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Abstract

It is now widely accepted that stress plays an important role in modern societies. It impacts

the body and the mind at several levels and the association between stress and disease has been

observed in several studies. However, there is no consensual definition of stress yet, and therefore

there is no consensual way of assessing it either. Thus, although the quality of assessment is a

key factor to build robust stress detection solutions, researchers have to choose among a wide

variety of assessment strategies. This heterogeneity impacts the validity of comparing solutions

among them.

In this thesis, we evaluate the impact of several assessment strategies for stress detection. We

first review how different fields of research define and assess stress. Then, we describe how we

collected stress data along with multiple assessments. We also study the association between

these assessments. We present the behavioural and physiological features that we extracted for

our experiments. Finally, we present the results we obtained regarding the impact of assessment

strategies on 1) data normalization, 2) feature classification performance and 3) on the design

of machine learning algorithms.

Overall, we argue that one has to take a global and comprehensive approach to design stress

detection solutions.

Résumé

Il est maintenant largement accepté que le stress joue un rôle important dans les sociétés

modernes. Le stress impacte en effet le corps et l’esprit à différents niveaux. De plus, le lien

entre stress et maladie a été observé dans plusieurs études. Cependant, il n’y a pas encore

de définition consensuelle du stress, et par conséquent il n’y a pas de manière consensuelle de

le mesurer. Ainsi, bien que la qualité de la mesure joue un rôle majeur dans la réalisation

de solutions robustes de détection du stress, les chercheurs doivent choisir une stratégie de

mesure parmi un grand nombre de possibilités. Cette hétérogénéité impacte la validité des

comparaisons faites entre les différentes solutions.

Dans cette thèse, nous évaluons l’impact de plusieurs stratégies de mesure pour la détection

du stress. Dans un premier temps, nous résumons comment différents domaines de recher-
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che définissent et mesurent le stress. Nous décrivons ensuite comment nous avons collecté des

données de sujets en situation stressante ainsi que plusieurs mesures du stress. Nous étudions

également les liens entre ces différentes mesures. Par la suite, nous présentons les descripteurs

comportementaux et physiologiques que nous avons extraits pour nos expériences. Enfin, nous

présentons les résultats obtenus concernant l’impact des stratégies de mesure sur 1) la nor-

malisation de données, 2) la performance des descripteurs pour la classification et 3) sur la

conception d’algorithmes d’apprentissage automatique.

De manière générale, nous défendons l’idée qu’il faut adopter une approche globale pour con-

cevoir une solution de détection du stress.
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Chapter 1

Introduction

1.1 Context and motivation

In 1997, Rosalind Picard pioneered the expression “affective computing” in her book of the same

name [99]. In this book, she discussed why computers would need to be able to express and

recognize affect and emotion. According to her, it would be beneficial for the quality of human-

computer interactions and also help advance emotion and cognition theory. 20 years later,

affective computing is now a dynamic field of research that proposes frameworks for diverse

problematics such as emotionnal speech synthesis, virtual avatars or depression detection. In

2003, Picard listed the main challenges of affective computing [98]. Recognizing affect, emotion

and mental state is one of them.

In this thesis, we focus on automatic stress detection. It is now widely accepted that stress plays

an important role in today’s people lifestyles. In The Global Burden of Disease [82], which was

published in 1996 by the Wold Health Organization (WHO), it is estimated that depression,

stress and anxiety disorders will become the second most frequent disabilities behind heart

diseases. Kalia evaluated the economic impact of stress in [61] and reported that the Mental

Health Foundation estimates that stress costs 3 billion pounds per year to the British industry.

Overall, stress is omnipresent in our society and can be of various intensity, from being late to

a meeting because of traffic jam to post-traumatic stress disorders (PTSD).

However, stress as we know it today is still a relatively new concept. Hans Selye is often

considered to be the one who pioneered modern research on stress with his book The Stress

1



2 Chapter 1. Introduction

of Life [112], published in 1956. He defined stress as the “nonspecific response of the body

to noxious stimuli”. However, as we will see later in this document, this definition has been

criticized and reviewed in several ways. Nowadays, there are still researchers who work on

refining the stress concept, such as Koolhaas et al. in 2011 [70].

Overall, we can see that, despite being omnipresent, stress is a complex concept that we do

not fully understand yet. We believe that, because of this observation, developing solutions

for automatic stress detection is particularly relevant. Being able to detect stress will indeed

significantly improve the quality of human computer interaction and of healthcare systems

since stress is so present in our society. Several works have already studied how automatic

stress detection may improve the safety of drivers [42, 54], the robustness of speech-based inter-

faces [39, 138] or the prevention of stress-related health problems [133]. In addition, studying

stress in different contexts will help understand its effect on the body and the mind. Therefore,

this work has two main objectives:

• Evaluate in a systematic way the impact of stress on physiology and behaviour while

taking into account the variety of assessment strategies.

• Tackle the methodological problems one faces when designing an emotion/mental state

recognition system.

1.2 Challenges

Automatic recognition of affect is a popular subject of study in the affective computing com-

munity [98]. Figure 1.1 displays the main steps that compose a traditional emotion/mental

state recognition system. Being a wide, multidisciplinary domain of research, it faces different

kinds of issues. Each step faces specific challenges:

• definition: The definition of many mental states are still debated. For instance, Andrews

et al. have proposed to rename the generalized anxiety disorder as the generalized worry

disorder [5]. Panksepp and Russell discussed the categorical and dimensional models

of affect in [136]. Regarding Social Signal Processing (SSP), the definitions of several

concepts such as synchrony and engagement are still being refined [33, 108]. This lack of
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Figure 1.1: Summary of the different steps that compose an usual affect recognition system.

definition is an important issue since it impacts how a mental state can be elicited and

assessed.

• data collection: Collecting enough data of good quality is a required step to obtain

robust analysis and conclusions. There are 3 common ways to obtain this data: design-

ing an emotion/mental state elicitation procedure, using actors and collecting data in

naturalistic settings. However, each of these 3 solutions faces some issues. Regarding

elicitation procedures, the biggest challenge is to design an experiment that limits the

impacts of the “Hawthorne effect” [1]. This effect describes how experimental subjects

may modify their behaviour because of the presence of an observer. In addition, there

are also ethical limits with elicitation procedures, especially when working with negative

emotions/mental states. Regarding the usage of actors, there are concerns about the

quality of the collected data and about the generalization power of the models built from

these data. Moreover, it can only be used for certain modalities such as speech and body

language, but is unrelevant with physiology. Finally, regarding data collection in natur-

alistic settings, real-lived emotion can be rare and difficult to assess in an accurate way.

In addition, the sensors used to collect signals must be as unobtrusive as possible or it

may very well change the subject’s behaviour as in the “Hawthorne effect”.

• data annotation: Unlike several pattern recognition applications such as character re-

cognition or face detection, there is often no consensual way to assess and annotate an

affective phenomenon, as it is closely linked to its definition. Thus, although the quality
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of assessment is as important as the quality of data to build robust models for emotion

recognition, researchers have to choose among a wide variety of assessments strategies:

self-assessment [14], external perception [10], physiological markers [11], etc. This het-

erogeneity also impacts the validity of comparing methods among them.

• feature extraction and selection: Emotion expression in human beings is highly

multimodal [130], as emotions may be manifested through facial expressions, gestures,

physiology and/or speech. Thus, it becomes complex to extract and select all the neces-

sary signals and features to build an effective recognition model.

• feature normalization: In addition to being highly multimodal, emotion expression

is also highly person-dependent. Indeed, people may express the same emotion in very

different ways. However, human beings are still able to recognize these emotions despite

these interindividual differences and the irrelevant information they bring. Regarding

automatic recognition systems, feature normalization has been commonly used to try

to limit the impact of interindividual differences. However, the effectiveness of these

normalization methods are dependent of the features and of the assessments considered.

Thus, researchers must carefully chose how to normalize their data.

• automatic prediction/recognition: The automatic recognition of emotion/mental

states faces specific issues compared to other pattern recognition problems. First, the

features extracted are often multimodal as we have discussed before. Thus, the machine

learning algorithms must be able to use features that may have different distributions and

temporal dynamics. Then, the labels used in the training phase are often noisy and uncer-

tain. Machine learning must therefore also be able to take into account this uncertainty

in order to build models with good generalization properties.

1.3 Contributions

In this work, we made contributions for several of the steps that compose an usual emo-

tion/mental state recognition system. We strongly believe that all these steps are closely linked

to each other and that one has to take an integrative approach in order to make significant

improvements. For instance, we will see in Chapter 5 that choosing the best feature normaliz-
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ation method depends on the way stress is assessed. Figure 1.2 summarizes the contributions

made in this work. This document present these contributions as follows:

• Definition and assement: In Chapter 2, we review and summarize how 3 perspect-

ives - the biological perspective, the phenomenological perspective and the behavioural

perspective - define and assess stress. We also review several automatic stress detection

frameworks.

• Data collection: In Chapter 3, we describe how we collected behavioural data as well

as 3 different assessments for 44 people. We also collected physiological signals for 25 of

them. Our objective is to make this database public in a close future. In this chapter, we

also study the association between the 3 collected assessments and discuss the results.

• Feature extraction: In Chapter 4, we describe how to extract original body language

features for stress detection such as finger rubbing or periods of high body activity. We

also describe the facial and physiological features that we extracted.

• Feature normalization: In Chapter 5, we evaluate 5 different feature normalization

methods on two different stress assessments. We show that the efficiency of these methods

is highly dependent on the way stress is assessed.

• Prediction/recognition: In Chapter 6, we propose a methodology to evaluate features

from multiple potentially biased assessments in order to obtain more robust findings. We

use this methodology to evaluate the relevance of 101 behavioural and physiological fea-

tures for stress detection. Also, we propose in Chapter 7 adaptations for 4 classic machine
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learning algorithms so that they can better handle labels collected through crowdsourcing.

Finally, we give a concluding discussion in Chapter 8. We summarize the thesis achievements

and we discuss the applications and perspectives of this work.



Chapter 2

State of the art

2.1 Background

Stress is a complex phenomenon that impacts the body and the mind at several levels. Short-

term and long-term stress exposure affects digestive functions [91], blood volume pressure [22],

skin conditions [43], eating habits [2], performance [84], decision making [63] and health in

general [27]. It is also widely considered as one of the biggest issue of western culture lifestyle,

especially at work. Indeed, several papers investigate how working conditions may induce stress

and/or propose strategies to reduce job related stress [30, 68, 74, 88].

Being both complex and omnipresent in our society, stress has been a popular topic of research.

It has been studied for a long time from different perspectives. In this chapter, we first present

how three different fields of research define and assess stress: the biological perspective focuses

on the impact of stress on the body, the phenomenological perspective on the impact on the

mind and the behavioural perspective on the impact on behaviour. Then, we present previous

automatic stress detection systems by describing how these works faced some of the challenges

presented in Section 1.2. We present the stimuli used for stress elicitation, how stress is assessed,

the collected signals and the machine learning methods used in these works.

2.2 Stress definition

Although researchers have studied the topic for more than a century, the stress definition is

still debated [70] and can be studied from different perspectives. In this thesis, we focus on 3

7
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perspectives: the biological perspective, the phenomenological perspective and the behavioural

perspective.

2.2.1 Biological perspective

The biological perspective aims at understanding how the body responds to a stressful stimulus.

It was pioneered by Hans Selye [111], who defined stress as the non-specific neuroendocrine

response of the body to a demand placed on it, such as extreme temperatures [111, 122]. The

body responds to a stressful stimulus by the activation of the hypothalamo-pituitary-adrenal

(HPA) pathway and the autonomic nervous system (ANS) that mediates the general adaptation

syndrome [113]. After the stimulus, a neuroendocrine chain reaction begins in the brain. Recent

neuroimaging studies support evidence of the major implication of some cerebral structures with

a multiroad processing system of stress [75, 97]. At a peripheral level, adrenal glands respond

by the release of epinephrin and cortisol into the bloodstream with an effect on cardiovascular,

musculoskeletal, gastrointestinal, nervous and endocrine systems.

This physiological cascade can be measured through salivary or blood sampling with biomarkers

such as cortisol. It can also be measured with wearable sensors [38] via valuable signals, such

as skin conductance [58] or heart-rate variability (HRV) measures [123, 126]. Using filtering

techniques, the sympathovagal balance can be directly calculated as the ratio of low and high

frequencies of HRV [114]. Previous experimental studies suggest that the stress response is

linked to a modulation in spectral density of the low frequency band of HRV (HRV-LF) [92].

2.2.2 Phenomenological perspective

The phenomenological perspective considers that self-perception is the key aspect. This vision

has been supported within the Cannon-Bard theory: the authors state that stress can occur even

when the body changes are not present because the physiological response of the body is more

slowly recognized by the brain compared to its function to release an emotional response [19,

31]. A major contribution to the field of research on stress was described within Lazarus’

theory of cognitive appraisal: stress is a two-way process which includes both the stressor and

the individual assessment of resources required to minimize, tolerate or eradicate the stressor

and the stress it produces. Experimental studies confirmed recently that stress experience is
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moderated by the ability of a human subject to feel his body signals such as the heartbeat [110].

Lazarus states that “Stress occurs when an individual perceives that the demands of an external

situations are beyond his or her ability to cope with them” [72, 73].

Since this definition focuses mainly on individual perception, stress can be measured by ques-

tionnaires [28, 86, 87], Likert and visual analogue scales [79].

2.2.3 Behavioural perspective

The behavioural perspective investigates the impact of stress on human and animal behaviour

both at individual and group levels [127, 90]. Both transfer of ethological research to human

behaviour and social signal processing lead researchers to a promising approach of behavioral

measure of stress in non human primates [127] and more recently in human subjects [90, 131].

Engaging in displacement behaviors such as scratching, face touching and lip biting have been

associated with stressfull experiences and may give more valuable information about the sub-

ject’s emotional state than verbal statements and verbal expressions [127]. Authors suggest

that these behaviors could impair cognitive performance by “cutting-off” attention temporarily

from stressful or threatening stimuli. This short term diversion of attention could reduce the

ability to deal with a mentally challenging or stressful task [23, 89].

In this perspective, behavior characteristics do not infer internal subjective feelings but are used

as external marker for behavior adaptation. Therefore, stress can be assessed on the basis of be-

havior modifications (such as the appearance of certain gestures [77] or voice modification [138])

when a subject is exposed to a stressor.

2.3 Automatic stress detection

In the last decade, several works have studied the feasibility of automatic stress detection.

Table 2.1 displays the papers we have reviewed for this thesis. In this section, we present how

these works faced the challenges listed in Section 1.2: how stress is elicited and assessed, which

features are extracted and how stress is detected.
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2.3.1 Stress elicitation

One of the most influential works that have been done regarding stress elicitation is the meta-

review of Dickerson and Kemeny [35]. They reviewed 208 studies on the impact of psychological

stressors on cortisol response, which is correlated with stress as reported in Section 2.2.1. They

conclude that the nature of the stressor has a major impact on the amplitude of the cortisol

response. Among 4 categories of stressor - cognitive tasks, public speaking, noise exposure and

emotion induction - only the categories cognitive tasks and public speaking are associated with

an increased cortisol level. The most effective stressors are those that combine cognitive load

and public speaking. The authors conclude that the possibility of being negatively judged by

others on task performance is an effective stressor.

Given these findings, it is not surprising to see that most of the stimuli used in the reviewed

papers are based on cognitive tasks and/or social evaluation. In [25], Chen et al. expli-

citly designed their experimental stressor according to Dickerson and Kemeny’s work. They

used a modified version of the Trier Social Stress Test (TSST), which was first introduced by

Kirschbaum et al. in [65]. This test is composed of 2 tasks: a mental arithmetic task and a

public speaking task. In their modified version, Chen et al. added a memory task and social-

evaluative characteristics. In other works, exercises such as mental arithmetic [39, 100, 116, 133],

memory task [3, 133] and stroop test [6, 45] are often used to induce cognitive load. Two works

also used driving as a cognitive task [39, 54], as their objective was to study driver’s stress.

Public speaking tasks are also a popular mean to combine cognitive load and social evalu-

ation [3, 100, 116]. In these tasks, the subject is usually asked to prepare a speech in a limited

amount of time, and then to deliver the presentation in front of a small audience.

However, other works used different kinds of stressors than those recommended by Dickerson

and Kemeny. In addition to cognitive tasks, Plarre et al. [100] and Shi et al. [116] also

used a cold pressor stressor [100, 116]. This was done in order to study both psychological and

physical stress. Sharma et al. used exposure to videos with stressful content (suspense with

jumpy music) as the stimulus [115]. In [138], Zhou et al. used the SUSAS database (Speech

Under Simulated and Actual Stress) [52] in which part of the data were obtained from subjects
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riding a roller-coaster.

Two works used data obtained in naturalistic settings [78, 124]. In [78], Lefter et al. used

genuine recordings from emergency call-centres from the South-African database. In [124],

Tartarisco et al. designed a mobile architecture to monitor stress related physiological signals.

Finally, several works use actors instead of stress elicitation experiments or naturalistic settings

[42, 77, 138]. Using actors has advantages and drawbacks, as explained in [77]:

+ It is more ethical than elicitation procedures.

+ Some real-lived emotions are rare, making it difficult to gather enough data.

− Using actors is irrelevant when studying the impact of stress (or any other emotion/mental

state) on physiology.

− Acted data may be too prototypical to be useful for pratical applications.

− Using professional actors is sometimes necessary in order to ensure a better quality of

data.

In [138], Zhou et al. also used the simulated data from SUSAS database. In [42], Gao et al.

asked subjects to make facial expressions associated with the six basic emotions (i.e. anger,

disgust, fear, happiness, sadness and surprise) and the neutral expression. In [77], Lefter et al.

asked professional actors to improvise interactions at a service desk.

2.3.2 Stress assessment

As seen in Section 2.2, stress can be assessed in several ways depending on the chosen defini-

tion: using questionnaires [28, 86, 87], biomarkers [58, 123, 126] or through changes in one’s

behaviour [90, 131]. However, the assessment choice will greatly determine the findings of

stress prediction models. Lutchyn et al. suggest that, regarding automatic stress detection,

“inconsistent results reported in some areas of research can be partially explained by the choice

of measurements that capture different manifestations of affective phenomena, or focus on dif-

ferent elements of affective processes” [85]. Thus, it might be necessary to consider several

assessments in order to analyze the results of stress prediction models in a more comprehensive

way.
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However, most of the reviewed papers use only one stress assessment strategy among a wide

variety of them:

• Experimental conditions. In several works [6, 39, 42, 54, 100, 115, 138], stress pres-

ence is inferred from experimental conditions. Thus, data obtained during a condition

considered as stressful is labelled as “stressed” while the others are labelled as “relax”.

This method is risky since it does not take into account one’s appraisal of the stressor,

although it has been shown to be an important aspect of stress [70, 73, 85, 125].

• Self-assessment. In [116, 133], stress is assessed using self-reports and questionnaires.

• Assessment from external observers. Stress is assessed by external observers who

look at different kinds of information. Thus, this assessment allows to study how stressed

one appears, but not how stressed one feels. The external annotators can either be

experts [77, 124] or novices (see Chapter 7). In [77], two experts judge whether the actor

appeared stressed by looking at her behaviour (speech + body language). In [124], expert

clinicians provide stress assessments by looking at physiological data.

• Acting instructions. In [42], stress is inferred from instructions regarding facial ex-

pressions. If the subject is asked to act angry or disgusted, the corresponding data is

labelled as “stressed”. In [138], part of the data used in the experiment is also labelled

from acting instructions.

It is however noteworthy that a multi-assessment approach has been adopted in some recent

works [3, 45]. In [3], Ahmed et al. propose a method to relabel stress/relax examples using

respiration signals. Then, they compare the performances of 3 models training using 3 different

assessments: experimental conditions (i.e. considering that some conditions are always stressful

and some are always relaxing), self-assessment, and re-assessment from respiration. The last

model obtains the best results. Giakoumis et al. used self-assement and assessment from GSR

for their classification experiments [45].

2.3.3 Feature extraction

Automatic stress detection systems used to mainly extract 2 categories of features: physiolo-

gical features and speech features. Using physiological features is intuitive since stress has
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many measurable effects on the body, as discussed in Section 2.2.1. Thus, many works use

features extracted from cardiac signals (such as blood volume pulse, heart-rate, electrocar-

diography, etc.) [3, 6, 45, 54, 100, 116, 124, 133], respiration [3, 54, 100, 116, 133], elec-

tromyography [54, 133], skin temperature [6, 116] and skin conductance [3, 6, 45, 54, 116].

Although physiological signals are usually collected through wearable sensors, some works have

used hyperspectral imaging techniques to obtain signals such as the tissue oxygen saturation [25]

and skin temperature [115] in an unobtrusive way.

Speech has also been used in early works on stress detection. Indeed, as explained in [138], stress

introduces variabilities on the acoustic speech signal that reduce speech recognition accuracy.

In [138], Zhou et al. studied how features based on the Teager energy operator [60] performed

for stress detection compared to traditional features such as pitch and mel-frequency cepstrum

coefficients features. The Teager energy operator is also used by Fernandez et al. in [39]. In

this paper, the authors worked on modeling driver’s speech under stress in order to improve

the interaction with a speech interface. In [78], Lefter et al. use prosodic and spectral features

to detect stress in emergency calls.

Recent works have also extracted visual features from body language [45, 77] and facial expres-

sions [42]. In [45], the authors show that using behavioural features such as body movement

or head position enhances the performance of traditional physiology-based stress detection sys-

tems. In [77], Lefter et al. use low-level features extracted from speech and gestures to detect

intermediate level variables such as speech valence and arousal, gesture valence and arousal,

etc. These intermediate variables are then used to detect stress. Gao et al. [42] extract global

and local facial descriptors such as SIFT descriptors [83] to detect the 6 basic emotions. Anger

and disgust are then merged as a single stress class.

Overall, features extracted from physiology and speech have provided good results for stress

detection for more than a decade. More recently, features extracted from body language and

facial also provided promising results. However, these findings greatly depend on the way stress

is assessed. This point is discussed in more depth in Chapter 6.
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2.3.4 Stress detection

As seen in Section 2.3.2, Lutchyn et al. suggest in [85] that inconsistent results may be par-

tially explained by the different methods used to assess stress. The heterogeneity of evaluation

processes of stress detection systems may also contribute to this phenomenon. Indeed, inde-

pendently of the machine learning algorithm used for prediction, evaluation processes can vary

in many ways. These factors can impact the performance of stress detection models and the

findings associated with them:

• Prediction resolution. Machine learning algorithms can be applied for different kinds

of problems with different levels of difficulty:

– Binary classification problems. Examples are from one of 2 classes: positive and

negative (stress and non-stress in the case of stress detection). The objective is to

predict the correct class of testing examples. The majority of the reviewed papers

present frameworks for this kind of problem [3, 6, 25, 42, 45, 78, 100, 115, 116, 133,

138].

– Multi-class classification problems. Examples are from one of n classes, with n > 2.

The objective is to predict the correct class of testing examples. Several reviewed

papers present frameworks for this kind of problem. In [39], Fernandez et al. try

to predict the driving conditions of each example: slow driving and slow-paced

arithmetic task (SS), slow driving and fast-paced arithmetic task (SF), fast driving

and slow-paced arithmetic task (FS) and fast driving and fast-paced arithmetic task

(FF). Healey et al. and Lefter et al. try to predict 3 different stress levels [54, 78]

and Tartarisco et al. try to predict 4 different stress levels [124].

– Regression problems. Examples are associated with a continuous value. The object-

ive is to estimate the associated value of testing examples. None of the reviewed

papers present frameworks for this kind of problem.

• Performance metrics. There are several ways to measure and present the results

obtained by classification systems. Since most of the reviewed papers describe frameworks

for binary classification problems, we present performance metric formulas for this kind
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Predicted: Stress Predicted: Non-Stress
Actual: Stress TP FN
Actual: Non-Stress FP TN

Table 2.2: Example of a confusion matrix in the case of binary classification. TP means true
positives, FN means false negatives, FP means false positives and TN means true negatives.

of problem. To do so, we will use Table 2.2, which is an example of a confusion matrix

in the case of binary classification.

– Classification accuracy, which is used in most of reviewed works [3, 6, 39, 45, 54, 77,

100, 115, 124, 133, 138], gives the proportion of correctly classified examples.

accuracy =
TP + TN

TP + FP + FN + TN

– Weighted classification accuracy gives the average of correctly classified examples

per class [45, 54, 77]:

weighted accuracy = 0.5×
(

TP

TP + FN
+

TN

FP + TN

)
– Precision and recall are usually used on the positive class (i.e. the stress class for

stress detection systems) [116]. The precision (also called the True Positive Rate

or TPR) gives the proportion of examples classified as positive which are correctly

classified:

precision =
TP

TP + FP

Recall gives the proportion of postive examples which are correctly classified:

recall =
TP

TP + FN

– ROC curve plots the TPR against the False Positive Rate (or FPR = FP
FP+TN

) for

various decision threshold values [25, 100].

– The F1-score or F-measure is the harmonic mean of precision and recall [42]. Thus,

it is also usually used on the positive class:

F1 = 2× precision× recall
precision+ recall
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• Subject-dependent models vs subject-independent models. In most of the re-

viewed papers, and in many works in the affective computing community, a subject

provides several examples. Indeed, subjects usually face several experimental conditions

(resting and stressful conditions [3], an increasing complexity for the cognitive task [39],

etc.), resulting in several examples that are going to be treated separately in the classi-

fication task. However, these examples are not independent since they are collected from

the same subject. In subject-dependent models, examples from a same subject are used

both to train the model and to evaluate it [6, 25, 39, 42, 45, 54, 77, 100, 133]. Thus, these

models cannot be used to detect stress in any subject, but only for one or some subjects.

In subject independent models, examples from a same subject are either used to train the

model or to evaluate it, but not both [3, 39, 78, 115, 116, 124]. In this case, these models

can be used on new subjects.

Regarding the ML algorithms in the reviewed papers, the most used one is the Support Vector

Machine (or SVM) [6, 42, 78, 100, 115, 116]. SVM is a traditional machine learning framework

for binary classification [12]. It aims at finding an optimal hyperplane that separates by the

widest margin points from 2 classes. Points can be projected into a transformed feature space in

order to perform nonlinear classification. Other traditional ML algorithms have been applied:

Hidden Markov Models (or HMM) [39, 138], decision trees [6, 100], Bayesian networks [39, 77],

etc.

2.4 Conclusion

Stress is a complex phenomenon that has serious impacts on health and on productivity at

work. It has been studied by several fields of research which gave different definitions and/or

ways to assess stress:

• For the biological perspective, stress is the physiological response of the body to a stressful

stimulus. It can be assessed through biomarkers such as hormone levels or physiological

changes.

• For the phenomenological perspective, stress is a process that occurs when an individual
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perceives a stimulus as threatening and that demands of the situation are beyond her

abilities. This perspective focuses on individual perception and assess stress mainly using

questionnaires.

• For the behavioural perspective, stress can be assessed through changes in the bahaviour.

In the last decade, several works have presented frameworks for automatic stress detection.

In these works, laboratory experiments are usually used to collect data in stressful situations.

Previous works showed that the most effective way to elicit stress during laboratory experiments

is to combine cognitive load and social evaluation.

We have presented how stress was assessed in the reviewed papers. We have seen that various

methods are applied: assessment from physiology, self-assessment, assessment from experi-

mental conditions, assessment from external observers, . . . The assessment choice has a huge

impact on how a model is trained, on its results and thus on how these results are interpreted.

The fact that stress is assessed in such various ways may partially explain inconsistent results.

We have seen that one way to limit this phenomenon is to consider multiple assessments.

We have seen that stress detection systems used to extract features mainly from physiology

and speech. Lately, features extracted from body language and facial expressions have been

included in multimodal frameworks. One work concludes that adding behavioural features

enhances the performance of traditional physiology-based frameworks.

Finally, we have discussed how evaluation processes may vary from one work to another. We

have described different prediction problems (binary classification problems, multi-class clas-

sification problems and regression problems) and different performance metrics. We also dis-

cussed the difference between subject-dependent models and subject-independent models.



Chapter 3

Acquisition of stress data with multiple
assessments

3.1 Introduction

One of the main conclusions of Chapter 2 is stress detection systems are heterogeneous in many

ways. The heterogeneity of assessment methods is especially important, as it may explain the

inconsistent findings reported in the literature [85]. One of the contributions of this thesis

is that we study the stress phenomenon in a more comprehensive way by considering the

results obtained from different annotations. Figure 3.1 is an extension of Brunswik Lens and

summarizes how we address the issue of the annotation choice. The Brunswik Lens [16] is used

in the affective computing literature to illustrate the difference between self-assessment and

external assessment for phenomena such as personality [129] and stress [77]. We extend it by

adding the assessment provided by a physiology expert. Thus, we annotate stress in 3 different

ways:

• Following the behavioural perspective, we gather external observer assessments (EOA)

using a crowdsourcing platform.

• Following the phenomenological perspective, we ask the subject to provide her self-

assessment (SA).

• Following the biological perspective, a physiology expert assesses the presence of stress

from the percentage of low frequencies in the heart rate variability (PEA).

19
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SA distal cues
(Body movement, AU, …) 

proximal
cues EOA

Mental 
State

Externalization Perception Attribution

Observer
internal cues

(HR, GSR, BVP, …) 

Expert

PEA

HRV-LF%

Figure 3.1: Data is annotated in 3 different ways. First, following the phenomenological per-
spective, we ask the subject to provide her Self-Assessment (SA). Then, following the be-
havioural perspective, we ask external observers (recruited using a crowdsourcing platform)
assessments (EOA). Finally, following the biological perspective, a physiology expert assesses
the presence of stress from the percentage of low frequencies in the heart rate variability (PEA).

Designing a new experimental protocol was necessary to collect the required data to analyze

stress from multiple assessments, since to our knowledge, no available dataset provided these

assessments. Giraud et al. presented a multimodal stress corpus in [46]. A public speaking task

is used as the stimulus. Physiological and behavioural data are collected along with self-assessed

stress, personality and coping strategies. Koldijk et al. described the SWELL dataset in [67].

They collected behavioural and physiological data from 25 subjects while they were performing

typical work tasks (making presentations, reading e-mails, etc.). Again, self-assessment was

used as ground truth.

In this chapter, we first present the experiment we designed to obtain behavioural and physiolo-

gical data in a stressful situation. We present the stimulus, the setup, the post-experiment

questionnaires and the acquired datasets: Dataset-44 and Dataset-21. Then, we describe the

3 collected stress assessments: the External Observers Assessment (EOA), the Self-Assessment

(SA) and the Physiology Expert Assessment (PEA).
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3.2 Experimental stressor

3.2.1 Stimulus

As explained in Section 2.3.1, Dickerson and Kemeny state in [35] that the best way to increase

the cortisol level of a subject is to induce cognitive load while socially evaluating her. Based

on this work, we designed a time-constrained mental arithmetic test as the stress-induction

stimulus of the experiment (Figure 3.2). Subjects were told that the objective of the experiment

is to estimate their developmental age and to correlate it with their academic and professional

careers. It made them believe that they were socially evaluated while keeping hidden the stress

induction aim of the experiment. This way, stress induction occurred as naturally as possible.

Figure 3.2: Screenshot of the test software used for the study. The question asked is shown in
the middle of the screen. The two possible answers are below the question. At the bottom,
the remaining time is displayed using a progress bar. On the right, the color of the score bar
provides a feedback regarding the performance of the subject: green means “above average”,
yellow means “average” and red means “below average”.

In our protocol, the subject is first briefed about the fake objective of the experiment and

asked to sign the consent form and the release waiver. We also informed the subject that she

could stop the experiment at anytime. Then, the physiological sensors are installed, and the

subject starts taking the test. The test is composed of 6 steps of increasing difficulty. There

is a break period of 5 seconds between 2 steps. The subject is told that both quickness and

correctness of her answers are taken into account to compute her score. In reality, the values of
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the score bar are set in advance. It displays an “above average” score at the beginning, so that

the participant finds the test easy enough and feels like she should succeed. Then, the score

drops to “average” and “below average” levels, giving the participant the feeling she is actually

failing. Overall, the score bar, the presence of the 2 people who ran the experiment and the fake

objective induce the feeling of social evaluation while the questions and the time bar induce

cognitive load. Once the test is finished, the real objective is revealed and the experiment is

debriefed.

3.2.2 Setup

Approx. 3 m

Screen

Kinect
sensor

HD 
camera Subject with or 

without the 
Nexus-X

Figure 3.3: Setup of the experiment

Figure 3.3 shows the setup of the experiment. The subject is standing approximately 3 meters

away from the screen where the test is displayed. Video and skeleton data were recorded using

a Microsoft Kinect. Since the resolution (640× 480 pixels) of the video recorded by the Kinect

is too low for an accurate facial expression analysis, we also recorded video data of the subject’s

face using the optic zoom of a high definition (1440× 1080 pixels) camera. Physiological data

was recorded with a Nexus-10 portable device (MindMedia B.V., The Netherlands) with a

measurement of EMG, GSR, skin temperature, respiration, BVP and HR.
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3.2.3 Post-experiment questionnaires

After the experiment, we present 4 questionnaires: a personality test, the State-Trait Anxiety

Inventory (STAI), questions about the impact of the experiment on stress and questions about

self-assessment of stress. The description of self-assessment will be presented in Section 3.3.

In this section, we present the questions and we compute the answer distribution of the first 3

questionnaires.

Personality test

The personality test we used is the 10-item version of the Big-Five Inventory [102]. This test

aims at describing human personality by evaluating 5 factors: openness, conscientiousness,

extraversion, agreeableness and neuroticism. Each factor is represented by 2 questions. All 10

questions are Likert-scaled questions, ranging from 1 to 5. To evaluate a factor, one sums the

values of the 2 related questions. Thus, scores for each factor range from 2 to 10. Figure 3.4

presents the distribution of each factor among the subjects. It is noteworthy that values of

neuroticism are fairly well distributed. It is important since the relation between stress and

neuroticism have been studied in several works [34, 41, 93]. Thus, it seems that there is no bias

regarding neuroticism among the subjects of our experiment.

The State-Trait Anxiety Inventory (STAI)

The State-Trait Anxiety Inventory is a questionnaire designed by Charles Spielberger usually

composed of 40 sef-report items aiming at measuring anxiety [120]. It evaluates two types

of anxiety: state anxiety and trait anxiety. State anxiety corresponds to the anxiety felt at

a specific moment, while trait anxiety corresponds to one’s relatively enduring disposition to

feel anxious or not. In our experiment, we only evaluate trait anxiety. Consequently, the

questionnaire is composed of 20 Likert-scaled questions, ranging from 1 to 4. Thus, STAI

scores range from 20 to 80. Figure 3.5 presents the distribution of STAI scores among the

subjects.
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Figure 3.4: Values distribution for each personality traits assessed with the Big-Five. Best
viewed in color.

Impact of cognitive load and social evaluation on stress

As explained in Section 3.2.1, we decided to elicit stress by combining cognitive load and social

evaluation. In the experiment we designed, question complexity and the allowed answer time

are used to induce cognitive load, while the score and the presence of the 2 people running the

experiment are used to induce social evaluation. During the questionnaire, we ask 4 Likert-

scaled questions (1 - 5) about the impact of each of these 4 elements on stress. Figure 3.6

presents the mean values of the self-reported rating of the impact of each element on stress. We

can see that all 4 elements induce relatively high level of stress, since their mean values are all

above 3.5. According to the subjects’ answers, the most stressful element is the limited answer

time for each question. It is not surprising since the relation between time pressure, decision

making and stress has been studied and accepted for a long time [96, 121]. Regarding the 3

other elements, there is no statistical significant difference among them. Overall, it appears
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Figure 3.5: STAI value distribution.

that cognitive load induced more stress than social evaluation in our experiment. However, it

is important to note that people’s presence may have been more impactful if we chose to adopt

a judgemental or cold attitude rather than being natural.

Question complexity Answer time Score bar People’s presence
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Figure 3.6: Mean value of the self-reported impact of each element of the experiment on stress.

3.2.4 Acquired Datasets

Overall, 44 people recruited among medical and computer science students participated in our

experiment. However physiological signals were not recorded for all the participants. Con-

sequently, we have 2 datasets:

• Dataset-44 for which we only have Kinect and HD video data. All 44 participants are

included in this dataset: 25 men and 19 women. On average, the subjects are 25.4 ±
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3.7 years old. For each of those subjects we process each of the 6 steps independently,

making a total of 6× 44 = 264 examples.

• Dataset-21 for which we have Kinect, HD video and physiological data. A subset of 21

participants are included in this dataset: 15 women and 6 men. On average, the subjects

are 26.3 ± 4.6 years old. In total, we process 6× 21 = 126 examples.

3.3 Description of external observer, self and physiology

expert assessments of stress

As shown on Figure 3.1, each example is annotated in 3 different ways, one for each perspective

we presented in Section 2.2:

• External Observers Assessment (EOA)

• Self-Assessment (SA)

• Physiology Expert Assessment (PEA, available only for Dataset-21)

In this section, we describe in detail these 3 annotations and study their correlations.

3.3.1 Description of External Observers Assessment (EOA)

We used the crowdsourcing platform CrowdFlower1 to obtain annotations from external ob-

servers. It allows to easily obtain a large amount of annotations while providing some quality

control mechanisms.

Crowdsourcing acquisition procedure

We presented the video of the body recorded by the Kinect for all 264 examples. Three questions

were asked for each video (Figure 3.7):

• Do you think this person is stressed? Answers: not stressed/stressed (Q1)

• How stressed is the person in this video? Answers: Likert scale 1-5 (Q2)

• How confident are you on your ratings? Answers: Likert scale 1-5 (Q3)

1www.crowdflower.com
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Figure 3.7: Screenshot of the CrowdFlower platform.

Regarding the instructions given to the annotators, we told them that they were shown videos of

people taking a cognitive test. This was done so that they would have enough knowledge about

the context to provide accurate ratings. However, we did not mention the mental arithmetic

nature of the test in order to avoid social projection [106], which may have impacted the workers’

answers. To obtain acceptable statistical significance, we requested 10 annotations per video.

Crowdsourcing annotation quality control

Even if, for a subjective question such as “do you think this person is stressed?”, there is no

such thing as a wrong answer, it is still important to try to avoid spammers and malicious

workers in order to collect good quality data. To do so, we used 3 mechanisms to ensure the

annotation quality.

• CrowdFlower proposes 3 categories of workers according to their performances on the

platform. We have chosen workers from the highest ranked category.

• We have set the minimum amount of time a worker should take to answer the questions of

one video. Since we want workers to watch the videos until the end and since the shortest

video lasts 50 seconds, we have chosen this duration as the threshold. If a worker takes

less time to annotate one video, her answers are discarded and she cannot work for this

task anymore.

• During a pilot experiment, we selected examples which are considered prototypical videos

of stressed and non-stressed people. To do so, 28 people answered the same question Q

for a subset of 15 videos that we had previously selected. Then, we discarded 4 videos



28 Chapter 3. Acquisition of stress data with multiple assessments

that achieved an agreement rate lower than 90% for question Q. These 11 videos were

used by the CrowdFlower platform to filter the workers: the platform randomly chose 5

videos to create a quizz. If a worker successfully answers Q for less than 4 videos out of 5,

she is not allowed to participate in the task. In addition, CrowdFlower randomly inserts

“Test Questions” among the videos. Test Questions are videos for which there is a set

of acceptable answers. If a worker misses too many Test Questions, she is not allowed to

provide new ratings and her previous ratings are marked as unreliable. This method is

risky since we may discard honest workers who just gave their opinion, however it is also

the most effective way to discard spammers who would be aware that there is a minimum

amount of time to spend on each video.

Crowdworkers

259 people annotated an average of 11.90 ± 9.48 videos. Their repartition over the continents

is presented in Table 3.1. We can see that most of them are from western culture, as the

subjects of the experiment are. This is important since stress may be expressed and perceived

differently depending on one’s culture. Analysis on the impact of culture on stress expression

and perception is important but is out of the scope of this thesis.

Continent EU SA AS NA AF OC

Number of annotators 133 52 49 24 1 1

Table 3.1: Repartition of the annotators over the continents (EU = Europe, SA = South
America, AS = Asia, NA = North America, AF = Africa, OC = Oceania).

Annotations aggregation

Since we have several annotations per video, we have to use an aggregation method in order

to assign a single label to each video. To do so, we chose the Honeypot method [101]. First,

we remove untrustworthy annotators using answers to Test Questions. Then, we assign the

majority decision to each video: if more than half of the remaining annotations are Stress

answers, we assign the Stress label, otherwise we assign the Non-Stress label.
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Label Non-Stress Stress

Dataset-44 46.2% 53.8%

Dataset-21 39.7% 60.3%

Table 3.2: EOA label distribution for both datasets.

3.3.2 Description of Self-Assessment (SA)

Self-assessment of stress was conducted during the debriefing of the experiment. The subjects

answered a Likert-scaled (1-5) question about how stressed they felt during each step. To limit

memory bias, they watched their own videos before providing their answers. Then, in order

to obtain binary labels, we use a threshold on the stress level: Non-Stress = {1, 2} and Stress

= {3, 4, 5}. This threshold has been chosen regarding the repartition of the answers to Q2

according to the answer given for Q1. As shown in Figure 3.8, it appears that stress levels 1

and 2 are associated with Non-Stress, while stress levels 3, 4 and 5 are associated with Stress.

Label Non-Stress Stress

Dataset-44 34.1% 65.9%

Dataset-21 25.4% 74.6%

Table 3.3: SA label distribution for both datasets.

3.3.3 Description of Physiology Expert Assessment (PEA)

For PEA, presence of stress was assessed based on clinician expertise on the physiological impact

of stress. We used the percentage of low frequency in the heart-rate variability (HRV-LF%)

measure provided by the Nexus-10. HRV is considered to be a reliable indicator to assess

the presence of physiological stress [123, 126] and its percentage of low frequency is seen as a

valuable marker [11, 26, 92]. It also has the advantage to be a fast physiological marker of the

activation of the HPA pathway and the ANS. Thus, it gives a fast image of the impact made

by the stressor, unlike cortisol which is released with a 5 to 20 minutes delay [13]. In order to

obtain binary labels, we compare the values obtained with the average of HRV-LF% over all the

examples. For each example, if the HRV-LF% observed is above the computed average, then
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Figure 3.8: Answer distribution to Q2 according to the answer given for Q1 (Stress or Non-
Stress). Best viewed in color.

the example is associated with the Stress label. Otherwise, it is associated with the Non-Stress

label. Consequently, we obtain the distribution shown in Table 3.4.

Label Non-Stress Stress

Dataset-21 52.4% 47.6%

Table 3.4: PEA label distribution for Dataset-21.

3.3.4 Are PEA, SA, and EOA significantly associated ?

Assessment sets SA×EOA SA×PEA EOA×PEA

Dataset-44 0.25 NA NA

Dataset-21 0.38 -0.08 -0.07

Table 3.5: Cohen’s Kappa for each combination of 2 assessment sets for both datasets.

To assess how PEA, SA, and EOA were associated, we performed two analyses. First, we

calculated Cohen’s Kappa to assess their agreement based on binary labels. Second we used

correlation analysis based on non-binary values. Table 3.5 shows the Cohen’s kappa scores for

each combination of 2 assessment sets. The only scores which are considered as fair by the

guidelines given by Landis et al. in [71] are obtained by the pair SA×EOA for both datasets.
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This could be explained by the fact that the subjects were asked to watch their own videos

before providing their self-assessment. Thus, they looked at the same distal cues as the external

observers before judging whether they felt stressed or not. The low kappa scores obtained by

PEA with SA and EOA may be explained by the differences in distribution: PEA is more

balanced (Table 3.4) than SA (Table 3.3) and EOA (Table 3.2). Since the kappa scores are

impacted by the choice of a specific threshold for each assessment, we also used correlation

analysis on non-binary values. Table 3.6 presents the correlation coefficient between the non-

binary values associated with each assessment:

• EOA: the proportion of annotators that answered “Stressed” for Q1.

• SA: the self-reported answers to the Likert-scaled (1-5) question asked during the debrief-

ing of the experiment.

• PEA: the HRV-LF% values.

Assessment sets SA×EOA SA×PEA EOA×PEA

Dataset-44 0.32* NA NA

Dataset-21 0.41* -0.11 -0.06

Table 3.6: Correlation coefficients for each combination of 2 assessment sets for both datasets.
Significant correlations (p < 0.05) are marked with *.

The correlation coefficients are very similar to the kappa scores: the only significant correlations

are obtained by the pair SA×EOA. The correlation coefficients - 0.32 and 0.41 - indicate a

modest correlation. There is no significant correlations between PEA and EOA and between

PEA and SA.

Overall, the kappa scores and the correlation coefficients give similar conclusions. The lack or

limited correlation found supports: (1) the idea that stress is a complex phenomenon which can

be expressed through one’s body, behaviour and/or mind. (2) Physiological parameters may

differ in timing for stress induction compared to behavioral cues ; (3) despite the correlation

between EOA and SA, it appears that the two phenomena have both common basis and separate

cues. Thus, it is important to assess stress in several ways because of the diversity of its

expression.
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3.4 Conclusion

We have presented the stress elicitation experiment we designed, which combines cognitive load

and social evaluation as recommended by Dickerson and Kemeny in [35]. We have acquired

Kinect and HD video data from 44 subjects. We refer to this dataset, which is composed of

264 examples, as Dataset-44. We also have acquired physiological data from a subset of 21

subjects. We refer to this dataset, which is composed of 126 examples, as Dataset-21. For each

example, stress is assessed in several ways:

• Workers from the crowdsourcing platform Crowdflower provide External Observers As-

sessment (EOA)

• Subjects of the experiment provide Self-Assessment (SA)

• A physiology expert provides Physiology Expert Assessment (PEA, available only for

Dataset-21)

We will use these datasets and assessments to study several aspects of automatic stress detection

in the following chapters of this thesis.



Chapter 4

Feature extraction for automatic stress
detection

4.1 Introduction

In this chapter, we present the features we extract for stress detection. As explained in Sec-

tion 2.3.3, most frameworks for automatic stress detection use features extracted from speech

and/or physiological signals [6, 25, 39, 54, 116, 133, 138]. However, there are some contexts

where speech and physiology are not the most suited sources of information for stress detection.

In [39] and [54], stress is detected during a real-world driving-task. However, drivers do not

always talk, and physiological sensors are obtrusive. In this case, cues extracted from the body

language are likely to be the most convenient sources of information to assess stress since they

can be captured by camera sensors.

Recent works have studied the contribution of behavioural features such as movement and

posture, with various results [45, 77, 119]. Giakoumis et al. showed that using behavioural

features enhances the performance of traditional physiology-based stress detection system [45].

Behavioural features have also been used to recognize or to synthesize someone’s affective

state [21, 46, 47].

In this thesis, we propose original body features extracted from Kinect data. We also extract

facial and physiological features in order to study multimodal features for stress detection.

Overall, we extract 101 features from 3 sources: 15 body features from the Kinect data, 24

facial features from the HD video and 62 physiological features from the signals provided by

33
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Figure 4.1: The skeleton joints extracted by the Kinect1

the Nexus-10. Body and facial features are presented in Table 4.1 gathered as behavioural

features. Physiological features are presented in Table 4.2.

4.2 Body features

4.2.1 Quantity of Movement

The main body activity feature extracted is the Quantity of Movement (QoM). We compute it

in two ways: using the RGB video (IQoM), and using the skeleton joints (SQoM) (Figure 4.1).

IQoM is the number of pixels that changed between two successive frames.

IQoM(i) = Card({pi|abs(pi − pi−1) > t})

with pi the RGB vector of pixel p in the ith frame and t a threshold. SQoM is the sum of the

displacements of the skeleton joints between two frames.

SQoM(i) =
∑

j∈joints

√
(vji − vji−1

)2

with vji the position vector of the joint j in the ith frame. Each method has its advantages and

drawbacks. SQoM enables us to detect slight movements in the camera axis. However, as the

1Image retrieved from https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
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Kinect skeleton can be unstable during the recordings, IQoM is also used in order to extract a

less noisy quantity of movement. For both IQoM and SQoM, we compute their average value

over all the Kinect video frames of the protocol step. Then, in order to make these features

invariant to the size of a person and to the distance between her and the camera, we normalize

them with respect to the surface of the box bounding the person. We also compute the SQoM

only for the head joint (HeM) and isolate its movement along the camera-axis (HeMZ).

4.2.2 Periods of high body activity

We make the hypothesis that periods of high body activity characterize an increasing uncom-

fortability. These periods are extracted by detecting the peaks in the IQoM signal (Figure 4.2).

We use the number of periods extracted (HAPC), their average duration (HAPMD) and their

average intensity (HAPMV) as features.

0 500 1,000 1,500 2,000

0

1

2

3

4

·10−2

frame index

IQ
oM

IQoM
Periods extracted

Figure 4.2: Extraction of periods of high body activity from the IQoM. Blue line: IQoM values
per frame. Red dashed line: periods of high activity extracted. Best viewed in color.

4.2.3 Posture changes

As for periods of high body activity, posture changes may reveal uncomfortability. Giraud et

al. concluded in [46] that the variability of the center of gravity displacements is related to

negative emotions, such as stress. In this thesis, we use the number of posture changes (PCC)

that occur during the experiment as a feature. Because of the skeleton stability issues in the
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recordings, especially when the participant crosses her arms, we use the periods of high body

activity described previously to extract the posture changes. For each period, we compare the

first frame and the last frame by computing their difference (Figure 4.3). If the number of

pixels divided by the surface of the bounding box is above a given threshold, we consider that

there is a posture change.

Figure 4.3: Example of detection of a posture change. From left to right: first frame of the
period, last frame and their thresholded absolute difference.

4.2.4 Detection of self-touching

Harrigan suggests in [53] that self-touching can be an indicator of negative affect. We detect two

types of self-touching: face touching, which is part of the displacement behaviours described

by Troisi [128], and rubbing fingers together. Since detecting self-touching requires a precise

tracking of the hand, we use skin detection to refine the hand joint location provided by the

Kinect. Starting from the position given by the Kinect, we look for the closest skin pixel

detected. This becomes the new position of the hand. Figure 4.4 shows an example of the

refinement of the hand location.

To determine if a person is touching her face, we compute the hand-head and the hand-neck

distances. If one of these distances is below a given threshold, we consider that the person

is face touching (Figure 4.5). The number of occurences (FTC) and the average duration

(FTMD) are used as features. Similar features are extracted when the person is self-touching

her head with two hands (FT2HC and FT2HMD).
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Figure 4.4: Example of the refinement of the hand joint location. The red squares represent
the location given by the Kinect. The blue circles represent the new location after refinement.
Best viewed in color.

To detect gestures such as rubbing fingers together, the Kinect skeleton is not sufficient since

it does not provide joints for the fingers. Thus, using the hand positions, we first extract the

sub-image of each hand region. Then, we compute the IQoM between successive extracted

sub-frames. We only compute it when the person is not moving her hand since the IQoM can

be affected by changes in the background. This feature is computed for each hand separately

(LHM for the left hand, RHM for the right one) and for both (HM).

Figure 4.5: Examples of detections of face touching. Left image: face touching with one hand.
Right image: face touching with two hands.
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4.3 Facial features

For facial expressions, we extract the activation levels of 12 Actions Units (AU). Paul Ekman

presented AUs as part of the Facial Action Coding System (FACS) [37]. This system encodes

movements of individual facial muscles in order to characterize facial expressions in a systematic

way. Each AU has 5 possible activation levels: trace, slight, marked, severe and maximum.

Figure 4.6: Example of Action unit activation.

To extract these activation levels, we use the method presented in [94], which proposes a multi-

task extension for a subspace learning algorithm called Metric Learning for Kernel Regression.

Once we have extracted the activation level of each AU for each HD video frame, we compute

the average and the standard deviation and use them as features.

4.4 Physiological features

The Nexus-10 device is used to extract physiological features classically associated in the liter-

ature with stress. The BVP sensor allows the monitoring of cardiac signals such as the Blood

Volume Pulse (BVP) or the Heart Rate (HR). The Heart Rate Variability (HRV), which cor-

responds to the variation in the time between heartbeats (also called R-R or N-N intervals),

is also acquired. From these signals, the Blood Volume Pulse Amplitude (BVPA), the Heart
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Rate Variability Amplitude (HRVA), the spectral density of the low frequency band of the HRV

(HRV-LF%), the square root of the mean squared difference between successive N-N intervals

(HRV-RMSSD) and the standard deviation of N-N intervals (HRV-SDNN) are computed and

used as features. The respiration sensor monitors the abdominal breathing signal (RSP). From

this signal, we compute the respiration rate (RSPR) and the respiration amplitude (RSPA).

Also, the level of coherence between the respiration and the heart rate (RSP+HR) is computed

from both signals. The temperature sensor monitors skin temperature (TMP). The skin con-

ductance sensor monitors the galvanic skin response (GSR). Finally, the EXG sensor allows

the monitoring of the EMG signal from the sternocleidomastoid and upper trapezius muscles

(EMG and EMG2). We compute the mean frequency (EMGMF) and the amplitude (EMGA)

of the mean signal between EMG and EMG2. For most of these signals, we use the mean value,

the standard deviation, the min and the max values as features.

Figure 4.7: Images of the sensors used to capture physiological signals. Top row, from left to
right: BVP sensor, respiration sensor and temperature sensor. Bottom row, from left to right:
skin conductance sensor and EXG sensor2.

4.5 Conclusion

In this thesis, we have extracted original body features from Kinect data for stress detection

such as periods of high activity, posture changes, face-touching and fingers rubbing. We also

extracted the level of activation of 12 Action Units as facial features, and physiological features

2Image retrieved from http://www.mindmedia.info/CMS2014/en/products/sensors
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from BVP, GSR, EMG, respiration and skin temperature signals. Overall, we have extracted

39 behavioural features - 15 body features and 24 facial features - and 62 physiological features.

We use these features for the experiments on automatic stress detection we present in the

following chapters.
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Feature Description

AU1 Inner Brow Raiser

AU2 Outer Brow Raiser

AU4 Brow Lowerer

AU5 Upper Lid Raiser

AU6 Cheek Raiser

AU9 Nose Wrinkler

AU12 Lip Corner Puller

AU15 Lip Corner Depressor

AU17 Chin Raiser

AU20 Lip Stretcher

AU25 Lips Part

AU26 Jaw Drop

SQoM QoM computed with the skeleton

IQoM QoM computed with the RGB frames

HAPC Number of periods of high activity

HAPMD Mean duration of periods of high activity

HAPMV Mean highest value of periods of high activity

PCC Number of posture changes

FTC Number of times face touching with one hand occured

FTMD Mean duration of face touching with one hand

FT2HC Number of times face touching with two hands occured

FT2HMD Mean duration of face touching with two hands

LHM QoM for the left hand

RHM QoM for the right hand

HM QoM for both hands

HeM QoM for the head

HeMZ QoM for the head only along Z-axis

Table 4.1: List of the extracted behavioural features.
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Feature Description
BVP Blood Volume Pulse
BVPA Blood Volume Pulse Amplitude
EMG Electromyographic activity of the sternocleidomastoid and

upper trapezius - channel 1
EMG2 Electromyographic activity of the sternocleidomastoid and

upper trapezius - channel 2
EMGMF Electromyographic activity of the sternocleidomastoid and

upper trapezius Mean Frequency
EMGA Electromyographic activity of the sternocleidomastoid and

upper trapezius Amplitude
GSR Galvanic Skin Response
HR Heart Rate
HRVA Heart Rate Variability Amplitude
HRV-LF% Heart Rate Variability Low Frequency band
HRV-RMSSD Heart Rate Variability square root of the mean squared dif-

ference between adjacent N-N intervals
HRV-SDNN Heart Rate Variability Standard Deviation of Normal to Nor-

mal intervals
RSP Abdominal Respiration
RSPA Abdominal Respiration Amplitude
RSPR Abdominal Respiration Rate
RSP+HR Level of coherence between the Respiration and the
TMP Temperature

Table 4.2: List of the extracted physiological signals.
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Handling interindividual differences for
automatic stress detection

5.1 Introduction

As explained in Section 1.2, one of the biggest challenges in affective computing and in social

signal processing is to develop solutions to handle interindividual differences. Indeed, as said

in [9], “Different people tend to display the same emotion in very different ways”. This het-

erogeneity is found in several modalities such as speech [18, 137], physiology [7, 17, 81], facial

expressions [94, 137] and body language [9].

In pattern recognition, one common method to handle interindividual differences is data nor-

malization. The objective of normalization techniques is to reduce the impact of interindividual

variability while preserving the differences between classes. It can also be used in machine learn-

ing to modify data distribution or scale [8]. These methods can either be person-specific or

generic. Person-specific normalizations apply a different transformation to each subject’s data,

while generic normalizations apply the same transformation.

In this chapter, we evaluate 5 different normalization techniques for stress detection: mean-

centering, range normalization, standardization, baseline comparison and Box-Cox transforma-

tion. To do so, we use the Dataset-44 introduced in Chapter 3, thus working only on subjects’

behaviour. We first introduce the normalization methods, then we present the results of the

evaluation of each normalization method on 2 assessments: self-assessment and external ob-

server assessments. We will see that the effectiveness of each normalization method also depends

43
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on the chosen assessment strategy.

5.2 Normalization methods

5.2.1 Mean-centering (MC)

Using the idea presented in [9], we make the hypothesis that a person’s behaviour biases are

affected by constant factors, such as gender or physical build. Therefore, we model their impact

as an additive constant, which can be computed as the average behaviour of the person over

all the steps:

x′ps = xps − x̄p

with xps the value of a given feature for person p during step s, x̄p the average value of the

given feature over all the steps for person p and x′ps the feature normalized value. This person-

specific method is used in the work presented in [100]. The authors stated that using this

method improved the classification accuracies of 2 machine learning algorithms: J48 decision

tree and SVM.

5.2.2 Range normalization (RN)

In the same fashion as mean-centering, one can make the hypothesis that a person’s behaviour

biases influence how much stress impact her behaviour. As we previously modeled constant

factors by an additive constant, we can model by a multiplicative constant the rate at which

stress influences the behaviour:

x′ps =
xps

max(xp)−min(xp)

with max(xp) and min(xp) the maximum and minimum values over all the steps for person p.

5.2.3 Standardization (ST)

This method combines the hypotheses of the two previous methods. We model constant factors

by an additive constant and how much stress impact one’s behaviour a multiplicative constant:

x′ps =
xps − x̄p
σxp
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with σxp the standard deviation for person p. This person-specific normalization method is

used in the following papers [3, 133].

5.2.4 Baseline comparison (BL)

Another way to look at personal biases is to consider that everybody has a usual behaviour

which can be different from each other. For instance, some people may in general be more

active with their body while talking than others. Therefore, one can make the hypothesis that

stress does not impact how active someone is, but rather how active someone is compared to her

usual self. Thus, one can model this comparison by computing the relative difference between

the current behaviour and a baseline behaviour. This baseline behaviour needs to be as close as

possible to the subject’s usual behaviour so that unusual, potentially discriminative behaviour

would be extracted.

x′ps =
xps − baselinep
baselinep

with baselinep the baseline vector of features for person p. This method is used in the following

works [25, 45]. In our case, we use the first step of the experiment as the baseline since it is

the easiest step. It is noteworthy that although it is the best way we have to implement this

normalization method, it also has its flaws. Indeed, making the hypothesis that because the

first step is the easiest one it is also the least stressful is risky: subjects may be stressed at the

beginning of the experiment because of apprehension.

5.2.5 Box-Cox transformation (BC)

Interindividual differences also impact data distribution. Indeed, there may be some features

for which a subject is so different from others that her data acts as an outlier. Therefore, it

may prevent the machine learning algorithm from finding the most adequate model. In order

to overcome this issue, one can use the Box-Cox transformation [107] to normalize feature

distribution in a systematic way. The Box-Cox transformation is defined as:

x′λ =
xλ − 1

λ

The aim is to find the value of λ that maximizes the correlation between the transformed feature

x′λ and the normal distribution N (µ(x′), σ(x′)2). We only compute the correlation for specific
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values of λ that can be found in Table 5.1. Unlike the 4 previous normalization methods that

we have presented, the Box-Cox is not person-specific: the same transformation is applied to

the data of all subjects.

λ -2 -1 -0.5 0 0.5 1 2

x′ 1
x2

1
x

1√
x

log(x)
√
x x x2

Table 5.1: Tested values of λ for the Box-Cox transformation and their associated transforma-
tion function.

5.3 Evaluation

5.3.1 Evaluation process

We use a classification task to evaluate the effectiveness of each normalization method. The

objective is to predict the binary stress label - Stress or Non-Stress - of each of the 264 collected

examples composing Dataset-44 for assessments sets EOA and SA. However, we remove the

first step of each subject when we evaluate the baseline comparison method since we use these

steps as our baseline, lowering the number of examples to 220.

We run 2 experiments in order to evaluate normalization methods. In the first experiment, we

use all the features present in Dataset-44 to compare the classification results obtained with

and without normalization. However, the hypothesis we make for each normalization method

may be true for some features, but not for others. Therefore, we use a feature selection method

in the second experiment. We use a backward elimination wrapper [66] as our feature selection

method: starting from the complete set of features, we iteratively remove the worst feature

of the remaining set. Once all features have been removed, we keep the subset that gives the

best classification performances. We perform this feature selection step on all data, since the

objective is to evaluate normalization methods with their most relevant features.

We use SVMs with three different kernel functions - linear, polynomial and radial basis - to

compute classification results. We use a 10 fold subject independent cross validation strategy

to compute the results: steps from 4 or 5 people are used as the testing set. The steps of

the remaining people are used as the training set. This cross validation is also used with the
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training set to determine the SVM and kernel function parameters. It is important to note that

the parameters for the Box-Cox transformation are computed using only the training set and

are then applied to the testing set. Regarding person-specific normalizations, the parameters

are already independent between training and testing sets since our cross-validation is subject-

independent.

Since our dataset is unbalanced for the 2 assessment sets considered we have chosen the average

of the F1 score for both Stress and Non-Stress classes as the performance metric. This metric

allows us to consider the recall and the precision of both classes, unlike the usual F1 score that

considers the recall and the precision only for the positive class and ignores the true negative

rate. We use the Student’s t-test to compare the average F1 scores obtained with and without

normalization.

5.3.2 Results

In this section, we first present the results obtained with SA and then those obtained with

EOA. We discuss the overall results in the next section.

Prediction of SA

The results of the first experiment for the prediction of SA are presented in Figure 5.1. Overall,

the best normalization method for this experiment is range normalization (RN): it significantly

improves the results compared to raw features for all 3 kernels. Regarding the mean score

over the 3 kernels, it obtains the best score with 0.57 and is significantly better (p < 0.05)

than all the other methods. Then, 2 methods obtain similar results: mean-centering (MC)

and baseline comparison (BL). Indeed, MC is significantly better for the polynomial and linear

kernels. However, it is not considered significantly better if we look at the mean score over

the 3 kernels. On the other hand, BL is only significantly better for the linear kernel but is

significantly better on average. Overall, person-specific normalizations seem to be the most

efficient ones for this experiment since normalization method which obtains the worst average

results is the only one not person-specific: the Box-Cox transformation with a mean score of

0.477.
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Figure 5.1: Results of the first experiment for the prediction of SA. We present the mean F1
score of each normalization method for each kernel and also their average over the 3 kernels. Raw
represents the results when no normalization is applied. For each kernel and for the average,
normalization methods which perform significantly better than raw features (p < 0.05) are
marked by ∗.

The results of the second experiment, for which a feature selection step is added, are presented

in Figure 5.2. Once again, the best normalization technique for this experiment is range nor-

malization (RN): as for the first experiment, it improves significantly the results obtained with

all 3 kernels. On average, it is also significantly better than raw features and also than other

normalization methods. Surprisingly, at least accordingly to the results of the first experiment,

the second best normalization technique for this experiment is the Box-Cox transformation

(BC). It also improves significantly the results obtained with all 3 kernels and it obtains the

second best average F1 score with 0.581. The fact that this normalization is the worst one

when there is no feature selection step, and is the second best one when there is tends to show

that the Box-Cox transformation may not be relevant for all features.

Overall, it appears clearly that the best normalization method for the prediction of SA from be-

havioural features is range normalization (RN). It indeed ranked first in both experiments and

obtained results significantly better than the other normalization methods we have tested. It

is also noteworthy that no normalization methods lowered the classification results on average.

Regarding the first experiment, the worst normalization method was the Box-Cox transform-

ation, but it did not significantly impact the results. In the second experiment, the worst
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Figure 5.2: Results of the second experiment for the prediction of SA. We present the mean F1
score of each normalization method for each kernel and also their average over the 3 kernels. Raw
represents the results when no normalization is applied. For each kernel and for the average,
normalization methods which perform significantly better than raw features (p < 0.05) are
marked by ∗ and those which perform significantly worse are marked by �.

normalization method was the baseline comparison (BL), but it still slightly improved the

classification results: 0.524 ± 0.029 for raw features and 0.536 ± 0.026 for BL.

Prediction of EOA

The results of the first experiment for the prediction of EOA are presented in Figure 5.3. It

appears clearly that the best normalization method is the Box-Cox transformation. It improves

extremely significantly (p < 0.0001) the results for all 3 kernels and on average. Regarding

person-specific normalizations, all of them provide significantly lower performances compared

to raw features. Among them, the best one is again range normalization (RN).

As shown in Figure 5.4, the findings of the second experiment are similar to those of the first one:

the Box-Cox transformation (BC) is by far the best normalization method. Overall, person-

specific normalizations significantly degrade classification results. Only the range normalization

(RN) does not obtain significantly lower classification results on average.

Overall, it appears that person-specific normalization methods are not relevant for the predic-

tion of EOA from behavioural features. Almost all of the reviewed person-specific methods
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Figure 5.3: Results of the first experiment for the prediction of EOA. We present the mean F1
score of each normalization method for each kernel and also their average over the 3 kernels. Raw
represents the results when no normalization is applied. For each kernel and for the average,
normalization methods which perform significantly better than raw features (p < 0.05) are
marked by ∗ and those which perform significantly worse are marked by �.

obtained significantly worse classification results compared to raw features in both experi-

ments. On the other hand, the Box-Cox transformation appears especially valuable, as it

always provided very significantly better results.

5.4 Discussion

We can see that the effectiveness of normalization methods depends on the assessment con-

sidered. On one hand, regarding self-assessments (SA), it appears that most of the evaluated

methods improved the results obtained without normalization (Figures 5.1 and 5.2). The

method which provided the best classification results is the person-specific range normaliza-

tion. On the other hand, regarding external observer assessments (EOA), all the person-specific

normalization methods obtained significantly lower results than raw features (Figures 5.3 and

5.4). However, the Box-Cox transformation, which is not person-specific, significantly improved

classification results. Overall, it seems that person-specific normalizations provide good per-

formances for SA, but not for EOA, while the Box-Cox transformation performs decently for

SA, but give excellent results for EOA.

This association between assessment strategy and normalization method may be explained
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Figure 5.4: Results of the first experiment for the prediction of EOA. We present the mean F1
score of each normalization method for each kernel and also their average over the 3 kernels. Raw
represents the results when no normalization is applied. For each kernel and for the average,
normalization methods which perform significantly better than raw features (p < 0.05) are
marked by ∗ and those which perform significantly worse are marked by �.

by the annotation processes of SA and EOA. As explained in Section 3.3.2, the experiment

participants provide their self-assessment during the debriefing. To do so, for each of the 6

steps composing the experiment, they first watch the video recorded during the given step

before providing their self-reported stress level on a 1-5 Likert-scale. Because people have an

idea about how they usually behave, they can mentally compare what they see on the video with

their normal behaviour. In addition, they also can compare videos between them to see how

their behaviour evolved. Therefore, they provide ratings relative to themselves: they behave

more or less stressed than usually or than the previous videos. Thus, one can try to extract

these relative differences by using person-specific normalizations.

However, external observers may provide very different ratings, as observed in Section 3.3.4.

On the crowdsourcing platform we used, 5 random videos are chosen to create a page for which

annotators have to provide their ratings. Thus, annotators can compare videos of different

people to judge whether someone looks stressed or not. There, they provide ratings relative

to other people: a given person behave more or less stressed than others. Thus, by using

person-specific normalization methods, we may remove the interindividual differences on which
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annotators based their judgements. These differences between the annotation processes of SA

and EOA may explain why person-specific normalization methods work well for the prediction

of SA, but are irrelevant for the prediction of EOA.

Regardless of the normalization method used, it appears clearly that behavioural features

provide much better classification performances for the prediction of EOA than for the pre-

diction of SA. This association between features and assessment strategies is studied in more

depth in Chapter 6.

5.5 Conclusion

In this chapter, we have studied how data normalization may help to reduce the impact of

interindividual differences. We evaluated 5 normalization methods: mean-centering, range

normalization, standardization, baseline comparison and the Box-Cox transformation. To do

so, we used the two assessment strategies present in Dataset-44 : self-assessment and external

observer assessment. For each of these assessment strategy, we conducted two experiments. We

used all the features included in Dataset-44 for the first experiment, while we added a feature

selection step for the second experiment. Overall, the main findings of these experiments are:

• Person-specific normalization methods are relevant only for the prediction of SA.

• For the prediction of SA, the best normalization method is range normalization.

• For the prediction of EOA, the best normalization method is the Box-Cox transformation.

It appears that selecting the adequate normalization method for affective computing applica-

tions is a complex task as it is highly dependent on the features extracted, the way the affective

phenomenon is assessed and also on the machine learning algorithms used. Therefore, one has

to take a global and comprehensive approach to select the most relevant method.



Chapter 6

Multi-perspective evaluation of the
impact of stress

6.1 Introduction

Recent progress in computer vision, affective computing and social signal processing have helped

to understand the impact of affective and mental states on human behaviour and body. For

instance, frameworks for automated analysis and detection of frustration [62] and depression [29,

59] provide valuable information about the predictive performance of certain features in these

specific contexts. In [62], the authors suggest that fidgets and the head velocity are relevant

features for frustration detection. However, these results greatly depend on the way frustration

is assessed. The authors chose to use self-assessment as their annotations, but the results may

have been different if they had used biomarkers or external perception instead.

In this chapter, we propose to study automatic stress prediction in a more comprehensive way

by considering the results obtained with the 3 assessments described in Chapter 3. Using these

3 annotations, we evaluate the predictive power of behavioural and physiological cues. We use

the Dataset-21 introduced in Chapter 3 since we need the 3 assessments. Thus, the data is

composed of the 101 behavioural and physiological features presented in Chapter 4 (Tables 4.1

and 4.2). We first present how we process the data. We describe feature transformation

and feature selection methods. Then, we present the results obtained for each annotation. We

describe the prediction power of each modality - behaviour and physiology - and of each feature.

Finally, we interpret and discuss the results obtained. Overall, we argue that stress detection

53
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should be tackled with a multiple assessment approach because of the complexity of stress. It

allows to better understand associations between features, modalities and assessments, leading

to more robust stress detection systems.

6.2 Data preprocessing

6.2.1 Feature transformation

As seen in Chapter 5, the effectiveness of normalization methods is highly dependent on the as-

sessment strategy considered. However, it appeared that the Box-Cox transformation provided

good results for both SA and EOA, while the other methods we tested provided good results

only for SA. Therefore, we chose to use the Box-Cox transformation to normalize our data.

6.2.2 Feature subset selection

We perform feature subset selection in order to avoid overfitting and better understand the

predictive power of each feature. Each result presented in Section 6.3 corresponds to the best

one obtained among the 3 following feature subset selection methods.

Forward selection wrapper (FSW)

Wrappers evaluate a subset of features by using the same machine learning algorithm as in the

final application [66]. In our case, we use a SVM with a linear kernel function. Since training

SVMs is computationally expensive, exploring the space of feature subsets is usually done using

greedy methods [49]. With forward selection, starting from using only the feature with the best

accuracy, we iteratively add the best feature among the remaining ones. Once all features have

been added, we keep the subset that gives the best classification performances.

Backward elimination wrapper (BEW)

This method also uses a SVM to evaluate subsets. Backward elimination is also a greedy search

strategy: starting from the complete set of features, we iteratively remove the worst feature of

the remaining set. Once all features have been removed, we keep the subset that gives the best

classification performances.
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Simulated annealing with Hall correlation (SAHC)

For this method, we use the simulated annealing metaheuristic [64] to explore the space of

feature subsets. Because of the computational cost of this space search strategy, we use the

Hall correlation [50] to evaluate feature subsets. We then get a good approximation of the

subset that both maximizes the correlation between features and labels, and minimizes the

inter-feature correlation.

6.3 Evaluation

6.3.1 Evaluation process

We use a classification task to evaluate the predictive value of the features introduced in

Chapter 4. The objective is to predict the binary stress label - Stress or Non-Stress - of

each of the 126 examples composing Dataset-21. To do so, we use SVMs with three different

kernel functions: linear, polynomial and radial basis. We use a 10 fold subject-independent

cross validation strategy to compute the results: steps from 2 or 3 people are used as the test-

ing set. The steps of the remaining people are used as the training set. This cross validation

is also used with the training set to determine the SVM and kernel function parameters. Since

our dataset is unbalanced for 2 assessment sets - SA and EOA - we have chosen the average of

the F1 score for both Stress and Non-Stress classes as the performance metric.

It is important to note that we use all the data for the feature transformation and feature subset

selection steps. It has been done in order to facilitate the interpretation of the results and of

the relevance of each feature. Consequently, we also present the average F1 score when the

parameters for the feature transformation and the feature subset selection are selected using

only data from the training set and are then applied on the testing set.

6.3.2 Evaluation of the predictive power of each modality

Figures 6.1, 6.2 and 6.3 show the classification results obtained by the best selected feature

subset for all 3 assessment sets. Features are selected from the whole set of features (All*),

only behavourial ones (Behaviour*) or only physiological ones (Physio*). Regarding PEA,
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we compute the results in 2 different conditions. First, we compute the classification results

after having dismissed all the features which are theoretically too correlated to the heart-rate

variability: HRV-LF%, HRV-SDNN, HRV-RMSSD and RSP+HR. Including all the functionals

applied to each feature (i.e. mean, standard deviation, min and max), we dismissed a total of 10

features that we refer to as Physiology Label Related (PLR) features. In the second condition,

we dismiss only the features directly related to the low frequency in the heart-rate variability

(HRV-LF%) that we used as our assessment. Including all the functionals, we dismissed 4

features.

In general, we can see that, for most of the subsets, the linear kernel outperforms both RBF

and polynomial kernels. It is due to the fact that most of the best subsets were provided by

one of the 2 wrappers, which are optimized for the linear kernel. We take this into account

in the following discussion. Overall, the results show that depending on the assessment set

considered, the effectiveness of each modality and of their combination varies.

All* Behaviour* Physio*
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.81 0.84
0.74

0.86
0.8

0.73

0.9
0.85

0.8
0.85 0.83

0.76

m
ea

n
F

1

RBF Poly Linear Average Baseline

Figure 6.1: Performances of each kernel for each modality for the prediction of EOA. The
baseline average F1 score obtained by a random classifier is 0.410 (± 0.083).
Features selected in All*: AU1-std, AU2-mean, AU2-std, AU4-mean, AU6-mean, AU12-std,
AU15-mean, AU17-mean, BVP-mean, BVPA-max, HeM, IQoM, FTC, PCC, RSP-var, RSPR-
max, RSP+HRC-max, RSP+HRC-mean,RSP+HRC-min, EMG-min, GSR-var

Regarding EOA (Figure 6.1), we can see that both modalities achieve good mean F1 scores:

0.829 (± 0.025) for behavioural features and 0.758 (± 0.033) for physiological ones. It is not
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surprising that behavioural features significantly outperform physiological ones (p < 0.0001)

since annotators based their judgement solely on the behaviour of the person in each video.

It is however interesting to see that physiological features can predict how stress is assessed

by external observers. It could have been explained by the fact that some of the physiological

features selected can be visually perceived: features related to the respiration rate and EMG

features, which can reflect the upper body activity. But the results obtained after having

dismissed these features are similar with a mean F1 score of 0.751 (± 0.028). This feature

subset is composed of 15 features: 7 related to HRV, 4 related to HR, 2 related to BVP, one

related to GSR and one to skin temperature. The best results are obtained when we combine

both modalities with a mean F1 score of 0.855 (± 0.020). The subset All* is composed of 24

features: 15 behavioural features and 9 physiological ones. It is however interesting to note

that the difference in mean F1 score between the subsets All* and Behaviour* is statistically

significant if we consider the 3 kernel functions, but is not if we do not consider the linear

kernel. Overall, it seems that using only behavioural features is sufficient for the prediction

of EOA. When we use all features and we include the feature transformation and the feature

subset selection in the training phase, we obtain a mean F1 score of 0.739 (± 0.023).

Regarding SA, Figure 6.2 shows that the combination of physiological and behavioural features

outperforms the results obtained when using only one modality. It is understandable since the

subjects of the experiment described in Chapter 3 watch their own videos before annotating

them. Thus, their answers are the result of both their personal experiences and their behaviour

analysis. The subset All* obtains a mean F1 score of 0.795 (± 0.028) and is composed of 32

features: 21 physiological features and 11 behavioural ones. When we use all features and we

include the feature transformation and the feature subset selection in the training phase, we

obtain a mean F1 score of 0.691 (± 0.034).

Figure 6.3 displays the results obtained for the prediction of PEA. As expected, physiological

features obtain a good classification performance with an average F1 score of 0.777 (± 0.021) for

the first condition (i.e. no features related to the heart-rate variability) and of 0.810 (± 0.026)

for the second condition (i.e. no features related only to the low frequency in the heart-rate

variability). As expected, using the features related to the heart-rate variability significantly
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Figure 6.2: Performances of each kernel for each modality for the prediction of SA. The baseline
average F1 score obtained by a random classifier is 0.404 (± 0.079).
Features selected in All*: AU4-mean, AU6-mean, AU6-std, AU12-std, AU17-std, BVP-max,
BVP-min, BVPA-max, BVPA-min, BVPA-var, EMGMF-max, EMGMF-var, EMG-min, EMG-
mean, EMG-var, GSR-var, HAPMV, HR-max, HRVA-var, IQoM, RHM, RSPA-max, RSPA-
min, RSPA-var, RSPR-max, RSPR-mean, RSPR-min, RSP+HRC-max, RSP-var, FTMD,
FT2HMD, TMP-min

improves the results (p = 0.0059) since these features are related to the one we used to compute

PEA labels. Overall, both conditions significantly outperform behavioural features (p < 0.05).

It is however surprising to see that using only behavioural features also provides a good aver-

age F1 score of 0.740 (± 0.020). The selected subset Behaviour* is composed of 10 features:

7 features related to Action Units, 2 features related to body movement and the mean dur-

ation of face touching (FTMD). Regarding the combination of behavioural and physiological

features, there is no significant difference between the results obtained by both conditions:

0.831 (± 0.020) and 0.833 (± 0.021) for the first and second condition respectively. However, it

is noteworthy that the best subset selected for the second condition is smaller - 17 features (12

physiological and 5 behavioural ones) against 25 features (16 physiological and 9 behavioural

ones) for the first condition - and contains 3 features related to HRV: HRV-RMSSD, HRV-

SDNN and RSP+HR-Mean. When we use the features of the first condition and we include

the feature transformation and the feature subset selection in the training phase, we obtain a

mean F1 score of 0.705 (± 0.020).
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Figure 6.3: Performances of each kernel for each modality for the prediction of PEA without
using features related to HRV. The baseline average F1 score obtained by a random classifier
is 0.422 (± 0.080).
Features selected in All*: AU1-mean, AU2-std, AU15-mean, AU17-std, AU25-mean, AU25-
std, AU26-mean, BVPA-mean, BVPA-min, BVPA-var, EMGA-mean, EMGMF-max, EMGMF-
mean, EMG-min, GRS-max, HR-max, HR-mean, HRVA-max, HRVA-var, RSPA-max, RSPA-
min, RSPA-var, RSPR-var, FTC, FTMD

6.3.3 Evaluation of the predictive power of each feature

We use the evaluation process described in Section 6.3.1 using only one feature at a time in

order to better understand the classification performance of each feature for each assessment

set. We compute the F1 score obtained by the three kernel functions. The average F1 score is

used to rank features. In order not to overload the charts, we present only the five best features

of each assessment set. The average F1 scores for each feature are presented in Tables 6.4

and 6.5.

Regarding EOA, the results obtained by the 5 best features are shown in Table 6.1. We can

see that these features achieve good classification performances even when used alone. Among

these 5 features, there are 4 behavioural features and one physiological one, which is not

surprising since the external observers had only access to the participants’ behaviour. The

4 behavioural features are all related to movement: 2 features are related to head movement

(HeM and HeMZ), one to hand movement (HM) and one to body movement (IQoM). The best
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Feature Average F1 Stdev

HeM 0.780 0.016

IQoM 0.723 0.025

HeMZ 0.716 0.021

BVP-Min 0.705 0.029

HM 0.696 0.024

Table 6.1: Five best features according to their average F1 score for the prediction of EOA.
The Stdev column represents the standard deviation of the average F1 score over 10 runs.

physiological feature is the minimum of the Blood Volume Pulse (BVP - Min). It is noteworthy

that the 5 best physiological features for the prediction of EOA are all related to the BVP: 3 are

related to the raw BVP signal (BVP-Min, Mean and Var) and 2 are related to the amplitude

of the BVP signal (BVPA-Var and Max).

Feature Average F1 Stdev

IQoM 0.621 0.028

HAPMV 0.617 0.028

SQoM 0.616 0.025

HeM 0.614 0.038

RSP-Min 0.609 0.031

Table 6.2: Five best features according to their average F1 score for the prediction of SA. The
Stdev column represents the standard deviation of the average F1 score over 10 runs.

Table 6.2 displays the 5 best features for the prediction of SA. We can notice that these features

achieve lower F1 scores than the best features for EOA and PEA. Added to the fact that, as

shown in Figure 6.2, only a combination of physiological and behavioural features achieved good

classification performances, it tends to show that the prediction of SA is more complex, is based

on both behavioural and physiological cues, and requires more information than the prediction

of EOA and PEA. Among the 5 best features, 3 are behavioural and 2 are physiological. 2

features are related to body movement (IQoM and HeM), 2 to blood volume pulse (BVP - Min

and Var) and one to periods of high activity (HAPC).

The 5 best features for the prediction of PEA are all related to the heart: 3 are related to
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Feature Average F1 Stdev

RSP-Mean 0.621 0.028

RSPR-Max 0.617 0.033

AU4-Mean 0.600 0.031

RSPR-Min 0.590 0.043

AU2-Std 0.590 0.030

Table 6.3: Five best non heart-related features according to their mean F1 score for the pre-
diction of PEA. The Stdev column represents the standard deviation of the average F1 score
over 10 runs.

the heart rate (HR- Mean, Max and Var) and 2 are related to the amplitude of the heart

rate variablity (HRVA - Max, Mean). Their average F1 scores range from 0.711 ± 0.047 for

HR-Mean to 0.652 ± 0.024. These results are coherent with what we described in Section 2.2

for the biological perspective: activating the HPA pathway and the ANS leads to an increased

heart rate, which impacts the heart rate variability. Thus, it is not surprising to see these

features perform well.

However, it is also interesting to see which non cardiac features are relevant for the prediction

of a heart-related annotation. Thus, Table 6.3 presents the 5 best non heart-related features

for the prediction of PEA. 3 features are related to respiration (RSP-Mean, RSPR-Max and

Min) and 2 are related to action units (AU4-Mean, AU2-Std). It is also noteworthy that 4 of

the 5 best behavioural features for the prediction of PEA are facial features (AU4-Mean and

Std, AU2-Std and AU9-Std).

6.4 Discussion

It was expected to see behavioural features perform better than physiological ones for the pre-

diction of the assessment of external observers (EOA) and to see physiological features achieve

better performances than behavioural ones for the prediction of the assessment of a physiology

expert (PEA). However, it is interesting to notice that behavioural features still achieved good

performances for PEA prediction (Figure 6.3, mean F1 score = 0.74), and that physiological

features also provided good performances for EOA prediction (Figure 6.1, mean F1 score =
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0.78). The fact that we can predict both the assessment of a physiology expert from behavi-

oural features and the assessment of external observers from physiological features shows that

there is some coherence between behavioural and physiological cues when one is experiencing

stress despite the lack of agreement between EOA and PEA annotations (Tables 3.5 and 3.6).

This interplay between physiology and behaviour that we observe in our results is coherent

with several works on facial expressions [32, 36, 80], emotions [109], and stress [48, 131].

However, for all 3 assessment sets considered, the combination of behavioural and physiological

features provided the best results. It is especially true for SA, for which multimodal features

outperform behavioural features by +31% and physiological features by +27%, as shown in

Figure 6.2.

Overall, we think that when the obtrusiveness of physiological sensors is acceptable, it is prefer-

able to use a combination of behavioural and physiological features for automatic stress de-

tection. Nonetheless, when unobtrusiveness is required, using only behavioural features still

provides good classification performances. These results are coherent with those presented by

Giakoumis et al. in [45].

We also investigate whether some features provide relevant information for more than one

assessment. The results obtained for SA and EOA are similar in some aspects (Tables 6.1

and 6.2). Indeed, the 5 best features for these 2 assessment sets are mainly related to body or

body part movement (HeM, HeMZ, HM, IQoM, SQoM and HAPMV). The 5 best features for

the prediction of PEA are all related to the heart and belong to 2 categories: heart rate (HR

- max and HR - var) and amplitude of the heart rate variability (HRVA - max, HRVA - mean,

HRVA - var).

If we look at both the composition of the best subset for each assessment set and the predictive

power of each feature (cf. Tables 6.4 and 6.5), it appears that some features provide relevant

information for a multi-perspective stress detection. In particular, IQoM achieves good F1

scores for the 3 assessment sets and is present in the best subsets selected for SA and EOA. In

general, features related to body or body part movement (IQoM, HeM, HeMZ, HM) provide

good results for both SA and EOA prediction. Then, features related to the amplitude of
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blood volume pulse are present in all of the 3 best selected subsets, and features related to the

raw signal of blood volume pulse provide good classification performances for EOA prediction.

Finally, the maximum of the heart rate achieves reasonably good performances and is present

in the subsets selected for SA and PEA. These results and the fact that several works report

the effect of stress on BVP [40, 56] and heart-rate [70, 123] lead us to conclude that these 2

categories of features, along with body movement, provide valuable information when designing

automatic stress detection systems.
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Feature Description x’ F1 score In best subset

EOA SA PEA EOA SA PEA

AU1 Inner Brow Raiser mean : log 0.614 0.396 0.479

std : sqrt 0.579 0.476 0.537

AU2 Outer Brow Raiser mean : log 0.516 0.416 0.554

std : sqrt 0.516 0.429 0.590

AU4 Brow Lowerer mean : log 0.463 0.431 0.600

std : sqrt 0.483 0.449 0.569

AU5 Upper Lid Raiser mean : log 0.549 0.447 0.458

std : log 0.553 0.470 0.397

AU6 Cheek Raiser mean : log 0.608 0.524 0.473

std : log 0.630 0.570 0.439

AU9 Nose Wrinkler mean : sqrt 0.509 0.487 0.504

std : sqrt 0.531 0.496 0.563

AU12 Lip Corner Puller mean : log 0.555 0.468 0.438

std : sqrt 0.622 0.481 0.395

AU15 Lip Corner Depressor mean : log 0.528 0.509 0.465

std : sqrt 0.594 0.575 0.506

AU17 Chin Raiser mean : log 0.596 0.521 0.404

std : sqrt 0.578 0.499 0.405

AU20 Lip Stretcher mean : log 0.499 0.496 0.478

std : sqrt 0.590 0.578 0.476

AU25 Lips Part mean : log 0.590 0.498 0.467

std : none 0.561 0.465 0.423

AU26 Jaw Drop mean : log 0.552 0.497 0.534

std : log 0.523 0.503 0.468

SQoM QoM computed with the skeleton log 0.625 0.616 0.527

IQoM QoM computed with the RGB frames log 0.723 0.621 0.548

HAPC Number of periods of high activity log 0.626 0.584 0.557

HAPMD Mean duration of periods of high activity log 0.649 0.565 0.579

HAPMV Mean highest value of periods of high activity log 0.661 0.617 0.520

PCC Number of posture changes log 0.602 0.544 0.524

FTC Number of times face touching with one hand occured log 0.577 0.511 0.497

FTMD Mean duration of face touching with one hand log 0.571 0.510 0.508

FT2HC Number of times face touching with two hands occured log 0.411 0.335 0.406

FT2HMD Mean duration of face touching with two hands log 0.457 0.341 0.464

LHM QoM for the left hand log 0.619 0.517 0.470

RHM QoM for the right hand log 0.674 0.602 0.494

HM QoM for both hands log 0.696 0.573 0.515

HeM QoM for the head log 0.780 0.614 0.493

HeMZ QoM for the head only along Z-axis log 0.716 0.589 0.482

Table 6.4: List of the extracted behavioural features. x’ represents the transformation given
by the Box-Cox transformation for each function applied to the signal. F1 score displays the
results obtained by the each feature when used alone for each assessment set. The 5 best
features of each assessment set are in bold. In best subset shows whether the feature is present
in the best subset selected for each assessment set.
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Feature Description x’ F1 score In best subset
EOA SA PEA EOA SA PEA

BVP Blood Volume Pulse mean : none 0.672 0.534 0.626
var : log 0.591 0.510 0.447

min : none 0.705 0.542 0.551

max : none 0.435 0.407 0.403

BVPA Blood Volume Pulse mean : log 0.652 0.492 0.450

var : log 0.696 0.514 0.570

min : sqrt 0.567 0.442 0.525

max : sqrt 0.689 0.513 0.555
EMG Electromyographic activity of the sternocleidomas- mean : none 0.446 0.412 0.457

toid and upper trapezius - channel 1 var : log 0.501 0.425 0.389

min : none 0.489 0.429 0.471
max : none 0.437 0.398 0.469

EMG2 Electromyographic activity of the sternocleidomas- mean : none 0.468 0.493 0.415

toid and upper trapezius - channel 2 var : log 0.560 0.557 0.541

min : none 0.507 0.470 0.521
max : log 0.547 0.523 0.567

EMGMF Electromyographic activity of the sternocleidomas- mean : none 0.472 0.424 0.423

toid and upper trapezius Mean Frequency var : none 0.458 0.478 0.468
min : log 0.417 0.458 0.405

max : none 0.428 0.349 0.393

EMGA Electromyographic activity of the sternocleidomas- mean : sqrt 0.537 0.508 0.490
toid and upper trapezius Amplitude var : log 0.661 0.552 0.518

min : sqrt 0.512 0.464 0.516
max : sqrt 0.603 0.488 0.522

GSR Galvanic Skin Response mean : log 0.487 0.469 0.500

var : log 0.478 0.495 0.471
min : log 0.487 0.482 0.527

max : log 0.476 0.462 0.512

HR Heart Rate mean : none 0.510 0.546 0.711
var : log 0.544 0.519 0.652
min : sqrt 0.502 0.463 0.424

max : log 0.553 0.548 0.701
HRVA Heart Rate Variability Amplitude mean : log 0.529 0.509 0.681

var : log 0.547 0.553 0.614
min : log 0.486 0.472 0.569

max : sqrt 0.556 0.537 0.680
HRV-LF% Heart Rate Variability Low Frequency zone mean : sqrt 0.497 0.510 X

var : sqrt 0.547 0.464 X
min : log 0.552 0.531 X
max : none 0.424 0.451 X

HRV-RMSSD Heart Rate Variability square root of the mean
squared difference between adjacent N-N intervals

log 0.497 0.532 0.630

HRV-SDNN Heart Rate Variability Standard Deviation of Normal
to Normal intervals

log 0.482 0.475 0.525

RSP Chest and abdominal Respiration mean : log 0.632 0.595 0.621

var : log 0.644 0.503 0.471
min : log 0.632 0.609 0.590
max : log 0.581 0.553 0.567

RSPA Chest and abdominal Respiration Amplitude mean : sqrt 0.647 0.426 0.446

var : sqrt 0.466 0.487 0.515

min : log 0.506 0.417 0.417

max : none 0.461 0.468 0.443

RSPR Chest and abdominal Respiration Rate mean : log 0.448 0.444 0.563

var : sqrt 0.606 0.525 0.533

min : log 0.521 0.521 0.587

max : log 0.530 0.511 0.617

RSP+HR Level of coherence between the Respiration and the mean : none 0.559 0.497 0.540
Heart Rate var : sqrt 0.526 0.569 0.526

min : none 0.513 0.449 0.515

max : sqrt 0.564 0.558 0.530
TMP Temperature mean : log 0.498 0.415 0.455

var : log 0.467 0.348 0.428

min : none 0.426 0.497 0.388
max : log 0.497 0.384 0.408

Table 6.5: List of the extracted physiological features. x’ represents the transformation given
by the Box-Cox transformation for each function applied to the signal. F1 score displays the
results obtained by the each feature when used alone for each assessment set. The 5 best
features of each assessment set are in bold. In best subset shows whether the feature is present
in the best subset selected for each assessment set.
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Chapter 7

On leveraging crowdsourced data for
automatic stress detection

7.1 Introduction

Resorting to crowdsourcing platforms is a popular way to obtain annotations. Multiple poten-

tially noisy answers can thus be aggregated to retrieve an underlying ground truth. However,

it may be irrelevant to look for a unique ground truth when we ask crowd workers for opin-

ions, notably when dealing with subjective phenomena. In the case of stress, we have seen

in Chapter 2 that the definition is still debated [70]. As such, one’s behavior can hardly be

qualified in terms of stress in an objective fashion, but rather as an interpretation that may be

subject to interpersonal biases.

In this chapter, we discuss how we can better use crowdsourced annotations for the prediction

of the EOA annotation. As seen in Chapter 3, we use a crowdsourcing platform to obtain labels

corresponding to videos in which participants are subject to a stress elicitation procedure. A

set of workers each labeled the subjects’ behavior as either stressed or non-stressed. We study

how we can integrate the information from the multiple workers more efficiently than simply

performing binary classification upon the labels aggregated with the majority decision. In

particular, we propose to learn consensus-weighted predictors and to formulate the prediction

problem as a regression on the proportion of positive (i.e. Stress) answers. We propose

a thorough evaluation of the adaptation of 4 popular machine learning (machine learning)

algorithms for handling crowdsourced data, namely Support Vector Machines (SVM), Neural

67
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Figure 7.1: Overview of the proposed framework. Videos of recorded subjects are presented to
K = 10 workers of a crowdsourcing platform who were specifically asked to answer questions
regarding the perceived stress level in videos. Those answers are then used to derive annotation
labels that are used for automatic perceived stress detection upon a combination of whole body
and facial features extracted from the videos. We discuss how the multiple answers from
different workers can be integrated for better recognition using a variety of machine learning
frameworks.

Networks (NN), Random Forests (RF) and the very recent Neural Decision Forests (NDF).

Figure 7.1 summarizes our approach. We show that for the automatic recognition of a subjective

phenomenon such as perceived stress, integrating the consensus and proportion of positive

answers inside a machine learning framework significantly increases the recognition accuracy.

The contributions of this work are the following:

• A case study of modeling crowdsourced data labels to handle the disparity that may

exist between the workers’ opinions, which consists in measuring the consensus value and

proportion of positive answers.

• Propositions on how to train and evaluate machine learning algorithms on crowdsourced

data for multiple popular approaches.

• A complete system to perform automatic stress detection from videos, which uses a com-

bination of whole body and facial features and a variety of adaptated machine learning

algorithms for classification and regression.
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After reviewing some related works, we present the collected labels and the values extracted

from them: the binary aggregated label, the consensus level and the proportion of positive

answer (PPA). Then, we describe how we adapted the machine learning algorithms for inter-

grating the consensus and PPA values into the training process. Finally, we present and discuss

the results of each experiment.

7.2 Related work

Crowdsourcing has been used to annotate several affective phenomena where no objective

ground truth is available, as it allows researchers to collect annotated data at relatively low cost.

On platforms such as Amazon Mechanical Turk1 or CrowdFlower2, one can design “microtasks”

which are performed by people called “crowd workers”. Biel et al. studied crowdsourced person-

ality impressions using Vlogs from YouTube [10]. They have computed the correlation between

personality impressions and social attention measures. Among other results, they have con-

cluded that extraversion is linearly associated with the number of views, the number of times

a video is favorited and the number of comments. Soleymani et al. used Amazon’s Mechanical

Turk platform to annotate the boredom response of people to a set of 126 videos [118]. Several

works studied subjective quality assessments of images [105, 135] and videos [51].

However, labels obtained through crowdsourcing platforms are often noisy because of the pres-

ence of malicious workers and of the different levels of expertise crowd workers have [103]. Thus,

the most common way to gather reliable annotations is to collect multiple annotations for each

data and then use an aggregation technique to obtain a single label. Aggregation techniques

aim at finding the hidden ground truth from a set of possibly noisy answers. As explained in

[101], these techniques can be classified into 2 categories: non-iterative and iterative. Majority

Decision (MD) is the most common and straightforward non-iterative method. For each data,

we count how many times each label has been given as an answer. The label with the highest

number of answers is kept as the aggregated label. MD assumes that each worker is equal

in skills, which makes it sensitive to spammers and malicious workers. Regarding iterative

methods, most of them are extensions of the Expectation Maximization (EM) algorithm. This

1www.mturk.com/mturk/welcome
2www.crowdflower.com
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algorithm performs a series of iterations to update both the aggregated labels and the model

parameters. The parameters can include worker expertise [57], self-reported confidence [95],

the difficulty of each question [132] or the parameters of the machine learning algorithm which

is going to be trained on the aggregated labels [104]. However, finding the hidden ground truth

is relevant only when we are trying to label objective phenomena. It may be irrelevant to look

for a single ground truth when we ask workers for opinions.

7.3 Collected labels

As explained in Section 3.3.1, we have collected 10 binary labels yi,k for each video. From these

answers, we generate 3 values for each video i:

• A binary aggregated label ȳi ∈ {Stress,Non− Stress}, defined as the majority decision

(MD): if more than 50% of the workers answered Non − Stress to Q, we assign the

Non − Stress label. Otherwise, we assign the Stress label. Note that the data is

well balanced w.r.t. aggregated labels, as the proportion of Non − Stress/Stress is

46.2%/53.8%, respectively.

• The consensus level wi = 2p − 1 ∈ [0, 1], with p being the proportion of workers who

answered ȳi to Q. Intuitively, this value can be seen as the confidence level we have on

a given video. Thus, we consider that there is no consensus (wi = 0) when there are as

many answers for the Stress class as there are for the Non − Stress one. Also, by this

definition, there is a perfect consensus (wi = 1) when all the workers answered ȳi to Q.

• The Proportion of Positive Answers (PPA), which is the proportion ỹi of workers who

answered Stress to question Q. This value is used in the regression experiment as the

value to predict for each video, as it encompasses both the stress binary value and the

agreement between the workers. Thus, the values ỹi = 0 and ỹi = 1 indicate that all

the workers answered Non − Stress and Stress, respectively. The distribution of this

variable is shown in Figure 7.2.

As one can see on Figure 7.2, PPA values ỹi are fairly well distributed within the [0, 1] interval.

The distribution of the consensus values is also balanced. Thus, it seems relevant to study the
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Figure 7.2: Distribution of the regression values ỹi.

impact of integrating these values into the classification/regression framework to enhance the

stress prediction accuracy, as it will be shown in what follows.

7.4 Adaptation of machine learning algorithms for crowd-

sourced data

In this section, we present how we adapt 4 popular machine learning algorithms to take into

account the uncertainty in the crowdsourced annotations, either under the form of a binary

classification task or of a regression task.

7.4.1 Motivations

Intuitively, an example that is labelled as Stress by 100% of the workers shall be handled

differently within the machine learning framework from an example labelled as Stress by only

70%. Hence, examples i with a high level of consensus wi should contribute accordingly to the

prediction task, which, a contrario, is not the case when we only use the aggregated label for

classification. For that matter, we propose a novel way to integrate the level of consensus of a
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specific example as a confidence weight in the training process for 4 popular machine learning

classification algorithms: Support Vector Machines (SVM), Neural Networks (NN), Random

Forests (RF) and the recent Neural Decision Forests (NDF) framework. Specifically, we study

the impact of adapting the algorithms on the binary classification performances.

However, it is debatable to consider the aggregated labels as the ground truth for testing,

particularly when studying a subjective phenomenon such as perceived stress. Thus, it also

makes sense to directly predict the proportion ỹi of workers who labelled a given video as

Stress. To do so, we use the regression counterparts of the SVM(SVR), NN, RF and NDF

algorithms.

7.4.2 Machine Learning adaptation

In this section, we describe how we adapt machine learning frameworks to handle crowdsourced

data X = {xi,j} with i = 1, ..., N and j = 1, ...,M with N = 264 the number of examples and

M = 39 the input feature vector dimension, respectively. We denote the full set of labels

Y = {yi,k}, i = 1, ..., N , k = 1, ..., K with K being the (total) number of annotators. Also we

denote ȳ = {ȳi} the (binary) aggregation label obtained by MD and ỹ = {ỹi} the (continuous)

PPA value.

Support Vector Machine

Support Vector Machine (SVM) is a traditional machine learning framework for binary classi-

fication [12]. It aims at finding an optimal hyperplane parametrized by a normal vector w, and

a bias b, that separates by the widest margin points from 2 classes. For binary classification, a

prediction ŷi is provided by the sign of the scalar product wtφ(xi) + b. Points can be projected

into a transformed feature space by kernel φ in order to perform nonlinear classification.

We propose to use an adaptation of the fuzzy SVM extension proposed by Wu et al. in [134]

to handle crowdsourced data. It introduces fuzzy membership values {µi}ni=1 corresponding to

each training sample. As stated in [134], the membership value µi reflects the fidelity of the

data; in other words, how confident we are about the actual class information of the data. We
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propose to use the consensus value wi as the membership value µi. The optimization problem

is formulated as follows:

Minimize
1

2
||w||2 + C

n∑
i=1

wiξi

Subject to ȳi(w
tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, ..., n

Where C is the regularization parameter and ξi are the slack variables. For regression, we

use the Support Vector Regression (SVR) [117] algorithm to predict ỹi. In our experiments,

we use 3 different kernel functions for both classification and regression, which are the linear,

polynomial and Radial Basis Function (RBF) kernels.

Random Forests

Random Forest (RF) is a popular machine learning framework introduced in the seminal work

of Breiman [15]. Specifically, given an input xi, a RF provides a prediction probability p(ŷi|xi)

that can be written as the average prediction of T trees 1
T

∑T
t=1 pt(ŷi|xi). In order to generate

accurate and decorrelated individual tree classifiers, Breiman suggests to combine bagging (each

tree is grown using only a subset of the N examples) and random subspace (each split node

n is set by looking only at a restricted number k′ = {j1, ..., jk′} of the input dimension, with

k′ < k). The binary split candidates are thus equal to either δn(xi) = 1 if a selected dimension

xi,j is superior to a threshold θn and 0 otherwise (axis-aligned splits). Alternatively, the split

candidates are generated under the form of a linear combination of the input dimensions (oblique

splits [55]) parameterized by vector βn: δn(xi) = 1 if
∑

j β
n
j xi,j − θn > 0, 0 otherwise.

There exists a number of RF variants [44] that may differ from each other w.r.t. when to set

a leaf or a split node, how the split candidates are selected or how the leaf predictions are

computed. Our implementation is close to Breiman’s original RF [15], in which trees are grown

upon bootstraps that each contains approximately 66% of the examples. Then, in the case of

a classification problem, for each node, we choose the combination of feature φ and threshold θ
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that provides the maximal information gain over examples {xi}i=1...N ′ falling in current node:

H(φ, θ) =
∑
y∈0,1

−rlylog(rly) +
∑
y∈0,1

−rrylog(rry)

Where rl0, rl1, rr0, rr1 denotes the repartition of label non− stress and stress for left and right

subtree, respectively. For instance, rl0 = 1
N ′

∑
i 1(φ(xi) < θ). As for regression we select the

candidate that minimizes the average subtree variance. Trees are grown unpruned. For each

node, 10 candidate features with 50 candidate thresholds are examined with replacement.

Quite similarly to what is done in [24] for class weighting to deal with unbalanced data, we

propose to weight each individual element xi by its consensus value wi for classification. This

weight is thus used to weight Shannon’s entropy for each element in the computation of the

information gain. For instance, we now have rl0 =
∑

i wi1(φ(xi)<θ)∑
i wi

. Finally, the consensus value

wi is also used to weight the leaf predictions.

For regression, we simply grow regression trees to predict the PPA value ỹi.

Neural Networks

Neural Networks (NNs) are perhaps the most famous machine learning framework. Generally

speaking, a NN consists of a stack of multiple layers of non-linear neuron units. The output

yli of a neuron i of layer l consists in (a) a scalar product between this layer’s input {xli,j} and

it’s weights wli,j and (b) a non-linear activation function σ: yli = σ(
∑

j w
l
i,jx

l
i,j + b). Training

is usually performed via Stochastic Gradient Descent (SGD), by first computing the networks’

activations in a feed-forward manner given a specific example xi, then by backpropagating the

error between the top layer prediction and the ground truth label (for classification) or value

(for regression).

In our experiments, we use a 2-layer NN with a single 100-units sigmoid hidden layer and

an output 2-units softmax layer for classification, or a single-unit sigmoid layer to perform
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regression on the PPA ỹi. Furthermore, for classification, we propose to weight the learning

rate with the consensus value wi for each example.

Neural Decision Forests

Neural Decision Forests (NDFs [69]) are a recent NN/RF hybrid algorithm that consists in a

collection of differential decision trees with oblique probabilistic split nodes. More specifically,

for a split node n example xi goes to the right subtree with a probability dn(xi) = σ(
∑

j β
n
j xi,j−

θn) and to the left subtree with a probability 1−dn(xi). Consequently, each leaf node l of a tree

t is reached with probability µl that can be estimated as the product of the neurons’ activations

throughout the tree, from the root node to leaf l. Each leaf node l of tree t contains either a

two-dimensional probability distribution plt(ŷi) in the case of a classification task, or directly

an estimation ŷ for regression. As in RFs, the final probability to predict ŷ is provided by the

average among the trees in the forest, i.e. p(ŷi|xi) = 1
T

∑T
t=1

∑
l µ

l(xi)p
l
t(ŷi).

Note that our NDF implementation differs from the one proposed in [69], as we obtained sat-

isfying results without having to periodically update the leaf nodes after a number of epochs,

as suggested in the paper. Instead, we initialize the predictions with pure distribution (either

(0, 1) or (1, 0) respectively for the (Non − Stress,Stress) classes) for binary classification or

with randomly sampled prediction values in the interval [0, 1] for regression. Then, since NDFs

are differential models, they can be trained similarly to NNs using SGD and error backpropaga-

tion. We thus sequentially apply SGD updates to the split nodes’ parameters for a number

of epochs without altering the leaf predictions (see [69] for a more thorough description of the

optimization). Furthermore, as NDF training is performed similarly to NNs, we use the same

confidence-weighting of the learning rate for classification task. For regression, as explained

above, we directly learn to predict the PPA ỹi using a L2-loss function.

7.5 Experiments

In this section, we present the results obtained for both the classification and regression exper-

iments. We also present the evaluation process for both experiments.
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Figure 7.3: Classification Results (∗ p < 0.05 for Student’s t-test, � for deterministic results)

7.5.1 Evaluation process

For both experiments, we perform 10-fold subject-independent cross-validation: the data of

10% of the subjects are used as testing samples while the data of the remaining 90% are used

as training samples. In order to be able to faithfully reproduce the evaluation conditions, the

composition of each fold and the algorithm parameters are fixed. For classification, we use the

binary aggregated labels ȳ as the ground truth. We use the overall accuracy as the evaluation

metric since the distribution of binary labels is balanced (see Section 7.3). For each algorithm,

we evaluate 3 versions:

• A Classic version trained on the labels aggregated with majority decision.

• A straightforward, Naive adaptation trained on all the labels. More specifically, training

samples are duplicated K = 10 times each and associated with the answers yi,k. Con-

sequently, a training sample can have contradictory labels if its level of consensus is not

perfect, which can be a hindrance for the stability of certain algorithms, as it will be

shown in what follows.

• The Consensus-weighted version that was introduced in Section 7.4.
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Since NN, RF and NDF training involve random initialization and/or data sampling, we present

the average accuracy and its standard deviation over 10 runs for those algorithms. For re-

gression, we use the Mean Square Error (MSE) and the Correlation Coefficient (CC) as the

evaluation metrics, as both are complimentary. We also present the average results over 10

runs for NNs, RFs and NDFs.

7.5.2 Classification

Figure 7.3 presents the average accuracy obtained by each version of each algorithm. One can

see that the naive version slightly improves the classification accuracy for 4 algorithms: SVM-

RBF, SVM-Poly, RF and NDF, with significant improvement only for SVM-Poly. However,

NN and a fortiori SVM-Linear seem to face some issues with contradictory labels. Indeed,

the accuracy obtained by the naive version of NN is significantly lower than the accuracy

obtained by the classic version (from 74.3% down to 72.6%, p < 0.05). This is likely due to the

training procedure at stake, where applying SGD updates with multiple versions of the same

examples with contradictory labels may cause instability in the learning procedure. This can be

observed in Figure 7.4, where it appears that the training error of the naive version is much less

stable than for the classic and consensus-weighted versions. Moreover the Consensus-weighted

version does not fit the examples that are the most uncertain w.r.t their consensus values,

hence a training error that lies slightly above that of the Classic version. As for SVM, the

average accuracy remains approximately the same when using either the naive or the classic

version of the SVM-RBF (from 81.3% to 81.5%). The naive version of the SVM-Poly actually

outperforms the classic one with an improvement of 3.6% (from 77.8% to 80.6%). However, the

classification accuracy for the SVM-linear is much lower with the naive version than with the

classic one (from 81.4% to 56.9%). This performance gap is most likely due to the instability

caused by the contradictory labels on the margin optimization procedure, similarly to what

happens for NN training (see Figure 7.4).

Moreover, using the consensus level to weight the individual training examples seems to benefit

all the machine learning algorithms, compared to the classic version. This improvement seems

significant for the SVM with the 3 kernel functions: +4.5% for the linear kernel (from 81.5% to
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85.2%), +4.2% for the RBF kernel (from 81.3% to 84.7%) and +5.0% for the polynomial kernel

(from 77.8% to 81.7%). According to a Student’s t-test, the improvement is considered to be

statistically significant for the NN (p = 0.0121) and the NDF (p = 0.0013), but is not considered

significant for the RF (p = 0.0967). Overall, the best classification accuracy is provided by the

consensus-weighted version of the SVM-linear. Tables 7.5 and 7.6 respectively display the

confusion matrix of the SVM-linear for the classic version and the consensus-weighted version,

empathizing the fact that integrating the consensus level allows to increase both the true

negative and true positive rates, while diminishing the false positive and false negative rates.
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Figure 7.4: Evolution of the training error through the updates for each version of NN. The
training error is computed every 100 updates on the first fold.
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7.5.3 Regression of the PPA

Table 7.1 presents the results for the regression experiment. We can see that all the algorithms

provide a low MSE and a high CC. The average squared prediction error is about 5%, except

for the NN where it is about 7%. Note that the predicted value integrates the information of

perceived stress level as well as the consensus level among the workers. Thus, the fact that we

can obtain satisfying results with several machine learning algorithms suggests that the PPA

is a valuable information that can be efficiently modeled and generalized across the subjects.

Furthermore, the PPA values are fairly well distributed within the [0, 1] interval, ensuring a low

prediction bias. As such, this quantity appears as a valuable information to train and evaluate

machine learning algorithms with more precise information than a single label aggregated using

MD.

Algorithm MSE CC

SVR-Linear 0.047 0.699

SVR-RBF 0.046 0.688

SVR-Poly 0.051 0.663

RF 0.050 ± 0.001 0.680 ± 0.009

NN 0.071 ± 0.006 0.699 ± 0.046

NDF 0.049 ± 0.001 0.699 ± 0.007

Table 7.1: MSE and CC for regression using the different methods.
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7.6 Conclusion

In this chapter, we have presented a framework to perform automatic perceived stress detection

from crowdsourced data. To do so, we used the Dataset-44 and the EOA annotation, both

introduced in Chapter 3.

We studied how information such as the level of consensus among workers and the proportion

of positive answers (PPA) can be used to train and evaluate machine learning algorithms for

the prediction of perceived stress. To do so, we conducted a classification and a regression

experiment.

Regarding the classification experiment, we proposed a way to integrate the level of consensus

in the training process for 4 classification algorithms: SVM, RF, NN and NDF. Then, we

compared the classification accuracy between 3 different versions of each algorithm. Among

those versions, the consensus-weighted version significantly outperforms the two other ones for

almost every classification algorithm.

Moreover, in the regression experiment, we tried to directly predict the proportion of votes

for the Stress class (PPA) for each video, using the regression counterparts of each machine

learning algorithm: SVR, RF, NN and NDF. The high accuracies obtained indicate that the

level of consensus and the proportion of votes are valuable information that are generalisable

enough to either enhance classification performances or be efficiently predicted.
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Conclusion

In this Chapter, we summarize the thesis achievements and the publications obtained during

this period. We also discuss the possible applications of this work as well as its evolutions and

perspectives.

8.1 Summary of thesis achievements

In this thesis, we developed an automatic stress detection framework, with a focus on stress

assessment strategies. We saw in Chapter 2 that there are several ways to assess stress. Accord-

ing to the biological perspective, stress can be assessed using biomarkers such as the cortisol

level, the skin conductance of the heart-rate variability. According to the phenomenological

perspective, stress can be self-assessed by subjects. Finally, according to the behavioural per-

spective, stress can be assessed on the basis of behaviour modifications. In the same chapter,

we also observed that previous works used a wide variety of assessment strategies, making it

difficult to provide a fair comparison of the performances of these frameworks.

In Chapter 3, we described how we collected stress data with multiple assessments. Our stress

elicitation procedure is a socially evaluated mental arithmetic test composed of 6 steps of

increasing difficulty. We acquired Kinect and HD video data from 44 subjects. We also collected

physiological data for 21 of the 44 subjects. For each subject and each step of the test, stress

is assessed in 3 ways, based on the 3 perspectives presented in Chapter 2:

• Crowdworkers provide External Observers Assessment (EOA).

81
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• Subjects of the experiment provide Self-Assessment (SA).

• A physiology expert provides Physiology Expert Assessment (PEA)

We described the features extracted from the acquired data in Chapter 4. We presented ori-

ginal body features for stress detection such as periods of high activity, posture changes, face

touching and fingers rubbing. We also extracted the level of activation of 12 Action Units and

physiological features which are traditionally used in stress detection frameworks.

In Chapter 5, we studied how 5 data normalization methods may help reduce the impact

of interindividual differences. We also evaluated the impact of assessment strategies on the

performance of normalization methods. On one hand, we concluded that person-specific nor-

malization are efficient for the prediction of SA, but are actually deleterious for prediction

of EOA. On the other hand, we concluded that the Box-Cox transformation - the only non

person-specific normalization method that we evaluated - provide pretty good results for the

prediction of SA, but is especially relevant for the prediction of EOA.

In Chapter 6, we evaluated the classification performance of 101 features and 2 modalities

(behaviour and physiology) for the prediction of the 3 assessments presented in Chapter 3. We

showed that assessment strategies greatly impact the performance of modalities. On one hand,

behavioural features performed significantly better than physiological ones for the prediction

of EOA, which is based on subjects’ behaviour. On the other hand, physiological features

performed significantly better for the prediction of PEA, which is based on subjects’ physiology.

Moreover, we made two noteworthy observations from the results of our experiments. First,

it seems necessary to use multimodal features to predict SA. Second, there seems to be an

interplay between physiology and behaviour, as it turned out to be possible to predict with

good accuracy how stressed one appears using only physiological features and how stressed

one’s body is using only behavioural features. Regarding the evaluation of feature performance,

we observed that feature related to blood volume pulse, heart-rate and body movement provide

valuable information for several assessment strategies.

Finally, we presented a framework for handling crowdsourced labels. We showed that one can

extract valuable information from crowdworkers’ answers, such as the level of consensus or
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the proportion of positive answers. These information can then be used to train and evaluate

machine learning algorithms. We proposed a way to integrate the level of consensus in the

training phase of 4 machine learning algorithms: SVM, random forest, neural networks and

neural decision forest. We showed that using a consensus-weighted version provide significantly

better classification results for almost every classification algorithms that we evaluated. We

also showed that the proportion of positive answers can be accurately predicted using regression

algorithms.

Overall, our main conclusion from the findings of this thesis is that one has to take a global

and comprehensive approach to design affect recognition solutions. It is especially true when

choosing an assessment strategy, as it impacts the performance of data normalization methods

(Chapter 5), the classification performance of features and modalities (Chapter 6) and the

design of machine learning algorithms (Chapter 7).

8.2 Applications

There are two main fields in which automatic stress detection frameworks are usually applied:

human-computer interaction and healthcare. Regarding human-computer interactions, sev-

eral works already applied their solutions to specific problematics. For instance, the Tardis

project [4] aims at building a serious-game which simulates job interviews. In this context, ap-

plicants are likely to experience stress, which may have a negative effect on their performances.

Thus, the framework detects stress from behaviour in order to provide feedback to the user.

This feedback can then be used by the user to improve her body language and her awareness

about how much stress she experienced. In her PhD thesis [76], Lefter stated that automatic

stress detection would improve the performance of video surveillance systems, as aggressive

behaviour is sometimes linked with stress. Therefore, as said by Lefter, “Detection of stress

and negative emotions in an early stage is very valuable since it can help prevent aggression

and other unwanted situations.”. Regarding healthcare, several works proposed mobile archi-

tectures to monitor stress in everyday life [20, 124, 133]. These works aims at providing support

to clinician for decision making and diagnosis.
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Regarding the application of our framework, it is going to be used in a clinical project on bor-

derline personality disorder (BPD) in teenagers, in association with the department of Child

and Adoslescent Psychiatry at La Salpétrière hospital. BPD is associated with intense emo-

tional and behavioural responses to stressful events, characterized by highly negative emotions,

impulsivity, and risk-taking behaviors. These responses are often associated with high morbid-

ity, including substance use problems, self-harm and frequent and severe social conflicts. BPD

has been shown to begin in adolescence. Despite the severity of this disorder, very few studies

have addressed the physiopathology of BPD in adolescents. Thus, the presented framework

will be used along structural and functional imaging to study the dimensional aspects of the

disorder. The objective of this project is to better understand the psychophysiopathology of

BPD.

8.3 Perspectives

As explained in the previous section, one of the perspectives for this work is to use the framework

we presented to study how specific populations handle stress. Post-traumatic stress disorder

and anxiety disorder are also examples of pathologies characterized by an acute response to

certain or all stressful situations. Studying how stress impact the behaviour and the physiology

of people affected by these disorders can provide valuable information about the functioning of

these disorders.

Another perspective would be to study the feasibility of a stress assessment strategy that would

take into account the multidimensional nature of the expression of stress. This would improve

the theoretical soundness and the robustness of stress detection solutions. It would also allow

comparison between these solutions, which would accelerate research on this problematic.

Finally, we believe that it would be interesting to explore in more depth the interplay between

physiology and behaviour that we observed in our results. In particular, we think that it

is important to study the temporal aspect of this interplay. As we discussed in Chapter 2,

physiological, emotional and behavioural responses are triggered with different timings. There-

fore, it is necessary to take this fact into account to study whether some pattern of beha-
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viour/thought/physiological changes are caused by specific events/stimulus. Thus, it would be

necessary to design a new experiment for which sensors are accurately synchronized.

8.4 Publications

Journal paper

J. Aigrain, M. Spodenkievicz, S. Dubuisson, M. Detyniecki, D. Cohen & M. Chetouani (2016).

Multimodal stress detection from multiple assessments. Submitted in Transactions on Affective

Computing. Minor Revision.

Conference papers

J. Aigrain, A. Dapogny, K. Bailly, S. Dubuisson, M. Detyniecki & M. Chetouani (2016).

On leveraging crowdsourced data for automatic perceived stress detection. Proceedings of the

International Conference on Multimodal Interaction. Tokyo, 2016.

J. Aigrain, S. Dubuisson, M. Detyniecki & M. Chetouani (2015). Person-specific behavioural

features for automatic stress detection. Proceedings of the IEEE International Conference and

Workshops on Automatic Face and Gesture Recognition: Context Based Affect Recognition.

Ljubljana, 2015.
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B. Wiedenmann, and I. Heymann-Mönnikes. Role of stress in functional gastrointestinal

disorders. Digestive Diseases, 19(3):201–211, 2001.

[92] A. Moriguchi, A. Otsuka, K. Kohara, H. Mikami, K. Katahira, T. Tsunetoshi,

K. Higashimori, M. Ohishi, Y. Yo, and T. Ogihara. Spectral change in heart rate vari-

ability in response to mental arithmetic before and after the beta-adrenoceptor blocker,

carteolol. Clinical Autonomic Research, 2(4):267–270, 1992.

[93] D. K. Mroczek and D. M. Almeida. The effect of daily stress, personality, and age on

daily negative affect. Journal of personality, 72(2):355–378, 2004.

[94] J. Nicolle, K. Bailly, and M. Chetouani. Facial Action Unit Intensity Prediction via Hard

Multi-Task Metric Learning for Kernel Regression. IEEE International Conference and

Workshops on Automatic Face and Gesture Recognition, 2015.

[95] S. Oyama, Y. Baba, Y. Sakurai, and H. Kashima. Accurate integration of crowdsourced

labels using workers’ self-reported confidence scores. International Joint Conference on

Artificial Intelligence, pages 2554–2560, 2013.

[96] F. Ozel. Time pressure and stress as a factor during emergency egress. Safety Science,

38(2):95–107, 2001.

[97] L. Pessoa and R. Adolphs. Emotion processing and the amygdala: from a ’low road’

to ’many roads’ of evaluating biological significance. Nature Reviews Neuroscience,

11(11):773–783, Nov. 2010.

[98] R. W. Picard. Affective computing: Challenges. International Journal of Human Com-

puter Studies, 59(1-2):55–64, 2003.

[99] R. W. Picard and R. Picard. Affective computing, volume 252. MIT press Cambridge,

1997.

[100] K. Plarre, A. Raij, S. M. Hossain, A. A. Ali, M. Nakajima, M. Absi, E. Ertin, T. Kamarck,

S. Kumar, M. Scott, D. Siewiorek, A. Smailagic, and L. E. Wittmers. Continuous Infer-



BIBLIOGRAPHY 97

ence of Psychological Stress from Sensory Measurements Collected in the Natural Envir-

onment. Information Processing in Sensor Networks (IPSN), pages 97–108, 2011.

[101] N. Quoc Viet Hung, N. T. Tam, L. N. Tran, and K. Aberer. An evaluation of aggrega-

tion techniques in crowdsourcing. In Web Information Systems Engineering, pages 1–15.

Springer Berlin Heidelberg, 2013.

[102] B. Rammstedt and O. P. John. Measuring personality in one minute or less: A 10-item

short version of the Big Five Inventory in English and German. Journal of Research in

Personality, 41(1):203–212, 2007.

[103] V. Raykar and S. Yu. Ranking annotators for crowdsourced labeling tasks. Advances in

neural information processing systems, pages 1809–1817, 2011.

[104] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy.

Learning from crowds. Journal of Machine Learning Research, 11:1297–1322, 2010.

[105] F. Ribeiro, D. Florencio, and V. Nascimento. Crowdsourcing subjective image quality

evaluation. IEEE International Conference on Image Processing, pages 3097–3100, 2011.

[106] J. M. Robbins and J. I. Krueger. Social Projection to Ingroups and Outgroups: A

Review and Meta-Analysis. Personality & Social Psychology Review (Lawrence Erlbaum

Associates), 9(1):32–47, 2005.

[107] R. M. Sakia. The Box-Cox Transformation Technique: A Review. Journal of the Royal

Statistical Society, 41(2):169–178, 1992.

[108] H. Salam and M. Chetouani. A multi-level context-based modeling of engagement in

human-robot interaction. In Automatic Face and Gesture Recognition (FG), 2015 11th

IEEE International Conference and Workshops on, volume 3, pages 1–6. IEEE, 2015.

[109] K. R. Scherer, K. R. Scherer, and P. Ekman. On the nature and function of emotion: A

component process approach. Approaches to emotion, 2293:317, 1984.
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