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1
Introduction

1.1 Context

With the rapidly increasing demand in Cloud computing services, the usage of data cen-
ters (DCs), increases dramatically [OAaL14]. Consequently, the global electricity part dedi-
cated to DCs’ consumption has reached unprecedented levels. In 2012, the number of data
centers worldwide was estimated at 509,147 consuming roughly the output of 30 nuclear
power plants [Gla12]. In 2016, another study estimates that worldwide the data centers use
91 billion kilowatt-hours of electricity – enough to power New York City twice over – and
their consumption is still growing rapidly [Res16]. This ever-growing electricity consump-
tion constitutes a major concern for DC operators.

Besides the ecological impact, the energy consumption is a predominant criteria for cloud
providers since it determines the daily cost of their infrastructure. As a consequence, power
management becomes one of the main challenges for DC infrastructures and more generally
for large-scale distributed systems [OAaL14].

In parallel to the expansion of cloud computing, since several years, a new model emerges:
decentralized cloud infrastructures [Ber+14]. To improve the performance of their cloud and
to leverage their available infrastructure, telecommunication operators, like Orange, try to
deploy micro data center (20 to 50 servers by micro-DC) at the network border, closer to
customers. In this new model, by deploying data centers closer to the user, cloud operators
aim at improving the response time and throughput of applications.

One way to save energy at a data center level consists in locating it close to where the
electricity is generated, hence minimizing transmission losses. For example, Western North
Carolina, USA, attracts data centers with its low electricity prices due to abundant capac-
ity of coal and nuclear power following the departure of the region’s textile and furniture
manufacturing [Gre]. In 2011, this region had three super-size data centers from Google,
Apple and Facebook with respective power demands of 60 to 100 MW, 100 MW and 40
MW [Gre] and these DCs are still in-use nowadays. However, such huge facilities repre-
sent only a small fraction of the global consumption of data centers. Indeed, small- and
medium-sized server rooms continue to account for nearly half the electricity consumption
of the market [WD14].

Other companies opt for greener sources of energy. For example, Quincy (Washington,
USA) supplies electricity to data facilities from Yahoo, Microsoft, Dell and Amazon with its

13



14 CHAPTER 1. INTRODUCTION

low-cost hydro-electrics left behind following the shutting down of the region’s aluminum
industry [Gre]. Several renewable energy sources like wind power, solar energy, hydro-
power, bio-energy, geothermal power and marine power can be considered to power up
super-sized facilities. The production variability of most renewable sources leads data center
facilities to only partially rely on them and to depend also on the the regular electrical grid
as a backup.

While using renewable sources bring new opportunities to reduce energy costs, reduce
peak power costs, or both [Goi+13], they are mostly intermittent and fluctuating over time
(sun, wind, etc.). These variations may lead to electricity losses if the computing workload
does not match the renewable production. Cloud infrastructures, on the other hand, can
take advantage of multiple locations to increase their green consumption with approaches
such as follow-the-sun and follow-the-wind [Fig+09]. As sun and wind provide renewable
sources of energy whose capacity fluctuates over time, the rationale is to place computing
jobs on resources using renewable energy, and migrate jobs as renewable energy becomes
available on resources in other locations.

From an energy point of view, these micro-data centers allow the study of new power
supply solutions based on renewable energy, like wind or sun. Using these renewable en-
ergy sources can reduce the operating cost but, unfortunately, this kind of energy stays in-
termittent by nature.

1.2 Problem Statement and Research Challenges

For the last decade, there has been substantial improvements in data center efficiency.
Much of the progress on efficiency has been made in the domain of facility and equipment.
For instance, Google and Facebook developed their own ultra-efficient server farms with
free cooling solutions. While the modern server has become more power-efficient, despite
massive state-of-the-art work to improve the power management of possessors, servers are
still far from pure power-proportional behavior. Indeed, an idle server can consume up to
50% of its maximal power [LWW07; FWB07; MGW09].

Little progress has been done in the field of server operation efficiency with regard to
server utilization. The server utilization represents the ratio between the physical resources
(e.g., CPU, RAM) consumed by processing load and the maximum server capacity [BH07].
Several studies show that the average server utilization – particularly, in term of average
CPU utilization – remains static around 12 to 18 percent [WK12; Sny10]. These idle or un-
derutilized servers are still consuming energy while most of the time doing little work. Vir-
tualization has been rapidly and widely implemented in modern data centers. This tech-
nology enables a single physical machine to run multiple isolated operating systems. This
also means that using fewer physical machines, one is able to handle the same quantity of
computational tasks. Yet, even with virtualization, that is broadly deployed in data centers,
the server’s average utilization is typically below 40 percent [WD14].

Integrating renewable energy into DCs is expected to be an important factor in the de-
sign of next generation of DCs. It can offset a part of energy consumed from traditional
supply (e.g. fossil fuel), thus reducing the carbon emissions. However, a major challenge for
employing renewable energy sources for DCs, such as solar and wind, is their variable and
intermittent nature. Unlike traditional energy sources that enable to provide a controllable
and steady power, the renewable energy is difficult to meet the workload power require-
ments. Another possible method for improving the effective utilization of intermittent and
fluctuating renewable consists in using energy storage devices (i.e. batteries) to store green
production surplus, and to use it during low production periods [Goi+13]. Typically for
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solar sources, energy can be stored during the day – if not fully consumed – and be utilized
during nights when there is no production. However, batteries have an inherent energy ef-
ficiency (their yield) that leads to energy losses. A framework for managing Infrastructure-
as-a-Service (IaaS) cloud resources of a single data center is needed to improve not only the
energy-efficiency, but also to give means for optimizing the utilization of renewable energy.

Our objectives are the following:
— investigating renewable energy integration into DCs;
— providing resource management algorithms to increase energy-efficiency and to op-

timize renewable energy consumption for a single Cloud DC;
— providing a framework making use of energy storage devices and resource manage-

ment algorithms for maximizing renewable energy consumption in a Cloud DC;
— validating this framework under realistic conditions.

1.3 Contributions

The main goal of this thesis consists in keeping a low fossil energy consumption level
in the data center, thus reducing the CO2 emissions. It starts by observing real traces of
solar power production that verifies the intermittent and variable nature of renewable en-
ergy. Another data analysis on trace of real-world server utilization from a small data center
demonstrates that the server average utilization stays in very low levels of use with regard
to CPU utilization. This analysis also shows that the server average utilization trend is less
variable than renewable energy that is intermittent by nature. Meanwhile, we find that part
of computational tasks present slack periods of time that enables to shift the computations
in time. According to these observations and analysis, we present our contributions in this
thesis as follows:

1. We propose a novel framework: oPportunistic schedulIng broKer infrAstructure (PIKA)
[LOM15] to save energy in small mono-site data centers. PIKA aims at reducing the
brown energy consumption (ie. from non-renewable energy sources), and improves
the usage of renewable energy without energy storage for mono-site data center. It
exploits jobs with slack periods, and executes or suspends them depending on the
renewable energy availability. By consolidating the virtual machines (VMs) on the
physical servers, PIKA adjusts the number of powered-on servers in order for the
overall energy consumption to match with the renewable energy supply.

2. Another approach for improving the effective utilization of intermittent and fluctu-
ating renewable energy consists in using batteries to store green production surplus,
and to use it during low production periods. Typically for solar sources, energy can be
stored during the day – if not fully consumed – and be utilized during nights when
there is no production. However, Energy Storage Devices (ESDs) have an inherent
energy efficiency due to different battery technologies that leads to energy losses. In
the second contribution [LOM17], we discuss both the opportunistic scheduling and
ESDs-based approaches for maximizing the usage of renewable energy in small and
medium data centers, and we propose a solution mixing both approaches.

3. Finally, inspired by previous works, we propose to leverage on-site renewable en-
ergy production in the different edge cloud nodes to make Internet of Things (IoT)
greener [Li+17]. Our aim is to evaluate, on a concrete use-case, the benefits of edge
computing regarding renewable energy consumption. We propose an analytic model
for deciding whether to offload computation from the objects to the edge or to the core
Cloud, depending on the renewable energy availability and the desired application
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Quality of Service (QoS), in particular trading-off between performance (response
time) and reliability (service accuracy).

This thesis has been done in the context of the EPOC project (Energy Proportional and
Opportunistic Computing systems, Labex CominLabs, http://www.epoc.cominlabs.
ueb.eu, 2013-2017).

1.3.1 Publications

Peer-reviewed journal papers:
— Towards energy-proportional Clouds partially powered by renewable energy

Nicolas Beldiceanu, Bárbara Dumas Feris, Philippe Gravey, Sabbir Hasan, Claude
Jard, Thomas Ledoux, Yunbo Li, Didier Lime, Gilles Madi-Wamba, Jean-Marc Menaud,
Pascal Morel, Michel Morvan, Marie-Laure Moulinard, Anne-Cécile Orgerie, Jean-
Louis Pazat, Olivier H. Roux, Ammar Sharaiha
Computing, Springer Verlag, volume 99, issue 1, pages 3-22, January 2017.

Peer-reviewed international conference articles:
— The EPOC project: Energy Proportional and Opportunistic Computing system

Nicolas Beldiceanu, Bárbara Dumas Feris, Philippe Gravey, Sabbir Hasan, Claude
Jard, Thomas Ledoux, Yunbo Li, Didier Lime, Gilles Madi-Wamba, Jean-Marc Menaud,
Pascal Morel, Michel Morvan, Marie-Laure Moulinard, Anne-Cécile Orgerie, Jean-
Louis Pazat, Olivier Roux, Ammar Sharaiha
International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), pages
1-7, May 2015, Lisbon, Portugal.

— Opportunistic Scheduling in Clouds Partially Powered by Green Energy
Yunbo Li, Anne-Cécile Orgerie, Jean-Marc Menaud
IEEE International Conference on Green Computing and Communications (GreenCom), pages
448-455, December 2015, Sydney, Australia.

— Balancing the use of batteries and opportunistic scheduling policies for maximizing
renewable energy consumption in a Cloud data center
Yunbo Li, Anne-Cécile Orgerie, Jean-Marc Menaud
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), pages 1-8, March 2017, St Petersburg, Russia.

— Leveraging Renewable Energy in Edge Clouds for Data Stream Analysis in IoT
Yunbo Li, Anne-Cécile Orgerie, Ivan Rodero, Manish Parashar, Jean-Marc Menaud
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
May 2017, Madrid, Spain.

— Towards energy-proportional Clouds partially powered by renewable energy
Nicolas Beldiceanu, Bárbara Dumas Feris, Philippe Gravey, Sabbir Hasan, Claude
Jard, Thomas Ledoux, Yunbo Li, Didier Lime, Gilles Madi-Wamba, Jean-Marc Menaud,
Pascal Morel, Michel Morvan, Marie-Laure Moulinard, Anne-Cécile Orgerie, Jean-
Louis Pazat, Olivier H. Roux, Ammar Sharaiha
Computing, Springer Verlag, volume 99, issue 1, pages 3-22, January 2017.

1.3.2 Dissertation organization

The rest of this manuscript is organized as follows.
Chapter 2 surveys recent green computing efforts to save energy at infrastructure level

in data centers. We highlight the different mechanisms at server level to save brown en-
ergy consumption, particularly with regard to power proportionality and energy efficiency.
We identify opportunities for further reducing data center energy consumption that relates

http://www.epoc.cominlabs.ueb.eu
http://www.epoc.cominlabs.ueb.eu
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to renewable energy integration. We then survey the technical landscape to increase the
renewable energy usage.

Chapter 3 presents the EpoCloud architecture from hardware to middleware layers: this
data center architecture has been designed within the context of the EPOC project. This
prototype aims at optimizing the energy consumption of mono-site Cloud data centers con-
nected to the regular electrical grid and to renewable-energy sources. Later in this chapter,
we describe a self-developed trace-driven simulator implementing this prototype and that
is used for parts of the experimentation done in this thesis.

Chapter 4 presents the proposed framework PIKA that consists of energy-aware oppor-
tunistic scheduling algorithms based on the distinction of two kinds of tasks (web tasks and
batch tasks) and that leverages renewable energy availability to perform opportunistic tasks
without hampering performance.

Chapter 5 presents an ESD-based approach for increasing the renewable energy utiliza-
tion. We distinguish the performance between opportunistic scheduling and ESD-only solu-
tion. A hybrid solution is proposed later in this chapter that intends to find a good trade-off
between these two approaches.

Chapter 6 advocates for leveraging on-site renewable energy production in the different
edge cloud nodes for greening IoT systems while offering improved QoS compared to core
cloud solution. We propose an analytic model to decide whether to offload computation
from the objects to the edge or to the core Cloud, depending on the renewable energy avail-
ability and the desired application QoS. This model is validated on our application use-case
that deals with video stream analysis from vehicle cameras.

Chapter 7 concludes and presents research perspectives.





2
State of the Art

2.1 Introduction

Cloud computing represents currently the most emphasized paradigm for providing and
managing the Information and Communications Technology (ICT) resources to the online
user. The basic concept of Cloud computing consists in making the distribution of comput-
ing resources in a large number of distributed computers, rather than the local computer
or remote server. Since its appearance, the demand for computing and storage resources in
data centers has rapidly grown, leading to a consequent increase of their energy consump-
tion. As an example, for 2010, Google used 900,000 servers and consumed 260 million watts
of electricity [Koo11]. Electricity becomes a key issue for deploying data center equipment.

Since the servers are among the primary energy consumers of data centers [SBD07],
many green proposals have addressed the problem of the server’s energy-efficiency. Dy-
namic voltage and frequency scaling that exploits server performance knobs is an example
of such proposals. Meanwhile, virtualization technology brings new opportunity for saving
energy. It enables processing multiple requests on the same server, thus making it possible
to run the workload on fewer servers by consolidation. In addition, using clean energy and
integrating renewable energy into data centers can result in further brown energy saving
and reduces dependency on traditional energy sources (e.g. fossil fuel).

The rest of this chapter is organized as follows. Section 2.2 provides an overview of
the energy consumption of different components in cloud data centers. The research ef-
forts of energy-efficient technologies are presented in Section 2.3.1 and energy proportion-
ality are presented in Section 2.3.2. Section 2.3.3 presents virtualization technologies for
energy-saving and formalizes corresponding optimization problems. Section 2.3.4 presents
the opportunity of integrating renewable energy for further reducing energy consumption.
Section 2.3.5 describes a novel cloud architecture that leverages renewable energy in edge
cloud data centers. Lastly, we summarizes this chapter in Section 2.4.

2.2 Data center: server, storage and network energy use

Cloud resources are gathered in data centers whose size depends on the activity of the
Cloud provider. A data center (DC) is a facility used to house tens to thousands of com-
puters and their associated components. These servers are used to host applications avail-
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able in the Internet, from simple web servers to multi-tier applications, but also some batch
jobs [MSJ14]. Besides the ecological impact, the energy consumption is a predominant cri-
teria for DC providers since it determines the daily cost of their infrastructure. As a conse-
quence, power management becomes one of the main challenges for DC infrastructures and
more generally for large-scale distributed systems [OAaL14]. In this section, we provide an
overview of DC energy consumption worldwide.

2.2.1 Data center types and components

In Figure 2.1, each segment represents the estimated energy consumption of data center
market based on the number of installed servers and infrastructure electricity consump-
tion [WD14]. Small- and medium-sized data centers account for nearly half the energy con-
sumption of the market; they are typically composed of less than 100 servers with a light
cooling system. Enterprise/Corporate data centers occupies 27 percent and multi-tenant
data centers for 19 percent of global data center electricity consumption; multi-tenant data
centers provide services to individual enterprises on a lease basis. The customers place and
manage their own equipment while the data center provider manages the infrastructure and
cooling facility.

Small- and Medium-Sized 
Data Centers

49.0%

Enterprise/
Corporate27.0%

Hyper-Scale Cloud Computing

4.0%

Multi-Tenant Data Centers

19.0%

High-Performance 
Computing

1.0%

Figure 2.1 – Estimated U.S. data center electricity consumption by market segment (data
from [WD14])

The energy consumption of hyper-scale cloud providers such as Google, Amazon and
Facebook, only occupies 4 percent of the global data center energy consumption due to their
aggressive deployment of energy efficiency mechanisms that lower their power bill. Finally,
the smallest segment within data center market is high-performance computing (HPC); it is
usually operated by universities and national research laboratories.

Inside the DC, the major energy consumer comprises IT (Information Technology) sys-
tems and cooling facilities. As shown in Figure 2.2, the servers can consume twice more
energy than cooling systems. The server utilization represents processing data on the server
relative to its maximum capacity. It directly affects the data center efficiency because the
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Server

46.0%

HVAC Cooling
23.0%

HVAC Fans

8.0%

Others

11.0%

UPS

8.0%

Lighting

4.0%

Figure 2.2 – Typical breakdown of the data center energy consumption (data from [SBD07])

server power efficiency drops dramatically when its utilization decreases [OAaL14]. The
server’s power consumption at average utilization is also relevant to its power-proportional
level. For instance, a server with a perfect power-proportionality means that it consumes
50% of server maximum power when the utilization is at 50%.

2.2.2 Energy consumption of computing, storage and network devices

This section relies on the data gathered for a 2016 study on United States data center
energy usage [She+16]. It explores the energy consumption of the different data center com-
ponents: the computing (servers), storage (disks) and network devices.

Figure 2.3 demonstrates the number of installed servers and the future trend from the
2016 study [She+16] classified according to the number of processors (1S and 2S+) and the
type of vendor (branded and unbranded, unbranded usually refers to the self-assembled or
original design manufacturer (ODM) servers). This study relies on three previous studies
covering the 2000-2020 period and which are used to determine the approximate lifetime
of servers: for 2006-2020, the server lifetime is about 4.4 years. Then the estimated annual
servers’ electricity consumption is shown in Figure 2.4 under the assumption that for each
server, its power consumption is a linear function of its utilization.

The installed base of data storage equipment’s estimate in terabyte (TB) is shown in Fig-
ure 2.5. This installed base is divided into solid-state drive (SSD) and hard disk drive (HDD)
storage categories [She+16]. It uses past installed data (2010-2014) while SSD accounted for
8% in 2012, and forecast shipment data (2015-2019) revealing that SSD would grow to 22%
by 2017.

The power consumption of traditional HDDs is usually higher according to per-disk
level and is rarely dependent on the capacity of the disk. Instead, the power consumption
of SSD units is more related to its capacity. Thus, it is more reasonable to convert both
HDD and SSD storage from capacity to number of drive units to estimate the future trend.
Based on industry feedback, HDDs should be able to provide a capacity of nearly 10TB per
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Figure 2.3 – Number of installed servers (data from [She+16])

Figure 2.4 – Total U.S. Annual Direct Server Electricity Consumption by Server Class (data
from [She+16])

Figure 2.5 – Total U.S. Data Center Storage Installed Base in Capacity (data from [She+16])
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drive unit in the future and SSD is assumed to reach an average capacity of 5 TB per drive
unit [She+16]. The estimated energy consumption of storage is shown in Figure 2.6. It shows
that the energy consumption of installed HDDs will continue to grow until 2018 and after, it
will begin to decrease, while the consumption of installed SSD will keep growing.

Figure 2.6 – Total U.S. Data Center Storage Electricity Consumption (data from [She+16])

The power consumption of network equipment is estimated by network port with dif-
ferent port speed [She+16]. The categories of network ports can be divided into four: 100
Mb, 1000 Mb, 10 Gb, and 40 Gb. The estimate per-port wattage are 1.4 W, 2.3 W, 3.6 W and
6.12 W for 100 MB, 1000 Mb, 10 Gb and 40 Gb ports respectively. The energy consumption
of network is estimated as the number of network ports and per-port power drawn for each
port speed, based on the historical and forested data: the trend is displayed on Figure 2.7.
Basically, lower speeds (100 and 1000 Mb), which are less efficient, should almost disappear
by 2020.

Figure 2.7 – Total U.S. Data Center Network Equipment Electricity Consumption (data
from [She+16])

As shown in Figure 2.8, the growth rate of data center energy consumption has slowed
down in recent years [She+16]. Server shipments experienced a five-year rapid growth pe-
riod with 15% annual growth rate from 2000 to 2005. From 2005-2010, the annual growth
rate fell to 5% probably due to economic recession and also because the energy efficiency
mechanisms started to be implemented in server, storage, network and infrastructure along
with virtualization techniques. After 2010, the growth rate drops to 3% and is expected to
stay stable by 2020.
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Figure 2.8 – Total Data Center Electricity Consumption (data from [She+16])

Through the examination of the power consumption share in DCs and the extrapolation
for future trends, this study show that despite energy-efficiency improvements, the overall
energy consumption of DCs will keep growing, and the server part will stay dominant.

2.2.3 Green metrics

In order to assess the energy-efficiency of data centers, several metrics have been pro-
posed in literature. Table 2.1 details several existing green metrics for data centers.

Metric Description Formulation
PUE Power Usage Effectiveness PUE = Total facility energy

IT equipment energy

CUE Carbon Usage Effectiveness CUE = Total CO2 emission
IT equipment energy

WUE Water Usage Effectiveness WUE = Annual site water usage
IT equipment energy

ERF Energy Reuse Factor ERF = Reuse energy
IT equipment energy

ERE Energy Reuse Effectiveness ERE = Total energy - Reused energy
IT equipment energy

DCiE Data Center Infrastructure Efficiency DCiE = 1
PUE

DCP Data Center Productivity DCP = Useful work
IT total facility power

ERP Energy-Response time Product ERPπ = E[pπ] · E[T π] 1

GEC Green Energy Coefficient GEC = Green power
Total facility power

Table 2.1 – Green metrics

The most widely used and industry-acknowledged metric for current data centers is the
PUE [Bel+08; Gre14]: Power Usage Effectiveness. Usually, a ideal PUE value is equal to 1.0:
this indicates that the energy consumed by IT equipment is same as the total facility energy.

The carbon dioxide emissions can be measured by their electrical equivalents (depending
on the energy source) and multiplied their local carbon factor. The Carbon Usage Effective-
ness (CUE) [Aze+10] is calculated through dividing the total carbon emission equivalents of
total facility energy by the total IT energy consumption. The CUE is described in kilograms
of carbon per kilowatt-hour. The lower CUE value indicates that lower carbon emission is
associated with the data center operations.

1. where E[Pπ]=average power consumed under policy π, E[Tπ]=mean customer response time under
policy π
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The water usage effectiveness (WUE) [ABP11] expresses water used for cooling and reg-
ulating humidity. Combined, the PUE, CUE and WUE allow the data center operators
to quickly evaluate the energy, carbon emission, and water aspects. While PUE has been
broadly adopted in the industry, the CUE and WUE constitutes less used extensions of the
xUE family.

The Energy Reuse Factor (ERF) [Pat+10] represents the ratio of the data center energy
that is reused in the facility (e.g., the form of warm water or warm airflow is considered as
a kind of reused energy) and the total energy consumed (including IT, cooling system, UPS,
lighting, etc.). ERF will range from 0.0 to 1.0. Energy Reuse Effectiveness (ERE) is based
on ERF, it is used for measuring the reusing heat generated by data center for other useful
purposes.

Data Center Infrastructure Efficiency (DCiE) [Ver+07; Bel+08] is a metric used to describe
the energy efficiency of a data center. DCiE is calculated by dividing the total power deliv-
ered to the server racks in the data center by total facility power. In addition, DCiE can be
showed as the reciprocal of PUE, where DCiE = 1

PUE .
Data Center Productivity (DCP) [Bel+08] refers to quantify the useful work in relation to

the energy it consumed. The data center is considered as a black box – the power goes into
the box and the heat out. Similarly, the data goes into the box and the result out of the box
– a net quantity of useful work has been done in this box. Energy-Response time Product
(ERP) [GAL16; Cer+16] is used to capture the trade-off between the performance and energy
consumption: a delay is occurred when the server switches from a sleep state to a functional
state, resulting in an energy cost.

Green Energy Coefficient (GEC) is a metric providing the ratio of the energy generated
by renewable sources over the energy production from all the energy sources. For example,
France, on November 2015 [GOM17], has a GEC of 0.14 as 14% of the energy use is sourced
from green providers 2 like solar, wind and hydro.

2.3 Energy saving approaches

In this section, we present recent efforts on reducing data center energy consumption.
These efforts generally address the problems of: energy efficiency, energy proportionality
and integrating renewable energy in DCs. The energy efficiency and energy proportionality
problems in particular concentrate on optimizing the energy consumption at the server level
(e.g., optimize processor used frequency, turn on/off the underutilized server). The solu-
tions of integrating renewable energy are mainly divided into without-battery approaches
(i.e., this relies on supply-following model with a classification of job types, their charac-
teristics enabling the workload to match the renewable energy supply) and with-battery
approaches (i.e., this simply stores the surplus energy from renewable energy supply into
battery for future use).

2.3.1 Energy efficiency

The Dynamic Voltage Frequency Scaling (DVFS) technology is widely implemented in
DC servers. It is an efficient mechanism that enables servers and other devices to increase/de-
crease dynamically the operating frequency and voltage. Mathematically, the dynamic power
consumption of processor [Bel+11] can be expressed as:

P =
1

4
αCV 2f (2.1)

2. http://www.rte-france.com/fr/eco2mix/eco2mix-mix-energetique
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where α is the value of switching activity and C is the capacitance, they are both physical
parameters that are determined by the system design. V represents the processor voltage,
and f corresponds to the clock frequency. Formula 2.1 illustrates that the power consump-
tion of processor is approximately proportional to its frequency and voltage[RTZ11; Riz+10].
However, there is no free lunch. Scaling down the processor voltage and frequency in or-
der to reduce the power consumption of the processor will lead to a performance degrada-
tion [WCC14].

Yao et al. [YDS95] propose an off-line job scheduling algorithm in which each job has
to be finished before its deadline by a single processor with variable speeds. In [IY98], T.
Ishihara et al. propose a model of dynamically variable voltage processor to optimize the
power-delay trade off. By determining the voltage scheduling for a given application, this
model is able to minimize energy consumption without missing its deadline.

In early researches, the proposed DVFS algorithms focused on minimizing energy con-
sumption while still meeting the deadlines. Quan et al. [QH01] present two off-line DVFS
algorithms to save energy. The first algorithm seeks the minimum constant speed needed to
satisfy each job deadline and shuts down the processor when it is idle, since the minimum
constant speed usually has a lower power consumption. The second algorithm builds on the
first one and integrates a global voltage schedule. The authors prove that the global voltage
schedule outperforms approaches that only uses the minimum constant voltage.

Hua et al. [HQ03] propose an analytic optimal solution and a linear search algorithm
for the dual-voltage system. The voltage set-up algorithm determines the optimal voltage
that minimizes the total energy consumption without missing the deadline of applications.
The authors also point out the hardware overhead cannot be ignored (e.g., the area and
power on the voltage regulators). When there are more than two voltages available, a linear
approximation algorithm is proposed for determining the optimal number of voltage lev-
els taking into account the hardware overhead. The experimental results demonstrate that
when the voltages are set up properly, the DVFS technique can reduce energy consumption
significantly.

Several studies have shown that a high temperature in the operation of data center leads
to a lower reliability of the servers and increase the cooling energy overhead. Cupertino et
al.[Cup+15] addressed the problem of energy-thermal efficiency of data centers. The authors
proposed a cooling model of data center to present cooling devices (chiller, fans) power
consumption, in terms of ambient temperature, inlet air room operation temperature and
partial load. More recently, Sun et al. [SSP17] studied the spatio-temporal thermal-aware
scheduling for homogeneous data centers. In their proposed scheduling algorithm, DVFS
is not only used to regulate the temperature of servers during their executions, but also to
maximize the throughput (i.e., minimize the makespan for high performance computing
applications), so as to optimize the energy consumption.

Although DVFS provides a way to control power consumption of the CPU, it still has lim-
ited effect on power consumption in comparison with the overall power drawn by servers.
Since an idle server consumes up to half of the maximal server power, the power propor-
tionality needs to be considered as an important issue for energy consumption.

2.3.2 Energy proportionality

When certain electronic components enter an idle state, Dynamic Power Management
(DPM) exploits this period and turns off these components to an inactive state in order to
reduce energy consumption. ACPI (Advanced Configuration and Power Interface [Ind])
specification provides an open standard which can be used to perform power management
of hardware components. It enables the server to switch its unused components such as
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processor physical cores and Ethernet cards to sleep-mode.
If the server is able to be switched-on/off dynamically, the effect on reducing power

consumption will be more obvious. Vary-on/vary-off (VOVO) policy reduces the aggregate-
power consumption of a server cluster during periods of reduced workload. The VOVO
policy switches-off servers so that only the minimum number of servers that can support the
workload are kept alive. Yet, much of the applications, such as web applications, running in
a data center must be online constantly.

Lin et al. adopt DPM schema in [Lin+13]. They consider that the servers are homoge-
neous in data center and a discrete-time model. The operating costs and switching costs are
both taken into account for optimizing the data center energy consumption. The operation
costs model the cost incurred by an active server and the switching costs represent the cost
to toggle a server into/out sleep mode. The authors propose an online algorithm called
Lazy Capacity Provisioning" (LCP) to dynamically adjust the number of active servers to
meet the current system requirements. The results show that LCP guarantees that the cost
is not larger than 3 times more than the optimal solution and LCP algorithm is proved as 3-
competitive (i.e., an algorithm is n-competitive means that the cost of algorithm is less than
n times of the cost of optimal offline solution).

Gandhi et al. [Gan+09] investigate the problem of finding the optimal power allocation
for a server farm so as to get maximum performance with a fixed power budget, by using the
optimal frequencies of servers. The authors employed DFS (Dynamic Frequency Scaling),
DVFS (Dynamic Voltage and Frequency Scaling) and DVFS+DFS for various workloads to
measure the effects of CPU frequency scaling on power consumption of a single server. The
experimental results show that the power-to-frequency relationship is linear for DFS and
DVFS when the workload is CPU bound and a memory bound workload is usually cubic
and the relationship for DVFS+DFS is always cubic. Meanwhile, the arrival rate, the max-
imum speed of a server, the total power budget also affect the the mean response time for
a server farm. They propose a queuing theoretic model to predict the mean response time
that is used to determine the optimal power allocation. In their later work, they propose a
class of Distributed and Robust Auto-Scaling (DRAS) policies to optimize power manage-
ment for computationally intensive server farms. DRAS policies aim to lower the power
consumption and to maintain a near-optimal response time. The key idea of DRAS policies
consists in dynamically adjusting the server farm capacity to meet the incoming demand.
The experimentation uses Intel’s LINPACK [Cor] workload and a 20-servers test-bed. The
results show that waiting for some time (with the best settings in DRAS) before turning-on
and off servers can reduce power consumption by as much as 30% while increasing by 4%
the response time.

Niyato et al. [NCS09] propose an optimal power management (OPM) of a batch sched-
uler for an individual server farm. The OPM aims to minimize the power consumption of
the server while meeting the performance requirement. It observes the state of a server and
dynamically switches the operation mode of the server (i.e., active or sleep) in order to re-
duce power consumption. The optimization problem of OPM is formulated as a constrained
Markov decision process (CMDP) and solved by transforming it into a Linear Programming
(LP) problem. The authors also study the problem of job assignment to multiple server
farms, ensuring the power consumption and network costs are minimized. The numerical
results show that with OPM, the performance in terms of job waiting time and job blocking
probability are met while the power consumption is minimized. However, although dy-
namic switching on and off unused server can further reduce the energy consumption, such
operations may bring several inconveniences.

Besides, Orgerie et al. [OLG08] point out that if the interval between two operations (i.e.,
switch on and off) is too short, this kind of operations becomes unnecessary and should be
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avoided. They propose the Energy Aware Reservation Infrastructure (EARI) framework that
alternatively switches on and off servers in a clever way. Similar approaches can be found
in the mobile computing community [BBDM99; Che+07; KR07] where in order to reduce
energy consumption a server can be left purposely idle for a bit of time before turning it off,
thus avoiding some unnecessary operations (i.e. re-turn on or off).

Finally, Villebonnet et al. [Vil+14; Vil+15] propose a platform including two different
physical architectures (i.e. ARM and x86) in order to archive better energy proportional-
ity. Their purpose is to select the most suitable architecture to execute the application taking
into account the hardware’s energy consumption. Particularly, the x86 architecture is more
powerful than ARM, it is usually used to execute the applications which have higher re-
quirements on performance. In contrast, the ARM processor Cortex-A15 is much less pow-
erful compared with x86 processor, but its energy consumption is pretty low. Thus, once
the performance demand of application is reduced, the applications can be migrated to the
ARM architecture to save energy.

2.3.3 Virtualized Infrastructure for Cloud Computing

The technique of virtualization has fast become a fundamental technology in cloud data
centers. Relying on virtualization technology, a physical machine (PM) can be disaggregated
in many virtual machines (VMs). In other words, it enables to run multiple operating sys-
tems on a single server. Each operating system is running inside a virtual machine which
contains part of the server resources. Virtualization can reduce the energy consumption of
data center - less servers to host, less cooling to pay for, and higher energy efficiency. In an
Infrastructure as a Service (IaaS) cloud, the server allocates amounts of resources to a VM at
creation time and these amounts can be expressed with relative values (i.e. a fraction of the
capacity of CPU/RAM and etc.)

Packing heuristics

To save energy in a single data center, a common goal is to reduce the number of powered-
on PMs (ON PMs). In cloud computing, each job has a size that is represented by virtual
machine’s resource requirements. A job is assigned to run on a server. Each PM has a fixed
resource capacity and the sum of actual resource requirements of all VMs on a server can-
not exceed its capacity. A reasonable VM placement algorithm can effectively use server
resources and reduce the number of used servers. e.g., More VMs can be placed on a single
server than before. The VM placement problem is typically modeled as a n-dimensional
bin-packing problem. The n represents the number of needed constraints.
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As shown in Figure 2.9, a classic 2-dimensional bin packing problem can be seen as: how
to place more bins with different sizes into a box with a fix size. Figure 2.10 demonstrates the
difference between the classic 2-dimensional bin packing problem and VM packing problem.
First, the global objective of both is to place as more bins as possible into the box. Then,
in 2-dimensional bin-packing problem, the size of each bin is represented by the area of a
rectangle. The problem becomes to minimize the remaining area of box (the green part). In
VM packing problem, it takes into account for the side length of each rectangle (VM) instead
of area, the sum of sides of all the rectangles can not exceed the length of box.

Hereafter, we list three classical heuristic algorithms to deal with the VM packing prob-
lem which consider a sorted list of PMs:

— First-Fit (FF): the FF approach is allocating to the first server portion which can accom-
modate the job resource requirements. FF finishes after finding the first suitable free
portion. For allocating each job to a server, it begins to search from the first element
of list.

— Next-Fit (NF): NF is a modified version of FF. It begins as FF to seek a free portion.
When NF is called the next time, it starts searching from a server in the list from the
previous allocation position, instead of searching from the beginning of list as FF.

— Best-Fit (BF): the BF deals with allocating the smallest free portion which meets the
requirement of the job. This algorithm first searches the entire list of free portions and
considers the smallest portion that is adequate. It then tries to find a portion which is
close to actual job resources requirements.

Figure 2.11 – Next-fit, First-fit, Best-fit

These three heuristics are illustrated on Figure 2.11. The classic bin packing problem aims
to place a fix amount of items into a minimum number of bins. As mentioned in [CK99], the
classic bin packing (BP) problem is proved to be an NP-hard problem. An online BP is
different compared to an offline BP problem, it does not have any knowledge of subsequent
items when it places an item. Usually, The competitive ratio [BEY05] is used for measuring
the performance of online algorithms. It represents the ratio between the result of worst-case
and optimal solutions.

Dynamic bin packing (DBP) is a branch of the classical bin packing problem. It assumes
the items may arrive and leave at any time. An item is assigned upon arrival and it cannot
move from one bin to another after it has been assigned. Li et al. [LTC14; LTC16] analyze
the competitive ratios of Best fit and First fit scheduling algorithms. The authors prove that
the competitive ratio of Best fit packing is not bounded for any µ where µ is the ratio of the
maximum duration of an item to the minimum duration of an item. For first fit packing, it
has a competitive ratio bounded above by 2µ + 7. In particular, their works indicate that
First fit packing can achieve a better upper bound of β

β−1
· µ + 3β

β−1
+ 1 on competitive ratio

while all the item sizes are strictly smaller than 1
β

of the bin capacity (β > 1 is a constant).
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Ren et al. [Ren+16] prove Next fit packing has an upper bound 2µ + 1 on the competitive
ratio and a new upper bound µ + 3 of First fit packing. Obviously, the First fit packing is
better than Next fit packing when µ > 2. The authors also indicate First Fit packing is near
optimal for the DBP problem.

It is difficult to find an online solution which can always ensure that the result is optimal
or near optimal. An alternative choice consists in using the existing heuristics (described
above) to solve this kind of problems. Although it cannot always offer a perfect and stable
performance, these greedy heuristics are simple and efficient features are often applied to
online algorithms.

Meng et al. [Men+10] leverage VM multiplexing to improve resource utilization in cloud.
The authors introduce an SLA model and a joint-VM sizing algorithm to calculate the capac-
ity needs for consolidating VMs. A VM selection algorithm is proposed to find the VMs with
the most compatible demand patterns. The selection algorithm first builds a correlation ma-
trix [DHS12] for a set of VMs based on the historical or demand behavior of each VM. Then,
the correlations are used as indicators for distinguishing the compatibility among VMs. The
principle of VM multiplexing is used to consolidate the VMs to increase the resources uti-
lization when the utilization of VMs are temporally unaligned. The results show that these
solutions improve more than 45% resource utilization.

Khosravi et al [KGB13] investigate the problem of VM placement to reduce computing
energy consumption and carbon footprint. The authors propose energy and carbon-efficient
(ECE) architecture which is based on distributed data centers. The different locations of
distributed data centers have different carbon footprint rates and PUE values. The proposed
centralized-based global broker places each VM request in the most suitable data center with
taking into account energy efficiency and carbon footprint parameters. Simulation results
show that ECE saves between 10% and 45% of carbon footprint compared to three other
heuristics.

As multiple-dimensional bin-packing problem is NP-hard problem, genetic algorithms
(GA) based on evolutionary theory can been adopted as a way for addressing the VM place-
ment optimization problem. Tang et al [Wu+12; TP15] propose a hybrid genetic algorithm
(HGA) for the energy-efficient VM placement problem. The HGA extends the GA, it uses a
repairing procedure to migrate the VMs from the current server to other servers until all the
constraint violations are resolved. Meanwhile, a local optimization procedure is designed
in the HGA to accelerate the convergence speed. Compared with the original GA, the re-
sults show that HGA has better exploitation capacity and convergence speed. Similarly,
Wang et al [WWZ12] use a modified genetic algorithm to solve the energy-efficient multi-job
scheduling problem.

Making advantage of live migration

Placing several VMs on a single PM can provide better use of PM resources. Consolidat-
ing VMs to fewer PMs enables to switch off some underutilized servers. Clark et al. propose
to employ live migration of VM [Cla+05] as it allows to migrate a running VM from one PM to
another and guarantees that VM performance does not degrade excessively during the mi-
gration. The principle of live migration is to transfer the VM’s memory state from the source
PM to the destination PM without stopping the execution of VM in pre-copy way [TLC85].
The memory pages are iteratively copied to the destination PM, a set of pages which is mod-
ified frequently is called dirty pages. Thereby, the VM has to be paused for a short time while
copying all the dirty pages to the destination. Then the VM is resumed on the destination
side.

In general, the VM migration can be divided into three phases:
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1. Push phase: the VM on the source PM keeps running and the memory pages are
repeatedly copied to the destination over the network. The dirty pages must be re-
transferred iteratively during this phase.

2. Stop-and-copy phase: the source VM is stopped and the CPU state and any remaining
memory pages are transferred to the destination, then the destination VM is executed.

3. Pull phase: if the destination VM found that it misses any memory pages, the source
VM then transfers these missing pages.

As shown in Figure 2.12, Deshpande et al proposed a system for parallel live migration
of multiple VMs across racks. The system exploits deduplication of VMs’ memory images
during multiple VM migrations in order to reduce the amount of data transferred over the
network, thus saving energy. The results show that this system can reduce by up to 44% the
network traffic load and by 27% the total migration time in comparison with the default live
migration technique in QEMU/KVM.

Figure 2.12 – Architecture of inter-rack live migration [DKG12].

The electricity price vary over time and across different locations, several prior stud-
ies [Liu+15; Rao+12; Yao+12; Guo+11; Pol+14; XL12] explore the opportunity of schedul-
ing the jobs in multiple geographically distributed data centers. Polverini et al. [Pol+14]
proposed a provably-efficient online algorithm which migrates computation across the geo-
graphical locations and employs real-time electricity prices.

Since in Cloud environments, each job has different arrival time and lifetime, the static
VM placement algorithm is no more satisfying for the dynamicity of the system. It necessi-
tates adequate optimization operations to adjust the number of ON PMs in the current sys-
tem. The dynamic VM consolidation techniques have now been widely employed in mod-
ern data centers as they enable the data center to decrease the number of ON PMs [OAaL14].

As shown in [LWW07; FWB07; MGW09], an idle or underutilized server consumes nearly
50% of total server power. The study [BH07] shows that the average utilization of servers
in data center are roughly between 10% and 50%. It is crucial to reduce the number of un-
derutilized or idle servers to improve the data center energy-efficiency. On the purpose of
switching-off several underutilized servers, the cloud resource manager needs to consoli-
date the workload into less servers.

Hermenier et al propose a constraint-programming based approach [Her+09], called En-
tropy, for consolidation for homogeneous clusters. Entropy mainly focus on solving the
problem of VM placement and the problem of VM migration to reduce the use of physical
machines. Entropy first computes a placement plan which aims at optimizing the number
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of used physical machines. It then takes into account the migration overhead for consolida-
tion to improve the plan and check the plan’s feasibility, where the number of migrations
required is decreased. The two phases are based on constraint solving [RVBW06; BJO13].
The first phase takes into account the VM CPU and RAM constraints and the second phase
is based on sequential constraints and cyclic constraints. Their results show that Entropy
can reduce by 50% the energy consumption of clusters as compared to static allocation.

Verma et al [Ver+09] analyze the server workload from a large data center. A number of
characteristics relevant for semi-static (days, weeks) and static (monthly, yearly) consolida-
tion is investigated. The study shows that there is a significant potential for energy savings
if consolidation uses off-peak metrics for applications demand. The authors indicate that
there is a strong correlation between applications and different hosted servers. The pro-
posed correlation-aware consolidation method Peak Clustering based Placement (PCP) that
takes into account the off-peak metrics can achieve energy savings and low SLA violation
across powered-on servers.

Beloglazov et al [BB10a] propose an adaptive threshold-based dynamic server consol-
idation framework to ensure a high level of meeting the SLA. T-distribution is used for
modeling the distribution of the server’s utilization. Using statistical analysis of the histor-
ical data collected from each VM and the inverse cumulative probability function for the
t-distribution enables the framework to auto-adjust the upper and lower utilization thresh-
olds for each server. The idea of setting the lower utilization threshold is to migrate some
VMs to other servers and switch-off the under-utilized server when the server’s utilization
lower threshold is violated. If the server utilization exceeds the upper threshold, some VMs
are migrated from the server to others to avoid potential SLA violation. The VM placement
problem is modeled as bin packing and exploit a Modification of the Best Fit Decreasing
(MBFD) algorithm in order to solve the problem. The experimental results demonstrate
that the proposed technique can reduce energy consumption and maintain the level of SLA
violation < 1%.

Chaisiri et al [CLN09] assume that every cloud provider offers two payment plans (i.e.,
reservation and on-demand plans) for users. Initially, the price in reservation plan is cheaper
than on-demand plan. If the amount of reserved computational resources is not sufficient
to meet the real-time demand, the user can buy additional resources in on-demand plan.
The problem is formulated as a stochastic integer programming (SIP) to optimize the trade-
off between the two plans and to minimize the number of used servers. The proposed VM
placement algorithm solves SIP with two-stage recourse. Speitkamp and Bichler et al [BSS06;
SB10] investigate the problem of server consolidation on using linear programming (LP) for-
mulations. The authors formulate the problem as Static Server Allocation Problem (SSAP)
and prove SSAP is strongly NP-hard. They propose SSAPv (i.e., v = with variable work-
load) model and design extension constraints for allocating VMs onto a set of servers, that
ensures each VM is assigned to a target server without exceeding server’s capacity and lim-
iting the number of migrations so as to minimize the server cost. As NP-hard is hard to
solve in polynomial-time, they propose an LP-relaxation-based heuristic to solve the linear
programming formulations.

Meta-heuristics

Meta-heuristics have also been employed to solve the energy-efficient VM placement
problem. Feller et al [FRM11] propose a dynamic workload placement algorithm based on
the Ant Colony Optimization (ACO) meta-heuristic, to solve the workload consolidation
problem. In their study, the VM placement problem is modeled as a multi-dimensional bin-
packing (MDBP) problem. They propose a probabilistic decision rule that is used to guide
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the ants choice towards the optimal solution. In each iteration of ACO, the ant chooses the
VM with highest amount of pheromone and an heuristic information is employed to place
the VM on the current server.

Pacini et al propose a particle swarm optimization (PSO) [PMGG14] scheduler to allocate
VMs to servers under the IaaS model. In PSO approach, a VM is seen as a bee and a server
corresponds to a space in a field of flowers. The density of flowers in the field represents the
load that refers to total CPU utilization of servers (e.g. a lower density of flowers means that
this server has more available resources). The results demonstrates that the PSO scheduler
yields a better balance between throughput and response time than some simpler policies
such as random policy. It also requires higher CPU, RAM and network usages in PSO thus
leading to higher demands for energy. In addition, the authors also investigate the perfor-
mance in terms of serviced users and created VMs when using the priority-based policy at
the VM-level.

Over-commit resources technology

The above proposals investigate the bin packing problem to save energy by switching
off unused resources. Another recognized reason of wasting the server resources (e.g., CPU
and RAM) is due to lower VM resource utilization. Recent studies show that data center
servers’ average utilization are between 10% and 50%. As mentioned in [BH07], an idle
or underutilized server consumes nearly 50% of total server power. A classical approach
consists in running a fix amount of jobs using less servers thus optimizing the energy con-
sumption of the data center. The resource over-commitment technique can directly increase
the resource utilization of servers to optimize their energy-efficiency. Over-commit resource
technique allows the broker to allocate VMs with a total configured resources, such as CPU
and RAM, to the servers that exceeds their actual capacities. It allows servers to place more
VMs than permitted. Consequently, it increases these servers’ resource utilization and re-
duces the number of powered-on servers. However, over-commit resources technique may
lead to servers overloading. Because the resource requirement of VMs placed on the server
exceeds the server’s available capacity, the VMs actual resource utilization varies with time
and potentially increases the risk of server overloading. As a result of server overloading, it
implies performance degradation of the VMs which are executing on this server. The over-
loading servers then need to migrate some of their VMs to other underutilized servers. The
more the resource requirement of VM exceed the servers’ capacity, the larger the probability
of overloading. Further, it potentially increases the number of VM migrations that leads to
an additional energy overhead.

In [Zha+12], Zhang et al. propose an online migration algorithm, called Scattered, to
minimize migrations in the context of over-committed cloud environments. When a server
is overload due to an aggressive resource over-commitment, Scattered measures the corre-
lation between VMs and selects the best VM to migrate to the appropriate target server. The
simulation results show that Scattered can maximize the number of over-committed VMs
and reduce the number of migrations.

Ghosh et al. [GN12] study the risks associated with over-commit resources techniques.
The authors present a statistical approach to quantify the risk of server overloading due to
the fact that the VMs exceeded the capacity of allocated server. They determine the pre-
dicted upper bound on aggregate utilization by leveraging the one-sided upper tolerance
limit [Gor+11]. The risk of exceeding server’s capacity is then defined as the relative differ-
ence between the predicted upper bound and the set threshold (i.e., the value of empirical
probability).

In [Dab+15a; Dab+15b], Dabbagh et al. propose an efficient resource allocation frame-
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work for over-committed clouds to reduce the number of active servers while the migration
overhead is minimized. On one hand, the predictor in this framework based on Wiener filter
prediction approach predicts VM resource utilization, and takes resource over-commitment
decisions to increase server utilization. On the other hand, the predictor predicts that the
server will be overloaded due to over-commit resources and prepares to trigger VM migra-
tions in advance to prevent SLA violations. The VM migration problem is formulated as as
an integer linear program (ILP) and solves this problem by using fast heuristic with taking
into account both the VM migration overhead and the server operating overhead. The ob-
tained results show that the proposed heuristic uses less active servers and decreases the
total migration overhead, thus reducing the amount of energy.

Over-commit technology allows to allocate a given amount of resources for more ap-
plications. However, while too many resources are committed, the resources consumed by
applications may exceed the server’s capacity, and it can result in a crash of this server.
Hence, it is desirable to avoid committing too many resources in order to decrease the prob-
ability of crash, it refers to the practice of giving out an upper bound on virtual resource
over-commitment.

2.3.4 A little more green

In today’s world, the environment and climate change is a major topic of concern. Par-
ticularly, the global warming problem indicates an increase in the temperature of the atmo-
sphere close to the Earth’s surface. Burning fossil fuels, and subsequently CO2 emissions,
warm up the planet.

Exploiting renewable energy

The sun is one of the most promising clean energy technology, as it does not cause en-
vironmental pollution and it is inexhaustible by nature. Besides, renewable energy in the
world has grown strongly in recent years. One reason is the solar-power generation effi-
ciency significant increase. It enables the small-/medium-scale data centers to generate their
own renewable energy [BCT16]. Thus they become self-sustainable and allow to reduce the
fossil fuels (brown energy) consumption. As a consequence of the renewable energy success,
the cost of producing green energy is becoming cheaper than brown energy [SS09; Goi+11].
The direct result is that the cost for the cloud users to accomplish their tasks in this kind of
data centers is falling in a similar way when renewable energy is available [BCT16].

Unlike traditional infrastructures where energy sources are controllable, integrating re-
newable energy into a data center becomes difficult due to its intermittent and variable na-
ture. Solar energy is considered as an admissible renewable source as solar panels are easy
to install, they present a reasonable efficiency and the variations in their electricity produc-
tion are not too abrupt (as for wind) [Goi+13]. Usually, most electricity generated by solar
panels is during the day and its peak power always near the midday.

Goiri et al. [Goi+11] propose a parallel batch job scheduler called GreenSlot for a single
data center partially powered by green energy (e.g., solar energy). The system assumes that
there is no batteries and that conventional energy (e.g., brown energy which usually refers to
fossil fuel energy) is only consumed when green energy is unavailable. GreenSlot is based
on predictions of the availability of solar energy in the near future [Sha+10], it schedules
jobs to maximize the utilization of solar energy without missing their deadlines. While the
solar energy is not available, the scheduler switches to brown energy from the regular grid
to avoid deadline violations. Furthermore, the scheduler selects the period when the elec-
tricity is cheaper than the other time period. One of the most valuable contribution here is
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the testbed: the authors have built a prototype solar-powered micro-data center called Para-
sol [Bia+12] at Rutgers University, United States. Parasol comprises a small container and
a set of solar panels. It also enables the users to monitor the power consumption of the in-
frastructure and to quantify how much energy is consumed from each available source. The
results demonstrate that the data center reduces significantly brown energy consumption by
implementing GreenSlot, compared to a baseline scheduler. In their recent work [Goi+12],
Goiri et al. have proposed a MapReduce framework GreenHadoop for a data center partially
powered by solar energy. Greenhadoop predicts the amount of solar energy in near future
to schedule the MapReduce jobs in order to maximize the use of solar energy. When the so-
lar energy becomes unavailable, GreenHadoop takes into account the price of brown energy
and schedules the jobs during a cheaper time period. The experimental results show that
GreenHadoop is able to increase the utilization of green energy and minimizes the electricity
bill.

As the companies and individuals are inclined to move their workloads to the cloud,
Haque et al [Haq+13] point the way of quantifiable green cloud services for environmentally
conscious clients. GreenSLAs are proposed for this demand: it provides users the percentage
of renewable energy used to run their workloads. The authors assume that the racks which
provide GreenSLAs services are controlled by software. These racks can dynamically switch
between the green and mix power supply (green and brown power). In particular, each job
is submitted with an expected GreenSLAs value that represents the minimum percentage
of green energy for completing the job. The providers decide to accept or reject the job
depending on the computing capacity and green energy availability.

Supply-following load approaches

Some works [Bro+10; Kat+11] have studied the supply-following electric load approach
where the electric load is scheduled depending on the availability of green energy supply.
Unlike the previous work, Krioukov et al [Kri+11] propose an alternative model of supply-
following loads for integrating renewable energy into data center. They investigate the prob-
lem of matching the variable and intermittent green energy with the workload energy de-
mand. In their proposed load-following supply approach, loads can consume electricity
while the green energy supply is available and not otherwise. A workload is adapted for
this approach: it must have a large scheduling slack [Kat+11] and it can be suspended or re-
scheduled. The slack enables the energy consumption of workload to align with the variable
green energy supply. The simulation is based on real-world traces (batch job traces from a
cluster of 576 servers at UC Berkeley and wind power data from the National Renewable En-
ergy Laboratory (NREL) database). The results show that supply-following job schedulers
can increase by 40-60% the green energy consumption in their use-case.

Unlike the supply-following loads approach, Zhang et al [ZWW11] address the problem
of scheduling the jobs across multiple geographically distributed data centers. The pro-
posed middleware system GreenWare takes into account the time-varying electricity prices
and the ratio of green energy among the geographically distributed cloud data centers for
scheduling the jobs. The geographical locations enable the Internet service operators to get
the peak power limit and availability of green energy of each data center. Benefiting from
this information, GreenWare seeks the data center which has maximum green energy ratio or
cheaper electricity cost. The authors model the request dispatching problem as a constrained
optimization problem and solve it by using a linear-fractional programming (LFP). The ex-
perimental results demonstrate that GreenWare is able to maximize the use of green energy
within a desired cost budget. However, when scheduling jobs far from the costumers, it may
lead to an increased latency caused by the limited speed of telecommunication networks.
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More recently, Chen et al [CHT12] have proposed a holistic workload scheduling algo-
rithm MinBrown for distributing jobs among data centers in different geographical locations.
Different from the work of GreenWare, the objective of MinBrown focuses on minimizing the
total use of brown energy in all the data centers and ensure each job meets its QoS require-
ments (e.g., response time). The scheduling algorithm MinBrown considers the connection
between green energy and the outside temperature of location. Further, it allows the jobs to
move to other data centers via VM migration when the green energy is not available at the
current location. Their studies have demonstrated that the combined green-/cooling-aware
optimization can achieve up to 40% reduction in the brown energy consumption.

Storing and producing green energy

The intermittent and variable nature of green energy sources make them difficult to man-
age and control. Apart from the supply-following loads approach, the energy storage de-
vices (ESDs, typically re-chargeable lead-acid batteries) can be seen as an another solution
for green energy integration. ESDs are able to smooth out variations in energy generation.
In this scenario, ESDs are used to store the surplus green energy production and to use it
while the green energy supplies become unavailable. As the purpose of batteries is to store
electrical energy in the form of chemical energy into battery and to convert that energy into
electricity for later use, there is an inevitable loss of energy due to the chemistry nature of
batteries. Ghiassi-Farrokhfal et al [GFKR15] investigate the performance of ESD-based sys-
tem with different types of batteries. The energy can be seen as a continuous-time and fluid
stochastic process [Wan+12b]. The authors first build a general model (non-ideal and ideal)
for a class of non-ideal ESDs that includes all battery technologies. Employing stochastic
network calculus enables this model to compute the analytic performance bounds on loss of
power and waste of power probabilities due to the non-ideal ESD behavior or limited ESD
size. The experimental results shows that the performance bounds relying on numerical
simulations are quite close to the analytic performance bounds. The authors also use this
model to evaluate the performance of various ESD technologies with their unique charac-
teristics via simulations.

Photovoltaic (PV) cells convert the sunlight into DC electricity, the output is depending
on the temperature and uniform irradiation. Due to the low conversion efficiency (13% 19%)
of current solar cell technologies, maximum power point (MPP) [LH11] is usually used to
describe the maximum output power of PV array. Li et al propose SolarCore to exploit
green energy on using PV array for multi-core processors-based servers. The authors built
PV equivalent circuit models to present the MPP with taking into account both the various
insolation and temperature conditions. Each core uses on-chip voltage-regulator module
(VRM) to perform per-core DVFS [Kim+08]. Per-core DVFS enables SolarCore to manage
the power consumption of cores at a fin granularity to match the PV power output. Based on
throughput-power ratio (the throughput speedup of a processor), SolarCore selects the most
adaptive cores to meet the power budget. By applying load optimization and extracting
additional solar energy, SolarCore yields 43% better performance than a fixed-power control
scheme in terms of both green energy utilization and workload performance.

2.3.5 Novel cloud architectures

Distributed Clouds and Internet of Things

Nowadays, most of cloud providers implement their commercial clouds in large-scale
data centers and operate them in a centralized fashion. Although they enable to achieve high
performance computing ability and manageability, a powerful cooling system is needed to
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lower the temperature of this large infrastructure equipment. Yet, the cooling system is
expensive and consumes huge amounts of energy. Instead, previous work [CGH08] point
out that small-size data centers have numerous advantages compared to large-scale data
centers. First, small size data centers limit the amount of heat-dissipation and it can thus
be more easier to manage. Then, smaller power consumption usually uses smaller power
supplies and lower heat-dissipation overhead, which also reduces the cost and area of in-
frastructure equipment. Further, a small-scale data center is more suitable to build highly
geographically distributed infrastructures.

Besides, a new model emerges: decentralized cloud infrastructures [Ber+14]. Cloud
providers expect to improve the performance of their cloud and to leverage their available
infrastructure. Indeed, telecommunication operators, like Orange, try to deploy micro data
centers (20 to 50 servers by micro-DC) at the network border, closer to customers. In this
new model, by deploying data centers closer to the user, the response time would greatly
improve. This dissertation focuses on a small-/medium-sized data centers as they continue
to keep increasing their share of the market. Placing computing and storage nodes at the
Internet’s edge has grown more and more popular in the recent years. These nodes are
often placed in a small data center which is near mobile devices. In particular, edge comput-
ing [Sat17] enables to provide response time-critical cloud services for users.

The development of IoT (Internet of Things) community, the popularization of mobile
devices, and emerging wearable devices bring new opportunities for context-aware appli-
cations in cloud computing environments [AF+15]. Since 2008, the U.S. National Intelligence
Council lists the IoT among the six technologies that are most likely to impact U.S. national
power by 2025 [Int08]. The disruptive potential impact of IoT relies on its pervasiveness: it
should constitute an integrated heterogeneous system connecting an unprecedented num-
ber of physical objects to the Internet [AF+15]. A basic example of such objects includes
vehicles and their numerous sensors.

Among the many challenges raised by IoT, one is currently getting particular attention:
making computing resources easily accessible from the connected objects to process the huge
amount of data streaming coming out of them. Cloud computing has been historically used
to enable for a wide number of applications. It can naturally offer distributed sensor data
collection, global resource and data sharing, remote and real-time data access, elastic re-
source provisioning and scaling, and pay-as-you-go pricing models [Abd+14].

However, it requires the extension of the classical centralized cloud computing archi-
tecture towards a more distributed architecture that includes computing and storage nodes
installed close to users and physical systems [VRM14]. Such an edge cloud architecture
needs to deal with flexibility, scalability and data privacy issues to allow for efficient com-
putational offloading services [Hu+16].

While computation offloading to the edge can be beneficial from a Quality of Service
(QoS) point of view, from an energy perspective, it is relying on less energy-efficient re-
sources than centralized Cloud data centers [Var+16]. On the other hand, with the increas-
ing number of applications moving on to the cloud, it may become untenable to meet the
increasing energy demands, which are already reaching worrying levels [Ind]. Edge nodes
could help to alleviate slightly this energy consumption as they could offload data centers
from their overwhelming power load [Var+16] and reduce data movement. In particular, as
edge cloud infrastructures are smaller in size than centralized data center, they can make a
better use of renewable energy [Goi+13].
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Offloading data to edge

Processing data streams analysis consumes enormous computational resources and the
response time is usually crucial for many applications. Moving the data to the cloud for anal-
ysis can be a solution [IS11] in a variety of application scenarios that require enormous com-
putational resources as well as QoS guarantees. However, it might pose a risk of network
bottleneck if thousands data streams are produced from IoT devices at the same time and
then transmitted to a central cloud (core) for quick analysis. Although lowering the analy-
sis time profits large computational resources from cloud, it cannot avoid the time for data
transferring through the network from user to the physical location of cloud, which might
be thousands miles away [Bac+16]. Furthermore, the increasing number of data streams
over the network consume a large amount of energy [Ned+08; FSR10; Fig+09; Bac+16].

To meet the demand of low latency response times, computation offloading to edge can
be an answer [Zhu+11]. The edge represents small-scale data centers that are close to the
data source. The concept of processing data at the edge is based on the advantage of lower
latency than core, therefore been able to quickly return result to the device. Nevertheless,
considering the large amount of data streams that needs to process, the core which has more
computational resources may be a more energy-efficient choice.

2.4 Summary

This chapter has presented an overview of recent green technologies relating to resource
management and power consumption optimization in the context of cloud data centers.
Many green computing efforts focus on optimizing energy consumption at server-level through
DVFS and power-aware scheduling based techniques. Since the virtualization technology
begins to be widely used in data centers, the servers relying on virtualization technology are
able to yield much better energy-efficiency than before. Recent works have addressed the
problem of scheduling, placement and consolidation that enable the computation to run on
fewer active servers, the energy consumption of data center has further reduced.

While there have been considerable works on optimizing power management, even
though we build a more energy-efficient system, we still consume the energy from fuel fos-
sil sources. Meanwhile, research interest continues to grow in integrating renewable energy
into data centers. These studies show that integrating renewable energy can effective reduce
dependence on traditional energy source and minimize CO2 emissions. However, matching
the variable and intermittent nature of many renewable energy sources with continuous en-
ergy demand is still a challenge. We believe that building a data center partially powered
by renewable energy is emergent and necessary to minimize the environmental impact of
Cloud infrastructures.



3
EpoCloud data center

This thesis has been done in the context of the EPOC project (Energy Proportional and
Opportunistic Computing systems, Labex CominLabs, http://www.epoc.cominlabs.
ueb.eu, 2013-2017). This project has funded four PhD students:

— Bárbara Dumas Feris on optical ultra high speed interconnection network for recon-
figurable data centers.

— Sabbir Hasan on smart management of renewable energy in Clouds: from application
to infrastructure.

— Gilles Madi Wamba on mixing constraint programming and behavioral models to
manage energy consumption in data centers.

— Yunbo Li (this thesis) on resource allocation in a Cloud partially powered by renew-
able energy sources.

In the project of EPOC (Energy Proportional and Opportunistic Computing systems), we
are focused on energy-aware task execution from the hardware to the application’s compo-
nents in the context of a mono-site and small DC (all resources are in the same physical loca-
tion), which is connected to the regular electric Grid and to local-renewable-energy sources
(such as windmills or solar cells). In this section, we present our prototype EpoCloud data
center architecture, from hardware layer to middleware layer. This thesis dedicates to de-
sign the infrastructure of this prototype within the context of the EPOC project . The other
components of this prototype have been defined with the other partners.

The rest of this section is organized as follows. Section 3.1 sets the principles of EpoCloud,
the hardware architecture is detailed in Section 3.2. Section 3.3 presents an overview of real-
world workload from a single data center. Section 3.4 describes several key components of
our trace-driven simulator. Lastly, we summarize this section.

3.1 EpoCloud principles

The goal of EpoCloud is to design an energy-proportional computing system, which im-
plies no energy consumption, whenever there is no activity. First, EpoCloud needs to be
capable of switching on/off servers dynamically, thus leading to a lower aggregated-power
consumption of the data center during periods of reduced workload. In this infrastructure,
a vary-on/vary-off (VOVO) policy enables the broker to quickly adjust the number of ac-
tive servers to meet the workload resources demand. By combining VOVO with dynamic
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consolidation, an effective VMs placement plan and live migration, the broker can turn off
the underutilized servers to reduce energy. EpoCloud also makes advantage of renewable
energy (e.g., solar energy), that partially powers the data center. In this scenario, we are
focused on aligning the workload with renewable energy supply. Later, we employ energy
storage devices in EpoCloud, and explore the trade-off between system performance and
energy savings.

3.2 EpoCloud hardware architecture

Figure 3.1 shows the architecture of EpoCloud. It is assumed that the data center is
powered by both the regular grid and a renewable energy source. A switch is installed to
mix both sources and to enable the data center resources to be connected with only one
power cable (instead of two). The renewable energy is produced on-site and is used in
priority while it is available. Particularly, the surplus renewable energy cannot be consumed
immediately and will be directly considered as a waste (i.e., we assume that the production
surplus is not re-send to the grid).

Figure 3.1 – EpoCloud architecture
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3.2.1 High throughput optical networks for VM migration

For a network that is composed of 1 Gb/s bandwidth, migrating a VM with 4GB RAM
and 128 GB of storage requires at least 17.6 minutes. Moreover, the virtualized data centers
uses consolidation to run several VMs per server. According to the VOVO policy that we are
considering, the data center has to migrate all the running VMs from one server to others
while the data center manager requests to switch this server off to save energy.

In traditional data centers, each rack normally possesses one optical port. Thus, the
total bandwidth is shared by the servers which are from the same rack. Assuming that a
server can use the network with the entire 10 Gb/s bandwidth, it can take up to 2 hours to
move all the VMs from current server and to redistribute them to others. If a rack is made
up of 32 servers that are sharing the common 10 Gb/s bandwidth, migrating as such all
32 servers’ VMs would take 53 hours. Thus we notice that the bit rate of interconnection
network becomes a bottleneck for server consolidation.

Besides, storage is also one of the biggest energy consumer among diverse components
of a data center. Since Storage Area Network (SAN) is primarily used for live migration
in classical dynamic consolidation system, the VM storage is shared between all servers so
that live migration is limited to transfer VMs’ memory. However, a SAN typically has its
own network of storage devices that impacts on the overall DC energy consumption. It can
account up to 37% of the total power consumed by a data center [KT12]. EpoCloud proposes
to liberate networks from SAN to optimize data center energy consumption. Instead, we
introduce a strong hypothesis on the hardware architecture: EpoCloud does not have SAN
and has a high throughput optical network (100 Gb/s) for each server. Particularity, for
accessing data of applications and systems, we only use servers’ local disks and the regular
network linking the servers. This network employs a passive optical pod interconnect with
pulse amplitude modulation, and its power consumption has been estimated to be roughly
20% of the classical electrical packet switch architecture [Fer+16].

3.2.2 Disk throughput

As mentioned previously, we assume that each server is connected through a 100Gb/s
link. Each server has its own disk and pre-defined bandwidth. While the server is switched
to sleep mode, its disks are also deactivated. We need now to make sure that disk throughput
is high enough (at least as high as network bandwidth) not to become the bottleneck for VM
migration.

We expect that the time of VM live migration is as short as possible. To realize this,
a high network bandwidth is needed and Input/Output (I/O, e.g., read and write speed)
rates respectively must be able to archive at the same rate as this bandwidth. Otherwise,
it leads to a waste of network resources and the local disk I/O rate will become a new
bottleneck. Due to the low I/O capacity of the traditional hard disk drive (HDD), it can no
longer be applicable in this case. In contrast, SSD (Solid-state drive) relies on its excellent
physical features, particularity with PCI-E (PCI Express) interface, that has a much higher
read/write speed and a lower power consumption compared with HDD. There are four
primary factors which affect the I/O performance of SSD.

The first one is the capacity. Different from HDD, a higher volume of SSD leads a higher
read/write speed (e.g., 800GB >= 400GB with same interface).

As shown in 3.1, under the same interface (SATA), the read speed maintains its rate

1. Performance varies by capacity. (S = Sequential)
2. Performance measured using IOmeter with queue depth equal to 32. (R = Random)
3. Random 4 KB write performance using an out-of-the-box SSD
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Capacity S Read/Write (upto) 1 R 4KB R 2 /W (upto) 3 Form Fact
100 GB 500 MB/s / 200 MB/s 75,000 IOPS / 19,000 IOPS 2.5-inch SATA
200 GB 500 MB/s / 365 MB/s 75,000 IOPS / 32,000 IOPS 2.5-inch SATA
400 GB 500 MB/s / 460 MB/s 75,000 IOPS / 36,000 IOPS 2.5-inch SATA
800 GB 500 MB/s / 460 MB/s 75,000 IOPS / 36,000 IOPS 2.5-inch SATA
400GB 2 GB/s / 1 GB/s 180,000 IOPS / 75,000 IOPS PCI Express* x8
800GB 2 GB/s / 1 GB/s 180,000 IOPS / 75,000 IOPS PCI Express* x8

Table 3.1 – Different Volume of SSD

at 500 MB/s. The write speed is increased up to 460 MB/s by increasing the capacity of
SSD. Once the interface is transited from SATA to PCIe (with 8 channels), the speed for
reading is up to 2GB/s and 1GB/s for writing respectively. Indeed, the interface affects the
performance significantly. The PCIe interface with multiple channels has a incontrovertible
performance compared with other interfaces (e.g., IDE or SATA). Table 3.2 shows us the
speed with different number of channels for PCIe.

Version x1 4 x16 Speed / lane Year Encoding schema
1.0 250MB/s 4GB/s 2.5GT/s 22/07/2002 8B/10B 5

1.0a 250MB/s 4GB/s 2.5GT/s 15/04/2003 8B/10B
1.1 250MB/s 4GB/s 2.5GT/s 28/03/2005 8B/10B
2.0 500MB/s 8GB/s 5.0GT/s 20/12/2006 8B/10B
2.1 500MB/s 8GB/s 5.0GT/s 04/03/2009 8B/10B
3.0 1GB/s 15.75GB/s 8.0GT/s 11/10/2010 128B/130B 6

4.0 2GB/s 31.51GB/s 16.0GT/s 2014-2015 128B/130B

Table 3.2 – Performance with different number of channels for PCIe

We have:
PCIe serial bandwidth (MB/s) = Clock rate (MHz) × 1/8 (bit/8 = B) × number of lanes ×
encoding schema × transfer cycle (=1)
e.g. (1) PCI-E 1.0 x1 bandwidth = 2500 · 1/8 · 1 · 8/10 · 1 = 250MB/s
e.g. (2) PCI-E 3.0 x16 bandwidth = 8000 · 1/8 · 16 · 128/130 · 1 = 15753.8461538MB/s

From Table 3.2, the main bottleneck of SSD I/O performance is the interface version and
its corresponding number of channels. Another important factor of SSD performance is
the type of NAND Flash Memory Technology. We list 3 mainstream types of NAND Flash
Memory:

— SLC (Single-level cell): fastest, highest cost, longest life among the 3 types. 1 bit of
data was stored in each cell.

— MLC (Multiple-level cells) lower cost per unit of storage than SLC. It stores 2 bits per
cell and has an expected longer life than TLC.

— TLC (Triple-level cell): slowest, least cost. It stores 3 bits of information per cell, with
eight total voltage states.

In general, SLC NAND has faster speeds, lower power consumption and higher cell
endurance than the others. However, SLC NAND stores less data per cell than MLC and
TLC NAND. So, in terms of manufacturing, it costs more per megabyte of storage. Relying

4. Each direction.
5. Uses 10-bit symbols to encode 8-bit words, so 2 useless 20% efficiency lost.
6. PCI Express 3.0 introduced 128b/130b encoding, which uses 130-bit symbols to encode 128-bit words.
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on faster speeds and longer expected life, SLC NAND flash memory technology is typically
used in high-performance memory cards [SLM16]. MLC presents a compromise between
SLC and TLC, with a sufficient performance and reasonable lifetime. This study shows that
a 100 Gb/s I/O rate is reachable with current disk technologies. In addition, we can use
RAID (Redundant Array of Independent Disks) to further increase the I/O speed.

3.3 Real traces

In this section, we describe the traces that are used for analysis and validation purposes
for EpoCloud. These traces consist in two sets: one workload trace from a small Cloud data
center, and one energy trace produced by photovoltaic panels.

3.3.1 Workload trace

This workload trace records the activity of VMs and servers separately for a small-scale
data center 7 from the 25th of March 2014 to the 6th July 2014 (roughly 3 months and a half).

Processor (# core) RAM (GB) Frequency (per core) count
12 48 2925 1
4 16 1994 2
8 24 2659 2
8 32 1995 2

12 102 2666 2
8 48 2526 2
8 52 2400 2

20 256 2393 2
24 256 2699 2
12 32 2792 4
12 64 2393 8
12 96 2792 8
20 192 2393 8
8 72 2526 9

Table 3.3 – Initial server’s hardware configuration

As shown in Table 3.3, there are in total 55 servers with different hardware configura-
tions. On average, each server has 30.5 cores and 96 GB of memory.

The Figure 3.2 shows the server average CPU and RAM utilization over the 3 months.
We can see that the CPU utilization remains at a very low level: around 20% and a similar
behavior is occurred on RAM usage. Although the RAM utilization is roughly twice higher
than CPU utilization, it only uses half of the memory resources.

Figure 3.3 displays the overall utilization of VMs. The CPU curve represents the average
CPU utilization among all VMs. We can find that VMs’ CPU utilization remains under 30%
and the average RAM usage is more variable. Meanwhile, the average VM CPU usage is
extremely low, this is in accordance with the poor utilization of server. This observation of
workload trace brings us new opportunities to reduce the overall energy consumption, in
term of optimizing the server CPU utilization.

7. This trace is from a small-scale data center provided by EasyVirt.

http://www.easyvirt.com
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Figure 3.2 – Server CPU (left) and RAM (right) average utilization (%)
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3.3.2 Solar energy trace

Photovolta 8 is a solar farm for scientific research placed in the University of Nantes cam-
pus. It is composed of 4 Sanyo HIP-240-HDE4 panels. Each panel takes 1.38 m2 area and so
the 4 panels takes in total 5.52 m2. The theoretical peak power of the 4 panels is 960 Watts.
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Figure 3.4 – A week records of solar energy (from March 1 to March 8, 2015).

Figure 3.4 shows a week of solar energy from the database provided by Photovolta. Both
the environmental conditions and the photovoltaic production data are logged every five
minutes. We can observe that the peak power of solar power generation occurs at noon
every day and there is no solar power generation at night (thus data are cut during nights on
the graph). Particularly, the weather was cloudless and sunny on March 5, thus generating
more renewable energy than the other days of the week.

3.4 Trace-driven simulator

At the beginning of this thesis, we made a short state-of-the-art review of Cloud simula-
tors able to provide the energy consumption of a data center and to integrate several energy
sources. None of the literature simulators (SimGrid, CloudSim, GreenCloud, etc.) were
fulfilling these requirements. Thus, we decided to develop a java-based simulator for ex-
perimentation, particularly with regard to scheduling for energy-aware infrastructures and
application services. We list several basic functionalities of our simulator:

— enable users to model cloud data center infrastructure environment (heterogeneous
or homogeneous clusters);

— enable users to use their customized energy module for server and network;
— enable users to simulate resource allocation policies. For instance, VM-mapping-PM

algorithm;
— enable users to integrate their workload and renewable energy supply traces;
— enable users to simulate workload scheduling algorithm in geographically distributed

data centers.

8. http://photovolta2.univ-nantes.fr/accueil.php
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The structure of simulator is shown as follows.
Battery

Battery.java
Epoc

InitialSimulator.java
Job.java
Process.java
Vmm.java
impl

CostDetailOnServer.java
Datacenter.java
DatacenterBroker.java
JobB.java
JobT.java
MipsRam.java
Server.java
Vm.java
result

ResultAlgorithm.java
ResultEnergy.java
ResultIteration.java
ServerSwichState.java
UpdateMigrationProcess.java

mainClass.java
Powermodule

PowerModel.java
PowerModelBench.java
PowerServerEx1.java
PowerServerEx2.java

Utils
AlgorithmUtils.java
CSVUtils.java
Consolidation.java
FunctionUtils.java
GraphicUtils.java
ListUtils.java
LoggerUtils.java
MyFolderReader.java
PrintUtils.java

4963 total line
More details about each module can be found in Appendix B. Moreover, the simulator is

modular and can support user-contributed contributions.

3.5 Summary

This chapter describes the concept of EpoCloud. EpoCloud represents the prototype of a
micro-DC integrating on-site renewable energy supply. EpoCloud focuses on reducing en-
ergy consumption by: (1) optimizing the energy consumption of distributed infrastructures
and service compositions in the presence of dynamic service applications, while maintain-
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ing SLAs; (2) designing an intelligent resource management, which performs opportunis-
tic scheduling by leveraging renewable energy availability, then exploring the trade-off be-
tween system performance and energy saving. Within the context of EpoCloud, we will
now detail the energy-aware resource allocation algorithms that we proposed.
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From an energy point of view, these micro-data centers allow the study of new power
supply solutions based on renewable energy, like wind or sun. Using these renewable en-
ergy sources can reduce the operating cost but, unfortunately, this kind of energy stays in-
termittent by nature.

To address this problem, we envision two solutions: investing in heavy expensive bat-
tery systems to smooth over the day the renewable energy production, or developing new
applications management solutions adapted to the electricity production.

In this section, we propose to design a disruptive approach to Cloud’s resource man-
agement which takes advantage of renewable energy availability to perform opportunistic
tasks.

The micro-DC receives a fixed amount of power from the regular electrical grid. This
power allows it to run the usual tasks. In addition, the micro-DC is also connected to re-
newable energy sources (such as windmills or solar cells) and when these sources produce
electricity, the micro-DC uses it to run more, less urgent, tasks.

In order to achieve this energy-aware resource allocation, we distinguish two kinds of
jobs to be scheduled on the data center: the web jobs which represent jobs requiring to run
continuously (like web servers), and the batch jobs which represent jobs that can be delayed
and interrupted, but with a deadline constraint. This second type of jobs are the natural
candidates of the opportunistic scheduling algorithm.

This section presents PIKA, a framework aiming at reducing the brown energy consump-
tion (i.e., from non-renewable energy sources), and improving the usage of renewable en-

49
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ergy for mono-site data center. It exploits jobs with slack periods, and executes or suspends
them depending on the renewable energy availability. By consolidating the virtual machines
(VM) on the physical servers, PIKA adjusts the number of powered-on servers in order for
the overall energy consumption to match with the renewable energy supply. Using simu-
lations driven by real-world workloads and solar power traces, we demonstrate that PIKA
consumes 44.9% less brown energy and increases by 110.1% the renewable energy integra-
tion ratio in comparison with the baseline greedy algorithm from literature.

The remainder of this section is organized as follows. Section 4.1 formalizes the problem.
We give a brief overview of PIKA framework in Section 4.2 and we present our formaliza-
tion of PIKA in Section 4.3. The experimental setup is explained in Section 4.5. Section 4.6
evaluates the various policies based on simulations. Section 4.7 concludes this work.

4.1 Problem formulation

PIKA targets small/medium-size mono-site data center (typically between 20 and 150
servers). The data center consists of several Physical Machines (PMs). We assume the com-
puting environment in the data center to be heterogeneous, meaning that the PMs can have
different hardware. Each PM has limited resources (CPU, RAM, network) and has its own
disk storage. We assume that the data center has no centralized storage system (such as a
Network Attached Storage for instance) as described in Chapter 3. The PMs with different
capacities and performance may potentially lead to different energy consumption values for
a given VM.

We assume the data center has dual brown and renewable energy power supplies. Each
PM has a switch connected with both energy supplies and opts for renewable energy only if
there is enough of it. Otherwise, the PMs consume the brown energy from the regular grid.
Meanwhile, we assume there is no battery or the batteries are only used for emergency cases
(like power outage).

4.1.1 Job

Our system does not only accommodate periodic jobs which means that jobs may have
different lifetimes and can arrive at anytime. Once a job is submitted by a user, it is en-
capsulated into an individual Virtual Machine (VM). In our system, a VM is considered as
the basic unit of resource allocation. It demands two types of resources from PM: CPU and
RAM. The lifetime of a VM depends on the job it accommodates. When a job is finished, the
VM is destroyed and its reserved resources on the PM are released.

4.1.2 Workload

We studied anonymized traces provided by the EasyVirt from a small-size Cloud data
center as described in Section 3.3. These traces concern a VM hosting provider with 55
servers. The traces stretch from the 25th of March 2014 to the 6th of July 2014. They consist
in the logs for real CPU, RAM, network and disk utilization of each server every 90 sec-
onds. They also contain the client’s requests for VMs with CPU and RAM sizes, and the
submission dates. These traces present a realistic scenario in our context.

The Figure 4.1 illustrates the average CPU and RAM utilization of all the PMs during
a normal week in the data center. Note that the average CPU utilization keeps low state
and far below the average RAM utilization thus leading to a waste of resource. In such a
context, Cloud providers usually resort to over-commitment. In particular, we will use a



4.2. PIKA OVERVIEW 51

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6

06/10
00:00

06/11
00:00

06/12
00:00

06/13
00:00

06/14
00:00

06/15
00:00

06/16
00:00C

PU
/R

AM
 a

ve
ra

ge
 u

til
iz

at
io

n

time

CPU
RAM

Figure 4.1 – CPU and RAM real utilization over one-week of real trace

CPU over-commit policy that will be described in Section 4.4. To reduce the number of ON
PMs (powered-on Physical Machines), we now describe our proposed PIKA framework in
the next section.

4.2 PIKA overview

Our proposed framework PIKA is designed as a centralized solution. It focuses on min-
imizing the brown energy consumption in a single small/medium-size data center. As the
system is dynamic, PIKA performs the optimization operations periodically. The optimiza-
tion cycle is defined as a slot, such that the time in our system is divided into a series of
continuous slots. As shown in Figure 4.2, at the beginning of each slot, the broker executes
three main steps. First, the broker checks each PM’s state and suspends some jobs from the
overloaded PMs. Second, the renewable energy predictor predicts the amount of renewable
energy for the current slot and informs the broker about it. Then, the broker determines the
number of ON PMs that can be supported by the renewable energy supply. Finally, accord-
ing to the available resources from these ON PMs, the broker schedules the jobs that can be
executed during the current slot. Each component of PIKA is described in the remainder of
this section.

Predictor

User Broker

PM pool

Job pool

gap

Waiting
queue

Opportunistic 
scheduling

Consolidation 
decision

Inform
Detect overloaded PMs

Figure 4.2 – PIKA framework

Gap: PIKA is designed to be aware of the variable and intermittent nature of renewable
energy supply, which makes the gap module in PIKA play an important role for the other
operations. The renewable energy predictor provides the energy availability that can be
consumed in the current slot. The key feature of gap enables the broker to dynamically
adjust the number of ON PMs following by the renewable energy availability. We detail
how the gap works in Section 4.3.2.
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Renewable energy predictor: we make several simplifying assumptions. The renewable
energy prediction is performed at the beginning of each slot and the predicted renewable
energy amount is used for only one slot. The short-term prediction’s advantage is that it
significantly reduces prediction errors caused by varying weather. Given an accurate pre-
diction on renewable energy, the broker dynamically switches on and off PMs to adjust the
energy consumption in order to maximize the renewable energy integration ratio.

Job pool: the key insight of PIKA is to align the workload energy consumption with the
renewable energy supplies. We classify the jobs into two types according to their character-
istics: web job and batch job. Each job is submitted with the following parameters: (tb, T , te,
td, v

cpu
i , vram

i ): beginning time, type (web or batch), execution time, deadline, corresponding
VM i’s CPU and RAM requirements. They are pushed into the job pool by the broker. Once
the broker gets the energy availability through the renewable energy predictor, it estimates
the maximum number of ON PMs via the gap function in the current slot. To increase the
chance to exploit more renewable energy, we employ the slack time for jobs into PIKA.

The slack is the most crucial factor in affecting the renewable energy integration ratio. It
is given in Equation 4.1:

jslack
i = td − tb − te (4.1)

Through jslack
i , the broker enables a job to be delayed and this increases the chance of ex-

ploiting the renewable energy.
The web job (e.g., background job for web services) is uninterruptible with a little slack

(< 1slot). It has a higher priority than other jobs either on resource allocation or scheduling.
For instance, when a web job is submitted, the broker pushes it into a specific job pool with
higher priority than the waiting queue of the batch jobs. The web job is then placed on a
PM which has sufficient resources to meet its VM resources requirements. Unlike the web
job, the batch job (e.g., HPC job, typically compute intensive) can be interrupted or delayed
within a slack. Furthermore, because web jobs have higher priority, the batch jobs must
wait for all the web jobs to be placed before being allocated only to a ON PM (PM already
hosting some web jobs). The batch jobs are not allowed to switch on an OFF PM if there is
not enough renewable energy to power it during the next time slot. Specially, as shown in
Figure 4.3: when a batch job’s slack is strictly inferior to 1, it mutates as a web job that has
the same priority as a regular web job in order to meet its deadline constraint. So, the job
pool in PIKA is divided in two corresponding pools: the web pool and batch pool. Note that
the VM placement process for web and batch jobs is distinct.

webbatch

vmvm

slack < 1

slack --

Figure 4.3 – The mutation of a batch job when its deadline is approaching

Flexible pooling of ON/OFF PMs: PIKA offers a mechanism for dynamically adjusting
the number of ON/OFF PMs that tries to follow the variable renewable energy supply if
possible (according to the workload). Firstly, we divide the PMs into two categories: ON
PM and OFF PM for a given time slot. Both web jobs and batch jobs are capable of being
allocated on an already ON PM if it has sufficient resources to meet their VM resources
requirements. An OFF PM can be switched on in the following two cases: 1) there is no more
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resources to meet a web job’s VM resource requirements; 2) there is sufficient renewable
energy for all the already ON PMs at that time and an extra amount from renewable energy
supply allows to switch on new OFF PMs (called potential ON PM later in the section). A
batch job is allowed to switch on an OFF PM when there is no renewable energy surplus if
and only if it is mutated into a web job. The general VM placement process works as shown
in Figure 4.4.

batch  
pool

batch 
queueslack

web  
pool

web 
queue

OFF 
PMs

< 1 slot

> 0

if fail

switch on

if fail

web_queue.size() == 0

ON 
PMs

Potential 
ON PMs

Figure 4.4 – VM placement for batch and web jobs

In this section, we have given an overview of PIKA’s architecture. The next section is
dedicated to the formalization of the various algorithms used by PIKA for the resource man-
agement and job scheduling.

4.3 Resource management and job scheduling

The general process of PIKA consists of four major steps detailed in Algorithm 1.

Algorithm 1 General process of PIKA
1: Step 1: Detect the overloaded PMs;
2: Step 2: Launch calculation of gap process and make the decision on whether to consolidate de-

pending on the count (number of ON PMs);
3: Step 3: Update each batch job’s slack;
4: Step 4: Select the jobs that can be executed in the current slot and place them adequately on PMs

(VM placement algorithm). The decision of VM consolidation relies on the result of 2nd step.

The count represents the theoretical maximum number of PMs can be switched on, in
terms of actual renewable energy availability.

At the beginning of each slot, the first step aims at finding the CPU/RAM utilization of
a PM which exceeds its capacity. The gap value is calculated at step 2, the broker makes
the decision of either proactive consolidating or switching-on OFF PMs. Then, the broker
updates the slack of each batch job and places all the web jobs and the selected batch jobs in
this slot. The consolidation decision at step 4 is based on the renewable energy availability.

4.3.1 Overloaded PM detection

Since we introduce the resource over-commit policy in PIKA, the varying CPU/RAM
load of the jobs at each slot may lead the PMs to overload situations. At the beginning
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of each slot, if a PM utilization exceeds its capacity, the broker first verifies the batch jobs
utilization on this PM and suspend them if necessary.{

Suspend the corresponding batch jobs, If Ubatch ≥ Uexceed.

Push the web job to the waiting queue, otherwise.
(4.2)

We first consider suspending the current running batch job on an overloaded PM until the
PM returns to normal state. If all the batch jobs on an overloaded PM has been suspended
and the PM still exceeds its capacity, the broker migrates the web jobs to other ON PMs.
Assume, for example, there is a PM which exceeds it CPU capacity. Firstly, the broker sorts
the VMs in ascending order of CPU utilization. Then, the broker pushes the web job with
largest CPU utilization to the web job waiting queue until the PM state becomes normal. If
the PM returns back to normal state, the broker finishes the overload detection process. The
queued web jobs are scheduled onto other ON PMs (or switches OFF PMs if resources are
not enough on ON PMs) before any new allocation. The suspended batch jobs are pushed
to the batch job pool, then they are either migrated to other ON PMs if possible or put in the
waiting list of the next slot to run.

4.3.2 Gap

At the beginning of each slot, the broker receives the total electricity generated from
renewable energy for the next slot. Ideally, if there is sufficient renewable energy to cover
all the electricity need of all already executing jobs, the broker keeps the current PM state.
Otherwise, the broker proposes a plan for VM consolidation in order to decrease the number
of ON PMs. The metric gap(t) is the key function of PIKA to aid the broker to dynamically
adjust the number of ON PMs. The gap(t) function is shown in Algorithm 2.

The gap(t) (line 6) describes the difference between the renewable energy and current
energy consumption in one slot. It is calculated as follows:

gap(t) = Er(t)−
∑
i

Esoni (t) (4.3)

WhereEr(t) denotes the predicted amount of renewable energy at the tth slot and
∑

iEsoni (t)
denotes the current energy consumption of all the ON PMs (lines 3-5). According to the
gap(t), the broker decides whether to consolidate at the tth slot.

If gap(t) ≥ 0 (lines 8-17), it means there is extra renewable energy that may be used
to switch on n OFF PMs and to run more jobs (opportunistically). Otherwise, it is nec-
essary to switch off m PMs in order to reduce the current energy consumption. To de-
termine the value of n, the broker first sorts the powered-off PMs list (func: powerOff-
ServerList.sortByServerScore())as follows:

eefficient =
1

max(Es)
max(smips)

=
max(smips)

max(Es)
(4.4)

Where smips is the CPU performance that is presented on megahertz (MHz), the max(Es)

is the maximum energy consumption of the PM s and the max(Es)
max(smips)

denotes the energy con-

sumption per unit of MHz. The lower the value of max(Es)
max(smips)

, the more efficient the PM is.
The higher is the value of eefficient, the more efficient it is. Each time the broker sorts the OFF
PMs list in decreasing order and selects the n first PMs to switch on where n is equal to count
(line 27).
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Algorithm 2 gap function
1: INPUT: pmList, renewable energy availability in the current slot: sumGreenPower OUTPUT: the

number of PMs to be switched-on or -off
2: pmList.splitTwoSubList()→powerOnPmList and powerOffPmList
3: for each pm ∈ powerOnPmList do
4: sumPmPower += CurrentPower(pm);
5: end for
6: gap = sumGreenPower - sumPmPower
7: count=0;
8: if gap >= 0 then
9: powerOffServerList.sortByServerScore();

10: for each server ∈ powerOffServerList do
11: while gap > 0 do
12: gap -= pm.getMaxPower();
13: pm.setPotentialOn(true);
14: count++;
15: end while
16: end for
17: else
18: powerOffServerList.sortByNumVM();
19: for each server ∈ powerOnServerList do
20: while gap < 0 do
21: gap += pm.getCurrentPower();
22: pm.setPotentialOff(true);
23: count−−;
24: end while
25: end for
26: end if
27: return count;
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When gap(t) < 0 (lines 18-26), there is no sufficient renewable energy to cover all the ON
PMs energy consumption. It necessitates performing a consolidation to decrease the number
of ON PMs. Due to VM migration also having an energy overhead, we need to minimize the
number of migrations (func: powerOffServerList.sortByNumVM()). Thus, the broker seeks
a set of PMs which has fewer number of VMs. The size of this set is equal to the value of
count (line 27).

4.3.3 VM placement

As described in Section 2.3.3, by means of resource over-commit policy, the VM place-
ment problem is transformed from 2-dimensional to 1-dimensional bin packing problem. In
1-dimensional bin packing problem, FFD (First Fit Decreasing) is a classic greedy algorithm
which is proved to use: maximum 11/9 ×n + 1 bins where n presents the number of bins
in the optimal solution [Yue91]. The FFD and over-commit policy are combined in PIKA to
optimize the resource allocation, the broker first places all the web jobs and then places all
or a part of the batch jobs depending on the remaining ON resources. If there are some batch
jobs that cannot successfully be scheduled in this step, the broker updates their slack time
and reschedules them in a later slot.

But if there is not sufficient resources to place all the web jobs at the first step, the broker
suspends a part of or all the batch jobs which are executed on current ON PMs. Then the
broker places the web jobs on the current ON PMs. If it still cannot meet all the web jobs
resources requirements, the broker activates one or more OFF PMs directly.

4.3.4 Consolidation and migration

Through the above analysis presented in Section 4.3.3, we detail our heuristic for the
problem of dynamic consolidation in context of renewable energy. We subdivide the consol-
idation problem into the two following issues: when and how to consolidate.

When to consolidate

There is not enough renewable energy to cover all the servers energy consumption for
the current slot, i.e., the count is negative. In this way, the broker attempts to decrease the
number of current ON PMs if possible.

How to consolidate

The broker gets the number of PMs that should be switched-off via count. The broker
seeks the PM which has the least number of web jobs and tries to migrate all the web jobs
from this PM to others. While a PM is selected to be switched-off, the broker tries to migrate
all the web jobs from this PM to the others and interrupts all the batch jobs on this PM. The
affected batch jobs are pushed into the batch pool and wait for the broker to complete the
web job placement. If there is not enough free resources on other ON PMs to migrate all
the VMs of this PM, the broker does not perform the migration and aborts the consolidation
process. Otherwise, if each web job on this PM can find another ON PM to host it, the broker
migrates all of them and pushes all the batch jobs on this PM to the batch pool. Once all the
VM migrations have been completed, the broker switches off this PM. The broker repeats
this process until it reaches the expected number count if possible.
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4.4 Over-commit resource policies

As stated in Section 2.3.3, the resource over-commitment is an efficient method to in-
crease the CPU/RAM utilization in order to minimize the number of ON PMs. Figure 4.1
provides an analysis on the real world workload traces. The VMs’ average CPU utilization
is around 15%, and around 50% for RAM utilization in comparison with their original VM
resource requirement. It leads to a significant wastage of the CPU/RAM resources. The
over-commitment can be used to further optimize the utilization of PMs. We define four
resource over-commitment policies, which cover all the possible cases.

4.4.1 Non over-commit policy

This is the basic case, the resources are actually allocated to the VMs as requested initially.
∑
i

v
cpu
i ≤ S

cpu
n , ∀vi ∈ Sn.∑

i

vram
i ≤ Sram

n , ∀vi ∈ Sn.
(4.5)

Where
∑
i

v
cpu
i denotes the CPU resource request of all the VMs vcpu

i on PMs Scpu
n . The first

inequation denotes that the PM n can simultaneously hosts multiple VMs i if and only if
both the CPU/RAM resource requests of these VMs cannot exceed the PM n’s capacities.

4.4.2 Over-commit RAM policy

In this case, the broker only guarantees the VM CPU resource requirement and over-
allocate the RAM. ∑

v
cpu
i ≤ Scpu

n , ∀vi ∈ Sn. (4.6)

4.4.3 Over-commit CPU policy

In contrast with the over-commit RAM policy, the over-commit CPU policy over-allocates
CPU resources instead of RAM resources. The broker considers the RAM capacity of the
server and there is no upper-bound on the CPU capacity:∑

vram
i ≤ α · Sram

n ,∀vi ∈ Sn. (4.7)

Where α represents the maximum consolidation rate.

4.4.4 Optimal Over-commit CPU/RAM policy

The last policy is the optimal over-commitment policy that involves both CPU and RAM
resources. This solution needs to analyze the history of each job in order to predict the job
resource utilization for the near future. It is designed to keep the PM utilization always close
to the upper bound for both CPU and RAM resources. However, there is a risk that it may
lead the PM to be overloaded if the prediction is not accurate. Consequently, a huge number
of migrations may occur and lead to an additional energy consumption and performance
degradation.
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4.5 Experimental setup

4.5.1 Trace-driven simulator

To evaluate the proposed algorithms in the PIKA framework under different scenarios,
we built a novel trace-driven simulator described in Section 3.4. The simulator is using
a single energy-aware data center. It allows to simulate different resource allocation and
scheduling policies.

4.5.2 Real-world traces

Job workload trace: we use the trace described previously in Section 4.1.2 and use it for
all the simulations in this scenario. In this trace, each job consists of job id, time stamp, initial
VM resource requirements, the instantaneous CPU and RAM utilization. To eliminate the
noise of CPU and RAM utilization for each job (due to resource utilization variability), the
CPU and RAM utilization is averaged over the interval T (T = 1 slot = 1 hour).

Table 4.1 – Job characteristics (Hour)

Type Number of jobs Execution time Slack time
Web 150 24 < 1

Batch 600 6 12

As shown in Table 4.1, we extract a non-holiday week. It contains 750 jobs per day
including 150 web jobs and 600 batch jobs. The slack time of a web job is defined as less than
a slot. The slack time of batch job is defined as double time than its execution time. Half of
jobs are submitted at anytime before noon (0h - 12h), and the other half are submitted from
noon to night (12h - 24h).

Solar energy traces: to build the renewable energy workload in the simulator, we use
the database provided by the University of Nantes (France) as described in Section 3.3. This
database records the solar power data every five minutes, and we have averaged these val-
ues per time slot (i.e. per hour, so 24 values per day). We choose the trace from the same
week as the trace we used for the jobs.

4.6 Evaluation

This section describes our evaluation. First, we compare the performance of the differ-
ent resource over-commitment policies. Then we present the energy model based on our
real power measurements. Finally, we provide simulation-based results comparing PIKA’s
scheduling with a baseline solution.

4.6.1 The performance of resource over-commitment policies

We implement the aforementioned resource over-commitment policies on two PMs. PM-
1 consists of 12 cores and 48GB RAM (2933 MHz each core). PM-2 consists of 16 cores and
192 GB RAM (2933 MHz each core). We submit the same number of jobs for the two PMs.
We combine these resource over-commitment policies with FFD algorithm as mentioned in
Section 4.3.3.

Tables 4.2 and 4.3 show the number of hosted VMs for different resource over-commitment
(OC) compared to the solution combining both over-commitment techniques (OPT). On
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Table 4.2 – Number of VMs on PM1

Policy Mean St.dev.
NON.OC 6.356 2.154
RAM.OC 6.724 2.651
CPU.OC 27.035 2.744
OPT 60.994 9.775

Table 4.3 – Number of VMs on PM2

Policy Mean St.dev.
NON.OC 8.141 5.337
RAM.OC 11.451 2.656
CPU.OC 44.893 4.515
OPT 100.441 5.904

PM1, the first two policies (NO OC and RAM OC) have nearly identical performance (i.e.
consolidation factor here). CPU OC hosts more than 3 times more VMs than both NO OC
and RAM OC policies. On PM2, CPU OC also offers 400% better performance than both NO
OC and RAM OC. This can be explained by an analysis of the trace: for the vast majority of
VMs, the total CPU resource requirements of VMs reach the PM’s CPU upper bound before
the RAM reaches its upper bound. Therefore, the result of CPU OC is better than the NO
OC and RAM OC policies. However, the OPT outperforms CPU OC by up to 50%. Recall
that, OPT dynamically adjusts the over-commitment threshold under assumption with an
high accurate VM utilization predictor.
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Figure 4.5 – (a) CPU real-time utilization; (b) total VM allocation ratio for the CPU OC policy

Figure 4.5 (a) shows the actual average CPU utilization of 54 servers by using CPU OC
policy over 1 week (168 hours). The 54 servers average utilization has increased by 30%
than non-OC policy solution (the server average utilization of original trace varies between
15%-25%). In Figure 4.5 (b) CPU OC policy over-commits 4.1X CPU resources than the PM
original CPU capacity.

Similarly, Figure 4.6 shows the RAM over-commit ratio and the mean value of real PM
RAM load of CPU OC policy. The actual average RAM utilization of the 54 servers is be-
tween 34% and 44%. CPU OC policy does not over allocate the RAM resources due to the
average of actual RAM load is near 95%.

The above Figures 4.5 and 4.6 illustrate the fact that the CPU OC is offering a reasonable
performance without a complete knowledge of future and rarely leads a PM to be over-
loaded. For this reason, we chose to implement CPU OC into PIKA. Consequently, in the
rest of the manuscript, over-commitment will refer to the CPU OC policy.
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Figure 4.6 – (a) RAM real-time utilization; (b) total RAM allocation ratio for the CPU OC
policy

4.6.2 Energy model

In order to simulate the energy consumption of various scheduling policies, we need to
provide energy models for:

— physical machines (depending on their workload);
— VMs’ basic operations (i.e. creation and migration).

Physical machine model

The variation in energy consumption of a PM mainly depends on CPU utilization [OAaL14].
We experiment multiple tests on Taurus nodes at the Lyon site of Grid’5000, a large-scale and
versatile testbed for experiment-driven research [Bal+13]. Each node has 12 cores, so each
core consumes 8.3% of the overall CPU utilization. We use the stress benchmark to vary CPU
utilization in order to estimate the server’s energy consumption according to its load. We
activate one more core each time and keep the core at 100% utilization during 300 seconds.
The test begins with 0 cores (idle state).
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Figure 4.7 – Energy consumption of a Taurus node with different number of activated cores
in Watts on Grid’5000 Lyon site. It owns 12 cores, each running at 2,933 MHz.
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Figure 4.7 presents the energy consumption with different numbers of active cores. Note
that an idle PM (0% CPU utilization) consumes about half of fully charged PM energy con-
sumption (100% CPU charge). Similar observations can be found in literature [QKMM13].
We model the PM energy consumption as successive steps. The total CPU resource is di-
vided into 12 intervals (i.e. number of cores). The number of cores transforms on CPU
utilization (i.e. 0 core = 0%, 1 core = 8.33%, 2 cores = 16.66% and so on up to 12 cores = 100%
CPU utilization). We create a sequence of numbers corresponding to the cores. The real PM
utilization is easily falling into an interval of two consecutive numbers a, b (a < b) from this
sequence. The PM energy consumption is the difference between a’s energy consumption
and b’s energy consumption. Then, we construct a linear model between the two numbers a,
b to calculate the PM energy consumption, this model is similar to the one used in [BB10b].

En = Ea + (Eb − Ea)× un − a
b− a

, where a < un < b (4.8)

whereEa denotes the lower bound a energy consumption andEb denotes the upper bound b
energy consumption. un represents the PM CPU utilization and un−a

b−a denotes the percentage
of difference between PM utilization and the lower bound.

Moreover, there is a switching cost for PMs, as the broker needs to dynamically switch on
PMs or switch them to sleep mode. We define a fix energy overhead in the later simulation
when broker switches on a PM, this value has been measured experimentally on the same
Taurus node.

VM energy consumption model

The VM energy consumption model consists of two modules: VM creation energy over-
head and VM migration overhead. The VM creation energy overhead is defined as a fixed
value in the simulator. The energy consumption of VM migration depends on the follow-
ing parameters: migration duration time and the energy consumption per unit of time. The
study of [Hua+11] shows that the duration of live migration depends mostly on the memory
and disk used by the migrated VM. The VM migration will sightly increase the CPU utiliza-
tion on destination server. As above-mentioned, the energy consumption of PM increases
almost linearly with CPU utilization, we formalize the linear model for energy consumption
of VM live migration as follows:

EMigration =
CRAM + CDISK

B
× ECPU (4.9)

where B denotes the bandwidth between the PMs. CRAM + CDISK denotes the migration
overhead that is the sum of the memory size and the disk size of a VM , CRAM+CDISK

B
denotes

the duration of migration and ECPU is the extra CPU energy consumption on destination
PM per unit of time. These models are used in the simulator to evaluate PIKA.

4.6.3 Simulation results

PIKA is compared with a baseline algorithm: a simple FFD algorithm allocating the VMs
for each time slot independently from their type (web or batch) and without considering
renewable energy availability. The result of energy consumption for both baseline algorithm
and PIKA are shown in Figure 4.8. The top curve presents the baseline result and the bottom
corresponds to PIKA.

The energy consumption of baseline is flat. The workload scheduling is not affected by
the variable renewable energy supply (the green curve). The energy consumption of PIKA
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Figure 4.8 – Energy consumption : baseline vs PIKA

is following the renewable energy variations. PIKA significantly increases the renewable en-
ergy integration into the data center. While the renewable energy becomes unavailable, the
broker switches off some ON PMs and only launches some essential jobs (web job, mutated
batch job and a few of batch jobs on remaining ON resources). Due to this behavior, PIKA
finishes all the jobs 11 hours later than the baseline. Indeed, in PIKA, the broker opportunis-
tically schedules the batch jobs. So, some batch jobs are delayed when there is no sufficient
renewable energy.

Table 4.4 shows the result of brown-, renewable- and total-energy consumption for the
baseline and PIKA.

Table 4.4 – Energy saving results (kWh)

Algorithm Total E. C. Brown E. C. Renewable E. C.
Baseline 513.633 259.559 254.073

PIKA 676.895 142.957 533.938
31% ↑ 44.9%↓ 110.1%↑

Compared to the baseline, PIKA reduces by 44.9% brown energy consumption and in-
creases by 110.1% the renewable energy integration. The results show that PIKA signifi-
cantly reduces the brown energy consumption in comparison with the baseline, represent-
ing a typical energy-efficient algorithm (but not renewable-aware). The results also indicate
that PIKA consumes 31% more energy in total. This is because PIKA performs dynamic
VM consolidation to adjust the number of ON PMs and that leads to a large number of VM
migrations compared with baseline (the migration in baseline is only in case of overloading
PM). Moreover, PIKA needs more time to execute all the jobs as explained before. But all of
this extra energy consumption comes from renewable energy supply. So, this extra energy
is not used and thus wasted in the baseline case.

This work shows the opportunity created by medium-sized data centers partially pow-
ered by on-site renewable energy in order to save energy for Cloud infrastructures, such
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as the one promoted by the Future Internet. However, the core of opportunistic approach
mainly depends on the percentage of batch jobs and their corresponding slack time. The
percentage of batch jobs represents the quantity of jobs that can be suspended and resumed
later. A low percentage means that there are fewer jobs that can be delayed, leading to po-
tential huge mismatch between the renewable energy supply and the pwoer consumption.
Besides, the batch job slack time determined by their deadlines and renewable energy avail-
ability impact the performance of this approach. A small slack time cannot provide enough
waiting time until the renewable energy became available.

4.7 Conclusion

Data centers partially powered by renewable energy become attractive for the new gen-
eration cloud architectures. It significantly reduces the traditional energy consumption and
CO2 footprint. The work of this section is dealing with resource allocation and opportunis-
tic job scheduling in a small/medium mono-site data center without battery. Our proposal
framework PIKA and the preliminary results outperform the classical energy-efficient VM
management algorithms.

In the case of a single data center, follow-the-sun approaches are not feasible. But instead,
opportunistic scheduling algorithms can make advantage of renewable energy availability
to perform jobs with low priorities [LOM15]. Opportunistic policies distinguish two kinds
of computing jobs: jobs requiring to run continuously (like web servers) and jobs that can be
delayed and interrupted, but with a deadline constraint (such batch jobs include monthly
payroll computation for example). The jobs of the second type wait for renewable energy
surplus to be scheduled, thus reducing the overall consumption part of brown energy. How-
ever, such scheduling policies make use of virtual machine migrations and suspend/resume
functions that have a cost in terms of energy consumption [OAaL14].

Another possible method for improving the effective utilization of intermittent and fluc-
tuating renewable energy sources consists in using batteries to store green production sur-
plus, and to use it during low production periods [Goi+13]. Typically for solar sources,
energy can be stored during the day – if not fully consumed – and be utilized during nights
when there is no production. However, batteries have an inherent energy efficiency (their
yield) that leads to energy losses. So, is it greener to use opportunistic scheduling or batter-
ies? We will illustrate the performance of these two approaches in the next chapter.
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In this chapter, we discuss two approaches for maximizing the utilization of renewable
energy in small and medium data centers: opportunistic scheduling (as discussed in the
previous chapter) and energy storage device (ESD, i.e. on battery). We compare these two
solutions in terms of renewable energy utilization and total energy consumption in order
to estimate whether the losses due to the battery efficiency balances or not the losses due
to migration costs incurred by opportunistic scheduling policies. We also evaluate an in-
termediate solution mixing both approaches. This study investigates two types of batteries
(lead-acid and lithium-ion, but can be easily generalized to other types of ESD), the optimal
size of photovoltaic panels, several sunlight profiles and real-world workload traces from a
medium-sized data center. Like in previous chapters, we only consider on-site renewable
energy production (with photovoltaic panels) and we do not sell the produced energy to
other actors: only self consumption is considered.

The remainder of the chapter is organized as follows. Section 5.1 describes Energy Stor-
age Devices (ESDs) characteristics. Section 5.2 presents the context and used models. Sec-
tion 5.3 describes the job scheduling algorithms: baseline algorithm with ESD, opportunis-
tic scheduling without ESD and opportunistic scheduling combined with ESD. Section 5.4
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presents our experimental setup including an analysis of real-world workload traces and
the simulation-based methodology to find the optimal solar panel dimension and battery
size for a given data center and a given workload. Section 5.5 presents the results of our
simulations which show the relationship between brown energy consumption and different
solar panel dimension/battery size. Lastly, Section 5.6 concludes the work of this section.

5.1 Energy Storage Devices

The variable and intermittent nature of renewable energy – like solar energy – makes it
difficult to manage. In order to increase the usage of renewable energy, one way consists
in carefully scheduling the workload to align with the time-varying available renewable
energy. An alternate solution consists in using ESDs [GFKR15] to store the renewable energy
and generate electricity for later usage.

The main parameters to be considered when dealing with ESDs are:

1. Efficiency: The energy used to charge a battery is higher than what can be used at a
later time.

2. Battery charging and discharging rate limit: This charging/discharging rate limit is
determined by the type of battery. Typically the discharge/charge ratio is larger than
1 for most batteries.

3. Self-Discharge: There is an energy loss which is proportional to the storage duration.

4. Depth-of-Discharge (DoD): Many factors may impact the battery lifetime such as the
charging/discharging cycles [Che+09; DØ09]. DoD can also impact the battery life-
time: in order to extend the battery lifetime to a reasonable time, we cannot use the
full capacity of battery.

We now present the ESD that includes re-chargeable batteries technologies (Electrochem-
ical). In this section, we consider two kinds of batteries: Lead-Acid battery (LA) and Lithium-
Ion (LI) which are prevalent in current data centers. Table 5.1 shows the different constraints
per battery kind.

LA LI
DoD 0.8 0.8

Charge rate / ESD size (%) 12.5 25
Efficiency 0.75 0.85

Self-discharge (per day) 0.3% 0.1%
Discharge rate / charge rate ratio 10 5

Price ($/kWh) 200 525

Table 5.1 – The battery characteristics (data from [Wan+12a; Che+09; DØ09])

In comparison with LA, LI battery has higher energy density, energy efficiency and lower
discharge rate, but also higher cost. In the rest of the chapter, battery and ESD terms are
interchangeable.

5.2 Context and assumptions

This section is focusing on maximizing the use of renewable energy in a small/medium-
scale data center with on-site solar panels. This section describes the context of this work.
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5.2.1 Small and medium data centers

As in the previous chapters, the considered data center comprises between 20 to 150
servers. Each server has limited resources in terms of CPU and RAM. We assume that
there is no centralized data storage system in the data center: each server has its own hard
disk [Bel+16]. The data center is equipped with photovoltaic (PV) panels and an ESD. It
has dual brown (from regular grid) and renewable energy supplies. If the renewable energy
cannot be entirely consumed by the data center, the ESD stores the surplus of renewable en-
ergy for future use. We also assume that each server has a switch connected with renewable
and brown energy supplies and the ESD. Specifically, the server can only opt for using one
of the three sources at the same time.

A job can be submitted to the data center at anytime and it consists of an individual
Virtual Machine (VM) to execute for a given duration. A VM is considered as the basic unit
of resource allocation. We assume each VM has two constraints, namely CPU and RAM,
and each job has its own duration and a predefined deadline. When a job finishes, the VM
is destroyed and it releases its reserved resources back to the server. As previously, the job
management system assumes that time is divided into slots. The VM resource allocation
operations are performed periodically at the beginning of each time slot.

5.2.2 ESD model

As shown in Figure 5.1, photovoltaic (PV) panels turn solar energy into electrical energy
which can be directly supplied for the data center or collected by the ESD. The ESD is com-
posed of rechargeable batteries which first collect and store energy (generated from solar
energy only), and then power the data center when scheduled.

Solar 
photovoltaic

ESD Data center

Grid

Figure 5.1 – Energy sources of the data center

The capacity of the ESD is finite. Herein, we use parameterC to express the maximum ca-
pacity of an ESD. At a given time t, Cavailable(t) represents the energy that has been collected
and is stored by the ESD. In order to keep a longer battery lifetime, we take into account the
DoD constraint [DØ09], which stipulates that the remaining energy stored in an ESD has to
be larger than the DoD threshold. So, in other terms, the available stored energy is smaller
than a higher bound η C (0 < η < 1, e.g, η = 0.8). By considering the DoD constraint, one
can see that Cavailable(t) never reaches C. Formally, we have 0 ≤ Cavailable(t) ≤ ηC.

An ESD has two significant functionalities: charging (collects energy from solar panels)
and discharging (powers the data center). In our system, we consider that charging and
discharging are two independent procedures. It implies ESD is never under charging and
discharging states simultaneously. The charging rate has an upper bound λ depending on
the ESD type and capacity. During a given time period [ti, tj] (tj > ti), if we suppose the
available green energy (supplied by PV cells) is E(ti, tj), we use formula 5.1 to compute the
amount of energy Ein(ti, tj) that can be collected by an ESD.
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Ein(ti, tj) = min(E(ti, tj), λ(tj − ti), Cavailable(ti))× σ (5.1)

Parameter σ is constant and expresses the energy efficiency of the battery’s charging
procedure. The discharging rate also has an upper bound denoted µ. During a consecutive
time period [ti, tj], we use formula 5.2 to compute the amount of energy Eout(ti, tj) that can
be provided by the ESD. Parameter Eself-discharge(tj − ti) represents the energy loss due to the
self-discharging of batteries.

Eout(ti, tj) = min(µ(tj − ti), η C − Cavailable)− Eself-discharge(tj − ti) (5.2)

In this scenario, we consider only solar energy as renewable energy source. Due to the
variable and intermittent nature of solar energy, an energy production prediction is per-
formed when a job scheduling decision has to be taken. It only predicts the solar energy for
the following time slot (1 hour), so that such short-time prediction may have a high accu-
racy [Goi+13]. To simplify the problem, here we assume that there is no prediction error in
our validation methodology.

5.3 VM scheduling

5.3.1 Baseline algorithm

Now we describe the baseline algorithm which will be used as a comparison reference.
Whether the renewable energy is sufficient for the workload energy or not, we expect to
minimize the total energy consumption of the servers. The minimization can be done at
different levels such as infrastructure or application for instance. As mentioned previously, a
server in idle state consumes roughly half of its peak power. Therefore, an effective approach
consists in reducing the number of powered-on physical servers through consolidation.

Given a set of VMs with different resources requirements and a set of servers with fixed
capacities, we want to find the minimum number of servers needed to contain all VMs, such
that the amount of VMs’ resource requirements assigned to each server does not exceed its
capacity. The VM placement problem can be modeled as a n-dimensional bin-packing with
finite number of bins, where the different VM resource requirements can be modeled as
different sizes of items and the various server’s resources correspond to different bin sizes.
In this scenario, we consider CPU and RAM as the constraints for both servers and VMs.
The VM placement problem then becomes a 2D bin-packing problem which is an NP-hard
problem. As described in Section 4.3, to solve this problem, we adopt the First Fit Decreasing
(FFD) heuristic algorithm.

The regular FFD scheduling algorithm usually considers VM resource requirements as
the resources’ constraints for its placement. However, Cloud jobs typically have resource uti-
lization levels well below their resource requirements on average over time [LOM15]. The
resource over-commitment technique increases the server utilization by considering lower
bounds than the actual user requirements for allocating resources to VMs and thus, putting
more VMs on a single server. As a consequence, when this lower bound is reached by each
VM running on the server, some VMs have to be suspended or migrated in order to free
resources. As resource over-commitment is widespread in Cloud infrastructures [Zha+12;
Dab+15a], we combine FFD and CPU over-commit in order to increase server resource usage
and reduce the number of powered-on servers. However, as the over-commitment configu-
ration can greatly increase both CPU and RAM utilization, it can lead to overload the server.
Consequently, we will need to migrate the VMs from the over-loaded servers to others thus
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incurring an extra energy consumption and performance degradation. Hence, for these rea-
sons, the jobs need to be provisioned for their peak draw by analyzing the history of jobs
behaviors and seeking a safety over-commitment configuration.

We take into account the VM creation and VM live migration energy overhead. Unlike
the VM creation, the energy consumption of VM migration depends on the VM disk size
and the number of dirty pages in RAM that impacts the migration time.

The considered baseline algorithm implements both FFD and over-commit resources
techniques, as our opportunistic algorithm (PIKA) does. At any time, the jobs are submitted
and the broker directly places them on the servers. The baseline consumes the solar energy
when it is available. The battery is charged when a surplus solar energy appears. Otherwise,
the workload first discharges the battery and then uses the brown energy. Note that, there
is no opportunistic job scheduling mechanism in the baseline algorithm. In the rest of this
chapter, opportunistic scheduling and PIKA terms are interchangeable.

5.3.2 Opportunistic job scheduling

For evaluating the opportunistic approach, we use PIKA, our framework described and
evaluated in Chapter 4. As time in our system is discrete, the optimization operations
are performed periodically at each slot. According to the job characteristics, opportunistic
scheduling approaches classify the jobs into two types called here web jobs and batch jobs.
The web job is defined as non-uninterruptible job. It has the highest priority on scheduling.
When both types of jobs arrive, the broker pushes them respectively to the web job pool and
then to the web queue, the batch job to the batch pool. We adopt the FFD algorithm to place
the web jobs, all the jobs in web queue are immediately placed on the servers which have
sufficient resources. Unlike the web jobs, batch jobs can be suspended with a slack time
that may increase the potential chance to exploit the renewable energy. When its slack time
reaches 0, the batch job is promoted as a web job. After all the web jobs have been placed,
the broker seeks among the running servers which meet the batch jobs resource requirement.
The web job placement and batch job placement are independent algorithms.

Recall that, opportunistic scheduling targets two problems: 1) when workload energy
consumption is higher than the solar energy supply, it runs partially the workload: it sus-
pends the batch jobs which have a non-null slack time and performs VM consolidation in
order to switch-off more servers. This is to reduce the brown energy consumption. 2) Oth-
erwise, it runs the entire workload and the batch jobs which were delayed before. This is to
maximize the solar energy usage.

Due to the ESD efficiency, there is an energy consumption during battery charging. In
contrary, opportunistic scheduling can reduce the effect due to battery efficiency by delay-
ing the batch jobs to consume the solar energy directly instead of storing it in the battery.
However, the more batch jobs are delayed, the more numerous VM migrations will be due
to consolidation.

5.3.3 Battery charge/discharge model

Figure 5.2 displays two curves: the purple curve w(t) denotes the workload energy con-
sumption and the green curve g(t) denotes the solar power. We observe in Figure 5.2 that
for areas a1, a2 and b1, b2, the workload energy consumption is higher than the solar energy
supply.
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Figure 5.2 – Workload energy consumption and solar energy production

If there is no ESD, the total energy consumption from the grid can be expressed as:

Ebrown =

t1∑
t=0

(w(t)− g(t)),∀(w(t) > g(t)), t ∈ T (5.3)

When the workload energy demand is less than the solar energy, the amount of surplus
solar energy is defined as:

Esurplus =

t2∑
t=t1

(g(t)− w(t)),∀(w(t) < g(t)), t ∈ T (5.4)

For day 1 on Figure 5.2, Ebrown = a1 + a2 and Esurplus = c1. The battery has to be charged
when w(t) < g(t). When the solar energy is not sufficient to supply for the current workload
energy, we first discharge the battery. Once the battery runs out, the servers then consume
the brown energy from the grid.

In the rest of this chapter, we seek for the relationship between c1 and (a2 + b1) in dif-
ferent cases. Ideally, if c1 is much larger than (a2 + b1), the amount of energy produced by
solar panels is sufficient to offset the whole workload energy consumption that takes into
account an ideal ESD (it can store all the surplus solar energy). In a real case, the battery
often has limited size and solar energy is not sufficient to compensate the workload energy
consumption (c1 < (a2 + b1)).

If we assume the ESD is ideal for both solutions, then in baseline, the energy loss is
mainly caused by the battery efficiency. The needed solar energy can be formulated as:

c1 × σ > (a2 + b1) (5.5)

where σ denotes the battery energy efficiency.

5.4 Experimentation conditions

We use our trace-driven simulator (described in Section 3.4) to compare different re-
source allocation and scheduling policies and estimate their energy consumption using a
power model based on real measurements. The simulator integrates the data center and ESD
models described in Section 5.2. We use it to evaluate the impact on energy consumption
with different configurations and ESD technologies. This section presents the experimenta-
tion conditions used in the simulator.
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5.4.1 Workload trace

For all the simulations, we use the same real-world trace as in previous chapter from
a medium-scale private Cloud data center provided by Easyvirt. The original trace was
collected from 26th of March 2014 to 5th of July 2014. We extracted a non-holiday week: the
data consists of 787 web jobs and 3148 batch jobs. It precises each job’s initial VM resource
requirement, the instantaneous CPU and RAM utilization. Similarly to validation conditions
of Chapter 4, in our scenario, the CPU and RAM utilization is averaged over 1 hour in order
to eliminate the noise. Each web job takes roughly 12 hours on average, and each batch job
takes about 6 hours with a deadline equal to 12 hours (it has to be executed within the 12
hours following its submission).

5.4.2 Solar energy trace

As in Chapter 4, for solar energy production, we use real traces collected at the University
of Nantes (described in Section 3.3.2). As shown in Figure 5.3, we choose the trace of a
random week (22-28 June 2015) which is mostly sunny.
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Figure 5.3 – Solar energy production with solar panels of 5.52 m2

5.5 Results

In this section, we compare the opportunistic scheduling approach and the battery ap-
proach for maximizing solar energy utilization in a data center. First, we determine the opti-
mal solar panel and the optimal battery size depending on the approach. Then we compare
both approaches under various conditions, and we combine them.

5.5.1 Find the optimal solar panel dimension

First, we assume that the battery size and the charging/discharging rates of both ap-
proaches are infinite in this early experiment to determine the optimal solar panel dimen-
sion for the given workload. We seek for an ideal solar panel size that can supply the entire
workload energy consumption. We first find a solution for this problem in the baseline case.
Since the workload energy consumption can be estimated statistically, the area of solar pan-
els can be trivially determined via calculation.

In this scenario, we assume an infinite battery size. So, it enables to store all the surplus
solar energy in the region c1 and c2 as shown in Figure 5.2. Due to the battery efficiency
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and limited charge/discharge rates, the amount of surplus solar energy has to be strictly
greater than the required workload energy in order to compensate for these intrinsic ESD
losses. Recall that, we are looking for c1 which satisfies c1×σ ≥ a2+ b1 where σ indicates the
battery efficiency. This formula describes the energy stored during the day which furnishes
the workload energy consumption until the solar energy becomes directly available again.
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Figure 5.4 – Workload energy/solar energy supply ratio and maximum solar energy that
can be generated per time unit

Figure 5.4 illustrates the workload energy/solar energy supply ratio. As the size of solar
panels increase, the brown energy consumption of the entire workload decreases. When the
solar panel area increases to 226.32 m2 (about 15 × 15 m2), the workload’s brown energy
consumption reaches 0, under the assumption of a battery with infinite size and infinite
charging/discharging rate. We later determine the optimal battery size.

5.5.2 Find optimal battery size in ideal case

Now, we assume that the size of solar panels is ideal, so equal to 226.32 m2. Thus, it
can provide sufficient energy for the workload needs. Figure 5.5 shows the brown energy
consumption of baseline algorithm and of opportunistic scheduling (PIKA) with the same
type of battery (LI battery) depending on the battery size (purple and green curves).

We also indicate the corresponding volume taken by the batteries depending on their
capacity for both LI and LA types (blue and yellow curves). The brown energy of both so-
lutions decreases when the battery size increases. We can see that opportunistic scheduling
always requires a smaller battery size than baseline, as expected. We can also see that the
workload does not consume anymore brown energy when battery size is larger than 90 kWh
(600 L for a LI ESD) for PIKA and 140 kWh (950 L for a LI ESD) for baseline. So, using op-
portunistic scheduling decreases the ideal battery capacity and its corresponding volume by
36% (for LI type).

With opportunistic scheduling, the batch jobs are delayed in order to be executed when
solar energy is available. This has two effects: 1) a part of solar energy is directly consumed
instead of storing it on the battery; 2) despite the batch jobs delayed run, the surplus solar
energy is reduced. This is why it can use a smaller battery size than baseline to reach the
same brown energy consumption. Figure 5.5 also shows that LA volume is larger than LI.
Using the price values provided in Table 5.1, for a 90 kWh battery, for LI, it represents 600
L and 47,250 $, while for LA, it represents 1,150 L and 18,000 $. Both price and volume can
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Figure 5.5 – First two curves (purple and green): brown energy consumption with an LI
ESD. Last two curves (blue and yellow): corresponding ESD volume.

impact the adoption of such an approach for logistics and financial reasons. While LI and
LA batteries exhibit different characteristics, their loading and discharging schemes behave
similarly. In the remaining of this chapter, for clarity’s sake, we use LI batteries without loss
of generality.

5.5.3 Opportunistic vs. baseline when solar energy is not sufficient for
the entire workload consumption

In this scenario and for all the experiments presented below, we assume that there is
not enough solar energy to fulfill the entire workload needs. We consider the solar panel
dimension is 160 m2 which is not able to provide sufficient solar energy to compensate the
entire workload energy consumption. We compare the brown energy consumption with
variable battery sizes for the both solutions, opportunistic and baseline.
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Figure 5.6 – Brown energy consumption with varying battery size

Figure 5.6 demonstrates the different battery sizes with multiple configuration for the
opportunistic and baseline algorithms. The different configurations of the opportunistic



74 CHAPTER 5. BATTERIES AND OPPORTUNISTIC SCHEDULING

scheduling are defined as delaying 30%, 50%, 70%, 90%, 100% batch jobs (instead of directly
executing them when solar energy is available, and thus storing it as normally done by
PIKA). This represents possible trade-offs between the opportunistic scheduling approach
and the ESD-based approach. We can see that both opportunistic and baseline approaches
reduce brown energy consumption when the battery size becomes large. For a given battery
size which is inferior to 73 kWh, the opportunistic approach always consumes less brown
energy in comparison with baseline. After this point, the brown energy consumption of
opportunistic approach does not decrease any more when battery size becomes larger. In
contrast, the baseline brown consumption continues to decrease while the battery size in-
creases up to 110 kWh. Although all the other configurations of opportunistic approach can
get lower brown energy with a larger battery compared with pure opportunistic scheduling,
they are still higher than baseline in this particular case.

5.5.4 Solar energy losses with variable battery size

Now we examine the renewable energy losses due to battery size limit. Figure 5.7 shows
the energy losses with varying battery sizes. This energy losses stem from the battery limited
charging rate and size.

Figure 5.7 – Solar energy lost due to the limited battery size

Since the opportunistic approach delays the batch jobs until the solar energy becomes
available, the workload here consumes solar energy directly and stores the rest of solar en-
ergy to the battery. Thus, PIKA can use a smaller battery while achieving the equivalent
effect as baseline. Finally, when battery size is 80 kWh for opportunistic and 110 kWh for
baseline, they both reach zero solar energy loss caused by the battery’s limited charging rate
and size.

5.5.5 Opportunistic scheduling migration vs. baseline battery loss

In order to fairly compare the opportunistic scheduling approach and the ESD-based
solution, we now evaluate their respective energy losses: migration cost for opportunistic
scheduling and battery efficiency for ESD solution.

Figure 5.8 shows the amount of energy lost with variable battery sizes. Here, we focus
on two types of energy loss: 1) battery energy efficiency; 2) VM migration energy cost. In
baseline, as the size of battery increases, the energy loss increases; this happens because of
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Figure 5.8 – Migration cost vs. battery efficiency loss

battery energy efficiency and of very few VM migrations due to overloaded servers (over-
commit policy). Hence, the choice of battery type highly impacts the energy waste.

For the opportunistic approach, the energy loss mainly depends on: 1) migrations caused
by consolidation; 2) the rest is same as baseline that is the battery efficiency. Since the solar
energy was not sufficient enough for the workload needs, the opportunistic algorithm has
to suspend some batch jobs and to perform consolidation in order to keep a low number
of powered-on servers. And the delayed batch jobs are executed when solar energy be-
comes available again. The delayed workload directly consumes the solar energy and the
remaining solar energy is stored in the battery. Thus the opportunistic approach stores less
energy than baseline in the ESD, and thus the losses due to battery efficiency are lower with
the opportunistic approach. However, the total solar energy is not sufficient for the entire
workload. In this case, the opportunistic approach periodically performs VM consolida-
tions that may lead to numerous VM migrations. This migration energy cost compensates
that battery-related gain. For this reason, it can be better to partially delay the batch jobs
(respectively 10, 30, 50 and 70% are delayed). In fact, when we delay less batch jobs, it leads
to less migrations by consolidation, but more energy will be stored in the ESD. There is a
balance for the opportunistic approach between the energy loss caused by migrations and
by battery efficiency. We observe that when there are 30% batch jobs delayed, the energy
loss which contains the migration energy overhead and battery efficiency, the opportunistic
approach gets a lower energy loss than baseline when battery size is greater than 40 kWh.

5.5.6 FFD scheduling impact

For a given workload such as ours, the opportunistic approach has a lower energy loss
in comparison with baseline when it delays 30% batch jobs. Unfortunately, in Figure 5.6, the
opportunistic approach consumes more brown energy than baseline. It seems that this result
is in conflict with the result in Figure 5.8. After our analysis, there is also an impact from
the two consecutive FFD algorithms (for web and batch jobs) that leads the opportunistic
approach to need more servers to place the same amount of jobs compared with baseline.

There is a performance degradation when we change the input list size; e.g. for any list
L with a length l, FFD(L) ≤ 11/9OPT (L)+1 as mentioned in Section 5.3.1. If we divide the
list L into 2 sub-lists L1 with a length 0 < l1 ≤ n−t and L2 with length 0 < l2 ≤ t, FFD(L1) ≤
11/9OPT (L1)+1 and FFD(L2) ≤ OPT (L2)+1. The performance may be different between
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FFD(L) and (FFD(L1) + FFD(L2)). In case of our simulation results, we observe that there is a
performance degradation with the number of bins needed: FFD(L)� (FFD(L1) + FFD(L2)).
This explains why the opportunistic scheduling has a lower energy loss than baseline in
Figure 5.8, but it consumes more brown energy than baseline in Figure 5.6 when the battery
size is large enough.

5.5.7 Comparison of the approaches on a realistic scenario

Figure 5.9a illustrates a realistic scenario with 4 different cases using the same battery
size and the same solar panel dimension. The first case shows the baseline without ESD,
this case leads to a wastage of solar energy. The second case shows the baseline with ESD,
and in this case, solar energy can be partially stored. However, a part of solar energy is
still wasted due to the limited battery size and charging rate. The third case presents PIKA
without battery, so solar energy is partially consumed by opportunistic scheduling, but the
surplus solar energy is wasted. The fourth case exhibits PIKA with battery, and it consumes
almost all the available solar energy.

Policy Total Energy (Wh) Brown Energy (Wh) Green Energy (Wh)
Baseline 768,724 442,085 326,639

Baseline + ESD 792,155 280,441 511,714
PIKA 892,458 378,569 513,889

PIKA + ESD 914,944 209,935 705,009

Table 5.2 – The energy consumption with a 160 m2 solar farm and 40 kWh LI battery

Table 5.2 summarizes the results from the experiments displayed on Figure 5.9. It shows
that PIKA-ESD approach is the most energy-efficient among all approaches. Particularity,
we found that the brown energy consumption of Baseline-ESD was approximately equal
to original PIKA (i.e., no ESD). In fact, by aggregating from the electricity lost due to ESD
efficiency and better FFD performance thus leading to higher energy efficiency at server-
level (i.e., this refers to Section 5.5.6) in Baseline-ESD, the sum is equivalent to the total
energy consumed by VM migrations in PIKA.

5.6 Conclusion

Integrating renewable energy into data centers significantly reduces the traditional en-
ergy consumption and carbon footprint of these energy-hungry infrastructures. As renew-
able energy is intermittent and fluctuates with time, it is usually under-utilized. In this
chapter, we address the problem of improving the utilization of renewable energy for a sin-
gle data center by using two approaches: opportunistic scheduling and energy storage. Our
first result deals with analyzing the workload to find ideal solar panel dimension and bat-
tery size, this is used to power the entire workload without any brown energy consumption.
However, in reality, either the solar panel dimension or the battery size are limited, and we
still have to address the problem of matching the workload consumption and the renewable
energy production. The second result shows that opportunistic scheduling can reduce the
demand for battery size while the renewable energy is sufficient. The last results demon-
strate that for different battery sizes and solar panel dimensions, we can find an optimal
solution combining both approaches that balances the energy losses due to different causes
such as battery efficiency and VM migrations due to consolidation algorithms. We believe
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Figure 5.9 – The energy consumption with fixed solar panel dimension (160 m2) and 40 kWh
LI battery
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these works provide a valuable method for right-sizing the on-site energy production in-
frastructure, when we know the workload characteristics.

This work can be extended by studying the pertinence of both approaches with other
renewable energy sources, like wind for instance. As wind energy presents a completely
different production profile compared to solar energy, we could also investigate whether
the trade-off between the opportunistic scheduling and energy storage approaches which is
proposed in this chapter remains the same or would be different.
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Regardless of the considered opportunistic task scheduling or ESD-based approach, the
usage of renewable energy is significantly increased with non-negligible energy losses due
to their energy costs (see Chapters 4 and 5). By mixing these two approaches, the quantity
of wasted energy could be minimized in a single data center. In this chapter, we extend our
previous work to leverage on-site renewable energy production in the different edge cloud
nodes, in particular to deal with green IoT (Internet of Things).

In this chapter, we propose an analytical model for deciding whether to offload compu-
tation from the objects to the edge or to the core Cloud, depending on the renewable energy
availability and the desired application QoS. In order to conduct an in-depth analysis with
relevant assumptions leading to concrete contributions, we decide to focus on a particular
use-case with precise requirements and a realistic modeling. Our validation use-case targets
the Internet of Vehicles (IoV) that can be seen as a convergence of the mobile Internet and
the IoT [Yan+14]. In particular, we focus on video streams from cameras that need to be
analyzed usually for object detection and tracking. In this particular case, as it is often the
case with IoT applications, a high QoS level is required. Indeed, data lose their value when
they cannot be analyzed fast enough.

The rest of this chapter is organized as follows. Section 6.2 presents the system model
and assumptions. Section 6.1 explains our use case. Section 6.3 gives the experimental setup

79
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and evaluates the performance and corresponding energy consumption. A conclusion is
presented in Section 6.4.

6.1 Driving Use Case

The edge typically has less computing capacity (e.g., compute servers) than the resources
available in the cloud core. However, theses edge servers are closer to the edge-users and
therefore, for users, the latency to edge servers is lower than the latency to the core. We
consider that edge servers have dual energy supply which include traditional brown en-
ergy and renewable energy that is produced on-site and embeds a reasonably sized Energy
Storage Device (ESD) to store the surplus renewable energy.

The core Cloud represents the federation of large data centers where each data center
is composed of thousands of servers. Such a model of data centers [DM+13] with federa-
tion of resources and autonomic management mechanisms offers a large pool of computing
resources. While the core has more powerful servers the energy costs associated to data
movement present different tradeoffs that need to be investigated.

The motivation of this work is to provide a framework that can balance performance
and energy cost tradeoffs for real-time data analysis of high-rate data from many sensors.
A typical use-case scenario consists in cameras that can be embedded in small devices as
such Google Glass, GigaSight [Sim+13] or any other devices. The camera captures frames
continuously that can be seen as a high-rate data stream. Since such a video analysis, that
detects interesting objects (i.e., areas of interest) from it, consumes computing power, it thus
requires energy. To increase the computation performance and to reduce energy consump-
tion on the end-device, data is often offloaded to the Cloud to be analyzed. Although data
offloading to high performance servers at the Cloud can accelerate the analysis processing,
the efficiency of the whole procedure is highly dependent to the network condition and to
the costs associated to the network service.

In this contribution, we make the assumption that all the considered vehicles are equipped
with an on-board camera and are capable of uploading the video captured by their cameras
continuously to edge and core clouds. The edge/core analyzes each data stream in real
time and returns the road condition to the user. The application goal is preventing traffic
jam and possible traffic accidents by sharing the produced information to users in an online
manner. Integrating this into next generation of vehicles with autopilot technology can help
improving the road safety for the drivers (i.e., the users). As shown in Figure 6.1, an object
is detected by analyzing the data stream from the first car, the resulting analysis identifies
an object in the middle of the road which may be dangerous for the other vehicles behind
on this road. The edge-1 immediately informs all the vehicles that are in section BC of the
road. At the same time, a message is sent from edge-1 to the edge-0 in order to inform the
vehicles in section AB of the road.

6.2 System model and assumptions

6.2.1 Edge and Core model

Inspired by the previous work on video stream analysis [Sim+13; Anj+16] and edge-
computing [MZL16], our model involves two types of computing resources. In particular,
the renewable energy in this contribution refers to solar energy as in the previous chapters
of this manuscript.
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Figure 6.1 – Use case example for IoV with edge and core clouds

Computation at edge

Because a user is physically close to the edge, the servers placed at the edge enables low
latency for users. The data transfers from users to edge can have a lower latency than direct
transferring to the core Cloud. Conversely, the computation capacities at the edge Cloud is
limited and can be seen as a small-scale data center, the considered edge comprises between
20 to 50 servers. Each server has limited physical resources in terms of CPU, RAM and
ingress bandwidth. We assume that there is no centralized storage system at the edge cloud:
each server has its own hard disk [Bel+16]. Once the edge cannot satisfy the computational
task QoS requirement, it transfers the task to core where sufficient computing resources are
available.

The edge is equipped with a number of photovoltaic (PV) panels and an ESD. It has dual
brown (from regular grid) and renewable energy supplies. If the renewable energy cannot
be entirely consumed by edge servers, the ESD stores the surplus of renewable energy for
future use. We also assume that each server has a switch connected with renewable, brown
energy supplies and the ESD. In particularly, the server can only opt for using one of the
three sources at the same time. These assumptions are the same as the ones done in Chap-
ter 5.

Computation at core

The core represents a federation of inter-connected data centers which are usually far
from users. Although the servers placed at the core cloud have higher latency than edge
servers, either their number or their performance (of core servers) are higher than at the
edge. From the energy cost perspective, the data processing at the core is faster than data
processing at the edge. However, a large volume of data needs to be transferred to core to
process such that the communication cost between user-core through the Internet cannot be
ignored.

A job is a request from a vehicle that requires computing resources for processing. It can
be submitted to the edge and the core at anytime. Once the request is accepted, a Virtual
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Machine (VM) is created on a server at the edge or core to process the analysis. A VM is
considered as the basic unit of resource allocation. Each VM is created with its specific CPU
and RAM requirements. When the vehicle leaves this section of road, the VM is destroyed
and it releases its reserved resources back to the server.

6.2.2 Renewable energy and ESD model

Due to the variable and intermittent nature of solar energy, an energy production pre-
diction is performed while a job scheduling decision has to be taken. We take the same
assumption as in Section 4.2. The solar energy is predicted only for the following time slot
(1 hour), so that such short-time prediction may have a high accuracy [Goi+13]. To simplify
the problem, we assume that there is no prediction error in our validation methodology.

6.3 Experimentation

The first half of our experiments consists in measuring the power consumption and per-
formance degradation with different application resolutions on our experimental test-bed
Grid’5000. We use the same servers as mentioned in Section 4.6.2 (i.e. the used servers are
Dell PowerEdge R720 from the Taurus cluster at Grid’5000 Lyon site. Each server is com-
posed of two Intel Xeon E5-2630 processors (2.3GHz) each with 6 cores, 32 GB of RAM and
600 GB of disk space.) The processors support hyper-threading technology thus the total
of 12 physical cores servers can provide 24 virtual CPUs. We employed KVM as the virtu-
alization solution along with Linux on x86-based servers. The experiment results are used
for building power and performance models. The network energy consumption model is
defined in a similar way as it is in [Jal+16] and based on per-bit cost. These models were
integrated into our simulator described in Section 3.4. In order to extrapolate to large-scale,
the second half of our experiments are held using this simulator.

6.3.1 Setup

The servers are placed at both edge and core. The power consumption of the servers
is related to the CPU load as defined in Section 4.6.2. On the side of the solar power pro-
duction, we employ the traces detailed in Section 3.3.2. The theoretical max power of each
panel is 240 Watt. Subsequently, we extract data for a whole week (22-28 June 2015) from
the database which is shown in Figure 5.3 (in Section 5.4.2), the days in this week are mostly
sunny.

Existing literature has addressed video analysis algorithms and tools. Haar feature-
based cascade classifiers [VJ01] is a typical method for object detection which is effective
and capable of achieving high detection rates. It is based on machine learning approach
AdaBoost [SS99] and trains a cascade function from a large set of positive and negative im-
ages. The classifiers used in this chapter are included in the OpenCV distribution 1 2.4.13.
We trained our own Haar classifier which is used to analyze video streams for vehicles de-
tection in this chapter. The video is encoded through H.264 codec in 3 resolutions (360p,
480p and 720p). More details are shown in Table 6.1) and we use the FFmpeg tool [Ffm] for
decoding.

1. OpenCV is designed for computational efficiency and with a strong focus on real-time applications
http://opencv.org

http://opencv.org
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resolution bit rate
360p 640 x 360 514 kb/s
480p 720 x 480 706 kb/s
720p 1280 x 720 1176 kb/s

Table 6.1 – 360p, 480p and 720p represent 3 different resolutions of the same video.

6.3.2 VM size and time analysis

Due to the server limited computational capacity, allocating resources to VMs needs to be
carefully done. The goal of our first experiment is to evaluate the video analysis performance
and energy consumption on different VM sizes. In this experiment, we create two individual
VMs on two servers from the Taurus cluster. The VM-1 is given 2 virtual CPU and 2 GB
RAM, and the VM-2 is given 4 virtual CPU and 4GB RAM.

cpu=2
ram=2GB

cpu=4
ram=4GB

0

50

100

150

200

250

300

350

a
n
a
ly

si
s 

ti
m

e
 p

e
r 

fr
a
m

e
 (

m
s)

84

62

117

78

269

175

360P
480P
720P

Figure 6.2 – Analysis time on different VM sizes

The analysis time per frame of VM-1 and VM-2 are shown in Figure 6.2. VM-2 is 26%,
33% and 35% faster than VM-1 for resolutions of 360p, 480p and 720p respectively. Clearly,
the VM-2 benefits from more computational resources (i.e. the application makes advantage
of parallel computations) and it results in a reduced analysis time.

We then move on to another experiment where we vary the number of VMs. We first
create VM-1∼4 on server Taurus-12, four identical VMs, and each VM has the same hard-
ware configuration: 2 vCPU and 2 GB RAM. These VMs process only 1 data stream at a
time. VM-5 is created on server Taurus-13 with 8 vCPU and 8 GB RAM. Unlike VM-1∼4, it
processes 4 data streams in parallel. We conducted the experiments on analyzing the same
video. The experiment iterates 10 times and each time only processes 1 video format.

The results are shown in Figure 6.3. Figure 6.3a is when 4 individual small VMs are used
on Taurus-12 and each VM only processes 1 data stream. Analysis time is similar for the four
VMs for each resolution format. In Figure 6.3b, it shows the processing of 4 data streams in
parallel within a large size VM on Taurus-13. We observe that processing 4 streams in 1 large
VM is faster than processing in 4 small size VMs. We attribute this to the fact that the KVM
virtualization layer adds a penalty. In case of 4 VMs, the computational resources given to
each VM from KVM is not always from the same physical cores. In other words, there is
a scheduling cost if a VM is not always using at least one physical core. Moreover, as we
are executing the same application four times in parallel, there might be a positive memory
mutualization effect for the large VM case that does not appear in the case of separate VMs.

Figure 6.3c shows the power consumption of Taurus-12 with 4 small VMs processing 1
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Figure 6.3 – Energy consumption and frame analysis resolution time in 360p, 480p and 720p

data stream each, and Taurus-13 with 1 large VM hosting the same 4 data streams. As shown
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in Figure 6.3c, the average power consumption (in Watts) for processing 4 data streams in 1
larger VM is lower compared with 4 small VMs. For analyzing a 5 minute video, as shown
in Figure 6.3d, the large VM (VM-5 on Taurus-13) with faster speed of frame analysis and
lower instantaneous power consumption, consumes less energy in total.

We also observe that the processing time increases significantly when the resolution for-
mat increases. For instance, if we expect to analyze 8 frames per second (e.g., Simoens et
al. [Sim+13] select 1 out of 24 frames for analyzing) for a relevant application precision: in
order to ensure the accuracy of analysis process, this throughput should be as maximum as
possible. It means that we have to analyze 1 frame in every 3 frames with a video at 25 fps
(frame per second). It means that the average analysis time per frame must be smaller than
125 ms. To compute the maximum number of videos that can be analyzed in parallel, we
assume that 1 VM is used for analyzing 1 format of video. We measure the analysis time on
VM-5 for a video in the 3 resolution formats.

As shown in Figure 6.3e, the large VM (VM-5 on Taurus-13) supports in parallel up to
11 videos streams in resolution 360p, 4 video streams for 480p video and only 1 for 720p
video. Figure 6.3f shows the respective energy consumption in the 3 resolution formats for
the large VM.

6.3.3 Edge and core clouds’ energy consumption

In this subsection, we evaluate the effects of offloading computation tasks at the edge for
system performance of our framework and energy consumption at edge and core. We study
the scalability of our framework by increasing the number of vehicles (video sources). We
assume that there is no bottlenecks in the network between user-edge and edge-core. The
experiments in this subsection are performed using simulations based on the real measure-
ments done in the previous subsection.

Edge usually has less computational resources in comparison with core. In initial config-
uration, edge has 5 servers and dual energy consumption (self-produced renewable energy
with ESD and brown) and core has 100 servers without any renewable energy source. Each
edge server has 24 virtual CPU and 24 GB of RAM and the core servers are twice as pow-
erful as edge servers. To avoid the energy consumption associated with VM placement, we
assume all the VMs are same size that consists of 8 virtual CPU and 8 GB of RAM at edge.
The VMs have 24 virtual CPU and 24 GB of RAM at core implying the time analysis is re-
duced. We only consider 360p and 720p video formats in this scenario in order to illustrate
that different resolutions impact energy consumption and performance. As mentioned be-
fore (Section 6.3.2), a VM processes one format of video in the experiment thus a VM at
maximum processes 1 video stream for 720p, and 10 video streams for 360p in parallel as
shown in Figure 6.3e. All the requests of data analysis are processed at the edge by default.
If edge does not have sufficient resources for processing, the request is transferred to core.

The goal of this experiment is to measure the total energy consumption at both the edge
and core. We first assume that all the data streams are 360p and the renewable energy is
not available at the edge (e.g., there is no solar energy production during the night). At be-
ginning, there are few vehicles in the system. These vehicles first offload their data to edge
to be processed. When increasing the number of data streams, the edge energy consump-
tion increases by processing these data streams. As shown in Figure 6.4a, we observe that
the core does not consume any energy before the edge computing resources are exhausted.
Core starts to process data when the number of data streams exceeds 112 in the system. In
Figure 6.4b, all the 360p videos are replaced by 720p, the edge quickly drained its resources
when processing 720p videos as it consumes more computation resources than 360p videos.
The core receives the first request of data analysis from the 16th vehicle. From that moment,
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(a) Energy consumption with resolution 360p
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(b) Energy consumption with resolution 720p
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Figure 6.4 – The renewable energy is not available at edge in Figures (a) and (b) and is
available in Figures (c), (d), (e) and (f)

all the new data arrivals are directed to core to be processed.
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Once the renewable energy becomes available (i.e., we assume the area of solar pan-
els is 17 m2 and a 10 kWh ESD), as shown in Figure 6.4d, the edge consumes directly the
renewable energy (green) instead of brown energy (gray). The surplus renewable energy
produced is stored into its ESD for future usage. Edge is always prior to consume from re-
newable energy source and then it consumes from its ESD. It consumes the brown energy
when both (direct and stored green energy) are unavailable. Figure 6.4c shows, by integrat-
ing the on-site renewable energy and ESD at edge that it reduces roughly by half the energy
consumption compared with only non-renewable energy configuration.

In Figure 6.4e, we can observe that the average delay of 360p videos is significantly lower
than for 720p videos. Indeed most analysis tasks are performed at edge instead of at core.
Once the edge has exhausted all its resources, the new arrivals are migrated at the core. On
the scale of 300 vehicles, edge is capable of processing 37.3% of 360p videos streams in the
system. In contrast to 360p, processing 720p video streams consumes much more computing
resources than processing 360p videos. The edge can only process 5% of data streams and
all the other data streams have to move to core for processing. Despite the fact that the
core possesses more powerful computational resources which might even reduce the time
analysis, the latency from the network between edge and core cannot be ignored. Figure 6.4e
also demonstrates that the average delay of all videos are mainly depending on the number
of data streams offloading to the core. When increasing the number of data streams moving
to core, the network energy consumption is also increased as shown in Figure 6.4f.

6.3.4 The detection accuracy and number of cameras

Processing analysis in higher resolution video format often outputs a result with higher
detection accuracy. However, it consumes consequently larger computational resources in-
cluding CPU/RAM and bandwidth for transmission. Reducing the resolution is a clear
way to save computing resources and network utilization, and thus energy. Edge servers
can process more videos streams in parallel without significant performance degradation.
It potentially decreases network usage, thus more video streams can be processed at edge.
However, scaling down the video affects the detection accuracy. As mentioned in [Sim+13],
lowering the resolution of video significantly reduces the detection accuracy. We show the
initial accuracy settings used in this subsection for object detection in Table 6.2.

Classes 720p 480p 360p
car 96.7% 91% 88.5%

body 97.7% 94.9% 90.7%
dog 96.1% 94.9% 90.7%
total 96.7% 92.3% 87.9%

Table 6.2 – The detection accuracy for different objects from [Sim+13]

Assuming that there is only one car in the section AB of road, the detection accuracy
for car is equal to 96.7%, 91% , 88.5% with 720p, 480p and 360p video format respectively.
Now, we assume that there are two cars in the same section, their cameras both capture with
resolution 360p. When one of the two cameras detects an object on the road and another
did not, one can wonder in this case, which camera should be used for the definitive result?
Furthermore, we replace one camera by using 720p resolution. Suppose the two results are
still different, should we always believe the result with higher resolution (720p) because of
its higher detection accuracy by default?

Unfortunately, we cannot directly conclude which result of the two is more believable.
Even though the 720p videos often offers a higher detection accuracy than 360p videos, this
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only shows that 720p is more likely to be correct, but it is not conclusive. However, when
increasing the number of cameras, we show that the correct probability of result is not only
depending on the initial detection accuracy, but also related to the number of cameras in
the system. Suppose there are 2n + 1 cars in the same section of road. All the cars upload
video streams with the same resolution and then they output 2n + 1 results. Intuitively, if
there is a result appearing at least for half of the total number of cars, we prefer to select this
result as the final result. We define the reliability as the probability of a result that appears
to exceed n+1 times among 2n+1 results. In this section, we prove this final result becomes
more believable when the number of cameras increase. First, each result is independent with
others, so the reliability can be expressed as follows:

reliability = Pr(X ≥ n+ 1)

=
2n+1∑
x=n+1

Cx2n+1 (p)
x (1− p)2n+1−x

=

2n+1∑
x=n+1

(
2n+ 1

x

)
(p)x (1− p)2n+1−x

=
2n+1∑
x=n+1

(2n+ 1)!

(2n+ 1− x)!x!
(p)x (1− p)2n+1−x

where p ∈ (0, 1)

(6.1)

After simplifying the equation 6.1 , it can be expressed as:

reliability =
1

1 +

(
1− p
p

)2n+1 =
1

1 + ω2n+1
,where ω =

1− p
p

(6.2)

(For details about simplifying the equation 6.2, see Appendix A.)
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Figure 6.5 – Reliability

From equation 6.2, when p > 0.5, ω decreases when increasing n and the reliability in-
creases monotonically. While n → ∞, the value of reliability is infinitely close to 1. In
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reverse, with p < 0.5, ω increases when increasing n and the reliability decreases monotoni-
cally. While n→∞, the value of reliability is infinitely close to 0. When p = 0.5 and n→∞,
the reliability is infinitely close to 1

2
.

The significance of equation 6.2 is that more than half of total results points to the same
result, the probability of this result being correct is approaching 100%. It also shows this
probability is cumulative by increasing the number of video streams. Although we cannot
change the initial detection accuracy for each format, we are still able to reduce the prob-
ability of returning an erroneous result. It is able to offer up to 99.999% or even higher
probability for proving the result is on the side of 96.7% instead of 3.3%. In other words, we
can infinity reduce the probability of occurrence of this 3.3%.

We introduce the nines conception which is typically expressed as a percentage with
a number of nines (e.g., 99% → two nines, 99.9% → three nines, etc.). This conception is
similar with the high availability conception in system design which aims to ensure an agreed
level of operational performance. It could thus be used as a negotiated metric between the
client and the cloud provider within an SLA (Service Level Agreement). From the cloud
provider’s perspective, the video resolution format can be seen as a green lever allowing
for a controlled application performance degradation in return for lower resource allocation
and thus, energy savings.

# nines 720p 480p 360p
99.9% 3 4 6

99.99% 4 6 8
99.999% 5 7 11

Table 6.3 – The number of cameras needed for achieving the indicate number of nines.

As shown in Figure 6.5 and Table 6.3, the resolution 360p requires 6 cameras working
simultaneously in order to achieve three nines, the 480p requires 4 cameras and the 720p
requires only 3 cameras to achieve the same level of accuracy. The higher the resolution is,
the lower is the number of cameras required for reaching a given level of reliability.

6.4 Conclusion

Data loses its value when it cannot be analyzed quick enough. Offloading the data to
process video streams at edge effectively reduces the response time and avoids unneces-
sary data transmission between edge and core, thus reducing the network energy overhead.
Moreover, it can extend for instance the battery lifetime of end-user equipment (e.g., wear-
able equipment). Meanwhile, the traditional energy consumption and carbon footprint can
be reduced by building self-producing electricity edge.

The study in Section 5.6 shows the possibility of using ESDs to further minimize these
costs. Hence, we leverage on-site renewable energy production and ESDs, the simulated re-
sults shows that the energy saving is up to roughly half of total consumed energy compared
with non-renewable energy configuration.

The scenario in this chapter can be seen as a concrete example to demonstrate the advan-
tages of offloading the data to process at the edge or core in an energy saving context. In
addition, although this work is camera-based, it can be applied to any other scenario where
the data streams need to be processed in real-time as it provides the analytical framework
for such applications.
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7.1 Summary of the Dissertation

Renewable energy in the world has grown strongly in recent years. One reason is the
solar-power generation efficiency significant increase. It enables the small-/medium-scale
data centers to generate their own renewable energy. Thus they become self-sustainable
and allow to reduce the fossil fuels (brown energy) consumption. As a consequence of the

91



92 CHAPTER 7. CONCLUSION

renewable energy success, the cost of producing green energy is becoming cheaper than
brown energy. The direct result is that the cost for the user to use the cloud to accomplish
their tasks in this kind of data centers is falling in a similar way when renewable energy is
available.

Unlike traditional infrastructures where energy sources are controllable, integrating re-
newable energy into a data center is difficult due to its intermittent and variable nature.
Solar energy is considered as an admissible renewable source as solar panels are easy to in-
stall, they present a reasonable efficiency and the variations in their electricity production
are not too abrupt (as for wind). Usually, most electricity is generated by solar panels dur-
ing the day and its peak power occurs always near the midday. However, workloads do not
necessarily follow the renewable energy production pattern which may result in a waste of
energy.

In order to increase the usage of renewable energy, one way consists in carefully schedul-
ing the workload to align it with the time-varying renewable energy production. We hence
proposed PIKA framework making use of opportunistic scheduling for optimizing solar
energy utilization in a small-/medium-scale data center without energy storage. This ap-
proach leveraged two ideas: 1) delay part of jobs which could be suspended within limited
time (e.g., batch jobs) until solar energy becomes available; 2) when the renewable energy
production cannot fully support the entire workload energy consumption, the system mi-
grates the jobs from under-utilized servers to others and switches-off them with the help of
consolidation techniques. However, this approach offers an efficient solution when part of
the jobs are delay-tolerant (e.g., batch jobs). In this contribution, we allowed some jobs to
be delayed in order for the workload to follow the renewable energy generation that max-
imizes the green energy usage. In addition, we explained that such a system cannot be
satisfied when the workload contains only real-time jobs.

Another way consists in using Energy Storage Devices (ESDs) to store the surplus elec-
tricity generated from renewable energy sources. Through integrating ESDs, real-time jobs
can always have access to green energy and so they are not forced to be delayed. Never-
theless, a penalty occurs because storing energy into batteries leads to an energy loss due
to energy transformation. In this contribution, we explored the opportunistic-scheduling-
based and ESD-based approaches to maximize the utilization of on-site renewable energy
for small data centers. By using real-world job workload and solar energy traces, the exper-
imental results showed the energy consumption with varying battery size and solar panel
dimensions for opportunistic scheduling or ESD-only solution. Meanwhile, we found that
using opportunistic scheduling can effective reduce the demand for battery size. Conse-
quently, we proposed a solution mixing both approaches in order to achieve a balance in all
aspects, implying minimizing the renewable energy losses (i.e. virtual machine migration
cost for opportunistic scheduling and loss due to energy efficiency of battery).

The balance between the opportunistic-scheduling-based and ESD-based approaches can
be seen as a good solution for mono-site data centers. As edge cloud infrastructures are
smaller in size than centralized data centers, they meet the prerequisites of our previously
designed data center. We thus advocate for leveraging on-site renewable energy production
in the different edge cloud nodes to green Internet of Things (IoT) systems while offering
improved Quality of Service (QoS) compared to core cloud solutions. We proposed an an-
alytic model to decide whether to offload computation from the objects to the edge or to
the core Cloud, depending on the renewable energy availability and the desired application
QoS. This model was validated on our application use-case that deals with video stream
analysis from vehicle cameras. In addition, we proved the relationship between the number
of cameras and the application accuracy, opening new research directions on finding rele-
vant trade-offs between application performance degradation and energy consumption of



7.2. PERSPECTIVE 93

underlying cloud systems.
So far, we have completed the prototype of integrating renewable energy into a single

data center in this dissertation. The prototype is following two approaches: (1) design an
intelligent resource management, which takes advantage of renewable energy availability
to perform opportunistic tasks and consolidation policies without taking into account bat-
teries, then exploring the trade-off between energy saving and performance aspects in cloud
system; (2) provide the reasonable solar farm size and battery size for a given data center
through analyzing the workload executed inside, and find the maximum energy quantity
that can be saved by an ESD-based approach.

7.2 Perspective

Looking forward, there are still many unanswered challenges. We present several poten-
tial future research directions in this section.

7.2.1 Thermal-aware job scheduling

As mentioned in Chapter 2, one of the primary energy consumer in current data centers
is related to underutilized or idle servers, and to cooling cost. Since the utilization of servers
have been significant increased through consolidation and optimized resource allocation
policies, the heat rises primarily due to higher CPU load issues. Because excessive heat con-
ditions consume large amounts of energy, we need to think over the spatial placement taking
into account for thermal issue while mapping the tasks to the physical servers. Providing
visibility on the impact of energy is crucial, and consequently finding out a reliable model
to describe the relationship between performance and thermal. Ideally, we would like to
propose a job scheduling algorithm which seeks a balance between thermal constraints and
performance, hence avoiding or preventing the extreme heat conditions.

7.2.2 In-transit strategy

As mentioned in Section 6.3.3, the edge could be capable of generating its own energy
and storing the surplus energy into an ESD. Our results show that the renewable energy can
almost cover its total energy consumption with small-scale solar panels and batteries. Due
to its limited computing resources, it cannot support huge amounts of processing that needs
to occur at the same time. Thus, new incoming data streams have to move to core cloud
for quick analysis. As we conclude previously, in order to reduce the brown energy con-
sumption, it is then better to decrease the resolution format for all videos with a penalty on
detection accuracy. From an environmental point of view, if the user expects high accuracy
of detection and to consume clean energy instead of brown one, he first needs to ensure that
the data is processed at the edge. As the number of users grows, we then have to increase
not only the number of edge servers, but also the solar photovoltaic panels that are able to
provide as much energy as the servers need.

To reduce the total brown energy consumption, another alternative solution, displayed
in Figure 7.1, consists in changing the division of labor between edge and core. The finite
computing resources at edge are no longer used for data analysis but for video decoding,
sampling and encoding. As such 720p videos in particular consumes a lot of computing
resources. Even when taking all the edge servers, it is still far from enough for processing
all the 720p videos in the system. Thus, carefully using edge resources is important for the
overall framework optimization. As described in Section 6.3, it needs to analyze 8 frames
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every second for a video at 25 frames per second. It means that we select 1 frame out ev-
ery 3 frames for processing. In particular, we expect that the sampling work can be done
at the edge. When a new video stream arrives, the edge performs decoding, sampling and
encoding successively on this video and then transfers it to core. Although the data has to
move to core for processing, their size is reduced and the energy consumption over the net-
work is also reduced. Unfortunately, the result of this scenario is unsatisfactory. Decoding
a video at 720p is extremely fast but encoding will take 15 times more than decoding in our
experiment. It leads to an additional delay (roughly 100 ms in our experiments) while the
latency is crucial in this scenario. This opportunity for data movement could be explored
through the development of a framework that couples the tasks and computes partially on
the transferring path, thus reducing the network cost [Pet+14].

Figure 7.1 – Computing partially at edge

7.2.3 Geographically distributed data centers

Another challenge relates to achieve overall optimization on geographically distributed
data centers. Previous studies have explored how to reduce the electricity bill by distributing
the workloads to geographically distributed data centers with economical models. Mean-
while, migration enables the virtual machines to look for data center sites with renewable
energy supply.

In our scenario, we have assumed that data centers are geographically distributed and
each data center has its on-site renewable energy supply. Since the renewable energy for a
single data center is intermittent and variable, moving the workload across data centers de-
pending on the availability of renewable energy is an alternative way to solve the problem
of mismatch between renewable energy supply and workloads. The main objective is still to
increase renewable energy usage without SLA violations, thus leading to lower CO2 emis-
sion footprints. It remains several problems including: (I) when to move the workload to
other data centers: the availability of renewable energy is depending on the time zone and
physical data center locations. While the renewable energy becomes unavailable in a data
center, should it migrate its workload to other data centers or keep it until its completion;
(II) which data center should be selected to move: we need to minimize the number of hops
between the data centers while moving the workload in order not to widely increase the
energy consumption of the network devices. If the renewable energy is predictable, how to
decide the workload movement path? Lastly, we believe that building an energy infrastruc-
ture with centralized management is suitable for solving the above problems if the number
of data centers is limited. Our previous works demonstrated the suitability of a framework
integrating renewable energy into a single data center. We plan to expand this framework
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to the geographically distributed data centers to further reduce brown energy consumption
in cloud environments.





A
Appendix - Simplification of Equation 6.2

This appendix presents the proof of the simplification done in Section 6.3.4 for Equa-
tion 6.2.
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The sub-sequence an can be expressed as:
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Similarly, the sub-sequence bn can be expressed as:
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Accordingly, the sum of sub-sequennce an can be transformed as following:

Sa =
n∑
x=0

Cx
2n+1 (p)

x (1− p)2n+1−x

Sa = a0 + a1 + a2 + a3 + ...+ an

= a0 + h1 · a0 + h2 · a0 + h3 · a0 + ...+ hn · a0
= a0 · (1 + h1 + h2 + h3 + ...+ hn)

(A.9)

bn is transformed in a similar way:

Sb =
2n+1∑
x=n+1

Cx
2n+1 (p)

x (1− p)2n+1−x

= b0 · (1 + h1 + h2 + h3 + ...+ hn)

(A.10)



99

The ration between Sa and Sb can be simplified:
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Figure B.1 – Data center architecture

Figure B.1 demonstrates the data center architecture and Figure B.2 shows the general
conception of our simulator. We detail several selected components in this appendix.
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Figure B.2 – UML: Trace-driven cloud simulator included ESD and multiple-data-centers
extensions
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B.1 Data center module

Listing B.1 – Data center model
package epoc.impl;

2 import java.util.ArrayList;

4 public a b s t r a c t c l a s s Datacenter {

6 private i n t DCid;
private ArrayList<Server> serverList = new ArrayList<Server>();

8 private ArrayList<Integer> greenEnergyList = new ArrayList<Integer>();

10 public Datacenter ( i n t DCid){
t h i s.DCid = DCid;

12 }
...

14 }

B.2 Server module

Listing B.2 – Server model
package epoc.impl;

2 import epoc.Job;
import java.util.ArrayList;

4 import java.util.Iterator;
import java.util.List;

6 import powermodule.PowerModel;
import powermodule.PowerModelBench;

8 import utils.ListUtils;

10 public c l a s s Server implements Cloneable{
...

12 private ArrayList<Vm> vms = new ArrayList<Vm>();
private CostDetailOnServer costOnServer = new CostDetailOnServer();

14 private MipsRam mipsRam = new MipsRam();
...

16

public Server( i n t id, i n t mips, i n t ram, PowerModel powerModel,
18 i n t clusterId){

t h i s.id = id;
20 t h i s.mips = mips;

t h i s.ram = ram;
22 t h i s.powerModel = powerModel;

t h i s.clusterId = clusterId;
24 }

...
26 }

B.3 Energy consumption module and interface

Listing B.3 – Server energy consumption model
package powermodule;
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2

public c l a s s PowerServerEx1 extends PowerModelBench {
4

private i n t modelNumber = 1;
6 private f i n a l double[] power = {97,128,150,158,165,171,

177,185,195,200,204,212,220};
8

@Override
10 protected double getPowerFromFile( i n t index) {

return power[index];
12 }

...
14 }

B.4 VM module

Listing B.4 – VM model
package epoc.impl;

2 import java.util.ArrayList;
import java.util.Collection;

4 import epoc.Job;
import epoc.Vmm;

6

public c l a s s Vm implements Cloneable, Vmm {
8

/**
10 * type: 0 -> web

* type: 1 -> batch
12 * type: 2 -> mix (future maybe useful)

*/
14 private i n t type; // 0: web 1: batch

private ArrayList<Job> jobs = new ArrayList<Job>();
16

...
18

public Vm( i n t id, i n t mips, i n t ram, i n t stockage,
20 i n t bandwidth, i n t type) {

t h i s.id = id;
22 t h i s.mips = mips;

t h i s.ram = ram;
24 t h i s.stockage = stockage;

t h i s.type = type;
26 }

...
28 }

B.5 Web/batch Jobs module

Listing B.5 – web- and batch-job models
package epoc.impl;

2 import java.util.List;
import epoc.Job;

4

public c l a s s JobB implements Job, Cloneable{
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6 // batch job
...

8 private i n t vmId;

10 public JobB( i n t id, i n t debut, i n t deadline,
List<Integer> charges, List<Integer> mems){

12 t h i s.id = id;
t h i s.charges = charges;

14 t h i s.mems = mems;
t h i s.debut = debut;

16 t h i s.deadline = deadline;
}

18 ...
}

20

public c l a s s JobT implements Job, Cloneable {
22 // web job

...
24 private i n t vmId;

26 public JobT( i n t id, i n t debut, i n t deadline,
List<Integer> charges, List<Integer> mems){

28 t h i s.id = id;
t h i s.charges = charges;

30 t h i s.mems = mems;
t h i s.debut = debut;

32 t h i s.deadline = deadline;
}

34 // In this scenario, web job doesn’t have deadline thus 0.
t h i s.deadline = 0;

36 ...
}

B.6 ESD module

Listing B.6 – ESD Model
package Battery;

2

public c l a s s Battery implements Cloneable{
4 ...

6 public Battery(String battery_type, double capacity, double dod,
double self_discharge_rate, double charge_rate_limit,

8 double discharge_rate_limit, double efficient) {
t h i s.battery_type = battery_type;

10 t h i s.capacity = capacity;
t h i s.dod = dod;

12 t h i s.self_discharge_rate = self_discharge_rate;
t h i s.charge_rate_limit = charge_rate_limit;

14 t h i s.discharge_rate_limit = discharge_rate_limit;
t h i s.efficient = efficient;

16 }
...

18 }





C
Résumé en français

C.1 Contexte

Le Cloud computing représente actuellement le principal paradigme pour fournir et gérer
des ressources informatiques aux utilisateurs via le réseau. Le concept de base du Cloud
Computing consiste à regrouper les ressources informatiques dans des centres de calcul
distribués, plutôt qu’utiliser des ressources locales. Depuis son apparition, la demande
de ressources informatiques et de stockage dans les data centers a connu une croissance
rapide et l’utilisation des centres de calcul (DC) continue d’augmenter [OAaL14]. Par con-
séquent, la partie mondiale de l’électricité consacrée à la consommation des DC a atteint
des niveaux sans précédent. En 2012, le nombre de DCs dans le monde était estimé à 509
147 pour une consommation approximativement à la production électrique de 30 centrales
nucléaires [Gla12]. En 2016, une autre étude estime que, dans le monde, les DCs utilisent
91 milliards de kilowattheures d’électricité - assez pour alimenter deux fois la ville de New
York - et leur consommation continue de croître rapidement [Res16].

Outre l’impact écologique, la consommation d’énergie est un critère prédominant pour
les fournisseurs de clouds car elle détermine le coût quotidien de leur infrastructure. En
conséquence, la gestion de l’alimentation électrique devient l’un des principaux défis pour
les infrastructures de centres de calcul et plus généralement pour les systèmes distribués à
grande échelle [OAaL14].

Parallèlement à l’expansion du Cloud computing, depuis plusieurs années, un nouveau
modèle émerge : des infrastructures de cloud décentralisées [Ber+14]. Pour améliorer les
performances de leur cloud et exploiter leur infrastructure disponible, les opérateurs de
télécommunications, comme Orange, tentent de déployer des micro-centres de données (20
à 50 serveurs par micro-DC) au niveau des points de présence réseau au plus près des clients.
Dans ce nouveau modèle, en déployant des centres de données au plus près de l’utilisateur,
les opérateurs de clouds visent à améliorer le temps de réponse et le débit des applications.

Une façon d’économiser de l’énergie au niveau d’un centre de données consiste à le lo-
caliser à proximité d’une source d’électricité, ce qui réduit les pertes de transmission. Par
exemple, l’ouest de la Caroline du Nord, aux États-Unis, attire les centres de données grâce
au faible prix de l’électricité en raison de la capacité abondante de ses centrales à charbon
et nucléaire suite au départ des entreprises textiles de la région [Gre]. En 2011, cette ré-
gion dispose de trois très grands centres de données de Google, Apple et Facebook avec
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des demandes de puissance respectives de 60 à 100 MW, 100 MW et 40 MW [Gre] et ces
DCs sont toujours utilisés. Cependant, les installations de cette taille ne représentent qu’une
petite fraction de la consommation mondiale des centres de données. En effet, les salles
de serveurs de petite et moyenne taille continuent de représenter près de la moitié de la
consommation d’électricité du marché [WD14].

D’autres entreprises optent pour des sources d’énergie plus écologiques. Par exemple,
Quincy (Washington, États-Unis) fournit de l’électricité aux installations de données de Ya-
hoo, Microsoft, Dell et Amazon avec ses centrales hydro-électriques peu coûteuses lais-
sées inutilisées après la fermeture des industries d’aluminium de la région [Gre]. Plusieurs
sources d’énergie renouvelables comme l’énergie éolienne, l’énergie solaire, l’hydroélectricité,
la bioénergie, la géothermie et l’énergie marine peuvent être considérées comme alimentant
des installations de grande taille. La variabilité de la production de la plupart des sources re-
nouvelables conduit les installations des centres de données à ne compter que partiellement
sur elles et à dépendre également du réseau électrique classique en cas de besoin.

Bien que l’utilisation de sources d’énergie renouvelable apporte de nouvelles opportu-
nités pour réduire les coûts énergétiques, réduire les pics de charge, ou les deux [Goi+13],
ces sources sont intermittentes et fluctuantes au cours du temps (soleil, vent, etc.). Ces vari-
ations peuvent entraîner des pertes d’électricité si la consommation de la charge de calcul
ne correspond pas à la production d’énergie renouvelable. Les infrastructures de clouds,
en revanche, peuvent profiter de plusieurs emplacements pour augmenter leur consomma-
tion verte avec des approches telles que follow-the-sun et follow-the-wind [Fig+09]. Puisque
le soleil et le vent fournissent de l’énergie renouvelables dont la capacité fluctue au fil du
temps, l’idée consiste à placer des tâches de calcul sur des ressources utilisant des énergies
renouvelables et à migrer ces tâches à mesure que l’énergie renouvelable devient disponible
sur les ressources d’autres sites.

Du point de vue de l’énergie, ces micro-DCs permettent d’étudier de nouvelles solu-
tions d’alimentation électrique à base d’énergie renouvelable, comme le vent ou le soleil.
L’utilisation de ces sources d’énergie renouvelables peut réduire les coûts d’exploitation,
mais, malheureusement, ce type d’énergie reste intermittent par nature.

C.2 Problématique

Au cours de la dernière décennie, il y a eu des améliorations substantielles dans l’efficacité
énergétique des centres de données. Une grande partie des progrès sur l’efficacité a été
réalisée dans le domaine de l’infrastructure et des équipements. Par exemple, Google et
Facebook ont développé leurs propres fermes de serveurs ultra-efficaces avec des solutions
de refroidissement performantes. Alors que le serveur moderne est devenu plus efficace
en énergie, malgré les nombreux travaux pour améliorer la gestion de l’énergie dans les
possesseurs, les serveurs sont encore loin d’un comportement purement proportionnel en
énergie. En effet, un serveur inactif peut consommer jusqu’à 50 % de sa puissance maxi-
male [LWW07; FWB07; MGW09].

Peu de progrès ont été réalisés dans le domaine de l’efficacité énergétique des serveurs
par rapport à leur utilisation. L’utilisation du serveur représente le rapport entre les ressources
physiques (par exemple, CPU, RAM) consommées par la charge de calcul et la capacité max-
imale du serveur [BH07]. Plusieurs études montrent que l’utilisation moyenne du serveur -
en particulier, en termes d’utilisation moyenne du processeur - reste constante autour de 12 à
18% [WK12; Sny10]. Ces serveurs inactifs ou sous-utilisés consomment beaucoup d’énergie
alors que la plupart du temps ils effectuent peu de travail. La virtualisation a été rapide-
ment et largement mise en œuvre dans les centres de données modernes. Cette technologie
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permet à une seule machine physique d’exécuter plusieurs systèmes d’exploitation isolés
simultanément. Cela signifie également que, en utilisant moins de machines physiques, on
peut gérer la même quantité de tâches de calcul. Pourtant, même avec la virtualisation, qui
est largement déployée dans les centres de données, l’utilisation moyenne des serveurs est
généralement inférieure à 40% [WD14].

L’intégration des énergies renouvelables dans les DCs devrait être un facteur impor-
tant dans la conception de la prochaine génération de DCs. Cela peut compenser une
partie de l’énergie consommée par l’approvisionnement traditionnel (par exemple, le com-
bustible fossile), réduisant ainsi les émissions de carbone. Cependant, un défi majeur pour
l’utilisation de sources d’énergie renouvelables dans les DCs, comme le solaire et le vent, est
leur nature variable et intermittente. Contrairement aux sources d’énergie traditionnelles
qui permettent de fournir une puissance contrôlable et régulière, avec l’énergie renouve-
lable, il est difficile de satisfaire aux exigences de puissance de charge de travail. Une autre
méthode possible pour améliorer l’utilisation efficace des énergies intermittentes et fluctu-
antes consiste à utiliser des dispositifs de stockage d’énergie (par exemple des piles) pour
stocker l’excédent de production verte et l’utiliser pendant les périodes de faible produc-
tion [Goi+13]. Généralement, pour les sources solaires, l’énergie peut être stockée pendant
la journée - sinon entièrement consommée - et être utilisée pendant les nuits où il n’y a pas
de production. Cependant, les batteries ont une efficacité énergétique inhérente (leur ren-
dement) qui entraîne des pertes d’énergie. Un système pour la gestion des ressources de
Cloud de type Infrastructure-as-a-Service (IaaS) pour un centre de données est nécessaire
pour améliorer non seulement l’efficacité énergétique, mais aussi pour donner des moyens
d’optimiser l’utilisation des énergies renouvelables.

Nos objectifs sont les suivants :
— explorer l’intégration d’énergies renouvelables dans les DCs,
— concevoir des algorithmes de gestion de ressources pour augmenter l’efficacité én-

ergétique et optimiser la consommation d’énergie renouvelable pour un DC de Cloud;
— proposer un système utilisant des dispositifs de stockage d’énergie et des algorithmes

de gestion de ressources pour maximiser la consommation d’énergie renouvelable
dans un DC de Cloud;

— valider ce système dans un contexte réaliste.

C.3 Contributions

L’objectif principal de cette thèse consiste à maintenir un faible niveau de consommation
d’énergie fossile dans un centre de données, réduisant ainsi les émissions de CO2. Nous
commençons par observer de véritables traces de production d’énergie solaire qui montrent
la nature intermittente et variable des énergies renouvelables. Une autre analyse est réalisée
sur une trace d’utilisation réelle de serveurs d’un petit centre de données. Elle démon-
tre que l’utilisation moyenne des serveurs reste très faible en termes d’utilisation du CPU.
Cette analyse montre également que la tendance moyenne de l’utilisation du serveur est
moins variable que l’énergie renouvelable qui est intermittente par nature. Nous constatons
aussi qu’une partie des tâches de calcul présente des périodes d’inactivité qui permettent de
déplacer les calculs dans le temps. Selon ces observations et analyses, nous présentons nos
contributions dans cette thèse comme suit :

1. Nous proposons un nouveau système : oPportunistic schedulIng broKer infrAstruc-
ture (PIKA) [LOM15] pour économiser de l’énergie dans un petit centre de don-
nées mono-site. PIKA vise à réduire la consommation d’énergie brune (c’est-à-dire
provenant de sources d’énergie non renouvelables) et améliore l’utilisation des éner-
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gies renouvelables sans stockage d’énergie pour le centre de données mono-site. Il ex-
ploite des tâches de calcul avec des périodes d’inactivité et les exécute ou les suspend
en fonction de la disponibilité des énergies renouvelables. En consolidant les ma-
chines virtuelles (VM) sur les serveurs physiques, PIKA ajuste le nombre de serveurs
alimentés pour que la consommation globale d’énergie corresponde à l’alimentation
en énergie renouvelable.

2. Une autre approche pour améliorer l’utilisation efficace des énergies renouvelables
intermittentes et fluctuantes consiste à utiliser des piles pour stocker l’excédent de
production verte et à l’utiliser pendant les périodes de faible production. Générale-
ment, pour les sources solaires, l’énergie peut être stockée pendant la journée - sinon
entièrement consommée - et être utilisée pendant les nuits où il n’y a pas de produc-
tion. Cependant, les dispositifs de stockage d’énergie (ESD) ont une efficacité énergé-
tique inhérente en raison des différentes technologies de batterie qui entraînent des
pertes d’énergie. Dans la deuxième contribution, on discute à la fois de l’approche
opportuniste et des approches basées sur les ESD pour maximiser l’utilisation des
énergies renouvelables dans les centres de données de petite et moyenne taille, et
nous proposons une solution qui combine les deux approches [LOM17].

3. Enfin, inspiré par les travaux précédents, nous proposons de tirer parti de la pro-
duction d’énergie renouvelable sur site dans les différents nœuds des Clouds de
type Edge pour rendre l’Internet des objets (IoT) plus vert [Li+17]. Notre objectif
est d’évaluer, sur un cas d’utilisation concret, les avantages du edge computing en
matière de consommation d’énergie renouvelable. Nous proposons un modèle ana-
lytique pour décider où exécuter les tâches calcul (dans le DC du edge ou du cœur
du cloud) en fonction de la disponibilité d’énergie renouvelable et de la qualité de
service souhaitée par l’application, en particulier en réalisant un compromis entre
performance (temps de réponse) et la fiabilité (précision du service).

Cette thèse a été réalisée dans le cadre du projet EPOC (Energy Proportional and Oppor-
tunistic Computing systems) financé par le Labex CominLabs (2013-2017).

C.4 Approche opportuniste

Du point de vue de l’énergie, les micros data centers permettent d’étudier de nouvelles
solutions d’alimentation électrique à base d’énergie renouvelable, comme l’éolien ou le so-
laire. L’utilisation de ces sources d’énergie renouvelables peut réduire les coûts d’exploitation,
malheureusement, ce type d’énergie reste intermittent par nature. Pour résoudre ce prob-
lème, nous envisageons deux solutions : investir dans des systèmes de batterie coûteux pour
faciliter la production d’énergie renouvelable sur site ou développer de nouvelles solutions
de gestion d’applications adaptées à ce type de production d’électricité.

Nous proposons de concevoir une approche opportuniste pour la gestion des ressources
de Cloud qui profite de la disponibilité de l’énergie solaire pour effectuer des tâches de
calcul supplémentaries. Le micro-DC reçoit une quantité fixe d’énergie du réseau électrique
ordinaire. Ce genre d’électricité permet d’exécuter les tâches habituelles. En outre, le micro-
DC est également relié à des sources d’énergie renouvelables (comme une éolienne ou des
panneaux photovoltaïques) et lorsque ces sources produisent de l’électricité, le micro-DC
l’utilise pour exécuter plus de tâches moins urgentes. Afin de réaliser cette allocation de
ressources, nous distinguons deux sortes de tâches à programmer sur le DC : les tâches web
qui représentent des tâches nécessitant une exécution continue (comme les serveurs Web)
et les tâches batch qui représentent des calculs pouvant être retardés et interrompus, mais
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avec une contrainte de date limite de terminaison (deadline). Ce deuxième type de tâches est
le candidat naturel de l’algorithme d’ordonnancement opportuniste.

Nous présentons notre framework PIKA (oPportunistic schedulIng broKer infrAstruc-
ture), un système visant à réduire la consommation d’énergie non-propre (c’est-à-dire à par-
tir de sources d’énergie non renouvelables) et à améliorer l’utilisation des énergies renouve-
lables pour un DC. Il exploite la présences de courtes tâches interruptibles les exécute ou les
suspend en fonction de la disponibilité des énergies renouvelables. En consolidant les ma-
chines virtuelles (VM) sur moins de serveurs physiques, PIKA ajuste le nombre de serveurs
allumés afin que la consommation globale d’énergie corresponde au mieux à l’alimentation
en énergie renouvelable. À l’aide de simulations générées par les workloads réels et des
traces d’énergie solaire, nous démontrons que la PIKA consomme 44,9% moins d’énergie
brune et augmente de 110,1% le taux d’intégration des énergies renouvelables par rapport à
l’algorithme glouton classique de la littérature.

C.5 Combiner l’utilisation de batteries et l’approche oppor-
tuniste

Ensuite, nous abordons deux approches pour maximiser l’utilisation des énergies re-
nouvelables dans un petit ou moyen DC : l’apporche opportuniste (comme indiqué dans la
contribution précédente) et les batteries (Energy storage devices). Nous comparons ces deux
solutions en termes d’utilisation d’énergie renouvelable et de consommation totale d’énergie
afin d’estimer si les pertes dues à l’efficacité de la batterie sont plus importantes, ou non, que
les pertes dues aux coûts de migration des VMs et d’allumage/extinction des serveurs par
l’approche opportuniste. Nous évaluons également une solution intermédiaire combinant
les deux approches. Cette étude étudie deux types de batteries (acide à base de plomb et
lithium-ion, mais peut être facilement généralisé à d’autres types d’ESD), la taille optimale
des panneaux photovoltaïques, plusieurs profils solaires et traces de workload provenant
de DCs réels. Nous considérons uniquement la production d’énergie renouvelable sur site
(avec des panneaux photovoltaïques) et nous ne revendons pas l’énergie produite à d’autres
acteurs : seule l’autoconsommation est considérée ici.

Notre première étude consiste à analyser le workload pour trouver la dimension idéale
du panneau solaire et la taille de la batterie, ce qui permet d’alimenter tout le workload
sans consommation d’énergie non-renouvelable. Cependant, en réalité, la dimension du
panneau solaire ou la taille de la batterie sont limitées et nous devons encore résoudre le
problème de l’adaptation de la consommation du workload et de la production d’énergie
renouvelable. Notre deuxième étude montre que l’approche opportuniste peut réduire la
demande de taille de la batterie alors que l’énergie renouvelable est insuffisante. Enfin, nos
derniers résultats démontrent que, pour différentes tailles de batteries et dimensions de pan-
neaux solaires, nous pouvons trouver une solution optimale combinant les deux approches
qui équilibre les pertes d’énergie en raison de différentes causes telles que l’efficacité de
la batterie et les migrations de VMs causées par les algorithmes de consolidation. Nous
croyons que ces travaux constituent une méthode intéressante pour dimensionner correcte-
ment l’infrastructure de production d’énergie sur site, lorsque les caractéristiques du work-
load sont connues.
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C.6 Explorer l’intégration d’énergie solaire dans le Edge Com-
puting

Nous avons étendu nos travaux précédents pour tirer parti de la production d’énergie
renouvelable sur site dans les différents nœuds des Cloud qui se situent au plus proche des
utilisateurs, en particulier pour traiter les applications d’IoT (Internet of Things). Nous pro-
posons un modèle analytique pour décider de décharger le calcul des objets vers le Edge ou
vers le cœ du Cloud, en fonction de la disponibilité d’énergie renouvelable et de la qualité
de service souhaitée. Afin de mener une analyse approfondie avec des hypothèses perti-
nentes menant à des contributions concrètes, nous décidons de nous concentrer sur un cas
d’utilisation particulier avec des exigences précises et une modélisation réaliste. Notre cas
d’utilisation cible l’Internet des véhicules (IoV) qui peut être considéré comme une conver-
gence de l’Internet mobile et l’IoT. En particulier, nous nous concentrons sur les flux vidéos
des caméras embarqués sur des véhicules qui doivent être analysés habituellement pour la
détection d’objets sur les routes. En particulière, comme c’est souvent le cas avec les applica-
tions IoT avec un niveau élevé de QoS requise, les données perdent leur valeur lorsqu’elles
ne peuvent être analysées assez rapidement.

Nos résultats montrent que, envoyer les données et traiter les flux vidéos dans le edge
réduit efficacement le temps de réponse et évite la transmission inutile de données entre le
Edge et le cœur du cloud, réduisant ainsi les frais de consommation énergétique du réseau.
En outre, cela peut accroître la durée de vie de la batterie de l’équipement de l’utilisateur
final (par exemple, un équipement portable). Pendant ce temps, la consommation d’énergie
traditionnelle et les émissions de carbone peuvent être réduites en construisant un DC Edge
avec production d’énergie renouvelable sur site.

C.7 Organisation du manuscrit

Le manuscrit est organisé comme suit.
Le chapitre 2 examine les efforts récents pour économiser de l’énergie au niveau de

l’infrastructure dans les centres de données. Nous mettons en évidence les différents mécan-
ismes au niveau du serveur pour économiser la consommation d’énergie non-renouvelable,
notamment en ce qui concerne la proportionnalité énergétique et l’efficacité énergétique.
Nous identifions les opportunités pour réduire davantage la consommation d’énergie des
centres de données en rapport avec l’intégration des énergies renouvelables. Nous exam-
inons ensuite l’état de l’art technique pour augmenter l’utilisation des énergies renouve-
lables.

Le chapitre 3 présente l’architecture EpoCloud du matériel aux couches middleware:
cette architecture de centre de données a été conçue dans le cadre du projet EPOC. Ce pro-
totype vise à optimiser la consommation d’énergie des centres de données cloud mono-site
connectés au réseau électrique ordinaire et aux sources d’énergie renouvelable. Plus loin
dans ce chapitre, nous décrivons un simulateur basés sur des traces réelles et développé
dans le cadre de cette thèse qui est utilisé pour des parties d’expérimentation faites dans
cette thèse.

Le chapitre 4 présente PIKA le système que nous proposons et qui intègre des algo-
rithmes d’ordonnancement opportunistes pour économiser de l’énergie et basés sur la dis-
tinction de deux types de tâches (tâches Web et tâches Batch) et qui exploite la disponibilité
d’énergie renouvelable pour effectuer des tâches opportunistes sans compromettre les per-
formances.

Le chapitre 5 présente une approche basée sur des batteries pour augmenter l’utilisation
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des énergies renouvelables. Nous étudions les performances entre l’approche opportuniste
et la solution batterie uniquement. Une solution hybride est proposée plus loin dans ce
chapitre pour trouver un compromis satisfaisant entre ces deux approches.

Le chapitre 6 préconise de tirer parti de la production d’énergie renouvelable sur site
dans les différents nœuds d’un edge cloud pour rendre les systèmes IoT plus verts tout en
offrant une QoS améliorée par rapport à la solution cloud traditionnelle. Nous proposons
un modèle analytique pour décider de décharger le calcul des objets au Cloud, edge ou
de cœur, en fonction de la disponibilité d’énergie renouvelable et de la qualité de service
souhaitée. Ce modèle est validé sur notre cas d’utilisation qui effectue l’analyse de flux
vidéo provenant de caméras embarquées sur des véhicules.

Le chapitre 7 conclut et présente des perspectives de recherche à ces travaux.
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Allocation de ressources dans un Cloud partiellement alimenté par des sources
d’énergie renouvelable

Resource allocation in a Cloud partially powered by renewable energy sources

Résumé
La plupart des infrastructures de cloud efficace en
énergie proposées dans la littérature ne tiennent pas
compte de la disponibilité électrique et des énergies
renouvelables dans leurs modèles. L’intégration des
énergies renouvelables dans les centres de données
réduit considérablement leur consommation d’énergie
et leur empreinte carbone. Étant donné que l’énergie
renouvelable est intermittente et fluctue en fonction du
temps, elle est habituellement sous-utilisée. Nous
abordons le problème de l’amélioration de l’utilisation
des énergies renouvelables dans un centre de
données unique et étudions deux approches : la
planification opportuniste et le stockage de l’énergie.
Nos résultats démontrent que les deux approches
permettent de réduire la consommation d’énergie
non-renouvelable sous différentes configurations.
Nous étendons ce travail au contexte des Edge
Clouds et de l’Internet des Objets dans le cas de
l’analyse de flux de données. Nous montrons
comment rendre les Edge Clouds plus verts avec une
production d’énergie renouvelable sur site combinée à
un stockage d’énergie et à une dégradation de
performance des applications des utilisateurs.

Abstract
Most of the energy-efficient Cloud frameworks
proposed in literature do not consider electricity
availability and renewable energy in their models.
Integrating renewable energy into data centers
significantly reduces the traditional energy
consumption and carbon footprint of these
energy-hungry infrastructures. As renewable energy is
intermittent and fluctuates with time-varying, it is
usually under-utilized. We address the problem of
improving the utilization of renewable energy for a
single data center and investigate two approaches:
opportunistic scheduling and energy storage. Our
results demonstrate that both approaches are able to
reduce the brown energy consumption under different
configurations. We extend this work to the context of
Edge Clouds and Internet of Things on the use case
of data stream analysis. We show how to make Edge
Clouds greener with on-site renewable energy
production combined with energy storage and
performance degradation of the users’ applications.

Mots clés
Cloud, énergie renouvelable, efficacité
énergétique, allocation de ressources.

Key Words
Cloud, renewable energy, energy efficiency,
resource allocation.
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