS-Agreement negotiation [4]

exchanged are XML-based and the output is a WS-Agreement contract. The

protocol designs two negotiation modes: the asymmetric deployment mode

and the symmetric deployment mode. Figure 2.10 presents the asymmetric

deployment mode. In this mode, the negotiation process is driven by the SC

(negotiation initiator). At first, the SC initiates a new negotiation process

by calling the “initiateNegotiation" operation. After querying the nego-

tiable templates from the new created negotiation instance, the SC selects

the template it wants to negotiate and creates an initial negotiation offer

based on the selected template. This offer is then sent to the SP by calling

the “negotiate" operation. The SP creates one or more counter-offers and

sends them back to the SC. The SC chooses the counter-offer which fulfills

its requirements best and creates a new agreement with the server by exe-

cuting the “createAgreement" operation. In this scenario, the SP is under

a passive role. It does not control the negotiation process and it only reacts

to the negotiation requests. In the symmetric deployment mode, both sides

implement the “negotiate operation, thus both parties have an active role

in the negotiation process.

24 2. State of the Art

2.3.3 RBSLA

Rule-Based Service Level Agreement (RBSLA) [49] is a declarative mark-up

language that uses knowledge representation concepts for rule-based policy

and SLA contract specification. Based on RuleML [50] and logic program-

ming, it provides a set of abstract language constructs to represent, manage,

enforce and automatically monitor SLAs at runtime. The rule based SLA ap-

proach consists of three layers: (i) knowledge representation layer: a rule

engine combining several logical formalisms; (ii) declarative contract logic

layer: supports the expression of the RBSLA; (iii) management layer: the

contract management tool.

Although RBSLA is designed to be compatible with existing standards,

it has not become a standard itself and the high expressiveness makes it

difficult to understand and apply by the non-experts. There does not exist

any update on theory, case study and tools since 2006.

2.3.4 SLAng

SLAng [51] has been developed in University College London by deriving

SLA requirements from real world SLAs. It is a model for inter-organisational

service provision for storage, network, middleware and application levels. It

focuses on the utilization of SLAs in support of the model-driven develop-

ment. Based on XML, SLAng is divided into vertical and horizontal SLAs.

Horizontal SLAs are contracted between different parties providing the same

kind of service and vertical SLAs regulate the support parties getting from

their underlying infrastructure. In SLAng, six different SLA types are de-

fined, among them, vertical SLAs are:

• Hosting: between service provider and host.

• Persistence: between a host and storage service provider.

• Communication: between application or host and Internet service

providers.

Horizontal SLAs are:

25

• Service provision: between an application or service and service pro-

vision.

• Container: between container providers.

• Networking: between network providers.

For each kind of SLA, a general structure is defined, including responsibili-

ties of the SC, SP and their mutual responsibilities.

The SLAng language proposes a global architecture used to define the

SLA contract for inter-organisational service provision. However, it stays in

the language level due to the lack of related framework and negotiation pro-

tocol.

2.3.5 Security related SLA

Although traditional SLA focuses on the issues of QoS and performance, SLA-

based trust and security management have been investigated in recent liter-

ature. The concept of security service level agreement is first proposed by

Henning [52] as a mechanism to specify the security services required for

an effective enterprise. SLA is used to explicitly state the obligation of the

providers in terms of implemented security mechanisms, their effectiveness

and the implication of possible mismanagement [53]. There have been some

initiatives in the field of Cloud Computing that consider security aspects in

SLAs. In [5], the authors present a framework (Figure 2.11) for security is-

sues of SLAs in Cloud Computing. The objective of the framework is to help

potential Cloud service customer (CSC) to identify the necessary protection

mechanisms and facilitate automatic service composition based on a set of

predefined security requirements. Chen-Yu et al. describe an ontology [54]

for representing security SLAs (SSLA). Based on 13 classes, the proposed

ontology can be used to understand the security agreements of a provider,

to negotiate the desired security levels, and to audit the compliance of a

provider with respect to federal regulations such as HIPAA standards [55].

26 2. State of the Art

Figure 2.11: Framework for security mechanisms in Cloud SLAs [5]

The Cloud Security Alliance (CSA) [56] is a non profit organization that

aims at promoting the use of best practice to increase the security level of

Cloud infrastructures. CSA has designed a self-assessment questionnaire

framework to define the security information contained in a Security Level

Agreement (SecLA): the Consensus Assessments Initiative Questionnaire (CA

IQ) [57] which is destined to Cloud service provider (CSP) to document the

implemented security measures. Containing more than 200 security relevant

questions, CAIQ helps a CSC to understand security coverage and guaran-

tees of Cloud offers. In 2014, the European Commission published stan-

dardization guidelines for Cloud Computing SLA [58]. In order to improve

the clarity and increase the understanding of SLAs for Cloud services in the

market, the guidelines provide general recommendations to CSP and CSC

about what they could agree on using SLAs. In terms of security SLA, it cov-

ers 8 aspects such as authentication, authorization, cryptography and vul-

nerability management. Recently, a key Cloud SLA standardization activity

27

is being carried out by ISO/IEC on “19086 - Information Technology (Cloud

Computing) SLA Framework and Terminology”. This prospective standard

will address (i) the definition of a standardized framework for Cloud SLAs in-

cluding both a vocabulary and comprehensive catalogue of commonly used

Service Level Objectives (SLOs); (ii) the definition of Cloud SLA-related met-

rics; (iii) core requirements for implementation; (iv) security and privacy in

Cloud SLAs [59].

2.4 Policy Similarity Measure (PSM)

2.4.1 Problematic

Today the use of similarity measure for comparing security policies becomes

a crucial technique in a variety of scenarios, such as finding the SP(s) which

satisfies SC’s security concerns. Before a collaboration is conducted be-

tween different actors, an actor A may need to know if the other actor guar-

antees a similar level of A’s security policies. In case that SPs expose their

security policies for a SC to evaluate and select, policy comparison is one

of the main mechanisms to that end. It consists in measuring the similarity

between two security policies and giving an evaluation score.

The first thing to measure the similarity between security policies is to

give the mathematical definition of PSM. In [60], Lin et al. propose Equa-

tion (2.1) for PSM. In the equation, p1 and p2 are two security policies for

measure; Sreq denotes the quantity of the access requests with the same de-

cisions from p1 and p2; Req is the quantity of the access requests applicable

to either p1 or p2:

Spolicy(p1, p2) = |Sreq|/|Req| (2.1)

In an example that we will use in Chapter 3, we consider three XACML

policies P1, P2 and P3 illustrated in [60]. These policies are defined for man-

aging an information system of a research laboratory.

28 2. State of the Art

Policy P1

1 PolicyID=P1, Rulecombining=Deny−override

2 <PolicyTarget

3 <Subject GroupName=IBMOpenCollaboration>>

4 <RuleID=R11 Effect=Permit>

5 <Target

6 <Subject Designation is {Professor ,PostDoc ,Student , TechStaff}>

7 <Resource FileType is {Source ,Documentation ,Executable}>

8 <Action AccessType is {Read,Write}>>

9 <RuleID=R12 Effect=Deny>

10 <Target

11 <Subject Designation is {Student ,PostDoc , TechStaff}>

12 <Resource FileType is {Source ,Documentation ,Executable}>

13 <Action AccessType is {Write}>>

14 <Condition 19:00<=Time<=21:00>

Policy P2

1 PolicyID=P2, Rulecombining=Deny−override

2 <PolicyTarget

3 <Subject GroupName=IBMOpenCollaboration , IntelOpenCollaboration>>

4 <RuleID=R21 Effect=Permit>

5 <Target

6 <Subject Designation is {Student , Faculty , TechStaff}>

7 <Action AccessType is {Read, Write}>>

8 <Condition FileSize <=120MB>

9 <RuleID=R22 Effect=Permit>

10 <Target

11 <Subject Designation=TechStaff>

12 <Action AccessType is {Read,Write}>>

13 <Condition 19:00<=Time<=22:00>

14 <RuleID=R23 Effect=Deny>

15 <Target

16 <Subject Designation=Student>

17 <Action AccessType=Write>>

18 <Condition 19:00<=Time<=22:00>

19 <RuleID=R24 Effect=Deny>

20 <Target

21 <Subject Designation is {Student , Faculty , Staff}>

22 <Resource FileType=Media>

29

23 <Action AccessType is {Read,Write}>>

Policy P3

1 PolicyID=P3, Rulecombining=Deny−override

2 <PolicyTarget

3 <Subject GroupName=Payroll>>

4 <RuleID=R31 Effect=Permit>

5 <Target

6 <Subject Designation=BusinessStaff>

7 <Resource FileType=" . xls ">

8 <Action AccessType is {Read,Write}>>

9 <Condition 8:00<=Time<=17:00 , FileSize<=10MB>

10 <RuleID=R32 Effect=Deny>

11 <Target

12 <Subject Designation=Student>

13 <Action AccessType is {Read,Write}>>

From a user’s perspective, P1 is more similar to P2 than P3 because most ac-

tivities described by P1 for the data owner are allowed by p2. Our motivation

is to quickly compute similarity scores Spolicy(P1, P2) and Spolicy(P1, P3) with

the expectation that the former is higher than the latter. The expected result

is to indicate that the similarity between P1 and P2 is much higher than the

similarity between P1 and P3.

2.4.2 Use Cases

The following three PSM related scenarios are extracted from [61] and [62].

• Federation: There are a number of organizations that are currently in

a federation with common security policies. A new organization is pos-

sible to join the federation by negotiating with the existing members in

order to reach certain agreements. One step of the negotiation process

is to achieve a common understanding about security policies. To this

end, PSM may be helpful to quickly find out the organization whose

security policies are relevant to policies owned by the federation and

filter the dissimilar ones.

30 2. State of the Art

• Delegation transaction: In some context, an organization needs to

delegate its privileges to others. From the delegator’s point of view, it

is necessary to know if its security policy is similar to the one of the

delegatee. Thus PSM technology is capable to affect the decision of the

delegation.

• Service provisioning in the cloud: In Cloud Computing, as an user’s

data is usually processed remotely in unknown machines that she does

not own or operate, it is necessary to select a SP whose security policy

is close to the one required by the user. With PSM technology, the user

is capable to estimate the similarity between two given policies and

rank the SPs. After that, policy integration and policy enforcement will

be executed.

2.4.3 Existing Approaches

Most existing approaches to evaluate the policy similarity are based on

XACML [63] policies. Lin et al. [64] propose an algorithm to evaluate pol-

icy similarity by calculating the similarity score between two XACML poli-

cies. This is indeed a pioneering work and it effectively distinguishes be-

tween categorical predicate and numerical predicate. The second version of

the algorithm [60] advances the measure algorithm for numerical predicate

and integrates ontology matching. However, the work has two limitations.

Firstly, the algorithm only focuses on the literal level (semantic distance cal-

culation) but not logic aspect of security policy. As a result, the similarity

score computed may have a large difference with the test value in real cases

(presented in Appendix B). Secondly, the algorithm contains 9 weight param-

eters which need to be configured. Choosing the proper values is not easy.

In addition, there are two variants of the former work. Bei et al. [65] inves-

tigate the opposite of similarity: dissimilarity. In order to address the rule

relationship comparison, they apply fuzzy theory to compute rule dissimilar-

ity. Pham et al. [61] improve the similarity computing approach specified

by Lin et al. [64] and also propose a mechanism to calculate a dissimilarity

score by identifying related policies which are likely to produce different ac-

31

cess decisions. The PSM technique is then integrated in various scenarios.

Lin et al. [62] present a novel data protection framework in which the policy

similarity comparison approach is applied to the policy ranking model. Cho

et al. [66] propose a technique that allows similarity evaluation of encrypted

policies. Shaikh et al. [67] suggest using similarity measure to select ser-

vices in a distributed and heterogeneous environment. Bertolino et al. [68]

put forward a new approach for access control test prioritization based on

similarity.

2.5 Virtual Resource Allocation

2.5.1 Problematic

Today Cloud Computing is essentially provider-centric. An increasing num-

ber of fiercely competing CSPs operate multiple heterogeneous Clouds. In

terms of infrastructure as a service (IaaS), each provider offers its own,

feature-rich solutions for customer virtual machines (VMs). More signifi-

cantly, in Cloud IaaS, physical hardware is usually shared by multiple virtual

resources for maximizing utilization and reducing costs.

In Cloud Computing, a SP’s system can be viewed as a large pool of in-

terconnected physical hosts and we use H to present the finite set of hosts

from a CSP. V is a VM to be allocated. hi and vi represent an unique virtual

machine ID and HOST ID separately. With these definitions, virtual resource

allocation problem can be summarized as follows:

Definition 1. Virtual Resource Allocation Problem

Given a set of HOSTs H={h1, h2, ..., hm}, a set of VMs V={v1, v2, ..., vn}, a

set of constraints for HOSTs CH={Ch1, Ch2, ...Chm}, a set of constraints for

VMs CV={Cv1, Cv2, ...Cvn}. CH and CV are logical formulas that define the al-

lowed combinations of deployment conditions forH and V . Find the mapping

p:{v1, v2, ..., vm} → {h1, h2, ..., hn} where p(vi) = hj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Unfortunately, virtual resource allocation suffers from a lack of homo-

geneity: lots of Cloud virtual resources can not be deployed due to deficien-

32 2. State of the Art

cies in (1) unified expression; (2) interoperability. Lack of unified expression

results in vendor lock-in: services are tightly coupled with the provider and

depend on its willingness to deploy them. Lack of interoperability stems from

heterogeneous services, and more importantly of service-resource mapping,

not compatible across providers. For better interoperability and control,

Cloud brokering is nowadays the rising approach towards the user-centric

vision. It may be seen as a paradigm in delivering Cloud resources (e.g.

compute, storage, network). With the help of brokering technology, user’s

security needs will be necessarily considered in the cloud and these security

requirements can be included in a SLA contract which is a legal document

where the service description is formally defined, delivered, and charged.

2.5.2 Existing Approaches

Although virtual resource scheduling problems are NP-complete, it is well-

studied by the research community by proposing various heuristic and ap-

proximate approaches for addressing different issues. Among three service

models (SaaS, PaaS and IaaS) of Cloud Computing, virtual resource alloca-

tion in IaaS Cloud has been investigated by some works in the literature.

Some of these works [69, 70] focus on the capacity of CSP. In this case,

some strategies like immediate, best effort and Nash equilibrium [71] have

been applied to allocation algorithms in order to optimize the deployment

algorithm with constraints such as QoS and energy [72]. Another effort is

SLA-oriented resource management [73]. Wu et al. [74] propose a resource

allocation algorithm for SaaS provider to minimize infrastructure cost and

SLA violation. In [75], a SLA-aware PaaS Cloud platform that manages the

complete resource life cycle is developed. With the WS-Agreement specifi-

cation, a CSP defines a generic SLA model to deal with high-level metrics,

close to end-user perception, and with flexible composition of the require-

ments from multiple actors in the computational scene. Among lots of CSC’s

requirements, security is a critical issue to be taken into account. Bernsmed

et al. [5] present a security SLA framework for Cloud Computing to help

potential CSCs to identify necessary protection mechanisms and facilitate

33

automatic service composition. Based on some existing frameworks such as

ENISA [76] and CAIQ [57] developed in Europe, Cayirci et al. [77] design a

Cloud adoption risk assessment model (CARAM) for CSCs to assess the risks

that they face by selecting a specific CSP. Berger et al. [78] take isolation con-

straint and integrity guarantee into consideration and implement controlled

access to network storage based on security labels. In [79], different virtual

resource orchestration constraints are classified and expressed by attribute-

based paradigm. Regarding these constraints, a conflict-free strategy is de-

veloped to mitigate risks in IaaS Cloud [80]. Most of the above works have

been motivated by security requirements expressed by CSCs. In [81], a CSP

specifies its security requirements including forbid constraint which forbids

a set of VM instances from being allocated on a specified HOST. However,

in multi-cloud environment, as CSCs and CSPs do not have a vision of each

other before establishing their contracts, specifying security requirements

can be very tricky for both sides. The main focus of these efforts is schedul-

ing VMs either for the purpose of high-performance computing or satisfying

security constraints according to the requirements of CSCs.

2.6 Conclusion

We have introduced the main types of security policy models for access con-

trol systems. We have seen that different models hold different specifications

for abstract and concrete levels. Besides, we have seen that a SLA contract

can be used to specify QoS requirements and there exist some efforts to in-

tegrate security parameters in it. However, putting security issues in a SLA

contract suffers from the lack of integration of the security policy. In terms

of security policy, the current PSM approach is not accurate enough and its

configuration is complicated. This can affect the result of the SP selection.

To end this chapter, approaches for virtual resource allocation have been

presented with their advantages and limitations.

Motivated by the limitations of the current PSM method and virtual re-

source allocation approaches, we present in the following chapters, two

34 2. State of the Art

propositions on the SP selection for two use cases. In the first use case,

SPs specify directly their security policies in SLA contracts and SC should

choose the one(s) compliant with its security requirements. Towards this

end, we develop a generic and light-weight method to compare and eval-

uate security policies belonging to different models. The second use case

concerns the SLA contract with security requirements which can be trans-

formed to concrete security policies. In order to fulfill the second use case,

a policy-based framework for the CSP selection and virtual resource allo-

cation in Cloud Computing is presented with a related implementation and

some statistical evaluations.

Chapter 3

Similarity Measure for Security

Policies

3.1 Introduction

A higher score (Formula 2.1) between policies p1 and p2 indicates that they

are more likely to share an equivalent security level and yield the same deci-

sions. As presented in section 2.4.3, existing approaches cover from seman-

tic to numerical dimensions and the main work focuses mainly on XACML

policies. However, few efforts have been made to extend the measure ap-

proach to multiple policy models and apply it to concrete scenarios. In this

chapter, we propose a new algorithm to calculate the similarity score be-

tween two policies. The rest of the chapter is organized as follows. Firstly

we introduce the policy similarity measure algorithm with an exhaustive cal-

culation example. Then we illustrate an experiment in which the accuracy of

our algorithm is demonstrated. Finally, we give an implementation in which

our algorithm works for SPs ranking before the SP selection.

3.2 A Generic Policy Similarity Measure Method

The PSM assigns a similarity score Spolicy for any two given policies, which

approximates the percentage of the rule pairs having the same decision. The

35

36 3. Similarity Measure for Security Policies

formal definition is given in Equation (3.1), whereNum(sameDecision(r1i, r2j))

denotes the number of the rule pairs having the same decision for the same

access requests and Num(allDecision(r1i, r2j)) denotes the amount of the to-

tal decision pairs for access requests which are applicable to either policy p1

or policy p2.

Spolicy(p1, p2) ≈
Num(sameDecision(r1i, r2j))

Num(allDecision(r1i, r2j))
, r1i ∈ p1, r2j ∈ p2 (3.1)

The similarity score is a value between 0 and 1. Two equivalent policies are

expected to obtain a similarity score equal to 1. We mention that the defi-

nition of the policy similarity score in [60] focuses on the percentage of the

access requests obtaining the same decisions. Comparing with the former

work, our definition of PSM is more fine-grained because the same decision

from two policies can be derived from one or multiple rule pairs. Conse-

quently, by considering decisions of rule pairs but not final policy decisions,

our PSM is more accurate from both calculation and test aspects. More de-

tails are shown in Section 3.3.

3.2.1 Policy Structure

As a generic algorithm, our PSM can be applied on different policy models.

This requires a transformation process before calculation. Policies are firstly

split into different rules and each rule is expressed in the form of:

decision_effect(attr_name1 : attr_value1, ..., attr_namen : attr_valuen) (3.2)

where decision_effect is a decision effect such as permit and deny; attr_name

denotes the name of an attribute and attr_value represents an attribute value.

We define (attr_namei : attr_valuei) as a rule element and it can be divided

into the following two types:

• Categorical element: Attribute value belongs to the string data type

or is a set of string. For example “Role : admin” and “Action : [read, write,

create]” are categorical atomic elements.

37

• Numerical element: Attribute value can be integer, real, date/time

data types. The value can be single one or a set or an interval. For

example, elements “T ime : {3pm, 4pm, 5pm}”, “FileSize : (5,+∞) GB",

T ime : [8 : 00, 18 : 00] are numerical atomic elements.

3.2.2 Example of Policy Transformation

In an example that we use throughout the chapter, we consider three XACML

policies mentioned in Section 2.4.1. The policies after transformation to the

Form 3.2 are:

policy1 (p1)

r11 : Permit(Role : {professor, postDoc, student, techStaff }, Action : {read, write},

Resource : {source, documentation, executable}, F ileSize : all, T ime : [0 : 00, 24 : 00])

r12 : Deny(Role : {student, postDoc, techStaff }, Action : write,

Resource : {source, documentation, executable}, F ileSize : all, T ime : [19 : 00, 21 :

00])

policy2 (p2)

r21 : Permit(Role : {student, faculty, techStaff }, Action : {read, write},

Resource : all, F ileSize : (−∞, 120]MB, T ime : [0 : 00, 24 : 00])

r22 : Permit(Role : techStaff Action : {read, write}, Resource : all, F ileSize : all,

T ime : [19 : 00, 22 : 00])

r23 : Deny(Role : student, Action : write, Resource : all, F ileSize : all,

T ime : [19 : 00, 22 : 00])

r24 : Deny(Role : {student, faculty, staff }, Action : {read, write}, Resource : media,

F ileSize : all, T ime : [0 : 00, 24 : 00])

policy3 (p3)

r31 : Permit(Role : businessStaff , Action : {read, write}, Resource : xls,

38 3. Similarity Measure for Security Policies

FileSize : (−∞, 10]MB, T ime : [08 : 00, 17 : 00])

r32 : Deny(Role : student, Action : {read, write}, Resource : all, F ileSize : all,

T ime : [0 : 00, 24 : 00])

It is worth noting that some numerical elements which have not been explic-

itly specified but hold their default values should be written explicitly in the

rule structures after the transformation. For example, time element with the

value of [0 : 00, 24 : 00] is inserted in the rule r11 after transformation as other

rules specified explicitly their time elements.

3.2.3 Overview of PSM Algorithm

Illustrated in Figure 3.1, the PSM algorithm takes two policies as the inputs

and generates a similarity score as the output. The calculation process can

be divided into four steps.

Figure 3.1: The process of similarity score calculation

Step 1: Policy transformation. Illustrated in Section 3.2.2, two poli-

cies are split into rules in Form 3.2 which consist of atomic rule elements

39

e : (attr_name⊕ attr_value).

p1 : permit(e1i_1, e1i_2, ...), permit(e2i_1, e2i_2, ...), ...

deny(e1i_1, e1i_2, ...), deny(e2i_1, e2i_2, ...), ...

p2 : permit(e1j_1, e1j_2, ...), permit(e2j_1, e2j_2, ...), ...

deny(e1j_1, e1j_2, ...), deny(e2j_1, e2j_2, ...), ..

Step 2: Score calculation for the rule pair. Scores of each rule pair

belonging to the same decision effect d (permit, deny...) between two policies

are calculated. In Equation (3.3), the score for each rule pair is the product

of the scores of all the element pairs. Product operation is chosen because

any mismatch of element pair may cause different replies from two policies.

Details for element pair calculation are shown in Section 3.2.4.

Sd(r1i, r2j) =
∏

k

S(e1i_k, e2j_k), r1i ∈ p1, r2j ∈ p2 (3.3)

Step 3: Decision effect calculation. Each Sd(p1, p2) equals the sum of all

the similarity scores of rule pairs in one decision effect (Equation (3.4)).

Sd(p1, p2) =
∑

i

∑

j

Sd(r1i, r2j), r1i ∈ p1, r2j ∈ p2 (3.4)

Step 4: Total score calculation. Shown in Equation (3.5), the total score

is based on the scores from different decision effects Sd(p1, p2) and the total

amount of rule pairs from all the decision effects.

Spolicy(p1, p2) =

∑
d Sd(p1, p2)∑
dNum(d)

, d ∈ (permit, deny, ...) (3.5)

3.2.4 Similarity Score of Rule Elements

The score of a rule element pair can be calculated when two elements belong

to the same decision effect and share the same attribute name. In Equa-

tion (3.3), the score of a rule pair is based on the rule elements having the

same attribute name. When an element’s attribute name does not appear in

40 3. Similarity Measure for Security Policies

another rule, the access decisions from the two rules are not affected. For

this reason, we consider that the score of such element pair is 1. Rule el-

ements can be divided into two types: categorical elements and numerical

elements.

3.2.4.1 Similarity Score for Categorical Elements.

For categorical elements, we measure the exact match of two values. A

higher score indicates that the two elements share more common attribute

values. Equation for similarity score computing between two categorical

elements e1 and e2 is defined as follows:

Sc(e1, e2) =
num(v1 ∩ v2)

num(v1 ∪ v2 ∪ v3... ∪ vn)
(3.6)

Sc(e1, e2) presents the exact percentage of the same decision for one element

pair extracted from the two rules. num(v1 ∩ v2) denotes the quantity of com-

mon attribute values between element e1 and e2; num(v1∪v2∪v3...∪vn) is the

quantity of attribute values among all the elements in two policies and these

elements should 1) have the same attribute name 2) belong to the rules of

the same decision effect.

Some policy models use abstract elements to represent a set of concrete

values. For example, in RBAC, the Role element is an abstraction of Subjects;

in OrBAC, a Role is a set of Subjects, an Activity is a set of Actions and a V iew

is a set of Objects. In this case, the abstract values should be transformed

to their related concrete values. For example, abstraction trees for Role and

Resource elements of p1, p2, p3 are shown in Figure 3.2 and Figure 3.3.

Department

student

undergraduate graduate

faculty

researcher

postDoc professor professorEmeritus

instructor

staff

businessStaff technicalStaff

Figure 3.2: Abstraction tree for the Role element

To calculate the score of Role elements between rules r11 and r21 specified in

41

File

documentation

.pdf .doc .txt

executable

.o .exe

media

.mp3 .avi

source

.c .cpp .java .xls

Figure 3.3: Abstraction tree for the Resource element

Section 3.2.2, as student and faculty are two abstract values, they should be

translated into concrete values which are leaves: {undergraduate, graduate}

and {postDoc, professor, professor−Emeritus, instructor}. After the transfor-

mation, we find that the two elements share 5 common attribute values. The

disjunction of all the Role elements from policy 1 and policy 2 contains 8 at-

tribute values. Applying Equation (3.6), Sc(er_11(Role), er_21(Role)) = 5/8 = 0.625.

Another application of the tree architecture is to represent the inheri-

tance relation. The inheritance mechanism is defined in object-oriented pro-

gramming as an efficient way to design an application. In Java, a class which

is derived from another class is called a subclass. A similar mechanism for

roles is used in the RBAC [82] and the hierarchy of roles is associated with

inheritance of permission. The role inheritance mechanism is extended in

the OrBAC model [83]: hierarchies of roles, views and activities are formally

defined associated with inheritance relationships. In an inheritance tree,

child elements can inherit the privileges of their parent elements. For exam-

ple, the Role elements of a research laboratory may possess an inheritance

tree for permission (Figure 3.4). When applying Equation (3.6), all the at-

tribute values having the inheritance relationship in the same inheritance

tree should be treated as identical ones.

student

professor

postDoc technicalStaff

Figure 3.4: Inheritance tree for the Role element

42 3. Similarity Measure for Security Policies

3.2.4.2 Similarity Score for Numerical Elements.

The calculation for numerical elements is more complex because numerical

attribute values may have different forms such as a single value, a set, a

bounded interval and an unbounded interval. Here we propose a unified

method defined in Algorithm 1 for computing the similarity score between

two numerical elements. The algorithm takes two numerical elements with

Algorithm 1 Sn(e1, e2): numerical similarity score calculation

Input: two numerical elements e1 and e2
Output: numerical similarity score

1: if e1 = e2 then
2: return 1
3: end if

4: if e1 ∩ e2 = φ then

5: return 0
6: else

7: if both e1 and e2 are bounded intervals then

8: return
Len(e1∩e2)
Len(e1∪e2)

9: else if both e1 and e2 are sets then

10: return
Num(e1∩e2)
Num(e1∪e2)

11: else

12: return 0.5
13: end if

14: end if

the same attribute name as inputs. Firstly, if two elements have the same

attribute name, operator(s) and attribute value(s), the score is 1 (lines 1,2).

Secondly, the two elements should be checked if their intersection is empty.

The algorithm returns 0 as similarity score when the intersection is empty

(lines 4,5). Otherwise, there are three cases:

• Bounded intervals (lines 7,8): Two elements’ values are both bounded

intervals. Length of an interval equals the distance between its end-

points. To compute the score, we divide the length of the conjunc-

tion of two intervals by the length of their disjunction. For example,

the score for time elements in r12 and r23 specified in Section 3.2.2 is:

Sn(er_12(T ime), er_23(T ime)) = Len(21− 19)/Len(22− 19) = 0.67.

43

• Sets (lines 9,10): Two elements’ values are both sets. To compute

the score, we divide the cardinality of the intersection of two sets by

the cardinality of their union. For example, T ime1 = [3 am, 4 am, 5 am],

T ime2 = [4 am, 5 am, 6 am], Sn(T ime1, T ime2) = 2/4 = 0.5.

• Other cases: As calculation between two different forms is difficult, we

assign a fuzzy value 0.5 as the similarity score. 0.5 is chosen because

it is the average value of similarity score.

3.2.5 Example of Calculation

Here we present an exhaustive example to illustrate how the PSM works.

Continuing with the three policies P1, P2, P3 defined in section 2.4.1 and their

abstraction trees introduced in section 3.2.4, we illustrate the four steps of

calculation.

1. Policy transformation: Shown in Section 3.2.2, the three policies

have already been transformed from XACML policies to rules composed

of atomic elements.

2. Rule pair calculation: Applying Equation (3.3), (3.6) and Algorithm 1,

we calculate scores for different rule pairs in each decision effect:

Permit :

Srule(r11, r21) =
5

8
× 1×

9

11
×

1

2
× 1 = 0.256

Srule(r11, r22) =
1

8
× 1×

9

11
× 1×

3

24
= 0.013

Deny :

Srule(r12, r23) =
2

8
× 1×

9

11
× 1×

2

3
= 0.136

Srule(r12, r24) =
4

8
×

1

2
× 0× 1×

2

24
= 0

1

1Scores of element pairs between rules r11 and r21 are: Sc(er_11(Role), er_21(Role)) =
5
8 , Sc(er_11(Action), er_21(Action))=1, Sc(er_11(Resource), er_21(Resource))=

9
11 ,

Sn(er_11(FileSize), er_21(FileSize)) =
1
2 , Sn(er_11(Time), er_21(Time)) = 1.

44 3. Similarity Measure for Security Policies

3. Decision effect calculation: By Equation (3.4), scores of each deci-

sion effect are:

Spermit = Srule(r11, r21) + Srule(r11, r22) = 0.269

Sdeny = Srule(r12, r23) + Srule(r12, r24) = 0.136

4. Total score calculation: The final similarity score between two poli-

cies is calculated by Equation (3.5):

Spolicy(P1, P2) =
Spermit + Sdeny

Num(permit) +Num(deny)
=

0.269 + 0.136

2 + 2
= 0.101

Applying the same process, we can also calculate the similarity score be-

tween policies P1 and P3: Spolicy(P1, P3) = 0.004. The result meets our expecta-

tion expressed in Section 2.4.1: the two scores Spolicy(P1, P2) and Spolicy(P1, P3)

shows clearly that policy P1 is more similar to P2 than P3 in terms of the

percentage of rule pairs having the same decision. In the next section, an

exhaustive experiment will be conducted to prove the correctness of our al-

gorithm.

3.3 Experiment Results

In order to verify if our algorithm is applicable to real cases, we compare the

percentage of the same decision pairs with the PSM score. Firstly, we im-

plement a random policy generator which takes rule elements as inputs then

generates access control policies in Form 3.2. Secondly, we extract rule ele-

ments from four policies with different models and each of them is related to

a real scenario: RBAC for project management [84], Net-RBAC for firewall

configuration [85], OrBAC for hospital management [43], ABAC for admin-

istration of research laboratory [60]. Thirdly, these rule elements are input

to the policy generator and each policy pair generated obtains a similarity

score by our algorithm. Finally, we input various combinations of elements

as access control requests into the four policies and count the percentage of

the same decision pair between rules from the outputs. We mention that the

45

test method which we used is brute-force based: for categorical elements,

we take all the combinations of string values; for numerical elements, enu-

merating all the numerical based attribute values in an interval (For example

T ime : [19 : 00, 21 : 00]) is impossible. Without loss of generality, we make

equidistant sampling for bounded intervals and bilateral sampling for un-

bounded intervals. For example, inputs are all the integers from 1 to 24 for

T ime : [0 : 00, 24 : 00]; for FileSize : (10,+∞)MB, inputs are 9MB and 11MB.

0
-1
0

1
1
-2
0

2
1
-3
0

3
1
-4
0

4
1
-5
0

5
1
-6
0

6
1
-7
0

7
1
-8
0

8
1
-9
0

9
1
-1
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test result of policy similarity (%)

S
im

il
a
r
it
y
s
c
o
r
e
c
o
m
p
u
t
e
d project-admin(RBAC)

firewall-admin (Net-RBAC)
hospital-admin(OrBAC)

lab-admin (ABAC)

Figure 3.5: Experiment of similarity

score (set-4)

0
-1
0

1
1
-2
0

2
1
-3
0

3
1
-4
0

4
1
-5
0

5
1
-6
0

6
1
-7
0

7
1
-8
0

8
1
-9
0

9
1
-1
0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test result of policy similarity (%)

S
im

il
a
r
it
y
s
c
o
r
e
c
o
m
p
u
t
e
d project-admin(RBAC)

firewall-admin (Net-RBAC)
hospital-admin(OrBAC)

lab-admin (ABAC)

Figure 3.6: Experiment of similarity

score (set-8)

Table 3.1: Policies tested

Policy Model
Categorical

Element

Numerical

Element
Effect

project-admin RBAC 15 0 permit

firewall-admin Net-RBAC 4 28 permit

hospital-admin OrBAC 15 6 permit,deny

lab-admin ABAC 19 0 permit,deny

Figure 3.5 and Figure 3.6 show the policy similarity score (y-axis) and the

same decision percentage for rule pairs (x-axis) in the set-4 and set-8 experi-

ments. Each test set contains 1000 pairs of policies. In the set-4 experiment,

each policy has four rules and each policy has eight rules in the set-8 exper-

iment. The configurations of elements for each policy model are shown in

Table 3.1. For example, laboratory administration policies are written in the

46 3. Similarity Measure for Security Policies

ABAC model and these policies contain 19 categorical elements with permit

and deny effects. We observe that the score increases when the similarity

between two policies increases. At the same time, the experimental values

approach to the scores calculated and the quantity of test rules has no impact

on the variation of the output curves. The test results enable us to conclude

that the PSM score well approximates the similarity between policies.

3.4 Implementation

Our PSM algorithm can be applied to different SPs selection use cases such

as network configuration, compute allocation and Cloud storage. This sec-

tion presents a concrete scenario about Cloud storage.

3.4.1 Scenario Description

SUPERCLOUD [86] is a European project which aims at supporting user-

centric deployments across multi-clouds and enabling the composition of

innovative trustworthy services. SUPERCLOUD will build a security man-

agement architecture and infrastructure to fulfill the vision of user-centric

secure and dependable Clouds of Clouds. One use case is to build a middle-

ware layer between Cloud service customers (CSCs) and Cloud providers

(CSPs). With this middleware, a CSC could select CSP(s) compliant with

CSC’s requirements. Here we implement a scenario of Cloud storage. The

subjects involved in the scenario are a CSC, a Cloud broker and CSPs. A

CSC wants to use the Cloud storage service(s) provided by one or multiple

CSPs. At the same time, the CSC wishes that the security policies of CSP

meet her requirements. Otherwise, she may launch a negotiation process

with CSP(s) whose security policies are most approximate. To this end, the

CSC chooses the SUPERCLOUD solution. It is worth noting that discovering

CSP(s) whose security level is similar to the level of the CSC is just a pre-

selection phase. Other criteria such as price and performance will be taken

into consideration in the final negotiation and decision steps.

Figure 3.7 illustrates a scenario of our implementation. In the multi-cloud

47

Figure 3.7: Service provider selection for Cloud storage

environments, CSPs are organized by federation and we suppose that CSPs

in a Cloud federation share the same domain and two CSPs in the same do-

main can be composed as a virtual CSP. A virtual CSP provides its service

as one CSP by combining the storage volumes of the two sub-CSPs and inte-

grating their security policies. Firstly, a CSC expresses her requirement on

the Cloud storage by security policies. For example, the CSC may wish that

she could have a space of 100 GB and she is allowed to upload files between

8:00 and 22:00. Then the CSC sends her requirements to the SUPERCLOUD

layer where a Cloud broker is deployed. The Cloud broker obtains the in-

formation and the security policy templates from the CSPs. Applying our

PSM algorithm, the broker proposes a ranking list of the CSPs which meets

the client’s requirement regarding both the storage space and the security

policies. PSM scores between CSC’s and each CSP’s policy are ranked from

high to low. When one CSP’s storage space is less than the volume required,

48 3. Similarity Measure for Security Policies

the broker may also propose a composition of two CSPs in the same domain.

In this case, two CSPs’ security policies should be combined and the policy

after composition is also calculated by PSM and ranked. The composition op-

eration depends on concrete use cases. Here we apply the Conjunction (&)

operation proposed in [87] for our Cloud storage scenario. An example is as

follows:

Policies before composition

CSP1 : 50 GB,Permit(Action : [upload, download], T ime : [8 : 00, 23 : 00])

CSP2 : 50 GB,Permit(Action : [upload, download, delete], T ime : [7 : 00, 22 : 00])

Policy after composition

CSP1&CSP2 : 100 GB, Permit(Action : [upload, download], T ime : [8 : 00, 22 : 00])

Benefiting from the Conjunction operation, the storage space after composi-

tion is increased by combining the space from each CSP. At the same time,

the security policy is stricter by eliminating the action which is not shared

by the two sides.

3.4.2 Architecture

The implementation is based on the CloudSim [6] simulation framework. De-

veloped by University of Melbourne, CloudSim is a Java-based toolkit that

enables modeling and simulation of Cloud Computing systems and applica-

tion provisioning environments. It supports both system and behavior mod-

eling of Cloud system components such as data centers, VMs and resource

provisioning policies. Since its development in 2009, CloudSim has been

widely used in lots of scenarios such as VM allocation, network behavior,

Cloud federation, dynamic workloads and power consumption. Figure 3.8

presents the architecture of the CloudSim toolkit. It consists of two layers:

the CloudSim layer and the user code layer. The CloudSim layer supports the

simulation of virtualized data center’s environments which include dedicated

49

management interfaces for VMs, memory, storage, and bandwidth. The layer

handles the fundamental issues such as provisioning of VMs, managing the

application execution and monitoring the dynamic system state. At the top

position, the user code layer exposes basic entities for hosts (number of ma-

chines, their specification, and so on), applications (number of tasks and

their requirements), VMs, number of users and their application types, and

broker scheduling policies. By extending the basic entities in this layer, de-

velopers can perform the following activities: (i) generate a mix of workload

request distributions, application configurations; (ii) model Cloud availabil-

ity scenarios and perform robust tests based on the custom configurations;

(iii) implement custom application provisioning techniques for Clouds and

their federations [6].

Figure 3.8: CloudSim architecture [6]

There exist mainly four components which relate to the implementation:

• DataCenter Broker (DB): it models a broker, which is responsible for

mediating negotiations between a CSC and a CSP.

50 3. Similarity Measure for Security Policies

• Policy Gateway (PG): an additional policy-based component devel-

oped by us. The component delegates some policy related tasks from

the DataCenterBroker.

• Cloud Information Service (CIS): an entity that registers, indexes

and discovers the resources.

• DataCenter (DC): it models the core hardware infrastructure offered

by a CSP. It encapsulates a set of compute hosts. Here we regard each

DataCenter as a CSP.

The messages exchanged between different components are illustrated within

the sequence diagram in Figure 3.9. In this sequence of execution, DCs are

previously registered in the CIS (Step 1). The exchanged messages at step 2

and step 3 contain the security policy and the storage volume required by a

CSC then the CIS returns all the registered DCs (Step 4). In step 5, the PG

filters the DCs by storage volume. That is, the DCs whose storage volumes

are more than the required volume are chosen. After that, at step 6, the PG

makes combination of two DCs in the same domain among DCs which can’t

fit the volume requirement. The volume after combination is the sum of each

volume and the combined policy is the conjunction of each policy. The combi-

nation of the DCs simulates the Cloud federation: two combined DCs can be

seen as a virtual DC (VDC) and the VDCs which fit the volume requirement

are found out. Then the similarity scores between CSC’s and each (V)DCs’

security policy are computed and ranked in step 7. Receiving the (V)DC list

with similarity scores, the DB chooses the (V)DC with the highest score and

deploys VMs on the target (V)DC (Steps 8-11).

3.4.3 Performance

The implementation is programmed in Java and it runs on an Intel machine

having the configuration: 2.2 GHz with 4 GB of RAM running Windows 8

and JDK 8. We measure the execution time needed until the client receives

a SP ranking list. Figure 3.10 shows the execution time with the increase

51

Figure 3.9: The sequence diagram of implementation

of SP number from 0 to 100 in each of the existing five domains. The blue

line with triangles presents the execution time with the PSM and the red

line with stars shows the execution time without the PSM. For a small scope

of domain number, the execution time is not long (execution time<1.2s). In

Figure 3.11, the domain number varies from 5 to 30. The higher surface

presents the execution time with the PSM and the lower surface shows the

execution time without the PSM. The time increases with bigger scope of SP

and domain number. However, on the one hand, the domain and SP number

is limited in real case. On the other hand, the maximum value (30s when

domain number=30, SP number=100) as the waiting time for a CSC before

52 3. Similarity Measure for Security Policies

selecting CSPs is also acceptable. Thus, from the two figures, we remark

that the introduction of the PSM does not cause much of performance loss

and it proves that our PSM algorithm is light-weight.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

SP number in each domain

E
x
e
c
u
t
io
n
t
im

e
(
s
) SP ranking without PSM

SP ranking with PSM

Figure 3.10: Execution time of SP

ranking (domain number=5)

0 20 40 60 80 1005
10

15
20

25
30

0
5
10
15
20
25
30
35
40

SP number in each domain
Domain number

E
x
e
c
u
ti
o
n
ti
m
e
(s
)

Figure 3.11: Execution time of SP

ranking (domain number=5∼30)

3.5 Conclusion

The main objective of this chapter is to expose our proposition to show how

to measure the similarity between two security policies. The proposition

gives mainly a generic and light-weight algorithm with which we can calcu-

late a similarity score between two access control policies. After introducing

the categorical measure and numerical measure, we tested our algorithm on

four different security policy models in different scenarios and the output

of our algorithm approximates to the test result. We demonstrated that our

algorithm can be integrated in the SP selection process such as the SP(s)

selection for Cloud storage. In the selection process, security policies be-

longing to different SPs are accessible to a SC so that the SC could make

the evaluation and the comparison. At the same time, the implementation

proved that this integration can enrich the services offered with efficiency.

We decide to work on another use case where SP’s security policies are not

exposed directly. In this case, both SPs and SCs can express their security

53

requirements and those requirements could be automatically derived and

transformed to concrete security policies. More detail will be found in the

next chapter.

54 3. Similarity Measure for Security Policies

Chapter 4

Expression and Enforcement of

Security Policy

4.1 Introduction

In this chapter, to overcome the aforementioned issues in section 2.5, we en-

hance the brokering technology by developing a configuration management

process to allocate VMs in IaaS Clouds. Our method is evaluated by setting

up a Cloud Computing environment to conduct the virtual resource alloca-

tion process. Experimental results show that our approach demands minimal

user (CSC and CSP) intervention and enables unskilled Cloud users to have

access to complex deployment scenarios. The remainder of this chapter is

organized as follows. We first outline the expression of security policies by

a CSCs and CSPs with an exhaustive example. Then, we illustrate the en-

forcement of the security policy for VM allocation. Finally, we describe an

implementation integrated with our solution and evaluate four experiments.

55

56 4. Expression and Enforcement of Security Policy

Figure 4.1: The proposed policy based framework to allocate virtual re-

sources

4.2 Overview of the User-centric Policy-based

Framework

Shown in Figure 4.1, with WS-Agreement [23] based contracts, both CSC1

and CSP specify and manage their security requirements related to the in-

frastructure in order to ensure end-to-end security across different compo-

nents (Steps 1,2). After receiving the SLA contracts, the broker derives the

concrete deployment policies according to security and non-security require-

ments (Steps 3,4,5). Particularly, the broker is able to arbitrate contradicting

demands and make decisions (Step 6). In the end, the broker applies an al-

gorithm to generate the final allocation solution (Step 7) then deploys and

configures VMs on HOSTs (Step 8).

1In the chapter, CSC stands for the end customer of Clouds.

57

4.3 Expression of Security Policy

4.3.1 SLA Contract Expression

To generate security policies for CSCs and CSPs, we suggest, as a first step,

to specify a generic document, which describes the requirements for service

capacity, quality of service (QoS) and security constraints. The SLA contract

is such a document used in service negotiation and management. Based on

a well-formatted template, CSPs and CSCs exchange their proposals until

reaching an agreement [22]. Among existing SLA specifications, we choose

the WS-Agreement because the format is open so it can integrate various

service parameters. Hence a WS-Agreement contract consists of name, con-

text, service terms, guarantee terms and negotiation constraints, CSCs and

CSPs can also integrate service capacity, QoS and security requirement in

its structure.

As Definition 1, we use H={h1, h2, ..., hm} to represent a set of HOSTs and

V={v1, v2, ..., vn} to denote a set of VMs. Note that, VM and HOST may have

multiple attributes, each with their own values, and these attributes can be

assigned either manually by a user or automatically by the system. In terms

of security requirements, as CSCs and CSPs do not know the information of

each other, they express their security constraints by using attribute-based

expressions in Formulas 4.1, 4.2 and 4.3.

permission([Hattr_name : Hattr_value], [Vattr_name : Vattr_value]) (4.1)

permission([Hattr_name : Hattr_value], [vi]) (4.2)

separation(vi, vj) (4.3)

In the three formulas, Hattr_name and Vattr_name indicate the attribute name for

HOST and VM respectively; Hattr_value and Vattr_value denote separately the at-

tribute value for HOST and VM; each of vi, vj represents a unique virtual

machine ID (VMID). Formulas 4.1 and 4.2 are used to specify the permission

58 4. Expression and Enforcement of Security Policy

for VM allocation: HOST(s) with attributes assigned is (are) permitted to

deploy VM(s). The difference is that in the first formula, the CSC describes

VM property by attribute and in the second formula, VMID is given directly.

These two options give the CSCs more flexibility to express their security

requirements. In addition, the CSC declares the coexistence constraint by

Formula 4.3: vi and vj can not be allocated on the same HOST. Formula 4.4

is used by the CSP to express the deployment prohibition. Similar with For-

mula 4.2, HOST with HOSTID hi is not permitted to deploy VM(s) assigned

with attribute.

prohibition([hi], [Vattr_name : Vattr_value]) (4.4)

In an example that we will use throughout the chapter, we consider a De-

vOps [88] use case. DevOps is an emerged software development method-

ology that enhances collaboration between development, quality assurance

(QA) and IT operations. Numerous companies are actively practicing De-

vOps since it aims at helping them to maximize the predictability, efficiency,

security, and maintainability of operational processes. Adoption of DevOps

is being driven by many factors including using public IaaS. Suppose that

a software company has to deploy 3 VMs (v1, v2, v3) in the cloud for a de-

velopment project. Each VM contains its metadata such as properties, re-

quired volume, QoS specification and security constraints. We suppose that

each VM runs a project server and there exist three types of VM: production

(prod), development (dev), and test. Prod server runs live applications sup-

porting the company’s daily business and the data is public for e-business

customers; Dev server consists of the development environment accessible

only to developers having the specific access privilege; Test server is used

to conduct software tests between development and production phase and it

is accessible by testers with their private login accounts. At the same time,

there exist 2 CSPs (h1, h2) and each has its own metadata such as price, lo-

cation and state indicating if it is certified by security audit organizations.

A readable illustration of the VM and HOST configuration is shown in Fig-

59

ure 4.2. In the scenario, each CSP has one security-related requirement:

CSP1 does not want to deploy the VM which will be used for test; CSP2 does

not welcome the server for development. At the same time, the software

company has four security-related requirements:

• All the VMs should be deployed on certified HOST for the purpose of

security.

• As most clients are from Europe, HOST which deploys the virtual ma-

chine v2 should be in Europe in order to reduce the response delay.

• To better protect business assets, VM which is used to test should be

deployed in Europe.

• Regarding the backup mechanism, the virtual machines v1 and v3 should

not be co-located on the same HOST. In case of disaster of HOST, the

project server can be quickly recovered from the other HOST.

60 4. Expression and Enforcement of Security Policy

Figure 4.2: A DevOps use case of virtual resource allocation

4.3.2 Derivation of Security Policy

Security constraints need to be transformed to concrete security policies

including VMID and HOSTID. Here we suggest using the OrBAC [89, 90]

model which supports the expression of permission and prohibition. Deriva-

tion of the OrBAC policy from security constraints requires the policy mining

technology which parses the configured rules and automatically reaches an

instance of high level model corresponding to the deployed policy. Most of

the existing RBAC based mining methods [85, 91] generate abstract policy

by taking concrete rules as inputs. However, in our scenario, both abstract

and concrete rules should be derived from the attribute-based description.

61

The following is the problem definition.

Definition 2. Policy Mining Problem.

Given a set of attributes of Subject S (HOST), a set of attributes of Ac-

tion A, a set of attributes of Objects O (VM), and SAO_attr an attribute-based

subject-action-object assignment relation (Formulas 4.1, 4.2, 4.4), find a set

of ROLES, a subject-to-role assignment SR, a set of activity ACTIVITIES, an

action-to-activity assignment AA, a set of VIEWS, an object-to-view assign-

ment OV and RAV⊆ROLES× ACTIVITIES×VIEWS, a many-to-many mapping

of role-to-activity-to-view assignment relation1.

Definition 2 formalizes the policy mining problem by taking HOST re-

lated attributes and VM related attributes as the input and generating the

OrBAC policy as the output. Algorithm 2 is the concrete realization and it

explains the generation of the permission policy. First of all, after receiving

contracts from a CSC and CSPs, the broker extracts the attribute informa-

tion of each VM and HOST then generates three kinds of structures as the

input: (1) VM list: storing all the attributes of the related VMs; (2) HOST

list: storing all the attributes of the related HOSTs; (3) VM security con-

straint list: storing all the security constraints of the CSC. After initialization

of policy p, the concrete action deploy is assigned to a new activity (lines 2,3).

Then the relevant HOSTID list ID_h_list and relevant VMID list VM_v_list

are generated from each term in the VM security constraint list cv (line 4-

6). For example, the relevant HOSTID and VMID for the security constraint

permission([“certificate” : “true”], [“purpose” : “dev”]) are HOST1 and VM1.

After finding the relevant VMID(s) and HOSTID(s), an abstract permission

with a new role currentRole and new view currentV iew is created (line 7-9).

Finally, all the HOSTIDs in ID_h_list are assigned to currentRole and all the

VMIDs in VM_v_list are assigned to currentV iew (line 10-15). The prohibi-

tion policy for a CSP is generated in the same way by taking input of the VM

list, the HOST list and the HOST security constraint list. Step 1 in Figure 4.2

demonstrates an example of permission and prohibition generation.

1All the rules share the same action (“deploy"), organization (“superCloud") and context

(“default"). For reasons of simplicity, we do not illustrate organization and context in our

algorithm and the derived policy.

62 4. Expression and Enforcement of Security Policy

Algorithm 2 permissionGeneration(lv, lh, cv): permission policy generation

Input: VM list lv, HOST list lh, VM security constraint list cv
Output: OrBAC policy p

1: Initiate p
2: p.activity ← create new activity

3: p.consider(“deploy", p.activity)

4: for cvi in cv do
5: ID_h_list← get relevant HOSTID(s) from lh
6: ID_v_list← get relevant VMID(s) from lv
7: p.currentRole← create new role for HOSTs in ID_h_list
8: p.currentV iew ← create new view for VMs in ID_v_list
9: pi ← create permission: permission(p.currentRole, p.activiy, p.currentV iew)
10: for IDhi in ID_h_list do
11: p.empower(IDhi, p.currentRole)
12: end for

13: for IDvi in ID_v_list do
14: p.use(IDvi, p.currentV iew)
15: end for

16: end for

17: return p

.

4.4 Enforcement of Security Policy

4.4.1 QoS Filtering

The process of policy generation in Algorithm 2 does not consider QoS con-

straints. In the next step, permissions which are not compliant with the QoS

requirements should be eliminated during the policy enforcement phase.

Shown in Step 2 of Figure 4.2, this process aims to disable the permission

which does not satisfy the QoS constraints. To this end, an evaluation be-

tween the VM’s performance requirements and the HOST’s capacity will be

conducted. For example, in our scenario, QoS requirements contain the term

of availability and the deployment permission between VM2 and HOST1 is

disabled.

63

4.4.2 Conflict Management

After generating OrBAC policies from security constraints and executing the

QoS filtering, the broker aggregates permission rules for the CSC and pro-

hibition rules for CSPs like:

is_permitted({hi}, vk) (4.5)

is_prohibited(hj , {vl}) (4.6)

In Formula 4.5, each VM vk has a set of hosts {hi} which allows it to be de-

ployed and in Formula 4.6, a set of VM {vl} are not permitted to be deployed

on HOST hj. The rewriting of rules is used to detect conflicts between per-

missions and prohibitions. A conflict corresponds to the situation where a

subjectHOST is permitted and prohibited simultaneously to perform a given

action deploy on a given object VM . We divide conflicts into the following two

types and for each type an allocation solution is proposed.

Type I: conflict with concession space. Defined in Formula 4.7, HOST hj

is permitted and prohibited simultaneously to deploy VM vk. In fact, except

for hj, VM vk has other allocation solutions. In this case, we disable hj from

the allocation permissions of vk (Formula 4.8). For example, in step 3 of

Figure 4.2, is_permitted({h1, h2}, v3) and is_prohibited(h1, v3) belong to this

type and the solution is disabling is_permitted(h1, v3).

conflict_TypeI(hj , vk)← is_permitted({hi}, vk) ∧ is_prohibited(hj , {vl})

∧ hj ∈ {hi} ∧ vk ∈ {vl} ∧ ({hi} \ hj) 6= φ
(4.7)

disable(is_permitted(hj , vk))← conflict_TypeI(hj , vk) (4.8)

Type II: conflict without concession space. Shown in Formula 4.9, com-

pared with the conflict of type I, the difference is that in Type II, except for

64 4. Expression and Enforcement of Security Policy

hi, VM vk has no other deployment solution. In this case, we adopt a priority

based approach proposed in [92] and introduce two labels p(v) and p(h) as

priorities of VM and HOST. p1 ≺ p2 means that p2 has higher priority than p1.

As the virtual resource allocation is related to different factors such as risk

and trust, the priorities could be predefined by users or determined by the

broker. For example, some of the CSPs’ prohibitions can be disabled by the

broker in case that the CSC has a lower risk score. Making decisions on the

priority is beyond the scope of this chapter. A possible priority judgement

method can be based on the maturity level which defines how well are the

security issues treated within an organisation and evaluates the experience

that the security administrators have [93]. Here we suppose that the CSPs

obtain a higher priority to fulfill all their security requirements. Thus, in

Formula 4.10, the current conflict resolution is disabling the permission of

hi. For example, the solution for the conflict between is_permitted(h3, v1) and

is_prohibited(h3, v1) is disabling the former rule.

conflict_TypeII(hi, vk)← is_permitted(hi, vk) ∧ is_prohibited(hj , {vl})

∧ (hi = hj) ∧ vk ∈ {vl}
(4.9)

disable(is_permitted(hi, vk))← conflict_TypeII(hi, vk) ∧ p(vk) ≺ p(hi) (4.10)

4.4.3 Execution of Virtual Resource Allocation

The aim of the previous steps is to generate the final VM allocation solution.

Without loss of generality, we demonstrate the generation of the allocation

solution from a security policy by considering the CSC’s preference on price.

Algorithm 3 shows the resource allocation process. It takes permission pol-

icy p, VM list lv, HOST list lh and separation constraint c (Formula 4.3) as

input and generates the deployment solution which maps VMs to HOSTs.

In each permission rule, VMID and a list of its possible target HOSTs are

extracted (line 1-4). To satisfy the price preference of the CSC, the target

HOSTs are ranked from lower price to higher price (line 5) thus the one with

65

the lower price will be chosen preferentially. The final deployment solution

depends on mainly two factors (line 9): (1) if the VM has a coexistence con-

flict with the VMs which have been already deployed on the HOST. (2) if the

HOST has enough volume to deploy the VM. Step 4 in Figure 4.2 shows an

example of the resource allocation.

Algorithm 3 resourceAllocation(p, lv, lh, c): virtual machine allocation

Input: OrBAC permission p, VM list lv, HOST list lh, separation constraint c
Output: deployment solution

1: for each concrete rule ri in p do

2: if ri is active then

3: IDvi ← get object in ri
4: ID_h_list← get all the HOSTIDs permitted for IDvi in ri
5: Rank ID_h_list from lower price to higher price

6: for IDhj in ID_h_list do
7: vi ← get VM from lv by IDvi

8: hj ← get HOST from lh by IDhj

9: if IDvi not in separation constraint c
and hj has enough volume for vi
and vi has not been allocated then

10: add (vi attaches host hj) to solution
11: end if

12: end for

13: end if

14: end for

15: return solution

4.5 Implementation and Evaluation

In the SUPERCLOUD [86] project, one use case is to develop a middleware

layer between CSCs and CSPs and this middleware could allocate virtual

resources on physical infrastructures. In this context, there is a need to

consider multi-cloud environments with security constraints. For example,

virtual resources should not be mapped to physical resources that do not

comply with their security requirements; physical resources should not de-

ploy virtual resources that are potentially harmful to their operation; or vir-

tual resources should not coexist on the same physical resource as another

66 4. Expression and Enforcement of Security Policy

potentially malicious virtual resource [94].

In order to implement and evaluate our virtual resource allocation frame-

work, we setup an IaaS Cloud environment on a physical machine (Intel(R)

Core(TM) i7-4600U 2.7 GHz with 16 GB of RAM running Windows 7). Then

different VMs (2 cores and 2 GB of RAM) are created on a VirtualBox plat-

form with a Ubuntu system. We now install a DevStack [95] based Cloud

framework, a quick installation of OpenStack [96] ideal for experimentation.

Each VM is regarded as a physical HOST for the purpose of experimenta-

tion. At the same time, a Java based program runs as the Cloud broker and

connects to the VirtualBox platform by SSH protocol. The OrBAC policy is

generated and managed by the Java-based OrBAC API [43]. Figure 4.3 illus-

trates our experimental architecture.

Figure 4.3: Implementation for virtual resource allocation

The scenario taken by the implementation is based on Figure 4.2. By us-

ing the MotOrBAC tool introduced in Section 2.2.5, we illustrate OrBAC poli-

cies generated in different steps in the scenario by Figure 4.4, Figure 4.5 and

Figure 4.6. In the GUI interface of MotOrBAC, green rows and red rows rep-

resent separately permission rules and prohibition rules. The “preempted"

status with an orange icon indicates that the rule is disabled. Figure 4.4

shows the rules after the WS-Agreement processing. Permission and prohi-

bition rules are derived respectively from the security requirements of the

CSC and the CSPs. Shown in Figure 4.5, after QoS filtering, the deployment

permission concerning VM2 and HOST 1 is disabled. After Step 3, the con-

67

flict is resolved by disabling permission rules related to HOST1 and VM3

(Figure 4.6).

Figure 4.4: Policy generated after Step 1: SLA contract processing

Figure 4.5: Policy generated after Step 2: QoS filtering

Figure 4.6: Policy generated after Step 3: Conflict resolution

The final resource allocation solution generated by Algorithm 3 after the

conflict resolution is visualized in Figure 4.7. The graphs are generated by

68 4. Expression and Enforcement of Security Policy

using GraphStream [97], a Java library for the modeling and analysis of dy-

namic graphs. The window on the left shows the presence of VMs and HOSTs

before allocation and the right one presents the final solution. Connecting

by a black line, we can see that VM1 should be attached to HOST1; VM2 and

VM3 are to be deployed on HOST2.

Figure 4.7: Final resource allocation solution graph

Once the final deployment solution is generated, the broker calls the

Nova API by command-line [98] then creates the instances on the target

HOSTs (Figure 4.8, Figure 4.9).

Figure 4.8: Deployment of VM on HOST1

69

Figure 4.9: Deployment of VMs on HOST2

4.5.1 Experiment 1: contract processing

This experiment measures the duration for contract processing which is

the runtime required by the broker to process the JSON [99] based WS-

Agreement file (see Appendix C) and generates VM and HOST lists. Since

there does not exist a great difference between the SLA contracts of VM

and HOST, here we measure the contract processing time for VMs. We vary

the VM number from 0 to 125 and for each number we randomly generate

service attributes in different quantities from 5 to 20. Figure 4.10 shows the

result. For a small scope of VM and attribute number, the runtime is very low

(30ms). The time increases with a bigger scope of VM and attribute number.

The maximum duration of the experiment is less than 100ms which indicates

that the runtime is acceptable.

4.5.2 Experiment 2: policy generation

In the second experiment, we analyze the required time for the OrBAC policy

generation (Algorithm 2 for permission and similar algorithm for prohibition

generation) once contracts are processed by the broker. In Figure 4.11, we

study the amount of time the broker takes to generate security policies with

an increasing number of VMs and HOSTs. For example, 60 as the value

in the x-axis and y-axis indicates that there exist 60 VMs and HOSTs and

the corresponding value in z-axis (400ms) shows the short time needed to

generate the OrBAC policies.

70 4. Expression and Enforcement of Security Policy

4.5.3 Experiment 3: allocation latency

Our third experiment investigates the impact of VM number and HOST num-

ber on the execution time of Algorithm 3. In Figure 4.12, VM and HOST

number vary from 10 to 60. Given 60 as VM and HOST number, the allo-

cation latency takes about only 1 second. In the real case, as the HOST

number is limited, the estimation of the allocation latency is acceptable and

it confirms the efficiency of our resource allocation algorithm.

4.5.4 Experiment 4: price

The experiment measures the cost for a CSC after the VMs allocation. We

generate the VMs randomly from 10 to 60 and configure 8 HOSTs. For sim-

plicity, each HOST is supposed to provide only one type of IaaS solution with

a fixed price from 0.02 dollars/hour to 0.08 dollars/hour 1. Then we compare

the total price between two allocation solutions. The first solution is illus-

trated in Algorithm 3 which concerns CSC’s price preference by ranking the

HOSTs from lower price to higher price (Algorithm 3: line 4); The second

solution is also based on the Algorithm 3 without considering the price pref-

erence, thus VMs are randomly allocated on HOSTs. As a result, Algorithm 3

shows a great advantage in reducing the deployment cost.

1The prices are inspired from the current IaaS Cloud solution of Amazon EC2 and Mi-

crosoft Azure. For example, in Amazon EC2, the price for the instance of m4.xlarge (4

cores, 16G RAM) is 0.239$/h and it costs 0.308$/h (4 cores, 7G RAM) for the instance of A3

in Microsoft Azure.

71

0

2
5

5
0

7
5

1
0
0

1
2
5

0
10
20
30
40
50
60
70
80
90
100

VM number

T
im

e
(m

s)

5 Attributes
10 Attributes
15 Attributes
20 Attributes

Figure 4.10: Time for contract pro-

cessing

10 20 30 40 50 6010
20

30
40

50
60

0

100

200

300

400

500

VM number HOST number

T
im

e
(m

s)

Figure 4.11: Time for policy genera-

tion

10 20 30 40 50 6010
20

30
40

50
60

0
200

400

600

800

1,000

1,200

VM number HOST number

T
im

e
(m

s)

Figure 4.12: Latency for VM alloca-

tion

10 20 30 40 50 60
0

20

40

2 4.3
7

10
13.5 14

4.7

10.9

18.2
22.4

26
32

VM number

P
ri
c
e
(d
o
ll
a
r/
h
)

With price preference
Without price preference

Figure 4.13: Total price for VM alloca-

tion

72 4. Expression and Enforcement of Security Policy

4.6 Conclusion

In this chapter, we have presented, formalized and enforced security require-

ments for virtual resource allocation. Our approach is to capture security

and non-security requirements from both CSC and CSP, and apply a formal

policy model to drive virtual resource allocation. We first presented the SLA

contracts for CSCs and CSPs which contain service capacity, QoS and se-

curity constraints. We then transformed the attribute-based SLA contracts

to concrete OrBAC policies. Finally, we allocated virtual resources after re-

solving conflicts in policies and demonstrated the efficiency and reliability of

our solution by an OpenStack-based implementation. In particular, our solu-

tion tackles the lack of application of existing policy models that can support

security-related expression when dealing with multiple Clouds.

Part II

Negotiation between Service

Customer and Service Provider

73

Chapter 5

State of the Art

5.1 Introduction

We have seen in the first part of this dissertation that some security related

issues must be treated during the SPs selection phase. In this second part,

we will focus on the process of reaching agreement toward security related

issues such as the usage control and service options. In fact, negotiators at

this moment have already established their trust relationship and shared a

common vocabulary. Since the usage control and service options are related

directly to access control policies, the agreement on these policies should

be reached and guaranteed from both sides. The following sections of this

chapter outline the main preliminaries and related work needed to present

our contribution. We begin with trust negotiation and the existing systems.

Then, we present the notion of access negotiation and its related negotiation

systems. After that, we outline the classification of access control policy ne-

gotiations and the development of negotiation paradigms. At the end, we in-

troduce the meaning negotiation with a focus on the belief fusion paradigm.

5.2 Trust Negotiation

Over the past decade, trust negotiation (TN) as proposed by [100, 101] has

been acknowledged as an effective mechanism for two entities to establish

75

76 5. State of the Art

a bilateral trust relationship by exchanging digital credentials. The estab-

lished relationship helps SPs to make access decision about whether its sen-

sitive resource can be accessed by an unknown service requester. As in

Figure 5.1, a typical TN system contains four parts:

Figure 5.1: Typical TN system

• Credential: unlike the paper assertion we use in the real world (e.g.

passport, driving licence, student card), it represents digital documents

or messages that are certified (signed) by a credential issuer. Typically,

a credential contains attribute information such as identity number,

age or anything else owned by a person or an organization not directly

related to the identity.

• Policy: a statement that specifies under which conditions an entity

(human or artificial) can be trusted for a specific issue (e.g. resource

action, task delegation).

• Negotiation protocol: defines rules managing the negotiation inter-

actions. Applying the negotiation protocol, negotiators exchange their

messages in an orderly way.

• Strategy: implemented by an algorithm, it determines how the local

resource should be disclosed. There exist mainly two kinds of strate-

gies: non-policy-exchange strategy and policy-exchange strategy [102].

77

The former strategy allows two participating entities to exchange as

many credentials as possible. Sensitive credentials unlocked can be

disclosed by the credentials sent from the counterpart [100]. In a

policy-exchange strategy, entities disclose explicitly the policies pro-

tecting the relevant local sensitive credentials. Disclosure of local sen-

sitive credentials is only available when the credentials sent from the

counterpart fulfil the relevant local policies.

TrustBuilder [11] is the first implemented TN system which can be used

in open distributed systems. Based on the ABAC [38, 39] model, the access

control policies for resources are written as a declarative specification of

the attributes needed in order to gain access to these resources. The system

contains three modules: the credential verification module, the negotiation

strategy module and the policy compliance checker. The core element of

the architecture is the negotiation strategy module which enforces negoti-

ation strategies to minimize credentials disclosure. Two different compli-

ance checkers and two communication protocols have been implemented in

TrustBuilder. Based on the TrustBuilder system, an extension called Trust-

Builder2 [103, 104] is proposed. Compared with the previous TrustBuilder

system, it adds many improvements: support for arbitrary policy languages,

arbitrary credential formats, interchangeable negotiation strategies, flexible

policy and credentials store.

Trust-X [105, 106] has been developed as an XML-based framework for

trust negotiation, specially conceived for peer-to-peer environment. In such

environment, both the negotiating parties are equally responsible for ne-

gotiation management and can drive the negotiation process by selecting

the appropriate strategy. The system implements an XML-based language,

named X-TNL, to specify certificates and policies. A novel aspect of X-TNL is

the support for trust ticket which is used to certify that the two parties have

already successfully negotiated a resource so the subsequent negotiations

can be simplified. Once TN is successful, each entity will generate an issued

trust ticket and send it to the counterpart to avoid repeating authorization

over a certain period. The negotiation process consists of four phases: the

78 5. State of the Art

introductory phase, the sequence generation phase, the certificate exchange

phase and the caching of trust sequences phase. The main strategy used in

Trust-X consists in releasing policies to minimize the disclosure of creden-

tials. As a result, only credentials necessary for the success of a negotiation

are effectively disclosed [107].

PROTUNE [108] is a rule-based trust negotiation system. PROTUNE’s

language is based on normal logic program rules: A ← L1, ..., Ln where A

is the head of the rule and L1, ..., Ln is the body of the rule. In addition,

the standard function-free logic programming language can be adopted as

the internal format of the PROTUNE’s language. PROTUNE rules are used

to define access control and release policies. Before the negotiation, PRO-

TUNE agents need to share a few built-in predicates and rule semantics.

Policy authors are free to define and use high-level abstraction. During the

negotiation process, agents exchange their requirements by disclosing se-

lected parts of their policies in the form of logic programming rules. At the

same time, according to the release policies, credentials are disclosed step

by step. Different strategies can be adopted by negotiators. Current PRO-

TUNE provides a cooperative strategy: at each step, all the releasable infor-

mation which appears to be relevant to the success negotiation is disclosed.

Another feature of PROTUNE is its facility in supporting the automated cre-

ation of high-quality documentation: “how-to", “why/why-not" and “what-if"

queries can be answered by contextualized explanations.

5.3 Access Negotiation

So far, negotiation has been mainly used for trust establishment which can

be served as a precondition for access. The next step may concern the con-

crete access permissions of service terms. In access negotiation, a requester

negotiates the access attributes with resource holder and a successful nego-

tiation generates an access authorization (Figure 5.2). There exist some

related systems as follows.

XeNA [12] is an XACML-based negotiation system which brings trust ne-

79

Figure 5.2: Typical access negotiation system

gotiation and access control management together within the same archi-

tecture. Extended from the TrustBuilder [11] system, the XeNA trust engine

proposes a full support of XACML access control and negotiation policies. A

main character is that the system uses a resource classification methodology

which concerns three classes of resources: resources with a direct access,

resources with a direct negotiated access and resources with an indirect ne-

gotiated access. Thus, for different types of resources, different negotiation

processes take place before the access control management. In XeNA, the

negotiation module is in charge of collecting resources required to establish

a level of trust and to ensure a successful evaluation of access. The access

control management is based on an extended RBAC profile of XACML [109].

This extended profile responds to advanced access control requirements and

allows the expression of several access control models within XACML. In

[110], authors propose putting security negotiation into practice by apply-

ing the XeNA framework to Intelligent Transportation Systems (ITS). For a

vehicular communication system, negotiable resources can be security poli-

cies, digital credentials and privacy preferences. Those resources can be

specified by OrBAC [19] permissions as a negotiation policy. After classify-

ing different types of services, the vehicle service contract can be negotiated

80 5. State of the Art

by the XeNA framework.

WS-AC [111] is a fine grained access control system for web services.

The system allows users to express, validate and enforce ABAC policies. Con-

sists of service parameters, negotiation triggers and attribute conditions, an

access control policy can be used to evaluate if an access request is granted,

refused or negotiable. A request is compliant with a policy if all the condi-

tions over the attributes specified in the policy are evaluated to true after

comparing with the attributes taken by the request. An access request is

rejected if it does not comply with any of the existing policies for the request

service; an access will be granted if the parameters papering in the access

request are all and only the parameters specified in the policy and their val-

ues are compatible with the values admitted by the policy; an access request

is not fully acceptable by a policy and may be negotiated if (1) the access

request and the policy are specified using a different set of parameters or

(2) one or more clusters appearing in the policy do not have a corresponding

tuple of parameter values in the access request. Meanwhile, if a negotiation

trigger is defined in the policy, the negotiation is carried out in sending a

negotiated access proposal (NAP) including a set of acceptable parameters.

The negotiation process may take multiple rounds until (1) the request is

acceptable thus the access is granted or (2) the request is not acceptable

without other possible proposals then the access is denied. In addition, the

system encapsulates WS-AC policies in WS-Policy [112].

5.4 Access Control Policy Negotiation

In trust negotiation and access negotiation, access control policies do not

change. Nevertheless, they are changeable during access control policies

negotiation in which different parties negotiate in order to commonly share

resources (Figure 5.3). Gligor et al. [113] define the problem as the common

access state negotiation. The common access state is the state where dif-

ferent parties achieve a common objective by sharing some resources. The

shared resource means that access privilege of the owner is granted. There

81

exist three types of common state negotiation:

Figure 5.3: Typical AC policy negotiation system

• Negotiation with no constraints: all the negotiators share the com-

mon objectives. Typically, all the parties have a single common objec-

tive.

• Negotiation with global constraint: although all the negotiators

have a complete knowledge of each other’s objectives, some of their

objectives may not coincide with each other’s.

• Negotiation with local constraints: different from the second type,

negotiators may not have a complete knowledge from each other.

Towards automated negotiation of access control policies, the work in

[114] examines the problem of negotiating a shared access state, assuming

all negotiators use the RBAC policy model. Based on a mathematical frame-

work, negotiation is modelled as a Semiring-based Constraint Satisfaction

Problem (SCSP) [115]. SCSP is an extension of the Constraint Satisfaction

82 5. State of the Art

Problem (CSP). A CSP problem consists of a set of variables, a domain of

possible values for each variable, and a set of constraints specifying accept-

able combinations of values for one or more variables. A solution for CSP is

to find out an assignment of values to the variables that satisfy all the con-

straints of the problem. SCSP extends CSP by considering that constraints

are not Boolean but belong to an appropriate semiring. With semiring-based

constraint logic, the framework is expressive enough to represent a large

class of policies such as RCL2000 [116] and RBAC [82]. Khurana et al. [117]

then propose a negotiation agent which implements a round robin negotia-

tion protocol: a coalition state will be reached if all other negotiators agree

on it, otherwise the other negotiators make counter-proposals. The negoti-

ation agent consists of a constraint compiler, a constraint evaluator and an

optimizer. In the constraint compiler, the negotiator’s access control con-

straints are expressed in the form of SCSP. In [118], authors argue that the

guidance provided by constraints is not enough to bring practical solutions to

automatic negotiation. Thus, they define an access control policy language

which is based on Datalog 1 with constraints and the language can be used

to define the formal semantics of XACML [1]. Then they use the language

to specify the access control policies in real cases such as remote and hot

grid service deployment: a SC deploys services on remote grid nodes after

negotiating access control policies. A negotiation procedure and three types

of meta-policies are designed for the creation of proposals, the conflict res-

olution and the policy validation during the negotiation. Meta-policies are

used to select different combining algorithms and validate queries accord-

ing to both side’s requirements. Towards the need for human consent in

organizational settings, Mehregan et al. [119] develop an extension of the

Relationship-Based Access Control (ReBAC) model [120] to support multiple

ownership, in which a policy negotiation protocol is in place for co-owners

to come up with and give consent to an access control policy. Such multiple

ownership is modelled by a social network graph in which vertexes represent

users, edges represent interpersonal relationships and edge labels denote

1Datalog is a declarative logic programming language and a subset of Prolog and it is

often used as a query language for deductive databases.

83

the type of relationships that the edges signify (e.g., friend, parent, etc). The

spirit of ReBAC is that the requested access graph shall satisfy some graph

theoretic properties imposed by the access control policy. During negoti-

ation, the draft policy is assessed by formally defined availability criteria:

policy satisfiability, resiliency and feasibility.

5.5 Meaning Negotiation

Meaning negotiation (MN) is a negotiation process in which negotiators pro-

pose definitions and properties about a set of terms then accept or reject

the definitions. MN has received significant attention in the Artificial Intelli-

gence community. One of the paradigms to model MN is called belief fusion.

Its scope is to construct a commonly accepted knowledge as the process of

merging information from different sources. Belief is information held by

human or artificial agents about the world that can be false, uncertain, have

an elementary nature or involve a complex logical structure. Contrary to be-

lief, knowledge is usually defined as an unquestionable piece of information

about the world [121]. The basic problem of belief fusion is that how should

an agent change her beliefs and how to bridge the gap of reaching consis-

tency [122]. To this end, belief negotiation process is needed and Figure 5.4

illustrates a typical MN negotiation system. Booth et al. [123] propose di-

viding the negotiation process into stages. The first stage is weakening the

individual pieces of information into a form in which they can be consistently

added together; in the second stage, the information obtained is added to-

gether.

As MN may involve a different number of negotiators, various models in

the Game Theory literature have been investigated, for example Bargaining

[21], Pleading [124] and English Auction [125]. In the Bargaining Game,

two agents discuss how to share one dollar. They make simultaneously pro-

posals and send other proposals if their initial proposals are not compatible.

The Pleadings Game is a normative formalization and computational model

of civil pleading, founded in theory of legal argumentation and conflicts be-

84 5. State of the Art

Figure 5.4: Typical MN system

tween arguments can be resolved by arguing about the validity and priority

of rules. The English Auction model involves more than two negotiators. The

auction begins by an initial proposal price. Then agents alternately make

proposals in which the price is more than the current highest bid. Finally,

the agent which proposes the highest bid wins the auction.

Burato et al. [20, 126] apply the Bargaining and the English Auction

models to MN negotiation and propose a general negotiation framework.

The agreement outcome is reached by testing the compatibility relation be-

tween the proposal by agents and the outcome can be an agreement or a

disagreement. The framework contains mainly three components as follows:

• Negotiation configuration: based on the theory tree which presents

agent’s preferences about terms.

• Proposal comparison system: compares the proposal received with

the current local one and concludes one of the four relations: equiva-

lence, restriction, compatibility and inconsistence.

• Negotiation algorithm: specifies the sequence of negotiation mes-

85

sages including counter-offers and decisions. The counter-offer is made

according to the relation concluded by the proposal comparison sys-

tem. The algorithm can be used for two kinds of negotiation scenarios:

Bargaining and English Auction.

The Bargaining negotiation consists of three phases:

1. Initialization: the system keeps the initial view-points of the two agents

as their current local definition.

2. Demand stage: each agent sends its term proposition and receives

the others’. Messages exchanged are evaluated by each side to find

if an agreement is reached. In case of an agreement, the negotiation

ends with a common term. Otherwise, the negotiation goes into the

third stage.

3. The war of attrition stage: conducted by negotiation strategies, two

agents exchange their offers by choosing nodes in their theory trees.

The node can be reached by weakening, changing action or by re-

newing the previous proposal. This stage ends when an agreement

is reached or each agent holds the node which is non-negotiable then

the negotiation fails.

The English Auction negotiation involves n (n ≥ 3) agents and the target

is to obtain a viewpoint shared by α (1 < α ≪ n) agents. α is called the

degree of sharing which is fixed by the auctioneer. The auctioneer is the first

bidding agent which controls and decides the process development. In the

negotiation process, only the auctioneer receives proposals from the other

players after broadcasting its proposal. Negotiation between auctioneer and

other agents is still conducted by the Bargaining negotiation mode. The

auctioneer evaluates the counter-proposals by deciding if the α degree is

satisfied. If it is, the agreement on a common term is reached, otherwise,

the auctioneer will check if the negotiation should continue.

86 5. State of the Art

5.6 Conclusion

We have seen the essential preliminaries concerning the negotiation ap-

proaches with a focus on trust, access, access control (AC) policy and mean-

ing negotiation. A comparison of different negotiation types is shown in

Table 5.1. It is worth noting that “N/A" in the row of trust negotiation means

that the knowledge of others’ constraints depends on the negotiation strat-

egy. A negotiator knows the constraints of others’ credentials if the con-

straints are disclosed at the same time with credentials [100, 101]. How-

ever, none of the solutions presented for the AC policy negotiation provides

a complete framework covering policy definition, negotiation configuration,

proposal evaluation and negotiation protocol. Meanwhile, in most of the so-

lutions, the so-called negotiation is just a one-round process without possi-

bility to exchange messages in multi-rounds. To overcome these limitations,

we will present, in the next chapter, the process of negotiation related to the

access control policy and propose a framework and an algorithm based on

MN negotiation.

Table 5.1: Comparison of different negotiation types

Negotiation

types
Message Objective

knowledge

of other’s

constraints

Trust negotiation Credential, Policy Trust relationship N/A

Access negotiation Credential, Policy Access privilege No

AC policy negotiation Policy proposal AC policy No

Meaning negotiation Term proposal Term definition No

Chapter 6

The Process of Reaching

Agreement in Security Policy

Negotiation

6.1 Introduction

In the part I, we presented approaches for SPs selection by considering the

security policy and the security requirement. After selecting the SP(s) which

meet SC’s preferences, the SC and the SP may need to negotiate some more

fine-grained security policies. In case that SC has no other SPs to choose

or it has been already assigned to a SP, the SC may also need to reach an

agreement in security policy. In this chapter, we propose a framework and

an algorithm to negotiate a security policy such as an OrBAC policy. The

negotiation mechanism is based on a policy evaluation approach. For that,

we put forward the whole architecture that we consider to negotiate an Or-

BAC policy. Our whole framework is based on the bargaining model which

manages indisputable and flexible preference. We advance an approach for

comparison and evaluation of security policies: a negotiator makes a propo-

sition and evaluates the opponent one. Dissimilar results of an evaluation

lead to different reactions. The chapter is structured as follows. We firstly

review the relation between policy entities. Based on the entity relationship,

87

88 6. The Process of Reaching Agreement in Security Policy Negotiation

we specify an approach to be used for rule comparison and evaluation. Then

we propose the policy negotiation framework and give examples of its con-

figuration. Finally we explain the negotiation algorithm and show a concrete

scenario and the related prototype.

6.2 Relation between OrBAC Entities

In OrBAC, it is possible to consider the inheritance relation of roles and also

of activities, views and organizations. We present the inheritance relation

by using the predicates sub_role, sub_activity, sub_view and sub_organization

introduced in [83]. Besides, we also define the sub_context predicates for the

context entity. The five predicates belong to two types of relations:

• Hierarchy relation: sub_role presents the hierarchy relation. For ex-

ample, sub_role(org, r1, r2) indicates that in organization org, role r1 is a

sub role of r2. Suppose that in a company, r1 is a staff member and she

guides a trainee r2. Then r1 could inherit all the permissions of r2.

• Specialization relation: sub_activity, sub_view and sub_context belong

to the specialization relation. For example, concerning the document

management, activity manage may be specialized into three activities:

create, consult and update. Thus, update is a sub_activity of manage.

For instance, in a hospital, a physician is permitted to manage medical

records of her patients and we can derive that she is also permitted

to update the medical records. Similarly, a medical_record can be a

sub_view of hospital_file and context1 = certificate can be a sub_context

of context2 = (certificate ∧ IDCard).

It is possible that predicate sub_organization belongs to either hierarchy or

specialization relations. For example, departement1 may be hierarchically

higher than departement2. Thus, role in departement1 can inherit all the

privileges in departement2. Another example regarding the specialization

relation is that market_departement can be one of the sub_organization of

the business_departement, thus role in market_departement can inherit all the

89

privileges in business_departement. An exhaustive relationship for each Or-

BAC entity is shown in TABLE 6.11.

Table 6.1: Relationship between OrBAC entities

Predicate Definition

sub_role(org,r1, r2)
∀org,∀r1,∀r2,∀a,∀v,∀c,Permission(org,r2,a,v,c)
∧sub_role(org,r1,r2)→Permission(org,r1,a,v,c)

sub_activity(org,a1, a2)
∀org,∀r,∀a1,∀a2,∀v,∀c,Permission(org,r,a2,v,c)

∧sub_activity(org,a1,a2)→Permission(org,r,a1,v,c)

sub_view(org,v1, v2)
∀org,∀r,∀a,∀v1,∀v2,∀c,Permission(org,r,a,v2,c)
∧sub_view(org,v1,v2)→Permission(org,r,a,v1,c)

sub_context(org,c1, c2)
∀org,∀r,∀a,∀v,∀c1,∀c2,Permission(org,r,a,v,c2)

∧sub_context(org,c1,c2)→Permission(org,r,a,v,c1)

sub_organization(org1,org2)

∀org1,∀org2,∀r,∀a,∀v,∀c,Permission(org2,r,a,v,c)
∧sub_organization(org1,org2) ∧relevant_role(org1,r)
∧relevant_activity(org1,a)∧relevant_view(org1,v)

→Permission(org1,r,a,v,c)

We denote sub relation by the symbol: "<". e1<e2 indicates that e1 is a sub

entity of e2. Based on the sub relation, we propose three other relations:

equivalent, relevant and inconsistent. Along with the sub relation, the four

relationships will be used to define relations between OrBAC rules in the

next section. Let e1 and e2 be two related entities2 of OrBAC policy, the other

three relations between e1 and e2 are:

Equivalent: if e1 is semantically equal to e2, they have the equivalent re-

lation denoted with e1 = e2;

Relevant: e1<e2 or e2<e1 or e1=e2, in this case we say that e1 and e2 have a

relevant relation and denote it with e1∼e2. We note that both the equivalent

relation and the sub relation are the subcases of relevant relation;

1relevant_a(org, c) means that entity c which belongs to abstract entity a is defined in

organization org.
2We remark that two entities are related if they belong to the same type of abstract

entity. For example, teacher and administrator are related entities because they belong to

the same abstract entity: role.

90 6. The Process of Reaching Agreement in Security Policy Negotiation

Inconsistent: if e1 has not a relevant relation with e2, the two entities have

an inconsistent relation and we denote this with e1≁e2.

6.3 Relation between OrBAC Rules

In the negotiation process, the comparison and the evaluation of a received

proposition with the current local offer are necessary for a negotiator to

make its decision. In [127], Coma et al. define four relation patterns between

the contract grantor and the contract grantee in a contract compatibility ses-

sion. Those relations are used to generate an interoperability contract which

contains a set of policies. Based on the entity relations we previously defined,

we apply the relation patterns to the comparison between two OrBAC per-

mission rules. Let ri and rj be two OrBAC rules, eik, ejk rule entities belong

to ri and rj respectively, five relations between rules are:

Restriction: ri ≺ rj ⇐ ∀eik∀ejk(((eik < ejk) ∨ (eik = ejk)) ∧ ∃eik∃ejk(eik < ejk)).

If at least one entity of ri is a sub entity of rj and other related entities have

an equivalent relation, then ri is a restriction of rj denoted with ri ≺ rj. At

the same time, we say that rj is a generalization of ri. Example:

ri ≺ rj ⇐ staff < trainee, ri : permission(company_A, staff , read, document, default),

rj : permission(company_A, trainee, read, document, default)

Total compatibility (T _compatibility): ri = rj ⇐ ∀eik∀ejk(eik = ejk). If all

the related entities in ri and rj are equivalent, then ri and rj have a total

compatibility relation denoted with ri = rj.

Symmetric compatibility (S_compatibility): ri ≃ rj ⇐ ∀eik∀ejk((eik ∼ ejk) ∧

∃eik∃ejk(eik ≺ ejk) ∧ ∃eik∃ejk(ejk ≺ eik)). All the related entities are relevant,

at least one entity in ri is a sub entity of rj and at least one entity in rj is a

sub entity of ri. This relation is denoted with ri ≃ rj. Example:

91

ri ≃ rj ⇐ staff < trainee, update < read, ri : permission(company_A, staff , read,

document, default), rj : permission(company_A, trainee, update, document, default)

Partial compatibility (P _compatibility): ri ⊲⊳ rj ⇐ ∀eik∀ejk(∃eik∃ejk(eik ∼

ejk) ∧ ∃eik∃ejk(eik ≁ ejk)). At least one pair of related entities is relevant and

there exists at least one pair of entities having an inconsistent relation. In

this case, the rules are partially compatible but not comparable. We denote

it with ri ⊲⊳ rj. Example:

ri ⊲⊳ rj ⇐ financial_file ≁ technical_file, ri : permission(company_A, staff , read,

financial_file, default), rj : permission(company_A, staff , read, technical_file,

default)

No compatibility (No_compatibility): ri ⊣⊢ rj ⇐ ∀eik∀ejk(eik ≁ ejk). If all the

related entities have inconsistent relations, the two rules are not comparable

and they have a no compatibility relation denoted with ri ⊣⊢ rj.

6.4 Negotiation Configuration

6.4.1 Entity Chain

Before negotiation, two participants should have already shared their vocab-

ulary and held their entity chains which register the sub relation between

entities. Five types of entities: organization, role, activity, view and context,

may possess their entity chains.

Definition 3. Entity Chain

Given different entities ei, ej (i, j = [0, n]) which belong to the same type of

entity (organization, role, activity, view, context) and ei < ej (i < j), an entity

chain is a chain EntityChain = 〈V,E〉 (V denotes a vertex and E denotes an

edge) where:

i) e0 is the head;

ii) V ⊆ {ei};

92 6. The Process of Reaching Agreement in Security Policy Negotiation

iii) E ⊆ {(ei, ej)}, where both ei and ej are in V and ei<ej.

Example 1. An entity chain of Role entity is shown in Fig. 6.1. In a company,

an employee has more privileges than a trainee but less authority than a boss.

Hence employee is a sub role of trainee and boss is a sub role of employee.

employeeboss trainee

Figure 6.1: An entity chain example for Role

6.4.2 Policy Tree

Before negotiation, different participants should have their own configura-

tion indicating their preferences. In [20], the negotiation configuration is

based on the theory tree which presents the preference on term defini-

tion. However, a theory tree contains only comparable terms but not non-

comparable ones. Two comparable terms share some common elements and

one term is a restriction of the other. For example, terms T1 = p and T2 = p∨q

are two comparable terms and T1 is a restriction of T2. Conversely, T3 = s

and T4 = h ∧ f are two non-comparable terms. Indeed, in some negotiation

cases, the presentation of preferences should not only focus on comparable

terms but also on non-comparable terms. In our model, we distinguish pol-

icy tree into the related policy tree for comparable policies and the distant

policy tree for non-comparable policies.

Definition 4. Related Policy Tree

For rule r0 which holds some option rules ri, rj (i, j = [1, n], i < j), its

related policy tree is a finite graph PolicyTree = 〈V,E〉 (V denotes a vertex

and E denotes an edge) where:

i) The initial rule r0 is the root which is the most preferred ;

ii) V ⊆ {ri} where for every ri, r0 ≺ ri or r0 ≃ ri ;

iii) E ⊆ {(ri, rj)}, where both ri and rj are in V and ri ≺ rj or ri ≃ rj;

93

iv) all the leaves are stubborn rules which are unquestionable and the least

preferred.

By definition, the configuration is characterized by the degree of preference.

We assume that each related policy tree has at least an initiate rule and a

stubborn rule. An exceptional case is that the negotiation configuration for

a related policy tree has only a head rule which indicates that this rule is

absolutely stubborn and it can not give up itself by redirecting to another

proposition.

Example 2. A possible configuration for a related tree of an OrBAC rule r0 is

shown in Fig. 6.2. r11 has S_compatibility relation with r0 which indicates that

if r0 can not be agreed by the opponent, r11 could be proposed by weakening

some entities and strengthening other ones. r12 and r21 are two stubborn

rules. r21 is a generalization of r11; r12 has S_compatibility relation with r0.

In the example, the tree has two directions: {r0, r11, r21} and {r0, r12}. Each

direction is designed with the aim of weakening one or some entities.

r0

r21

r11 r12

S_compatibility S_compatibility

generalization

Figure 6.2: Example of a related policy tree

Definition 5. Distant Policy Tree

A distant policy tree of r0 which contains rules ri, rj (i, j = [0, n], i < j) is a

finite graph PolicyTree = 〈V,E〉 (V denotes a vertex and E denotes an edge)

where:

i) r0 is the root which prefers to be replaced by other rules;

ii) V ⊆ {ri} where for every ri, ri ⊲⊳ r0 or ri ⊣⊢ r0 ;

iii) E ⊆ {(ri, rj)}, where both ri and rj are in V and ri ⊲⊳ rj or ri ⊣⊢ rj.

94 6. The Process of Reaching Agreement in Security Policy Negotiation

A distant policy tree could be treated as a trigger because rules of lower

depth could be proposed as counter-offers of the root rule. The condition

to activate or deactivate a distant tree depends on the negotiation strategy

which gives more flexibility to the negotiation configuration. The distant pol-

icy tree will be useful when multiple rules are negotiated at the same time

since a counter-offer may be comparable with other proposed rules. An ex-

ample of this case is shown in Section 6.6.2. In case that only one rule is

negotiated in a policy, the distant policy tree does not need to be configured.

Example 3. The distant tree of r0 is presented in Figure 6.3. r0 and r1 have

No_compatibility relation, r0 and r2 have P _compatibility relation. In the ex-

ample, r1 and r2 are more preferred than r0 and it indicates that if r0 is

proposed, r1 or r2 could be proposed as counter-offers.

r0

r1 r2

No_compatibility P _compatibility

Figure 6.3: Example of a distant policy tree

6.5 Negotiation Algorithm

6.5.1 Algorithm Description

This section describes the core negotiation algorithm for our framework. We

suppose that negotiation participants prefer to reach an agreement which is

in their configuration space. Besides, in order to ensure the security level

during the transaction, negotiators do not usually refuse a restriction of its

current rule. We show how a service provider and a requester negotiate

an OrBAC policy contract. Compatible with the WS-Agreement negotiation

protocol [4], our algorithm contains five actions: propose, receive, create

agreement, agreement, refuse and also four stages: information stage, de-

mand stage, bargaining stage, contract establishment stage.

95

Algorithm 4 Negotiate Security Policy

1: i, j ← 1;
2: rj , r

cur
loc , r

cur
rec ← null;

3: rstubloc , rstubrec ← false;
4: Establishes ontological mapping with opponent;

5: ri ← initial proposal;

6: rcurloc ← ri;
7: Send ri to opponent;

8: rcurrec ← receive(rj);
9: if (rcurrec = rcurloc) or (rcurrec ≺ rcurloc) then
10: return CreateAgreement;
11: else

12: while not ((rstubloc = true) and (rstubrec = true)) do

13: if opponent is in stubbornness set then

14: rstubrec ← true;

15: end if

16: if rcurrec = createAgreement then
17: Go to contract establishment stage

18: else if condition to trigger distant tree by rcurrec is satisfied then

19: searchDistantTree(i, ri, r
cur
loc , r

cur
rec);

20: else if (rcurrec = rcurloc) or (rcurrec ≺ rcurloc) then

21: return CreateAgreement;
22: else if (rcurloc ≃ rcurrec) or (rcurloc ≺ rcurrec) then
23: searchRelatedTree(i, ri, r

cur
loc , r

cur
rec);

24: else

25: return Refuse;
26: end if

27: j ← j + 1;
28: rcurrec ← receive(rj);
29: end while

30: end if

31: if (rcurrec = rcurloc) or (rcurrec ≺ rcurloc) then

32: return CreateAgreement;
33: else

34: return Refuse;

35: end if

Information stage: (Algorithm 4, lines 1-4) let ri be the proposition rule

sent and rj the proposition rule received. rcurloc is the current local offer and

rcurrec is the proposal received. rstubloc and rstubrec are used to indicate if a stub-

born rule is reached on each side. Before negotiation starts, negotiators

96 6. The Process of Reaching Agreement in Security Policy Negotiation

Algorithm 5 searchDistantTree(i, ri, r
cur
loc , r

cur
rec)

1: i← i+ 1;
2: ri ← nextMove(rcurloc , r

cur
rec , T

distant
p);

3: rcurloc ← ri;
4: Send ri to opponent;

Algorithm 6 searchRelatedTree(i, ri, r
cur
loc , r

cur
rec)

1: if rcurloc ⊂ T related
p then

2: i← i+ 1;
3: if rstubloc = true then

4: ri ← rcurloc ;

5: else

6: ri ← nextMove(rcurloc , r
cur
rec , T

related
p);

7: rcurloc ← ri;
8: end if

9: if (rcurrec = rcurloc) or (rcurrec ≺ rcurloc) then

10: return CreateAgreement;
11: end if

12: Send ri to opponent;

13: else

14: return Refuse;
15: end if

exchange some information in order to establish their ontological mapping.

Consequently, the two sides have a common knowledge of entities.

Demand stage: (Algorithm 4, lines 5-10) at the beginning of the negotiation

process, each participant sends its initial rule proposition ri to its opponent.

When both participants receive the opponent’s initial offer rj, the relation

between current local rule rcurloc and received rules rcurrec is evaluated. If two

rules have a T _compatibility relation or if a received rule is a restriction of

the current local rule, a CreateAgreement message is sent, then the nego-

tiation will enter the contract establishment stage. Otherwise, participants

begin the bargaining stage.

Bargaining stage: (Algorithm 4, lines 11-35) at the beginning of the bar-

gaining stage, the stubbornness conditions rstubloc , rstubrec of both sides are tested.

97

The loop will be executed until one side makes a decision or both sides reach

their stubborn rules. After receiving a current proposal rule rcurrec , one of the

five possible reactions will be made:

1. The received message rcurrec is CreateAgreement (Algorithm 4, line 16):

the message indicates that the opponent agrees on the current local

rule rcurloc , the negotiation goes to contract establishment stage.

2. rcurrec activates the condition to trigger distant tree T distant
p (Algorithm 4,

line 18): a new proposition ri will be proposed by calling the proposi-

tion method nextMove(rcurloc , r
cur
rec , T

distant
p) (Algorithm 5). In fact, different

negotiation strategies could contain different conditions to trigger the

distant tree.

3. Rule received rcurrec has a T _compatibility relation with the current local

rule rcurloc or is a restriction of it (Algorithm 4, line 20): rcurrec is accepted

by sending the message CreateAgreement.

4. The received rule rcurrec has a S_compatibility relation with the current

local rule rcurloc or rcurloc is a restriction of rcurrec (Algorithm 4, line 22): the

related tree will be searched if such a tree exists (Algorithm 6). If rcurloc

achieves a stubborn rule, the current proposition will be maintained.

Otherwise, a new proposition ri will be proposed by calling the propo-

sition method nextMove(rcurloc , r
cur
rec , T

related
p): ri is generated by weakening

some entities (rule of lower depth is proposed) or changing branch. rcurrec

will be accepted if it is a restriction of ri or has a T _compatibility rela-

tion with it. If the related tree does not exist, the received proposition

will be refused.

5. For other cases (Algorithm 4, line 24): message Refuse is sent.

Contract establishment stage: the CreateAgreement message indicates

that the rule is agreed by the sender. At the same time, a policy contract

based on an agreement is generated by the agreement maker and sent to

the opponent. Here a policy contract is composed of OrBAC rules. Upon

98 6. The Process of Reaching Agreement in Security Policy Negotiation

receiving the CreateAgreement message and generating the policy contract,

the opponent evaluates it and replies by the message Agreement or Refuse.

6.5.2 Theoretical Results

This part deals with some results obtained by our formalization. We say that

the algorithm is complete if it could reach an agreement when there is a

positive outcome; The algorithm is correct when the positive outcome is a

shared policy between negotiators.

Theorem 1. The negotiation algorithm is correct and complete.

Suppose that there does not exist a possible final agreement. In such

a case, a negotiator, after visiting all nodes of its policy tree (the related

tree and the distant tree), reaches one leaf node that constitutes its cur-

rent local proposition. The same happens for its opponent. Each negotiator

can not propose another rule because the current local rule is stubborn.

By executing the line 34 in Algorithm 4, the negotiator will send the mes-

sage Refuse then the negotiation fails. Suppose that the final agreement

exists and the process starts with the proposal of a negotiator, it continues

to compare the propositions received with the local rule which is assumed

as the current one (lines 9, 16, 18, 20, 22, 31 in Algorithm 4 and line 9 in

Algorithm 6). It makes a new proposal (line 4 in Algorithm 5 and line 12 in

Algorithm 6) until a proposition received from the opponent is a restriction

or has a T _compatibility relation with its current one. Then the negotiation

is successful with the negotiators sharing an agreement about a rule.

Theorem 2. In case that only one rule is negotiated, the negotiation algo-

rithm solves the negotiation problem in O(n × c) where n is the maximum

number of nodes among negotiator’s policy trees and c is the number of

trees.

Consider the case in which there is no possible agreement. Since the

stubborn rules of the two negotiators can not make an agreement, we shall

visit at least all the nodes of one direction of a policy tree and at most

all the trees. In the latter case, stubborn rules of these trees will not be

99

achieved except for the last tree visited. The searching strategy depends

on the nextMove method which is not specified in this dissertation (line 2 in

Algorithm 5 and line 6 in Algorithm 6). Moreover, if such an agreement can

be found, negotiation necessarily terminates before. Therefore the case in

which both sides reach their stubborn rules holds the highest complexity.

6.6 Application

The framework and algorithm above could be applied to different negotia-

tion cases from agent-agent to agent-human. The difference between the

two cases is that for the agent-agent case, each side should configure its

negotiation framework and for the latter case, only the agent side should

configure it. In this section, we illustrate a concrete scenario between two

agents.

6.6.1 Scenario Description

INTER-TRUST [128] is an European project which aims at developing a

framework to support trustworthy applications in heterogeneous networks

and devices based on the enforcement of interoperable and changing secu-

rity policies. One use case of this project is negotiating a security policy

between a vehicle and the infrastructure for Intelligent Transport Systems

(ITS). Here we adopt the scenario defined in [129]. The subjects involved in

the example are: Bob (car’s owner and car’s local security policy manager),

a French ITS station (French ITS service provider) and a Chinese ITS (Chi-

nese ITS service provider). In our scenario, Bob has a set of security rules,

which are defined when he subscribed as a premium user for his first service

contract with the French ITS:

S1 : permission(Operator_A, premium_user, access,DRP _service, France)

S2 : permission(Operator_A, premium_user, access, Safety_service, France)

S3 : permission(Operator_A, premium_user, access, CSA_service, France)

100 6. The Process of Reaching Agreement in Security Policy Negotiation

This service contract gives him a set of privileges to gain access to different

services. Bob travels to another country (China for example) and wants to

use the same services with the same privileges offered by the French ITS.

On the one hand, the service contract provided by the Chinese ITS is not the

same as the one provided by the French ITS. On the other hand, there is an

agreement between the French ITS and the Chinese ITS, which allows clients

of both service providers to use services while traveling in another region.

Table 6.2 shows the service mapping in this agreement which combines the

services proposed in France with ones meaning the same in China.

Table 6.2: Services Mapping Table

Service ID French ITS Chinese ITS

S1 DRP_service Cooperative-navigation

S2 Safety_service Driving assistance-Road Hazard Warning

S3 CSA_service Speed management

S4 - Driving assistance-Cooperative awareness

S5 - Location-based-services

S6 - ITS station life cycle management

S7 - Communities_services

Consequently, the result of this mapping is a redefinition of the policy con-

tract by the Chinese ITS as follows:

S1 : permission(Operator_B, custom_user, access,DRP _service,Bob_in_China)

S2 : permission(Operator_B, custom_user, access, Safety_service,Bob_in_China)

S3 : permission(Operator_B, business_user, access, CSA_service,Bob_in_China)

S4 : permission(Operator_B, custom_user, access,DrivingAssistance_

CooperativeAwareness,Bob_in_China)

S5 : permission(Operator_B, custom_user, access, Location_based_services,

Bob_in_China)

S6 : permission(Operator_B, business_user, access, ITSStationLifeCycleManagement,

Bob_in_China)

S7 : permission(Operator_B, business_user, access, Communities_services,

Bob_in_China)

101

By default, a custom_user is a free user who can benefit from only basic ser-

vices and a business_user should pay extra amount for the additional spec-

ified services. A business_user could also have access to basic services at

the same time. Thus, the role business_user can be considered as a sub

role of custom_user. Bob is a custom_user but he does not want to lose the

CSA_service (S3) and he also does not want to pay an extra amount to have

that service. Hence, he will try to negotiate the operator’s policy based on

his initial proposition. Our negotiation framework will be applied to the ne-

gotiation scenario. In the scenario, Bob negotiates a contract which contains

seven OrBAC rules and those rules will be negotiated at the same time in-

stead of one by one. For the purpose of synchronization, we assume that the

agreement will be reached when all the rules are agreed simultaneously by

the message CreateAgreement. Otherwise the negotiation continues.

6.6.2 Process of Security Policy Negotiation

As service terms are based on a common service vocabulary and the vocabu-

lary is accessible for users, we suppose that Bob and the Chinese ITS station

hold the same entity chains shown in Fig. 6.4. The negotiation configurations

of Bob and the Chinese ITS station contain 1) initial proposition, 2) related

policy tree, 3) distant policy tree. Shown in Fig. 6.5 and Fig. 6.6, Bob’s empty

related policy tree indicates that he does not want to weaken any entity of

the policy in the process of negotiation. However, the ITS has its related

policy tree which shows the possibilities to weaken the roles of S3 by S31,

S33 and to weaken its view by S32. In the current negotiation algorithm for

the vehicle and ITS station (Algorithm 4, line 18), a counter-offer from the

distant tree will be trigged when 1) rcurrec has not been previously received and

has a T _compatibility relation with the current local rule rcurloc ; 2) r
cur
loc belongs

to a distant tree. In fact, different negotiation strategies could have different

conditions to activate or deactivate the distant tree.

At the demand stage, the ITS station and Bob exchange their initial propo-

sitions. However, the initial rules could not be agreed on. As a consequence,

the bargaining stage takes place. Upon receiving S3′, S4′ and S5′, the ITS

102 6. The Process of Reaching Agreement in Security Policy Negotiation

Role:
custom userbusiness user any user

view:
all servicesCSA service

Context:

Bob in China

Bob in China,

digital certificate,

location data
default

Figure 6.4: Entity chains of Bob and Chinese ITS station

Initial proposition

S1, S2, S3’, S4’, S5’, S6, S7

S3’: permission(Operator_B, custom_user, access, CSA_service,

 Bob_in_China)

S4’: permission(Operator_B, business_user, access,

 DrivingAssistance_CooperativeAwareness, Bob_in_China)

S5’: permission(Operator_B, business_user, access,

 Location_based_services, Bob_in_China)

Related policy tree -

Distant policy tree

S5’

S4’

正式修改版本

Figure 6.5: Bob’s negotiation configuration

station makes an evaluation: S3′ is a generalization of S3; S4′ and S5′ are

restrictions of S4 and S5. According to the negotiation algorithm, S5′ could

be accepted. After visiting the related policy tree of S3 and the distant policy

tree of S4′, new propositions S31 and S2′ with an initial proposition S5′ are

sent to Bob. For Bob, S31 and S2′ are considered as acceptable rules because

they are restrictions of S3’ and S2 which are his current local rules. Besides,

S5′ has its distant policy tree which contains S4′. As a result, the second

proposition of Bob is a combination of S31, S2
′ and S4′. From the point of

103

S4’

S2’

Initial proposition S1, S2, S3, S4, S5, S6, S7

Related policy tree

S31: permission(Operator_B, custom_user, access, CSA_service,

 Bob_in_China & digitalCertificate & locationData)

S32: permission(Operator_B, business_user, access, all_services,

 urgent)

S33: permission(Operator_B, any_user, access, CSA_ service,

 urgent)

Distant policy tree

S2’: permission(Operator B, business user, access,

 Safety_service, Bob_in_China)

S4’: permission(Operator_B, business_user, access,

 DrivingAssistance_CooperativeAwareness, Bob_in_China)

S3

S31

S33

S32

Figure 6.6: Chinese ITS station’s negotiation configuration

view of the ITS station, S31 and S2′ have a total compatibility relation with

its current local rules and S4′ is a restriction of S4. According to the ITS’s

condition to trigger the distant tree search, the distant tree of S4′ will not

be searched again because it is the second time that the ITS station receives

the proposal S4′. Consequently, the ITS station accepts the second proposi-

tion from Bob by sending the message CreateAgreement. The ultimate policy

contract is established after that Bob replies Agreement. All the negotiation

process is presented in Fig. 6.7 and the final policy contract is a combination

104 6. The Process of Reaching Agreement in Security Policy Negotiation

of OrBAC rules:

counter offer 1

Sϯ’: Role: B->C

Sϰ’: Role: C->B

Sϱ’: Role: C->B

B: business_user

C: custom_user

counter offer 2

S31: Role: B->C

 Context: & digitalCertificate & locationData

SϮ’: Role: C->B

Sϱ’: Role: C->B

counter offer 3

S31: Role: B->C

 Context: & digitalCertificate & locationData

SϮ’: Role: C->B

Sϰ’: Role: C->B

CreateAgreement

Agreement

Bob ITS station

Initial offer

S1, S2, S3, S4,

S5, S6, S7

Figure 6.7: Negotiation between Bob and the Chinese ITS station

S1 : permission(Operator_B, custom_user, access,DRP _service,Bob_in_China)

S2 : permission(Operator_B,business_user, access, Safety_service,Bob_in_China)

S3 : permission(Operator_B, custom_user, access, CSA_service,Bob_in_China

& digitalCertificate & locationData)

S4 : permission(Operator_B,business_user, access,DrivingAssistance_

CooperativeAwareness,Bob_in_China)

105

S5 : permission(Operator_B, custom_user, access, Location_based_services,

Bob_in_China)

S6 : permission(Operator_B, business_user, access, ITSStationlifeCycleManagement,

Bob_in_China)

S7 : permission(Operator_B, business_user, access, Communities_services,

Bob_in_China)

6.6.3 Prototype

We have developed a Java-based prototype to demonstrate the scenario. Fig-

ure 6.8 presents its architecture. The prototype contains two major compo-

nents: the negotiation module and the local configuration component.

Figure 6.8: Architecture of the prototype

The function of each sub component is presented as follows:

• Communication Module: sends and receives messages, each mes-

sage contains an OrBAC policy or decision.

• Decision Making Module: executes the negotiation algorithm, gen-

erates a decision or a policy as a counter-offer.

• Policy Comparison module: compares the received OrBAC policy

with the current local one and returns their relation.

106 6. The Process of Reaching Agreement in Security Policy Negotiation

• Policy Tree Editor: an independent GUI tool which could be used to

edit related tree and distant tree and save the related files.

Shown in Figure 6.8, the Communication Module takes a message as an in-

put. If the message is a decision, the Communication Module will execute

negotiation algorithm directly by replying with a message or stopping the

negotiation. In case that the message is a OrBAC policy, the received pol-

icy will be sent to the Policy Comparison Module in step 2. Then the Policy

Comparison Module makes a comparison between the policy received and

the local policy by requesting the current local policy from Local Configu-

ration component (Steps 3,4). After the comparison, the Policy Comparison

Module sends the rule relationships (Step 5) to the Decision Making Mod-

ule which executes the negotiation algorithm. Steps 6, 7 will be executed

when "searchDistantTree (Algorithm 5)" or "searchRelatedTree (Algorithm

6)" function is called. Finally, a counter-offer policy or decision will be sent

to the Communication Module (Step 8) and forwarded to the opponent ne-

gotiator in the communication channel (Step 9).

From the negotiator’s point of view, the negotiator needs to configure

the (1) initial contract, (2) entity chain, (3) preference on security policy.

Initial contract contains different OrBAC rules which can be written in the

form of XML. An initial contract including the rule of S1 is showed as follows.

Example of initial contract

1 <rule1>

2 <right>permission</ right>

3 <organization>Operator_B</ organization>

4 <role>customer_user</ role>

5 <activity>access</ activity>

6 <view>DRP_service</view>

7 <context>BobInChina</ context>

8 </ rule1>

9 <rule2>

10 . . .

11 </ rule2>

107

The entity chain can be also written in the form of XML. Following is an ex-

ample of an entity chain for role and it indicates that in a role entity chain,

business_user is a sub entity of custom_user and custom_user is a sub entity of

any_user.

Example of an entity chain for the Role entity

1 <role>

2 <chainRole>

3 <entityRole>business_user</ entityRole>

4 <entityRole>custom_user</ entityRole>

5 <entityRole>any_user</ entityRole>

6 </chainRole>

7 </ role>

We need the Policy Tree Editor to configure the related tree and the distant

tree. The policy is saved in a local file (.tr) which can be opened and visu-

alized by the Policy Tree Editor. Figure 6.9 shows the GUI interface of the

Policy Editor with which we can load, save and edit a policy.

Figure 6.9: Using the policy tree editor to visualize and edit policy

After the local configuration is ready, the negotiator can start the negotiation

by running the negotiation module then the message windows will be shown.

Figure 6.10 is an example of a message sent during the negotiation.

108 6. The Process of Reaching Agreement in Security Policy Negotiation

Figure 6.10: A message sent during negotiation

109

6.7 Conclusion

The main objective of this chapter is to expose our proposition to show how

to negotiate security policies. The proposition gives mainly a framework with

which we can configure negotiable policies by presenting preferences. The

preferences related to security policies are configured in the form of tree ar-

chitecture. Introducing five relationships, we showed how the security rules

are compared and evaluated. An algorithm was also given to the negotiation

process. In addition, we integrated OrBAC policies in our negotiation model.

The proposed algorithm also deals with the tree search module which makes

the next proposition. Detail of this module is a part of future work which

concerns the negotiation strategy and the Game Theory may be applied.

110 6. The Process of Reaching Agreement in Security Policy Negotiation

Chapter 7

Conclusion and Perspectives

The emerging service mode with multiple SPs brings more flexibility and effi-

ciency to SCs regarding choosing services. In the process of data and service

exchange, the security policy plays a fundamental role in the privilege man-

agement. With security policy, actors are able to edit their own privileges

and specify the one which restricts permissions for visitors. For example, it

can be applied to define service contents for a vehicle station, or to express

preferences from CSPs and CSCs in virtual resource allocation.

Although the security policy offers several benefits, its evaluation and

negotiation still present a variety of challenges, especially among different

security policy models and between negotiators with their own preferences.

In this sensitive context, the first objective of this thesis is to provide a gen-

eral method for security policy evaluation. We hope that our approach will be

helpful in the SP selection. By similarity score, the similarity level between

two security policies is quantified. We have shown that the scores produced

by the PSM method are related to the similarity rates from our test. A partic-

ular prototype is made for cloud-storage-based SPs selection. However, the

assumption that both parties disclose their security policies for evaluation

does not suffice in all the scenarios. In case that the security policies are not

expressed explicitly, we proposed a framework that derives security require-

ments to security policies. Meanwhile, the framework is used in a scenario

where VMs are allocated in an IaaS infrastructure.

The second objective of this thesis is to introduce guidelines for the pro-

111

112 7. Conclusion and Perspectives

cess of the security policy negotiation between two actors, typically negotia-

tors aiming to reach agreement on access control policy. We have integrated

the bargaining game and the meaning negotiation in our proposition.

7.1 Main Results

The main results of this dissertation are stated as follows:

A new similarity measure method for security policies: A generic and

light-weight method [17] is proposed to compare and evaluate security poli-

cies belonging to different models. With the method, a SC is able to quickly

locate SPs with potential similar policies. At the same time, our method

shows more accuracy through the brute-force based tests. We propose inte-

grating the policy similarity measure algorithm in the SP selection process

and a prototype has been developed to execute the algorithm in the Cloud

storage selection process.

A policy-based framework for the expression and enforcement of se-

curity policies in multi-cloud environments: The framework [18] applies

OrBAC [19] policy to IaaS resource allocation. The attribute-based secu-

rity requirements in a SLA contract can be derived to concrete OrBAC rules

then these rules are considered together with other non-security demands

during the enforcement of resource allocation. The contribution meets key-

functional requirements for user-centric as (i) it addresses the SLA configu-

ration options at the IaaS layer from service capacity to security constraint.

(ii) it considers multiple requirements of security and applies the OrBAC

model to translate attribute-based security constraints to concrete policies.

(iii) it provides a conflict management mechanism to detect and handle the

contradictory requirements from a CSC and CSPs, with the possibility to

judge the policy priority by evaluating users’ profiles. (iv) it proposes a re-

source allocation algorithm which takes account of resource capacity, QoS

and security policy. A prototype for VM scheduling in an OpenStack-based

113

multi-cloud environments is developed.

A model for security policy negotiation: Based on the bargaining game

[21] and the meaning negotiation, a framework and an algorithm [22] are

developed to negotiate a common security policy. A prototype is also devel-

oped to simulate vehicle negotiation process. With policy tree based config-

urations, two negotiators are possible to reach their agreement step by step.

Compared with other works, our method is indeed the pioneering one which

integrates the security policy in the negotiation process with a complete sup-

port of configuration, protocol, algorithm and strategy.

7.2 Perspectives

We give a set of future research directions that could be investigated as a

continuation of the results presented in this thesis.

Integrating the PSM technology in security policy negotiation: As a

PSM score presents the similarity level between two policies, it may be use-

ful in the security policy negotiation process. After introducing the PSM

score, relationships between security policies are not only classified but also

quantized. Consequently, more strategies can be executed according to the

PSM score. Besides, the decision making can be also based on PSM score

which brings more fine-grained control to the negotiation process.

Introducing contextual based policy in virtual resource allocation:

Our current solution for policy-based virtual resource allocation is based on

the OrBAC policy which holds “default" for the context. A context is viewed

as an extra condition that must be satisfied to activate a given security

rule. The capacity to express context conditions enables users to integrate

context-based requirements in their WS-Agreement template then those re-

quirements can be derived to context-based OrBAC policies. A context-aware

security policy also offers the possibility for the users to specify their security

114 7. Conclusion and Perspectives

preferences that will be enforced during the service discovery process [130].

As mentioned in [42], context requirements are possible to cover different

aspects such as time, space and history. By this way, a user’s deployment

requirement is enriched and more diverse.

Applying AI technologies and strategy to policy negotiation: The pro-

posed process of reaching agreement in security policy negotiation is based

on the bargaining game and the meaning negotiation. A general framework

and a tree search strategy are specified and illustrated. However, the cur-

rent negotiation model is only suitable for one-one negotiation. In order to

negotiate security policies among a SC and multiple SPs, our model can be

extended by using other models in the Game Theory such as the English auc-

tion [125]. Another direction is to diversify negotiation strategies: different

policy tree search strategies can be applied by negotiators for different sce-

narios.

Improving interoperability between different policy models during

policy negotiation: As different access control policy models have their

advantages and limitations, users may take different models to specify the

privileges. When different policies belonging to different models are needed

to be negotiated, interoperability becomes an important issue to be over-

come. Although some work such as [131] has proposed using the ABAC

model to unify the DAC, MAC and RBAC models, there exist lots of investiga-

tions to do regarding (i) unifying more AC policy models; (ii) developing an

interoperable policy engine and integrating it in policy negotiation.

Extending policy-based resource allocation framework to more sce-

narios: Presented in Chapter 4, our current allocation framework can be

used for the VM deployment scenario which belongs to the “compute" as-

pect of Cloud Computing. In addition, our solution can be used in more

related aspects such as “storage" and “network". Regarding the "storage"

aspect, the policy-based framework enables users to express their security

requirements for their data; at the same time, SPs which offer their stor-

115

age space also specify their preferences on the characteristics of data. The

result of execution of our framework is that a user’s data is stored by mul-

tiple distributed SPs. Another possible application in the "network" aspect,

is that the user expresses their traffic routing requirements and sends them

to the SDN controller. Then the controller selects a routing path among

switches which hold security related preference of a SP. The final solution of

the routing path is the one which satisfies the user’s and SPs’ requirements

simultaneously.

Our current work concentrates on the resource allocation and the se-

curity configuration in SDN networks. The context is the same as the one

defined in Chapter 4. With the evolution of hardware, network services and

data, Cloud Computing becomes one of the key technologies that satisfies

the growing demands of software and hardware resources with its availabil-

ity and efficiency for the requested resources. At the same time, SDN is

becoming the backbone of the cloud infrastructure. It offers many advan-

tages such as programmability, agility, abstraction, centralization, visualiza-

tion and flexibility. As a result, many cloud providers select SDN as a cloud

network service and offer it to customers. However, due to the rising num-

ber of network cloud providers and their offers, network cloud customers

must find the provider which best satisfies their requirements. In this con-

text, based on network security policy, we propose a negotiation and an en-

forcement framework for SDN service provider selection. Our solution is a

pioneering attempt to tackle this issue, specifically in terms of security pol-

icy. We integrate it in an existing SDN security environment. Our solution

transforms the customer’s security requirements into SDN firewall rules and

deploys them as OpenFlow rules in the SDN infrastructure. Figure 7.1 shows

a negotiation scenario of our proposal. SDN orchestrator works as a broker

between client and SPs. The scenario consists of steps as follows. Firstly

both the NSC and the NSPs specify their security requirements related to

the infrastructure in order to ensure end-to-end security across different

components (Steps 1,2). After receiving security requirement expressions

from the NSC, the SDN Orchestrator assesses the expressions by comparing

them with service templates of NSP then starts a negotiation process with

116 7. Conclusion and Perspectives

NSC when necessary (Step 3). A successful negotiation generates an agree-

ment about security expression (Step 4) which will be derived to high-level

security policies of the infrastructure (Step 5). Particularly, the high-level

policies are translated to OpenFlow rules when the NSP adopts the Open-

Flow protocol [132] (Step 6). In the end, the SDN orchestrator deploys the

generated OpenFlow rules on the chosen NSP (Step 7).

Figure 7.1: A scenario of expression and negotiation service contract for

SDN networks

The scenario above brings some technical challenges. Firstly, we are plan-

ning to use a structure which consists of atomic elements to specify a secu-

rity rule.

r : {e1, e2, ..., en} (7.1)

where ei is an atomic rule element and each rule element has five properties:

• Type: e.type ∈ {subject, action, object, context}. Each network rule should

contain elements belonging to subject, action and object type. The context

type is an option.

117

• Domain: e.domain ∈ {protocol, time...}. Domain restricts the unit of an

element.

• Value: e.value. There are two types of values: variable to be assigned

and non-variable which are already assigned. We used xi to present a

variable. Both variable and non-variable can be assigned by three kinds

of data types:

– constant: numeric value or semantic value. For example e.value :

TCP .

– interval: numeric interval. For example, e.value : [8 : 00, 20 : 00].

– set: numeric or semantic set. For example e.value : {15 : 00, 16 :

00, 17 : 00}, e.value : {UDP, TCP, ICMP}

• Public preference (pubpre): A variable can possess its public prefer-

ence which is accessible as public information. Interval (numeric) and

set (numeric, semantic) can be used for preference specification.

• Private preference (pripre): A variable can possess its private pref-

erence which is the local configuration for negotiation and can not be

disclosed to others. The expression is similar to the one for pubpre.

For the rule without context type element, we add a context element with

e.domain = ⊤ and e.value = ⊤. "⊤" indicates that all the propositions are

acceptable. The intersection between any value and "⊤" is the value itself. In

terms of preference, coexistence of pubpre and pripre introduces the possibility

of lying which makes negotiation more complicated. For simplicity, in our

current proposal, a value should not hold pubpre and pripre at the same time.

We intend to specify different types of network security policies classi-

fied in [133]: consume/produce policies for end-system, propagate policies for

communication, transform policies for protocol and filter policies for fire-

wall. In the rule expression, variables can expressed in two status: assigned

and not assigned. The objective of negotiation is to instantiate the variables

not assigned and reach an agreement on the variables which are already

assigned.

118 7. Conclusion and Perspectives

Appendix A

List of Acronyms

ABAC: Attribute-Based Access Control

AC: Access Control

ACL: Access Control List

AI: Artificial Intelligence

CAIQ: Consensus Assessments Initiative Questionnaire

CSC: Cloud Service Customer

CSP: Cloud Service Provider

DAC: Discretionary Access Control

IaaS: Infrastructure as a Service

ITS: Intelligent Transport System

LBAC: Lattice-based Access Control

119

120 . Appendix A

MAC: Mandatory Access Control

MN: Meaning Negotiation

OrBAC: Organization-Based Access Control

PaaS: Platform as a Service

PSM: Policy Similarity Measure

QoS: Quality of Service

RBAC: Role-Based Access Control

RBSLA: Rule-Based Service Level Agreement

SC: Service Customer

SaaS: Software as a Service

SDN: Software Defined Networking

SecLA: Security Level Agreement

SLA: Service Level Agreement

SSLA: Security Service Level Agreement

SP: Service Provider

TN: Trust Negotiation

121

VM: Virtual Machine

WS-Agreement: Web Services Agreement

WSLA: Web Service Level Agreement

XACML: extensible Access Control Markup Language

122 . Appendix A

Appendix B

Brute-force based test for existing work

Figure 2 shows the brute-force test result of policy similarity score by using

the same test environment illustrated in Section 3.3. The y-axis represents

the PSM score computed by the algorithm proposed in [60]; the x-axis shows

the test result of policy similarity defined by Equation (2.1). We remark that

the similarity score computed does not approximate to the test result. The

main reason is that, firstly, as a brute-force based test method, our input

requests are more exhaustive than the ones generated by other test tools

such as MTBDD [134]. Secondly, the PSM algorithm defined in [60] focuses

only on the literal level but not logic aspect of security policy. As a result,

two security rules sharing the majority of common elements are considered

to hold a higher similarity score. However, the rest of elements may cause

totally different decisions which indicates that the two rules are not similar

in terms of output.

123

124 . Appendix B

0
-1
0

1
1
-2
0

2
1
-3
0

3
1
-4
0

4
1
-5
0

5
1
-6
0

6
1
-7
0

7
1
-8
0

8
1
-9
0

9
1
-1
0
0

0.7

0.8

0.9

1

Test result of policy similarity (%)

S
im

il
a
ri
ty

sc
o
re

c
o
m
p
u
te
d

project-admin(RBAC)
firewall-admin (Net-RBAC)
hospital-admin(OrBAC)

lab-admin (ABAC based XACML)

Figure 2: Experiment of similarity score (set-4).

Appendix C

JSON-based WS-Agreement contracts

WS-Agreement contract specified by CSC

1 {"name":"clientTemplate",

2 "context":"VM-deployment",

3

4 "serviceRequirement":

5 {

6 "VM1_volume":"40_GB"

7 "VM2_volume":"40_GB",

8 "VM3_volume":"50_GB",

9 },

10

11 "serviceDescription":

12 {

13 "VM1_purpose":"dev",

14 "VM1_data":"private",

15 "VM1_application":"internal",

125

126 . Appendix C

16

17 "VM2_purpose":"prod",

18 "VM2_data":"public",

19 "VM2_application":"business"

20

21 "VM3_purpose":"test",

22 "VM3_data":"private",

23 "VM3_application":"internal",

24 },

25

26 "guaranteeTerm":

27 {

28 "VM1_availability":"more_96_percentage",

29 "VM2_availability":"more_98_percentage"

30 "VM3_availability":"more_96_percentage",

31 }

32 "creationConstraint":

33 [

34 ["permission",{"certificate":"true"},{"purpose":"dev"}],

35

36 ["permission",{"certificate":"true"},{"purpose":"prod"}],

37

38 ["permission",{"certificate":"true"},{"purpose":"test"}],

39

127

40 ["permission",{"location":"Europe"},{"ID":"VM2"}],

41

42 ["permission",{"location":"Europe"},{"Purpose":"test"}],

43

44 ["separation",{"ID":"VM1"},{"ID":"VM3"}]

45],

46 }

WS-Agreement contract specified by CSP1

1 {

2 "name":"HOST1",

3 "context":"VM-deployment",

4

5 "serviceDescription":

6 {

7 "volume":"100_GB",

8 "price":"0.2_dollar",

9 "location":"France"

10 "certificate":"true",

11 },

12

13 "guaranteeTerm":

14 {

15 "availability":"more_97_percentage"

16 }

128 . Appendix C

17

18 "creationConstraint":

19 [

20 ["prohibition",{"ID":"HOST1"},{"purpose":"test"}]

21],

22

23 }

WS-Agreement contract specified by CSP2

1 {

2 "name":"HOST2",

3 "context":"VM-deployment",

4

5 "serviceDescription":

6 {

7 "volume":"100_GB",

8 "price":"0.3_dollar",

9 "location":"UK"

10 "certificate":"false",

11 },

12

13 "guaranteeTerm":

14 {

15 "availability":"more_98_percentage"

16 }

129

17

18 "creationConstraint":

19 [

20 ["prohibition",{"ID":"HOST2"},{"purpose":"dev"}]

21],

22

23 }

130 . Appendix C

List of Publications

International Conferences

• LI. Yanhuang, N. Cuppens-Boulahia, C. Jean-Michel, F. Cuppens and

F. Vincent. Expression and Enforcement of Security Policy for Virtual

Resource Allocation in IaaS Cloud. In IFIP International Information

Security and Privacy Conference. Springer International Publishing,

Proceedings, pages 105-118, 2016.

• LI. Yanhuang, N. Cuppens-Boulahia, C. Jean-Michel, F. Cuppens, F. Vin-

cent and J. Xiaoshu. Similarity Measure for Security Policies in Service

Provider Selection. In : International Conference on Information Sys-

tems Security. Springer International Publishing, Proceedings, pages

227-242, 2015.

• LI. Yanhuang, N. Cuppens-Boulahia, C. Jean-Michel, F. Cuppens and F.

Vincent. Reaching Agreement in Security Policy Negotiation. In : 2014

IEEE 13th International Conference on Trust, Security and Privacy in

Computing and Communications. IEEE, Proceedings, pages 98-105,

2014.

• Cuppens-Boulahia Nora, LI Yanhuang, Zerkane Salaheddine, Espes David,

Cuppens Frédéric, Crom Jean-michel, Negotiation and Enforcement of

Network Security Policies for SDN Providers. In ACM Asia Conference

on Computer and Communications Security (ASIACCS), ACM, 2017

(Submit).

131

132 . Appendix C

Research Projects

• Alex Palesandro, Aurélien Wailly, Ruan He, Yvan Rafflé, Jean-Philippe

Wary, Yanhuang Li, Soren Bleikertz, Alysson Bessani, Reda Yaich, Sabir

Idrees, Nora Cuppens, Frédéric Cuppens, Ferdinand Brasser, Jialin Huang,

Majid Sobhani, Krzysztof Oborzynski, Gitesh Vernekar, Meilof Veenin-

gen, Paulo Sousa. D2.1: Architecture for Secure Computation Infras-

tructure and Self-Management of VM Security, SuperCloud project.

Technical Report, November, 2015.

• Samiha Ayed, Muhammad Sabir Idrees, Nora Cuppens, Frédéric Cup-

pens, Yanhuang Li, Khalifa Toumi, Mohamed Aouadi, Ana Cavalli, Jorge

Bernal Bernabé, Juan M. Marin Pérez, Fernando Pereniguez, Jose L.

Hernandez, Antonio F. Skarmeta Gomez, Wissam Mallouli, Edgardo

Montes de Oca, Bachar Wehbi, Crisan de los Santos. Description of

models for the specification of secure interoperability policies - final

version, Inter-Trust project. Technical Report, March, 2015.

Posters

• LI. Yanhuang, N. Cuppens-Boulahia, C. Jean-Michel, F. Cuppens and F.

Vincent. Interoperability and Negotiation of Security Policies, journée

doctorant, Orange Labs, Paris, 2015.

• LI. Yanhuang, N. Cuppens-Boulahia, C. Jean-Michel, F. Cuppens and F.

Vincent. Interoperability and Negotiation of Security Policies, journée

thématique, Télécom ParisTech, 2014.

References

[1] Erik Rissanen et al. extensible access control markup language

(XACML) version 3.0, 2013. xi, 15, 16, 17, 18, 82

[2] Fabien Autrel. MotOrBAC 2 user manual v2.5. xi, 20

[3] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard

Franck. Web service level agreement (WSLA) language specification.

IBM Corporation, pages 815–824, 2003. xi, 21

[4] Oliver Waeldrich, Dominic Battré, Francis Brazier, Kassidy Clark,

Michel Oey, Alexander Papaspyrou, Philipp Wieder, and Wolfgang

Ziegler. WS-Agreement negotiation version 1.0. In Open Grid Forum,

volume 35, page 41, 2011. xi, 22, 23, 94

[5] Karin Bernsmed, Martin Gilje Jaatun, and Astrid Undheim. Security in

service level agreements for cloud computing. In Frank Leymann, Ivan

Ivanov, Marten van Sinderen, and Boris Shishkov, editors, CLOSER,

pages 636–642. SciTePress, 2011. ISBN 978-989-8425-52-2. URL

http://dblp.uni-trier.de/db/conf/closer/closer2011.html. xi,

25, 26, 32

[6] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF

De Rose, and Rajkumar Buyya. CloudSim: a toolkit for modeling

and simulation of cloud computing environments and evaluation of re-

source provisioning algorithms. Software: Practice and Experience,

41(1):23–50, 2011. xi, 48, 49

133

http://dblp.uni-trier.de/db/conf/closer/closer2011.html

134 REFERENCES

[7] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp:

comparing public cloud providers. In Proceedings of the 10th ACM

SIGCOMM conference on Internet measurement, pages 1–14. ACM,

2010. 1

[8] Stephen S. Yau and Yin Yin. Qos-based service ranking and selection

for service-based systems. In Services Computing (SCC), 2011 IEEE

International Conference on, pages 56–63. IEEE, 2011. 1

[9] Jesus Luna, Hamza Ghani, Daniel Germanus, and Neeraj Suri. A se-

curity metrics framework for the cloud. In Security and Cryptogra-

phy (SECRYPT), 2011 Proceedings of the International Conference on,

pages 245–250. IEEE, 2011. 1

[10] Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. AHP-based

quantitative approach for assessing and comparing cloud security. In

Trust, Security and Privacy in Computing and Communications (Trust-

Com), 2014 IEEE 13th International Conference on, pages 284–291.

IEEE, 2014. 1

[11] Ting Yu, Marianne Winslett, and Kent E Seamons. Supporting struc-

tured credentials and sensitive policies through interoperable strate-

gies for automated trust negotiation. ACM Transactions on Informa-

tion and System Security (TISSEC), 6(1):1–42, 2003. 2, 77, 79

[12] Diala Abi Haidar, Nora Cuppens-Boulahia, Frédéric Cuppens, and

Hervé Debar. XeNA: an access negotiation framework using XACML.

annals of telecommunications-annales des télécommunications, 64(1-

2):155–169, 2009. 2, 78

[13] Anthony Nadalin, Gene Thurston AmberPoint, Peter Dapkus BEA,

Hal Lockhart BEA, Symon Chang CommerceOne, Thomas DeMartini

ContentGuard, Guillermo Lao ContentGuard, TJ Pannu ContentGuard,

Shawn Sharp Cyclone Commerce, Ganesh Vaideeswaran Documen-

tum, et al. Web services security. SOAP Message Security. Version,

1, 2002. 2

135

[14] Web services trust language (WS-Trust). 2002. 2

[15] Paul Madsen, Jeff Hodges, and Bronislav Kavsan. Liberty metadata

description and discovery specification. Liberty Alliance Project, Ver-

sion, 1:1–33, 2003. 2

[16] Bernhard Hollunder. Domain-specific processing of policies or: WS-

Policy intersection revisited. InWeb Services, 2009. ICWS 2009. IEEE

International Conference on, pages 246–253. IEEE, 2009. 2

[17] Yanhuang Li, Nora Cuppens-Boulahia, Jean-Michel Crom, Frédéric

Cuppens, Vincent Frey, and Xiaoshu Ji. Similarity measure for security

policies in service provider selection. In Information Systems Security,

pages 227–242. Springer, 2015. 3, 112

[18] Yanhuang Li, Nora Cuppens-Boulahia, Jean-Michel Crom, Frédéric

Cuppens, and Vincent Frey. Expression and enforcement of security

policy for virtual resource allocation in IaaS cloud. In IFIP Interna-

tional Information Security and Privacy Conference, pages 105–118.

Springer, 2016. 3, 112

[19] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania El

Baida, Frédéric Cuppens, Claire Saurel, Philippe Balbiani, Yves

Deswarte, and Gilles Trouessin. Organization Based Access Control.

In 4th IEEE International Workshop on Policies for Distributed Sys-

tems and Networks (POLICY), 2003. 3, 18, 79, 112

[20] Elisa Burato and Matteo Cristani. The process of reaching agreement

in meaning negotiation. In Transactions on Computational Collective

Intelligence VII, pages 1–42. Springer, 2012. 3, 84, 92

[21] Shinsuke Kambe. Bargaining with imperfect commitment. Games and

Economic Behavior, 28(2):217–237, 1999. 3, 83, 113

[22] Yanhuang Li, Nora Cuppens-Boulahia, Jean-Michel Crom, Frederic

Cuppens, and Vincent Frey. Reaching agreement in security policy

136 REFERENCES

negotiation. In Trust, Security and Privacy in Computing and Commu-

nications (TrustCom), 2014 IEEE 13th International Conference on,

pages 98–105. IEEE, 2014. 3, 57, 113

[23] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Lud-

wig, Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and

Ming Xu. Web services agreement specification (WS-Agreement). In

Open Grid Forum, volume 128, page 216, 2007. 4, 22, 56

[24] Michael A Harrison, Walter L Ruzzo, and Jeffrey D Ullman. Protection

in operating systems. Communications of the ACM, 19(8):461–471,

1976. 11

[25] Liang Chen. Analyzing and Developing Role-Based Access

Control Models. PhD thesis, Royal Holloway, University

of London, 2011. URL http://digirep.rhul.ac.uk/file/

817519d1-0731-c09f-1522-e36433db3d2c/1/liangcheng.pdf. 12

[26] Ravi S. Sandhu. Lattice-based access control models. Computer, 26

(11):9–19, November 1993. ISSN 0018-9162. doi: 10.1109/2.241422.

URL http://dx.doi.org/10.1109/2.241422. 12

[27] D Elliott Bell and Leonard J La Padula. Secure computer system: Uni-

fied exposition and multics interpretation. Technical report, DTIC Doc-

ument, 1976. 12

[28] D.F. Ferraiolo and D.R. Kuhn. Role-based access controls. arXiv

preprint arXiv:0903.2171, pages 554 – 563, 2009. URL http://arxiv.

org/abs/0903.2171. 13

[29] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-

Based Access Control Models. Computer, 29(2):38–47, 1996. doi:

10.1109/2.485845. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=485845. 13

[30] Matunda Nyanchama and Sylvia Osborn. The role graph model and

conflict of interest. ACM Transactions on Information and System

http://digirep.rhul.ac.uk/file/817519d1-0731-c09f-1522-e36433db3d2c/1/liangcheng.pdf
http://digirep.rhul.ac.uk/file/817519d1-0731-c09f-1522-e36433db3d2c/1/liangcheng.pdf
http://dx.doi.org/10.1109/2.241422
http://arxiv.org/abs/0903.2171
http://arxiv.org/abs/0903.2171
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485845
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=485845

137

Security, 2(1):3–33, February 1999. ISSN 10949224. doi: 10.1145/

300830.300832. URL http://portal.acm.org/citation.cfm?doid=

300830.300832. 13

[31] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for

role-based access control: towards a unified standard. In Proceedings

of the fifth ACM workshop on Role-based access control, RBAC ’00,

pages 47–63, New York, NY, USA, 2000. ACM. ISBN 1-58113-259-

X. doi: 10.1145/344287.344301. URL http://doi.acm.org/10.1145/

344287.344301. 13

[32] Nathan Dimmock, András Belokosztolszki, David Eyers, Jean Bacon,

and Ken Moody. Using trust and risk in role-based access control poli-

cies. In Proceedings of the ninth ACM symposium on Access control

models and technologies, SACMAT ’04, pages 156–162, New York, NY,

USA, 2004. ACM. ISBN 1-58113-872-5. doi: 10.1145/990036.990062.

URL http://doi.acm.org/10.1145/990036.990062. 13

[33] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn,

and Ramaswamy Chandramouli. Proposed NIST standard for role-

based access control. ACM Transactions on Information and Sys-

tem Security, 4(3):224–274, August 2001. ISSN 10949224. doi:

10.1145/501978.501980. URL http://portal.acm.org/citation.

cfm?doid=501978.501980. 13

[34] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design

of a role-based trust-management framework. In Proceedings of the

2002 IEEE Symposium on Security and Privacy, SP ’02, pages 114–,

Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-

1543-6. URL http://dl.acm.org/citation.cfm?id=829514.830539.

13

[35] Guido Boella and Leendert van der Torre. Role-based rights in ar-

tificial social systems. In Proceedings of the IEEE/WIC/ACM Inter-

national Conference on Intelligent Agent Technology, IAT ’05, pages

http://portal.acm.org/citation.cfm?doid=300830.300832
http://portal.acm.org/citation.cfm?doid=300830.300832
http://doi.acm.org/10.1145/344287.344301
http://doi.acm.org/10.1145/344287.344301
http://doi.acm.org/10.1145/990036.990062
http://portal.acm.org/citation.cfm?doid=501978.501980
http://portal.acm.org/citation.cfm?doid=501978.501980
http://dl.acm.org/citation.cfm?id=829514.830539

138 REFERENCES

516–519, Washington, DC, USA, 2005. IEEE Computer Society. ISBN

0-7695-2416-8. doi: 10.1109/IAT.2005.123. URL http://dx.doi.org/

10.1109/IAT.2005.123. 13

[36] Yan Wang and Vijay Varadharajan. Role-based recommendation and

trust evaluation. In The 9th IEEE International Conference on

E-Commerce Technology and The 4th IEEE International Confer-

ence on Enterprise Computing, E-Commerce and E-Services (CEC-

EEE 2007), pages 278–288. IEEE, July 2007. ISBN 0-7695-2913-5.

doi: 10.1109/CEC-EEE.2007.83. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4285225. 13

[37] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and

B. Thuraisingham. Rowlbac: representing role based access control

in owl. In Proceedings of the 13th ACM symposium on Access control

models and technologies, SACMAT ’08, pages 73–82, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-129-3. doi: 10.1145/1377836.

1377849. URL http://doi.acm.org/10.1145/1377836.1377849. 13

[38] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for

Web services. In IEEE International Conference on Web Services

(ICWS’05). IEEE, 2005. ISBN 0-7695-2409-5. doi: 10.1109/ICWS.

2005.25. 14, 77

[39] Adam J. Lee. Towards Practical and Secure Decentralized Attribute-

Based Authorisation Systems. PhD thesis, University of Illinois, 2008.

14, 77

[40] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for

web services. In Web Services, 2005. ICWS 2005. Proceedings. 2005

IEEE International Conference on. IEEE, 2005. 18

[41] Ed Coyne and Timothy R Weil. ABAC and RBAC: scalable, flexible, and

auditable access management. IT Professional, 15(3):0014–16, 2013.

18

http://dx.doi.org/10.1109/IAT.2005.123
http://dx.doi.org/10.1109/IAT.2005.123
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4285225
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4285225
http://doi.acm.org/10.1145/1377836.1377849

139

[42] Céline Coma, Nora Cuppens-Boulahia, Frédéric Cuppens, and Ana R

Cavalli. Context ontology for secure interoperability. In Availability,

Reliability and Security, 2008. ARES 08. Third International Confer-

ence on, pages 821–827. IEEE, 2008. 19, 114

[43] Fabien Autrel, Frédéric Cuppens, N Cuppens-Boulahia, and Celine

Coma. MotOrBAC 2: a security policy tool. In 3rd Conference on

Security in Network Architectures and Information Systems (SAR-SSI

2008), Loctudy, France, pages 273–288, 2008. 20, 44, 66

[44] Frédéric Cuppens and Alexandre Miege. AdOrbac: an administration

model for OrBAC. International Journal of Computer Systems Science

& Engineering, 19(3):151–162, 2004. 20

[45] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly,

Stephen McGough, Darren Pulsipher, and Andreas Savva. Job sub-

mission description language (jsdl) specification, version 1.0. In Open

Grid Forum, GFD, volume 56, 2005. 22

[46] Henar Muñoz, Ioannis Kotsiopoulos, András Micsik, Bastian Koller,

and Juan Mora. Flexible sla negotiation using semantic annotations.

In Service-Oriented Computing. ICSOC/ServiceWave 2009Workshops,

pages 165–175. Springer, 2010. 22

[47] Irmos project. URL http://www.irmosproject.eu/. 22

[48] Wolfgang Ziegler, Ming Jiang, and Kleopatra Konstanteli. OPTIMIS

SLA framework and term languages for SLAs in cloud environment.

OPTIMIS Project Deliverable D, 2, 2011. 22

[49] Adrian Paschke. RBSLA a declarative rule-based service level agree-

ment language based on RuleML. In Computational Intelligence for

Modelling, Control and Automation, 2005 and International Confer-

ence on Intelligent Agents, Web Technologies and Internet Commerce,

International Conference on, volume 2, pages 308–314, Nov 2005. doi:

10.1109/CIMCA.2005.1631486. 24

http://www.irmosproject.eu/

140 REFERENCES

[50] Harold Boley, Adrian Paschke, and Omair Shafiq. RuleML 1.0: the

overarching specification of web rules. Lecture Notes in Computer

Science, 6403(4):162–178, 2010. 24

[51] J. Skene, D. Davide Lamanna, and W. Emmerich. Precise service level

agreements. In Software Engineering, 2004. ICSE 2004. Proceedings.

26th International Conference on, pages 179–188, May 2004. doi:

10.1109/ICSE.2004.1317440. 24

[52] Ronda R Henning. Security service level agreements: quantifiable

security for the enterprise? In Proceedings of the 1999 workshop on

New security paradigms, pages 54–60. ACM, 1999. 25

[53] K. Bernsmed, M.G. Jaatun, P.H. Meland, and A. Undheim. Security

SLAs for federated cloud services. In Availability, Reliability and Secu-

rity (ARES), 2011 Sixth International Conference on, pages 202–209,

Aug 2011. doi: 10.1109/ARES.2011.34. 25

[54] Chen-Yu Lee, K.M. Kavi, R.A. Paul, and M. Gomathisankaran. Ontology

of secure service level agreement. In High Assurance Systems Engi-

neering (HASE), 2015 IEEE 16th International Symposium on, pages

166–172, Jan 2015. doi: 10.1109/HASE.2015.33. 25

[55] Sheldon Borkin. The HIPAA final security standards and ISO/IEC

17799. Collect. Information Security Reading Room, 2003. 25

[56] Cloud Security Alliance. http://cloudsecurityalliance.org, 2011. URL

https://cloudsecurityalliance.org. 26

[57] CSA. Consensus assessment initiative questionnaire (CAIQ), 2014.

URL https://cloudsecurityalliance.org/research/cai. 26, 33

[58] European Commission. The cloud service level agreement standardis-

ation guidelines, 2014. 26

[59] Standardizing cloud security SLAs - SPECS project. Technical report,

2015. URL http://www.specs-project.eu/wp-content/uploads/

2015/04/SPECS_std_one-pager_final_v2.pdf. 27

https://cloudsecurityalliance.org
https://cloudsecurityalliance.org/research/cai
http://www.specs-project.eu/wp-content/uploads/2015/04/SPECS_std_one-pager_final_v2.pdf
http://www.specs-project.eu/wp-content/uploads/2015/04/SPECS_std_one-pager_final_v2.pdf

141

[60] Dan Lin, Prathima Rao, Rodolfo Ferrini, Elisa Bertino, and Jorge Lobo.

A similarity measure for comparing XACML policies. Knowledge and

Data Engineering, IEEE Transactions on, 25(9):1946–1959, 2013. 27,

30, 36, 44, 123

[61] Quan Pham, Jason Reid, and Ed Dawson. Policy filtering with XACML.

2011. 29, 30

[62] Dan Lin and Anna Squicciarini. Data protection models for service pro-

visioning in the cloud. In Proceedings of the 15th ACM symposium on

Access control models and technologies, pages 183–192. ACM, 2010.

29, 31

[63] OASIS Standard. extensible access control markup language (XACML)

version 2.0, 2005. 30

[64] Dan Lin, Prathima Rao, Elisa Bertino, and Jorge Lobo. An approach to

evaluate policy similarity. In Proceedings of the 12th ACM symposium

on Access control models and technologies, pages 1–10. ACM, 2007.

30

[65] Wu Bei, Chen Xing-yuan, and Zhang Yong-fu. A policy rule dissimilar-

ity evaluation approach based on fuzzy theory. In Computational In-

telligence and Software Engineering, 2009. CiSE 2009. International

Conference on, pages 1–6. IEEE, 2009. 30

[66] Eun Cho, Gabriel Ghinita, and Elisa Bertino. Privacy-preserving simi-

larity measurement for access control policies. In Proceedings of the

6th ACM workshop on Digital identity management, pages 3–12. ACM,

2010. 31

[67] Rizwana AR Shaikh and M Sasikumar. Dynamic parameter for select-

ing a cloud service. In Computation of Power, Energy, Information and

Communication (ICCPEIC), 2014 International Conference on, pages

32–35. IEEE, 2014. 31

142 REFERENCES

[68] Antonia Bertolino, Said Daoudagh, Donia El Kateb, Christopher

Henard, Yves Le Traon, Francesca Lonetti, Eda Marchetti, Tejeddine

Mouelhi, and Mike Papadakis. Similarity testing for access control.

Information and Software Technology, 58:355–372, 2015. 31

[69] Alessandro Ferreira Leite, Vander Alves, Genaina Nunes Rodrigues,

Claude Tadonki, Christine Eisenbeis, and Alba Cristina Magalhaes

Alves de Melo. Automating resource selection and configuration in

inter-clouds through a software product line method. In Cloud Com-

puting (CLOUD), 2015 IEEE 8th International Conference on, pages

726–733. IEEE, 2015. 32

[70] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based re-

source allocation in IaaS cloud. Future Generation Computer Systems,

28(1):94–103, 2012. 32

[71] Guiyi Wei, Athanasios V Vasilakos, Yao Zheng, and Naixue Xiong. A

game-theoretic method of fair resource allocation for cloud computing

services. The journal of supercomputing, 54(2):252–269, 2010. 32

[72] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware

resource allocation heuristics for efficient management of data cen-

ters for cloud computing. Future generation computer systems, 28(5):

755–768, 2012. 32

[73] Rajkumar Buyya, Saurabh Kumar Garg, and Rodrigo N Calheiros. SLA-

oriented resource provisioning for cloud computing: Challenges, ar-

chitecture, and solutions. In Cloud and Service Computing (CSC),

2011 International Conference on, pages 1–10. IEEE, 2011. 32

[74] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. SLA-based

resource allocation for software as a service provider (saas) in cloud

computing environments. In Cluster, Cloud and Grid Computing (CC-

Grid), 2011 11th IEEE/ACM International Symposium on, pages 195–

204. IEEE, 2011. 32

143

[75] Andrés García García, Ignacio Blanquer Espert, and Vicente Hernán-

dez García. SLA-driven dynamic cloud resource management. Future

Generation Computer Systems, 31:1–11, 2014. 32

[76] European Network and Information Security Agency. Cloud Comput-

ing: Benefits, risks and recommendations for information security.

ENISA, 2009. 33

[77] Erdal Cayirci, Alexandr Garaga, Anderson Santana, and Yves Roudier.

A cloud adoption risk assessment model. In Proceedings of the 2014

IEEE/ACM 7th International Conference on Utility and Cloud Comput-

ing, pages 908–913. IEEE Computer Society, 2014. 33

[78] Stefan Berger, Ramón Cáceres, Ken Goldman, Dimitrios Pendarakis,

Ronald Perez, Josyula R Rao, Eran Rom, Reiner Sailer, Wayne Schild-

hauer, Deepa Srinivasan, et al. Security for the cloud infrastructure:

Trusted virtual data center implementation. IBM Journal of Research

and Development, 53(4):6–1, 2009. 33

[79] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Virtual resource or-

chestration constraints in cloud infrastructure as a service. In Pro-

ceedings of the 5th ACM Conference on Data and Application Security

and Privacy, pages 183–194. ACM, 2015. 33

[80] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Mitigating multi-

tenancy risks in IaaS cloud through constraints-driven virtual resource

scheduling. In Proceedings of the 20th ACM Symposium on Access

Control Models and Technologies, pages 63–74. ACM, 2015. 33

[81] Ravi Jhawar, Vincenzo Piuri, and Pierangela Samarati. Supporting se-

curity requirements for resource management in cloud computing. In

Computational Science and Engineering (CSE), 2012 IEEE 15th Inter-

national Conference on, pages 170–177. IEEE, 2012. 33

[82] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E

Youman. Role-based access control models. Computer, 29(2):38–47,

1996. 41, 82

144 REFERENCES

[83] Frédéric Cuppens, Nora Cuppens-Boulahia, and Alexandre Miège. In-

heritance hierarchies in the OrBACmodel and application in a network

environment. Proc. Foundations of Computer Security (FCS04), pages

41–60, 2004. 41, 88

[84] Configuring keystone. http://docs.openstack.org/developer/

keystone/configuration.html. 44

[85] Safaà Hachana, Nora Cuppens-Boulahia, and Frédéric Cuppens. Min-

ing a high level access control policy in a network with multiple fire-

walls. Journal of Information Security and Applications, 20:61–73,

2015. 44, 60

[86] Supercloud project: User-centric management of security and depend-

ability in clouds of clouds. http://www.supercloud-project.eu/. 46,

65

[87] Piero Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Sama-

rati. An algebra for composing access control policies. ACM Transac-

tions on Information and System Security (TISSEC), 5(1):1–35, 2002.

48

[88] Devops. http://en.wikipedia.org/wiki/DevOps, . 58

[89] Anas Abou El Kalam, RE Baida, Philippe Balbiani, Salem Benferhat,

Frédéric Cuppens, Yves Deswarte, Alexandre Miege, Claire Saurel,

and Gilles Trouessin. Organization based access control. In Policies for

Distributed Systems and Networks, 2003. Proceedings. POLICY 2003.

IEEE 4th International Workshop on, pages 120–131. IEEE, 2003. 60

[90] Frédéric Cuppens and Nora Cuppens-Boulahia. Modeling contextual

security policies. International Journal of Information Security, 7(4):

285–305, 2008. 60

[91] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining

problem: finding a minimal descriptive set of roles. In Proceedings of

http://docs.openstack.org/developer/keystone/configuration.html
http://docs.openstack.org/developer/keystone/configuration.html
http://www.supercloud-project.eu/
http://en.wikipedia.org/wiki/DevOps

145

the 12th ACM symposium on Access control models and technologies,

pages 175–184. ACM, 2007. 60

[92] Frédéric Cuppens, Nora Cuppens-Boulahia, and Meriam Ben Ghorbel.

High level conflict management strategies in advanced access control

models. Electronic Notes in Theoretical Computer Science, 186:3–26,

2007. 64

[93] Michel Kamel, Romain Laborde, François Barrère, and Abdelmalek

Benzekri. A trust-based virtual collaborative environment. JDIM, 6(5):

405–413, 2008. 64

[94] Nuno Neves Fernando M. V. Ramos. Preliminary architecture of the

multi-cloud network virtualization infrastructure. Technical report,

Faculdade de Ciencias da Universidade de Lisboa, 2015. 66

[95] Devstack. http://docs.openstack.org/developer/devstack, . 66

[96] Openstack open source cloud computing software. https://www.

openstack.org/. 66

[97] Graphstream: A dynamic graph library. http://

graphstream-project.org/. 68

[98] Compute service command-line client. http://docs.openstack.org/

cli-reference/nova.html/. 68

[99] Json. http://en.wikipedia.org/wiki/JSON. 69

[100] William HWinsborough, Kent E Seamons, et al. Negotiating disclosure

of sensitive credentials. 1999. 75, 77, 86

[101] William H Winsborough, Kent E Seamons, and Vicki E Jones. Auto-

mated trust negotiation. In DARPA Information Survivability Confer-

ence and Exposition, 2000. DISCEX’00. Proceedings, volume 1, pages

88–102. IEEE, 2000. 75, 86

http://docs.openstack.org/developer/devstack
https://www.openstack.org/
https://www.openstack.org/
http://graphstream-project.org/
http://graphstream-project.org/
http://docs.openstack.org/cli-reference/nova.html/
http://docs.openstack.org/cli-reference/nova.html/
http://en.wikipedia.org/wiki/JSON

146 REFERENCES

[102] Yunxi Zhang and Darren Mundy. Remembrance of local informa-

tion status for enforcing robustness of policy-exchanged strategies for

trust negotiation. In Trust, Security and Privacy in Computing and

Communications (TrustCom), 2014 IEEE 13th International Confer-

ence on, pages 106–113. IEEE, 2014. 76

[103] Adam J Lee, Marianne Winslett, and Kenneth J Perano. Trustbuilder2:

A reconfigurable framework for trust negotiation. In Trust Manage-

ment III, pages 176–195. Springer, 2009. 77

[104] Adam J Lee. Trustbuilder2 user manual version 0.1. Technical report,

Technical report, May, 2007. 77

[105] E. Bertino, E. Ferrari, and A. Squicciarini. X-tnl: An XML-based lan-

guage for trust negotiations. In Proceedings of the 4th IEEE Inter-

national Workshop on Policies for Distributed Systems and Networks,

POLICY ’03, pages 81–, Washington, DC, USA, 2003. IEEE Computer

Society. ISBN 0-7695-1933-4. URL http://dl.acm.org/citation.

cfm?id=826036.826848. 77

[106] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-x: A peer-to-

peer framework for trust establishment. IEEE Trans. on Knowl. and

Data Eng., 16(7):827–842, July 2004. ISSN 1041-4347. doi: 10.1109/

TKDE.2004.1318565. URL http://dx.doi.org/10.1109/TKDE.2004.

1318565. 77

[107] A. Squicciarini, E. Bertino, Elena Ferrari, F. Paci, and B. Thurais-

ingham. PP-trust-X: A system for privacy preserving trust negotia-

tions. ACM Trans. Inf. Syst. Secur., 10(3), July 2007. ISSN 1094-9224.

doi: 10.1145/1266977.1266981. URL http://doi.acm.org/10.1145/

1266977.1266981. 78

[108] Piero Bonatti, Juri Luca De Coi, Daniel Olmedilla, and Luigi Sauro. A

rule-based trust negotiation system. IEEE Transactions on Knowledge

and Data Engineering, 22(11):1507–1520, 2010. 78

http://dl.acm.org/citation.cfm?id=826036.826848
http://dl.acm.org/citation.cfm?id=826036.826848
http://dx.doi.org/10.1109/TKDE.2004.1318565
http://dx.doi.org/10.1109/TKDE.2004.1318565
http://doi.acm.org/10.1145/1266977.1266981
http://doi.acm.org/10.1145/1266977.1266981

147

[109] Diala Abi Haidar, Nora Cuppens-Boulahia, Frederic Cuppens, and

Herve Debar. An extended RBAC profile of XACML. In Proceedings

of the 3rd ACM workshop on Secure web services, pages 13–22. ACM,

2006. 79

[110] Muhammad Sabir Idrees, Samiha Ayed, Nora Cuppens-Boulahia, and

Frederic Cuppens. Car2x communication-putting security negotiation

into practice. In 2014 IEEE 80th Vehicular Technology Conference

(VTC2014-Fall), pages 1–5. IEEE, 2014. 79

[111] Elisa Bertino, Anna C Squicciarini, Ivan Paloscia, and Lorenzo Mar-

tino. WS-AC: A fine grained access control system for web services.

World Wide Web, 9(2):143–171, 2006. 80

[112] Siddharth Bajaj, Don Box, Dave Chappell, Francisco Curbera, Glen

Daniels, Phillip Hallam-Baker, Maryann Hondo, Chris Kaler, Dave

Langworthy, Anthony Nadalin, et al. Web services policy 1.2-

framework (ws-policy). W3C Member Submission, 25:12, 2006. 80

[113] Virgil D Gligor, Himanshu Khurana, Radostina K Koleva, Vijay G

Bharadwaj, and John S Baras. On the negotiation of access control

policies. In Security Protocols, pages 188–201. Springer, 2001. 80

[114] Vijay G Bharadwaj and John S Baras. Towards automated negotiation

of access control policies. In null, page 111. IEEE, 2003. 81

[115] Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex,

Gérard Verfaillie, and Hélene Fargier. Semiring-based CSPs and val-

ued CSPs: Frameworks, properties, and comparison. Constraints, 4

(3):199–240, 1999. 81

[116] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints

specification. ACM Transactions on Information and System Security

(TISSEC), 3(4):207–226, 2000. 82

[117] Himanshu Khurana and Virgil D Gligor. A model for access negotia-

tions in dynamic coalitions. In Enabling Technologies: Infrastructure

148 REFERENCES

for Collaborative Enterprises, 2004. WET ICE 2004. 13th IEEE Inter-

national Workshops on, pages 205–210. IEEE, 2004. 82

[118] Wei Xue, Jinpeng Huai, and Yunhao Liu. Access control policy negotia-

tion for remote hot-deployed grid services. In e-Science and Grid Com-

puting, 2005. First International Conference on, pages 9–pp. IEEE,

2005. 82

[119] Pooya Mehregan and Philip WL Fong. Policy negotiation for co-owned

resources in relationship-based access control. In Proceedings of the

21st ACM on Symposium on Access Control Models and Technologies,

pages 125–136. ACM, 2016. 82

[120] Philip WL Fong. Relationship-based access control: protection model

and policy language. In Proceedings of the first ACM conference on

Data and application security and privacy, pages 191–202. ACM, 2011.

82

[121] Eric Grégoire and Sébastien Konieczny. Logic-based approaches to

information fusion. Information Fusion, 7(1):4–18, 2006. 83

[122] Richard Booth. A negotiation-style framework for non-prioritised re-

vision. In Proceedings of the 8th conference on Theoretical aspects

of rationality and knowledge, pages 137–150. Morgan Kaufmann Pub-

lishers Inc., 2001. 83

[123] Richard Booth. Social contraction and belief negotiation. Information

Fusion, 7(1):19–34, 2006. 83

[124] Thomas F Gordon. The pleadings game. Artificial Intelligence and

Law, 2(4):239–292, 1993. 83

[125] Peter R Wurman, Michael P Wellman, and William E Walsh. A

parametrization of the auction design space. Games and economic

behavior, 35(1):304–338, 2001. 83, 114

149

[126] Elisa Burato and Matteo Cristani. Contract clause negotiation by game

theory. In Proceedings of the 11th international conference on Artifi-

cial intelligence and law, pages 71–80. ACM, 2007. 84

[127] Céline Coma, Nora Cuppens-Boulahia, Frédéric Cuppens, and Ana R

Cavalli. Interoperability of context based system policies using o2o

contract. In Signal Image Technology and Internet Based Systems,

2008. SITIS’08. IEEE International Conference on, pages 137–144.

IEEE, 2008. 90

[128] Inter-trust project. http://www.inter-trust.eu/. 99

[129] Scenario about one use case ITS_S services access control and nego-

tiation management. Technical report, 2014. URL inter-trust.lcc.

uma.es. 99

[130] Slim Trabelsi, Laurent Gomez, and Yves Roudier. Context-aware secu-

rity policy for the service discovery. In Advanced Information Network-

ing and Applications Workshops, 2007, AINAW’07. 21st International

Conference on, volume 1, pages 477–482. IEEE, 2007. 114

[131] Xin Jin, Ram Krishnan, and Ravi S Sandhu. A unified attribute-based

access control model covering DAC, MAC and RBAC. DBSec, 12:41–

55, 2012. 114

[132] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.

Openflow: enabling innovation in campus networks. ACM SIGCOMM

Computer Communication Review, 38(2):69–74, 2008. 116

[133] Romain Laborde, Bassem Nasser, Frédéric Grasset, François Barrere,

and Abdelmalek Benzekri. A formal approach for the evaluation of net-

work security mechanisms based on RBAC policies. Electronic Notes

in Theoretical Computer Science, 121:117–142, 2005. 117

[134] Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, and Jorge Lobo.

Exam: a comprehensive environment for the analysis of access control

http://www.inter-trust.eu/
inter-trust.lcc.uma.es
inter-trust.lcc.uma.es

150 REFERENCES

policies. International Journal of Information Security, 9(4):253–273,

2010. 123

1. Introduction
Aujourd’hui sur Internet, de nombreuses entreprises s’associent pour établir des écosystèmes
larges et dynamiques. Lors de transactions commerciales, des acteurs jouent le rôle de
fournisseurs ou de consommateurs de services. Par exemple, Amazon, Microsoft, Google et
Orange proposent leurs plateformes de Cloud à leurs clients. Comme différents fournisseurs
de services peuvent définir et exprimer différentes exigences de politique de sécurité, il faut
les mettre en correspondance et en négocier l’interopérabilité. Pour ce faire, un contrat de
service portera la politique de sécurité avec d’autres éléments comme le prix et la qualité de
service. Pour automatiser l’établissement de ce contrat, différentes technologies comme la
définition et l’expression de sécurité, la comparaison et l’évaluation des politiques, la
négociation et la composition de service doivent être développées (Figure 1).

Figure 1 : Contrat entre fournisseur et consommateur de services

2. Sélection des fournisseurs de service

2.1 Mesurer la similarité entre les politiques de sécurité (PSM)

2.1.1 Introduction

Un score plus élevé entre les politiques et indique qu'elles sont plus susceptibles de
partager un niveau de sécurité équivalent, et donner les mêmes décisions. Les
approches existantes couvrent des dimensions numériques et typologiques, et se
concentrent principalement sur des politiques XACML. Cependant, peu d'efforts ont été
faits pour étendre l'approche de mesure aux multiples modèles de politique et les
appliquer à des scénarios concrets. Dans ce chapitre, nous proposons un nouvel
algorithme pour calculer le score de similarité entre deux politiques.

Le PSM1 attribue un score de similarité pour deux politiques, qui se rapproche du
pourcentage des paires de règles aboutissant à la même décision. La définition formelle
est donnée dans l'équation 1, où Num (sameDecision (,)) désigne le nombre de
paires de règles aboutissant à la même décision et Num (allDecision (,)) désigne le

1 Policy Similarity Measure = Mesure de Similarité de Politiques

nombre total de paires. Le score de similarité est une valeur comprise entre 0 et 1. Deux
politiques de sécurité sont dites équivalentes si leur score de similarité est égal à 1.

Equation 1 : score de similarité

2.1.2 Processus de calcul

Comme le montre dans la figure 2, l'algorithme de PSM prend deux politiques en entrée
et génère un score de similarité en sortie. Le processus de calcul peut être divisé en
quatre étapes.

Figure 2 : Le processus de calcul du score de similarité

Etape 1 : transformation de la politique. Les politiques sont divisées en règles

atomiques.

Etape 2 : calcul du score de la paire de règles. Les scores de chaque paire de règles

appartenant au même effet de décision (d) entre les deux politiques sont calculés.

Dans l'équation (3.3), le score pour chaque paire de règles est le produit des scores

de toutes les paires d'éléments.

Etape 3 : calcul de l'effet de la décision. Chaque équivaut à la somme de

tous les scores de similarité des paires de règles d’un seul effet de décision (équation

3.4).

Etape 4 : calcul du score total. Comme montré dans l'équation (3.5), le score total est

calculé à partir des scores des différents effets de décision et du nombre

total de paires de règles.

2.1.3 Résultats de l'expérience

Afin de vérifier si notre algorithme est applicable à des cas réels, nous comparons le

pourcentage des mêmes paires de décision avec le score de PSM. Tout d'abord, nous

mettons en œuvre un générateur de politiques qui prend des éléments de règle en

entrée et génère des politiques. Deuxièmement, nous avons extrait des éléments de

règle de quatre différents modèles de politique, chacun est lié à un scénario réel :

RBAC (Role-Based Access Control) pour la gestion de projet, Net-RBAC pour la

configuration de pare-feu, OrBAC (Organization-Based Access Control) pour la gestion

de l'hôpital, ABAC (Attribute-Based Access Control) pour l'administration de

laboratoire de recherche. Troisièmement, ces éléments de règle sont entrés dans le

générateur de la politique et chaque paire de politique générée obtient un score de

similarité par notre algorithme. Enfin, nous entrons diverses combinaisons d'éléments

comme des requêtes de contrôle d'accès et comptons le pourcentage de la même

paire de décision entre les décisions de sortie.

Les figures 3 et 4 montrent le score de similarité (axe Y) et pourcentage de même

décision pour les paires de règles (axe X) dans set-4 et set-8. Dans set-4, chaque

politique contient quatre règles et dans set-8 chaque politique a huit règles. Chaque

ensemble de test contient 1000 paires de politiques. Nous observons que le score

augmente lorsque la similarité entre deux politiques augmente. En même temps, les

valeurs expérimentales approchent les scores calculés et la quantité de règles n'a

aucun impact sur la variation des courbes de sortie. Le résultat du test nous permet

de conclure que le score de PSM se rapproche bien de la similarité entre les

politiques de sécurité.

Figure 3 : expérience du score de similarité (set-4) Figure 4 : expérience du score de similarité (set-8)

2.2 Expression et application de la politique de sécurité pour l'allocation

de ressources virtuelles dans une infrastructure de type IaaS Cloud

2.2.1 Introduction

Aujourd'hui, le Cloud Computing est essentiellement fournisseur-centrique. Un

nombre croissant des fournisseurs de services de Cloud proposent plusieurs Clouds

hétérogènes. En termes de IaaS (infrastructure as a service), chaque fournisseur

propose ses propres solutions pour les machines virtuelles (VM) des clients. De

manière plus significative, dans le Cloud IaaS, le matériel physique est généralement

partagé par plusieurs ressources virtuelles pour maximiser l'utilisation et la réduction

des coûts.

Malheureusement, l'allocation des ressources virtuelles souffre d'un manque

d'homogénéité : de nombreux ressources virtuelles de Cloud ne peuvent pas être

déployées faute (1) d’expression unifiée et (2) d'interopérabilité. Le manque

d’expression unifiée entraîne un « vendor lock-in » : les services sont étroitement

couplés avec le fournisseur et dépendent de sa volonté de les déployer. Du manque

d'interopérabilité découlent des services hétérogènes et, effet plus important, des

ressources qui ne sont pas compatibles entre fournisseurs. Pour une meilleure

interopérabilité et un meilleur contrôle, le courtage de Clouds tente aujourd'hui de

mettre en œuvre une approche centrée sur l'utilisateur, qui peut être considérée

comme un paradigme dans la prestation de ressources de Cloud (par exemple calcul,

stockage, réseau). Avec l'aide de ce courtage, les besoins de sécurité de l'utilisateur

seront nécessairement pris en compte dans le Cloud et ces exigences de sécurité

peuvent être incluses dans le contrat SLA 2 , est un document juridique où la

description du service est formellement définie, livrée et facturée.

2 Service Level Agreement

 2.2.2 Framework pour allouer des ressources virtuelles

Figure 5 : Le Framework proposé pour allouer des ressources virtuelles

Comme montré dans la figure 5, au moyen de ces contrats à base de WS-Agreement,

CSC et CSP précisent et gèrent leurs exigences de sécurité liées à l'infrastructure afin

d'assurer la sécurité de bout en bout entre les différents composants (étapes 1, 2).

Après avoir reçu les contrats de SLA, le Broker dérive les politiques de déploiement

concrets selon les exigences de sécurité et autres (étapes 3, 4, 5). En particulier, le

Broker est capable d'arbitrer les revendications contradictoires et de prendre des

décisions (étape 6). A la fin, le Broker applique un algorithme pour générer la solution

d'allocation finale (étape 7), puis déploie et configure les VMs sur les HOSTs (étape 8).

2.2.3 Implémentation

Figure 6 : implémentation pour l'allocation des ressources virtuelles

Afin de mettre en œuvre et d'évaluer notre Framework d'allocation des ressources

virtuelles, nous configurons un environnement de IaaS Cloud sur une machine

physique (Intel (R) Core (TM) i7-4600U 2,7 GHz avec 16 Go de RAM sous Windows 7).

Ensuite, différentes machines virtuelles (2 cœurs et 2 Go de RAM) sont créés sur la

plate-forme VirtualBox avec le système Ubuntu. Nous installons DevStack Framework,

une version d’OpenStack pour l'expérimentation. Chaque VM est considérée comme

un hôte physique. En même temps, un programme Java fonctionne comme Cloud

Broker et il se connecte à la plate-forme VirtualBox par le protocole SSH. La politique

OrBAC est générée et gérée par l’API OrBAC basée sur Java. La figure 6 illustre notre

architecture expérimentale.

3. Négociation de politiques de sécurité

3.1 Introduction

Dans la partie précédente, nous avons présenté des approches de sélection des

fournisseurs de services en considérant la politique et l'exigence de sécurité. Après

avoir sélectionné le fournisseur de services, client et fournisseur de services peuvent

avoir besoin de négocier des politiques de sécurité concrètes. Dans le cas où le client

n'a pas d'autres fournisseurs de services, il peut aussi avoir besoin de parvenir à un

accord sur la politique de sécurité. Dans ce chapitre, nous proposons un Framework et

un algorithme visant à négocier la politique de sécurité exprimée par exemple dans le

modèle OrBAC. Le mécanisme de négociation se fonde sur une approche d'évaluation

des politiques. Notre Framework fait appel à modèle de négociation qui part de la

préférence indiscutable vers la préférence flexible. Nous ne donnons pas de définition

de la stratégie de négociation mais nous supposons que la façon de choisir le

prochain mouvement dans la configuration de négociation est prédéfinie. D'autre part,

nous adoptons une approche pour la comparaison et l'évaluation des politiques de

sécurité : le négociateur fait la proposition et évalue celle du partenaire. Différentes

relations entre règles conduisent à des réactions différentes.

OrBAC (Organization-based access control) a été présenté pour la première fois en

2003. Dans OrBAC (Figure 7), l'expression d'une politique d'autorisation est centrée

sur le concept d'organisation. Le modèle OrBAC reprend les concepts de rôle,

d'activité, de vue et d'organisation. Chaque organisation définit ainsi les rôles, les

activités et les vues dont elle souhaite réglementer l'accès en appliquant une politique

d'autorisation. Les modèles de contrôle d'accès reposent habituellement sur les trois

entités : sujet, action, objet. Pour contrôler l'accès, on spécifie si un sujet a la

permission de réaliser une action sur un objet. Le modèle de contrôle d'accès OrBAC

n'est pas restreint aux permissions. Il inclut aussi la possibilité de spécifier des

interdictions et des obligations. OrBAC possède la notion de contexte, ainsi ses

politiques de sécurité peuvent être exprimées dynamiquement. De plus, OrBAC

possède des concepts tels que la hiérarchie (organisation, rôle, activité, vue, contexte),

la structuration d'entités et les contraintes de séparation.

Figure 7. Modèle de politique OrBAC

3.2 Comparaison des politiques OrBAC

Dans OrBAC, il est possible de considérer les relations d'héritage des rôles et aussi

des activités, des vues et des organisations. Nous présentons relation d'héritage en

utilisant les prédicats « sub_role », « sub_activity », « sub_view » et

« sub_organization ». De plus, nous définissons aussi prédicats sub_context pour

l'entité de contexte. Par exemple, sub_role(org, ,) indique que dans l'organisation , rôle est une sous-entité de . Supposons que dans une entreprise, est un

staff et il guide un stagiaire (). Alors pourrait hériter toutes les autorisations de .

3.2.1 Relations entre les entités OrBAC

Nous disons que deux entités concrètes appartient à la même entité abstraite sont

des « related entities ». Nous avons dérivé trois autres relations entre « related

entities » de OrBAC et :

Equivalent : si est sémantiquement égal à , ils sont « equivalent ».

Relevant : si un élément est une sous entité de l'autre élément ou s’ils sont

« equivalent », les deux éléments sont « relevant ».

Inconsistent : si et ne sont pas « relevant », ils sont « inconsistent ».

3.2.2 Relations entre les règles OrBAC

Les relations entre les entités OrBAC dérivent cinq relations entre les règles OrBAC
et :

Restriction : si au moins une entité de est une sous-entité de et les autres

« related entities » sont « equivalent », alors est une restriction de .

Total compatibility : si toutes les entités liées à et sont «equivalent », alors et ont une relation de « total compatibility ».

Symmetric compatibility : si toutes les « related entities » sont « relevant », et au

moins une entité de est une sous entité de et au moins une entité de est une

sous entité de .

Partial compatibility : si au moins une paire de « related entities » est « relevant » et

il existe au moins une paire de « related entities » ayant une relation « inconsistent ».

Dans ce cas, les règles ont relation de « partial compatibility » et elles ne sont pas

comparables.

No compatibility : si toutes les « related entities » ont des relations « inconsistent »,

les deux règles ne sont pas comparables et ont relation de « no compatibility ».

3.3 Framework de négociation

Le Framework de négociation (Figure 8) comporte trois parties : protocole de

négociation, configuration de négociation et module de négociation.

3.3.1 Protocole de négociation

Le protocole de négociation est compatible avec WS-Agreement : au début, le service

demandeur demande l’offre de fournisseur de services. Après avoir reçu l’offre, le

demandeur échange des propositions avec le fournisseur de services jusqu'à une

décision (accepter ou refuser).

3.3.2 Configuration de négociation

Le module de configuration possède une architecture d'arbre. Deux types d'arbres

sont introduits : « related tree » et « distant tree ». « Related tree » contient les règles

avec trois types de relations: « restriciton », « total compatibility » et « symmetric

compatibility », les règles de niveau supérieur sont préférées à celles de plus bas

niveau. La proposition sur une règle reçue dépend de la stratégie de recherche. Par

exemple, une règle reçue qui est plus stricte que celle locale sera acceptée ; en

revanche pour une règle reçue qui est moins stricte, une autre règle de niveau

inférieur sera envoyée en tant que contre-offre. Le deuxième type d'arbre est « distant

tree » qui contient des règles avec deux types de relations : « partial compatibility » et

« no compatibility ». « Distant tree » peut être utilisé dans le scénario où plusieurs

règles sont négociées en même temps. La proposition d'une règle peut déclencher la

proposition d'une autre règle dans son « Distant tree ».

3.3.3 Module de négociation

Le module de négociation prend en charge l'application du protocole de négociation.

Il reçoit une proposition de règle et évalue la relation entre la règle reçue avec celle

de locale. Après l'exécution de l'algorithme de négociation, une contre-offre ou une

décision finale sera prise et envoyée.

Figure 8 : Framework de négociation

4. Conclusion et perspectives

4.1 Conclusion

Le mode de service émergent avec de multiples fournisseurs de services apporte plus

de flexibilité et d'efficacité pour les clients dans leur choix de services. Dans le

processus d'échange de données et de services, la politique de sécurité joue un rôle

fondamental dans la gestion des privilèges. Avec la politique de sécurité, les acteurs

sont capables d’exprimer leurs propres privilèges et spécifier les restrictions

d’autorisations pour des visiteurs. Par exemple, il peut être appliqué pour définir le

contenu de service pour le véhicule communicant, ou d'exprimer des préférences de

client et de fournisseur de services dans l'allocation des ressources virtuelles. Bien que

la politique de sécurité offre plusieurs avantages, son évaluation et sa négociation

présentent encore de nombreux défis, en particulier parmi les différents modèles de

politique de sécurité et entre les négociateurs avec leurs propres préférences. Dans ce

contexte sensible, le premier objectif de cette thèse est de fournir une méthode

générale pour la mesure et l'évaluation des politiques de sécurité, utile dans la

sélection des fournisseurs de services. Le score de similarité permet de quantifier le

niveau de similarité entre deux politiques de sécurité, comme nous l’avons montré

dans nos travaux de recherche. Cependant, les fournisseurs de services ne divulguent

pas toujours leurs politiques de sécurité, ce qui nuit à leur évaluation. Dans le cas où

les politiques de sécurité ne sont pas exprimées explicitement, nous avons proposé un

Framework qui dérive les politiques de sécurité à partir des exigences de sécurité. Le

Framework proposé est utilisé dans un scénario où des machines virtuelles sont

attribuées dans une infrastructure IaaS. Le deuxième objectif de cette thèse est

d'introduire le processus de négociation de la politique de sécurité entre deux acteurs

visant à parvenir à un accord sur la politique de contrôle d'accès.

4.2 Perspectives

Nous donnons un ensemble de futures directions de recherche qui pourraient être

étudiés comme suite aux résultats présentés dans cette thèse.

4.2.1 L'intégration de la technologie de PSM dans la négociation de la politique de

sécurité

Comme le score de PSM présente le niveau de similarité entre deux politiques, il peut

être utile dans le processus de négociation de la politique de sécurité. Après

l'introduction de ce score de PSM, les relations entre les politiques de sécurité ne sont

pas seulement classées mais aussi quantifiées. Dès lors, des stratégies peuvent être

exécutées en fonction du score de PSM. Par ailleurs, la prise de décision peut

également faire appel au score de PSM et affiner ainsi le contrôle du processus de

négociation.

4.2.2 L’introduction de la politique contextuelle dans l'allocation des ressources

virtuelles:

Notre solution actuelle d'allocation des ressources virtuelle est appliquée à une

politique OrBAC possédant «default» comme contexte. Un contexte est considéré

comme une condition supplémentaire qui doit être satisfaite pour activer une règle de

sécurité. La capacité d'exprimer la condition de contexte permet d'intégrer des

exigences (temps, espace, histoire…) contextuelles dans les modèles de WS-Agreement

puis ces exigences dont peuvent être dérivées des politiques OrBAC .

4.2.3 Améliorer l'interopérabilité entre les modèles politiques différents au cours de

 la négociation politique.

Comme les différents modèles de politiques de contrôle d'accès ont leurs avantages et

leurs limitations, les utilisateurs peuvent utiliser différents modèles pour spécifier les

privilèges. Lorsque les politiques appartiennent à différents modèles, l'interopérabilité

devient une difficulté à surmonter. Bien que certains travaux ont proposé d'utiliser le

modèle ABAC pour unifier les modèles DAC, MAC et RBAC, des travaux de recherche

doivent être menés pour (i) l'unification de plusieurs modèles de politiques; (ii) le

développement de moteurs interopérables de politique et leur intégration dans la

négociation de politique.

4.2.4 L'extension du Framework d'allocation des ressources aux plusieurs scénarios.

Notre Framework d’allocation à base de politique peut être utilisé pour le scénario de

déploiement de VMs dans le domaine du Cloud Computing. En outre, notre solution

peut être utilisée dans d'autres contextes tels que le stockage et le réseau. En ce qui

concerne l’aspect stockage, le Framework permet aux utilisateurs d'exprimer leurs

exigences de sécurité pour leurs données; en même temps, les fournisseurs de services

qui offrent leur espace de stockage peuvent également spécifier leurs préférences sur

les caractéristiques des données. Avec notre Framework, les données de l'utilisateur

sont stockées par des fournisseurs de services distribués. Une autre application possible

dans le réseau est la possibilité donnée à l'utilisateur d'exprimer ses besoins de routage

de trafic auprès du contrôleur SDN (software defined networking). Le contrôleur

sélectionne alors le chemin de routage entre les commutateurs en considérant la

préférence de sécurité du fournisseur de services.

