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Résumé

1 Introduction

La “matière active” définit au sens large des systèmes macroscopiques qui sont com-
posés d’entitées au niveau microscopiques qui sont capables de produire du mou-
vement sans forçage externe. C’est à dire qu’elles produisent du mouvement en
consommant de l’énergie. Cette définition étant très générique, elle concerne une
très large gamme de systèmes ce qui caractérise bien la diversité des recherches sur
ce sujet. En effet la matière active concerne aussi bien la sédimentation de partic-
ules de “Janus” - une classe particulière de colöıdes exhibtant une activité quand
un champ électrique est appliqué dans le fluide environnant, au comportement des
piétons dans les environnements clos en passant par les vols d’étourneaux ce qui en
fait un sujet particulièrement à la mode.

Bien que le sujet même de la nature “hors d’équilibre” de la propulsion puisse être
un sujet d’étude intéressant en-soi, la caractéristique fascinante de tels systèmes est
de pouvoir faire émerger des comportemements collectifs. C’est à dire des phénomènes
d’auto-organisation sans présence d’un leader, par exemple on peut observer l’apparition
de phénomènes “d’attroupement” (flocking en anglais) pour les oiseaux [3], les bancs
de poisson [2] ou encore dans les bactéries confinées telles que le maintenant fameux
système de microtubules mis en mouvement par des moteurs moléculaires de kinésine
[4].

Parmi les modèles les plus célèbres permettant de modéliser de tels systèmes il
y a le fameux “modèle de Vicsek” qui modélise les oiseaux, poissons et autres par
des particules ponctuelles qui se déplacent à vitesse constante et s’alignent polaire-
ment dans un certain rayon d’intéraction, en plus d’un bruit modélisant l’incertitude
sur l’alignement ou d’autres phénomènes. Ce modèle très simple à montré qu’une
compétition entre alignement et bruit est à l’origine des phénomènes des mouvement
collectifs.

Dans ce cadre nous allons présenter deux modèles aux objectifs différents. Le
premier sur les nématiques actifs est une extension du modèle de Vicsek et le second
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sur la bactérie Neisseria meningitiids

2 Nématiques actifs

2.1 Symétrie nématique

Comme le nom l’indique notre modèle s’intéresse principalement aux nématiques.
La nématicité est une type de symétrie de particules qu’on considère. La symétrie
la plus connue est polaire c’est à dire que les particules s’alignent toutes dans le
même sens et vont donc au final se déplacer en groupe, c’est notamment le cas
des précédents systèmes que nous avons énuméré: oiseaux, poissons ... La symétrie
nématique est moins contraignante, puisqu’elle signifie que les particules sont seule-
ment alignées dans la même direction , typiquement l’on considère des particules
longilignes possédant un axe principal de symétrie qui fait émerger ce genre de
symétrie, cette symétrie se manifeste dans notre modélisation des collisions des par-
ticules comme illustré dans la figure 1 où on considère des batonnets collisionnant
tête-bêche ou tête-à-tête, (les vecteurs rouges sont les vecteurs vitesses) : quelque
soit le cas considéré l’issue est la même la même du point de vue de la direction
des batonnets, ils sont alignés. La symétrie nématique est omniprésente à l’échelle
bacterienne car de nombreuses bactéries sont longilignes et interagissent donc de la
sorte (même si les détails de la collision peuvent-être plus complexes que la vision
idéalisée que nous présentons).

2.2 Modèle

Nous allons donc modéliser des particules nématique en ajoutant le plus de car-
actéristiques nous permettant de modéliser des systèmes de bactérie:

• Un alignement qui doit être nématique

• Un terme de répulsion permettant de rendre compte de l’extension spatiale des
partiucles

• Un contrôle sur la propulsion qui peut être soit diffusive

Notre modèle est donc résumé par l’équation suivante (2) décrivant le déplacement
de chaque particule i dont la position est xi et la direction ui:

xi(t+ 1) = xi(t) + v0ui(t+ 1) (1)
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Before collision

~v1 ~v2
After collision

~v1 ~v2
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Figure 1: Lors d’une collision nématique les particules se réiorientent selon leur
“direction” moyenne en gardant leur orientation relative (elles ne tournent pas de
plus de π

2
)

Et θi , angle de ui est donné par le terme (2):

θi(t+ 1) = arg {εiAi(t) + βRi(t)}+ ηξi(t) (2)

η est l’amplitude angulaire du bruit (ξ est un bruit blanc sur [−1,+1])
εi est un terme qui vaut stochastiquement ±1 avec une probabilité 1− kf et kf

respectivement et contient la persistence de l’auto-propulsion .
L’alignement nématique est contenu dans le terme Ai

Ai(t) =
1

Ni

∑

j∈∂i
sgn {cos(θi(t)− θj(t))}uj (3)

Quant à la répulsion elle est contenue dans le terme Ri et son intensité est β:

Ri(t) =
1

Ni − 1

∑

∂i,i 6=j
uji (4)

2.3 Principaux résultats

Nous avons principalement décrit les différentes phases nouvelles générées par ce
modèle puis opéré à des simulations systématiques nous permettant d’obtenir divers
diagrammes des phases en fonction des paramètres précédemment énumérés. Dans
toutes les figures suivantes la couleur indique l’orientation nématique ( comprise entre
[−π, π]
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2.3.1 Tiges

Dans cette phase caractéristant les tiges les particules interagissent nématiquement
mais leur propulsion est essentiellement polaire (c’est à dire que kf = 0) , on retrouve
ainsi une phase de bandes polaires 2(b) mais bien différente des bandes repertoriées
dans le modèle de Vicsek. Par ailleurs la phase nématique homogène est relativement
instable et il existe une instabilité longitudinale (le long de l’ordre) qui est d’abord
linéaire 2(a) puis aboutit à un régime chaotique. Finalement la transition transition
ordre désordre classique est toujours présente ce qui est résumé dans le diagramme
de phase 2(c).

2.3.2 Nématiques purs

Nous considérons maintenant le cas où la propulsion est elle aussi “nématique” :
c’est à dire que les particules diffusent selon leur grand axe indifféremment à droite
ou à gauche. Dans ce cas là le diagramme de phase conserve toujours une transition
ordre/désorde ainsi qu’une phase nématique homogène mais on voit l’apparition de
structures nouvelles qu’on appelle “arches” 3(a), ces structures sont symétriques,
inhomogènes et occupent une grande partie du diagramme de phases. Nous avons
montré que ces structures sont polaires ce qui permet d’expliquer l’apparition d’un
régime de “défauts ordonnés” 3(b) (à bas ρ et bas v0) déjà répertorié dans la
littérature. Nous avons par ailleurs placé ces structures dans le diagramme des
phases 3(c).
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(a) Les ondulations linéaires qui vireront vers
le chaos plus tard (t = 2000)

(b) Les bandes polaires dans notre modèle sont
très homogènes
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(c) Diagramme de phase des tiges

Figure 2: Le diagramme des phases pour les “batonnets” ainsi que les structures
obtenues. 5



(a) Une arche, l’angle nématique varie contin-
uement le long de l’axe Oy

polarité

(b) A plus basse densité les arches advectent
les défauts (“défauts ordonnés”).
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(c) Le diagramme de phase pour les nématiques purs à haute vitesse
(pas de “défauts ordonnés”)

Figure 3: Les arches sont la nouvelle structure qui apparâıt dans le cas de particules
purements nématiques (kf = 0)
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3 Neisseria Meningitidis

Ce modèle plus précis s’intéresse à la modélisation d’une bactérie dont la caractéristique
principale est de pouvoir

Dans un second temps, nous étudions la bactérie Neisseria Meningitidis qui
présente la particularité de générer des ”pili”, filaments de plusieurs micromètres
de long. En dépolymérisant ces structures, à vitesse constantes (≈1 µm/s), elle est
capable de en générer des forces gigantesques pour le vivant [1] (≈100 pN). Cette
bactérie a tendance à former des aggrégats sphériques, présentant toutes les pro-
priétés d’un liquide, pour coloniser l’organisme de l’hôte. Des mesures de viscosité
et de tension de surface de ces aggrégats ont montré le rôle crucial du nombre de
pili. Fort de ces constats nous avons bati un modèle microscopique dont la particu-
larité est l’introduction de potentiels stochastiquement attractifs, c’est à dire que les
particles transitent entre un état attractif et un état diffusif. Cette partie retranscrit
l’évolution du modèle au cours du temps.

3.1 Modèle

La dynamique des bactéries suit une équation de Langevin classique qui s’écrit dans
le cas où le système est à 2 dimensions (5):

d~ri
dt

=
1

γ

∑

j∈∂i

~Fij +
√

4D~η (5)

• “∂i” représente les voisins de Voronöı de la bactérie indicée i (voir 4(a)

• η est un bruit Gaussien vectoriel normé (de moyenne 0 et de variance unité :
< η(t)η(t′) >= δ(t− t′))

• D est le coefficient de diffusion dû aux effets thermiques.

• ~Fij est la force exercée entre voisins, elle reste à déterminer.

• γ est le coefficient de friction avec le liquide, dans la suite nous nous en passons
en l’ajustant à 1 via un changement d’unité.

La forme de la force répulsive n’est pas fondamentalemnt importante puisqu’elle
doit être juste suffisamment forte pour éviter l’interpénétration des particules (6).

F (r ≤ r0) = α
1

r2
~eij (6)
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(a) Le voisins de voron̈ı sont les cellules adja-
centes de la cellule considérée
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(b) L’allure du potentiel attractif qui bouge au
cours du temps

Figure 4: La modélisation

La forme de la force d’attraction F att
ij est beaucoup plus importante puisqu’elle

doit imposer la contrainte de vitesse de rétraction des pili de ≈ 1µm/s, nous avons
utilisé l’équation (7) qui est une force qui tent à corriger l’erreur produite à chaque
pas de temps δt entre la position “espérée” et la position effective. On peut voir ça
en terme de potentiel “mouvant” qui devient de plus en plus fort au fur et à mesure
du temps 4(b)

F att
ij =

γ

2

(rij − (r0
ij − vr(tij + δt)))

δt
eij (7)

La chose la plus importante pour le modèle est l’intégration de deux phases:
la force d’attraction est stochastiquement activée (état ON) ou éteinte (état OFF)
caractérisés par deux temps de persistance ton et toff c’est à dire (8)

P (off → on) = dt/toff

P (on→ off) = dt/ton

(8)
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3.2 Résultats

Nous avons essentiellement caractérisé le système grâce à deux quantités: le rayon de
gyration Rg (9) qui permet de caractériser une phase cohésive quand il fluctue autour
d’une moyenne (liquide) par rapport à une phase non-cohésive lorsqu’il croit (gaz)
ainsi que la MSD (lisée) globale de l’aggrégat (10) qui nous permet de différencier un
solide d’un liquide car elle est très faible dans un solide. Nous avons ainsi pu obtenir
un “diagramme de phase” montrant de manière unifiée ces 3 phases en détectant un
saut de l’un ou l’autre des paramètres d’une manière unifiée. Essentiellement on peut
décire l’état du système en fonction du rapport toff

ton
, et nous avons choisi ton = 15 car

c’est la valeur expérimentale, comme on peut le voir dans 5(a) on obtient bien ces 3
phases : solide, liquide puis gaz au fur et à mesure que ce rapport augmente.

Rg(t) =

√√√√ 1

N

n∑

i=1

(ri(t)− < ri(t) >)2 (9)

MSD(t) =
1

N

N∑

i=1

1

T − t

∫ T−t

0

dτ |xi(t+ τ)− xi(τ)|2 (10)

L’aspect non monotone de la courbe de la diffusion globale des aggrégats as-
sociée au fait qu’elle dépasse la imple diffusion thermique nous a amené à nous
interroger sur la signature hors signature de l’aspect “hors d’équilibre” du système.
Il se trouve qu’elle se trouve principalement au bord où l’on mesure une diffusion plus
élevée au bord que la simple diffusion thermique (≈ 1µm/s). Ces inhomogénéités
de l’aggrégat sont reproduites de manière synthétique dans 5(b) et reproduisent très
bien les résultats expérimentaux (courbe rouge)
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Chapter 1

Generalities

1.1 Active Matter

We start by defining what Active Matter is : in its broader definition a system
can be qualified as such at the macroscopic level if it is composed of entities,
at the microscopic level, which are able to produce movement without any
external forcing - in other words on their own: locally consumming energy
in order to produce movement. The other term encountered in the literature
is Self-Propelled Particles (often abbreviated SPP for convenience).

This definition is so generic that it might include all the "non inert" mat-
ter, as soon as it shows some kind of self-propulsion, which gives this term
a quite wide applicability which is typical of the diversity of research on
this particular subject. Indeed, the field of research on Active Matter is
ranging from sedimentation of Janus particles [61] - a particular class of
colloids showing activity when an electrical field is applied - to pedestrian
behaviour in constrained environments [21] through bird flocks [33] mak-
ing it a very "fashionable" subject.

SPP particles also encompass the category of “active granulars” which are
mostly experimental systems1 in which grains which can be of various
shapes are vibrated. Hence the grains don’t produce movement by an in-
ternal mechanism but are rather agitated from an external source. However
it still falls in the active systems definition because if we restrict the obser-
vations to the system of particles and exclude the external forcing it is clear
that the behaviour is not equilibrium-like [24]. These experimental systems
are very useful to understand the influence of departure from equilibrium
because we can control the source of movement contrary to more complex
systems where the movement production is in itself an ongoing research
subject.

Even if only the out-of-equilibrium nature of the propulsion is in itself an
interesting topic, what is even more striking is how assemblies of such self-
propelled entities behave. For instance we can observe flocking behaviours
for birds [33] (figure 1.1(a)), fish schools [3] (figure 1.1(b)), spontaneous
flows of bacteria under confinment [64] (figure 1.1(c)) or even prototypical
microscopic systems composed of elongated cargo (microtubules or MT)
and molecular motors (kinesin) which give them motion through “fuel”
(ATP) consumption [47]. Consequently, these self-organization phenomena

1even though numerical simulations of such system exist, hard core repulsion and high
packing fraction require significant computationnal resources
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are quite common in living systems as shown by these examples. Self-
organization means that these systems possess organized phases originat-
ing solely by the interaction between the individual entities composing the
system and not because some global coupling/force acts.

(a) A flock of european starlings, this
compact assembly shows brutal changes
of shape, evidence of collective motion.
author : http://www.flickr.com/
photos/tofsrud/4171421134/

(b) A fish school which shows
a ring shape, author : http:
//www.simontuckett.com

(c) Spontaneous bacterial flow in a
confined environment (an “elongated”
droplet). The arrow indicate the bacteria
flow motion direction, source [64]

FIGURE 1.1: A few examples of spectacular manifestations
of active matter in several contexts, at different scales.

1.1.1 Objectives of this thesis

One of the objectives we can seek for, is to unify all of these systems into
the largest possible “ensemble” which share common properties and that is
what we’ve done by studiying a microscopic “Vicsek-like” model in chap-
ter 2 known as “Active nematics with velocity reversal”. On the other hand
more precise modelization are also desirable if we want to finely investigate
particular properties. In chapter 3 such case is investigated, with the aim
of a finely tuned modelisation of the bacteria Neisseria Meningitidis. We will
see that most of its propreties can be explained by the ability to create long
filamentous structures known as pili (singular: pilus). This thesis is there-
fore at the same time focusing on general considerations without neglecting

http://www.flickr.com/photos/tofsrud/4171421134/
http://www.flickr.com/photos/tofsrud/4171421134/
http://www.simontuckett.com
http://www.simontuckett.com
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more practical aspects by using observational data on a particular system
to build a “custom made” model.
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1.2 A model system : Active-Nematics

1.2.1 The Vicsek model

The type of models we will focus here aims to mimic the movement of
animals at the collective level based on the simplest set of rules possible.
This is the direction that led to the, now famous, Vicsek model [58] which
is an example of these idealized systems made of simple key elements ,
shown in figure 1.2. The agents are pointlike particles indexed by i which
position xi and orientation vector ui dynamics evolves at discrete time, off-
lattice, according to the following set of rules:

• each particle i change its initial orientation ui(t) (red vector) to the
average of the orientation of its neighbours located within a radius rc
(blue vectors): it yields the green vector ( 1

N

∑
k∈∂i uk)

• to account uncertainty or variability of behaviour we add a white
noise of amplitude η (uniformly sampled between −[η,+η]) on the
orientation angle which rotates ui(t) (orange rotation)

• finally position xi is updated. The particle displacement is performed
at constant speed vi of constant norm v0 along ui’s direction: xi(t +
∆t) = xi(t) + vi(t+ ∆t) = xi(t) + v0ui(t+ ∆t)

FIGURE 1.2: One step of the Vicsek model (source: [37])

The system state is basically described by a polar order, i.e the fact that
neighbours are aligned and (thus) moving in the same direction. Given that
this order is essentially caused by a competition between a short-ranged
interaction which create oder and a noise which destroys it, we can under-
stand that the two main control parameters for such system are the density
ρ and the noise intensity η.

This system shows a high polar order (figure 1.4(a)) region - at low enough
noise or high enough density - to disorder (figure 1.4(b)) transition, when
noise is high enough or density low enough. The low order region is called
the gas while the high order is called “liquid”.

In the plane (ρ, η), the transition line ηt(ρ) delimiting the boundary be-
tween the disordered and ordered region is shown in figure 1.3. This curves
roughly follows a power law ηt ∝ √ρ, as predicted by the theory. In order
to obtain this curve, that is the location of the order-to-disorder transition
we need an order parameter P which caracterizes the orientational order
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FIGURE 1.3: Basic phase diagram of the vicsek model.
Above the transition line (high noise) is the disordered
phase, below the homogeneous ordered phase. The inset

shows that the transition line ηt scales as ∝
√

(ρ).

(a) “High” polar order in the Vicsek
model, particles are aligned and move in
the same direction

(b) Disorder in the Vicsek model, particle
orientations are not correlated

FIGURE 1.4: Vicsek model shows ordered (resp disoreded)
phase at low noise (resp high noise), source [58]

and which drops (or raises) when we cross this boundary by tuning the
systems control parameters ρ or η. Consider N particles oriented along ui,
this orientational order parameter P is defined as the norm of the mean po-
lar vector, see equation (1.1). It is by construction valued in the [0, 1] range
: with 0 corresponding to the perfectly disordered (isotropic) case whereas
1 corresponds to perfect alignement.

P = || 1
N

N∑

i=1

ui|| (1.1)

Order-to-disorder transitions are not specific to SPP systems but can also
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arise at equilibrium, for instance in the Ising model 2 which also exhibit an
order-disorder transition. However if the latter model has been extensively
studied and is well understood by means of classical statistical dynamics,
the former on the other hand lacks a unified theory caused by its intrin-
sically out of equilibrium nature and is therefore the subject of intense re-
search. For instance the appearance of a phase separated region of dense
inhomogeneous structures called bands (see figure 1.5) in near the transi-
tion line cannot be explained within the framework of usual order/disorder
phase transition.

New methods had to be developped to study these systems and make the
link between the microscopic rules we just described and the larger scale
dynamics. The most fruitful attempt is probably the derivation of hydrody-
namics equations based purely on symmetry considerations by Toner & Tu
in [57]. In this seminal paper they consider the simplest equations respect-
ing the symmetries of the problem, which allow important predictions to
be done, the most important being that long range order 3 exists for d ≥ 2
(d being the dimensionnality of space) , which proves that the Mermin-
Wagner theorem cannot be generalized for non-equilibrium systems.

The Tonner-Tu equations are the “simplest” equation describing Vicsek-
models in terms of velocity field v, density field ρ and a noise term f . The
terms ρ and v are coupled in the transport equation (1.2) and v evolutions
in (1.3). We can understand equation (1.3) as a complexified Navier-Stokes.
The D. coefficients are diffusive terms (second-order spatial derivative), λ
is the coefficient for the convective term, α, β are terms maintaining v (thus
order) to non-zero values (Ginzburg-Landau). Despite its success, the main
criticism we can put on this method is that any link to a real system is lack-
ing because most coefficients have arbitrary values, as nonlinear equations
even slight changes on the value of these coefficients can drastically modify
the behaviour the system. What’s more the time scales and the length scales
associated to these coefficients, which estimates are essential in a biological
context are lacking.

∂tρ = −∇(vρ) (1.2)

∂tv + λ(v.∇)v = (α− β|v|2)v −∇P +DL∇(∇.v) +D1∇2v +D2(v.∇)2v + f
(1.3)

Nowadays it is still a popular method to infer equations describing active
matter based on the interaction and self-propulsion symmetry. These com-
plexified methods consist in adding higher and higher order spatial deriva-
tives of the basic fields (see section 1.2.6.2).

An important step toward a better understanding has been performed in
[5].The authors derived partial differential equations based on microscopic

2because when the symmetry is continous there is no possible breakeage of the symmetry
according to the Mermin-Wagner theorem.

3In a classical XY spin system, the spin-spin correlation function decays to 0 at large
distances. Meaning that at very large scales the order cannot be maintained (limL→∞ P = 0
for a system of size L). On the contrary in Vicsek model in the liquid phase the correlation
functions don’t decay. This is what long-range order means.
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FIGURE 1.5: Five bands as can be seen in the vicsek model
for a rectangular system η = 0.42, system size: 1024× 256).

The red arrow indicates the bands motion direction.

collision rules using a Boltzmann framework and obtaining explicit master
equations for the particle density distribution f 4. The fundamental inter-
est of this method compared to the one of Toner & Tu is that we obtain
equations which coefficients are explicitely depending on the microscopic
rules we’ve chosen. Also it is worth to mention methods based on micro-
scopic collision rules called “Smoluchowski” in [1] which lead to very simi-
lar equations but with different coefficients dependance on the microscopic
parameters, the origin of these discrepencies is studied in [6].

One a side note, important questions which might seem simple took some
time to be answered. For instance the nature of the transition in the original
Vicsek model has been a long standing debate as it was first argued to be
of second order in the original Vicsek paper [58] in 1995, however later in
[11] because of strong finite sizes effect it was demonstrated it was a first
order transition using as a tool a statistical quantity known as the Binder
cumulant5. Lastly the connection was made between the nature of the noise
in the microscopic dynamics and the shape of the stable states with band
namely “phase” or “micro-phase” separation obtained in [52].

1.2.2 MIPS

Another popular topic in active matter is the “Motility Induced Phase Sep-
aration” (abvr. MIPS) phenomenon, which is a quite generic mechanism
occuring in self-propelled particles systems.

Given the name we understand the root of these events is phase separa-
tion, between a liquid “dense” phase and a gaz “sparse” one (see figure
1.6). Though phase separation can exist at equilibrium, what’s more strik-
ing here is this phenomenology doesn’t come from the enegetic cost of the
creation of an interface: everything comes from the slow-down of parti-
cles in the dense phase with respect to the gas phase. Indeed the generic
model for MIPS consists of self-propelled active particles possess only “re-
pulsive” interactions between themselves, and are all equivalent (there’s
not two populations with different interactions).

What’s been demonstrated in [10] is that the only requirement to obtain
these phase-separating regimes is that the self-propulsion speed v must de-
pend on the local density (the density of the neighbourhood of the self-
propelled particle) ρ. The usual density dependance relation is v(ρ) =
v0(1− ρ

ρ0
)

4more detail in 1.2.6.1
5which is a fourth order moment of the polar order parameter P
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FIGURE 1.6: A MIPS phenomenon occuring in a "run and
tumble" system, the color bar indicates density. We see low
density domains of fast particles separated by high density

regions of slow particles. Sourced from [10]

We thus understand that this velocity dependance which acts effective re-
pulsion embedded in the slowing down for dense region (high ρ) causes
moving particles to accumulate and to slow down even further as a feed-
back mechanism. This mechanism causing in the end a coarsening, like if
there were effective attractive forces !

1.2.3 Dry/Wet systems

Nowadays, there is a clear consensus to define two main families of active
matter systems according to the type of interaction between the agents : dry
and wet ones.

In dry systems the essential source driving the order in the system are
the collisions between the agents which leads to alignement with no con-
sideration for the medium in which the particles lie, these collisions are not
momentum-conservative as a result of the complex interaction forces dur-
ing collision.

On the contrary in wet systems the substrate/medium is of essential impor-
tance because it is the vector of the alignment interactions which can also be
long ranged. What’s more contrary to dry systems the global momentum is
conserved upon collisions. A prototypical wet system is the microtubules
& kinesin assay of [47].

In each of these categories the behaviour differs because of the presence
or not of these long range hydrodynamic interactions and therefore each re-
quires particular mathematical treatment.

In this thesis we will focus on a dry microscopic model essentially because
we want to be able derive continous equations based on the microscopic
model using the the Boltzmann-Ginzburg-Landau (abrv. BGL) framework
of Bertin, Chaté & al.

Our Vicsek-style models are by construction dry because all the terms are
short ranged, it avoids to compute complex interaction which depend on
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the shape, velocities and other parameters of the agents 6 and allow large
scale systems to be simulated. Keeping in mind that large scale propreties
might require really large systems on long durations to emerge.

But short ranged interactons are also essential in order to be able to apply
the BGL method. Otherwise the calculations would be untractable. As we
will see even the introduction of a repulsive term is already a tedious task
and requires careful treatment. The big advantage of our way to procede is
therefore to be able to have microscopic models, to compute the equations
and to compare if the equations are agreeing with the microscopic system.
Unfortunately this method is still restricted to dry systems for now because
of the complexity to take into account long-ranged interactions.

1.2.4 Dense sytems

Most Vicsek-style models do not provide a spatial extension to the self-
propelled agents, these are point-like particles. While this assumption is
legitimate when considering “sparse” assemblies such as starling flocks, it
starts to be important when considering large populations of dense parti-
cles. Bacteria can show close packing or vibrated grains which could ex-
perience phenomenon of “jamming” playing an importance in the collec-
tive motion, even for human crowd gathering in front of stores during the
“Black Friday” [9] (see fig. 1.7) ! The most obvious solution is to implement
hard-core repulsion (see [49] for details about simulations of hard core re-
pulsion) but it stays computationally intensive even nowadays and restrict
the population and timescales observation drastically (because it requires
continuous time algorithm).

We aim to study dense systems sticking to a Vicsek-style model in order to
keep low computational cost. Our solution to this problem is to embed the
repulsion under a term similar to the alignment.

1.2.5 Symmetry of the alignment

In the class of dry systems we can also subdivide in categories a finer gran-
ularity assuming there are two essential symetries which drive the sys-
tem’s behaviour : the symmetry of the alignment and the one of the self-
propulsion. Each of these terms can either be polar or nematic.

When the alignment is polar the collision is summed-up by a vectorial av-
erage of the velocity vector carried by the particles, the outcom being par-
allel vector moving with the same orientation. On the contrary for nematic
alignment we compute the average direction keeping the relative orienta-
tion: particle stay head to tail or head to head.

The propulsion is polar when a free particle conserve its self-propulsion
vectorial orientation over time. When it is nematic the direction is kept

6Yet, one could at the microscopic level, decide to add a field for the fluid and use the
Stokes equation to establish a link between self-propelled particles and the surrounding
fluid.
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(a) Myxobacteria show close packing ,
source: [31]

(b) The crowd during the “Black friday”
is closely packed near a store’s entrance,
source [9]

FIGURE 1.7: Examples of system where spatial extension
role is critical

constant but the particle can reverse the vectorial orientation will diffuse
over time : it will switch with probability 1

2 .

We can therefore consider, in all generality, 2×2 categories of system which
posses one or the other symmetry for both propulsion and alignment. The
most studied case is of course the fully polar case because that is the Vicsek
model. The other cases have been studied both from microscopic simula-
tion but also at the continous level using the BGL method: polar propulsion
with nematic alignment (known as rods) has been studied in [46] while ac-
tive nematics - nematic propulsion with nematic alignment (known as pure
active nematics)-have been studied in [38]. These models confirmed the
relevance of the BGL method, showing good agreement between the mi-
croscopic level and the continuous one. It is important to note that these
models lack a repulsion term and thus are not suited to study dense assem-
blies of particles.

From the point of view of symmetries, our model is closing the gap between
the two models with nematic alignment symmetry: we introduce a flipping
rate kf ∈ [0, 1

2 ] which is the probability to reverse the speed of the particles,
because for some reason the particles can reverse their direction of motion
on a certain timescale. For kf = 0 we are back to the polar propulsion case,
while for kf = 1

2 the pure-active nematics. Inbetween we will we will try to
see a coherent picture where kf is tuned in section 2.7.

1.2.6 Equation derivation

1.2.6.1 Boltzmann approach

We now briefly introduce the the BGL approch in a generic way. The de-
tailed equations will be derived in 2.3.
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The starting point is to describe the system in terms of density of state
f(r, θ, t) , where f(r, θ, t)d3rdθ is the number of particles around position
r oriented along θ at time t. The Boltzmann master equation is a way to
write the evolution of f in terms of entering fluxes and exiting fluxes. In
our case it can be written as follows:

∂f

∂t
+ v0.

∂f

∂~r
= Icoll + Idiff + Iother

On the left hand side the two first terms are simply the Lagrangian deriva-
tive of f , that is we have its temporal variation term ∂

∂t and the advection
term v0

∂
∂~r where ∂

∂~r is the gradient. On the right hand side we describe this
varations is explained in terms of fluxes which come from collison Icoll and
self-diffusion Idiff of the angle respectively and eventually Iother accounts for
other phenomenom (ex: velocity reversal).

However these equations are still untractable. As in our model the module
||v0|| is constant, we are allowed to expand f in terms of its angular fourier
components, that is :

f(r, θ, t) =
∞∑

k=0

fk(r, t)e
−ikθ

where

fk(r, t) =

∫ 2π

θ=0
f(r, θ, t)e+ikθ

The first three harmonics of the series have a clear physical interpretation
and will be of particular interest in our model:

• f0 =
∫ 2π
θ=0 f(r, θ, t)dθ is simply the density ρ(r, t) (we integrate over

angular degrees of freedom).

• f1 =
∫ 2π
θ=0 f(r, θ, t)eiθdθ is the polar field, its argument is the polar

angle (if ~v = v0e
iθ then the previous integration is the averaged veloc-

ity).

• f2 =
∫ 2π
θ=0 f(r, θ, t)ei2θdθ is the nematic field which argument is twice

the nematic angle φ , indeed we see that the function θ → ei2θ is invari-
ant under a transformation θ → θ + π which means it only depends
of the direction and not the side the arrow points to, thus f2 caracter-
ize direction of particles around point r. Thereafter we will study in
more detail this essential termin section 2.1.1.

At the end of the day we have derived three coupled equations for these
three fields f0, f1, andf2 which are similar to the ones obtained in [53] [14]
or [43] but we have the interesting addition that the coefficients in front of
all derivative terms of the equation have an explicit dependence on the the
Boltzmann collision scheme we chose, which matches as closely as possi-
ble the microscopic dynamics we use, thus establishing an almost 1:1 corre-
spondance between the macroscopic parameters and the microscopic ones.
This is a very nice feature which permits to go back and forth from micro-
scopic scales to mesoscopic scales and vice versa.
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These hydrodynamics equations enable us to explore very large systems
limit quickly and eventually confirm features of such systems using micro-
scopic simulations with appropriate set of parameters. On the contrary we
can go from the microscopic to the mesoscopic in order to answer specific
questions, this was done for instance to explore the nature of the “nematic
bands” in the active-nematics model [38] bands structures first thought to
be stable in the microscopics where shown to be instable by linear stability
analysis of the continuous equations.

For the interested reader and given the length of the calculations, the dervi-
ation of these equations will be performed at the end of chapter 2 concern-
ing active nematics in section 2.3.1.

1.2.6.2 Symmetry based equations

Following the pionnering work of Toner & Tu, continous equations based
purely on symmetry principles have been written for various symmetries
of the particle in an attempt to describe in a unified view the systems of
the same "symmetry group" [2, 14, 43]. Considering both the symmetries
of the self-propulsion of the particles and the symmetries of the interac-
tion, we can indeed infere "semi-heuristically" partial differential equations
describing the dynamics by containing the terms allowed by these symme-
tries. For instance if the particles are purely nematically interacting, that is
both propulsion and alignment have the nematic symmetry, the only “rele-
vant” fields will be the nematic field f2 and the density ρ and all the power
of their derivatives. We can then write equation for the dynamics of these
fields using terms known from equilibrium. This will not be performed
here

Again we want to point the fact that this method lacks some physical inter-
pretation in the sense that all the coefficient in front of the terms will have
to be set to “reasonable” values to be able to describe any real system. The
appropriate setting of the coefficients being let to the physicist intuition.
Also given the number of parameter any thorough exploration of parame-
ter space is untractable and relavant significant terms have to be guessed.
However one could argue that most of these terms are known from equilib-
rium theories of liquid cristals (ex: Landau-De Gennes) and have physical
interpretations in terms of elementary deformation of the nematic field 7

but this doesn’t solve the problem of spatial scales and timescales caused
by the setting of coefficients.

7see chapter where we describe the nematic field 2



1.3. Neisseria Meningitidis modelization 13

FIGURE 1.8: Spreading mechanism of Neisseria Meningitidis

1.3 Neisseria Meningitidis modelization

We now address the second model we designed to describe aggregates
of the bacteria Neisseria Meningitidis where self-propulsion still exists but
doesn’t fit any previously existing model. We start by describing the biolog-
ical situation and wonder why this bacteria must be studied. We continue
by describing the experiment which were the basis of this work. Finally we
briefly tackle other works which adress the bacteria molecular motor via
the prism of motility or aggregation.

1.3.1 Biological interest

The transport of a bacteria inside the body is a complex phenomenon but
this process is essential for the proliferation of illnesses inside the host body
. Consequently, it is of critical importance to understand what are the es-
sential parameters enhancing this proliferation. In other words we try to
determine what are the relevant mechanisms to inhibit this proliferation in
order to elaborate an efficient treatment. This understanding of the under-
lying mechanisms is called pathogenesis by biologists.

Our focus will be made on one of these bacteria, Neisseria Meningitidis,
which triggered our interest because of its rather unique proliferation mech-
anism. Indeed, for most people it is mostly harmless and live in the na-
sopharyx (see l.h.s of figure 1.8, it is the region of the pharynx located in the
lower part of the nasal cavities). Unfortunately for unknown reasons this
bacteria might cross the epithelial barrier in some cases and reach the blood-
stream where it becomes pathogenic, it can then invade the host, leading to
the meningitis illness and to severe consequences (figure 1.8 shows the
mechanism leading to infection). While proliferating, meningococci forms
tight aggregates in order to resist the blood flow generated shear stress, this
is why bacterial aggregation is a keyfactor in the process of vascular colo-
nization and pathology progression.

In this particular case, bacterial aggregation is mediated by type-IV pili
(abreviated T4P) :these are several µm long molecular structures (see fig-
ure 1.9). Neisseria Meningitidis possess an advanced molecular machinery
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FIGURE 1.9: A close-up picture showing couple of bacteria
and a pilus liking them

able to produce these long dynamic filaments which extend out of the bac-
terial body and can also retract exerting very strong forces up to 100 pN (see
[39]) in order to get retractions speeds≈ 1 µm s−1 . These pili being the only
mean of motion, they are a key factor, it is therefore essential to understand
their role in the aggregation process.

1.3.1.1 Experiments

In this context the team of Guillaume Duménil developed a series of both
in vitro and in vivo experiments (see [25]) on Neisseria Meningitidis, aimed
at giving an extensive exploration of the determining parameters for ag-
gregates properties. Their peculiar interest is on the in vitro experiments as
they allow to get rid of all the unknown interactions which might occur be-
tween the host and the bacteria, allowing to focus on the intrinsic properties
of the bacteria and thus to discriminate between pure bacterial properties
and bacterial-host ones.

Of course from a pure biologcal point of view the cell-host interaction is
even more important in order to understand illness spreading in the host.
However these in vitro experiments are both more reproducible and quan-
tifiable, thus easier to modelize.

They initial focused on the aggregation dynamics of Neisseria Meningitidis
in "free space" in the sense that the bacteria were cultivated - diluted at a
certain concentration in a water based solution (with nutrients) and then
centrifuged to ensure they would obtain a homogeneous solution of dis-
persed bacteria with no preformed aggregates in the begining. The particles
then start to aggregate in their environment.

This procedure was followed by imaging via confocal microscopy of the
aggregation dynamics.

The tracking of the aggregation is done with confocal microscopy, thus in
2D, setting focal plane near the bottom of the culture recipient. Indeed the
aggregates are quickly big enough to sedimentate and fall at the bottom.
The obtained movies are rather spectacular (see 1.10) where extremely fast
fusion events can bee seen. From these movies various data processing
were done to obtain dynamical properties of the system.
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(a) initially homogeneous
solution shows many ag-
gregates after a few min-
utes

(b) near the center two
massive aggregates are un-
dergoing fusion

(c) after ≈ 3 minutes they
totally fused : no sign of the
preceeding aggregates per-
sist

FIGURE 1.10: Confocal microscopy observations of ag-
gregation in an initially aggregate-free solution, source

Duménil & al.

In a second step, the mechanical properties of these aggregates were probed
via a micropipette aspiration technique allowing to obtain precise viscoelas-
tic measurements. The theoertical description of this experiments is done
in section 3.1.4 and the results from experiments are shown in section 3.5.2.

The next step would be to study the dynamic of pili inside live aggregates
but we are confronted to the impossibility of such thing because obtaining
spatiotemporal data with sub µm space and ms time resolutions at the same
time is not possible. The only solution to circumvent this issue is to “freeze”
the system at some time but this way is far from perfect because by doing
so we loose track of all the dynamical aspects of the processes which, from
our knowledge, are essential to explain the aggregates properties.

This is why using the existing numerous experiments which make up a
solid basis of data, and the idea that pili are the essential ingredient of the
aggregation, this thesis focus on the implementation of a microscopic mini-
mal model. This model is aimed at reproducing some if not all the features
of the live aggregates in a controlable manner which allows us to enlarge
the understanding of bacterial proliferation.

Consequently, our numerical simulations are a powerful complimentary
resource to biological assay. Indeed simulations allow a much more precise
control over the dynamics parameters. Simulating is also useful in order to
get rid of technical constraints which are unavoidable in experiments: long
time regimes are hard to probe, particles tracking can fail to detect precisely
the bacteria position, etc.

1.3.2 Other works

From the biophysicist point of view there exists a strong interest to mod-
elize these bacteria because of the very intringuing properties of the pilus.
Other topics have been studied so far and not only the aggregative proper-
ties, the broached topics are :
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• The ability for Neisseria Menitigitidis to “twitch” - that is having these
intriguing, chopped, motions - on substrates, for instance in [69] and
[30]

• The derivation of hydrodynamic equations describing essentially the
density of bacteria based on a Boltzmann type approach 8, which lead
to identify phase-separating regimes in [62]

• Precise modelization of the mechanical properties of the pili at “molec-
ular levels” in terms of assembly of n rigid body, using simulations.
These enable to explain the force-velocity relation of this particular
molecular motor in [70]

We also have to note that aggregates akin to ours have been reported on
a totally different system: colonies of fire ants [55]. While this can be as-
tonishing because fire ants don’t posess pili, they however have legs which
can produce traction by pulling on their neighbours. In this experimental
paper the authors have analysed the mechanical properties of aggregates of
ants, which appear quite similar to Neisseria Meningitidis ones. Indeed while
subject to mechanical forces these ants colonies recover their shape in a few
seconds as figure 1.11 shows, these aggregates are also “living” because the
ants are constantly moving inside the aggregate.

This probably means that our model extends to a wider class of self-propelled
agents than pili-enabled bacteria ones. Indeed this system doesn’t share
some properties : firstly there’s no fluid so no possible hydrodynamic in-
teraction that might exist for bacteria in water , also the ants are interacting
with their legs so the attractive force is shorter range (pili can be as long as
7 bacteria sizes whereas legs are 0.5–1 ant long) and probably less intense,
third thing is about the nature of the free ant displacements which is not
purely Brownian but is somehow more correlated than the thermal move-
ment of bacteria. Knowing that no modelisation of the ants aggregates has
been provided it could be interesting to see to what extent our model could
fit in this context.

FIGURE 1.11: A fire ant colony shows elastic properties:
it recovers its initial shape even after significal crushing.

Source: [55]

1.4 Structure of this thesis

We finally conclude this introductory chapter by recalling the structure of
the two next chapters of this thesis.

8Which is allowed by assuming two attaching bacteria as a collision event.
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The second chapter will adress the Vicsek-like model : Active Nematics with
velocity reversal and repulsion. We will describe the various phases encoun-
tered and their properties 2.6.1 2.6.2, and link them in a coherent manner as
phase(s) diagram(s) 2.7, 2.5.5, 2.6.2.3. Finally we will derive the equations
fully in 2.3 and exhibit how this theory matches the microscopic system
2.8.0.1.

The third chapter is naturally concerning Neisseria meningitidis. The first
sections 3.1 and 3.2 will be dedicated to generalities about state of mat-
ter and why such biological system is interesting for physics in general.
Also we will describe moreprecisely the biological aspects of the system.
The following chapters 3.4 and 3.6 are more straightforward and follow
chronologically the evolutions of the model. These evolutions adress dif-
ferent questionings and requirement which emerged during over time and
are thus complimentary. Finally we will have a technical discussion in 3.7
concerning the lastest experiment performed in order to obtain input pa-
rameters for the model9 which is mostly post-treatment and image analysis
and provide as well evidence for the telegraphic process of pili attachment.

9precisely the experiment allows to obtain the ON/OFF transition times
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Chapter 2

Active Nematics

2.1 Nematic state

Nematicity is ubiquitous in the living world, from the bacterial world to
granular grains through liquid crystals. Per se, it has triggered a lot of in-
terest from physicists because the symmetry of theses phases required a
common theory. For equilibrium systems, the work from Pierre Gilles de
Gennes (see [16]) has been fundamental in the comprehension of liquid
crystals. In chapter 1 we defined polar order, the nematic symmetry pos-
sess an equivalent nematic order as we will see in 2.1.1. In figure 2.1 we can
see different phases of nematically ordered phases. The first one, on the left
hand side, is the simple nematic phase. For a single particle the nematic
angle characterizes the average direction (and not orientation) of particles,
it is a fairly intuitive notion: it consists in taking the particles orientation
only considering the upper half in the trigonometric circle (thus an angle
φ ∈ [0, π]), in this figure it is therefore pointing upward φ = π

2 . In this ex-
ample it is fairly easy to see however, compared to the polar order, nematic
order has a more complex algebra (we recall that for polar order it is simply
the norm of the averaged orientation vectors ui). The second phase exists if
if in addition to angular order there exist also a positional order (particles
form regular pattern) we refer this as smectic, the middle sketch shows such
smectic order.

The last phase, called cholesteric, exists only for the 3-dimensional case, in-
deed this phase corresponds a rotating nematic direction along a third axis:
inside each 2D layer particles are nematically ordered, but each layer is ro-
tated with respect to each other in the other direction.

The nematic order emergence from collisions can be understood when con-
sideringnematic collisions as shown in figure 2.2. Assume two particles with
velocity vectors v1 and v2 initially: between the left hand side and the right
hand side picture v1 and v2 are both pointing upward or upside-down be-
fore collision.

After the collision the fact that v1 and v2 are pointing upward or upside-
down is kept but overall they are parallel corresponds to a nematic align-
ment. On the contrary for a polar alignment the orientation would be lost
and both would be pointing in the same direction.

We can now clarify the vocabulary and mathematical tools we will be using
thereafter.
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FIGURE 2.1: Different phases for liquid crystals. Simple
nematic shows alignment, if their is spatial order it is
smectic, and if we’re in 3D it can also be cholesteric
source https://saylordotorg.github.io/text_
general-chemistry-principles-patterns-and-applications-v1.

0/s15-08-liquid-crystals.html

Before collision

~v1 ~v2
After collision

~v1 ~v2

~v1

Before collision

~v2
After collision

~v1

~v2

FIGURE 2.2: After a nematic collision the particle reorient
along the average “direction” while keeping their orienta-

tion (they cannot rotate more than π
2 )

https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s15-08-liquid-crystals.html
https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s15-08-liquid-crystals.html
https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s15-08-liquid-crystals.html
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2.1.1 Nematic Tensor

As we previously summarized, the equilibrium theory is nowadays well
developed. We will now review the tools from this theory that we need to
build an out of equilibrium theory for particles exhibiting nematic symme-
try.

First we need to have a quantity that describe the level of "nematicity" in
the system that is the order in terms of nematic angle. The natural thing
to do is to take the 2 × 2 tensor S -called the nematic tensor- is defined as
(where the components α and β refer to axis x or y ):

Sαβ =
1

N
(
N∑

i=1

uiαu
i
β −

1

2
δαβ) (2.1)

We recall that ui is the normed speed vector (or the orientation vector), of
particle i characterized by an angle θ such as ui = vi/v0 = (cos(θi), sin(θi))
, uiα is its component on axis α and δαβ is the Kronecker symbol ( δαβ =
1 ifα = β else δαβ = 0). It is the simplest choice of an invariant quantity by
nematic symmetry. Indeed if ones flips ui for any particle i this quantity is
invariant. Notice that the 1

2 factor comes from the fact that we are working
with 2D systems (otherwise in D dimension the term becomes 1

D ).

This parameter can be either global, in which case N represents all the par-
ticles in the system, or local in which case we can define a local nematic
tensor Sαβ(r) as the average over N particles located around the position r,
which is ρ(r)V on a volume V that requires to be defined.

This tensor being symmetric traceless we can find the main axis, namely nα
and the associated eigenvalues and we can also rewrite the tensor compo-
nent Sαβ as:

Sαβ = S(nαnβ −
1

2
δαβ) (2.2)

Such that the scalar quantity S contains the degree of order in the system
and the tensor contains information about the direction of the order. S is
thus the scalar nematic order parameter we were looking for, indeed it can
be proven that S is bounded and S = 1 when the system is perfectly nemat-
ically ordered whereas S ≤ 1 when it is not and S = 0 when the system is
isotropic (no orientational order). What’s more the argument of the eigen-
vector φ is characterizing the average orientation is also ∈ [0, π].

Considering N particles {xi, vi}. Comparing equations (2.1) and (2.2) we
can show that (S is symmetric traceless) S is defined by equation (2.3) and
φ by equation (2.4) where 〈〉 defines averages over all particles ( 1

N

∑N
i=1) :

S =
√
< cos(2θ) >2 + < sin(2θ) >2 (2.3)

and

φ =
1

2
arg

(
< cos 2θ >
< sin 2θ >

)
(2.4)
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If we recall what we’ve seen in chapter 1 these quantities are related to the
Fourier transform of the density field which is the complex valued field f2 .
The relations are the following, the nematic angle is half the argument of f2

: φ = 1
2 arg(f2) while the norm of f2 is directly the nematic order : S = ||f2||.
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2.2 Description of the model

As stated in the introductory chapter 1, the goal of our Vicsek-style model
is to keep the minimum set of elements allowing us to reproduce a rich
phenomenology while preserving the following necessary ingredients :

• The alignment interaction needs to be nematic.

• We should also have a a term equivalent to a repulsion, acting on the
self-propulsion direction, which tends to repel too close particles.

• Particles diffusivity should be controlled, that means we have a con-
trol parameters which will be related to the persistence time.

The justification is as follows, nematicity is defined solely as the symme-
try of the phase, this symmetry depends mostly on the shape of particle.
Still, we don’t want to be limited and into describing system which con-
stituents self-propulsion is absolutely symmetrical and thus might not be
propel via diffusion 1. However we want to enlarge the scope of the model
and consider asymmetrical motors, which would eventually lead to long
time ballistic motions (ex: myxobacteria [45]). Lastly we want to introduce
a term similar to a repulsion because its influence is essential

As usual, in Vicsek-style models the time is discretized and the update rules
are then as follow for particle which position, speed, orientation vector and
angle are respectively referred to as xi , vi , ui , θi (2.5):

xi(t+ 1) = xi(t) + v0ui(t+ 1) (2.5)

The dynamics equation is unchanged and corresponds to the Vicsek dy-
namics rule : constant displacements steps over distances v0 in the direction
ui

The direction of motion θi which is the argument of ui is given by (2.6):

θi(t+ 1) = arg {εiAi(t) + βRi(t)}+ ηξi(t) (2.6)

Note that, as most Vicsek-style models do, we don’t consider any torque nor
acceleration : particles might instantaneously (over 1 timestep) modify their
propulsion direction ui. This regime is often qualified as “overdamped”.
This limit is understandable when we aim to modelize systems which vis-
cosity is low or irrelevant (if there is a substrate for instance). However
there exist models such as [34] in which continuous rotation of the speed
direction is included, in which case we would have an equation for dθ

dt in-
stead of θ as we have in (2.6)

The first term Ai contains the nematic alignment, while the repulsion -one
of the novelty of this model- is Ri. Finally the last term is also typical of
Vicsek-style models, it is an angular noise which comes on top. In this case
the noise is called “scalar” (meaning it acts on θi and not ui) of amplitude

1which is the “natural” displacement mode for symmetrical propulsion modes which
have no reason to favor one way more than the other (ex: vibrated grains)
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η ( ξi is a random variable sampled from the uniform distribution over the
range [−1 : 1]).

The term εi contains the persistence of the self-propulsion orientation, in
other words the persistence length. εi is a random variable which values
+1 is −1 with probabilities 1 − kf and kf respectively. When εi = −1 this
corresponds to a “event” event.

We call kf the flipping rate, we can consider it like an inverse persistence
length lp ≈ v0

kf
during which the particle won’t reverse its direction of mo-

tion. In the model 0 ≤ kf ≤ 0.5 . This persistence can come from the
environment, for instance in the case of shaken granulars the asperities of
the surface will favor one or the other direction of motion, but still along
the axis. But the persistence can also be at the particle level : self-propelled
agents such as myxobacteria show “periodic” reversal of motion [66] thus
there are reasons to believe that the internal machinery is able to reverse
its direction of propulsion from times to times and must be included in
the model. The limit kf = 0 corresponds to particle never spontaneously
reversing (flipping) their self-propulsion orientation ( lp → ∞) it will be
called rods, whereas the limit kf = 0.5 (diffusive limit with equal probabil-
ity to “hop” in each direction) will be called pure active nematics.

The first term of the left-hand side of equation (2.6) is the nematic align-
ment vector Ai is :

Ai(t) =
1

Ni

∑

j∈∂i
sgn {cos(θi(t)− θj(t))}uj (2.7)

Where the sum is performed over neighbors particles j ∈ ∂i is performed
on all particles within a radius ra (radius of alignment), including the par-
ticle itself (we recover Ai = ui when i is alone: i “aligns” with itself). As
required by the nematic symmetry this vector is invariant under the re-
versal of any particle, that is the transformation uk → −uk. Indeed the
transform − sign in front of the vector which is compensated by the co-
sine change of sign: cos(θi(t) − θj(t))uj → cos(θi(t) − θj(t) + π)(−uj) =

��− cos(θi(t)− θj(t))(��−uj)
The second term appearing in (2.6) is the repulsion Ri :

Ri(t) =
1

Ni − 1

∑

∂i,i 6=j
uji (2.8)

Where uji is the normed vector pointing from particle j to i, thus repelling
the pair when β ≥ 0, that is uji =

xi−xj
||xi−xj || . The neighborhood ∂i is defined

as particles located within a radius rβ (though we kept ra = rβ in all simu-
lations) from xi. This so called “repulsion” is in fact acting as a torque given
that this term is only acting on the angular part(in equation (2.6)) and not
on the positions (equation (2.5)) where it should also act if it were a force.
Introducing a non torque-like repulsion would lead to non-conservation of
the norm of the speed v0. It would get us out of Vicsek-like models and
could lead to MIPS phenomenon among other things. Notice that this time
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i i

jj

ra = rβ

vi(t)

vj(t)

rji

FIGURE 2.3: A schematics showing the different parameters
shown in equation (2.6)

the sum does not include particle i, obviously because it is a repulsive in-
teraction (uii is not defined). Finally the coefficient β, defines the repulsion
intensity.

The geometry of the space the agents are lying on is essential and must be
precised. We recall that in disk-like confined spaces some bacteria spon-
taneously flow in phases keeping the circular invariant geometry. All this
work has been performed with a 2D toroidal geometry, also named “pe-
riodic boundary conditions”. More precisely we have a box of length Lx ,
height Ly and a particle that crosses for instance the boundary x = Lx/y will
appear on the opposed side of the box x/y = 0, equivalently the particle is
subject to a translation xi → xi − Lx/y without affecting the velocity v.

Finally we summarize the importance of the various parameters we will
explore :

• ρ and η as in usual Vicsek-style models with an order-disorder transi-
tion high enough noise / low enough density

• the repulsion intensity β and its associated range rβ which will define
what a dense region is ( ρc ≥ 1/r2

β )

• the alignment range ra

• the flipping rate kf which totally changes the phenomenology as we
go from the diffusive kf = 1

2 to the propagative regime kf = 0 as we
will see.

• the speed v0, in Vicsek models without density this term is not rele-
vant at the mesoscopic scale as it can be ruled out by adimensionaliza-
tion ( we have a length scale ra , a time scale set to 1 here ) . However
introducing the repulsion brings another length scale. Consequently,
this parameter relevance will be highlighted in the next sections ( de-
fects velocity in 2.4 , arches/defect ordered state in 2.6.2 / 2.6.1 etc.).

This work has mainly consisted on phase exploration of this model which
shows new phases and thus a rich phase diagram. Additionally we will
make a comparison with the hydrodynamic theory we developed 2, these
will be the focus made in the next sections.

2see 2.3 for calculation of the hydrodynamic theory
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2.3 Derivation of the hydrodynamics equations

As we have mentioned in chapter 1 we have developed in parallel a hydro-
dynamic theory using the Boltzmann-Ginzburg-Landau scheme of Bertin et
al.. This section is dedicated for those who are interested in more details in
this derivation as much as providing a clearer understanding of what we
will explain in the following chapters.

2.3.1 Boltzmann equation

First of all we start with the Boltzmann integral (2.9):

∂tf + v0e(θ).~∇f = a [f(r, θ + π, t)− f(r, θ, t)] + Idiff [f ] + Icol [f ] (2.9)

On the right hand side the terms account for fluxes of particles which are
subject to different interactions changing their direction/position.

• The first term on the right hand side accounts for the particles revers-
ing their direction (v0 → −v0) with a rate a

• The collision term accounts for the particles which interacts and change
their angles due to the interaction. Of course this term will depend
strongly of the model we choose and must respect the simple symme-
tries of the collision type we chose.

• The diffusion term account for the fact that we put noise over the
angle, consequently the angle of each particle diffuses. It might also
include positional diffusion

In more details, the self-diffusion term Idiff is the simplest and reads:

Idiff [f ] = λ

∫ π

−π
dθ′f(θ′)

[
〈δ2π(θ′ + η − θ)〉η − δ(θ′ − θ)

]
(2.10)

Where we introduced δ2π which is 2π periodic Dirac function (δ2π(2nπ) =
∞∀n ∈ N else 0). The collisional integral Icol reads :

Icol[f ] =

∫ π

−π
dθ1

∫ π

−π
dθ2f(r, θ1)

∫ ∞

0
ds s

∫ π

−π
dφK(s, φ, θ1, θ2)f(r+se(φ), θ2)

[
〈δ2π

(
Ψ(θ1, θ2)+η−θ

)
〉η−δ2π(θ1−θ)

]

(2.11)

Where the average notation <>η means averages over the noise distribu-
tion P (η) , usually this noise distribution is chosen to be a wrapped over 2π
Gaussian distribution (meaning that we transform the standard Gaussian
distribution as a 2π periodic function). And r′ − r ≡ se(φ) is the relative
position of the two particles implied in the collision. K(s, φ, θ1, θ2) is the
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collision kernel which translates the outcome of the collision as a function
of its input parameters (θ1 , θ2 , φ). Considering initially collision of hard
spheres we are developing the expression of K.

We define an angle φ0 parameterizing the collision with relation (2.12) :

e(θ2)− e(θ1) = −||e(θ2)− e(θ1)|| e(φ0) (2.12)

After some trigonometry we can finally write the collision kernel in (2.13):

K(s, φ, θ1, θ2) = g(s) ||e(θ1)−e(θ2)|| cos
(
φ−φ0(θ1, θ2)

)
Θ
(

cos
(
φ−φ0(θ1, θ2)

))

(2.13)

Which is written assuming that collision occurs between, hard spheres that
is only when the distance between particles is exactly d0 translated by func-
tion g(s) = δ(s − d0). Note that Θ(x) is the Heaviside function. Finally the
term ||e(θ1) − e(θ2)|| can be expressed as ||e(θ1) − e(θ2)|| = 2| sin θ1−θ2

2 | for
ballistic particles (it’s a simple trigonometry problem).

Expression (2.13) allows us to go beyond hard-spheres collisions as we can
choose another g(s), function which simply translates the collision rate de-
pendence as a function of the distance. We consider for simplicity a power
law dependence on s.

During a collision the particles repel each other by a force that depends on
the their relative distance s, which in the Boltzmann framework is micro-
scopic. The distribution function on such distance does not vary apprecia-
bly and we can develop it in gradients around the position r of particle 1

f(r + se(φ), θ2) ∼
(

1 + se(φ) · ~∇+
s2

2
(e(φ) · ~∇)2 + O(~∇3)

)
f(r, θ2)

2.3.2 In Fourier space

Going into Fourier space seems natural because the microscopic velocity
norm v0 is constant and we derive the equations from this microscopic
model. We thus we ruled out the speed v in favor of the more convenient
parameterization by θ keeping in mind that v = v0e

iθ.

However we are dealing with averaged quantities and a hypothesis should
be taken with particular care. There is a strong hypothesis behind this as-
sumption: we assume is that the order is strong enough locally and field
vary slowly with respect to θ so that ~v =< vi >≈ v0e

i arg(<vi>) = v0e
iθ We

then see that we can obtain a system of coupled equations relating the fk to
the other fi by equating the terms of equal harmonics. We could in princi-
ple continue this expansion of f in series of fk ad nauseam, but the system
of coupled equations is unsolvable analytically.
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Some precisions: using the complex notation and defining the complex dif-
ferential operator∇ = ∂x + ı∂y, we have the identities

e(φ)·~∇ =
1

2

(
eıφ∇∗ + e−ıφ∇

)
, (e(φ)·~∇)2 =

1

4

(
24+ e2ıφ∇2∗ + e−2ıφ∇2

)
,

4 = ∇∇∗ = ∇∗∇

The Fourier transform of Eq. (2.9) is

∂tfk+
v0

2
(∇fk−1 +∇∗fk+1) =

(
λ(Pk − 1)− a[1− (−1)k]

)
fk+

∫ π

−π
eıkθIcol[f ]dθ

(2.14)
where the first term on the r.h.s. comes from the Fourier transform of
the self-diffusion term (thus the λ factor) and from the transform of the
velocity-reversal, hence the a factor.

The collision term can be written as follows :

∑

q

fk−q+nLmn fqe−ınπ/2
∫ π

−π
d∆eı∆(n/2−q)K(∆)

[
Pke

ıkH(∆) − 1
] cos(nπ/2)

n2 − 1

2

π

∫ ∞

0
sm+1g(s)ds

Where ∆ = θ2 − θ1 and the alignment is encoded in ψ(θ1, θ2) = θ1 + H(∆)
and H(∆) takes into account the symmetry of the alignment interaction:

H(∆) =
∆

2
+





0, 0 < ∆ <
π

2
π

2
,

π

2
< ∆ <

3π

2

π,
3π

2
< ∆ < 2π

The Lmn are differential operators acting on the spatial variables of order
m, and that behaves under global rotation as fn: for example L1

−1 = ∇,
L1

1 = ∇∗ and L2
0 = 4 and L0

0 = 1.

The last operation consist in integrating on the spatial dependency s , which
translates into the bm terms:

bm =

∫ ∞

0
sm+1g(s)ds (2.15)

Finally having developed at the second order in s expansion we have:
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∂tfk =− v0

2
(∇fk−1 +∇∗fk+1) +

(
Pk − 1− a[1− (−1)k]

)
fk

+ b0
∑

q

Jk,q,0fk−qfq + 2b1
∑

q

(Jk,q,1fk−q+1∇∗fq + Jk,q,−1fk−q−1∇fq)

(2.16)

+ b2
∑

q

(
Jk,q,0fk−q4fq +

1

6
Jk,q,−2fk−q−2∇2fq +

1

6
Jk,q,2fk−q+2∇∗2fq

)

2.3.3 Closure and final equations

The next step is truncate the system of coupled equations up to order n in
fk with two constraints: first we need to consider all fk which are relevant
for our problem (ex: f0 and f1 for polar particles, f0 and f2 for nematic
ones.). Secondly, the higher order fn truncation is done at the first stable
mode after the ones of interest, allowing to have non explosive equations.

More importantly this coupled system need to be closed by the choice of a
scaling ansatz. We assume that, “close to the transition” from order to disor-
der all the fields are small, all the fields are slowly varying in space, thus the
gradient∇ is small as a quantity, the same goes for temporal variations thus
temporal derivatives are “small”. In the end all these fields and derivative
go as ∂εj . Equating the terms lead to the correct scaling of all fields and
derivatives. It is then possible to start from the highest order fn term and to
enslave it to lower order terms f ′k (by construction, this term is stable and
decaying quickly close to the transition). This way to proceed allows to de-
couple the terms of interest from these high order enslaved variables. Also
we are ensured that close to the transition the equations are stable (com-
pared to Marchetti & a.l approach in which they put stabilizing terms by
hand).

Now into details: slow variation of fields allows to write ∇ ∼ ε. Balancing
the other equations leads to the following scaling:

δρ ∼ ε, f2k−1 ∼ f2k ∼ ε|k|, ∀k > 0

We can obtain the equation for the temporal variations of the density field,
that is the continuity equation:

∂tρ = −v0

2
(∇∗f1 +∇f∗1 ) (2.17)

We can then enslave f3 and f4 (not developed here) because these fields are
stable and thus will quickly decay to values depending on f1 and f2 as and
close the hierarchy of equations, finally we have the equations for the polar
field f1 and the nematic field f2:
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∂tf1 = (α[ρ]− β|f2|2)f1 + ζf∗1 f2

−vρ[ρ]∇ρ− vn[ρ]∇∗f2

+γ2f2∇f∗2 + γ1f
∗
2∇f2

−λnf2∇∗ρ
+λ1f1∇∗f1 + λ2f1∇f∗1 + λ3f

∗
1∇f1

+υ34f1 + υ4∇2f∗1 (2.18)

and

∂tf2 = (µ[ρ] + τ |f1|2 − ξ|f2|2)f2 + ωf2
1 + ν4f2

−vp[ρ]∇f1

+χ1∇∗(f1f2) + χ2f2∇∗f1 + χ3f2∇f∗1
+κ1f

∗
1∇f2 + κ2f1∇ρ

+υ2∇2ρ (2.19)

with all coefficients which depend on density are noted [ρ] , their depen-
dence on all microscopic parameters is not detailed for simplicity.



2.4. Defects 31

FIGURE 2.4: Defects classified by their charges. What is
represented as straight lines are few field lines, that is the
curves defined by the condition that particles are parallel to
these lines. source: http://inspirehep.net/record/

821794/plots

2.4 Defects

An essential difference between active nematics and nematics at equilib-
rium is the dynamics of topological defects. Topological defects in a ne-
matic are defined as discontinuities of the nematic angle, the point where
it is discontinuous is called the defect core. We restrict ourselves to the 2D
case because defects structure depends also on the space dimensionality.

In figure 2.5, we can see the parameterization of the defects topology by an
angle theta ∈ [0, 2π] and an angle φ(θ) which indicates the local orientation
of the nematic field around the defect. Over one full rotation around the
defect core (θ goes from 0 to 2π), φ angle might perform a certain number
of rotations (in the “nematic sense” a rotation corresponds to a loop over π)
or none. This φ(θ) relation is essential to characterize defects, indeed to the
number of loops of φ corresponds shape of the defect, and if φ doesn’t loop
there is no defect.

Defects have been classified by providing them a charge q which value is a
half integer ( {1

2 , 1 , 3
2 , ...} and their negative counterparts) and corresponds

to the number of rotations of φ. As we can see in 2.4 , the case q = 1
2

correspond to the defect with a comet-like shape, whereas the case q = −1
2

has a three branches shape . Higher q defects exist, for q = 1 we have asters
and vortices for q = −1 as we can see in 2.4

Topology implies deep constraints on these defects. For instance the fact
that the quantum of topological charge is a half-integer, is caused by the
nature of symmetry of the system: given a system with nematic symmetry
φmight perform π rotations because of its symmetry group. However if one
would consider a system with polar rotational symmetry- i.e. φ indicated
the polar order and thus where φ ∈ [0, 2π[ , the value of q is an integer

http://inspirehep.net/record/821794/plots
http://inspirehep.net/record/821794/plots
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θ

φ

FIGURE 2.5: Parameterization of the defect φ(θ), here a -
1/2, θ characterizes the position around the defect while
φ gives the nematic angle, source: http://www.lassp.

cornell.edu/sethna/OrderParameters/

simply because it it imposed by topology. Imagine that φ doesn’t perform
a full 2π then the polar field would not be continuous. That means that in
Vicsek-style models where the relevant field is the polar field, there is no
±1

2 defects.

Another essential property is the fact that the global topological charge is a
conserved quantity : if the most stable phase of the system is defect free ,
the global charge of the system would be q = 0 and thus if for some reason
a q = 1

2 defect is generated, its negative counterpart q = −1
2 will also be

present. It comes in fact from the very process of defects nucleation where
defects are always generated in pairs.

At equilibrium we can show that 3the energy of half integer defects is lower
than those of integer defects and so on, the most stable phase of lowest
energy consequently being the defect-free one. Therefore, defects are not
stable at equilibrium, except in liquid crystals where relaxation timescales
might allow for long lived defects configuration, if defects are present in the
systems and the global initial topological charge is 0 (we recall it is a conserved
quantity over time), these defects should annihilate for energetic reasons
and lead to the nematic phase always. And if there are none they won’t
spontaneously appear. Thus defects are not stable at equilibrium

Out of equilibrium, the situation is less clear. As energy is constantly in-
jected locally local rearrangement of particles happen, allowing sponta-
neous nucleation, recombining and annihilation of pair of defects. All these
phenomena have been spotted in both experiment and in our simulations.

From the experimental point of view the most interesting experiments are
those of Dogic [47]: microtubules are driven out of equilibrium by kinesin

3In [18] the free energy of a defect pair is computed : F = πKk2log(R/a) + εc where R
is the size of the system, a the radius of the core, k the winding number of the defects and
εc “the contribution to the total energy due to the isotropic defect core”

http://www.lassp.cornell.edu/sethna/OrderParameters/
http://www.lassp.cornell.edu/sethna/OrderParameters/
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FIGURE 2.6: Nucleation of a pair of 1/2 charge defects as
seen in microtubule experiments [47]

- a molecular motor - these microtubules are nematically interacting (and
thus good candidates to be compared with our microscopic model and hy-
drodynamic theory) and are attracting a lot of interest. Indeed microtubules
are a key component of eukaryotic cell and have an essential role in its
shape and internal organization.

In figure 2.6 we can clearly see pair of half charged defects being smoothly
created. The + defect moves as expected from its symmetry, whereas the −
defect is almost static. The dynamics of such defects on larger scales is less
clear and depends clearly on many parameters. Indeed the system exhibit
+1
2 defects which interact “nematically” 4 and propel as shown in 2.7 and
−1

2 whose movement is almost static. It can be simply understood as the
+1
2 defect has an asymmetric ( one could say polar ) shape ( we can define

a head and a tail ) whereas the −1
2 is symmetric in that sense ( the defect

shape is invariant under 2π
3 rotations.

Giomi et al. introduced a theory on topological defects in 2D nematic in
[18]. In this paper they use similar hydrodynamic equation than those of
Marchetti et a.l. They consider pair of opposed 1

2 charge defects in a peri-
odic system of size L × L separated by a distance L

2 and they measure the
velocities of +1

2 (resp −1
2 ) v+ (resp v− )

The main result is that the positive defect has a ballistic motion when it
is far enough from its negative counterpart. Compared to the system at
equilibrium it seems that out of equilibrium, the “activity” is speeding up
the +1

2 defect.

We have to pinpoint that, contrary to [17], our microscopic model doesn’t
include any “explicit” activity parameter. However it is probably a good
guess to view activity as a mix between the speed v0 and the persistence
time ∝ 1

kf
. As a consequence we will study the behavior of the defects

varying these parameters. The following section is dedicated to show the

4 That is, if one puts arrow on the + defects to indicate their polarity, these arrows con-
figuration shows is itself a high nematic order.
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FIGURE 2.7: 1
2 defects are shown, orientation is shown as

arrows while their position corresponds to the yellow tip.
The large red bar at the center shows the average nematic
direction of these defects. One can see that some defects
pairs seem to interact head to tail though it is not frequent.

Also from [47]

techniques, for the interested reader, we used to have obtain simple and
systematic defects localization.

2.4.0.1 Defects localization

As we already briefly presented in section 2.4 , the main characterization
of a defect is its topological charge q, which we compute from the winding
number, i.e. the following integral (2.20) on a contour C looping over the
defect “core” parameterized by the angle θ and where the nematic angle is
φ:

q =
1

2π

∮

C
~∇φ · d~l

=
1

2π

∮

C
dφ

=
1

2π

∮

C

dφ

dθ
dθ

(2.20)

The last expression is used to numerically compute this integral. We have
to compute a continuous integral

∫
∇φ · d~l at discrete positions around the

defect, that is
∑n

k=1 δ(φk+1, φk) , where δ(φk+1, φk) is a function that com-
putes nematic angle differences, taking into account that such difference
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can’t be greater than π we have the following definition of the δ function 5 :

δ(φk+1, φk) =

{
φk+1 − φk + π, if φk+1 − φk ≤ 0

φk+1 − φk − π, if φk+1 − φk ≥ π
(2.21)

These are actually all these additional ±π terms which correspond to a
“whole rotation” of the nematic angle which makes q nonzero. Geomet-
rically that corresponds to the crossing of the defects disclination line ( the
periodic boundary ) where φ goes from π to 0 , that is when the vector φ
performed one

2.4.0.2 Defects orientation

Defects are not only characterized by the position of their core. They also
possess an orientation. There are two methods to compute this orientation,
the first method is geometrical whereas the second one relies that the de-
fect self-propulsion is dictated by a backflow and its orientation is along this
term backflow. Both of these characterization are studied in [60]. In the
following we will consider only working with +1

2 defects, the properties
of the −1

2 defects are similar if we restrict ourselves to 13 of the angular
space around the defect because of their 3-fold symmetry (these defects are
invariant under a 2π

3 rotation .)

Now consider that we have parameterized this positive defect by the ne-
matic angle φ(θ) as in figure 2.5. The symmetry axis of the defect is the line
characterized by the angle φ such that :

φ(θ) = θ or φ(θ) = θ + π (2.22)

Numerically we proceed as follows : we assume that we have computed
the discrete (coarse grained) nematic field, see 2.4 and we detected the de-
fect core’s position at (xc, yc). Using the same n positions xk we extract
φ(xk, yk) = φk over a closed loop around the defect ( we index by k using
the natural counterclockwise orientation around the defect) . We have both
φk and θk = atan2(xk − xc, yk − yc) , therefore we can find the intersection
of the two curves characterized by equation (2.22). In practice it is a little
bit more complicated because the function φk might not be very smooth (
theoretically we recall that the±1

2 defects are characterized by a parameter-
ization φ(θ) = ± θ

2 ) and we have to find some interpolation of φk between
the n points.

The other method is more straightforward. It consists in assuming that
the defect self-propulsion term is given by the value of the vectorial field
∇S (which is itself a symmetric traceless tensor) at the defect core position
and also that its orientation is along this term. We therefore just compute this
term at position xc, yc using finite difference method, given that we already
computed the map of Sxy.

5Note that for the summation φn + 1 = φ1
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Note that these two methods give similar but approximate results, at least
in microscopics simulations. Several reasons exist for these discrepancies:
first of all all these quantities (S, ~∇S etc.) can be ill-defined close from the
defect because the density of particle at this position is too low. Secondly it
is an assumption that the∇S term is leading the defect propulsion direction
and defect orientation of + defects. It is only true when the defect is far
apart from any other defect but when short range interaction start to lead
the behavior of defects, the self-propulsion nature of these defects is also
affected (we recall that they speed up).

2.4.1 Velocity measurements

2.4.1.1 Generating defects

As we’ve clarified how we can characterize defects we can now detail the
various experiments we proceeded with defects. In order to obtain system-
atic results we don’t let the system nucleate defects itself. The reason is
simple: in the stability region of the nematic phase, especially at high den-
sity, defects are very unlikely to appear and we would have to wait very
long times to observe spontaneous nucleation of a pair. On the contrary if
we choose an isotropic initial conditions (random initial positions and ori-
entations of particles) we are generating a large number of defect at random
position, an hardly reproducible and controllable case! Therefore in order
to obtain defects in a controlled manner we were able to use an initial con-
figuration which create pair of defects with following parameterization of
the field (2.23) :

f2(x, y) = {tanh(r −R0),− tanh(A sin(
2π

Lx
(x+ y)))}

r =
√

(x− xc)2 + (y − yc)2

(2.23)

This equation allows us to create a pair of defects centered around position
(xc, yc) = (Lx2 ,

Ly
2 ) separated by a distance 2×R0 as figure 2.8 illustrates.

We can now check the velocity of defects for various parameters. We will
focus on the flipping rate and the self-propulsion velocity v0 mainly. To
simplify the analysis we will only consider the y position of the defects and
assume that the movements with respect to the x axis are not significant in
the initial phase of interaction. If this assumption can always be assumed
true at short times, we should note that at low flipping rates6 we see on
relatively short timescales this hypothesis fail. In that case the y position is
clearly not diffusive and we can see a drift of the y position. This maybe
indicates stronger interaction when the flipping rate becomes low.

6Also when v0 becomes high we notice strange behavior for the positive defect which
becomes immobile whereas the negative one starts to move
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2×R0

positive defect

negative defect

FIGURE 2.8: initial configuration of the pair of defects.
The coloring is as usual giving the nematic angle φ
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2.4.1.2 Minimal system size

We have checked that we needed large enough system to obtain asymptotic
defects velocities. Meaning that if the initial defects separation 2×R0 is too
small, even in the very first steps the interaction will be the one of strongly
interacting defects and not the asymptotic interaction we expect to measure.

For the positive defect, figure 2.9(a) already suggests a system size of 128
is too small because the initial velocity is high compared to bigger systems,
what’s more another sign of interaction is that for t ≥ 3000 the y-position
stays steady (in fact the defects already start to rotate). On the contrary for
L ≥ 128 during the whole tracking the defects moves downward with the
same speed (fits for L = 256 and L = 512 corresponds respectively to black
and grey lines).

Secondly, considering the negative defect, it appears clearly in figure 2.9(b)
that it self-propels upwards for the smaller system (L = 128). On the con-
trary, on bigger system, it doesn’t seem to move in one or the other di-
rection, while it shows fluctuations of its position it is at most a diffusive
behavior. In the hydrodynamics theory, for sufficient separation distances,
this defect doesn’t move. This suggest again that L = 128 is not suited and
defects are already interacting. Though we could argue that for all sizes the
position is not constant we stress the fact that the fluctuations are natural
because of the noisy nature of the system.

In conclusion, for system size≥ 256, the interaction between the two defect
is not significant for short timescales and our results agree with the hydro-
dynamic theory, we reached the “∞” distance regime.

Taking these minimal size requirement into account, we considered a large
system with Lx = Ly = 1024. Figure 2.10 illustrates what happens when
we change the spacing R0 between the two defects. Tracking the y position
( y − y(t = 0) actually ) of the + defects we note that for duration ≤ 4000
the initial defect spacing has no influence on the steady velocity. Indeed
the curves are linear and thus it confirms the existence of an asymptotic
velocity, at least when considering short enough duration. The timescale for
which the we exit the linear regime depends on the separation distance and
are coherent with the fact that close defects start to interact “non-linearly”
quicker ( at time ≥ 4000 for short separation R0 = 0.05Lx whereas ≥ 15000
for for higher separation R0 = 0.4Lx).

2.4.2 Velocity measurements

As we have seen, a system size of Lx = Ly = 1024 with a separation dis-
tance 2×R0 = 512 leads to correct asymptotic speeds, we set these quanti-
ties and observe the influence of several parameters on the the early speed
of defects.
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2.4.2.1 Pure active nematics (kf = 0.5) : importance of v0

Study of the hydrodynamics equations suggest that the positive defect ve-
locity v+ is a function of the microscopic speed v0

7. We performed a sys-
tematic study of the positive defect speed for maximal flipping rate kf = 0.5
varying v0. The defects y position was tracked during 50000 timesteps and
we measured the mean velocity of the defects in the y direction as the slope
of the trajectory vy = ∆y

∆t .

The results in figure 2.11 are agreeing with the predictions of the hydrody-
namics theory. Indeed both predict a similar shape for the defects velocity,
that is a peak region then a decrease and a change of sign. What’s more, for
the hydrodynamics as well as the microscopics, there is a possible change of
self-propulsion orientation by tuning v0. In the microscopic case it happens
around a critical velocity vr ≈ 0.09.

We stress that this change of sign is essential because of its implications:
if a pair of defect is nucleated it means that at “high velocities” this pair
of defects has a tendency to come close from each other and thus to “self-
heal”, whereas in the “low velocities” case the defects escape apart from
each other and persist for long time. In the latter case it will lead to spec-
tacular regime known as “ordered-defects” as we will see in section 2.6.2.

Note that in the hydrodynamics simulations we can see a very slight pos-
itive speed for the negative defect but in the microscopics simulation it is
not the case, it is probably washed out by the noise fluctuations.

7Actually the analogous to v0 in hydrodynamics vs is a function of both the flipping rate
and v0
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(a) evolution of the position of the positive defect for different system sizes L ∈ {512, 256, 128} from the top down and proportional
separation distances (R0 = L

4
)

(b) evolution of the negative defect for different system sizes L ∈ {512, 256, 128} from the top down and proportional separation distances
(R0 = L

4
)

FIGURE 2.9: The ± defects velocity is constant for big
enough systems.
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FIGURE 2.10: L = 1024, kf = 0.5. Evolution of the +1/2
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FIGURE 2.11: Comparison of defects velocity in the micro-
scopics and hydrodynamics simulations
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2.5 Case kf = 0 : rods

If we consider bacteria, rod shaped ones are so common that they are a cate-
gory in itself named bacilli (singular : bacillus) however this categorization
isn’t taking into account the nature of their self-propulsion, which might
differ from bacteria to bacteria. In this section the case kf = 0 is aimed
to focus on the class of bacteria which, for some reason, has an asymme-
try in the propulsion and thus conserve the direction of motion over large
timescales. For instance Bacillus subtilis in [71] is an elongated symmet-
ric bacteria which self-propel with its flagella, it evolves in a µm-thick thin
Agar substrate (a kind of sugar,very easy to shape). Considering the typical
size of these bacteria (≈ 1 µm in length with an aspect ratio ≈ 4) it is a rea-
sonable to assume this experiment is quasi two-dimensional. However in
this paper the focus is largely on giant density fluctuations and collective-
motion emergence, a topic largely covered by [45]. Here we will focus more
deeply on the chaotic regime and its link to defects behavior.

But the kind of system we could render is not limited to bacteria, the now
well developed experiment of Dogic we already mentioned [47] is the pro-
totypical quasi two dimensional system which we aim to reproduce and
understand the key features 8 using our microscopic model.

2.5.1 Chaotic regime

The alignment is what dictates the symmetry of the phases we expect to
see in the system: even if rods self-propulsion is polar we expect to see
a nematic stable phase and an isotropic phase at high enough noise. How-
ever the introduction of the repulsion generates an instability of the nematic
state.

We’ve also studied the hydrodynamics equation with a standard linear in-
stability analysis of its deformation modes. This study predicts a fastest
growing mode which makes the nematic unstable with respect to fluctu-
ations along the axis of symmetry. That is to say that if we consider the
nematic tensor defined in section 2.1.1 S = (Sxx, Sxy) ( we recall that the
nematic tensor is symmetric traceless ) and if we consider arbitrarily, but
without loss of generality, that the nematic order is along x, then Sxy which
is initially ≈ 0 grows exponentially.

This linearly evolving regime is then replaced by a nonlinear evolution: the
system evolve to some chaotic regime as can be seen in figure 2.12 , this
chaotic regime is also visible in the experiments of [47]. This chaos in the
microscopic model is shown in figure 2.12 where the color indicates nematic
orientation (in units of π in the color bar) as usual. We can see that the
“chaos” is made of ordered dense regions with high nematic order which
stand alongside holes: disordered low density regions (in fact in this figure,
these sparse regions are indicated by lots of close defects, which are in fact
spurious, the low density implies that the defect the detection algorithm
fails), for clarity we indicated a few of these holes with black circles. In

8at least some of their features, particularly the defects dynamics
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between a lots of defects (real this time!) which travel in the system also 9 in
a chaotic manner in the sense that their motion is indescribable: it is neither
ballistic nor diffusive. These defects frequently change their direction of
motion and travel large distances. When the chaos is reached, defects are
constantly nucleating and annihilating in the whole system.

Finally, as complex as the dynamical aspects can be, we can still name some
typical features of this chaotic regime:

• A steady distribution over time of the number of defects.

• A highly fluctuating nematic order parameter S over time, as shown
by figure 2.16

FIGURE 2.12: A picture of the “fully developed” chaos, the
color indicates the local nematic orientation. No order can
be seen in these pictures as no colored pattern appear. Red
circles indicate 1

2 defects and blue triangles −1
2 ones, how-

ever lots of detected defects are non-existent because lo-
cated in low density regions, these regions are indicated by

black circles.

9Of course from a static figure it is difficult to understand such description but
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FIGURE 2.13: The hydrodynamics dispersion relations
shows the growth rate of each mode as a function of its lon-
gitudinal wave vector qx. A maximum can be seen around

qx ≈ 0.8

2.5.2 Undulational instability

On some region of parameter space the nematic is unstable and before
reaching the chaotic regime we can see growing stripes 2.14 along the di-
rection of the nematic order. These data are in accordance with the lin-
ear stability analysis of the nematic state performed on the hydrodynamics
equation. The analysis shows that the flat nematic state (f2(x, y) = 1 f1 = 0
f0 = ρ0) is unstable to perturbations. Indeed a dispersion relation, that is
the growth rate of each mode (expressed as a function of the wave vector
qx = 2π

λ where λ wavelength of each mode) is the is shown in figure 2.13,
shows that a range of modes long wavelength mode qx[0, 1.3] is unstable
because their growth rate is ≥ 0. What’s more this relation shows that their
is a “most unstable” mode because the function possess a global maximum
around qx ≈ 0.8, this confirms that at some point this mode will be more
visible among the others. The sole presence of an undulating pattern with a
clear wavelength confirms the most unstable mode prediction of the hydro-
dynamics equation. This part will focus on the study of these structures. We
stress that these undulations are only seen at low noise ( generally η ≤ 0.05
). At higher noise the global nematic order is so quickly broken - in a mat-
ter of a few thousand timesteps - that no pattern is observable in this time
window and all we observe chaos and strong density fluctuations without
having seen undulations.

2.5.2.1 Observations

The undulational instability is supposedly purely an instability of the ne-
matic field in the sense that no other fields should be involved. We thus
verify how it appears in the microscopic system and check some results
of the predictions of the hydrodynamics equations where this assumption
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was made. As 2.14 shows in simulations we see stripes are appearing on
an initially homogeneous nematic field oriented along (Ox) (as all particles
are aligned in the same direction, the initial order parameter S = 1). The
other fields are initially homogeneous, we checked that their evolution was
not typical patterns as well. These stripes evolve more or less slowly - de-
pending on the flipping rate kf - their typical width is also dependent on
kf . Note that the undulations are typically broken by massive polar clusters
(quite noticeable in the top right corner by their the “magenta” color), that
is cluster of particles moving in the same direction coherently (similarly to
Vicsek bands), as we can see in 2.14(c), once these cluster are present they
inevitably lead to what the “developed chaos” in the sense that any sign of
order are no longer visible.

2.5.2.2 Can we obtain a dispersion relation ?

We now address the problem of the dispersion relation from the linear sta-
bility analysis shown in 2.13. In the same spirit we tried to verify these re-
sults. The method is to consider an initial configuration of the system with
small sinusoidal perturbation of the nematic field along the initial nematic
direction ( see equation 2.24 ).

The initial perturbed condition is given by the following procedure :

• We generate random initial positions for the n particles at positions
{x1, x2, ..., xi, xn} , this ensures an homogeneous density of the sys-
tem.

• We choose the orientation these particles according to a sinusoidal
perturbation of the angle of the particles with amplitude ξ and wave-
length λ along axis (Ox)

vix = ξA cos(2πxi/λ)

viy = ξA sin(2πxi/λ) (2.24)

The undulation on the unperturbed system (homogeneous nematic initially)
is clearly showing a pattern with “a given wavelength” as can be seen in fig-
ure 2.14: we see the appearance the undulations appear just before break-
ing. For instance for this system we measure a wavelength ≈ 25.

Thus the method was to choose the wavelength λ to be close to the value
we’ve observed from unperturbed systems. This choice is based on the as-
sumption that the dispersion relation in the microscopics has a similar form
than the theoretical one and that the visible wavelength is “close enough”
from the most unstable mode.

The problem is that even when forcing an initial λ close to the unperturbed
wavelength there is still a mode-mixing occurring. Consequently even the
“simple” computation of the growth rate of the most unstable mode is un-
able. This mode mixing occurring at all wavelength, no such thing as a full
dispersion relation neither a dispersion relation is obtainable for now. We
can imagine some reasons why: the theoretical calculation don’t assume
noise thus mode won’t mix, while in the microscopics we can easy imagine
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(a) Initial configuration : homogeneous nematic (t = 0) (b) A clear pattern is now visible (t = 2000)

(c) The undulations are now at their maximal “amplitude” , one can
see rupture sign as irregularities on the pattern appear (t = 4400

(d) The fully developed chaos t ≥ 4400 (here t = 8700)

FIGURE 2.14: These snapshot show the nematic field over
time, the flipping rate is kf = 10−3 here. Typical stripes
characterizing the linear undulational instability over time,
then their breaking and the evolution towards fully devel-

oped chaos at ≈ 4000 timesteps
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FIGURE 2.15: Timeseries of the global nematic order param-
eter, after slowly evolving in the first ≈ 4400 timesteps, the
breaking of the undulations in favor of a chaotic regime is
characterized by a sudden drop of the nematic order param-
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FIGURE 2.16: Timeseries of the nematic order parameter
S (indicated NOP here). The black arrow indicates the
breaking of the undulations as in figure 2.15. On longer
timescales (105 timesteps) we clearly see that the fully de-
veloped chaos is different from the nematic stable state as

high fluctuations of the timeseries appear.
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FIGURE 2.17: Natural wavelength λ with varying flipping
rate kf

that noise will lead to modes mixing. The second reason is that we proba-
bly quickly get out of the linear instability regime and thus the theoretical
calculations are no longer valid.

2.5.2.3 “Natural” wavelength

Facing the impossibility to obtain a dispersion relation using the current
method to perturb the system, we’ve decided to obtain the much simpler
systematic measures of the wavelength of the typical width of the stripes
pattern of the instability in figure 2.17. Simulations were performed on a an
elongated system (Lx = 512 , Ly = 128) , such elongated system is necessary
because simulation duration become quickly prohibitive for large square
systems. What’s more we know that the wavelength grows quite quickly
while varying kf requiring to increase the system dimensions. Given that
we are measuring a instability purely longitudinal along (Ox) increasing
Ly would be necessary only if the spatial amplitude of the modulation be-
comes significant in that direction, this is clearly not the case from our ob-
servations (the modulation amplitude is quite small )

As we can see in figure 2.17 the undulational instability region in kf space
is a very narrow area close to 0: kf ∈

[
0, 3× 10−3

]
. We tried see if we

could push forward this limit (assuming the higher kf boundary is mainly
limited by the quick growth of the undulation wavelength ) by taking even
further elongated systems (Lx = 2048 , Ly = 64). However, we are not able
to currently produce conclusive results because both the timescales grow
exponentially and also the required system size needs to grow at least as
quickly as the wavelength does too. We also think that at some points we
need to increase Ly direction because some modulations in the y direction
too could happen too but we are not yet ready to confirm this possibility.
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Still these initial observations confirm that we are facing a long wavelength
instability which most visible pattern, though it might be mix of several
modes, grows very fast with respect to kf and thus the undulational insta-
bility might totally overlap the chaotic region at low noise10

10Again we pinpoint the fact that the undulational instability is seen at low noise, ≤ 0.05
at higher noise the chaos exists without initial undulations.
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2.5.3 Polar Bands

We now address a totally different phase exhibited by the system but nonethe-
less showing the rich phenomenology shown by this simple model. In-
deed, for small systems sizes and exactly 0 flipping rate we noticed the ex-
istence of polar bands (see fig. 2.21(a)) that is cluster of particles spanning
the transversal direction of the system and traveling at constant speed in
the perpendicular direction, the longitudinal one,11. These structures form
spontaneously starting from nematic initial conditions (random particles
position and particle have initial speed vx = ±1 with equal probabilities
1
2 ). These polar band triggered our interest because they differ from the
ones obtained in the original Vicsek model. In this section we will review
the formation of these polar bands, their structures as well as an extensive
exploration of their existence region.

2.5.3.1 Formation

The favoring of polar clusters seems counter-intuitive at first look given the
conditions of appearance: because we are starting from a nematic initial
condition with an alignment interaction which is also nematic it is quite
astonishing that some polar order emerges despite these two “constraints”.
However it’s not hard to guess why such bands should appear: particles
moving in the same direction will have a high tendency to stay neighbors
because their motion associated to the alignment interaction keeps them
close from one another. On the other hand particles propelling in opposite
direction will only be aligned for a few timesteps ( even less as v0 increases
) then their motion will be uncorrelated as they exit their interaction range.

This mechanisms enhance particles going in the same direction to stay to-
gether, therefore it can lead to formation of polar clusters even though the
initial interaction is nematic12. Collision of these polar cluster would lead
to even bigger clusters and eventually to a unique giant cluster. The size
of which then reaches the size of the periodic-boundary box, thus a phe-
nomenon of “percolation” occurs: the two sides of the cluster connect and
disappear and then lead to the formation of a band which can persist indef-
initely given its geometry. Thus we understand their existence is mainly a
consequence of the toroidal topology of space (the periodic boundary con-
ditions). Simulations show evidence that the only allowed direction of exis-
tence for these bands is along the main axis of the box (it should be possible
to see them in the diagonal directions but it never occurred in our experi-
ence). Bands structures are well known in the original Vicsek model and
were first spotted in [11] near the order-to-disorder transition.

Likewise, the presence of bands is strongly related to the debate concerning
the order of the phase transition, these bands coexist with the other phases
(far from the order to disorder transition the only two phases existing are
called correspondingly the “liquid” ordered phase and the “isotropic” dis-
ordered one) around the transition and therefore they make a case for a

11Note that it is possible the bands also exist at very small but non-zero kf
12actually a nematic interaction is “effectively” a polar one when the collision is head-to-

head
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(a) Snapshot showing the trail let by bands as
they move in the less dense gaseous phase (
source : [11] )

(b) The averaged (in the y direction) density
profile ρ(x) of these bands shows a clearly no-
ticeable front (source:[52])

FIGURE 2.18: The polar bands in the Vicsek model have a
sharp front which leaves a trail of decreasing density

transition of the 1st order. Vicsek et al. argued that this difference of or-
der for the transition between their model and Chaté et al. is caused by the
choice of v0: in [35] they claim that the difference came by the fact they were
working in the low velocity regime ( v0 ≤ 0.1 ) whereas in the high velocity
regime ( v0 ≥ 0.3 ) regime these bands start to appear.

In that sense it is interesting to spot the existence of these bands in these
two velocities regimes.

In our case, polar bands we first spotted in small systems (square 64 × 64
system), at low density (ρ = 1.5) in the high velocity regime (v0 = 0.3), the
other parameters were set to usual values (η = 0.1 and β = 0.5). We stress
that in all the simulations performed here the flipping rate kf is strictly 0 ,
these bands seem to be a singularity in parameter space as they don’t persist
at low but non-zero flipping rate (again we think they might actually exist
for flipping rates as low as 10−5 but we cannot conclude for the time being).
Observing the timeseries of the nematic order parameter 2.19 it is already
obvious that a violent event happened at time t ≈ 2 × 105 from the values
of the order parameter which abruptly “jump”. This is confirmed by the
even striking jump of the polar order parameter (in pastel purple) from≈ 0
to ≈ 0.7. For both order parameter(s), not only do we see a jump of their
value, but also it appears that their fluctuations are decreasing a lot.

Further inspection of the system snapshots shows the emergence of these
bands 2.20 , which even from the qualitative point of view, are very dif-
ferent from the ones obtained in models without repulsion : they appear
as very homogeneous structures (see fig 2.21) - in the polar Vicsek model
the front is very dense and straight but the tail is sparse and badly defined
(compare with the profiles seen in 2.18(b)) - and moreover we see strong
smectic order inside the band. It is interesting to note that just before the
formation of this one band several “proto-bands” of badly defined shape
are visible, but already present the same orientation and smectic structure
of final one.
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FIGURE 2.19: timeseries of the nematic (purple) and polar
(pink) order parameter

The bands structures we observe are very different than those seen in the
original Vicsek model: in the latter case the band is characterized by a very
stiff front of particles which leaves a trail of particles which longitudinal
( in a reference frame co-moving with the band, considering the band as
invariant 1D structure) density profile roughly scaling exponentially as we
go away from the front :ρ(x) ∝ ρ0+exp(x/l0) 13. In our case, on the contrary,
in our case the the density profile profile of the band is very flat ρ(x) =
ρband, this discrepancy is probably caused b the introduction of repulsion
and as we will see later

2.5.3.2 Stability with size

Even though little is known about the conditions which favor the bands for-
mation, we can still suggest that the optimal conditions are the following:

• Low noise: that favors smecticity

• Low density: Indeed if the band becomes too wide it’ll break. Given
that the density is pretty constant inside the band ρband ≈ 1.8 the
width of the band is given by the global density, thus there’s an upper
value for the density.

As we said first bands were observed for small systems and might be thought
as a curiosity, limited to small systems sizes. However we were also able
to obtain spontaneous formation of this polar bands for a bigger system
Lx = Ly = 128 but for a way smaller noise η = 0.001. The question that
that these bands exist for the same parameters for all system sizes but with
longer formation timescales stays unanswered at the moment. Keeping the
initial system size Lx = Ly = 64, we can say that bands are not robust with

13for detailed information see [11] fig. 13
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(a) three “proto-bands” t = 176000 (b) one gets almost absorbed t = 177000

(c) the bigger one will become the homo-
geneous band t = 178000

FIGURE 2.20: Polar bands birth in a small system Lx =
Ly = 64. It starts with the appearance of smallish bands
which fuse after a while. The disk in the bottom left-hand
corner gives color-orientation match. Given the purple

color, the bands move up down.

respect to parameters change . We briefly review what parameters we can
change in the next section(s).

2.5.3.3 Phase or microphase separation?

In [52] the authors exhibit differences between the Vicsek-model and the
“active Ising model” (abbreviated AIM) where particles carry a spin ~s (aligned
with Ox for simplicity, thus we write it it s from now on) and self pro-
pel on lattice. The particle spin reverse its orientation (±ex) with a prob-
ability ∝ exp(− sm

kBTρ
) where m =

∑
j∈∂i sj is the local magnetization and

ρ =
∑

j∈∂i 1 the local particle density. The model is “on-lattice” in the sense
that the interaction are within the same lattice cell, multiple particles can lie
on the same lattice. The self-propulsion is embedded as a biased diffusion
process: the diffusion coefficient to go to the right depends on the sign of
the spin si and is p+s = D(1 + sε), the diffusion coefficient to the left has a
different value: p−s = D(1−sε). Consequently + particles are favored to go
to the left while− are favored to go to the right leading to a self-propulsion
speed (a drift actually) for spins ±1 equal to ±2Dε. The particles also dif-
fuse upward and downward with equal diffusion coefficients D.
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(a) The final state of a polar band our model
after the process depicted in figure 2.20 oc-
curred.
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(b) The corresponding density profile averaged in the (Ox) di-
rection

FIGURE 2.21: The polar bands in our model differ much
from those in the Vicsek model as seen in 2.18

Even though the difference on the algorithm might seem important, the
phase diagram keeps the same structure (with the noise η replaced by the
temperature T ), even the bands structures are present in both case. How-
ever the main difference lies in the number of bands in the system : in the
polar Vicsek model bands exhibit what’s called “microphase separation” ,
that is when we increase the global density ρ0 the number of bands will
increase accordingly (their number scales ∝ LxLy(ρ0 − ρg) with ρg the den-
sity of the gas). On the contrary in AIM there is always one band which size
grows with increasing ρ0. In the same article, it is explained that the physics
of the two models is the same from the hydrodynamic equations point of
view the essential difference lies in that different solutions are authorized
according to the scalar or vectorial nature of the fields: in Vicsek-style mod-
els the particles carry a vector and consequently their vectorial nature has
to be kept in the hydrodynamic equations, i.e. the fields are vectorial. On
the contrary in AIM the magnetization is a scalar quantity and thus the
equations are those of a scalar field.

In our case the polar bands appear at very low noise as shown by the high
smecticity exhibited by the bands. It is therefore possible to imagine that
we are close to the limit of a scalar field and therefore that phase separation
is authorized here. Several simulations were performed in that direction.

The first experiment we imagined to this end is to perform multiples copies
of one band in order to obtain a system of several bands. However to spot
phase or microphase separation we would have to wait for extremely long
times as the traveling bands don’t exchange particles most of the time. To
speed up things we’ve put two identical bands together and varied the sep-
aration distance. The fact that the separation between the two bands in-
crease tends to back for micro-phase separation however the fact that this
configuration is not stable in the end might also tend to prove that the only
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stable configuration is one band (meaning that we think that, ultimately,
after extremely long times we might recover 1 band in the system, however
computing limitations couldn’t confirm this assumption).

(a) Two bands are put very close to each other (b) Quickly after the gap increases

(c) However the two bands system break
shortly after

FIGURE 2.22: Separation of two bands Lx = 128Ly =
256, ρ = 1.5η = 0.1v0 = 0.3

2.5.3.4 Varying ρ

As we’ve pointed out earlier, the bands observed in this model are very
homogeneous. A property of phase vs micro phase separation is the non-
conservation of the density of the band which we explored by changing
the global density ρ0. The procedure to increase (respectively decrease) the
density adding particles randomly (respectively remove), though it might
destroy the band if we remove too many particles inside the band (creating
a hole or a defect), if ∆ρ0 is small enough that should not happen (or we
are very unlucky!). The parameters of this procedure were ∆ρ0 = 0.02 with
a time of relaxation of tr = 106 timesteps.
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If we choose to decrease density we observe the band thickness decreases
and ultimately it breaks around ρ = 0.52± 0.02 2.23. There’s no splitting or
such thing.

It is important to note that at this density we are below the critical isotropic-
nematic transition density meaning that the bands coexist with the gas. It
is probably a metastable state given that the smecticity in these bands is
a stabilizing factor preventing density fluctuations which would break the
band.

(a) One band at density ρ = 1.4 (b) The band is already smaller but still well
defined at density ρ = 1.1

(c) At density ρ = 0.6 it is still up!

FIGURE 2.23: The band is getting thinner with decreasing
density (system size 128× 128)

Based on these two experiments we are not able at the moment to cannot
confirm if the polar bands are still micro-phase separating or if they phase
separation: both seem possible solutions. Indeed, if phase separation seems
possible because the bands look similar to those of AIM (constant density ρb
and width depends on global density with respect to the gas phase ρ0−ρg).
On the other hand it also appears that at high density bands appear to split
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from time to time: it might be systematic and thus it is micro-phase sepa-
ration but in that case the timescales of micro-phase separation are gigantic
(≥ 108 timesteps) because of the low noise, smectic state of the system. In
conclusion this is definitely a question that should be answered to close the
gap, another method should be found to discriminate between phase and
microphase in reasonable timescales.
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2.5.4 Formation of lanes

Last noticeable discovery in the rods limit is the formation of lanes struc-
tures (see figure 2.24). These are clusters of particles moving in the same
direction polarly.Again this is quite surprising to obtain such phenomenon
in a model where the alignment interaction is nematic and therefore where
no preference toward neighbors going in the same direction should occur.
However in section 2.5.3 we explained why our model is probably favor-
ing the formation of polar bands. A similar mechanism is probably at stake
here. Strong smectic order is present in both structures and might play a
role in their existence, though other models without smectic order report
laning (the phenomenon of lanes formation). In the case of lanes smecticity
probably prevent lateral diffusion allowing them to have “sharp” borders
(compared to nematic bands where the borders are not well defined). Even
if doesn’t explain the stability of these structures the smecticity seems to
create a “line tension” by analogy with fluid-fluid interfaces, the counter-
moving lanes seem to create an interface which prevent them from moving
into one another.

This phenomenon is ubiquitous in models of pedestrian walkers. Indeed, it
is very easy to understand why a pedestrian wanting to reach a target point
as fast as possible will walk faster on lanes of people walking in the same
direction than bumping or zig-zaging against people walking on the other
direction. The simplest pedestrian walker model known as the “social force
model” by Helbing et a.l. [21] is able to reproduce this feature.

In our model these lanes seem to be stable for extremely long times (≥ 107

timesteps) in small systems(Lx = Ly = 128) and only for small systems yet
For larger system they still exist but are not as well defined 2.24(b). Again
the question to know if these structures are long-range ordered or not has
not been studied conscientiously but is a pending question that is worth to
study.

Except pedestrian models, such structures also appear in a different system
where particle with different type of motilities are mixed (a fraction is of
these particles are self-propelled and the rest are simple Brownian parti-
cles) but also in the case of purely “active” particles, the model in question
is [32]. It is worth to note that in this model they are dealing with sphero-
cylinder interacting via hard-core interactions, contrary to our torque-like
repulsion. A remark of importance, the lanes they observe are not stable
ultimately. Another model in which we see lanes is the Vicsek-style model
with continuous rotation [34] (the angle rotation speed dθ

dt diffuses and not
the angle θ itself), but this time they seem to be stable. These models have in
common to share continuous time dynamics, thus maybe the noise cannot
so “easily” break the order because it slowly diffuses contrary to Vicsek-
like models where the noise is discrete, this might favor the formation of
interfaces because the timescales to get out of the interface are large. In our
model the noise is discrete so no such assumption can be made, but the
smecticity is what “stabilizes” the interfaces by decreasing the noise influ-
ence.
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(a) two main lanes on a system of size 128 ×
128

(b) In a bigger system 512×512 lanes are more
deformed.

FIGURE 2.24: Lanes in different sizes systems. The polar
angle is colored according to the color wheel in the bottom

left-hand corner.

2.5.5 Phase Diagram

Now that we have established what structures we will obtain in the rods
kf = 0 limit, we can now build its phase diagram with the usual Vicsek
parameters ρ, η. The result shown in figure 2.25 exhibit the different struc-
tures we have encountered which are all spanning well defined regions of
parameter space.

The first eye-catching difference with Vicsek-models without repulsion is
that the nematic-isotropic transition line doesn’t meet the (0, 0) point. In-
deed, adding repulsion has important consequences over the “trivial” isotropic-
nematic transition. In the current case, there exists a minimal density ρnm ≈
1 below which the only state is isotropic. That is essentially caused by the
way we implemented the repulsion. Indeed when the global density is low,
binary collisions will be a statistically dominating, thus the repulsive term
will “scale as”≈ β < r >≈ β√

ρ and will be significant at low density. On the
contrary, in high density regions the collisions will likely imply several par-
ticles and the effective repulsive contribution, sum of the individual con-
tributions, β||∑j ~rji ≤ β

ρ , will drastically be less important in high density
regimes

Then second new region is where lies the chaotic regime. As we can see its
existence region is also lower bounded in terms of density, but this bound-
ary is different from the ρcm ≈ 2 of the isotropic-nematic transition. This
fact is in qualitative agreement with the phase diagram of the continuous
theory which can be seen in the section dedicated to the comparison be-
tween the hydrodynamics equations and microscopics system 2.8.0.1 in fig-
ure 2.41(a). The hydrodynamics phase diagram show also that the chaos
region requires a minimal density. From the microscopic point of view it is
understandable as we’ve seen in section 2.5.2 that the undulational insta-
bility was always accompanied by smectic order and there’s no reason for
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the minimal density for triggering smecticity to be the same as the one for
nematic order. That said, there is a difference with the continuous theory,
at high densities the nematic should be unstable everywhere and lead to a
chaotic state. However in our case we see that there is a wide gap sepa-
rating the unstable region and the isotropic transition, these two line seem
to behave the same and the gap not closing, we can’t exclude that at high
enough densities the gap might close. Nonetheless we performed simula-
tions at higher densities up to ρ = 10 but other problems might arise given
the nature of the repulsion term we use. The smecticity becomes so impor-
tant that it has a stabilizing effect and the timescales to see the undulation
are growing extremely quickly, therefore the computational cost is too high
for us to conclude about this seeming contradiction.

The last region is the polar bands one. It is very interesting to see that these
bands can exist below the nematic-isotropic transition line. This is proba-
bly a finite size effect, indeed on large scales it “might” be easier to destroy
a band because the probability to create a hole/defects increase with sys-
tem size, but it might also be an effect of the smecticity preventing giant
number fluctuations from breaking the bands 14. Note that again, with the
density dependance of the “effective” repulsion we see that such bands are
bounded by a maximal and a minimal density, which is not the case in the
original Vicsek model where such band exist arbitrarily low (or high) den-
sities.

2.5.5.1 Technical discussion: determine the transitions

We need to briefly mention how we chose to determine the lines of the
phase diagram, which are subject to a bit of arbitrary power given that we
are working on finite sizes systems on finite time scales. We also precise the
initial conditions.

The initial conditions to obtain the phase diagrams we proceeded as fol-
lows:

Nematic The isotropic-nematic transition and chaotic regions were obtained
by starting from homogeneous nematic initial condition, relaxed for
t = 106 timesteps.

Bands We took the band obtained from ρ = 1.5 , η = 0.01 , β = 0.5 and
perturbed this solution by continously moving in parameter space by
steps of ∆ρ = 0.01 in density and ∆η = 0.025 in noise, while relaxing
these solutions 106 timesteps each.

Concerning the methods to obtain the transitions.

Isotropic-Nematic transition determination Several methods to obtain the
order-disorder transition have been used in the past :

14in [51] one can find detailed description on how to obtain the gas-bands transition lines
with accuracy. They also obtain bands below the transition line but assume that when the
system reaches infinite sizes the hysteresis cycles vanish, leaving the band impossible to
exist below the line.
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FIGURE 2.25: The phase diagrams for the “rods”. The
isotropic-nematic transition as well as the chaos region were
obtained for L = 256 system sizes. The bands stability re-

gion was performed for a system of L = 128

• One can choose to look at the fluctuations (standard deviation)
σs of the nematic order parameter s and decree that the transition
occurs when the fluctuation become maximum.

• A more subtle approach is to consider the binder cumulant, that
is a quantity similar to the 4th order moment of the timeseries :
G = 1 − <s4>

3<s2>2 . A peak toward negative values is sign of a 1st
order transition occuring at the location of the drop.

• The two previous methods have been used to obtain very precise
measures of the transition points and the (dis)continuous nature
of the transition. This thesis object was not to obtain transitions
with such details because there is nothing new, instead we chose
the less costly method to set the transition at the point where ds

dη

is maximum ( resp d<s>
dη if we scan while varying ρ, see 2.26

for an illustration). Even for the relatively small sizes considered
we have obtained well enough behaving curves to locate with
enough precision the transition.

Chaos determination The chaotic region is characterized by high fluctua-
tions of the order parameter giving rise to a drop of the nematic or-
der parameter < s > (see fig. 2.27) giving rise to a non monotonous
behaviour to the curve < s > (η). This drop is even clearer as we
increase the system size, we chose size L = 256 as it seems sufficient.
Our criterion is to consider that the limit the chaos-nematic is where
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FIGURE 2.26: The transition point is roughly located where
d<s>
dη is minimum, indicated by the red arrow, the corre-

sponding value is η ≈ 0.4375 (L=128)

lies the maximum d<s>
dη , a careful look at pictures of the system con-

firms that this criterion seems quite accurate.
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2.6 Case kf = 0.5 : pure active nematics

We now focus on the situation where we turned off the self-propulsion of
particles in favor a diffusive behaviour along their direction main axis, that
is left and right movements have equal probabilities kf = 0.5. This limit
case is known as pure active nematics. Representative experiments [36] are
mainly those which use vibrated elongated grains on a substrate where
the energy comes from a vibrating plate and which movement will con-
sequently be diffusive and mainly along the long axis (because of the elon-
gated shape and the head-tail symmetry). In this section we will exten-
sively introduce the new structures that appear as an effect of the repulsion:
arches. Then we will study the phase diagram which shows the arches on
top of the usual homogeneous nematic state and isotropic state.

2.6.1 Arches

The behaviour of defects is totally different from the rods (kf = 0) case
here and in a quite large region of the parameters space. In dense region
defects can eventually anihilate in a certain way, leading to the formation of
structures we called “arches”. Similar structures 15 have been reported in
[53] where they name it “kinks”, they only consider hydrodynamic equa-
tions taking into account the nematic field Q but also its gradient u = ∇Q.
In this section their will be a particular focus on establishing the different
propreties of these structures and comparison with the claim of this article.

2.6.1.1 Formation of arches: high velocity limit

In section 2.4 we were interested in the limit of∞ separation distance for
the defects, neglecting the behaviour at longer times. However when de-
fects are at close distance from each other their behaviour is worth to study.
Note that we restrict to the “high velocity” (v0 > 0.1) limit for now as the
“low velocity” arches formation mechanism is different and will be detailed
in section 2.6.2.

Figure 2.28 illustrates the different steps leading to an arch creation. Af-
ter the positive defect moved enough, we exit from the previous regime of
steady speed, as it is close from its negative counterpart. The pair of defects
starts to rotate 2.28(a), this is due to the initial configuration as we’ve seen
in figure 2.8 the nematic field far from the defects is almost perpendicular to
the initial pairs disclination line, therefore the pair of defect will naturally
perform a π

2 rotation in order to align with the nematic field (for continuity
constraints). Once this rotation is performed, the two defects move “co-
herently” for a certain time (2.28(b),2.28(c),2.28(d)), the + defect being the
fastest one, and loop several times around the periodic boundaries. An im-
portant point has to be made, depending on the way the rotation occurs
two outcomes are possible: whether the two defects anihilate and we are

15The structures are similar because they show a rotating nematic angle but they also
differ because their wavelength is fixed.
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•

(a) the defects rotate when they get
close to align with the “far field” ne-
matic direction

•

(b) the two defects move altogether

•

(c) for a long ... ( t = 250000)

•

(d) long time (t = 500000), essen-
tially because they need to be aligned
to annihilate

•

(e) finally they catch each other (f) And annihilate to form the x in-
variant, symmetric structure we call
arches

FIGURE 2.28: Creation process of an arch: a pair of defects
( +1

2 orientation given by a small arrow) and −1
2 indicated

by a black bullet

left with the homogeneous nematic state 2.29, whether the anihilation oc-
curs in the reverse direction and a pattern between the two defects start to
form, when the anihilation is complete we are let with what we call arches
2.28(f): a structure that spans all the system and which axis of symmetry is
in the direction that used to join the two defect.

2.6.1.2 Polarity

Arches are surprisingly, “polar” structures in the nematic stable nematic
region. Not only in the sense that we are able to measure an instantaneous
non-zero global polar order, but we have clearly seen that particles inside
an arch are slowly “sheared”. As shown in figure 2.30 we colored a stripe
perpendicular to the axis of symmetry of the arch, with a color is given
by its initial y coordinate Allowing us to track particles. We can see that
while they keep more or less the same y coordinate over time, particles are
advected, advection which is more pronounced at the sides of the arches
the high density region (see figure 2.32) where the nematic angle varies
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•

•

(a) the defects also rotate(t = 2500)

••

(b) they are aligned with the field too
(t = 7500)

(c) but they disappear(t = 20000)

FIGURE 2.29: Defects don’t always lead to arches! ( +1
2 de-

fect in red −1
2 one in blue, small 128× 128 system.)

(a) colored stripe initially (b) after 5000 timesteps, shearing is
shown as particles displace coher-
ently : particles on the side of the
arch slide to the left whereas those
at the center move to the right

(c) after 9000 timesteps, we can see
clearly that particles preferentially
move when located on the sides (the
dense region)

FIGURE 2.30: An initially colored stripe is slowly sheared
by the arch.

slowly, than in the center (the low density, more curved, region) in a way
reminiscent of the shearing of a material under a “Couette flow”.

This technique is very useful to observe this polarity but we are also inter-
ested in a more quantitative qualification: such polarity should be present
in the polar field f1. If we assume the polar field just to be a spatial average
of the vectorial speed v0 coarse grained over some size lcgs it is clearly not
sufficient. The quantities we have to measure here are so small and subject
to so much fluctuations that the fields extracted from the coarse graining
procedure look too noisy to be the material for any statement.

However we know from experience that arches are more or less static struc-
tures.It is a matter of millions of timesteps to see significant evolution of
their positions, they don’t rotate either, which is essential for the following
procedure. Assuming that with respect to time the dynamic of particles at
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fixed position is invariant, we thus consider the field obtained from coarse
grain size procedure and perform temporal self-average of these fields on
top of the coarse graining :

favg =
1

ta

t=t0+ta∑

t=t0

fcgs(x, y)(t)

Figure 2.31 shows how the fields are affected by this self-averaging over
time. For the fields which values are already high such as density and ne-
matic order the effect is just to damp the fluctuations a lot. The borders cor-
respond the region of high density. This is natural to expect high nematic
order in this region because density =⇒ order. We also start to observe
some signs of a higher polarity region in the bottom right-hand corner for
averaging times ≥ 1000 in figures 2.31(b) and 2.31(c). However, in order
to obtain smooth profiles we need to average over way longer time: ≈ 106

timesteps (fig. 2.32)!

In figure 2.32 we see the profiles indeed self-regularize well with this pro-
cedure. The profiles have been shifted such that we will refer x = {0, 128}
as the “sides” of the arch and x = 64 as the center. Analyzing these pro-
file it appears clearly that the polarity is higher in the central region. It is
quite surprising, given that the preliminary results with the colored stripe
suggested the polarity was stronger on the sides of the arch (higher density
regions). In this central region the polarity is perpendicular the orientation of
the particles (arg(f1) = 0, arg(f2) = π

2 ), thus this effect cannot be put down
to the self-propulsion and has to originate from the repulsion! Except for
this “anomaly” the polar angle profile is in accordance with the advection
of particles: the particles on the side (which corresponds to the begin and
the end of the curves) have a small polarity which is parallel to their direc-
tion and is oriented toward the left (arg(f1) = π, arg(f2) = 0).

One can notice the asymmetry on the polar field profile. This is a small ef-
fect caused by the long-time drift of the arch. Indeed, performing averages
implicitly assumes that arch doesn’t move on timescales of tavg, as this is
not the case it creates a slight asymmetry. While the effect is not significant
it might it is worth to be acknowledged.

2.6.1.3 Arches width

In [53] it is also stated that the arches they observe have a typical width L
which depends of the activity parameter α and scales as L(α) ∝ |α|1/2 and
as such would be the result of a wavelength selection. In our case we report
that this kind of observation has never been achieved in the microscopic
simulations nor using the hydrodynamics equations and that arches can
exhibit arbitrarily sizes (up to L = 4096) and thus show long range order 16

Even though no evidence of such selection has ever been seen in our simu-
lations, both in the microscopics and the hydrodynamics, we tried to check
if such regime could be highlighted in a particular region of the parameters
space.

16This claim is not to be taken literally as it is of course in contradiction with previous
papers and only quasi long-range order should exist on larger scales
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(a) arch fields after 100 timesteps of averag-
ing

(b) arch fields after 1000 timesteps of averag-
ing

(c) arch fields after 10000 timesteps

FIGURE 2.31: Effect of self averaging the fields over time.
The density field is on the top left hand corner, the nematic
angle on the top right hand one, the nematic order field on
the bottom left hand corner and the polar order field is on

the bottom right corner.

FIGURE 2.32: 106 timesteps of averaging is sufficient to ob-
serve that indeed, sign of arch polarity are visible on the

fields themselves.

Varying v0 In this first phase we consider the microscopic velocity v0 as
the a candidate quantity to match the activity and check if given an arch
which has been generated with some given v0 initially will split for a differ-
ent v′0. That is not the case as figure 2.33 shows, after having relaxed for a
sufficient time (≈ 107 timesteps) we observe steady profiles of arches which
differ slightly in their shape, but not fundamentally, none showing a wave-
length. Even though the system could be not large enough and the discrep-
ancies could appear for larger system size there’s no sign of these finite size
effects. For a quick check of this assumption we have checked the auto-
correlation function of the nematic field, which definition is (2.25) written
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in all generally for a complex field f(x) defined in vectorial space (which is
here the 2D euclidean space) and where x corresponds to the position in the
coarse grained map. Note that due to the prohibitive computational cost of
exploring large square systems we used elongated arches oriented along
(Ox) (Lx = 128Ly = 1024). Such choice might seem bad because arches
breaking could likely occur along the arch 17 but long simulations on large
square systems are not accessible for now.

C(x) =

∫ +∞

−∞
f(x)f(x+ x′)dx′ (2.25)

This operation has a big numerical cost as it grows quadratically with the
number nb of coarse graining boxes because we need to compute all nbnb−1

2
pairs. The fastest way to circumvent this issue is to go to Fourier space as
we show next (2.29) , in that case we can easily computeC(x) as the Fourier
backward transform of the products of the functions in Fourier space . This
operation not only simplifies writing the correlation functions but allows to
lower the cost of its computation.

Demonstration:
Let’s define f̃ as the Fourier transform of f , the kth mode of f̃ reads as :

f̃k =

∫ +∞

−∞
f(x)e−ikxdx (2.26)

we define a quantity Ũ as :
Ũk = f̃kf̃

∗
k (2.27)

But as we know the Fourier transform of a product is the convolution prod-
uct (noted * , don’t mix with the superscript notation for the conjugate) of
the Fourier transforms, and using (2.27) the Fourier transform of the conju-
gate f̃∗ is f∗(−x) , note that as we work with real valued fields we can drop
the ∗ on f that we note for convenience g(x) :

∫
f̃∗ke

+ikxdk = (

∫
f̃ke
−ikxdk)∗ = f∗(−x) = f(−x) = g(x) (2.28)

U(x) = f̃f∗(x)

=

∫
f(x+ t)g(−t)dt

=

∫
f(x+ t)f(t)dt

= C(x)

(2.29)

We just showed that the Fourier transform of ˜U(k) is C(x)

Next in figure 2.34 are the auto-correlation functions for the function ~v
||~v||

and therefore C(x) =
∫

cos(x) cos(x + t)dt for the same arches. As we can

17from what we observed on square systems, defects pair will likely nucleate in the center
of the arch because of the lower density. This is a similar mechanism happening in 2.6.2
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(a) v0 = 0.01 (b) v0 = 2.0

(c) v0 = 5.0

FIGURE 2.33: Different profiles of arches for different v0 ,
arches are elongated (Lx = 128, Ly = 1024) . The most
interesting one is the density profile (top left hand corner)
which shows that the density difference between the center

and the edges of the arch increases with increasing v0

see there is a tendency to have a higher decay for correlations when v0 in-
creases, however these correlations decay, at most, by a factor ≈ 6 in the
case v0 = 5. Thus whether the arch have fixed size for ridiculously high v0

or we conclude that arches in our case have arbitrarily big sizes.

Putting different sizes arches together Another way to prove the absence
of any given wavelength selection is to generate configurations of arches of
different sizes. Here the system is globally Ly = 1024 and we put side by
side two arches which sizes are respectively Lx/4 and 3Lx/4. The goal is
to see if such configuration of the system is steady or if will decay and lead
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FIGURE 2.34: auto-correlations function of the nematic field
for different v0. The decay is very slow and not significant

for the range of v0 considered.

to another final state. In 2.35 we can see that in a matter of few hundred
thousand timesteps, the initial configuration (left-most caption) relaxes to a
configuration where the two arches persist but are then equally large.

Modifying β Another possibility is to consider that the repulsion param-
eter β can have an influence of the width of arches.Indeed we know that for
0 repulsion arches don’t exist as these structures have never been reported
so far in [38]. Actually we can check that arches break rather quickly when
we turn off the repulsion without creating defects and “flattens out” to a
nematic state, there are no more sign of the arch existence except in the den-
sity field because homogenizing density requires particles to diffuse over
the whole system and that can take very long times compared to the dis-
appearance of the other fields. Now, these evidence suggest that there is a
transition in β parameter space between region where arches are existing
and region with an absence of arch ( a region which only phase is the ho-
mogeneous nematic). A possibility is that near the transition, the arches get
fixed width and therefore it is probably a good idea to look at what happens
in between to observe the arches in this region.

2.6.1.4 Minimal arch width

We will see in 2.7 that the phase diagram in the (ρ, kf ) plane for this mi-
croscopic model differs from the one obtained by simulations of the hy-
drodynamic theories. Notably the gap between the undulational instability
region and the existence region of the arches is several order of magnitudes
wide (arches kf ≥ 0.1 , undulations kf ≤ 10−3) in the microscopics whereas
it is very small in the hydrodynamics. Even though there is no claim to
have a 1:1 correspondence between the microscopics and the hydrodynam-
ics we have a really simple explanation which would make the gap smaller
in the limit of infinite system sizes: transitions, here from arch to homo-
geneous nematic, are known to be characterized by divergence of several
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FIGURE 2.35: Two arches of different sizes are put side by
side, they relax to two equally sized arches after ≈ 600000

timesteps

quantities, there is the possibility that the wavelength λa associated to the
arch, which is constrained by the boundary conditions not to excess the sys-
tem size, becomes unstable as we decrease kf , as we know that the limit of
λ→∞ is the nematic it is probably a good guess. So for any system size all
λ ≤ λa are unstable and the arch should break. And indeed as figure 2.36
shows, the minimal arch width λa grows with decreasing kf which means
that in the (ρ, kf ) plane the arch stability line would probably move toward
smaller kf with increasing system size, such exploration for large systems
being impossible but this small experiment proves to be useful as a piece of
evidence.
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FIGURE 2.36: Minimal arch width as a function of the flip-
ping rate kf
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2.6.2 Polarly ordered defects

Polarly ordered defects refers to a configuration where + defects self-propel
in the same direction, constantly nucleated and annihilating at the same
rate, being very close they also recombine with each other as we will see in
2.6.2.2.

This regime of polarly ordered defects has been shown in [53]. They con-
sider equations derived from Toner-Tu symmetry principles and at fourth
order in derivatives of the nematic order tensor Q and they describe the
fluid flow ~v. The equations are driven by a few set of parameters:

• r is a parameter controlling the transition from nematic to isotropic
state in the passive case (it intervenes in the Landau-De Gennes free
energy functional of a passive nematic). For r ≤ 1 the stable configu-
ration is isotropic while for r ≥ 1 it is nematic.

• The introduction of an activity α̃ controls the coupling between the
stress exerted by particles and the fluid flow. α = 1 corresponds
to maximal coupling while α = 0 corresponds to no coupling. Mi-
crotubule bundles correspond to α ≤ 0 because they exert “extensile
stresses“

In Figure 2.37(a) the phase diagram of this model is shown, as a function of
these two parameters. Among other things the lines indicate the transitions
obtained from linear stability analysis: the passive isotropic-nematic tran-
sition for r = 1 is conserved while the activity α introduces for r ≥ 1 a few
other phases separated by blue and green lines: the nematic at lowest activ-
ities, the undulating nematic 18 at intermediate activities and the arches at
even higher activities. Note that at highest activity (purple line) we reach
the chaotic regime as the nematic order unstable.a

The same figure 2.37(a) indicate with points the state of the system during
numerical simulations of these equations, which correspond more or less to
the phases predicted by the linear stability analysis. Indeed the three pre-
vious phases are obtained: at lowest activity α the uniform nematic state is
stable (black diamonds), at intermediate activity the is an undulating state
is indeed obtained (purple triangles) and the arches are even higher activi-
ties (blue disks).

However the numerical simulations of the equations suggest there is a fourth
regime between the arches and the undulating nematic, what we refer as po-
larly ordered defects: stable configuration of defects aligned polarly see fig
2.37(b) appearing (filled green stars) in the phase diagram 2.37(a).

It is not clear from our point of view if the configuration they see are steady
or not. Limited spatial resolution or system size could lead their hydrody-
namics equations to be numerical stabilized in such states. However from
what we know about these simulations we can discriminate the isotropic
r ≤ 1 case where the defects configuration seems not to be perfectly static
after relaxation with no net movement and the case r ≥ 1 where these de-
fects seems to be constantly moving, this drift makes the defect self-propel

18this undulating nematic basically correspond to the configurations of undulational in-
stability which would face “kinetic arrest”
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in the tail to head direction. These moving configurations have also been
reported in [42].

(a) Phase diagram with linear stability analysis lines and
symbol for the observed states in numerical simulations.
One can see that between to the undulating states and
the arches there is an additional state: this is the polar
ordered defects regime (filled green stars)

(b) The ordered defects configuration.
Polarly aligned defects move in the
same direction.

2.6.2.1 Arch formation at “low velocity”

We confirm the existence of such organized structures. First at high den-
sities as a transient regime. We recall that in section 2.4 we discovered
that the positive defect velocity v+ was related to the SPP particles speed
v0. And that in the limit of “low velocities” v0 ≤ 0.09 we discovered that
defects were reversing their direction of motion and moving "upward", to-
ward their head. In that case we only studied the regime of short timescales
and long distances between the pair of defects, i.e the so called “asymptotic”
initial behavior.

What happens on longer timescales is also interesting. Indeed, if we let the
defect move upward its dynamics evolves as shown in figure 2.37: the de-
fect is looping around the system boundaries several time and avoids the
− defect several times. Two very different phases can be identified: when
they are close to one another they move coherently with the impression that
the + defect pushes the − one, these are relatively long phases and similar
to what happens during an arch formation at high velocity. The new phase
is when the + defect is far from its negative counterpart: it freely moves up-
wards and when it completely looped a new “arch” is created. After a many
many loops, annihilation finally occurs and we observe several arches. This
process is very different from the "high velocity" regime where the defects
indeed loop around the system but the phase where the + defect moves
alone is missing.
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(c) t=0 (d) t=10000 (e) t=50000

(f) t=90000 (g) t=200000 (h) t=700000

(i) t=1000000

FIGURE 2.37: evolution of the pair of defects at low speed
and high density v = 0.05, L = 256, kf = 0.5
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2.6.2.2 Polarly ordered defects require low density

At lower density ρ, the previous process in which the + defect loops still ex-
ist. However in addition density fluctuations are much higher and allows
defects nucleation and annihilation, mainly at the “center” of the arch (low
density region). This provokes the so called polar ordered defects state,
where defects are located in in the arches vicinity and, thus, are convected
by the neighboring arches, coherently with what we’ve seen in 2.6.1 where
we illustrated a polarity in arches. Actually from what we’ve seen about
the pair of defects dynamics and from the arches shear stress we uncovered
in 2.6.1.2 we understand clearly what happens now : defects are very likely
to be nucleated at the “center” of arches because the density in this region
( and we decreased the global density, thus the density is even lower here
), but contrarily to the high v0 case, pair of defects have a tendency to go
apart from each other and therefore are sustained for a long time. These
defects going apart from each other leave themselves an arch in the trail,
generating polarity and propelling other defects. We now understand this
spontaneous polarity of defects self-propulsion as a mechanism which in-
volves a constant feedback between arches creation, defects nucleation and
self-propulsion of defects.

polarity

FIGURE 2.38: At lower density, smaller arches and defects
density sustained. The arrow indicates the direction of mo-

tion of + defects : L = 256, kf = 0.5, η = 0.1, ρ = 2.0

2.6.2.3 Phase Diagram for pure active nematics kf = 0.5

Now that we have a clearer vision of all the structures exhibited by our
model at maximal flipping rate kf = 0.5, we can now build its phase dia-
gram at high velocity v0 = 0.3 in figure 2.39. We let the low-velocity regime
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FIGURE 2.39: The phase diagram at maximal flipping rate
kf = 0.5 and high velocity v0 = 0.3

and its polar-ordered defect structures for further studies given that the its
existence region are hard to probe without proper criterion (these structures
requiring a low density the limit between the isotropic state and the polar
ordered regime is not clear neither from the order parameters nor from the
system structure observation). Simulations were performed on a 128× 128
system. Arches where generated at ρ = 4, η = 0.1 and quasi-statically dis-
placed in parameter space with varying steps, decreasing them more and
more as we get closer from the limit of stability. Again the reason is that
waiting for defects to spontaneously nucleate in an initial nematic configu-
ration would take gigantic times.

Compared to the rods kf = 0 case:

• There is also a region where only the nematic is stable

• The arches which originate from the introduction of the density, sim-
ilarly to the undulational instability, don’t hold at low densities and
require a minimal density ρm ≈ 2 to exist.

• Similarly, the Isotropic-Nematic transition doesn’t meet the (0,0) point
neither. The isotropic state is thus the the only one persisting under
a minimal density ρim. This “proves” again that at low density the re-
pulsion dominates whether the particles diffuse or self-propel should
not make any difference.
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FIGURE 2.40: The phase diagram in the (kf , η) phase dia-
gram showing most new structures of this model (except
the polar ordered defects which appear at low v0) of this
model. On the left hand side UI stands for Undulational

Instability.

2.7 Connecting the two cases : varying the flipping
rate

Now that we established that the pure active nematics (kf = 0.5) and self-
propelled rods kf = 0 regions exhibit very different structures, it seems
interesting to vary the only parameter we didn’t modified as for now, that
is the flipping rate kf . Thus we will see the phase diagram in the (kf , η)
parameters space. Simulations were performed at size Lx = Ly = 128 for
the arches system whereas higher system sizes (256× 256, 512× 512) have
been considered for other types of transition.

Looking at figure 2.40 the isotropic-nematic transition appears at a constant
noise ηc ≈ 0.57. Below we can see the nematic stable state spans most of the
phase diagram, except at low flipping rate where it is unstable because we
are in the undulational instability region. At high flipping rate on top of the
nematic state we can see arches. Notice the UI region is well separated from
the arches one, showing that previously considered limits kf = {0, 0.5}
were legitimate and relevant.
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2.8 Comparison with the hydrodynamics theory

In order to conclude properly we shall finish with some comparisons with
the microscopics which reveal some successes.

2.8.0.1 Some success of the hydrodynamics equations

As we have mentioned the hydrodynamic theory has been fruitful in the
previous models [46, 38] and this is still the case. However it is impor-
tant to note that this is even more surprising that the BGL methods still
works because most of the time we are working at high densities, density
which plays an important part because of the repulsion we introduced in
the model. Indeed the BGL method assume binary collision which should
imply a dilute limit, this is not the case but yet these equation works. We
thus now briefly address some results of this theory.

Rods For the rods case we recall that in the microscopics simulations we
obtained many phases: polar bands, undulational instability and stable
nematic. On the hydrodynamics side, the polar bands haven’t been ob-
served yet, given that their mechanism of existence is probably the smec-
ticity, which is not taken into account by the BGL method. Otherwise the
equations indeed predict the undulational instability 2.41(b) and lead to an
almost entirely qualitatively agreeing phase diagram. 2.41(a):

(a) Phase diagram for rods (a = 0.1) from the hy-
drodynamics equations. The color on the UI region
indicates the most unstable mode wavelength. A
very thin colored region near the transition is vis-
ible, indicating the presence of the “transversal”
instability not visible in the microscopics simula-
tions.

(b) The undulational instability, the color
indicates the angle.

FIGURE 2.41: The agreement between the hydrodynamic
theory and the microscopics dynamics is quite good
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The main discrepancy concerns the isotropic-nematic transition curves which
meet the (0, 0) point whereas it doesn’t in the microscopics case, nonethe-
less we already explained the probable main reason was an increase of the
overall repulsion importance at low densities in section 2.5.5.

Pure active nematics (kf = 0.5) On the opposed side of the spectrum we
have the diffusing particles known as active nematics. With the introduc-
tion of a repulsive term a new phase known as “arches” appeared and de-
scribed in 2.6.1. Such structures have been observed in the hydrodynamics
simulation as well. Below 2.42 is a comparison of arches profiles from hy-
drodynamics and “micro” simulations, showing that the overall agreement
is good.

The only slight discrepancy concerns the polar angle. In fact in the hydro-
dynamics case it is slightly varying around π thus an appearing disconti-
nuity. On the contrary in the microscopics, probably for geometrical con-
straints: the particle have to perform a full 2π rotation as the nematic profile
already performed a full π rotation. The nematic angle and its polar coun-
terpart are both defined from the particles orientation and thus coupled,
the characteristic full π rotation of the nematic angle of arches implies a full
2π rotation on the polar angle. Such coupling is probably not necessary be-
tween f1 and f2 in the hydrodynamics case because the relation between f1

and f2 are only the terms of the BGL equation which conserve symmetries
but not necessarily the geometrical meaning of the fields.

2.9 Conclusions and perspectives

In the previous sections we briefly sketched the rich phenomenology a the
simple model of “active nematics with velocity reversal and repulsion” ex-
hibit.This model is an extension of the previous models in two ways, first
we have introduced a repulsion torque-like term β and we’ve made the
connection between diffusing particles and self-propelling ones by intro-
ducing the flipping rate kf . First to study solely the influence of the flip-
ping rate we considered the two limits already studied without repulsion
which are kf = 0 and kf = 0.5 namely pure rods and pure active nemat-
ics.For both case, phase diagrams in the (ρ, η) plane were obtained.Both
case exhibit similar shapes for the nematic-isotropic transition lines have
been exhibited. However new phases appear with the addition of repul-
sion : for the rods case we highlighted different coexisting phases chaos
of self-propelling defects, smectic polar bands and polar lanes. As for the
nematic case we focused on the new phase introduced by the repulsion :
arches.

For both cases, existence domain of these phases have been produced. The
qualitative agreement is very good with the hydrodynamics equations. Com-
paring with the hydrodynamics equations, domains of existence lead to
good qualitative agreement for the arches, chaos and nematic stable phases.
Such qualitative match is achieved for profiles shape in the high velocity
regime.
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(a) Comparison of the density profile. (b) Comparison of the nematic angle profile.

(c) Comparison of the polar angle profile.

FIGURE 2.42: Comparison of profiles for arches generated
from hydrodynamics simulations and from microscopics
simulations. Plain lines are for the hydrodynamics simu-
lations and points for the microscopics ones. The position

along the axis is normalized to 1.
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We then connected the two cases by modifying continuously the flipping
rate kf and obtained in the high ρ limit a view in the (kf , η) plane where
arches and chaos are well separated regions , where lies in between the
only surviving phase is homogeneously nematic.

In the chaotic region, guided by the results obtain from the linear stability
analysis of the uniform nematic state, we’ve characterized this regime for
which exists only at low noise η. We also highlighted the presence of strong
smectic order in this region which is intrinsic to the way we implement the
repulsion in our microscopic model. However this smecticity is necessary
to obtain well defined growing stripes typical of this regime.
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Chapter 3

Neisseria Meningitidis

3.1 Physics generalities

We start this chapter by a general introduction on physics matter in relation
to biology. Indeed biological system share features with common physical
systems which may or may not already been explained yet. Consequently
we will review first of all the aggregative properties of Neisseria Meningitidis
through the prism of model system such as Diffusion-Limited Aggregation
etc.. Next we will address the its peculiar motility by considering the Levy
walk model. And finally we will see the essential rheology experiments
which gave quantitative results to aggregate properties

3.1.1 Liquid, Solid and Gas state of matter

The literature on colloidal suspensions is of particular interest in order to
gather notions which will be useful for our study, more detailed reviews
can be found in [56] and [22]. The first measurements of colloidal systems
of many hard spheres suspended in a liquids were performed by Jean Per-
rin in order to prove Einstein’s theory on Brownian movement. Measuring
the displacement of µm sized gum resin particles under the influence of
the gravity, the other forces are the viscous drag (Stokes force) the thermal
fluctuations and the Archimedes’ force he described the steady situation
after some relaxation dynamics. This equilibrium which is now known as
“sedimentation equilibrium” is as follows: the density of particles is not
homogeneous with respect to depth z - confirming Einstein’s prediction
- and follows an exponential profile along the vertical axis z: ρ ∝ e−αz .
What’s more - related to the density profile - the phases are changing with
varying depth: one can notice that at the bottom the high density region
is closely packed and motionless whereas the low density region at lower
depth seems almost freely diffusing. Colloidal systems are thus very likely
to form solids at high concentrations or a fluid phase at lower concentra-
tions.

In order to characterize the state of the system the usual parameter is the
packing fraction φ =

Vspheres
V , where Vspheres is the volume occupied solely

by the colloid and V is the total volume (namely liquid + colloid). For
instance in the model of spheres without any interaction the solid phase is
characterized by a configuration where arrangement of the colloidal spheres
tend to favor maximal compactness. This requirement leads to a positional
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order given by a FCC arrangement (Face Centered Cubic) well known in
crystallography, with φFCC = π

3
√

(2)
≈ 0.74 the maximal compactness pos-

sible for an arrangement of equally sized spheres. In this phase the particles
are jammed and their position fluctuates but on average stays static with no
rearrangement of pairs whatsoever. On the contrary in the fluid phase, as
there is more room the positions are not steady: colloidal particles are dif-
fusing on large timescales but they might collide with each other from time
to time leading to a finite mean-free path.

A good summary can be found in figure 3.1, showing which phase(s) are
present with varying packing fraction as the control parameter. To go more
into details, the solid-fluid transition is of the 1st order kind, as such there
exist coexisting regions and hysteresis phenomenons. Increasing the pack-
ing fraction φ continuously we observe the fluid coexist with some solid
clusters. Increasing again φ only the crystal phase persists. Another in-
teresting phenomena such as glassy transition occurs when we increase
abruptly the packing fraction φ and lead to amorphous liquid, however
such glassy dynamics is beyond the scope of this thesis.

An important note: from our point of view what’s referenced as “liquid”
in figure 3.1 should be instead qualified as a fluid, the difference being that
the particles in a fluid occupy all space available , contrary to the common
meaning of liquid which implies a fixed density. Consequently there can’t
be any liquid in a system of non interactive hard spheres. In a liquid the
density is homogeneous (because a liquid is supposed to be almost incom-
pressible), for this to be possible we need an attractive interaction between
the colloidal particles or at least a mechanism favoring cohesion. The most
widespread model for common liquids consists of pointwise atoms sub-
jected to a Lennard-Jones potential which accounts at the same time for the
attractive interactions as well as the repulsive part - the latter gives a spatial
extent to atoms/colloidal particles - but other models can be considered. In-
deed in the following chapters the liquid phase is a cohesive (aggregative) phase.
Note also that the supercooled regime refers to the persistence of the liquid
phase into the solid one, which is mostly due to the requirement that impu-
rities big enough need to exist (here small liquid droplets) in order to grow
because the nucleation of crystal clusters is only possible above a critical
size.

3.1.2 Formation of aggregates

Considering we will study aggregates it is worthwhile to consider model
systems which show how aggregation manifest itself in nature. Noting that
in none of these models any attractive force is at stake and different mech-
anisms lead to either macroscopic aggregates 3.1.2.2 or phase separation
3.1.2.3. We will finish in 3.1.2.4 by introducing the structure of aggregates
shown by Neisseria Meningitidis. Aggregation processes have been stud-
ied studied for a long time by physicists because these phenomenon occur
in many situations: from the most common immiscible liquid-oil mix []
to the more complex but essential phase-separation of p-granules (liquid)
inside the cell cytoplasm (liquid also) [23], phase separation is ubiquitous
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FIGURE 3.1: Experimental phase diagram for non-
interacting hard spheres, sourced from [22].

when different components are put into contact. Again we stress the im-
portance of minimal model in the the quest of looking for universal mech-
anisms which are the elementary parts to understand the more complex
mechanisms at stake.

3.1.2.1 “Standard” liquids: attractive forces

It is worthwhile to note that a standard “Lennard-Jones” fluid (in the sense
of a similar phase diagram) exist at the colloidal level as long as simi-
lar interaction exist between the colloidal particles. These can be electro-
static forces as some colloidal systems are composed of charged particles
but there exist also a relevant example in a biological context, attraction-
depletion is one of the mechanism leading to such forces: when the dis-
tance between colloid is short, macro-molecules can’t penetrate the gap in
between and create an entropic attractive force (because of the excluded
volumes these molecules can’t reach). For instance PMMA particles mixed
with polystyrene molecules show a similar phase diagram of a standard
liquid. This is the mechanism at stake in p-granules formation inside the
cell cytoplasm (figure 3.2), these p-granules show all features of standard
liquids: they fuse, possess a surface tension etc.

FIGURE 3.2: P-granules (green) inside the cytoplasm of
Caenorhabditis elegans
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(a) A fractal tree generated by DLA from
a point-like initial seed, source http://
paulbourke.net/fractals/dla/

(b) A bacterial colony of Paenibacillus
dendritiform , from [48]

3.1.2.2 Diffusion Limited Aggregation

An interesting model describing aggregation in a biological context was
built by Witten, T.A. and Sander, L. M. in [65]. The model dynamics starts
with a seed, which can be a particle or a region of space, then particles are
randomly generated at a constant rate and diffuse via thermal motion. The
only rule is that when these particle comes to contact with the seed their
motion stops and the ensemble seed+particles becomes the new seed. Af-
ter many steps interesting patterns showing fractal structures are created as
can be seen in figure 3.3(a). These fractal pattern are frequently seen in elec-
trodeposition experiments but more interestingly in biological systems such
as bacterial colonies of Paenibacillus dendritiform 3.3(b). When these bacteria
are voluntarily starved they start to describe DLA like patterns while seek-
ing for food. This experiment is not fully understood as many effects can
have significance over the experiment: food diffusion, chemotaxis etc.

Despite the algorithmic simplicity of DLA dynamics, it is still resisting to
analytical studies and most results are numerical, however it still is an es-
sential minimal model reproducing biological systems properties.

3.1.2.3 Phase separation through activity

It is interesting to note that the previous model was tailored to lead to for-
mation of a macroscopic aggregate, by construction, but there exist mecha-
nisms in nature which can lead to aggregates via phase-separation without
explicit constraint. In the introductory chapter we already mentioned the
Motility-Induced Phase Separation ( [10] see 1.2.2) in another context but
there are several other mechanisms (very similar though) leading to phase
separation.

In [63] the author show that, for purely Brownian particles, two populations
with different effective temperatures will unmix. The “cold” ones forming
aggregates as the hot ones tend to produce something akin to “pressure
forces” on the aggregate. When the difference of effective temperature is

http://paulbourke.net/fractals/dla/
http://paulbourke.net/fractals/dla/
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high the resulting aggregates are showing very high structural order as can
be seen in figure 3.3. Another model similar model is considered in [19]
for which Brownian particles are mixed with self-propelled ones. The final
result being that in such system phase-separation can also occur if the two
“effective temperatures” of “hot” (the self-propelled ones) and “cold” (the
diffusive ones) particles differ.

FIGURE 3.3: Phase-separation is the consequence of activity
difference between “hot” and “cold” particles. source:[63]

3.1.2.4 Neisseria’s aggregates

Now that we have seen different sorts of aggregate it is time to put into per-
spective the ones formed by Neisseria Meningitidis. We already mentioned
the aggregate liquid aspect in chapter 1 but it is essential to use a deeper
level of detail. As can be seen in figure 3.4, Wild-Type aggregates are show-
ing high roundness, similar to MIPS aggregates, but lack structural order if
compared to those of figure 3.3. In fact they are more akin to liquid droplets
than to out-of-equilibrium systems. The first clue supporting this claim is
the motility: the missing structural order is associated to large displace-
ments (similar to the “fluid” in section 3.1). The second clue is related to
the dynamics of coalescence: put side by side, two bacterial aggregates will
fuse and leave a bigger round one after a while, with an evolution simi-
lar to a liquid droplet as show in figure 3.5. This phenomenon known as
coalescence is treated in section 3.1.4.2.

But those aggregates also exhibit properties of out-of-equilibrium systems
such as MIPS, indeed the motility of these bacteria originate from the out-
of-equilibrium nature of their molecular motors which we were able to de-
tect. Even if this is a hard to detect such thing, we were able to measure a
coefficient diffusion higher inside the aggregate than those of free particles
(see figure 3.6.1.1 for the numerical part) but also a signature of the ballistic
regime, that is when pili pull against each other in section 3.6.2.
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FIGURE 3.4: A Wild-Type aggregate is round but doesn’t
exhibit strong hexagonal order inside, source:G. Dum’enil’s

group.

(a) Two aggregates are put
in close contact

(b) They fuse, after 50 sec-
onds the contact disk is still
visible

(c) After 180 seconds it is
not visible anymore and the
resulting aggregates starts
to round out.

FIGURE 3.5: The coalescence dynamics is similar to those of
a standard liquid, source: G. Duménil’s group

3.1.3 Bacterial motility

Bacterial propulsion has triggered the interest of physicists in the early
1970s because bacterial exploration also named bacterial foraging could be
considered as an effectiveness optimization problem and thus is at the edge
of both mathematics and physics [67]. We will now see some model systems
showing different motility tactics.

3.1.3.1 Levy Walk

The movement of most bacteria is far from random, bacteria such as Es-
cherichia coli (more known under its abbreviated name E. coli) show ballistic
movement over large distances triggered by their flagella. This kind of tra-
jectories recalls the Levy walk named after Paul Lévy who first described
them. A levy walk is defined as follows: if we call D the length of a flight,
then the “survival” probability of this random variable being more or equal
than some given value d can be generically written as:

Pr(D > d) =

{
1 if d < 1

d−α, if d > 1

We see that small steps d ≤ 1 have a 1 probability saying that any jump
is at least ≥ 1 whereas long jumps have a distribution decaying with a
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power-law. Given this slow decay it implies very large displacements are
significant.

In order to make it a continuous time process one needs to introduce a
waiting time distribution that is the probability distribution of the time one
needs to wait between the next jump.

In Lévy flight the particle hops instantaneously and then waits for a ran-
dom time until next hop, because of the probability distribution of jumps
length which decays slowly the MSD is ill defined for some values of α (as
MSD is a second order moment it diverges if α ≤ 2 ). On the contrary in
Lévy walk particle moves as constant speed and thus the duration of the
jump and its length are coupled which allows to define properly the MSD.
Additionally one can also introduce waiting time in Lévy walk, depending
on the modelization, but that is not necessary.

E. coli motility is known as “run and tumble”, exhibiting long ballistic mo-
tion (run) separated by phases of rotates where it changes its motion direc-
tion (tumble). This can be explained by the two modes of rotation of its
flagella which can rotate: clockwise (CW) which corresponds to the tumble
phase and counter-clockwise (CCW) which corresponds to the run phase.

In [68], figure 3.6(a) shows the probability distribution for duration each
phases. The run phase (CCW mode) is in grey (and in the inset in the top
left corner) and the CW mode is in dark. The fit shows that the run phases
distribution is compatible with a power-law decaying behavior (linear fit in
log-log scale) which is the sign that a Lévy walk is a good model for the run
part.

Now considering that the flight-length is bounded, these bounded Lévy walks
exhibit on one hand slightly ballistic behaviors at short time scales (MSD ∝
tα, α > 1) and on the other end (sub-)diffusive scaling at larger times
alpha ≤ 1, for example data from [50] show clearly a crossover in the case
of human walking in various location in figure 3.6(b) though one can no-
tice the behavior is only slightly super-diffusive 1.08 ≤ α ≤ 1.8 for short
timescales and is sub-diffusive for longer timescales 0.19 ≤ α ≤ 0.85 1.

In the context of optimality it is easy to understand that diffusion is maybe
the worst kind of tactic when it comes to space exploration. On the contrary
Lévy walk offers better efficiency. Indeed, in order to find food optimally
one needs to explore space over large distances, thus requires some directed
movement, but also require randomness to scan all available space [59]

It is worthwhile to mention that these Lévy walk are not restricted to bacte-
ria but are rather ubiquitous in the living world: similar behavior are shown
in sharks , human hunters are also relevant.

3.1.3.2 Twitching motility

Neisseria - and related bacteria using Type IV Pilus - has a particular way
of displacement on substrates , its mode of displacement is referred to as
twitching motility. The name comes from the fact that if one observes these

1Though
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(a) Distribution function for duration time of run (CW)
and for tumble phases (CCW), the inset exhibit clear ex-
ponential decay. From [68]

(b) Human trajectories tracked by GPS on various location show features
of truncated Lévy walk, from [50]

FIGURE 3.6: Feature of Lévy walks for very different sys-
tems

bacteria lying on the substrate 2 we can clearly see bacteria spending most
of its time in long stages of “arrested motion” , where in fact the bacteria is
in a stalled state caused by the competition between its pili and from time
to time one can see brief jumps over large distances. Indeed the bacteria
is at the center of a tug-of-war game where pili on each side of the bacte-
ria are pulling against each others in opposite directions. Eventually one
side will win and exert more force and enable the bacteria to enter in the
short stages of long distance ballistic motion which are simply caused by
the retraction of the pili on the side that won to the strength the game. This
mechanism has been extensively studied in [69] and with an even more
complex modelization in [30]. The essential results are :

• Trapping events are caused by the equalization of the forces between
competing pili.

• On the contrary the fast ballistic motion occur when there is an imbal-
ance between pili forces.

• The elongated shape of the bacteria is essential: the movement is es-
sentially perpendicular to the long axis.

• The duration of the ballistic events is increased by the fact that the
pili detachment probability is dependent of the force the other pili are
exerting onto it.

2See http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190650/bin/mmc2.
mp4 for a movie showing a biological assay of twitching motility

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190650/bin/mmc2.mp4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190650/bin/mmc2.mp4
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However it is not clear from these results if twitching motility is an optimal
foraging behavior nor does it explain its interest with respect to other types
of motilities.

3.1.4 Rheology of cellular aggregates

The science of probing mechanical properties is Rheology, applications of
rheology in a biological context are quite novel. In [20] the author have
developed the theoretical analysis of a quite new technique to study mul-
ticellular aggregates visco-elastic properties. They extended this technique
which was already known in the case of single cells and for low deforma-
tion only [40]. They provide the general framework allowing to obtain the
elastic modulus E and the viscosity η from simple micropipette measure-
ments. We briefly summarize these results and their derivation here.

3.1.4.1 Modelization of an aspirated droplet

Let’s consider a drop aspirated in a pipette as shown in figure 3.7. We ne-
glect all wetting phenomenon which could happen at the interface with the
pipette.The shape of aspirated droplet is an hemispherical cap on front and
on the back. We can write the energy difference F between the droplet at
rest and under aspiration as follows:

F = (4πR2 + 2πRpL)γ − πR2
pL∆P

• γ is the liquid/air interface surface tension

• Rp is the radius of micropipette (and thus the radius of the hemispher-
ical tongue in the pipette)

• R is the radius of the aggregate outside the pipette (assumed constant
over time if Rp << R which also implies the volume of the spherical
cap is kept constant ≈ 4

3πR
3)

• L(t) is the length of the pipette tongue inside the pipette

• ∆P is the excess applied pressure (measured with respect to the exte-
rior pressure P0)

The energy is partitioned between two contributions: the first two γ terms
account for surface energy, the last one for the work produced by pressure
forces. The last term needs more explanation, we can understand it as the
pressure difference times the volume sweeped by the tongue during its pro-
gression.

Now we can also write the value of the aspiration force: f = πR2
p(∆P −

∆Pc) , where ∆Pc is the minimal pressure difference required to compen-
sate the surface pressure. Indeed it can be shown that under a trigger pres-
sure ∆Pc the steady state of the system will be , as shown in figure 3.7 a non
hemispherical cap with a curvature radius r given by the Young-Laplace
law: P = 2γ(1

r − 1
R). Thus when r reaches Rp the value of the critical pres-

sure is ∆Pc = 2γ( 1
Rp
− 1

R) above which there is no longer a steady state and
the resulting state is a constant velocity progression of the tongue.
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FIGURE 3.7: Schematic of an aspirated droplet during its
progression in the micropipette, taken from [20]

FIGURE 3.8: the Maxwell idealized system, also taken from
[20]

Assuming an elastic response in the short time regime we can write σ =
f
πR2

p
≈ E δ

Rp
by definition of the elastic modulus or f ≈ πRpEδ in other

words x

On the contrary in the long time regime the force is compensated by the
viscous drag f = 3π2ηRpL̇+2πkRpLL̇where the first term accounts for the
volume viscous drag whose viscosity is η and the second term k represents
the friction with the wall.

These two regimes can be described in a common framework using a mod-
ified Maxwell model, that is idealizing the response of the system to a sim-
ple spring-dashpot circuit as shown in figure 3.8. This yields the evolution
equation of L(t):

L(t) =
f

k1
(1− k2

k1 + k2
e−

t
τc ) +

f

ξt
t

There are consequently two time regimes. For short times t << τc we can
write L(t) ≈ fk1

k1
(1− (1− t

τc
) k2
k1+k2

) + f
ξt
t

Finally we can obtain the viscosity η by fitting the curve 1/v(P ) using for-
mula (3.1):

v =
RpP

3πη
(3.1)
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3.1.4.2 Droplet coalescence

We haven’t yet characterized the surface tension of the aggregate. From a
purely energetic point of view two droplets of a fluid put in contact will
coalesce and form a bigger droplet in order to minimize surface tension en-
ergy. Excepted these energy considerations the early dynamic of the contact
surface is in itself an interesting subject: it depends on the viscosity η and
the surface tension γ. The evolution of the contact disk radius r(t) follows
equation (3.3):

ηṙr2

R2
0

= W (3.2)

(3.3)

or in the integrated form (3.4):

r3 =
WR2

0

η
(3.4)

Using this relation and the viscosity obtained from the micropipette exper-
iments we can extract the surface tension by means of tracking the contact
disk radius r(t).

To summarize, the modelization as a liquid droplet allows us to obtain for-
mulas (3.1) and (3.6) , and to relate the tongue velocity to the viscosity and
the surface tension of the whole liquid.

v =
RpP

3πη
(3.5)

and
P = 2γ(

1

Rp
− 1

Rv
) (3.6)

3.2 Neisseria Meningitidis

3.2.1 Neisseria’s features

3.2.1.1 The pilus

Pilus are quite common appendices which exist at the surface of many bac-
teria. They have various functions but we will focus on Type 4 Pili3 (abbrev:
T4P) for which studies are quite novel, at least in the physics field. However
there is an extensive biological literature addressing the properties of these
molecular structures, which are helical polymer of diameter 6 nm which
base unit is named a “pilin unit” (also named PilE) which weights ≈ 15 k–
20 k atomic mass , the length of a pili is typically of a few µm [27] but it
is highly variable. The essential property of the pili from the mechanical

3The singular noun is a pilus
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FIGURE 3.9: Rough schematics showing the two working
modes of the molecular motor: on the left hand side a sub
unit of the pili is added which elongates the pili, whereas it

can be destroyed when the pili retracts. Source:[27]

point of view it their ability to exert high forces up to 100 pN for a single
pilus which are enormous given the µm size of bacteria. Even more they
can bundle and exert nN forces. In [26] pili have been modelized at the
molecular level as an ensemble of small motor moving an helical filaments,
they obtain data agreeing with biological data such as the force-velocity re-
lations and parameter dependence for the stall force (maximum force the
molecular motor can work, over this value it is blocked)

3.2.1.2 The capsule

The aggregation of Neisseria gonorrhea bacteria, which is also presenting T4P
has been studied by biophysicists [41] by mean of experimental methods
but also by the elaboration of theoretical model, for instance in [54]. How-
ever there is an essential difference between these two bacteria, which is
that Neisseria Meningitidis is composed of a hard capsule. This capsule is an
essential difference because for bacteria like Neisseria Gonorrhea lacking one,
they are very sticky. In other words for Neisseria Gonorrhea, at close range
the predominant interaction isn’t mediated by pili but by these adhesion
forces. The evidence are obvious when observing the aggregates, Gonor-
rhea aggregates are not “liquid” but exhibit very dense, static structures.
They also show similar properties such as aggregation but the timescales
involved differ highly, when for Meningitidis the timescales involved are a
question of minutes or even seconds, for Gonorrhea it is about hours.

3.2.1.3 Aggregation properties: mutants

One of the key that led us to a better understanding of the bacteria was the
production of mutants of the original “Wild-Type” bacteria. These mutants
are interesting because the level of control reached is important: most of
them have only one property that differs from the original bacteria. Nev-
ertheless the aggregative properties are significantly affected for some of
these mutants. The fact that we can notice significant change over small
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(a) The PilT aggregates lack round-
ness and show structural disorder

(b) The PilFind mutant with increasing IPTG from left to right

FIGURE 3.10: Genetically modified mutants alter drasti-
cally the aggregates shape and size. Source: G. Duménil’s

group

changes on the bacteria properties is essential to pinpoint what is the func-
tion of each biological “component”.

SiaD SiaD is the mutant lacking a capsule. As we can expect aggregates
are closer to Gonorrhea ones. What appears is that there are still aggregates
but they are a lot more “viscous” and more static. The measured viscosity
is ≈ ×6 higher than the WT one.

PilT The PilT mutant is probably the more intriguing mutant: it lacks the
ability to depolymerize the pili and is thus condemned to generate lots and
lots of them. It is expected that, lacking retraction, there is no possibility
to have liquid aggregates. But it is less expected that from the mechanical
point of view it appears that there are still aggregates which are very solid-
like, lacking roundness as one could expect from a liquid. What’s more
their structure is reminiscent of fractal and consequently of the DLA model
(section 3.1.2.2).

PilFind The PilFind was also very useful to confirm that pili retraction
was essential to generate the liquid properties of Neisseria aggregates. We
can control the pili production capability of this mutant using a molecule
named IPTG. Decreasing the concentration of this chemical reactant, the
number of pili is decreased. The essential result visible in figure 3.10(b)
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being that when the concentration drops below a threshold (≤ 10 µmol l−1,
extreme-left panel), meaning that the average number of pili is low, this ag-
gregative capability disappears and on the contrary aggregates are bigger
with increasing IPTG concentration.

3.2.2 Mutants cell-sort

In [41], the authors mix engineered strains which are similar to PilFind with
more “strong” ones. We mix these strains, they naturally “cell-sort”, mean-
ing in the physicist vocabulary that they phase-separate: cells of the same
strain group altogether as can be seen in figure 3.11 where two different
strains which are colored differently. The more piliated strain (red) goes
in the center while the less piliated one (green) forms the outer shell. The
authors propose that the mechanism arising to this cell sorting is a conse-
quence of the tug of war [30] at stake here: given that pili properties differ
between the bacteria among the strain possessing the strongest force will
win the game more frequently, therefore the weak strain is disadvantaged
when mixed with the strong one. This is another proof that the pili mechan-
ical forces generation are a key factor in the aggregates properties.

FIGURE 3.11: Two different strains cell sorting, the green
colored are less piliated and form the outer shell (from [41])

We report a similar mechanism when mixing strains of WT and PilFind.

3.3 Goals of this Chapter

The modelization we will discuss in further sections was first and foremost
built in order to reproduce the features of the biological system. As such
the path we will follow is mostly historical and reflects how the model was
improved in order to be more and more accurate.

Chronologically, the starting point of all this model was the aggregation
experimentOn which we built a model which would first of all aggregate
solely based on a mechanism of intermittent attractive force. Later on we
eventually conjectured some features of the model like the unusual (non
monotonous) behavior of the aggregation rate in 3.5.6.2 not confirmed yet
and the peak of diffusion in 3.6.1.1 which was indeed observed later on.
In order to do so we built a minimal model, keeping only essential ingre-
dients, in a similar spirit to 2. Sections 3.4 and 3.5 will address the first
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modelization: we will discuss this model which allows to obtain solid, liq-
uid and gas when varying appropriate control parameters related to the pili
dynamics and the system “effective” temperature. As a starting point we
will study the effect of an intermittent force on the two-particles dynamics
in section 3.4.1 which already show how by tuning the attraction time of an
intermittent force, particles will more or less separate. In section 3.6 we will
see how an essential feature of the system, the force-velocity work-mode of
the pili, affects the system dynamics. Finally in the last section 3.7 we will
perform comparison with the experimental results of Duménil’s team.
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3.4 First model(s): particle based interactions

In this first part we address how we were able to modelize Neisseria menin-
gitidis pili with the simplest approach possible.

Pili are embedded as an additional degree of freedom or scalar variable on the
the particle (the bacteria) themselves which evolution is stochastic. This
degree of freedom is very simple to understand, a particle has two states,
either it will be ON or it can be OFF. The new variable is acting on the
particles dynamics via a pair potential which is not only a function of the
respective positions of the particles but also on both of the state this vari-
able.

Most of the time, models targeting the dynamics of the bacterial world get
rid of any acceleration term. This overdamped hypothesis is quite common
in µm sized systems. Indeed if we consider the mass m and the viscosityη
of the surrounding fluid we can define a characteristic timescale T of accel-

eration T ≈
√

m
η ≈

√
ρr3

η ≈ 10−7.5 s , this timescale is way smaller than any

observed timescale we are looking to, consequently the acceleration regime
is unobservable and all forces are instantaneously balanced.

Another way to see this damping is to look at the Reynolds number R:
we humans of length 1 m move at ≈ 1 m s−1 in the air of viscosity η ≈
20 µPa s, our Reynolds is thus: R ≈ 5 × 10+4 whereas bacteria are 1 µm
long , have speeds ≈ 1 µm s−1 and are mostly in water which viscosity is
η = 1× 10−3 Pa s which give R ≈ 10−3. That’s a huge change and we have
to keep that in mind to understand that bacteria don’t swim in water as
we’d do. Therefore the equation of the dynamics for continuous time is the
overdamped Langevin equation we recall here (3.7):

d~ri
dt

=
1

γ

∑

j∈∂i

~Fij +
√

4D~η (3.7)

where

• “∂i” are the voronoï neighbors of bacteria i

• η is a uncorrelated Gaussian noise with 0 mean and unit variance:
< η(t)η(t′) >= δ(t− t′)
• D is the diffusion coefficient

• ~Fij is the force between neighbors: it is yet to be determined.

• γ is the friction coefficient of the liquid, in the following we get rid of
it from now one by setting it to 1 (via a change of unit).

As we are dealing with stochastic differential equations it is very important
take care of how we deal with the stochastic terms such as the noise. Thus
for discrete timesteps ∆t the equations of the dynamics become (3.8):

~ri(t+ ∆t)− ~ri(t) =
∑

j∈∂i

~Fij∆t+
√

4D~η ×
√

∆t (3.8)
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Indeed we have to make sure the noise scales correctly and thus the
√

∆t
term in front of the noise was chosen according to the classical Euler–Maruyama
method of integration for stochastic differential equations.

This integration doesn’t take into account of the stochastic nature of the
force as we will see, but it’s not a problem because the timescale over which
the randomness of the force arise are by construction larger than ∆t Now
what makes this model unique is the nature of the force force between par-
ticle i and j, this force depends on the internal variable si and sj , for now. .
The force is composed of two parts as shown in figure 3.12. We chose a sim-
ple form for the force. It is repulsive at short range (r ≤ d0) and attractive
at longer range (r ≥ d0).

~Fij(r) = α (e−r (1/r + 1/r2)− β/r2) ~ur

The only important consideration is to assume the attractive part of the
force (for r ≥ d0) depends on sj and sj and is canceled (set to 0) if si =
0||sj = 0.

We see that we have a permanent short range repulsive component and a
longer range attractive part which is only present when the interaction is
ON. This definition allows us to avoid discontinuities at d0 which could
lead to numerical instabilities (if we’d define energy there could be a con-
stant energy drift as noted in [4]). This force is “derived” from the potential
(not strictly speaking because the force is defined by part) V (r) (see figure
3.13):

V (r) = −α (
e−r

r
+
β

r
), r ∈ ]0, lp]

Because we wanted to introduce a sharp repulsive potential at short range
and an attractive part at longer range (up to lp).

Where we have defined the following parameterization:

• r is the distance between bacteria’s centers.

• ~ur is the unit vector pointing from particle j towards particle i.

• The characteristic length d0 corresponds approximately to the value
where the repulsive part would cancel if it wasn’t defined by part.
This is simply the diameter of the cell. More precisely it is the cen-
ter to center length when particles are closely packed, as bacteria are
spherically shaped for now (the repulsive potential is isotropic) this is
equivalent.

• lp correspond to the maximal bacteria to bacteria center distance, there-
fore it is twice the pili length (because pili can eventually catch up at
their tip) + the diameter of the cell d0 (because the distance is defined
center to center)

• The intermittent attraction correspond to both particles being ON (case
si = sj = 1)

• α and β are just regulating the potential shape
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When the attractive part is turned ON we can see that this interaction cor-
respond to a force which stable equilibrium point is located at d0

It is tempting to condensate the previous formula introducing the product
si · sj , in the earlier stages of the modelization this was the case, unfortu-
nately it is non-physical: indeed when both parts of the force where present
we had the same force, however when only the repulsive part is present (i.e
one of the particle was OFF) we are confronted to a long range repulsive
part ∝ e−r/r) which is an undesired phenomenon and leads to other ef-
fects.
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FIGURE 3.12: The force Fij :
the repulsive part (solid line) is permanent while the attrac-

tive part (dashed line) is intermittent
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FIGURE 3.13: The corresponding potential

Our model still lacks an ingredient, that is the dynamics of the si(t) , we are
using a stochastic model (3.21) where

P (si = 0→ si = 1) = dt/τOFF

P (si = 1→ si = 0) = dt/τON
(3.9)

Thus the variable si are constantly switching from values 1 to 0 with the
transitions probabilities given above. What’s more the characteristic time
spent in each states are given by τOFF for the si = 0 state and τON for the
state si = 1.

3.4.1 Stochasticity of the potential and two particles dynamics

Before going to the “collective” level, exploring the consequences of this
stochastic process at the particles level could prove interesting to see what
happens when we vary the two characteristic timescales τON and τOFF .

We generate a pair of particle whose initial configuration is as follow:

~r0(t = 0) = (0, 0)

~r1(t = 0) = (0, 0.99 lp)

This choice of configuration is dictated by the need to allow a little bias
in favor of attachment as we want to study the dynamics of attachment,
meaning we need the two particles to be interacting with each other even
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from the start, thus it requires them to be in the attractive range r ≤ lp. In
other words if the initial configuration distance is ≥ lp the interaction will
be only diffusive until they catch each other, which is very unlikely. With
this initial configuration, as they are at the limit of the interacting range,
we can guess that the probability that the particles escape the potential is
roughly a 1

2 , simply because the diffusion process is symmetric whether
they hop to get closer whether they hop to escape from each other.

We then measured their relative distance ||~r0− ~r1|| over time, averaged over
a large number of runs (ranging from 1000 up to 10000). The fact is that
the equation of motions are not analytically derivable because of the tele-
graphic attractive part. We recall that for the real world system we expect
the pili to pull so strongly that at some point it’s balanced with the friction
force (the Stokes force) from the surrounding fluid, i.e:

m
d~v

dt
= ~0

⇐⇒ = ~Fp + 6πηρr~v

=⇒ || ~Fp|| = 6πηρr||~v||

(3.10)

Relation (3.10) can give us a good estimate of the force in our units.

We’ve played with the noise diffusion coefficient D with permanent attrac-
tion as well as the transition times τON and τOFF for a fixed noise. lp is
set to 3 so as the separation distance (0.99lp). What we can essentially keep
remind from this experiment is the fact that the ON/OFF dynamics plays a
similar role than the noise does at equilibrium: it counteracts on the attrac-
tion force but still we reach some equilibrium, or at least a stationary state
for small noises and small τOFF .

On the contrary, we see that imposing high noises or high τOFF will lead to
the particles having the same faith: while for short times the inter-distance
decays (no shown: for even higher noise or τOFF the decay phase is not
even visible), ultimately the inter-distance increases and overpass lp mean-
ing that most replica experiments led to separation of the two particles.
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(a) Averaged inter-distance changing the noise diffusion
coefficient D with permanent attraction.

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

 0  5000  10000

r

time

toff=2.5 
toff=5 

toff=10 

toff=20 
toff=50 

toff=100 

(b) Averaged inter-distance changing τOFF (4D = 0.03
and τOFF = 5)

FIGURE 3.14: The noise and the ON/OFF dynamics have
similar effects on the ensemble averaged inter-distance
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3.4.2 The Voronoi tessellation

How can we define the neighborhood of a point taking into account the fact
that particles are very likely to screen what is behind them? The Voronoi
tessellation is the neighborhood definition that accounts for this possibility.
On the other way it is now common to modelize dense assemblies of cell
approximating their area as the Voronoi tessellation of their barycenters (a
cell is a point and occupies the space let by the Voronoi tessellation of all
its neighbors), as in [7], using such assumption they discover a jamming
transition in these dense assemblies of cells.

The Voronoi tessellation of an ensemble of points 1, 2, .., i, .. is a paving of
space where each pavement Si can be associated to a point i and its surface
is the ensemble of points which are closest from point i than any other point
j 6= i. As a consequence the boundary of each pavement are defined by
the intersection of all the mediating line between neighbors points. This
naturally tends to define the notion of neighborhood: considering a point i
all its neighbors points ∂i are sharing a mediating line, or boundary, with
it. One can then recursively define level of neighborhood, neighbors of
neighbors can be considered as neighbors and so on. However we restrict
ourselves to the first definition.

Related to the notion of neighbors, there is another useful mapping: we can
draw a graph composed of the ensemble of segment that link each point
i to its neighbors ∂i , this graph is called the Delaunay tree. It is actually
what we use to represent the pili because we ascertain that pili are very
much likely to link neighbors in the Voronoi sense when they are created
which means in other word that we assumes that the neighbors are “hid-
ing” what’s behind them.

There are other kind of neighborhoods and we can define metric ones which
are purely based on distance considerations, all particles within range are
neighbors, without consideration about hiding what’s behind oneself, for
theoretical reasons it might be easier to consider such neighborhood. How-
ever considering that pili are not “A potential” but physical entities which
have to reach their target to be able to pull it seems unreasonable to consider
metric neighbors. The Delaunay tessellation provides the most natural way
to define which neighbors are available to create pili with the relevant bio-
logical property.
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(a) A Voronoi pavement, the points are
in red and their respectives cells are col-
ored: this allows to differentiate different
adjacent pavement, source wikpedia.
org

(b) A set of points (green), their Delaunay tessella-
tion (blue) and the Delaunay graph linking neighbors
in purple, source http://liris.cnrs.fr/david.
coeurjolly

FIGURE 3.15: The Voronoi pavement and the Delaunay tes-
sellation are “dual”, they allow interesting modelizations of

the notion of neighborhood.

wikpedia.org
wikpedia.org
http://liris.cnrs.fr/david.coeurjolly
http://liris.cnrs.fr/david.coeurjolly
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3.4.3 Relevant quantities

3.4.3.1 Diffusion

The erratic movement of pollen particles were first observed by Robert
Brown in 1827. Almost a century latter the particles undergoing what is
now known as Brownian motion have been described by Albert Einstein
in his paper [15]. Thanks to Einstein’s work we know that the correct
law (3.11) in order to describe the displacement of a series of particle in
a fluid describe a linear evolution with time of the variance of the displace-
ments of the particles < x2(t) > which is linked to their radius r, and the
environment which is itself described by the viscosity of the fluid η , the
temperature T and the Boltzmann constant kB :

< ∆x2(t) >= 2dDt (3.11)

where the relation between D and the other parameters of the system is
given by the Stokes-Einstein relation (3.12)

D =
kBT

6πηr
(3.12)

Relation (3.11) imposes to correctly define the variance of the displacement
< ∆x(t)2 >. The usual definition is to choose an ensemble average, thus if
the system is composed of n particles, we have

< ∆x(t)2 >=
1

n

n∑

i=1

xi(t)− xi(0) (3.13)

For an ensemble of purely diffusing particles this should converge to the
diffusive scaling (3.11) for a sufficient number of points n. However in real
life our ensemble of particles is not arbitrarily large. We can circumvent this
problem by using the sliding average defined as:

< ∆x(t)2 >=
1

n

n∑

i=1

1

Nt

∑

t′

xi(t
′ + t)− xi(t′) (3.14)

Where Nδt is the number of trajectories of the system where both xi(t′ + t)
and xi(t) are defined 4.

Equation (3.14) is based on the hypothesis that the diffusion process is in-
variant by translation over time, hence all trajectory starting at time t′ 6= t′′

can be considered independent.

4Assuming the sampling duration is tmax, we have Nt = tmax−t
dt

for discrete time sam-
pling.
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3.4.3.2 Effect(s) of noise truncation

The noise term in equation (3.8) can be the source of numerical instabili-
ties, especially when particles are very close to each other, because usually
there’s no boundary on the values of the displacement step ∆x the particles
can experience from time to time big jumps essentially given by the tails of
the probability density function of the noise. We’ve had a rather peculiar (in
the sense we’ve never seen this in the context of physics) procedure to re-
move the possibility to have excessively long jumps exceeding a threshold
value ∆x ≥ ∆xth. Numerically we’ve implemented the noise ξ as an output
generated by a Gaussian distribution of variance 2D: P (ξ = x) = exp(−x

2

2σ2 ) ,
additionally we’re cutting-out values exceeding a threshold value, typically
||ξ|| > 2× σ, that means when the random variable exceed this threshold it
is ruled-out and redrawn. This allows obtain a distribution without “tails”,
that is the values we don’t want to consider, and without consideration
about the kind of distribution. In figure 3.17 are presented the distribu-
tion with and without the truncation at 2σ. As we can see, over the range
of considered values this procedure is conserving the the shape of the dis-
tribution. Aside from the formal definition, globally this modification is
barely affecting the diffusive properties, indeed the coefficient D is modi-
fied without affecting the diffusive aspect (< (x(t)−x(0))2 > still scales∝ t)
as we can see in 3.18 where we show the MSD for a system of independent
and freely diffusing points (N = 10000,∆t = 1, 2σ = 0.03).

What’s more we’ve performed measurements of the diffusion coefficient
D(σ) and obtained the following relation D(σ) ≈ 0.77σ2 as we can see in
figure 3.16
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FIGURE 3.16: Data points and fit for the diffusion coefficient
as a function of the standard deviation
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FIGURE 3.18: MSD for free non interaction particles, com-
paring the effect of the truncation on the diffusive behavior:
the effective diffusion coefficient D shifts from 0.00086 to
≈ 0.0007 because of the truncated noise but everything still

scales linearly with time

3.4.3.3 Gyration radius

Another relevant quantity to quantify a cohesive aggregate is the radius of
gyration. Considering n points particle, it is simply defined as the mean
of the squared distance from their barycenter rc , formally written it reads
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(3.16):

R2
g(t) =

1

n

n∑

i=1

(ri(t)− < ri(t) >)2 (3.15)

thus we obtain

Rg(t) =

√√√√ 1

n

n∑

i=1

(ri(t)− < ri(t) >)2 (3.16)

and

rc =

n∑

i=1

ri(t)

Actually we will see that it is better to consider the squared gyration radius
(3.15) because in the gas phase it scales linearly with time similarly to the
MSD.

3.5 First measurements

Now that the model is defined we start with some exploration of the fea-
tures that this model provides. We will see that starting from a solid state
at low noise we can tune the parameters to range from solid to gas.

For this part the numerical value were the numerical values were set ac-
cording to table 3.1:

coefficient value
α 0.1
β 0.7
d0 1.09
lp 7

4D 0.03

TABLE 3.1: Values used in section 3.5

Here an afterwards we will start initially most of the time by an initial con-
figuration of N particles on a square box of size of size L×L. Contrarily to
the Vicsek model the particles in this model evolve in free space meaning
that the initial concentration of particles tends to evolve depending on the
cohesive nature of the system:

• If the system is aggregative, in any case the concentration of the ag-
gregates is not fixed by the initial configuration but by the aggregates
properties

• If the system is not aggregative it will permanently expand and the
speed of expansion is an interesting piece of information which would
be limited by finite size effects if we’d work with fixed boundaries
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What’s more working with free boundary conditions is justified from the
computational point of view: the cost to work with periodic Voronoi tes-
sellation is multiplied by 9, which is the number of copies of the system
required to have a periodic Delaunay graph. Another possibility that only
slightly increase the computational cost is to would be to work with non-
periodic but still fixed boundary conditions by imposing a stiff repulsive
potentials at the limit of the domain. However this hard core wall would
imply finite size effects on the gyration radius which allow us to accurately
delimit the liquid-gas transition.

3.5.0.1 Permanent attraction, tuning the noise

The first observations we’ve proceeded with, which are probably classical
results for people familiar with molecular dynamics of fluids but nonethe-
less essential to understand what is the interplay between noise and attrac-
tion. We started by performing a slow heating of the system by gradually
increasing the “temperature” of the Brownian particles, that is the variance
of the noise σ, keeping the attractive force permanent (corresponding to the
parameters τON →∞, τOFF = ∆t). To try to determine precisely the phases
transitions the procedure adopted is to progressively heating the aggregate
with a series of “temperatures” (σ1, σ2, σ3, .., σi) chaining the simulations,
that is taking as initial condition for temperature σi+1 the final state of sim-
ulation done as σi. The simulations have been performed for t = 105 nu-
merical time with a time-step ∆t = 0.1.

First we will start with purely qualitative observations. For moderate size
aggregates (N = 100) we can see compact solid aggregates for σ ∈ [0 : 0.04]
, these aggregates lack a circular shape. For σ ≥ 0.05 we start to see the
liquid character of the aggregates. Indeed we can see local rearrangements
of particles from time to time, meaning that contrary to the solid where par-
ticles positions fluctuates around an average, in the liquid particles are able
to hop stochastically on long distances. These aggregates are more round
and we notice that the rearrangements are more frequent on the boundaries
rather than in the center, for σ ≥ 0.17 the aggregates start to loose their
roundness. Finally for σ ≥ 0.3 there’s no more cohesive state and we are
in the gas phase where particles freely diffuse. This is means that the tem-
perature is high enough to overcome the attractive barrier created by the
potential. We’ve summarized the following in figure 3.19 where we don’t
show values σ ≥ 0.2 because in the gas phase we barely see the particles.

As a side-note, we can’t help but notice that the particles are overlapping,
the problem has a physical explanation: given that the potential we use is
relatively soft and, if the translational energy contained in the Brownian
motion, which is given by the equipartition theorem 3

2kBT overcomes V0,
the width, of the potential then the particle might overcome the repulsive
barrier even though it’s marginal (meaning that the interpenetration dis-
tance of the disks is not that high). This phenomenon is of course increased
when the noise increases and is unavoidable, regardless of the algorithm
used. We can however in that case define an effective radius of the particles
reff given by V (reff ) = 3

2kBT
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FIGURE 3.19: Snapshots of the aggregate obtained for
purely attractive potential with increasing temperature, to
be read from left to right and top to bottom (σ is indicated

on top of each snapshot)

An obvious solution is to opt for an hard spheres model, meaning that we
have an infinite energy barrier V (r ≤ r0) = ∞. This can be performed
as an exercise, algorithmically this means that there are “specular reflec-
tion” of particles and for this we just need a simple collision detection al-
gorithm. However as we’re mostly interested in the cohesive phases where
collision are likely to occur very frequently, making the computational cost
prohibitive.

Still being qualitative, we can use the Voronoi tessellation to have an idea of
the free space left for particles to move. We can interpret the Voronoi cell as
the cage the particle are able to move into. Typically in the solid or glassy
phase there is little to no space, hence the impossibility for particles to hop
and the fact that just oscillate around their average position, in the liquid
phase the space left is sufficient for the hoping to occur. We’ve plotted such
tessellation in 3.20 , obviously in the low noise regime the particles are very
constrained whereas in the liquid regime many particles have a very large
cage compared to their surface.

It’s time to move to more quantitative measurements: we’ve previously de-
fined in 3.4.3 two quantities in order to characterize the solid-liquid and
liquid-gas transition. In 3.21 we see the evolution curve of the gyration
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FIGURE 3.20: Voronoi tessellation and Delaunay graph of
aggregates in the solid and liquid state. The delaunay edges
are drawn in red while the voronoi cells boundaries are in
black. One can see the disks fills the Delaunay cell surface
in the former case while there is empty space in the latter

case.
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radius for the process of thermalization by increasing σ. This confirms
our previous observation, the gyration radius is fluctuating around a mean
value for σ ≤ 0.2. For σ ≤ 0.13 the gyration radius is barely affected by the
increase of temperature, starting from σ ≥ 0.13 it grows but then at σ = 0.20
it decreases, this region is quite problematic from this point of view but it
is a sign of the liquid behavior , but more importantly for σ ≥ 0.2 we see
a change of behavior and an the gyration radius starts to increase linearly
with time, sign that this time we are in a non cohesive phase, the liquid-gas
transition is therefore located at σ ≈ 0.2.

We can now focus on the MSD to observe the liquid behavior. We’ve taken
the simulation given by the thermalization procedure the previous simu-
lations, and to avoid transient effects of the thermalization we’ve started
to measure the MSD after a relaxation of 100000 units of time. The ob-
tained MSD are gathered in figure 3.22 for small aggregates, however fi-
nite size effects (particles can’t diffuse over a distance greater than the typ-
ical aggregate diameter) are causing measurements rather difficult, render-
ing the determination of a liquid-solid transition rather harsh. A rather
straightforward option to improve the “quality” of the data is to correct
the MSD of the effects of center of mass diffusion, observing the aggre-
gates it is obvious that the center of mass ~xcdm = 1

n

∑n
i=1 ~xi(t) is itself dif-

fusing, this affects the measured diffusion. We can just measure the MSD
in this new referential which defines the corrected MSD : < ∆x(t)2 >=
1
n

∑n
i=1(xi(t)−xcdm(t))− (xi(t = 0)−xcdm(0)) This quantity is however not

giving much improvements over our data. However it is still interesting to
keep in memory these data because, from a qualitative point of view, real
life aggregates behave more than our small aggregates in the regime where
the boundaries are “jittery”, which is less the case for bigger aggregates.

For bigger aggregates N = 1000, the solid-liquid transition is also found
for σ ≥ 0.2 but for the more interesting data are found to be concerning the
MSD, these data which appear in figure 3.23 show that the diffusion coeffi-
cient is clearly jumping for σ ∈ [0.05, 0.06] (in yellow and blue), for σ ≤ 0.05
the particle diffuse on distances≤ d0 while for σ ≥ 0.06 the particles diffuse
over much larger distances meaning we moved from a regime of fluctua-
tions of position around an average position to the liquid regime which is
characterized by hops enabling particles to diffuse in the whole aggregate.

Finally we summarize these data in figure 3.24 showing how both the dif-
fusion coefficient and the gyration radius slope evolve with σ. The two
transitions are characterized by a jump from zero to nonzero values of the
slope, both for the MSD as well as the gyration radius. We’ve also included
the MSD for free particle in order make the difference clearer, in aggregates
there is an obvious reduction of the diffusion compared to the free case.

Figure 3.25 shows particle tracks for different σ. This qualitative view
agrees relatively well with the quantitative data. We can notice that in the
solid aggregates, particles near the edges are traveling larger distances be-
cause rearrangements are more probable.
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FIGURE 3.22: MSD in the solid an liquid regime for in-
creasing σ, for small aggregates finite size effects are really

strong.
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FIGURE 3.23: MSD in bigger aggregates, the finite size ef-
fects are gone and a clear jump of diffusivity is seen for

σ ∈ [0.05, 0.06]

3.5.1 Tuning the transition times

After the previous results one can wonder why going for a stochastic po-
tential when the previous section 3.4 shows that it is possible to obtain a
liquid state which is a good candidate to represent Neisseria Meningitidis ag-
gregates we were seeking for. However assuming that the dynamics comes
solely from the thermal noise is unsatisfactory to some extent.

A first reason is that from the physics point of view it is still interesting to
study this model because the ON/OFF switches of the attraction are them-
selves generating a kind of noise that is different from thermal fluctuations
as we will see and we should characterize this.

A second reason is that the regime we observed previously is not Biologically
relevant. Indeed, as we’ve already mentioned, the PilT mutant is the one
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FIGURE 3.24: Summarizing plot showing the transitions

that constantly generate pili, it is therefore probably the one which is the
closest approximation to the previous situation with a permanent attractive
potential. This mutant is mostly solid (actually it’s more like behaving like
a gel), whereas non piliated mutant freely diffuses. Consequently if the
ON/OFF mechanism is relevant we should be able to move from a solid
state to a liquid by its sole presence and then go to a gas state (which is
obviously the case when τOFF →∞, τON → 0).

3.5.1.1 Phase diagram on the (τON , τOFF ) space

We now focus on the effects of two transition times τON and τOFF by first
observing the resulting aggregates, for fixed noise σ = 0.03, low enough
so that we can obtain a solid phase for tOFF → ∞). τON = 500 value is
chosen so that theoretically it is sufficient for two particles at distance lp to
come close to each other

The snapshots showing the state of the system with increasing τOFF are
gathered in figure 3.27. We can notice that for τOFF ∈ [1, 250] aggregates
are very solid and keep memory of the initial generating square box, for
τOFF ∈ [500, 2000] we’re most likely in the liquid regime with less and hex-
atic arrangements, signs of “solidity”, visible.

What’s more we performed MSD and gyration radius slope systematical
measurements. With respect to the previous procedure we have to note
that the way we prepared the aggregate is different. For all simulations the
initial condition is random particles positions in a box of size L×L , relaxed
for 106 units of time, after which we performed the measurements. These
procedures might give different results about the position of the transition
if there are hysteresis effects but we weren’t preoccupied by this level of
subtlety. Essentially the procedure is tailored for a different questioning
here: for a given initial condition is the final state an aggregate or not and
if so, what are its bulk properties?
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(b) In the liquid regime (σ = 0.13) , diffusive behavior
very different tracks most particles are able to explore
all the aggregate

FIGURE 3.25: Tracks in the liquid and solid regime for ≈
100000 time-steps

The results are gathered in the two maps 3.26 where we used by conve-
nience the ratio of transition times τOFF

τON
as a parameter, indeed we can

guess that the state of the aggregate is mostly dependent of the average
ratio of ON particles over OFF particles which is most likely a function of
the ratio of transition times. As we can see this approximation is sufficient
to describe the bulk properties of the aggregates and doesn’t depend on
τON for a wide range of τON .

Therefore we can restrict the analysis of (see figure 3.28) the MSD and gy-
ration radius for a single τOFF = 500 value. Compared to figure 3.24, we
see that qualitatively the ratio τOFF

τON
plays a similar role as the noise vari-

ance σ2, with increasing ratio we explore the solid, then liquid, then gas
phase. We identify the solid-liquid transition occurs at τOFFτON

≈ 0.2 whereas
the liquid-gas is located around τOFF

τON
≈ 2.

3.5.2 Micropipette experiments

We’re now focusing on the modelization of the micropipette aspiration tech-
nique we’ve introduced in 3.1.4. The team of G. Duménil used the same
experimental procedure and obtained precise measurements of aspiration
velocities of several strains of Neisseria Meningitidis aggregates: for the PilT,
WT and SiaD aggregates as well as the PilFi for which the concentration
of the IPTG chemical reactant controls the number of pili. The validity of
the measurements assume a liquid-like behavior, as we can see in 3.29 the
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FIGURE 3.26: The “full” phase space of the potential based
model.

tail of the drop stays perfectly spherical whereas the tongue is hemispher-
ical which confirms this assumption (at least one can say that there’s high
surface tension).

3.5.2.1 Experimental results

In figure 3.30 we show the summarized values obtained via the micropipette
experiment and derived with the formula of section 3.1.4. These results
suggest that the viscosity is monotonously decreasing with decreasing pili-
ation level (the average number of pili).

Considering that the ratio of transition times τOFF
τON

is what determines the
average number of pili in our model, this gives us a rough idea on how the
piliation levels are linked to this ratio. There probably exists a relation such
as piliation = f( τON

τOFF
)

3.5.2.2 How to define an interface?

Though the qualitative comparison is interesting, more quantitative results
would be interesting. We thus address the modelization of such micropipette
experiment. However we’re missing a detail: we have no notion of inter-
face in the model yet and we need to define such in order to be able to
evaluate pressure forces. In other words we need to locate which particles
lie at the “edge” of the aggregate. This intuitive notion is not simple to de-
fine, the most and more natural definition is the convex hull: take a cloud
of points and put an elastic around it with the points blocking the retrac-
tion of the elastic. The elastic will naturally form an envelope formed of
segments which define, inside, a convex ensemble. The ensemble of points
contained in this envelope forms the convex hull: Sconv. However as we
can see on the left-hand side of figure 3.31 depending on the “granularity”
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FIGURE 3.27: Snapshots of relaxed aggregates for increas-
ing τOFF (τON = 500)

we want for the interface one could consider that it is not sufficiently rough
interface.

Consequently in the following we will consider the concave hull orα shape:
the α shape can be envisioned as the result of the following game (see fig.
3.31(c)): assume a disk of radius

√
α, coming from∞ (outside the cloud of

points), this disk disk cannot cross points. We see that moving this disk all
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around the cloud it will penetrate more or less deeply in the interior of the
cloud, it will be blocked if it encounters a pair of point which distance is
smaller than its diameter: when it is the case we draw a segment between
the two blocking points. One can proceed to the same game coming from
the interior of the cloud of point. Doing this procedure recursively, at the
end of the game we obtain a set of connected points which represents the
concave hull, eventually it can include single points if the disk is able to
rotate around the point (these are not connected by any segment). There
are two singular limit to this game: if α → ∞ we recover the convex hull,
on the other hand if α→∞we have the entire set of points.

Given that we introduced another parameter α, we should take care to set
its value reasonably: greater than the typical interdistance in the aggregate
but not too large if we want to obtain a smooth interface.

Having an interface is not enough, we need to decide how to orientate the
pressure forces. Figure 3.32 illustrates our choice :

• Forces are oriented perpendicularly from the segments of the concave-
hull, what’s more they are additive that is for particle i′ the final force
is oriented by Fi′i′′ + Fii′ .

• The modulus of the forceF exerted on each segment is constant ||Fii′ || =
||Fi′i′′ | = F . These pressure forces have no dependence on inter-
face size and thus on rii′ ’s. Indeed the real pressure forces are ex-
erted on the particle surface S, thus their value is proportional to the
particle exposed surface S, F ∝ S∆P (which is the half hemisphere
S = 1

22πr2
0).
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(a) initially (b) after 5.4 seconds (c) after 8.1 seconds

(d) after 10.8 seconds (e) after 13.5 seconds

FIGURE 3.29: liquid-like behavior of the aggregate under
aspiration (experiment done by Valentina)
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FIGURE 3.32: Computation of pressure forces.

Finally we detail how we modelized a typical pipette rheology experiment
which consists of two phases: a first (rather quick) approach phase where
we push the aggregate against the edges of the pipette and a second phase
where we activate the pressure forces.

3.5.2.3 Measurements

We can now focus on the results obtained from the simulations. First it is
important to check if the progression of the tongue scales linearly with time.
What’s clear from the look at the tongue progression (figure 3.33(a)) is that
initially there is rather quick regime where the progression is nonlinear.
Two causes can be considered regarding this first stage: it can either be the
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FIGURE 3.30: Tongue progression speed as a function of
exerted pressure force in the micropipette experiment for
the PilFi mutant with different IPTG concentrations and the
WT (the respective “piliation” is indicated with subscripts ),
the linear fit gives the viscosities indicated in the left-hand

side panel

aggregate adapting to the external forcing (the “pressure”), or in light of
the description of section 3.1.4 it might come from the visco-elastic nature
of the material where two regimes can be seen the first being nonlinear and
corresponds to the elastic response, the second is linear and is the viscous
response.

In real life experiments it’s probably possible that both response exist and
can be estimated, but we lack both temporal and spatial accuracy accu-
racy to be able to measure such short time regime response. However we
are mostly interested in an estimation of the viscosity and we indeed see a
more or less linear progression regime of the tongue shortly after, the fluc-
tuations being probably caused by the discrete nature of the pressure forces.
We therefore conducted systematic measurements of the progression veloc-
ity as a function of the exerted pressure for three aggregates chosen in the
liquid phase with various degrees of solidity: τOFF = (250, 500, 750) which
respectively correspond to mostly solid, liquid and very liquid conditions
from what we’ve seen in 3.28.

The first data we can extract is the tongue progression speed v as a function
of the exerted force, which is summarized in 3.33(b). These data confirm
that the ON/OFF mechanism is sufficient to substantially change the aggre-
gate properties: for each sample the speed scales linearly with the exerted
pressure. For each sample we can therefore extract an adimensionalized
viscosity taking the slope η(τON , τOFF ) ∝ dP/dv. The results both for ex-
periments and simulations are summarized in figure 3.33: we can see a de-
crease of η with τOFF

τON
, comparing with the experimental results which sug-

gest a linear scaling with the piliation percentage p it tends to confirm that
these two quantities are linked somehow. Keeping in mind that τOFFτON

∈ R+
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(a) The convex hull is a poor approx-
imation to an interface

(b) On the other hand the concave
hull seems better

(c) The α shape construction
game with a disk, source:
http://doc.cgal.org/latest/
Alpha_shapes_2/index.html

FIGURE 3.31: Comparison of concave vs convex hull com-
putation. The concave hull is closer to the real interface.

http://doc.cgal.org/latest/Alpha_shapes_2/index.html
http://doc.cgal.org/latest/Alpha_shapes_2/index.html
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whereas p ∈ [0, 1], thus the relation might not be as simple as a direct pro-
portionality relation.

3.5.3 Dimensionalize the problem: rescaling the time

This model begun as a proof of concept that stochastic interaction could al-
low a liquid phase but slowly moved toward something more quantitative.
An essential data not yet used in the model is the fact that T4P retraction
speed is a well fixed value and has been estimated to 1 µm s−1 [8]. This ve-
locity parameter doesn’t appear at all in our modelization and even after
rescaling. However an appropriate choice for instance to rescale the retrac-
tion speed of the pili to be the average of the speed given by the attractive
part of the potential, looking at the shape of Fij we see that when 2 ≤ r ≤ lp
we have−0.035 ≤ Fij(r) ≤ −0.010 , these values are the same order of mag-
nitude and we can assume it is constant and take the average value as the
mean speed of retraction v0 ≈ 2.25× 10−2µmntu−1 where “ntu” stands for
“numerical time unit”. Keeping in mind we already chose the distance unit
by setting the diameter of the particle to 1 which corresponds to 1µm

The connection is thus straightforward: 2.25 × 10−2µmntu−1C = 1 µm s−1

therefore C = 1
2.25×10−2 ntu s−1 or equivalently 1s ≈ 45ntu

Most of the previous data were acquired without rescaling, however we
provide in the following table 3.2 which is redundant but the reader can
refer to this correspondence between simulated and real units when neces-
sary:

However we have to remember the fact that we already imposed the timescale
by setting the diffusion coefficient , indeed we have D = <x2(t)>

2dt which
gives another scaling. We’ve extracted from the movies the free bacteria
diffusion constant 4D ≈ 1µm2 s−1. Numerically we’ve set the value to
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FIGURE 3.33: Comparison of both simulated and experi-
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σ = 7e− 4 as we’ve seen in 3.4.3.2 4D = (0.03)2µmntu−1 therefore the
conversion leads to 1ntu ↔ 7× 10−4 s . This scaling gives different result
and implies that we have to introduce a second conversion

quantity numerical value experimental value numerics→ real units
v0 2.25× 10−2 1 µm s−1 1.4× 10+3

d0 1 1 µm ×1

time 1 2.5× 10−2 s × 1
45

TABLE 3.2: This table helps to translate numerical units to
"real" ones.
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3.5.4 First modification of the model: still potential based more
quantitative

We highlighted in 3.4 a promising model which already shown that a
ON/OFF mechanism was able to generate liquid aggregates. However the
model is only quantitative because of the poor choice of potential which has
some troubling issue:

– the attractive part is distance-dependent

– not very tunable (the attractive and repulsive part are interdepen-
dent.)

In a second time, in order to get more quantitative we opted for changing
the shape of the force profile by a tunable piece-wise function F (r) defined
by (3.17):

F (r ≤ r0) = α
1

r2
~ur

F (r > r0) = −v0~ur

(3.17)

Thus, this change allows to solve the previous situation that two incompat-
ible timescales existed if we’d choose diffusion or the force as the leading
mechanism, we can see the shape of the force and the associated potential
in 3.34.

Also, we’ve simplified the units translation as shown in tabular 3.3. Conse-
quently no arithmetic is necessary to compare quantities from simulations
and experimental ones.

quantity numerical value experimental value numerics→ real units
v0 1 ≈ 1 µm s−1 ×1

d0 1 1 µm ×1

4D 1 ≈ 1 µm2/s ×1

time 1 1 s ×1

TABLE 3.3: The new units avoid to convert numerical to real
units

3.5.5 Phase diagram

We report in 3.35 the diagram for τON = 1. Compared with the previous sit-
uation we are clearly missing a solid phase: even for τOFF → 0 the diffusion
is non vanishing. The origin of this difference is, as we’ve seen in previous
chapters ( 3.5.0.1) the permanent attraction state can be liquid. However we
will see in the next section 3.5.6 that we can recover a solid state. Except
from this discrepancy, the transition liquid-gas transition occur for similar
τOFF
τON

ratio with respect to the previous model. In some sense it confirms
our initial guess that the ON/OFF mechanism is a leading mechanism for
the system final state of matter.
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FIGURE 3.35: Phase diagram of the model with tunable
force.

3.5.6 Recovering the solid phase

We’ve just seen that with parameters closer to reality the model is miss-
ing a solid phase, therefore this model lack to represent the PilT mutant
which displays a characteristic “frozen” structure which should be visible
for τOFF → 0. However, we can circumvent this issue by using a “trick”
which is justified as follows: if we consider a biologically relevant regime,
the aggregates are in a situation where the forces in action (pili forces and
also pressure forces) have far greater magnitude than Brownian noise. In
that sense, it seems fair to neglect the noise term when these forces are
present. A formal justification can be the following one , consider the over-
damped Langevin equation with a “drag force” exerted by pili, we intro-
duce an effective viscosity term ηeff to account for the fact that the molecu-
lar motor has a complex mode of operation and is always able to pull at a
constant speed :

0 = −6πrηeff
d~x

dt
+ ~Fdrag +

√
2ηkBT ~ξ

This implies that, in order of magnitude:

dx

dt
=

Fdrag

6πηeffr
+

√
2kBT

ηeff
ξ

Knowing that we want
d~x

dt
≈ 1 µm s−1 and F ≈ 100 pN = 10× 10−10 N

, which translates to ηeff ≈ 5× 103 Pa s. This viscosity is way above the
viscosity of water. It means that when the drag force is acting, this is equiv-
alent to change the noise amplitude like ξ → ξ× η

ηeff
≈ 5×10−3 , we remove

it in practice.
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We thus consider that pili are very hard to stretch which is reasonable and
but also hard to to bend which might not be entirely realistic. Of course for
“free” (without attached pilus) bacteria, the noise is the only relevant term
ruling their dynamics and in that case we cannot neglect it.

Therefore a numerical scheme we considered was to simply suppress the
noise for particles in the ON state (si = 0). This is obviously an oversim-
plification but it contains the essential idea that the noise has to be highly
attenuated when other forces are in action.

Another scheme consists to consider that pili are indeed very strongly pulling
but we also have to consider that the constraint is uni-axial and therefore
it is only legitimate to suppress the noise along the pili axis when such pili
pulls. This implies that basically for bacteria at the center of the aggregate
the noise would still be totally suppressed, on the contrary at the edges,
given that the number of neighbors can be low, the noise strength could
still be important.

3.5.6.1 Phase diagram

Again we reproduce the phase diagram for the model with the noise trick
in 3.36 all parameters being the same. As we see, we are able to recover the
solid phase at low enough τOFF /τON . Except from this important addition,
not much is changed.
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FIGURE 3.36: Phase diagram of the model with tunable
force and noise suppression rule.

3.5.6.2 Aggregation dynamics

Now that we have model displaying 3 phases and with correct parameters
we can focus our interest in the dynamics of aggregation. Meaning that
we’re not interested on the properties of one aggregate but instead we’re
looking for a statistical description of assemblies of aggregates. Being limited
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by the Voronoi tessellation computational cost (which scales as N log(N))
we studied assemblies of N = 105 particles. This study is justified from the
biological point of view for two reasons:

– Aggregates properties might depend on their size. For instance small
aggregates might diffuse more and merge quickly whereas bigger
ones will see their positional diffusion vanish. Given that aggregates
in the bloodstream have no reason to be single sized this study is rel-
evant.

– From the technical point of view these are relatively easy observa-
tions. Most of the necessary experiment already existed in order to
compare aggregates from the different mutant strains upon visual in-
spection. We used the generated movie by post-treatment means in
order to obtain comparative data.

3.5.6.3 How to define clusters

For that purpose we need to define two sub-populations: freely diffusing
bacteria and aggregating ones, on top of that we need to identify to which
aggregate belong each of these bacteria, i.e perform a “clustering” process.
In that sense we add to each particle an additional observable: their cluster
index ci for particle i.
This variable takes integer value and its meaning is to index the aggregates,
that is particles sharing the same ci will belong to the same cluster. In other
words a cluster K which index is k is defined as:

clusterK ⇐⇒ {i, ci = k}

After the clustering algorithm is performed the rest of the particles (freely
diffusing ones) are grouped under the cluster index {ci = 0}
The rule used here is a simple proximity criterion: let’s assume that two
particles are close enough (r < lc), in that case they will belong to the same
cluster. As the aggregates both in the solid and liquid phase have high
packing fractions we usually choose the distance lc to be of the order of two
diameters d0. The algorithm sweeps over all pairs of particles, for each pair
the 3 different situation we might encounter are sketched in 3.37.

i, ci j, 0

i belongs to a cluster and j is
alone =⇒ j is added to the clus-
ter ci

i, ci j, cj

i belongs to a cluster and j be-
longs to another =⇒ fuse the
two clusters, i.e. reindex cj to
ci, ∀j ∈ cluster cj

i, 0 j, 0

i and j are not in any cluster =⇒
this is a new cluster ci = cj = cnew

FIGURE 3.37: The clustering algorithm rules description.
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This simple set of rules is sufficient to give good result as you can see in
figure 3.38

FIGURE 3.38: A sample of space showing the effectiveness
of the algorithm, aggregate indexes ci are shown as we can
see different aggregates are well identified as well as free

particles (ci = 0).

3.5.6.4 Quantification

To be able to compare some results we still need to define what quantity
to track. For an aggregate indexed k (k ∈ 1, kmax) the number of its con-
stituents n(k) is given by: n(k) =

∑
i,ci=k

1. Therefore the aggregates size
distribution P (k) is given by 3.18, notice that we exclude free bacteria in
that case (k 6= 0):

P (k) =
n(k)

∑kmax
j=1 n(j)

(3.18)

An interesting quantity is the aggregation rate, that is the ratio of aggre-
gated particles 3.19:

R =

∑kmax
j=1 n(j)

N
= 1− n(0)

N
(3.19)
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And we define the average aggregate size as (3.20):

S =

∑k=kmax
k=1 n(k)

kmax
(3.20)

3.5.6.5 Results

First of all we have tracked over time the aggregation ratio R for various
system sizes (or concentration) and τOFF as we can see in 3.39. As we can
see we can ascertain that the simulation size are enough given that we reach
pretty quickly a (almost) stationary regime given by a plateau in the value
of R. However, we notice the aggregates at the limit of the liquid-gas tran-
sition, corresponding to τOFF = 2.5, fail to reach the maximal ratio R = 1.
This means that there is an “equilibrium” situation where a fraction of parti-
cles never aggregate. This can be understood as a balance between particles
exiting aggregates and starting to freely diffuse and the opposite situation
where these particles free particles start to join aggregates. Of course, this is
concentration dependent and we can thing that for infinitely dilute aggre-
gates, particles leaving would never be caught and then ultimately there
would be only a gas. However in the same situation the aggregation is
only possible for also infinite waiting time. Still, we see that in our case the
situation is stationary for reasonable experimental times.

Therefore it is sufficient in order to compare the aggregation in these dif-
ferent situation, taking the final value of the aggregation rate given that the
situation is stationary. We’ve summarized the obtained results as a function
of τOFF and system size in figure 3.40.

The interesting result is the non monotonous behavior. Indeed we expected
this function to be monotonously decreasing, because for a permanent at-
traction, at low τOFF particles cannot escape aggregates. The problem is
that the bigger aggregates become, the lower their diffusion becomes. On
the contrary for liquid aggregates the aggregates diffusion is much higher,
the aggregates are more deformable and yet there is no flux of exiting par-
ticles. This might explain what we see here. Visual inspection seems to
confirm these data (see 3.41) for τOFF = 0.1 deep in the solid phase, aggre-
gates looks smaller than those at larger τOFF .

We were interested to see if these predictions were obtained in real life ex-
periments. Indeed in the biologist mind, there is some optimality in na-
ture has ways to select optimal parameters: if for some reason the bacteria
is advantaged when having bigger aggregates this might explain why it
precisely adjusted obtained this liquid aggregative like behavior and not a
solid one. However it seems rather complicated to extract proper distribu-
tions of size because of some effects:

• As we are working in 2D we have to estimate aggregates radius size
from a slice which might be inaccurate.

• Non clustered bacteria and small clusters take a long time to to precip-
itate and reach the focal plane and thus is a constant flux of incoming
particles, which is not the case in our simulations.
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FIGURE 3.39: Timeseries of the aggregation rate for various
system sizes and τOFF
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(a) solid phase τOFF = 0.1 (b) liquid phase τOFF = 1.0

FIGURE 3.41: Typical aggregates size in the solid and liquid
phase
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3.6 Link based model

In this section we will see the more evolved model we investigated which
consisted in a nutshell to promote the scalar variable si to a more complex
structure containing additional degrees of freedom. The aim of introduc-
ing these additional parameters is aimed at reproducing more closely the
dynamics of pili. Indeed the previous modelization was lacking some ele-
ments that could be important to render optimally all the aggregates prop-
erties, among which:

• In a particle based model a particle going from ON to OFF state will
most likely connect to several neighbors immediately after switch, for
a range of τON values. This model solves this problem, given that
creating multiple pili simultaneously has a vanishing probability. In
summary we want to have independent pili.

• Pili are not constant force molecular motors per se but are rather mo-
tor working at constant speed . Thus a retraction event can be seen
as a process where we need to impose the length of the pili over time
and only consequently the force is adjusted to enforce that constraint.
Therefore we need a feedback process between the force exerted (at a
certain time t) which depends on earlier pili length (at time t − ∆t).
This memory requirement couldn’t be contained in the simple poten-
tial we considered in the potential based model.

• The previous point is linked to the issue highlighted in 3.5.4: even
if we could dimensionalize the problem we still need a trick (to sup-
press the noise when the attraction interaction exist) in order to obtain
the matching state of matter (liquid) of the aggregate corresponding
to these parameters (especially the noise)

• This is essential to obtain such high-forces generation for the micropipette
experiment. In that case we need to attain high drag forces (resp high
drag velocities) which can only drag the whole aggregate if the forces
internal to the aggregate (that is the pili forces) are� than these forces

3.6.1 Description of the model

The previous way to create pili was unsatisfactory to some extent, the asym-
metry between ON and OFF states was an issue in the sense that the control
over the number of neighbors was not possible, nor was the fact that we
could simultaneously create multiple links when one particle would switch
from OFF to ON. As a consequence the pilus creation and destruction pro-
cesses are now independent of the particle state but now depend on pairs
of bacteria. Therefore a link between particle i and j is called sij and its evo-
lution is given by the following transition probabilities between time t and
time t+ ∆t of equation (3.21):

P (sij = 0→ sij = 1) = ∆t/τOFF

P (sij = 1→ sij = 0) = ∆t/τON
(3.21)
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This simple rule is not sufficient to describe the generation of pili. With the
potential based models, both the creation and destruction were implicitly
included in the ON/OFF dynamic of the si and we didn’t have to worry
about which set of particles theses processes apply to. When pili are inde-
pendent, destruction and creation of pili are distinct processes and don’t
necessarily apply to the same set of particle pairs, it is thus necessary to
append a rule which specifies to which particles these processes apply:

• The creation process applies to bacteria which are Voronoi neighbors
at a given time t, “as previously”. However we now we keep an his-
tory of the pair (i, j) hence the indexing sij - we call it a link or pili
from now on.

• The destruction process applies to these existing pili. This is a differ-
ent procedure than before where creation and destruction were apply-
ing to the same set of particles: Voronoi neighbors (in other words the
links were always a subset of the edges of the Voronoi tessellation).
Here, on the contrary, it is important to note that these are different
that these links can still persist for particles which are no longer Voronoi
neighbors.

Again if we take the graphic representation of the bacteria + pili system by
two disks, one for the attractive range the other for the repulsive region we
have for the pili creation and destruction processes: However this actual

P ≈ ∆t
τOFF

P ≈ 1− ∆t
τOFF

FIGURE 3.42: The neighbours are close enough, there is a
probability ∆t

τOFF
that they will interact by creating a pili

P ≈ 1− ∆t
τon

P ≈ ∆t
τon

FIGURE 3.43: The reverse process of destruction has a prob-
ability ∆t

τon

set of rules is not entirely satisfactory as the purpose of such model was
given by the fact that we wanted to take on step forward to a more realistic
model. The last change was to drop the potential based interactions in favor
of a force that takes into account the force-velocity relation shown in [30].
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That is we wanted to explicitly enforce constant approach speed v0 for two
attracted particles over time. The algorithm is as follows: The equation for
the pili length rij gives

drij(t)/dt =

= −v0 − 1/dt max((rij − rexp)(t), 0)
(3.22)

Where rexp is the expected distance at time t:

rexp(t) = min(rexp(t−∆t)− v0∆t, r0)

= min(rij(t0)− v0(t− t0), r0) after "integration" between t and t0
(3.23)

Globally (3.23) gives the auxiliary variable rexp which is just linearly de-
creasing with time up to r0 , meaning pili achieved complete retraction. It’s
the length the pili should have it there weren’t any constraint. This variable
enters in (3.22) , where the second term compensates the error in terms
of displacement (3.24) at time t (meaning the difference between what the
length should be if the pulling was unperturbed vs what it is really) :

max((rij − rexp)(t), 0) (3.24)

Giving the additional term. Notice the max() function which indicates this
displacement isn’t applied if particles went close enough. This equation is
note written for each particle but the displacement being symmetric it is
straightforward to write the equations for each particle.

In the end this process is equivalent to put a moving potential over time
which looks like figure( 3.44) A way to see it is to consider that the potential
“glides” on the line defined by y = v0.x. From the point of view of a fixed
particle at position x we see it will feel higher and higher forces over time.
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Last but not least, this algorithm can lead to indefinitely increasing forces
in the solid regime. This is cause of the quenching caused by the competing
pili pulling in opposite directions (after all it’s what opponents in a tug of
war do, they pull more and more strongly until one breaks). Therefore we
need to the maximum force to be bounded (3.25):

||drij(t)/dt|| = min(−v0 − 1/dt max((rij − rexp)(t), 0), fmax) (3.25)

3.6.1.1 Phase diagram of the new model

This new phase diagram 3.45 is very interesting for several reasons. If
the two usual transitions are well identified for τOFF

τON
= 0.1 and 2.5 for the

solid-liquid and liquid-gas one respectively, what’s more intriguing is the
diffusion spike around τOFF

τON
= 0.9 , right “in the middle” of the liquid re-

gion. The second, and even more intriguing fact is the value of the diffusion
coefficient which exceeds those at the beginning of the gaseous phase and
even those of freely diffusing particles (D ≈ 1 when τOFF

τON
→ ∞) . These

two points make sense once we take into account what is at stake here: for a
dense liquid the only small ballistic displacements are authorized because
of the lack of space, leading to small diffusion. On the contrary for a gas
mean free path is not bounded by spatial constraints but there’s no more
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ballistic displacements. Thus when both these properties are present fa-
voring high length ballistic displacements it makes the global diffusion rise
significantly. One could then wonder why this intermediate regime was
not visible for the previous models: essentially because the ballistic motion
were insignificant, at most they were at a speed of ≈ 1µm s−1 whereas here
they can exceed this value due to the slingshot effect when the tug-of-war
breaks. An important point to note that when taking the MSD we’ve taken
the short time MSD when two clear regimes were visible on the timeseries,
as shown in section 3.6.2.
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FIGURE 3.45: The phase diagram for the model with inde-
pendent pili

3.6.2 Ballistic signature

In [30] the authors were also are able to show the signature of the ballistic
steps, i.e. the transition from hyper-diffusive MSD ∝ t2 at short timescales
to diffusive behavior ∝ t.
Can we identify such transition with our data? The positive answer is not
obvious as our system mixes both Brownian and ballistic motility. In order
to be able to discriminate between the signatures of these noises requires
for instance a timescales separation. Looking at MSD curves for the “best
case” τOFF

τON
= 0.9 3.46 shows two clearly distinct regimes. This is another

piece of evidence proving that the pulling events have a significant impact
on the diffusive behavior up to some timescale. We can compare with, as
an example τOFF

τON
= 0.5 far from the “excessive diffusion” area, and indeed

only one diffusive behavior can be seen from the MSD curve. However
these data aren’t showing signs of hyper-diffusion which is probably hid-
den by diffusing effects as we’ve suggested earlier. Our guess is that given
that both diffusion and ballistic motion events are acting at the same time
this might be ultimately hidden in the diffusion. What’s more even though
the τOFF = 0.9 aggregates are sparser than the relative distances stay short,
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thus the ballistic events are of short duration making it even harder to find
them.
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FIGURE 3.46: MSD for τOFF = 0.9 with fitted diffusion co-
efficients for short and large times. As a comparison the
MSD is also shown for τOFF = 0.5 is shown, showing only

one regime

3.6.2.1 Pipette

One of the main objective of this model was to obtain more realistic pipette
progression speed. As previously we’ve run pipette simulations for various
τOFF in the liquid and estimated the progression speed case by case as can
bee seen in figure 3.47. The data are quite noisy, even we can clearly see
correct trends, that for instance the speed increases with increasing τOFF
it is quite difficult to beyond the quantitative level and estimate viscosity
coefficients for instance. The cause of this noise is again the high forces gen-
erated in the aggregate, especially at the borders, where particles are very
motile because pili can be established between particles several bacteria-
length away from each other. As we are specifically focusing our measures
to these particles the results are perturbed by these fast movements of the
interface. An improved procedure would comprise averages over several
pulling experiments, but it is far to be guaranteed to provide smoothed
curves.

3.6.2.2 Reversibility

Something we haven’t yet explored yet is the elastic behavior of Neisseria
aggregates. In the same paper ( [20]) , the authors also analyze the aging of
cells by noticing that cycles of aspiration-relaxation of the aggregates lead
to smaller and smaller deformation cycles, meaning that the biomaterial,
when it ages, tends to get more viscous. It is probably similar in Neisseria
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FIGURE 3.47: Tongue velocity obtained for various τOFF in
the pili model

aggregates. Of course in the simulations there is no reason that such phe-
nomenon should occur. However we still can check the elastic (reversible)
nature of aggregates by looking at their relaxation without force.

3.6.2.3 Pipette in 3D

Facing the poor results of the pipette experiment in the 2D system we’ve
taken a lea of faith and guessed that the difference might originate from the
lower dimensionality of the system. Indeed it is not obvious that surfaces
tension forces “translate” to line tension forces in a 2D model. Hence we’ve
performed simulations for similarly sized aggregates (radius ≈ 20µm) but
this time in 3D (N = 105 particles) and estimated the tongue progression
speed for various τOFF in figure 3.48. These results are not to be con-
sidered out of their qualitative value. The velocities estimates have been
performed very roughly because most liquid aggregates (τ ≥ 0.25) didn’t
resist the force after a few seconds. Indeed if all the previous concepts (α-
shape and Voronoi neighbors) are all easily translatable in 3D there is still
the question to know how to translate the way we pull on particles in 2D
(perpendicularly to the edges). From what we see here, it is not equivalent
to pull perpendicularly on a tetrahedron of the surface.
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3.6.3 Effects of bacteria anisotropy: diplococci

Bacterial division has been yet neglected. For now our model was limiting
to particles which were point-like but with an isotropic repulsive potential
strong enough to treat them as disk in the two dimensional case or spheres
in 3D. However in real life aggregates a significant fraction of the bacte-
ria doesn’t look spherical. Neisseria meningitidis belongs to the diplococcus
group of bacteria, that it is composed of two symmetrical interpenetrating
spheres. However as it is undergoing cell division it has to divide in two
identical monococcus which will then regain their initial diplococcus shape
3.49 , this division stage being quick in comparison to the steady stationary
phase.

FIGURE 3.49: A 3D representation of a diplo-
coccus of Neisseria Meningitidis , source: http:
//bioquell.asia/technology/microbiology/

neisseria-meningitidis

At first, we didn’t include such level of detail in the model as we wanted to
simply study the aggregation properties of the bacteria. However anisotropy
in the bacteria shape has consequences as we have seen at the individual
level for the twitching motility in [69, 30] , we recall that their data clearly
show that their is a clear preference for the diplococci to self-propel perpen-
dicularly to its main axis, they claim that this mechanism caused by the fact
that the pili distribution is uniformly flat and thus the larger sides are the
more able to cause pili forces imbalance (the stronger side, ie the one which
has more pili, is able to cause breakage of the weaker side and wins the tug
of war.). On the smaller sides there its very unlikely to generate several pili
which would lead to this imbalance (there is most likely 1 or 0 pili on these
sides, unable to sustain the load caused by the other pili which are most
likely located on longer sides)

However these models as well as the experiments as we’ve already stated
are dealing with bacteria on a substrate and thus bacteria are not subject
to diffusion. Now that we are dealing with non-spherical objects in addi-
tion to positional diffusion we should incorporate rotational diffusion. First
derivation of rotational diffusion coefficients was performed by Jean Perrin
in [44] for ellipsoids. However as we’re not dealing with such shape, even
though in first approximation it could be legitimate to approximate diplo-
coccus as ellipses, added to the fact that we’re working on 2D geometry and
such derivation deals with 3D case we’ve adopted another scheme. In the

http://bioquell.asia/technology/microbiology/neisseria-meningitidis
http://bioquell.asia/technology/microbiology/neisseria-meningitidis
http://bioquell.asia/technology/microbiology/neisseria-meningitidis
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spirit of [12] where authors are dealing with dumbbells diffusion , we’ve
implemented the rotational diffusion as an effective diffusion, indeed we
assume that each diplococcus is a doublet of particle (i, i+ 1). Each particle
is subject to the previous set of equations (3.26) plus an additional potential
to make the two particles stay close:





d~ri
dt =

∑
j∈∂i

~Fij +
√

2D~ηi + V i+1
i

d~ri+1

dt =
∑

j∈∂i+1

~Fi+1j +
√

2D~ηi+1 + V i
i+1

(3.26)

Note that in that case i and i+1 are excluded from the Voronoi neighbor-
hood. Rewriting this set of equation with the appropriate variable change
(~ri, ~ri+1) → (~ri+~ri+1

2 , ~ri−~ri+1

2 ) , which are the coordinates of the center of
mass and the direction of the main axis of the diplococcus (or the angle θ
characterizing its orientation) , we can see that the center of mass as well as
θ are themselves diffusing.

We didn’t characterize yet the potential V i+1
i , the authors use a sharp elas-

tic potential preventing pair of particles to get away from each other in
addition to a Weeks-Chandler-Anderson (best known as WCA) potential
providing the repulsive part in order to prevent the two spheres interpene-
tration.

Our choice is different, we force the two beads interdistance to stay con-
stant. That is at each timestep we:

• Compute the bacteria pair center of mass (~ri+~ri+1

2 )

• Keep memory of the orientation of the particle (~ri−~ri+1

2 )

• Reset the distance between the pair of diplococci so that ~rij is equal
to d0 for all t. Each particle is put at a distance d0

2 symmetrically with
respect to the center of mass, oriented along ±~ri−~ri+1

2

This mechanism is naturally providing a source of rotational diffusion caused
by the implicit coupling between positional and the rotational diffusion. In
order to comfort this assertion we’ve computed rotational MSD for an en-
semble of freely diffusive diplococci. As figure 3.50 shows there is indeed
diffusion for durations up to ≈ 50s , but then the regime becomes slightly
super-diffusive with MSD scaling≈∝ t1.2. Our mechanism is thus indeed a
diffusive regime for short timescales but maybe is not best fitted to maintain
“normal” diffusion over long timescales.

3.7 Comparison with experimental results

3.7.1 Aggregates properties

3.7.1.1 Variable diffusion

Experimentally, movies of aggregates show visually that the “core” of the
aggregate seems to show reduced diffusion compared to the edges. Low
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temporal resolutions movies were giving very poor results because we are
looking at slices of a 3D aggregate, consequently particles frequently exit
the focal plane. In order to gather more data about the biological system
we produced movies with high temporal resolution, at a frame rate around
1
30 s−1, this highly improved the tracking algorithms convergence. The ob-
tained tracks (figure 3.51) are shown with a coloring referring to the average
speed during the track. With all the bias that the tracking can produce - par-
ticles permutation, wrong estimate of positions... - this still quantitatively
shows a clear difference between the center and the edges, we can even see
a gradient of diffusion from the center to the outside. As a biological sys-
tem we cannot exclude that the source of this gradient is a lack of nutrient
- simply because the nutrient has difficulties to cross the aggregate “shell”
- giving a lowered activity at the center. We can produce tracks as in figure
3.51 , however we are able to provide evidence that this phenomenon can
arise as an effect of a “caging” effect which is stronger at the center. Taking
simulated aggregates we’ve measured the MSD for particles within several
shells indexed s1, s2, ..., sn (3.27):

MSDi(t) =
1∑
k∈si 1

∑

k∈si
(xk(t)− xk(0))2 (3.27)

These shells are chosen with an arbitrary criterion: we compute the aggre-
gate radiusR , consider n shells and define si as the volume { in ≤ r ≤ i

n+1}.
For instance we’ve considered 3 shells in 3.52 and two aggregates states



3.7. Comparison with experimental results 149

FIGURE 3.51: Tracking obtained for a real aggregate, the
center shows lower diffusivity. (Coloring shows averaged

velocity during tracking.)

of matter. For τOFF = 0.1 , deep in the solid phase, particles are totally
jammed within the first two shells and only the ones are the exterior are
diffusing. For τOFF = 0.5 the aggregate is liquid but still not uniformly,
particles at the center are still caged and diffuse less, we also able see the
diffusion gradually increasing from the center to the edges. Notice that the
MSD curves are jittery, it is essentially caused by the fact that particles are
constantly entering and exiting the shells making the factor 1∑

k∈si
1 fluctu-

ate over time.

(a) solid aggregate (τOFF = 0.25): high differences are visible
between particles at the center and to the edges

(b) liquid phase (τOFF = 0.5): the difference is less measurable
but still visible

FIGURE 3.52: The MSD as defined in equation (3.27) show
high variability of the MSD between the core of the aggre-
gate and its core. Shells from the center to the outter one are

respectively blue green and purple.

Finally we can produce some data proving that our model can at least quan-
titatively fit “internal rheology” of real life aggregates. In figure 3.53 we see
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FIGURE 3.53: Comparison of the internal diffusion between
experimental data and simulation extracted data

that the diffusion coefficient D inside the aggregate matches the one of ex-
perimental data for τON = τOFF = 15. This value is reasonably good as the
experiment shown in 3.7.4 leads to value in that range.

3.7.1.2 Orientational order parameter

So far, we defined two quantities to study the system phase transition,
namely the MSD and the gyration radius. If for the former we can extend its
scope to a local definition, the gyration radius on the other hand is a global
parameter and its definition can’t be modified to display inhomogeneities
inside the aggregate. Even for the MSD, it is quite hard to define it locally,
indeed if one tracks a particle in a defined region, the diffusion will drive
it out of the region sooner or later. To circumvent this limitation, one has
the possibility to accumulate trajectories which stay in the region and av-
erage them. That’s a procedure we followed in 3.7.1.1. For the particular
case of the liquid/solid transition it is however possible to define a local
order parameter that allows us to detect homogeneities inside the aggre-
gate. Next follow some definitions and sketches to understand how we can
characterize this transition.

Consider the Ni neighbors of particle i, we call this neighborhood ∂i. Then
we can define the hexahedron scalar order parameter ( (3.28))

si =
1

Ni

∑

k

ej6θk (3.28)

To have an idea what it means, imagine that all particles neighboring i are
exactly arranged according to an hexahedron. Consequently we can say
that θk = θ0 + j 2π

6 with θ0 , say, the angle for the particle which satisfies
2π/6 ≥ θ0 ≥ 0. Therefore the exponential reads ei6(θ0+j 2π

6
) = ei6θ0 . Hence

the argument 6θ0 characterize the relative tetrahedron orientation and the
norm quantifies how close we are to the perfect arrangement (1 for perfect
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hexahedron, less for disarranged configurations down to 0 for a random
configuration).

3.7.2 Other characterization of the transitions

MSD and gyration radius might not the best suited quantities to seek for
the transition. Here we introduce possible alternatives we tested in order
to refine our characterization of these transitions.

If we consider particle i which coordinates are xi. An essential difference
between a solid and a liquid is that the neighbors configuration will be
steady in the solid phase. That is to say, the quantity at time t the neighbors
of particle i ∂i will not change over time. On the contrary ,for a liquid, par-
ticles will frequently change their neighborhood. Thus, quantifying how
frequently they keep their neighbors might therefore be a relevant param-
eter characterizing the liquid to solid transition. In other words, we could
define a persistence time which characterize how long particles stay neigh-
bors.

3.7.3 Aggregation dynamics

3.7.4 Highlighting the pili to pili interactions

As for now we had to fit the model with bulk properties of the experimental
system: viscosity η , surface tension γ , diffusion coefficient D0 , aggregates
size, etc. However in order to make a point about the scientific soundness
of the model it is important to measure that,indeed, there are sporadic pili-
pili retraction events leading to directed motion. These events are similar
to twitching but in addition should drive symmetrically the two particles
of the aforementioned pair

Compared to Biais et al. experiments it is important to underline the in-
fluence of the substrate. The configuration used in their case is such as
the non-capsuled Gonorrhea is tightly adhering to the substrate, to the ex-
tent that they are able to separate nonadhesive bacteria (for some reason)
from adhesive ones by simply water washing the petri dish. This also im-
plies that thermal fluctuations are almost completely erased. Last thing is
that they focus on single particle events, therefore their is no “spatial con-
straint” whatsoever: any free bacteria can be tracked and its trajectory post-
processed and analyzed. In that sense these experiments are of a lower level
in terms of difficulty:

– The capsule prohibits adhesion with the substrate: as the bacteria are
not stuck to the surface we still have to deal with thermal fluctuations
and the trajectories are therefore not purely Lévy walk like because
they always contain Brownian movement even for the shortest times.

– We want to observe ballistic and symmetric pili-pili interactions. Con-
sequently we need to be at high concentrations enough to have close
enough pairs, keeping from being too high in order to avoid multiple
particles (3 , 4 or more) interactions.
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3.7.5 Should τOFF be distance-dependent?

Experimental data suggest that the duration of interaction is highly depen-
dent on how-close bacteria are. Figure 3.54 shows the frequency of interac-
tion events with respect to the distance of the bacteria pairs at the beginning
of the retraction event, tracked in the micro-chambers. There are strong indi-
cation that retraction events are more likely when bacteria are close.

FIGURE 3.54: Probability distribution function of attach-
ment as a function of distance in the chamber experiment.

There is a strong decay after ≈ 5 µm

Two simple arguments come to mind to back this idea:

• One can understand this as follows: if pili are generated random di-
rection, the probability for one pilus to find a target decreases as the
distance between the pili originating point and the target increases.
We can for instance imagine that this probability should proportional
to the solid angle with which the particle is seen by its neighbors.
Therefore the probability P should vary with the distance r and the
diameter of the bacteria d proportionally to the solid angle over which
is seen the bacteria: P(r) ∝ 2π(1 − r

1−
√
r2+d2

). Then, at long distance

r � d we thus have P(r) ∝ 2π(dr )2

• The second argument is linked to the growth of the pili: we’ve already
shown evidence that pili polymerization (as well as depolymeriza-
tion) is performed at a constant velocity v ≈ 1 µm s−1. Therefore the
time for a pili to encounter the neighbor particle is at least limited by
the time for the pili to elongate, this time for two bacteria separated
by a distance d is d

v .

How much of each of these process are relevant is not something we can
quantify for now due to complex biological modelization. At least these
two arguments show that τOFF should at least be distance dependent. For
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that purpose we propose another coefficient β which modifies τOFF accord-
ing to the initial distance (corresponding to the creation of the link between
neighbors) between neighbors r0 :

τOFF → τOFF × rβ0 (3.29)

The β exponent is a simple scaling law which allows to examine very dif-
ferent behaviors from β = 0 which goes back to the previous distance in-
dependent model, whereas for β = 2 we are matching the long distance
(r0 � d) approximation proposed before. Of course other scaling should
be considered in light of supplementary biological data, but it’s extremely
complicated to probe these properties: One would require to have statisti-
cally significant assembly of bacteria on 2D substrates, which require a wide
view angle, and to be able to detect the interaction events, therefore requir-
ing high temporal and spatial resolution, and hereafter perform a posteriori
the statistics on these particular retraction events.

As we’ve said, introducing this parameter is not only a guess but is strongly
baked by observations. Indeed, going back to the micro-chambers experi-
ment, we were able to extract some statistically significant data, more or
less “by hand” , in order to make a point about what we could clearly ob-
serve with the eyes. The data in figure 3.54 clearly show, even with limited
precision, that retraction events are more frequent when particles are close
(≤ 10 µm).

We should pinpoint the biological evidence showing that there is a strong
variability of the capacity among bacteria to produce pili [25]. This in-
cludes for instance the retraction ability which might vary from bacteria to
bacteria and be the source more or less intense retraction event, or else. Our
model lacks such feature but the most important one: average number of
pili. Indeed it is accounted “on average” by the stochastic attachment term
and we think that it is sufficient to encompass this natural variability.

3.7.5.1 Case β = 2

We didn’t perform extensive studies varying β. This is justified by the fact
that based on observations, not much of the aggregation dynamics was
qualitatively modified. However to understand more quantitatively what
modification such parameter would introduce, we focused on the β = 2
case to seek any contribution on the behavior in the τOFF parameter space.
As usual the two quantifiers of the model are the MSD and dRgyr

dt . What
is obvious in figure 3.55 is the peak in the liquid region which drastically
diminished, to the point where the diffusion is not anymore higher in the
liquid phase than in the gas. We can understand such thing as what gives
this region this super-diffusion is mostly particles at the edges of the ag-
gregate which are able to move larger distances. However the effect of the
variable τOFF is to reduce the frequency of these large distance retraction
events, thus, damping the "excess” of diffusion in this particular region.
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FIGURE 3.55: Diffusion coefficient and squared gyration ra-
dius slope for β = 2

3.7.5.2 Other improvements

Another factor we need to have knowledge about is that about 60 % of
the bacteria are not producing any pilus [25]. The origin of such pilia-
tion deficiency is still unclear for biologists but we ascertain that our model
include this fact in some sense that non-piliated bacteria have little to no in-
fluence over the interacting ones. Indeed we’ve proceeded with simulation
where a fraction of the particles were not piliated and observed the result-
ing phases. While the two population were mixed at the begining we see
phase separation of both interacting and noninteracting particles (see fig.
3.56). That means that overall the properties of aggregates will remain un-
changed. That also means means that in experimental setup the risk when
measuring properties inside an aggregate to have our measurements pol-
luted by noninteracting particles is minimal.

3.8 Highlighting the pili-pili retraction events

Now that we’ve studied extensively several modelization of Neisseria ag-
gregates and compared with bulk rheology measurements as much a pos-
sible. The next step was to build an experimental setup allowing highlight
the stochastic nature of the pili to pili retraction events. While other experi-
ments already shown and described with much details stochastic retraction
events happen in the pili to substrate case with the help of micropilar [8]
or a coated beads in a laser trap systems [29] as substrates. Nothing proves
that the encounter of two bacteria pili would lead to similar pili behav-
ior. Additionally, we are trying to obtain an idea of both transition time
τON , τOFF when other experiments are only able to get what’s similar to
τON , which can be extrapolated from the exponentially decaying distribu-
tion of detachment times 3.57 they claim to measure.



3.8. Highlighting the pili-pili retraction events 155

-200

-150

-100

-50

	0

	50

	100

	150

-150-100 -50 	0 	50 	100 	150 	200

interacting	particles
freely	diffusing	particles

FIGURE 3.56: 50/50 mix of interacting particles (in purple,
one can see big aggregate and a smaller one at the center)

and non-interacting ones (green, œ) after ≈ 4500 sec

FIGURE 3.57: Exponentially decaying detachment times
(note the log-scale on the y-axis) of pilus tethered to a bead

trapped by a laser, the laser trap force is 5 pN (from [30])

3.8.1 Setup

The experimental setup Duménil & a.l. realized is composed glass coated
substrate on which lies a series of molded capsules made of agar, a jelly and
easily sculptable material. They are an ideal environment to specifically
probe the bacteria-bacteria interaction because they allow:

• Trapped particles in a defined geometry which permits:

– Via the cell density: control of the density of bacteria in the cell

– Quasi-2D setup i.e. we limit the z axis displacement of the parti-
cles as a result of the relatively low capsule height.

• The coating is specifically engineered in order to inhibit pili to adhere
on it:
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– Negligible twitching, when no pulling events particle should freely
diffuse.

– Only pili-pili or pili-bacteria interaction will produce ballistic
motion.

The next step of the experiment is to post-process the movies (≈ 100µs time
resolution and diplococcus span several pixels in size) and obtained with a
software such as “ImageJ” which provides efficient tracking algorithms. As
an example, a typical experiment is shown in 3.58 where we see 10 bacteria
tracks of 12 seconds length. On the center we can see a typical pili-pili
retraction event, indeed the blue and yellow tracks clearly show both high
directional persistence and are symmetrical.

FIGURE 3.58: Tracks over 12 sec in a capsule of ≈ 20 µm ,
the rectangular region highlights a typical retraction event.

In an ideal world the experiment would show clear and numerous pulling
events but in real life we encountered some problems making the results
less convincing:

• Simple confocal microscopy led to very difficult tracking: the optics
field of view is so small in the z direction that we were losing track of
bacteria which z position were far from the bottom, especially during
retraction events.
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– Fluorescent microscopy seems to solve this problem. However
we lose track of the cavity contour (because we are looking at
bright objects).
Thus we need to keep track of the contour by taking picture of
the cavity in bright light.

• The cavities rooftops were collapsing because the bending rigidity K
of the agar is fixed and there’s a critical cell size above which this
collapsing occurs (because of it’s own weight) ,this rigidity might also
depend of the cell height.

– We had to come to a compromise between the cavities size in
order to have solid ones and the fact that with this density of
bacteria cavities were empty and many contained two or three
bacteria at most which forbid good experimental data.

3.8.2 Systematic detection of the retraction events

It is important for us to define a method enabling us to obtain systematic
measurements of the particles tracks during retraction events. In order to
do so we need to provide a characterization of the particles motion at these
specific moments. From a practical point of view we take the set of particles
position over time , namely {xi(t)} for track i. At this point the trajectories
are too jittery for two reasons: firstly because there is an optical and detec-
tion algorithm based uncertainty over particles center of mass position and
also because the bacteria are still subject to thermal fluctuations.

We’ve opted for the simplest method, defining smoothed trajectories which
are simply the track containing the averaged position of the particle over
its next n timesteps 3.30:

xsi (t) =
1

n

n∑

k=1

xi(t+ k∆t) (3.30)

Figure 3.59 show the effect of such smoothing on a typical track. Most of
the jitters is removed with n = 5∆t. With n = 50∆t we have a nice looking
trajectory but we are far from the initial positions. Depending what we need
to obtain we have to make a trade-off between smoothing and positions
accuracy.

Lastly as we are interested in pair of particles we will work with the relative
particles position rij = xi−xj over which we apply the previous smoothing,
defining the smoothed position rs and speed vs = drs

dt . We also need to have
a criterion to discriminate between real retraction events and fortuitous ap-
proach events. We can suppose that if the speed and position vectors are
opposed for a sufficiently long time , that is Crv(t) = vs.rs

||vs||||rs|| ≈ −1 , this
correlation is a sign of retraction. Consider figure 3.60 which shows the
timeseries of this correlation parameter Crv as well as the relative distance
||rij || , we see several long duration events of particle pair approach. It is
manifested by a drop of relative distance, but also - as expected - to drop of
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FIGURE 3.59: Effect of trajectory smoothing, raw track and
averages 5 (1 sec) and 50 timesteps (5 sec)

Crv to the −1 value. With a little faith we can pinpoint retraction events at
t = 5000, 42000, 60000µs
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FIGURE 3.60: Effect of trajectory smoothing, raw track and
averages 5 (1 sec) and 50 timesteps (5 sec)

Finally a procedure was found in order to semi-automatically detect retrac-
tion events and free diffusion ones from these timeseriesand was iterated
on hundred of timeseries. It led as to distribution functions of pulling times
( fig. 3.61(a) ) and diffusion times (3.61(b) ). Given the Poisson process we
use in the model we’d expect exponentially decaying distribution for both
pulling and waiting events, this is hopefully the case. With these data we
estimate τOFF = τON ≈ 15.
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(a) The distribution of pulling times leads to τON (b) The distribution of diffusion times leads to τOFF

FIGURE 3.61: Experimental data show exponentially decay-
ing distribution for both waiting and pulling times

3.9 Conclusion and further improvements

We started by showing a first model which is more a “proof of concept” that
stochastic attraction leads to an athermal type of noise, even though this
first model was obviously missing quantitative aspects. Even after adapt-
ing the shape of the force potential we were unable to obtain data with good
quantitative agreement even though the micropipette experiment seems
appealing to the eye.

We then moved to a more evolved modelization, though we failed into ob-
taining quantitative results for the micropipette experiments, other results
are more satisfying such as the of internal diffusion profile inside aggre-
gates. The pursuit of more evolved modelization is probably the best way
to obtain more quantitative results. At the expense of increasing number
of parameters which might be not well tabulated. However it is useful to
mention some possible line of thought for the future.

For instance in a recent study [13] the authors consider a model where pili
are modelized as chains of beads, subject to thermal fluctuations and sub-
ject to two spring-like potentials: one for the spatial part, modelizing the
elongation of the pili, the other part accounting for angular deformations,
i.e. the bending of the pili. While we only considered pili existence dur-
ing the retraction phase in the sense that we don’t modelize explicitly the
elongation but embedded them in the stochasticity of the attachment, the
authors show that the stiffness of their structure might play a role during
the elongation phase: for very stiff pili the ability to have high persistence
lengths is enhanced meaning it takes shorter time to explore large distances
for stiff pili than for flexible ones. In our case the the interaction radius is
the only parameter akin to a persistence length: the attachment probability
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doesn’t depend on the actual length of the pili and this might be problem-
atic. In that sense, it is interesting to introduce a variable attachment prob-
ability that depends, at least on the distance between neighbors (for lack of
“physical” flexible pili in the model).

We should also note that a study [28] reports that the re-elongation proba-
bility might increase with increased exerted force. Therefore we can imag-
ine a feedback mechanism between enhanced pili-pili interactions in ag-
gregates and aggregation itself. This would be interesting in that sense to
explore the consequences of such mechanism which might provide a bio-
logical justification of aggregation.

The last effects we cannot exclude are the hydrodynamic ones. On closely
packed assemblies of particles, hydrodynamic interactions might have a
significant role to play. The flow generated by bacteria which are rotating
or ballistically propelling in a fluid might affect the motility of neighbor-
ing particles and explain some differences between experimental data and
numerical ones.

Overall we think that such improvements would have little effects on the
properties of the aggregate as a material. Added to the prohibitive cost
of such mechanisms - in terms of modelization complexity - we find no
additional value for such modification as for now.
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Titre : Descriptions continues et stochastiques de la matière active
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Résumé : Le but de cette thèse est d'étudier des modèles
simples d'agents "auto-propulsés": capables de générer du
mouvement en consommant de l'énergie provenant de leur
environnement, sans forçage externe. Deux modèles de ce
type ont été étudiés lors de cette thèse:
-Dans un premier temps un modèle de type "Vicsek" a
été étudié, c'est à dire que les particules représentées par
un couple (position,vitesse) ont une évolution régie par des
règles simples d'alignement et d'auto-propulsion à vitesse
constante. Ici, l'alignement est nématique: les particlules
s'alignent selon leur grand axe, au contraire d'un alignement
polaire il se fait indiféremment tête à queue ou tête à tête.
Par rapport aux précédents modèles de ce type la première
nouveauté est l'introduction d'une pseudo répulsion (dans
l'esprit Vicsek, modélisée par un terme de type couple) don-
nant une extension spatiale à ces particules. La seconde nou-
veauté est la présence d'un "taux de retournement" qui rend
compte du temps de persistence de la direction de l'auto-
propulsion. Dans cette partie nous décrivons divers dia-
grammes de phases de ce nouveau modèle qui montrent de
nouvelles phases non répertoriées précédemment: les arches
mais aussi des bandes "smectiques", quelques propriétés de
ces structures ont été mesurées. Des équations hydrody-

namiques obtenues via la méthode "Boltzmann-Ginzburg-
Landau" ayant par ailleurs été dérivées nous e�ectuons une
comparaison: la plupart des phases ainsi que certaines de
leurs propriétés sont retrouvés dans le modèle hydrodyna-
mique.
-Dans un second temps, nous étudions la bactérie Neisse-
ria Meningitidis qui présente la particularité de générer des
"pili", �laments de plusieurs micromètres de long. En dépo-
lymérisant ces structures, à vitesse constantes (≈1 µm/s),
elle est capable de en générer des forces gigantesques pour
le vivant (≈100 pN). Cette bactérie a tendance à former des
agrégats sphériques, présentant toutes les propriétés d'un li-
quide, pour coloniser l'organisme de l'hôte. Des mesures de
viscosité et de tension de surface de ces agrégats ont montré
le rôle crucial du nombre de pili. Fort de ces constats nous
avons bati un modèle microscopique dont la particularité
est l'introduction de potentiels stochastiquement attractifs,
c'est à dire que les particles transitent entre un état attrac-
tif et un état di�usif. Cette partie retranscrit l'évolution du
modèle au cours du temps. Nous avons pu reproduire cer-
taines propriétés des agrégats, nous avons notamment mis
en évidence une variation de la di�usion entre le centre et le
bord des agrégats qui recoupe les données expérimentales.

Title : Stochastic and continuous descriptions of active matter

Keywords : Active matter, Modelization, Biology

Abstract : This thesis purpose is to study simple "self-
propelled" agents models: they are able to generate motion
by consumming energy comming from their environment,
without external forcing. Two models of that kind have been
studied:
-In the �rst part a Vicsek-style model has been studied, that
is particles are modeled by a couple (position,velocity) which
evolution is dictated by simple rules of alignment and self-
propulsion at constant speed. Here the alignment is nematic
particles align along their long axis and alignment is not
polar, contrarily to a polar alignment particles don't dis-
criminate between head and tail . Compared to previous
models of this type, the �rst novelty is the introduction
of a pseudo-repulsion (in the Vicsek-spirit, modelized by a
torque-like term) providing spatial extension to these par-
ticles. The second addition is a �ipping rate which renders
the persistence time of the direction of self-propulsion. In
this part we describe several phase diagrams of this new mo-
del which show new phases not previously classi�ed: arches
but also "smectic" bands, some propreties of these struc-
tures have been measured. Hydrodynamic equations from

the "Boltzmann-Ginzburg-Landau" method have been also
developped, comparisons are performed: the hydrodynamic
model recovers most phases and some of their propreties.
-In the second part we study Neisseria Meningitidis, a bacte-
ria which particularity is to generate pili: �lamentous struc-
tures several micrometers long. By depolymerizing these
structures at constant speed (≈1µm/s), it is able to generate
gigantic forces for the living word (≈ 100pN). This bacteria
has a tendancy to form spherical aggregates, showing all pro-
preties of a liquid, in order to colonize the host organism.
Viscosity and surface tension measure of these aggregates
have shown the crucial role of the pili number. Using these
data we've built a microscopic model which particularity is
the presence of a stochastically attractive potential, that is
to say that particles are transiting between an attractive
state and a di�usive one. This part relates the model evo-
lution in time. We've ben able to reproduce some aggregate
propreties, in particular we've highlighted a variation of the
di�usion between aggregate center and edges which �ts ex-
perimental data.
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