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Résumé : La cosmologie a atteint une eére
passionnante. Pour la premiére fois dans
I’histoire humaine, un modéle quantitatif pour la
formation et 1’évolution de 1’Univers existe,
expliquant une gamme trés variée de
phénomenes et ayant été testé avec une
impressionnante. De plus, nous sommes a
I’aube d’une époque dans laquelle nous aurons a
notre disposition une abondance de données de
grande qualité, ce qui nous permettra d’utiliser
la cosmologie comme un outil pour tester la
physique fondamentale.

En particulier, comme les structures de grandes
échelles de 1’Univers sont gouvernées par la
force de gravité, la cosmologie peut étre utilisée
pour tester la théorie de la relativité générale
d’Einstein. Cette idée a inspiré la plupart des
travaux décrits dans ce manuscrit, dans lequel
j’ai étudié des théories alternatives au modele
standard de la cosmologie et des tests a grandes
échelles pour la relativité générale.

Dans la premiére partie de ma thése, je me suis
concentré sur les “theories tenseur-scalaire” de
la gravité. Ce sont des théories alternatives de la
gravité, dans lesquelles un champ scalaire, qui
est responsable de I’accélération de 1’expansion
de I’Univers, est ajouté a I’action de Einstein-
Hilbert. Dans le deuxiéme chapitre, j’ai décrit le
modele de K-mouflage, une “théorie tenseur-
scalaire” dans laquelle le champ scalaire
possede un terme cinétique non-standard, en
montrant son effet non négligeable sur la
dynamique des amas des galaxies. J’ai aussi
montré comment cet effet peut étre utilisé pour
contraindre le modele de “K-mouflage” en
utilisant des observations en rayon X.

En particulier, j’ai montré que le cisaillement
cosmique a un pouvoir assez limité
actuellement pour contraindre ces théories, a
cause de la faible précision des observations
actuelles et des dégénérescences avec les
processus baryoniques.

Dans le cinquiéme chapitre, j’ai donné une
description de mon étude des rela-

tions de cohérence. Ce sont des relations entre
les fonctions de corrélation des champs
cosmiques a (n + 1) et n points, valables aussi
dans le régime non-linéaire.
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Leur intérét vient du fait que leur dérivation
dépend seulement du

Principe d’Equivalence et de 1’hypothése de
conditions initiales Gaussiennes, et donc elles
peuvent étre utilisées pour tester ces hypotheses

fondamentales du modéle standard de la
cosmologie.
Des relations similaires ont été étudiées

auparavant, mais j’ai montré comment il est
possible d’obtenir des relations qui ne
s’annulent pas lorsque tous les champs sont
considérés au méme instant. J’ai utilisé ce
résultat pour obtenir des relations de cohérence
entre fonctions de corrélation de quantités
observables, notamment le champ de densité
des galaxies et la fluctuation de température du
fond diffus cosmologie donnée par 1’effet
Sachs-Wolfe. Ces relations peuvent étre
utilisées pour des tests de la relativité générale,
reposant sur des observations par satellites, sans
avoir besoin de modeéliser la physique des
baryons aux petites échelles.

Enfin, j’ai donné un apercu des quelques
perspectives possibles pour poursuivre le travail
décrit dans ce manuscrit.

En particulier, j’ai souligné comment des
simulations numérique sont nécessaires pour
mieux comprendre la formation des structures
dans le contexte des modeles “K-mouflage” et
“ultra-local”. En outre, elles peuvent étre aussi
utilisées pour tester les hypothéses sous-tendant
I’analyse des lentilles gravitationnelles faibles
présentée dans ce manuscrit, surtout pour
distinguer 1’effet de la physique des baryons et
des neutrinos de 1’effet des théories de gravité
modifiée sur le cisaillement cosmique. En ce
qui concerne les relations de cohérence, une
étude de faisabilité de leur mesure avec les
“surveys” cosmologiques est nécessaire, pour
comprendre si elles peuvent donner des
contraintes compétitives sur les théories
alternatives de la gravité.
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Abstract : The study of physical cosmology
has reached an exciting era. For the first time

in human history, a quantitative model for the
formation and the evolution of the Universe
exists, which explains a wide range of
phenomena and has been tested with incredible
accuracy during the last century. Moreover, we
are approaching a time when a bounty of high
quality cosmological data will be available,
allowing us to use cosmology as a tool to test
fundamental physics.

In particular, as the large-scale structures of the
Universe are governed by gravity, cosmology
can help us to asses the correctness of Albert
Einstein’s general relativity. This idea fueled
most of the work described in this manuscript,
in which we study alternative theories to the
standard cosmological model and large-scale
structure tests for general relativity.

In particular, we focus on two scalar-tensor
theories of gravity, the K-mouflage models
described in Chapter 2 and the ultra-local
models of gravity presented in Chapter 3. The
K-mouflage theories are k-essence models with
a non-standard kinetic term that were already
studied at the linear and background levels. In
this manuscript, we extend this description
showing how the scalar field, which is
responsible for the late time acceleration of the
Universe, has a non-negligible impact on
cluster dynamics, arguing that future surveys
may have the power of constraining K-
mouflage models via X-ray observations. Next,
we study the ultra-local models of gravity,
where a scalar field with a negligible kinetic
term is added to the Einstein-Hilbert action,
investigating how the latter modifies
cosmological structure formation and how
these models can be related to super-chameleon
models.

Université Paris-Saclay
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In Chapter 4, we present a cosmic shear data
analysis in the context of f (R) and Dilaton
models, and we show how current data can
accommodate most of the theories considered,
once baryonic and neutrino  physics
degeneracies are taken into account.

Finally, in Chapter 5 we present an analysis of
consistency relations for large-scale structures,
which are non-perturbative relations among
correlations of cosmic fields. They are also
valid in the non-linear regime, where very few
analytical results are known, and only rely on
the Equivalence Principle and primordial
Gaussian initial conditions. This makes them a
powerful tool to test general relativity and
inflationary models using the cosmological
large-scale structures.

We provide here the first non-vanishing equal-
time consistency relations, which we use to
obtain  consistency relations involving
observational quantities.

In this Thesis manuscript, we highlight the
major results of the full analysis done in the
articles that are appended to the main text,
where the reader can quench any thirst for
technical details.
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Abstract

The study of physical cosmology has reached an exciting era. For the first time
in human history, a quantitative model for the formation and the evolution of the
Universe exists, which explains a wide range of phenomena and has been tested
with incredible accuracy during the last century. Moreover, we are approaching a
time when a bounty of high quality cosmological data will be available, allowing
us to use cosmology as a tool to test fundamental physics.

In particular, as the large-scale structures of the Universe are governed by gravity,
cosmology can help us to asses the correctness of Albert Einstein’s general rela-
tivity. This idea fueled most of the work described in this manuscript, in which
we study alternative theories to the standard cosmological model and large-scale
structure tests for general relativity.

In particular, we focus on two scalar-tensor theories of gravity, the K-mouflage
models described in Chapter 2 and the ultra-local models of gravity presented in
Chapter 3. The K-mouflage theories are k-essence models with a non-standard
kinetic term that were already studied at the linear and background levels. In
this manuscript, we extend this description showing how the scalar field, which
is responsible for the late time acceleration of the Universe, has a non-negligible
impact on cluster dynamics, arguing that future surveys may have the power of
constraining K-mouflage models via X-ray observations. Next, we study the ultra-
local models of gravity, where a scalar field with a negligible kinetic term is added
to the Einstein-Hilbert action, investigating how the latter modifies cosmologi-
cal structure formation and how these models can be related to super-chameleon
models.

In Chapter 4, we present a cosmic shear data analysis in the context of f(R) and
Dilaton models, and we show how current data can accommodate most of the
theories considered, once baryonic and neutrino physics degeneracies are taken
into account.

Finally, in Chapter 5 we present an analysis of consistency relations for large-
scale structures, which are non-perturbative relations among correlations of cosmic
fields. They are also valid in the non-linear regime, where very few analytical
results are known, and only rely on the Equivalence Principle and primordial
Gaussian initial conditions. This makes them a powerful tool to test general
relativity and inflationary models using the cosmological large-scale structures.



We provide here the first non-vanishing equal-time consistency relations, which
we use to obtain consistency relations involving observational quantities.

In this Thesis manuscript, we highlight the major results of the full analysis done
in the articles that are appended to the main text, where the reader can quench
any thirst for technical details.
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Chapter 1

Introduction

1.1 Dark energy problem and A-CDM model

Before discussing possible modifications to Einstein’s General Relativity (GR), it
is worth stressing which astonishing accomplishment GR is, both in terms of its
profound theoretical foundations and of the huge variety of phenomena that it
can describe. On the first hand, its description of a Lorentz invariant space-time
couched in the language of differential geometry it is meaningful and elegant and
remains unchanged after more than one century from its first formulation. On the
other hand, GR has proven to be spectacularly successful [1] when tested against
experiments and observations, which range from millimeter scale laboratory tests
to Solar System tests, including also strong regime tests such as binary pulsars
dynamics. Within the standard model, GR governs the expansion of the Uni-
verse, the behavior of black holes, the propagation of gravitational waves, and
cosmological structure formation from planets and stars to the galaxy clusters.

Having such an outstanding theory of gravity, one may wonder why there is such
a huge number of alternative theories in the literature, and why there are different
experimental and observational projects to test GR. Despite its success, there are
(at least) two major reasons why it is interesting to study possible modifications
of GR : the first one is the lack of a widely accepted quantum field theory of
gravity (QFTG). In fact, even if different proposals for a QFTG exist, none of
them has proven to be completely satisfactory in reconciling GR to quantum field
theory [2] . Secondly, most of our current results in cosmology are based on a huge
extrapolation of our knowledge of gravity up to scales where GR has never been
tested.

In particular, it became extremely important to test the validity of our extrapo-
lation on the nature of gravity at large scales, after the discovery of the late time
accelerated expansion of the Universe [3, 4]. This is currently explained assuming
the existence of a new component of the Universe called “dark energy”, whose
nature is still unknown and accounts for around 70 % of the energy budget of the
Universe today.



This scenario, i.e our current lack of knowledge about the main component of
the Universe which drives its late time expansion, is usually referred as the “dark
energy problem” and it can be addressed in several ways. In this chapter, we will
focus on two approaches, the “Dark Energy” models (DEMs), where a new species
is added to the Universe stress-energy tensor, and “modified gravity” theories
(MGTs), alternative models for the gravitational interaction, since they are of
particular importance for the work outlined in this manuscript.

1.2 A-CDM model

The simplest way to explain the accelerated expansion of the Universe is to in-
troduce a cosmological constant (often referred to as A) into the Einstein-Hilbert

Action (EHA)

5= / o [¢_—g <M§ _ A4> + zmwg:),wl , (1.1)

where R is the Ricci scalar, Gy 1s the metric tensor and L,, is the Lagrangian of

the matter fields wﬁﬁ). This solution, known as the A-CDM model, assumes GR
validity at all scales and introduces an energy scale, associated to A, which has to
be set “by hand” in order to mimic the late-time acceleration of the Universe.

Applying the A-CDM model to the study of large scale structures of the Universe
puts us in the somewhat unpleasant situation of having a successful theory to
describe a large class of phenomena, while lacking a deeper understating of the
nature of the cosmological constant itself. For this reason, some attempts at
explaining A in terms of the quantum vacuum energy have been madel[5], but
the value of the cosmological constant predicted by quantum field theory is many
orders of magnitude higher than the one observed. These considerations lead to
the so-called cosmological constant problems, which can be stated as:

e why A is so small as compared to the quantum field theory prediction?

e can A be understood by means of a more general theory which involves a
dynamical model for the evolution of dark energy?

Even though these problems could probably be related, in the following we will
not concentrate on the first one and we will address just the second one, i.e we
will assume that the contribution to the cosmological constant due to the vacuum
energy can be set to zero due to some unknown mechanism, as it is done in most
of the studies of modified-gravity theories in the context of cosmology/[6].



1.3 Strong equivalence principle

The theoretical problems delineated above, along with some discrepancies between
observations and A-CDM model predictions [7-10], have motivated the study of
a plethora of alternatives to A-CDM, which are often categorized in two broad
classes, “Dark Energy” models (DEMs) and MGTs.

Broadly speaking, one could say that DEMs modify the Universe stress-energy
tensor by adding a new species, whose equation of state is w = ppg/ppe ~ —1,
which is responsible for the late time acceleration of the Universe. On the other
hand, MGTs modify the coupling between matter and gravity, introducing new de-
grees of freedom. It is possible to draw a more precise line between this two classes
of models using the strong equivalence principle (SEP) [11], i.e. the assumption
that there exists only one metric field to which all the massive bodies couple,
independently from their composition. We can in fact describe DEMs as modifi-
cations to A-CDM which are compatible with the SEP, while MGTs are not and
they are often described by the means of a “fifth force”. This classification cannot
be considered completely satisfactory, since there are models for which choosing
between DEMs and MGTs is somewhat a matter of personal tastes. However this
approach will be used here, since it is sufficient for the scope of this manuscript.

1.4 Dark energy

DEMs are one of the most natural directions to explore, while researching on
dynamical mechanisms to explain the current value of the cosmological constant.
One of the simplest examples of DEM is the so-called quintessence models [12], in
which a scalar field drives the cosmic evolution at late times. The action for these
models reads

S:/ d*z\/—g

5 (890)2 -V ((p) + ['m( gri)aglw) > (12)

RM2Z, 1
2

where R is the Ricei scalar, ¢ is the scalar field and V' (p) is its potential, often
a free function of the theory. In quintessence models the scalar field behaves as a
perfect fluid, whose equation of state is given by:

s —V(p)

1F V() -

where ¢ is the partial time derivative of the scalar field. Since observations suggest
at late times w ~ —1, in quintessence models the potential energy dominates
over the kinetic energy, i.e we must have V() > ¢? This means that the
potential has to be chosen to fulfill this requirement, along with other ones to
provide theoretical stability and observational viability [13, 14]. From Eq.(1.2), it



is possible to explicitly see that DEMs do not violate SEP, as the gravitational
sector is not modified.

It is possible to construct a very large class of models generalizing Eq.(1.2), which
are of great importance and have been studied extensively both on theoretical
and observational levels. We will not discuss them here, since it is far beyond the
scope of this manuscript, which mostly focuses on MGTs, but we refer the reader
to [13, 14] for an overview of this topic.

1.5 Modified-gravity theories

In GR the gravitational force is mediated by a single 2-rank tensor, namely the
metric gog. This is inspired by the original Einstein’s idea that matter moves along
geodesics evaluated using g3, which is deformed by the presence of any form of
energy, including massive objects. It has been shown that GR is the only possible
gravitational theory mediated by a single 2-rank tensor [15] and then any MGT
must include some extra field. The simplest scenario other than GR is to consider
the presence of an additional scalar field to the EHA, which we will describe
with some detail in this section since it is of vital importance for most part of
this Thesis. Moreover, it is possible to consider also some other extra fields such
as vectors, tensors and higher-rank fields [16, 17], but we will not discuss these
scenarios here, since this is beyond the scope of this manuscript.

However, any effect due to the presence of an additional scalar field must be
suppressed in all the environments where GR is well tested, such as the Solar
system and laboratories. This can be achieved by weakly coupling the extra scalar
field to matter at all scales, but also, as we will discuss in more details in sec 1.5.2,
via a scale-dependent mechanism that provides convergence to GR when necessary.

1.5.1 Scalar-tensor theory of gravity

MGTs in which a scalar field is added to the EHA are often called scalar-tensor
theories of gravity. They are of particular interest because their simple structure
allows us to obtain analytical results, which can be used to test GR. Thus, they
can be seen as toy-models which can shed some light on possible signatures of a
more profound theory for gravitational interactions.

It is possible to write down a general form for the scalar-tensor theories action
as[18]

s= [ dvTg (s Lie.gu)] + [ devTaLavgn). (1)

where L(¢, §,.) is the scalar-field Lagrangian density and £, is the Lagrangian of
the matter fields wfq?, which are coupled to the gravitational sector of the theory



via a transformation of the metric [19]

G = A2(©) G + B(@)V oV, (1.5)

where V,, is the covariant derivative (with respect to metric §,,) and A(p) and
B(yp) are free functions of the scalar field. Eq.(1.5) shows that, counter to what
is dictated by GR, in scalar-tensor theories there exist two different metrics, one
for the Einstein-Hilbert action and the other one for the dynamics of all matter
particles. As we will see in sec.2.2 and 3.2, matter particles follow geodesics due
to gu, which are in general different from the ones obtained from g,,. This
means that physics looks different using the two different metrics and leads to the
definition of two different frames : the Einstein frame, associated to the metric §,,,
where matter fields are minimally coupled to the gravity sector, and the Jordan
frame, associated to g,, , where matter is non-minimally coupled to gravity sector.
For this reason, in the Einstein frame we recover the EHA but the equations of
motion of matter are non-standard (e.g., the continuity equation shows a source
term and matter density is not conserved), while in the Jordan frame the equations
of motion of matter take the usual form (matter density is conserved and radiative
processes are given by the standard results and do not vary with time or space),
but gravity is modified (e.g., the Friedmann equations are modified). For reasons
delineated above, choosing conveniently between Einstein and Jordan frame can
give great advantages while comparing theoretical expectations with observational
results [20]. In this manuscript, we will often choose the Jordan frame, since it is
more convenient for our work.

Moreover, along all this Thesis we will restrain ourselves to a particular case of
Eq.(1.5),
G () = A*(p(2)) Gy (), (1.6)

which describes a transformation function of the particular space-point considered,
via the space-time dependency of the scalar field. Eq.(1.6) represents an isotropic
expansion (or contraction) at the same rate along any direction and so it is often
called a conformal transformation.

It is possible with an adequate choice of A(y) and L(p), and throughout this
manuscript we will give some explicit examples, to provide MGTs with a dynam-
ical mechanism for the late time acceleration of the Universe and a convergence
mechanism to GR at small scales.

1.5.2 Screening mechanisms

As we already discussed above, any viable modification to GR must provide a
screening mechanism, i.e. a mechanism which provides convergence to GR at Solar
system and laboratory scales. One can rephrase this statement by noticing that
the matter density field in the Universe varies over several orders of magnitude,
ranging from pei ~ 10722 gem™ 0 psolar system =~ 3 gcm ™3, and assuring that the
screening mechanism provides convergence to GR in high-density environments.



This is of crucial importance since the background value of the scalar field ¢ often
depends on the local matter density p. If so happens, it can be much easier to
express the screening mechanism in terms of p than in terms of a particular scale,
unless the considered system possesses a particular symmetry.

For a scalar-tensor theory, one can classify the possible screening mechanisms,
using a second-order Lagrangian for the scalar field

m*(p)

1_,_ _
0L, = —5Z(9)(90¢)° — (0¢)* — B(9)dpdp (1.7)
where we defined the scalar field perturbation as dp(x,t) = ¢(x,t) — @(t), Z(p)
represents the self-derivatives interactions of the scalar field, 5(y) is the coupling
function between the scalar and the matter field and m?(p) = 9?V/0p? is the
scalar field mass squared, with V() the scalar field potential.

In this context the screening mechanism can be realized in 3 different ways, each
associated with a different term of Eq.(1.7):

e high mass : the scalar field does not propagate beyond the Compton wave-
length m~! and so the force mediated by the latter is suppressed above this
scale. By making m — +oo in high-density environments, the force asso-
ciated to the scalar field can be suppressed with respect to the Newtonian
one. This kind of mechanism is often referred to as the chameleon-type
screening mechanism [21, 22].

e If the coupling to matter B(¢) is small in regions of high density, the strength
of the fifth force generated by the scalar field is weak and modifications of
gravity are suppressed. This screening mechanism is realized in dilaton and
symmetron MGTs [23].

o If Z(p) becomes large in dense environments, the coupling to matter is
effectively suppressed, because the gradients of the scalar field become much
smaller than would be predicted by the linear theory. This can be achieved
in (at least) two ways, i.e. with a screening mechanism controlled either by
|V2¢| (Vainshtein mechanism [24]) or by |V¢| (K-mouflage [25]).

As outlined in this section, the fifth force becomes negligible with respect to the
Newtonian one when the screening mechanism occurs. In the next sections, we
will discuss how this transition regime can be used to probe the viability of (some)
MGTs, studying astrophysical objects, such as galaxies or galaxy clusters, dynam-
ics. It is worth noticing that this transition occurs at different scales for different
MGTs and thus screening mechanisms could be used to discriminate among them.



1.6 Tests of gravity

In this section, we discuss how MGTSs, in particular scalar-tensor theories of grav-
ity, can be tested using cosmological and astrophysical probes. We will focus
on the impact of MGTs on cosmological structure formation in a quite broad
sense, i.e without specifying a particular theory ! but relying on phenomenologi-
cal parametrizations to highlight the effects of the presence of a scalar field.

Broadly speaking, MGTs can have two effects on the formation of large scale struc-
tures in the Universe. On the first hand, they can modify the expansion history
of the Universe, e.g. modifying the time dependence of H(z) or G(z). How-
ever, the former has been measured using several techniques such as supernovae
[26], baryonic acoustic oscillation (BAO) [27] and early-type galaxies [28] and was
found to be consistent with A-CDM model at percent level. For this reason most
of MGTs are crafted in such a way that they reproduce exactly A-CDM at the
background level but some exceptions exist, e.g. the K-mouflage model, which
induce modifications to the expansion history that are used to put constraints on
these models. On the other hand, almost any scalar-tensor theory of modified
gravity induces modifications at the perturbation level. In the Newtonian gauge
perturbed metric ds* = a® [— (1 + 2®) d7? + (1 — 2¥)dx?], these modifications are
often parametrized for linear perturbations as [29]

kU = 4nGu(k, 2)a*pmd

1.8
= n(kaz) ( )

)

v
where the two function p(k, z) and n(k, z) are peculiar to each model of modified
gravity. They can be in principle computed from the Lagrangian of the model,
and are equal to 1 in A-CDM. In particular, u(k, z) describes how the growth of
structure is modified and it might have an impact, depending on the considered
theory, in a variety of cosmological observables such as the galaxy power spectrum
or the halo temperature function. On the other hand, n(k, z) expresses the pos-
sible differences between the time and space perturbation potentials and it can
be constrained using a combination of probes, including weak lensing ® + ¥ and

temperature anisotropies due to integrated Sachs-Wolfe (ISW) [30, 31] or kinetic
Sunyaev-Zeldovich (kSZ) effect [32].

Moreover, at Solar System scales, a modification to the Newtonian law of gravi-
tation, due to the presence of the scalar field, can perturb the orbits of satellites
around massive objects. In particular, this can happen for the Moon’s orbit around
the Earth, causing an anomalous angular advance of the perihelion 2 of the or-
bit. However, the latter was measured with exquisite precision [33], imposing very
thight constraints on modified gravity theories with a time and space dependent
effective Newtonian coupling.

"'We will focus on some particular theories in sec.2.5,3.3, where we describe K-mouflage and
ultra-local models of gravity.
2More details will be given for K-mouflage model in sec.2.3.
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Beside these observational probes, any early time modification of gravity is con-
strained by the CMB observations of the Planck satellite [34, 35], which endorsed
the current picture that CMB physics is governed by the A-CDM model. However,
these results usually impose poor constraints on MGTs, with respect to late-times
probes, due to the small impact of dark energy at early times.

To summarize, all these tests of gravity give us a picture which is consistent with
A-CDM so far, with room for possible of extensions of GR that must satisfy
a substantial number of constraints. However, it is highly probable that next-
generation large-scale structure surveys will impose very stringent constraints on
MGTs at the cosmological level [36-40], possibly ruling out some MGTs or in the
best-case scenario measuring some deviations from GR.

1.7 Conclusions

In this chapter, we gave a very short introduction on the vast topic of the dark
energy problem, i.e. the lack of understanding beyond the late time acceleration
of the Universe.

We also briefly introduced DEMs and MGTs, seen as modifications to the stan-
dard A-CDM model that are useful to address the dark energy problem. In this
context, we focused on scalar-tensor theories, because of their simplicity and their
importance for this manuscript.

We then moved on to discuss the screening mechanism, highlighting how it can be
achieved in high-density regions, such as the Solar System where GR is very well
tested.

Finally, we described how MGTs affect cosmological and small-scale observables,
and how the latter can be used to put constraints on the viability of MGTs.

In the next chapters, using some of the results of this chapter, we will focus on
two modified-gravity theories, namely the K-mouflage and ultra-local models of
gravity. These are scalar-tensor theories, which we studied in depth in arts. A,
B, C. They show two different screening mechanisms and several different possible
signatures, which will be recalled in this manuscript.



Chapter 2

K-mouflage

2.1 Introduction

In this chapter, we will discuss K-mouflage models. They are k-essence models
of modified gravity, universally coupled to matter by a conformal rescaling of
the metric. For the scope of this manuscript, K-mouflage models will serve as a
benchmark to introduce MGTs, since they are complex enough to be an interesting
alternative to GR (they possess a dynamical mechanism responsible for the late
time acceleration of the Universe, a screening mechanism and modify the dynamics
of astrophysical objects) but they are simple enough to be treated using semi-
analytical techniques, at least in particular cases which are of great interest for
cosmology.

K-mouflage models were studied at the background and linear levels in the liter-
ature [41, 42], and here we will extend the analysis to situations where the scalar
field responsible for the modification of gravity is coupled to a perfect fluid with
pressure. Within this framework, it is possible to study the impact of K-mouflage
models on galaxy cluster dynamics, which are unscreened in this theory, and to
study how it is possible to constrain them using cluster observations.

Most of the results shown in this chapter were found in art.A, which is appended
to this manuscript for the reader’s convenience, along with most technical details
of the calculations.

2.2 Description of the model

K-mouflage models are described by an action of the form

s= [da V=5 |FRRT ME@)| + [ vaLa@ien)  @2)

11
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where we denoted with a tilde the Einstein-frame quantities, to distinguish them
from Jordan frame ones.

The Lagrangian of the scalar field is composed by two terms: firstly M*, an energy
scale which can be set of the order of the current dark energy density to recover
the late-time acceleration of the Universe; and secondly K(Y), a non-standard
kinetic term, which is a free function of the standard kinetic term

1

YD VHoV 4. (2.2)

X =

The functional form of K () is subject to several viability constraints, which we
will discuss in sec.2.3.

From Eq.(2.2), it is possible to understand how x behaves in the cosmological and
the small-scale regime, which are crucial to put constraints on K(x) :

e in the cosmological regime, the scalar field is time dependent and uniform,
its spatial gradients can be neglected with respect to its time derivatives,
and x > 0;

e in the small-scale regime, the scalar field is quasi-static and non-uniform, its
gradients are much greater than its time derivatives, making x < 0.

As discussed in sec.1.5.1, we will couple the scalar with the matter field via a
conformal transformation of the type of Eq.(1.6), setting the coupling function

A(p) as

A(p) = exp (N—) , (2.3)
Pl

where [ is a coupling constant that can be chosen to be positive, without loss of
generality, since this simply corresponds to a redefinition of the sign of the scalar
field. Along this chapter, we will restrict to the case in which g is a constant, both
in space and time.

Using the relation v/—g = A*\/—7 and the relation between Ricci scalars in Jordan
and Einstein frames [15]

R=A*[R+60InA—6g"0,InAd,In A], (2.4)
it is possible to obtain

G(z) = A’G ~ (1 + %) g, (2.5)

Pl

where we used (2.3) to obtain the last result. Eq.(2.5) implies a time variation
of the Newton coupling due to the time variation of the scalar field. This is of
particular importance for K-mouflage since |[A — 1| < 1, and leads to percent
variations in the background cosmology with respect to the A-CMD case. As a
matter of example, we show in Fig.2.1 the redshift evolution of €2,, and 24, for the
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FIGURE 2.1: Redshift evolution of the matter and dark-energy cosmological
parameters €2, and Qg.. In red we show the K-mouflage model of Eq.(71), in
blue the one defined by Eq.(74) of art.A, and in black the A-CDM model.
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FIGURE 2.2: Relative drift with redshift of the Newton’s coupling for the K-
mouflage models.

two K-mouflage models used in art. A, which we normalized by their Einstein-frame
values today. €14, differs from its A-CDM counterpart because of the evolution of
the scalar field, which is dictated by its Klein-Gordon equation. This implies that
Q,, also differs from the A-CDM prediction, as in both cosmologies we assumed a
flat universe. Furthermore, the percent time variation of G(z), which we show in
Fig.2.2, results in severe constraints on the value of the coupling constant, as we
will show in sec.2.3.
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2.3 Large- and small-scale constraints

Since we are aiming at constructing a MGT which provides a dynamical mecha-
nism to mimic late time acceleration of the Universe, the kinetic function must
converge to a cosmological constant at late times and large scales. This can be
achieved by imposing:

M =5y,

_ oh ) (2.6)
X—0: K(x)=—-14+x+--

where the zeroth order factor —1 corresponds to the late-time acceleration. We

can choose the normalization of the first two terms of K(x) without a loss of

generality, since they just set the normalization of M* and ¢.

The functional form of K (x) can be constrained by several theoretical arguments
and observations. These constraints can be (roughly) divided in two categories,
the large-scale ones (when x > 0)

e K'>0 (with K/ = dK/dx): to avoid ghosts in the theory;

o K’ +2yK" > 0: this ensures that we have a well-defined and unique scalar
field profile for any value of the matter density. This is of particular im-
portance at high redshifts when the matter density becomes increasingly
large;

e $%2/K’ < 0.05: to satisfy the Big Bang Nucleosynthesis constraint. If it was
not the case, H(z) would deviate too much from the A-CDM counterpart,
causing a non-viable abundance of primordial elements. Since K’ ~ 1 in the
cosmological context (Eq.(2.6)), the constraint on 5%2/K’ can be recast as a
constraint on the coupling, which turns out to be 5 < 0.22;

e YK' < K to recover the DE equation of state (see Eq.(17) of A),
and the small-scale ones (when x < 0)

e 3 < 0.1 : the time dependence of Newton coupling affects the trajecto-
ries of planets and moons. In particular, the Lunar Laser Ranging experi-
ment [33] observed the Earth-Moon system, allowing a maximum time vari-
ation of |[dInG/dt| ~ 107'2yr=!. This can be recast as a constraint on
|dIn A/dInal ~ 3%/K’ ~ 32, which leads to 8 < 0.1 [43]. This constraint is
tighter than the one due to BBN and sets the value of g = 0.1 that we used
for all plots shown in this chapter;

1

o |87rf<—2, KRR | < 2% 1071, The fifth force associated to the K-mouflage
scalar field perturbs the lunar orbit around the Earth, causing an advance
in the anomalous perihelion. However, the latter is severely bounded by the

Lunar Ranging experiment, resulting in a constraint on both g and K(x).
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If we assume that 5 ~ 0.1, the only way in fulfilling such a requirement is
to diminish YK /K’ when x < 0, giving a severe constraint on the shape of
K(x) in the static regime.

e laboratory tests, such as atom interferometers, constrain the amplitude of
the fifth force, which is proportional to 5%/K’, to a 107 level. However, this
happens well inside the region where screening occurs, making these bounds
much less severe than the previous ones.

When all these constraints on the shape of K(x) are enforced, it is still possible
to find analytical expressions for the kinetic function, such as the one of Eq.(71)
of art.A !, which leaves us with 4 additional parameters other than the usual
cosmological ones, namely

{8, xs, K, M} (2.7)

which have to be chosen to fulfill all the constraints aforementioned. (But note
that M merely replaces the usual cosmological constant parameter (24..)

2.4 Background cosmology

If we assume a FLRW metric ds* = a? (—d7? + dx?), we obtain the Jordan frame
Friedmann equation
3MpH? = p+ ey + Pac (2.8)

where we defined the Jordan-frame time dependent Planck mass Mp, = Mp, /A,
and

269 — e% B

5 (P

(]_ — 62)

where p, = M* (Q)Zf(’ — f() and € = dIn A/dIna. We defined the dark energy
density as the density that is missing in the Friedmann equation to match the
Hubble rate, after taking into account radiation and matter densities.

Pde = Po + + Py + Py) (2.9)

The Klein-Gordon equation for the scalar field in Jordan frame reads,

d (-, ,dp - dn A
— (A% LK) =—-a®p 2.10
dt( ‘it ) “P g (2.10)

which dictates the evolution of ¢, shown in Fig.2.3. The scalar field ¢ is negative,
grows with time (we choose the normalization ¢ = 0 at z — 400) and | ¢/ Mp)| <
1 until z = 0.

!The model defined by Eq.(74) of art.A does not satisfy Solar System constraints. However
it can be seen as an effective model for the semiaxis y > —1, which is sufficient for the purposes
of this chapter.
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FIGURE 2.3: background scalar field ¢ as a function of redshift.
2.5 Large scale structure formation

As pointed out in sec.2.2;, K-mouflage models change the expansion history of the
Universe (in Jordan frame), modifying the background cosmological quantities
with respect to their A-CDM counterparts. Additionally, these models enhance
the growth rate of cosmological structure, both at linear and non-linear levels (sec.
III-B of A). This can be seen as the effect of the presence of a scalar field potential,
due to the conformal coupling, which modifies the 00 component and the trace of
the perturbed FRLW metric as:

0A 0A
=0T —, V=Uy— —. 2.11
N+ A’ N A ( )

We can connect §A/A to dp, using Klein-Gordon equation of motion for the scalar

field .
1, BA

V= — dp, 2.12
which, at the first order, gives
1 _,0A 32
il v el __§p. 2.13
2 A MK’ (2.13)
Eq.(2.13) can be used to write the Jordan frame Poisson equation
1 2 1 + €1
V0 =—7-9 2.14
a2v 2ME P (2.14)

where ¢; = 23%/K’. Additionally, the Jordan frame continuity and Euler equations
read

0
a—i +V (pv)+3Hp=0 (2.15)
v +(v-V)v+Hv=-VV. (2.16)

or
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Using the results obtained above, at the linear level it is possible to write down
the evolution equation of the linear growing mode

42D | dH\ dD 3
B O O I S 2.1
d(lna)2+< e dt)dlna ¥l +e)D =0 (217)

which differs from the A-CDM one for two reasons: the different values of €,
and H and the time-dependent amplification factor (1 + €;) that comes from
the modified Poisson equation. These result in the enhancement of D(a) at the
percent level (Fig.2.4) at late times, when ¢; ~ 0.02 (Fig.2.5). On the other hand,
we recover a A-CDM cosmology at late times, since ¢; — 0 (along as €, and H
tend to their A-CDM counterparts).

It is also possible to study the spherical collapse, using Eq.(2.16) in spherical
symmetry

Let us introduce the normalized radius
r(t) 3M )1/3
t) = with = 2.19
y(t) a(t) q E <47T,00 (2.19)

where ¢ is the Lagrangian radius of a spherical structure of mass M and it is
related to the matter density within r(¢) as

L+o(<r)=yt)™ (2.20)

Using Eq.(2.19) into Eq.(2.18) we obtain

d*y 1 dH\ dy Q
24 g ) ama T2 O P-1) = 2.21
d(lna)2+( +H2 dt)dlna+ 2 (1+e) <y ) 0, ( )

which can be used to obtain the evolution of §(< r) via Eq.(2.20). Eq.(2.21)
differs from the A-CDM case through the different values of H and §2,,, and
the amplification factor (1 + €;), which comes from the Poisson equation as for
Eq.(2.17). In Fig.2.6, we show the linear density contrast ézx) that corresponds to
a nonlinear density contrast ¢ [0z] = A, where A,,, = A./€,,(2) is the nonlinear
threshold that we choose to define halos and A, is a free parameter that we choose
to be equal to 200. Since the K-mouflage models accelerate the growth of large-
scale structures, a smaller density contrast in the linear regime is needed to reach
the same non-linear density A.. This has an impact on the halo mass function, as
we will see in sec.2.7.1.
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FIGURE 2.5: Redshift evolution of the coefficients €; and €.

2.6 Lack of screening of clusters in K-mouflage
models

In K-mouflage models of modified gravity, clusters of galaxies are not screened
from the fifth force, even far inside the cluster boundaries (sec V-B of ref.A). This
can be seen using the Klein-Gordon equation for the scalar field, applied to a
spherically symmetric system

dg ., _ BAM(r)

= 2.22
dr 2 MpArr?’ (2.22)
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FIGURE 2.6: Linear density contrast threshold d7,y), associated with the non-
linear density contrast A, = 200 with respect to the critical density pcrit, for
the K-mouflage models and the A-CDM reference.

where M(< r) is the mass enclosed within the radius r. It is possible to recast
Eq.(2.22) by introducing the so-called “K-mouflage screening radius” Rg

B BAQM 1/2
RK(M) N (47TCMP1M2 ’

where M = M(R) is the total mass of the object of radius R, the rescaled di-
mensionless variables © = r/Rg, m(z) = M(< r)/M, ¢(x) = ¢(r)/¢x, with
o = M?Rg/cA, to obtain

do ., m(x) .. _ 1/[(do\’
_ h v=—-(22) 24
de PO with x ) <dx (2.24)

(2.23)

It is possible to give an estimate of Ry, using that M* ~ pgeo and that A ~ 1,

obtaining
| BM _
Rg (M) ~ mo.uh "Mpe. (2.25)

With 3 = 0.1 and a cluster mass 10'* M, we obtain a K-mouflage screening radius
of Rg ~ 0.04h~'Mpec. This is much smaller than the size of a typical cluster of
mass M = 10" M, leaving much of the cluster unscreened. Moreover, M (< r)
decreases as we move inside the cluster, delaying the beginning of the screened
region. For this reason, clusters are not screened in K-mouflage theories, and
the fifth force has a non-negligible impact on their dynamics, as we will show in
sec.2.7.

At this stage, one may wonder about the impact of the fifth force on the non-linear
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substructures present in the cluster. Because of the non-linearities of the Klein-
Gordon equation of the scalar field, the solution obtained for the averaged halo
profile may greatly differ from the “exact solution” obtained by taking into account
substructures. In particular, galaxies in clusters, whose density is much higher
than the one of the intra-cluster medium, are screened in K-mouflage models [44],
and this may have an effect on the cluster dynamics. For this reason, around each
galaxy 7 we must cut a patch where the Klein-Gordon equation must be solved in
the fully-nonlinear regime, giving rise to a screened region around the galaxy of
size Rjgq- In practice, since R; 4 < R, we can patch all galaxy solutions within
the global cluster solution. Assuming a reasonable number and distribution of
galaxies in a cluster (sec.VI-B of art.A), we can show that galaxies occupy only
107 of the total volume of the cluster and we can safely assume that the global
solution is a good approximation to study the cluster dynamics. More precisely,
K-mouflage models do not bring any other restriction then A-CDM models in the
study of the intracluster medium or the X-ray properties of the clusters, which are
already studied using global solutions.

2.7 Cluster dynamics

As shown in the previous section, clusters of galaxies are unscreened in K-mouflage.
Hence, we can hope to put some constraints on K-mouflage models using cluster
dynamics. In this section, we will summarize some of the results obtained in art.A,
to describe the impact of the fifth force on gravitational and thermodynamical
properties of the clusters.

2.7.1 Halo mass function

As shown in Fig.2.7, the halo mass function of dark matter halos in K-mouflage
models gets higher in the high-mass tail, with respect to the A-CDM one, due to
the enhancement of gravity and the faster growth of structures. On the contrary,
the halo mass function gets lower at small masses, due to the normalization of
both the A-CDM and K-mouflage halo mass functions, since the matter in the
halos is bounded by the total matter content of the Universe. With respect to
other MGTs, like f(R), dilaton or ultra-local models [45-47], K-mouflage models
show a scale independent enhancement, since there is no other particular scale
introduced by the model (in the unscreened regime).
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2.7.2 Cluster concentration
To estimate the impact of the K-mouflage model on the internal cluster dynamics,
we assumed a NF'W profile for the dark matter in halos [48]

_ ps
pom(r) = (r/r) (1 + 7“/7“3)27

(2.26)

which is characterized by r; and p, respectively the scale radius and density. The
scale density ps can be expressed in terms of the concentration ¢ = Ra, /75, where
RA, is the radius such that ppy(< Ra,) = Acpaiv and A, is the halos overdensity

threshold, as

B A, c3
Ps = Parit™g In(l+c¢)—c(l+c)
We assumed p; to be proportional (up to a free parameter) to the critical density
of the Universe at the formation redshift z¢, estimated by computing

(2.27)

o(q,zf) = oy, (2.28)

where ¢ is the halo Lagrangian radius and o a free parameter. Asshown in Fig.2.8,
in K-mouflage models halos are more concentrated than the ones in A-CDM, due
to the faster growth of gravitational clustering, which gives a slightly greater p;.
In Fig.2.8, we also show ¢(M) for A-CDM and K-mouflage models compared to 19
x-ray observations obtained by the Cluster Lensing and Supernova Survey using
the Hubble telescope [49], at mean redshift of z ~ 0.37. Both models agree quite
well with observations, and the discrepancies between them are quite modest when
compared to the error bars of current observations. Hence we do not expect to put
any competitive constraints on K-mouflage models using this kind of observations
in the near future, even though a more detailed study of cluster dynamics may
be needed, probably involving numerical simulations, to shed more light on how
K-mouflage models impact the internal structure of the clusters.

2.7.3 Hydrostatic equilibrium

From the Euler equation, it is possible to write down the hydrostatic equilibrium
equation for a perfect fluid, which reads

50290) __Vp (2.29)

V@zV(‘I’N—I— _
Pg

Pl

where p, and p, are respectively the gas pressure and density and Wy is the
Newtonian potential fixed by the dark matter. Assuming isothermal equilibrium
and spherical symmetry, it is possible to obtain an expression for the gas density
profile )

py(T) o e~ (Ie)ump¥n(r)/kpTy (2.30)
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FIGURE 2.8: Mass-concentration relation for NF'W halos in K-mouflage models
and A-CDM, at z = 0.37. The observational measures, shown with black points,
are taken from [50].
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where p1m,, is the mean molecular weight of the gas and 7}, is the mean gas temper-
ature. We estimated T, assuming it to be proportional to the dark matter velocity
dispersion o3, evaluated using Jeans equation at equilibrium. In Fig.(2.9), we
show the dark matter and gas profiles both for K-mouflage and A-CDM: as ex-
pected from the results of sec.2.7.2; the scalar field makes the profile slightly more

compact, even though this effect is quite modest.

2.7.4 Scaling laws

Among the most used methods to study cluster dynamics, there are the so-called
scaling laws, i.e. relations among cluster observables such as mass, temperature
or X-ray luminosity. These have been observed by numerous cosmological surveys
[51, 52] and can be estimated using analytical techniques.

It is possible to reconstruct the X-ray luminosity Lx(< R) within the radius R,
integrating the cluster gas density over the cluster size and assuming a X-ray
emissivity function, which expresses the X-ray flux at given halo temperature. To
avoid complications due to the cluster internal structures and to closely resemble
the procedure used by observations, we decide to compute the X-ray luminosity
outside a certain core radius Reore = feorelt, With R the cluster radius and feope >~
0.15. In Fig.2.10, we show this Lx — T relation, without contributions from the
cores. At fixed temperature, the K-mouflage models give a slightly lower X-ray
luminosity. This is because a smaller mass is needed to have a cluster temperature
T, because the fifth force enhances the velocity dispersion of clusters. Since the
X-ray luminosity scales as Ly o p,M+/T, a lower mass implies a lower luminosity
since the effect of the scalar fields on p, is negligible.
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FIGURE 2.10: Temperature-luminosity relation for the K-mouflage models and

A-CDM at z = 0.048 (lower curves) and z = 0.451 (lower curves). The data

points are taken from observations made by [52] (in green) and [51] (in brown),
with clusters in the redshift range 0.048 < z < 0.451.

To summarize, we found percent deviations in cluster scaling relations (we found
similar results for M — T and Y — M relations, see art.A) for K-mouflage models,
with respect to A-CDM. However, these deviations are far too small to be used
as competitive constraints for K-mouflage models, due to large uncertainties in
current observations and to the very stringent constraints which come from Solar
System and cosmological dynamics.

2.7.5 Cluster temperature function

The results of previous sections, in particular the halo mass function and the mass-
temperature relation, can be used to computed the X-ray cluster temperature
function as

dln M
n(T) = n(M) T

which can be measured using X-ray surveys, as was done in [53].

(2.31)

As shown in Fig.2.11, K-mouflage models are in good agreement with observations
and predict a deviation in the high-mass tail of the order of unity. This is mostly
due to the amplification of the halo mass function in the high-mass tail since, as
discussed in sec.2.7.4, the effect of K-mouflage on cluster scaling laws is modest.
However, deviations of n(7T) are large enough that we may expect to put some
constraints on K-mouflage using next-generation surveys. This may require the
study of degeneracies between the fifth force and baryonic physics, probably by
means of numerical simulations.
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FIGURE 2.11: Cluster temperature function for K-mouflage and A-CDM models
at z = 0.05. The observational data points are taken from [53] from a sample
of cluster at z ~ 0.05.

2.7.6 Dynamical and weak lensing masses

As shown in Eq.(2.11), in the K-mouflage models ¥ and & differ by a factor 20 A/A
but their sum is still equal to ¥ . For this reason, the only difference for weak
lensing signals comes from the different evolution of matter fields, but baryons
fall in potential wells due to ® and hence feel the fifth force. This leads, as in
other MGTs, to different estimates for the cluster mass using either weak lensing
or cluster dynamics probes. In particular, for K-mouflage we can write

Mgyn

= 1ta) (2.32)

where Mgy, and M, are respectively the mass inferred from cluster dynamics
and from weak lensing. This leads to a deviation of about 2%, set by the value of
B because clusters of galaxies are unscreened. However, ( is severely constrained
by cosmological and Solar system observations, and so the ratio Mayy/Miens can
just give an upper bound to constrain K-mouflage models.

2.8 Conclusions

In this chapter, we presented the K-mouflage models of modified-gravity theories,
focusing in particular on their effects on cluster dynamics, the main topic of art.A.

For this reason, we focused on results in the Jordan frame, which differs from the
Einstein frame at percent level in K-mouflage, since it is better suited to describe
radiative phenomena.



26

Before studying cluster dynamics, we recalled some results from background cos-
mology and structure formation. In particular, we showed that, within K-mouflage
models, the Newton coupling assumes a time dependency which can be used to
impose constraints on the coupling strength 5 of the theory. Moreover, we showed
that cosmological structure formation is enhanced at percent level, with respect
to the A-CDM one. This enhancement is scale-independent in the unscreened
regime, since K-mouflage models do not provide an additional scale in the theory,
as other MGT's do.

Next, we moved to the study of cluster dynamics, showing that K-mouflage models
make clusters more compact and their X-ray luminosity and temperature deviate
from the A-CDM ones at percent level. These deviations are unfortunately too
small to put competitive constraints on K-mouflage models, even in the light of
future surveys. More promisingly, we found deviations in the cluster temperature
function which are large enough to hope that they will be within the sensitivity
limits of future large-scale surveys.

To further understand the (possible) impact of K-mouflage models on cosmology,
at least two lines of research can be pursued. Firstly, along this chapter we focused
on few K (x) functions in order to give an estimate of the effects on cluster dynam-
ics. However, a more detailed MCMC analysis may be more suited to explore the
parameter space of K-mouflage models. On the other hand, dedicated K-mouflage
cosmological simulations could be well suited to study the impact of screening on
mildly non-linear scales, which could be of crucial importance to understand the
screening mechanism. We leave to future works the detailed study using the two
techniques, which we will improve our understating of K-mouflage models.



Chapter 3

Ultra-local models of gravity

3.1 Introduction

In this chapter, we present a class of MGTs called ultra-local model (ULMs),
where a scalar field with a negligible kinetic term is added to the EHA. This class
of theories gives rise to a new type of screening mechanism, not entirely due to the
non-linearity of the scalar field, which relies on the absence of the kinetic term.

We show that the cosmological background evolution in ULMs differs from the
A-CMD one at most at the 107% level, but these models can have a great impact
on structure formation at small scales. We also present a thermodynamic analysis
of the non-linear and inhomogeneous fifth-force regime, showing that the latter
does not lead to the existence of clumped matter on very small scales, which would
put severe constraints on these theories.

Finally, we show that these models are similar to chameleon-type theories with
a large mass down to their Compton scale, and we test their viability at the
cosmological level.

The results presented in this chapter were found in art.B and C, which are ap-
pended to this manuscript.

3.2 Description of the models
ULMs are scalar-tensor theories, defined by the following action

d'z /-3 P1R+£ () /d4x\/_£(m,gm,) (3.1)

where, as for K-mouflage models, the scalar field is coupled to matter by a con-
formal coupling of the metric. We define the Lagrangian of the scalar field £,(¢)

27
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Lo(0) = -V (), (3.2)

so that the scalar field has a negligible kinetic term and its dynamics are dominated
by the potential.

As we will see in more details in sec.3.7, the absence of the kinetic term plays a
pivotal role in the screening mechanism for these models, in particular screening
with 100 % efficiency the orbits of planets in the Solar System.

If we assume that the potential can be inverted, we can make a change of variables
of the type:
Vip)

VIR
where we introduced an energy scale M?*, a free parameter of the model that can
be chosen to be M* ~ pge0, since it just defines the = normalization.

[1]2

and A(Z) = A(y), (3.3)

Using Eq.(3.3), we can recast Eq.(3.2) and Eq.(1.6) as

Ls(

[1]2

) = M*Z and g, = A%(Z)G, (3.4)

[

leaving the functional form of £ completely fixed when expressed in terms of Z,
and we are left with a single free function for the model, the coupling A(Z). For
this reason, there is a broad degeneracy between A(y) and V' (¢), since we recover
the same physics for any couple of these functions which gives the same A(Z) (see
sec.V of art.B). Thus, we will work with the = variable, and A(Z) will be the free
function of our model, similarly to K(x) in K-mouflage.

From Eq.(3.1), it is possible to obtain the Klein-Gordon equation for the scalar
field, which reads in Jordan frame

dlnA_

—_—
—
—

M+ TAY

0, (3.5)

where T is the trace of the matter energy-momentum tensor. Eq.(3.5) is a con-
straint equation (it contains no derivative terms), which gives the =(x) field as a
function of the the local matter density p(x).

Finally, the energy-momentum tensor of the scalar field reads

THEZ) = M2, (3.6)
leading to the expressions for the scalar field energy density and pressure

pe = —M'Z, pz = M'E = —jz. (3.7)
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3.3 Background and perturbations in Jordan frame

If we assume a background metric (in Jordan frame) of the form ds* = a*(—d7r? +
dx?), we obtain the Friedmann equation

3Mf2’1H2 = CL2 (ﬁ + Prad + ﬁde)a (38)
where H = dIna/dr and we defined the the Jordan-frame Planck mass as
Mg\(t) = A7%(t) M, (3.9)

and the effective dark energy density as

2
2€9 — €5

ﬁde:ﬁé+(

1_—62)2(5 + Praa + pz), (3.10)

with €, = dIn A/dIna, as we did for the K-mouflage model.

At the perturbation level, if we compare the Einstein-frame Newtonian gauge

perturbed metric to its Jordan-frame counterpart (i.e Eq.(14) with Eq.(25) of
art.B), we obtain a relation among the potentials which reads
A? ~ A? ~

1+2@:ﬁ<1+2®)’ 1—2@1:?(1—2\11). (3.11)

Since observations tell us that deviations from A-CDM in the matter dynamics
have to be small, at most ten per cent, we want that the Jordan-frame potentials
do not deviate too much from the Newtonian one Wp. This means that we can
linearize Eq.(3.11) to obtain

(I):\IIN—{—éln/L \I/:\I/N—(SIHA, (312)
which can be used to obtain the Jordan-frame Poisson equation

\%& op+dp=

— Uy = —=. Nl
a2 N 2M3, (3.13)

To fulfill observational constraints, we also require that |dpz| < |0p|, which means
that we can linearize Eq.(3.7) to obtain

Spz = —AMISE. (3.14)

In ULMs the Jordan-frame Euler equation reads

ov \Y
E%—(V«V)v%—?{v:—V\DN—%, (3.15)
with Mie2
C"
pa = =, (3.16)

A4
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where we used the Klein-Gordon equation Eq.(3.5) to relate the potential In A to
=. Since = only depends on the matter density, the pressure-term p4 depends
solely on p, similarly to what happens for polytropic equations of state.

To summarize, at the level of matter dynamics, the ULMs have two effects, a
modification of the Poisson equation, due to the additional source associated to
the scalar field, and a pressure-like term in the Euler equation.

At the linear level in the matter density perturbation §, it is possible, using
Eq.(3.5), to relate the density perturbations to the matter ones

=__ B
02 =30 (3.17)

where 3,(t) = d"In A/d=". Using this result, we obtain the linear growth rate
equation of motion

0?D 1 dHY\ 0D 3%,

— 24 —— ——(1 D= 1
8(1na)2+< H? dt)&lna y (1+eD=0, (3.18)
where €(k, ) is a factor which describes the deviation from the A-CDM cosmology,
given by

2 Ak?
E(k’,t) = 61(t) (1 + Em) 5 (319)

with €,(t) = 82/B,. The presence of ¢(k,t) in Eq.(3.19) makes the growth rate
scale-dependent and can enhance or diminish the growth rate of structure depend-
ing on the sign of ¢;. The k-dependence scales as k? and becomes important when
ck/aH > 1, i.e. at sub-horizon scales. This can be visualized in Figs.3.1, 3.2 and
3.3, where we solve the growth rate of structure for the three functional forms
of A(Z) defined by Eqs.(55), (63) and (70) of art.B ', which we will call model
(I), (II) and (III) respectively. As expected, for these models the growth rate of
structure is strongly enhanced (or diminished) for k > 1 hMpc™! with respect to
the A-CDM case. In particular, as shown by Fig.3.3, in ULMs with negative ¢;
the growth rate of structure develops oscillations when the factor (1 + €) becomes
negative. However, this rather peculiar behavior is associated to a model which
should be discarded, for reasons that will be discussed in sec.3.4.

3.4 Constraints on A

Similarly to what happens for the K-mouflage models free function K(x), several
constraints can be imposed on the coupling function A(Z). We summarize here
the most important ones :

IThese functions were chosen in order to fulfill the constraints that we will discuss in sec.3.4.
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FIGURE 3.1: Absolute value of the linear growing mode D(k,a) for the model
(I) as a function of the scale factor for & = 1,10 and 100 h Mpc ™! respectively
in green, blue and red
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FIGURE 3.2: Linear growing mode D(k,a) for the model (II) as a function of
the scale factor for k = 1,10 and 100 h Mpc~! respectively in green, blue and
red.
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FIGURE 3.3: Linear growing mode D(k,a) for the model (III) as a function of
the scale factor for k = 1,10 and 100 h Mpc~! respectively in green, blue and
red.

e |InA] < 107° hence |[A — 1] £ 107% : in ULMs the screening mechanism
does not rely on the suppression due to the derivative terms, since the Klein-
Gordon equation is a constraint one. In A only depends on the value of the
local matter density, and the latter varies over several orders of magnitude
from the intergalactic medium to the atmospheres and cores of planets and
starts. For these reasons, we must bound In A below 107%, to avoid large
modifications to the matter dynamics. This allows deviations of the back-
ground with respect to the A-CDM counterpart at most at the 107° level,
ensuring that all the bounds related to the time variation of the Newton’s

coupling are satisfied;

e |e;] £ 1077 : the linear growth rate of structure in ULMs cannot differ too
much from the A-CDM one. This bound can be obtained by imposing that
le| <1 for all wave numbers up to k = 1 hMpc™'. For smaller scales, we
enter the non-linear regime where Eq.(3.18) does not hold and a more careful
analysis is needed. Finally, it is possible to show that es ~ € (Eq.(41) of
art.B), which also gives a constraint on the value of €;

e =) <0: using the aforementioned constraint on €3 and Eq.(3.10), we obtain
paco = —M*=Zy. To impose that the scalar field drives the acceleration of

the Universe at late times, we must impose =y < 0;

e dln A/d= is a monotonic function of Z which goes from 0 to 400 : this is to
ensure that the Klein-Gordon equation for the scalar field has a well-defined
and unique solution for every value of the matter density;

e In A(Z) must be a convex function: in realistic scenarios, ULMs may cor-
respond to cases in which the kinetic term is negligible with respect to the
potential, but non-zero. It is possible to show (sec.V-A of art.B) that the
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Klein-Gordon equation (3.5) remains a good description of the evolution
of the scalar field, once a small kinetic term is added to the Lz, only if
[y > 0, i.e. when In A(é) is a convex function. It is worth noticing here
that model (I) of art.B does not satisfy this condition and hence should be
discarded (but this scenario can be made viable within the related class of

the Goldstone models).

3.5 Characteristic transition scales of ULMs

The Klein-Gordon equation can be recast as:

d\ 1
=z == 3.20
= P ( )
where we defined
In A(Z) = a\(2), with o~ 107°
ap _p (3.21)

From Eq.(3.20), we expect a cosmological transition when p ~ p,, which defines
a “transition” redshift z,

Za ~ a3 100, ag ~ a? <0.01, (3.22)

when we expect that the impact of the scalar field on matter dynamics becomes
important.

In Fig.3.4, we show the time evolution of €;(¢), which influences the growth rate
of structure. As expected from Eq.(3.22), ¢ has a peak around a = a, ~ 0.01
meaning that ULMs of gravity have the characteristic property that the main
modification to the gravitational dynamics occurs at early times.

3.6 Spherical collapse and halo mass function

In ULMs the spherical collapse is modified by the presence of the scalar field
potential ¥4 = c?In A. Under the spherical approximation, we can write

2
oV 4 _ c_dlnAdlnp (3.23)
or r Inp dlnr

where 7 is the physical coordinate. Eq.(3.23) introduces a term in the equation of
motion for r(t), that depends on the density profile p(r), which couples different
shells before shell crossing, in contrast with what happens in the A-CDM case.
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FIGURE 3.4: Absolute value of the factor €1 as a function of the scale factor.
We show our results for model (I), (IT) and (III) with red, blue and green lines
respectively.

It is possible to give an estimate for the time evolution of the non-linear density
contrast given by the spherical dynamics, d-(a) = y(a)™3 — 1, using

dy 1 dHY\ dy y 0
dma TG = T Un+ ¥ 24
d (Ina)? +( MR ) Tna = oy Uy T 04 (3.24)

and an ansatz for the density profile that corresponds to the typical density profile
around a spherical overdensity for a Gaussian field (Eq.(135) of art.B). The results
are shown for model II in Fig.3.5: the collapse is accelerated for small-mass halos
and occurs as early as a ~ 0.01, while remaining close to A-CDM one for M >
10h~' M. For this reason, as shown in Fig.3.6, the linear density contrast
needed to collapse into a halo of mass M at z = 0 is much smaller than the
A-CDM one at small masses and converges to §£ZCDM ~ 1.6 for higher masses.

These results also reflect in the halo mass functions n(M), which are shown for
model (II) and (III) in Figs.3.7 and 3.8. n(M) shows an enhancement in the
formation of small-mass halos with respect to the A-CDM cosmology counterpart,
due a large range of masses collapsed before z, ~ 100. However, at small masses
n(M) is not dominated by its Gaussian tail and we do not expect the results
presented here to be accurate, but we still expect to have an enhancement in the
number of small-scale halos in ULMs, even though a more detailed study of the
spherical collapse is needed, possibly by means of numerical simulations.

3.7 Screening mechanism

We describe here the screening mechanism in ULMs, in particular emphasizing
its difference at Solar System scales with the screening mechanisms discussed in
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FIGURE 3.5: Time evolution of the nonlinear density contrast d. given by the

spherical dynamics, as a function of the scale factor for mass M = 10 to 10°

h Mg from bottom to top, with the same initial condition that corresponds to
the A-CDM linear density threshold.

FIGURE 3.6: Time evolution of the nonlinear density contrast d<(a) for several
A-CDM conditions, from d; = 1.6 to 0.001 from top to bottom, for a mass of
M =10 h™! M.
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FIGURE 3.7: Halo mass function at z = 0 for the model (II) (solid line) and
the A-CDM reference (dashed line).
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FIGURE 3.8: Halo mass function at z = 0 for the model (III) (solid line) and
the A-CDM reference (dashed line).

sec.1.5.2.

3.7.1 Clusters and galaxies

We can estimate the impact of ULMs on the dynamics of astrophysical objects,
like galaxy clusters or galaxies, by computing the ratio n between the fifth force
F4 and the Newtonian one Fl. Assuming spherical symmetry, at the boundary
of clusters we have

Fy G6M F4 dlnA 1dlnA 1

~2 AL ~— ~ —a’A 3.25
2 2R? 2 dr Rdlnp R (3:25)
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FIGURE 3.9: Absolute value of the ratio n = F4/F as a function of the radius

within spherical halos. We display the halo masses M = 10'°,10'3 and 10" A1

Mg, from bottom to top. The models (I), (II) and (III) are shown respectively
by red, blue and green line.

where in the last passage we used the Klein-Gordon equation in the low density
regime (with respect to p). Combining the results obtained in Eq.(3.25), we obtain
Fa/Fy ~ (10’a)? < 1, which means that the fifth force is negligible at cluster
scales. Using a similar argument for galaxies, we obtain F/Fy ~ (10%a)? ~ 1,
which indicates the fifth force is comparable to the Newtonian one at galaxy scales,
and hence galactic dynamics could be used to test ULMs.

In Fig.3.9, we show the absolute value of 1 as a function of the radius r in a
spherical NF'W halo. For some models, in particular the model III, 7 keeps growing
as we approach the center of the halo. Observations may severely constrain this
model since the latter would lead to very different halos than the one obtained in
A-CDM. However, a more detail study of internal dynamics of the halos in ULMs
it is needed, which we leave for a future study.

3.7.2 Solar System

In ULMs, objects in the Solar System are screened with 100 % efficiency. Because
the fifth force depends only on the the local density and its gradient, the impact of
the Sun onto planets’ motion is exactly zero, unless distant gradients are created by
other means (as can happen because of Newtonian gravity). However, the impact
of the Sun’s Newtonian gradient onto the Earth matter distribution is negligible,
as compared to those from local sources, such as the radial structure of the Earth
or mountains and oceans. For this reason, the Sun is completely screened as
viewed from Earth and similarly this happens for all other planets or moons of
the Solar System. Hence, the trajectories of all astrophysical objects in the Solar
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FIGURE 3.10: Domain in the mass-radius plane where the fifth force is greater
than Newtonian gravity. The horizontal axis is the typical mass of the structure,
M , given in units of the solar mass. The vertical axis is the typical radius of the
structure, R, given in Mpc in the left border scale and in km in the right-border
scale. The rectangles show the typical scales of various astrophysical structures.

System are given by GR and ULMs pass all the Solar System tests described in
sec.2.3, which often severely constrain other MGT's such as K-mouflage.

On smaller scales, one can expect that there exists a small-scale cut-off ¢, of
the theory, below which the scalar field acquires a kinetic term and a screening
mechanism similar to the one in Dilaton modified-gravity theories. This scale can
be taken to be of the order of the mean interparticle distance in the inter-galactic
medium (see sec.V-B of art.B), i.e. on the meter scale, thus much smaller than any
scale of interest for cosmological or Solar System dynamics. Moreover, ¢; can be
introduced into the model without the need of a new parameter, simply expressing
the latter as combination of the parameters of the theory, like £, ~ aM?* ~ 100
m. In any case, a small-scale regulation of the theory is needed to have a complete
picture of ULMs and requires further study.

In Fig.3.10, we show the mass-radius plane where the fifth force is greater than
the Newtonian one, that we computed assuming an NFW density profile [48]. The
lines are obtained evaluating R, (M), i.e. for any given mass, the radius at which
1n = 1. The rectangles represent the typical scales of various astrophysical objects
showing that some of them, like galaxies or globular clusters, lie at the boundary
R, (M) and they may be used to test ULMs. We leave a detailed analysis on these
possible constraints for a future work.
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3.8 Thermodynamical analysis

In the previous sections, we computed the fifth force assuming that the density
p was a homogeneous field on cosmological scales. However, in ULMs the fifth
force can enhance the formation of structure at early times, a < a,, and this
may develop very strong inhomogeneities in the density field. In this scenario,
the Universe would be made of small clumps of matter built at high z, which are
screened as planets in the Solar System, while perturbations evolve according to
GR.

In sec.XI of art.B, we addressed this issue by using a thermodynamical analysis,
suited to study this highly non-linear problem. We described domains in the early
Universe as a grand canonical ensemble of particles, which act solely under the
influence of the fifth force potential In A. This approximation is possible since
we studied the structure formation at early times, when the Newtonian force is
negligible with respect to the fifth force. We also assumed that such a system
reaches an equilibrium with a process similar to the violent relaxation [54] for
gravitational systems. In particular, we obtained the phase-space diagram of the
system and we checked if the early time Universe was in a one-phase state, i.e. in
a homogeneous state, or was undergoing a phase transition, i.e. was in a highly
inhomogeneous phase.

To study the equilibrium of the system, we minimized the grand-canonical poten-
tial €2, which is given by
Q=E-S5/—uM (3.26)

where E,S and M are respectively the energy, the entropy and the mass of the
system and [ and p are the inverse temperature and chemical potential. The
phase-space equilibrium distribution f(x,v) can be obtained by DQ/Df = 0 and
yields

f(X, V) _ foefﬁ(vQ/ZJrc2 In A+c%dln A/dlnp)Jr,B,ufl’ (327)

which can be used to compute the density at the equilibrium

3/2
p(X) _ fO (%) efﬁcz(lnA+dlnA/dlnp)+,3,u71. (328)

This equilibrium condition can be recast as
=0+ Bu(d), (3.29)

where we introduced

R 3 2 3/2
/6 = O(CQB’ IEL = ln [afoc (_Tr)

IRAGE +Bu—1

dA

0=1Inp, v(f)=\+—.
np, v(0) =+

(3.30)
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FIGURE 3.11: Thermodynamic equilibrium relation i = fi(0, 8) as a function
of 0, at fixed values of j.

The equilibrium density can be found as the solution (in terms of ) of Eq.(3.29),
for fixed values of 5. In Fig.3.11 we show ju(6) function for model (II) for 3 values
of B around Bc, the inverse temperature where the phase transition occurs (see
Eq.(190) of art.B). At low 3 (i.e., high temperature) the function is monotonic and
the system is in a homogeneous phase while for high B (i.e., at low temperature)
1(0) is non-monotonic and the system is inhomogeneous since two different phases,
with two different values for 6, coexist.

The results of this analysis for model (II) can be summarized by Fig.(3.12) where
we show the phase diagram of the system. The red line in the plot represents the
cosmological trajectory, i.e. the typical density p.,n and typical inverse velocity
Beon at the collapse, which we estimated as

_ 1
pcoll(z) = P(Z)7 Beoll = 5 (3-31)
coll
where ¢ is the effective velocity at the collapse
Coon = €2 + (3.32)

which is the sum of the “sound speed” ¢? that comes from the pressure-like term
of the Euler equation and the Newtonian ¢3, term which comes from its right-hand
side (see sec. XI-A for more details).

Fig.(3.12) shows that the high-density region of the cosmological trajectory, which
is associated to the early-times Universe, lies almost at the boundary between the
homogeneous and the inhomogeneous regions and so the system does not develop
strong inhomogeneities. At later times, Newtonian gravity becomes dominant
and the system behaves like a A-CDM Universe, not developing unusual inhomo-
geneities. Similar results are obtained for model (III) as shown in Fig.(20) and
(21) of art.B.
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FIGURE 3.12: Thermodynamic phase diagram of model (II). The shaded area
represents the region where the system is in an inhomogeneous phase, while the
white area corresponds to the homogeneous one. The red line is the cosmological

trajectory (ﬁcou(z), 9(:011(2))-

3.9 Super-chameleons and ultra-local models

The super-chameleon models (SCMs) [55, 56] are chameleon models embedded
in a supersymmetric setting, with three separate sectors, the dark one where
dark matter and energy live, the matter one for standard model particles, and a
supersymmetry sector for supersymmetric partners. Here, as we did in art.C, we
will describe a supersymmetric setting at low energy for the SCMs assuming that
the three sectors only interact via gravity.

At energies comparable to the cosmological ones, these models can be seen as a
scalar-tensor theory of gravity, whose scalar field is responsible for the acceleration
of the Universe at late times (see sec.I and II of art.C). Moreover, it is possible to
show that the super-chameleon scalar field has an extremely short range interaction
with the matter fields, on scales smaller than rgonms < M) /12 with ms3/, the gravitino
mass. As the gravitino mass is always greater than 107> eV in realistic models
of supersymmetry breaking [57], the range of the scalar interaction mediated by
@ is very small, at most at the cm level. Even at very early times, this scale is
sufficiently small that we can treat SCMs as ultra-local models for cosmological
purposes.

For these models, the functional form of A(Z) is fixed ? by the supersymmetric

interactions 20
AB) =1+a (1 /-1 E) (3.33)

2Up to the choice of two numerical parameters.
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and for k/a < meg the linear density contrast obeys

R + -
oT? or 2 meza?
with )
m2 (SO) . pﬁlﬁ
eff - :
Mg\ 5t
On sub-horizon scales this equation is the same as for the ultra-local models,

since we can neglect the unity factor in Eq.(3.19). Then, it is possible to test the
viability of SCMs with the same techniques used for ultra-local models.

(3.35)

We may notice that in the usual chameleon models such as f(R), for which we
have  ~ 1, a large mass would lead to a negligible deviation from A-CDM. This
is not the case for the SCMs models, since it is possible to show that

52 . 042M1%1
2 4
Mg A

(3.36)

and so 82k? /m2za® can be order of unity at cosmological scales even with o < 1.

The coupling function for SCMs resembles the model (III) studied above and
most of the results obtained for the latter are valid also for SCMs. One important
difference is shown in Fig.3.13, where we show the mass-radius plane for SMCs.
In this plot, we only show astrophysical objects whose dynamics is due to the
presence of dark matter, since in SMCs the coupling between baryons and the
scalar field is negligible. Hence, we found that only galaxies can be used to test
SMCs since they are the only class of objects that lie on the boundary of R,,.

This leads to the conclusion that, at this preliminary level, superchameleons are
found to be globally consistent with current observational constraints. As for the
ultra-local models, we leave to a future work a more detailed study of galactic
dynamics in SCMs, which could be useful to put constraints on SCM parameters.

3.10 Conclusions

In this chapter, we introduced ULMs, a class of MGTs where a scalar field with a
negligible kinetic term is added to EHA. We showed that ULMs give rise to a new
screening mechanism, which is due to the absence of the kinetic term, making the
Solar System screened with 100 % efficiency. Moreover, we showed that galaxies
are unscreened, making galactic dynamics a promising tool to test ULMs.

The predictions of ULMs only depend on a single free function, which we con-
strained using theoretical and observational arguments. We showed that for these
models deviations of the background are at most at the 107 level, while structure
formation is strongly enhanced at small scales, leading to an excess in the forma-
tion of small-mass halos as compared to the A-CDM cosmology. This could lead
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FIGURE 3.13: Domain in the mass-radius plane where the fifth force is greater

than Newtonian gravity for SCMs. The rectangles show the typical scales of

astrophysical structures whose dynamics is dominated by the presence of dark
matter.

to severe constraints on ULMs, even though more detailed studies are needed in
order to give a robust quantitative estimate.

To study the non-linear and inhomogeneous regime of the fifth force, which requires
to go beyond perturbation theory or the spherical collapse, we have presented a
thermodynamic analysis, showing that inhomogeneous transition had not occurred
at early time, validating our cosmological analysis, which assumes a smooth den-
sity field.

Finally, we briefly introduced SCMs, super-chameleon models embedded in a su-
persymmetric setting, that act as ultra-local model at scales larger than their very
short Compton length. We found that these theories are compatible with cur-
rent observational constraints and we expect them to have an impact on galactic
dynamics.

To conclude, to study in deeper details the impact of ULMs and SCMs on cosmol-
ogy dedicated numerical simulations are required. In particular, the ultra-local
force may alter significantly the internal structure of small-mass halos, and nu-
merical methods are well suited to understand sub-halo dynamics. Moreover, an
accurate comparison with data on galaxy scales can be useful to constrain both
ULMs and SCMs. As for K-mouflage models, a MCMC analysis is needed to ex-
plore the full parameter space of ultra-local models without focusing on particular
functions for In A(Z), which we leave for detailed studies.



Chapter 4

Testing modified gravity with
cosmic shear

4.1 Introduction

In this chapter, we give an example of how MGTs can be constrained using weak
lensing data taken from cosmological surveys.

In particular, we will describe how Dilaton and f(R) models of gravity can be
tested using cosmic shear data. After briefly reviewing them, we will study their
impact on the cosmic shear two-point correlation functions, and we will discuss
degeneracies with neutrino and baryonic physics.

Finally, we will use data taken from the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS) !, a ground-based multi-color optical survey with a 154 deg?
sky coverage optimized for the study of weak gravitational lensing [58], to constrain
some parameters associated to Dilaton and f(R) models.

4.2 Dilation and f(R) theory of gravity
In this section, we review the models of modified-gravity theories constrained in
art.D, namely the Dilaton and f(R) models.

The Dilaton is a class of scalar-tensor theory of gravity defined by

diz /=g P1R+ (w) —V(p) — Al +/d4x\/_£ @, gw)

(4.1)

!CFHTLenS : www.cfhtlens.org
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where we explicitly added the cosmological constant contribution AJ, and the
matter is coupled to the scalar field via a conformal rescaling of the metric. In
the original Dilaton model, the potential and the coupling function read

¥
V(p) = Viexp <—~—)
Mp
1 A
Alp) =14 ===
() 20

(4.2)

where {As,V.} are free parameters of the theory. At the background level, the
scalar-field energy density is dominated by its potential term, which is negligible
as compared with the matter density and the Dilaton theories recover the A-CDM
background cosmology within a 107% accuracy. Hence, the main modification to
structure formation is not due to a different background evolution, but to the
effect of the fifth force on matter dynamics (see sec.2.1 of art.D).

On the other hand, f(R) theories are MGTs defined by
MQ
[

S = /d4:v V=g TPI R+ f(R)] — Af + Ln() | . (4.3)

In the Hu & Sawicki parametrization [59], the functional form for f(R) is chosen

to be .
Jro Ry
R)=—-—"——— 4.4
f(R) =~ (1.4
where {fro,n} are free parameters of the theory. f(R) theories recover A-CDM
background cosmology at 10~* accuracy, while at the perturbation level the mod-
ified Einstein’s equations lead to a modification of the metric potentials ¥ and ¢

which introduces a new source in the Poisson equation (see sec.2.2 of art.D).

4.3 Weak lensing

Weak lensing is a powerful tool to test GR at cosmological scales [60], since it
directly probes the so-called weak-lensing potential

S+
(I)Wl = i
2

(4.5)

which is sensible to modifications of gravity.
In particular, the integrated convergence field at the point 6 on the sky reads as

—

w(0) = /0 Oodfég(ﬂv?@wl(ﬂﬁ) (4.6)
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where ¢(7) is a kernel function which takes into account the contributions coming

from several sources along the line of sight. Expanding x(f) in multipoles, we
obtain the convergence power spectrum

o - / " dT@f—ime/T, ). (4.7)

c2

where P, is the weak-lensing power spectrum. From Eq.(4.7), it is possible to
obtain the cosmic shear two-point correlation functions

&(0) = 5 [ i)t (45)

which can be reconstructed from survey data, as was done in sec.3.3 of art.D.
Moreover, due to their dependence on Py, £4(6) are sensitive to modifications of
gravity, and thus can be used to constrain modified-gravity parameters, as we will
see in sec.4.4. In particular, for all MGTs for which the expansion rate H and
comoving distances can be approximated with the A-CDM ones, it is possible to
show that P, can be expressed as

300 H2\
Ptk ) = (Tt ) Plhvo) (1.9)

which connects the matter power spectrum to the weak-lensing one.

4.4 Results

We model the impact of massive neutrinos, baryon feedback and MGTs on the
matter power spectrum by using multiplicative feedback biases, namely

PPMAvHHm)4MG _ pDM 2 p2 G (o) (4.10)

where PPM is dark matter power spectrum and the M,, m and MG(a) stand
respectively for the contributions from the massive neutrinos, the baryons physics
and MGTs. We estimate the the neutrino feedback bias b3, as
PDM+MV k' P
by, = ——arB 1T (k, 2) (4.11)
Poaus (k. 2)

with M, = (0.0,0.2,0.4,0.6) eV is the total neutrino mass and CAMB indicates
that we computed the power spectra using the CAMB code [61]. Similarly, we
compute the baryon bias feedback as

DM4-b(m
2 Powf( )(k:,z)
" P]OD\%IL(kﬂ Z)

b (4.12)



47

where OWL indicates that power spectra were computed using the data from a
suite of simulations [62] which studied the effects of baryon physics on the matter
power spectrum, in particular the impact of different AGN feedback models.

In Fig.4.1, we show P(k,z) at z = 1 when massive neutrinos and AGN feedbacks
are taken into account. AGN and neutrino feedbacks can suppress more than 50
% of the power at mildly non-linear scales, depending on the model and neutrino
total masses.

Finally, we take into account the MGTs contribution via the MGT bias
MG (4
2 _ PR VNT( '(k, 2)

== - 4.1
M = PR ) 1

where MG 4 labels different gravity models (see sec.3.2.3 of art.D for more details)
and VNT means that we computed the MGT power spectra as in [63]. This leads
to a 10-20 % enhancement in the matter power spectrum, which we show with thick
and dotted lines in Fig.4.1, respectively for the Dilaton and f(R) model. It is worth
noticing here that maximal modifications to A-CDM occur at k ~ 1 hMpc™?, in

a region where degeneracies with baryon and neutrino physics are strong.

Once all these contributions are considered, Eq.(4.10) can be used to compute &+
and MGTs can be tested against data. As an example, we display in Figs.4.3
and 4.4 £/py for a particular combination of MGT, neutrino mass and AGN
feedbacks, along with data taken from the CFHTLenS. Moreover, we performed a
rejection analysis using the y? method (see sec.4.2 of art.D) to study the viability
of f(R) and Dilaton models. As a main result, which is summarized in table 2
of art.D, we show that with current data it is possible to accommodate most of
MGTs considered, once that neutrino and baryonic physics are taken into account,
with the notable exception of the f(R) theory with {fg,,n} = {107* 1}.

4.5 Conclusions

In this chapter, we introduced the cosmic shear as a way to constrain MGT pa-
rameters and to study degeneracies among neutrino, baryonic physics and MGTs
at mildly non-linear scales.

We focused on the Dilaton and f(R) models of gravity, which we briefly reviewed
in sec.4.2. We took into account their impact on the cosmic two-point correlation
functions, along with the one from massive neutrinos and AGN feedbacks, by using
multiplicative bias factors to compute the matter power spectrum.

We showed that it is not possible to find a preferred model among the ones con-
sidered, i.e. that the current data have very few constraining power, once that
neutrino and AGN feedbacks are taken into account.
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FIGURE 4.1: Ratio between the matter power spectrum P(k), including baryon

and massive neutrinos feedbacks and the dark matter one PPM, evaluated at

z = 1. The blue dashed lines represents the effect of massive neutrinos with

M, = 0.2,0.4 and 0.6 eV from top to bottom, the pink dotted line represents

the AGN feedback effect and the red solid lines represent the combined effect
of massive neutrinos and AGN feedback.
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We however showed that cosmic shear studies can be used as a powerful tool to
test GR, especially when neutrino and baryonic physics will be understood with
greater precision and observational systematics will be reduced.

To further improve this analysis one might think to test the simplifying assumption
of the uncorrelated biases used to compute P(k, z), which will require suites of ded-
icated cosmological simulations. Moreover, since several MGTs can accommodate
similar phenomenological effects, applying this analysis within the framework of
model-independent parametrizations for the weak lensing convergence power spec-
trum [64], can be useful to test a larger class of theories than the one presented in
this chapter.



Chapter 5

Consistency relations for
large-scale structure

5.1 Introduction

The cosmological large-scale structure is one of the main probes to measure the
properties of the Universe and to test the validity of the A-CDM model. On large
scales, cosmological structures are described by perturbative methods, which can
be improved by resummation schemes [63, 65-70]. On small scales, the theoretical
modeling of gravitational dynamics becomes much more difficult since we aim at
describing a non-linear system in which baryonic physics plays an important role.
For these reasons, small-scale structure formation is often studied by the means of
numerical simulations or phenomenological models [71] and exact results are very
rare.

However, recently some exact non-linear results have been obtained [72-74], among
which we find the so called “kinematic consistency relations” (CRs) for large-scale
structures, i.e., a factorization of (¢ + n)-cosmological fields correlators, with ¢
linear and n small-scale (even non-linear) modes, in terms of n-point correlators
and ¢ linear power spectrum factors. CRs arise from the equivalence principle,
making them a promising tool to test GR, and describe the response of a small-
scale structure to a large-scale perturbation, namely an uniform displacement
at leading order. When applied to the density fields, these relations express a
kinematic effect which vanishes at equal times, as an uniform displacement has no
effect on their statistics. This property make the CRs for the density fields very
hard to measure, since different-time correlators would be needed.

In this chapter, we present an extension of CRs, based on the work of art.E and F,
which involves cross-correlators between the density and the velocity fields. These
CRs are sensitive to the transportation of the small-scale structure because of
the shift in the velocity fields, and thus do not vanish at equal times. Moreover,
we show how to relate CRs to observational probes such as the galaxy density
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contrast and the integrated Sachs-Wolfe effect, to obtain a test of the equivalence
principle and of primordial non Gaussianity valid also at non-linear scales.

5.2 Correlation and response function

To obtain CRs, we assume that the primordial fluctuations can be considered
Gaussian and thus the dynamic are fully determined by the initial Gaussian linear
growing mode dro(x). For this reason, any dependent quantity {p1,---,pn} is a
functional of the field 01y and we can write the mixed correlation function as a
Gaussian average

Cl’n(X) = <5L0(X)p1 e pn) = /D(SL() 8_61‘0‘0;‘01.6[‘0/2 5L0(X)p1 R ) (51)

where Cro = (dn0(x1)dr0(x2)) is the two-point correlation function for the field
dro. Integrating by parts Eq.(5.1) over dr yields

Cn(x) = / dx' Cro(x,x') RM(x), (5.2)

where we defined the mean response function

<D[m .- Pa]

R (x) = Doro(x)

(5.3)

which describes the dependence of {p;} on the variation of the initial density field
dro- Eq.(5.2) can be expressed in Fourier space as

Cln(K) = Pro(k') R (—K), (5.4)

where we defined the Fourier-space correlation and response functions as

G ) = Gl ), B0 = (PR (e

and P is the linear matter power spectrum.

Let us now consider the quantities {p1,++, pn} to be the non-linear density con-
trast 0(k;, t;), which can be expressed as

5k, t) = / %elk-xa(x,w - / (;Tq)ge%k-x (5.6)

where we introduced the Lagrangian coordinate q, we used the matter conservation
equation (140)dx = dq and we discarded the term dp(k) that does not contribute
for k # 0. We can now compute the response function, substituting Eq.(5.6) in
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Eq.(5.5), to obtain

i=1

R — </ —d((l;ﬂ&?” Zki . D;(Dlj )ekl-(ql+\111)---kn-(qn+‘11n)> ’ (5_7)
T

where we introduced the displacement field W(q,t) = x(q,t) — q. We now wish
to compute DW /D4 (k’, 7) in order to obtain the response function. In the linear
regime this can be easily done by means of the continuity equation, which gives

/

E —0: ?i — Zk—,D(T), (5.8)
Dok, T) k2

and we want to show that this result is still valid at the non-linear level if we are

in the squeezed limit for n+ 1 density correlators (i.e., the limit £ — 0). To do so,

we consider an infinitesimal change of the initial condition Adyy which leads, from

the definition of functional derivative, to a change of the non-linear displacement

field
D¥(q) , =

AY(q) = [ dk'——Adpp. 5.9
() Do (K, 7) L0 (5.9)

To obtain the low-k limit of the functional derivative we can look at a perturbation
Adr that is restricted to k£ < k. and k. — 0. For instance, we can choose a
Gaussian perturbation of size R — +o00o centered in q. far away from the point q,
which corresponds to adding a mass AM around the point q.. This modifies the
linear density field 0, as

0.(q,7) = 0, = 0 + D(7)AdLg (5.10)

and also the velocity field vy by the precise amount that corresponds to the
relation between velocity and density in the growing mode

VL(q,T) —)\AIL ZVL—Z—I:Val 'A(SL(). (511)
At the linear level, this means that the small-scale region around q is falling
towards the large-scale mass AM centered on q., as stated by Eq.(5.8). Since
we are aiming at describing results at the non-linear level, we must show that
the impact of a mass AM is still to attract the small-scale region with the same
acceleration as in the linear regime, even when the small-scale region around q is
non-linear.

This can be seen from the equation of motion of the trajectories

0?x Ox

— — =-Vd=-F 5.12

oT? * HGT (5.12)
where ® and F are the Newtonian potential and force. If we add a perturbation
AM, the trajectories are modified following Eq.(5.12) giving rise to the perturbed
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trajectories X. To compute X we can consider the auxiliary trajectory
X/ (qv T) =X <q7 7—) + D<T)A\I,L0(q)v (513)

where AW4(q) = —V;lA(SLO is the displacement due to the Adrg. These auxiliary
trajectories satisfy

0*x’ ox’ 0D oD
+H—=-F+|—+H— | =Fx,7)+ AF 14
oT2 or ( or? or ) (<, 7) 14 7) (5.14)

where we used F/'(x') = F(x) because the uniform translation only gives rise to the
same translation of the Newtonian force, since F oc V714. The last term follows
from Eq.(5.12), which implies that at linear level the displacement field obeys to

0*W ov,,

55 TH o =-Ved=-F (5.15)

We then notice that the trajectories x’ satisfy the same initial conditions of the
perturbed ones and they follow the same equation of motion if we can write AF’ =
AF . This is valid when R — +oco since AM produces a Newtonian force that
varies over the scale R and can be approximated as a constant for the small-scale
region q. Moreover, since we consider a regime when k&' — 0, the force is set by
the Poisson equation sourced by Ad; and hence it is in the linear regime. We
can conclude that x’ = X and AM produced a uniform translation also in the
non-linear regime. This allows us to write

DY K’
K =0: —=———=15-D(7), (5.16)
Do(k',7) k
from which we obtain
. - - " kK
R = (8lka, )00k ) ) 3o =5 D) (5.17)

i=1
which can be substituted in Eq.(5.4) to obtain the CRs for the density fields

/

(50980, 12) 300y, t0)) == 35K Dy P ) (S0 1) 30 1))

k' —0

(5.18)
where (- - - )" denotes that we removed the Dirac factor p (> k;). As stated above,
the main property of Eq.(5.18) is that it does not require 4 to be in the linear or
perturbative regime and we can check directly that it does vanish at equal time
(i.e., when 73 = --- = 7,), since in the squeezed limit we have k; + --- + k,, ~
k+k +---+k,=0.

At this stage, it is worth highlighting the connection between Eq.(5.18) and the
equivalence principle. As we saw, a change Adrg in the initial density gives rise
to the same displacement for all scales and this is a direct consequence of the
equivalence principle since all scales feel the same effect regardless of their size.
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For this reason, CRs rely on the equivalence principle and provide a way to test
GR in the non-perturbative regime.

5.3 Consistency relations for velocities and mo-
menta

The main effect of a long wavelength perturbation is to move small structures with
a uniform shift, hence we expect that CRs involving velocity fields may detect this
effect. It is in fact possible to show (see sec.3 of art.E) that the transformation
law for velocities reads

V(k,7) = v(k,7) = v(k, 7) — 1D (k - AW0) v(k, 7) + C;—DM/LO Sp(k), (5.19)

where the last factor is a term associated with the shift of the amplitude. Eq.(5.19)
can be used to obtain the CRs for velocity (and density) fields

n n+m
Ok, ) ] ok ) TT¥0 m5)so = —Pu(k,7)
j=1 Jj=n+1
n n-+m n+m k k,
{<H5kw7—] HVkJ’TJ Z 7_/ L2
7=1 j=n-+1 =1
n+m n i—1 n—+m
< . (dD/dr)(1;).
+ <H 6(1{],7_]) H V(kj,Tj) X (W ﬁdD HV kJ,T] .
i=n+1 j=1 Jj=n+1 Jj=i+1

(5.20)

If we take k; # 0, as usual for studies of Fourier-space spectra, the last term
vanishes and we recover the same form as CRs of the density fields. However,
this new Dirac term gives a nonzero contribution in configuration space and real-
space correlators obey consistency relations that differ from those of the density
fields. One may obtain scalar relations by taking for instance the divergence of the
velocity field, # = V - v (see Eq.(15) of art.E or [75]), but this obeys CRs similar
to the density fields ones because the new Dirac term disappears as él =k, v,

One simple way to obtain scalar non-vanishing CRs at equal times is to consider
the divergence of the weighted momentum p = (1 +4)v, i.e A = V(1 +0)v. For
A =k - p, the transformation law reads

DA\k) k- K
Déro(k’) k"

(Dﬁ(k) + Z%S(k)) : (5.21)
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from which we obtain

n n+m
5 H k]’Tj) H )‘(kj77—j)>;c’—>0 = _PL(k/aT/)X
j=1 j=n-+1
n n+m n+m
~ k k/
{H“‘Na 1 Mksm) ZD 7 (5.22)
7=1 j=n+1
— g T < , (dD/dr)(1) k; - K
—'Z (ki,Ti)Hfs(kj,Tj) H Ak, 73))" % DF) k2 [
i=n+1 j=1 j=n+1
J#i
which at equal times read
o Tr i T s dln D
60¢) [T80) TT A0 = PolE) -
7=1 j=n+1
n+m k k, B n R n+m B (523)
Z 2 <5(ki)H5(kj> H )‘(kj»l
i=n+1 j=1 j:;ﬂ
77

where we did not write the common time 7. The second term of Eq.(5.22) comes
from the second term of Eq.(5.21), does not vanish at equal times and transforms
the momentum divergences A into density perturbations 5. The _simplest relation

that does not vanish at equal times is the bispectrum with two 4 fields and one \

field
(BTN = e o P (K P(R) (5.24)

with P(k) the non-linear power spectrum. Eq.(5.24) can be extended to galaxy
fields

by {8, )3, IRy (K = e T P () % P, (), (5.25)

where gg is the galaxy density contrast, P s, is the galaxy density power spectrum
and we assumed a deterministic large-scale limit bias b, for galaxy bias.

CRs such as Eq.(5.25) are very useful, as we will see sec.5.4, since they provide
a way to connect theoretical non-perturbative results to observational probes in
order to test GR and primordial non-Gaussianity.

5.4 Consistency relations for observables

In this section, we apply some of the results obtained above to observational
probes, focusing on the galaxy number density contrast and the ISW effect.
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From galaxy survey, we can typically measure the galaxy density contrast within
some redshift bin smoothed with some finite-size window

—

6,(0) :/d§’W9(|67’—ﬂ)/dT]g(n)ég[r,rgl;T], (5.26)

where Wy (|0 <’ —6]) is a 2D symmetric window function centered on the direction
on the sky of angular radius ©, » = 75 — 7 is the radial comoving distance along

the line of sight and
dz

dr
is a weight associated with the normalized galaxy selection function n,(z). Eq.(5.26)
can be expanded in Fourier space to obtain

I,(n) = ng(2), (5.27)

5:(0) = / dn I, (n) / dk W (kLr)eir 70 5 (1, 7), (5.28)

when we defined
Wo () = / 46 W 16]), (5.29)

and k = (k, k) are respectively the parallel and the perpendicular components
of k.

Similarly, cosmological surveys can measure the secondary CMB anisotropy due
to ISW along the direction ¢

A v d - ] .
Asw(0) = /dﬁ e~ Torth(7) (8 + 8_) [r,r0;7] = Q/dT e‘TOP“‘(T)—g [r,r0; 7],
T

or  Or
(5.30)
where 7o, is the optical depth and we assumed no anisotropic stress. It is possible
to relate A to ¥ via the Fourier space Poisson equation as

a\ij - 47Tgﬁ0

5 = g (A +Ho), (5.31)

which gives

—

A+ Hb

(@ = [ drhow(r) [ dce(unetrset AR G
with
e_Topth
Lisw(7) = 87Gpo P (5.33)

These two results can be used to compute the cross-correlation between two galaxy
density contrasts and an ISW temperature anisotropy

—

€(8},05,, Adsw,) = (55(6) 65, (61) Afgwy, (62))- (5.34)
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where 5, 51, 9; are the directions along which we measure the observables. Since
we want to apply the CRs obtained in sec.5.3, we must ensure that we fulfill the
linear conditions and the squeezed limit, i.e. k, the wavelength associated to the
first 0,4, has to be both linear and much smaller than k;, k; associated to d,1 and
Ajsws. These conditions in configuration space correspond to

0>0,, 030, |§—0]>0,—06) (5.35)
and once fulfilled, &3 reads (see sec.4.1 of art.F)

dln D

G- 8, - (6 -6
( 2) - (61 2)(2W)4/dnbglgfglﬁsw2 dr X

(R
/ dk,dki | W@(kJ_T>W®1 (/fuT)W@Q (ky.7)
0

X PL(kL7T)Pgl7m(k1L,T)J1(kLT|5— 52|) X Jl(lerw_; — §2|)7

£ =
(5.36)

where Py, is the galaxy-matter power spectrum and J; is the first-order Bessel
function of the first kind. Eq.(5.36) expresses the response of the small-scale two-

point correlation function 621(51)Afswz(§2)> to a change in the large-scale mode

53(5) and represents the motion of the small-scale structures 01, Ay towards (or
away from) &. This explains why Eq.(5.36) vanishes when (6 — 65) L (6; — 65): in
fact, when this happens, there is a reflection symmetry, from the point of view of
82 and 917 along the g — 92 axis. Hence we have a positive )\2 for both an increase
and a decrease of d,. Then, at the leading order, there is no effect on the small
scale structures motion changing 0, and hence the kinematic effect vanishes.

Eq.(5.36) represents an example of CRs which can be directly observed by galaxy
surveys and its angular dependence could provide a test for the equivalence prin-
ciple, even without computing its right-hand side. Other CRs can be obtained
evaluating different probes (see sec.4 and 5 of art.F') such as the weak lensing con-
vergence field or the CMB anisotropies due to the kinematic Sunyaev-Zeldovich
effect, however they do not show an angular dependence or involve galaxy-free
electron spectra, making them harder to measure.

5.5 Conclusions

In this chapter, we introduced the kinematic consistency relations for large-scale
structure, i.e., non-perturbative relations among correlators of the density and
velocity fields in the squeezed limit. CRs rely on the equivalence principle and
Gaussian initial conditions, and thus their violation would signal a modification
of GR or non-Gaussian initial conditions.

After presenting a simple non-relativistic derivation of CRs, we extended this
result to velocity and momentum fields to obtain CRs which do not vanish at
equal times. Finally, we showed how to relate CRs with observational probes,
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such as galaxy density contrast and ISW temperature CMB anisotropies, and we
obtained a relation which can be directly measured and shows a particular angular
dependence as a function of the relative angular positions.

For these reasons, the CRs obtained in this chapter can become a powerful tool to
test MGTs in the light of future surveys, even though the study of the feasibility
of this kind of observations in actual surveys will require additional study, which
may include a signal-to-noise analysis, that we leave for a future work.



Chapter 6

Conclusions

In this manuscript, we have highlighted the physical intuitions and the main results
obtained in the appended articles.

In Chapter 1, we gave a short introduction to the vast domain of alternatives to
A-CDM, focusing on dark energy models and modified gravity theories.

In Chapter 2, we presented the K-mouflage model of modified gravity, studying
its impact on cluster dynamics and showing how these theories modify at a non-
negligible level the halo temperature function as compared to the A-CDM one,
leaving cluster scaling relations indistinguishable using current data.

In Chapter 3, we introduced the ultra-local models of gravity, scalar-tensor theories
of gravity with a scalar field which possesses a negligible kinetic term. We showed
how these theories have a great impact on structure formation at small scales and
how they show a novel screening mechanism which relies on the lack of kinetic
term. Moreover, we demonstrated that super-chameleon theories can be seen at
cosmological scales as ultra-local model of gravity (up to their Compton scales)
and we found them to be globally consistent with current observations.

In Chapter 4, we gave a glimpse on how cosmic data can be used to constrain
modified-gravity theories, in particular focusing on the impact of f(R) and Dila-
ton model on cosmic shear data. We showed that degeneracies among baryons,
neutrinos and modified-gravity theories are essential to give reasonable constraints
using cosmic shear data and how, once these are taken into account, current cos-
mic shear data can accommodate most of the theories considered due to the large
uncertainties in measurements and baryonic feedback.

In Chapter 5, we presented consistency relations for large-scale structures, fac-
torizations of (n + 1)-points correlators in terms of the m-points ones valid at
the non-linear level, that only rely on the equivalence principle and Gaussian ini-
tial conditions. We presented here the first non-vanishing consistency relations
at equal times, which we connected to observable quantities. In particular, we
presented a practical result, involving the cross-correlation between d, and Agw
fields, which can be used to test the A-CDM model using survey observations.
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Outlooks

As often happens when one tries to study cosmological structure formation at
non-linear scales[76-79], numerical simulations are what is mostly needed to give
a clearer picture of the modified-gravity theories presented in this manuscript. In
particular, the K-mouflage model screening mechanism occurs well inside cluster
of galaxies and numerical simulations can help to understand the impact of the
scalar field on the internal structure of the cluster and its degeneracies with bary-
onic physics. For the ultra-local models (and super chameleon ones), numerical
simulations can help to understand their impact on galaxy formation, possibly to
use them to constrain the coupling function of the model. Finally, investigating
degeneracies between baryonic physics and f(R) and Dilaton models may have a
strong impact on the underlying assumption of uncorrelated biases that we used in
the cosmic-shear data analysis presented in this manuscript, which can be tested
using dedicated numerical simulations.

On another note, for both K-mouflage and ultra-local models, a Montecarlo anal-
ysis is needed to explore a larger parameter space than the ones presented here,
using different functional forms for the free functions of the models.

Finally, the feasibility of measurement of consistency relations involving observ-
ables has to be addressed in a detailed way and numerical methods will probably
be needed due to the complex modeling of survey observations. On a more the-
oretical side, consistency relations valid for alternative theories to A-CDM are
necessary to understand if/how consistency relations can be used to discriminate
among different modified-gravity theories.



Chapter 7

Résumé

La cosmologie a atteint une ére passionnante. Pour la premiere fois dans I'histoire
humaine, un modele quantitatif pour la formation et I’évolution de I’Univers existe,
expliquant une gamme tres variée de phénomenes et ayant été testé avec une
précision impressionnante. De plus, nous sommes a ’aube d’une époque dans
laquelle nous aurons a notre disposition une abondance de données de grande
qualité, ce qui nous permettra d’utiliser la cosmologie comme un outil pour tester
la physique fondamentale.

En particulier, comme les structures de grandes échelles de ’Univers sont gou-
vernées par la force de gravité, la cosmologie peut étre utilisée pour tester la
théorie de la relativité générale d’Einstein. Cette idée a inspiré la plupart des
travaux décrits dans ce manuscrit, dans lequel j’ai étudié des théories alterna-
tives au modele standard de la cosmologie et des tests a grandes échelles pour la
relativité générale.

Dans la premiere partie de ma these, je me suis concentré sur les “theories tenseur-
scalaire” de la gravité. Ce sont des théories alternatives de la gravité, dans
lesquelles un champ scalaire, qui est responsable de 'accélération de ’expansion
de I"’Univers, est ajouté a ’action de Einstein-Hilbert. Dans le deuxieme chapitre,
j’ai décrit le modele de K-mouflage, une “théorie tenseur-scalaire” dans laquelle
le champ scalaire possede un terme cinétique non-standard, en montrant son effet
non négligeable sur la dynamique des amas des galaxies. J’ai aussi montré com-
ment cet effet peut étre utilisé pour contraindre le modele de “K-mouflage” en
utilisant des observations en rayon X.

Dans le troisieme chapitre, j’ai présenté le modele “ultra-local” de la gravité,
une “théorie tenseur-scalaire” dont le champ scalaire possede un terme cinétique
négligeable. J’ai étudié sa faisabilité en tant que théorie alternative a la rela-
tivité générale aux échelles cosmologiques, en montrant comment la formation
des structures est tres accélérée aux petites échelles. De plus, j’ai prouvé com-
ment les modeles “super-chaméléons” peuvent étre vus comme des modeles “ultra-
locaux” jusqu’a leur échelle de Compton, et j’ai utilisé les résultats obtenus pour
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ces derniers pour montrer leur faisabilité en tant que théories alternatives de la
gravité.

Dans le quatrieme chapitre, j’ai décrit comment les théories de la gravité “f(R)”
et “Dilaton” modifient le signal qui provient des lentilles gravitationnelles faibles.
En particulier, j’ai montré que le cisaillement cosmique a un pouvoir assez limité
actuellement pour contraindre ces théories, a cause de la faible précision des ob-
servations actuelles et des dégénérescences avec les processus baryoniques.

Dans le cinquieme chapitre, j’ai donné une description de mon étude des rela-
tions de cohérence. Ce sont des relations entre les fonctions de corrélation des
champs cosmiques a (n + 1) et n points, valables aussi dans le régime non-
linéaire. Leur intérét vient du fait que leur dérivation dépend seulement du
Principe d’Equivalence et de I'hypothese de conditions initiales Gaussiennes, et
donc elles peuvent étre utilisées pour tester ces hypotheses fondamentales du
modele standard de la cosmologie. Des relations similaires ont été étudiées au-
paravant, mais j’ai montré comment il est possible d’obtenir des relations qui ne
s’annulent pas lorsque tous les champs sont considérés au méme instant. J’ai utilisé
ce résultat pour obtenir des relations de cohérence entre fonctions de corrélation de
quantités observables, notamment le champ de densité des galaxies et la fluctua-
tion de température du fond diffus cosmologie donnée par ’effet Sachs-Wolfe. Ces
relations peuvent étre utilisées pour des tests de la relativité générale, reposant
sur des observations par satellites, sans avoir besoin de modeliser la physique des
baryons aux petites échelles.

Enfin, j’ai donné un apercu des quelques perspectives possibles pour poursuivre
le travail décrit dans ce manuscrit. En particulier, j’ai souligné comment des
simulations numérique sont nécessaires pour mieux comprendre la formation des
structures dans le contexte des modeles “K-mouflage” et “ultra-local”. En outre,
elles peuvent étre aussi utilisées pour tester les hypotheses sous-tendant 1'analyse
des lentilles gravitationnelles faibles présentée dans ce manuscrit, surtout pour
distinguer l'effet de la physique des baryons et des neutrinos de 'effet des théories
de gravité modifiée sur le cisaillement cosmique. En ce qui concerne les rela-
tions de cohérence, une étude de faisabilité de leur mesure avec les “surveys”
cosmologiques est nécessaire, pour comprendre si elles peuvent donner des con-
traintes compétitives sur les théories alternatives de la gravité.
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We investigate the effects of a K-mouflage modification of gravity on the dynamics of clusters of
galaxies. We extend the description of K-mouflage to situations where the scalar field responsible for the
modification of gravity is coupled to a perfect fluid with pressure. We describe the coupled system at both
the background cosmology and cosmological perturbations levels, focusing on cases where the pressure
emanates from small-scale nonlinear physics. We derive these properties in both the Einstein and Jordan
frames, as these two frames already differ by a few percents at the background level for K-mouflage
scenarios, and next compute cluster properties in the Jordan frame that is better suited to these observations.
Galaxy clusters are not screened by the K-mouflage mechanism and therefore feel the modification of
gravity in a maximal way. This implies that the halo mass function deviates from A-CDM by a factor of
order 1 for masses M 2 10'*h~!' M. We then consider the hydrostatic equilibrium of gases embedded in
galaxy clusters and the consequences of K-mouflage on the x-ray cluster luminosity, the gas temperature,
and the Sunyaev—Zel’dovich effect. We find that the cluster temperature function, and more generally
number counts, are largely affected by K-mouflage, mainly due to the increased cluster abundance in these
models. Other scaling relations such as the mass-temperature and the temperature-luminosity relations
are only modified at the percent level due to the constraints on K-mouflage from local Solar System

tests.

DOI: 10.1103/PhysRevD.92.043519

I. INTRODUCTION

K-mouflage [1,2] is one of the four types of screening
mechanisms, together with the chameleon [3.4], the
Damour—Polyakov [5], and the Vainshtein [6] ones, which
are compatible with second-order equations of motion
for single scalar-field models [7]. The properties of
K-mouflage have already been thoroughly studied both
at the background cosmology Brax:2014a and perturbation
levels [8,9]; see also Ref. [10] for a more general analysis
within an “imperfect-fluid” formalism. The small-scale
dynamics have been studied in Ref. [11], and models that
satisfy both cosmological and Solar System constraints
have been devised in Ref. [12].

In this paper, we extend these studies by including fluids
with pressure as befitting the description of gases in galaxy
clusters. We do so for both the background and perturba-
tions. We also present the dynamics of the system in both
the Einstein frame (used in previous works) and the Jordan
frame and discuss the relations between both frames.
Because the properties of gases, such as the x-ray lumi-
nosity or the Sunyaev—Zel’dovich effect [13], or the
wavelength of atomic emission or absorption lines, are
tied to the frame in which atomic physics is described
without any modification due to the scalar field, we work in
the Jordan frame to describe clusters of galaxies. We use the
fact that galaxy clusters are not screened by the K-mouflage
mechanism and that their number would be increased as
compared with A-cold dark matter (CDM) in this scenario.

1550-7998,/2015/92(4)/043519(34)
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As a result, clusters appear as a useful testing ground for
K-mouflage and its effects on the growth of structure.

We take into account the modification of the hydrostatic
equilibrium in K-mouflage models, together with the change
of the matter density profiles, which we find to become
slightly more compact. This allows us to investigate the
x-ray luminosity as a function of the gas temperature. The
deviation from A-CDM is at the percent level and is set by
the tests of gravity in the Solar System, which strongly
constrain the coupling constant that defines these models.
In a similar fashion, the temperature-mass relation is affected
at the same level. As particular examples, we focus on a
simple “cubic” K-mouflage model (that agrees with cosmo-
logical constraints) and on an “arctan” model which satisfies
cosmological constraints as well as all Solar System tests,
including the advance of the perihelion of the Moon [12].
The latter gives slightly amplified results as compared to the
former, but both remain at the percent level. The only
observable which deviates significantly from A-CDM is the
cluster temperature function (or more generally, number
counts) due to the increased abundance of clusters for
masses M 2 104h~1M .

The paper is arranged as follows. In Sec. II, we define the
K-mouflage models and detail some of their properties for a
fluid with pressure coupled to K-mouflage at the back-
ground and perturbation levels, working in the Einstein
frame. In Sec. III, we reformulate the dynamics in terms of
the Jordan-frame quantities. In Sec. IV, we present our
numerical results for the background and the growth of

© 2015 American Physical Society
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structure for two K-mouflage models: the cubic and arctan
models. In Sec. V, we turn to galaxy clusters and their
properties, focusing on the physics of the gas embedded in
the clusters. In Sec. VI, we discuss in details the similarity
and differences between the K-mouflage scenarios and
other modified-gravity theories. We conclude in Sec. VIL.

A derivation of the equations of motion in the Einstein
frame is given in Appendix A, while details on the Einstein—
Jordan connection can be found in Appendix B. We discuss
unitarity constraints in Appendix C.

II. DEFINITION OF K-MOUFLAGE MODELS

A. Jordan-frame and Einstein-frame metrics

‘We consider scalar-field models where the action has the
form [1,2]

/d4x\/_[ R+£ )]
+ / 2/ =L (Wi - ) (1)

which involves two metrics, the Jordan-frame metric >
with determinant g, and the Einstein-frame metric g,,, with
determinant g. The matter Lagrangian density, £,,, where
WS‘? are various matter fields, is given in the Jordan frame,
where it takes the usual form without explicit coupling to
the scalar field (although one could add explicit couplings
to build more complex models). The gravitational sector is
described by the usual Einstein—Hilbert action, but in terms
of the Einstein-frame metric g,, and the associated reduced

Planck mass 1\7IP1 =1/vV 87G. The Lagrangian density

L, (@) of the scalar field is also given in the Einstein frame.

Throughout this paper, we denote Einstein-frame quan-
tities with a tilde, to distinguish them from their Jordan-
frame counterparts (when they are not identical). We
choose this notation, which is the opposite to the one used
in our previous papers [7,8,11,12] where we mostly worked
in the Finstein frame, as here we mostly work in the
Jordan frame.

If the two metrics were identical, this model would be a
simple quintessence scenario [14,15], with an additional
scalar field to the usual matter and radiation components
but with standard electrodynamics and gravity (General
Relativity). In this paper, we consider modified-gravity
models where the two metrics are related by the conformal
transformation [16]

G = A%(9) G- (2)

This gives rise to an explicit coupling between matter
and the scalar field. In the Einstein frame, we recover
General Relativity (e.g., the Friedmann equations), but the
equations of motion of matter are nonstandard (e.g., the
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continuity equation shows a source term, and matter
density is not conserved). In the Jordan frame, the equa-
tions of motion of matter take the usual form (e.g., matter
density is conserved), but gravity is modified (e.g., the
Friedmann equations are modified). In this paper, we
compute the properties of astrophysical objects such as
clusters of galaxies, including their temperature and x-ray
luminosity, and it is more convenient to work in the Jordan
frame. Then, radiative processes, such as bremsstrahlung,
are given by the standard results and do not vary with time
or space. Moreover, matter density is conserved. This
simplifies the analysis, as the only difference from a
A-CDM scenario will be a change of gravity laws, which
can be explicitly derived from the action (1).

The conformal transformation (2) actually means that
the line elements are transformed as ds®> = A%ds?. Using
conformal time 7 and comoving coordinates x, this local
change of distance can be absorbed in the scale factor for
the background universe as

ds? = a2(=de? + dx?), ds? = @*(=d7® +dx?), (3)

with
=Aa, T =1, X = X. 4)

[Throughout this paper, we denote with an overbar mean
background quantities, such as A = A(p).] However,
physical time ¢ and distances r, with ds*> = —df* 4 dr?,
are changed as

dr = Adi,  r=ax=AF. (5)

In particular, the cosmic times ¢ and 7 are not the same in
both frames.

B. K-mouflage kinetic function

In this paper, we consider K-mouflage models [1,2,7],
which correspond to cases where the scalar-field Lagrangian
has a nonstandard kinetic term,

L,(¢) = M*K(7) with 7=--—2V'¢V,0. (6)

2/\/14

Throughout this paper, V,(V,) is the covariant derivative
associated with the metric g, (g, ) (hence, y = A~%7, but we
work with 7 in the following). Here, M* is an energy scale
that is of the order of the current dark-energy density (i.e., set
by the cosmological constant) to recover the late-time
accelerated expansion of the Universe. Thus, the canonical
cosmological behavior, with a cosmological constant
pa = M*, is recovered at late time in the weak-y limit if
we have

720 K(p)=-1+y+.., (7)
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where the dots stand for higher-order terms, the zeroth-order
factor —1 corresponding to the late-time cosmological
constant M*. The normalization of the first two terms in
Eq. (7) defines the normalizations of the constant M* and of
the field ¢, and hence it does not entail any loss of generality
(within this class of models). We only consider models that
satisfy this low-y expansion in this article, and where y — oo
for7— 0 and 7 — 0 for 7 — .

Well-behaved K-mouflage scenarios have K’ > 0, where
we denote K’ = dK/dy, and W, (y) = yK'(£y*/2) must
be monotonically increasing functions up to +oo over
y > 0. This ensures that the cosmological dynamics are
well defined up to arbitrarily high redshift, where the matter
density becomes increasingly large, and that small-scale
static solutions exist for any matter density profile [11].
Moreover, there are no ghosts around the cosmological
background nor small-scale instabilities [7].

We must point out that the kinetic functions K (¥) that we
use for numerical computations and illustrative purposes in
this paper are defined by fully nonlinear expressions, namely
Egs. (71) and (74) below, and as such go beyond the low-y
expansion (7). As explained above, the latter expansion is
very general and holds for well-behaved models, where
K’ > 0 for all ¥ and W (y) = yK'(4y?/2) are monoton-
ically increasing functions of y. The expansion (7) would
only be violated if K’ diverges at low }, e.g.,
K(7) =—-1+7%*+ ..., but we do not consider such
singular cases here.

Then, it happens that at at low redshifts, in the dark-
energy era, y [with its normalization defined by the first two
coefficients in the expansion (7)] is small on cosmological
scales, which implies K’ = 1. This holds both for the
homogeneous background and for the cosmological large-
scale structures. This property is related to the fact that at
low redshifts, in the dark-energy era, we require the
cosmological evolution to remain close to the A-CDM
behavior. From the expressions (17), we can see that this
implies 7K' < K (to recover a dark-energy equation of
state Pge = —pqe) Whence y < 1. In fact, at low z, we have
the scaling y ~ /32, where /3 is the coupling strength defined
in Eq. (9) below, so that 7 ~0.01 as we take # = 0.1. We
shall check this behavior in Fig. 4 below.

We shall also check in Sec. VB and Fig. 13 below that
this also applies to clusters of galaxies at low redshifts,
which are not screened by the nonlinearities of the scalar-
field Lagrangian, in spite of their large mass. This would
not be the case for a coupling > 0.1, but this would
violate some Solar System and cosmological constraints,
and we do not consider such models here.

Nevertheless, the nonlinearities of the kinetic function
K(¥) come into play at high redshift and are taken into
account in our computations, using the explicit nonlinear
examples (71) and (74). This ensures in particular that the
dark-energy density becomes subdominant at high z and
that we recover the Einstein—de Sitter cosmology in the
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early matter era [7]. Moreover, the background solution can
be shown to be stable and is a tracker solution [7]. The
nonlinearities on the far negative semiaxis, —y > 1, also
play a critical role to ensure that Solar System tests of
gravity are satisfied by the K-mouflage model, but we do
not consider this regime in this paper.

Although K-mouflage theories involve high-order
derivative interactions, they do not suffer from quantum-
mechanical problems such unitarity violation in their inter-
action with matter [17,18], as explained in Appendix C.

C. K-mouflage coupling function

The coupling function A(¢@) has the low-¢ expansion

A((p):l—l—é—q)—l-..., (8)

Pl

where the dots stand for higher-order terms. The normali-
zation of the first term does not entail any loss of generality
and only corresponds to a normalization of coordinates. At
early times, 7 — 0, we have » — 0 and 9w = G- More
generally, we define the coupling f as

-~ dlnA
=M .
ﬁ(@ Pl dg

©)

It is constant for exponential coupling functions,
A(p) = exp|fep/Mp]. Without loss of generality, we take
B > 0 (which simply defines the sign of the scalar field ¢).

Cosmological and Solar System constraints imply
F <0.1; see Ref. [12]. Moreover, we have the scaling
|Bp/Mp| ~ p* < 1, see Ref. [7], as we shall check in Fig. 4
below (see also Ref. [9]). Therefore, in realistic models, we
have |A—1|<0.1, and the higher-order terms in the
expansion (8) only have a small quantitative impact. We
shall also check in Fig. 13 below that the fluctuations of the
scalar field are small, |¢ — @| < |@|, so that the coupling
function A(¢) remains dominated by the low-order terms of
the expansion (8) in clusters of galaxies (and at smaller
scales). This can be readily understood from the fact that
realistic models should have a fifth force that is not greater
than the standard Newtonian force. This typically implies
|6A/A| < |Uy|, where Wy is the Newtonian potential,
whence |8/ Mp| < 1075

D. Equations of motion in the Einstein frame

Observable effects, such as lensing or two point corre-
lations that can be measured, are independent of the choice
of frame, so that we can work in either the Einstein or the
Jordan frame. As explained in the Introduction, for our
purposes, the Jordan frame is more convenient and more
transparent. Indeed, in this frame, both the matter and
radiation components obey their usual equations of
motion; e.g., the matter energy-momentum tensor satisfies
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v, T) =0 so that the matter density obeys the usual
conservation equation. Moreover, particle masses and
atomic emission or absorption lines do not evolve with
the cosmic time (whereas they do in the Einstein frame).
Then, the only effect of the scalar field is to change the
gravitational sector, that is, the Friedmann equations that
determine the background cosmological expansion rate and
the relation between the metric gravitational potentials and
the matter density fluctuations (i.e., it leads to modified
Poisson equations that can be interpreted as a fifth force).

Therefore, in this article, we work in the Jordan frame
and compute observable effects, in particular the properties
of clusters of galaxies, in this frame. However, to simplify
the derivation of the equations of motion, it is convenient to
first derive the Friedmann equations and the equations that
govern the growth of cosmological large-scale structures in
the Einstein frame, where gravity takes the standard form.
In a second step, we will use these results to obtain the
equations of motion in the Jordan frame through a change
of variables, in Sec. III. Afterward, all our computations
will remain in the Jordan frame.

Thus, we describe in Appendix A the derivation of the
equations of motion of the scalar field and of the matter
component in the Einstein frame, for a cosmological fluid
with a nonzero pressure. In this section, we only give the
main results, which will be needed to obtain the equations
of motion in the Jordan frame in Sec. III.

We consider three components of the energy density of
the Universe, a matter fluid with nonzero pressure, radi-
ation, and the scalar field. The Einstein-frame and Jordan-
frame matter energy-momentum tensors are given by

G 288 L 268,
WV T Jgag

where we dropped the subscript “m.” The conformal
transformation (2) gives

(10)

T, =A"T,, TH = A~4T*, TH = A~STH,

(11)

where we use ¢"*(g**) to raise indices in 7(T) and the
relation ¢ = A2 In particular, the Einstein-frame and
Jordan-frame densities and pressures are related by
p=A%.  p=A%. (12)
We work in the nonrelativistic limit, v* < 1, where v is
the mean fluid peculiar velocity, and in the weak field
regime, ¥y < 1, where Wy is the Newtonian gravitational
potential. Moreover, assuming the usual cold dark matter
scenario for the dark matter, the matter pressure p is
negligible on cosmological scales, and it arises from the
small-scale nonlinear processes, such as the collapse of gas
clouds which generate shocks or the virialization of of
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dark matter halos (which generate an effective pressure
through the velocity dispersion of the matter particles).
Then, p ~ pc2, where ¢, is the speed of sound or the
velocity dispersion, and ¢2 ~ Wy because it is generated by
the gravitational collapse (as in hydrostatic equilibrium
where pressure gradients balance the gravitational force). In
addition, we consider the small-scale (subhorizon) limit,
k/a H > 1, where spatial gradients dominate over time
derivatives and quasistatic approximations apply. Thus, we
focus on the regime defined by

= k
~dalyl, > 1.
aH

(13)

P<l, Ty<l,

S

As the background level, the matter background pressure
is zero, p = 0, and the Einstein-frame Friedmann equations
read as

BMUH? = p+ Dy + Dy (14)
~ dH = = = = =

where p, P(r) and 1:)<r) = ;:)(r> /3 are the background matter
and radiation densities and pressure, which evolve as

dp = =dlnAd  dpy
= = —3H ~ ~ —
& PP &

_41:1/:)(0 ) (16)

while ,5(/, and fow are the background scalar-field density and
pressure, given by
p,=M*(27K' - K),  p,=M*K,  (17)

with

.1 [(dp\?
L=oM (5) ' (18)

(Throughout this paper, we consider a flat universe with
zero background curvature.) The background scalar field
obeys the Klein—Gordon equation

d|.;dp - _.=dInA
—-= —~K/ == — 3 . 19
dr {a dr ] “r do (19)

For the matter perturbations, the continuity and Euler
equations are written as

op - -~ _.dnA
—4+V- =
8’[+ (pv)+3Hp=p o

(20)
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v - dlnA
E+(V'V)V+(H+ = )V

~

= —V(Uy +InA) _Vp (21)
P

where the Einstein-frame Newtonian potential is given by
the Poisson equation

In the small-scale (quasistatic) limit, the Klein—Gordon
equation for the scalar field becomes

dinA
12 55, (23)

1 74
=V (VoK) =

Here we also used the fact that the fluctuations of ¢ can be
neglected in the factor K’, so that the Klein—-Gordon
equation can actually be linearized in the scalar field,
while keeping the matter density fluctuations nonlinear. See
Ref. [8] for a detailed discussion and an explicit compu-
tation of the matter power spectrum, up to one-loop order,
that includes up to the cubic term in ¢ in Eq. (23), which is
checked to make no quantitative difference for cosmologi-
cal large-scale structures of cluster sizes and beyond. This
corresponds to the fact that clusters are not screened by the
nonlinear K-mouflage mechanism, which comes into play
at much smaller scales and higher densities, as in the Solar
System.

III. EQUATIONS OF MOTION IN THE
JORDAN FRAME

We now derive the equations of motion of the scalar field
and of the matter component in the Jordan frame. To do so,
we use the results obtained in Sec. IID in the Einstein
frame and express these equations in terms of Jordan-frame
variables.

A. Background dynamics

The Jordan-frame metric g,, is related to the Einstein-
frame metric g,, by the conformal transformation (2). As
seen in Egs. (3)—(5), this leads to a rescaling of the scale
factor and of physical time and distance, while the
conformal coordinates are unchanged. The Hubble expan-
sion rates, H =dlna/dt and H =dlIna/df, are also
different and related by

H(1+4&) H

N Tii-a) (24)

where €,(r) was defined in Eq. (A45) and verifies

dlnA/df = &H, and we introduced its Jordan-frame
counterpart,

PHYSICAL REVIEW D 92, 043519 (2015)

7dlnA 6 — 52 - €y
“dlna’ 2T 1 +8

e (1) - (25)

2:
1—6'2

The FEinstein-frame and Jordan-frame densities and
pressures are related as in Eq. (12), so that the Friedman
equation (14) gives

SMEH? = (1 =€) (p + Py + ) (26)

where we introduced the Jordan-frame reduced Planck
mass,

M3(1) = B3 /A (2. 27)

Thus, in the Jordan frame, Newton’s _constant,
G = 1/8zM?3, varies with time, as G(t) = GA? x A%
Equation (26) shows how the Friedmann equation is
modified in the Jordan frame, as compared with the usual
General Relativity result, because the gravitational
Einstein—Hilbert action is defined in terms of the auxiliary
metric g,,. Substituting for g,,, this effectively corresponds
to a change of the Einstein—Hilbert action. At the back-
ground level, this simply introduces the time-dependent
functions A(¢) and e,(t) in Eq. (26).

We can also write Eq. (26) in the standard form (albeit
with a time-dependent reduced Planck mass) as

3M123'1H2 =p +/_)(r) + Pde; (28)

by defining the dark-energy component as the energy
density that is “missing” in the Friedmann equation to
match the Hubble rate, after we sum over the other matter
and radiation components. This yields

o 2¢, — 6% o _
Pae =Py + 5P+ D) +Py)- (29)
(1-e)
This interpretation corresponds to the case where measure-
ments of the Hubble rate and of the matter and radiation
densities are performed in the Jordan frame, and the
remaining part, which explains the accelerated expansion,
is ascribed to the dark-energy component [as in the usual
A-CDM case, where the background dark energy is also
measured from the missing energy density that is required
to account for H(z)]. This is a natural configuration, as a(¢)
and H(t) are obtained from redshift measurements of
standard candles, which assumes that atomic absorption
and emission lines are the same at distant redshifts as in the
laboratory. By definition, this is the case in the Jordan
frame but not in the Einstein frame (where particle masses
are actually time dependent). On the other hand, these
standard candles must not depend on the local gravity,
because in the Jordan frame, Newton’s constant becomes
time dependent, so that these candles are no longer standard
(i.e., similar to those at z = 0). This rules out supernovae
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(which involve both local gravity and electrodynamics,
within the star) but allows one to use geometric candles
such as baryon acoustic oscillations [19,20] or the Alcock—
Paczynski test [21].

Using Eq. (16), the matter and radiation densities now
evolve as

dp d/_’(r)
— = =3Hp, ——~ = —4Hp,. 30
dr P dr P(r) ( )
Thus, we recover the usual conservation equations for
matter and radiation in the Jordan frame, whence comes
Po _ P

p Py(t) = pr

with gy =1, (31)
where p, are the mean Jordan-frame energy densities today,
at z = 0, and we normalized the Jordan-frame scale factor
by ay = 1.

From Eq. (Al1), with ;:) =0, and Eq. (29), the Jordan-
frame dark-energy density evolves as

dﬁ de

a =3H(Pge + Pae)- (32)

where we defined the Jordan-frame dark-energy pressure as

Pie = P + —2— Py + Pu) + 2 de
p— —_— € -— —e
Pde Py Pr) T Py 2 1—€2dh’la

1—62
P +Dw) + Dy

3(1-¢)? 33)

On the other hand, from Eq. (19), the Klein—Gordon
equation reads as

d |- do - dlnA

— |A72a3 = K'| = —a’p . 34

dr [ “ar } TP 4p (34)
This can be integrated as

dp - t o poP(r

_¢K’ = _A2a—3/ dt’polg( )’ (35)

dr 0 Mp,

because the integration constant must vanish to recover a
realistic early-time cosmology [7].

Finally, we define the Jordan-frame cosmological param-
eters as

_ [) _ ﬁde
Perit ,

Q(r = & Qe ’ (36)

L )= |
Perit Perit

where poq = 3MEH?> = A™(1 = ;) Py is the Jordan-
frame critical density. This gives

Q= (1 - 62)2Qm’ S2(1’) = (1 - 62)29(1’)’ (37)
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and
Qe = Q, + (26, — 3)(Qn + Q). (38)

We can check that €+ Qq) + Qe = Q.+ fz(r) +
Q, = 1. The effective dark-energy equation of state in
the Jordan frame is simply defined as

Wie = I_)de//_’de- (39)

B. Perturbations

The dynamics of large-scale perturbations in the Jordan
frame are also obtained from the equations derived in the
Einstein frame in Sec. II D.

In the Einstein frame, the Newtonian gauge metric (A16)
reads as d5? = a?[—(1+2Wy)de* + (1 —2Wy)dx?], where
we used Eq. (A31). In the Jordan frame, we write

ds? = a?[—(1 +2®)d7> + (1 — 2V)dx?]. (40)

Then, using ds*> = A%d5” and a = A @, we obtain, up to

first order in A = A — A,

oA OA
b=V —_, U =Uyy—-—, 41
N+A NTF (41)

where we introduced the Jordan-frame Newtonian poten-
tial, given by

1 1 ~
?VZ\IJN = Mép, whence comes WUy = Uy. (42)
The last equality follows from Egs. (22) and (27).
Therefore, in the Jordan frame, the two metric potentials
are no longer equal, but their sum remains equal to 2Wy.
This is related to the fact that photons do not feel the effect
of the fifth force; see also Eq. (A7). Therefore, weak
lensing statistics show the same dependence on the matter
density fluctuations as in General Relativity, and the impact
of the modified gravity only arises through the different
evolution of the density field and the time-dependent
Newton constant; see also Sec. V H below.
The Klein—Gordon equation (23) reads as

1 A
LV =

= sp. 43
p T (43)

and, up to first order over d¢, we obtain

0A 1 0A 2
i IB _ 6(p, _2 V2 o IB
A MpA a

L A )
A~ mr”

This also gives
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1 1

= d =1 Uy, (45
a2 2M12;,1(t) an ( +61) N ( )

where €; is defined by

23
e (1) = T (46)
and we recover the same factor as in the first relation (A45).
The continuity equation (20) and the Euler equation (21)

become

0,
a—i+v'(pv)+37'lp=() (47)
and
@+(V‘V)V+HVI—V¢—@. (48)
or P

Therefore, in contrast with the Einstein frame, in the Jordan
frame, the continuity and Euler equations take the same
form as in A-CDM, and the coupling to the scalar field ¢
only gives rise to the modified Poisson equation (45), in
terms of the formation of large-scale structures. There is no
longer a nonconservation term in the continuity equation
nor an additional friction term in the Euler equation.
However, in contrast with the Einstein frame and the
A-CDM cosmology, the two gravitational potentials ¢ and
W that enter the Newtonian gauge metric are now different.

C. Formation of large-scale structures

Introducing the Jordan-frame matter density contrast,

8= 20p/p, (49)
the continuity equation (47) is also written as

%+v. [(1+8)v] =0. (50)

This is the same equation as (A40), and we have
§=56=0. (51)

Indeed the matter density contrasts in the Einstein frame,
whether we consider the density p or the “conserved”
density p of Eq. (A13) (in case of zero pressure), and in the
Jordan frame are equal within the approximations described
in the previous sections.

On perturbative scales, we again set the pressure term to
zero, and we introduce the two-component vector

V= (ij) = (—(vv)i(da/dr))' 2)
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Equations (A42) and (A43) become

O N
al—lﬁla—llfz = /dkldk25D(k1 +k; —k)a(k;. k)
X<y (ki (ky), (53)
By, 3 1 dH
6lna_§Qm(1 +eyr + <2+EE)W2
= /dkldk25D(k1 +ky —k)B(ky ko) (k) s (ky).
(54)

We recover the same form as for the A-CDM cosmology,
except for the factor €; that corresponds to a time-
dependent amplification of Newton’s gravity, from the
modified Poisson equation (45).

On large scales or at early times, we can again linearize
the equations of motion, and the evolution equation (A46)
for the linear modes becomes

D (5y
d(lna)?

Again, as compared with the Einstein-frame Eq. (A46), we
find that the coefficient €, has disappeared and the only
difference from the A-CDM case is the time-dependent
amplification of the gravitational term by (1 + ¢;).

As in Galileon models, but in contrast with f(R), dilaton
and symmetron models, the linear growing modes remain
scale independent as in the A-CDM cosmology. This is
because we did not include a potential V(¢) in the scalar-
field Lagrangian (6) and the field is massless. Thus, the
amplification of gravity extends up to the Hubble scale
and is only damped on galactic and smaller scales by the
nonlinear K-mouflage mechanism. See Sec. VI for a
discussion and comparison with other modified-gravity
theories.

| dH\ dD 3
LN D S (14e)D=0.
i dt)dlna 3 Om(l+e)D =0

(55)

D. Spherical collapse dynamics

As can be derived from Eq. (48), on large scales where
the pressure is negligible, the particle trajectories r(t)
read as

d’r 1d%a

a2 adr" "~ Vi, (56)
where r = ax is the physical coordinate and V. = V/a the
gradient operator in physical coordinates. To study the
spherical collapse before shell crossing, it is convenient to
label each shell by its Lagrangian radius g or enclosed mass
M and to introduce its normalized radius y(z) by
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y(1) = ar((tt))q with g = (%)1/3, y(t=0)=1.

(57)

In particular, the matter density contrast within radius r(7)
reads as

1+68(<r)=y(). (58)

Since the Poisson equation (46) is only modified by the
time-dependent prefactor 1 + ¢;(#) and the time depend-
ence of Newton’s constant, for a spherical system, the
gravitational force is still set by the total mass within
radius r,

do

GoM
dr

(1+e€) ot (59)

where 6M = 4n5(< r)pr’/3. Then, Eq. (56) gives for the
evolution of the normalized radius y, or density contrast
S(<r)y=y3 -1,

d2y + 2+ LdiH dy + %
d(lna)? H?> dr Jdlna 2
=0.

(I+e)(y =1y
(60)

Again, as in the A-CDM cosmology but in contrast with
f(R), dilaton and symmetron models, the spherical col-
lapse is scale invariant so that the dynamics of different
mass shells decouple. This applies to the unscreened
regime, from clusters of galaxies up to the Hubble radius.

E. Halo mass function

As usual, we can write the halo mass function
n(M)dM /M as
dM  p dv
=2 fv)—.

— = with v =
M M v

n(M) (61)

o(M)’

where we used the fact that the linear growing modes are
scale independent [so that §; /c(M) = &;;/0;(M), where
the subscript “i” refers to the high redshift z; where the
Gaussian initial conditions are defined, far before the dark-
energy era]. Here o(M) is the root mean square of the linear
density contrast at scale M, and §; is the linear density
contrast associated with the nonlinear density threshold A,
that defines the virialized halos. The mapping 6; — 9 is
obtained by solving the spherical collapse dynamics (60),
with the initial condition y; =1 —6;;/3 at a very high
redshift z;. Inverting this relation gives the linear density
threshold §; that is associated with a given nonlinear
density threshold 6 = A, where the subscript m denotes
that § = y=3 — 1 is the density contrast with respect to the
mean density of the Universe.

PHYSICAL REVIEW D 92, 043519 (2015)

The scaling variable v directly measures the probability
of density fluctuations in the Gaussian initial conditions.
Then, we take for the scaling function f(v) the fit to
A-CDM simulations obtained in Ref. [22], which obeys the
exponential tail f(v) ~ e/ at large v. This means that the
mass function (61) shows the correct large-mass tail, which
is set by the Gaussian initial conditions.

F. Planck masses

It is interesting to note that, depending on the physical
process that is considered, one can define several effective
Planck masses. In other words, if we assume General
Relativity and measure the reduced Planck mass or
Newton’s constant from different sets of observations,
we would obtain different values. This could be used as
a signature of the modified-gravity theory.

From Eq. (26), the effective Planck mass that would
be read from the Friedmann equation, at the background
level, is

M3(1 —ey(1))?
M%’I(Friedmann)(t) = PI(AZ(I)Z( )) (62)
On the other hand, with respect to large-scale density
fluctuations in the cosmological unscreened regime, where
the Klein—Gordon equation can be linearized over the
scalar field, the effective Planck mass that would be read
from the modified Poisson equation (45) is

M,
A (1)1 +€(1)

On small astrophysical scales, within the highly nonlinear
screened regime, the effective Planck mass is instead the
one defined in Eq. (27),

(63)

M%’l (unscreened) (t) =

M2 _ M %’1 64
Pl (screened)(t) - A([)2 : ( )
The difference between these various definitions is a
signature of the modification of gravity associated with
the scalar-field models (1), as seen from the Jordan frame.

G. Symmetry of large-scale gravitational clustering

On large scales, where we neglect shell crossing and
pressure, the dynamics of gravitational clustering is given
by Egs. (50), (48) (with p = 0), and (45). It is convenient to
define the rescaled velocity and metric potential by

@ = (%f) b )

where we introduced the linear growth rate

da
V= Efll,

dlnD,
f= dlna ’
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and to change the time variable from # to In D_. Then, the
equations of motion are written as

o)
MJFV- [(1 +5)ll] :0, (67)
Ou
9D, +(@-Vu+ (k=1)u=-V¢, (68)

V2¢ = «3, (69)

where we introduced the time-dependent factor (),
defined by

4zGp(1 +€;)  3Q,
k(1) = —n
(dldtD+)2 2f2

> (L+e).  (70)

Therefore, after the change of time coordinate t - InD
and the rescaling (65), the only dependence on cosmology
that is left in large-scale gravitational clustering is encap-
sulated in the function «(#). This remains valid beyond shell
crossing, but it breaks down on small scales where baryonic
effects become important and introduce new characteristic
scales, which cannot be absorbed by the change of
variables (65). Nevertheless, on large scales where gravity
is the dominant process, this symmetry means that all
cosmological scenarios with the same function x(D_ ) show
the same density and velocity fields {6, u}. In particular, this
means that quintessence models, where only the background
dynamics is modified [i.e., the Hubble expansion rate H(z)],
and modified-gravity models or dark-energy models (with
dark-energy fluctuations) that only give rise to a modifica-
tion of Poisson equation by a time-dependent Newton’s
constant are equivalent with respect to gravitational cluster-
ing, if they show the same function x(D__). In the context of
A-CDM cosmology, this property has also been used to
derive approximate consistency relations satisfied by the
matter correlation functions [valid at the nonlinear level
within the approximation where the dependence on cosmol-
ogy of k(D) can be neglected] [23-25].

In the case of the K-mouflage scenarios, this symmetry
only holds on large scales (down to cluster scales) where
the Klein—Gordon equation can be linearized over ¢, as in
Eq. (43). On smaller scales (galactic scales and below),
higher-order terms over ¢ become important, and the
nonlinear K-mouflage screening mechanism comes into
play. Then, the modified Poisson equation no longer takes
the linear form (45), and the symmetry (70) breaks down.
On even smaller scales, we actually recover General
Relativity as & = Uy, because the fifth force is screened.
In hierarchical scenarios, where smaller scales collapse
first, larger scales are not very sensitive to the details of the
clustering on smaller scales, while small collapsed scales
are sensitive to the clustering up to the largest scale that has
turned nonlinear. Therefore, we expect the symmetry (70)
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to apply to scales that are greater than the transition to the
K-mouflage screening regime, and not to smaller scales
(even though we recover General Relativity far inside the
nonlinear screening regime). Besides, on such small scales,
nongravitational baryonic effects come into play (such as
active galaxy nuclei (AGN) feedback), and the symmetry
no longer holds.

For our purposes in this paper, the formulation (67)—(70)
explicitly shows that, from cluster scales up to the Hubble
scale, K-mouflage cosmologies belong to the same family as
the A-CDM and quintessence scenarios, with respect to
matter clustering. The equations that govern the gravitational
dynamics in these rescaled variables take the same form,
except for a time-dependent function (D, ). However, the
shape of this function is similar for realistic scenarios (we
shall see in Fig. 5 that ¢; is about 2%). Therefore, we can
expect that gravitational clustering shows the same qualita-
tive properties in these cosmologies and only small quanti-
tative deviations. In particular, semianalytical methods
should work equally well for all these cosmologies, and
phenomenological observations, such as the fact that
virialized halos are well described by Navarro—Frenk—
White (NFW) profiles [26] in A-CDM cosmology, should
remain valid in other cases. This justifies our modelization of
clusters, described in Sec. V below, where we treat
A-CDM and K-mouflage cosmologies in the same manner.

IV. NUMERICAL RESULTS FOR LARGE-SCALE
STRUCTURES

In this paper, we consider two simple models for K (7).
The first one, which we call the “arctan model” in the
following, is defined by

Karctan (Z) =

with the low-y expansion

—1+7+K,[g—y.arctan(7/y.)].  (71)

- K7 K7
X 0: arctan (Z) -1 + + TE - ?_i +. (72)
and the choice of parameters
=10, . = 10%. (73)

This gives a K-mouflage model that is consistent with both
Solar System and cosmological constraints (with f = 0.1).
For comparison, we also consider the model used in
Refs. [7,8], which we call the “cubic model” in the
following, in which K(j) is a low-order polynomial:

Kcubic ()?) =

and the choice of the parameters

14y + K" (74)

Ko = 1. (75)
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Here Eq. (74) should not be understood as a perturbative
expansion around y = 0. It is rather a simple model that
interpolates between the low-y behavior (7) and a large-y
power-law behavior « y”. The cubic model is consistent
with cosmological constraints, but its form at large negative
x> —x > 1, is not consistent with Solar System constraints.
Therefore, this is an effective model that applies to the
semiaxis y > —1 while the large-negative domain is left
unspecified. This is sufficient for our purposes, since the
cosmological background and large-scale perturbations
correspond to y > 0 and clusters correspond to y > —1
(more precisely, |y| < 1).

For both models, we choose an exponential form for the
coupling function,

Alp) = eP7/Mn with B =0.1. (76)

We also consider a reference A-CDM model for

comparison.
All the cosmological scenarios are normalized to the
same background cosmological parameters today,

{0 Q10+ Laeo» Ho}. In addition, we normalize the
Planck mass (27) to the same value M3, today, as measured
by Solar System experiments. This means that we renorm-
allize tl_le Einstein-frame Planck mass by a factor A2, where
Ag=A(z=0),
A3 e
M3,(1) = M%IOW’ whence comes Mp = M3,A3.
(77)

On the other hand, the matter density power spectrum
P(k) is normalized to the same value at high redshift, when
dark energy is subdominant and both cosmologies almost
coincide. However, these different scenarios do not exactly
converge in terms of the background expansion rate at a
given matter density, because of the different high-redshift
reduced Planck masses. Therefore, the normalization to the
same power spectrum for the matter density contrast at high
z is somewhat arbitrary, since the K-mouflage and A-CDM
models do not coincide. Nevertheless, for our purposes, this
is a convenient choice as it illustrates how the difference in
the gravitational clustering dynamics that appear at low z,
because of the fifth force mediated by the scalar field, affect
the late-time density field. (For other normalization
choices, it would be difficult to distinguish the effects
due to the different normalizations at high z, before the
dark-energy era and when the fifth force was negligible,
and to the late-time dynamics characterized by different
growth rates.) This normalization also corresponds to the
case where we can measure the density contrast field, i.e.,
the patterns of large-scale structures (e.g., the scale asso-
ciated with the nonlinear transition 6> = 1) at high z,
independently of accurate measures of the background
density and expansion rate. In practice, this normalization
ambiguity does not appear because one compares each
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cosmological scenario with the data, rather than comparing
with a theoretical reference cosmology (in particular, the
best fits associated with different theories will typically
have slightly different cosmological parameters and expan-
sion rates at both z =0 and z — o).

In the following, we present our results for the choice of
cosmological parameters today given by Q.o = 0.25,
Qie0 = 0.75, h = 0.70, and og = 0.7.

A. Background dynamics

We consider the density parameters Q,,(z) and Q4.(z) in
Fig. 1 for the two K-mouflage models defined in Eqs. (71)
and (74) and for the reference A-CDM universe. Since we
normalize the density and dark-energy parameters to be
equal to the ones observed today, all models coincide at
z =0 in terms of background quantities. The deviations
from the A-CDM scenario are slightly greater for the arctan
model (71) than for the cubic model (74), in agreement with
Ref. [12]. This is due to the fact that K'(y) is slightly
smaller in the former case over the range of redshifts of
interest, z <6, and that deviations from the A-CDM
scenario typically scale as p*/K’; see for instance
Eq. (46) and Ref. [7].

As for studies performed in the Einstein frame [7] (where
the cosmological parameters are normalized by their
Einstein-frame values today), we find that the dark-energy
density becomes negative (and subdominant) at high red-
shift. This gives Q,, > 1 at high z for the two K-mouflage
models (71) and (74) (but as in the A-CDM case, Q,, — 1
at high redshift).

In Fig. 2, we consider the relative deviation, H(z)/
Hy.com(z) — 1, of the Hubble rate with respect to the
A-CDM reference. The deviation is slightly larger for the
cubic model (74) at z ~ 6, but this is only a transient effect

arctan —x— |
cubic —8—

FIG. 1 (color online). Evolution with redshift of the matter
and dark-energy cosmological parameters Q,(z) and Qu.(z).
We display the two K-mouflage models of Egs. (71) (arctan
model, red crosses) and (74) (cubic model, blue squares) and the
reference A-CDM universe (black dashed lines). The two scalar-
field models almost coincide in this figure.
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FIG. 2 (color online). Relative deviation of the Hubble
expansion rate with respect to the A-CDM reference,
AH/H = H/H .cpm — 1, for the same K-mouflage models as
in Fig. 1.

because at z > 12 the deviation is slightly greater for the
arctan model (71), as expected. At moderate redshifts, the
Hubble expansion rates differ by less than 2% between
the three cosmologies that we consider here. This ampli-
tude is mostly set by our choice of coupling constant
p = 0.1, because as recalled above, deviations from the
A-CDM scenario scale as ?/K’ and at low z we have
K’ = 1. Therefore, = 0.1 typically leads to percent
deviations from the A-CDM scenario. This value of f
(or lower values) is required to satisfy observational
constraints on cosmological and Solar System scales
[12], in particular from the expansion rate at the time of
big bang nucleosynthesis and from the bounds on the
current time derivative of the gravitational coupling G
provided by the Lunar Ranging experiment.

The deviation from the A-CDM reference does not
vanish at high redshift because the reduced Planck masses
are different; see Eq. (77). Indeed, in the K-mouflage
models, M}z,](t) becomes time dependent, and we choose to
normalize all scenarios by their Planck mass today (when
Solar System measurements and laboratory experiments are
performed). Note that in studies performed in the Einstein
frame [7], where the reduced Planck mass is constant, one
can recover the A-CDM expansion rate at both z = 0 and at
high redshift. However, this requires normalizing the matter
density today by the conserved density p of Eq. (A13)
instead of the Einstein-frame density p.

In Fig. 3, we display the effective equation of state
parameter for the dark energy, wy. = Pye/Pde» €valuated
using Eqgs. (29) and (33) for p4. and pg4.. For both models,
wge — —1 at late times, mimicking the presence of a
cosmological constant. As in studies performed in the
Einstein frame, the effective equation of state parameter is
beyond —1 at low z and changes sign at a moderate redshift
while going through oo (this does not correspond to a
singularity in terms of the Hubble rate or dark-energy
density but to the vanishing and change of sign of pg.).
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arctan —x—
1.5  cubic —8—

FIG. 3 (color online). Effective equation of state parameters
wae(z) (solid lines with a divergence and change of sign at z = 3)
and w,,(z) (dashed lines with a smooth behavior), for the same
K-mouflage models as in Fig. 1.

We also show in Fig. 3 the equation of state parameter w,,
defined as

wo=Ple— K (78)

Po XK' —K
where we used Eq. (17). In contrast to wg., w,, remains
negative over z < 6 and shows no divergence. The differ-
ence between the behaviors of wy, and w,, shows the impact
of the coupling between the matter and scalar-field com-
ponents. This makes the dark-energy density and pressure
significantly different from the bare scalar-field ones, see
Egs. (29) and (33), and can even make py. and p, have
different signs.

B. Background scalar field

We show in Fig. 4 the background values ¢ and 7 of the
scalar field and of its kinetic term. The scalar field ¢ is
negative, and its amplitude grows with redshift (we chose
the normalization ¢ = 0 at high redshift, z — c0). We can
see that |f@/Mp| < 1 until z =0. Thus, the coupling
function A(¢p) is dominated by its low-order terms in the
expansion (8), and choosing for instance A(gp) =
(1 + Bp/nMp)", with n > 0, would give similar results
to the exponential choice (76).

The kinetic term 7 decreases with time. It goes to infinity
at high redshift, z - oo, and we can check that at low z it is
significantly smaller than unity. Then, the kinetic function
K(¥) is dominated by its low-order terms in the expansion
(7). This explains why the two K-mouflage models con-
verge at low z in the lower panel of Fig. 4.

C. Modified gravitational potentials, gravitational slip
and effective Newton’s constant

As seen in Sec. III, both for the background quantities
and the large-scale perturbative structures, the deviations
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FIG. 4 (color online). Upper panel: background scalar field ¢
as a function of redshift. Lower panel: background kinetic term y
as a function of redshift.

from the A-CDM universe can be measured by the two
coefficients ¢, (¢) and ¢,(¢), defined in Egs. (46) and (25). In
particular, from Eqgs. (41) and (44), the two gravitational
potentials ¢ and ¥ of the Jordan-frame metric (40) read for
large-scale unscreened structures as

P = (1+e)Wy, U=(1-€)Un. (79

and the normalized gravitational slip is written as

v—-
nzm——é'l. (80)

We show both coefficients ¢ (¢) and e,(7) in Fig. 5. We can
see that they are of order 2% at low z. Again, as can be seen
from Eq. (46), this amplitude is set by our choice = 0.1
(to satisfy observational constraints) as K’ = 1 at low z and
deviations from the A-CDM reference then scale as 3?. This
also sets the amplitude of the gravitational slip #. At high z,
the coefficients €;(¢) go to zero, as K’ goes to infinity and
we enter a cosmological nonlinear screening regime that
also ensures that the dark-energy component becomes
subdominant at early times. This decrease of ¢; appears
faster for the cubic model, because of its stronger growth of
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0.03
0.02 HEEEE-E-E e —a—E—
0.01 |
w ol arctan —— |
cubic —&—
-0.01 [=,
E"‘E i
B g
-0.02 £ E'““ﬁ''—'—'»-—-:@z-::::::::_Qjj,',,””"fl ,,,,,,,,,,,,,,, O
-0.03 .

FIG. 5 (color online). Coefficients ¢; and e€,, defined in
Egs. (46) and (25) for the K-mouflage models, as functions of
redshift.

K'(y) at large positive y. As noticed above, this means that
departures from the A-CDM scenario are greater for the
arctan model than for the cubic model (with our choice of
parameters).

The Jordan-frame coefficient €; is always positive, and
the gravitational slip # defined in Eq. (80) is negative. From
Eq. (25), the coefficient €, also reads as

B dp B di

el) = —=— = = s
2(1) Mpdlna  MyH(t) dt

(81)

which is negative from Eq. (35) and of order */K".
In Fig. 6, we show the evolution with redshift of the
effective Newton constant, defined from Eq. (77) as

A%(1)
A

(1) = %o (82)

Because of the dependence of the effective Newton
coupling strength on the background value of the scalar
field, G is a few percent higher at z ~ 6 than today.

0.07 . ;
arctan —<—
0.06 | cubic —=— ]
0.05 1
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FIG. 6 (color online). Relative drift with redshift of the effective
Newton constant for the K-mouflage models.
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D. Linear theory

In Fig. 7, we show the relative deviation, D,/
D y.cpm — 1, of the linear growing mode, obtained by
solving Eq. (55), from the A-CDM reference case, and the
linear growth rates f(z). Again, the relative deviation of the
growing mode is greater for the arctan model (71) than for
the cubic model (74), because of the lower value of K’ over
relevant redshifts; see Eq. (46) for the coefficient e; that
modifies the linear growing mode equation (55). All linear
growing modes converge at high redshift, despite the slightly
different Planck masses and Hubble expansion rates. Indeed,
far in the early matter-dominated era, we recover an
Einstein—de Sitter cosmology, and the Hubble term in the
parenthesis in Eq. (55) converges to H~2dH/dt — —3/2.
Moreover, the factor €; goes to zero because of the nonlinear
K-mouflage screening mechanism, see Eq. (46), as at high
redshift ¥ and K’ become large. This large-K’ behavior is
also required to ensure that the background dark-energy
density becomes subdominant.

We show the relative deviation of the linear growth rates
f(z) in Fig. 8. Overall, f(z) is greater for the K-mouflage
scenarios, in agreement with the higher value of the linear
growing mode shown in Fig. 7. The deviation is again of
the order of a few percent. The deviation for the linear
modes D, shown in Fig. 7 could reach 10% at z =0
because of the cumulative effect due to the integration over
time. The growth rates f(z) converge to unity at high
redshift, but we can see that there remains a noticeable
difference between the K-mouflage models and the
A-CDM reference up to z ~ 6.

This rather slow decrease of the deviations from the
A-CDM reference at higher redshift is a characteristic
signature of K-mouflage models, as many other modi-
fied-gravity models, such as f(R) theories, lead to a faster
convergence to the A-CDM scenario at z > 2. This is
related to the fact that in the linear subhorizon regime the
K-mouflage effects are scale independent, as the factors
€,(t) and ¢,(¢) only depend on time. In contrast, in f(R)
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FIG. 7 (color online). Relative deviation, D, /D s cpy — 1, of
the linear growing mode D, from the A-CDM reference.
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FIG. 8 (color online). Relative deviation, f/fcpm — 1, of the
linear growth rate, f(z) =dInD,/dIna, from the A-CDM
reference.

theories or dilaton models, the factor e(k, ) that appears in
the modified Euler or Poisson equations, or in the evolution
equation for the linear density modes, takes the form
e(k, 1) «x p*k*/(a*m* + k?), with a characteristic physical
scale 2zz/m beyond which the theory converges to General
Relativity. At high redshift, this scale typically goes to zero,
so that at a fixed physical (or also comoving) scale,
deviations from the A-CDM scenario vanish because the
coupling f decreases or one enters the unmodified regime
beyond 27z/m. In the K-mouflage models that we consider
in this paper, because there is no such characteristic scale,
the convergence to General Relativity is only due to the
vanishing of the effective coupling strength 52/K’, with f
being constant (in our case) and K’ increasing at high z
because of the nonlinear K-mouflage mechanism itself.
However, this decrease of #>/K’ at high z is rather slow for
generic kinetic functions K(y), as seen from the curve
obtained for ¢(¢) in Fig. 5 for the simple cubic model.

E. Halo mass function

Solving the spherical collapse equation (60), we can
compute the linear density contrast threshold &;(z) that
corresponds to a nonlinear density contrast of 5[5,] = A,
where A, is the nonlinear threshold that we choose to define
halos. As discussed in Ref. [8], we are not interested in &; (z)
at the observation redshift, because it is not an observable
quantity. Instead, we wish to evaluate the linear threshold
0y, at a given high redshift z;, that is required to produce at
later time z a nonlinear density contrast A,,. In other words,
we want to estimate the initial density fluctuation associated
with a given nonlinear density contrast at the observed
redshift. To avoid the introduction of an arbitrary high
redshift z;, following what it is done in Ref. [8] and usual
practice, we translate all the initial thresholds &, to redshift z
by multiplying them by D x.cpm(z)/D a-cpm(zi) [instead
of using D, (z)/D,(z), ie., the linear growing mode
associated with each K-mouflage scenario], and we denote
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this quantity the linear density contrast threshold &y (4. This
common multiplicative factor enables a meaningful com-
parison between the different scenarios.

In Fig. 9, we display 6, (y) when we define halos by a
constant density contrast threshold A, = 200 with respect
to the critical density p.;. This corresponds to a density
contrast with respect to the mean density p of A, =
A,/Q.(z). We choose a constant A, rather than A,
because observational cluster surveys usually define cluster
halos by a constant overdensity with respect to the critical
density p.;.. At high redshift, both definitions coincide, as
Q. — 1, while at low redshift or far in the dark energy-
dominated era, one can argue that A. makes more physical
sense. Indeed, during an exponential acceleration phase, the
growth of large-scale structures freezes out, and one obtains
isolated halos among increasingly large voids. Then, the
mean universe density p decreases as a3, following the
dilution due to the expansion, and it does not correspond to
the typical density of halos (nor voids). In contrast, we can
assume that the isolated halos keep a roughly constant
physical radius and density, like the critical density p.;; (in
an exponential phase where the Hubble rate is constant), so
that it is more meaningful to express halo densities in terms
of Perit-

Both K-mouflage models accelerate the growth of
large-scale structures as compared with the A-CDM refer-
ence, as seen from the linear growing modes of Fig. 7.
Therefore, we find in Fig. 9 that a smaller linear density
contrast is required to reach the same nonlinear overdensity
of 200 (with respect to the critical density). Again, the
deviation from the A-CDM prediction is greater for the
arctan model (71).

From the linear threshold displayed in Fig. 9, we obtain
the halo mass function as in Eq. (61) (note that
v=25./6=05.)/0 = 6ri/o). In Fig. 10, we show
the relative deviation n(M)/nx.cpm(M) — 1 of the halo
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FIG. 9 (color online). Linear density contrast threshold & (y)
associated with the nonlinear density contrast A. = 200 with
respect to the critical density p,;., for the K-mouflage models and
the A-CDM reference.
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FIG. 10 (color online). Relative deviation, n(M)/ny.cpm
(M) — 1, of the halo mass function of the K-mouflage models
from the A-CDM reference, at z = 0 (solid lines) and z =2
(dashed lines). Halos are defined by the density contrast A, =
200 with respect to the critical density.

mass function from the A-CDM reference case, at z = 0
and z = 2. As for the case of 6, (y), since the scalar field
enhances gravitational clustering, we find that the mass
functions for the two K-mouflage models are higher than
the A-CDM reference in the high-mass tail, with the greater
deviation obtained for the arctan model (71). As usual, the
deviation increases at high mass because the exponential
falloff amplifies the sensitivity to slight departures of the
growth of structures. (The deviation becomes slightly
negative at low mass because all mass functions obey
the same normalization to unity: there cannot be more
matter in halos than the matter content of the universe.)

At fixed mass, M ~ 10*h~' M, the deviation from the
A-CDM reference is greater at z = 2 than at z = 0, despite
the difference in linear density thresholds being lower, as
seen in Fig. 9. This is because at fixed mass we are further
into the rare high-mass tail, which amplifies the dependence
on the linear density threshold and more than compensates
the slow convergence between the K-mouflage and A-CDM
thresholds.

F. Matter density power spectrum
and correlation function

We show in Fig. 11 the matter density power spectra and
correlation functions at z = 0 and z = 2. The computation
of this power spectrum P(k) combines perturbation theory
up to one-loop order with a halo model, as described in
Ref. [8] in the case of Einstein-frame studies and following
the approach introduced in Ref. [27]. The two-point
correlation function £(x) is obtained from the Fourier
transform of the power spectrum. On large scales, we
obtain the same constant relative deviation for the power
spectra and the correlation functions, as the linear growing
modes D () are scale independent in both K-mouflage
and A-CDM cosmologies (much below the horizon).
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FIG. 11 (color online). Upper panel: relative deviation of the
matter density power spectrum from the A-CDM reference, at
z = 0 (solid lines) and z = 2 (dashed lines), for the K-mouflage

models. Lower panel: relative deviation of the matter density
correlation function from the A-CDM reference.

This deviation of 20% is consistent with the deviation of
10% obtained for the linear growing modes in Fig. 7. The
deviation from the A-CDM reference grows on mildly
nonlinear scales, as nonlinearities amplify the effects of the
fifth force. This is related to the increase of the large-mass
tail of the halo mass function shown in Fig. 10, because on
these scales, the power spectrum and the correlation
function probe the formation of massive halos, as can be
clearly seen in a halo model approach. The deviation
decreases on smaller scales because the power spectrum
now probes the inner regions of halos, and we assume
similar NFW profiles [26] for all cosmologies (but this
regime shows a greater theoretical inaccuracy, and numeri-
cal simulations would be need to measure the impact of the
modified gravity on small highly nonlinear scales and halo
profiles). However, in the nonlinear range shown in Fig. 11,
the impact of changes to the mass function is greater than
that of halo profiles; see also Ref. [28] for a detailed study
of these various contributions.

The deviation from the A-CDM reference slowly
decreases at high z, as the fifth force mediated by the
scalar field becomes negligible (as seen from the vanishing
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of the key factor #*>/K’ as K’ — o). This decrease of the
deviations of large-scale clustering from the A-CDM
reference is slower than what is found in many other
modified-gravity scenarios, such as the f(R) theories, and
is characteristic of these K-mouflage models.

V. CLUSTERS OF GALAXIES

To go beyond background quantities and the large-scale
perturbative regime, we investigate in this section the
impact of K-mouflage scenarios on the largest collapsed
structures that we observe, that is, clusters of galaxies. This
provides another probe of modified-gravity models, which
is complementary with background and perturbative stud-
ies, as it corresponds to the nonlinear regime of the matter
density field and to the well-defined objects measured in
actual surveys.

For our purposes, clusters present two advantages as
compared with galaxies. First, they are unscreened objects
[8], so that the impact of the modification to gravity is very
simple and corresponds to a time-dependent effective
Newton constant (we shall check that this holds down to
the cluster cores in Sec. V B below). Therefore, one does
not expect dramatic qualitative changes from the A-CDM
case, and the same semiquantitative models can be applied
to both K-mouflage and A-CDM cosmologies. This is also
illustrated by the symmetry described in Sec. III G, which
shows that in this unscreened regime, from the point of
view of nonlinear gravitational clustering, the A-CDM
cosmology, quintessence models, and K-mouflage scenar-
ios, belong to the same class. They obey the same equations
of motion (67)-(68), with only slightly different time-
dependent functions x(#) from Eq. (70). Second, at first
order, clusters can be described by simple physical laws,
such as hydrostatic equilibrium for the gas profile and
bremsstrahlung emission for the x-ray luminosity, giving rise
to the so-called cluster scaling laws [29]. This is especially
true for the most massive clusters that we focus on.

In contrast, galaxies probe the transition from the
unscreened to screened regimes and also involve many
complex astrophysical phenomena, such as cooling proc-
esses, star formation, supernovae, and AGN winds and
feedback. Therefore, although they would be very interest-
ing probes, they are much more difficult to model, both for
the modified-gravity sector and for the usual galaxy for-
mation processes that also appear in the A-CDM cosmology.

In this paper, our goal is to estimate the magnitude of the
impact of K-mouflage models on clusters of galaxies rather
than building a very accurate description of clusters.
Therefore, we consider the simplest possible modelling
of clusters with only few physical parameters. This may not
provide the highest-accuracy cluster model, but we can
expect that it captures the main physical processes and
provides a robust estimate of the impact of modifications to
gravity. Moreover, we check that our predictions show a
reasonable agreement with observations.
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A. Halo density profiles

To study the effects of K-mouflage scenarios on clusters
of galaxies, we need their dark matter profile. Because in
the unscreened regime gravitational clustering proceeds in
the same fashion in K-mouflage and A-CDM cosmologies,
as described in Sec. III G, we assume in all cases NFW
profiles [26],

Ps
rfr)(L+r/r)?

This profile is characterized by a scaling radius and density,
respectively,l r; and p,, which can be expressed in terms of
the concentration parameter ¢ = R, /r,. Here R, is the
radius such that the mean density within R,_is A, times the
critical density, p(< Ra ) = A puir» as we again define
the extension of the halos by an overdensity threshold with
respect to the critical density. From the definition of c, it is
possible to express p, as

pom(r) = ( (83)

A, Al
3In(l+¢)—c/(1+c¢)’

Ps = Perit (84)

which can be inverted to give ¢ as a function of p,.

To consider the effects of the presence of the scalar field
on the shape of the dark matter profile, we consider a
simple model for the halo concentration. We assume that
halos of mass M typically form at a redshift z;(M)
determined by

o(q,zt) = o, (85)

where g = (3M/4rp,)'/3 is the halo Lagrangian radius and
or is a free parameter, and that the density of the newly
formed halo is proportional to pe(zf),

ps(M) = Afpcrit(zf)’ (86)

with A; a second free parameter. Equation (85) means that
halos of a given mass typically form when density
fluctuations at this mass scale reach the nonlinear regime,
while Eq. (86) assumes that the core of the cluster keeps a
roughly constant density after its formation, which is set by
the critical density at the formation time. As discussed in
Sec. IVE, we choose to rescale p; in terms of the critical
density rather than the mean density at redshift z; because
the former is more physical at late times (whereas they
coincide at high redshift) and it also corresponds to our
definition of halos. Next, using Eq. (84), we compute ¢(M),
and we define the dark matter density profile using (83).

In Fig. 12, we display the mass-concentration relation
obtained with the choice of parameters o; = 0.2 and A; =
500 (halos are again defined by A. = 200). As is well
known [30], the concentration ¢ (and the scaling density p,)
is larger for smaller mass, because in hierarchical scenarios,
smaller mass scales turned nonlinear at higher redshift
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FIG. 12 (color online). Mass-concentration relation for NFW
halos, for the K-mouflage models and the A-CDM reference, at
z = 0.37. The black points (with their error bars) are observa-
tional measures taken from Ref. [31].

when the critical (and the mean) density of the Universe
was greater. This is of course consistent with our model
(85)-(86). We compare these results with the mass-
concentration relation obtained by Ref. [31], from the
analysis of 19 x-ray selected galaxy clusters from the
Cluster Lensing and Supernova Survey with Hubble, with a
mean redshift z = 0.37. We can see that reasonable choices
of the parameters oy and A; (we naturally expect o < 1 and
A¢ 2 200) allow us to obtain a reasonable match to
observations. This suggests that this simple modelling
captures the main features of the gravitational formation
of halos. Therefore, we do not consider here more sophis-
ticated models, which involve the past accretion history and
merging trees of virialized halos. These could provide more
accurate modelling, at the price of additional complexity
(and often additional parameters), but it is not clear if their
estimate of the dependence on the underlying gravity
theory would be much more accurate. Such studies are
left for future works, where N-body simulations would be
needed to check detailed models.

As expected, we find a small increase of the concen-
tration ¢(M) in the K-mouflage models, as compared with
the A-CDM reference. This is due to the faster growth of
gravitational clustering, which implies a slightly greater
scaling density p,(M). However, we can see that the effect
is rather modest.

B. Clusters are not screened

As noticed in Refs. [7,8], clusters are unscreened, and the
Klein—Gordon equation (23) can be kept at the linear level
over the fluctuations of the scalar field, as in Eq. (43). In
this section, we check that this property extends far inside
the cluster profile.

In the small-scale static limit, which corresponds for
instance to high-density astrophysical objects, the Klein—
Gordon equation (A3) becomes
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pA

Cszlp,

vr : (vrq)K/) = (87)
where r is the Jordan-frame physical coordinate and we
assumed Jp = p (i.e., 6 > 1). As compared with Eq. (43),
here we do not make the approximation K’ = K’. Instead
we consider the small-scale regime where y = dy < 0. For
a spherically symmetric halo, using the Stokes theorem,
this gives

dp ., PAM()

== 7 88
dr M p147zr2 ( )

As in Refs. [7,8,12] (but in Jordan-frame coordinates),
defining the “K-mouflage screening radius” Ry by

PAM

1/2
) 89
47rch1/\/l2> (89)

R0 = (
where M = M(R) is the total mass of the object of radius R,
and introducing the rescaled dimensionless variables
x= /Ry, m(x) = M(< r) /M, (x) = p(r) . with o =
M?Ry/cA, the integrated Klein-Gordon equation (88)
reads as

dp 1 /dp\?

As pointed out in Ref. [7], in the small-scale static regime,
we have y <0, whereas the cosmological background
value satisfies y > 0. Using that M* ~ pye is roughly
the dark-energy density today and that A ~ 1, we obtain

M M
ﬁ—3470 a.u. = LO.lZ h~! Mpc.

Ry (M) =
k(M) 1M, 10M,,

(o1

The first equality shows that the Solar System is screened
by the Sun, which allows these K-mouflage scenarios to
satisfy Solar System constraints [12]. On the other hand, for
p = 0.1, the K-mouflage screening radius of a cluster of
mass 10"*M is Rg = 0.04h~! Mpc. This is much smaller
than the radius of the cluster, which means that most of the
cluster is unscreened. Moreover, as we move inside the
halo, the enclosed mass M(<r) decreases, which further
delays the onset of K-mouflage screening. When || < 1
we have K’ = 1, and we obtain

7l < 1: y(r)=-

which gives inside the halo

r<R:jy(r)=- Perit (ﬂAQAC(< r) ?)2

Y| <1, —
b{| 6M4
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We show the radial profiles of —y(r) in the lower panel in
Fig. 13, for M = 10°h~'M, and 103h~'My. In both
cases, we can check that |y| < 1 over the full halo profile
[as seen from Eq. (92), ¥(r) goes to a finite value at » — 0
for NFW density profiles, because p o 1/r and m « x> in
the core]. This means that clusters are not screened and that
we can use the background value K’ for the kinetic
function. In fact, at low z we also have ):( <1 and
K’ =1, so that the kinetic function is dominated by the
low-order terms in the expansion (7) and the results are not
very sensitive to the precise nonlinear form of K(¥). Then,
the Klein—Gordon equation can be linearized in the scalar
field as in Eq. (43), and the gravitational potential ® that
governs the dynamics of matter is again given by Eq. (45).

From the kinetic factor ¥(r), we can obtain the radial
profile of the scalar field, ¢(r), by integrating d¢p/dx =
v—2y and using ¢ = @g¢. The boundary condition is
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FIG. 13 (color online). Upper panel: scalar-field radial profile,
5¢(r) = @(r) — @, for halos of mass 10'3h~'M (upper solid
lines) and 10"3h~'M (lower dashed lines). The scalar-field
fluctuation is negative as the scalar field ¢ is minimum at the
center of the halo. Lower panel: radial profile of the “kinetic
energy” —y(r) of the scalar field, for halos of mass 1054~ M g
(upper solid lines) and 10'34~'M (lower dashed lines). Here
¥ < 0because we consider the static limit, which is dominated by
spatial gradients. The arctan and cubic K-mouflage models give
almost identical results in this figure.
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@ — @ at infinity. We show the radial profile of the
fluctuation é¢p = @ — @ in the lower panel in Fig. 13. We
can check from the comparison with Fig. 4 that |5¢p| < |@|,
in agreement with the scaling S¢/@ ~ (aH/ck)*5p/p
obtained from Eq. (A35) and @/Mp, ~ /K’. In particular,
this explicitly shows that the coupling function A(¢) remains
dominated by its low-order terms in the expansion (8), both
for the background and for large-scale structures such as
clusters of galaxies.

The magnitude of d¢ can also be read from the modified
Poisson equations (41). In realistic models, the fifth force
should not have a magnitude greater than the Newtonian
force, which implies  [SA/A| = |BSp/Mp| < [Py,
whence |35¢p/Mp| < 1075,

C. Impact of nonlinear substructures

The Klein—Gordon equation (87) that determines the
scalar field ¢ is nonlinear, because of the factor K’(y). This
means that substructures could have a strong impact on the
solution ¢(r) as there is no longer a linear superposition
property and the solution obtained for the averaged halo
profile is not identical to the average of the exact solutions
obtained by taking into account substructures. In this
section, we check that this nonlinearity does not play a
significant role and does not invalidate our approach
described in Sec. V B.

First, we note that for an object that is exactly spherically
symmetric the integrated Klein—Gordon equation (88)
holds and the scalar-field profile only depends on the
integrated mass M (r) within radius r. This smoothes out
radial substructures. However, in practice, clusters are not
exactly spherically symmetric, and individual cluster gal-
axies also break any overall spherical symmetry. We have
seen in Sec. V B that clusters are unscreened as the kinetic
factor, yus(r), associated with the mean cluster density
profile (83), is much smaller than unity. Then, if galactic
halos only form a small fraction of the total cluster volume,
throughout most of the cluster volume, we can linearize
Eq. (87), as in Eq. (43), which gives
pA

unscreened region: Vip = ——>—p
& r K/CzMPl ’

(94)
where K’ is the background value, with K’ =1 at low z.
This equation breaks down around each cluster galaxy,
where the high matter density, which is much greater than
the NFW mean density ppy(r) of Eq. (83) at that radius,
makes the scalar field enter the nonlinear screening regime.
Thus, around each galaxy “i,”i =1, ..., N gy, We must cut a
patch V; where the equation (94) must be replaced by the
fully nonlinear equation (87). By definition, the volume
Vi 1s given by the K-mouflage radius R; of the galaxy. In
practice, if Rg; < Ry, we can build an approximate
solution by patching the solutions within each galaxy
volume Vg, with the global solution (94) that holds in
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between galaxies. Around each galaxy, using an approxi-
mate spherical symmetry around the galaxy center, we
obtain the local profile by solving Eq. (88), where M is
replaced by the galaxy mass mg,(r), and the boundary
condition at Rg; is approximated as a constant obtained
from the global solution (94).

This scenario holds provided the regions Vg; do not
extend far beyond the galaxy volumes V; (defined for
instance by their stellar content or by the region where
matter is gravitationally bound to the galaxy) and do not
cover most of the cluster volume. From Eq. (89), we have
Ry (mgy) o mééf . Defining the mass function n(m)dm of
the cluster galaxies, the total volume built by the nonlinear
regions Vg, reads as

0 dn 0 dn

Vieal = /) dm%VK(m) x A dmd—mm3/2. (95)
The mass function of the cluster galaxies or of dark matter
subhalos is typically a power law at law mass with an
exponential cutoff at high mass [32]. In any case, the
integral [ dm(dn/dm)m = Mg, is necessarily finite and
equal to the total mass associated with the galaxies, which
is smaller than the total cluster mass. Therefore, the integral
(95) converges at low mass and is dominated by the
galaxies around the knee of the galaxy multiplicity func-
tion, which typically corresponds to M ~ 10'2M From
Eq. (91), we have R (10">M ) = 4h~" kpc, with # = 0.1,
which gives a volume fraction of the order of
(0.004) ~ 5 x 1078, Even if we have ~20 such galaxies
in the cluster, this only makes a fraction of order 107® of
the cluster volume.

Moreover, we can see that Ry, is typically smaller than
the actual radius R; of the galaxy (by a factor of a few). In
the A-CDM cosmology itself, the analysis of the hot gas
that makes most of the intracluster medium and gives rise to
the cluster x-ray luminosity (based on hydrostatic equilib-
rium and scaling laws) only applies outside of the cluster
galaxies, where cooling and star formation processes play a
major role. Therefore, the nonlinearities of the Klein—
Gordon equation (87) do not bring further restrictions as
compared with the standard A-CDM case, as they are
“hidden” within the galaxies, and the impact of the fifth
force on the intracluster medium can be obtained from the
linearized equation (94) associated with the unscreened
regime. They do not modify global properties either, such
as the cluster correlation function, as the dynamics and
formation of the clusters remain governed by the linearized
Klein—Gordon equation (94).

D. Hydrostatic equilibrium

From Eq. (48), the equation of hydrostatic equilibrium
for the gas density p, and pressure p, reads as

2 \Y
vq>=v(wN+ﬂcf"> =—-Ps (96)
Mp] Py
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where we used Eqgs. (41) and (44). This explicitly shows
how the pressure gradient is amplified, at a fixed density
profile, by the fifth force. Assuming spherical symmetry,
this leads to

dvw
—‘:—pg(l—i‘é'])—N, (97)

where we used the fact that clusters are unscreened, so that
K' =K' and the Klein-Gordon equation can again be
linearized as in Eq. (94). In the A-CDM cosmology, we
simply have ¢; = 0. To obtain the gas profile from Eq. (97),
we also need an equation of state that gives the pressure as a
function of the gas density or temperature. We consider an
isothermal gas with p, = pngTg/(,ump), where kp is
Boltzmann’s constant and pm, is the mean molecular
weight of the gas. This yields the gas density profile

py(r) ox =m0 /iT,. (98)

where the Newtonian potential Wy is fixed by the dark
matter profile.

To evaluate Tg, we assume that the gas temperature is
proportional to the mean value of the dark matter “temper-
ature,” Tpy(r), which we define from the velocity

dispersion 3 (r) as

kpTpm(r) = pm,opy(r). (99)

The dark matter being collisionless, it is not described by a
thermodynamical temperature. However, we can expect the
virialization processes associated with the formation of
the halo to scale in the same fashion for the dark matter, as
measured by its velocity dispersion, and for the gas, as
measured by its temperature. In particular, the dark matter
velocity dispersion obeys the Jeans equation, which can be
written at equilibrium as [33]

2
LM:—@:—(H—e])%. (100)
DM dr dr dr
For a given dark matter halo profile, set by the NFW profile
(83) and concentration parameter ¢(M), the Jeans equa-
tion (100) determines the velocity dispersion profile
o3m(r), whence comes the effective dark matter temper-
ature Tpy(r) defined in Eq. (99). Then, we set the gas

temperature T'; as

7o 1 P 1 [dranr?ppy (r)Tpm(r)
g ﬂ_ bM ﬂ_ fdr47rr2 ( ’
g g pom(7)

(101)

where f3, is a free parameter that we fix to be equal to 0.6,
which is of the same order as the values used in studies of
clusters of galaxies [34]. In other words, we assume that the
kinetic and thermal energies of the dark matter and the gas
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are proportional, because they are generated by the same
process, the formation and virialization of the halo.

Finally, to fully specify the gas density profile (98), we
normalize it as

Q,

=S—Mpwm.
Qpm

R
M, :A o dr47rr2pg(r) (102)

Thus, we consider that the baryon and dark matter mass
fractions in clusters are given by the cosmological abun-
dance. This assumes that there is no significant redistrib-
ution and segregation of matter on scales greater than
cluster radii, which should be a reasonable approximation
for massive clusters.

Therefore, in terms of the intracluster medium, the
differences between the K-mouflage and A-CDM scenarios
only arise through three effects, in our framework. First, the
dark matter profiles (83) are slightly different because of
the small change of the halo concentration shown in
Fig. 12, which comes from the different growth rates of
large-scale structures. Second, the equation of hydrostatic
equilibrium (96) is modified by the factor e;(¢), which
corresponds to the amplification of gravity by the fifth force
in the unscreened regime. This implies slightly greater
pressure gradients for the gas. Third, the gas (and dark
matter) temperature itself is also amplified by the same
factor (1 + ¢), at a fixed dark matter profile, because it
also arises from the gravitational collapse; see Egs. (100)
and (101). The second and third effects compensate in
terms of the gas density profile, as the greater potential
depth is balanced by the greater gas temperature, so that we
can expect rather modest deviations between the different
cosmological scenarios.

In Fig. 14, we show the dark matter and gas density
profiles for a cluster of mass M =5 x 10"“A~'M at
z = 0, for the K-mouflage models and the A-CDM refer-
ence. The presence of the scalar field makes the density
profiles more compact, in agreement with Fig. 12. As
expected, the deviations from the A-CDM reference are of
the order of a few percent.

E. Scaling laws

From the gas density profile p,(r) and temperature Tg,
we obtain the x-ray cluster luminosity within radius R
as [35]

_ R
Ly(<R)= 47‘L’€X(Tg)/ nﬁ(r)r2dr,
0

(103)

where n,(r) = p,(r)/um, is the cluster gas density and
ex(T) is the x-ray emissivity, which can be expressed in
terms of the temperature as [32]
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FIG. 14 (color online). Upper panel: density profiles for a
cluster of mass My, = 5 x 10"*h~'M . The upper solid lines
refer to the dark matter density profiles and the lower dotted lines
to the gas density profiles. The K-mouflage models and the
A-CDM reference cannot be distinguished in this figure. Lower
panel: relative deviation from the A-CDM reference of the dark
matter (solid lines) and gas (dotted lines) density profiles.

12
erg.s”'.cm’.

(104)

4-2vy (T
ex(T) = 4.836 x 10724 —— (

(4-Y)2\I KeV

Here Y is the helium mass fraction, and y =2/(4 - Y),
n/n,=2-=Y)/(4=Y), and (ny+4ny)/n, =2/
(4-7Y), where we assume complete ionization. This
applies to high temperatures of order 1 keV and above,
where the x-ray emissivity is dominated by bremsstrahlung.
Equation (103), with the emissivity (104), gives the total
bolometric luminosity. In practice, one measures the
radiation from x-ray clusters within finite frequency bands.
Therefore, we also define the luminosity within frequency
bands, denoted for instance as bands “A = [1},14]
“B =85 ..., by

Lya(< R) = Ly(< R)(e7™i/kTy — o=m5/kaTy) - (105)

Observational studies often measure the x-ray properties
of galaxy clusters within a radius Ry that is smaller than
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R0, because the luminosity scales as the squared density
[see Eq. (103)] so that inner high-density regions are easier
to measure. A popular choice is the radius set by the density
threshold A, = 500 with respect to the critical density. In
the following, keeping our definition of halos by the
threshold A, =200 as in Figs. 10 and 12-14, we use
the density profile obtained from Eq. (98) and displayed in
Fig. 14 to compute x-ray properties within Ry defined by
A, = 500 (hence, Ry < Rya0)-

To avoid the complications due to the internal structures
of the clusters (presence of massive galaxies in the center,
importance of dissipative processes, cooling cores, ...) and
also to follow the observational procedures, we define a
core radius R, outside of which we evaluate the quan-
tities of interest. As in many observational analyses, we
simply define R as a fixed fraction of the cluster radius
Ry (as defined by the threshold A. = 500 with respect to
the critical density), with R . = feoreRx and typically
Sfeore ~ 0.15. Then, we obtain for instance the luminosity in
the outer cluster shells, between R . < r < Ry, as

LxA no-core = LXA(< RX) - LXA(< Rcore)' (106)

In Figs. 15 and 16, we show, respectively, the My, —
TSOOc-nocore and TSOOc—nocore - LXA—SOOc—nocore relations com-
pared to observations of clusters of galaxies in the x ray,
with the choice of parameter f . = 0.15 and the frequency
“A band” [0.1-2.4] keV. For the M — T relation, we obtain
a good agreement with observations, while our prediction
for the slope of the T — L relation is too shallow. This is a
well-known problem associated with a noticeable break-
down of the naive “scaling laws” for the x-ray luminosity,
especially for small clusters [35]. This is usually explained
by a decrease of the gas fraction and a greater importance of
nonthermal effects, or departures from hydrostatic equilib-
rium, in small clusters. However, because our goal is only
to estimate the magnitude of the effects due to modifica-
tions of gravity, we do not try to build a more accurate and
more complex model in this paper. Moreover, our simple
model is sufficient to recover the typical x-ray luminosity in
the range 4 < T < 15 keV, which corresponds to massive
bright clusters.

At fixed mass, the temperature in the K-mouflage
scenarios is greater than in the A-CDM reference by about
2%. This is mostly set by the factor €, which is about 2% as
seen in Fig. 5. Indeed, from Eq. (100), we can see that at a
fixed dark matter density profile the fifth-force enhance-
ment of gravity by the factor (1 4 ¢;) yields an increase of
the dark matter velocity dispersion and of the gas temper-
ature by the same factor. The small deviations from this 2%
value, which depend on mass, that appear in Fig. 15
correspond to the small changes of the dark matter profile
through the modification of the concentration parameter
shown in Fig. 12.
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FIG. 15 (color online).  Upper panel: mass-temperature relation
for the K-mouflage models and the A-CDM reference, at z =
0.0288 (lower curves) and z = 0.451 (upper curves). The data
points are taken from observations made by Refs. [36] (in green),
[37] (in magenta), and [38] (in brown), with clusters in the
redshift range 0.0288 <z <0.451. Lower panel: relative
deviation of the cluster mass-temperature relation from the
A-CDM reference, at z = 0.0288.

At fixed temperature, the K-mouflage models give a
slightly lower x-ray luminosity. This is because at fixed
mass K-mouflage models give a higher temperature, as
seen in Fig. 15. Therefore, they give a lower mass at a
fixed temperature. Since the x-ray luminosity scales as
Ly ~p,M+/T, a lower mass implies a lower luminosity
(disregarding the impact on p;). As expected, we find
percent deviations as for the M — T scaling law.

Thus, as for the quantities studied in previous sections,
we obtain percent deviations from the A-CDM scaling
laws. Unfortunately, this is probably too small to be used as
a meaningful constraint on these modified-gravity scenar-
ios, in view of the observational and theoretical uncertain-
ties. Therefore, it is unlikely that cluster scaling laws can
provide competitive constraints on such modified-gravity
models, that must also pass very tight Solar System bounds
and satisfy larger-scale cosmological constraints associated
with the growth of large-scale structures or the evolution of
the Hubble expansion rate (e.g., constraints from big bang
nucleosynthesis).
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FIG. 16 (color online). Upper panel: temperature-luminosity
relation for the K-mouflage models and the A-CDM reference, at
z = 0.048 (lower curves) and z = 0.451 (upper curves). The data
points are taken from observations made by Refs. [39] (in green)
and [38] (in brown), with clusters in the redshift range
0.048 < 7 <0.451. Lower panel: relative deviation of the cluster
temperature-luminosity relation from the A-CDM reference, at
7z =0.048.

F. Cluster temperature function

Neglecting the scatter of the mass-temperature relation, by
combining the halo mass function described in Sec. IVE
with the mass-temperature relation obtained in Sec. V D and
Fig. 15, we obtain the x-ray cluster temperature function

dinM
dInT "~

n(T) = n(M) (107)
In Fig. 17, we show the temperature functions computed for
the K-mouflage models together with the A-CDM case,
evaluated at z = 0.05, to compare them with the observa-
tions obtained by Ref. [40].

We obtain a reasonable agreement with observations. As
is well known, this also means that the cluster temperature
is a rather robust quantity (as compared for instance with
the x-ray luminosity) and that it is not necessary to build
very sophisticated models to recover the right order of
magnitude. As shown in the lower panel, we now obtain
deviations for the cluster number counts that are of order
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FIG. 17 (color online). Upper panel: cluster temperature
function for the K-mouflage models and the A-CDM reference,
at z = 0.05. The data points are taken from observations made by
Ref. [40] from a sample of clusters with z = 0.05. Lower panel:
relative deviation of the cluster temperature function from the
A-CDM reference at z = 0.05.

unity: the K-mouflage models can predict twice or three
times more high-7 clusters than the A-CDM reference. As
we have seen, this difference is not due to deviations in the
cluster scaling laws, that is, in the intracluster medium,
which are quite small, but to the amplification of the high-
mass tail of the halo mass function already shown in
Fig. 10. Therefore, this result should be rather robust as it is
directly related to the faster growth of large-scale structures
in the K-mouflage scenarios.

G. Sunyaev—Zel’dovich effect

An indirect method to infer the properties of the clusters
is to use the Sunyaev—Zel’dovich effect (hereafter SZE)
[13]. It occurs when photons from the cosmic microwave
background (CMB) inverse Thompson scatter in the intra-
cluster medium. The measured CMB temperature is then
distorted with an amplitude proportional to the so-called
Compton parameter (see, e.g., Ref. [41]),

kgT
y:/neaTB—gdl,
myc

e

(108)
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where n, is the electron number density, T, is the gas
temperature, m, is the electron mass, 67 = 6.65 x 1072° ¢cm?
is the Thompson cross section, and d/ denotes the integration
along the line of sight. Following a common observational
practice, by integrating over the angular area of the cluster,
defined for instance by the radius Rs,. associated with the
density contrast of 500 with respect to the critical density, we

define the integral Compton parameter

R c k T
YsoocE/de: r;z(z)/ w dnr’n,(r)or B gdr,
0 m,c

e

(109)

where r,(z) is the angular distance of the cluster located at
redshift z.

In Fig. 18, we show the relations M oo, — ¥s0c75(2)
and T'sopc-nocore — Ys00c75(z) for the K-mouflage models
and the A-CDM reference, and we compare them to the
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FIG. 18 (color online). Integrated Comptonization within Rsq,.
as a function of the gas mass (upper panel) and gas temperature
(lower panel) for the K-mouflage models and the A-CDM
reference. These different models cannot be distinguished in
these figures. We show our results for z = 0.16 (lower curves in
the upper panel and upper curves in the lower panel) and z = 1.45
(upper curves in the upper panel and lower curves in the lower
panel). The data points are measures from a sample of clusters in
the range 0.16 < z < 1.45 [41].
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observations made by Ref. [41]. Again, we obtain a
reasonable agreement with observations and a small
deviation between the different scenarios. The agreement
is better for the M, — Y relation than for the 7' — Y relation,
but the latter shows a very large scatter and is probably
contaminated by large observational errors.

In any case, as in Sec. V E, it appears that deviations of
cluster scaling laws associated with modified-gravity sce-
narios are too small as compared with observational error
bars and theoretical uncertainties to be competitive.
However, number counts, whether in terms of the cluster
temperature or SZE parameter Y, could provide useful
constraints.

H. Dynamical and weak lensing masses

Finally, we briefly comment on the dynamical and weak
lensing masses of clusters and massive halos. In the
unscreened regime, which applies to clusters and larger
scales, the dynamics of matter particles (dark matter and the
gas) is governed by the metric potential @, as in Egs. (48)
and (56). This gravitational potential is related to the matter
density through the modified Poisson equation (45), and it
is equal to the standard Newtonian potential (but with a
time-dependent Newton constant) multiplied by the factor
1 + ¢,. From observations of the dynamics in clusters, one
would then measure the dynamical mass

g(1)

Mdyn = [1 + el(t)]g—0M7 (110)

assuming General Relativity (GR) gravity with today’s
Newton’s constant. On the other hand, the weak lensing
potential @, that governs the deflection of light rays by the
perturbations of the metric is

Py = —— =W,

5 (111)

where we used Eq. (41). Therefore, weak lensing obser-
vations of clusters would give the weak lensing mass

(1)

MlensEg—M’ (112)
0

and the ratio between the dynamical and weak lensing

masses reads as

(113)

We have shown the factor ¢, in Fig. 5. Thus, we find that
the dynamical mass is greater than the lensing mass by
about 2%. As explained above, this is set by the value of
2/, which is constrained to be of order 2% or below
because of cosmological and Solar System constraints [12]
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(the big bang nucleosynthesis constraint and bound on the
time dependence of G). Therefore, this result on the ratio
M 4y / M) gives an upper bound for its deviation from GR
for all realistic K-mouflage models.

1. Cluster correlation function

In the previous sections, we considered the internal and
integrated properties of clusters, as well as their abundance.
Another probe of cosmology is provided by the cluster
correlation function. Following Refs. [42,43], we write the
halo bias as

-1
or

b(M)=1+ (114)
More accurate fitting formulas have been proposed for
A-CDM cosmologies [44], but they involve free parameters
that might vary for different modified-gravity scenarios.
Moreover, numerical simulations find that the spherical
collapse model (114) provides reasonably good predictions
that can fare better than more sophisticated models for rare
and massive halos [45], which we focus on here. Therefore,
Eq. (114) should be sufficient for our purposes and provide
a simple estimate of the impact of K-mouflage models.
Note that, because clusters are not screened, the reasoning
that leads to Eq. (114) in the A-CDM cosmology remains
valid for K-mouflage scenarios, as the only change is the
time-dependent effective Newton constant as it would be
defined from Eq. (63). This enters the bias (114) through
the different values of v(M) and &, , that we compute from
the spherical collapse described in Secs. III D and IV E.
Combining the halo bias (114) with the matter correla-
tion function &(x) shown in Fig. 11, we obtain the cluster
correlation function &,(x) displayed in Fig. 19. The
comparison with Fig. 11 shows that the cluster correlation
function is much less affected by K-mouflage than the
matter correlation and it can actually be slightly lower than
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FIG. 19 (color online). Relative deviation of the cluster corre-
lation function from the A-CDM reference for the K-mouflage
models. We consider halos of mass 10'34~'M (upper solid
lines) and 1034~'M, (lower dashed lines).
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in the reference A-CDM cosmology. This is because the
amplification of gravity, associated with the greater effec-
tive Newton constant (1 + ¢,(¢))G(#)/Gy, merely acceler-
ates the growth of large-scale structures. This amplifies the
matter density power spectrum and correlation function, as
well as the large-mass tail of the halo mass function, as seen
in Figs. 11 and 10. However, this same phenomenon also
implies that, at a fixed mass M, massive halos are less rare
and have a smaller bias b(M) [in particular, v(M) becomes
smaller in Eq. (114)]. This effect almost cancels the
increase of the underlying matter density correlation
function. Therefore, it appears that the matter correlation
function, measured for instance from weak lensing obser-
vations or galaxy surveys (using typical halos with a
bias of order unity that is not significantly changed by
K-mouflage), is a better probe of such modified-gravity
scenarios than the cluster correlation function (or more
generally the correlation of rare objects).

VI. COMPARISON WITH OTHER MODIFIED-
GRAVITY MODELS

A. Some other modified-gravity theories

Before we conclude this study of K-mouflage models, it
is interesting to compare our results with other modified-
gravity models that have been investigated in the literature.
The main scenarios that have led to detailed analytical and
numerical studies are the f(R) theories, scalar-field models
such as dilaton and symmetron models, and Galileon
models [46—48].

The f(R) models [4,49-53] can be recast as scalar-field
models with an Einstein-frame action of the form (1), with a
standard kinetic term, an exponential coupling function
A(g), and a scalar-field potential V(¢) [54]. The dilaton
[55-57] and symmetron [58,59] models are also scalar-
tensor theories of this form, but with different coupling
functions A(¢) and potentials V(¢) (and standard kinetic
terms). Finally, Galileon models [60-63] also involve a
scalar field, with a nonstandard kinetic term (the scalar-
field Lagrangian contains higher-order terms in Vg
and V2g), but there is no coupling function A(p) (i.e.,
9w = Guw)- (Of course, it is possible to build more complex
models that combine these various ingredients.)

These different scenarios show different nonlinear
screening mechanisms that ensure convergence to GR in
the Solar System, chameleon [3] (for f(R) models),
Damour—Polyakov [5] (for dilaton and symmetron mod-
els), and Vainshtein [6] (for Galileon models) mechanisms.
The theories that are closest to K-mouflage scenarios are
the Galileon models, as their screening mechanism also
relies on the nonlinear derivative terms of the scalar-field
Lagrangian; but they also involve V?¢ instead of V¢ only,
which gives rise to different scaling exponents, for instance
for the Vainshtein and K-mouflage screening radii as a
function of the mass M of compact objects.
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B. Einstein and Jordan frames

A first important difference between the K-mouflage
scenario and these other modified-gravity models is the
distinction between the Einstein and Jordan frames. As
recalled above, this distinction does not apply to the
(simplest) Galileon models, but the f(R), dilaton, and
symmetron models also naturally give rise to distinct
Einstein and Jordan frames. However, it turns out that in
these scenarios the coupling function is constrained to
remain very close to unity. Thus, |A — 1| < 107* for f(R)
models, because the “mass” of the scalar field must be
sufficiently large, m > 10°H/c, to ensure an efficient
screening of the fifth force by a chameleon mechanism
in the Solar System. For dilaton and symmetron models, we
have |A — 1| < 107° as the coupling strength 4 must vanish
sufficiently fast in high-density regions to screen the fifth
force through a Damour—Polyakov mechanism. This means
that, in terms of background quantities (e.g., the Hubble
expansion rate and the scale factor), one can identify the
Einstein and Jordan frames, which also become almost
identical to the A-CDM reference. However, at the level of
the metric perturbations ® and W, this is no longer the case,
and the Einstein and Jordan gravitational potentials differ by
terms set by 0A, and the dynamics of perturbations deviate
from the A-CDM reference because of the fifth force.

In the K-mouflage case, this identification already breaks
down at the background level. Indeed, |A — 1| can reach
values of the order of a few percents (see Fig. 6) while being
consistent with Solar System and cosmological constraints
[12]. For the same reason, the background dynamics (in both
Einstein and Jordan frames) show percent deviations from
the A-CDM reference. Therefore, we must pay attention to
the distinction between Einstein and Jordan frames already
at the background level. In particular, in this paper, as we
study clusters of galaxies that involve atomic or radiative
processes (both for the definition of their redshift, from
atomic lines, and for their properties such as x-ray emission),
the Jordan frame is the one that is more directly connected to
observations, and we work in this frame. Another advantage
of the Jordan frame is that the equations of motion take their
usual form; in particular matter is conserved, which permits a
clear and simple physical interpretation, and only gravity is
modified. In contrast, in the Einstein frame, gravity takes a
standard form, but the equations of motion are modified, and
the matter density is usually not conserved.

C. Scale dependence and screening regime

A second important difference between the K-mouflage
scenario and some other modified-gravity models is that the
deviations from the A-CDM reference are scale indepen-
dent on perturbative scales (from cluster scales to the
horizon). This is most easily seen from the fact that the
factor ¢,(¢) that enters the evolution equation (55) of
the linear growing mode only depends on time, so that
the linear growing mode D, () remains scale independent
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as in the A-CDM cosmology. This is due to the fact that in
the scalar-field Lagrangian (6) we focused on the non-
standard kinetic term and neglected a possible potential
term V(). Of course, in the highly nonlinear regime, a new
scale dependence appears, as the fluctuations of the scalar
field themselves become nonlinear and give rise to the
K-mouflage screening mechanism, which ensures the
convergence to GR in the Solar System. However, it
happens that the screening transition appears at galaxy
scales, so that clusters remain unscreened and fully feel the
effect of the fifth force.

The same behavior is obtained in the Galileon models,
where linear scales below the horizon show scale-
independent growing modes and the Vainshtein screening
mechanism applies to cluster scales and below [64,65];
but in the K-mouflage case, the nonlinear screening only
applies to galaxy scales and below, as clusters remain
unscreened. In contrast, in f(R) and dilaton/symmetron
models, there is a characteristic scale dependence, as we
recover GR both on very large scales x> 1h~' Mpc
(because of the finite mass of the scalar field) and on very
small scales x < 1A~! Mpc (because of nonlinear screen-
ing mechanisms, here chameleon or Damour-Polyakov
mechanisms [3,5]). Then, the linear growing mode D , (k, ¢)
shows a clear scale dependence on quasilinear scales, and
nonlinear screening effects also add a further scale depend-
ence around x ~ 147! Mpc [66]. Thus, in these models,
clusters probe a scale-dependent regime and the transition
between the unscreened and screened regimes.

Therefore, clusters of galaxies are especially well-suited
probes of K-mouflage scenarios because they are
unscreened (hence they feel the full amplitude of the fifth
force). Moreover, the modification of gravity is still scale
independent on these scales so that cluster properties
should not be too difficult to model (the same modeliza-
tions should apply equally well to the A-CDM and K-
mouflage cosmologies).

D. Clusters

1. Cluster profiles

The effect of the fifth force on the cluster matter and gas
profiles within the context of modified-gravity scenarios
with chameleon mechanisms [mostly for f(R) models] has
been investigated in Refs. [67-70].

As recalled above, the fifth force effect is somewhat
different between f(R), dilaton and symmetron models,
and K-mouflage scenarios. In the former cases, clusters are
typically at the transition between the screened and
unscreened regimes. Then, massive clusters are screened
by the chameleon or Damour—Polyakov mechanisms (the
deviations from GR being most efficiently suppressed in
the symmetron models), while for low-mass clusters, only a
small core is efficiently screened. In particular, for f(R)
and symmetron models, the amplification of gravity is
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localized in the outskirts of massive clusters. This gives a
distinct scale dependence of the modified-gravity effect in
these theories [71,72], but the efficient screening also
decreases the overall deviation from GR. See, for instance,
Ref. [66] for a detailed analysis and comparison of these
different models and Refs. [71,73-76] for numerical
simulations of various models. In Galileon scenarios,
depending on the model, clusters may be fully screened
(and their profiles are similar to those of a quintessence
model with no fifth force and the same expansion history)
or only partly screened (which gives rise to complex
effects) [65]. In the K-mouflage case, clusters still are in
the unscreened regime. Therefore, there is no characteristic
scale dependence that can be used to distinguish them from
A-CDM cosmologies, but the amplitude of the smooth
deviation is greater (as compared with screened scenarios).

There have been no specific simulations of K-mouflage
models so far, but we can recall here some results from
simulations of other modified-gravity models.

Reference [76] develops hydrodynamic N-body simu-
lations to investigate the impact on dark matter and gas
profiles of f(R) and symmetron scenarios. In agreement
with the discussion above, the authors find that the dark
matter density is increased as compared with the A-CDM
reference in the outskirts of massive halos. This is because
the fifth force applies to outer radii, which are unscreened,
and this also yields a greater velocity to the particles, which
cannot cluster as strongly within inner radii. They also find
a lower deviation from A-CDM for the gas density profile
than for the dark matter density profile. They note that this
may be due to delays in the collapse of the dark matter and
the gas, with the screening of the halos taking place after
dark matter collapse and before gas collapse. As explained
above, for K-mouflage scenarios, we do not expect such a
localized enhancement in the matter densities and different
behaviors for the dark matter and the gas, because clusters
are unscreened and the dynamics remains similar to the
A-CDM cosmology, as illustrated by the explicit symmetry
described in Sec. III G. In fact, in Fig. 14, we find that
within our very simple model the deviation from A-CDM is
slightly greater for the gas than for the dark matter [because
of the small change in the concentration parameter and the
higher sensitivity for the gas that arises from the expo-
nential equilibrium distribution (98)].

We can note that N-body simulations of f(R) models
also find that in the case f = —107%, where chameleon
screening is not efficient, deviations from A-CDM are
smooth and the velocity dispersion 62 and gas temperature
T, are about 4/3 times the GR value [68,74], due to the 4/3
increase of the effective Newton constant. In our case, this
corresponds to the (1 + ;) enhancement in Eq. (100), but
with €; = 2% instead of 1/3. These simulations also find
that dark matter halos remain well described by NFW
profiles [77]. These results suggest that our approach for
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the density profiles and the gas temperature described in
Secs. VA and V D should fare reasonably well.

For chameleon scenarios, Ref. [67] considers the effect
of the fifth force on the cluster gas profile, which becomes
more compact for a given dark matter profile [in our case,
we also include the effect on the dark matter profile,
through the modification of the concentration parameter
shown in Fig. 12, and we assume an isothermal gas (i.e.,
y = 1) instead of a polytropic equation of state p,  pj
with y ~ 1.2]. However, they find that observational error
bars are too large to give useful constraints on f(R) models.
We reach the same conclusion for the K-mouflage models
studied in this paper.

References [69,70] combine x-ray observations (which
probe the temperature and electron number density pro-
files) and weak lensing signals (which probe the total
matter profile) to constrain deviations from General
Relativity. Indeed, while the gas profile is sensitive to
the fifth force, the lensing deflection of light rays remains
the same as in GR. This allows them to derive the upper
bound |f,| <6 x 1075. The same behavior applies to the
K-mouflage scenario. In this paper, we found a few percent
deviations from GR, which should apply to all realistic
K-mouflage models that satisfy cosmological and Solar
System constraints [as this is due to the constraint on the
coupling p, independently of the details of the kinetic
function K(y)]. We leave a more general Markov chain
Monte Carlo (MCMC) analysis of K-mouflage scenarios,
combining different probes, to future works.

2. Cluster scaling relations

The impact of f(R) gravity on the cluster scaling
relations has been studied in Ref. [68] with numerical
simulations. Again, we find similar behaviors for the K-
mouflage models as for the f(R) model with fz = —107%,
where clusters are not screened. In particular, the dark
matter velocity dispersion and gas temperature are
increased, at fixed mass, and the x-ray luminosity is
decreased, at fixed temperature, as compared with the
A-CDM reference. However, whereas in f(R) theories
the deviations from A-CDM can reach a factor 1/3 in the
unscreened regime, and deviations of order unity can also
be expected in dilaton or symmetron models, realistic
K-mouflage models can only deviate by a few percent at
most. Indeed, the magnitude of these deviations is set by
the factor €;, which itself is set by 2% (at z = 0), and the
coupling strength must satisfy f < 0.1 because of cosmo-
logical and Solar System constraints [12].

3. Cluster lensing; Dynamical and lensing masses

In f(R), dilaton, and symmetron scenarios, the weak
lensing potential @, that governs the deflection of light
rays, given by ®,,; = (P + ¥)/2, is equal to the Newtonian
potential Wy [using |fg,| < 1 in the case of f(R) theories]
[78]. Then, for weak lensing observations, the only
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difference from the A-CDM scenario comes from the
different evolution of the matter density fields. In contrast,
the motions of matter particles or of small halos (e.g.,
satellite halos or small galaxies), which fall toward massive
clusters, feel the fifth force. This gives rise to different
lensing and dynamical masses. This has been investigated
in semianalytical models and N-body simulations [74,79]
and used in Refs. [69,70] in combination with x-ray
observations, for f(R) theories, and in Ref. [80], using
the galaxy infall kinematics onto massive clusters, for f(R)
and Galileon models.

In the K-mouflage scenario, we again have ®,; = Wy, as
the factor 6A/A cancels from the sum over the two metric
potentials; see Eq. (41). However, in contrast with the
former theories, the effective Newton constant [which
enters the Newtonian potential (42)] now depends on time,
as in Eq. (77). (This effect does not appear in the other
scenarios because they have A very close to unity, within
10~* or better.) On the other hand, this time-dependent
prefactor cancels from the ratio between the dynamical
and lensing potentials or masses; see Eq. (113). However,
whereas in f(R) theories this ratio can again deviate from
unity by a factor 1/3 in the unscreened regime, and
deviations of order unity can also be reached in dilaton
or symmetron models, in realistic K-mouflage models, this
ratio can only deviate from unity by 2% at most because of
observational constraint on the scalar-field coupling,
B <0.1. Therefore, K-mouflage models cannot signifi-
cantly decrease the tension between measures of x-ray
and lensing clusters masses.

4. Cluster number counts

In most modified-gravity scenarios, the growth of
large-scale perturbations differs from the GR evolution.
This typically leads to a new scale dependence of the linear
growth rates (e.g., in f(R), dilaton, and symmetron models),
as one goes from the very large scales (beyond the Compton
wavelength of the scalar field) where GR is recovered to the
quasilinear scales where the fifth force is unscreened and
gives its maximum amplification of the gravitational inter-
action (at smaller scales, nonlinear screening leads again to a
convergence to GR). This amplification typically yields a
faster growth of matter density perturbations on scales 147!
to 104! Mpc, whence come a greater abundance of massive
halos and clusters as compared with the A-CDM cosmology;
see Refs. [65,73,81-84] for numerical studies of various
models. As explained above, a similar enhancement is found
in the K-mouflage scenarios, with the important difference
that all clusters are unscreened and that the modification of
gravity extends up to the horizon (so that the linear modes
grow faster than in A-CDM but remain scale independent).
In Galileon scenarios, the screening mechanism has a strong
impact, and, depending on the models, the tail of the halo
mass function can be either increased or decreased, as
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compared with a quintessence scenario with the same
expansion history [65].

The abundance of massive clusters has been used within
f(R) theories to constrain fg [85-87]. In combination
with CMB, baryon acoustic oscillations, and SNela Type Ia
supernovae observations, one can obtain an upper bound
Ifr,| S 1.7 x 10~ [86,87], but most of the constraint
comes from the cluster data. We can expect that for K-
mouflage models similar results should be obtained,
especially since clusters are unscreened so that their
abundance should provide useful constraints. In this paper,
we presented the physics of K-mouflage scenarios on
cluster scales, highlighting the difference between the
Einstein and Jordan frames (which can be neglected in
most other scenarios) and investigating both the modified
growth of structures and halo mass functions and the
modified cluster scaling laws. We leave a detailed
MCMC analysis of the K-mouflage parameter space to
future works.

5. Cluster correlation function

In modified-gravity scenarios, the correlation function
and the power spectrum of the matter density field are often
increased as the growth of large-scale structures is ampli-
fied by the fifth force. This also enhances the large-mass
tail of the halo mass function and decreases the bias of
massive halos as they become less rare. In the K-mouflage
models that we considered in this paper, this decrease of
the cluster bias mostly cancels the increase of the under-
lying matter density correlation, and the cluster correlation
function is much closer to the A-CDM reference than the
matter correlation itself. Therefore, the correlation of the
matter density field, which can be measured from weak
lensing observations, for instance, is a better probe of
modified cosmology than the clustering of massive halos.
The same effects, with a similar compensation between
the smaller bias and the higher matter correlation (but the
compensation may only be partial, depending on the
model) appear in other modified-gravity scenarios; see,
for instance, Ref. [88] for f(R) theories.

E. Other tests

On slightly larger scales than those probed by clusters of
galaxies, modified-gravity models have also been tested
from galaxy surveys, using redshift-space distortions of the
galaxy power spectrum [89], the clustering of Luminous
Red Galaxies [65], or the shape of the galaxy correlation
function itself [90]. Similar studies could be performed for
K-mouflage models, as they can lead to 20% deviations for
the matter power spectrum and correlation function, as seen
in Fig. 11. This will be investigated in future works.

In between the cluster and cosmological scales (e.g., the
formation of large-scale structures and the background
dynamics) and the Solar System scales (where we must
recover GR up to a very high accuracy), modified-gravity
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theories have also been tested on intermediate galaxy
scales. In particular, within chameleon scenarios, low-mass
galaxies should be unscreened so that the rotation curve of
their diffuse gas component probes the fifth force, while
their stars, being compact high-density objects, are
screened and move as in GR [91]. This can provide
constraints as tight as |fg | <107 for f(R) theories
[92]. The same behaviors apply to K-mouflage models,
and we can expect that such tests could also provide useful
constraints on these scenarios. We leave this task to future
studies.

Numerical simulations have also been used to investigate
the impact of f(R) theories on Lyman-« forest observations
(the transmitted flux fraction and the flux power spectrum)
[93]. They find changes that are too small as compared with
observational error bars and do not provide competitive
constraints. Although this study does not distinguish the
impact of screening effects, screening can be expected to be
rather inefficient for such moderate density fluctuations.
Therefore, it is likely that similar conclusions would be
reached for K-mouflage models, but we leave a detailed
study for future works.

VII. CONCLUSIONS

We have extended previous works on K-mouflage
models by deriving the equations of motion in both the
Einstein and Jordan frames for a fluid with pressure and
next focusing on the usual case where the pressure arises
from small-scale nonlinear processes. In contrast with
many modified-gravity scenarios, the Einstein and
Jordan frames already differ by a few percent at the
background level, for K-mouflage models that are consis-
tent with cosmological and Solar System constraints.
Therefore, one must take into account these deviations
and use the correct quantities when comparing with
observations.

We focused on the Jordan frame, which is better suited to
cosmological probes that involve atomic processes, such as
x-ray clusters. We show that, even though K-mouflage
models only differ from the A-CDM reference by a few
percent at the background level, the linear growing modes
can deviate by 10%, and the matter density power spectrum
and correlation function by 30%. The tail of the halo mass
function is enhanced by factors of order unity for M 2
10h~'My at z = 0.

Galaxy clusters are not screened by the K-mouflage
mechanism, contrary to what happens for chameleon
models like f(R) in the large curvature limit or Galileon
models subject to the Vainshtein screening. For this reason,
we investigate the effects of the K-mouflage modification
of gravity on clusters. We take into account the impact of
the fifth force mediated by the K-mouflage scalar field on
both the dark matter and gas profiles, through the mod-
ifications to the growth of large-scale structures and to the
hydrostatic equilibrium. We find that K-mouflage makes
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clusters slightly more compact. Similarly, the gas temper-
ature and the x-ray luminosity differ from their A-CDM
counterparts by a few percent, an order of magnitude which
follows directly from the constraints on K-mouflage
(especially on the coupling strength f) due to Solar
System tests. The only deviation of noticeable order
appears in the cluster temperature function, as the number
of clusters is larger than in the A-CDM scenario for
K-mouflage models, because of the faster growth of
large-scale structures. This appears to be large enough that
one can hope that this will be within the reach of the future
large-scale surveys. On the other hand, the cluster corre-
lation function only deviates by a few percent from the
A-CDM case because the increase of the underlying matter
density correlation function is compensated by the lower
cluster bias, as massive halos become less rare at fixed
mass, due to the enhanced structure formation.

In this paper, we only considered two kinetic functions
K () to illustrate the K-mouflage scenarios and to estimate
the amplitude of the effects that can be reached by realistic
models, which are consistent with cosmological and Solar
System constraints. We leave to future works a more
detailed MCMC analysis of K-mouflage scenarios, which
would provide the parameter space of K-mouflage models
that is allowed by cluster observations and combinations
with other observational probes.
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APPENDIX A: EQUATIONS OF MOTION IN
THE EINSTEIN FRAME

In this Appendix, we derive the equations of motion of
the scalar field and of the matter component in the Einstein
frame, for a cosmological fluid with a nonzero pressure.
The derivation is similar to the one presented in previous
papers [7,8], where we studied the background cosmologi-
cal dynamics and the formation of large-scale cosmological
structures, but with the addition of the pressure terms.

1. Energy-momentum tensors and equations of motion

We consider three components of the energy density of
the Universe, a matter fluid with nonzero pressure, radi-
ation, and the scalar field. The Einstein-frame and Jordan-
frame matter energy-momentum tensors are given by
Eq. (10), and they satisfy the relations (11). Assuming
a perfect fluid, the matter energy-momentum tensor is
written as
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Ty = (p + p)iit, + po;, (A1)
where u# is the velocity 4-vector, normalized such that
u'u, = —1, and p and p are the Einstein-frame density and
pressure, which are related to their Jordan-frame counter-
parts by Eq. (12).

For the radiation component, we neglect perturbations
and only consider the contribution to the background, with
the mean density and pressure /:)(r) and ﬁ(r) = /:)<r) /3. Their
Jordan-frame counterparts are again given as in Eq. (12).

The Einstein-frame energy-momentum tensor of the
scalar field reads as

. -2 38,
T!”’((/J) = \/—_§5§W

=K'V, oV, + M*KG,,. (A2)

The Klein—Gordon equation that governs the dynamics
of the scalar field ¢ is obtained from the variation of the
action (1) with respect to ¢. This yields

~ = dlnA
M 1N — (5 5
V,.[V'oK'| = (p - 3p) i

(A3)

Here we used the fact that the trace of the matter energy-
momentum tensor is Tﬁ = —p + 3p, from Eq. (A1), while
it is zero for the radiation component as p() = p)/3.
Combining with Eq. (A2), we find for the scalar field the
“nonconservation” equation

v, 1"

T = (0 =3p)V, InA.

(A4)

The matter energy-momentum tensor is conserved in the
Jordan frame,

v, T, =0, (A3)
which gives in the Einstein frame the nonconservation
equation

V, T =—(p—-3p)V,InA. (A6)

On the other hand, the radiation energy-momentum tensor
is conserved in both frames,

VT, =0, VT4 =0. (A7)

)
The sum of all energy-momentum tensors is also
conserved in both frames, and V,[T% + T’;(r) +T ’:((ﬂ)] =
VuTo+ Ty + Ty, ] =0.

Finally, in the Einstein frame, the Einstein equations take
the usual form, M3,G = T% + T* ot T )
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2. Background dynamics

At the level of the cosmological background, the
Friedmann equations take the usual form in the Einstein
frame,

3]“;[12311:12 = ; +;(r) +;qp7 (AS)

—2Mp = =D PP+ Py Py Py (A9)
where ;:),/, and 1:){,, are the background scalar-field energy
density and pressure (in the Einstein frame), given by
Eq. (17).

The Klein—Gordon equation (A3) gives

d[.,dp - iz ,=.dInA
] 3 —..,K/ - - 3 - 3 . AIO
S L | B Rk )
and the scalar-field energy density satisfies
dp IS - _-.dnA
d;(p:_?’H(/)(p"'p(p)_(p_?’p)T' (All)

The nonconservation equation (A6) gives for the matter
density the evolution equation

dp - .=, dnA

— =3H(p+ ] —3p)—.
i (p+p)+(p=3pP)—¢
In particular, we have d(p + p,,)/di = =3H(p + p + p, +
i7¢)- When the pressure is zero, we can define a conserved
density p by

(A12)

p=p/A.  b=p/A. (A13)
Indeed, substituting into Eq. (A12) gives
dp - ~dInA
—NZ—SHA D —3A—~. A]4
G (p+p)=3p—¢ (A14)

Thus, if p =0, we obtain a conservation of the standard
form in the Einstein frame, dp/df = —3H p. However, if
P # 0, it is no longer possible to cancel the nonconserva-
tion term of Eq. (A12) by such a simple redefinition of the
density.

The background radiation density obeys the usual con-
servation equation,
dpey)

Frile 3H(p(s) + D) = —4HD(y).

in agreement with the second Eq. (A7).

(A15)

3. Perturbations
In the conformal Newtonian gauge, the Einstein-frame
metric can be written as

d3? = @%[—(1 +2®)de® + (1 -2W)dx?],  (Al6)
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where 7 = [ df/a is the conformal time and ® and U are
the two metric gravitational potentials. Throughout this
paper, we consider the nonrelativistic and weak-gravita-
tional-fields regime, with ® < 1, U < 1, v? < 1 (where
v = dx/dr is the peculiar velocity of the particles), and we
expand up to first order in {(iJ U, v*}. Then, in the final
equations, we only keep zeroth-order terms, 1 + ¥ = 1and
1 +v?> =1, except when the potentials or the velocity
arises with a gradient operator, as in Egs. (A24) and (A27).
In particular, we have for the matter velocity 4-vector

i =at(1-®+412/2,0),

i, = —a(l+ @+ 12/2,-v,), (A17)
where we denote
oodx!
b= = (A18)
dz
the peculiar velocity.
The nonconservation equation (A6) gives
(p+ p)it, +3h(p + p)it, + (p + P)u, + V., p
=—(p—3p)V.(InA), (A19)

where we have introduced

p=iV,p, o, =iV, — 3h=V,i". (A20)

Contracting with #* and using u*u, = —1, we get

- ~ L - LA
p+3h(p+p)=(p=3p). (A21)
It is easy to see that p = a~'[9,p + (v- V)p], where V =
0/0x is the standard 3D spatial gradient, and 3h =

a~'[3H 4 (V- v)], where H = dna/dz is the conformal
expansion rate in the FEinstein frame. Therefore, this is
explicitly
op - ~ L
5,V V)p+ BH+V )P+ p)
O0lnA

=(p-3p) +(v-V)InA|. (A22)

Next, the nonconservation equation (A19) can be sim-
plified by subtracting Eq. (A21) multiplied by #,. This
leads to

Vptip p-3pV.A+i,A
p+p p+p A
This is the generalized geodesic equation. Specializing

to u = i, we get the Euler equation of K-mouflage hydro-
dynamics,

(A23)

u, =
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ov 1 9p p-3pdnA
8+(V V)v—i—(?‘(—ﬁ—~ p81+,5+p 5 )V
- VP _P=3Pg 4, (A24)
p+p P+D

From Eq. (A24), we can see that (v-V)InA ~ 9,0%+
v?(V - v), and hence this term can be neglected in the
continuity equation (A22) in the nonrelativistic limit
v? < 1. This simplifies as

gi +(v-Vp+BH+V- VP +p) = (- 3P>8lanTA
(A25)

The Klein—Gordon equation (A3) is written as

10 (500 )\ 1 ) dinA
?E( &K) =V (VoK') = =(p = 3p) i
(A26)

The (0 0) component of Einstein equations, MP1G0 =
T0+ TO( ) glVeS

.. 1 -
b=y with — V2 =—(65+06p,). (A27)
a Pl
where 8p = p — pand 8p,, = p,, — p,, with p, = —M*K +

K'(8¢/01)%. Here we denoted ¥y the usual Newtonian
potential. The (7, j) components of the Einstein equations
give (focusing on the part that is not proportional to 5;)

Moo i a0 (5 K

781'81(‘1’ —®)=(p+pvv;+ ?8i§08j(p' (A28)
From Eq. (A27), we can see that on the left-hand side in
Eq. (A28) we have Mpa20,0;U ~ 8p ~ p. Therefore, the
first term on the right-hand side, (p + p)v;v;, is negligible

as v? < 1. Next, from the Klein—-Gordon equation (A26),
we obtain, on scales that are much smaller than the horizon,

ﬂ a>ép —36p

kjaH > 1: 6p~ )
Pl k2 K/

(A29)

where k is the typical comoving wave number of interest.
Then, the second term in the right-hand side in Eq. (A28) is
of order

K/ 5pﬂ2 2H2
?Q'(Paﬂﬂ 6'0,5 e

< 5p, (A30)

which is again negligible compared to M3 a—20; 0, 0.
Therefore, the Einstein equations (A28) give
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d =T =0y, (A31)
within the approximations that we use in this paper.

To close the system formed by the equations of motion
obtained above, we must specify the pressure, for instance,
through an (effective) equation of state such as p = wp
with some parameter w.

4. Pressure due to small-scale nonlinear physics

In the previous sections, we derived the equations of
motion for a cosmological fluid with a nonzero pressure, in
the nonrelativistic limit v> < 1 for the mean fluid velocity

and in the weak field regime \i/N < 1. We made no
approximation for the pressure, and the equations of motion
also apply to fluids with a pressure of the same order as the
density, such as p = wp where w is a parameter of order
unity. However, in the usual CDM context, the pressure is
negligible on cosmological scales, and it is built on small
scales by nonlinear processes, such as the collapse of gas
clouds that generate shocks or the virialization of dark
matter halos (which generate an effective pressure through
the velocity dispersion of the particles). Then, the pressure
is of the order p ~ pc2, where ¢, is the speed of sound or the

velocity dispersion, and ¢ ~ \i/N because it is generated by
the gravitational collapse (for instance, if we have hydro-
static equilibrium, we typically have VUy ~ Vp/p as the
pressure balances gravity).

Then, in the regime p/p ~ Uy ~ v* < 1, the background
pressure is zero, 5 =0, and we recover the cosmological
dynamics studied in Ref. [7] for a pressureless fluid. Thus,
the Friedmann equations read as Eqs. (14) and (15), and
the matter and radiation densities evolve as in Eq. (16).
The Klein—Gordon equation becomes as in Eq. (19).

For the perturbations, the continuity and Euler
equations (A25) and (A24) simplify as

8p 81nA

3 + V- (pv) +3Hp = 5 (A32)
and
ov -~ JlnA
E—i—(v V)V+(H+ 9 )
~ Vp
-V(Uy+1InA)——, (A33)

while the Poisson equation remains identical to Eq. (A27)
and the Klein—Gordon equation (A26) becomes

ig ~3a(p ! 1 !
( K) =V (VoK) =

d InA
. (A34
a ot ot (A34)

Therefore, in this regime, the only effect of the pressure is
to add the usual pressure term in the Euler equation,
without mixed terms involving the coupling function A ().
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5. Subhorizon regime

To simplify the Einstein equations (A28), we already
used the small-scale limit, k/a H > 1, which corresponds
to scales that are much below the Hubble scale 7y = 1/ H.
This is the regime that is relevant for the formation of
cosmological large-scale structures, such as clusters of
galaxies. Then, the continuity and Euler equations (A32)—
(A33) and the Poisson equation (A27) can be further
simplified. Indeed, as in Eq. (A29), we obtain the estimates

Sp P aH*Sp  p

k/aH>1: —n~—_ — <=, (A35)
Mp K K op P
sp Pra*H*sp  &p
oA P00 P a0 o (A36)
Mp K K p o p
- (Vép)? A @H (3p) _ (5p)
5y = — ~ <K = A37
z4 2M4&2 K? k2 :52 [)2 ( )
&p, pPaH* 5p
—~— 1+= )« 1. A38

Then, in the continuity and Euler equations (A32) and
(A33), we can write dIn A/97 = dIn A/dz, which leads to
Egs. (20) and (21). In the Poisson equation (A27), we can
neglect op,, which gives Eq. (22). In the Klein—Gordon
equation (A34), we can neglect the fluctuations of A and
only keep the spatial gradients. This leads to Eq. (23),
which also corresponds to the quasistatic approximation.

6. Formation of large-scale structures

Introducing the Einstein-frame matter density contrast,

5= p/p- (A39)
the continuity equation (20) is also written as
95 <
+ V. [(1+8)v]=0. (A40)

a

Thus, in terms of the density contrast, we recover the usual
continuity equation, without any A-term left. This is related
to the fact that 5 = 5, where 6 = 8p/p is the conserved
matter density introduced in Eq. (A13), within our set of
approximations (p < p and A = A, so that the factor A
cancels out in the ratio 8p/p).

On perturbative scales, we set the pressure term to zero,
as in standard perturbation theory, because it is generated
by nonperturbative effects such as shell crossing and
virialization (shocks). Then, the formation of large-scale
structures can be tackled through a perturbative approach,
as in the usual A-CDM case. Introducing the two-
component vector v,
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V= <uv2> - (—(vv)gj(da/di))’ (Adl)

equations (A40) and (21) read in Fourier space as

o i
811’11& - l//2 - /dkldkzaD(kl —|— k2 - k)a(kl,kz)
Xy (ko )y (ky), (A42)
Ny 3~ o 1 dH )\ .
_—Q 1 2 ~A .~
BlnEz ) m( +€1)l//1 + < +H2 di +€2)l//2
= /dkldk250(k1 +ky — k)B(ky, k)i (k) )i (ky).
(A43)
with
A (k; +k,) -k
(l(kl,kz) :%’
1
- Ik; + ko|*(k; - k)
ki ky) = Ad44

The two differences from the equations of motion obtained
in the A-CDM cosmology are the two time-dependent
factors €;(t), defined by

dlnA g dp
dlna  Mpdina’

Lo 2R
€1(f)5%’

&(1)

(A45)

In Eq. ((A43)) the factor flm(l + &) can also be written as
f)m(l + &), where Q.. is the cosmological parameter
associated with the conserved density p defined in
Eq. (A13)), [Qu = §/Peric = Qun/A, With ey, = 3Mp H
the Finstein-frame critical density], and & =
A(l+&)—-1=A—-1+2Ap*/K".

On large scales or at early times, we can linearize the
equations of motion (A42), (A43). This gives for the linear
growing and decaying modes D, (7) the evolution equation

d2D 1 dH dD 3 - .
(24t e ) =20, (1+2)D = 0.
d(lnEz)2+( i dt+€2>dln& 3 ém(1+é)

(A46)

APPENDIX B: COMPARISON OF EINSTEIN-
FRAME AND JORDAN-FRAME
BACKGROUNDS

In this Appendix, we compare the Einstein-frame back-
ground quantities with their Jordan-frame counterparts. We
show in Fig. 20 the relative deviation of the Einstein-frame
Hubble rate from the Jordan-frame Hubble rate. From
Eq. (24), this is given by
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FIG. 20 (color online). Relative deviation, H /H —1, of the
Einstein-frame Hubble rate from the Jordan-frame Hubble rate, as
a function of the Jordan-frame redshift.

H-H .
T:A(l—ez)—l.

(B1)
We can see that at low redshift the Einstein-frame Hubble
rate is typically lower than its Jordan-frame counterpart, at
a fixed Jordan-frame redshift. The comparison with Fig. 2
shows that at z <4 the deviation between these two
expansion rates is greater than the deviation between the
Jordan-frame expansion and its A-CDM reference. As
expected, this deviation is again of the order of a few
percent, set by the value of #%. This clearly shows that for
the K-mouflage scenario one cannot treat both frames as
approximately identical, contrary to what happens in many
modified-gravity theories such as f(R) models or dilaton
models. At high z, the relative difference between both
Hubble rates vanishes, as can be seen from Eq. (24) as
A= 1lande, — 0.

We show in Fig. 21 the deviation between the Einstein-
frame and Jordan-frame density cosmological parameters.
More precisely, for the Einstein frame, we consider the
cosmological conserved matter density p introduced in
Eq. (A13). Using Eq. (37), this is given by

~ Q Q

Q=— =" B2

m A A(l - 62)2 ( )
On the other hand, the radiation density parameter in the
Einstein frame is Q(,) = Q,)/(1 — ¢,)?, from Eq. (37), and
the Einstein-frame dark-energy density is then

A ~ ~ A-—1 -~ ~
Qdezl_gm_g(r) :Tgm+g¢

(B3)
Again, we find in Fig. 21 that the differences between the
Einstein-frame and Jordan-frame cosmological parameters
are of the order of 1%.
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FIG. 21 (color online). Deviation of the Einstein-frame cos-
mological parameters from their Jordan-frame counterparts,
Q- Q, as a function of the Jordan-frame redshift. We show
the matter density parameters (solid lines) and the dark-energy
density parameters (dashed lines). In the Einstein frame, we
consider the effective matter and dark-energy densities as given
by Egs. (B2) and (B3).

APPENDIX C: UNITARITY CONSTRAINTS

The K-mouflage models involve higher-order operators
in the derivatives of ¢ and a coupling of the scalar field to
matter . This coupling induces a Yukawa interaction of the
scalar field with fermions,

L, = B2 s
= B——yydp,
" My

(C1)
where 0p = ¢ — ¢ are the fluctuations around a back-
ground {. Interaction terms in the scalar Lagrangian of the
type M*7" in a background field configuration 7 imply the
existence of the two-body scattering processes ff — @ at
tree level, with the exchange of one scalar field ¢. In
quantum mechanics, unitarity of the scattering matrix
requires that the scattering amplitude M7, for this
process should satisfy M,7_,,, < 16x. In the clusters that
we consider in the main body of the paper, the background
value of ):( <1073 is small, and the background value of
K’ =1 implies that clusters are unscreened. We focus on
processes that can happen inside the hot gas of the clusters
and consider the two-body scattering processes involving
either electrons or nuclei. For temperatures of the gas less
than T,<10 keV, the particles are nonrelativistic. We only
consider K-mouflage functions K (¥) of which the small y
expansion starts at the cubic order. In this case, the three-
point self-interaction of the scalar field is of order

(0:)(0,5¢) (05¢)*
M4 M4 ’

Ly~ My (C2)

where we consider a quasistatic background configuration.
The energies of the two outgoing scalars are E;, ~ my,
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whereas the spatial 3-momentum of the particles is p, ~
\/m;T. The scalar propagator gives a factor of 1/m7 in the
nonrelativistic limit, and finally we get that the scattering
amplitude can be estimated as

2

m -
. S =3/2
Mg~ Pyp i

For protons and neutrons at temperatures 7, < 10 keV for
$ = 0.1 and using 7 < 1073, we find that My S 1072,
implying that unitarity is respected in the two-body
processes.

Terms of higher order in y can lead to processes such as
ff = ng involving n scalars in the final state. The scattering
cross section grows fast with the number of outgoing
particles and can exceed the Froissart bound on the

PHYSICAL REVIEW D 92, 043519 (2015)

Ol <. This violation is relaxed by classicalization
"y

[94,95] in the same fashion as in Galileon models [18],
where a classical lump sourced by the incoming energy of
the two fermions in the center-of-mass frame is created. For
K-mouflage models, this classical configuration has a typical
size given by the K-mouflage radius Ry [11], and the
scattering cross section becomes equal to the geometrical
cross section proportional to R%. This process is analogous
to the creation of black holes in high-energy collisions.

K-mouflage models also satisfy a nonrenormalization
theorem analogous to the one for Galileons [96]. The
quantum corrections going beyond the K-mouflage
Lagrangian are negligible when r > My!, where My =
K'V4 M. Inside galaxy clusters, this is a short scale around
1 mm, and we can completely neglect quantum corrections
on cluster scales.
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We present a class of modified-gravity theories which we call ultra-local models. We add a scalar
field, with negligible kinetic terms, to the Einstein-Hilbert action. We also introduce a conformal
coupling to matter. This gives rise to a new screening mechanism which is not entirely due to
the non-linearity of the scalar field potential or the coupling function but to the absence of the
kinetic term. As a result this removes any fifth force between isolated objects in vacuum. It turns
out that these models are similar to chameleon-type theories with a large mass when considered
outside the Compton wave-length but differ on shorter scales. The predictions of these models only
depend on a single free function, as the potential and the coupling function are degenerate, with
an amplitude given by a parameter o < 107%, whose magnitude springs from requiring a small
modification of Newton’s potential astrophysically and cosmologically. This singles out a redshift
Za ~ @~ 1/3 > 100 where the fifth force is the greatest. The cosmological background follows the
A-CDM history within a 107¢ accuracy, while cosmological perturbations are significantly enhanced
(or damped) on small scales, k 2> 2hMpc~! at z = 0. The spherical collapse and the halo mass
function are modified in the same manner. We find that the modifications of gravity are greater for
galactic or sub-galactic structures. We also present a thermodynamic analysis of the non-linear and
inhomogeneous fifth-force regime where we find that the Universe is not made more inhomogeneous
before zo when the fifth force dominates, and does not lead to the existence of clumped matter on
extra small scales inside halos for large masses while this possibility exists for masses M < 10* Mg

where the phenomenology of ultra-local models would be most different from A-CDM.

PACS numbers: 98.80.-k
I. INTRODUCTION

Since the discovery of the accelerated expansion of the
Universe [1, 2], explaining its nature has become a ma-
jor problem in modern cosmology. Most of the possible
solutions for this problem rely either on the inclusion
of a dark energy component and/or on modifications of
General Relativity (GR) [3]. These alternative theories
of gravitation, which go beyond a simple cosmological
constant, usually imply the presence of at least one ad-
ditional low-mass scalar field in the theory and induce
the presence of a fifth force on cosmological scales. How-
ever, the presence of the scalar field must have a very
small impact on the dynamics of the Solar System and
on any laboratory test due to very stringent constraints
imposed by observations (e.g. [4]). One possible solution,
which was recently explored in [5], is to construct mod-
ified gravity theories with a screening mechanism that
provides convergence to GR in dense environments [6, 7]
such as the Solar System.

In this paper we investigate a particular type of modi-
fication of gravity with a new screening mechanism, that
we will call “ultra-local models”. We add to the Einstein-
Hilbert action a scalar field whose Lagrangian has a zero
(or negligible) kinetic term. For this reason, the equation
of motion for the scalar field of this theory, which gives
the relation between the scalar and the matter fields, is a
”constraint” equation with no time derivatives, contrary
to what happens in the case of other scalar tensor theo-
ries. In the ultra-local models, the scalar field is coupled

to the matter field via a non-linear conformal transfor-
mation function of the field itself and depends on the
local value of the matter density. In such a way the fifth
force associated to the scalar field is proportional to the
local gradient of the matter density. This provides an au-
tomatic screening mechanism as it implies that there is
no fifth force between isolated compact objects, indepen-
dently of the parameters of the model. This ultra-local
property ensures that astrophysical systems like the Solar
System are perfectly screened.

Thus, although these models can be seen as the limit of
chameleon scenarios with a scalar field mass or potential
that is much greater than its kinetic energy, outside the
Compton wave-length, they differ from the chameleon
scenarios on smaller scales. This gives rise to new fea-
tures for both the definition of the theory and its phe-
nomenology. In particular, because the scalar field po-
tential and coupling function are degenerate, we find it
convenient to choose (without loss of generality) a linear
potential, so that the physics arises from the non-linearity
of the coupling function. This is somewhat similar to
what happens in the Damour-Polyakov mechanism [8],
although here we have no potential and the field is not
attracted to the minimum of the coupling function (the
screening does not arise from the vanishing of the cou-
pling but from its locality). In contrast, other screening
mechanisms studied in the literature are associated to
non-linearities of the scalar Lagrangian of the scalar field
(e.g. chameleon [9], Vainshtein [10] or K-mouflage [11])
either in the kinetic terms or the potential.



The non-linear coupling function is the only free func-
tion of the theory, which can be constrained using the-
oretical and cosmological results. In particular, we re-
quire the coupling function to be severely bounded so
that its contribution to the metric potential does not ex-
ceed the Newtonian one, associated with typical cosmo-
logical perturbations and astrophysical objects. These
ultra-local models correspond to modified source models
[12] where the coupling to matter has a magnitude of or-
der |In A| < 1076 to guarantee that the contribution of
modified gravity to Newton’s potential is at most of or-
der one. This implies that the A-CDM expansion history
is recovered up to a 1075 accuracy. At the linear level,
the scalar field in this theory acts as a scale and time
dependent modification of the growth rate which can ei-
ther enhance or diminish it, depending on the shape of
the coupling function. On astrophysical scales, the mod-
ification of gravity is the largest on galactic scales while
no effects are expected in the Solar System and on clus-
ter scales. On the other hand, this is not the case in-
side halos, in particular for masses below 10'2h~1 M.
The effects of the ultra-local interaction can be so drastic
for smaller masses inside the Navarro-Frenk-White pro-
file that the system can undergo a thermodynamic phase
transition with the presence of small clumps. We expect
that the fifth force on these small scales is eventually
screened by the ultra-locality of the scalar interaction.
This would lead to a different landscape of inhomogeni-
ties for small mass objects M < 101! M, deep inside their
cores. A more precise analysis would require numerical
simulations and this is left for future work.

The paper is organised as follows. In section II we
introduce the ultra-local models and in section III we
study the equations of motion, both in Einstein and Jor-
dan frames. In section IV we consider some generic con-
straints on the form of such theories and we present some
explicit models, while in section V we study the valid-
ity and the self-consistency of the theory. We study the
evolution of the cosmological background in section VI,
of cosmological linear perturbations in section VII, the
dynamics of the spherical collapse in section VIII and
the halo mass function in section IX. We consider the
screening properties of the theory, from clusters of galax-
ies down to the Solar System and the Earth, in section X.
We investigate the formation of non-linear structures and
the fifth-force non-linear regime in section XI, consider-
ing the stability of both cosmological and astrophysical
inhomogeneities. In section XII we study the dependence
of the previous results under the variation of the free pa-
rameter « of the coupling function and in section XIII we
compare the ultra-local models to other modified gravity
theories. Finally we conclude in section XIV.

II. SCALAR-FIELD MODEL WITH
NEGLIGIBLE KINETIC TERM

‘We consider scalar field models with actions of the form
d*z \/—§

v / 42 "G Lo (0D, g, (1)

S =

M2 -
%R+£w(@)]

where the various matter fields follow the Jordan-frame
metric g,,, with determinant g, which is related to the
Einstein-frame metric §,,,, with determinant §, by [10]

Guv = Az(@)guw (2)

In this paper, we investigate models where the scalar field
Lagrangian is dominated by its potential term, so that
we write

Ly(p) =~V(9), 3)

where we set the kinetic term to zero. Then, assuming
that the potential V() can be inverted (i.e., that it is
a monotonic function over the range of ¢ of interest),
we can make the change of variable from ¢ to V. More
precisely, introducing the characteristic energy scale M*
of the potential we define the dimensionless field x as

-_ V()
X:_M47

Therefore, in terms of the field x the scalar field La-
grangian and the conformal metric transformation read
as

and A(Y) = A(p). (4)

Li(x) = MY and g = A2(X) G- (5)

Thus, these models are fully specified by a single func-
tion, A(x), which is defined from the initial potential
V() and coupling function A(p) through Eq.(4). This
means that there is a broad degeneracy in the action (1)
as different couples {V(¢), A(p)} with the same rescaled
coupling A(x) give rise to the same physics. Therefore, in
the following we work with the field ¥ and with Eq.(5).
The energy scale M* is arbitrary and only defines the
normalization of the field y. We can choose without
loss of generality M* > 0 and we shall typically have
M~ Dde0, Where pgeo is the mean dark energy density
today , if we require the accelerated expansion of the Uni-
verse at low z to be driven by the scalar field potential
V(p), without adding an extra cosmological constant.

IIT. EQUATIONS OF MOTION

Because the matter fields follow the geodesics set by
the Jordan frame and satisfy the usual conservation equa-
tions in this frame, we mostly work in the Jordan frame.



This is also the frame that is better suited to make the
connection with observations as atomic physics remains
the same throughout cosmic evolution in this frame [13].
However, because the gravitational sector is simpler in
the Einstein frame, we first derive the Einstein equations
in the Einstein frame, and next translate these equations
in terms of the Jordan tensors.

A. Einstein frame
1. Scalar-field and Einstein equations

The scalar-field Lagrangian (5) is given in the Einstein
frame, where the equation of motion of the scalar field
reads as

~dIln A
Y4+ T =0 6
M+ T ; (6)
where T = T* is the trace of the matter energy-

momentum tensor in the Einstein frame. From the con-
formal coupling (5) the energy-momentum tensors in the
Einstein and Jordan frames are related by

TH = A*TH and T = A*T. (7)

As there is no kinetic term in the scalar-field Lagrangian
(5), the “Klein-Gordon” equation (6) contains no deriva-
tive term and it is a constraint equation, which gives
the field x(x) as a function of the matter density field
p(x). The energy-momentum tensor of the scalar field
also reads as

TH ) = Mg, (8)
so that the scalar-field energy density and pressure are
py = —M'X, By = Mx = —py. 9)

In the Einstein frame, the Einstein equations take their
standard form, G4 =T}

2. Cosmological background in the Einstein frame

Using the conformal time 7 and comoving coordinates
x, the background metrics in both frames are given by
d3? = a%(—dr? + dx?) and ds? = a?(—dr? + dx?), with

a=Aa and dt = Adt, r= Ar, (10)

where we denote background quantities with a bar. Thus,
the cosmic times and physical distances are different in
the two frames. From Eq.(7) the densities and pressures
are also related by

p=A%, p=A"p, (11)
while the Friedmann equation takes the standard form,

BMBH? = @ (p+ praa + Px), (12)

3

with H = dIna/dr the conformal expansion rate in the
Einstein frame. From Eq.(9) the background scalar field
energy density and pressure are given by

px = —M'X, Py = MY = —/x. (13)

3. Perturbations in the Einstein frame

Taking into account the perturbations from the homo-
geneous background, the Einstein-frame metric reads in
the Newtonian gauge as

d3? = @*[—(1 +2®)dr? + (1 — 2¥)dx?],  (14)

and the Einstein equations yield, at linear order over the
metric potentials and in the quasi-static approximation
(for scales much below the Hubble radius),

o V2. 85+ 05y
O=U=U ith — Uy = ——— X, 15
N with =Wy 272, (15)

Here we use the non-relativistic limit v? < 2, so that
the gravitational slip ® — ¥ vanishes, and §p = p— p and
§pzx = Pg — Py are the matter and scalar-field density
fluctuations. in particular, we have

§pg = —M*ox. (16)

B. Jordan frame
1. Cosmological background in the Jordan frame

From Eq.(10) the conformal expansion rates in the two
frames are related by

_ dln A
H=(1—e)H with ex(t)= d11111a’

while the densities and pressures are related as in Eq.(11).
Therefore, the Friedmann equation (12) yields

3M1%1,H2 = (1 - 62)_26L2(ﬁ + Prad + ﬁ)”()» (18>

(17)

where the Jordan-frame Planck mass is

MR\(t) = A72(t) B, (19)
Then, we can define an effective dark energy density by
3MEH? = a*(p+ Prad + Pac) (20)
which gives
_ _ 2e¢5 — e% o _
=P+ —2—2 : o). 21
Pde px+(1_62)2(p+pad+px) (21)

In the Jordan frame the matter obeys the standard
conservation equations, V, T} = 0, and the background
matter and radiation densities evolve as

£o Prado (22)

p=—= Prad = .
a3’ at




The scalar-field equation of motion (6) gives

dln A AX 14 D
d~ and E =A M4 27‘[

M= A5 (23)

hence

- - dpg _ _
ps = —AT MY, % = —dexHpy —eaHp.  (24)

2. Perturbations in the Jordan frame

In the Jordan frame we write the Newtonian gauge
metric as

ds® = a®[—(1 + 2®)d7? + (1 — 2¥)dx?],  (25)

so that the Einstein- and Jordan-frame metric potentials
are related by

A2 .
1+2<1>_—(1+2<1>) 1-20=—5(1-29), (26)

while the Einstein-frame Newtonian potential (15) is also
the solution of
V2o (A%p) +6(Alpy)
FER 2AME

(27)

Since we wish the deviations from General Relativity
and the A-CDM cosmology to be small, at most of the
order of ten percent, the potentials ® and ¥ cannot devi-
ate too much from the Jordan-frame Newtonian potential

defined by

VZ\IJ 5p+5p,2

N = ) (28)
2 C2MZ

a

where the scalar field density fluctuations must also re-
main modest as compared with the matter density fluc-
tuations. Therefore, Eqs.(26) and (27) lead to the con-
straints

\— <1Uxl, 1505l < I60]. (29)

Then, since |¥y| is typically of order 1075, we can lin-
earize in dA as we did for the metric potentials, and
within a 107° relative accuracy we obtain

®=Uny+dlnA, T=Uy-4dlnA, (30)
and
Spy = — AT MY (31)
The equation of motion of the scalar field reads as

dlnA
Mt =A%) o
X

(32)

The matter and radiation components obey the stan-
dard equations of motion, which gives for the matter com-
ponent the continuity and Euler equations

0
a—ﬁ+(v-V)p+(3H+V-v)p:O, (33)
and
ov
E + (V V)V +Hv =-Vo. (34)

From Eq.(30) we have V® = VUy + VIn A, and the
scalar-field equation (32) gives

InA 4
hAg: = Myy, (35)

InA=
Vin ix A,

so that the Euler equation (34) also reads as

g—:+(V'V)V+HV=—V\I/N—m, (36)
with
Mic?
ba = TX’ (37)

where we explicitly wrote the factor ¢2.

Thus, in terms of the matter dynamics, the scalar-field
or modified-gravity effects appear through two factors,
a) the modification of the Poisson equation (28), because
of the additional source associated with the scalar-field
energy density fluctuations and of the time dependence of
the Jordan-frame Planck mass, and b) the new pressure
term p4 in the Euler equation (36). This pressure py
corresponds to a polytropic equation of state, as it only
depends on the matter density (the sum of cold dark
matter and baryons).

3. Linear regime in the Jordan frame

On large scales or at early times we may linearize the
equations of motion. Expanding the coupling function

A(x) as

5

ImAY)=InA+ Z (38)

the scalar field equation (32) gives at the background and
linear orders

b
By

0p/p the matter density contrast.

M= A3, oy ===, (39)

where we note § =
This also yields

dpa = —e1(t)pc®s and dpg = e1(t)p), (40)



with

aft) = LM G _e

Bo Atp Pa 3 —de’

where to obtain the last relation we took the time deriva-

tive of the first relation in (39) and used the second ex-
pression in (17).

The continuity equation (33) reads as 9;6 + V - [(1 +
0v] = 0 in terms of the density contrast. Combining with
the Euler equation at linear order, this gives

026 06 9w pa’
+H +EICV5_2M§,1

(41)

9.2 g (14 €1)d. (42)

As compared with the A-CDM cosmology, the pressure
term V26 introduces an explicit scale dependence. Going
to Fourier space, the linear growing modes D(k,t) now
depend on the wave number k and obey the evolution
equation

)
a2

1 dH\ 0D 39
d(lna

W) owa 2 (TIP=0

(43)
where H = dlna/dt is the Jordan-frame expansion rate
(with respect to the Jordan-frame cosmic time t) and
the factor €(k,t), which describes the deviation from the
A-CDM cosmology, is given by

27,2
2 *k ) . (44)

G(kﬂf) = 61(15) <1 + Em

Thus, the two effects of the scalar field, the contribution
to the gravitational potential of §p; and the pressure
term due to the conformal transformation between the
Einstein and Jordan frames, modify the growth of struc-
tures in the same direction, given by the sign of ¢;. A
positive €; gives a scale dependent amplification of the
gravitational force and an acceleration of gravitational
clustering. The k-dependent pressure term dominates
when ck/aH > 1, that is, on sub-horizon scales. More-
over, we have (ck/aH)? ~ 107 today at scales of about
1 h~'Mpc. Therefore, we must have

ler] <1077 (45)

to ensure that the growth of large-scale structures is not
too significantly modified. This also ensures that the
first condition in (29) is satisfied on cosmological scales.
Moreover, the fluctuations of the scalar field energy den-
sity in the Poisson equations are negligible and €5 is very
small, of order 10=7, from the last relation in Eq.(41).

IV. EXPLICIT MODELS
A. Constraints
1. Small parameter o

In usual scalar-field models with a kinetic term, the
Klein-Gordon equation for the scalar field that corre-
sponds to Eq.(32) contains a derivative term V2, which

suppresses the fluctuations of the scalar field on small
scales. This mechanism is absent in our case and the
scalar field y only follows the variations of the local mat-
ter density. However, we wish the fluctuations of In A to
remain small and of order 1076 from cosmological scales
down to astrophysical objects such as stars and plan-
ets, to comply with the first constraint in Eq.(29) and to
ensure that the metric potentials remain close the New-
tonian potential. Because the density varies by many
orders of magnitude from the intergalactic medium to
the atmospheres and cores of stars and planets, and to
the typical densities found in the laboratory on Earth,
and we cannot rely on the small-scale suppression due
to derivative terms, the function In A must be bounded
within a small interval over its full domain,

|InA] <107% hence |A—1] <1075  (46)

Therefore, the conformal factor A always remains very
close to unity (we can renormalize A by a constant mul-
tiplicative factor without loss of generality). On the other
hand, from Eq.(32) we have dIn A/dx = M*/A*p, hence

dln A
4
e >0, (47)

and

dln A

— 0. (48)

The small range of the function A(x) in Eq.(46) also
implies that the Jordan-frame Planck mass (19) does not
vary by more than 1076, This ensures that the bounds
on the variation with time of Newton’s constant obtained
from the BBN constraints [14, 15] or the Lunar Ranging
measurements [16] are satisfied. It also means that at
the background level the Einstein and Jordan frames are
identical up to 1076.

The small range of In A also leads to a small amplitude
for the factor €3 defined in Eq.(17), of order 1075, In fact,
from Eqs.(45) and (41) we have seen that we also require
€1 and ey of order 1077, so that both constraints give
about the same condition (46) on the coupling function
A(X). Then, we recover a standard A-CDM cosmology
up to this order. Indeed, with €5 ~ 0 we recover the usual
Friedmann equation in Eq.(18), the dark energy density
Pde 1s almost identical to the scalar field energy density
Py in Eq.(21), and the latter is almost constant at low z
from Eq.(24). From Eq.(24) we find that the value of the
scalar field today must satisfy

Paco = —Ag *M*Xo ~ —M*Xo, (49)

if the scalar field drives the accelerated expansion of the
Universe at low z without an additional cosmological con-
stant. In particular, this implies Yo < 0. Finally, we
must check that €;, defined in Eq.(41), remains small, as
in Eq.(45), and vanishes at high redshift if we wish to re-
cover the standard clustering growth in the early matter
era.



In the following we use the approximation A ~ 1 to
simplify the expressions and we present several explicit
models for the coupling function A(Y) that satisfy the
conditions (46)-(49). In particular, the equation of mo-
tion of the scalar field (32) becomes

dlnA  M*
dx p

which implicitly defines the functions x(p) and In A(p)
for each coupling function In A(Y). To obtain a unique
and well-defined solution x(p) and A(p) to the scalar-field
equation (50), we require that dln A/dx be a monotonic
function that goes from 0 to +o00 over a range of y, which
will define the domain of the scalar field values. Then
X(p) and In A(p), defined by the values that are solutions
of Eq.(50) for a given p, are also monotonic functions of
p-

; (50)

2. Derived characteristic density po and redshift zq

From Eq.(46) we write
I A(x) = a A(X),

where « is a small parameter that ensures the condition
(46) is satisfied, whereas A(¥) is a bounded function of
order unity and x is also typically of order unity. Then,
the equation of motion (50) reads as

dx 1 ‘L 4 ap
X = 5 with p= M
This implicitly defines the functions A(p) and x(p), from
the value of x that solves Eq.(52) for a given density. The
changes of variables In A — X and p — p have removed
the explicit parameters M* ~ pqe0 and a < 1079, so that
the functions A(x), A(p) and ¥ (p) do not involve small nor
large parameters. Therefore, in addition to the density
M?* ~ pgeo, which is associated with the current dark
energy density from Eq.(49), these models automatically
introduce another higher density scale p, given by

a<107°, (51)

(52)

T P20 > 10 B (53)
(0% (6

Pa =

This implies that, from the point of view of the coupling
function In A, the low-redshift mean density of the Uni-
verse is within its very low density regime. Moreover, we
can expect a cosmological transition between low-density
and high-density regimes at the redshift z, where p ~ pq,
which corresponds to

o ~a? <001, zo ~a”V2>100.  (54)

B. Model (I): x is a bounded increasing function of
p

We first consider the case where X(p) is a monotonic in-
creasing function of p, with ¥_ < ¥ < X4+. From Eq.(48)

we find that dln A/dY must decrease from +oo to 0 as ¥
grows from x_ to x4+. Moreover, the boundary y_ will
correspond to the late dark energy era while the bound-
ary x4 will correspond to the early matter era. From
Eq.(49) we have Y_ < 0 and to avoid introducing an-
other parameter we can take x4 = 0, which corresponds
to a vanishing dark energy density at early times from
Eq.(24) (but we could also take any finite value, or an
infinite boundary x4 — oo that is reached sufficiently
slowly to ensure that the dark energy component is sub-
dominant at high redshift). A simple model that obeys
these properties and the constraint (46), which also reads
as Eq.(51), is

model (I): —1<x<0, InA=ay1-x2 (55)

with

a>0, a~1075 (56)

Here we set x_ to —1 without loss of generality, as this
merely defines the normalization of M* and «. Instead
of the square root we could have chosen a more general
exponent, In A = a(1 —¥?)” with 0 < v < 1, but v = 1/2
simplifies the numerical computations. Then, the scalar-
field equation (50) gives

W= (1+ 0‘2”2)_1/2, (57)

M?
8\ —1/2
and
a2 p? -1/2
palp) = —M*e? <1 + Mps ) : (59)

We recover the fact that the system depends on the den-
sity through the dimensionless ratio p = p/p, introduced
in Egs.(52)-(53). In terms of the scale factor a(t), using
p = po/a’, this gives (at leading order)
ap/M*
(1 + a2ﬁ2/M8)3/2
(60)

and we can check that |e2| = 3le1] S a <« 1 at all red-
shifts, while we have yo ~ —1 and M?* ~ pge0. At low
redshift, z ~ 0, we actually have |e2| = 3|e1| ~ a2, which
is much smaller than the maximum value of order « that
is reached at a redshift zo ~ a~1/3. Therefore, in this
model the modification to the growth of large-scale struc-
tures is the greatest at high redshifts, z ~ z,, much be-
fore the dark energy era.

As explained in Sec. 11, this choice of A(Y) corresponds
to an infinite number of couples {V(¢), A(¢)}. In par-
ticular, from Eq.(4) this corresponds for instance to

(Ia) : V(p) = M4\/%7 A(p) = ePe/Me

(61)

e2(a) = 3e1(a) and €(a) = —a




with 8 > 0 and 0 < Bp/Mp; < «, where we assumed an
exponential coupling function A(yp), or to

(Ib) : V(g) = M9/ A(g) = o/ ime PP

(62)
with v > 0 and 0 < ¢ < 400, where we assumed an
exponential potential V(y).

C. Model (II): x is a bounded decreasing function
of p

We next consider the case where y is a monotonic
decreasing function of p, over y_ < x < x4. Thus,
dIn A/dx must increase from 0 to +oo as Y grows from
X— to x4. Now x_ corresponds to the early matter
era whereas x4 corresponds to the late dark energy era,
hence x4+ < 0. A simple choice that satisfies these con-
ditions is

model (II): X+ < X < —1,

A= —ay/(1+x)(1+ 2% - X), (63)
where again « is a small positive parameter as in Eq.(51)

and we set y— = xx and x4+ = —1 without loss of gener-
ality. Then, the scalar-field equation (50) gives

14 X«
T+ o2 02/ M3’

1+ X«
1+ M8/a2p?’

1+ X«
V1+a2p2JME
which again makes explicit the dependence on the dimen-
sionless ratio p = p/p. introduced in Egs.(52)-(53). In

terms of the scale factor a(t) this gives ez(a) = 3e1(a)
and

X(p) = X« — (64)

InA(p) =« (65)

pa(p) = M2y, — M*c? (66)

ap/M*
1+ a2p2/ MEY3/2"

Again, we can check that |e2| = 3le1] < o < 1 at all
redshifts, with Yo ~ —1 and M* ~ pgeo. We also have
lea| = 3le1| ~ o? at low z and the maximum value of
order « is reached at a redshift z, ~ a~1/3.

This choice of A(Y) corresponds for instance to

e1(a) = —a(l + X.) (67)

(Ia) : V(p) = —M* |x. + \/(1 +x4)% — (ijpl)
A(QD) — Pe/Mp (68)

with 8 > 0 and a(l + X«) < Bp/Mp; < 0, for an expo-
nential coupling, or to

(Ib) : V(p) = Mie1e/Mr,

A((p) = e*a\/1+2>~<*72>~<*e’w’/MP175*2‘“"/MP1’ (69)

with v > 0 and —In(—x.) < v¢/Mp; < 0, for an expo-
nential potential.

D. Model (III): ¥ is an unbounded decreasing
function of p

As a variant of the model (II) of Eq.(63), where x(p)
is a bounded decreasing function of p, we can consider
the model

1
model (ITI): —oco<x < -1, InA=—ay/1+ =,
X

(70)
where X is unbounded from below. This avoids introduc-
ing a finite lower bound Y.. Equation (50) gives

a?p?

T AME

which is a fourth-order algebraic equation for y. We can
easily solve it in two different regimes, namely when y —
—1(p — 0) and x - —o0 (p — +00). In the former case,
we obtain

(X +1) (71)

2,2

ap T R
x—= -1 ra <l X(p)=-1-75 (72
p

lnA(p) ~ —O{2W—4, (73)

4.2 1 20°p°
pa(p) ~ =M — M ME (74)

At leading order this gives

a2,5

€2 = 361 with €1(a) = TN (75)

and again we can check that ¢;(a) ~ a2 at low z. On the
other hand, in the high-density limit we obtain:

« - «
X — —00, H’l>>1: X(p) = — Mﬁ4, (76)
4
InA(p) ~ —a + O‘;\Z , (77)
(6%
palp) = — M [, (78)

and

/ 4
€2 = 3e1 with €1(a) ~ a;\//)l ) (79)

which again shows that |e1(a)| < « in this limit.
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FIG. 1: Coupling functions and scalar field potentials for the model (I) of Eq.(55) (upper row), the model (II) of Eq.(63)
(middle row) and the model (III) of Eq.(70) (lower row). Left column: coupling function A(X) [the plot shows In(A)/a]. Middle
column: coupling function A(p) for the examples (a) (red lines with crosses, in units of Sp/aMpi), and (b) (blue lines with
squares, in units of yp/aMp). Right column: potential V(p)/M? for the examples (a) (red lines with crosses, in units of
Be/aMpi), and (b) (blue lines with squares, in units of vp/aMp).

As in the previous cases this coupling function A(Y) with 8 > 0 and —a < S/Mp; < 0, and
corresponds to an infinite number of pairs {V (), A(p)}.
In particular, the case of an exponential coupling or an
exponential potential are described by

M (D) : V(p) = Mie¢/Mn A(p) = e—av/1Ier /7

(ip) = eP#/Mr1(80) (81)

(IlTa) = V(p) = , A
¥ 5 )
1- (a]\fpl) with v > 0 and —oco < y¢/Mp; < 0.



E. Common low-redshift and low-density behavior

In the following, we consider the case o = 1076 and
X+ = —2 for the parameters that define the models
(I), (II) and (III). In all cases we normalized the low-
density limit of the scalar field y to —1 and the deriva-
tive d1n A/dx must go to +oo in this limit, from Eq.(50).
For a power-law divergence, dln A/dx ~ «|x+1|7", with
0 < v < 1, this gives |X + 1| ~ (ap/M*)V/” in the low-
density regime. In the explicit models (55), (63) and (70)
we have v = 1/2, so that in all three cases we have:

ap . ap 2
T <1 |X+1|~(—4) , (82)
and
ap M Q@
- << 1 : = =75, 83
i ST RE T e
3
a 9 M4>
~N — ~ (X _— 5 84
i~ e~ (5 (®4)
B = p
|e1|=@~a\x+1|1/2~a2m. (85)
For  future use, writing  dInA/dInp =

(dIn A/dx)(dx/dInp), we also obtain in this low-

density regime

(86)

ap ~ |dlnA 9 P
M \ Fﬁﬁ

dlnp

In models (I) and (II), since the scalar field x has a
finite range of order unity, Eq.(49) implies M* ~ pge0 ~
po. Therefore, at low redshifts we have from Eq.(82):

a>aq ~a’?: |x+1] ~a%aC, (87)

where we normalized the scale factor to unity today,
a(z = 0) = 1. In particular, we have [y +1| ~ a? ~ 10712
at low z, so that Eq.(49) implies

M* = pyeo, (88)

up to a 10™!2 accuracy, and this parameter is completely
set by the reference A-CDM cosmology. Moreover, the
dark energy density is almost constant, along with ¥,
up to a redshift z, ~ a~/3 ~ 100, which means that
the background cosmology cannot be distinguished from
the A-CDM reference, in agreement with the analysis in
Sec. IV A. For the model (IIT) we also take M* = p4co,
which gives the same behaviors. Then, the scalar-field
equation (50) reads as

_ dlnA _ QdeO 3
Bi(a) = i Qmoa. (89)

Thus, the first derivative of the coupling function,
dln A/dy, at the background level, is of order unity at
low z (despite the prefactor « of In A, which means that
at low z we are close to the divergence of dln A/dy) and
decreases with redshift as (1 + 2)73.

Thus, these models involve two free parameters that
must be set to match observations: the usual dark energy
scale M* = pye0, as in most cosmological models includ-
ing A-CDM, and the parameter o < 1076 that is needed
to make sure that the fifth force never becomes too large
as compared with Newtonian gravity. Of course, this is
only an upper bound and we can take « as small as we
wish, as we recover the A-CDM scenario and General Rel-
ativity in the limit & — 0 [where the coupling function
A(X) becomes identical to unity and the non-minimal
coupling between matter and the scalar field vanishes].

In Fig. 1, we show the coupling and potential functions
of the models (I) (upper row), (II) (middle row) and (III)
(lower row). The left column shows A(¥) = o~ ! In A(X)
from Egs.(55), (63) and (70). The middle column shows
M) = a~lInA(p) for the variants (a) and (b). The
right column shows —x = V(¢)/M* for the same cases.

In models (Ia,Ib) ¢ is positive whereas in models
(ITa,ITb,ITa,ITIb) it is negative. It has a finite range
in models (Ta) (0 < By/aMp < 1), (IIa) (1 + x« <
Byp/aMp) < 0), (IIb) (—In(—x«) < v¢/Mp; < 0) and
(IlTa) (-1 < Bp/aMp; < 0), while it extends from zero
to 400 in model (Ib) and from zero to —oo in model
(IIIb).

In all cases, the late-time dark energy era, t — o0,
corresponds to ¥ — —1, ¢ — 0, V/M* — 1 (i.e. the end-
point at the center of the plots). It is the maximum of the
potential V() in model (I) and the minimum in mod-
els (IT) and (III). This low-density limit corresponds to
dln A/dx — +oo, which implies (dIn A/dy)(dp/dV) —
—o0. In models (a), this is achieved by dV/dyp — 0, while
in models (b) this is achieved by dIn A/dp — +oc.

The early-time or high density limit corresponds to
X — 0 in model (I), x = —2 in model (II) and ¥ — —o0
in model (III). It also corresponds to dln A/dx — O,
which implies (dln A/dp)(de/dV) — 0. In models (a),
this is achieved by dV/dp — —oo, while in models (b)
this is achieved by d1n A/dyp — 0.

V. SELF-CONSISTENCY AND REGIME OF
VALIDITY OF THE THEORY

Before we investigate the properties of the models in-
troduced in this paper, from cosmological to Solar Sys-
tem scales, we consider in this section the self-consistency
and the range of validity of theories defined by the La-
grangian (3).



A. Stability with respect to a nonzero kinetic term

In the Lagrangian (3) we set the kinetic term of the
scalar field to zero. However, in realistic scenarios the
models studied in this paper may rather correspond to
cases where the scalar field Lagrangian is merely domi-
nated by its potential term with a negligible but non-zero
kinetic term. Then, we must check whether the solution
(23) obtained in the previous sections remains meaning-
ful for a small non-zero kinetic term. Thus, we generalize
the Lagrangian (5) to

Le(0) = ~5VuRVIX + MY with k0. (90)
Using A ~ 1, so that the Einstein and Jordan frames are

identical at the background level, the equations of motion
(6) or (50) of the scalar field generalize to

0 ox
4 2 -2.2y25 4_ (91
" ar (a 8T>+Im VXM X oD

1. Quasi-static cosmological background

At the background level, considering a scalar field that
only depends on time, we expand the solution of the
Klein-Gordon equation (91) around the solution Yo of
Eq.(23), obtained in the previous sections with a zero
kinetic term,

o dlnA
X=Xo+¢ with M4=p;1
X

(o) (92)

Using the expansion (38) of In A around In A(Yo), this
gives at linear order over ¢,

4 d dé - 4 d dXo
4 @ [ 209 _ -4 @ [ 20X0
" <a dT) Pha¢ " <a dr ) - (99)

In the limit x — 0, the particular solution reads at linear
order in x as

- K d Qd)zo
=— — — . 94
%0 =55, dr <“ dr ) (94)
As expected, it vanishes in the limit k — 0. More pre-

cisely, the correction 5;30 is negligible as compared to the
quasi-static solution yq if

b
|k| < [B2 7z~ | B2| M3,. (95)

From the expressions given in section IV and as we will
check in Fig. 2 and Eq.(108) below, 33 is of order a2 >> 1
today and decreases at higher redshift until z, ~ 100,
where it is of order a. At higher redshift it typically
remains of order a [because of the prefactor a in the
coupling function In A(Y)], or decays to zero in models
such as (IIT) where [Y| is not bounded and goes to infinity

10

at high z. Thus, for practical purposes the condition (95)
is satisfied if

k| < aMP ~107° M3, (96)

For models such as (III), the condition (95) will be vio-
lated at very high z, z > z,, if kK does not go to zero.
Then, one must take into account the kinetic terms in the
scalar field equation to obtain the background solution x.
However, at these high redshifts the scalar field should
not play an important role and our results should be in-
dependent of this early-time modification. On the other
hand, in such cases the kinetic prefactor x generically de-
pends on time, through the factor (dy/dV)? introduced
by the change of variable (4), and we expect for instance
Kk to decrease as fast as (2, as 1/V?2, for models where
V' goes to infinity while ¢ remains bounded, so that the
condition (95) remains satisfied.

So far we have only introduced two parameters in
the models, the dimensional dark-energy density today,
Pdeo = M* > (2.296 x 10712GeV)? [17], and the dimen-
sionless parameter a ~ 107%. Since M is smaller than
the reduced Planck mass, Mp; ~ 2.44 x 10¥GeV, by 30
orders of magnitude, we can see that we do not need to
introduce additional small parameters to satisfy Eq.(96).
Apart from x = 0, the choices K ~ M2, K ~ MMp; or
K~ M2 N2 satisfy the constraint.

Pl >
The homogeneous solutions of Eq.(93) obey
d2o 253
LA P ) (97)
dr

in the high-frequency limit (i.e., over time scales much be-
low 1/H). From the condition (95) we have a?pf2/Kk >
H2, so that the homogeneous solution evolves indeed on
time scales much shorter than the Hubble time. For the
solution Yo to be stable the homogeneous solutions (97)
must not show exponential growth but only fast oscilla-
tions, of frequency w o /2. This leads to the con-
straint
P2
- > 0. (98)
As the field y typically arises through the change
of variable (4), the kinetic coefficient  introduced in
Eq.(90) depends on time. However, its sign is not modi-
fied by the change of variable and it is positive for stan-
dard well-behaved models. Then, the constraint (98)
leads to B2 > 0, which means that In A(}) must be a
convex function. This rules out the model (I) introduced
in Sec. IV B. More generally, from the definition of the
coefficients 51 and f2 and the scalar-field equation (50),
the condition B2 > 0 implies that dp/dyx < 0 and the
function X(p) is a monotonic decreasing function of p. At
the background level, this implies that ¥ increases with
time, hence the potential V(¢) defined from the change
of variable (4) decreases with time. As expected, the sta-
ble case corresponds to scenarios where the background
scalar field ¢ rolls down its potential V() [as in models



(II) and (III) of Secs. IV C and IV D], whereas the un-
stable case corresponds to a background scalar field that
climbs up its potential [as in model (I) of Sec. IV B].

Models with 85 < 0 could be made stable, with respect
to the classical background perturbations analyzed here,
by choosing a non-standard sign « < 0 for the small
kinetic term. However, such models are typically plagued
by ghost instabilities, as the kinetic energy is unbounded
from below, unless one sets a high-energy cutoff of the
theory at a sufficiently low energy to tame down these
instabilities. In the following we also present our results
for the model (I) of Sec. IV B to keep this work as general
as possible, even though this is unlikely to correspond to
realistic and natural scenarios.

2. Cosmological large-scale structures

To apply the equations of motion derived in Sec. III
to the formation of large-scale structures, we must also
check that the kinetic term plays no role on these scales.
Thus, we now take into account the Laplacian term in
Eq.(91) and the perturbations of the scalar field, ¢ =
5% — X, obey at linear order

D (00
or or

— ka ) + ka"2AV2 ) — pBag = Brop. (99)
As for the background case, the time derivatives are neg-
ligible when the condition (95) is satisfied. The spatial
Laplacian can be neglected at comoving scale 1/k, where
k is the wave number of interest, if we have

plBz2|a® N (aH

k| < (100)

2
2k2 E) ‘B2|M1%1
This constraint is tighter than the background condition
(95) as we require the theory to remain valid down to
sub-horizon scales, ck/aH > 1. If we wish to apply the
model without kinetic term down to 1 A~ 'kpc, below the
galaxy-halo scale, we must have

k~1hkpe™t: k<107 ME, (101)
where we used again |Ba] ~ a ~ 1075, We can still
choose for instance k ~ M2 or K ~ MMp;. Thus, we do
not need to introduce a new low-energy scale to build a
small-enough kinetic term that can be neglected for both
the background and the cosmological structures.

Of course, on scales 1 h~'kpc the density and scalar
fields are in the nonlinear regime, which modifies Eq.(99).
If we expand around the local solution, Xo[p(x)], the fac-
tors pP2(p) and B1(p) must be replaced by pBa2(p) and
B1(p). For models such as (I) and (II), where 33 re-
mains of order « at high densities the upper bound in
Eq.(101) is simply multiplied by a factor p/p. Then,
nonlinearities actually loosen up the constraint (101)
and the kinetic term in the scalar-field Lagrangian be-
comes even more negligible. In practice, the coefficient
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x will depend on the local value of the scalar field, and
hence on the local density, but the relatively high up-
per bound (p/p)10~Y9 M3, as compared with M? or
M DMpy, suggests that the scale M will be sufficient to
construct small-enough coefficients « without introduc-
ing additional finely tuned parameters.

B. Small-scale cutoff

Independently of a possible kinetic term, the local
model (5) considered so far is not expected to apply down
to arbitrarily small scales. In the previous sections and
through most of this paper, we implicitly assume that
we can work with a continuous density field p(x) defined
by some coarse-graining procedure, instead of a singu-
lar field made of Dirac peaks (in the limit of classical
point-like particles) or of isolated density peaks (finite-
size classical particles). Therefore, we assume the models
studied in this paper to be effective theories that only ap-
ply beyond some small-scale cutoff ¢4, so that the density
field is defined by a coarse-graining at scale /.

If we consider for instance the mean inter-particle dis-
tance, A = (m/p)'/3, we obtain on the Barth, with

p~1 g/cm3 and m ~ my, the proton mass,

AEarth ~ 1078 cm, (102)
and in the intergalactic medium (IGM), using the mean
density of the Universe,

m \ /3
AlaMm ~ <—> 100 cm,

mp

(103)

where m can be taken as the largest among the proton
and the dark matter particle mass. This typically gives a
distance of the order of a meter. In fact, in our study of
the cosmological background and of cosmological struc-
tures, we assume some coarse-graining of the density field
on scales at least as large as A\igm, so that we can use
the density p associated with the continuum limit.

In terms of energy scales, this corresponds to Aigm ~
1 m = (1.973 x 1071%GeV)~!. On the other hand,
the mean dark-energy density today is paeg = M?* =
2.778 x 10~47GeV*, which gives Adigm ~ 1 m ~ 104 M1,
Therefore, the small-scale cutoff, /s, which defines the
smoothing scale of the density field in such an effective
approach, does not require the introduction of a new
fundamental scale. For instance, it is sufficient to set
ly = oM™ ~ 100m, using the two parameters M
and « that have already been introduced to character-
ize the model, or £, = Mfl,l/Q./\/l_?’/2 ~ 1A.U., using a
combination with the Planck mass.

A natural way to introduce a smoothing cutoff on small
scales is to have a nonzero kinetic term in the scalar-
field Lagrangian (5), as considered in Sec. V A. Using
again the Lagrangian (90), the fluctuations ¢ of the scalar
field around the cosmological background obey Eq.(99)



and the smoothing associated with the Laplacian term
becomes important at the physical scale £ if we have

plBal0? (H\?
|| ~ |C—2‘ ~ <T | B2| M.

We can check that this constraint is not contradictory
with the conditions (95) and (100), associated with the
validity of the solution without kinetic term for the back-
ground and cosmological structures, because the small-
scale cutoff ¢, can be taken to be much smaller than
cosmological scales. At z = 0, using |32| ~ a2 ~ 1012,
the condition (104) reads as

(104)

R
=0: ||~ (—) 6x107*" M} 105
=0 i~ (1) B (o)
and for £, > 1 m we can take for instance kK ~ M Mp;.
Such a Laplacian term is also sufficient to regularize
the theory at the atomic scale (102) on the Earth if we

have

mp | B2 |Earth

)\Earthc2 (106)

K| >
where |B2|garth is the value obtained for p ~ 1 g.cm™3.
Using |B2|garth ~ @ ~ 107%, as appropriate for the high-
density regime (see for instance Fig. 2 below), this yields

Earth: |k] >3 x 107*9M3,. (107)

This is a looser bound than the cosmological constraint
(105). However, because of the change of variable (4)
the kinetic prefactor k generically depends on the envi-
ronment through the local value of the scalar field, so
that usually Eq.(107) cannot be directly compared to
Eq.(105). Nevertheless, in any case the estimates (105)
and (107) show that it is not difficult to regularize the
theory on very small scales through a small kinetic term
in the scalar-field Lagrangian, without violating the con-
dition (95).

VI. EVOLUTION OF THE COSMOLOGICAL
BACKGROUND

A. Evolution of the background scalar field

As explained in section IV A, we require the function
In A to be bounded within a small interval of order 1079,
see Eq.(46), so that contributions of the fifth force to the
metric potentials do not exceed the Newtonian potential
by several orders of magnitude. As pointed out in section
IV A, this implies that |A — 1| < 107% <« 1. This implies
in turn that we recover a A-CDM cosmology at the back-
ground level up to a 107% accuracy. We also have |eq|
and |ea| of order a ~ 1075, and Y and pg. are almost
constant in the dark energy era, see Eq.(24).

The factor 51 (a) is always positive and decreases with
redshift as in Eq.(89), independently of the details of the
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FIG. 2: Absolute value of the factors Sz (upper panel) and
€1 (lower panel) as a function of the scale factor. We show
|B2| and |e1] for models (I) (red line with crosses), (II) (blue
line with squares) and (III) (green line with circles); B2 < 0
and e; < 0 for model (I); B2 > 0 and €; > 0 for models (II)
and (III). The absolute values |B2| and |e1] of models (I) and
(IT) are equal.

coupling function In A(Y), because it is directly set by
the scalar-field equation of motion (50).

We show the factors S2(a) and €;(a) in Fig. 2. These
factors are positive for models (II) and (III), where the
fiftth force amplifies Newtonian gravity, while they are
negative for model (I), where the fifth force decreases
Newtonian gravity. It happens that for our explicit
choices (55) and (63) (with x. = —2) the factors 82 and
€1 of models (I) and (II) have the same amplitude, but
opposite signs, so that their curves coincide in Fig. 2.

From Egs.(84) and (85), we have at low redshifts

1/3 . 9

a>aq ~a |Ba] ~ a™2a®, |er| ~ @®a®. (108)
Thus, |32] is maximum today, with |B2)o ~ a2 ~ 1012
and decreases with redshift until z, ~ a~*/3 ~ 100,
where it is of order |fa]., ~ a ~ 1075, At higher redshift
|B2| typically remains of order «a, or goes to zero with a
rate that depends on the details of the model.

The factor |e1] reaches a maximum of order « at a high

redshift, zo, ~ a~1/3 ~ 100, and later decays as a~> to



reach a value of order o today. Therefore, the scenarios
considered in this paper have the characteristic property
that the main modification to the gravitational dynamics
actually occurs at a high redshift z, ~ 100, much before
the dark energy era. This is related to the small parame-
ter @ < 1, in agreement with Eq.(54) and the characteris-
tic density p, of Eq.(53). At higher redshift, z > z,, |e1]
decreases again, as we have seen that €; = €2/3 (in the
approximation A ~ 1) and €3 = dln A/dIna must van-
ish because A converges to a constant close to unity at
early times. For models (I) and (II) we have |e;]| ~ a®/a
while for model (ITT) we have ¢; ~ «'/24%/2. Thus, the
decay of €; is much slower at very high redshift for model
(III). Indeed, using the scalar-field equation (50) we can
also write €3 as e = (M*/p)dx/dIna. Then, dx/dIna
goes to zero at high redshift for models (I) and (II), as
X converges to a finite value, whereas dy/dIna goes to
infinity as ¥ goes to —oo. We can check these behaviors
in Fig. 2.

B. Negligible backreaction of small-scale
nonlinearities onto the cosmological background

We have seen in Sec. III B3 that for small enough €;
and e; the cosmological behavior remains close to the A-
CDM scenario at the background and linear levels. How-
ever, the nonlinearities associated with the scalar field
could jeopardize this result. In this section, we check
that the nonlinearity of the scalar-field energy density
does not give rise to a significant backreaction onto the
background dynamics.

We have seen that the scalar field energy density reads
as py = —M?*Y (using again A ~ 1). Because x(p) is a
nonlinear function of p, its volume average is not identical
to the background value ¥ = x(p). This implies that the
mean Hubble expansion rate over a large volume, as large
as the Hubble radius today, could significantly differ from
the background expansion obtained from the background
Friedmann equation (18), especially if the volume average
is actually dominated by the highest-density regions.

In the models described in Sec. IV, the background
value ¥ at low redshift, in the dark energy era, is very
close to the value x(0) = —1 associated with a zero den-
sity, as [¥ + 1| ~ a? < 1, see Eq.(87). This is because of
the small parameter o that was introduced to ensure a
cosmological behavior that is close to the A-CDM predic-
tions. Then, we simply check that () ~ x(0) too, where
the volume average (X) is given by

(x) :/vdvxx(p) :/Ooo dp P(p) X(p)-

Here V is a large volume, with a size of the order of the
Hubble radius, while P(p) is the probability distribution
of the density within this volume. It obeys the two nor-
malization properties:

/Ooodpp(p)zla /Ooodpp(p)p:ﬁ.

(109)

(110)
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For any density threshold ps; > 0, the second property
(110) implies the Bienaymé-Tchebychev inequality

ps >0 / dp P(p) < pE (111)

For monotonic functions x(p) we have |(x) — x(0)] =
157 dpP(p)|X(p) — x(0)|. Splitting the integral over the
two domains p < ps and p > ps, and using Eq.(111),
gives

[(X) = X(0)] < [xs — x(0)] + p’%\fc(w) —x0)], (112

where we assumed that y(p) is bounded.

Let us first consider the model (I) described in
Sec. IV B, where X is a bounded increasing function of
p. This gives x(c0) = 0, s =~ —1 + a?p?/2M3, for den-
sities ps < p/a, and the two terms in Eq.(112) are of
the same order for p, ~ pa2/3. This choice provides an
upper bound [(X) — ¥(0)| < /% <« 1.

The model (IT) described in Sec. IV C, where x is a
bounded decreasing function of p, gives similar results
and again |(x) — x(0)| < ?/? <« 1.

The model (III) described in Sec. IVD, where x is an
unbounded decreasing function of p, remains similar to
the model (II). To handle the infinite range of x, we split
the integral (109) over three domains, [0, ps], [ps, Pa] and
[Pas +00[, where p, = M*/a is also the density scale
where the model departs from the bounded model (II)
and probes the infinite tail (76). The first two terms
are of order a?/3 as for the model (II), with the same
choice ps ~ pa—2/3. Using the Cauchy-Schwarz inequal-
ity fpa dpP(p)\/P < p/+/Pa, the last term is found to be
of order av at most.

Therefore, in all cases we have |(Y) — x(0)] < a?/? < 1
and the small-scale nonlinearities do not produce a sig-
nificant backreaction onto the overall expansion rate of
the Universe in the dark energy era.

VII. LINEAR PERTURBATIONS
A. Regime of validity

We study in more details the growth of large-scale
structures at linear order in this section. We first in-
vestigate the regime of validity of the linear theory. The
standard cosmological linear theory applies to large scales
where the matter density fluctuations ¢ are small. This
yields the transition scale to nonlinearity 23" defined by
o?(z§™) = 1, where o(z) is the root-mean-square (rms)
density contrast at scale z, 02 = (§2). In addition to
the perturbative expansion in §, within the context of
the scalar-field models that we study in this paper the
perturbative approach involves an additional expansion
in the scalar field fluctuation éy. Then, it could happen
that this second expansion has a smaller range of valid-
ity, IEL, so that linear theory applies to a smaller range
than in the A-CDM cosmology.



Therefore, we need to investigate the range of validity
of the linear regime for the fifth force. From the Euler
equation (34) and the expression of the metric potential
(30), the linear approximation is valid for the fifth force
as long as we can linearize § In A in the density contrast d.
In Sec. III B 3 we obtained the linear regime by expanding
In A in §x and next solving for §x from the scalar field
equation (50). However, this formulation can underes-
timate the range of validity of the linear regime for the
fifth force. Indeed, because of the factor 1/p in the right-
hand side a perturbative expansion of Eq.(50) in powers
of § = (p — p)/p cannot extend beyond |§| ~ 1. This
artificial limitation can be removed at once by writing
instead the scalar-field equation as

dx p
dlnA M+ (113)
If the function Y(In A) were quadratic the linear theory
would be exact for the fifth force. In the general case, the
range of validity " of the linear theory for the fifth force
will be determined by the nonlinearities of the function
dx/dIn A but it can exceed z".

In the models described in Sec. IV we have InA =
a(x), where the function A and x are of order unity (or
more precisely, do not involve small or large parameters),
whereas a < 107% < 1, as noticed in Eq.(51). Then, the
scalar-field equation (113) reads as

dx _

P
= a4, (114)

which we must solve for A\(0). In the low-density regime,
following the same analysis as for Eq.(82), we have in the
general case In A ~ +a|y + 1|17%, with 0 < v < 1, and

ap

ap (1-v)/v
A )

<1: g —1xA\VO-»), )\:i(—4 .
(115)
Then, for generic v, at low densities the function A(p)
can be linearized in ¢ in the range [6] < 1. For the
specific case v = 1/2, which corresponds to the models
introduced in Sec. IV, the last relation (115) happens
to be linear so that the linear regime for A(p) applies
up to ap/M* ~ 1, that is, § < M*/ap ~ a7t > 1,
which yields a much greater range. At high densities,
ap/M* > 1, we have a power-law divergence of the form
dx/dX ~ [N+ A|7#, with g > 0. This yields A ~ —\, £
(ap/ M*) =1 which can be linearized for 5] < 1.

Therefore, we find that in all cases the regime of va-
lidity of the linear regime for the fifth force is at least as
broad as that for the matter fluctuations é. In the spe-
cific case of the models introduced in in Sec. IV, which
have a square-root singularity in the low-density regime,
the linear regime for the fifth force applies to a much
greater range at low z, |6] < o™t
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B. Model (I)

We first consider the case of the model (I) introduced in
Eq.(55), where ¥ is an increasing function of p. This leads
to a negative €¢; and the fifth force decreases Newtonian
gravity. The linear modes D4 (a) of the matter density
contrast satisfy the evolution equation (43), where the
departure from the A-CDM cosmology only comes from
the factor e(k,a). Because |e1] < a < 1, the factor 1 in
Eq.(44) gives a negligible contribution to (1 + €) and we
can write

2 ck\?
E(k), a) = El(a)ﬁ (a_H) . (116)
On Hubble scales we have € ~ €, hence |e] < a < 1 and
we recover the A-CDM growth of structures. However,
on smaller scales |e(k, a)| grows as k? and it reaches unity
at a wave number

aH 3x107* 1

~ hMpc™ -,
ey/len]l  Valel

where we used H? o« a~3 in the matter era. We have
seen in Sec. VIA and Fig. 2 that |e;| is maximum at
redshift z, ~ a~'/3, with an amplitude |€1|max ~ o
More precisely, from Eq.(60) we obtain

ko(a) ~

(117)

a<ay: lal~atd® a>an: |ea|~a*a3.
(118)
Therefore, k,(a) is minimum at a ~ a4, with
R0 = ko (ag) ~ 3 x 107423 hMpe™!,  (119)

which yields k2" ~ 3 hMpc ! for @ = 1076, Thus, wave
numbers below kM never probe the fifth force, while
higher wave numbers feel the fifth force over a finite time
range, [a_(k), a4 (k)], around the scale factor a,. From
Eq.(118) we obtain, for k > kmin,

—2/7
a(k)~a1/7<0k> : a+(k)~a;[—k. (120)
0

Hy

In the time interval [a_, ay], the factor (1 + ¢) in the
linear evolution equation (43) is dominated by e and be-
comes negative. This means that the density fluctuations
no longer feel an attractive gravity but a pressure-like
force. Then, the linear growing mode D (a) stops grow-
ing, as in the A-CDM cosmology, but develops an oscilla-
tory behavior. In the matter era, the evolution equation
(43) simplifies as

1 3
D" + ED/ —=(1+¢€)D =0, (121)

2

where we denote with a prime the derivative with respect
to Ina. Rescaling the linear modes as

D(k,a) = a Y y(k, a), (122)



we obtain

25 3e
=4 = =0. 12
Yy (16+ 2)1/ 0 (123)

Then, defining w = /—25/16 — 3¢/2, we obtain in the

limit —e > 1 the WKB solutions

y:%cos l/{: %w(a) +%sin l/{: %w(a)],

(124)
where the coefficients ¢ and s are obtained from the
matching at a_.

We show the linear growing mode D4 (k,a) as a func-
tion of the scale factor in the upper panel in Fig. 3. We
can check that we recover the behaviors predicted above.
For k < 3hMpc™" the linear growing mode follows the
same growth as in the A-CDM cosmology (which can-
not be distinguished from the upper curve in the plot).
At higher k it develops oscillations, in the range [a—_, a4 ]
around a, ~ 0.01. Because the number of oscillations
is not very large in practice we do not need to use the
WXKB approximation (124) and we simply solve the exact
evolution equation (43).

We show the dependence on k of the linear growing
mode in the middle panel in Fig. 3. The oscillatory be-
havior found for the time evolution at high &k gives rise to
a decay of the growing mode at high wave number. In-
deed, for high k the linear mode D (k,a) stops growing
in the increasingly broader interval [a_, ay], which leads
to an increasing delay for D4 (k,a) as compared with
the A-CDM reference. From the WKB approximation
(124) we can see that a'/*D, (k,a) has about the same
amplitude at the boundaries a— and a4, where w ~ 1,
while it decreases as 1/4/w(a) in-between with a mini-
mum at a,. Therefore, in the matter era after the oscil-
latory phase, a > a4, we have D4 (a) ~ Di(at)a/ay ~
Dy(a_)(ay/a_)"Y*(ajay) ~ (ay/a_)"%/*a, where we
normalized the A-CDM growing mode as DQCDM =a in
the matter era. Thus, at high k the linear growing mode
is damped by a factor (ay/a_)~%/. From Eq.(120) this
gives:

. D —45/28
g g, Dk ) ~( i > . (125)

DQCDM (a) k(rxnin

which is consistent with the middle panel in Fig. 3.

We display the logarithmic linear power spectrum,
A? (k) = 4nk®Pr(k), in the lower panel in Fig. 3. Its ra-
tio to the A-CDM linear power is given by (D / DACPM)?
and shows a steep falloff with oscillations at high &, as
follows from the middle panel. The lower panel shows
that at z = 0 the decay of the linear power spectrum ap-
pears inside the nonlinear regime, at k 2 2hMpc ™!, but
at higher z it would fall in the linear regime.
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FIG. 3: Linear growing mode Dy (k,a) and logarithmic

power spectrum A% (k, a) for the model (I) (we show the ab-
solute value |D4|). Upper panel: Dy(k,a) as a function of
the scale factor for k = 1,10 and 100hMpc~!, from top to
bottom. Middle panel: D4 (k,a) as a function of the wave
number, at redshift z = 0. We also show the A-CDM result
as the upper dashed line. Lower panel: linear logarithmic
power spectrum AZ (k, a) at redshift z = 0.

C. Model (II)

We now consider the case of model (II) introduced in
Eq.(63), where ¥ is a decreasing function of p. This leads
to a positive €; and the fifth force amplifies Newtonian
gravity. Again, the linear modes Dy (a) satisfy the evo-



lution equation (43) and the factor e(k,a) is given by
Eq.(116). We recover the A-CDM growth on Hubble
scales while e reaches unity at the wave number k,(a)
of Eq.(117). The amplitude of €; verifies the same scal-
ings (118) as for model (I) and this again defines the
minimum wave number k™ of Eq.(119) for which the
fifth force ever had a significant impact. For k > kmin
the fifth force is significant in the time interval [a_, a ]
given by Eq.(120).

Because € > 0 the linear modes do not show oscilla-
tions in the range [a_,a4] but faster growth and decay
as compared with the A-CDM evolution. Neglecting the
time dependence of €, Eq.(121) leads to the growing and
decaying modes

£v25+24e—1

D:t(a) ~ a’Yia T+ = 4

(126)

We show our results for the linear growing mode
D, (k,a) and the linear logarithmic power spectrum
A% (k,a) in Fig. 4. We can see that low wave numbers,
k < 1hMpc ™!, follow the same growth as in the A-CDM
cosmology whereas high wave numbers, k& > 10hMpc ™,
follow a phase of accelerated growth around a, ~ 0.01.
This leads to a steep increase of Dy (k) at high k, at
low redshift. This means that high wave numbers, k& >
10AMpc~!, enter the nonlinear regime at a < a,, much
before than in the A-CDM cosmology. As seen in the
lower panel in Fig. 4, at z = 0 this strong amplification
with respect to A-CDM is restricted to nonlinear scales,
but at higher z it would also apply to scales that would
be linear in the A-CDM cosmology.

D. Model (III)

The behaviors obtained for the model (III) are sim-
ilar to those of the model (IT), as € > 0 and the fifth
force accelerates the growth of structures at high k, in a
time interval [a_(k), a4 (k)]. At a given time, the lowest
wave number ks (a) where the fifth force is significant is
still given by Eq.(117). The lowest wave number kX"
where the fifth force ever played a role (at a, ~ a!/3) is
also given by Eq.(119). From Egs.(75) and (79) we now
obtain, for k > kmin,

A k
a_(k) ~a~1/? (c ) , ag(k) ~ asr. (127)
Hy

Hy
Thus, the upper boundary a4 (k) behaves as for models
(I) and (II), because all three models have the same low-
density or late-time behavior (82) (up to a sign), but the
lower boundary a_ (k) decreases faster at high k. This
increases the time span where the fifth force is dominant
and it leads to a stronger impact on the growth of struc-
ture at high k& than for model (II). This is due to the
slower decrease of €(a) at high redshift found in Fig. 2.
We show our results for the linear growing mode in Fig. 5
and we can check that we recover these properties. The
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FIG. 4:  Linear growing mode Dy (k,a) and logarithmic

power spectrum A3 (k,a) for the model (IT). Upper panel:
D4 (k,a) as a function of the scale factor for k¥ = 1,10 and
100AMpc ™, from bottom to top. Middle panel: Dy (k,a) as
a function of the wave number, at redshift z = 0. We also
show the A-CDM result as the lower dashed line. Lower panel:
linear logarithmic power spectrum A% (k, a) at redshift z = 0.

linear power spectrum is very close to the one obtained
from the model (II) in Fig. 4, hence we do not show it in
the figure.
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FIG. 5: Linear growing mode D4 (k,a) for the model (III).
Upper panel: D4 (k,a) as a function of the scale factor for
k =1,10 and 100hMpc™!, from bottom to top. Lower panel:
D4 (k,a) as a function of the wave number, at redshift z = 0.
We also show the A-CDM result as the lower dashed line.

VIII. SPHERICAL COLLAPSE

A. Equation of motion

As can be derived from Eq.(34), on large scales where
the baryonic pressure is negligible, the particle trajecto-
ries r(t) read as

Pr  1d%a

@ aagr s VrIntva),

(128)

where r = ax is the physical coordinate, V., = V/a
the gradient operator in physical coordinates, and ¥ 4 =
c?In A is the fifth force contribution to the metric po-
tential ®. To study the spherical collapse before shell
crossing, it is convenient to label each shell by its La-
grangian radius ¢ or enclosed mass M, and to introduce
its normalized radius y(¢) by

B R 17
y(t)—a(t)q with q—( _0) . yt=0)=1.
(129)
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In particular, the matter density contrast within radius
r(t) reads as

14 o(r) = y(t) .

Then, Eq.(128) gives for the evolution of the normalized
radius y, or density contrast 6. =y~ — 1,

(130)

Ay 1 dH\ dy y O
= — =L (U +T,).
d(lna)2+< e dt>dlna 7 oy (I )
(131)
The Newtonian potential is given by Ux = —GIM/r,
with §M (< r) = 4né(r)pr®/3, which yields
6\I/N H2T _
=Qn— (y2-1). 132
B 5 (v ) (132)
The derivative of the fifth force potential reads as
2
G\IIA:CQ<9lnAzc_dlnA81np. (133)
or or r dlnp Olnr
This gives the equation of motion
d?y 1 dHY dy Om 3
= 7 =3 _1) =
d(lna)? ( ZERT > dma T2 YWY
c\2dlnA r 06
—y | = —. 134
y(m) dlnp 1+60r (134)

In contrast with the A-CDM case, where the dynamics
of different shells are decoupled before shell crossing, the
fifth force introduces a coupling as it depends on the
density profile, through the local density p(r) = p(1 +
d(r)) (which is different from the mean density p(1+ d<)
within radius r) and its first derivative 96/9r.

To obtain a closed expression without solving simulta-
neously the dynamics of all shells (which would not be
exact at late time when inner shells collapse and cross
each other), we use an ansatz for the density profile. Fol-
lowing [18, 19], we use the density profile defined by

6 d 1"
o) =<5 [ S aix)
+o0 5 : /
= 5<—(f)/ ke Ak Py ()W (k) S22 (155
(o)) 0 kx/

Here z(t) = a(t)r(t) is the comoving radius of the spher-
ical shell of mass M that we are interested in while
2/ is any radius along the profile; £ and Pp are the
linear correlation function and power spectrum of the
matter density contrast, o2 = (dp«(2)?) its variance
within radius z, which defines a sphere of volume V;
and W (kx) = 3[sin(kz) — kx cos(kx)]/(kx)3 the Fourier
transform of the 3D top hat of radius x. The choice
(135) corresponds to the typical density profile around a
spherical overdensity of amplitude d; . at radius z for a
Gaussian field of power spectrum Pj,. As the overdensity
turns nonlinear the profile should be distorted but we ne-
glect this effect. The ansatz (135) allows us to compute
the local density contrast §(x) and its derivative 99/dx at
radius z from d-(z) and to close the equation of motion
(134).
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FIG. 6: Time evolution of the nonlinear density contrast d<
given by the spherical dynamics, as a function of the scale fac-
tor a. Upper panel: < (a) for several masses, from M = 10°
to 10 A~ My from bottom to top, with the same initial con-
dition that corresponds to the A-CM linear density threshold
today 62, “PM = 1.6. Lower panel: d<(a) for several initial
conditions, from SQZCDM = 1.6 to 150 from bottom to top,

for the fixed mass M = 108h~' M.

B. Model (I)

We show in Fig. 6 the evolution with time of the non-
linear density contrast within a shell of mass M given
by the spherical dynamics, for the model (I). In the up-
per panel, we consider the curves obtained for different
masses M with a common normalization for the linear
density contrast ., at a very high redshift, z; > 103. In
the case of the A-CDM cosmology, this corresponds to a
linear density contrast today, at z = 0, of 5QECDM = 1.6,
and to a nonlinear density contrast 0. =~ 200, hence
to a collapsed and just-virialized halo. In agreement
with the results of Sec. VIIB and Fig. 3, we find that
for large masses, M > 10'2hA~'M,, which correspond
to large scales, we remain close to the A-CDM behav-
ior (which cannot be distinguished from the curves for
M > 10"h=1My), whereas the collapse is delayed for
smaller masses. Because the density contrast is still in
the linear regime around a, ~ 0.01, where the fifth force
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is important (on small scales), the spherical dynamics fol-
lows the behavior of the linear growing mode displayed in
Fig. 3. For large mass it keeps growing as in the A-CDM
scenario whereas for small mass it shows oscillations with
an amplitude that is about the same at the end of the
oscillatory phase, a4, as at its beginning, a_. This de-
lays the collapse for small masses and leads to a density
contrast today that is much smaller than 200. In fact,
because the oscillations imply a change of sign of the den-
sity contrast, as was the case for the linear mode D, an
initially overdense perturbation can come out of the os-
cillatory phase as an underdensity, in which case it will
never collapse but give rise to a void (neglecting shell
crossing).

In the lower panel of Fig. 6, we show the spherical dy-
namics for the fixed mass M = 103h~1 M and several
values of the initial linear density contrast, which in the
A-CDM cosmology would give rise today to a linear den-
sity contrast of 627 “PM = 1.6 to 150. For 62;“PM < 10
the dynamics remains in the linear regime until z = 0
and the curves are simply a rescaled copy of the result ob-
tained for (51<\ZCDM = 1.6. As 6 only shows two changes
of sign (for M = 103h~1 M, the oscillation frequency is
still low) the perturbation comes out of the oscillatory
phase as an overdensity, which then resumes its growth.
Because of the delay of the collapse around a,, ~ 0.01 the
final nonlinear density contrast does not go much beyond
unity at z = 0. For the greater initial density contrast
5QZCDM = 50, the overdensity has a higher amplitude
at the beginning of the oscillatory phase. It exits with a
similar and positive density contrast and it has time to
reach a nonlinear density contrast greater than 200 be-
fore z = 0. However, we can see from the curve obtained
for 5/<\ZCDM = 100 that the final nonlinear density con-
trast is not a monotonic function of the initial condition
at high initial overdensities, 5QZCDM > 50. Indeed, for

the higher initial density 62, M = 100 there is a single
oscillation, which implies that the perturbation becomes
an underdensity with a nonlinear density contrast that
converges to —1 at late time, when the fifth force no
longer plays a significant role. Increasing further the ini-
tial density contrast, 5QZCDM = 150, the perturbation
collapses before the oscillatory phase and remains highly
overdense.

For smaller masses, where the oscillatory phase shows
numerous oscillations in the linear regime, we obtain a
similarly non-monotonic behavior as a function of the ini-
tial condition. In these cases, to obtain a collapsed halo
today the overdensity needs to have already collapsed be-
fore the oscillatory phase begins, which leads to a much
more stringent condition than for the A-CDM cosmology.
The linear density contrast today, extrapolated from very
early times by the A-CDM growth factor, needs to be
greater than about 100 today, instead of about 1.6.

We show in Fig. 7 the linear density contrast thresh-
old, measured by 5QZCDM (i.e., the extrapolation up to
z = 0 of the linear initial density contrast by the A-
CDM growth rate), required to reach a nonlinear density
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Initial linear density contrast, as measured by
, that gives rise to a nonlinear density contrast < =
200 at z = 0, as a function of the halo mass M. The lower
dashed line is the mass-independent linear density threshold
obtained for the A-CDM cosmology.

contrast 6. = 200 today. In agreement with Fig. 6, at
large mass we recover the A-CDM linear density thresh-
old, 5QZCDM ~ 1.6, whereas at small mass we obtain a

much greater linear density threshold 6QZCDM ~ 100.
We also find a non-monotonic curve, which is due to
the oscillation phase and the complex behavior found in
Fig. 6. Moving towards smaller masses, from M ~ 10%!
down to M ~ 2 x 10! M, the linear density thresh-
old shows a steep rise as it must compensate for the
delay around a, ~ 0.01 of structure growth (this cor-
responds to the curve M = 100 in the upper panel in
Fig. 6). The threshold grows until 6QECDM ~ 100 at
M ~ 2x10° ! Mg, which corresponds to perturbations
that have collapsed just at a_, just before the beginning
of the oscillatory phase (this behavior corresponds to the
curve labeled ”150” in the lower panel in Fig. 6). Next,
down to M ~ 2 x 108h~! M, the linear density threshold
keeps slowly increasing as the oscillatory phase expands
and a_ decreases (see the upper panel in Fig. 6). At these
masses the oscillatory phase displays a zero and next one
change of sign (so that overdensities emerge as underden-
sities and never collapse, as for the curve labeled “100” in
the lower panel in Fig. 6). At M ~ 2 x 103h~1 M, there
is a sudden drop in the linear density threshold. This
is because the oscillatory phase now shows two changes
of sign, and it is possible for overdensities that have not
yet collapsed before a_ to emerge as overdensities and
resume their collapse (this corresponds to the curve la-
beled “50” in the lower panel in Fig. 6). Moving to lower
masses the linear threshold smoothly increases as a_ de-
creases (so that the delay grows) until we again reach the
plateau around ~ 100, and next encounter a second drop
at M ~ 2 x 107"h~ 1M, at the transition from three to
four changes of sign. The second drop is smaller than
the first, because the width of the oscillatory phase has
increased so that it needs a higher initial linear density
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FIG. 8: Time evolution of the nonlinear density contrast <
given by the spherical dynamics, as a function of the scale fac-
tor a. Upper panel: §<(a) for several masses, from M = 10'*
to 10A~1 M, from bottom to top, with the same initial con-
dition that corresponds to the A-CM linear density threshold
today 02, °PM = 1.6. Lower panel: < (a) for several initial
conditions, from 6QZCDM = 1.6 to 0.001 from top to bottom,
for the fixed mass M = 108h~' M.

contrast to eventually reach 6. = 200 today.

In any case, the formation of low mass halos, M <
2 x 10°h =1 M, is strongly suppressed as compared with
the A-CDM scenario. In fact, rather than forming in
the usual bottom-up hierarchical fashion of CDM models,
low-mass halos may form later in a top-down fashion,
by fragmentation of larger-mass halos, as in Warm Dark
Matter (WDM) scenarios.

C. Model (II)

We show in Fig. 8 the evolution with time of the non-
linear density contrast within a shell of mass M given by
the spherical dynamics, for the model (II). As in Fig. 6,
in the upper panel, we consider the curves obtained for
different masses M with a common normalization for
the linear density contrast d.; at a very high redshift,
z; 2 103. In the case of the A-CDM cosmology, this cor-
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FIG. 9: Initial linear density contrast, as measured by
(52£CDM, that gives rise to a nonlinear density contrast d« =

200 at z = 0, as a function of the halo mass M. The upper
dashed line is the mass-independent linear density threshold
obtained for the A-CDM cosmology.

responds to a linear density contrast today, at z = 0,
of 5QZCDM = 1.6, and to a nonlinear density contrast
d< =~ 200, hence to a collapsed and just virtualized halo.
In agreement with the results of Sec. VII C and Fig. 4, we
find that for large masses, M > 10'2h=1 M, which cor-
respond to large scales, we remain close to the A-CDM
behavior (which cannot be distinguished from the curves
for M > 10"*h~!' M), whereas the collapse is accelerated
for smaller masses and can occur as soon as a ~ 0.01.

In the lower panel of Fig. 8, we show the spherical dy-
namics for the fixed mass M = 108h~1My and several
values of the initial linear density contrast, which in the
A-CDM cosmology would give rise today to a linear den-
sity contrast of 6QZCDM = 1.6 to 0.001. We can clearly
see the accelerated growth during the phase, a— < a <
a4, where the fifth force is important. This implies that
linear density contrasts as low as 5QECDM ~ (.05 can
give rise to a collapsed halo today.

We show in Fig. 9 the linear density contrast thresh-
old, measured by 5AZCDM (i.e., the extrapolation up to
z = 0 of the linear initial density contrast by the A-
CDM growth rate), required to reach a nonlinear density
contrast 6. = 200 today. In agreement with Fig. 8, at
large mass we recover the A-CDM linear density thresh-
old, 5QZCDM ~ 1.6, whereas at small mass we obtain

a much smaller linear density threshold 5£ZCDM < 1.
This means that small scales have turned nonlinear at
a_(M) < 0.01, much before than in the A-CDM cosmol-

ogy.

D. Model (III)

The model (III) shows a behavior that is very close
to the model (II), as was the case for the linear growing
modes studied in Sec. VII D. Therefore, we only show the
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FIG. 10:  Initial linear density contrast, as measured by
JQZCDM, that gives rise to a nonlinear density contrast < =

200 at z = 0, as a function of the halo mass M. The upper
dashed line is the mass-independent linear density threshold
obtained for the A-CDM cosmology.

linear density threshold 5QZCDM required for the nonlin-
ear density contrast i« = 200 at z = 0, in Fig. 10. We
can check that this is close to the result displayed in Fig. 9
for the model (II). Again, at large mass we recover the
standard A-CDM result whereas at small mass the accel-

erated growth leads to a much smaller linear threshold
§A—CDM ¢
<L ‘

IX. HALO MASS FUNCTION
A. Model (I)

As for the A-CDM cosmology, we write the comoving
halo mass function as [20]

AM  po . dv
&L = L)Y 1
() &L= 2 50) (156)
where the scaling variable v(M) is defined as
(SACDM(M)
M)=-L "/ 1
o) = A, (187)

and §2°PM(M) is again the initial linear density con-
trast (extrapolated up to z = 0 by the A-CDM linear
growth factor) that is required to build a collapsed halo
(which we define here by a nonlinear density contrast of
200 with respect to the mean density of the Universe).
The variable v measures whether such an initial condi-
tion corresponds to a rare and very high overdensity in
the initial Gaussian field (v > 1) or to a typical fluctu-
ation (v < 1). In the Press-Schechter approach, we have

flv)= \/2/7r1/e*”2/2. Here we use the same function as
in [21]. Then, the impact of the modified gravity only
arises through the linear threshold §2“PM (M), as we as-
sume the same initial matter density power spectrum as
for the A-CDM reference at high redshift.
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FIG. 11: Upper panel: halo mass function at z = 0 for

the model (I) (red line with a downward spike at M =~
10" A" ' M) and for the A-CDM reference (smooth black
dashed line). The red solid line shows the range where ny > 0
and the red dashed line the range where nqy < 0. Lower
panel: relative deviation of the halo mass function from the
A-CDM reference, for the model (I). We show —An/n as
n() < NMACDM-

We show our results for the halo mass function ob-
tained for the model (I) in Fig. 11. In agreement with
Fig. 7, at large masses the halo mass function is close to
the A-CDM prediction whereas it is significantly lower
at low masses, M ~ 1011 — 101241 M, because of the
delay of the collapse on small scales. In fact, at M ~
10'1h~! M, the mass function given by Eq.(136) becomes
negative. In the usual A-CDM cosmology §2“PM (M) is
actually mass independent while ¢(M) is a monotonic
decreasing function of M. Then, v(M) is a monotonic in-
creasing function of M, which expresses the hierarchical
bottom-up nature of the gravitational clustering: smaller
scales and masses collapse first. As is well known from N-
body simulations and semi-analytic modeling, this gives a
mass function that can be described by Eq.(136), which
is everywhere positive with an almost universal scaling
function f(v), and with a low-mass power-law tail and a
large-mass exponential cutoff.

In contrast, in the case of the model (I), the linear
threshold 62“PM (M) shows a strong mass dependence,
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as displayed in Fig. 7. In particular, it shows a steep
increase at lower masses from M ~ 10''h~1 M down to
M =~ 2 x 10°h~1Mg. In this range, the variable v(M)
becomes a decreasing function of mass, so that the mass
function (136) becomes negative because of the factor
dlnv/dIn M. At small mass the mass function ) be-
comes very small because of the high values reached by
the linear threshold 02“PM(M). Of course, this negative
sign merely signals the breakdown of Eq.(136) as the ex-
act mass function is always positive. The change of sign
of dlnv/dIn M means that at low mass and small scales
gravitational clustering proceeds in an inverse hierarchy:
smaller scales and masses collapse later. This corre-
sponds to a top-down process as in the Hot Dark Matter
(HDM) scenario. In practice, we can expect that small
halos form in a very different manner than in the usual
A-CDM cosmology, by the fragmentation of larger-mass
halos. This very different mechanism implies that the
halo mass function for low masses cannot be described
by a rescaling of the form (136) and one must build a
new modeling suited to this different process. We do not
pursue this task here, which would require comparisons
to numerical simulations.

It is interesting to note that this behavior is differ-
ent from the modelization often used for the Warm Dark
Matter (WDM) scenario, where the formation of low-
mass halos is also suppressed as compared with the CDM
scenario. Indeed, in the WDM case, the main effect
comes from a cutoff of the linear power spectrum at high
k, due to the free-streaming of the dark matter particles
that have a non-negligible velocity dispersion after re-
combination. However, at low redshift their velocity dis-
persion is small (for typical candidates of particle mass
m 2 3 keV) and the collapse proceeds as in the usual
CDM case. Then, the linear threshold §2#°PM (1) is iden-
tical to the A-CDM one and v(M) is still a monotonic
increasing function of M, but with a smaller decrease
at low mass. Typically, o goes to a finite constant for
M — 0. This pushes Eq.(136) to its limits, and the scal-
ing function f(v) may differ from the CDM one, but it
remains positive and shows a reasonable shape. However,
numerical simulations suggest that this recipe overesti-
mates the low-mass tail and this is sometimes cured by
using a window function W (kR) [that defines the vari-
ance o2 in Eq.(137)] that is a top hat in Fourier space in-
stead of configuration space [22] (but this involves intro-
ducing a free parameter to relate the wave number cutoff
to the mass scale, which is fitted to the simulations). In
contrast, in the case of the model (I), the initial linear
power spectrum (that defines the initial conditions, e.g.
at z ~ 1000) remains the same as in the A-CDM cos-
mology, but it is the linear threshold that is modified,
because of the different dynamics around a_. This leads
to a dramatic decrease of the halo mass function at low
mass, without the need to change the filter W (kR), and
it makes apparent the top-down hierarchy that can be
expected from the analysis of the spherical dynamics.

An alternative modeling, which is closer to the one



often used for WDM, would be to define the initial con-
ditions at sufficiently late time, after a4 when the fifth
force is no longer dominant. Then, the linear power spec-
trum would be modified from the A-CDM reference, and
given by the lower panel in Fig. 3, whereas the spherical
collapse and the linear density contrast threshold would
be the same as for A-CDM. However, this would hide
the inverted hierarchical process [v(M) would again be
a monotonic increasing function of mass] and would be
likely to underestimate the decrease of the low-mass tail,
as in the WDM case. In any case, a Press-Schechter-like
modeling is unlikely to be meaningful in the low-mass
regime for such scenarios, and obtaining a better match
with the numerical simulations by changing the filter may
not amount to much more than coincidence.

On the other hand, at large mass and in the exponen-
tial cutoff of the mass function, where the gravitational
clustering proceeds in the usual bottom-up fashion and
we probe rare events governed by the universal tail e v’/2
associated with the Gaussian initial conditions, we expect
our results to be robust.

B. Model (II)

We show our results for the halo mass function ob-
tained for model (II) in Fig. 12. In agreement with Fig. 9,
at large masses the halo mass function is close to the A-
CDM prediction whereas it is significantly higher at low
masses, M ~ 108 — 101 A1 M, because of the acceler-
ation of the collapse on small scales. At low masses the
mass function becomes smaller than in the A-CDM cos-
mology, because both mass functions are normalized to
unity (the sum over all halos cannot give more matter
than the mean matter density).

At large masses, M > 10'2h =1 M, where the forma-
tion of large-scale structures remains close to the A-CDM
case, with only a modest acceleration, and the mass func-
tion is dominated by the Gaussian tail ~ e=v’/ 2 we
can expect the results displayed in Fig. 12 to be robust.
The relative deviation does not decrease from 10'* to
10h~tM, because the convergence towards A-CDM

is counterbalanced by the Gaussian tail e~v*/2 which
increasingly amplifies deviations from A-CDM at high
mass.

At low masses, M < 10'2h~1 M, where the history
of gravitational clustering is significantly different from
the A-CDM scenario, as a large range of masses have
collapsed together before a redshift of 100, and the halo
mass function is no longer dominated by its universal
Gaussian tail, these results are unlikely to be accurate.
Indeed, there is no reason to expect that the exponent
of the low-v power-law tail remains the same as in A-
CDM, and because of the rather different clustering his-
tory the mass function may show a significantly different
behavior, even in terms of the scaling variable v. Never-
theless, we can still expect the halo mass function to be
significantly higher than in the A-CDM case for masses
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FIG. 12:  Upper panel: halo mass function at z = 0 for the

model (IT) (solid line) and the A-CDM reference (dashed line).
Lower panel: relative deviation of the halo mass function from
the A-CDM reference, for the model (II). We show the abso-
lute value |An|/n (with a solid line for Ny > nacoMm and a
dashed line otherwise).

M ~ 10® —10"'h~' M), although it is difficult to predict
the maximum deviation and the transition to a negative
deviation at very low masses.

C. Model (III)

We show our results for the halo mass function ob-
tained for model (III) in Fig. 13. In agreement with
Sec. VIIID, the results are very close to those obtained
for model (II). The acceleration of the gravitational col-
lapse by the fifth force leads to a higher halo mass func-
tion at moderate and large masses, with an amplification
that grows towards smaller masses, from M = 10'3 down
to 10°h~ 1My, and a convergence to the A-CDM falloff
around M ~ 103 — 1011 M. At very small masses,
M < 10°h~' Mg, the deviation from the A-CDM halo
mass function becomes negative, in agreement with the
constraint associated with the normalization of the halo
mass function.

Again, these results should be robust at large mass,
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FIG. 13: Upper panel: halo mass function at z = 0 for

the model (III) (solid line) and the A-CDM reference (dashed
line). Lower panel: relative deviation of the halo mass func-
tion from the A-CDM reference, for the model (III). We show
the absolute value |An|/n (with a solid line for n(1r) > NACDM
and a dashed line otherwise).

M > 10'2h~' M, where gravitational collapse remains
similar to the usual A-CDM case, whereas the predic-
tions are unlikely to be accurate at low masses, M <
10'2h~!' M, where the significant differences in the pro-
cess of gravitational clustering could change the shape of
the scaling function f(v).

X. SCREENING OF THE FIFTH FORCE IN
DENSE ENVIRONMENTS

So far we have focused on the impact of the modifi-
cation of gravity on the background cosmology and the
large-scale structures, including the linear regime and the
formation of collapsed halos. In practice, we wish to
recover General Relativity on small scales, especially in
the Solar System where accurate measurements provide
stringent constraints on a possible fifth force. Therefore,
we compare in this section the magnitude of the fifth force
with the Newtonian gravity on a variety of objects, from
clusters of galaxies to galaxies and to the Solar System.
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A. Screening within clusters or spherical halos

We first consider here how the ratio of the fifth force
to Newtonian gravity behaves within spherical halos with
a mean density profile such as the Navarro-Frenk-White
(NFW) [23] density profile, often used to describe massive
dark matter halos. In particular, we wish to find the
conditions for the fifth force not to diverge at the center
of the halos and to remain modest at all radii, to be
consistent with observations of X-ray clusters. Within
spherical halos, the Newtonian force reads as

_QNM(< 1") _ Q

Fy = _TmA(< r)yrH?, (138)

r2
where A(< r) is the mean overdensity within radius 7.
We can also write this as

F 7_@ gNM(< 7')

— 2 - 73\~ 139
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where 0% is the circular velocity at radius 7, which also
measures the typical magnitude of the velocity dispersion
when Newtonian gravity is dominant. The fifth force
reads as

2dlnAdlnp

= (140)

,dIn A cA(r)
—ct— = —— .
r dlnp dlnr

S

Fy=

dr r

Therefore, the ratio of the fifth force to the Newtonian
force is

Fu 2 ¢ \2dlnAdlnp
A _ _ 2 (C 141
" JaN QmA(< r) (’I“H) dlnp dlnr (141)
A dlnAdlnp (142)

vZ dlnp dlnr’

In agreement with the discussion in Secs. IIIB2 and
IV A, the second line (142) shows that we need a small
amplitude for the coupling function In A to compensate
the large factor ¢?/v¥, for the ratio  not to be much
greater than unity in typical astrophysical and cosmo-
logical structures. This is provided by the parameter
a ~ 1075, In agreement with Eq.(44) and the analy-
sis of cosmological perturbations in Sec. VII, the first
line (141) shows that the relative importance of the fifth
force typically grows at smaller scales, as 1/r% or k%, and
that the factor « is again needed to ensure that the fifth
force does not greatly exceed Newtonian gravity at scales
~ 1h~!Mpec.

From the Euler equation (36) or the expression (140)
of the fifth force, we can also associate with the fifth force
the velocity scale cg, with

, (143)

in a fashion similar to v for Newtonian gravity. Then,
the force ratio i also reads as

C(
‘77| = "9

: (144)
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and it also measures the ratio of these two velocity scales.
On very small scales and high densities, the fifth force

is also partly screened by the nonlinearities of the cou-

pling function In A, as dIn A/dn p goes to zero at large

densities (because In A is monotonic and bounded).
From Eq.(86), we have at moderate densities

M4 a? /7 e \2
p< T I~ (5)

Thus, at low redshifts the ratio n is actually suppressed
by a factor a2, for the models studied in this paper, so
that 1 only reaches unity at r ~ 3h~lkpc, i.e. at galaxy
scales (see also Sec. X B below). At higher densities, we
obtain for models (I) and (II), |dln A/dIn p| ~ M?3/ap?
and

(145)

4

M ab c \?
(I) and (II), p> - In| ~ A3 (m) , (146)

aM?*/p and

M aa® /¢ \2
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Let us consider a power-law density profile, of exponent
v > 0 and critical radius rq,

_ -y
po (T
i~ 2 (2]
Since M* = pgeo ~ po, at radii greater than r, we have
the behavior (145),

and for model (III), |d1ln A/d1n p| ~

(147)

(148)
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whereas at smaller radii we have

T>Tg (149)

a c\?2
r<re : (I) and (II), |”|NW(TH) , (150)

a5 ()

From Eq.(149) we find that at large radius the relative
importance of the fifth force decreases as 1/r2, indepen-
dently of the shape of the halo profile. From Egs.(150)
and (151) we find that at small radii the ratio  behaves
as 73772 for the models (I) and (II), and as r37/2=2 for
the model (IIT). Therefore, the conditions for the ratio to
go to zero at the center are:

(151)

r—0: n—01if ~>2/3 for (I) and (II),

v >4/3 for (III).

(152)
(153)

If we consider halos with a mean Navarro-Frenk-White
(NFW) density profile, which has v = 1, we find that
the relative importance of the fifth force vanishes at the
center for the models (I) and (II) but diverges for the
model (IIT). This means that the model (III) is ruled
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out, unless the small-scale cutoff /5 discussed in Sec. VB
is of the order of 1 h~! kpc. If we do not wish to rely on
the small-scale cutoff ¢;, Eq.(141) shows that, to obtain
a negligible fifth force at the center of a halo of exponent
v, the coupling function must decay at large densities as

dln A

f :
orn—0 dln p

~ p~ ¥ with pu > % —1. (154)
However, we shall come back to this point in section XID
and argue that the divergence of the fifth force at the cen-
ter could actually disappear because of the non-linearities
of the scalar field dynamics and its ultra-local charac-
ter. Indeed, the result (153) was derived from dimen-
sional analysis and assumes that the density field remains
smooth. However, in the non-linear regime the density
field can develop strong inhomogeneities and fragment,
because of the fifth-force instability. This in turn leads
to a screening mechanism as isolated subhalos do not ex-
ert a fifth force on each other because of its ultra-local
character.

Keeping with the dimensional analysis in this section,
the result (154) would suggest that the relative impor-
tance of the fifth force always diverges at the center
of halos with a flat core, v = 0, but this is not the
case as Eq.(154) was derived for power-law profiles with
v > 0, where dlnp/dInr in Eq.(141) was assumed to
be of order unity. For halos with a core radius r., we
can write p =~ p.[1 — (r/r.)?] at small radii r < r., hence
|dIn p/dInr| ~ (r/7.)? and Eq.(141) gives the finite limit

il 1 e\’
" A. \rc.H

We show in Fig. 14 the radial profile of the force ratio
n at z = 0, for several halo masses. Here we consider
spherical halos with a mean NFW density profile, p(r) =
ps/1(r/rs)(1 + 7r/rs)?], and a concentration parameter,
c = R/rs given by c(M,2) = 11(M/10*?My)~%1(1 +
2)715. We define the halo radius Rago. by the mean
overdensity threshold Asgo. = 200 with respect to the
critical density peit. In agreement with Eq.(149) and
Eqs.(150)-(151), the force ratio decreases as 1/r2 at large
radii for all three models, it decreases as r at small radii
for the models (I) and (II), while it increases as 7~ /2 for
the model (IIT). The ratio 5 is maximum, for models (I)
and (II), or shows a bend between the small-radius and
large-radius regimes, at 7, ~ Ragoe/100 (for the cases
considered here). The overall amplitude of 7 increases
for smaller mass (hence smaller halo radius) because of
the characteristic growth on small scale, as 1/r2, of the
modification of gravity investigated in this paper.

As noticed above, the steady growth of the ratio 7 to-
wards the center of the halo for the model (III) suggests
that this model would lead to cluster or galaxy halos
that are significantly different from those obtained in the
A-CDM scenario. Then, this model would be ruled out
by observations, which show that A-CDM cosmologies
provide a reasonably good agreement with data for the

dln A

T e dlnp

(155)
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FIG. 14: Absolute value of the ratio n = Fa/Fx, as a func-
tion of the radius r, within spherical halos. We display the
halo masses Magoe = 10157 10 and 1011h_1M@, from bot-
tom to top, at z = 0. We consider the models (I) (red line
with crosses), (II) (blue line with squares) and (III) (green
line with circles); n < 0 for the model (I); n > 0 for the mod-
els (II) and (III). The absolute values |n| of models (I) and
(II) are equal.

properties of clusters and galaxies. The ratio n becomes
of order 10 (or greater) around Rago./100 for the models
(I) and (IT) for halo masses M ~ 10*h=t M, (or lower).
This suggests that these models may also be strongly con-
strained by observations, which would provide an upper
bound on the model parameter a. However, obtaining a
quantitative estimate of this constraint requires a dedi-
cated study that we leave for future work. We would need
to evaluate the impact of the fifth force on the final halo
profile, which may require numerical simulations, and to
estimate the observational accuracy of the halo profiles
measured on the intermediary scale ~ r,. Moreover, as
we discuss in section XID below, the results obtained
above may break down in the regime dominated by the
fifth force because it could lead to the formation of strong
inhomogeneities that in turn screen the fifth force in the
final configuration of the system.

B. Cosmological and astrophysical structures

We now estimate the fifth force to Newtonian gravity
ratio n for a variety of astrophysical objects and environ-
ments, from clusters of galaxies to the laboratory on the
Earth, at low redshift.
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1. Clusters of galazies

In a halo of mass M and radius R, the Newtonian
potential and the Newtonian force are of order
Un  GxM Fx  GyM
c2 2R’ 2 c2R?’
As in Eq.(128), the fifth force Fy = —VW¥ 4 = —c*VIn A
is of order

(156)

& dln A ldlnA
c? dr Rdlnp’

(157)

where we assumed dlnp/dlnr ~ 1. As seen from
Eq.(86), in the low-density regime we have:
dln A

Akl: ~
an < dlnp

oA, (158)
where A = p/p is the typical matter overdensity of the

object. Then, for a cluster of galaxies, with A ~ 103,
R ~ 1Mpc, M ~ 10" M, we obtain

F F .

—gl ~5x 107 Mpc 1, —’24 ~ a?10°Mpc ™,
c c

Fy

== ~ (10%)? <« 1.
N (10%a)* <«

(159)

Therefore, the fifth force is negligible on cluster scales.
However, as seen in Sec. X A and Fig. 14, this is no longer
the case far inside the cluster, at r < Ragoc/100, for
clusters of mass M < 1013h~1 M.

2.  Galazies

We now consider a typical galaxy, such as the Milky
Way, with M ~ 10'2M,, R ~ 10kpc, and A ~ 106.
This high value of the density contrast is at the limit of
validity of the regime (158), but this should still provide
the order of magnitude of the fifth force. Then, we obtain

F F
—gl ~5x10"*MpcH, —’24 ~ a?108Mpc 1,
c c

IA 6 \2
— ~ (10 ~ 1.
Fx (10%)

(160)
Thus, the fifth force is of the same order as the Newtonian
gravity on galaxy scales. This suggests that interesting
phenomena could occur in this regime and that galaxies
could provide a useful probe of such models. On the other
hand, since we are at the border of the regime (158),
nonlinear effects may already come into play and partly
screen the fifth force, depending on the details of the
coupling function A(Y).

3. Solar System

Many alternative theories to General Relativity are
strongly constrained, or even ruled out, by Solar System



tests, based on the trajectories of planets around the Sun
(measurements by the Cassini satellite [24]) or the mo-
tion of the Moon around the Earth (Lunar Laser Rang-
ing experiment [16]). To remain consistent with these
data, modified-gravity scenarios often involve nonlinear
screening mechanism that ensure convergence to General
Relativity in small-scale and high-density environments
(typically by suppressing the gradients of the scalar field
or its coupling to matter). In our case, if we consider
stars, planets and moons as isolated objects in the vac-
cum, the screening is provided by the definition of the
model itself and is 100% efficient. Indeed, because the
fifth force is exactly local, as F4 = —c*VIn A(p) only
depends on the local density and its gradient, the impact
of the Sun onto the motion of the Earth through the
fifth force is exactly zero, unless if it creates a distant
density gradient by other means (e.g. Newtonian grav-
ity). However, the impact of the gradient of the Newto-
nian force from the Sun onto the matter distribution in
the Earth is negligible and completely superseded by lo-
cal geophysical sources (the radial structure of the Earth
core and atmosphere and random variations associated
with mountains and oceans for instance). Therefore, the
Sun is completely “screened” as viewed from the Earth
by the fifth force, as well as all planets and moons of the
Solar System. Therefore, the trajectories of astrophysical
objects in the Solar System are exactly given by the usual
Newtonian gravity, or more accurately General Relativ-
ity, and all Solar Systems tests of gravity are satisfied, to
the same accuracy as General Relativity.

Here we assumed that the small-scale cutoff ¢4 of the
theory, discussed in Sec. V B, is below the Solar System
scales. If this is not the case, then one needs to explicitly
consider the small-scale behavior of the complete theory.
If the small-scale regularization is associated with a ki-
netic term in the scalar-field Lagrangian, as in Eq.(90),
we recover a standard Dilaton model. Then, high-density
regions, or compact objects such as stars, give rise to a
long-range fifth force but the latter is screened in dense
environments by the usual Damour-Polyakov mechanism,
as the coupling function In A goes to a constant at high-
densities and the coupling strength dln A/dyx vanishes.
The efficiency of this screening mechanism depends on
the details of the model [the kinetic and potential terms

in the original scalar-field Lagrangian Zw(gp)].

4. On the Earth and in the laboratory

Even though the fifth force on the Earth is not signif-
icantly influenced by the Sun and other planets, it does
not vanish as it is sensitive to the local gradient of the
matter density. Then, we must check that this local force
is small enough to have avoided detection in the labora-
tory or on the Earth (e.g., at its surface or in the atmo-
sphere). Here we first assume that the cutoff £ is smaller
than the scales we consider.

So far we have assumed that the scalar field is cou-
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pled in the same manner to the dark matter and to the
ordinary baryonic matter. For the analysis of cosmolog-
ical structures, from the background dynamics down to
galaxies, we are dominated by dark matter so we mostly
probed the coupling to the dark matter and it made no
difference whether the coupling to baryons is the same or
not. However, on smaller scales, such as in the Solar Sys-
tem or on Earth, we are dominated by baryonic matter.
Then, a simple manner to ensure that we satisfy obser-
vations and experiments performed in the laboratory or
on the Earth is to assume that ordinary matter is not
coupled to the scalar field.

A second alternative is that screening mechanisms are
sufficiently efficient to make the fifth force negligible on
the Earth. We now investigate whether this is the case,
assuming dark matter and baryons couple in the same
fashion to the scalar field. As seen in Eq.(36), the local
nature of the scalar field configuration makes the fifth
force appear as a polytropic pressure pa(p), given by
Eq.(37), where p is now the baryonic matter density as
the dark matter density and its gradient can be neglected.
Since A ~ 1 and M* ~ j4e0, we obtain for a typical den-
sity of 1 g/cm?,

pr~1gem™: ’% ~3 %1078 ¢ (m/s)2.  (161)
For x ~ 1, as in the models (I) and (II) where X has a
finite range of order unity, this corresponds to small ve-
locities and motions. To compare this pressure with the
thermal motions found on the Earth or in the laboratory,
we write Eq.(161) as a temperature,

MpPA

~3x10717 Y K,
pkp

(162)

where again we chose p ~ 1 g/ cm37 m,, is the proton mass
and kp the Boltzmann constant. For the models (I) and
(IT) where x has a finite range of order unity, this gives
a very low temperature of order 10~'7 K, which is much
smaller than the temperature reached by cold-atoms ex-
periments in the laboratory, T ~ 10~7 K. Thus, for such
models where x¥ ~ 1 the fifth force can be neglected in the
laboratory and on the Earth (and in other astrophysical
objects).

More generally, Eq.(162) gives the local upper bound
for |x|:

p~lgem™@: |x| <10, (163)

For the model (IIT) where |¥| is not bounded, we obtain
from Eq.(76) Y ~ —6 x 10%al/? ~ —6 x 10'!, which
violates the upper bound (163). Therefore, this model
would appear to be ruled out by such cold-atoms experi-
ments. Models where || is not bounded are still allowed
but their function x(p) should be somewhat smaller than
Eq.(76) for p~ 1 g/cm?’.

However, as noticed in Sec. V B, the local model (5)
considered in this paper is not expected to apply down
to arbitrarily small scales, but only above a small-scale



cutoff ¢;. This may arise for instance from a nonzero
kinetic term in the scalar-field Lagrangian. In any case,
we should have £, > 1 m in the cosmological background
(i.e., in the intergalactic space). The cutoff scale £, gener-
ically depends on the environment, e.g. on the local value
of the scalar field through the change of variable (4). On
the Earth, the result (162) suggests that the theory could
be valid down to somewhat smaller scales, as long as we
remain above the atomic scale and we can still define a
continuum limit to the density field. In any case, this
small-scale regularization suggests that that the cold-
atom bound (163) can be relaxed and the result (162)
shows that the fifth force is negligible on the Earth and
in the laboratory, and hence it is consistent with local
experiments.

C. Fifth-force dominated regime

In the previous section, we estimated the fifth force to
Newtonian gravity ratio n and the impact of the scalar
field for a variety of objects and environments. It is useful
to make this analysis more general and to determine the
domain of length, density and mass scales where the fifth
force is dominant. Thus, using for instance Eq.(141) and
taking dln p/dInr ~ 1, we write for structures of typical
radius R, density p and mass M = 47pR3/3,

- 2 Po ¢ \V|dnA
K Qmo p \RHy dlnp |’

(164)

Then, the fifth force is greater than Newtonian gravity if
we have

| >1: R2<(i>2i@
- T \Ho/) Qmo p

dln A
dlnp

’ . (165)

Although for convenience we write the right-hand side
in terms of the cosmological quantities Hy, pp and Q2,0
at z = 0, this expression does not depend on redshift
nor on cosmology. Moreover, it is only a function of the
density p, as any coupling function In A(Y) also defines
the functions %(p) and In A(p) through the scalar-field
equation (50). Therefore, in a density-radius plane, the
domain where |n| > 1 is given by the area under the
curve R, (p), where R, (p) is the density-dependent radius
defined by the right-hand side in Eq.(165).

We display this domain in the (p, R)-plane in Fig. 15.
At low densities, using Eqgs.(86) and (88), we obtain
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Thus, at low densities we obtain a constant radius thresh-
old, of order R, ~ 0.01 Mpc for a = 107%, as we can
check in Fig. 15. At high densities, we have the behav-

R,(p) ~ Ry with R

(166)
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FIG. 15: Domain in the density-radius plane where the fifth
force is greater than Newtonian gravity. This domain is iden-
tical for the models (I) and (II), and greater for the model
(ITI). The horizontal axis is the typical density of the struc-
ture, p, given in units of the mean matter cosmological density
today, po, in the bottom-border scale, and in units of g.cm™>
in the top-border scale. The vertical axis is the typical radius
of the structure, R, given in Mpc in the left-border scale and
in km in the right-border scale.

iors
(I) and (IT), p>>MT4: \?ﬁf%f—;
Rn(P)NHLO%%7 (167)
and
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Ry(p) ~ Hio <QS§Z£ZO>U4 Zé—i: (168)

Thus, at high densities the upper boundary of the fifth-
force domain decreases as R, oc p~3/2 for the models (1)
and (IT) and as p~3/* for the model (IIT). As in previ-
ous sections, we find that the effects of the fifth force are
greater for the model (III). This screening of the fifth
force at high densities ensures that it becomes negligi-
ble at the center of halos with sufficiently steep density
profiles and for astrophysical objects such as stars and
planets. On the other hand, we find that, independently
of the density, the fifth force is always negligible on scales
greater than R, ~ ac/Hp, of order 0.01 Mpc. This con-
firms again that the fifth force is small on cluster scales
and beyond.

To facilitate the comparison with astrophysical struc-
tures, it is convenient to display the fifth-force domain



o
(]

o galaaes 1 10%

fstarbursts | 1016

10'2* e =

10'4 - large
— 6| 5th force globular clusters g 1014 —_
8 10 molecular clouds "
4 4
E 10 10 X
g ] qpl0 X
10-10 10
8
1012 | (ﬂ; —x— 110
_E_
stars 1108
10} (1) 10
105 10° 100 10 10%
M[M,]
FIG. 16: Domain in the mass-radius plane where the fifth

force is greater than Newtonian gravity. This domain is iden-
tical for the models (I) and (II), and greater for the model
(III). The horizontal axis is the typical mass of the structure,
M, given in units of the solar mass. The vertical axis is the
typical radius of the structure, R, given in Mpc in the left-
border scale and in km in the right-border scale. The rectan-
gles show the typical scales of various astrophysical structures.

(165) in the mass-radius plane (M, R). This is shown in
Fig. 16, as the curve R,(p) provides a parametric defi-
nition of the boundary R,(M), defining the mass of the
structure as M = 47pR3/3. We obtain a triangular do-
main, with a constant-radius upper branch and a lower
branch that goes towards small radius and mass with a
slope that depends on the model. The upper branch cor-
responds to the regime (166), with

upper branch: R = R, for M < M,, (169)
and
M, = 0 ( ¢ ) (170)
T QmovQaeo \Ho ) '

where M, = po R2 with p, = M*/a. For a = 1076 this
yields M, ~ 10'°Mg. The lower branch corresponds to
the regimes (167) and (168), which yield

lower branch for M < M, :

/
(I) and (IT) : R = R, <]\A4/[>3 7, (171)
/
(I) : R=Ra (Mﬁf § (172)

We also show in Fig. 16 the regions in this (M, R)-
plane occupied by various astrophysical objects. From
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left-bottom to right-top, we show planets, stars, molec-
ular clouds, globular clusters, extended starburst re-
gions, galaxies and groups of galaxies. In agreement
with Secs. XA and X B, we find that the fifth force is
negligible for clusters and groups (at their global scale)
and Solar-System objects, while it is of the same order
as Newtonian gravity for galaxies. In particular, it ap-
pears that various galactic structures, from the molec-
ular clouds and extended starburst regions, where star
formation takes place, to the overall extent of low-mass
galaxies, as well as the small old globular clusters, all lie
close to the boundary of the fifth-force domain. There-
fore, they may provide strong constraints on the models
considered in this paper. In fact, the model (III) might
be ruled out by galaxy observations, independently of
the issue found in Sec. X A with the divergence of the
fifth force at the center of NFW halos (153). However,
we leave a detailed study of molecular clouds and glob-
ular clusters to future works to check the quantitative
constraints they can provide on the scalar-field theories

(3)-

XI. HISTORY AND PROPERTIES OF THE
FORMATION OF COSMOLOGICAL
STRUCTURES

In the previous sections we have studied the evolution
of the linear perturbations and of the spherical collapse
by assuming that the density field remains smooth and
that the fifth force on cosmological scales x is set by the
density gradient smoothed on these large scales. How-
ever, in the ultra-local models that we study in this pa-
per the fifth force is directly sensitive to the local density
gradient, as VIn A = (dln A/dp)Vp. As compared with
the A-CDM cosmology, the models of the type (IT) and
(IIT) accelerate the growth of small-scale perturbations,
and increasingly so on smaller scales because of the k2
term in Eq.(44), as seen in Figs. 4 and 5 of the linear
growing mode. This suggests that very small scales can
develop strong inhomogeneities at early times and the
local density gradient could always be set by such very
small scales (actually the small-scale cutoff of the the-
ory) rather than by the cosmological scales of interest.
Then, the fifth force would be screened as in the Solar
System, see the discussion in section X B3, because of
this ultra-local property, and there would be no effect left
on cosmological scales. In this case, the universe would
be made of small high-density clumps (set by the cutoff
of the theory), built at high redshift, while perturbations
on cosmological scales would evolve according to General
Relativity. To address this issue, we need to go beyond
perturbation theory and spherical dynamics, as this is a
highly non-linear and inhomogeneous problem. In this
article, we consider a thermodynamic analysis that pro-
vides a simple analytic framework, which we present in
section XIB below.

However, before we tackle this problem, we first de-



scribe in section XI A the evolution with redshift of the
scales that enter the non-linear regime. This allows us
to distinguish various regimes: while at high redshift the
non-linear transition is set by the fifth force, more pre-
cisely by the pressure-like term o V2§ in Eq.(42) associ-
ated with the ultra-local potential In A, at low redshift it
is set by the standard Newtonian gravity [the right-hand
side in Eq.(42)].

In this section we focus on models (IT) and (III), be-
cause model (I) actually damps small-scale perturba-
tions, so that the issue of a possible sensitivity to small
scales does not arise. Moreover, we have seen in sec-
tion V A 1 that such scenarios are disfavored on theoret-
ical grounds because they are not stable with respect to
a small kinetic term.

A. Evolution of the cosmological non-linear
transition for the model (II)

As explained in previous sections for models (II) and
(III), at high redshift the fifth force amplifies the growth
of structures and the non-linear transition zcon(z) is
much greater than for the A-CDM cosmology, as seen
from the linear power spectrum in Fig. 4. Using comov-
ing coordinates, we define this non-linear scale by

A3 (7/Tcon, 2) = 1.5 (173)
and we show xcon(z) in the upper panel of Fig. 17. The
factor 1.5, which should be order unity, is chosen to give
a scale of order 8~ 'Mpc at z = 0, when the Newtonian
gravity dominates and we recover the usual A-CDM be-
havior. We define the non-linear scale z.o(z) by the con-
dition (173) on the Fourier-space power spectrum A? (k)
rather than the real-space linear variance o2 () because
of the steep growth of the linear growing mode D (k,t)
at high k. This makes the linear variance 0% divergent or
ill-defined, dominated by a small-scale cutoff, but this is
not physical because the linear theory cannot be trusted
in the non-linear regime. Using AZ (k) allows us to avoid
this problem (in contrast, for the A-CDM cosmology,
where the slope of the linear power spectrum decreases
at higher k, using either AZ (k) or o2 (z) gives similar
results).

To perform the thermodynamic analysis presented in
section XIB below, we shall need the initial kinetic en-
ergy or typical velocity of the collapsing region. From the
evolution equation (42) of the linear density, we define an
effective velocity scale ccon by

onlz) =+ &, (174)

with

3Q0m
A= G=0+ea)—

o p) (Haxcoll)

(175)

The factor ¢? comes from the pressure-like term €;¢2V?§
in Eq.(42) while the term c% comes from the right-hand
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FIG. 17:  Upper panel: collapse radius zcon(z) (in comoving

coordinates) as a function of the scale factor a. The solid line
is for the model (IT) while the dashed line is for the A-CDM
cosmology. Lower panel: collapse velocity scale ceon(z) (solid
line) as a function of the scale factor a for the model (II). The
dotted and dot-dashed lines are c¢s and cx whereas the dashed

line on the right is the result ¢, "M = ¢47°P"M in the case

of the A-CDM cosmology.

side, associated with the usual gravitational force (where
the Newton constant is amplified by the negligible fac-
tor €; < 1). We show our results in the lower panel of
Fig. 17. We also display the case of the A-CDM cosmol-
ogy where Cé\oll M CQ*CDM as there is no pressure-like
term. Tt gives ¢ “PM ~ 200km/s at 2 = 0, which is
indeed of the order of the velocities associated with col-
lapsed structures today. It is a bit low, by a factor two if
we compare with large clusters of galaxies, which is not
surprising as the relation (175) is only an order of mag-
nitude estimate, but this is sufficient for our purposes.
The component cg, associated with the pressure-like
term associated with the fifth-force potential In A, dom-
inates at high redshift. Its amplitude follows the rise
and fall of €(z) displayed in Fig. 2, with a peak at
Za ~ a3 ~ 100. The component ¢y, associated with
the Newtonian gravity, explicitly depends on the scale
reol(2). It grows with time, along with reon(z), and
dominates at late times, a 2 0.03. The plateau for
0.01 £ a £ 0.2 follows from the very slow growth of



Teoll(z) found in the upper panel in this redshift range.
This can be understood from the peak at z, ~ 100 of
the fifth-force characteristic amplitude ¢; and from the
analysis of the linear growing modes and of the spherical
collapse shown in Figs. 4 and 8. As seen in the previous
sections, the fifth force amplifies the growth of structures
with a peak at z, and a strong dependence on scales, fol-
lowing the k2 factor in Eq.(44). As can be seen in Fig. 8,
the main effect is that wave numbers higher than the
characteristic value k™ ~ 3hMpc~! of Eq.(119) become
strongly amplified and reach the non-linear regime at z,,
with a steep scale dependence of D, (k). This leads to
the steady rise of 7con(2) and ceon(z) until z, and its sub-
sequent stop as the fifth force declines and the steep scale
dependence imprinted on the linear perturbations implies
that it requires a very long time for the usual gravita-
tional instability to push the non-linear regime towards
greater scales. We recover the standard A-CDM behavior
at late times, a > ax_cpm =~ 0.2, when the Newtonian
gravity dominates and the scales that turn non-linear had
not been significantly impacted by the fifth force at z,
(i.e. x> 1/kmin),

Thus, we can distinguish three regimes from Fig. 17,
defining a, /e, == 0.03 as the transition where c¢; = cn
and ap_cpm ~ 0.2 as the time when we recover the
A-CDM behavior. At early times, a < a, = 0.01,
the fifth force dominates and increasingly large scales
enter the non-linear regime. This is the period when
the thermodynamic analysis of section XIB below ap-
plies and allows us to estimate the behavior of the sys-
tem in the non-linear regime. For an < a < ac, /ey,
the fifth force remains dominant but r.en(z) does not
significantly grow so that no new structures form. For
e, /ey < @ < ap—cpM, the Newtonian gravity becomes
dominant but again r..(z) does not significantly grow so
that no larger structures form. However, some top-down
structure formation might occur (in the range where
gravity remains dominant), as in hot dark matter sce-
narios. Finally, for ap_cpm < a < 1, we recover the
A-CDM behavior as Newtonian gravity is dominant and
the linear power spectrum on the large scales that now
turn non-linear has not been strongly modified by earlier
fifth-force effects.

We can note that this history singles out a character-
istic mass and velocity scale, associated with the plateau
found in Fig. 17 over 0.02 < a < 0.2. This yields

z, ~0.355 h~*Mpc, M, ~2x 10 h™1 M,
¢« ~ 50 km/s. (176)

As in Fig. 16, we recover galaxy scales, more precisely
here the scales associated with small galaxies. Again, it
is tempting to wonder whether this could help alleviate
some of the problems encountered on galaxy scales by the
standard A-CDM scenario. However, this would require
detailed numerical studies that are beyond the scope of
this paper.
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B. Thermodynamic equilibrium in the fifth-force
regime for the model (II)

As explained above, we have so far implicitly assumed
that during the initial phase a < a, of structure for-
mation governed by the fifth force the density field re-
mains smooth on cosmological scales. In other words,
we assumed for the computation of the fifth force in lin-
ear theory and for the spherical collapse dynamics that
the gradient of the fifth force potential, VIn A, is set by
the density field smoothed on cosmological scales. This
is not obvious because small scales, z < z.on(z), have
already turned non-linear at high redshift, z > z,, as
seen in the upper panel in Fig. 17. Then, the density
field could have become strongly inhomogeneous, made
of objects of mass Mcon(2zcutoft) formed at a high cutoff
redshift zeutog amid empty space. Then, the gradient
of the fifth force potential VIn A at a given location in
space would be unrelated with the gradient of the density
field smoothed on cosmological scales. This strong sensi-
tivity to the small-scale distribution of the density field
does not arise for the Newtonian gravitational force, be-
cause the force at a distance d explicitly depends on the
density smoothed over a size of the same order, through
the integral F = Gn [ d®rp(r)r/r®. This comes from the
fact that the Newtonian potential is given by the Pois-
son equation (28), Uy o V~2p, which regularizes the
density field, whereas the fifth force potential In A is a di-
rect function of the local density through Eq.(50). Thus,
this issue only arises in the first stage a < a, found in
Fig. 17, where new scales enter the non-linear regime and
are dominated by the fifth force.

To address this question we need to go beyond pertur-
bation theory and spherical dynamics, as this is a highly
non-linear and inhomogeneous problem. We use a ther-
modynamic analysis, which provides a simple analytic
framework, and we leave dedicated numerical studies for
future works. Assuming that the scales that turn non-
linear because of the fifth force at high redshift reach a
statistical equilibrium through the rapidly changing ef-
fects of the fluctuating potential, in a fashion somewhat
similar to the violent relaxation that takes place for gravi-
tational systems [25], we investigate the properties of this
thermodynamic equilibrium. This first requires the study
of the phase transitions and of the phase diagram associ-
ated with the potential In A(p) that defines our models.
Because this issue arises from the behavior of the fifth
force in the regime where it dominates over Newtonian
gravity, we can neglect the latter to investigate this prob-
lem. Note that contrary to the usual gravitational case,
the potential In A is both bounded and short-ranged , so
that we cannot build infinitely large negative (or positive)
potential energies and a stable thermodynamic equilib-
rium always exists, and it is possible to work with either
micro-canonical, canonical or grand-canonical ensembles.
In this respect, a thermodynamic analysis is better suited
for such systems than for standard 3D gravitational sys-
tems, where the potential energy is unbounded from be-



low and stable equilibria do not always exist, and differ-
ent statistical ensembles are not equivalent [26].

1. Thermodynamic phase transition and phase diagram

We work in the grand-canonical ensemble, where the
dark matter particles are confined in a box of size z (the
scale that reaches the non-linear regime at a given red-
shift) with a mean temperature 7 = 1/8 and chemi-
cal potential u. These two thermodynamic quantities
will be set by the initial energy and density at the non-
linear transition zon(z). If the potential ln A(p) were
constant, there would be no fifth force and as usual the
potential would disappear as an irrelevant constant in
the statistical analysis. Then, we would recover the ho-
mogeneous equilibrium of the perfect gas, without inter-
actions. However, because of the variations of In A we
expect inhomogeneities to develop. For the models (II)
and (IIT), where the potential In A(p) decreases at higher
density, see Egs.(65) and (73)-(77), the fifth force gen-
erates instabilities, as already seen from the behavior of
linear perturbations, and the medium can be expected to
become strongly inhomogeneous, with small high-density
clumps amid large voids. However, this outcome depends
on the temperature 1/5. At high temperature, we are
dominated by the kinetic energy and the potential en-
ergy is negligible as In A is bounded. Then, we recover
the perfect gas with an homogeneous distribution. At
low temperature, the potential becomes important and
we expect the system to present strong inhomogeneities.
As for the thermodynamics of many standard systems,
we shall find that there is a phase transition between the
homogeneous and the inhomogeneous phases at a criti-
cal temperature T. = 1/8.. We do not need to consider
cases such as model (I), where In A(p) increases at higher
density and the fifth force has a stabilizing influence that
prevents the formation of small-scale inhomogeneities, as
already seen from the behavior of linear perturbations.

In the continuum limit, where the mass m of the dark
matter particles goes to zero, we describe the system
by the smooth phase-space distribution function f(x, v).
The mass M, the energy E and the entropy S of the
system read as [26—28]

M /dedBU f(x,v),

(177)

E

/d3xd3v f(x,v) (1}2—2 + lnA[p(x)}> , (178)

S = —/dgxdgv f(x,v) In @, (179)

0
where fj is a normalization constant and we used the fact
that the potential In A is a function of the local density.
In the grand-canonical ensemble the statistical equilib-
rium is obtained by minimizing the grand-canonical po-
tential €2, which is given by

Q=FE—S/B—uM, (180)
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where § and p are the inverse temperature and the chem-
ical potential. With our notations 8 has units of inverse
squared velocity and p has units of squared velocity. The
equilibrium phase-space distribution is given by the min-
imum of the grand potential, DQY/Df = 0. This yields

f(X, V) — fO 675(U2/2+02 ]nA+02dlnA/dlnp)+[iu71.(181)

Since In A only depends on the positions of the parti-
cles but not on their velocities, we recover as expected
the Maxwellian distribution over velocities, f(x,v) o
p(x)e=Bv*/2. The proportionality factor is obtained by
integrating over velocities, which gives the usual result

5\ .
f(x,v) = (2 ) p(x) e PV /2, (182)
m
and Eq.(181) yields
27\ 2/ 2
p(X) _ fO (?) e—Bc (1nA+d1nA/d1np)+ﬁ,u—1' (183)

Because of the specific form of the potential In A, which
is local and only depends on the local density p(x),
the thermodynamic equilibrium condition (183) factor-
izes over different positions x. The different space loca-
tions are thus decoupled and we can omit the space co-
ordinate x: the equilibrium condition (183), which was
a functional equation over the field p(x), simplifies to an
ordinary function of the local density p. As noticed in sec-
tion IV A 2, it is convenient to introduce the rescaled di-
mensionless potential and density A and p, from Eqgs.(51)
and (52). Defining also the rescaled dimensionless inverse
temperature B and chemical potential i,

B = ac?B, (184)
f=1In [aﬁf (%)3/2 4 Bu—1, (185)
the equilibrium condition (183) reads as
fi=0+3v), (186)
where we introduced
0=Inp, vd) =i+ % (187)

For a given value of the rescaled inverse temperature
B and chemical potential fi, this gives the equilibrium
density 6 as the solution of the implicit equation (186).
In terms of these dimensionless variables, the grand-
canonical potential (180) reads as

4.2
_ MV

Q0 with Q= ¢ BA—,}—1+9], (188)



FIG. 18: Upper panel: fifth-force potential functions A(9)
and v(0) for the model (II). Lower panel: thermodynamic
equilibrium relation g = (0, B) as a function of 0, fixing
B = 0.5BC7BC and QBC.

where V is the total volume of the system. Thus, the
equilibrium equation (186) is the condition d€2/df = 0, as
the thermodynamic equilibrium corresponds to the min-
imization of the grand-potential.

It is convenient to analyse the system at a fixed tem-
perature, which corresponds to a given initial velocity
dispersion, as a function of the chemical potential i or
of the density p, seen as conjugate variables. At high
temperature, 8 — 0, Eq.(186) becomes i = 6 and there
is a unique density for each ji. This corresponds to the
high-temperature homogeneous phase where we recover
the perfect gas as the potential energy is negligible. At
low temperature, 3 — 0o, the right hand side of Eq.(186)
can become non-monotonic so that for some values of the
chemical potential ji there are several solutions ;. This
corresponds to the inhomogeneous phase, where the sys-
tem splits over several regions of different densities 6;,
with an admixture such that the mean density over the
large scale x = V'/3 is the initial density p, see [29] for
an analysis of such phase transitions.

We first consider the model (II) defined in Eq.(63).
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From Eq.(65), with again x, = —2, we obtain

6729
(1) : A(@):—ﬁ7 v(9)=—(11:62f29)3/2-
(189)

We show these two functions in the upper panel of
Fig. 18. From Eq.(186), the function (), at fixed in-
verse temperature fj3, is strictly monotonic if dj/df =
1+ Bdv/dd > 0. Therefore, the function ii(6) becomes
non-monotonic below the temperature ]-/Bc, where 3, is
given by the most negative value of dv/df,

(15 + V105)°/2

5 -1
~ 1.96

fe = min(dv/df) ~ 16(51 + 5v/105)

We display in the lower panel of Fig. 18 the function ()
for three values of 3. As explained above, for low 3 (i.e.
high temperature) the function fi(f) is monotonic while

(190)

for high 3 (i.e. low temperature) it is non-monotonic over
some range of densities, with a first-order phase transi-
tion at BC. Then, for B < Bc, we always have a single
solution () for any chemical potential fi. For B > BC,
in a finite range [fi1, {12] and [01, 02], we have three solu-
tions, 0_ < 6, < 64, for a given chemical potential ji.
Both #_ and 64 are local minima of the grand-potential
Q) whereas 6y, is a local maximum. Then, the physical
solution 6(j) is the global minimum among {f_, 6.} (i.e.
the deepest minimum). For ji ~ ji;, where we are close
to the bottom left monotonic branch in the lower panel
of Fig. 18 (i.e. the low-density branch), this global mini-
mum is the lowest-density one 6_. For i ~ [is, where we
are close to the upper right monotonic branch (i.e. the
high-density branch), this global minimum is the highest-
density one 6,. Then, there is a critical value ji5; in be-
tween, i1 < fis < fi2, where we make the transition from
f_ to O4. This happens at the crossing of their values
of the grand-potential, when Q(0_; jis) = Q(0; 1s) [29].
This condition allows us to compute fis, as a function of
A, from Eqs.(186) and (188). At leading order for large

[ we obtain

A N . A In 3
Bovoor fun B 0~ —p 0y~ 20

(191)
This means that the transition occurs close to the low-
density boundary (61, /1) of the multi-valued region.
Thus, we have a first-order phase transition, as the den-
sity of the system jumps from 0_(fis) to 04 (fis) when
the chemical potential goes through fi;. At fis, where
Q_ = Q. there is a coexistence of the two phases. One
part of the volume V is at the low density #_ and the
other part at the high density 6. The relative fraction
between the two phases is set by the mean density 6 of the
full volume, #_ < § < f,, which is given by the initial
condition of the system (the constraint on the average
density of the full system).

The thermodynamic phase diagram of the system, in
the inverse temperature - density plane, is shown by the
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FIG. 19: Thermodynamic phase diagram of model (II). The
shaded area is the region of initial inverse temperature B and
density € where the system reaches an inhomogeneous ther-
modynamic equilibrium. The white area corresponds to the

homogeneous phase. The solid line is the cosmological trajec-
tory (8ot (2), Ocon (2))-

shaded area in Fig. 19. This domain is limited at low
6 by the critical temperature .. The lower and upper
limits of the domain are the curves 0_(3) = 0_(fis(3), B)
and €+(B) = 9+(ﬂ3(3)73), which obey the asymptotes
(191). We choose the (3,6’) plane to display the phase
diagram, rather than (B, i1) for instance, because the den-
sity is a more direct physical variable than the chemical
potential, while the temperature 1/ B is also directly re-
lated to the initial kinetic energy. Whereas in the (B, i)
plane the transition appears as a critical line ﬂs(ﬁ), in the
(B, 0) plane it appears as an extended domain, because
the critical line fi5(3) corresponds to the jump from 6_
to 64 over the density. The meaning of the diagram in
Fig. 19 is the following. If the average initial tempera-
ture and density, (1/B,0), fall outside of the shaded re-
gion, the system remains in the homogeneous phase. If
the initial condition falls inside the shaded region, the
system becomes inhomogeneous and splits over domains
with density _ or 64, with a proportion such that the
total mass over the full volume is conserved.

2. Cosmological trajectory in the phase diagram

Using the phase diagram of Fig. 19, we can now con-
sider the behavior of the collapsing scales rcou(z) ob-
tained in Fig. 17, in the time interval a < a, where the
new structures that reach the non-linear regime are gov-
erned by the fifth-force potential In A. For the typical
density associated with the non-linearity transition we
simply take peon(z) = p(z), as the transition corresponds
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to density contrasts of order unity, hence

peon(2) = p(2), Beon(z) =In [ap(z)} . (192)

M4

At the thermodynamic equilibrium (182) the kinetic en-
ergy reads as FEyxin, = 3MT/2 = 3M /2. From the typical
velocity scale ceon(z) of Eq.(174) we use the simple esti-
mate

Bran(2) = - hence fean(z) = o, (199)
nz) = —-—5—-— ence nz)=—-—-=.
“ Zon(2) “ Coon(2)
We show in Fig. 19 the cosmological trajectory

(Bcon(z), Ocon(z)) over the phase space diagram of the sys-
tem defined by the fifth-force potential In A of the model
(IT). The curve runs downwards to lower densities .01 as
cosmic time grows. In agreement with the lower panel of
Fig. 17, the inverse temperature BCOH first decreases until
aq, as the velocity ccon(z) grows. Next, Bcoll increases
while ceon(z) decreases until ay_cpm, when we recover
the A — CDM behavior, and Bcon decreases again there-
after. We are interested in the first era, a < a,, and we
find that the cosmological trajectory is almost indistin-
guishable from the upper boundary 6 (3) of the inhomo-
geneous thermodynamic phase. Indeed, from Eq.(174)
and Fig. 17 we have at early times ccon =~ c¢s, hence
Bcoll ~ «/e;. Using Eq.(67) we have at high densities,
which also correspond to a < aq, €1 ~ ap 2 = ae™20,
hence

1 ~
a<Kag: BOeonl ~ 3 In Beon, (194)

and we recover the asymptote (191) of 6,(5). De-
pending on the choice of some numerical factors, e.g.
whether we modify Eq.(193) as Beon(z) = 2/c2,;(2) or
Beon(z) = 1/2¢%,(2), we can push e slightly above
or below 0. If 0,01 > 0+ we are in the homogeneous
phase and the system remains at the initial density p. If
Ocon < 04+ we are in the inhomogeneous phase and the
system splits over regions of densities 0, and 6_. How-
ever, as we remain close to #4 most of the volume is at
the density 04+ ~ 6.1 and only a small fraction of the
volume is at the low density #_. Neglecting these small
regions, we can consider that in both cases the system
remains approximately homogeneous. This means that,
according to this thermodynamic analysis, the cosmolog-
ical density field does not develop strong inhomogeneities
that are set by the cutoff scale of the theory when it enters
the fifth-force non-linear regime. Therefore, density gra-
dients remain set by the large-scale cosmological density
gradients and the analysis of the linear growing modes in
section VII and of the spherical collapse in section VIII
are valid. Of course, on small non-linear scales and at
late times, where Newtonian gravity becomes dominant,
we recover the usual gravitational instability that we ne-
glected in this analysis and structure formation proceeds
as in the standard A-CDM case.
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FIG. 20: Upper panel: collapse radius zcon(z) (in comoving

coordinates) as a function of the scale factor a. The solid line
is for the model (II) while the dashed line is for the A-CDM
cosmology. Lower panel: collapse velocity scale cqon(z) (solid
line) as a function of the scale factor a for the model (II). The
dotted and dashed lines are cs and cx whereas the dashed line
on the right is the result ¢ "M = ¢47°PM in the case of
the A-CDM cosmology.

C. Cosmological trajectory in the phase diagram
for the model (III)

We can repeat the previous analysis for the model (IIT),
which also amplifies density perturbations and is similar
to the model (IT) in many respects. We show the evolu-
tion of the non-linearity scale r¢ou(z) and of the velocity
scale ccon(z) in Fig. 20. We can see that the behavior is
similar to the one obtained in Fig. 17 for the model (II),
except that 7con(z) and ceon(z) decrease more slowly at
high redshift, z > z,. This is because the amplitude of
the fifth force, as measured by €7, decreases more slowly
at high z for this model, as found in Fig. 2 and explained
in section VI. At lower redshifts, z < z,, the models be-
have in the same fashion, as was also seen in Fig. 2. This
leads to the same characteristic mass and velocity scales
(176), associated with the intermediate redshift plateau,
Zra—cDM K 2 K Zg-

The thermodynamic behavior is similar to the one ob-
tained for the model (II) in section XIB1. As in the
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FIG. 21:  Thermodynamic phase diagram of model (III).
The shaded area is the region of initial inverse temperature
B and density 6 where the system reaches an inhomogeneous
thermodynamic equilibrium. The white area corresponds to
the homogeneous phase. The solid line is the cosmological
trajectory (Beoli(2),0cori(2))-

upper panel of Fig. 18, the fifth-force potential functions
A(0) and v(0) again decrease from 0 at low density to —1
at high density, except that v(6) is now strictly decreas-
ing and does not show a local minimum at 6 ~ 0 (which
did not play a significant role anyway). We again obtain
a first-order phase transition as described in the lower
panel of Fig. 18. The inverse critical temperature is now
B. ~ 3.53, (195)
and at low temperature we obtain the asymptotic behav-
iors
B—o00: fis~—B, O_~—B, 04~2InB. (196)
We show the thermodynamic phase diagram of the
model (III) in Fig. 21. We recover the same features
as for the model (II) shown in Fig. 19, with a somewhat
higher inverse critical temperature . and upper bound-
ary 64 of the inhomogeneous phase. The cosmological
trajectory (Bcou(z), Ocon(z)) again roughly follows the up-
per boundary 64 at high redshift, z > z,. Indeed, using
again feon ~ ac?/c2 = a/e; and Eq.(79), we obtain at
high densities and redshifts e; ~ a/v/8p = ae=%2//8,
hence

a4 <K gt 90011 ~ 2In Bcollv (197)

and we again recover the asymptote (196) of 0, ().
Therefore, as for model (IT), we can conclude that dur-
ing the fifth-force era of structure formation, a < aq,
density gradients up to the linear transition remain set
by large scales and do not suffer from cutoff-scale depen-
dence, so that the analysis of the linear growing modes in
section VII and of the spherical collapse in section VIII
are valid.



D. Halo centers

It is interesting to apply the thermodynamic analysis
presented above to the inner radii of clusters and galax-
ies. Indeed, we have seen in section X A that the fifth
force can become large inside spherical halos and the ra-
tio Fa/FN can actually diverge at the center for shallow
density profiles, see Fig. 14 and Eqs.(152)-(153). How-
ever, this analysis was based on dimensional and scal-
ing arguments and it fails if the density field becomes
strongly inhomogeneous so that the typical density inside
the halo is very different from the global average density.
The thermodynamic analysis presented in section XIB 1
neglected Newtonian gravity. However, we can also ap-
ply its conclusions to a regime dominated by Newtonian
gravity where at radius r inside the halo the structures
built by gravity and the density gradients are on scale r.
Then, we can ask whether at this radius r fifth-force ef-
fects may lead to a fragmentation of the system on much
smaller scales £ < r. To study this small-scale behavior
we can neglect the larger-scale gravitational gradients r
and discard gravitational forces.

Within a radius r inside the halo the averaged reduced
density is

ap(<r) a3M(< r)
We write the reduced inverse temperature as
) 2
B = (199)

~ Max(c2,02)’

where vy is the circular velocity (139) associated with
the Newtonian gravity while ¢, is the velocity scale (143)
associated with the fifth force. As noticed in Eq.(144),
the maximum Max(c2, vg) shifts from one velocity scale
to the other when the associated force becomes dom-
inant. Here we choose the non-analytic interpolation
Max(c?,v%) instead of the smooth interpolation ¢2 + v%
that we used in Eq.(174) for the cosmological analysis
for illustrative convenience. Indeed, the discontinuous
changes of slope in Fig. 22 below will show at once the
location of the transition |n| = 1 between the fifth-force
and Newtonian gravity regimes.

If the density grows at small radii as a power law, p o
r~7, we have seen in Egs.(150) and (151) that the fifth-
force to gravity ratio n behaves as ngry ~ 73772 for the
model (II) and 7 ~ 737/2=2 for the model (IIT). This
led to the bounds (152) and (153) over ~ for the fifth force
to become negligible at the center. From Egs.(198) and
(199) we obtain in this power-law regime 6, ~ —ylnr
and

(200)

2 2—y 2 2y 2 v/2
UNT S, Canp YT, Cgamy YT / )

where we used Egs.(65) and (77). In the Newtonian grav-
ity regime this gives for both models

’y ~
Inl<1: 6, ~——1Inp,, (201)
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and in the fifth-force regime
1 . .
|77| > 1 : er(H) ~ 5 hl ﬁr» GT(IH) ~ 21n ﬁr- (202)

For v > 2 we are in the Newtonian regime for both mod-
els and v% — oo, 3,. — 0, so that we are in the ho-
mogeneous phase of the thermodynamic phase diagram
as BT < Bc. Let us now consider the case v < 2. For
model (IT), Newtonian gravity dominates at small radii
if v > 2/3 from Eq.(152). In this regime Eq.(201) yields
0, > (1/2)Inj3,, so that we are above the upper bound-
ary 6 of the inhomogeneous phase obtained in Eq.(191).
For shallower density profiles, v < 2/3, the fifth force
dominates and we obtain 6, ~ 6. ~ (1/2)Inj,. The
model (III) shows a similar behavior. Newtonian grav-
ity now dominates for v > 4/3 from Eq.(153), this gives
6, > 2Inp, hence 6, > 04+. In the fifth-force regime,
v < 4/3, we obtain 6, ~ 64 ~ 21n f,.. Therefore, in both
models in the Newtonian gravity regime we are far in
the homogeneous phase of the thermodynamic diagram
whereas in the fifth-force regime we are along the up-
per boundary of the inhomogeneous phase domain. This
means that the dimensional analysis of section X A is
valid as the fifth force does not push towards a fragmen-
tation of the system down to very small scales.

The previous results were obtained in the small-radius
limit 7 — 0. In Fig. 22 we show the full radial trajec-
tories (f,,6,) over the thermodynamic phase diagram,
from Rogoe inward, for the NFW halos that were dis-
played in Fig. 14 at z = 0. As we move inside the halo,
towards smaller radii r, the density 6, grows. The turn-
around of BT at 6, >~ —4 corresponds to the NFW ra-
dius 75 where the local slope of the density goes through
~v = 2 and the circular velocity is maximum. At smaller
radii, r < r,, the NFW profile goes to p o< !, hence
~v = 1. For model (II) (upper panel) this corresponds to
the Newtonian regime and we move farther away above
the inhomogeneous phase. However, for low-mass ha-
los, M < 10'3h~! Mg, at intermediate radii we are in
the fifth force regime, as seen in Fig. 14, and the tra-
jectory converges towards the upper boundary of the
inhomogeneous phase. These behaviors agree with the
discussion above and Eqs.(201)-(202). The transitions
between the Newtonian-gravity and fifth-force regimes
correspond to the discontinuous changes of slope in the
figure. For M = 10h~!Mg there is no intermediate
fifth-force regime, for M = 10'3h~'M, it corresponds
to =1 < 0, < 2, while for M = 10"~ My the low-
radius boundary of the intermediate fifth-force regime is
beyond the scales shown in the figure. For model (III)
(lower panel) the small-radius density slope v = 1 is in
the fifth-force domain and we can see that for the three
masses the trajectory converges to the upper boundary
0+ of the inhomogeneous domain, in agreement with
Egs.(201)-(202).

The results found in Fig. 22 suggest that for large-
mass halos, M 2> 1013h71Mg at z = 0, the dimen-
sional analysis of section X A is valid. In the case of
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FIG. 22: Radial trajectory (Br, 0,) over the thermodynamic
phase diagram inside halos of mass Mago. = 1015, 10 and
10"h~* Mg, at z = 0. We show our results for the models
(IT) (upper panel) and (III) (lower panel).

model (III) this would lead to an increasingly dominant
fifth force at small radii and characteristic velocities that
are higher than the Newtonian circular velocity. This
is likely to rule out this scenario. For low-mass halos,
M < 10MA~ 1My at z = 0, we find that a significant
part of the halo is within the inhomogeneous thermody-
namic phase for both models IT and III. This may leave
some signature as a possible fragmentation of the system
on these intermediate scales into higher-density struc-
tures. This process would next lead to a screening of
the fifth force, as discussed for the Solar System and the
Earth in sections X B3 and X B4, because of the ultra-
local character of the fifth force. Indeed, because it is set
by the local density gradients, the fragmentation of the
system leads to a disappearance of large-scale collective
effects and the fifth force behaves like a surface tension
at the boundaries of different domains. Such a process
may also happen in the case of massive halo at earlier
stages of their formation, which could effectively screen
the fifth force in the case of model (III) where a simple
static analysis leads to a dominant fifth force at small
radii. However, a more precise analysis to follow such
evolutionary tracks and check the final outcomes of the
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system requires numerical studies that are beyond the
scope of this paper.

XII. DEPENDENCE ON THE PARAMETER «

It is interesting to investigate how the results obtained
in the previous sections change when we vary the param-
eter a that measures the amplitude of the modification
to General Relativity. For illustration, we consider the
model (II) defined by Eq.(63), keeping x. = —2. We
show our results in Fig. 23, where we compare the case
a = 1079 considered in the previous sections with the
two cases @ = 1077 and o = 1078,

In agreement with the discussion in Sec. VI A, the fac-
tor €; shown in the upper left panel, which measures the
amplitude of the modification of gravity at linear order
over field fluctuations, decreases linearly with a while its
peak is pushed towards higher redshift as z, ~ a~1/3.

The smaller value of e; implies that the effect of
the scalar field on gravitational clustering is pushed to
smaller scales, as k, o 6;1/2 from Eq.(117), and hence
ko o< a~'/2. We can check in the upper right panel that
the deviation from the A-CDM linear power spectrum
is indeed pushed towards smaller scales as a decreases.
This also means that the deviation of the halo mass func-
tion is repelled to smaller masses, as we can see in the
lower left panel. At a given mass, the relative deviation
An/n decreases with «, but one can still reach deviations
of order unity by going to small enough masses.

As expected, the area in the (M, R) plane where the
fifth force is greater than Newtonian gravity shrinks as «
decreases, as we can see in the lower right panel. The up-
per branch at constant radius is pushed towards smaller
scales, as R, « «a from Eq.(166). The lower branch
keeps the same slope and goes down at the very slow
rate R oc o'/ at fixed mass [as can be seen from Eq.(171)
and the expressions of R, and M,|. Because the lower
branch is almost insensitive to «, the various galactic
structures shown in the figure remain along the border of
the fifth-force dominated region. They only progressively
leave this region, starting from the largest and most mas-
sive objects, as the upper branch is pushed downward.
Therefore, globular clusters and molecular clouds remain
sensitive to the modification of gravity until o becomes
smaller than about 10710,

XIII. COMPARISON WITH SCALAR-FIELD
MODELS WITH A KINETIC TERM AND
TOMOGRAPHIC RECONSTRUCTION

The ultra-local models introduced in this paper can
be easily compared to models of modified gravity of the
chameleon type. These models are defined by two func-
tions, the potential V(¢$) and the conformal coupling
A(9) of a scalar field ¢. They can be reconstructed from
two functions m?(p) and B(p), which are respectively the
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Dependence on the parameter « of the deviations from the A-CDM predictions. We plot models of the type (II)
Upper left panel: €1(a) as a function of the scale factor, as in Fig. 2. Upper right panel:

linear logarithmic power spectrum A% (k) at redshift z = 0, as in Fig. 4. Lower left panel: absolute value An|/n of the relative
deviation of the halo mass function from the A-CDM result, as in Fig. 12. Lower right panel: domain in the mass-radius plane
where the fifth force is greater than Newtonian gravity, as in Fig. 16.

mass squared and the coupling to matter in an environ-
ment of density p, using the tomographic mapping [6, 19]

M _ ¢BBN P B(p)
Mp,  Mp /pBBN dp MEm2(p)’ (203)
and we have
P 2

where we assumed that Appn(p) is close to one, and

B*(p)p

NZm2(p) (205)

p
V(p) = VeBN +/ dp

PBBN

This parametric mapping defines all the models of the
chameleon-type such as f(R) models, chameleons, dila-
tons and symmetrons.

In the case of the ultra-local models, as the rescaling
A(x) between the Einstein and the Jordan frames is con-
strained to vary cosmologically by less than 1076, the
dynamics of the models can be equally understood in the
Einstein frame. Then, we can write the ultra-local model
in the same form as Eqs.(203)-(205), where X plays the
role of the reduced scalar field ¢/Mp;. The effective po-
tential reads

Ver(X) = —M*X + p In A(), (206)

where p is the conserved matter density, and the equa-
tion of motion (50) corresponds to the minimum of the
effective potential,

OVer(X)

% =0.

)Zmin(p)

(207)

Thus, we recover the behavior of models of the chameleon
type, where the field is stuck at the minimum of the ef-



fective potential since Big Bang Nucleosynthesis. At this
minimum one can define the effective coupling to matter

dIn A
falp) = T (208)
X Xmin (P)
and the effective mass

1 Ve pBa(p)
m2(p) = —5 == = . (209)

Mg, ox? Fenin (p) M,
From B = dp1/dy = —pidlnp/dyx, where we used

the equation of motion #; = M?*/p, we obtain dy =
—(B1/B2)d1In p. With Eq.(209) this yields

X(p) = XBBN — /P dp 7M§11n(1p?)(p)'

PBBN

(210)

Thus, we recover the same tomographic mapping as for
chameleon-type models, where y plays the role of the
rescaled field ¢/Mp; and B; that of 8 in Eq.(203). We
can also write dln A/dp = B1dx/dp = —B%/B2p, which
yields

] 2
mmm_A%;mMgg@,

which also coincides with Eq.(204). Finally, writing V' =
—M*x and using M* = pB;, we recover Eq.(205). This
completes the equivalence, at the background level, of the
ultra-local models with a subclass of the chameleon-type
models. Thus, the ultra-local models are defined by the
specific choice

(211)

4

ultra-local ~ chameleon with SB(p) = —, (212)
p

while the squared-mass m?(p), or equivalently the cou-
pling B2(p), remains a free function. We recover the fact
that all ultra-local models can be defined by a single
function of the matter density, as was already seen in
section IV.

At the linear perturbation level, the chameleon-type
models modify the growth of structure as Newton’s con-
stant becomes space and time dependent [6, 18]

Get = Gn (1 + €(k, 1)), (213)

with
243%(a)

echam (K, 1) = —L 2 214
) = (214)

On large scales beyond the Compton radius (but still
below the horizon) we have

2/3%(a)k?

T (215)

k
H < E <Lm: Gcham(k7t) =
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On the other hand, from Eq.(44) we find that on sub-
horizon scales the ultra-local models also exhibit a mod-
ified Newton constant with

2k? B 282k
30,a2H2

k
H <« E : 6ultra(kat) = 61((1)

a?m?’

(216)
where in the second equality we used the definition (41),
€1 = 2/B2, and the identification (209), B2 = Mg m?/p.
Thus, we recover the result (215) of the chameleon mod-
els, over the intermediate scales H < k/a < m.

So we find that the ultra-local models can be seen as
chameleon-type models when their mass terms are much
larger than the kinetic energy outside the Compton wave-
length of the scalar field. We will give an explicit model
with such a large mass in a companion paper where we
discuss the supersymmetric chameleons. However, we
should note that the correspondence found in Eq.(216)
is not complete as it breaks down inside the Compton
wave-length. From Eq.(209) and the estimate (108) we
obtain at low redshift
p H?

2
z<1m~—~—
~ a?M2, " a2

(217)
This means that the correspondence with the chameleon
models, in the low-k regime (215), applies up to m ~
H/a. Since a < 1 this means that it holds down to
scales that are much below the horizon, 1/m ~ 3h~!kpc
for o ~ 1075, However, for the ultra-local models that we
consider in this paper the rise with % of € in Eq.(44) goes
on to much higher &, until we reach the cutoff of the the-
ory. Therefore, ultra-local models go beyond chameleon
models with a relatively large squared-mass m?; taking
the kinetic terms in the Lagrangian or the unit factor
in Eq.(214) to zero is not exactly the same as taking
m large in Eq.(214). This is also clear from the phe-
nomenology presented in this paper, which shows many
different qualitative features from usual chameleon mod-
els at short enough scale inside the Compton wave-length
of the chameleon scalar field.

XIV. CONCLUSIONS

We have introduced in this paper ultra-local models, a
class of modified gravity theories where we add a scalar
field with a negligible kinetic term to the Einstein-Hilbert
action and a conformal coupling to matter. This gives
rise to a new screening mechanism, which is not mainly
due to the non-linearity of the scalar field potential or
coupling function but to the absence of kinetic term. In-
deed, it is this feature that leads to the ultra-local char-
acter of the model, where the fifth force potential only
depends on the local density. This removes any fifth force
between isolated objects in vacuum. Another property of
this class of models is that the scalar field potential and
coupling function are degenerate, so that predictions only
depend on a single free function. We have then presented
a cosmological analysis of these scenarios.



We have shown the ultra-local models recover the A-
CDM expansion history at a level of accuracy which is set
by a free parameter a of the theory but is always smaller
than a < 1075, Moreover we have demonstrated that, for
some of the models considered in this paper, the results
obtained for the expansion history are stable if we add
a small initial kinetic term to the Lagrangian. We have
also checked that the non-linearities of the models do not
lead to strong back-reaction effects on the cosmological
background. In addition to the dark energy density to-
day, pdeo, these models single out a characteristic density
Pa ~ Pdeo/ and redshift z, ~ a~l/3 2= 100 where the
fifth force is the greatest.

At the linear level of cosmological perturbations, the
presence of the ultra-local scalar field has a major im-
pact on the growth rate of structures at small scales,
enhancing or diminishing it, even though the last case
corresponds to a model that is found to be unstable if we
add a small initial kinetic term to its Lagrangian.

We have studied the spherical collapse in this frame-
work showing that, due to the modification of the growth
rate at small scales, the halo mass function is substan-
tially modified in the low mass tail. However, it must be
taken into account that we have used a Press-Schechter-
like approach without considering qualitative modifica-
tions to the spherical collapse, which we may be taken
into account in future studies.

We have shown that due to the ultra-local behavior
of the theory, very dense environments such as the Solar
System are completely screened but on the other hand
the importance of the fifth force in astrophysical systems
with a continuous distribution of matter, such as galax-
ies or clusters of galaxies, may or may not diminish go-
ing towards the center of the objects depending on the
shape of the coupling function. This could provide very
stringent constraints on the latter, which may require a
better understanding of the possible modifications of the
halo profile for this theory and/or the use of numerical
simulations.

To study the non-linear and inhomogeneous regime of
the fifth force, which requires to go beyond perturba-
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tion theory or the spherical collapse, we have presented a
thermodynamic analysis. This leads to a phase diagram
with a first-order phase transition. At at low temper-
ature (i.e. low initial kinetic energy) and intermediate
density, the system becomes inhomogeneous and splits
over domains of either larger or smaller density. We have
checked that this inhomogeneous transition does not in-
validate our cosmological analysis. On the other hand,
for small masses M < 10*! M, the ultra-local force may
alter significantly the landscape of inhomogeneities inside
the object. The study of this effect requires numerical
methods beyond the present work.

Then, we have briefly considered the dependence of our
results on the main free parameter a of these models. As
it decreases we slowly converge to the A-CDM scenario.
However, from a ~ 107% down to o ~ 10™® we expect
some signatures on galactic or subgalactic scales. Indeed,
it is a peculiar feature of these modified gravity scenar-
ios that the fifth force appears to be most significant on
galactic scales, 1 pc — —10kpc, whereas clusters of galax-
ies and astrophysical compact objects (stars or planets)
show no significant fifth force or are screened.

In the last section we have compared the ultra-local
models to chameleon-type models with a mass term that
is much greater than the potential one. Both scenarios
are similar outside the Compton wave-length of the scalar
but differ otherwise. We shall discuss a supersymmetric
implementation of ultra-local models in a companion pa-
per [30, 31].
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Super-chameleon models where all types of matter belong to three secluded sectors, i.e. the dark,
supersymmetry breaking and matter sectors, are shown to be dynamically equivalent to ultra-local
models of modified gravity. In the dark sector, comprising both dark matter and dark energy, the
interaction range between the dark energy field and dark matter is constrained to be extremely
short, i.e. shorter than the inverse gravitino mass set by supersymmetry breaking. This realises
an extreme version of chameleon screening of the dark energy interaction. On the other hand,
the baryonic matter sector decouples from the dark energy in a Damour-Polyakov way. These two
mechanisms preclude the existence of any modification of gravity locally in the Solar System due to
the presence of the super-chameleon field. On larger scales, the super-chameleon can have effects
on the growth of structure and the number of dark matter halos. It can also affect the dynamics of
galaxies where the fifth force interaction that it induces can have the same order of magnitude as

Newton’s interaction.

PACS numbers: 98.80.-k

I. INTRODUCTION

Dark energy [1-3] is still as mysterious now as it was
when the first observations of its existence appeared more
than fifteen years ago. Moreover it has been realized
over the last ten years that very often dark energy and
a modification of gravity on large scales are intimately
connected [4]. This is the case for models as diverse as
f(R) theories [5] or Galileons [6]. These models utilise a
scalar field as the simplest way of going beyond a mere
cosmological constant. Such theories where the dynam-
ical equations of motion are of second order have been
classified [7]. Their dynamics depend on the coupling
of the scalar degree of freedom to matter. In the most
general case [8], this coupling can be either conformal or
disformal with different physical consequences. For con-
formal couplings, the resulting scalar-induced fifth force
needs to to be screened locally. This appears to be feasi-
ble in only a few ways: chameleon [9], Damour-Polyakov
[10], K-mouflage [11, 12] and Vainshtein [13]. Another
mechanism, associated with the ultra-local models intro-
duced in a companion paper [14], arises from the ab-
sence of kinetic terms and the locality of the theory. We
will find in this paper that this case can be related, out-
side the Compton wavelength, to the chameleon models
with a large mass. For disformal couplings, no fifth force
is present in (quasi)-static situations [15] precluding the
need for a specific screening mechanism.

All these theories involve non-linearities, either in the
potential or kinetic terms and as such appear as low-
energy effective field theories. In particular, the issue of
the structure of the radiative corrections to the bare La-
grangian is a thorny one, only alleviated in some cases
by non-renormalisation theorems, e.g. for Galileons [6]
or K-mouflage [16]. For this reason, and because of its
radiative stability, supersymmetry might be a promising

setting for dark energy models [17, 18]. In this paper, we
will consider the super-chameleon models [19, 20] where
the chameleon model is embedded in a supersymmetric
setting. This requires the existence of three separate sec-
tors. The dark sector where both dark matter and dark
energy live. The matter sector which should include the
standard model of particle physics and finally a super-
symmetry breaking sector which shifts the masses of the
matter superpartners compared to their standard model
counterparts. The analysis of this model was already pre-
sented in [19, 20]. Here we recall the salient features and
emphasize two facts. First of all, the interaction between
dark matter particles mediated by dark energy is of ex-
tremely short range, shorter than the inverse gravitino
mass. Nevertheless, dark matter will see its dynamics
modified, i.e. a modification of gravity, on very large
scales where collective phenomena for the coarse-grained
dark matter fluid can be present. Second, we also recall
that ordinary matter decouples from dark energy due to
the Damour-Polyakov mechanism leading to no modifi-
cation of gravity in the Solar System.

In this paper we point out that on cosmological and
astrophysical scales these super-chameleon models can
be identified to the ultra-local models introduced in a
companion paper [14]. These ultra-local models corre-
spond to modified source models [21] where the coupling
to matter has a magnitude of order |InA| < 107° to
guarantee that the contribution of modified gravity to
Newton’s potential is at most of order one. Ultra-local
models are such that the value of the dark energy field
depends algebraically on the local dark matter density.
This leads to a certain number of important properties.
First, the growth of structure in the linear to quasi-linear
regime has an instability at short scales which is eventu-
ally tamed by the absence of fifth forces on short dis-
tances like the Solar System. This screening mechanism



is quite different from the usual screening mechanisms
encountered in other modified-gravity scenarios as it di-
rectly follows from the locality of the fifth-force inter-
action. The intermediate region between the very large
and very small scales is not amenable to our analysis and
would require numerical simulations which go beyond our
analysis, although we present a thermodynamic approach
to investigate the fifth-force non-linear regime. We find
that the number of intermediate dark matter halos is af-
fected by the presence of the super-chameleon. This is all
the more true for galactic size and mass halos where the
fifth force is of the same magnitude as Newton’s force. A
more complete analysis would require numerical simula-
tions which are left for future work.

This paper is organized as follows. In section II we
describe the supersymmetric chameleon models and the
dark and baryonic sectors. Next, in section III we show
that these models can be identified with ultra-local mod-
els introduced in a companion paper, over the scales that
are relevant for cosmological purposes. We describe the
background dynamics and the growth of large-scale struc-
tures in section IV, considering both linear perturbation
theory and the spherical collapse dynamics. In section V
we estimate the magnitude of the fifth force within spher-
ical halos and on cluster and galaxy scales. In section VI
we use a thermodynamic approach to investigate the non-
linear fifth-force regime for the cosmological structures
that turn non-linear at high redshift and for the cores of
dark matter halos. We briefly investigate the dependence
on the parameter « of our results in section VII and we
conclude in section VIII.

II. SUPERSYMMETRIC CHAMELEONS
A. Super-chameleons

The nature of the dark part of the Universe, i.e. dark
matter and dark energy, is still unknown. It is not ruled
out that both types of dark elements belong to a secluded
sector of the ultimate theory of physics describing all the
interactions of the Universe. In this paper, we will use
a supersymmetric setting at low energy and assume that
the theory comprises three sectors with only gravitational
interaction between each other. We will assume that the
standard model of particles to which baryons belong is
one of them. We will also add a supersymmetry break-
ing sector S& and a dark sector comprising both the dark
energy field, which will turn out to be a supersymmet-
ric version of a chameleon dark energy model, and dark
matter represented by fermions in separate superfields
from the super-chameleon one. For details about super-
symmetry and its relation to cosmology, see for instance
[22].

Baryons are introduced in a secluded sector defined by
the Kahler potential Kj; and the superpotential Wy,.
This is the matter sector which complements the dark
sector and the supersymmetry breaking one. Assuming

no direct interaction between the super-chameleon ® and
matter, we take for the total Kahler potential which gov-
erns the kinetic terms of the model

K = K(®®") + Kger + K (1)

and similarly for the superpotential which is responsible
for the interactions between the fields

W =W(®) + Wger + Wy (2)

The kinetic terms for the complex scalar fields ¢* of the
model obtained as the scalar components of the super-
fields ®* are given by

Lign = — K5 0,¢'0" ¢ (3)
where we have defined
’°K =
K;=————= 81 - K 4
Y0910 ! @

and its matrix inverse such that K%K K= §i. The scalar
potential obtained from the F-terms of the superfields is
given by

V= KijaingW, (5)

where W is the complex conjugate of W. This is the
only term in the scalar potential when the fields are not
charged under gauge groups.

We will also need to add a D-term potential to the
scalar potential when some extra fields in the dark sec-
tor are charged under a gauge symmetry. We will also
consider the corrections due to supergravity induced by
the presence of the supersymmetry breaking sector. This
will be dealt with in the corresponding sections.

B. The supersymmetric model

We consider supersymmetric models where the scalar
potential and the coupling to Cold Dark Matter (CDM)
arise from a particular choice of the Ké&hler potential
for the dark energy superfield ® which is non-canonical
whilst the dark matter superfields &4 have a canonical
normalisation

TP
A7

K(®dh) = A <

vy
5 >+c1>1¢>++<1ﬂ¢>. (6)

The self-interacting part of the superpotential is

N B 1 [ &

W:E<W>+E<F>, 0<w<, (7)

where ® contains a complex scalar ¢ whose modulus acts
as super-chameleon and ®. are chiral superfields con-
taining dark matter fermions 4. Defining the super-
chameleon field as ¢(z) = |¢|e? and identifying ¢ = |¢|,



one can minimise the potential over the angular field 0
and after introducing the new scales

AL\ (D2 Ay @3/ 6=)
A= AQ <A_2> ) ¢Inin - A2 (A_[]) P
(8)

)] o

7> w+ 1. (10)

the scalar potential becomes

2

ﬂ — A4

d®

Vi(g) = K

with
n=2(y—w) for n>2

When ¢ < ¢min equation (9) reduces to the Ratra-
Peebles potential [23]

¢ < Qbmin : VF(¢) ~ A4 (¢min> ’ (]‘1)

¢

which has been well studied in the context of dark en-
ergy and used to define chameleons. This is the reason
why this model is called super-chameleon. At larger field
values the potential has a minimum at ¢ = ¢y where
VE(pmin) = 0 and dW/d¢ = 0. Supersymmetry is there-
fore broken whenever ¢ # ¢min and restored at the min-
imum where the supersymmetric minimum always has a
vanishing energy (this follows from the supersymmetry
algebra). Then, a new mechanism must be introduced in
order to have a non-vanishing cosmological constant at
the minimum of the potential.

C. The Fayet-Iliopoulos mechanism

An effective cosmological constant can be implemented
by introducing two new scalars Il. = 7wy + ... with
charges +q under a local U(1) gauge symmetry in the
dark sector. These have the canonical Kahler potential

K(My) = MLe2 X, + e 20X, ¢ >0, (12)

where X is the U(1) vector multiplet containing the U(1)
gauge field A,,. They are chosen to couple to the super-
chameleon via the superpotential

W, = g/®I T (13)

where ¢’ = O(1) is a coupling constant. This construc-
tion gives rise to new terms in the scalar potential. The
first contribution is the D-term potential coming from
the fact that the I1 fields are charged

Vb = = (qn2 —gr® — &%)°, (14)

NN

where we have included a Fayet-Illiopoulos term ¢2 which
will later play the role of the cosmological constant. The

second part of the new scalar potential is far more com-
plicated with the addition of these new fields but when
(r_) = 0 it simplifies and the sum of both terms yields

Viry) == (an2 — )+ ¢°¢*r%; (m_)=0, (15)

1
2
where we have put 71 = |74|. It can be shown [19]
that (m_) = 0 minimises the whole potential so we only
consider the effects of the new term V (74). In particular,
the mass of the charged scalar m is

m?, =26 — 2¢%. (16)
At early times the super-chameleon is small (¢ < @min)
and this mass is negative. The U(1) symmetry is there-
fore broken ({(my) # 0). However, as the cosmological
field evolves towards its minimum this mass increases
until it reaches zero, restoring the symmetry so that
(m4) = 0. Minimising (15) with respect to 71 one finds

4 4
¢ < %5: Vminz—zgg +%, (17)
4
¢ > \/_,65 Vmin = f_ (18)

g 2

Therefore, at late times we recover the present-day dark
energy density by taking

& = 2paco, (19)

which gives & ~ 1073eV. This mechanism requires that
Pmin > \/qg/g’, which imposes restrictions on the param-
eter space,

A\ g
A2 <A—0> > 7 (2pde0) . (20)

D. The coupling to Cold Dark Matter

Dark energy in the form of ® is coupled to dark matter.
The coupling function between the two dark sides of the
model is found by considering the interaction of & and
oy
g %7

Wing =m |1+ ——
‘ { mAg_1

} S, P, o>0, (21)
which gives a super-chameleon dependent mass to the
dark matter fermions

82 Wint

L2 5500

byt (22)

When the dark matter condenses to a finite density,
p =m{y_), this term gives a density-dependent con-
tribution to the scalar potential

LD A()p, (23)



from which one can read off the coupling function

go°

o—1"
mA3

A(p) =1+ (24)

This function reappears in the form of the conformal cou-
pling between dark matter and dark energy considered as
a scalar-tensor theory

E. The normalised dark-energy scalar field ¢

Because Ky; # 1 the field ¢ is not canonically nor-
malised, since the kinetic term in the Lagrangian reads

2 2(y=1) -
5" s

Lyin = _K¢¢3 8ﬂ¢a”§1_5 = 9
(25)

The normalised field is then easily defined by

e-n(2) (26)

and the coupling function (24) becomes

o/ o
) with o= $0min (o7)
mA3

m@=1+a<¢

@min

and

¢min Y A2 v A2 Y(w=3)/(v—w)
min — A =A ren e 3
v ' < Ay A/ A
(28)

while the effective potential Vi (p) + p(A(p) — 1) is

o\ /2 2 o/
() won(2) "
¥ $Pmin

(29)
Notice that the effective potential in this model coincides
with the one obtained in a scalar tensor theory with the
potential Vi (p) and the coupling function A(p). We will
exploit this fact below. Since we require the cosmology
to remain close to the A-CDM scenario, i.e. the fifth
force must not be much greater than Newtonian grav-
ity, within this framework we can infer that the coupling
function A(y) must remain close to unity. This provides
the constraint

Vet () = A*

a1 (30)

on the parameter combination « of Eq.(27).

The dynamics of the model can be determined by mini-
mizing the effective potential. This leads to the minimum
 of the theory in the presence of matter (CDM)

Prmin (nt+o)/vy Prmin (n+20) /2y o
Pruin — ( Pmin =L @y
¥ ¥ Poo

where we have defined the energy density
Poo = £A4 = po(1 +ZOO)37 and 0 < ¢ < Pmin, (32)
ao

where 2z, is the redshift below which the field becomes
close to its supersymmetric minimum @min[34].

As in scalar tensor theories, such as dilaton models or
f(R) theories, it is convenient to introduce the coupling
B(p) defined by

dln A
= M,
Ble) L (33)
o/v] 1 o/y—1
_ 20 Mei 1+a<“0> (“0> (34)
Y ®min Pmin ®min

and the effective mass mgﬁ = 0?Vog / 0¢? at the minimum

of the effective potential,
n (@min ) (nt0o) /v
g 2

a/v
2 aapoo< @ >
Mmeg(®) = —
ff( ) v @2

@min
(n+20) /2y
n Pmin g p
(i +2 20 35
2v< 2 ) vpoo] (38)

where we used Eq.(31). The quasi-static approximation
(32) applies if m%; > H?. This holds for redshifts z <
Zoo provided

2

AP0 2 @min
> HZ , whence < a, 36
Prin > ( Mp, ) (36)

where in the second inequality we assumed 2o < zeq. At
higher redshifts, meg(z) grows at least as fast as H(z) in
both the matter and radiation eras if we have

matter era: o < 2y, radiation era: o <+ w/2. (37)

F. Supersymmetry breaking

Supersymmetry is broken by values much larger than
the energy density of CDM. This is achieved in a dedi-
cated sector of the theory which we do not need to specify
here. Gravitational interactions lead to a correction to
the scalar potential coming from supersymmetry break-
ing [20]

2 K 2 2 2
My, [Ka| ms ¢
AVier = ~ , 38
ser K(I){)T A%'ny ( )

where mg /o is the gravitino mass. This competes with
the density dependent term in the effective potential (29).
This correction does not upset the dynamics of the model
as long as

2
@min APoo

L —5—5—. 39

( Mpy ) Mgm3 (39)




This is typically much more stringent than the quasi-
static condition (36). Using Eq.(35) this can also be
shown to correspond to a condition on the mass of
the scalar field ¢ at the supersymmetric minimum, for
2z < Zoo,

mzﬂ?(@min) ~ agm

min

> m3 . (40)

As the gravitino mass is always greater than 107° eV in
realistic models of supersymmetry breaking [24], we de-
duce that the range of the scalar interaction mediated by
o is very small, at most at the cm level. Because the
scalar interaction has such a short range, we call these
models ultra-local. In fact, we shall see below that they
can be related to the so-called “ultra-local models” intro-
duced in the companion paper [14].

G. Coupling to baryons

We consider that matter fermions ¢ belong to a super-
field ®,;. The mass of the canonically normalised matter
fermions becomes

My = K (@.27)/2M3, m$)7 (41)
where mfl?) is the bare mass of the baryons g;g. The

exponential prefactor is at the origin of the coupling func-
tion between the matter fields and the super-chameleon
in the Einstein frame. This leads to the identification of
coupling function in the matter sector

Ani(p) = e /Mo (42)

for the canonically normalised super-chameleon, and the
coupling to baryons

Bu(p) = Mipl, (43)

which is the coupling of a dilaton to matter. As long as
©Ymin < Mp), which is already required to suppress the
supergravity corrections to the scalar potential, the cou-
pling to baryons is negligible. Hence this model describes
a scenario where dark energy essentially couples to dark
matter and decouples from ordinary matter.

III. THE SUPERSYMMETRIC CHAMELEON
AS AN ULTRA-LOCAL MODEL

A. Definition of ultra-local models

We define ultra-local scalar field models by the action
[14]

S = d4I \/—_§
n / 4% /G Lan(@, g ), (44)

M2 - .
%R“'ﬁw(@}
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where the dark matter fields Lbr([? follow the Jordan-frame
metric g,,, with determinant g, which is related to the
Einstein-frame metric §,,, by

Guv = AQ(SO).&MV‘ (45)

We explicitly take no coupling between baryons and the
scalar field to make possible the equivalence with the
supersymmetric chameleon models. In this paper we re-
strict ourselves to large cosmological scales, which are
dominated by the dark matter, and we neglect the im-
pact of baryons. Ultra-local models are defined by the
property that their scalar-field kinetic term is negligible,

Lo(0) = V(o). (46)

Introducing the characteristic energy scale M* of the po-
tential and the dimensionless field y as

N A()
X:_M47

these models are fully specified by a single function, A(Y),
which is defined from the initial potential V' (¢) and cou-
pling function A(yp) through Eq.(47). In other words,
because the kinetic term is negligible there appears a de-
generacy between the potential V() and the coupling
function A(p). The change of variable (47) absorbs this
degeneracy and we are left with a single free function

A(X)-

and A(x) = A(yp), (47)

B. Cosmological background of ultra-local models

Because the matter fields follow the geodesics set by
the Jordan frame and satisfy the usual conservation equa-
tions in this frame, we mostly work in the Jordan frame.
We introduce the time dependent coupling

(48)

such that, as shown in the companion paper, the Fried-
mann equation reads as

BMEH? = (1 - €2) 20 (p + praa + pz),  (49)
where 7 is the conformal time, H the conformal Hubble
expansion rate, and the Jordan-frame Planck mass is

Mg\(t) = A7%(t) Mg, (50)

while p, praqa and py are the matter, radiation and scalar
field energy densities. In particular, the background mat-
ter and radiation densities evolve as usual as

— ﬁO _ o pradO

p= Ea Prad = ad (51)

while the scalar field energy density is given by
pr = —A MR, (52)



and the equation of motion of the background scalar field
is
4 dln A

_ dx
M= A% i hence % A4/\Z4 eH.  (53)

It is convenient to write the Friedmann equation (49) in
a more standard form by introducing the effective dark
energy density pge defined by

3MEH? = a*(p + Prad + Pac), (54)
which gives
B _ 2€9 — 6% o _
e — < _— ra Y ). 55
pd px+(1_62)2(p+p 4+ Py) (55)

C. Cosmological perturbations of ultra-local
models

We write the Newtonian gauge metric as

ds? = a*[—(1 4+ 2®)dr? + (1 — 2¥)dx?],  (56)
so that the Einstein- and Jordan-frame metric potentials
are related by

A? ~ A? ~
142® = ﬁ(l +29), 1-20= ﬁ(l —20), (57)
while the Jordan-frame Newtonian potential is defined
by

V2 dp+dpg
2 N7 oz (58)
Because we wish the deviations of ® and ¥ from the New-
tonian potential Uy to remain modest, and we typically
have |Uyn| < 1075 for cosmological and astrophysical
structures, we require [61ln A| < 1075 and [5p5| < |dp].
This first constraint is fulfilled by choosing coupling func-
tions A(x) that are bounded and deviate from unity by
less than 10~°, which reads as

|In A(x)] <1072, (59)

while the second constraint will follow naturally because
the characteristic scalar field energy density is the dark
energy density today. Then, we can linearize Eq.(57) in
01ln A. This leads to

q):\I/N—i-(Sh’lA, \I/:‘I’N—(SIHA, (60)
while the dark energy density fluctuations read as
Spg = —M*5%. (61)

In Eq.(61) and in the following we use the characteristic
property (59) of ultra-local models to write A ~ 1 wher-
ever this approximation is valid within a 10~° accuracy

(the only place where deviations of A from unity are im-
portant is for the computation of the fifth force through
the gradient V1n A).

In general configurations including perturbations, the
equation of motion of the scalar field reads as

dlnA &4
dx p

(62)

The dark matter component obeys the continuity and
Euler equations

0
a—£+(V-V)p+(3H+V-v)p:O, (63)
and
ov
a— + (V V)V + HV = —-Vo. (64)

From Eq.(60) we have V& = VUyx 4+ VIn A, and then
the scalar field equation (62) gives

4
VinA= MTW. (65)

Thus in terms of matter dynamics, the scalar field ap-
pears via the modification of the Poisson equation (58),
because of the additional source associated to the scalar
field and the time dependent Planck mass, and via the
appearance of the “new” term (65) in the Euler equation
(64), which is due to the spatial variation of In A.

On large scales we may linearize the equations of mo-
tion. Expanding the coupling function A(y) as

ImA(Y) =In A+Zﬁ" X (66)

the scalar field equation (62) gives at the background and
linear orders

M B
1= =g (67)
Defining
pr M* 3
€ait) = ——=—, 68
1 () 5 5 B (68)
we have for the linear matter density contrast &
062 a6 pa’
— 1
82+Ha + 2V = 2M§1( +€1)d, (69)

which also reads in Fourier space as

025 06 3
a2 T 3

where €(k, ), which corresponds to the deviation from
the A-CDM cosmology, is given by

2 2k? }

Qu(T)H2[1 +e(k,7)]6 =0, (70)

(71)

ek, 1) =e1(7 ){1+SQ Py



The k-dependent term dominates when ck/aH > 1, ie.
on sub-horizon scales. Moreover, we have (ck/aH)?
107 today at scales of about 12~ 'Mpc. Therefore, we
must have

ler] S 1077 (72)

to ensure that the growth of large-scale structures is not
too significantly modified. This small value does not re-
quire introducing additional small parameters as it will
follow from the constraint (59), which already leads to
the introduction of a small parameter o < 1075 that
gives the amplitude of the coupling function In A.

The quantity €2 introduced in Eq.(48) is related to the
quantity €; defined in Eq.(68) by

€2 = 3¢1, hence |ep] <1077, (73)

This implies that at the background level the ultra-local
model behaves like the A-CDM cosmology, see Eqs.(52)-
(55), as the scalar field and dark energy densities coincide
and are almost constant at low z, within an accuracy of
1076,

D. Super-chameleon identification

Super-chameleon models are such that the mass of the
scalar field is so large that the kinetic terms are negli-
gible. They behave like ultra-local models on distances
r 2 m;cfl. It is only on very short distances, which are
negligible on astrophysical and cosmological scales, that
the kinetic terms play a role. The identification with an
ultra-local model is therefore valid on scales

k k
— < meg; this includes the range — < mgyo K Meff,
a a

(74)
where we used Eq.(40). Even as early as apgn ~ 10719
the model is equivalent to an ultra-local model on comov-
ing scales larger than 10 km, well below the distances of
interest in the growth of cosmological structures. As a
result, for all practical purposes super-chameleon mod-
els can be identified with ultra-local models. Thus, the
coupling function A(p) and the potential V(p) defined
in Eqgs.(45)-(46) for the ultra-local model can be read
from the effective potential (29) of the super-chameleon
model, to which we must add the cosmological constant
contribution (18). Using the mapping (47) in terms of
the dimensionless field y this yields
o/y
) (75)

- ¥
A(x :1+a<
() Pmin

and

€4
—Mix=V=A* +5 (76)

) n/2y 2
<80m1n > 1
¥

We have seen in Eq.(19) that £* = 2pge0 to recover
the cosmological constant associated with the current ex-
pansion of the Universe. We can also take M* = pgeo
without loss of generality, as this only sets the choice of
normalization of x. To simplify the model we also take
At = pdeos Which avoids introducing another scale. This
gives

i n/2y 2
MY =A* = pgeo: X =—1— ( “““) —1| (77)
©
and
—20/n
A®R) = 04(1—‘-\/—1—)2) with ¥ < —1, (78)

which is the expression of the coupling function in terms
of the ultra local scalar field. The comparison with the
supersymmetric model can be completed by verifying
that the cosmological perturbations also obey the same
dynamics.

The coupling of dark energy to dark matter implies
that the growth of the density contrast of CDM is mod-
ified [25-27] and the linear density contrast 6 = dp/p of
the super-chameleon model in the conformal Newtonian
Gauge evolves on sub-horizon scales according to

(1 + 51(90)&
1 + ff

Physically, the last term in (79) corresponds to a scale
dependent enhancement of Newton’s constant. As the
mass of the scalar field is always very large compared to
astrophysical wave numbers, we can simplify (79) to find

2k2ﬁ2(w)

mff

Dy 3o, (e

o5 05 3
55 T i = SO <1+

> 0=0 (80)
for k/a < meg. This equation is the same as the equation
(70) obtained for the ultra-local models, on sub-horizon
scales where we can neglect the unit factor in Eq.(71).
Indeed, the chameleon coupling 3(p) defined in Eq.(33),
B8 = Mpdln A/dp, and the ultra-local coupling S1(%)
defined in Eq.(66), 81 = dln A/dy, are related by

5

B = p1Mp1— 7
©

(81)
From the identification (76) we can write the effective
chameleon potential of Eq.(29) as

~M*X +p(A—1)

Vert(0) = — Pde0s (82)

where we explicitly subtract the cosmological constant.
Then, the quasi-static equation (31) for ¢, which corre-
sponds to the minimum of the potential OVeg/0p = 0,
yields 31 = M*/p, where we used Eq.(81) and A ~ 1,
and we recover the ultra-local equation of motion (62)-
(67). Next, from the definition of the chameleon effective



mass, m2g = 0?Ver/0p?, we obtain using Eq.(82) and
the result 8, = M*/p,

_ pBaf?

mgfr(SD) - M}2>] %v (83)

where the ultra-local factor 8y = d?In A/dx? = dj3,/dx
was introduced in Eq.(66). This gives 248%/m2; =
2M3E,87/pB2 and we find that Eq.(80) coincides with
Eq.(70) over the range H < k/a < meg, using the sec-
ond expression (68) for €1 ().

This identification of the super-chameleon model with
the ultra-local model shows that on cosmological scales,
H < k/a < meg, the dynamics is set by the single
function A(x) obtained in Eq.(78). This implies that
structure formation is only sensitive to two combina-
tions of the parameters introduced in the supersymmetric
chameleon setting, namely the exponent ratio o/n and
the ratio A*/pge0 (which we set to unity in this paper),
in addition to the cosmological constant £*/2 = pgeo.
Conversely, there is a wide model degeneracy and the
same coupling function (78) corresponds to many differ-
ent chameleon models.

We can note here that in the context of usual
chameleon models such as f(R) theories, where g ~ 1,
having a very large effective mass mZg, with mc_ff1 <
10~*mm, would lead to negligible departure from the A-
CDM cosmology for the formation of large scale struc-
tures, as seen from Eq.(80). This is not the case for the
super-chameleon models studied in this paper because
the coupling f is also very large and much greater than
unity. Indeed, from Eq.(34) we have 8 ~ aMp1/@min >
1, whereas from Eq.(35) we have m%; ~ apoc/¢2,;,. This
yields

2 oMy
B oM

2 4
Mg A

(84)
and (%k%/m2za® can be of order unity on kpc to Mpe
scales, even with o < 1, as we typically have A* ~
ME HZ.

E. Example of models

It is interesting to consider templates for ultra-local
models coming from super-chameleons.

A good set of models can be obtained for instance by
taking the cut-off of the theory Ay = Mp; in the K&hler
potential (6). To obtain A* = pgeo as in Eq.(77) this
requires the non-renormalised scale in the superpotential
W of Eq.(7) tobe Ay = Mpl(p’deo/Ml‘il)l/(G_%). A simple
choice for the exponents w and v is w = 1 and v = 2,
which gives n = 2 and the Kéhler potential becomes

M2, (oTD)\?
K(®of) = =1 (W) +olo, rola. (85)
Pl

while the self-interacting part of the superpotential is

3Qde()

W = V2A2P + TH04>2, (86)

which contains a linear term and a mass term, with
Ao = /3Q4e0Ho. Both Ay and Hy are protected by su-
persymmetry under renormalisation.

The supersymmetric minimum ¢min of Eq.(8) becomes

Ag
A
Requiring that ¢min > 1/q€/g’ to recover the late cos-

mological constant behavior (18) and using Eq.(19) we
obtain the lower bound on Ag

Qbmin = (87)

, , ( Ho 3/2
A5 2 Mg, | — . 88
520 (37 ) (9
The normalized chameleon field ¢ of Eq.(26) reads as
"2 — ¢2 $Pmin _ Af‘j (89)
Mpr M3 Mpr 3QaeoMEHE’

while the characteristic density po of Eq.(32) is

) )
poo = —paco ~ 230, (90)
(6702 (6}

We must also satisfy the constraint (39), which yields the
upper bound on Ag

HO 3/2 MP] 1/2
A} < M3, (M—Pl> . . (91)

As we always have mg/, < Mpy, the comparison of
Eq.(91) with Eq.(88) shows that the range of values for
Ay is fairly large.

The scales m and A3 of the dark matter interaction
Wint in Eq.(21) are only constrained through their combi-
nation with ¢min in the coupling parameter « of Eq.(27),
which must be small as noticed in Eq.(30). In fact, the
identification with the ultra-local model and the study
presented in the companion paper shows that we must
require & < 1076 to keep the formation of large cosmo-
logical structures close to the A-CDM behavior. From
Eq.(37) the exponent o should satisfy o < 5/2 if we
wish to ensure that the quasi-static approximation re-
mains valid up to arbitrarily high redshifts, which gives
0 < o/n <5/4. More generally, combining Egs.(10) and
(37) we have

T W2 e 0< <

0<
n = 2y —w) n

3vy—1
. 2
— ()

It is interesting to obtain the characteristic scales of
the coupling 8 and effective mass meg of these super-
chameleon models. Using the bounds (88) and (91) we
obtain

aM?2 H? am
AP0 pence —22 « B

< oMpy
A} H, ’

§~ S @



and

4 175
mig ~ MiilgHO hence mg/2 <mZs SME.  (94)
We can check that both # and meg are large in these
super-chameleon models.

As noticed above from Eq.(78), eventually we will
study the super-chameleon models of this type where the
only parameters are «, which will be chosen to be 1076
or lower, and ¢ = /n, of order unity.

IV. ULTRA-LOCAL DYNAMICS

A. Chameleon and ultra-local potentials and
coupling functions

As the total variation of A(Y) is bounded by a < 1076,
we can approximate Eq.(78) as

1nA(>z):a(1+\/717>2)_2C7 ¢>0, (95

where we defined {( = o/n. Equation (95) fully de-
fines the ultra-local model that corresponds to the super-
chameleon models considered in this paper. For the
numerical applications below we take o = 1076 and ¢
among {1/2,1,3/2}. The first two choices can be ob-
tained with ¢ = 1 and o = 2 for the explicit super-
chameleon model described in section III E with v =n =
2. The choice ¢ = 3/2 requires a model with v > 7/3
or corresponds to a model with v < 7/3 where the field
© has not yet reached the quasi-static equilibrium (31)
at very high redshift (which is not very important as the
dark energy and the fifth force do not play a significant
role at high redshifts far in the radiation era).

Using Eq.(95), the equation for the evolution of the
scalar field (62) becomes

L %\/T—)Z(l N ) I

where we introduced

4 —
po= 24— Pa0, (o7)
Q «

This explicitly shows that, because of the small param-
eter a, such models introduce a second density scale
pa 2 10%p4c0 in addition to the current dark energy den-
Sity Pde0-

Eq.(96) can be used to express X as a function of the
density in the high- and low-density limits,

CP 1/(1+¢)
p>pa: X(p)~— <p—> ; (98)

P Pat

) = —1 - (C—p) (99)

Pa

At the background level, we switch from the high-density
regime (98) to the low-density regime (99) at the redshift
Za, With

ae = a3 <001, zo =a 3 >100, p(za) = pa.
(100)

Thus, together with the density scale p,, these ultra-local
models also select a particular redshift z, 2 100. This is
the redshift where the fifth force effects are the strongest,
in terms of the formation of cosmological structures, even
though at the background level the scalar field energy
density only becomes dominant at low z as a dark en-
ergy contribution. Up to factors of order unity, the den-
sity po and redshift z, also correspond to the density poo
and redshift z., introduced in Eq.(32), where the super-
chameleon field ¢ reaches the supersymmetric minimum
©Omin (we chose A* = pgep). Thus, within this supersym-
metric setting the density and redshift (pa, z,) obtain an
additional physical meaning.

From Egs.(98) and (99) we also obtain the behavior
of the coupling function In A(p) in terms of the matter
density,

Cp —¢/(14¢)
P> pa: InA(p) ~a (p_> , (101)
P po: InA(p) ~a (1 - 2(2%) . (102)

As shown in the companion paper, the derived function
In A(p) is particularly important when applied to static
configurations and can be used to probe the existence of
a screening mechanism for this theory as we will show in
sec.VA.

We show in Fig. 1 the characteristic functions that
define the super-chameleon models and the associated
ultra-local models, for the choice of chameleon expo-
nents v = 2,w = 1,n = 2 for the Kahler potential K
and the superpotential W, and ¢ = 1,2,3 for the in-
teraction potential Wi,.. This gives ¢ = 1/2,1,3/2 for
the ultra-local coupling function In A(x). The left panel
shows the normalized chameleon potential V/M*, which
is also equal to the opposite of the ultra-local field
from Eq.(76). It is identical for the three models that we
consider in the numerical computations presented in this
paper. The middle panel shows the chameleon coupling
function In A(p) for the three choices for the exponent
o. The right panel shows the ultra-local coupling func-
tion In A(x) for the corresponding three choices of the
exponent (. In terms of the ultra-local model, or for the
dynamics of cosmological perturbation in the chameleon
model over scales H < k/a < meg, this function In A(Y)
fully defines the system.

In the right panel of Fig. 1 we show the coupling func-
tion In A as a function of the normalized scalar field ¢ for
different values of the parameter (. For all the models
we have |A — 1| < 107% < 1 which means that we re-
cover the A-CDM cosmology at the background level to



10

10 1 T
(=112 —»—
=1 ——
8 087 7=3
<
2 6 g 06} g
> < <
s A4t £ o4t £
2t 02
0 1 1 1 1 0u 1 1 1 1 O 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1 -3 25 -2 -15 -1
¢ I¢min ¢ /¢min 5(
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FIG. 2: Time evolution of the factor €1(a) as a function of

the scale factor for ( =1/2,1,3/2.

a 107% accuracy: in particular as we increase ¢ the cou-
pling function becomes steeper making the effect of the
presence of the scalar field on the growth of structure
more relevant, as we will demonstrate in section IV B.

B. Cosmological background and perturbations

For all the models we have |A — 1] < 1075 < 1, which
means that we recover the A-CDM cosmology at the
background level to a 107% accuracy. Therefore, to dis-
tinguish such models from the A-CDM scenario we must
consider the dynamics of cosmological perturbations. As
we can see from Eq.(70), the linear growth D (k,t) of the
dark matter density contrast is modified with respect to
the A-CDM case only by the presence of the factor e(k, t),

which for the models presented in the previous sections
is equal to

~ =\ —2¢
VT4 /TR

1+2C+)y/1-x%

where we used the definition (68). From Eq.(98) and

(99) we have the following simplified expressions for €;
as function of the density

€1 = 2al (103)

—¢/(1+4¢)
al (¢p
> pa: ~ 25 (52 , 104
P> pai alp) 1+C<pa) (104)
P <K pa el(p)NQagQﬁ. (105)

[e3

This explicitly shows that ¢; decreases both at high and
low densities and peaks around p,. This also gives the
evolution of €;(t) as a function of the scale factor a(t)
uSing p= pOa_?’:

a 3¢/(1+0)
a<aq=0o?: €a) ~a (—) ,  (106)
Aoy
N
a>a,=0a?: €(a) ~a <—> , (107)
Qo

which peaks at the scale factor a, that corresponds to
p = pao. In Fig. 2 we show the evolution of €, for
¢ = 1/2,1,3/2, as a function of the scale factor. It is
always positive for these models leading to an amplifica-
tion of the Newtonian gravity. We can check that €; has
a maximum around a, = /3, which for this paper cor-
responds to a value of a, = 0.01. At low redshifts we re-
cover the same decrease as €1 < a2 of Eq.(107), whereas
at high redshift the decrease is stronger for higher ex-
ponent ¢, in agreement with Eq.(106). At its peak at
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FIG. 4: Logarithmic linear power spectra A% (k, z) at redshifts z = 0,10, 100 and 500 (from top to bottom) at fixed ¢ = 1/2,1

and 3/2 (respectively left, center and right panel).

@n, we have €, ~ o = 107% whereas today we have
€1 ~ a2 =10"12,

As shown in the companion paper, the growth of struc-
ture is vastly enhanced by the presence of the scalar field
when €(k,a) > 1 in Eq.(70). Because €(k, a) grows as k?
at high k, there exists a time dependent scale k. (a) such
that for any scale smaller than the latter Dy (k,a) devi-
ates significantly from the A-CDM one. This threshold
ko (a) can be computed from the condition €[k, (a),a] =1
in Eq.(71), to obtain

aH HO

~ )
/e, c/ea

where we used H? & ¢~ 3 in the matter era. Because €;
decreases at both high and low redshifts, with a peak at
aq, the threshold k,(a) is minimum at the scale factor
Qs

ko(a) =

(108)

0

. H,
k2™ = ko (aa) ~ s 3hMpe ™, (109)

Therefore, low wave numbers k < k2% are never sensitive
to the fifth force whereas high wave numbers k > k20
are sensitive to the fifth force around a,. The range of
scale factors [a_(k), a4 (k)] where a wave number k& feels
the fifth force broadens at higher k. From Eq.(108) we
obtain

L\ —(26H2)/(cH)

k> kmin: a—(k) ~ aq <I<: : ) , (110)
k

a4 (k) ~ o — (111)

In Fig. 3 we show the evolution of the linear growing
mode Dy (k,a) obtained numerically solving Eq.(70) at
three different scales, for the models considered in this
paper. In agreement with the discussion of Eq.(109)
above, low wave numbers k < k™™ are never sensitive
to the fifth force and follow the A-CDM growth. Higher
wave numbers depart from the A-CDM behavior around



aq ~ 0.01 and show a faster growth over a limited time
range [a—,ay]|, resuming the A-CDM growth at later
times. This transient speed-up increases with k. This
effect becomes stronger at higher ¢ because of the higher
amplitude of ¢; found in Fig. 2.

The presence of the scalar field leads to a very steep
increase of D, (k,a) at k > 1h Mpc™' and so these
scales enter the nonlinear regime much earlier than in
the A-CDM cosmology, at z ~ z,. This can be seen in
Fig. 4 where we plot the logarithmic linear power spec-
trum A? (k, z) = 4nk3 P (k, 2).

C. Spherical collapse

On large scales where the baryonic pressure is negligi-
ble, the particle trajectories r(¢) follow the equation of
motion

d’r  1d%a

@ " gaet s Ve Era),

(112)
where r = ax is the physical coordinate, ¥y the Newto-
nian potential and ¥4 = ¢?In A the fifth-force potential.
To study the spherical collapse before shell crossing, it
is convenient to label each shell by its Lagrangian radius
q or enclosed mass M, and to introduce its normalized
radius y(t) by

. 1/3
y(t) = a(—t) with ¢ = (ﬂ) , yt=0)=1

(113)

In particular, the matter density contrast within radius
r(t) reads as

14 02(r) = y(H) . (114)

The equation of motion becomes

2
&+<2+Ld_H> dy

Qn
—|—7y(y Po1)=

d(lna)? H? dt ) dlna

c\2dnA r 06
(= 2 11
y(Hr) dlnp 1+60r (115)

The fifth force introduces a coupling as it depends on the
density profile, through the local density p(r) = p(1 +
a(r)).

In the following, we use the density profile defined by

5 dx""
5(I/) _ <U(233) ; ‘); fL(X/aX”)
_ Oc(m) [T dk - sin(kz’)

Here z(t) = a(t)r(t) is the comoving radius of the spher-
ical shell of mass M that we are interested in while x’
is any radius along the profile; £, and A? are the lin-
ear correlation function and logarithmic power spectrum
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of the matter density contrast, o2 = (§;(x)?) its vari-
ance within radius x, which defines a sphere of volume V;
and W (kx) = 3[sin(kx) — kx cos(kz)]/(kx)® the Fourier
transform of the 3D top hat of radius z. The profile (116)
is the typical profile around a density fluctuation at scale
z in the initial Gaussian field and provides a convenient
ansatz (here we use the initial linear power spectrum or
its A-CDM amplified value at the redshift of interest).

We show in Fig. 5 the time evolution of the nonlinear
density contrast - (r) within a shell of mass M, given by
the spherical dynamics (115), for different values of the
mass M, fixing the initial linear density contrast so that
§2=CPM — 1.6 today (the initial condition is set at high
redshift before the onset of the fifth force and it is com-
mon to all models and the A-CDM cosmology; as usual
it is convenient to describe this initial condition by its
value today using the A-CDM linear growth factor). In
agreement with what we found by studying the evolution
of linear perturbations, we can see that at large masses,
M 2 10*2h=* Mg, the evolution of §(r) closely follows
the A-CDM one, whereas the collapse of small masses
is strongly accelerated around a,. This faster growth
occurs earlier for smaller mass, as a_(k) decreases on
smaller scales.

We show in Fig. 6 the spherical dynamics for a fixed
value of the mass M = 108h~1 M, and several initial den-
sity contrasts. The acceleration of the growth of struc-
ture due to the presence of the scalar field makes halos
collapse before a = 1, even starting from 5270DM ~0.1.
In agreement with previous figures, the acceleration of
the collapse occurs around a,. For sufficiently high ini-
tial conditions this leads to a collapse at high redshift
around z,. For lower initial conditions the dynamics is
still in the linear regime after the fifth force has van-
ished, at low redshift, but with a higher amplitude than
in the A-CDM cosmology and a higher final collapse red-
shift. Again, we can see that the effect of the fifth force
increases with (.

We show in the upper panel of Fig. 7 the linear den-
sity contrast threshold, measured by 5270DM (i.e., the
extrapolation up to z = 0 of the linear initial density
contrast by the A-CDM growth rate), required to reach a
nonlinear density contrast . = 200 today. In agreement
with Figs. 5 and 6, at large mass we recover the A-CDM
linear density threshold, 52_013 M ~ 1.6, whereas at small
mass we obtain a much smaller linear density threshold,
62\70DM < 1, because of the acceleration of the collapse
by the fifth force. Again, at small masses the threshold
01, becomes smaller for larger exponent ¢ as the effect of
the fifth force increases.

D. Halo mass function

As for the A-CDM cosmology, we write the comoving
halo mass function as

dM _ po

n(n) 5L = 2 p) Y. (117)
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Time evolution of the nonlinear density contrast 6(< r) given by the spherical dynamics, as a function of the scale
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FIG. 6:

Time evolution of the nonlinear density contrast §(< r) given by the spherical dynamics, as a function of the scale

factor, for several values of the initial density contrast and for a mass of M = 10°A~' M at fixed ¢ = 1/2, 1, 3/2(respectively
left, center and right panel). We show our results for different initial conditions, which correspond to 627CDM =1.6,0.1,0.01

and 0.001 from top to bottom.

where the scaling variable v(M) is defined as

B 5270DM (M)

v(M) = O'A_TM(M’

(118)

and 62~ “PM(M) is again the initial linear density con-
trast (extrapolated up to z = 0 by the A-CDM linear
growth factor) that is required to build a collapsed halo
(which we define here by a nonlinear density contrast of
200 with respect to the mean density of the Universe) and
oA=CPM itg variance. The variable v measures whether
such an initial condition corresponds to a rare and very
high overdensity in the initial Gaussian field (v > 1) or
to a typical fluctuation (v < 1). In the Press-Schechter

approach, we have f(v) = \/2/71’1/671/2/2. Here we use
the same function as in [28]. Then, the impact of the
modified gravity only arises through the linear threshold
SACPM(DT) | as we assume the same initial matter den-

sity power spectrum as for the A-CDM reference at high
redshift.

The threshold §2~“PM(M) was shown in the upper
panel of Fig. 7. We show the mass function in the
lower panel of Fig. 7. Once again, we can notice that
at large mass all the mass functions are close to the
A-CDM prediction whereas at smaller masses, M ~
10% — 10'°,~' M), they are higher. This is because the
fifth force has no effect on very large scales and accel-
erates the formation of structures on small scales. At
lower mass, M < 107h~! Mg, the mass function becomes
smaller than in the A-CDM cosmology, because both
mass functions are normalized to unity (the sum over
all halos cannot give more matter than the mean matter
density).

At large masses, M > 10'2h~' M), where the forma-
tion of large-scale structures remains close to the A-CDM
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cosmology.

case, with only a modest acceleration, and the mass func-
tion is dominated by the Gaussian tail ~ v’/ 2. we
can expect that the results obtained are robust, since in
this regime the shape of the halo mass function is dom-
inated by the exponential tail eV’ /2. At low masses,
M < 10'2h~1 My, where the history of gravitational clus-
tering is significantly different from the A-CDM scenario,
as a large range of masses have collapsed together before
a redshift of 100, and the halo mass function is no longer
dominated by its universal Gaussian tail, these results are
unlikely to be accurate. Nevertheless, we can still expect
the halo mass function to be significantly higher than in
the A-CDM case for masses M ~ 10% — 10 A=t M, al-
though it is difficult to predict the maximum deviation
and the transition to a negative deviation at very low
masses.
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V. ASTROPHYSICAL EFFECTS
A. Screening within spherical halos
1. Radial profiles

We first consider here how the ratio of the fifth force
to Newtonian gravity behaves within spherical halos with
a mean density profile such as the Navarro-Frenk-White
(NFW) [29] density profile. In particular, we wish to find
the conditions for the fifth force not to diverge at the
center of the halos and to remain modest at all radii, to
be consistent with observations of X-ray clusters. Within
spherical halos, the Newtonian force reads as

_QNM(< ’I”) _ Q

Fy = . _TmA(< ryrH?, (119)

r

where A(< r) is the mean overdensity within radius r.
The fifth force reads

2dlnA_iédlnAdlnp
dr  r dnpdlnr’

Fp=—c (120)

We can also use Fx and F4 to define characteristic ve-
locity scales,

2 2
FN — _’UN(T)’ FA — _Cs(lr)7 (121)
r T
with
GnM(< 1) dln A
2 _ 2 _ 2
W= G = (122)

where vn is the Newtonian circular velocity. Therefore,
the ratio of the fifth force to the Newtonian force is

Fa cg 2 ( c )2 dinAdlnp

- rH dlnp dinr

Fx 03 QuA(<7) - (123)

From Eq.(102), we have at moderate densities, p ~ p(z),

a?C? /e \2
s = ()
Thus, in the late Universe the ratio 7 is suppressed by a
factor o so that 1 only reaches unity at r ~ 3h~'kpc, i.e.
at galaxy scales (see also Sec. VA3 below). At higher
densities, we obtain from Eq.(101)

o2 [ d® 1+20/(+10) o

a? rH
(125)
We plot the ratio n for several halo masses, with an
NFW density profile in Fig. 8. In agreement with the
results obtained in previous sections, we can see that the
fifth force is more important for smaller halos, which also
correspond to smaller scales. For a power-law density
profile, of exponent 7, > 0 and critical radius r,,

p(r) = pa <%> - ;

(124)

(126)
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FIG. 8: Ratio n = Fa/Fn as a function of the radius r,
within spherical halos with an NFW profile. We display the
cases of halo masses M = 10,10 and 10"°h~'My from
top to bottom, for the ultra-local model exponent ¢ = 1/2,1
and 3/2.

we have

F < Ta, n~rpF20/0+0-2 (127)
If we consider halos with a mean NFW density profile,
which has v, = 1, we find that n ~ r=/0+¢) and the
relative importance of the fifth force does not vanish at
the center for the models, whatever the value of the expo-
nent ¢, in agreement with Fig. 8. This suggests that these
models would lead to significant modifications in the clus-
ter dynamics with respect to the A-CDM model and so
would be ruled out by the observations, which show a
good agreement with the A-CDM cosmology. However,
as we can see from Fig. 8, for typical cluster masses 7
only becomes of the order of unity far within the virial
radius, 7 < 0.01Rgg0. for M > 10'3h~'M,. Because
at these scales clusters have significant substructures the
approximation of a smooth profile is not any more cor-
rect. Then, deeper analyses are needed to unravel the
dynamics of clusters of galaxies considering the ultra-
local behaviour of the theory. We leave these analysis for
future studies when we may need to use numerical sim-
ulations and to estimate the observational accuracy of
the measured halo profiles. On the other hand, we will
perform a thermodynamic analysis of the system in VI
where we find that for large enough clusters, the mean
density approximation is valid.

2. Clusters of galazies

We now estimate the fifth force to Newtonian grav-
ity ratio n on a global scale, for clusters and for galax-
ies. In contrast with the companion paper, we do not
need to study the Solar System, the Earth or the labo-

15

ratory, because within the supersymmetric setting con-
sidered in this paper baryons do not couple to the fifth
force. Therefore, astrophysical systems which are domi-
nated by baryons do not feel the effect of the fifth force
and we automatically recover the General Relativity or
Newtonian dynamics in these systems.

We have seen in Eq.(123) that n = ¢2/v%, whence n ~
(c/vxn)?|dIn A/dIn p| if we take dInp/dInr ~ 1. From
Eq.(102), we also have at moderate densities below p,, ~
10959, dIn A/dInp ~ —a?A at redshift z = 0. This gives

2
z=0: n~ <%> A.
UN
For clusters of galaxies, with A ~ 103 and vx ~ 500
km/s, this yields

(128)

clusters: 1~ (10*a)? < 1. (129)
Therefore, the fifth force is negligible on cluster scales.
However, as seen in Fig. 8, this is no longer the case
far inside the cluster, where the characteristic scales are
smaller and the density greater, which gives rise to a
greater fifth force.

8. Galazies

We now consider a typical galaxy, such as the Milky
Way, with A ~ 10, which is at the upper limit of the
regime p < pq, and vy ~ 200 km/s. This gives

galaxies: 1~ (10°a)? ~ 1. (130)
Thus, the fifth force is of the same order as the Newtonian
gravity on galaxy scales. This suggests that interesting
phenomena could occur in this regime and that galaxies

could provide a useful probe of such models, as we can
see from Fig. 8 for low-mass halos M < 10*A~1 M.

B. Fifth-force dominated regime

It is useful to reformulate the analysis presented above
for clusters and galaxies and to determine the domain of
length, density and mass scales where the fifth force is
dominant. Taking dInp/dInr ~ 1, we write for struc-
tures of typical radius R, density p and mass M =

4mpR3/3,
IO Y (O
T Qo p \RH,

Then, the fifth force is greater than Newtonian gravity if
we have

2 _

c 2 po

>1: <R=(—) /2
nl=1: R <R, <Ho) Omo P

(131)

dln A
dlnp |’

dln A
dlnp

‘ . (132)
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FIG. 9: Domain in the density-radius plane where the fifth
force is greater than Newtonian gravity (bottom left area be-
low the curves), for the ultra-local exponents ( = 1/2,1 and

3/2.

At low densities, using Eq.(102) we obtain

alc

p L pa: Ry(p) ~Rs with R, = (133)

0

Thus, at low densities we obtain a constant radius thresh-
old, of order R, ~ 3h~'kpc for a = 107°, which grows
with ¢ as we can check in Fig. 9. At high densities, we
have the behaviour

P> pa: RT,NRa(ﬁ

[e3

—(2C+1)/(26+2)
) (134)

Thus, at high densities the upper boundary of the fifth-
force domain decreases and the fifth force becomes negli-
gible in the center of halos with sufficiently steep profiles,
as seen in Eq.(127).

To facilitate the comparison with astrophysical struc-
tures, it is convenient to display the fifth-force domain
(132) in the mass-radius plane (M, R). This is shown in
Fig. 10, as the curve R,(p) provides a parametric defi-
nition of the boundary R,(M), defining the mass of the
structure as M = 47pR3/3. We obtain a triangular do-
main, with a constant-radius upper branch and a lower
branch that goes towards small radius and mass with a
slope that depends on (. The upper branch corresponds
to the regime (133), with

R, ~ R, for M < M,, (135)
and
c 3
M, =a’Cpo [ — ) . 136
¢ (1) (136)

For a = 107° this yields M, ~ 101°My. The lower
branch corresponds to the regime (134), which yields for
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M < M,

(20+1)/(4¢+1)
M
) (137)

RNRQ (E

We also show in Fig. 10 the regions in this (M, R)-plane
occupied by groups and clusters of galaxies and by galax-
ies. We only show astrophysical objects whose dynamics
is due to the presence of dark matter since for this model
the coupling of the scalar field with baryons is negligible,
as shown in section II G. In agreement with section V A,
we find that the fifth force is negligible for clusters and
groups (at their global scale), while it is of the same or-
der as Newtonian gravity for galaxies. Therefore galaxies
may provide strong constraints on the models considered
in this paper.

VI. HISTORY AND PROPERTIES OF THE
FORMATION OF COSMOLOGICAL
STRUCTURES

To study the evolution of cosmological perturbations
in the previous sections, either through linear theory or
the spherical collapse, we assumed that the density field
remains smooth and that the fifth force on cosmological
scale z is set by the density gradient on the same scale.
However, the ultra-local fifth force is directly sensitive to
the local density gradient, VIn A = (dln A/d1np)Vp, in
contrast with the Newtonian force which involves an av-
erage over scale x, Fy « [ dx'p(x")/|x — x'|>. Moreover,
smaller scales are increasingly unstable because of the
k? factor in the factor e(k,7) in Eq.(71) that amplifies
the gravitational attraction in the linear evolution equa-
tion (70). This could invalidate the analysis presented



above as small scales could develop strong instabilities.
This would lead to a fragmentation of the system down
to very small scales so that the local density gradient,
hence the fifth force, is nowhere related to cosmological
scale gradients. This would in turn lead to an effective
screening mechanism as isolated overdensities no longer
interact. Note that this mechanism, due to the ultra-
local character of the theory, is the key to the screening
of the fifth force in local environments, such as in the
Solar System, which is required in the theories studied
in the companion paper where both the baryons and the
dark matter feel the fifth force. In the supersymmet-
ric setting considered in this paper, we do not need to
invoke this mechanism to ensure that the theory is con-
sistent with Solar System tests as the baryons do not feel
the fifth force. However, it could still play a role in case
it leads to a fragmentation of the dark matter density
field at high redshift, when the fifth force is dominant,
and makes a “mean field” approach inadequate.

As described in details in the companion paper [14], we
can investigate this issue by using a thermodynamic ap-
proach, which allows us to go beyond perturbation theory
and spherical dynamics. Thus, we assume that at high
redshift, when the fifth force is dominant, regions that
collapse and turn non-linear because of the fifth-force in-
teraction relax towards the thermodynamic equilibrium.
Then, if this equilibrium is strongly inhomogeneous the
mean field approach used in the previous sections breaks
down, whereas if this equilibrium is homogeneous we can
conclude that the system does not develop strong small-
scale inhomogeneities and the previous analysis is correct.

A. Cosmological non-linear transition

We first study in this section the evolution with red-
shift of the comoving cosmological scales z¢on(z) that en-
ter the non-linear regime, which we define by

A%(ﬂ'/xcou,z) =15 (138)

where A? is the logarithmic linear power spectrum. (The
factor 1.5 is chosen so that we obtain z ~ 8h~'Mpc
at z = 0 in the A-CDM scenario.) As seen in the upper
panel in Fig. 11, zcon(z) is much greater than in the A-
CDM cosmology at high redshift because the fifth force
amplifies the growth of structure. After a,, the fifth force
fastly decreases, as seen in Fig. 2. This leads to the
plateau for xcon(z) over an < a < aa_cpm, with a, =
al/3 ~ 0.01 associated with the peak of the fifth force
and ax—cpm =~ 0.2 associated with the convergence to
the A-CDM prediction for zcon(z). The reason why a, <
ar—_cpM is that after a,, the fast decrease of the fifth force
implies that structure formation due to the fifth force
stalls, and we need to wait until ay_cpwm for Newtonian
gravity to take over at the scale zcon(za), because at a,
Newtonian gravity was much weaker than the fifth force
at the comoving scale con(2zq). Thus, from the point of
view of cosmological structure formation, we have three
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FIG. 11:  Upper panel: collapse radius zconu(z) (in comoving

coordinates) as a function of the scale factor, for the ultra-
local models and the A-CDM cosmology. Lower panel: col-
lapse velocity scale ccon(z).

eras. For a < a,, the non-linear transition z.on(z) of
the cosmological density field is due to the fifth force
and occurs at scales much greater than in the A-CDM
scenario. For a, < a < ap_cpwm, structure formation
stalls as the fifth force decreases and Newtonian gravity
is still weak on these scales. For ax_cpm < a, we recover
the growth predicted by the A-CDM cosmology, due to
Newtonian gravity.

For the thermodynamic analysis presented in the next
section we also need the initial kinetic energy or typical
velocity of the collapsing domains. Thus, we define the
effective velocity ccon(z) by

Zon(z) = ¢ + &, (139)

with
(140)

3Q
Gd=eac, =1+ 61)Wr2n(15’@9%011)2-

The term ¢? comes from the pressure-like term €;¢2V?§ in
Eq.(69) while the term c% comes from the right-hand side



in Eq.(69), associated with Newtonian gravity (amplified
by the negligible factor €1). In the case of the A-CDM
cosmology we only have cé\oiCDM = c/I\\fCDM as there is
no fifth-force pressure-like term. As seen in the lower
panel in Fig. 11, at high redshift, a < ax_cpm, we have

Ceoll > CQOTICDM, whereas at low redshift, ax_cpm < a,

we have ceon >~ CQOTICDM as we recover the A-CDM be-
havior. Between a, and ax_cpwm the velocity scale first
decreases until a. /., ~ 0.1 with the decline of the fifth
force, as ccon = cs, and next grows again with Newtonian
gravity as ccoll ™~ CN.

This history singles out a characteristic mass and ve-
locity scale, associated with the plateau found in Fig. 11

over 0.02 < a < 0.2. This yields

x, ~ 0.355 h™'Mpc,
¢« ~ 50 km/s.

M, ~2x 10" h7t M,
(141)

As in Fig. 10, we recover galaxy scales, more precisely
here the scales associated with small galaxies. It is tempt-
ing to wonder whether this could help alleviate some of
the problems encountered on galaxy scales by the stan-
dard A-CDM scenario. However, this would require de-
tailed numerical studies that are beyond the scope of this

paper.

B. Thermodynamic equilibrium on cosmological
scales

We can now study the non-linear dynamics of the cos-
mological scales xcon(z) that enter the non-linear regime
found in Fig. 11. More precisely, we use a thermodynamic
approach to investigate whether these regions develop a
fragmentation process and show strong small-scale inho-
mogeneities [30, 31]. Because we are interested in the
evolution at high redshift, z > z,, when the fifth force is
dominant, we neglect the Newtonian gravity and we con-
sider the thermodynamic equilibrium of systems defined
by the energy E and entropy S given by

E

/dSmd3v f(x,v) (? +c? lnA[p(x)]) , (142)

S = —/d3xd311 f(x,v) In @ (143)
0

Here f(x,v) is the phase-space distribution function, fo
is an irrelevant normalization constant, and we used the
fact that the fifth-force potential In A is a function of the
local density. Then, assuming that the scales that turn
non-linear because of the fifth force at high redshift reach
a statistical equilibrium through the rapidly changing ef-
fects of the fluctuating potential, in a fashion somewhat
similar to the violent relaxation that takes place for gravi-
tational systems [32], we investigate the properties of this
thermodynamic equilibrium.

Contrary to the usual gravitational case, the poten-
tial In A is both bounded and short-ranged , so that we
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cannot build infinitely large negative (or positive) po-
tential energies and a stable thermodynamic equilibrium
always exists, and it is possible to work with either micro-
canonical, canonical or grand-canonical ensembles. In
this respect, a thermodynamic analysis is better suited
for such systems than for standard 3D gravitational sys-
tems, where the potential energy is unbounded from be-
low and stable equilibria do not always exist, and differ-
ent statistical ensembles are not equivalent [33].

We work in the grand-canonical ensemble, where the
dark matter particles are confined in a box of size = (the
scale xcon(z) that is turning non-linear at redshift z),
with a mean temperature "= 1/ and chemical poten-
tial p that are set by the initial velocity scale ccon(z)
and mean density p(z). The analysis of the thermody-
namic equilibria and phase transitions is described in de-
tails in the companion paper [14]. The main result is
that at high temperature, T > T, and 8 < (., the ther-
modynamic equilibrium is homogeneous, whereas at low
temperature, T < T, and 8 > (., the equilibrium is in-
homogeneous. Indeed, at high temperature the system
is dominated by its kinetic energy and the potential en-
ergy associated with the fifth force (which is bounded)
is negligible, so that we recover a perfect gas without
interactions, whereas at low temperature the fifth-force
potential becomes important and leads to strong inho-
mogeneities as it corresponds to an attractive force. In
terms of the rescaled dimensionless variables 6 and [i’ ,

0 =1In (i), B =ac®s,

- (144)

this leads to the phase diagram shown in Fig. 12. The
equilibrium is inhomogeneous inside the shaded region,
which is limited at low B by the inverse critical tempera-
ture A, with 3. ~ {6.85,5.58,5.14} for ¢ = {1/2,1,3/2}.
The upper and lower limits of the domain are the
curves 0.4 (3) and 0_ (), which obey the low-temperature
asymptotes

B— oo 9+~1—£—Cln3, 6_ ~ —p.
Then, if the average initial temperature and density
(1/8,0) fall outside the shaded domain the system re-
mains homogeneous. If they fall inside the shaded do-
main the system becomes inhomogeneous and splits over
two domains with density #_ and 6., with a proportion
such that the total mass is conserved. Because of the
ultra-local property [i.e. In A is a local function through
p(x)], the equilibrium factorizes over space x so that the
two domains at density 6+ are not necessarily connected
and can take any shape.

The solid curves in Fig. 12 are the cosmologi-
cal trajectories associated with the scale and velocity
{Zcon(2), ccon(z)} displayed in Fig. 11, which correspond
to

(145)

O[C2

) , Peo(z) = 5——

Ceoll (Z)

p(z)

- (146)

fcon(z) = In (
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FIG. 12: Thermodynamic phase diagram for the ultra-local models with ( = 1/2,1 and 3/2. The shaded area is the region
of initial inverse temperature 8 and density 6 where the thermodynamic equilibrium is inhomogeneous. The solid line is the

cosmological trajectory (Bcou(z), Ocon(2))-

This trajectory moves downward to lower densities with
cosmic time, following p(z). In agreement with the lower
panel of Fig. 11, the inverse temperature feo first de-
creases until a,, as the velocity ceon(z) grows. Next,
Bcoll increases while ccon(z) decreases along with the fifth
force, until we recover the A — CDM behavior at late
times and 30011 decreases again thereafter. We are inter-
ested in the first era, a < a,, and we find that the cos-
mological trajectory is almost indistinguishable from the
upper boundary 9+(B) of the inhomogeneous thermody-
namic phase. Indeed, at early times we have cqon =~ cs,
hence feon ~ /e from Eq.(140). Using Eq.(104) we
have at high densities, which also correspond to a < aq,
€1~ ap)pa) ¢/ FD) = e/ 040 hence

1+¢

a < Gy In Beon,

(147)

00011 ~

and we recover the asymptote (145) of .4 ().

If Ocon > 64 we are in the homogeneous phase and the
system remains at the initial density p. If Ocon < 64 we
are in the inhomogeneous phase and the system splits
over regions of densities 64 and #_. However, as we re-
main close to ;4 most of the volume is at the density
0+ ~ O.0n and only a small fraction of the volume is at
the low density 6_. Neglecting these small regions, we
can consider that in both cases the system remains ap-
proximately homogeneous. This means that, according
to this thermodynamic analysis, the cosmological density
field does not develop strong inhomogeneities that are set
by the cutoff scale of the theory when it enters the fifth-
force non-linear regime. Therefore, density gradients re-
main set by the large-scale cosmological density gradients
and the analysis of the linear growing modes and of the
spherical collapse presented in previous sections are valid.
On small non-linear scales and at late times, where New-
tonian gravity becomes dominant, we recover the usual
gravitational instability that we neglected in this analy-

sis and structure formation proceeds as in the standard
A-CDM case.

C. Halo centers

It is interesting to apply the thermodynamic analysis
presented above to the inner radii of clusters and galax-
ies. Indeed, we have seen in section V A1 that the fifth
force becomes large inside spherical halos and the ratio
F4/Fx actually diverges at the center for shallow density
profiles, see Fig. 8 and Eq.(127). However, this analysis
was based on dimensional and scaling arguments and it
fails if the density field becomes strongly inhomogeneous
so that the typical density inside the halo is very dif-
ferent from the global averaged density. The thermody-
namic analysis used to derive the phase space diagram
shown in Fig. 12 neglected Newtonian gravity. However,
we can also apply its conclusions to a regime dominated
by Newtonian gravity where at radius r inside the halo
the structures built by gravity and the density gradients
are on scale r. Then, we can ask whether at this ra-
dius r fifth-force effects may lead to a fragmentation of
the system on much smaller scales ¢ < r. To study this
small-scale behavior we can neglect the larger-scale grav-
itational gradients r and discard gravitational forces.

Within a radius r inside the halo the averaged reduced
density and inverse temperature are

0, =1In </0<—(7n)> ) Br = ac”

o V@ )y 9
where vy is the Newtonian circular velocity and cg is
the fifth-force velocity scale defined in Eq.(122). As seen
in Eq.(123), the maximum Max(c?, v%) shifts from one
velocity scale to the other when the associated force be-
comes dominant. Here we choose the non-analytic inter-
polation Max(c2, v%) instead of the smooth interpolation
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2 + v% that we used in Eq.(139) for the cosmological
analysis for illustrative convenience. Indeed, the discon-
tinuous changes of slope in Fig. 13 show at once the lo-
cation of the transitions |n| = 1 between the fifth-force
and Newtonian gravity regimes.

When the density grows at small radii as a power law,
p < 777 we have seen in Eq.(127) that the fifth-force to
gravity ratio n behaves as 1 ~ r7»(1420/(0+0=2 it}

2—vp 2
)

V2N, 2 /(40

(149)

at high density p > p., where we used Eq.(101). This
gives in the Newtonian gravity and fifth-force regimes

™ g,

ml<1: 6,~
2=

(150)

1+¢

[n| >1: 6, In B,.

(151)

For 7, > 2 we are in the Newtonian regime v% — oo,

Br — 0, so that we are in the homogeneous phase of
the thermodynamic phase diagram as Br < BC. For
(242¢)/(1 +2¢) < vp < 2 Newtonian gravity still dom-
inates at small radii and we have the asymptote (150)
with v,/(2—7p) > (1+4()/¢, so that the radial trajectory
(BT, 6,) moves farther above from the upper bound 6 of
Eq.(145) of the inhomogeneous phase and small radii are
within the homogeneous phase. For v, < (2+2¢)/(1+2¢)
we are in the fifth-force regime and we obtain 6, ~ 6,
so that the radial trajectory (3,,6,) follows the upper
boundary of the inhomogeneous phase domain. This
means that the dimensional analysis of section VA1 is
valid as the fifth force does not push towards a fragmen-
tation of the system down to very small scales.

These asymptotic results apply to the small-radius
limit » — 0. In Fig. 13 we show the full radial trajecto-
ries (Br, 0,) over the thermodynamic phase diagram, from
Rogoc inward, for the NFW halos that were displayed in

Fig. 8 at z = 0. As we move inside the halo, towards
smaller radii r, the density 6, grows and the trajectory
moves upward in the figure. The turn-around of Br at
0, ~ —4 corresponds to the NFW radius rs where the
local slope of the density goes through v = 2 and the cir-
cular velocity is maximum. At smaller radii, r < rg, the
NFW profile goes to p oc 71, hence 7y, = 1. In agreement
with the asymptotic analysis above, this implies that we
move farther into the fifth-force regime and we follow
the upper boundary 6 of the inhomogeneous phase do-
main, so that the dimensional analysis of section VA1 is
valid. This also leads to an increasingly dominant fifth
force at small radii and characteristic velocities that are
higher than the Newtonian circular velocity. This may
rule out these ultra-local scenarios. However, on small
scales the baryonic component is non-negligible and it ac-
tually dominates on kpc scales inside galaxies. Since the
baryons do not feel the fifth force this could keep these
models consistent with observations. On the other hand,
for low-mass halos, M < 101A~*My at z = 0, we find
that a significant part of the halo is within the inhomo-
geneous thermodynamic phase. This may leave some sig-
nature as a possible fragmentation of the system on these
intermediate scales into higher-density structures. This
process would next lead to a screening of the fifth force,
because of the ultra-local character of the fifth force. In-
deed, because it is set by the local density gradients, the
fragmentation of the system leads to a disappearance of
large-scale collective effects and the fifth force behaves
like a surface tension at the boundaries of different do-
mains. Such a process may also happen in the case of
massive halos at earlier stages of their formation, which
could effectively screen the fifth force whereas the simple
static analysis leads to a dominant fifth force at small
radii. However, a more precise analysis to follow such
evolutionary tracks and check the final outcomes of the
systems requires numerical studies that are beyond the
scope of this paper.



VII. DEPENDENCE ON THE a« PARAMETER

In this section we investigate how the results obtained
in the previous sections change when we vary the param-
eter a. As a matter of example, we consider the model
with ¢ = 1 and we show our results in Fig. 14, where we
compare the case & = 107% considered in the previous
sections with the two cases & = 107 and o = 1078,

In agreement with the discussion in section IV B, as
a decreases the maximum amplitude of €; decreases as
€1(aa) ~ « while the associated scale factor decreases
as an ~ a'/3. This implies that the effect of the fifth
force is shifted to higher redshift with a lower ampli-
tude, whence a smaller impact of the scalar field on the
matter power spectrum, P(k,z), and on the halo mass
function, as we can check in the upper right and lower
left panels in Fig. 14. The area in the (M, R) plane
where the fifth force is greater than Newtonian gravity
also shrinks as o decreases, as we can see in the lower
right panel. This is because R, o «, which moves
the upper branch down towards small radii, whereas
the lower branch slowly moves upward because at fixed
mass we have R(M) ~ a~'/(4¢+D " Therefore, galaxies
are no longer sensitive to the modification of gravity if
a<5x1077.

VIII. CONCLUSION

We have considered in this paper supersymmetric
chameleon models with a very large mass, 1/meg <
10~*mm, and coupling B8 > 1. This makes the range
of the fifth force very small and leads to an equivalence
between these supersymmetric chameleon models and the
ultra-local models studied in a companion paper, for cos-
mological scales with H < k/a < meg. The background
remains very close to the A-CDM cosmology in both sets
of models. However, in contrast with the more general
ultra-local models, in this supersymmetric context only
the dark matter is sensitive to the fifth force. Therefore,
although the ultra-local character of the models gives rise
to an automatic screening mechanism that ensures that
we satisfy Solar System tests of gravity in that more gen-
eral framework, in the context studied in this paper this
mechanism is not so critical as baryons, which dominate
on small scales and in the Solar System, never feel the
fifth force (except through its effects on the dark matter
Newtonian potential) and follow General Relativity.

We have first described how to build such chameleon
models in this supersymmetric context. This involves
several characteristic functions that enter the Kéhler po-
tential K, which governs the kinetic terms of the model,
the superpotential W responsible for the interactions be-
tween the fields, and the coupling between the dark mat-
ter and the dark energy. This also introduces several
energy scales that may be different. We have shown
in details how these models are equivalent to ultra-local
models for cosmological purposes. This leads to a great
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simplification as the latter involve a single free function,
In A(x). As in most dark energy and modified gravity
models, we also need to introduce a cosmological con-
stant and the associated energy scale. In addition, we
need a small parameter a < 1079, which however ap-
pears as a ratio of several energy scales. This provides
a natural setting to explain why this quantity can be
significantly different from unity.

Next, we have used the ultra-local models identifica-
tion to study the cosmological properties of these scenar-
ios. We have considered both the background dynamics
and the evolution of linear perturbations. Whereas the
background remains very close to the A-CDM evolution,
within an accuracy of 1076, the growth of cosmologi-
cal structures is significantly amplified on scales below
1h~'Mpc. This fifth-force effect shows a fast increase at
high k as it corresponds to a pressure-like term in the
linearized equations of motion. Another property that is
peculiar to these models, as opposed to most dark energy
or modified gravity models, is that the fifth force is the
greatest at a high redshift z, ~ a~/3 ~ 100 and for
galaxies (among cosmological structures).

We have also considered the modifications to the
spherical collapse of cosmological structures. The faster
growth of structures at z ~ 2z, leads to an accelera-
tion of the collapse at these early times and to a lower
linear density threshold 5£_CDM required to reach a
non-linear density contrast of 200 today, especially on
smaller scales where the fifth force is greater. This leads
to a higher halo mass function at intermediate masses,
108 < M < 10'*h~' M), as compared with the A-CDM
cosmology. Next, we have considered the behavior of
the fifth force inside spherical halos. We find that the
fifth force increasingly dominates at smaller radii in ha-
los with a shallow density profile, 7, < 1, as for NFW
profiles. On the other hand, the fifth force is negligible on
cluster scales and of the same order as Newtonian grav-
ity on galaxy scales. This suggests that galaxies could be
the best probes of such models.

To investigate the non-linear fifth force regime, and
to check that the previous cosmological analysis is not
violated by small-scale non-linear effects, we have used
the thermodynamic analysis developed in the compan-
ion paper. Again, we find that for these supersymmetric
chameleon models the cosmological scales that turn non-
linear at high redshift because of the fifth force are at
the boundary of the inhomogeneous domain in the ther-
modynamic phase diagram. This suggests that they do
not develop strong small-scale inhomogeneities and that
the standard mean field cosmological analysis is valid.
The same behavior is found at small radii in spheri-
cal halos, which again suggests that the spherically av-
eraged analysis applies. However, for low-mass halos,
M <101 A=t Mg at z = 0, intermediate radii fall within
the inhomogeneous phase. This could lead to some frag-
mentation of the system with the formation of interme-
diate mass clumps. On the other hand, this same pro-
cess leads to a self-screening of the fifth force as isolated
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of Fig. 7. Lower right panel: domain in the mass-radius plane where the fifth force is greater than Newtonian gravity, as in

Fig. 10.

clumps no longer interact through the fifth force because
of its ultra-local character. Finally, we have considered
the dependence of our results on the value of the pa-
rameter . We find that for o < 1077 the deviations
from the A-CDM cosmology are likely to be negligible
(contrary to the models studied in the companion paper)
because they have a lower amplitude and are pushed to
lower scales where baryons are dominant.

Thus, we find that although such models follow the
A-CDM behavior at the background level they display a
non-standard behavior for the dark matter perturbations
on small scales, below 1h~'Mpc. At the level of the pre-
liminary analysis presented in this paper they appear to
remain globally consistent with observational constraints.
However, the effects of the fifth force deep inside halos,
on kpc scales, may provide strong constraints and rule
out this models. In particular, the thermodynamic anal-

ysis presented in this paper may not be sufficient as the
systems may not reach this equilibrium because of incom-
plete relaxation. To go beyond the analytic approaches
used in this paper and to make an accurate compari-
son with data on galaxy scales requires numerical simu-
lations, which we leave to future work.

Acknowledgments

This work is supported in part by the French Agence
Nationale de la Recherche under Grant ANR-12-BS05-
0002. This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation pro-
gramme under the Marie Skodowska-Curie grant agree-
ment No 690575.



23

[1] A. G. Riess et al. (Supernova Search Team), Astron.J.
116, 1009 (1998), astro-ph/9805201.
[2] S. Perlmutter et al. (Supernova Cosmology Project),
Bull. Am.Astron.Soc. 29, 1351 (1997), astro-ph/9812473.
[3] E. J. Copeland, M. Sami, and S. Tsujikawa,
Int.J.Mod.Phys. D15, 1753 (2006), hep-th/0603057.
[4] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys.
Rept. 568, 1 (2015), 1407.0059.
[5] W. Hu and L. Sawicki, Phys. Rev. D76, 064004 (2007),
0705.1158.
[6] A. Nicolis, R. Rattazzi, and E. Trincherini, Phys.Rev.
D79, 064036 (2009), 0811.2197.
[7] G. W. Horndeski, Int.J.Theor.Phys. 10, 363 (1974).
[8] J. D. Bekenstein, Phys. Rev. D48, 3641 (1993), gr-
qc/9211017.
[9] J. Khoury and A. Weltman, Phys. Rev. D69, 044026
(2004), astro-ph/0309411.
[10] T. Damour and A. M. Polyakov, Nucl. Phys. B423, 532
(1994), hep-th/9401069.
[11] E. Babichev, C. Deffayet, and R. Ziour, Int.J.Mod.Phys.
D18, 2147 (2009), 0905.2943.
[12] P. Brax and P. Valageas, Phys. Rev. D 90, 023507
(2014), 1403.5420.
] A. Vainshtein, Phys.Lett. B39, 393 (1972).
] P. Brax, L. A. Rizzo, and P. Valageas (2016), 1605.02938.
| P. Brax, Phys.Lett. B712, 155 (2012), 1202.0740.
] C. de Rham and R. H. Ribeiro, JCAP 1411, 016 (2014),
1405.5213.
[17] P. Brax and J. Martin, Phys. Lett. B468, 40 (1999),
astro-ph/9905040.
[18] P. Brax, C. van de Bruck, J. Martin, and A.-C. Davis,
JCAP 0909, 032 (2009), 0904.3471.
[19] P. Brax, A.-C. Davis, and J. Sakstein, JCAP 1310, 007
(2013), 1302.3080.
[20] P. Brax, A.-C. Davis, and J. Sakstein, Phys. Lett. B719,

1
1
[1
[1

210 (2013), 1212.4392.

[21] S. M. Carroll, I. Sawicki, A. Silvestri, and M. Trodden,
New J. Phys. 8, 323 (2006), astro-ph/0607458.

[22] P. Binetruy, Supersymmetry: Theory, experiment and
cosmology (2006).

[23] B. Ratra and P. J. E. Peebles, Phys. Rev. D37, 3406
(1988).

[24] P. Fayet, Phys. Lett. B175, 471 (1986).

[25] P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury, and
A. Weltman, Phys. Rev. D70, 123518 (2004), astro-
ph/0408415.

[26] P. Brax, C. van de Bruck, A.-C. Davis, and A. M. Green,
Phys.Lett. B633, 441 (2006), astro-ph/0509878.

[27] P. Brax, A.-C. Davis, B. Li, and H. A. Winther (2012),
1203.4812.

[28] W. H. Press and P. Schechter, Astrophys. J. 187, 425
(1974).

[29] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astro-
phys. J. 462, 563 (1996), astro-ph/9508025.

[30] P. H. Chavanis, J. Vatteville, and F. Bouchet, Euro-
pean Physical Journal B 46, 61 (2005), arXiv:cond-
mat/0408117.

[31] R. Balian, From Microphysics to Macrophysics, The-
oretical and Mathematical Physics (Springer-Verlag,
Berlin, Germany, 2007), ISBN 978-3-540-45469-4, URL
http://www.springer.com/fr/book/9783540454694.

[32] D. Lynden-Bell, Mon. Not. R. Astr. Soc. 136, 101
(1967).

[33] T. Padmanabhan, Phys. Rep. 188, 285 (1990).

[34] Although the vacuum energy due to Vp lifts the vanishing
energy density of a true supersymmetric minimum and
therefore supersymmetry is broken by &, we will still refer
t0 ¢Ymin as the supersymmetric minimum as it minimises

Ve.



Article D

Testing Modified Gravity with
Cosmic Shear

170



arxiv:1506.06313v1 [astro-ph.CO] 21 Jun 2015

Mon. Not. R. Astron. Sod)00, 000—-000 (0000)

Printed 23 June 2015 (MITEX style file v2.2)

Testing Modified Gravity with Cosmic Shear

J. Harnois-&raps, D. Munshft, P. Valagea¥', L. van Waerbeke P. Brax+*, P. Coles,

L. Rizzc**

IDepartment of Physics and Astronomy, University of Bri@siiumbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Zdnada
2 Astronomy Centre, School of Mathematical and Physicalr8ei®, University of Sussex, Brighton BN1 9QH, United Kingdo

3 CEA, IPhT, F-91191, Gif-sur-Yevette, @&, France

4 CNRS, URA, 2306, F-91191, Gif-sur-Yevetted&e France

23 June 2015

ABSTRACT

We use the cosmic shear data from the Canada-France-Hahescbpe Lensing Survey to place
constraints orf (R) andGeneralized Dilatonrmodels of modified gravity. This is highly compli-
mentary to other probes since the constraints mainly coora the non-linear scales: maximal
deviations with respects to the General-Relativity@DM scenario occurs dt ~ 1hMpc~!. At
these scales, it becomes necessary to account for knownetegees with baryon feedback and
massive neutrinos, hence we place constraints jointly esethhree physical effects. To achieve
this, we formulate these modified gravity theories withiroanenon tomographic parameteriza-
tion, we compute their impact on the clustering propertistive to a GR universe, and propa-
gate the observed modifications into the weak lenginguantity. Confronted against the cosmic
shear data, we reject thi€R) {|fr,| = 10~%,n = 1} model with more than 99.9% confidence
interval (Cl) when assuming@CDM dark matter only model. In the presence of baryonic feed-

back processes and massive neutrinos with total mass upa¥,@he model is disfavoured with
at least94% Cl in all different combinations studied. Constraimstioe {| fz,| = 1074, n = 2}
model are weaker, but nevertheless disfavoured with at 886 Cl. We identify several specific
combinations of neutrino mass, baryon feedback &) or Dilaton gravity models that are ex-
cluded by the current cosmic shear data. Notably, univevgashree massless neutrinos and no
baryon feedback are strongly disfavoured in all modifiedigyascenarios studied. These results
indicate that competitive constraints may be achieved fuitlve cosmic shear data.

Key words: : Cosmology— Modified Gravity Theories — Methods: analytistatistical, numeri-

cal

1 INTRODUCTION

Explaining the late-time acceleration of the Universe fiegtorted in
Riess et al. (1998); Perlmutter et al. (1999) representsjarrohal-
lenge in modern cosmology, and current interpretationstisnosly
on the inclusion of dark energy components and/or modibioati
to the theory of General Relativity (GR). One important diffty
encountered in solving this puzzle relates to the fact tyatcon-
struction, the background dynamics in viable dark energyraadi-
fied gravity models are almost indistinguishable (Bertsghr 2006;
Song, Hu & Sawicki 2007; Brax et al. 2008). These two framéwor
only really decouple when considering the evolution of eratten-
sity fluctuations and of perturbations associated with tleric In
addition, there are various ways in which a modification efgy on
large scales could account for the apparent acceleratiditofCet al.
2013; Joyce et al. 2014). Exploiting this, many observatigmobes
based on large scale structure formation have been propogesdt
theories of modified gravity, including galaxy clusterifpgosian &
Silvestri 2008; Oyazu, Lima & Hu 2008), integrated Sachdfévef-
fect in the cosmic microwave background (CMB) anisotropied its

(© 0000 RAS

cross-correlation with galaxy density (Song, Peiris, HOD0cluster
abundance (Jain & Zhang 2008; Lombriser et al. 2010), pacué-
locities (Li et al. 2000; Johnson et al. 2014, 2015), reds$phce dis-
tortions from spectroscopic surveys (Guzzo et al. 2008nidgs et
al. 2012; Asaba et al. 2013), 21cm observations (Hall ettdl32and
weak gravitation lensing (Heavens, Kitching & Verde 200ghigdt
2008; Tsujikawa & Tatekawa 2008; Simpson et al. 2013; Wilebx
al. 2015).

In this paper we investigate the extent to which current weak
lensing surveys can constrain departures from GR. In péaticwe
study the signatures of two specific classes of parametnmmtified
gravity theories, th¢ (R) and the generalized Dilaton models, on the
cosmic shear measurement extracted from the CFHTLenS{Etbe
al. 2013). These models are known to cause an enhancemeniof s
ture formation over scales in the range [0.2 - 20] Mp¢, an effect
which could be detectable with current lensing surveysduiteon,
the departure of these models from General Relativity isimalxat
scales ofk ~ 1h~'Mpc, which are difficult to interpret with other
clustering data due to the large uncertainty in the galagg.brhis
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makes the weak lensing approach special, probing modifiedtgr
models at the scale of influence of the ‘fifth’ force.

In its approach, this paper is an extension of Harnois-p&ra
van Waerbeke, Viola & Heymans (2015, hereafter HWVH), where
the same data was used to place joint constraints on bargdbdek

namely theDilaton and thef(R) models; we describe their distinct
screening mechanisms, and detail their parameterizatitimei con-
text of large scale structure formation.

models and on the sum of neutrino mass. The general idea can be.1 Gravity in Dilaton models

understood as follows: on the one hand, the accuracy achieye
modern CMB experiments (Hinshaw et al. 2013; Planck CoHabo
ration 2015) on moshCDM parameters is at the percent level; on
the other hand, the modified gravity effects we are lookirrgaftect
the baseline signal by up to 20 percent at small scales.Heigfore
justified to assume a fixed cosmology and search for possése d
ations. Any residual uncertainty in the cosmology can tafee be
treated as systematic uncertainty in the analysis. Whike gener-
ation weak lensing experiments such as RCSLelES’, KiDS?,
Euclid* and LSST will have enough statistical power to repeat this
analysis in a full MCMC pipeline, we demonstrate here thatcae
find interesting results with simpler tools and existingedat

This paper is organized as follows: §& we review the theoret-
ical formulation of structure formation ifi( R) and Dilaton gravity
theories;§3 describes the theoretical and numerical modelling of the
weak lensing signal, and details our cosmic shear measuatdroen
the CFHTLenS data. I1§4 we present and discuss our results, and

The Dilaton and Symmetrof theories of modified gravity are
Chameleon models that exhibit thBamour-Polyakovproperty
(Damour & Polyakov 1994), according to which the coupling be
tween the scalar field> and the rest of the matter components
approaches zero in dense environments (Pietroni 2005e @liv
Pospelov 2008; Hinterbichler & Khoury 2010). In contrasttte case

of f(R) theories, described in Sec. 2.2 below, the scalar field here

takes on a small mass everywhere and thus mediates a logg-ran
(screened) force.

These Dilaton models are scalar-tensor theories, wherache
tion defining the system takes the general form

a " Mgy, 1o o s
S = d*zv/—g TR—§(V<P) —Vi(p) — Ao

+ / ) Gl (6, ), 1)

conclude in§5. The baseline cosmological parameters that are usedwhere Mp; = (87Gx) /2 is the reduced Planck mass (in natural

throughout our study correspond to WW&VAF + BAO + SNACDM
cosmology:h = 0.6898, Q,, = 0.2905, QA = 0.7095, Qx = 0,

w = —1, 08 = 0.831 andns = 0.969. The reason why we did not
opt for thePlanckcosmology is to minimize the effect of the known
cosmological tension in our model rejection strategy. @tiee this
would involve a full MCMC calculation including all cosmajial
parameters and both data sets as in MacCrann et al. (2014} ish
not necessary in our approach. In the end however, we do nadiag
over this cosmological discrepancy.

2 MODIFIED GRAVITY THEORIES

Modified theories of gravity can be distinguished by theireso-
ing properties in dense environments. Indeed, given tlengtso-
lar System constraints, these theories need to have aitbsitteen-
ing mechanism, suppressing the deviations from GR. Thigestypf
such mechanisms have emerged in the last few year€hameleon
K-mouflageand Vainshteinmodels (see Brax & Valageas 2014,
for a comparison between these different screening mesmaii
On the one hand, K-mouflage and Vainshtein models involve non
linear kinetic terms describing additional scalar fieldsogé pres-
ence modifies GR predictions. On the other hand, modificatain
the Chameleon type can be broadly categorized as eitheainent
ing additional couplings between the metric and new scadiidj or
involving extra geometric terms. These two equivalent dpgons
can be captured by themographicparameterization, which will be
used throughout this paper (Brax, Davis & Li 2012; Brax, Baui

& Winther 2012).

In all Chameleon cases, modifications of gravity induce aajlo
enhancement of the effective force of gravity, due to théhfibrce’,
which directly translates into an increase of structuremtation.
In this Section, we review two different types of modified gty

1 http://lwww.rcslens.org

2 http://www.darkenergysurvey.org
3 http://kids.strw.leidenuniv.nl

4 http://sci.esa.int/euclid

5 http://www.Isst.org/lsst

units), A¢ is the cosmological constant term todayis the determi-
nant of the Einstein-frame metric tenggpy, andg the determinant of
the Jordan-frame metric tensgy... The two metrics are connected
via a conformal rescaling

Juv = AQ(S")QHW (2

The various matter field$,(,? are governed by the Jordan-frame
Lagrangian density,,, and the scalar fielgh by the Einstein-frame
Lagrangian densitf, = —1/2(V)? — V(y), whereV () is the
potential of the scalar field There is no explicit coupling between
matter and the scalar fields, and the fifth force on mattergbestdue
to ¢ arises from the conformal transformation given by equat®)n
(more precisely, through gradients 4j.

In the original Dilaton model, the potenti&l(¢) and the cou-
pling® A(y) with the metric have the following functional forms:

V(p) = Viexp <7Mip]> , (3)
Alg) =1+ 53755 @)

where{V., A, } are the two free parameters. In regions where 0,

the coupling to matter is negligible, and gravity converge$GR.
However, the field nevertheless mediates a long range gtarial
force that has an effect elsewhere, i.e. in less dense emeénts.
This model can be generalized to a greater class of Dilatafetap
by keeping the coupling function as in equation (4) but cdeshg
more general potentials. Then, instead of specifying thedehby

6 We do not further investigate the Symmetron, K-mouflage rainshtein
models in this paper.

7 In equation (1), we explicitly added the cosmological canstermA?, so
that the minimum ofl/ () is zero and is reached fgr — oc. Alternatively,
this term could also be interpreted as the non-zero minimiuimesscalar field
potential.

8 This coupling is often defined as(p) = 1 + 1 22

2 M2

Pl
=« is some free parameter of the model. We opted to abgerinto ¢ in
equation (4), a choice that has no physical impact anyway.

(¢ — p4)?, where

(© 0000 RAS, MNRASD00, 000—-000



its potential V' (¢), it is re-casted in the tomographic parametriza-
tion {8(a), m(a)} in terms of the cosmological scale facteft),
where the coupling(a) and the scalar field mass(a) are defined
as (Brax, Davis & Li 2012; Brax & Valageas 2013):

(@) = Bl(@)] = M TZ2(@). ©)
m*(a) = m[p(a), p(a)] = %(@) + ﬁ%(@) ©)

Hereafter, we denote with an overbar unperturbed cosnuabgi
background quantities, and with a subscript ‘0’ quantigealuated
today. For instances(a) = 3QmoHEM3,/a® is the background
matter densitys is the mean value of the field], is the current
value of the Hubbles parameter, afid,o is the current matter den-
sity. Also, c is the speed of light in vacuum. In this paper we consider
the simple forms

_ >3 1
mia) = moa, Ba) = foesp |1 @
with
2
o= 2A28moHo ®)

2
c*mg

In this framework, the Yukawa potential given by equationg@rre-
sponds ta- = 3/2. The values of the free parametérso, r, So, s}
that enter equation (7) are displayed in Table 1. The mog|sB,
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Combining with equation (6), and writingg = m(a), this leads to

dp _ 36p AV _ 3%

da  EMpam?’ da 7C2Ml§lam2’ (12)
whence

%) 4 7 2

LAY (ﬁ) ~102 Yo <£) ~ 107 (13)
2p cm p cm

Thus, the scalar field energy density is dominated by itsriate
term, which is negligible as compared with the matter dgnstere-
fore, the Friedmann equation (10) is governed by the maéesity
and the cosmological constant and we recoverN@®M cosmolog-
ical expansion3 M3, H? = p + pa, up to an accuracy dfo—°.

We now briefly consider the behaviour of metric and density
fluctuations. In the quasi-static limit, the scalar field igeg by the
Klein-Gordon equation,
_dv dA
and at linear order over the matter density and scalar fiattLifions
we obtain
S B
Mp1 N C2MF2,1 m2 + k2/a2 ’

wherek is the comoving wave number. Using equation (11) this gives

2
A <
cm ) 1+ k2?/a?m? ™~

< v (14)

a2

(15)

54| ~ 1921
p

107°, (16)

C, D} were chosen such as to correspond to those studied in Braxso that the perturbations of the conformal factor are negligible

& Valageas (2013) and Brax et al. (2012), where detailed @mp
isons between numerical and analytical calculations aesqmted.
More specifically, the model§A, B, C} probe the dependence on
{s, Bo, r} respectively, all other parameters being fixed, while mod-
els D probe the dependenceon at fixed A2. We added the models

E that probe the dependence on the parameteat fixed{s, 5o, 7}.
These models probe deviations from th€ DM cosmology of less
than20%, in terms of the matter power spectrum. Let us now explore
the detailed mechanism through which the power spectrunmattiem
fluctuations is affected by this theory.

In these Dilaton models, the coupling functidns always very
close to unity, so that most Einstein-frame and Jordan-drgoman-
tities (e.g., Hubble expansion rates or densities) are stiraenti-
cal. Indeed, usingA — 1| < 1, we can see from equations (4)
and (5) thatd ~ 1 + 8%/(2A45). From equation (8) we also obtain
Az ~ (emo/Ho)?. Solar System tests of gravity such as that anal-
ysed in Chiba (2003) imply thato > 10° Ho/c, whenceA, > 10°
and

|A—1] <1075, 9)

Therefore, the Jordan-frame and Einstein-frame scaleracnd
background matter densities, relatedby= Aa andj = A~*p,
can be considered equal, as well as the cosmic times and &lubbl
expansion rates. In the rest of this Section we work in thestgin
frame, where the analysis of the gravitational dynamicssangler.

In the Einstein frame, the Friedmann equation takes thel usua
form

3Mp H? = p+ py + pa, (10)
where we explicitly separate contributions from the mag@grand
scalar field p,) components and from the cosmological consfant
The background value of the scalar field potential is given by
dv

v, B

=0.
dp " Mp"

()

(© 0000 RAS, MNRASDOOQ, 000—-000

compared to unity. Also,
e

H\? 1 -

op - (cm) 1+k2/a?m?2 ™~

hence fluctuations of the scalar field energy density areigibtg
compared with the matter density fluctuations.

Therefore, the main source that drives modifications taire
growth is not a different background evolution, nor peratitns in
the scalar field energy density, but really the action of tfik force
on the matter field. In the Newtonian gauge, the perturbedicnztn
be written as

ds® = —(1 4 2®)dt* + a*(t)(1 — 29)8;;de’ da?

107°, 17)

(18)

where® and¥ are the Einstein-frame metric gravitational potentials.
Using equations (15) and (17), we can check that the impattteof
scalar field fluctuations on the metric potentials are négkg and
we have within al0~% accuracy

O =T =Ty, (29)
whereWy is the Newtonian potential given by the Poisson equation,
2 2
VU = dnGnsp = 2motlo 5 (20)
2a3

In the above expressiod, = dp/p is the matter density contrast.
However, the dynamics of matter particles are modified bystiaar
field, which gives rise to the fifth force given By = —c?VIn A.
That is, in the Euler equation we must add a fifth-force paaént
U, = ®InA, that is not negligible. When solving for structure
growth given the parameters listed in Table 1, the new temmead
to 10 — 20% deviations in the matter density power spectrum.

2.2 Gravity in f(R) theories

In models based ofi( R) gravity, the Einstein-Hilbert action is mod-
ified by promoting the Ricci scalak to a function of R (Buchdahl
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1970; Starobinsky 1980, 2007; Hu & Sawicki 2007). The nevioact
S in f(R) gravity theories can be written as:

_ 4 Mlg'l 4 (4)
5= [ dtay=g | PR+ FR] - AL+ La080)] @
where we explicitly added the cosmological constant cbatior’.

The f(R) models are most easily described in the Jordan frame,
which is why, in this Section, we denote with a tilde Einstmme
quantities instead of Jordan-frame ones, contrary to thatioo of
§2.1. In the parameterization of Hu & Sawicki (2007), the fiioeal
form f(R) can be expressed in the high curvature limit as:

Rro RO df (R Ry™!
f(R):_% ]%n ) f;l(]{):fRU%
The two independent parameterfs;, andn, can be constrained
by observations. In the above expressidh, is the present value
of the Ricci scalar for the cosmological background. Not this
parametrization and that of Starobinsky (2007) both repcedhe
same results in the large curvature regime.

The f(R) theories of gravity also invoke the Chameleon mech-
anism to screen modifications of GR in dense environments asic
in our Solar System. Specifically, this occurs by requirimat @ll ex-
tra terms vanish in high curvature environment, such jfi{aR| >
|Ro|) — 0. The background expansion otherwise follows AtgDM
dynamics and the growth of structure is only affected orrinegliate
and quasi-linear scales.

There is an essential connection between the formulatidneof
f(R) theory presented above and scalar-tensor theories of maddifi
gravity. Upon the coordinate rescaligg. A72(9) g (recall
that in this Sectiory,, is the Einstein-frame metric) withl(¢) =
exp[By/Mpi] andB = 1/+/6, the f(R) modifications to GR are re-
casted as arising from contributions of an extra scalar fieklibject
to a potential/ (¢) given by:

In that sensef(R) theories are equivalent to a scalar-tensor the-
ory expressed in the Einstein frame (Chiba 2003; Nunez & gokg
2004). In this new formulation, the screening mechanisnegadn-
other form: the mass of the scalar field grows with matter idgns
and a Yukawa-like potential suppresses the fifth force irsdesn-
vironments. This can be conveniently reformulated by sayhat
screening takes place wherever the scalar field is small amdo
the ambient Newtonian potential.

It turns out that all Chameleon-like models suchf4&) theo-
ries can again be parameterized by the value of the mesas and
the couplingS(a) of the scalar field, in terms of the scale factor
and the associated background matter derigity. With the specific
functional form of f(R) given by equation (22), we can directly re-

late {n, fr, } to {B(a), m(a)} via:

m(a) =m —4QAO * Qmoai.& e
T 4990 + Qo

QII]O+4QAO o L
Vot liml P9

In this paper, we consider values of = {1,2} and |fr,| =
{107*,107°,1075}. The larger value offr,| is currently ruled

fr=

(22)

2
_ M

Vip) 3

)

Hy
C

(24)

mo =

9 The termsR andAé are often included within the functiofi( R). Written
in the form of equation (21)f(R) describes deviations from both GR and the
ACDM cosmology.

out by other independent probes, so this serves as a contyigtst.
The numerical values fd3(a), m(a)} corresponding to these three
models are listed in Table 1.

As for the Dilaton models described §2.1, the f(R) models
that we consider in this paper follow very closely thR€DM cos-
mology at the background level, mainly becayifg, | < 1. Indeed,
from the action (equation 21) one obtains the Friedmanntexguas
(Tsujikawa 2007);
3Mp) [m — fr(H? + H) + /6 + frrHR| = p+ pr,  (25)
where the dot denotes the derivative with respect to cosimie ¢
andfrr = d*f/dR?. In the background we have = 12H? + 6 H
and we can check that all extra terms in the brackets in emuati
(25) are of ordet fr,|H?, so that we recover th&«CDM expansion,
3M2 H? = p + pa, up to an accuracy of0—* for | fr,| < 107%.
Moreover, the conformal factot () is given byA = (1+ fr) /2,
sothafA—1| < 10~* and the background quantities associated with
the Einstein and Jordan frames can be considered equaldaatite
the ACDM reference) up to an accuracy i —*.

Considering the metric and density perturbations, we camag
write the Newtonian gauge metric as in equation (18) (bstighow
the Jordan-frame metric). Then, in the small-scale sukzbidimit
k/a > H/c, the modified Einstein equations lead to (Tsujikawa &
Tatekawa 2008)

v2 272
—2(13 = —c—lefR + 47TgN5pa (26)
a 2a

v2 272

S0 = S5 fr + 4mGndp, @
a 2a

whered fr = fr — fr andép = p — p. Therefore, in terms of the
Newtonian gravitational potentidly defined as in GR by equation
(20), we have

2
U =Wy + %5fR

Thus, because we work in the Jordan frame (in contrast witbtla-
ton case presented §2.1), the modification of gravity directly ap-
pears through the metric potentials. The fluctuations oféhe de-
gree of freedond fr are given by:

3c2Vv?
a2
Finally, the dynamics of the matter particles is given bydkedesic

equation, where the Newtonian potential that appears in $GiRe-i
placed by the potentia@b given in equation (28).

2
d=Uyn— %5fR, (28)

0fr =R — 8wGnop. (29)

3 WEAKLENSING
3.1 Theory
3.1.1 Weak lensing convergence power spectrum

In all the cosmologies considered in this paper, we work éNlew-
tonian gauge with the perturbed metric given by equatioi, (XBere
® and ¥ are the metric gravitational potentidls In practice, we
measure the statistical properties of weak lensing distesty sum-
ming over many galaxy images. This means that the measgeal si
is an integral over selected sources with a broad redsistftillition

10 In the Dilaton models, this is understood as the Einsteimé& metric
while in the f(R) models this is the Jordan-frame metric, following the ap-
proach described i§2. In any case, we can work in either frame as the obser-
vational results do not depend on this computational choice

(© 0000 RAS, MNRASD0O, 000—-000
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Table 1. Parameters describing the modified gravity theories censitlin our study, mapped on thg(a), m(a)} surface, parameterized withno, r, 5o, s}
following equation (7). The first five rows correspond to eliéint realizations of the generalized Dilaton theories [Bst two rows showf(R) theories with
n = 1 and2 respectively, in whichng is given by equation (24), while = 3(n + 2)/2, 8o = 1/+/6 ands = 0.

| Model | mgo(h/Mpc) | r | Bo | s |

(AL, A2, A3) (0.334,0.334,0.334) | (L0,1.0,1.0) (0.5,0.5,0.5) (0.6,0.24,0.12)
(B1, B3, B4) (0.334,0.334,0.334) | (1.0,1.0,1.0) (0.25,0.75, 1.0) (0.24, 0.24, 0.24)
(C1,C3,Ca) (0.334,0.334,0.334) | (1.33,0.67,0.4) (0.5,0.5,0.5) (0.24,0.24, 0.24)
(D1, D3, D4) (0.667,0.167,0.111) | (1.0, 1.0, 1.0) (0.5,0.5,0.5) (0.06, 0.96, 2.16)
(EL E3, E4) (0.667,0.167,0.111) | (1.0,1.0,1.0) (0.5,0.5,0.5) (0.24,0.24, 0.24)

n=1,log,0 |fry| = (4,5, -6) | (0.042,0.132,0.417) | (4.5,4.5,45) | (0.408,0.408,0.408) (0,0,0)

n = 2,100 | fry| = (-4 -5, -6) | (0.034,0.108,0.340) | (6.0,6.0,6.0) | (0.408,0.408,0.408) (0,0,0)

n(zs)dzs (mapped ton(y)dx in terms of the radial distance, given
the Jacobianlx/dz) that we normalize to unity. Thus, introducing
the kernelg() that defines the radial depth of the survey:

o) = / h dan(e) X=X, (30)

the integrated convergence field at a positloon the sky reads as:

K(0) = [ g0V (1), (31)
0
We assumed a flat background universe in the above equatidn, a
introduced the weak lensing potential, defined by
le = @ * \Ij>
2
which is a convenient when computing weak lensing modificegiio
GR. Solving equation (31) in multipole space and taking theeen-
ble average of the squared complex norm, we obtain the cgenee
power spectrum:

oo 2
C;:/ ng(i(;)
0

(32

%P@Wl (¢/x:7) (33)

C
as an integral over the weak lensing power specti@m, (k; z).
Note that the above also assumes both Limber and Born approxi
mations. From this, we also derive predictions for the casshiear
two-point correlation functiong (#), computed as:
1

s (34)

£4(0) / Cy Josa(€0) £ de

whereJ,,,(x) are Bessel functions of the first kind.

3.1.2 (Y} in General Relativity

In the ACDM cosmology + GR case, we can exactly express the
weak lensing convergence power spectrum (33) in terms dbtiaé
matter power spectrun?(k) via Poisson equation. Indeed, we can

safely neglect the anisotropic stress, and General Rigjagjives:
Dy =P =T = Py, (35)

where Uy is the Newtonian potential given by Poisson equation
(equation 20). Therefore, we recover

L (3moHEN?
Pq»wl(k,z)—( S0k P(k; z), (36)
and the convergence power spectrum (33) becomes:
Ci = [ W60 (), (37)
0
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with
_ 3QumoH3
- 2c?

W(x) g(x) (1 + 2). (38)

3.1.3 C} intheories of modified gravity

For the Dilaton models, we have seen in equation (19) arf?ih
that the two Einstein-frame metric potentials are equahéoNewto-
nian potential up to ordet0~% accuracy, and that background cos-
mological quantities such as the Hubble expansion ratelendatlial
comoving distances are equal to those ofAl@&DM reference within
that same accuracy. This means that equations (35)-(36) appn
GR, and that”[ is again given by equations (37)-(38). Therefore, in
terms of this weak lensing statistics, the modification @fvifly and
the departures from th&CDM+GR results only appear through the
modified matter density power specfPdk; z), which we describe in
§3.2.3.

In the case off (R) models, we have seen in equation (28) that
the two Jordan-frame potentials are different from the Newen po-
tentials, receiving contributions from terms linearifiz. However,
these two extra terms exactly cancel in the weak lensingngiate
(equation 32) such thab,, Wy. Therefore, we recover equa-
tions (36)-(38) inf (R) models too. Moreover, we have seen that both
the Jordan-frame and Einstein-frame background quasttieequal
to the referencé\CDM background quantities up to an accuracy of
10™* for | fr,| < 107*. This means that weak lensing statistics can
again be computed in the reference background cosmolodgngo
as the modified matter density power spectrum is used.

3.2 Non-linear matter power spectrum

The choice of non-linear power spectrum to insert in equafRY)
depends on the cosmology under investigation. In this payeare
interested in constraining modified gravity models, butwéspect

to a ACDM baseline, these are strongly degenerate with universes
that include baryon feedbacks and/or massive neutrinabelicon-

text of cosmic shear, these phenomenas are thereforesiotily
connected and must be jointly analysed. We detail in thigi@ec
how we combine all these effects in the construction of oeothti-

cal predictions.

3.2.1 Dark matter only

The first choice we make concerns the dark matter m&t8Y (k),
which is a delicate issue that has been thoroughly investiiga
HWVH in a very similar context. Following this work, we chaos
the dark matter only model that best reproduces the reguwlts &
number of N-body simulations, then implement the combined effect
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of modified gravity, baryon feedback and massive neutrietative

to this dark matter only baseline. Our dark matter only iai is

a hybrid model that combines the Extended Cosmic Emulateit{H
mann et al. 2013) with the recalibratelALOFIT code by Takahashi
et al. (2012). Its convergence properties have been wethime in
HWVH, and it was shown to have the best agreement with indepen
dent high-resolution simulation suites, compared witteotnodels.

In addition, HWVH examined the scatter across multiple n&ydend
estimated the theoretical uncertainty on the global daritenanly
prediction foré.. In this paper, we also incorporate this model un-
certainty in the analysis pipeline, at the level of the calculation
(see§4.1).

3.2.2 Neutrino and baryon feedback

Following HWVH, we model the impact of massive neutrinos and
baryon feedback on the matter power spectrum as separateseff
that can be expressed with multiplicative feedback terrasyaly:

pOMFEbm) oy — PPM (K 2) x b3y, (K, 2) x b2 (k, ). (39)

The underlying assumption is that both biases are indep¢nahich
is reasonable since baryons were found to have a one pefftecit e
on the neutrinos bias fér < 8hMpc~! (Bird et al. 2012).

We compute theneutrino feedback biaserm b?\/,u with the
CAMB cosmological code (Lewis et al. 2000), which is reported
to be accurate to better than 10 percenkat 10hMpc~! (Bird
et al. 2012). We assume one massive neutrino flavour, anddix th
cosmology at high redshift — i.e. we keep the primordial amgé
A, fixed but letos vary. We justify this choice from the fact that the
former quantity is measured very accurately by CMB obsé@mat
whereas our estimation of the latter quantity is much lessirate
due to galactic and cluster bias. We construct the neutiiz®ds
Poans (k. 2)

PDM

b?uu (k,2) = ,
Cans (K, 2)

(40)
where theM, (= 0.0, 0.2, 0.4, or 0.6 eV) superscript specifies the
total neutrino mass considered, and the subsc@pivB’ specifies
that both quantities are measured from this cosmologicaienical
code.

Thebaryonic feedback bias estimated from two hydrodynam-
ical simulations ran in the context of the OverWhelminglyrge
(OWL) Simulation Project (Schaye et al. 2010). The dark eraihly
run (DM-ONLY) is a purely collision-lessV-body calculation and
acts as the baseline for this baryon feedback measuremignioe
AGN simulation run contains gas dynamics with physical pries
tions for cooling, heating, star formation and evolutiomemical en-
richment, supernovae feedback and active galactic nuetsidfack
(see van Daalen et al. 2011, for details about these siroo&tiFol-
lowing van Daalen et al. (2011); Semboloni et al. (2011), veasure
the baryonic feedback bias by taking the ratio between thil AGd
the DM-ONLY models’:

DM+b(m
PO "™ (k, 2)
P(I))\l,\éL(k,z) ’

where the index(m) refers to either DM-ONLY or AGN, and the
subscript ‘OWL’ specifies that these quantities were messspecif-
ically from the OWL simulation suite.

Fig. 1 shows the impact of different combinations of baryons
and massive neutrinos on the matter power spectrum. Figd2Zan

bin (K, 2) = (41)

11 The power spectrum measurements from the OWL simulaticie sue
publicly available athttp://vd11.strw.leidenuniv.nl

‘—1 ’ 0 161

k[h/Mpc]
Figure 1. Combined effect from baryon feedback and massive neutonos
the matter power spectrui(k), evaluated at = 1. Results are shown with
respect to the dark matter only non-linear predictioncktisiolid line). From
top to bottom, the (blue) dashed lines represent the effenassive neutrinos
with M, = 0.2, 0.4 and 0.6eV respectively. The combinations of massive
neutrinos with baryon feedback are shown with the thin (sedig lines.

11

0.3

10*

Figure 2. Combined effect from baryon feedback and massive neutdnos
the weak lensing power spectrum, assuming the source fedstribution
given by equation (45) and the baselWdMAP3 cosmology. As for Fig. 1,
results of different combinations are shown with respedhedark matter
only non-linear predictions (thick solid line), and the safmeutrino masses
shown are, from top to bottond/,, = 0.2, 0.4 and0.6eV.

/e

AGN -0.5
- = -Mv

—— AGN+Mv

M, =0.2,0.4,0.6eV

0

o 1 1 2

10 10

flarcmin]

10 10 10
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10

Figure 3. (left:) Combined effect from baryon feedback and massiugrire
nos on the weak lensing two-point correlation functfan The open symbols
represent our measurements from CFHTLenS data, shown wighrdr bars.
(right:) Same as the left panel, but for the estimator. We used the same
axis range for both panels to emphasize on the differencessithe models,
hence the leftmost point falls outside the frameg.ay¢PM=-3.8.
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show the equivalent effects on the weak lensing power specti;
and on the shear two-point correlation function(6), respectively.
We can see from the three figures that all models converge te DM
ONLY at large scales (lovk, low ¢ and highf), and that the com-
bined effect can suppress more than 50% of the power, demgndi
on the models and neutrino mass. Also, it becomes clearuhagys
probing small patches (restricted £o> 500 for example) would
have difficulties to distinguish between the two feedbaaicpsses.
This degeneracy can only be broken with the inclusion of fodve
multipoles, where baryon feedback is minimal but massiveriveos
still leaves a signature (Natarajan et al. 2014).

3.2.3 Combined feedback with modified gravity

The evolution of perturbations in the context of large-ecdtuctures
has been carefully studied ji{ R) and scalar-tensors theories gravity
(Zhang 2006; Koivisto 2006; Bean et al. 2007; Song, Hu & Shivic
2007; Hu & Sawicki 2007; Song, Peiris, Hu 2007; Pogosian & Sil
vestri 2008; Carloni, Dunsby & Troisi 2008; Koyama, Taruyai&
ramatsu 2009; Motohashi, Starobinsky & Yokoyama 2009; Li & H
2011; Brax et al. 2011; Li, Zhao & Koyama 2012; Linares & Mota
2013; Taddei, Catena & Pietroni 2013; Brax & Valageas 208).
this paper, we focus on the matter density power specifk) z),

or more precisely, on the weak lensing convergence powetrspe
C7’, which can be computed frofi(k; z) through the modified Pois-
son equations that relate the metric gravitational paaéntio the
matter density fluctuations.

Therefore, before computing weak lensing statistics, wat fir
need to describe gravitational clustering and the 3D matésr-
sity power spectrum for all cosmological scenarios that nwesti-
gate. We use the approach first developed in Valageas, Nigdhig
Taruya (2013) for the\CDM cosmology, generalized afterwards to
various modified-gravity scenarios in Brax & Valageas (2(1(BL4).
This is an analytical approach that combines perturbatieorty up
to one-loop order (i.e., up to ordét?, where Py, is the linear mat-
ter density power spectrum) with a phenomenological haldeho
Namely, we are splitting the matter power spectrum as:

P(k) = P (k) + Piu(k),

where P> (k) is the ‘two-halo’ term associated with pairs of parti-
cles that are enclosed in two different halos, whereas(k) is the
‘one-halo’ term associated with pairs enclosed in the saaie fThis
construction allows us to obtain predictions for the naowedr mat-
ter power spectrum covering the linear, quasi-linear agtljinon-
linear scales. We refer the reader to the work cited aboveofoiplete
details and validations of equation (42), but neverthepgeside an
overview of the method in the Appendix for quick reference. Wate
that other prescriptions exists for modellif§k) in modified gravity
scenarios, i.e. Zhao (2014) for thf€ R) model. However the mod-
elling we adopt here applies also fgR) with n # 1 gravity, to
Dilaton gravity, and in fact to any modified gravity model exgsed
in the tomographic parameterization, which makes it gdrzara ac-
curate at the same time.

In analogy with equations (40) and (41), we definertreified
gravity bias

(42)

Pyt (k, 2)
PRk, 2)
whereMG («) refers to the gravity model, with= 0 corresponding
to GR,a=[1, 2, 3, ...,15] specifying dilation models [Al, A2, A3,
..., E4], o= [16, 17, 18] specifyingf (R) models withn = 1 and
|fro] = 1074, 107°, 107°, and finally o= [19, 20, 21] thef(R)
models withn = 2 and the saméfr, | values. The subscript ‘VNT’

bi{G(a) (k7 Z) = (43)

(© 0000 RAS, MNRASDOOQ, 000—-000

Testing Modified Gravity with Cosmic Shear7

indicates quantities that are computed in the frameworkadddeas,
Nishimichi & Taruya (2013), i.e. with equation (42).

Bringing all the pieces together, we construct the mattergoo
spectrum for any combination of baryon feedback, neutriassvand
modified gravity by multiplying the DM-ONLY model by the cex
sponding biases:

PDIVI+1/+b(m)+MG _ PDIVI

X bify X b12n X bi/IG(a)' (44)

We have removed the dependences on scale and redshift for eac
of these terms to clarify the notation. This modelling asssirthat
the effect of modified gravity on the baryon and neutrino beedks
can be neglected, allowing for the convenient factorizaticesented
in equation (44). This seems to be a valid approximation fones
models, as it was shown in Hammami et al. (2015) that the neatifi
gravity bias measured in dark matter only matched to bétter 5%
the same measurement done in full hydrodynamical simuig{itor
f(R) models withn. = 1 and|fg,| € [10~* — 10~°]. However,
the same group also observed larger deviations in many sjnmme
models, up to 20% by = 10hMpc~! in some cases. This places a
limit on the accuracy of equation (44), and calls for morerbyg-
namical simulation runs whetg, andby (o) are merged into one
term, by, ma(a), Measured for each combination {af, m}. This is
unfortunately not available at the moment, hence equadiéhié cur-
rently our best shot at this joint measurement. On the nmeugtctor,
results by Baldi (2014) are further encouraging: they lab&ejoint
simulations of modified gravity and massive neutrinos andec¢o
the conclusion that one could consider the effect of eaclosilin-
dependently, supporting the validity of equation (44).

For each combination, we compute predictions for the weak
lensing quantity with equations (37) and (34). We report@sults
on P(k) andCy in Fig. 4 and 5 respectively. Whereas modified grav-
ity is generally boosting the clustering compared ta@DM uni-
verse, the inclusion of massive neutrinos and/or baryoeédihack
is working in the opposite direction. It becomes clear thptecise
distinction between these three feedback contributiosepa chal-
lenge to clustering and weak lensing experiments.

3.3 Data

Our measurement of the shear correlation functignss based on
the public release of the Canada France Hawaii Telescopsirigen
Survey (CFHTLen®). The CFHTLenS covers a total area of 154
ded’, which is reduced to 128 dé@fter masking bright stars, fore-
ground moving objects and faulty CCD rows. Full details dkibe
data reduction pipeline are provided in Erben et al. (2088urce
redshifts are obtained from the five bandgriz photometric obser-
vations (Hildebrandt et al. 2012) and were carefully testeBen-
jamin et al. (2013); shape measurements are performed on-the
band images with theendit Bayesian code described in Miller et al.
(2013). A detailed assessment of the residual systematmevided

in Heymans et al. (2012), and we refer the reader to theseerafes
for more information on the CFHTLenS data.

As described in Heymans et al. (2012), the public shear data
must be recalibrated with additive and multiplicative @st com-
monly referred to as theandm corrections. In contrast with this ref-
erence, we use a differeatorrection, as detailed in HWVH, which
is less model dependent. Although the overall change ondhre@
tion is marginal, the number of CFHTLenS pointings that aagdked
asbadis reduced by almost a half.

Following the recommendations of Heymans et al. (2012) and

12 CFHTLenSwww.cfhtlens.org
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Figure 4. Combined effect from baryon feedback and massive neutonos
the matter power spectruii(k) assuming different modified gravity models,
again evaluated at = 1. Results are shown with respect to the dark matter
only non-linear predictions (thick horizontal solid linéjrom top to bottom
atk = 0.2hMpc, the solid lines represent Dilaton models B4, A3, E3, bd a
C1 respectively. The thick red dashed lines correspontl £) gravity with

n = 1. Top to bottom are foffg,| = 10=%, 107> and 10~ respectively.
We do not show the: = 2 results to avoid over-crowding the figure, but
they are qualitatively similar in shape to the= 1 case, albeit with a smaller
departure from\CDM. Different panels show different combinations of mas-
sive neutrinos and baryon feedback on these same modatspgtiuted with
equation (44).
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Figure 5. Same as Fig. 4, but for the weak lensing power spectrum.

Benjamin et al. (2013), we minimize the systematic contatiom
from badly reconstructed photometric redshifts by apmtime se-
lection cut0.4 < zpnot < 1.3. We construct the redshift distribu-
tion n(z) for the selected galaxies from thendit-weighted stacked
probability distribution functions of the galaxy samples shown in
HWMH, the distribution is well described by the followingalytical
expression:

n(z) = Noe—(z—zo)Q/Ug +Nle—(z—21)2/0f
NQe*(Z*ZZ)Z/Jg
1.0 + e—10-0(=—0.6)’

where (No,Zo,Uo,Nl,Zl,O'l,NQ,ZQ,O'Q) = (0.14438, 0.760574,

(45)

0.14594, 0.514894, 0.498379, 0.15608, 1.74435, 0.445019,
0.684098). There is 8.4 percent difference in the mean redshift
between the fit and the distribution, which yields a smalberr
well below the other sources of error in our analysis. Wedfwee
neglected this contribution to the systematic budget.

We construct our shear correlation function estimatoofeihg
Kilbinger et al. (2013):

224, wiwj [er(0:)es(05) & er(0i)er(6;)]
Zi,j Wi W;
All galaxy pairs(i, j) separated with angular distanige — ;| € 6
contribute to the same bin, with their contribution weightey the
product of theidendit weightsw;w; (Miller et al. 2013). The shear
guantitiese; ande, are the tangential and cross-component of the
galaxy ellipticity, measured in the coordinate system ef gialaxy
pair. We account for the shear calibration by measuring

2o, wiws (1 +ma)(1+my)
D Wiw;

and dividing¢+ by 1 + K. As a rule of thumbK is ~ —0.11 at all

angular scales, with variations smaller than 0.1%. We firettlude

all pairs withé < 12 arcseconds in order to minimize contamina-

tion by post stamp leakage acrdeadit templates. We perform this
measurement witATHENA '3, and show our results in Fig. 3.

§+(0) =

. (46)

1+ K(0) = (47)

3.4 Simulations

In order to achieve a high precision cosmic shear measurtemen
only must the data be thoroughly tested for subtle systesatisid-
uals, but the sampling variance must be accurately estimatguan-
tity that is very hard to assess from the data. To overcongedift
ficulty, we rely on a suite of weak lensing simulations based o
WMAR + SN + BAO cosmology. As detailed in Harnois-Déraps &
van Waerbeke (2015), the SLICS-LE suite consist8io$qg. degrees
light cones extracted from 500 independaibody realizations. The
numerical weak lensing signal is precise to better than t€epe for

&4 with 0 > 0.4’ (and@ > 5’ for £_). We construct the mock maps
by combining the different redshift planes with a redshiftice dis-
tribution that mimics that of the data. We then sample theukited
shear maps with0® points randomly located, and compute the shear
two-point correlation functiong. of these mock ‘galaxies’ with the
same pipeline as the data (i.e. from equation 46).

4 RESULTS

In this Section, we first review our error budget, we then dbethow
different components combine in our model rejection procedand
finally present our results.

4.1 Error budget

This analysis closely follows that of HWVH; we summarizeétre
main ingredients, and refer the reader to the reference €we rde-
tails. The sources of error in this analysis can be brokem timtee
terms: 1- uncertainty on the cosmic shear measurement, c&run
tainty in the theoretical model describing the non-linezgime of
structure formation, and 3- uncertainty on the fiducial colsgy.
1- The error on our cosmic shear measurement is dominated

by shape noise at small angles and sampling variance atdages.

13 ATHENA: http://cosmostat.org/athena.html
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Figure 6. Same as Fig. 4, but f@. The open symbols represent our mea-
surements from the CFHTLenS data, exactly as in the righelpafinFig. 3.
Shown are the & error bars.
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Figure 7. Same as Fig. 6, but f@r_ . Note the differeny-axis range compared
to Fig. 6.

The angular scales at which these two errors contributellgaqpeur
atd = 2 and30 arc minutes fog, and{_, respectively. In addition,
the variance-shape noise mixed term contributes to abcuitchdf
the error or¢;. at large angles, but is negligible §n , as seen in Kil-
binger et al. (2013). We have estimated the sampling vagifimen
the SLICS-LE weak lensing simulations, and added an exin&ieo
bution from thehalo sampling variancefollowing the modelling of
Sato et al. (2009), which provides at most a 10 percent diorec
on the overall error. Our measurement is minimally affedigdn-
trinsic alignment of galaxies, since we do not perform torapgic
analysis (see Heymans et al. 2013, for more details on gitralign-
ments in the CFHTLenS data). The error from shape reconitruc
is already included in the statistical term, hence does emuire an
extra term. Photometric redshift uncertainty enters thasueement
through modification of the source distributiaiiz), but this effect
is negligible compared with other sources of error henceotsim
cluded.

2- The uncertainty on the dark matter only non-linear modsl h
been carefully assessed in HWVH by comparing five differeat p
dictions: HALOFIT2012,HALOFIT2011 + small scale empirical re-
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calibration, Cosmic Emulator + power law graft, Cosmic Eatoi +
HALOFIT2012 graft and, finally, the mean over five independent high
resolution simulations — the SLICS-HR suite described imnidis-
Déraps & van Waerbeke (2015). These five models agree vdty we
over most angular scales, and the scatter among them is taken as
the @-dependent) theoretical error.

3- The uncertainty in the cosmological parameters is sehéy t
WMARP precision (Hinshaw et al. 2013), whose dominant contribu-
tion on the weak lensing uncertainty arises via the paras€ler
and A;. With the inclusion of the BAO and SN external data, these
two parameters are allowed a 3.4 and 3.3 percent variatiootab
their mean values @). Since the amplitude af+ roughly scales as
(AsQar)?, we expect the combined error to be of the order 5 percent
of the ACDM baseline signal, assuming no prior on the joint contour.

Note that the cosmological error and the modelling erranfte
2 and 3) enter in our analysis as systematic uncertaintiesefiore
we add them in quadrature and marginalize over them (seésdeta
§4.2). Also note that the Planck cosmolog$2,:, As} falls within
our 3o search limits, although closer to the edge of the search.zone

4.2 Model rejection strategy

As seen in Fig. 6 and 7, the effects of baryons, massive mestri
and modified gravity are significantly degeneratecgn Given the
noise levels in the current data and the number of interrmalpeters
that describe these different mechanisms, performinglafGMC
analysis is not convenient to extract meaningful constsaih more
appropriate and direct way is to sample a finite set of modelto
nations and examine their agreement with the data. Thislpasase
strategy has the potential to reject models that are instargiwith
the data, which can then be translated into constraints ®@nrhder-
lying free parameters.

The metric we adopt for this type of analysis is thealue,
which measures the probability that the data is consistéfit tive
model,if the model is truelt is given by the integral over thg?
probability density function, where the lower bound is theasured
x? and the upper bound is infinity. As a rule of thumb, models with
p-values< 10% are rejected with more than 90% confidence, and
1o, 20, 30... rejection measurements are obtained pevalues of
0.317, 0.046, 0.003.... Our strategy therefore consistseasure the
x? and p-value associated with each combination of baryon feed-
back, neutrino mass and modified gravity model, and to flagyeve
combination withp < 0.1 as being disfavoured.

The uncertainty arising from statistical and sampling atace
naturally enters this calculation through the evaluatidrine x?,
which involves the inversion of the cosmic shear covariamegrix.
The systematic uncertainty, however, is trickier to cagtlr our cos-
mic shear measurement, it mainly manifests itself as shiftse am-
plitude of the signal, as described §4.1. The systematic error is
higher at smaller angles and represents at most an errorddt on
the&+ model amplitude. In order to marginalize over this effeat, f
each model, we allow the theoretical signal to shift up andrdby
30syst, cOrresponding to vertical excursion 2f% in Fig. 6 and 7,
keeping the error bars (statistical + sampling) fixed. Wen tbem-
pute an array op-values in this excursion range, and record only the
largest measurement (i.e. the least restrictive).

The exact number of degrees of freedairo(f) that enters the
x? distribution function must be carefully chosen. To begirihyi
each of the two cosmic shear observables is organized indulan
bins, yielding a maximum of 28.0.f. However, assigning one.o.f.
per angular bin would be incorrect, for the following readora sta-
tistical sense, our model rejection method is completelyivedent
to fitting the parameter combinatigr2Q;*) from the amplitude of
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the& signals, followed by an extraction of the most likely nemuri
mass for each baryon feedback and modified gravity model fhem
largestp-value. This implies that the number of degrees of freedom
should be reduced by two (one for fittisf Q1 one for fitting A7,
in the conversion betweeg® andp-values.

Note that for a given angular scale, bgthand¢_ probe differ-
ent physical scales, the latter focusing on structurestdi@utimes
smaller. It is therefore relevant to examine the constngirpower
of &4 first, and to add _ to the data vector as a second step. When
both are combined, the full data covariance matrix invothescross-
correlation region, as described in HWVH. The resulfirgalues are
summarized for all our results in Table 2, fbf, < 0.2 eV. No con-
clusions can be drawn from models with higher total neutniasses,
as thep-values for any combination is always greater than 0.178. Th
models rejected at more thar4o (i.e. 90% CI) are highlighted in
bold font.

4.3 Discussion

One of the main results recovered from Table 2 is that thR)
model with{| fr,|,n} = {107*,1} is strongly disfavoured by the
cosmic shear data, regardless of the baryonic feedback| miosiem
of neutrino mass, consistent with independent constralifis f ()
and f(R) + AGN models are rejected by at least, but combina-
tions including massive (0.2eV) neutrinos tend to weakés ¢hn-
straints. This can be understood by the fact that massivinesi
and modified gravity partly compensate for one another,diedithe
global departure froMCDM. Also, f (R, n=2) models are generally
in better agreement with the data compared to the#l) counter-
part. This is so simply because higher valuesiahpidly suppress
the f(R) term, hence deviations from GR, as seen in equation (22).

The next important result is that the rejection of massless n
trinos + DM-ONLY is robust against all modified gravity mosdel
we have tested, and typically made stronger. The cosmia sla¢a
clearly prefers lower values @f. at small angular scales, and modi-
fied gravity pulls the other way.

The inclusion of baryon feedback reduces to about two thirds
the number of models rejected with 90% CI. For instance fidita
models A2, A3, B3, B4, C1, C3, D1, E3 and E4 are disfavoured;
these are the most discrepant with GR3DM. Referring to Table 1
and the model descriptions §2.1, this can be interpreted as follow.
In a tomographic parameterization of modified gravity ceeton
{mo,r, Bo,s} = {0.334,1.0,0.5,0.24}, excursion in thes, 5, and
r directions are studied with models A, B and C respectivaiy a
the data favours lower parameters values. Model E explbeest
direction, and the data prefers higher values. Model D erglthe
diagonal direction in thém,, s} plane at fixedA, (see equation 8),
where here we observe instead that the data prefers layealues.

We note that there is a mild effect seen in the ‘AGN’ column of
Table 2, where the addition @f to the data vector sometimes in-
creases the-value by a small amount. This can be attributed to the
fact that at small angles,— prefers amplitude even lower than,,
compared to the DM-ONLY model. Adding baryon feedback there
fore produces a lower rejection rate in the former than inlaltier
guantity.

When neutrino masses are allowed to reach 0.2eV, only the

F(R){107%,1}, f(R){107*,2} and the Dilaton B4 and E4 models
remain in tension with the data. With AGN A4,,=0.2eV, no mod-
els are rejected, aside from the most extreme case condithetieis
paper:f(R){107*,1}.

This means that given the current cosmic shear data andlevel
of systematics, it is possible to accommodate most modslgra
as either massive neutrinos or strong baryon feedback misths

counter-balance the effect of the fifth force on the mattestelring.
As upcoming independent cosmological probes will tightes un-
certainty on neutrino masses and significantly improve tatssical
and sampling errors, we expect the next generation of sualysis
to be much more constraining. Once at this stage, it will ls¢rire-
tive to propagate our measurements ofio(a), 3(a)} contours and
provide a Fisher matrix for joint probes analyses. If, fatance, the
total mass turns out to be much smaller than 0.2eV, then threrdu
AGN column should gives a very good approximation of theatapa
power from the CFHTLenS cosmic shear data. Precise modedfin
the baryon feedback is likely to take more time to reach, dutae
higher level of complexity intrinsic to these astrophysichenom-
ena. Intermediate solutions will involve a series of tunegarame-
ters, also to be constrained.

On a separate note, we stress that the constraints can be fur-
ther tightened using additional information about the wieaising
observables, such as the non-Gaussian features (MunshiVaer-
beke, Smidt & Coles 2012), or by combining the results wittemal
probes such as redshift distortions, peculiar velocity, et

5 CONCLUSION

Cosmic shear is a promising tool for probing deviations frGiR,
since these are maximal at scales of a few Mpc, where thengnsi
signal-to-noise ratio is the highest. These same scalesayehal-
lenging to probe with other types of large scale structuseolables,
mainly because of the galaxy bias that is largely unknownth&t
same time, this complimentarity offers a number of oppaties for
strong constraints based on joint data sets.

One of the main challenge in working with these non-linear
scales is the large theoretical uncertainties due to theawk neu-
trino masses, the precise baryonic feedback mechanismsaiad
lesser extend, inaccuracies in the clustering of dark mattvever,

a lot of effort is invested in all these areas, such that ibbees pos-
sible to place joint constraints on these degenerate pdiyefiects.

This paper presents the first constraints on modified gratty
tained from cosmic shear measurements alone; the restilieaved
by studying the impact of modified gravity on matter clustgrand
comparing the predictions with the public CFHTLenS dataniting
the background\CDM cosmology to théo range in{ A, Qs } al-
lowed by WMAR + SN + BAO, we compared thg. data against
predictions includingf (R) and Dilaton models in a number of pa-
rameter configurations. We carried a model rejection arslgs-
counting for possible degeneracies with massive neutandsbary-
onic feedback mechanisms, and investigated which combirgabf
models were mostly disfavoured by the data. As summarizédbie
2, the f(R) model with|fr,| = 10™* is strongly disfavoured even
in the presence of realistic levels of baryonic feedback raadsive
neutrinos reaching/,=0.2eV. A universe with no baryonic feed-
back and massless neutrinos is also rejected @4ttor above in
most modified gravity scenarios. We are not yet able to ifieati
preferred model with the current level of statistical aeoyr but we
expect future weak lensing experiments to improve signifigan
this direction.

In our analyses, we have use the simplifying assumption that
the biases due to massive neutrinos, baryon feedback anifiedod
gravity were uncorrelated, which is justified to some extbaded
on the several numerical results. However, precise caivawill
need to be studied for a number of models, a task that invelvitas
of large cosmological hydrodynamical simulations inchgiall the
ingredients at once.

One important future tasks will be to map observational dete
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Table 2. Distribution of p-values for different combination of baryon feedback medekutrino masses and gravity models (see main text foilgjetdhe
parameters listed in the leftmost column of theR) models are{n, | fr, |}. Dilaton models are described in Table 1. For this calautgtive fit all data in the
range0.2 < 6 < 167 arcminutes. Specifically, each entry in this Table reprisstte largesp-value probed inside 3oyt region about the mean of the model.
Values in bold face highlight the model combinations thatercluded by the data with more thaut4o significance g-value< 0.1, equivalent to a confidence
interval (Cl) of 90%). Models with\/,, > 0.2 eV are not listed, as none has value lower than 0.176.

DM-ONLY AGN 0.2eV AGN+0.2eV
Model S+ &6 | & &4& | &y &4E- | & &4E-
General Relativity
ACDM [ 0.132 0.065] 0119 0.150] 0.331  0.297] 0.289  0.444
Generalized Dilaton

Al 0.126 0.058 | 0.116 0.141] 0.323 0.282] 0.284 0.431
A2 0.088 0.030| 0.093 0.099| 0.269 0.203| 0.256  0.363
A3 0.037 0.008| 0.060 0.051| 0.184 0.105| 0.207  0.265
B1 0.120 0.054 | 0.113 0.135| 0.315 0.273| 0.281  0.424
B3 0.043 0.010| 0.064 0.054| 0.195 0.113| 0.212 0.272
B4 0.008 0.001| 0.032 0.019| 0.107 0.037 | 0.150 0.161
C1 0.080 0.022| 0.100 0.098 | 0259 0.171| 0.271  0.365
C3 0.104 0.040 | 0.098 0.111 | 0.293 0.239| 0.261  0.385
c4 0.114 0.049 | 0.104 0.122| 0.307 0.259| 0.267  0.402
D1 0.063 0.013| 0.100 0.085 | 0.232 0.132| 0.276  0.347
D3 0.127 0.060 | 0.115 0.141| 0.325 0.286| 0.282  0.431
D4 0.131 0.064 | 0.119 0.149| 0.331 0.295| 0.288  0.441
El 0.118 0.049 | 0.117 0.135| 0.314 0.260| 0.289  0.425
E3 0.047 0.013| 0.053 0.049| 0.200 0.132| 0.186  0.257
E4 0.026  0.007| 0.032 0.027| 0.156 0.094 | 0.138  0.188
f(R)
{1,107*} | 0.001 0.000| 0.005 0.003| 0.051 0.018| 0.054 0.057
{1,107°} | 0.058 0.013| 0.072 0.062| 0.222 0.134| 0.222  0.292
{1,1076} | 0.129 0.054 | 0.125 0.145| 0.328  0.271| 0.298  0.437
{2,107*} | 0.011 0.003| 0.020 0.014| 0.112 0.056 | 0.104 0.131
{2,107°} | 0.095 0.030| 0.094 0.097| 0.277 0.200| 0.254 0.354
{2,107} | 0.137 0.063 | 0.126  0.154| 0.338  0.292| 0.299  0.449

tions of modifications to GR onto parameter constraints scthe
{m(a),B(a)} pair. However, the current data is not quite there yet.
Several theories can accommodate similar phenomenoladfeats,
and model-independent parameterizations such as tharpeesin
Leonard, Baker & Ferreira (2015) might prove helpful forsthi

This paper used the impact of modified gravity on the clusteri
properties of matter and their propagation onto the weasitgncos-
mic shear signal. Other avenues of probing deviations frédn@h
weak lensing data are complimentary, including direct coatiions
with baryonic probes or tomographic decomposition, andtfivek-
ploring in the near future.
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APPENDIX: Details on the Theoretical Modelling of P(k) in
Modified Gravity Scenarios

This Appendix discusses the construction strategy of thitemaen-
sity power spectrun® (k; z) in the presence of (R) or Dilaton mod-
ifications to General Relativity; full details are providedthe refer-
ences contained herein.

1 Two-halo term: Pou (k)

The power spectrum analytical prediction is constructechfa halo
model approach, following equation (42). The two-halo tewrhich
dominates on large scales, is computed from a Lagrangiacese-
summation of standard perturbation theory that is exacoupder
P? and contains partial resummations of higher order termis It
also supplemented with non-perturbative contributioms take into

(© 0000 RAS, MNRASD00, 000—-000



account some aspects of shell crossing and ensure thatradi@a
pairs are counted only once in the sum. Within this framewtr&
large-scale ternip (k) essentially contains no free parameter. It can
therefore be computed inCDM and modified-gravity scenarios by
using perturbation theory up to ordé& (which requires going to
orders? in terms of the density field itself).

In the case of theACDM cosmology, this perturbative ex-
pansion follows the standard approach (Bernardeau, Coldbaz-
tanaga & Scoccimarro 2002), where the density and veloatgdi
are written as perturbative expansions over powers of tieatiden-
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an accuracy 02% up to comoving wavenumbér ~ 0.9AMpc™?,

and15% up tok = 15hMpc~! down toz = 0.35. In terms of the
real-space correlation function, this translates intoaueacy of5%
down to the comoving scale = 0.15h~*Mpc. For thef(R) theo-
ries, it is able to reproduce very well the deviations from ACDM
scenarios up t& = 3hMpc ! (the highest wave number available
from the simulations) at = 0, for | fr,| = 107*,107°, and10~°.

In particular, it accurately captures the relative effecttioe power
compared to thé\CDM reference due to the non-linear Chameleon
mechanism. For the Dilaton models, the agreement with theenu

sity field 61, ; subsequent orders are computed by substituting into the ical simulations depends somewhat on the model parameteis b

continuity and Euler-Poisson equations. In the case of thaified-
gravity scenarios considered in this paper, we follow theeap-
proach but require an additional expansion to write the fitioe in
terms of the non-linear density fluctuations. Indeed, u#iregquasi-
static approximation, we can relate the scalar fieltb the matter
density fieldp, typically through a non-linear Klein-Gordon equa-
tion. Then, we can solve fap as an expansion over the non-linear
density fluctuationg p. This allows us to obtain both the Newtonian
potential and the fifth-force potential as functionals & tion-linear
matter density fluctuations. However, while the Newtoniateptial

is given by the linear Poisson equation, the fifth-force poé is
usually given by a non-linear equation that involves newetiamd
scale dependences. In terms of the diagrammatic expansithe o
non-linear power spectrur?(k) over Pz (k), this implies that the
linear propagators and the vertices are modified with newrdras
associated with the new non-linearity of the modified Poissgua-
tion. See Brax & Valageas (2013) for more explanations.

2 One-halo term: Piu (k)

The one-halo term is obtained from the halo mass functiontaed
halo density profile, with the addition of a counter-termtfirgro-
duced in Valageas & Nishimichi (2011) that arises from masser-
vation. This also ensures th& (k) decays at lowk and becomes
subdominant as compared withy (k), whereas the usual formula-
tion gives a spurious white-noise tail that dominates ory Varge
scales. We take into account the impact of modified gravityiugh
its effect on the halo mass function (i.e., through the aredion or
slowing down of the spherical collapse), but neglect thediatpn the
halo shape and profile. This should be sufficient for our pseppbe-
cause we only consider cosmologies that remain close th @i2M
reference, and these modified gravity models have a muchggro
impact on the halo mass function, especially on its largestail,
than on the halo profile. As shown in Valageas (2013); at 0,

a 10% change to the mass-concentration relation only yiel@§ta
change ofP(k) at 1hMpc™', whereas al0% change to the halo
mass function yields 8% change ofP(k) at 0.35AMpc™' and a
7.5% change atthMpc™!. Generally, the concentration parameter
always remains in the range— 10 for typical halos and does not
vary by much more than0% for realistic scenarios, whereas the
mass function ab/ ~ 5 x 10**h~' My, can vary by more thaB0%
(Lombriser, Koyama, Zhao & Li 2012; Lombriser, Li, Koyama &
Zhao 2013). The interior of haloes are mostly affected bgesting
anyway, further justifying this approximation.

3 Comparison with numerical simulations

The modelling described above for the matter density powecs
trum has been checked in details against numerical siruaktin
Valageas, Nishimichi & Taruya (2013) f&«CDM cosmologies, and
in Brax & Valageas (2013) for the class of modified gravity mod
els that we consider in this paper. In the cas@d GDM, it provides

(© 0000 RAS, MNRASDOOQ, 000—-000

typically gives a good quantitative estimate of the dewiadi from
ACDM up tok = 5hMpc~" (the highest wave number available
from the simulations). When there is a noticeable depaftore the
simulations, it corresponds to an underestimation of thelification

of the power spectrum &t > 2hMpc~!, which may be due to our
neglect of the impact of modified gravity on the halo concatittin
parameter. Therefore, in such cases our approach provicessar-
vative estimate of the deviations froCDM. Again, this modelling
is able to capture the decrease of the deviations fromA@BM ref-
erence due to the non-linear Damour-Polyakov mechanism.
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We present exact kinematic consistency relations for cosmological structures that do not vanish at equal
times and can thus be measured in surveys. These rely on cross correlations between the density and
velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength
modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift
in the amplitude of the velocity field that could be measured. These consistency relations only rely on the
weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime
and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the

large-scale galaxy bias.

DOI: 10.1103/PhysRevLett.117.081301

Introduction.—Cosmological structures can be described
on large scales by perturbative methods while smaller
scales are described by phenomenological models or
studied with numerical simulations. This makes it difficult
to obtain accurate predictions on the full range of scales
probed by galaxy or weak lensing surveys. Moreover, if we
consider galaxy density fields, theoretical predictions
remain sensitive to the galaxy bias (galaxies do not exactly
follow the matter density field), which involves some
phenomenological modeling of star formation.

This makes exact analytical results that go beyond
low-order perturbation theory and apply to biased tracers
very rare. However, such exact results have recently been
obtained [1-9] in the form of “kinematic consistency
relations.” They relate the (£ + n)-density (or velocity
divergence) correlations, with ¢ large-scale wave numbers
and n small-scale wave numbers, to the n-point small-scale
correlation. These relations, obtained at the leading order
over the large-scale wave numbers, arise from the equiv-
alence principle. It ensures that small-scale structures
respond to a large-scale perturbation (which at leading
order corresponds to a constant gravitational force over the
extent of the small-sized object) by a uniform displacement.
Therefore, these relations express a kinematic effect that
vanishes for equal-time statistics, as a uniform displace-
ment has no impact on the statistical properties of the
density field observed at a given time.

In practice, it is difficult to measure different-time corre-
lations and it is useful to obtain relations that remain nonzero
atequal times. This is possible by going to the next order and
taking into account tidal effects, which at their leading order
are given by the response of small-scale structures to a
change of the background density. However, in order to
derive expressions that apply to our Universe one needs to
introduce some additional approximations [10-12].

0031-9007/16/117(8)/081301(5)
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In this Letter, we show that it is possible to derive exact
kinematic consistency relations that do not vanish at equal
times by considering cross correlations between the density
and velocity, or momentum, fields. Indeed, the uniform
displacement due to the long-wavelength mode also gives
rise to a shift in the amplitude of the velocity field that does
not vanish at equal times and can thus be observed. These
consistency relations have the same degree of validity as
the previously derived density (or velocity divergence)
relations and only rely on the weak equivalence principle
and Gaussian initial conditions.

Correlation and response functions.—The consistency
relations that apply to large-scale structures assume that the
system is fully defined by Gaussian initial conditions
(the primordial fluctuations that are found at the end of
the inflationary epoch). Thus, the dynamics is fully
determined by the Gaussian linear matter growing mode
810(x) (which we normalize today as usual) that directly
maps the initial conditions and can be observed on
very large linear scales. Then, any dependent quantities
{p1,---spu}> such as the dark matter or galaxy densities at
space-time positions (x;,;), are functionals of the field
810(x) and we can write the mixed correlation functions
over 8, and {p,;} as Gaussian averages,

CH"(x) = (80(X)p1---Pn)

:/D5L0€_5"°CZ‘1)5"°/25L0(X)Pl---Pn, (1)

where Cpo(X1,Xs) = (870(X1)810(X2)) is the two-point
correlation function of the Gaussian field d;. Integrating
by parts over 6, gives

Cl(x) = / IXCp(x. X)RM(K).  (2)

© 2016 American Physical Society
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where we introduced the mean response function

o) o

Equation (2) describes how the mixed correlation (1)
between the initial Gaussian field 6, and the dependent
quantities {p;} is related to the response function of the
latter to this Gaussian field. Going to Fourier space, which
we denote with a tilde, with the normalizations &;4(x) =
[ dke™*60(k) and (5.0(k)S10(ka)) = Pro(ki)dp(ki+
k,), Eq. (2) gives

C"(k) = Pro(k)R"" (k) (4)

where we defined the Fourier-space correlation and
response functions as

(k) = <SLo(k)/J1...pn>,1~€1~”(k) — <%O(k/);]>

Consistency relations for the density contrast.—If we
consider the quantities {p;} to be the nonlinear matter

density contrasts 5(k;,z;) at wave number k; and con-
formal time z;, Eq. (4) is written as

<SLO(kI)S(k1» 7'-l)' . ‘S(kn’ Tn)>

~ Pul®)(

D[(S(kl » T ) . '5(knv Tn)}>
Do(~k') '

(5)

On large scales the density field is within the linear regime,
S8(k',7) = D (7')6.0(k'); then for k' — 0,

K = 0:(5k',7)8(ky,71)...6(k,. 7))

D[S(kl ) Tl)' . 'S(knv Tn)]>
Dby(-K') .

=D, ()Pul®) ©
This relation can serve as a basis to derive consistency
relations for the squeezed limit of the n+ 1 density
correlations (i.e., the limit & — 0) if we obtain an explicit
expression for the response function in the right-hand side.
It turns out that this is possible because the response of the
matter distribution to a long-wavelength mode &;0(k’)
takes a simple form in the limit ¥’ - 0 [1-3]. Such a
change Ad; of the initial condition is associated with a
change of both the linear density and velocity fields,
because we change the linear growing mode where the
density and velocity fields are coupled [1],

8.(q.7) = &, = &, + D (z)Adyy,
dD

vi(q.7) = ¥, = v, ——+VEIA5L0- (7)
dr

Then, in the limit " — 0 for the support of Ad;((k’), the
trajectories of the particles are simply modified as [7]

x(q,7) = X(q,7) = x(q,7) + D, (7)A¥;4(q), (8)

where q is the Lagrangian coordinate of the particles and
W, is the linear displacement field,

x,(q.7)=q+P;.. (9)

The transformation (8) simply means that in the limit k' — 0
smaller-scale structures are displaced by the uniform
translation W, as all particles fall at the same rate in the
additional constant force field AF o« V¢ 'A8,o. In other
words, in the limit X’ — 0 we add an almost constant force
perturbation (i.e., a change of the gravitational potential that
is linear over q for small-scale subsystems) that gives rise to
a uniform displacement, thanks to the weak equivalence
principle [3,7]. Then, the density field §(x, 7) at time 7 is
merely displaced by the shift D (r)A¥;,, which gives in
Fourier space

A\I’LO - —vq_lAéLo,

5(k,7) —» 3(1(,1) = S(k’f)e—ikmmw
5(k,7) —iD, (k - AU,)5(k, 7),
(10)

where in the last expression we expanded up to linear order
over AV, . The reader may note that in Eq. (10) we do not
see the additive effect seen at the linear level in the first
Eq. (7). This is because although the small change of the
mean overdensity over a small structure also leads to a faster
(or slower) collapse and distorts the small-scale clustering,
this is a higher-order effect than the kinematic effect studied
in this Letter [10,11]. Indeed, we check in Egs. (11) and (12)
that this kinematic effect gives rise to factors ~1/k" that
diverge as k' — 0. This is because the linear displacement
field is proportional to the inverse gradient of the linear
density field, ¥, = -Vy 15, . In contrast, the distortions of
the small-scale structure (i.e., changes to the shape and
amplitude of the small-scale clustering) are higher-order
effects and do not exhibit this factor 1/k" [10,11]. Using the

expression ¥, (q) = [ dke™%i(k/k*)5,(k), we obtain

!
¥ -0 D?Lo(q):ik_&’
Doy (k') k
Ds(k) k-k'-
o (k/):m oz 0(k). (11)
LO

Using this result in the relation (6) gives

<S(k/’ T/)S(kl s 7'-1)' . 'S(kn’ Tn)>;<’—>0
=P (K.7)
~D,(7)k; -k

x<3(kl,r,)...5(kn,rn)>/zD+(T,) R

(12)

which is the density consistency relation in the subhorizon
Newtonian regime [1-9]. Here the prime in (...)" denotes
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that we removed the Dirac factors 65 (> k;). The remark-
able property of Eq. (12) is that it does not require the wave
numbers k; to be in the linear or perturbative regimes. In
particular, it still applies when k; are in the highly nonlinear
regime governed by shell-crossing effects and affected by
baryonic and galactic processes such as star formation and
cooling. In fact, under the approximation of the squeezed

limit, the long-wavelength fluctuation 5, (k') merely trans-
ports the small-scale structure of the system. This also leads
to another key property of Eq. (12), namely, that it vanishes
at equal times, 7; = .. = 7,,.

Consistency relations for velocity and momentum
fields.—The leading-order effect of a long-wavelength
perturbation is to move smaller structures by a uniform
shift and single-time statistics that only probe the density
field cannot see any effect. However, it is clear that we may
detect an effect if we consider the velocity field, as the latter
|

< HS (kj.7;) ﬁ ff(kj,rj)>/
j=1 Jj=n+1 =0

n+m

+Z<H5

i=n+1

=—P.(K.7 {<H5

is again displaced but also has its amplitude modified.
Thus, the transformation law (10) becomes

V(k.7) - v(k.7) = ¥(k.7) — iD, (k - AU, )¥(k, 7)
dD
+ d—:A‘I’Lo%(k)» (13)

where the last factor is the new term, as compared with
Eq. (10), that is associated with the shift of the amplitude.
This yields

C Dy(k) kK dD, K

K—0: S p Xk
70 Dk D e W) g

Sp (k).

(14)

Using again the general relation (4), as in Eq. (6) but where
the quantities {p{,..,p,} are a combination of density
contrasts and velocities, we obtain

n+m ,n+mD (7,') k.- k/
v(k,l’)> +\%i i
]Hl J2 0 ;D_;,_(’ﬂ) k/Z
i—1

) 11 v(k;.7)

j=n+1

y {W‘h)“)l;{‘;%(ki)} ff v(k,.,fj)>/}. (15)

D.(7)

If we take k; # 0, as usual for studies of Fourier-space
polyspectra, the last term vanishes and we recover the same
form as for the consistency relation (12) of the density field.
However, this new Dirac term gives a nonzero contribution
in configuration space. Therefore, real-space correlation
functions obey consistency relations that differ from
those of the density field if we include cross correlations
with the velocity field. The correlation functions in
Eq. (15) are 3"'-component quantities, as the velocity field
is a 3-component vector. One may obtain scalar relations by
taking for instance the divergence of the velocity field or
considering the components along Cartesian coordinates.
The divergence & =V -v was considered in [2,5]. We
recover the fact that it obeys relations similar to the
density field because the new Dirac term 5 (k;) disappears
as éi =ik;-v,, We rather focus on the divergence
of the momentum field in this Letter, as it yields new
terms in the consistency relations and it satisfies a direct
relationship with the density field, which may provide
useful checks.

One simple way to make the last term in Eq. (13) relevant
in Fourier space at nonzero wave numbers is to consider
composite operators, that is, products of the velocity field
with other fields. Therefore, we define the momentum p as

p=(1+0)v. (16)
which reads in Fourier space as
(k) = ¥(K) + [ dkydkod (ks + e~ K3k (ko).
(17)

Using Egs. (11) and (14) we obtain

, . Dpk) = k-k'.
k"= 0: Do) R p(k)
dD, K’ ~
2z L Oo(k) (k). (18)

The first term, which is common with Eqgs. (11) and (14),
corresponds to the translation of the system, whereas
the second term corresponds to the additional velocity
generated by the long-wavelength mode. Thanks to the
convolution in Eq. (17) it is now nonzero for k # 0.
However, in contrast to the translation term, it transforms
the field because the functional derivative of the momen-
tum p now gives rise to a factor that is proportional to the

density contrast 5. In a fashion similar to Egs. (12) and (15),
we obtain the consistency relation

081301-3
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<S(k',r/)jf[13(k,», i ﬁ p(k;.7)) > =—P.(K.7 {<H5 ﬁ Bk >”§’;’gigflgk;€;2k/

Jj=n+1 ¥ =0 j=n+1
2 (dD d L
+ Z ( +/ T <H5 ) H p(kj Tj)
i=nt1 j=n+l
k/ n+m
x<iﬁ[5 (k;) + (k. 7;) ) IT p(k; >} (19)

Jj=i+1

The first term, which has the same form as the density and velocity consistency relations (12) and (15), is due to the
translation of smaller-scale structures by the long-wavelength mode k’. The new second term is due to the additional
velocity and arises from the second term in Eq. (18). This term has a different form as it transforms one small-scale
momentum mode, p(k;), into a small-scale density mode, 5( ;)- Moreover, this new term no longer automatically vanishes

at equal times. This leads to a nontrivial consistency relation at equal times, when 7/ =7, = .. =7,
N . n_ n+m / dln D+ n+m n+m
s(k") [Jox;) T p(k :—zPLk > Ha H p(k k,2 5p(k; I1 p(x
j=1 Jj=n+1 i=n+1 Jj=n+1 Jj=i+l1

(20)

where we did not write the common time 7 of all fields. We can also obtain a consistency relation that involves both the
density and velocity fields & and v, together with the momentum field p, and it shows the same behaviors.
To obtain a scalar quantity from the momentum field p we consider its divergence,

A=V 148y, k) =ik-p(k). (21)

Then, the consistency relation for the divergence 2 follows from Eq. (19). This gives

<S(k’,r') ﬁS(k ﬁ A(k

Jj=n+1

i=n+1

At equal times this gives the relation

> =R {<H5 ) 1T dn, >'"im§1§;§";;z“’
- f <S(k

Jj=n+1 i=1

l,r,»)l:[lfs(k Hz > dDI;i EZ:%( ")k"k}zk/}. (22)

J#r

<3(k’) Hl(s

j=n+1

where we did not write the common time 7 of all fields. We
can easily check the relation (22) by noticing that the
divergence A is related to the density field through the
continuity equation, (95/97) + V - [(1 + 8)v] = 0, which
implies A = —08/0z. Therefore, Eq. (22) can be directly
obtained from the density consistency relation (12) by
taking partial derivatives with respect to the times z;.
Applications.—As for the density contrast relation (12),
the new consistency relations that we have obtained in this
Letter are valid beyond the perturbative regime, after shell
crossing, and also apply to baryons, gas, and galaxies,
independently of the bias of the objects that are used.

i=n+1

|

Indeed, they only use the property (8), which states that at
leading order the effect of a long-wavelength mode is to
move smaller-scale structures without disturbing them.
This relies on the equivalence principle, which states that
all particles (and astrophysical objects) fall at the same rate
in a gravitational potential well (the inertial mass is also the
gravitational mass) [3,7,8].

After shell crossing we enter a multistreaming regime
where the velocity field is multivalued: at a given position
there are several streams with different velocities as they
cross each other and build a nonzero velocity dispersion, as
within virialized halos. Nevertheless, our results remain
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valid. In that case, v can be taken as any of these streams or
as any given linear combination of them, because all stream
velocities are modified in the same way. In multistreaming
regions, such as high-density nonlinear environments like
clusters or filaments, it is more practical to work with the
mean momentum p, where Eq. (16) reads in the case of
several streams i S P = Y _eams( 1 + 6;)V;, OF in terms of a
phase-space distribution function as p = [dvf(x,v)v.
This is also more convenient for observational purposes
as we only observe velocities where there is baryonic
matter, so that it is easier to build momentum maps than
velocity maps, which are difficult to measure in voids. The
expression (18) remains valid in these multistreaming
regions, as the first term simply expresses the translation
of the smaller-scale system while the second term expresses
the large-scale constant additive term that is added to all
velocities. Thus, these consistency relations only rely on
(1) Gaussian initial conditions [Eq. (4)]; (2) the weak
equivalence principle [Eq. (8)].Therefore, a detection of a
violation would be a signature of non-Gaussian initial
conditions or of a modification of gravity (or a fifth force).
In practice, we also need to make sure the large-scale wave
number k' is within the linear regime and far below the
other wave numbers k;, so that the limit &’ — 0 is reached.

The simplest relation that does not vanish at equal times
is the bispectrum with one momentum field. From Eqgs. (20)
and (23) we obtain for k # 0

k'"dInD,

(BOCBIB(K )y o = 1 s 22 P )P (1),
(B0 K g = — < TP P, ) Pk

Here P(k) is the nonlinear density power spectrum and
these relations remain valid in the nonperturbative non-
linear regime. For galaxies these relations are

(BURB, (6)B, (D = iy T Py (K) Py (8)
24)

(BOKB, 06)7, Ky =~ oD ()P, (),
(25)

where 6 and P, are again the matter density field and linear
power spectrum, Sg and p,, the galaxy density contrast and
momentum, and P; 5 the galaxy density power spectrum.
In Egs. (24) and (25) we kept the long mode k' as the matter

density contrast 5 because the actual consistency relation is
with respect to the initial condition &;, as in Eq. (5), and
6(k’) merely stands for D, (7')8;o(k’) in the limit & — O.
If we wish to write Eqs. (24) and (25) in terms of galaxy
fields only, we need to assume that the matter and galaxy
density fields are related by a finite bias b, in the limit
k' — 0. Then, Eq. (25) becomes

. ~ ~ k-Kk'dInD
b1 (3y(K)5,(K)Ay(~K))_g = ==z~ Pas, (K)

X P 5, (k), (26)

where we assumed a deterministic large-scale limit b for
the galaxy bias, &' — 0:5,(k") = b;6(k’). Then, Eq. (26)
can be used as a measurement of the large-scale bias b;.

Conclusions.—We have obtained in this Letter very
general and exact consistency relations for cosmological
structures that do not vanish at equal times by taking
cross correlations with the velocity or momentum fields.
These relations, which are nonperturbative and also
apply to galaxy fields, could be useful to constrain the
Gaussianity of the initial conditions, deviations from
general relativity, or large-scale galaxy bias.
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ABSTRACT

Consistency relations of large-scale structures providetenonperturbative results for cross-correlations afhtig fields in the
squeezed limit. They only depend on the equivalence piimeipd the assumption of Gaussian initial conditions, anthie nonzero

at equal times for cross-correlations of density fields wiocity or momentum fields, or with the time derivative ohdity fields. We
show how to apply these relations to observational probasitiolve the integrated Sachs-Wolfffext or the kinematic Sunyaev-
Zeldovich dfect. In the squeezed limit, this allows us to express thesthm@nt cross-correlations, or bispectra, of two galaxy or
matter density fields, or weak lensing convergence fields thie secondary CMB distortion in terms of products of adinend a
nonlinear power spectrum. In particular, we find that cromselations with the integrated Sachs-Wolfgeet show a specific angular
dependence. These results could be used to test the eqaizglanciple and the primordial Gaussianity, or to cheekrttodeling of
large-scale structures.

Key words. Cosmology — large-scale structure of the Universe

1. Introduction non-Gaussian initial conditions). Hence, such relatiofmess
_ o ) ) ~a kinematic #ect that vanishes for equal-times statistics, as a
Measuring statistical properties of cosmological streesuis yniform displacement has no impact on the statistical ptase
not only an dicient tool to describe and understand the maisf the density field observed at a given time.
components of our Universe, but also it is a powerful probe of |n practice, it is however diicult to measure dierent-times
possible new physics beyond the standa@DM concordance density correlations and it would therefore be useful toaivbt
model. However, on large scales cosmological structueesi@s relations that remain nonzero at equal times. One posgibili
O scribed by perturbative methods, while smaller scales are g overcome such problem, is to go to higher orders and take
scribed by phenomenological models or studied with numegirto account tidal fiects, which at leading order are given by
C)_ caI _s,lmulatlons. It is therefore filicult to obtain accurate pre-the response of small-scale structures to a change of the bac
dictions on the full range of scales probed by galaxy and-lengound density. Such an approach, however, introduces adme
ing surveys. Furthermore, if we consider galaxy densityl§iel ditional approximations (Valageas 2014a; Kehagias et0dl4B;
N theoretical predictions remain sensitive to the galaxg biich  Njishimichi & Valageas 2014).
involves phenomenological modeling of star formation,reife  Fortunately, it was recently noticed that by cross-cotieda
- - we use cosmological numerical simulations. As a conse@jergensity fields with velocity or momentum fields, or with theé
.= exact analytical results that go beyond low-order pertiioha derivative of the density field, one obtains consistencgtiehs
theory and also apply to biased tracers are very rare. that do not vanish at equal times (Rizzo et al. 2016). Inded,
— Recently, some exact results have been obtainkidematic éfect modifies the amplitude of the large-scale veloc-
(Kehagias & Riotto 2013; Peloso & Pietroni 2013jty and momentum fields, while the time derivative of the digns
Creminelli et al. 2013; Kehagias et al. 2014a; Peloso & Bigtr field is obviously sensitive to ffierent-times ffects.
2014; Creminellietal. 2014; Valageas 2014b; Hornetal. In this paper, we investigate the observational applidsbil
2014, 2015) in the form of “kinematic consistency relatibnsof these new relations. We consider the lowest-order o#lati
They relate the { + n)-density correlation, with?' large-scale which relate three-point cross-correlations or bispetréhe
wave numbers and small-scale wave numbers, to thepoint squeezed limit to products of a linear and a nonlinear power
small-scale density correlation. These relations, obthist the spectrum. To involve the non-vanishing consistency retes;
leading order over the large-scale wave numbers, arise frora study two observable quantities, the secondary anigptro
the Equivalence Principle (EP) and the assumption of Gausgsw of the cosmic microwave background (CMB) radiation due
sian initial conditions. The equivalence principle ensutleat to the integrated Sachs-Wolféfect (ISW), and the secondary
small-scale structures respond to a large-scale pertaribday a anisotropyAgsz due to the kinematic Sunyaev-Zeldovich (kSZ)
uniform displacement while primordial Gaussianity pra@gda effect. The first process, associated with the motion of CMB pho-
simple relation between correlation and response funstfsee tons throughtime-dependentgravitational potentialsedds on
Valageas et al. (2016) for the additional terms associatiéld wthe time derivative of the matter density field. The secorad pr

vl [astro-ph.CO] 15 Jan 2017
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cess, associated with the scattering of CMB photonsby feme e  The simplest relation that one can obtain from Eq.(1) is for
trons, depends on the free electrons velocity field. We tigate the bispectrum withm = 2,

the cross correlations of these two secondary anisotroyites _ B Ky -k

both galaxy density fields and the cosmic weak lensing cenvers(k, n)d,(k1, 71)64(K2, 72))_0 = —PL(K, ,7)7

gence.
This paper is organized as follows. In section 2 we recall the x(SQ(kl, nl)Sg(kz, ng)YM, (2)
consistency relations of large-scale structures thatyappden- D(n)

sity, momentum and momentum-divergence (i.e., time deriv@here we used tha&t, = —k; — k — —ki. For generality, we

tive of the density) fields. We describe the various obs@mat considered here the small-scale fieljgk;) andd,(kz) to be

probes that we consider in this paper in section 3. We stuely tissociated with biased tracers such as galaxies. Thedraser

ISW effect in section 4 and the kS4tect in section 5. We con- sociated withk; andk, can be dfferent and have fierent bias.

clude in section 6. At equal times the right-hand side of Eq.(2) vanishes, aallext
above.

2. Consistency relations for large-scale structures 2.2. Consistency relations for momentum correlations

The density consistency relations (1) express the unifomn m
tion of small-scale structures by large-scale modes. Tihiple
:ginematic éfect vanishes for equal-time correlations of the den-
gity field, precisely because there are no distortions,enthiére
is a nonzero fect at diferent times because of the motion of
the small-scale structure betweetffelient times. However, as
pointed out in Rizzo et al. (2016), it is possible to obtaimno
ivial equal-times results by considering velocity or memum
ds, which are not only displaced but also see their anmdit
ected by the large-scale mode. Let us consider the momentum
p defined by

2.1. Consistency relations for density correlations

As described in recent works (Kehagias & Riotto 201
Peloso & Pietroni 2013; Creminelli et al. 2013; Kehagiad.et
2014a; Peloso & Pietroni 2014; Creminelli et al. 2014; Valag

2014b; Horn et al. 2014, 2015), it is possible to obtain exact
lations between density correlations offdrent orders in the
squeezed limit, where some of the wavenumbers are in tharlin

regime and far below the other modes that may be strongly n '
linear. These “kinematic consistency relations”, obtdiagthe

leading order over the large-scale wavenumbers, arise tihem
equivalence principle and the assumption of Gaussian pdigio p = (1 + 6)v, 3)
perturbations. They express the fact that, at leading avtiere . . . .

a large-scale perturbation corresponds to a linear gteie Wherev the peculiar velocity. Then, in the squeezed Jikit>
potential (hence a constant Newtonian force) over the exten O; the correlation between one large-scale density ndden

a small-size structure, the latter falls without distamsidn this Small-scale density modégk;), andm small-scale momentum
large-scale potential. modesp(k;) can be expressed in terms of £ m) small-scale

. . . correlations, as
Then, in the squeezed limit — 0, the correlation between

one large-scale density modék) and n small-scale density . LN . ,
modesi(k;) can be expressed in terms of #h@oint small-scale  (6(k.7) l_[5(kj’771) l_[ Pk, 7))o = —Puk.m)

n+m

correlation, as =1 j=n+l
n_ n+m~ ’n+mD Yk -k
n n X{<l_[6(ki’77]) l—l Pk, nj)) Z ﬂ|_2
S S ’ < ’ j=1 j=n+1 i=1 D) k
@,m) [ ]3¢, m0%c0 = =Pl )] [ 80k, mi)) = = =
=1 -1 T @D/dn(m) 1y 5 ar
" D) ki -k + 2 gy [3kem) [ ] ptkim)
% Z “un)Ric® 1) el n j=1 j=n+1
= D(n) k2 K 5 n+m
x(i@[éo(ki) +6(ki,m)]) [ Btk m} @
where the tilde denotes the Fourier transform of the fiejds, =i+l

the conformal timeD(n) is the linear growth factor, the primeThese relations are again valid in the nonlinear regime and f
in (...)" denotes that we factored out the Dirac factor,) = biased galaxy fields,(k;) andp,(k;). As for the density con-
(...Yop(X kj), andP_(K) is the linear matter power spectrum. Iistency relation (1), the first term vanishes at this ortlegaal

is worth stressing that these relations are valid even imtre times. The second term however, which arises fronfifields
linear regime and for biased galaxy fieltJ¢k ;). The right-hand only, remains nonzero. This is due to the fact tfanvolves
side gives the squeezed limit of thex(h) correlation at the lead- the velocity, the amplitude of which isffacted by the motion
ing order, which scales agK. It vanishes at this order at equainduced by the large-scale mode.

times, because of the constraint associated with the Détoif The simplest relation associated with Eq.(4) is the bispec-
op(X kj)- trum among two density-contrast fields and one momentum

The geometrical factork( - k) vanish ifk; L k. Indeed, field,
the large-scale mode induces a uniform displacement along t ;% % x r_
direction ofk. This has no ffect on small-scale plane waves of <6(k’n|)(69(t1’ M)Py (K2 m2))i0 PLk.n)
wavenumberk; with k; L k, as they remain identical after such x( 1k2 Go(Ke )Py (K2 12)Y D(n) - D(a) |

a displacement. Therefore, the terms in the right-hand afde D(n)
Eqg.(1) must vanish in such orthogonal configurations, asame ¢ ko~ ~ , 1 dD
check from the explicit expression. +'ﬁ<59(k1’ 1)04(K2,172)) D() d_,](’h))' )
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For generality, we considered here the small-scale fig)ls) 3. Observable quantities
andp,(k.) to be associated with biased tracers such as galax
and the tracers associated withandk, can again be dierent
and have dferent bias. At equal times Eq.(5) reads as

L?c‘?’ test cosmological scenarios with the consistency matof
large-scale structures we need to relate them with obskervab
quantities. We describe in this section the observatiora¢s

~ .k dinD that we consider in this paper. We use the galaxy numberggoun
(6(K)04(K1)Py(K2))yo = —'Fd—PL(k)Pg(kl), (6) or the weak lensing convergence to probe the density field. To

n apply the momentum consistency relations (6) and (10), e us

where P,(k) is the galaxy nonlinear power spectrum and wile ISW efect to probe the momentum divergent@more pre-
omitted the common time dependence. This result does net véigely the time derivative of the gravitational potentiatlanatter

ish thanks to the term generatedjbjn the consistency relation density) and the kSZkect to probe the momentum

(5).

3.1. Galaxy number density contrast ¢,

2.3. Consistency relations for momentum-divergence From galaxy surveys we can typically measure the galaxy den-
correlations sity contrast within some redshift bin, smoothed with some
In addition to the momentum field, we can consider its diver- finite-size window on the sky,
genced, defined by
y 50 = [ corwe(o’ - o) [ant,arrotl. @)
A=V-[1+o)V] = “on ) whereWe (|8’ — 6)) is a 2D symmetric window function centered

on the directiord on the sky, of characteristic angular radés
The second equality expresses the continuity equatiohjgha | () is the radial weight along the line of sight associated with
the conservation of matter. In the squeezed limit we obtaimf a normalized galaxy selection functiap(2),
Eq.(4) (Rizzo et al. 2016)

dz
n+m Ig(n) = ‘d_n

3 n o 5 Ny(2), (12)
@m [ [80<i.m) [ ] ki mi)ieso = —Pulim)

r = no — n is the radial comoving coordinate along the line of

j=1 j=n+1
Jn :H'r: ¥ D) ki -k sight, andrpg is the conformal time today. Here and in the fol-
2l m ST IRV ) Ki lowing we use the flat sky approximation, aéi the 2D vector
o(k;, Ak, . = : .
><{<]1 k; n')jgl (ki) ; D(n) k2 that describes the direction on the sky of a given line oftsighe
nem n nem superscript “s” inss denotes that we smooth the galaxy density
_ Z G(ki, m) 1—[ (ki) 1—[ ki)Y contrast with the ?inite-size windoW/y. Expanding in Fourier
24 i 1 ) i»1j L i1 space the galaxy density contrast we can write
j#
(dD/dn) (i) ki - k} @© 5,0 = f do’ We(l0' - 6)) f dn 14(m)
D) k)

) ) ) ) ) X fdk eikﬂr+ik1_'r9' gg(k3n) (13)
These relations can actually be obtained by taking deviesti
with respect to the timeg; of the density consistency relationsyherek, andk , are respectively the parallel and the perpendicu-
(1), using the second equality (7). As for the momentum nsjar components of the 3D wavenumbier (k;, k) (with respect
tency relations (4), these relations remain valid in thelinear tg the reference directiofi= 0, and we work in the small-angle
regime and for biased small-scale fielij¢k;) and1,(kj). The |imit 9 < 1). Defining the 2D Fourier transform of the window
second term in Eq.(8), which arises from thdields only, re- W as
mains nonzero at equal times. This is due to the factthat

volves the velocity or the time-derivative of the densityiieh R (¢[) = f do e OwWe (16)), (14)
probes the evolution between (infinitesimally closeffatent
times. . _ _ _ ~ we obtain
The simplest relation associated with Eq.(8) is the bispec-
trum among two density-contrast fields and one momentugt(g) = fdnlg(n)fdkaV@(kLr)e”“"”k*"o 64(K, 7). (15)
divergence field, !
~ ~ ~ ki -k .
(5(K, 18, (k1, 71) Ay (K2, 12)) 0 = —PL(K, ;7)1(_2 3.2. Weak lensing convergence
~ ~ ,D(171) — D(172) From weak lensing surveys we can measure the weak lensing
X((8y (k1. n) Ay (Ka, 72)Y — e~ + convergence, given in the Born approximation by
D(n)
. < 1 dD , ’ r+o. ..
+6 ke )3 (k2 5~ (). © <0 = [do'We(o’ - 6) [anr o752 nr0%). (16)
D(n) dn 2
At equal times, Eq.(9) reads as where¥ and® are the Newtonian gauge gravitational potentials
and the kernej(r) that defines the radial depth of the survey is
. ~ ki-kdInD o0
= = d rs—r
<5(k)5g(k1)/lg(k2)>k—>o K2 dn PL(k)Pg(k1)~ (10) g(r) = f drsfng(zs) Sr , (17)
r S S
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wheren,(zs) is the redshift distribution of the source galaxiesl998). The temperature perturbatidfsz = 6T/T, due to this
Assuming no anisotropic stress, i®.= ¥, and using the Pois- kinematic Sunyaev Zeldovich (kSZjfect, is
son equation,

V2 = dnGpud/a, (18) Aeszl0) = - [dlvirrne” = [dyhazln®@ pe  (@6)
whereGy is the Newton constanpg is the mean matter density . . .
of the Universe today, analis the scale factor, we obtain wherer is again the optical deptla;r the Thomson cross sec-

tion, | the radial coordinate along the line of sighfthe number
s - i +ik, 0 % density of free electrons, their peculiar velocity, and(6) the
«(6) = fdn Le(m) fdk We (k. r)e“™ " 6(k, n), (19)  radial unit vector pointing to the line of sight. We also defin
the kSZ kernel by
with
_rg(r) lksz(n) = —orneae™, (27)
Le(m) = 47T§NPOT- (20)
and the free electrons momentpas

3.3. ISW secondary anisotropy Aisw NeVe = No(1 + Ge)Ve = MaPe. (28)

From Eq.(7)A can be obtained from the momentum divergence

or from the time derivative of the density contrast. Thesarmijd Because of the projection - pe along the line of sight, some
ties are not as directly measured from galaxy surveys as deare must be taken when we smoatf;z(0) over some finite
sity contrasts. However, we can relate the time derivatifve size angular windowV (|6 — 6]). Indeed, because thefidirent

the density contrast to the ISWfect, which involves the time lines of sightf’ in the conical window are not perfectly parallel,
derivative of the gravitational potential. Indeed, thew®tary if we define the longitudinal and transverse momentum compo-
cosmic microwave background temperature anisotropy duentents by the projection with respect to the mean line of sight
the integrated Sachs-Wolféfect along the directiofl reads as n(#) of the circular window, e.gpg, = n(6) - pe, the projection

(Garriga et al. 2004) n(#’) - pe receives contributions from botpy and pe, . In the
5 5 limit of small angles we could a priori neglect the contribat
N X . Lo c
_ ~o) (9 | 9P . associated witlpe, , which is multiplied by an angular factor and
Aisw(6) fdne (6;7 " on ) Lr. 6] vanishes for a zero-size window. However, for small but dinit

o angles, we need to keep this contribution because fluchstio
= 2fd77 e‘T(”)a—[r, re; nl, (21) along the lines of sight are damped by the radial integratiom
’7 vanish in the Limber approximation, which damps the contrib
wherer() is the optical depth, which takes into account the polon associated witlpe.
sibility of late reionization, and in the second line we assd For small angles we write at linear ordef®) = (6x, 6,, 1),
no anisotropic stress, i.®.= P. We can relaté,sy to A through close to a reference directigh= 0. Then, the integration over
the Poisson equation (18), which reads in Fourier space as the angular window gives for the smoothed kSieet

—K2¥ = 4nGnpod 22 jenr | 5\
ropod/ P2 it0) = [ dnbiszt) [ ek [Pt
This gives B
) i kLk Pe. W('a(klr)]. (29)
oY  4nGnpo ~ ~ L
5 = e A+ HO), 23)

Here we expressed the result in terms of the longitudinal and

whereH = dIna/dy is the conformal expansion rate. Integratt_ransverse components of the wave numbers and momenta with

: L : respect to the mean line of sigh(®) of the circular window\e.
ing the ISW ¢fectsisw over some finite-size window on the sky. . ; o
we obtain as in Eq.(15) Thus, whereas the radial unit vectomi@) = (6, 6,, 1), we can

define the transverse unit vectorsras = (1,0, —6x) andn,, =

s - i +ik, -0 0,1,-6,), aNnd we WriEe for instancle = K, xn, x + Ki,ny, + kin.
Asw(0) = fdﬂ 'ISW(’?)fdk W (K r)e We denotélV; (£) = dWe/d¢. The last term in Eq.(29) is due to
the finite size® of the smoothing window, which makes the lines

XM , (24) of sight within the conical beam not strictly parallel. Itnishes
k2 for an infinitesimal window, wher@g (6) = 6p(6) andWg = 1,
with We = 0.
() = BrGio- (25)
swiin) = NPT 4. Consistency relation for the ISW temperature

anisotropy

3.4. Kinematic SZ secondary anisotropy A . . . . .
y Py Bksz In this section we consider cross correlations with the ISW e

Thomson scattering of CMB photon& anoving free electrons fect. This allows us to apply the consistency relation (9)ickh
in the hot galactic or cluster gas generates secondaryteopses involves the momentum divergendeand remains nonzero at
(Sunyaev & Zeldovich 1980; Gruzinov & Hu 1998; Knox et alequal times.
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4.1. Galaxy-galaxy-ISW correlation wheree’is a stochastic component that represents shot noise and

the dfect of small-scale (e.g., baryonic) physics on galaxy for-

To take advantage of the consistency relation (9), we must co, iion From the decomposition (35), it is uncorrelatedie
sider three-point correlation& (in configuration space) with large-scale density field (Hamaus et al. 20](@][k)€(k)) - 0.

one observable that involves the momentum diverganttere, Then, in Eq.(34) we neglected the tefds,, (1, + Hy32)). In-
’ : g1 .

using the expression (24), we study the cross-correlat®n Boqy’ the small-scale local processes within the regjismould

tween two galaxy density contrasts and one ISW temperatye very weakly correlated with the density fields in the dis-

anisotropy, tant regionsd, and@,, which at leading order are only sensi-
S ¢S AS _ /sS(p) S5 s tive to the total mass within the large-scale regioiTherefore,
£3(0,05:> Misw,) = (04(6) 6,,(61) A, (02))- (30) (€8,,(12 + Ha62)) should exhibit a fast decay at loy whereas
The subscriptg, g1, and ISW denote the three lines of sight asthe termin Eq.(34) assolcla_ted with the consistency relaidy
sociated with the three probes. Moreover, the subsajiptalg, decays a® (k)/k ~ k™= with ns ~ 0.96. In Eq.(34), we also
recall that the two galaxy populations associated wjtandss, @ssumed thatthe galaxy blasgoes to a constant at large scales,
can be diferent and have fierent bias. As we recalled in secWhich is usually the case, but we could take into account ke sca
tion 2, the consistency relations rely on the undistortediono dependence [by keeping the factmk, 7) in the integral over
of small-scale structures by large-scale modes. This sporeds ]. . . , ,
to the squeezed limk — 0 in the Fourier-space equations (1%) The small-scale two-point correlatiotts- 2)” are dominated
and (8), which writes more precisely as y contributions at almost equal timeg, = 7, as diferent red-
shifts would correspond to points that are separated byraleve
k<k, k<Kkj (31) Hubble radii along the lines of sight and density correladiare
negligible beyond Hubble scales. Therefateis dominated by
wherek_ is the wavenumber associated with the transition bthe second term that does not vanish at equal times. Theatdeg
tween the linear and nonlinear regimes. The first condition ealong the lines of sight suppress the contributions frongiion
sures that(k) is in the linear regime, while the second condidinal wavelengths below the Hubble radaj$i, while the angu-
tion ensures the hierarchy between the large-scale modtandar windows only suppress the wavelengths below the trassve
small-scale modes. In configuration space, these conditior radii c®/H. Then, for small angular window§) < 1, we can

respond to use Limber’s approximatior < k, hencek =~ k, . Integrating
overk; through the Dirac factodp(k; + ki + ko), and next over
0>0., 0>0 [0-6)>6,-0 (32)  ky andky, we obtain the Dirac factors £226p(r1 — r)dp(ra —r).

i . o . . This allows us to integrate ovgg andzn, and we obtain
The first condition ensures thaf(é) is in the linear regime, 9 o "2

whereas the next two conditions ensure the hierarchy oéscal ) dinD
The expressions (15) and (24) give & = —(2n) fdn by ()14 ()1 g, (M) isw, (17) “a
&3 = fdndflldflz Iy, (1) hisw, (172) X fddeledkzLéD(kL + ke, + Koy )Wo(K.r)
. " . W, (K . )W, (ko r)g" (s k1. 1Kz, 62)
dekdkldkzW@(kLr)W@1(k1Lr1)W@2(k2lr2) 0 (K1 kh@?k?
¢ @(kir+kyra+kara+k 16+Ka, T161+k2, -1262) XPL(k, U)m Pg.m(Kis, m), (36)
X(3g(K, 1)dg, (K1, nl)/l(kz’ ) + Z{Zé(kz’ 772)>' (33) whereP,,  is the galaxy-matter power spectrum. The integra-
K tion overk,, gives

The configuration-space conditions (32) ensure that wefgati 5 dinD -
the Fourier-space conditions (31) and that we can applydhe cé3 = —(27) fd’i bg'g'm'lswzd—77 fddeknW@)(kﬂ)

sistency relations (2) and (9). This gives ~ ~
Y (2)and (9). This g xWo, (K1 )WVl (K1 )P (K. )Py (K. )

& = _fdﬂdnldﬂz bg(rl)lg(n)lgl(nl)lISW2(772) xeif[kL'(9—92)+k1¢'(91—02)]u’ (37)
ki, ki
X fdkdkldkz W (k. )W, (k1. r1) W, (ke 2) and the integration over the angleskafandk,, gives
X ei(kﬂr+k1Hr1+k2Hr2+kL-r0+k1i-r101+ku-r202) 0 _ 0 . 0 _ 0 d In D
ki-k & = (0 Z) él 7 2)(2”)4fd77b9|9|91||SW2d—
xPL(k, n)vég(k + kg + K2) |60 — 62]|01 — 6 n
(5 §2+7{252>/ D(11) = D(172) X fo dk, dky, We (K, r)We, (K1, F)We, (K1, T)
g
LK D) XPL(Ky, 7)Pyym(Kes, 1) I (K. 110 — 62])
02 1 dD xJ1(Ky, r101 — 62), (38)

005 ) == (12) . (34)
K5 D(n) dn wherel; is the first-order Bessel function of the first kind.

Here we assumed that on large scales the galaxy bias is lin-AS the expression (38) arises from the kinematic consigtenc

ear relations, it expresses the response of the small-scal@oivt
' _ B correlation(s;, (61) AISSW2 (6-)) to a change of the initial condition
k—0: §,(Kk)=Dby(no(k) + k), (35) associated with the large-scale mag@). The kinematic fect
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given at the leading order by Eq.(38) is due to the uniform meoeads as

tion of the small-scale structures by the large-scale mobis. .

explains why the result (38) vanishes in the two followinges &H = (@) fdn I, 1, f dka, ki, Fo, (i, 1)

1. @-06,) L (01— 6,). There is a nonzero response(6{1,) . 0
if there is a linear dependence 6(0) of (5112), so that its xFe, (K1, 1)Jo(Ke. 61 — 62)Py, m(KeL), (40)
first derivative is nonzero. A positive (negativgy) leads to
a uniform motion a#, towards (away fromy, along the di- where we again used Limber’s approximation. Here we denoted
rection @ — 6,). From the point of view of); andé., there the angular smoothing windows iy to distinguish, from &;.
is a reflection symmetry with respect to the axls € 62). Then, we can write
For instance, i1 > 0 the density contrast at a positiég
typically decreases in the mean with the radé4s- 61/, and 0-62)-(6.-6,)
for A, L (0]_ - 02) the points()§ = 6, + A@, are at the same &3 = 16 — 6,]|61 — 65 &2
distance from¥; and have the same density contesn the
mean, with typicallys < &2 as|d; — 1] > |62 — 6a]. There- ¢ yoo a0 41ar windows of the two-point correlation are aiios
fore, the large-scale flow along ¢ 6,) leads to a positive such that
Ao = —Ad2/ A, independently of whether the matter moves
towards or away frorl (here we took a finite deviatiohd,). . . ,lglisw,, dInD
This means that the dependencésafl,) ons(6) is quadratic Fo,(kiirFe,(ki.) = (27) by
[it does not depend on the signd®)] and the first-order re- . g
sponse function vanishes. Then, the leading-order cantrib 5 _
tion to &3 vanishes. [For infinitesimal deviatiaxd, we have % (fo dk Wo (kur)Ju(k.r10 = 620)Pu (k.. )
Ay = —062/0n, = 0; by this symmetry, in the meaf; is an \7V@1(khr)W@z(kur)Jl(khr|01 —6,))

extremum of the density contrast along the orthogonal direc  x . 42
Y g g k11 Jo(k1i |61 — 62) (42)

(41)

I,

tion to (0, — 6>).] . _ _

2. 61 = 6,. This is a particular case of the previous configura- . .
tion. Again, by symmetry from the viewpoint &f, the two This implies that the angular windows, andFe, of the two-
pointss(6,+A6,) ands(6.—Al,) are equivalent and the mearpoint correlatiort, have an explicit redshift dependence.
response associated with the kinematffeet vanishes. In practice, the expression (42) may not be very convenient.

. . . . Then, to use the consistency relation (38) it may be more-prac

This also explains why Eq.(38) changes sign with  6) jcal to first measure the power specia and P,, , indepen-

and @ — 6,). Let us consider for simplicity the case where th . ; .
three points are aligned ardd) > 0, so that the Iarge—scalesiz?]ttl{é%t) tgﬁ(;endesxrj['ggmnSg?:?hl;o:ntggs'gfgsﬁlﬁiﬁggegﬁg_
flow points toward®. We also takes; > 0, so that in the mean jon (38) E:om uted with these bower spectra

the density is peaked & and decreases outwards. Let us takd P P P '

6, close to#1, on the decreasing radial slope, and on the other

side of6; than@. Then, the large-scale flow moves matte#at 4.3. ensing-lensing-ISW correlation

towardsf,, so that the density & at a slightly later time comes

from more outward regions (with respect to the peafsaitvith  From EQ.(38) we can directly obtain the lensing-lensing¢lS
a lower density. This means thas = —d6,/dn, is positive so three-point correlation,

thatés > 0. This agrees with Eq.(38), a8 € 6) - (61— 62) > 0

in this geometry, and we assume the integrals over waversmbg(c®, k3, A%,,) = (<%(6) k3(61) Ay, (62)), (43)
are dominated by the peaks &f > 0. If we flip 8, to the other

side off;, we find on the contrary that the large-scale flow bringsy, replacing the galaxy kerneligl, andl,, by the lensing con-
higher-density regions té,, so that we have the change of 5i9“§ergence kernelg and| g n
A2 < 0 andés < 0. The same arguments explain the change

of sign with @ — 6,). In fact, it is the relative direction between —0) (0 —
(6-6,) and @, —0,) that matters, measured by the scalar produgt = (0|0 _02)”6501_ 00|2) (27r)4fdr]IKIthsw2d:jLD
(0 —62) - (61— 62). 21— 72 é

This geometrical dependence of the leading-order contribu fm K dks . W (k. PV, (ke W (k
tion to s could provide a simple test of the consistency relation, < J, k. dke.. W (kur) W, (ke 1) W, (ka. 1)

K11

without even computing the explicit expression in the righnd XPL(Ky, m)P(ki, 7)di(k.r|0 — 62])
side of Eq.(38).
xJ1(Ky.r01 — 62]). (44)
4.2. Three-point correlation in terms of a two-point As compared with Eq.(38), the advantage of the cross-
correlation correlation with the weak lensing convergerds that Eq.(44)

involves the matter power spectrupk, , ) instead of the more

The three-point correlatiogs in Eq.(38) cannot be written as a.qmnlicated aalaxy-matter cross power specte mn(k
product of two-point correlations because there is only ione P g y P P (ko).

tegral along the line of sight that is left. However, if thedar
power spectrunP, (k, 2) is already known, we may writ&; in . .
terms of some two-point correlatigh. For instance, the small- - Consistency relation for the kSZ effect

scale cross-correlation between one galaxy density crdr@ |y this section we consider cross correlations with the k8Z e
one weak lensing convergence, fect. This allows us to apply the consistency relation (F)iok

(0, k3) = (6, (61)x5(62)) (39) involves the momentum and remains nonzero at equal times.
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5.1. Galaxy-galaxy-kSZ correlation we usedP (k,7) = D(n)?PLo(K). If we approximate the three
lines of sight as parallel, we can writg - k = k;, where the lon-
gitudinal and transverse directions coincide for the thiress of
sight. Then, Limber’s approximation, which correspondgi®
limit where the radial integrations have a constant weighthe

S ¢S AS \ _ /¢S s s infinite real axis, gives a Dirac terdp(kj) and&z = 0 [more
§30: 00,2 Aiesze) = (0,(6) 0y, (61) sz, (62)). (45) precisely, as we recalled above Eq.(§|6), the radial intEgra
in the squeezed limit given by the conditions (31) in Fourigrivesk; < H/c while the angular window givels, < H/(c®) so
space and (32) in configuration space. The expressions i(tl5) thatk; < k, ]. Taking into account the small angles between the

In a fashion similar to the galaxy-galaxy-1ISW correlatitundsed
in section 4.1, we consider the three-point correlationveen
two galaxy density contrasts and one kSZ CMB anisotropy,

(29) give different lines of sight, as for the derivation of Eq.(29), the4in
gration overk, through the Dirac factor gives at leading order in

E3 =83+ &3 (46) the angles

with

dD
£ = [ b, )1, (DU ()l esz (1) g )
&3 = fdndnldnz Ly g, (171) Iksz,(112) fdkdk1dk2
xlnrnarsskenara) o (K0r ), (K7r) .
- () - - () % el[kﬂ(r—f2)+k¢'(0—02)f2+k1u(f1—f2)+k1¢'(91—92)f2]
XW@z(kzL r2)<69(k’ 77)5ql(k1, 771) pe1| )(kZ, 772)> (47) k“ + kJ_ . (02 _ 0)

x f dk;dk  dkydk1, We (K. r)We, (ky. F1)We, (K1, T2)

and X PLo(K )Py e(Kiy; 71, m2)i @ (51)
L We used Limber’s approximation to write for instarg(k) ~

&3, = i f dndn1dnz 1,(m)1y, (71) lksz, (m2) f dkdkidk Pro(k.), but we kept the factok; in the last term, as the trans-
Xe;(k-nr+k1-n1rl+k2.n2rz)\7v®(k(f)r)wel(k(lrll)rl) verse factok ; - (0, —0), due to the small angle between the lines

of sightn andn,, is suppressed by the small anile — 6|. We
again splittz; over two contributionsss; = 5'3"" + §§\|’ associated
with the factordg andk, - (6> — 6) of the last term. Let us first
(48) consider the contributioa'e"u. Writing ikjeki(=r2) = Zghra),
we integrate by parts over For simplicity we assume that the
where we split the longitudinal and transverse contrimgio galaxy selection functioh, vanishes at = 0,
to EQ.(29). Here{n,ny,ny} are the radial unit vectors that
point to the center$d, 6:,6,} of the three circular windows, l4(170) =0, (52)
a”d{('ﬂﬁn)’ k™), (k(lﬂl)’ k(lnf))’ (kgﬂZ)’ k(znf))} are the longitudinaland g that the boundary term at= 0 vanishes. Then, the integra-
transverse wave numbers with respect to the associatedhcenions overk; andky; give a factor (2)%6p(r — r2)dp(r1 - r2), and
lines of sight [e.g.kl(ln) =n-K]. we can integrate over andn;. Finally, the integration over the
The computation of the transverse contribution (48) is sinangles of the transverse wave numbers yields
ilar to the computation of the ISW three-point correlati@d)|

. . . k(znz) . *'glz)
XW, (K2r2)(5 (K, )3, (Ka, nl)j((zT(kz, ),
1

using again Limber’s approximation. At lowest order we dfta g—‘g” = —(27r)4fdn dﬂ [nggD] Igllkszzi—D
n U
_ (0-601)-(02-61),_ ., dinD 0o . . .
31 = 10— 611165 — 601 (271') fdnbglglgllkSsz—r] XL dk, dky W@(kLr)ng(khr)W@2(k1Lr)
x fo dk ez, kou W (k. )W, (kau )W, (1. 7) xkkl—iPLo(kL)Pgl,e(kn, 1) Jo(K 16 — 62
1
XPL(kJ_, 77) Pgl,e(kZJ_, 77)\]1(ka|0 - 01|) xJo(k1Lr|01 - 02|), (53)
XJ1(ko. 1162 — 64]), (49)

where Jg is the zeroth-order Bessel function of the first kind.

whereP,, . is the galaxy-free electrons cross power spectrum.For the transverse contributi@g‘| we can proceed in the same
The computation of the longitudinal contribution (47) refashion, without integration by parts owerThis gives

quires slightly more care. Applying the consistency relat(5)

. dD
gives f’in = _(%)AfdanlglgllkSZde_n
&y = - f dndn1dnz by ()1 (m)1g, (72) lksz, (172) X f dk, kg, We (K. )W, (ky.r)We, (Ku. )
0
x f dkdk;dk o We (Kr)We, (K1 1)We, (kI'r,) XK1y PLo(KL)Py,.e(Kis, 7)10 — 62| d1 (K, 1|6 — 62])
xJo(k1Lr101 — 62]). (54)

; dD
(nr-tky mury+konar) ab
x gmamnTE D () Pro(k) dy (72) Comparing Eq.(54) with Eq.(53), we fir;!g‘H/f'?',‘| ~ k.10 - 65].

If the cutaf onk, is set by the Bessel functions, we obtgghw
&), For very small anglef— 62| — 0, the cutd overk is set by
where we only kept the contribution that does not vanish aakq the angular windowV (k. r) or by the falldt of the linear power

times, as it dominates the integrals along the lines of s@d spectrunPo(k, ), andés, < fgu'

Na-K ~ ~
X i=5= (B, Gp(k + ki +k2),
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In contrast with EQ.(38), the kSZ three-point correlation, The application of the relations above is, unfortunately, a
given by the sum of Eqgs.(49), (53) and (54), does not vanentrivial task in terms of observations: to test thosetiwtes
ish for orthogonal directions between the small-scalersgjpmm one would require the mixed galaxy (matter) - free electrons
(61— 6,) and the large-scale separati@-@,). Indeed, the lead- power spectrum. One possibility would be to do a stackind-ana
ing order contribution in the squeezed limit to the respaufse ysis of several X-rays observations of the hot ionised gas by
(61p2) to a large-scale perturbatiohfactors out as§;16,2)v., measuring the bremsstrahlunieet. For instance, one could in-
where we only take into account the contribution that does rfer nenp,T~Y/2, by making some reasonable assumptions about
vanish at equal times (and we discard the finite-size smogthihe plasma state, as performed in Fraser-McKelvie et aL R0
effects). The intrinsic small-scale correlati@id,) does not de- with the aim to measum in filaments. We would of course need
pend on the large-scale modewhereasys, is the almost uni- to cover a large range of scales. For kpc scales, inside -galax
form velocity due to the large-scale mode, which only degenigs and in the intergalactic medium, one could use for irgtan
on the direction t&(6) and is independent of the orientation ofilicon emission line ratios (Kwitter & Henry 1998; Henryadt
the small-scale mod@{ — 6,). 1996). For Mpc scales, or clusters, one may use the SZ ef-

Because the measurement of the k&2@ only probes the fect (Rossetti et al. 2016). Nevertheless, all these pregap-
radial velocity of the free electrons gas along the line ghsi proaches are quite speculative at this stage.
which is generated by density fluctuations almost paradléhe
line of sight over which we integrate and are damped by this rg lusi
dial integration, the result (53) is suppressed as compaithd ~- Conclusions

the ISW result (38) by the radial derivatidn(b,l,D)/dn ~ |n this paper, we have shown how to relate the large-scale
1/r. Also, the contribution (53), associated with transvense-fl consistency relations with observational probes. Assgrtiie
tuations that are almost orthogonal to the second line bitsi§ standard cosmological model (more specifically, the equiva
suppressed as compared with the ISW result (38) by the sm@Hce principle and Gaussian initial conditions), nonzsgaal-
angleld — -] between the two lines of sight. times consistency relations involve the cross-corratatibe-

One drawback of the kSZ consistency relation, (49) and (53veen galaxy or matter density fields with the velocity, mome
(54), is that it is not easy to independently measure thexgalatum or time-derivative density fields. We have shown thas¢he
free electrons power spectruy, e, which is needed if we wish relations can be related to actual measurements by comsjder
to test this relation. Alternatively, Egs.(53)-(54) mayused as the ISW and kSZ ects, which indeed involve the time deriva-
a test of models for the free electrons distribution and tes< tive of the matter density field and the free electrons momen-
power spectruni®y, e. tum field. We focused on the lowest-order relations, whighyap
to three-point correlation functions or bispectra, beeaugher-
order correlations are increasinghfftBult to measure.

The most practical relation obtained in this paper is prob-
Again, from Egs.(49) and (53)-(54) we can directly obtaia thably the one associated with the ISWegt, more particularly

5.2. Lensing-lensing-kSZ correlation

lensing-lensing-kSZ three-point correlation, its cross-correlation with two cosmic weak lensing coneaige
S S AS N/ Stan .S s statistics. Indeed, it allows one to write this three-poinitrela-
£3(K° k1, Asz,) = (k(6) k1(01) Asz, (62)), (59) tion function in terms of two matter density field power spact

by replacing the galaxy kernelgl, andl,, by the lensing con- (linear and nonlinear), which can be directly measured (byg

is Qi _ I L\ two-point weak lensing statistics). Moreover, the reswhjch
vergence kemels andl,, . This givests = £, + &3 + & with 150 leading-order contribution in the squeezed limipveh

(0-61)-(02—-61),. ., dinD a specific angular dependence as a function of the relative an
§31 = 9610, — 6] (2n) fdn el lisz, == gular positions of the three smoothed observed statistiosn,
R G n both the angular dependence and the quantitative prediotio
3 i i vide a test of the consistency relation, that is, of the ejaivce
Xfo gk dhzs kou Wo (k. 1) Wo, (ko ) Wo, (kau ) principle and of primordial Gaussianity. If we considerteesd
xPL(Ky, 7)Pme(Ko, 7)J1(K. 1|0 — 64]) the cross-correlation of the ISWfect with two galaxy density
(Ko, 1162 — 61]), (56) fields, we obtain a similar relation but it now involves thexed

galaxy-matter density power spectri?y, and the large-scale
d dD (= galaxy bias,. These two quantities can again be measured (e.g.,
gg“ = —(2n)* f dny — [1,D] |, lksz,— f dk, dkq | by two-point galaxy-weak lensing statistics) and providetaer
dn dn Jo test of the consistency relation.
The relations obtained with the kS#ect are more intricate.

% % % ki,
X\N@(kir)WG’l(khr)W‘az(k“r)HPLO(kL) They do not show a simple angular dependence, which would

xPrme(Ke., 7)Jo(K. 110 — 02) Jo(ky. 161 — 62, (57) provide a simple signature, and they involve the galaxg-#lec-
trons or matter-free electrons power spectra. These pqveer s
and tra are more dficult to measure. One can estimate the free elec-
dD tron density in specific regions, such as filaments or claster
&G = —(2ﬂ)4fd77 |K|K1|ksz2Dd— f dk dky . through X-ray or SZ observations, or around typical streegu
- - - " Jo by stacking analysis of clusters. This could provide amesi?
XWe (K1) We, (K1) We, (K. ki1 Pro(K.) of the free electrons cross power spectra and a check of the co
XPme(Ki1,17)10 — 02| 31(K. 1|6 — 02])Jo(K1, 1|61 — 62]). sistency relations. Although we can expect significantréyans,

(58) it would be interesting to check that the results remain isteist
with the theoretical predictions.
This now involves the matter-free electrons cross powec-spe A violation of these consistency relations would signal ei-
trum Ppe. ther a modification of gravity on cosmological scales or non-
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Gaussian initial conditions. We leave to future works thevde
tion of the deviations associated with various nonstandaed
narios.
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