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Résumé en français :

Contexte : La chromodynamique quantique (CDQ), théorie de l’interaction forte, prédit un nouvel

état de la matière, le plasma de quarks et de gluons (PQG) dont les degrés de liberté fondamentale,

les quarks et les gluons, peuvent bouger quasi-librement. Les hautes températures et densités de

particules, qui sont nécessaires, sont supposées être les conditions de

l’univers dans ses premiers moments ou dans les étoiles à neutrons. Récemment elles ont été recrées

par des collisions de noyaux d’ions lourdes à hautes énergies. Ces expériences étudient le PQG par

la détection des particules de hautes énergies qui traversent le milieu, notamment, les quarks lourds.

Les  mécanismes  de  leur  perte  d’énergie  dans  le  PQG  ne  sont  pas  compris  complètement.

Particulièrement,  ils  sont attribués aux processus soit  de radiation induite par le milieu,  soit  de

collisions de particules de type 2 vers 2, ou des combinaisons. 

Méthodes : Afin de trouver de nouvelles observables pour pouvoir distinguer les mécanismes de la

perte d’énergie, on a implémenté un algorithme Monte-Carlo, qui simule la formation des cascades

des particules à partir d’une particule initiale. Pour traiter le milieu, on a introduit des interactions

PQG-jets, qui correspondent aux processus collisionnels et radiatifs. Les corrélations entre deux

particules finales des cascades, dont une représente un quark trigger, ont été examinées comme

moyen pour distinguer les modèles. 

Résultats :  La dépendance de l’ouverture angulaire pour des corrélations entre deux particules en

fonction  des  énergies  des  particules  peut  servir  comme  moyen  pour  séparer  les  mécanismes

collisionnels et radiatifs de la perte d’énergie dans le milieu.

Mots clés:

Plasma  des  Quarks  et  des  Gluons,  Collisions  d’ions  lourds,  Corrélations  angulaires,
Corrélations à deux particules, jets, fragmentations, Simulations Monte-Carlo
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Summary in English:

Context: Quantum chromodynamics (QCD), the theory of the strong interactions, predicts a new

state  of matter,  the quark-gluon plasma (QGP), where its  fundamental  degrees  of  freedom, the

quarks and gluons, behave quasi-freely. The required high temperatures and/or particle densities can

be  expected  for  the  early  stages  of  the  universe  and in  neutron  stars,  but  have lately  become

accessible by highly energetic collisions of heavy ion cores. Commonly, these experiments study

the QGP by the detection of hard probes, i.e. highly energetic particles, most notably heavy quarks,

that pass the medium. The mechanisms of their energy-loss in the QGP are not yet completely

understood.  In particular,  they are  attributed to  processes  of  either  additional,  medium induced

radiation or 2 to 2 particle scattering, or combinations thereof. 

Methods: In a theoretical, phenomenological approach to search for new observables that allow

discriminating  between  these  collisional  and  radiative  energy-loss  mechanisms  a  Monte-Carlo

algorithm that simulates the formation of particle cascades from an initial particle was implemented.

For  the  medium,  different  types  of  QGP-jet  interactions,  corresponding  to  collisional  and/or

radiative energy loss, were introduced. Correlations between pairs of final cascade particles, where

one represents a heavy trigger quark, were investigated as a means to differentiate between these

models.

Findings: The dependence of angular opening for two-particle correlations as a function of particle

energy may provide a means to disentangle collisional and radiative mechanisms of in-medium

energy loss.

Key Words:
Quark Gluon Plasma, Heavy Ion Collisions, Angular Correlations, Two-Particle Correlations,
Parton-Energy Loss, Jets, Fragmentation, Monte-Carlo Simulations
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Chapter 1

Introduction: heavy quark
production in heavy ion collisions

1.1 Heavy Ion collisions as probes for hot and dense

hadronic matter

1.1.1 Description of strong interaction via QCD

In an attempt to search for the fundamental degrees of freedom of matter, it was discovered
that atoms are bound states of electrons e and a nuclear core formed by the nucleons: the
protons p and the neutrons n. Later on, numerous additional particles were found and one
learned that they belong to larger classes of particles, ordered by the considerably different
mass-scales of their constituents: The leptons (from Greek ”leptos” for light; examples
are the e with ≈ 0.5 MeV rest-mass), the baryons (from Greek ”barys” for heavy; the
lightest baryons, and only known stable states, are the nucleons of ≈ 940 MeV rest-mass)
and the mesons (from the Greek ”mesos” for ”in the middle”; e.g.: the π of ≈ 140 MeV
rest-mass). Baryons and mesons are also called hadrons. The interactions – and, thus,
also the bound-states – between hadrons and/or leptons were found to be mediated by
exchange bosons: The photons γ for electromagnetic forces and the W+, W−, and Z
bosons for the weak interactions. To each of the leptons and hadrons antiparticles with
the same mass exists. Particles can annihilate with the corresponding antiparticles1 and
create, in an intermediate state, one of the exchange-bosons in these interactions.

However, it was discovered that hadrons do not represent elementary particles either:
Instead it was found that they are bound states of three ”valence” quarks q in case of
the baryon2 or a qq̄ pair in case of the meson. Experiments allowed to demonstrate that
quarks appear in six so called ’flavors’, up (u), down (d), strange (s), charm (c), bottom
(b), and top (t), with different electrical charges and masses.

Quarks also possess the property of ’color’, a name that refers to the fact that a number
of Nc = 3 possible colors – red, green, and blue – exist and hadrons form color-neutral
or ’white’ bound states through a combination of several quarks in various color states.
The confinement of quarks within hadrons is attributed to the strong interaction, a force
that is mediated by the exchange of gluons G3. These bosons transport the color charge

1In the remainder of this thesis one will adopt for antiparticles the notation of a bar over the corre-
sponding particles, e.g.: p̄ for the antiproton.

2Due to the nature of the underlying theory (that is outlined shortly) spontaneous production and
annihilation processes of qq̄ pairs –called sea quarks– are always possible.

3In a first stage quarks and gluons were both understood as partons, before their individual existence
has been understood. This terminology has survived.
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between emitting and absorbing quarks, but also between themselves.
Quantum Chromodynamics (QCD; cf. Greek ”Chroma” for color) is the quantum field

theory that describes the strong interaction between partons [1] (cf. textbooks for a re-
view, e.g.: Ref. [2]). It is a gauge theory, i.e.: it is based on the fundamental assumption
that if all colors in a system are simultaneously changed, this does not affect the interac-
tions within the system (a principle referred to as gauge invariance or invariance under
gauge transformations). More precisely, systems in QCD are even invariant under gauge
transformations that depend on positions in space and time. This assumption is referred
to as local gauge invariance, and, thus, QCD is called a local gauge theory.

Mathematically, this notion is expressed by first introducing complex fields ψi for each
quark and each color i = 1 . . . Nc. The gauge transformations are then expressed as
rotations (or rather SU(Nc) transformations) in this Nc dimensional color space acting on
the quark fields, i.e.:

ψk 7→ ψ′
j = eiθata

jkψk , (1.1)

where tajk with a = 1 . . . N2
C − 1 are hermitean generators of the unitary transformations

and the θa are, thus, real fields. Thus, the theory of QCD satisfies gauge invariance if its
Lagrangian density L is invariant under the transformations in Eq. (1.1). Starting from
a Lagrangian density for a freely moving quark, one can obtain a gauge invariant version
by replacing derivatives with covariant derivatives, i.e.: ∂µ 7→ Dµ = ∂µ − igsA

a
µta with

the coupling strength gs and the gluon field Aµ
a , which transforms differently under gauge

transformations Eq. (1.1), cf. Refs. [2, 3] for a more detailed description. For the gluon
field a gauge invariant Lagrangian density needs to be introduced as well. Finally, one,
thus, arrives at the Lagrangian density of QCD,

L = ψ̄
(
iγµ

(
∂µ − igsA

a
µta
)
−m

)
ψ − 1

4
F a

µνF
µν
a . (1.2)

The first term on the right hand side considers the quark parts of the theory: It contains
the Lagrangian of the free quark and, thus, describes its free propagation in the vacuum,
but furthermore also a term that describes the quark-gluon interaction. The second term
on the right hand side represents a purely gluonic part. The tensors F µν

a used in Eq. (1.2)
are defined as

F µν
a = ∂µAν

a − ∂νAµ
a − gsf

bc
a A

µ
bA

ν
c , (1.3)

with the structure constants fabc defined as

[ta, tb] = ifabct
c . (1.4)

Analogues to the first two terms on the right hand side of Eq. (1.3) exist also in Abelian
gauge theories like quantum electrodynamics (QED): In both cases these expressions
result in contributions to the Lagrangian densities that depend on two gluon (photon)
fields and represent the free propagation of the corresponding boson. However, in the
case of QCD, there exists a third term in Eq. (1.3), which results from the non-Abelian
algebra of the generators ta. Its contribution to the QCD Lagrangian density stems from
either mixed products with the first two terms and yield interactions between three gluon
fields, or the squares of the third term, which result in the interactions of four gluon fields.
The fundamental interactions of QCD can be symbolized by Feynman diagrams via the
vertices shown in Fig. 1.1. The fact that gluons carry color charge and can, thus, interact
with themselves (as manifested in the corresponding three and four gluon vertices shown
in Fig. 1.1 or also in textbooks, such as e.g.: Ref. [2]) is strongly conjectured to give rise
to a strong confinement force between partons. Phenomenologically, one could express
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Figure 1.1: Fundamental interaction vertices of QCD: straight lines are quarks, curly lines
are gluons. The direction of time has not been specified in these diagrams, i.e.: anyone
of the possibilities of incoming or outgoing particles is allowed

the confinement of partons within hadrons by a potential that rises approximately linear
with the distance between the partons involved.

After renormalization, the corresponding coupling αs = g2
s

4π
is not a constant: Rather,

it is very large in interactions between partons of small (relative) momentum scales. The
respective processes occur over large time scales and spatial distances and correspond to
the formation of hadronic bound states, or reactions within hadrons.

On the other hand, for partons that are subjected to large momentum transfers ‖∆~p‖
the coupling αs becomes small. In the limit ‖∆~p‖ → ∞ one observes the asymptotic
behavior αs → 0, which is also called asymptotic freedom. For processes involving partons
at large momentum and, thus, small time scales and spatial distances, the coupling is
sufficiently small that a perturbative treatment (pQCD) is suitable: The corresponding
cross sections (and squared matrix elements) can be expanded into a perturbative series
of αs, where the contributions of higher orders in αs are small compared to contributions
of smaller orders in αs

4 .

1.1.2 Exploration of the QCD phase diagram via heavy ion col-
lisions

In QCD color charges are confined within color-neutral bound-states and cannot be ob-
served freely – in contrast to QED, where free electric charges are possible. However,
analogous to electromagnetic plasma, QCD allows for collective states of (quasi-)free par-
tons. This motivates the question, whether such states of matter exist in nature, and/or
whether they can be recreated experimentally out of hadronic bound-states. Thus, it is
meaningful to study the phase-diagram of QCD, cf. Fig. 1.2 for illustration.

For small temperatures T and particle densities (the latter represented in Fig. 1.2 by
the chemical potential µ) quarks and gluons are confined in the bound states of hadrons,
either in nucleon cores or hadronic gases. Creating states of very high temperatures would
–supposedly– allow to recreate the conditions for matter at early stages of the universe,
where it is expected that energy densities were very large. On the other hand, states
of high chemical potential are supposed to exist, e.g. in neutron stars, due to the large
gravitational pressure.

By studying systems of larger and larger T and/or µ one simultaneously approaches
systems of high baryon number densities and energy densities, where partons can no
longer be described as being confined within hadronic bound states. Thus, it is expected
that at sufficiently high T and µ a phase transition or a cross-over to a new state of

4The quark-gluon and three-gluon vertices shown in Fig. 1.1 are both of order O(gs); the four-gluon
vertex of order O(g2

s). Chap. 2 describes a probabilistic approximation to processes in QCD. Therein the
creation of partons from incoming partons are sub-processes that can be decoupled from the rest of the
process – and their individual probabilities can be calculated. This thesis considers only the contributions
to these probabilities that are of leading order O(αs) in the coupling constant. Therefore, contributions
from the four-gluon vertex will be neglected in Chap. 2, while contributions from the other two vertices
will be considered.
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Figure 1.2: Sketch of the QCD phase diagram. At low temperatures T and baryon
chemical potentials µ partons exist only in colorless hadronic bound-states, at high T
and/or µ as deconfined quark-gluon plasma (QGP). The phase transition is expected to be
a cross-over (dashed line) at small µ (with a critical temperature of Tc ∼ 170 MeV for µ =
0), up to a critical point (black dot) and a first order phase transition for higher µ values
(solid line). Several experiments (red texts) have explored the phase diagram, in particular
for large T ranges at µ ≈ 0 (LHC) and around the expected critical point at small µ values
at T ∼ Tc. At very large µ further states of matter, e.g. color superconducting phases are
believed to exist. Figure taken from Ref. [4].

matter occurs. This new phase represents a collective state of a large number of partons
that can move freely over distances d much larger than the typical length scales of their
hadronic bound states, i.e.: d ≫ Λ−1

QCD, perturbed only by scatterings with other quarks
and gluons. This phase is commonly known as quark gluon plasma (QGP). The medium
itself – rather than a mere collection of hadron bound-states – is expected to behave like
a fluid of a large number of particles, quarks and gluons in this case. Thus, at large
timescales after the QGP is created, one should observe the entire medium at thermal
equilibrium. At smaller timescales, where the medium itself is still evolving, one can also
expect phenomena like a collective flow of partons within the medium. One can also
define locally thermal equilibrium and, thus, temperature within the QGP. Particles that
enter the QGP experience forces of drag and (stochastic) deflection (cf. Sec. 1.2 for an
overview of corresponding observables of incident heavy quarks).

In order to recreate the QGP experimentally, collisions between heavy ions (i.e., here:
atoms of a high mass number, stripped of all the electrons) were performed. Cu-Cu, Au-
Au, and Pb-Pb collisions with center of momentum energies up to

√
s = 200 GeV were

performed at the RHIC experiment. At the LHC Pb cores were collided at
√
s = 2.76,

and 5.02 TeV.
One crucial question is, how the QGP phase, once produced, can be accessed ex-

perimentally, since this state is very short lived and subsequently decays into multiple
hadrons. Charm and bottom quarks (in the remainder of this thesis also referred to as
”heavy quarks”)5 together with the resulting hadrons provide interesting probes of the
QGP medium: Due to their large masses heavy quarks are most likely produced in the
initial hard collisions of the incoming nucleons. Therefore, it can be assumed that they
are created before the formation of the QGP, and pass through the entire medium. Be-

5Top quarks cannot be considered in the same way for the study of QGP: Their masses are even larger,
but consequently, they rapidly undergo leptonic decays, before they can pass the medium. Strange quarks
on the other hand do not have a sufficiently high mass: It can be expected that they are produced – and
may even thermalize – within the medium.
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cause of their large masses they also have large inertia compared to light partons, and are
therefore less likely to thermalize within the medium. Nevertheless, since they are colored
particles as well, heavy quarks can interact with partons of the medium.

Heavy quarks experience forces of drag and diffusion, when passing the QGP-medium.
Therefore, an interesting observable for the study of the QGP is the in-medium energy-loss
of heavy quarks, which is briefly discussed in the next section 1.2.

Finally, also light partons of sufficiently large momenta will not thermalize within the
medium. Thus, in addition to heavy quarks also hard partons or even parton cascades
radiated from heavy quarks provide suitable probes of the QGP, for the same reasons,
and will be discussed later on.

1.1.3 Hard Probes for QGP

The QGP is a thermalized medium. Therefore, color charged particles that enter the
QGP can thermalize with the medium as well, i.e.: lose as much of its initial information
such as their four-momentum that they become indistinguishable from medium particles.
Thus, sensitive probes of the QGP need not only to be able to interact with medium
particles (in order to allow to investigate processes within the medium). They also need
to be chosen in such a way that these interactions with the medium cannot be expected
to lead to a thermalization of the probe itself.

These two requirements are fulfilled by so called hard probes: They consist of strongly
interacting particles that possess sufficiently high energy, much larger than the temper-
ature of the QGP-medium, so that they do not thermalize. Due to these high energy
scales it can be expected that they are created in the hard collisions at the early stages
of heavy ion collisions. This property makes hard probes particularly useful for stud-
ies of the space-time evolution of the QGP as well as of cumulative medium effects on
the propagation of the hard probe. At least the following types of hard probes can be
identified:

1. charged (light) partons at high energies that result in light hadrons,

2. heavy quarks and the resulting heavy hadrons,

3. jets, i.e.: multiple highly energetic heavy and/or light particles (described below).

While light partons can be produced anywhere in the medium, heavy quarks can only
be produced at energies above a threshold of twice the quark masses: The charm and
bottom quark masses correspond to so called pole masses of mc = 1.67 ± 0.07 GeV and
mb = 4.78 ± 0.06 GeV, respectively (values taken from Ref. [5], p. 804-806). The high
energy densities necessary for heavy quark productions are provided in the early stages
of heavy ion collisions.6

Jets: Within pp or heavy ion collisions hard subprocesses occur, which emit large
numbers of hard particles that propagate strongly collimated around a specific direction.
These sets are called jets in order to distinguish them from the thermalized particles of
the medium and remnants of the colliding particles.

Given a set of final particles in an experiment, one needs a precise definition of a jet
that allows to establish a criterion to identify jet particles and construct the corresponding

6This argument works for QGP-media with temperatures T in the range Tc ≤ T < 2mc, 2mb. Since
Tc ≪ mc, mb ( Tc ∼ 170 MeV, cf. subsection 1.1.2) there exists a large range of temperatures and, thus,
different QGP media that can be studied with heavy quark probes, as described in this section.
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jets. There exist different definitions and, thus, different algorithms that allow to identify
jets among the final particles of a heavy ion collision in experiment/in a simulation, such
as, e.g., the kt algorithm [6, 7], anti-kt algorithm [8], the Cambridge-Aachen algorithm [9,
10], the clustering algorithm of the JADE-collaboration [11], the SISCone algorithm [12],
or the cone algorithm of Ref. [13].

The production of jets can be attributed to the emission of hard partons in heavy ion
collisions, which then generate a cascade of particles, both via emission of bremsstrahlung
(which can happen in the medium as well as in the vacuum) as well as interactions with
the medium (in the remainder referred to as jet-medium interactions).

The study of heavy quark jets (i.e. jets containing heavy quarks), instead of the study
of individual heavy quarks, can provide additional information about jet-medium interac-
tions and QGP evolution: Heavy quarks radiate light partons. Thus, correlated pairs of
heavy and light particles are produced within heavy quark jets. The initial correlations
of these particle pairs are, however, affected by subsequent jet-medium interactions.

For the work of this thesis two-particle correlations were calculated from the particles
obtained from parton showers, which are simulated in the vacuum by means of Monte-
Carlo simulations of the so called DGLAP equations (cf. Chap. 2). Some modifications for
jets in the medium are introduced later on in Chap. 3. The finally obtained two-particle
correlations – for the vacuum as well as for the medium – are presented in Chap. 4.

In the current chapter, Sec. 1.2 focuses on the observables and theoretical approaches
concerning individual heavy quarks (and the resulting hadrons). Sec. 1.3 introduces two-
particle correlations as promising alternative observables. In order to construct them, it is
however necessary to describe the production of multiple particles in heavy ion collisions,
in particular jets, and Sec. 1.4 will describe some theoretical approaches (in particular
the DGLAP equations in subsection 1.4.2). Sec. 1.5 summarizes this short overview on
the phenomenology of heavy-ion collisions and introduces the structure of the remaining
part of this thesis.

1.2 Heavy-quark-energy loss in a medium

1.2.1 Nuclear modification factor

Particles passing through a medium with high momenta can lose part of their energy and
3-momenta due to interactions with medium particles. By consequence, some of those
particles may remain inside the medium. On the other hand, particle suppression can
indicate whether a QGP medium is produced in processes involving high temperatures or
particle densities, e.g., in particular heavy ion collisions. One can quantify this suppression
of the number of particles7experimentally by means of the so called nuclear modification
factor. In case of heavy ion collisions (AA) this is the ratio of the production yield NAA for
a particular type of hadrons (e.g.: pions, open heavy flavor mesons, quarkonia) in heavy
ion collisions and the corresponding production yield in proton-proton (pp) collisions,
where supposedly the particles do not pass a medium.8 Thus, the nuclear modification

7Phenomena like the Cronin-effect or heavy quark productions in a QGP-medium can also account for
an enhancement of the number of particles. These effects are visible in the nuclear modification factor as
well, e.g.: in cases, where RAA > 1.

8An analogous ratio RpA for heavy ion collisions with protons (pA) or deuterons (dA) is also measured
experimentally. This ratio can quantify the effects of the interactions between the hard probes and the
nucleon remnants of the heavy ion, which is often referred to as cold nuclear matter (CNM) effects.
Another observable that reflects these phenomena is given via the forward to backward ratio RF B (cf.,
e.g., Ref. [14] for J/Ψ results).
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factor can be defined in the following form

RAA =
NAA

〈TAA〉σP P

, (1.5)

where 〈TAA〉 [15] is the nuclear overlap function and σP P is the cross-section for pp colli-
sions that yield the corresponding particles. Eq. (A.1) represents a general definition of
the nuclear modification factor. Actual experimental data, however, specify the nuclear
modification factor as functions of the particle 3-momentum components orthogonal to
the beam axis of pp or heavy ion collisions, pT , or as functions of either both pT and
rapidity y for heavy particles or of pT together with pseudorapidity η = − ln(tan(θ/2))
(where, here, θ is the polar angle with the beam axis), for charged (light) particles. In
those cases, the production yield and the cross-section differentiated with regard to pT

(and η) replace the corresponding quantities in Eq. (A.1), cf. the definitions given in Refs.
[16] and [17]. Furthermore, in order to study the dependence of particle suppression on
particle density in the medium (and, thus, further explore the QGP phase-diagram), it is
interesting to specify RAA with regard to the number of nucleons that participate in the
heavy ion collisions. A related quantity is the centrality C, which is given via the overlap
area of the incident heavy ions, cf. Ref. [18] for a definition. Then, the nuclear modifica-
tion factor can be calculated individually for different centrality classes, cf. the definition
in Sec.3̃ of Ref. [19]. Alternatively, the number of participants Npart can be deduced from
the centrality of the collision. Consequently, the nuclear modification factor can also be
studied as a function of Npart. Fig. 1.3 shows experimental data on RAA as a function
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Figure 1.3: Nuclear modification factor RAA as a function of pT obtained from ALICE [20]
and CMS [21] data on non-prompt J/Ψ-meson production, and from ALICE data on
prompt D-meson production [22]. Figure taken from Ref. [17].

of pT for both, the charmonium J/Ψ (which are a good proxy for B mesons; see discus-
sion below) as well as D mesons. While the so-called prompt mesons – in Fig. 1.3 these
are the D-mesons – are directly produced by the hadronization of their parton content,
non-prompt mesons are the decay products of other hadrons. The non-prompt J/Ψ are
weak decay products of an intermediate B-meson, which is created by the hadronization
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of b quarks. Due to the long life-time of the B meson, it can be assumed that its decay
happens outside of a tentative QGP medium. Thus, the RAA values for non-prompt J/Ψ
represent an estimate for the suppression of b-quarks due to interactions with the medium,
while the suppression of c (and also c̄) quarks can be studied by the RAA values of the
prompt D mesons.

In general, maximal RAA values can be observed at small pT – below 5 GeV in the
concrete example. With increasing values of pT , particle suppression strongly increases,
e.g. D meson production undergoes a minimum at pT ≈ 10 GeV in Fig. 1.3. This kind
of behavior can be expected, if the incident hard particles undergo additional processes
of energy loss in the medium: Then, compared to the particle production outside of a
medium, more particles will be found at small pT and fewer at higher pT . For even higher
pT values RAA slowly increases again, which is clearly visible in the case of D-mesons
above 1 GeV, while for the J/Ψ this situation is not so clear cut in Fig. 1.3, due to
insufficient amounts of experimental data. Studies of the RAA of charged particles by
CMS [23] found that for high pT values, up to 100 GeV, the nuclear modification factor
rises strongly and approaches 1 in some cases. An asymptotic behavior RAA → 1 for high
pT values has also been found theoretically [24].

The RAA data shown in Fig. 1.3 was obtained for collisions in the centrality classes
0 − 20% and 0 − 50% for the J/ψ and 0 − 10% for the D-mesons. Comparisons with
values of RAA for less central collisions, as they were performed, e.g. in Ref. [22], show
that the D mesons are more suppressed in central collisions. Ref. [17] also shows the
corresponding RAA values as a decreasing function of Npart. This behavior corresponds
well to the picture that the number of interactions of the corresponding heavy quark with
the medium increase for a denser phase of a medium (i.e.: when Npart is larger). Ref. [17]
concludes to an effect of the quark masses, since the mesons originating from b quarks
appear to be less suppressed, as those stemming from c quarks. However, it is also noted
therein that a definitive conclusion can not be drawn at the moment, due to the large
error bars of the RAA values.

1.2.2 Azimuthal anisotropy and Elliptic flow

A tentative QGP medium created in heavy ion collisions does not necessarily have to be
spherically symmetric in space. In particular, spatial anisotropy is to be expected for more
peripheral collisions, where already the overlap of the incident heavy ions is of lenticular
shape, with its largest extension orthogonal to the event plane (which is defined by the
directions of the impact parameter and the beam axis). For heavy quarks (the same is true
for jets) it can be assumed that they are created directly in the heavy ion collision, due
to the high energy threshold necessary for their production. Thus, they travel through
the entire medium. Therefore, it can be expected that this kind of spatial anisotropy
translates into an anisotropy in their final state momenta. A study of these anisotropies
represents an interesting tool in order to quantify the relative importance of different
mechanisms of in-medium energy loss: As Ref. [19] notes, theoretical approaches predict
that parton-energy loss depends linearly on the in-medium path-length for collisional
processes, and quadratically for radiative processes (cf. also subsection 1.2.3.3).

In order to access the corresponding azimuthal anisotropy experimentally, one can
study the distribution d2N

dpT dφ
, where pT are particle-momentum components transverse to

the beam axis with azimuthal angle φ, and, in particular, its Fourier expansion with regard
to φ (For a definition in form of the corresponding equation cf., e.g.: Ref. [25]). Thus,
this Fourier expansion is given as the sum of a uniform distribution over the azimuthal
angle φ and corrections to this isotropic radiation from higher order coefficients vn. For
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non-central heavy ion collisions, the second Fourier coefficient v2, the so called elliptic
flow, is the dominant contribution of all the deviations from the isotropic behavior.

Positive v2 values can be attributed to different phenomena: Mostly at low pT scales
they also reflect collective phenomena of the QGP-medium, such as, e.g. its anisotropic
expansion. However, at high pT scales, positive v2 values can be interpreted as a result of
azimuthally anisotropic energy loss.9
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Figure 1.4: ALICE data [25, 26] on elliptic flow v2 for Pb-Pb collisions in the 30 to 50 %
centrality class at

√
sNN = 2.76 TeV as a function of pT obtained from charged particles

and prompt D-mesons. This figure was taken from Ref. [19].

As an example Fig. 1.4 shows elliptic flow data for prompt D mesons as well as for
charged particles both created in semi-peripheral Pb-Pb collisions at

√
sNN = 2.76 TeV.

The data for charged particles strongly increases at small pT values and reaches a max-
imum of v2 ≈ 0.3 around pT ≈ 3 GeV, but falls off for higher pT values. However, it
decreases only slowly for pT values above 7 GeV and, thus, retains a residual positive v2

value at higher pT scales. While there are fewer experimental values available for the case
of D mesons, data also agrees in that case with comparable v2 values around v2 ≈ 0.2 at
similar pT scales.

Fig. 1.4 confirms in almost all cases the expectation of a positive, non-vanishing v2.
Thus, the image that in directions of the event plane (in-plane) parton propagation is
less suppressed than out-of-plane. In general small positive v2 values were observed (at
least for small pT ) in several different systems, e.g. in heavy ion collisions of

√
sNN =

200 GeV at the RHIC experiments STAR and PHENIX (while for smaller energy scales
of
√
sNN = 62.4 GeV and

√
sNN = 39 GeV values compatible to 0 or even slightly negative

can be observed as well.). Elliptic flow values obtained from both, RHIC as well as
ALICE data, are larger for more peripheral collisions – At least this behavior is true up
to semi-peripheral centrality classes, where the RHIC data exhibit the maximal v2 values.

9Alternatively, azimuthal anisotropy can also be studied by means of a comparison of 2 different nuclear
modification factors: One obtained from particles that travel in the direction of the event plane and
another one for particles propagating orthogonal to the event plane. A difference in these 2 modification
factors corresponds to azimuthal anisotropy and is directly correlated to a non-vanishing value of the
elliptic flow, as Ref. [19] notes.
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1.2.3 Theoretical approaches to energy loss of individual parti-

cles

On the one hand, this subsection is intended to give an overview of some of the theoretical
approaches to parton energy loss in the medium, in particular heavy quark energy loss.
On the other hand, its first part, sub-subsection 1.2.3.1, serves also as a basis for the
effective models of parton-medium interactions presented in Chap. 3.

Sub-subsection 1.2.3.1 introduces the notion of transport equations, but focuses almost
exclusively on the Langevin-equations (since the models of Chap. 3, in particular the one
outlined in Sec. 3.2, can be understood in this context). Thus, it should be noted here,
that there exist other forms of transport equations, such as the more general Boltzmann-
and Fokker-Planck equations. Furthermore, these transport-equations are also used by
theoretical approaches to in-medium energy loss, e.g. the one of Refs. [27, 28], which re-
produced for open heavy flavors the shapes of the RAA and v2 data from RHIC reasonably
well in Ref. [27] and gave predictions for LHC data in Ref. [28].

In order to demonstrate the usefulness of transport equations, in particular the Langevin-
equations, sub-subsection 1.2.3.2 cites an example of an approach based on this framework,
together with a complementary approach, both however within the framework of QCD. An
important interference effect for medium-induced parton radiation, the so-called BDMPS
effect is then introduced in sub-subsection 1.2.3.3. While this effect was originally found
for the propagation of individual particles in the medium, it also plays a role for the prop-
agation of jet-particles, where an analogous description can be found. The BDMPS effect
will, thus, also be discussed in Sec. 1.4. Approaches that consider in particular the effects
of a strong QCD-coupling and go beyond pQCD, are outlined in sub-subsections 1.2.3.4
and 1.2.3.5. Sub-subsection 1.2.3.6 gives a summary on this subsection.

1.2.3.1 Summary on transport equations

A general analytic framework to describe particle energy-loss in a medium relies on trans-
port equations. In these kind of approaches the interactions between an incident particle
and the thermalized medium it traverses are represented by effective forces (encoded by
the transport coefficients) acting on the incident particle.

Transport equations approximate the interaction of the medium with the incident
particle as continuous force fields. Thus, these kind of approaches are valid, if the time
after which the Brownian particle is at thermal equilibrium, the relaxation times τQ, are
much larger than the duration of the interaction τ0, i.e.: τQ ≫ τ0. One can use the
estimate τQ ≃ m

T
τeq, as Ref. [17] notes, where m is the mass of the incident particle, T is

the medium temperature, and τeq its equilibration time. Thus, for heavy quarks produced
in heavy-ion collisions [17] with large heavy quark masses (and temperature scales of the
order of several 100 MeV) , the relaxation time can be estimated to be larger although
not much larger than typical values of τ0 (estimated here to be of the order of ∼ 1

T
).

Langevin equations take the following form

dpi

dt
= −ηDp

i + ξi(t) , (1.6)

where pi are the components of the Brownian particle three momentum ~p. Thus, the
forces described by Eq. (1.6) consist of a drag force acting in the opposite direction of

the incident parton momentum as well as a stochastic force ~ξ. The strength of the drag
force is given by the transport coefficient ηD. The stochastic force ~ξ represent the random
collisions that the Brownian particle undergoes when passing a thermal medium. Thus,
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the values of ~ξ are random. However, their distribution over time has to obey the condition
〈
ξi(t)ξj(t′)

〉
= bijδ(t− t′) , (1.7)

with bij = κδij for non-relativistic particles in a locally isotropic medium and bij =
κL

pipj

‖~p‖2 + κT

(
δij − pipj

‖~p‖2

)
for a relativistic particle in the same type of medium. κ, or,

respectively κL and κT are called diffusion coefficients. For a medium at rest, one has to
demand furthermore that 〈ξi(t)〉 = 0 for all i.

For media at thermal equilibrium the drag and diffusion coefficients can be related by
means of the Einstein relation. For non-relativistic particles one obtains

κ = mηDT , (1.8)

and for relativistic particles (cf. Refs. [29, 30])

ηD(~p) =
κL(~p)

2Tp0

+O
(

1

‖~p‖

)
. (1.9)

1.2.3.2 pQCD based energy loss descriptions

Two particular approaches to the calculation of heavy quark in-medium energy-loss are
briefly explained. Both of them describe the interactions between the heavy quark and the
medium particles in the framework of pQCD, but attribute the energy loss to different
processes: The first one calculates the transport coefficients κL, κT and ηD that were
discussed in the previous sub-subsection 1.2.3.1 from processes of collisional energy loss.
The second one considers both collisional as well as radiative energy loss, but only a single
scattering that represents the interaction with a very dilute medium.

Parton energy loss can be calculated from the changes of heavy quark momenta over
time described by transport equations. Ref. [31, 32] calculates the κL/T of incident heavy
quarks as the average momentum transferred per time in longitudinal/transverse direction
from the medium to the heavy quark from the matrix elements of elastic 2-2 collisions
(neglecting radiative collisions) with quarks and gluons in pQCD. The average number
of these collisions per time step is given by either a Bose-Einstein or a Fermi-Dirac dis-
tribution, as the QGP-medium is assumed at thermal equilibrium. For small momentum
transfers, gluons, exchanged with the heavy quark, have long wavelengths. Thus, medium
effects need to be resummed at these scales. Ref. [32] considers the transport coefficients
κL/T as the sum of a contribution from collisions with hard intermediate particles, where
the matrix elements of 2-2 scattering are obtained from the corresponding diagrams in
pQCD, and a contribution from collisions with soft gluon exchange, where the matrix
elements are resummed in the Hard Thermal Loop (HTL) approximation [33]. The drag
coefficient ηD is obtained from κL/T via the Einstein relation Eq. (1.9) [29, 30].

Refs. [33–40] describe collisional as well as radiative in-medium energy loss in a dilute
QGP medium in thermal equilibrium. Thus, the interactions with the medium are – at
leading order – considered as the interaction of the incident particle with a single medium
parton as scattering center, which leads, in case of radiative energy loss, to the radiation
of a single gluon. For the description of intermediate gluons HTL propagators are used
in order to resum soft medium effects. From the matrix elements of the interaction
the spectrum of the energy lost by the incident particle can be calculated, and, thus,
the fractional energy loss ∆E/E. In comparison to the static DGLV approach [34, 35]
the approach of Refs. [36, 37] represents an extension to a dynamical QCD-medium.
Therein, recoil effects were studied for an optically thin medium. Finite size effects (i.e.:
consequences of the finite extension of the QGP medium.) and magnetic mass effects are
considered as well.
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1.2.3.3 BDMPS formalism

The Landau Pomeranchuk Migdal (LPM) [41, 42] effect refers to the suppression of
medium induced radiation for a highly energetic particle that interacts with the medium
via multiple scattering. Baier, Dokshitzer, Müller, Peigné, and Schiff (BDMPS) explain
this kind of behavior by interferences between the different possible processes of interac-
tions between the incident particle and the medium (examples are depicted in Fig. 1.5).
This description was first used to describe photon radiation from an electron antenna in a
QED medium in Ref. [43] and then for gluon radiation in a hot and dense QCD medium
in Ref. [44].

x x

x

x x x

x

x

Figure 1.5: Diagrammatic depiction of gluon radiation of a quark line in the medium.
Both gluon (curly line) and quark (arrows) undergo scatterings off medium particles (X
symbol). The gray oval represents the formation time of the gluon. Left panel: BH-regime
of radiation; Right panel: coherent radiation from 3 scattering centers.

Ref. [44] calculates in pQCD the radiation intensities ω dI
dω

for the emission of a single
gluon from a quark that scatters from N static scattering centers before it leaves the
medium after a length L. The formalism is based on the assumption that the radiated
particles is sufficiently soft to allow for the factorization of the scattering and the radi-
ation parts in the matrix element. In order to decide whether interference effects (from
multiple amplitudes for radiations between different scattering centers) play a role, the
formation time tform of the gluon was compared to the mean free path length λ = L

N
of

the quark. In case tform < λ the Bethe-Heitler (BH) regime of independent radiation is
obtained. Otherwise, if tform > λ, the formation of the gluon happens simultaneously to
the scattering from a certain number ν (estimated in Refs. [45, 46]) of scattering centers,
which is ω-dependent. In this LPM regime of coherent radiation, interferences between
the ν corresponding amplitudes suppress induced radiation. BDMPS identified the BH
and LPM regime by introduction of a dimensionless parameter (here for the QCD case)

κ =
λµ2

2ω
, (1.10)

where µ is the Debye mass of the medium. If κ > 1 the BH behavior applies, in case κ≪ 1
the LPM effect. BDMPS also specify a further, different radiation behavior for gluons
that are radiated above a certain energy scale ωfact, i.e.: ω > ωfact, the factorization limit.
In this regime λ > L and, thus, the gluon is radiated coherently from all N scattering
centers, i.e.: ν = N . Summarizing, one finds, with regard to the energy of the emitted
gluon ω, 3 different energy intervals that correspond to the 3 different radiation behaviors:
ω < ωBH ∼ λµ2 for the BH regime, ωBH < ω < ωfact ∼ µ2L2

λ
for the LPM regime, ω > ωfact

for radiation above the factorization limit.
In order to quantify the LPM suppression BDMPS showed for the QED case [43],

that in the LPM regime induced radiation is produced by ν scattering centers instead of
a single one, as in the BH case (illustrated in Fig. 1.5). Thus, they found the following
relation between the corresponding radiation densities

(
ω

dI

dωdz

)

LPM

≈ 1

ν

(
ω

dI

dωdz

)

BH

, (1.11)
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where z represents in this particular case the distances along the path of the electron
propagation. BDMPS found an analogous behavior for the LPM radiation density in the
QED and QCD cases, which, for the QCD case, reads, for ωBH < ω < ωfact, as

(
ω

dI

dωdz

)

BDMPS

=
3αs

2π

CR

λg

√

κ̃ ln
(

1

κ̃

)
with κ̃ =

2CF

NC

κ , (1.12)

and where λg = λCF

Nc
is the gluon mean free path length. This behavior leads to a total

in-medium energy loss proportional to L2 for all energies of the incident quark above
a critical value ωfact = L2µ2

λ
, the factorization limit. Below this scale, the energy loss

increases linearly with L.
If one wants to describe the propagation of heavy quarks, one has to take into account

that the large heavy quark mass mQ leads to sizable additional phenomenological conse-
quences. A prominent feature is the so called dead-cone effect [47]:This is the phenomenon
that heavy quarks of energy E can only radiate gluons at branching angles θ >

mQ

E
or

larger – outside the so called ’dead-cone’. This statement holds for heavy quark frag-
mentation in the vacuum. However, the interplay of the dead-cone effect with medium
induced radiation, as described by the BDMPS formalism, may give rise to additional
effects. Thus, it has been argued that interactions with the medium can lead to radiation
inside the dead-cone [48].

1.2.3.4 T-matrix approach

In contrast to the methods described in the previous two subsections the T-matrix ap-
proach [49–51] goes beyond pQCD calculations. It approximates the interactions of a
heavy quark with the medium via scatterings within an effective potential V (~p ′, ~p) with
the ingoing (outgoing) heavy quark momenta ~p(~p′) in the center of mass frame. The T-
matrix approach is well suited to describe also non-perturbative effects, since the effective
potential V (~p ′, ~p) can be modeled accordingly.

The T-matrix for the two-body interaction is calculated by means of a Lippmann-
Schwinger equation (cf. Eq. (15) of Ref. [49]) of the form,

T (E, ~p ′, ~p) = V (~p ′, ~p)−
∫ d3k

(2π)3
V (~p ′, ~k)G2(E, ~k)T (E, ~k, ~p) [1− 2fk] , (1.13)

with the center of mass energy E, the two-particle propagator G2 in the medium and the
Pauli-blocking factor fk. For V (~p ′, ~p) the so called Cornell potential for quarkonia [52,
53] (which can be changed in order to model open heavy flavor states) was used. It is
essential for the T-matrix approach to be able to describe the medium modifications of
the potential, a problem that has not yet been fully resolved. As Ref. [19] notes, the heavy
quark free and internal energies calculated in lattice QCD have been used previously as
limits for the potential V (~p ′, ~p).

Once the T-matrix is obtained from the Lippmann-Schwinger equation, one can cal-
culate the drag and diffusion coefficients of the medium. They were found to approach
the perturbative results at high momentum scales.

The T-matrix approach is particularly suitable for the treatment of the interactions
of the heavy quark with the medium at non-perturbative scales. As Ref. [19] notes, it
can be used to describe both open and hidden heavy flavor systems, in their scattering as
well as bound states: A large contribution to heavy quark in-medium energy-loss stems
from the creation of intermediate excited heavy meson states (e.g.: D-meson resonances
in the case of incident c-quarks), which are formed while the corresponding heavy quark
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passes the medium (represented by the effective potential). Pure pQCD calculations do
not contain this type of contribution to heavy quark energy loss. On the other hand,
since processes of heavy quark energy loss are summarized in an effective potential, it is
not immediately evident how one can identify contributions from collisional or radiative
processes within the T-matrix approach. While such a distinction might not be necessary
in order to describe the energy loss of a single heavy particle, it is important for the
description of (heavy quark) jets (cf. Sec. 1.4).

1.2.3.5 AdS/CFT correspondence

The Anti-de Sitter (AdS)/Conformal field theory (CFT) correspondence, first indroduced
in Ref. [54], conjectures that string theories that are defined on an n+1 dimensional Anti-
de Sitter space10 are linked to a field theory in n spatial dimensions, via a holographic
principle [55]. In particular, if one of the two theories is strongly coupled, the other
one involves only a weak coupling and vice versa. This property makes the AdS/CFT
correspondence a very valuable tool, since the temperatures of the tentative QGP media
produced in LHC or RHIC experiments are of the order of a few times ΛQCD. Therefore,
it can be expected that non-perturbative effects of strongly coupled QCD play still a
considerable role in the interactions of the medium particles.

When the AdS/CFT correspondence is applied to a description of heavy quark energy-
loss an N = 4 super-Yang-Mills (SYM) theory is used instead of QCD as the CFT side
of the correspondence, since no exact dual to QCD has been found yet, while the Type
IIB string theory is the dual to the N = 4 SYM theory [56, 57]. Ref. [58] notes that
both theories allow for plasma-media at non-vanishing temperatures which show similar
phenomenological behaviors.

A heavy quark that is propagating through a medium (on the CFT side of the cor-
respondence) is represented in the five dimensional AdS space via the following system:
First, a so called brane is introduced. By definition, this object extends into four di-
mensions – which leaves open the possibility that further objects are placed along the
remaining fifth dimension. The heavy quark is represented via a string extending in the
fifth dimension with one endpoint close to the brane. The other endpoint is the horizon
of a black hole, which corresponds to the thermal medium. If the endpoint close to the
brane moves, part of its momentum is transferred towards the black hole. Thus, Refs.
[56, 57] obtain a drag-like behavior ṗ = −ηDp. Calculations of Refs. [59, 60] describe
scenarios corresponding to thermal fluctuations. Thus, they obtain also the longitudinal
and transverse diffusion coefficients κL and κT , respectively.

1.2.3.6 Conclusions on theoretical approaches

This subsection briefly introduced some of the many qualitatively different theoretical
approaches towards the mechanisms of in-medium parton energy loss: Already in the
framework of pQCD there exist different approaches that describe the energy-loss in the
medium either via collisional processes alone, or via a combination of collisional and
radiative processes. The energy spectrum of the radiated gluons in the medium can
largely be affected by interference effects, cf. sub-subsection 1.2.3.3. Other models (cf.
sub-subsections 1.2.3.4 and 1.2.3.5) are particularly valid for strong couplings. Further-
more, there exist approaches by Refs. [61–63] that describe hadronization processes (and
processes of decay of the newly formed bound states) within the QGP medium. This
thesis will rather adopt the notion that hadronization occurs outside of the medium: At

10This is a particular type of (curved) space-time with a negative cosmological constant.
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the very least the incident hard partons are considered at momentum scales that are suf-
ficiently high to allow for multiple perturbative parton branchings before hadronization
processes that occur on rather long time scales may happen. More importantly, in this
thesis mostly media with temperatures T ≫ Tc are considered. Thus, one can argue that
bound states do not form inside these media, much in contrast to media where T ∼ Tc.

Merely with regard to the number of different approaches to parton-energy loss in the
medium, it is necessary to search for observables that put constraints on these models.
Since the models also emphasize different phenomena, one could learn, by means of these
kinds of conditions, about the relative importance of the contributions to in-medium
energy loss, and in particular about the role of collisional and radiative processes. To this
end, the next subsection is centered around a combination of the observables RAA and v2.

1.2.4 Comparisons

As a short motivation of the work of this thesis results for both RAA and v2 obtained
from different theoretical models of in-medium energy loss – based on either collisional or
a combination of collisional and radiative processes – are shown in Fig. A.2 as functions
of pT in comparison to experimental values [64].

The experimental data for RAA show a steep decrease for pT < 5 GeV. For pT > 5 GeV
the suppression is stronger (RAA < 0.5), with only slight variations. This qualitative
behavior is reproduced quite well, by almost all of the theoretical models considered,
except for the results by WHDG [65, 66] and Vitev et al. [61], where only RAA values for
pT > 3 GeV, or, respectively pT > 4 GeV is shown. Fig. A.2 shows for the experimental
data of v2 small, positive values up to pT = 11.5 GeV (the only remaining data point would
allow for vanishing elliptic flow as well). Most of the depicted theoretical results exhibit a
maximum around pT ≈ 3 GeV and decrease for higher pT – a qualitative behavior that is
consistent with the experimental data. However, the WHDG and POWLANG [32] results
show rather a monotonous increase of v2 with pT than a clear maximum.

For a quantitative comparison between theory and experiment, many sources for the-
oretical uncertainties need to be considered: Notably, there does not exist an universal
consensus among the different approaches about the treatment of heavy quarks at small
energy and momentum scales. Thus, the ignorance about the precise hadronization mech-
anisms has been recognized as an important contribution to theoretical uncertainties, at
least by the URQMD [67], DUKE [68], and POWLANG approaches. For the URQMD
approach, e.g. differences between RAA and v2 values obtained with a coalescence model
for hadronization or the phenomenological Peterson fragmentation function can be as
large as 20% for D-meson production in Au-Au collisions at

√
s = 200 GeV. Another

source of uncertainty is the interaction with the medium at small energy scales. In par-
ticular, models based on HTL calculations, such as MC@sHQ+EPOS2, BAMPS [69–72],
the corresponding version of POWLANG, and the calculations by Djordjevic et al. [37,
73]. use an infrared regulator for the propagators of effective thermal gluons that are
exchanged between the hard probes and the medium. This regulator has the dimension
of a mass and is of the order of the Debye mass of the medium. Its numerical value is
an important source of theoretical uncertainty, as Ref. [27] notes. Other important theo-
retical uncertainties are, e.g. the running of the coupling αs (cf. [27]), in particular the
scale of the coupling (cf. [32]), the uncertainties of shadowing effects (TAMU [74–76], and
DUKE [68]), uncertainties in the PDFs [69–72] 11 . The resulting theoretical uncertainties

11Furthermore, some aspects, such as the consideration of hydrodynamic evolution of the medium (e.g.
[68], [67], [68], [27]), shadowing ([68, 74–76]), or the running of the coupling ([27, 37, 69–73]), differ among
the various models.
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are of the order of magnitude of ≈ 0.1− 0.2 for RAA and of ≈ 0.01− 0.05 for v2.
One can observe a general tendency that models that produce sizable values for RAA,

or even overestimate the experimental results, yield too small v2 values: Thus, if one
focuses only on pT values below 10 GeV/c, no model produces v2 values above the central
values, with the only exception of BAMPS for elastic energy loss12. However, many of
these models overestimate RAA in the same pT region. It can be concluded, that the
combination of both observables, RAA and v2, can serve as constraints of the available
theoretical models. Considering the sizable experimental errors, as well as the aforemen-
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Figure 1.6: Nuclear modification factor (left panels) and elliptic flow (right panels) as
functions of the averaged prompt D-mesons from Pb-Pb collisions in comparison with
different theoretical model approaches, that use either solely collisional (upper panels) or
collisional as well as radiative energy loss. Plots taken from Ref. [19].

tioned theoretical uncertainties, most of the theoretical approaches agree reasonably well
with the available RAA data. Furthermore, most of the models for purely collisional en-
ergy loss also reproduce the experimental data for v2. Among the theoretical models that
consider both radiative and collisional energy loss, only the MC@sHQ+EPOS2 approach
reproduces the v2 data for small as well as larger pT values. If one considers, however,
that the sources of uncertainty mentioned in Ref. [70], can amount to differences in v2

as large as 0.05, one can argue that also the radiative and elastic BAMPS results are
within a reasonable vicinity of the experimental data, at least for small pT values. Since
both, the MC@sHQ+EPOS2 as well as the BAMPS also produce reasonable RAA and v2

values if they consider collisional energy loss mechanisms alone, one has to conclude that
qualitatively considerably different models might lead to comparable results for RAA and
v2.

12However, BAMPS was also calibrated to reproduce the elliptic flow.
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In conclusion, it is mandatory to search for further, discriminative observables, in
order to distinguish between the different energy-loss models. It can be argued that
correlations between two particles that are radiated in the same heavy ion collision and
can be expected to stem from the same hard process are a suitable choice of observable.
In particular, this argument applies to the correlations between two jet particles: First of
all, the number of particle pairs depends on the number of radiated particles inside the jet.
Thus, one can expect that results from models that include processes of induced radiation
are considerably different from those that neglect these types of processes. Secondly, it
is, in principle, possible to generate the necessary experimental data at detector at RHIC
or the LHC, because they obtain from individual heavy ion collisions multiple signals in
different bins (of directions given via the azimuthal angle φ and the pseudorapidity η)
which can be correlated among one another. Lastly, some first results, as e.g. for the
azimuthal correlations shown in Fig. 1.8, already exist.

1.3 Correlations between heavy mesons and light hadrons

As it was shown in the previous sections (cf. subsections 1.2.1 and 1.2.2), the QGP-medium
can be studied by means of observables that are constructed from large sets of individual
particles. Examples are the nuclear modification factor RAA and the elliptic flow v2.
An alternative to these kind of observables consists in two particle correlations, which
are observables constructed from sets of particle pairs of so called trigger and associated
particles.

The trigger is a particle that satisfies a certain condition, e.g. its pT lies within a
certain range and one considers the leading particle (i.e. the one with the highest pT ).
Alternatively, one can also use heavy mesons (i.e. mesons with valence c or b quarks) as
trigger. The advantage of this choice is, that one tags at the same time a heavy quark,
which is most likely created in the initial hard processes following the heavy ion collision,
due to its large mass. The heavy particle can be created in hard collision processes
together with a corresponding antiparticle emitted in the opposite direction (back-to-
back). Also the trigger particle can radiate further (light) particles while passing through
the medium, due to both bremsstrahlung and induced radiative processes – and, thus,
form a heavy quark jet. In all of these cases, there exists a correlation between the trigger
particle and associate particles in the event. The corresponding particles are selected
in the experiment by consideration of either anti-mesons or light hadrons (e.g. pions),
respectively, as associated particles.

Angular correlations can be obtained from the directions of the trigger and associate
particle 3-momenta, which are specified by the pseudorapidity η and the azimuthal angle
φ. Thus, one can construct, e.g., a bi-dimensional distribution

1

Ntrig

d2Nassoc

d∆ηd∆φ
, (1.14)

of the number of associated particle Nassoc (Ntrig is the number of trigger particles) over
the respective differences ∆η and ∆φ in pseudorapidities and azimuthal angles between
a trigger and an associated particle. An example is given in Fig. 1.7: These kind of
correlations show a ridge structure in the ∆η direction as well as a double peak structure
(in case of two-jet events) in the ∆φ direction (cf. also Refs. [78, 79]). The so-called
azimuthal angular correlations are then a contribution

1

Ntrig

dNassoc

d∆φ
, (1.15)
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Figure 1.7: Distribution C(∆φ,∆η) over the differences in the pseudorapidities ∆η and
azimuthal angles ∆φ between trigger and associated particles (with transverse momenta
pt

T and pa
T , respectively). As it is defined in Ref. [77], the distribution C(∆φ,∆η), is

proportional to the bi-dimensional distribution of Eq. (1.14). The data was obtained
from the 10% most central Pb-Pb collisions with

√
s = 2.76 TeV. This figure was taken

from Ref. [77].

from a selected range in |∆η| around ∆η = 0. With regard to this distribution the peak
– as well as the corresponding particles in these directions – around ∆φ = 0 is also called
the ”near side”, while the one around ∆φ = π is referred to as the ”away side”.

Studies of azimuthal angular two-particle correlations are often (cf. e.g. Ref. [80])
viewed as a valuable tool in order to further constrain the mechanisms of in-medium parton
energy loss: Correlations between two particles created in a hard back-to-back emission
allow to gain insight on the total in-medium energy loss, as well as on its dependence on
the in medium path length. Examples are the angular correlations between D-D̄ pairs
(for a theoretical approach cf. Ref. [81]) or the azimuthal angular correlations between a
heavy D-meson and a light hadron radiated in the away side.

Investigations on the near side of azimuthal angular correlations allow to specify the
medium modifications on the propagations of individual jets, e.g. angular jet-broadening
and increased intra-jet radiations.

The correlations between two heavy particles can be described by the individual prop-
agation of each of the two particles. Since light particles – once radiated – do not play
a role in the evolution of the heavy particles, it can be completely ignored, whether the
D and D̄ mesons are part of heavy quark jets. For the description of the correlations
between a heavy – trigger – D-meson associated to any of the light hadrons of a jet,
however, all sufficiently hard light partons in the jet need to be considered. Therefore,
one needs a description for the formation of jets. While the correlations of a pair of two
heavy mesons depend on the deflection and energy loss of the heavy particles, correla-
tions of a heavy-light particle pair also depends on the number of light particles, which is
expected to be larger for radiative than for collisional energy loss. Correlations between
heavy and light particles represent, thus, a promising tool to distinguish between these
different energy-loss mechanisms.

Fig. 1.8 shows measurements from ALICE on azimuthal angular 2 particle correla-
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Figure 1.8: Azimuthal angular two particle correlations between electrons from heavy
flavor decays acting as triggers and associated charged hadrons h obtained from pp colli-
sions as well as Pb-Pb collisions in two centrality classes. The plot represents preliminary
ALICE data from Ref. [80].

tions between D-mesons, represented via electrons from the heavy flavor decay and light
hadrons. The data are obtained either from pp or Pb-Pb collisions. In the latter case data
is shown for 2 different centrality classes, corresponding to the 8% most central as well as
to semi-peripheral collisions. In the data shown in Fig. 1.8 results from pp and heavy ion
collisions overlap within uncertainty bars, as Ref. [80] notices. Thus, it is not yet possible
to draw conclusions about medium effects on azimuthal correlations from these results,
mainly due to insufficient statistics on the heavy ion collisions.

1.4 Heavy- and light-quark jets

As it was pointed out before in subsection 1.1.3 as well as outlined in the previous two
sections 1.2 and 1.3, the study of heavy quark production in heavy ion collisions can
be a useful tool in order to understand the mechanisms of parton-energy loss inside the
QGP medium. The data on heavy meson RAA and v2 still allow for various qualitatively
different models of parton-energy loss, based on either purely collisional processes, or com-
binations of collisional and radiative processes inside the medium, as it was demonstrated
in Fig. A.2 in subsection 1.2.4. As it was mentioned in the previous section 1.3, two-
particle correlations between a heavy and a light particle represent promising alternative
observables to further constrain the mechanisms of in-medium energy loss.

However, in order to obtain theoretical results for these observables, one needs to be
able to describe the production of correlated particle pairs and their in-medium propaga-
tion. To this end, this section will summarize theoretical approaches to jet-production13.
While some of the presented methods apply to jets that contain only light partons, the
main focus of this section is the description of heavy quark jets, which contain the heavy-
light particle pairs that need to be described in order to calculate the corresponding
heavy-light two-particle correlation. The approach that this work takes in order to de-

13Due to the topic of this thesis, this overview on the theoretical approaches to jet-production is
mainly motivated by their possible applications to two-particle correlations. There exist, however, many
further observables that cannot be described only by the production of individual particles. Examples
are event-shape observables, such as the thrust (cf. subsection 2.2.1).
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scribe jets, in vacuum and medium, will be detailed in the subsequent Chaps. 2 and 3.

1.4.1 Heavy-quark production

Inclusive production of a hadron H with heavy quark content in hard processes that occur,
e.g., in pp or pA collisions (with corresponding cross-section σH+X) can be factorized into
the inclusive production of a parton k (with cross-section σk+X) and a fragmentation
function DH

k that describes the production of the hadron H from the parton k 14,

σH+X = σk+X ⊗DH
k . (1.16)

wherein the symbol ”⊗” is a short notation for a convolution of the form

σH+X =
∑

k

∫
dzσk+X(pT , z, µ)DH

k (z, µ) , (1.17)

where the hadron H carries a fraction z of a component of the momentum of parton
k. In the example above, this component is pT , the part of the 3 momentum of k that
is transverse to the beam axis. While both, σk+X as well as DH

k depend on a certain
factorization scale µ, the cross-section σH+X is independent of µ.

The production of parton k can be further factorized into the hard collision of partons
i and j that yields k (represented by the cross-section σij→k+X) and into the productions
of these partons i and j in the collisions of hadrons A and B, i.e.:

dσk+X =
∑

i,j

fA
i ⊗ fB

j ⊗ dσij→k+X . (1.18)

Therein, the parton distribution functions (PDF) fA
i (fB

j ) are the number densities of
parton i (j) inside of hadron A (B).

The above general description of factorization applies to the production of hadrons
without heavy quark content as well. The remainder of this section focuses specifically
on the production of heavy quarks and their subsequent hadronization.

There exist different approaches (cf. Ref. [19]) towards heavy quark production, which
rely on factorization in the form of Eq. (1.18): The fixed flavor number scheme (FFNS)
assumes that the heavy quark Q that yields the heavy hadron H is not an active quark.
The cross-section of its production from the incident partons i and j, σij→Q+X is calcu-
lated at fixed order in pQCD. Using Eq. (1.18) for the factorization of the heavy quark
production (i.e.: for k = Q in Eq. (1.18)), one obtains

dσQ+X(s, pT , y,mQ) =
∑

i,j

∫
dxi

∫
dxjf

A
i (xi, µF )fB

j (xj, µF )dσij→Q+X(xi, xj, s, µF ,mQ, pT , y, µR) , (1.19)

with the Mandelstam-variable s of the collision, mQ the rest mass and y the rapidity of
the emitted heavy quark. The incident partons i and j carry fractions xi and xj of the
momenta of hadrons A, or, respectively, B. The short distance cross-section σij→Q+X

is calculated with a coupling constant given at a certain renormalization scale µR. The
PDFs are given at a certain factorization scale µF .

The short distance cross-section depends on logarithms of the ratios between µF and
the hard scales pT and the heavy quark mass mQ. These logarithms appear at all orders
of the coupling constant in the pQCD calculation of σij→Q+X . In the FFNS the short

14Thus, DH
k contains, in general also non-perturbative hadronization processes.
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distance cross-section is calculated at a fixed order in pQCD. Thus, the logarithms are
included to this order. Therefore, the FFNS approximation is valid if the factorization
scale µF is close to the hard scales. Then, its error is proportional to an inverse power of
one of the hard scales. Hadronization can be included by means of a scale independent
fragmentation function DH

Q (z) that is obtained from phenomenological considerations.
In case pT ≫ mQ, contributions from logarithms of the pT to mQ ratio become large.

Then, instead of the FFNS, one needs an approach that resums these logarithms at all
orders. It is possible to include these terms in the fragmentation functions and PDFs,
which have to fulfill renormalization group equations, the Dokshitzer Gribov Lipatov
Altarelli Parisi (DGLAP) equations (Refs. [82, 83], cf. also Sec. 1.4.2).

Thus, one considers also the heavy quark as an active particle that can undergo frag-
mentation processes. An approach that accounts for the perturbative evolution of the
heavy quark is the variable flavor number scheme (VFNS), where it is assumed that both
the heavy quark and the light partons undergo a perturbative evolution, governed by the
DGLAP equations, until a certain transition scale µT is reached. Then, only the light
partons evolve further. Usually, for the transition scale the heavy quark mass is assumed.

For large enough heavy quark transverse momenta pT it is reasonable to neglect the
heavy quark mass. In this zero mass VFNS (ZM-VFNS), the error of the cross-section

with regard to calculations that consider the quark mass explicitely is of the orderO
(

m2
Q

p2
T

)

(cf. Eq. (4) of Ref. [19]). The general mass VFNS (GM-VFNS) includes mass effects in
the fragmentation functions and is thus valid for all the pT ranges from pT ≪ mQ to
pT ≫ mQ. However, in the GM-VFNS [84, 85] cited in Ref. [19], quark masses are only
considered in the processes of heavy quark production, while they are neglected in the
branchings of heavy quarks.

An approach that is valid from pT ≪ mQ to pT ≫ mQ are fixed order next to leading-
logarithm (FONLL) [86] calculations. They match the cross-sections for the production of
massive quarks (obtained in the FFNS approach) with those of massless quarks (obtained
in the ZM-VFNS approach). Both of the matched cross-sections are calculated up to NLO
accuracy.

From the discussion above it can be concluded that for high scales of heavy quark
momenta, i.e.: pT ≫ mQ, or, equivalently Q ≫ mQ, the fragmentation of a massive
quark can be treated in the same way as for massless quarks. A formal argument, at
least for fragmentation functions calculated at next to leading order (NLO) accuracy,
is given in Ref. [87]. The paper gives the cross-sections for massive quark production
in e+-e− collisions. However, it is argued that a factorization theorem can be applied.
Thus, the entire process can be split in a hard part that contains the e+-e− collision
and depends on the details of the collisional process and a soft part, represented by the
heavy quark fragmentation function, that is process independent. The cross-section of
the entire collision is calculated for large virtuality scales Q≫ mQ as an expansion up to
the first order in the coupling constant αs(Q) (with, however, a mass and scale dependent
first order coefficient). An analogous expansion can be made for the cross-section of
the hard subprocesses. In both cases, terms of order m2

Q are neglected. In case of the
total process, the collinear singularities are cut off by the quark mass, which leads to

collinear logarithms of the form log
(

Q2

m2
Q

)
. For the hard subprocess, the MS-scheme is

used as a renormalization prescription. Both cross-sections are matched according to the
factorization theorem. The dependencies on the heavy quark mass can then be included in
the fragmentation function, while the cross-section for the hard subprocess is completely
mass-independent. Consequently, the fragmentation functions have to fulfill DGLAP
equations as renormalization group equations. The corresponding splitting functions are
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mass-independent as Ref. [87] shows, and were calculated up to NLO accuracy therein.

To Conclude: Using factorization theorems it is possible to separate the emission
of partons from nuclei, their hard collisions and subsequent factorization into heavy quark
jets, represented via the corresponding PDFs, cross-sections, and fragmentation functions,
respectively. They are matched at certain factorization scales. Thus, while the total
result has to be independent of these scales (which is the case if they fulfill the respective
renormalization group equations), the functions that represent the subprocesses depend
on them. Consequently, the cross-section for the hard heavy quark production, σk+X ,
depends on both, a hard scale, given, e.g. by pT (cf. Eq. (1.17)), and the factorization scale
µ. The remaining fragmentation process of the heavy quark (including its hadronization)
can be described via the µ dependent fragmentation function DH

k . For heavy quarks,
where pT ≫ mQ or Q ≫ mQ, the quark masses can be neglected in the description of
the heavy quark fragmentation, as it is done, e.g. in the ZM-VFNS. There exist also
approaches, which consider the quark mass explicitly at momentum scales pT ∼ mQ or
pT ≪ mQ, but neglect it for pT ≫ mQ, e.g. the GM-VFNS of Refs. [84, 85] or FONLL.

Furthermore, it has been demonstrated (cf. Refs. [88–90], also Ref. [87]) that the
quark mass can be neglected (at leading order) in the evolution of a heavy quark at scales
Q ≫ mQ. The quark mass independent evolution of the heavy quark fragmentation
functions is governed by corresponding DGLAP equations.

Following the line of argumentation outlined above, in the work of this thesis heavy
quark mass effects are neglected for the evolution of heavy quark jets. For the generation
and evolution of jet-particles in vacuum Chap. 2 outlines an algorithm, which is a Monte-
Carlo approximation towards the –coupled– DGLAP equations of massless quarks and
gluons.

1.4.2 Evolution of parton fragmentation by the DGLAP equa-
tions

The DGLAP-equations [82, 83] are based on the assumption that the cross-section σn+1

of a process that emits a certain number n + 1 of partons can be factorized into the
cross-section σn of a process for the emission of n partons and an additional probability
density for the branching of one of these n particles, the so called splitting function P (cf.
Eq. (5.28) of Ref. [91]), i.e.:

dσn+1 ≃ dσn
dQ2

Q2
dx
αs

2π
P (x) , (1.20)

with momentum fraction x. This probabilistic approach is valid, if the virtuality scales of
the parton that undergoes the additional splitting is small compared to the scales of the
subprocess, represented by σn. Chap. 2 examines this justification in more detail. The
non-vanishing splitting functions at leading order in pQCD are the branchings of a quark
into a quark and a gluon, and those of a gluon into either a gluon pair or a quark and an
anti quark, cf. Ref. [91] for their derivation.

In the following paragraphs it is tried to motivate the DGLAP-equations as a means
to describe the evolution of parton fragmentation functions with virtuality. To this end
the following factorization theorem is assumed for the cross-section σ(Q↑, x) of a process
that emits partons with momentum fractions x of the total momentum of the incident
particles and with intermediate states with maximal virtualities Q↑ (cf. Ref. [87])

dσ(Q↑, x)

dx
=
∑

i

∫ dσ̂i(Q↑, Q, z)

dz
Di

(
x

z
, Q, m

)
dz

z
, (1.21)
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where σ̂i is the cross-section of a hard subprocess that produces a parton i of virtuality
Q with fragmentation function Di. Making use of the initial hypothesis of Eq. (1.20),
σ̂i(Q↑, Q) can be expressed as

dσ̂i(Q↑, Q, z) ≃
∑

j

∫ dy

y
dσ̂j(Q↑, Q

′,
z

y
)

(
δ(1− y)δij +

αs

2π
ln

(
Q′2

Q2

)
Pij(y) +O(α2

s)

)
, (1.22)

with Q′ > Q.
The above Eq. (1.22) has an interesting form: If one understands the cross-section

σ̂i(Q↑, Q, z) as a measure of the probability to find a parton with momentum fraction z
at a virtuality scale Q, the right hand side can be interpreted as its contribution from
processes that produce at a virtuality scale Q′ a parton that

1. is already emitted with a momentum fraction z (the first, delta-function-dependent
term),

2. or has a larger momentum fraction z
y
, and, thus, undergoes an additional splitting

(described in the second term by means of the splitting function Pij(y)), in order
to produce the particle with momentum fraction z

y
y = z, by emission of a particle

with momentum fraction z
y
(1− y),

3. and contributions of higher order in αs.

Eq. (1.22) can be iterated to obtain the cross-sections at scales smaller than Q. In-
ferring from the interpretation of Eq. (1.22) in the list above, such a development of the
cross-section represents processes of multiple consecutive parton branchings, i.e.: partonic
cascades. Chap. 2 will outline a corresponding Monte-Carlo algorithm for the simulation
of parton cascades.

This chapter however deduces the analytic evolution equations of the parton fragmen-
tation functions, the DGLAP equations. To this end, one has to remember that the total
cross-section σ(Q↑, x) needs to be independent of the chosen factorization scale Q. There-
fore, one can insert Eq. (1.22) into Eq. (1.21) and differentiate with regard to ln(Q2) (cf.
explanations in Chap. 4 of Ref. [91]). A comparison of the first orders in ln(Q2) yields

∂Di(x, Q, m)

∂ ln(Q2)
≃
∑

j

∫ dz

z
Dj(

x

z
, Q, m)Pij(z) . (1.23)

This equation is the general form of the DGLAP equations: They describe for partons of a
certain type (e.g. partons i, j ∈ {q, q̄, G}) the virtuality evolutions of their fragmentation
functions. Thus, for a given incident particle of a certain virtuality Eq. (A.3) allows to
obtain the parton number distribution with regard to momentum fraction x at smaller
virtuality scales. A Monte-Carlo approximation of the DGLAP-equations for the parton
fragmentation functions allows to simulate the creation of particle showers from a single
incident parton.

Several event generators for the simulation of particle cascades from pp, pA, or AA
collisions, use Monte-Carlo algorithms of the DGLAP equations. However, they mostly
differ with regard to how they generate the incident partons, how they interact with
a medium (if such a medium is present), and how hadrons are formed by the cascade
partons. Hadronization processes occur at low virtuality and momentum scales and,
thus, perturbative calculations in QCD can no longer be applied. Different models exist.
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1.4.3 Monte-Carlo simulation of particle showers and hadroniza-

tion

This subsection gives, together with the two examples of PYTHIA and HERWIG, a short
overview on Monte-Carlo event generators that simulate jet production in pp collisions.15

Many of these programs exploit the fact that the described processes can be factorized
into subprocesses. Then, one can identify in the corresponding Monte-Carlo algorithms
at least the following parts:

1. Production of hard particles: The jets are generated in the interactions of multi-
ple hard partons. The incoming partons of these processes stem from the colliding
hadrons. In the initial stages of the collisions the partons are bound within the
incoming protons. Since a solution of QCD has not been found and perturbative
approaches are not suitable for bound states one has to resort to phenomenological
model approaches, e.g.: The parton momenta are given by means of the respec-
tive parton-distribution functions (PDFs). Also PYTHIA and HERWIG take this
approach.

2. Initial state radiation: The extracted particles can undergo additional branching
processes that can be described in a perturbative approach in a space-like parti-
cle cascade. Since the particles in the cascade follow a space-like evolution, their
momentum scales become increasingly harder.

3. Collisions between the incoming hard particles: These processes happen at hard
momentum scales, so that a pQCD treatment is reasonable, e.g.: one can use the
corresponding pQCD matrix-elements and cross-sections to simulate the momenta
of the outgoing hard particles.

4. Final state radiation: The outgoing hard particles of these collisions evolve in time-
like particle cascades. Since these cascades follow a time-like evolution, the momen-
tum scales of their partons decrease.

5. Hadronization: At small momentum scales the produced partons form hadronic
bound states. Again, as before in step 1, one encounters processes that are not
solvable neither exactly nor perturbatively, but which can be treated within phe-
nomenological approaches, so called hadronization models.

1.4.3.1 PYTHIA [92, 93]

This short sub-subsection on the event generator PYTHIA focuses on its hadronization
model, since this is a part that qualitatively differs from HERWIG, the other event gen-
erator that is discussed in sub-subsection 1.4.3.2 below.

This hadronization model is the so called Lund string-fragmentation model [94, 95],
which was first implemented in the JETSET program that later-on was merged with
PYTHIA. It is based on the assumption that the confining attraction between two par-
tons follows approximately a potential that is linearly rising with the distance between
the particles: This is described by means of a string with a constant energy per length
(typically of the order of 1 GeV/fm) that connects two confined partons, e.g. a qq̄ pair. If
the q and the q̄ move relative to one another, the energy of the string increases linearly

15Often, these Monte-Carlo event generators allow to simulate e+e− or e−p collisions as well. Examples
are PYTHIA and HERWIG (which are also described in this subsection). Due to the context of this thesis
only pp collisions will be discussed in this subsection.
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with the distance between those two partons. If a critical value of the string energy is
reached the string breaks into two pieces. The newly obtained endpoints are interpreted
as quark q1 and anti-quark q̄1 with the corresponding strings between the pairs qq̄1 and
q1q̄, respectively. During the parton propagation this procedure of string breaking is then
iterated multiple times – whenever the string energy is large enough – until one obtains
states, where the relative parton momenta do not allow for further string breaking. These
states are then interpreted as hadrons, in the case of a confined quark anti-quark pair
as a meson (Ref. [93] notes that more complex sets of partons, which are connected via
strings, are possible. Some of them allow also for baryon production.).

1.4.3.2 HERWIG [96–99]

HERWIG [96, 97], as well as its newer implementation HERWIG++ [98, 99]16 use the
cluster hadronization model [100].

In this model, after the parton cascades have evolved perturbatively down to their
infrared cut-off, decays of the gluons into pairs of quarks q and antiquarks q̄ are simulated.
From the so obtained sets of (anti)di-quarks and (anti)quarks, clusters of color-singlet
states are formed. The momenta of these clusters are given as the sum of the momenta
of its parton constituents. In subsequent steps massive clusters can decay into daughter
clusters, that are again, color neutral. In a final Monte-Carlo step, pairs of hadrons are
selected from the individual clusters: For a cluster (q1, q̄2) consisting of the parts q1 and q̄2,
this final step corresponds to the creation of an antiquark-quark or antidiquark-diquark
pair (q, q̄) in the vacuum, the creation of new clusters (q1, q̄) and (q, q̄2) which then form
hadrons. These hadronic bound states inherit conserved properties, such as spin and
flavor from the preexisting clusters.

1.4.4 Medium effects on jets

Subsection 1.2.3 gave a briefly outlined some of the many different theoretical approaches
to the in-medium energy loss of single hard particles. This subsection is intended to give
an overview on the different theoretical approaches that are used to describe interactions
of jet-particles with the hot and dense medium of QGP, in particular those approaches
that were implemented as a Monte-Carlo code for the simulation of jets in the medium.

Many of these models for parton-energy loss involve the following two different mech-
anisms:

1. radiative energy loss, induced by jet-medium interactions. These radiative processes
occur in addition to both, the parton-branching processes that already happen for
partons propagating in the vacuum, as well as

2. collisional energy loss, due to the scatterings of jet-particles off medium particles.
In case it can be assumed that this collisional process can be decoupled from the
rest of the evolution of the jet, it can be described as the elastic scatterings between
jet and medium particles. Energy loss of jet-particles can then be associated to an
energy transfer to the medium. Thus, this thesis also refers to these processes as
elastic energy loss.

In order to provide some general insight into the mechanisms of parton-energy loss in
the different model approaches mentioned in this subsection, Tab. 1.1 specifies for each

16The former was programmed in FORTRAN, the latter in C++, hence the two versions are named
differently.
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of them, whether elastic energy loss or induced radiation (or both of them) is imple-
mented. Besides approaches to jet-medium interactions that have been implemented in a

Medium model(s) Monte-Carlo collisional radiative
BDMPS Q-PYTHIA [101] No Yes
pQCD+AMY MARTINI [102] Yes Yes
pQCD+Gunion-Bertsch+BDMPS JEWEL [103, 104] Yes Yes
continuous effective force YaJEM [105, 106] No Yes

Table 1.1: Non-exhaustive list of Monte-Carlo event-generators for parton cascades in the
medium.

Monte-Carlo code, there exist other theoretical approaches, e.g.: based on a path integral
formalism [107]. By means of this type of approach also the importance of color coher-
ence effects on gluon radiation, and color decoherence in the medium can be studied, cf.
Ref. [108]. Another approach also studies medium effects on color coherence, however
by means of a generating functional for the probability of multiple gluon radiation [109].
Jet evolution in the medium can also be described analytically by means of kinetic equa-
tions [110–112] for a gluon number distribution, which allows to include processes of both
collisional as well as radiative energy loss.

1.4.5 Medium modified parton cascades

The models described in the following paragraphs treat the jet-evolution in medium by
means of parton cascades in a probabilistic approach analogous to the DGLAP evolution
of jets in the vacuum, however with different probability distributions for the processes
involving jet particles.

Although not meant to describe jet evolution, the BDMPS approach introduces various
scales and regimes that should also apply for jet evolution. Thus, several Monte-Carlo
algorithms use the BDMPS approach: Q-PYTHIA [101] uses a medium correction to the
splitting functions in the vacuum that reproduces the BDMPS radiation-spectrum. In
JEWEL 2.0.0 (cf. Ref. [104] for the physics, for the manual consider Ref. [113]) probability
densities for both, elastic scatterings as well as for jet-medium interactions with induced
radiation, are used to select the properties of the outgoing particles in each subprocess (in
addition to the probability densities for the branchings already present in the vacuum).
If a process involves gluon radiation processes on top of multiple 2→ 2 particle collisions,
the number of scattering centers ν is calculated. Following Eq. (1.11), the probability for
the induced radiation process and the ν scattering processes is recalculated. In a final
rejection step it is then decided, whether the subprocess is kept in the particle cascade, or
rejected. PYQUEN [114] allows for coherent medium-induced gluon radiation that follows
an energy-loss described in Refs. [115, 116] which is based on the BDMPS formalism.

1.4.5.1 Q-PYTHIA [101]

This approach is a Monte-Carlo algorithm based on PYTHIA [92, 93]. It assumes that
in the medium the same processes of gluon radiation as in the vacuum, described by the
DGLAP splitting functions Pvac, still occur. However, jet-medium interactions lead to
additional processes of induced radiation, which are accounted for by a term ∆P which
leads to the following total splitting function

Ptot(x) = Pvac(x) + ∆P (x,Q, q̂, L, E) , (1.24)
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which describes the radiation of a gluon with energy (1 − x)E from a branching parton
with energy E. The virtuality of the radiating parton is Q.17 L is the length of the
medium, which exerts a transfer of momentum ~pT transverse to the direction of the
incident parton 3-momentum ~p. This transfer is described by the transport coefficient
q̂ = ‖~̇pT‖. The splitting functions Pvac(x) used by Q-PYTHIA are an approximation of
the DGLAP splitting functions in the limit of soft gluon radiation, where x is close to
1. The medium modifications ∆P (x,Q, q̂, L, E) are deduced from the medium induced
gluon-radiation spectrum in the BDMPS approach.

1.4.5.2 MARTINI [102]

This algorithm performs a Monte-Carlo simulation of the so called McGill-AMY formal-
ism [117–119], a coupled set of Fokker-Planck-type rate equations. Thus, the evolution of

jet-momentum distribution P (p) over time is governed by the transition rates dΓ(p,k)
dk

for
processes, where a parton of energy p loses the energy k.

The transition rates represent both processes of elastic scattering with medium parti-
cles as well as induced radiation. For the elastic processes the transition rates used are
calculated from the matrix elements in pQCD for elastic scattering of a hard jet-parton off
medium particles, and the distribution functions for partons in the medium, where either
a Bose-Einstein or Fermi-Dirac distribution was assumed. For the radiative processes the
Arnold, Moore, and Yaffe (AMY) [120–122] formalism is used. This approach allows for
the analytic calculation of the transition rates of induced radiation for hard partons in a
medium of asymptotical temperatures, due to the strongly ordered scale T ≫ gT ≫ g2T .
The temperature dependence of the AMY formalism is given via both, the Bose-Einstein
and Fermi-Dirac distributions of medium-particles, as well as via thermal masses (and,
thus, thermal parton momenta). In addition MARTINI implements also the conversion
of quarks into gluons and vice versa, due to Compton scattering and, furthermore, also
considers processes involving photon radiation.

1.4.5.3 JEWEL [103, 104]

In its first version [123], JEWEL describes elastic scattering as follows: Cross-sections
σel for 2 → 2 parton scattering processes are calculated. The momentum distribution of
medium partons, n is assumed via a Bose-Einstein or Fermi-Dirac distribution. The times
∆t between two subsequent splittings are estimated from the virtuality and energy of the
intermediate particles and it is furthermore assumed that the intermediate parton behaves
like a free particle that propagates with velocity β. Then the time τ ≤ ∆t between the
splitting and a (tentative) scattering with a medium parton is determined in a Monte-
Carlo selection step from the probability Pno scatt that no scattering occurs during time
τ1, i.e.18:

Pno scatt = e−σelnτ1β . (1.25)

This selection can be iterated for the times τ2, τ3, . . . of subsequent scatterings during the
remaining times ∆t− τ1, ∆t− τ1 − τ2, etc. Once the sum of the τi exceeds ∆t no further
scatterings are simulated for this intermediate particle – however, the process is repeated
for the particles that are created in the splitting of the intermediate particle.

17The notations Q and x were used here for the parton virtuality and energy fraction, respectively,
instead of following the notation t for the virtuality and z for the energy fraction used in Ref. [101]. This
choice was made purposely, because it is consistent with the notation used in Chap. 2.

18It shall be noted that Eq. (1.25) represents only the simplest form of Pno scatt, i.e. when the par-
ton distributions in the medium, and the cross-section are time-independent. However for the sake of
conciseness, this should be the only version that is quoted in this thesis.
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In order to describe the inelastic medium effects Ref. [123] increases the splitting
function by multiplication with a constant (greater than 1).

Further effects are included in later versions of JEWEL. The version presented in Ref.
[104] describes medium-induced radiation via a Gunion-Bertsch type of formalism [124].
Also the LPM-effect has been included.

1.4.5.4 YaJEM [105, 106]

An early version of YaJEM [105] effectively simulates jet-medium interactions by modi-
fications of the four-momenta of cascade-partons: As for JEWEL the time ∆t between
two subsequent splittings is estimated. During this time, parton virtuality is increased.
This virtuality transfer is dependent on the path of a cascade parton in the medium, and
is obtained from a hydrodynamic calculation. Since the estimate for ∆t also depends on
parton virtuality both quantities need to be determined in a self-consistent way. This
virtuality increase will lead to additional splittings in the parton-cascade, and, thus, can
be used to simulate the effects on jets by medium-induced radation. The effective models
of jet-medium interactions used in this work are based on YaJEM in the form given by
Ref. [105].

Later versions of YaJEM contain additional effects, e.g. in Ref. [106] the virtuality
threshold for parton splittings is parametrized as a function of a length- and an energy-
scale. Due to this parametrization, values for the nuclear-modification factor can be
obtained that agree with data from the CMS collaboration [23].

1.5 Conclusions and Perspectives

This chapter was intended as a motivation for studies on the QGP phase of quasi-free
asymptotic partons in general, and the studies of this thesis on the mechanisms of heavy
quark in-medium energy loss in particular.

In many theoretical models the incident particle loses energy in collisions with medium
particles, either by transfer to the medium or by subsequent, induced radiation or by
combinations of both effects. Interference effects, e.g. due to the long formation time of
soft gluons, lead to the suppression of radiation. The relative importance of these two
mechanisms might depend on the momenta of the incident (heavy) particles as well as on
the temperature scales and evolution inside the medium.

In order to obtain phenomenological constraints on the different models, one can
study combinations of the observables of the nuclear modification factor and the elliptic
flow. One can observe a general tendency that theoretical models that overestimate RAA

underestimate v2. However, there exist numerous models that reproduce both observables
reasonably well and, thus, it would prove useful to find additional observables to constrain
the energy-loss mechanisms.

Possible candidates are correlations between heavy and light particles, since they rep-
resent observables related to the gluon emission from heavy quarks and are thus sensitive
to the relative contribution of induced radiation to in-medium energy loss. In order to
obtain the necessary particle pairs, event generators, which simulate particle cascades
produced in heavy ion collisions, can be used.

For the vacuum these tools represent Monte-Carlo simulations of the DGLAP equa-
tions, combined with a hadronization mechanism for the finally obtained partons and a
production mechanism for the initial particles of the cascade. The algorithm used for the
work of this thesis is detailed in Chap. 2.
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For the parton propagation in the medium it was outlined that there exist various types
of algorithms, representing different descriptions of collisional and/or radiative processes.
In a pragmatic approach one can implement effective models that subject incident cascade
particles to continuous forces that can be tuned to mimic both radiative or collisional
energy loss corresponding to given temperature profiles. Medium modifications of the
Monte-Carlo algorithm outlined in Chap. 2 in these kind of effective approaches are given
in Chap. 3: The algorithm for radiative energy loss is based on the YaJEM approach. For
collisional energy loss a similar model will be introduced, as well as a third, hybrid model.
These are three simplistic, yet generic, effective models for the medium modification of
parton propagation. It is, thus possible to change the relative contributions from either
radiative or collisional processes to parton in-medium energy loss within a consistent
framework, and to study the influence of these contributions on jet-observables.

In particular, this thesis systematically explores the effect of considering different types
of energy loss mechanisms on correlation observables. Thus, Chap. 4 studies if energy
loss mechanisms can indeed be constrained by their respective results on two particle
correlations.
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Chapter 2

The Monte-Carlo algorithm for
parton cascades in the vacuum

This chapter summarizes an approach towards the (virtuality) evolution of parton frag-
mentation, represented in the current thesis work by Monte-Carlo simulations of par-
ton showers– as it was done in numerous studies before, e.g. [103, 105, 113], and in
particular for event generators, used to describe proton-proton collisions1, e.g. [92, 98,
125]. The evolution of the corresponding fragmentation functions are described by the
DGLAP-equations [82, 83]. The description introduced is a probabilistic approximation
that considers the probability for each parton branching as being independent from the
other sub-processes within the shower. This assumption requires that subsequent par-
ton branchings are strongly ordered in virtuality. The DGLAP-equations, and thus the
Monte-Carlo algorithm used, describe merely processes of collinear parton branchings, a
type of emission that is however dominant at high enough parton energies.

Furthermore, the current version of the algorithm neglects heavy quark masses and
assumes all parton masses to be 0. Following the reasoning of Sub-subsection 1.4.1, this
kind of simplifying assumption is justified, if the momentum scales of the fragmenting
heavy quarks are considerably larger than the quark masses. This constraint is mostly
fulfilled for the hard heavy quark jets on which this thesis mainly focuses.

After a brief introduction of the variables used to describe individual partons, the
overall structure of the Monte-Carlo algorithm used will be outlined, which further ne-
cessitates a description of its major components, the probability densities for individual
parton branchings, followed by a discussion of their constraints in the particle phase space,
as well as the implementations of these constraints in the algorithm. After discussion of
some tests of the Monte-Carlo algorithm, results of the constructed program are used to
give descriptions on the space and time development of different kinds of parton showers
in the vacuum. To this end, an estimation of the temporal and spatial propagation of
individual partons was considered.

2.1 Description of the algorithm

This section outlines the Monte-Carlo algorithm that is currently implemented, in order
to simulate hard parton cascades in the vacuum.

To this end, subsection 2.1.1, will first of all define all the variables that are necessary
in order to determine the degrees of freedom of the cascade. In particular, the reference
frame in which the parton cascades are defined will be specified.

1Medium-modifications to the Monte-Carlo algorithm that is discussed in this chapter will be intro-
duced in Chap. 3.
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Subsection 2.1.2 explains the global structure of the algorithm. Its physical legit-
imization is discussed afterwards, by detailing its parts: Subsection 2.1.3 gives the prob-
abilities/probability distributions for the selection of the emitted partons and their four
momenta, with great emphasis on the relation of the resulting jet to the DGLAP evolu-
tion ([82, 83], cf. also Sec. 1.4). Then, the phase-space boundaries of the individual parton
splittings are derived in subsection 2.1.4. In particular, the reference-frame dependencies
that these constraints imply will be stressed.

2.1.1 Definitions of variables used in the algorithm

In the Monte-Carlo algorithm employed, partons i are described by their 4-momenta pi.
Vertices differ for quarks and gluons, and thus, possible splitting probabilities. Therefore,
it needs to be specified for any parton in the cascade, whether it is a quark or a gluon (In
this thesis, wherever necessary, quarks and gluons are distinguished by indices q and G,
respectively; The implemented program code uses an additional variable.)2

The particle initiating a partonic cascade is defined by its virtuality Q1 =
√
pµ

1 · p1 µ as
well as the remaining 3 independent components of its 4 momentum p1, which in addition
also specifies the reference frame for the entire cascade. Assuming –in the algorithm– a
4 momentum p1 of the form

p1 =
(
Eini, 0, 0,

√
E2

ini −Q2
1

)
, (2.1)

where Eini ≥ Q1 is the initial jet energy, the 4 momentum pµ
i (µ = 0, 1, 2, 3) of any other

parton of the cascade is specified relative to the first parton via the following 4 quantities

xitot =
p0

i

p0
1

, Q2
i = pµ

i · pi µ ,

pi ⊥ =
√

(p1
i )

2 + (p2
i )

2 , ϕi = arcsin

(
p2

i

pi ⊥

)
, ϕi ∈

[
−π

2
,
π

2

]
. (2.2)

As an alternative to the description via energy fractions xtot, we also considered a descrip-
tion using light-cone-energy fractions

zitot =
p+

i

p+
1

, with p+
i := p0

i + p3
i . (2.3)

Equivalently to using the total (light cone) energy fractions, the 4-momenta of the cascade
particles can be specified by the fractions

z =
p+

b

p+
a

, x =
p0

b

p0
a

, (2.4)

between the (light cone) energies of a parton a that emits a parton b (and parton c
with corresponding fractions 1 − z or 1 − x, respectively). Both, x and z are ratios
of components to parton momenta, and are, thus, reference frame dependent. In the
remainder of this thesis, the convention is adopted that x and z assume the relations
Eq. (2.4) in the same reference frame, in which the parton cascade is simulated, i.e. the
one specified by Eq. (2.1). In other reference frames the dependencies of x and z on the

2An explicit description of particles in color space has not been implemented so far, since for parton
branchings in tree-level pQCD, the color part of the matrix-elements is known to be given by the numbers
CF , CA, and TR in the splitting functions.
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components of the four-momenta of particles a and b is different: Sub-subsection 2.1.4.3
sheds some light on this question. Since equivalent algorithms can be formulated with
either choice of fractions x or z, the following description of the algorithm will refer to the
general case of a momentum fraction χ, except if it is noted otherwise explicitly. Later
on in subsection 2.1.4, the choices of particular momentum fractions χ = x and χ = z
will be made, in order to specify the implementation of phase-space boundaries in the
Monte-Carlo program.

x

z

y

~pa

ϕa

z′

y′

x′

~pc

~p1

ψ

ϕb

ϕc

~pb

Figure 2.1: Illustration of the definitions of angles ϕa, ϕb, ϕc, and ψ: ~p1, ~pa, ~pb, and ~pc

are the three-momenta of the initial parton of the cascade, a branching parton a, and
its decay-products b and c. A global orthogonal coordinate system (x, y, z) with its z-
direction parallel to ~p1 and a local orthogonal coordinate system (x′, y′, z′) with its z′

direction parallel to ~pa are defined. The angles ϕa, ϕb, and ϕc are defined as azimuthal
angles of the momenta ~pa, ~pb, and ~pc in the (x, y)-plane. A construction of these angles
via orthogonal projection of the three momenta on the (x, y) plane is illustrated (dashed
lines). ψ is defined as the azimuthal angle of momenta ~pb and ~pc around the z′ axis (i.e.:
in the (x′, y′) plane.

It follows, that in a Monte-Carlo simulation of partonic cascades, where each parton
splitting is selected individually, a suitable algorithm has to give at least the following
information for each splitting of a parton a into particles b and c:

1. information on the nature of the splitting products of a parton a: If parton a is a
quark, it emits a gluon (q → q + G). If it is a gluon, there are, at lowest order in
αs, 2 possibilities (G → G + G and G → q + q̄). Then it needs to be determined,
whether the resulting partons b and c are quarks or gluons (so far no distinction
between quarks and antiquarks has been made in the algorithm),

2. the virtualities Qb and Qc of the produced partons b and c ,

3. momentum fraction χ,

4. transverse momenta pb⊥ and pc⊥,
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5. the azimuthal angles ϕb and ϕc.

For each splitting process, the incoming four-momentum is conserved. Further constraints
in phase space are introduced later. Thus, from the two four-momenta, only four com-
ponents are independent. In the implemented algorithm these four degrees of freedom
are determined via the parton virtualities Qb and Qc, the momentum fraction χ, and an
azimuthal angle ψ around the direction of the three momentum of parton a, which spec-
ifies the plane in which the momenta of partons b and c lie. In order to avoid confusion
between the azimuthal angles ϕi in the global coordinate system around the direction of
the three momentum of the initial parton of the cascade, ~p1, defined in Eq. (2.2) and
the azimuthal angle ψ in the local coordinate system around ~pa, Fig. 2.1 illustrates both
definitions.

2.1.2 The overall structure of the algorithm

In this subsection an algorithm for the simulation of parton cascades is shortly outlined,
while its parts will be explained in more detail in the subsequent subsections. The particle
showers are generated in a time-like process: They represent an approximation to the large
sets of particles emitted as final state radiation in pp or heavy ion collisions. Sec. 1.4 briefly
introduced some of the Monte-Carlo event generators that can be used to simulate these
particle showers. Rather than using one of these sophisticated algorithms that consider
many different phenomena, one can argue that it serves the purpose of this thesis at least
as well to focus entirely on cascades generated via final state radiation and to implement
a simplistic Monte-Carlo tool, which, however, can very easily be adapted to effectively
simulate medium effects (cf. Chap. 3 for medium modifications).

The algorithm implemented for this thesis represents a Monte-Carlo simulation of
DGLAP equations – an approach to final state radiation that has been already taken
numerous times before, e.g. in PYTHIA [92, 93] or HERWIG [98, 99]. The algorithm
described in this subsection was reconstructed from Refs. [103, 123].

Starting with the first splitting process, parton showers are simulated by the currently
used Monte-Carlo algorithm in the following manner:

0. At first, for the initial particle, its maximal virtuality Q↑ is fixed, together with its
energy Eini. The latter quantity fixes also the reference frame of the parton cascade.

1. For the first parton in a parton shower, one selects the virtuality Q1 – see sub-
section 2.1.3 for details – at which the parton splits. For all other partons in the
shower, the sets of variables that define the individual partons a – containing the set
of variables {Qa, χa, tot, pa⊥, ϕa, q or G} – are used for further splittings of parton a
into partons b and c.3

2. If Qa lies below a certain threshold Q↓, it is assumed, that no splitting occurs in
fact, otherwise a splitting will be simulated. Physically, such a cut-off for small
virtualities can be motivated by a transition from perturbative splitting processes
to non-perturbative hadronization processes.

3. If a splitting process occurs, the type of the splitting is chosen via a Monte-Carlo
selection, i.e.: It is specified, whether the produced partons are a quark and an
antiquark, 2 gluons, or a quark and a gluon.

3Here, χa, tot represents the momentum fraction relative to the initial parton of the cascade, while in
step 4 of the algorithm the selected value χ represents the momentum fraction between the radiated and
decaying particles of the last parton branching.
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4. The 4 momenta of partons b and c are generated by means of a rejection loop A,
that creates the virtualities Qb and Qc, together with the momentum fraction χ

(a) The virtualities Qb and Qc of the produced partons are chosen via a M.-C.
selection. This happens inside of a new loop B, that is repeated, until the
condition Q2

a ≥ Q2
b +Q2

c is satisfied.

(b) For the current {Qa, Qb, Qc} candidate the momentum fractions χ of the pro-
duced partons are chosen via a M.-C. selection.

(c) The component k⊥ of the 3 momenta of parton b and c that is orthogonal to
the 3 momentum of a is calculated as a function of Qa, Qb, Qc, and χ.

(d) Once (k⊥)2 ≥ 0 is satisfied, the loop terminates, otherwise the steps of the loop
A are repeated.

5. The azimuthal angle of the plane of scattering, with regard to the direction of the
incoming parton a, ψ, is selected.

6. The transverse momenta of the produced partons, pb⊥ and pc⊥, and the azimuthal
angles ϕb and ϕc around the longitudinal direction are calculated using k⊥ and ψ
together with the four momentum of parton a, pa, given via Qa, pa⊥, and χa, tot.

7. The algorithm restarts at 1., this time using the produced partons b and c instead
of parton a. The algorithm simulates the splittings one generation after another,
i.e.: the algorithm is carried out from 1. to 6. for every parton produced after n
consecutive splittings from the initial parton. For the so produced n+1 th generation
this procedure is repeated. The algorithm terminates, if it is not possible for any
particle in an entire generation to undergo a further splitting.

For each splitting the 4 momenta of the outgoing partons b and c are determined as
follows: ~k⊥ (−~k⊥ for particle c) is considered as the component of the 3-momentum ~pb of
particle b transverse to the 3 momentum ~pa of the incident parton a with ψ (ψ + π) the
azimuthal angle around the direction of ~pa. The remaining component of ~pb(~pc) parallel to
~pa can then be calculated, since also the parton virtualities and a momentum fraction are
known. Thus, the 3 momenta ~pb and ~pc are obtained in a cylindrical coordinate system,
where the polar axis is parallel to ~pa. These momenta are then transformed via an Euler
rotation in a global coordinate system of the shower. In this global coordinate system,
the component orthogonal to the polar axis is projected out, and referred to as ~pb ⊥ and
~pc ⊥, respectively. ϕb (ϕc) are the corresponding azimuthal angles. So far, the direction
of the momentum of the initial parton (i.e.: the jet axis for cascades in vacuum) ~p1 was
used as polar axis.4

2.1.3 Probability distributions for the parton splittings

This subsection explains, why the Monte-Carlo algorithm of subsection 2.1.2 is suitable
for the simulation of partonic cascades, and presents the deduction of the probability
distributions necessary to implement in the algorithm the steps 1 and 4a to select the
virtualities Qa, Qb, and Qc, the step 3 to select the types of the produced partons, and
the step 4b to select the momentum fraction χ.

4Alternatively, in p-p or heavy-ion collisions, the beam axis is often used as polar axis and directions
orthogonal to this axis are referred to as transverse. Throughout this thesis, they will be labelled with
an index T instead of ⊥, in order to avoid confusion with the coordinate system implemented in the
algorithm. For the first calculations of 2 particle correlations in Chap. 4 it will be assumed that the
initial particle of the jet is emitted orthogonal to the beam axis, i.e., in this notation, ~p1 = ~p1 T .
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σn

σn+1

Q2

χ

1− χ

Figure 2.2: Schematics of how splitting functions relate an n particle process, with cross-
section σn, to an n+1 particle process, with cross section σn+1. The picture demonstrates
the case, where the n and n + 1 particle processes differ in the emission of a gluon from
a quark line.

In order to simplify calculations of the cross sections for parton cascades in pQCD,
one can resort to a probabilistic approximation (cf. Ref. [91]), where the probability for a
cascade with a certain number n+ 1 of parton branchings factorizes into the probabilities
for an n-particle subprocess and the probability for an additional parton branching, as is
schematically depicted in Fig. 2.2, i.e. a factorization theorem of the form of Eq. (1.20).

In subsection 1.4.2 it was demonstrated that from this kind of factorization theorem a
DGLAP-evolution of the corresponding parton fragmentation functions can be deduced.
This subsection shows how a Monte-Carlo algorithm can be deduced for processes of
parton fragmentation that allow factorization in the form of Eq. (1.20) for all subprocesses.
By means of such an algorithm large sets of parton cascades can be generated. Number
distributions of all the simulated particles can be obtained. It can be argued that these
distributions represent approximations to the fragmentation functions that evolve along
the DGLAP equations.

To this end, the factorization theorem Eq. (1.20) is written in the following form:

dσn+1(Q,χ,Φn) = dσn(Φn)
dQ2

Q2
dχ
αs(F (χ,Q))

2π
Pa→b, c(χ) , (2.5)

where σi is the cross-section and Φi the phase-space volume for a process with i final
particles, Q is the virtuality of the parton that produces the additional parton in the
n+ 1-particle process, χ is the momentum fraction for its decay products. Pa→b, c(χ) are
splitting functions that serve as a measure for the probability of the additional branching of
the virtual particle a into particles b and c. For the Monte-Carlo algorithm implemented,
the splitting functions for collinear splitting of leading order (LO) in pQCD were used

Pq→q ,G = CF
1 + x2

1− x ,

PG→G ,G = CA

(
1− x
x

+
x

1− x + x(1− x)
)
,

PG→q ,q̄ = TR

(
x2 + (1− x)2

)
, (2.6)

where x is defined as an energy fraction via Eq. (2.4) in the global reference frame of
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the cascade, given via Eq. (2.1)5. In this reference frame the assumption of a collinear
splitting of parton a translates into the assumption of a hard parton a, i.e.: Ea ≫ Qa.
The argument of the coupling constant αs is assumed to have some dependence on χ
and Q, symbolically represented here by a function F : As was mentioned in Ref. [87] a
dependence of the form αs(k

2
⊥) ≈ αs(z(1−z)Q2) leads to a resummation of soft (collinear)

branchings.
In the current implementation of the M.-C. algorithm, only the LO-approximation

αs(F (χ,Q)) = 1

b0ln

(
F(χ,Q)2

Λ2
QCD

) was considered. The cross-section σn has been written without

any dependence on Q and χ, as by assumption it factorises from the splitting process.
The approximation described above works reasonably well, provided the following

constraints are met (cf., e.g., Ref. [91]):

• Q is much smaller than the virtuality of any particle in the n-particle subprocess.
There are 2 reasons for this approximation: For sufficiently small virtualities Q (in
comparison to the virtualities occurring in the internal structure of the n-particle
sub-process) the n-particle sub-process can be described suitably well as a process of
n outgoing on-the-mass-shell particles, represented by the corresponding cross sec-
tion, σn. Secondly, for the same sets of n+ 1 outgoing particles, different processes,
represented by various different amplitudes and Feynman diagrams are possible.
Thus, in the corresponding matrix elements one would need to also consider in-
terference terms. However, since amplitudes of the processes involved introduce
virtuality dependencies by the denominator of their propagators, i.e.: contain fac-
tors of the form 1

Q2 , these interference terms will be subdominant in comparison to
the squared amplitude of a process with sufficiently small virtuality Q of its inter-
mediate particle. There, the propagators introduce a factor 1

Q4 , which dominates
over contributions to the matrix element from any of the other amplitudes. In such
a case, a probabilistic approximation, like the DGLAP-approach, is justified.

• For simplicity, it is assumed that the branching angle (i.e.: the angle between the
respective directions of the 3 momenta of the emitted partons) is very small. This
assumption of collinear emission is not necessarily implied by the assumption of
small Q values – which also allows for soft emissions: However, for the highly
energetic jets considered in this thesis, collinear branching appears to be justified.

Trying to interpret Eq. (2.5), one could understand the part αs(F (χ,Q))
2π

Pa→b ,c(χ) as the
probability density for a splitting at given values of log (Q2) and χ. One can argue in
favour of this kind of interpretation, due to the following argumentation:

One can define σn+1

(
Q ∈ [Q↓, Q̃] , χ ∈ [χ−, χ̃]

)
as the contributions to σn+1 stemming

from splittings with Q ∈ [Q↓, Q̃] and χ ∈ [χ−, χ̃], where Q↓ and χ− are some (arbitrary)
threshold values. Then, by integrating Eq. (2.5), one obtains:

5 The splitting functions of Eq. (2.6) are only valid for 0 < x < 1 and run into singularities – cor-
responding to soft and collinear radiation – for x = 1 (or x = 0 as well, in the case of the splitting
of gluons into gluon pairs). These singularities can be treated explicitly via the so called ”+ prescrip-
tion” (cf. Ref. [91]). This thesis, however, takes a different approach (as it was already done by other
Monte-Carlo algorithms, e.g. [103]): Due to phase-space boundaries of the parton branchings, the energy
fractions are constrained to the region x ∈ [x−, x+], where 0 < x− < x+ < 1 (This will be discussed in
subsection 2.1.4.). Thus, the cases x = 1 and x = 0 do not occur and parton branchings can be described
via the splitting functions of Eq. (2.6) alone.
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σn+1

(
Q ∈ [Q↓, Q̃] , χ ∈ [χ−, χ̃]

)
= σn

∫ Q̃2

Q2
↓

d(Q2)

Q2

∫ χ̃

χ−

dχ
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ) .

(2.7)

With the use of an accurate normalisation, the quantities σn+1

(
Q ∈ [Q↓, Q̃] , χ ∈ [χ−, χ̃]

)

and σn measure the probabilities of their corresponding processes. Thus, one may argue
that

p
(
split. for Q ∈ [Q↓, Q̃] , χ ∈ [χ−, χ̃]

)
:=
∫ Q̃2

Q2
↓

d(Q2)

Q2

∫ χ̃

χ−

dχ
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ) ,

(2.8)
is the probability for a splitting to happen in the ranges Q ∈ [Q↓, Q̃] of virtualities and
χ ∈ [χ− , χ̃] of momentum fractions. On the other hand, if one was given Eq. (2.8) as the
splitting probability in the corresponding ranges of virtuality and momentum fraction, the
relation Eq. (2.5) follows, after approaching the limit of infinitesimal ranges of momentum
fractions and virtualities and multiplying the so obtained conditional probability (density)
with the n-particle cross-section which yields the n+ 1-particle cross-section.

In order to investigate some possible consequences of the reasoning above, σn(Q2)
is redefined as the cross section of a n-parton subprocess of a partonic cascade that
terminates at a given virtuality Q. The probability (density) that a splitting occurs for a
(squared) virtuality of Q2 ∈ [Q2 − dQ2, Q2] is then given via

σn+1(Q
2 − dQ2)

σn(Q2)
=
d(Q2)

Q2

∫ χ+

χ−

dz
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ) , (2.9)

where it was assumed, that the z values have to lie inside the range χ ∈ [χ− , χ+] ⊂
[0 , 1]. One can argue that the fraction σn+2(Q2−dQ2)

σn(Q2)
is of the order of O((dQ2)2), and

for subprocesses, where more than n + 2 partons are produced, the order in dQ2 is even
higher. One can then infer, that the number of subprocesses, that have no splitting in
the range Q2 ∈ [Q2 − dQ2, Q2] of virtualities is measured via: σn(Q2 − dQ2) = σn(Q2)−
σn+1(Q

2− dQ2). Inserting this relation into Eq. (2.9) and applying a Taylor expansion of
σn(Q2−dQ2) for infinitesimal steps dQ2 around Q2 and finally comparing the coefficients
of dQ2, one obtains the following differential equation:

d log(σn(Q2))

d log(Q2)
=
∫ χ+

χ−

dχ
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ) . (2.10)

Integrating this probability over a certain range6 of virtualities Q2 ∈ [Q2
a , Q

2
a ↑] gives the

following evolution:

σn(Q2
a) = σn(Q2

a ↑) exp


−

∫ Q2
a ↑

Q2
a

dQ2

Q2

∫ χ+

χ−

dχ
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ)


 . (2.11)

Thus, the cross-sections σn(Q2
a ↑) and σn(Q2

a) for n particle processes including interme-
diate particles of virtualities Qa ↑ and Qa, respectively, are related by the factor

Sa(Qa ↑, Qa) = exp


−

∫ Q2
a ↑

Q2
a

dQ2

Q2

∫ χ+

χ−

dχ
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ)


 , (2.12)

6Here, the notation Qa↑ is introduced for the – yet to be determined – maximum value of possible
virtualities of a particle a, while the notation Q↑ is still used for the maximum value of possible virtualities
of the first particle of the cascade, which is for the sake of simplicity, up to now, selected by hand in
step 0 of the algorithm given in subsection 2.1.2, but which can be expected to depend on the parton
distributions inside the colliding particles, initial state radiation, and the hard collision that produces the
first particle of the cascade.
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which measures the probability, that no splitting of parton a occurs in the range of
virtualities Q ∈ [Qa ↑ , Qa]. Sa(Qa ↑, Qa) is also called the Sudakov (form-)factor.

Sa(Qa↑, Qa)

{Qa, χa, tot}

S b
(Qa

, Q
b
)

{Qb
, χa, to

tχ
}

S
c (Q

a , Q
c )

{Q
c , χ

a, tot (1−
χ)}

Wa→b,c(Qa, χ)

W b→
d,e

(Qb
, χ

′ )

W
c→

f,g (Q
c , χ ′′)

Figure 2.3: Partition functions (up to normalization constants) for both, the parton
virtualities (at the lines) as well as the momentum fractions (at the vertices/blobs). In
curly brackets: Parton virtualities and momentum fractions with respect to the total
momentum of the system. χa, tot is the momentum fraction of the branching parton a
with regard to the initial parton of the cascade. At the splitting of parton a, momentum
fraction χ is selected for the distribution of the momentum of parton a among its decay
products b and c by means of the partition function Wa→b,c(Qa, χa). Then, parton b carries
the total momentum fraction χa, totχ, and parton c carries χa, tot(1−χ), respectively. The
two blobs on the right side could represent further parton splittings: The dashed lines
symbolize their possible branching products.

The probability (density) that a parton splits at exactly this virtuality Qa is the
probability, that the parton does not split at a higher virtuality than Qa, times the
probability (density) to split exactly at Qa. This probability density is thus given by7

Sa(Qa ↑ , Qa)
∫ χ+

χ−

dχ


αs(F (χ,Q2))

2π

∑

a→b,c

Pa→b,c(χ)


 =

dSa(Qa ↑ , Qa)

d log(Q2
a)

. (2.13)

Thus, the Sudakov factor Sa(Qa ↑, Qa) is the partition function for possible virtualities
Qa. The Monte-Carlo algorithm outlined in subsection 2.1.2 uses the Sudakov factor
Sa(Qa ↑, Qa) to determine the virtuality Qa of the splitting parton a in step 4a. Also the
virtuality Q1 of the initial parton is determined in step 1 of the algorithm via a Sudakov
factor S1(Q↑, Q1).

7The integration boundaries χ± are determined by the phase-space constraints of the parton cascade,
and will be determined later.
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The probability density p (Qa, χ) for a splitting of parton a into partons b and c with
a particular momentum fraction χ at a certain virtuality scale Qa is obtained as

Sa(Qa ↑ , Qa)

(
αs(F (χ,Q2))

2π
Pa→b,c(χ)

)
= p (Qa, χ) . (2.14)

For a parton cascade with several splittings, its probability density can be calculated by
considering analogous distributions for the emitted partons and their products, etc. and
by multiplying all of these distributions.

The probability density for the production of a particular parton cascade from a single
parton can, thus, be written as

(
S1(Q↑ , Q1)

αs(F (χ1, Q
2
1))

2π
P1→2,3(χ1)

)
× (2.15)

(
S2(Q1 , Q2)

αs(F (χ2, Q
2
2))

2π
P2→4,5(χ2)

)
×

(
S3(Q1 , Q3)

αs(F (χ3, Q
2
3))

2π
P3→6,7(χ3)

)
. . . Sl1(Ql1 , Q↓) . . . SlN (QlN , Q↓) ,

where an initial particle (labeled with the number 1) with virtuality Q1 distributes its
momentum, according to the fraction χ1, among two newly created particles (labeled 2
and 3) with virtualities Q2 and Q3 that split again, distributing their momenta according
to fractions χ2 and χ3, etc. until finally the particles labeled l1,..., lN are obtained, which
do not decay further.8 For the first particle Q↑ was set as the maximum of its range
of possible virtualities. In all further splittings, the virtuality of the branching particle
was assumed to be the largest possible virtuality for each of its decay products. This
constraint is always true for a time-like cascade.9

In order to be able to simulate these probability densities by means of Monte-Carlo
simulations, one can express Eq. (2.14) in the following form:

p (Qa, χ) =


Sa(Qa↑ , Qa)

∑

a→b,c

Wa→b,c(Qa, χ+)



(

Wa→b,c(Qa, χ+)
∑

a→b,c Wa→b,c(Qa, χ+)

)
×

(
1

Wa→b,c(Qa, χ+)

αs(F (χ,Q2))

2π
Pa→b,c(χ)

)
, (2.16)

with

Wa→b,c(Qa, χ) :=
∫ χ

χ−

dχ̃

(
αs(F (χ̃, Q2

a))

2π
Pa→b,c(χ̃)

)
, (2.17)

the partition function for a splitting with momentum fraction χ. The term in the first
bracket in Eq. (2.16) is the probability density that parton a has virtuality Qa and there-
fore splits – in a not further specified splitting: The notation

∑
a→b,c Wa→b,c(Qa, χ+) :=

8Of course it is also possible, with probability S1(Q↑, Q↓), that an initial particle does not split at all,

or, with probability (density)
(

S1(Q↑ , Q1)
αs(F (χ1,Q2

1))
2π

P1→2,3(χ1)
)

S2(Q1 , Q↓)S2(Q3 , Q↓), that it only

splits one time.
9However, due to, e.g., additional phase-space constraints, the actual maximum virtuality Qb↑ for a

product particle b in the splitting of particle a might be lower than Qa, i.e. Qb ≤ Qb↑ ≤ Qa. In the Monte-
Carlo algorithm one can take care of this problem by running a rejection loop over the selection of Qb

candidates via the Sudakov form-factor Sb(Qa, Qb). This loop terminates only, if a Qb canditate is found
that fulfills Qb ≤ Qb↑. Thus, the distribution of virtualities is 0 in the range [Qb↑, Qa]. By consequence,
the Sudakov factor is also modified to a new distribution function S̃b with S̃b(Qa, Qb) = S̃(Qb↑, Qb). For
this modified Sudakov factor Eq. (2.15) holds as well.
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Wa→q,q̄(Qa, χ+)+Wa→G,G(Qa, χ+)+Wa→q,G(Qa, χ+) indicates that all types of LO parton
splittings are considered, integrated over the range of all possible momentum fractions
χ ∈ [χ− , χ+]. Therefore, the term in the second bracket gives the (conditional) proba-
bility that the parton splitting is of a particular type a → b, c. The term in the third
bracket gives then the probability density that the splitting exhibits a particular mo-
mentum fraction χ. Thus, one can apply the following Monte-Carlo algorithm to the
individual simulations of parton splittings, where the virtuality Qa of the incident parton
is known10 (cf. Fig. 2.3):

I If parton a is a quark, then there is only the possibility of splitting into a quark and a
gluon. If parton a is a gluon, a random number R′ ∈ [0, 1] is selected and compared
with

p(G→ G,G) =
WG→G,G(Q,χ+)

WG→q,q̄(Q,χ+) +WG→G,G(Q,χ+)
. (2.18)

If R′ ≤ p(G→ G,G) the gluon a splits into 2 gluons, otherwise into a quark and an
antiquark.

II The virtualities of the produced partons b and c are selected, using as partition func-
tions 1

Nb
Sb(Qa, Qb) and 1

Nc
Sc(Qa, Qc), respectively, where the normalization Nq,G =

Sq,G(Qa, Q↓) is used. Note that now the virtuality of the branching particle, Qa is
considered as maximal virtuality instead of Q↑, which was used in the selection of
Qa. This choice of maximal virtuality corresponds physically to the assumption of
timelike parton cascades and allows for iteration of the simulation of parton splitting,
then with the maximal virtualities Qb, Qc, etc.

III The momentum fraction χ between the momenta of one of the partons (e.g.: b) with
parton a is selected, using Wa→b,c(Qa, χ) as partition function.

IV Using the values of Qa, Qb, Qc, and χ constraints on the allowed values of the 3
kinematical variables Qb, Qc, and χ is constructed. If these constraints are met by
Qa, Qb, Qc, and χ simultaneously, Qb, Qc, and χ are selected, otherwise, those values
are rejected and the algorithm starts again at the first step using the same value for
Qa.

The above algorithm (given by steps I to IV) for the individual parton splittings cor-
responds to steps 3 and 4 of the algorithm for the simulation of a parton cascade, pre-
sented in subsection 2.1.2 (the steps can be identified as follows: I=̂3, II=̂4a, III=̂4b, and
IV=̂4c+4d). The phase-space constraints that give in step IV as rejection conditions are
explained in detail in the next subsection.

The parton energy distributions for the simulated cascades can be described via frag-
mentation functions that follow the virtuality evolutions given by the DGLAP-equation
(alternatively to a direct derivation from the factorization theorem Eqs. (1.20) or (2.5)
the Sudakov form-factor and its Monte-Carlo implementation can also be derived directly
from the DGLAP-equations, cf. Ref. [91].).

2.1.4 Phase-space boundaries

In this subsection, the phase-space constraints on parton splitting are presented. Their
physical motivation and mathematical form is given in sub-subsection 2.1.4.1. Then, their

10If the virtuality Qa is not known, i.e.: for the first splitting (of parton 1), it is determined by solving
the equation 1

N1
S1(Q↑ , Q1) = R for a random number R ∈ [0, 1] (the normalization N1 is explained in

the paragraph below).
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implementation in the Monte-Carlo Algorithm is shortly discussed in sub-subsections 2.1.4.2,
2.1.4.3, and 2.1.4.4: These considerations describe steps 1 and 4 of the overall algorithm
of subsection 2.1.2 in more detail. First, the implementation of steps 4b to 4d is discussed
in sub-subsection 2.1.4.2. To this end, one needs to make a select a particular definition
for the momentum fraction χ: To understand how the choice of an energy fraction can
be transformed into light-cone-energy fraction and vice versa (a procedure currently im-
plemented in the algorithm) further explanations are necessary in sub-subsection 2.1.4.3.
Sub-subsection 2.1.4.4 finally explains how the phase-space constraints are implemented
for the selection of parton virtualities, which corresponds to steps 1 and 4a of the algo-
rithm of subsection 2.1.2. Possible effects of the phase-space constraints on the Sudakov
form-factors given in the previous subsection 2.1.3 are examined as well at the end.

As phase-space boundaries, the same two constraints as in, e.g.: [103, 123], are used:

• It is assumed that the virtualities of any off-the-mass-shell cascade parton is above
a scale Q0. Otherwise, partons are considered as on-shell.

• The component of the 3-momenta of emitted partons b and c transverse to the
decaying parton a, ~k⊥, need to satisfy the condition k2

⊥ > (ζΛQCD)2 ≥ 0 (with a
positive constant ζ). For simplicity k2

⊥ ≥ 0 (i.e. ζ = 0) was chosen in all simulations,
unless stated otherwise.

As shown later, the combination of these 2 conditions implies that in practice partons
have a virtuality above a value Q↓, where Q↓ ≥ 2Q0 (for ζ = 0: Q↓ = 2Q0).

2.1.4.1 Consequences and mathematical form of the constraints

For the produced partons in each splitting the component of their 3 momentum that is
orthogonal to the 3 momentum of the branching parton, k⊥, assumes a real value: Using
light-cone-energy fractions11 z as the momentum fractions, one can express this relation
as

~k2
⊥ = z(1− z)Q2

a − (1− z)Q2
b − zQ2

c ≥ (ζΛQCD)2 ≥ 0 . (2.19)

This condition implies boundaries for the integrations over the momentum fractions
in both, the partition functions for the momentum fractions as well as the Sudakov form-
factor.12 Thus, one obtains maximal and minimal values for the momentum fractions, z+

and z−, respectively

z±(Qa, Qb, Qc) =
1

2Q2
a

(
Q2

a +Q2
b −Q2

c ±
√
Q4

a + (Q2
b −Q2

c)
2 − 2Q2

a(Q2
b +Q2

c + 2(ζΛQCD)2)
)
.

(2.20)
These are the constraints for the light-cone-energy fractions z in case of a parton branching
in the general case of three different virtualities Qa, Qb, Qc ≥ Q0 above the minimal
virtuality Q0. In the limit Qb = Qc = Q0 one obtains

z±(Qa, Q↓) =
1

2


1±

√√√√1− Q2
↓

Q2
a


 , (2.21)

11One should note here that in all these relations z is defined as light-cone energy fraction only in the
reference frame where pa⊥ = 0.

12Then, for the Sudakov factors the boundaries of the outer integration over the virtualities automat-
ically fulfill the condition ~k2

⊥ ≥ 0, since the inner integration over the momentum fractions only allow

such values. Thus, one might argue: If the condition ~k2
⊥ ≥ 0 is translated into an integration boundary

for the momentum fractions, no constraints on the virtualities, except Qb , Qc ≥ Q0 have to be satisfied.
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with
Q↓ = 2

√
Q2

0 + (ζΛQCD)2 . (2.22)

Thus, only partons with virtualities Qa above the threshold Q↓ are allowed to split. Eq.
(2.21) represents weaker constraints on the momentum fractions than Eq. (2.20). In the
integration over the momentum fractions in the exponent of the Sudakov factor (cf. Eq.
(A.5)) the weaker conditions Eq. (2.21) were used instead of the stronger ones, because
the Sudakov factor Sa(Qa↑, Qa) of a parton a can be interpreted as the probability that no
splitting occurs for virtuality values inside the range [Qa, Qa↑]. Consequently, momentum
fractions that lie inside these integration boundaries correspond to candidate splittings
of parton a that are rejected in the selection process of Qa. In order to exclude all
possible candidate splittings of parton a, the least restrictive constraints on the momentum
fractions are used. These conditions are given by Eq. (2.21), which includes the range
(given by Eq. (2.20)) of possible light-cone energy fractions for any splitting, where partons
b and c with virtualities above the minimal virtuality Q0 are created. The stronger
conditions on the momentum fractions, Eq. (2.20), constrain the light-cone energy fraction
z for a given combination of virtualities Qa, Qb, and Qc to the kinematically allowed region
given by Eq. (2.19), and give, therefore, the lower boundary in the integration over the
momentum fraction in Eq. (A.4) of the partition function Wa→b,c, used for the selection
of the momentum fractions13

Expressed in terms of energy fractions x the momentum fraction constraints of Eq.
(2.20) take the form

x±(Qa, Q↓, Ea) =
1

2


1±

√√√√
(

1− Q2
↓

Q2
a

)(
1− Q2

a

E2
a

)
 , (2.23)

where Ea is the energy of the incident parton. Since the splitting functions do not depend
on the parton energies explicitly, only on the energy fractions, the Sudakov factors become
independent of the parton energies Ea in the high-energy limit Ea ≫ Qa. This limit was
implemented in version 1 of the code, assuming Qa

Ea
= 0 in Eq. (2.23). Version 1 already

corresponds to a resummation at leading-log accuracy. The general, energy – and thus
reference frame – dependent Sudakov factor was later implemented (version 2).

From now on always version 2 will be used, if not stated otherwise: It will be shown
later on in sub-subsection 2.1.4.4 that the correction that yields version 2 is essential
to obtain strongly virtuality ordered parton cascades, which is necessary condition for
the validity of a DGLAP based approach, as it was explained in subsection 2.1.3. By
consequence one will obtain, in general, cascade particles at high velocities and, thus,
strongly focused cascades, as it will be shown in some examples in subsection 2.3.2.

2.1.4.2 Implementation of the phase space-constraints for the selection of
momentum fractions

In the next few paragraphs the part of the Monte-Carlo algorithm that is used in order
to obtain the momentum fractions χ is described, together with its implementation. This
part corresponds to steps 4b) to 4d) of the algorithm outlined in subsection 2.1.2.

Following the considerations in subsection 2.1.1, energy fractions x as well as light-
cone-energy fractions z can be used as momentum fraction χ. Either choice, together

13In the algorithm, this is however implemented differently: First, the momentum fractions are selected
from a partition function that uses the weaker conditions, Eq. (2.21). Then, candidate splittings that
do not fulfill Eq. (2.19) (and, thus, Eq. (2.20)) are rejected and a new candidate is searched until the
condition is met. This procedure is called ”rejection loop A” in step 4 of subsection 2.1.2 and is described
in more detail in the next subsection.
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with the particle transverse momenta, azimuthal angles, virtuality, and the (light-cone)
energy of the initial particle, allow to uniquely describe the momentum of each particle
inside the cascade. The currently implemented algorithm adopts both choices in different
parts of the code:

• The energy fraction x is used, when the momentum fractions χ = x are selected from
the functions Wa→b,c, which was defined in Eq. (A.4), because the splitting functions
there – given in Eq. (2.6) – have an especially easy form: In particular, they do not
depend on the energy E, and are, thus, reference frame independent. One can then
exchange in Eq. (A.4) the energy-dependent boundary x− from Eq. (2.23) with the
boundary z− from Eq. (2.21) in order to obtain a energy- and, thus, reference-frame
independent function W̃a→b,c that overestimate the interval of kinematically possible
momentum fractions. In a later step, particles that do not fulfill the phase-space
constraints will be rejected.

• The light-cone-energy fraction z is used (χ = z) for the implementation of the phase-

space constraints that stem from the condition ~k2
⊥ ≥ 0, because these conditions,

Eq. (2.19), assume a particularly easy, energy independent form, if ~k2
⊥ is expressed

in terms of z and the parton virtualities.

The proposed algorithm only needs to involve the reference-frame dependence of the
parton cascades, when the selected energy fractions x are transformed into light-cone-
energy fractions z, which will be explained in the next sub-subsection 2.1.4.3.

If parton a has a virtuality Qa > Q↓ and the type of branching into partons b and c
is known, the following algorithm can be used in order to determine the virtualities and
momentum fractions of the produced partons:

1. The virtualities Qb and Qc are selected.14

2. The energy-fraction x is selected.

3. Using the energy of the initial parton of the cascade, Eini, the energy fraction x,
and virtualities Qa, Qb, and Qc, the light-cone-energy fraction z is calculated.

4. Using the virtualities and z, the transverse momentum components ~k2
⊥ is calculated

via Eq. (2.19).

5. If the condition ~k2
⊥ ≥ 0 is satisfied, the variables Qa, Qb, Qc, and z are kept and the

parton branching is, therefore, determined. Otherwise, this algorithm is repeated
until a combination of virtualities and momentum fractions satisfies the condition.

6. The four-momenta of particles b and c, pb and pc are reconstructed from Qa, Qb,
Qc, and z (explained as well in the next sub-subsection 2.1.4.3).

In order to obtain a faster algorithm and to prevent non-terminating loops (due to numer-
ical inaccuracies), the loops are also terminated after a fixed number of repetitions. The
corresponding cascades are deleted from the final results. In the simulations performed so
far, the relative number of rejected cascades lies below 1 per mill. The condition ~k2

⊥ ≥ 0
constrains the momentum fractions within the boundaries given via Eq. (2.20).

14In this step, the phase-space constraints need to be applied also on the Sudakov factor, which is
explained later on.
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2.1.4.3 Relation between x and z

Here, the relation between the energy-fraction x and the light-cone energy fraction z is
documented. The relation obtained is reference frame dependent. One of its possible
derivations is the following (where however the assumption ~pa ⊥ = ~0 was made; without
this restriction, the obtained relation is more complicated, because then ~pb ⊥ depends on
both ~pb ⊥ as well as ~k⊥.):

xp0
a =

1

2


zp+

a +
~k2

⊥ +Q2
b

zp+
a


 ,

⇔ x

(
p+

a +
Q2

a

p+
a

)
= zp+

a +
z(1− z)Q2

a + zQ2
b − zQ2

c

zp+
a

,

⇔ x
(
1 + t̃a

)
= z + (1− z)t̃a + t̃b − t̃c ,

⇔ z =
x
(
1 + t̃a

)
−
(
t̃a + t̃b − t̃c

)

1− t̃a
, (2.24)

with the definition t̃i =
Q2

i

(p+
a )2 . For the dominant soft and collinear contributions, where

t̃a → 0, this rule simplifies to:

z = x(1 + t̃a)− (1− x)t̃a +O(t̃2a). (2.25)

In the derivation shown above it was one of the basic assumptions that in a particular

reference frame it is possible to define x :=
p0

b

p0
a

simultaneously with z :=
p+

b

p+
a

. In the above

reference frame one obtains

~k2
⊥ = z(1− z)Q2

a − (1− z)Q2
b − zQ2

c , (2.26)

~pb ⊥ = +~k⊥ , (2.27)

~pc ⊥ = −~k⊥ . (2.28)

Thus, using Eqs. (2.26)-(2.28) with a light-cone energy fraction z obtained from the energy
fraction x via Eq. (2.24) one can deduce the transverse momenta ~pb ⊥ and ~pc ⊥ and thus
obtain the 4-momenta pb and pc from pa.

For the implementation of the phase-space constraints in the Monte-Carlo algorithm,
which is explained in the next sub-subsection, one needs to generalize this transformation
for the reference frame of the entire cascade, where ~pa ⊥ 6= ~0. Currently, this is done in
the following way:

1. The four-momentum pa is transformed into the reference frame, where the transverse
component of the momentum of parton a vanishes. Since this transformation is a
rotation R, the energy fraction x remains the same as in the previous reference
frame.

2. The light-cone energy fraction in this reference frame, z, is obtained via Eq. (2.24).

3. In the same reference frame, using Eqs. (2.26)-(2.28), the transverse components,
and, thus, finally, the four-momenta of partons b and c are obtained.

4. Via application of the inverse rotation R−1 the four-momenta pb and pc can be
obtained in the desired reference frame.
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2.1.4.4 Implementation of the phase space-constraints for the virtuality se-
lection

In order to impose the constraints on the momentum fractions x± on the selection of
virtualities, the boundaries on the integration over momentum fractions in the exponent
of the Sudakov factor in Eq. (A.5) needs to be changed to x±(Q↑, Q). These changes
affect, thus, the steps 1 and 4a of subsection 2.1.2 that are used to select the parton
virtualities, and, therefore, the calculation of the Sudakov form factor given in Sec. 2.1.3.
The integration boundaries x± are energy, and thus, reference-frame dependent. In order
to avoid the more complicated implementation of a reference-frame dependent Sudakov
form-factor, we used the veto-algorithm (cf. Ref. [93] for a description).

0 10 20 30 40 50 60 70 80 90100
0

0.02

0.04

Q [GeV]

dSq,G(Q↑,Q)

dQ

Figure 2.4: Distribution of the virtualities selected for a quark (blue/solid or dashed) or
a gluon (green/dotted or dashed dotted) of energy E = 100 GeV between a virtuality
threshold Q↓ = 1 GeV and a maximal virtuality of Q↑ = 100 GeV. The momentum-
fraction boundaries of the leading-log version 1 were used for the dashed and dash dotted
curves. The reference-frame dependent corrections of these boundaries, implemented in
version 2 are also shown (solid and dotted curves).

The veto algorithm treats Monte-Carlo processes, where a variable t has to be selected,
obeying a partition function Sa of the form

Sa(t, t0) = exp
(
−
∫ t

t0

f(t′)dt′
)
, (2.29)

for some particular non-negative function f(t′). Provided, it is possible to find another
function g(t) ≥ f(t) ∀t ∈ [t0, tmax] one can construct a function

S̃a(t, t0) = exp
(
−
∫ t

t0

g(t′)dt′
)
, (2.30)

54



and select the t values according to the Sa from Eq. (2.29) using the following algorithm:

1. Start with i = 1 and the threshold t0.

2. Select (in a Monte-Carlo step) ti following the partition function S̃a(ti, ti−1).

3. Create a new random number R ∈ [0, 1].

4. If f(ti)
g(ti)
≤ R, add 1 to i and go back to step 2. Otherwise use ti as the new value for

t.

The following function represents the function f in the current version of the Monte-Carlo
algorithm (cf. Eq (A.5)):

f(Q,E) =
∫ x+(Q,E)

x−(Q,E)
dx
αs(x(1− x)Q2)

2π

∑

a→b,c

Pa→b,c(x) . (2.31)

In the expression for f(Q,E) it can be noted, that the integrand is non-negative, and
thus also f(Q,E). For further reference, the integration boundaries for the version 1 of
the algorithm, which are given in Eq. (2.20), will be called x̃±(Q). It follows that

[x−(Q,E), x+(Q,E)] ⊂ [x̃−(Q), x̃+(Q)] . (2.32)

Thus, g(Q) ≥ f(Q,E) is satisfied for the choice

g(Q) =
∫ x̃+(Q)

x̃−(Q)
dx
αs(x(1− x)Q2)

2π

∑

a→b,c

Pa→b,c(x) . (2.33)

With these choice for f and g, the requirements for the application of the veto algorithm
are met. The corresponding function S̃a is represented via the Sudakov factor of the
leading-log approximation in the current implementation of the veto algorithm.

Thus, the outlined veto algorithm allows to select the parton virtualities by means of
a Sudakov factor with the boundaries z±(Q,Q↓) for the integration over the energy frac-
tions. Due to the subsequently applied rejection condition, the finally obtained virtuali-
ties follow a distribution dSa

dQ
, with a Sudakov factor that imposes the stronger constraints

x±(Q,E,Q↓) on the energy fractions.

Fig. 2.4 shows the virtuality distributions of quarks and gluons,
dSq,G

dQ
, for both, Su-

dakov form-factors that employ the conditions z±(Q,Q↓), as well as the Sudakov form-
factors that impose the stronger conditions x±(Q,E,Q↓) on parton momentum fractions,
obtained with the Veto-algorithm. For small virtualities, both kind of distributions rise
monotonously with increasing virtuality. Due to the dependencies of the stronger condi-
tions x±(Q,E,Q↓) on an expression (1− Q2

E2 ), cf. Eq. (2.23), the curves obtained with these
constraints start to decrease again at higher virtualities, while the distributions that were
obtained with the weaker conditions z±(Q,Q↓) continue to increase. As a consequence
the parton cascades that obey the stronger constraints of will Eq. (2.23) exhibit a strong
ordering in virtuality, a necessary prerequisite for the validity of an evolution following
the DGLAP equations.

2.1.5 Summary and Comparison

In this section an algorithm for the simulation of parton cascades that propagate in vac-
uum was presented. It represents a Monte-Carlo approximation of the DGLAP equations
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and can serve as an approach to the final state radiation of hadronic collisions (in partic-
ular pp collisions, where there is not a QGP medium assumed). Correspondingly, similar
algorithms can be found in Monte-Carlo event-generators (cf. Sec. 1.4), in particular in
the parts that specify final state radiation. It can be noted (cf. Ref. [93] ) that – apart
from the mere translation of the DGLAP-evolution of a (probability) distribution into
Monte-Carlo-selection steps of parton variables – some steps in the algorithm could be
selected differently in other algorithms:

1. The reference frame in which parton momenta, energies, and momentum fractions
are expressed: A global reference frame, defined by the momentum of the initial
parton ~p1 was chosen.

2. The choice of the evolution variable: In the algorithm of this thesis, the evolution
variable is the virtuality Q.

3. The choice of momentum fraction: An energy fraction x was selected via parton
splitting functions.

4. The constraints in the momentum fraction: The condition Eq. (2.23) was used.

5. The cut-off scale of the evolution variable: This scale is given by the lower virtuality
threshold Q↓ that is related to the residual virtuality Q0 by Eq. (2.22). These
virtuality scales are the same for quarks and gluons.

These choices are mainly the same as in Refs. [103, 123], except that Q↓ = 2Q0 (ζ = 0 in
Eq. (2.22)) was chosen, and that the conditions Eqs. (5.17) and (5.18) of Ref. [123] that
were used to assure angular ordering in the first version of JEWEL, were not implemented
in the algorithm of this thesis – a choice that will be discussed in the next section.

PYTHIA (in the version presented in Ref. [93]) uses the same reference frame and
momentum fraction as the Monte-Carlo algorithm of this thesis. Its evolution variable is
the squared parton mass, which can be identified with parton virtuality for off-the-mass-
shell partons. However, due to this choice, different cut-off scales for quarks and gluons,
cf. Eqs. (10.7) and (10.8) in Ref. [93], are considered: These cut-offs are interpreted as
effective quark and gluon masses and are, thus, higher than the kinematical parton masses
(0 in case of the gluon, but non-vanishing for light and heavy quarks, cf. subsection 13.2.1
of Ref. [93]). In this thesis, all explicit mass effects were neglected, as subsection 1.4.1
explains, and are, for the sake of consistency, also ignored in this case. PYTHIA uses
two different conditions on the momentum fraction: The first one, documented in Eq.
(10.9) in Ref. [93], puts the same constraints on the selection of momentum fractions as
Eq. (2.20) (there however expressed in terms of light-cone energy fractions, instead of
energy fractions as in Ref. [93]). The second one (cf. the explanations after Eq. (10.10)
in Ref. [93]) allows for additional branchings. PYTHIA also implements angular ordering
as an additional constraint on momentum fractions, as well as on parton masses, via the
Veto-algorithm.

An alternative, also discussed in Ref. [93], consists in using the transverse momentum
components (of the radiated particle with regard to the momentum of the branching
particle) as evolution variables.15

Furthermore, also for the Monte-Carlo algorithm of this thesis two different versions
(cf. the discussion in subsection 2.1.4) were found, corresponding to two versions for the

15A remark on the different notations: What Ref. [93] calls p2
⊥ corresponds to the absolute value of ~k⊥

in this thesis. What is called Q0 in the descriptions of PYTHIA [93] and the first version of JEWEL [103,
123] is called Q↓ in the notation of this thesis.
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constraints on the momentum fractions, Eq. (2.21) for version 1 and Eq. (2.23) for version
2. Version 1 represents the high energy limit of version 2. Both versions simulate parton
cascades with leading-log accuracy. Whenever it is referred to the Monte-Carlo algorithm
of this thesis, automatically version 2 is meant, unless stated otherwise. In addition to the
similar description of partonic final state radiation, programs such as JEWEL or PYTHIA
also contain hadronization models. While the current version of the algorithm lacks an
explicit hadronization mechanism, the virtuality threshold can be adjusted in a way that
allows to effectively simulate hadronization effects on certain observables, in particular
the so called humped-back plateau distribution, which is examined in the next section,
together with another observable.

2.2 Code validation and calibration

2.2.1 Thrust

0 0.2 0.4 0.6 0.8 1
10−1
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d N
d TR

ALEPH, jet hadrons: dN
dT

dN
dTmaj

dN
dTmin

Q↑ = Eini = 100 GeV,

jet partons: dN
dT

dN
dTmaj

dN
dTmin

Figure 2.5: T , Tmaj, and Tmin obtained from Monte-Carlo simulations for jets with total
energy and maximal virtuality of 100 GeV, in comparison to ALEPH-data [126] for e++e−

collisions with
√
s = 200 GeV.

In order to validate the Monte-Carlo algorithm implemented, we verify the same ob-
servables as Ref. [123]. Infrared-safe event-shape variables, such as the thrust T , thrust
major Tmaj, and thrust minor Tmin are by definition not sensitive to changes at small
virtuality and energy scales, and, thus, do not change significantly under the different
choices for cut-off scales Q↓ and the hadronization process.16 However, they are consider-
ably affected by changes of the energies and (maximal) virtualities of the initial parton.

16Furthermore, T Tmaj, and Tmin are also ”collinear safe”, i.e.: if instead of a single particle a with
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These jet-shape observables are defined as

T = max
~n

∑
i |~pi · ~n|∑

i ‖~pi‖
, Tmaj = max

~n2
~n2·~n=0

∑
i |~pi · ~n2|∑

i ‖~pi‖
, Tmin =

∑
i |~pi · ~n3|∑

i ‖~pi‖
, (2.34)

with ~n3 = ~n × ~n2. With these definitions one can describe a system, where the particle
momenta are distributed without a preferred direction as T = Tmaj = Tmin = 1

2
, a system

where all particle move in the same direction as T = 1, Tmaj = Tmin = 0. Systems where
one particular momentum component in direction ~n is on average larger than the others
will satisfy T > Tmaj, Tmin, with Tmaj > Tmin if one of the other 2 momentum components
is on average larger than the other and Tmaj = Tmin otherwise.

Fig. A.4 shows the distributions of T , Tmaj, and Tmin for parton cascades initiated by
quarks of energy and maximal virtuality of 100 GeV. As cut-off scale Q↓ = 0.6 GeV was
used, however it was also verified by comparison (not shown in Fig. A.4) with results
for Q↓ = 1 GeV that the particular choice of the Q↓ value has very small effects on the
distributions – as it is expected for infrared-safe observables. The distributions of T , Tmaj,
and Tmin were compared in Fig. A.4 with experimental data for e+e− collisions at

√
s =

200 GeV from ALEPH. The experimental data are reproduced reasonably well, which
should be especially emphasized as the currently implemented Monte-Carlo algorithm
does not include a hadronization mechanism. Thus, the T , Tmaj, and Tmin distributions
can only be slightly affected by possible hadronization mechanisms. This observation can
be already obtained from Fig. 5.4 in Ref. [123], which shows the corresponding results
from JEWEL, on the parton level, as well as on the hadron level. Both of these curves
are rather similar to one another (as well as to the ALEPH data). The Monte-Carlo
algorithm of subsection 2.1.2 is also able to reproduce the corresponding results from Ref.
[123] at the parton level (not shown in Fig. A.4).

2.2.2 Humped-back plateau and angular ordering

In addition, Fig. A.5 shows the so called humped-back plateau distribution, particle-
number density dN

dξ
with regard to the variable ξ, for which the definition

ξ = − ln

(
‖~pparticle‖
Etotal

)
, (2.35)

is used, throughout this thesis (with ~pparticle the 3 momentum of a cascade particle and
Etotal the total energy of the particle cascade). In contrast to event-shape variables the
humped-back plateau distributions largely change if the infrared cutoff given via Q0 is
lowered and, thus, additional radiation at lower virtuality and energy scales is allowed.
In Fig. A.5 it is shown that the maximum of the humped-back plateau distribution for
a virtuality threshold given by Q0 = 0.3 GeV is almost 2 times as high as the maximum
of the corresponding distribution for simulations with a threshold given by Q0 = 0.5 GeV
(Q↓ = 0.6 GeV and Q↓ = 1 GeV, respectively). The distribution for the larger threshold
scale is also centered around smaller ξ – i.e.: higher energy – values. The Monte-Carlo
simulation that was used for the reconstruction of Fig. A.4, however, can not reproduce
neither the corresponding experimental data from ALEPH in Fig. A.5, left panel: For
large values of Q↓ too few soft particles are radiated, i.e. the distribution at high ξ values
is underestimated. On the other hand, the distribution is then overestimated in low ξ
region. For small values of Q↓ the distribution at large ξ values is better approximated,

three-momentum ~pa two particles b and c move in the same direction, with momenta ~pb + ~pc = ~pa and
~pa‖~pb‖~pc, the observables remain the same.
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Figure 2.6: Humped-back plateau distribution of the variable ξ = − log(‖~pparticle‖/Eini).
Left: Monte-Carlo simulations for jets with total energy and maximal virtuality of
100 GeV, for different lower virtuality cut-offs in comparison to ALEPH-data [126] for
e+ + e− collisions with

√
s = 200 GeV. Right: results for Q↓ = 1 GeV with and without

angular ordering (solid red, dashed dotted red) in comparison to corresponding results by
Zapp [123].

but the number of produced particles per cascade is too large, which results, in particular,
in an overestimation of the distribution at its peak.

One can attribute the bad agreement to experimental data to the following reasons:

1. As stated in Ref. [123], for the reproduction of the experimental data a reliable
hadronization model for the virtuality scales below 1 GeV is necessary.

2. Alternative to hadronization models, a calculation that relies on local parton-hadron
duality (LPHD) instead, the modified leading log approximation (MLLA) [127, 128]
reproduces the humped-back plateau distribution pretty well [129]. MLLA consis-
tently resums soft emissions under the assumption that subsequent parton branch-
ings are angularly ordered.

In the right panel of Fig. A.5 the results for the humped-back plateau distribution of
parton cascades with Q↓ = 1 GeV are shown in comparison to results by Zapp (Fig. 5.7
of Ref. [123]). The results from Ref. [123] were obtained from partons in their final states
– before the application of a hadronization model via Monte-Carlo simulation of parti-
cle cascades, where angular ordering was implemented. The results obtained from the
currently implemented Monte-Carlo algorithm, where angular ordering was not enforced,
disagree considerably with the parton level results from Ref. [123]. However, if angular
ordering is implemented, the results for the humped-back plateau distribution agree rea-
sonably well with the ones from Ref. [123]. In the currently implemented Monte-Carlo
algorithm, angular ordering can be achieved by the following modifications [123, 130]
Eqs. (5.17) and (5.18) of Ref. [123] (the former equation as a constraint in the momen-
tum fraction selection, the latter as an additional rejection condition for entire vertices,
i.e. in steps 4.b) and 4.d) were used as additional phase-space constraints. For ~k2

⊥ the

expression in Eq. (5.8) of Ref. [123] was used. The condition ~k2
⊥ > (ζΛQCD) was replaced

by xEa > ζΛQCD (with ζ = 1.1 in that case).
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It can be observed that angular ordering generally shifts the contributions to the
humped-back plateau distributions from large ξ values towards smaller ξ values. For
simplicity in the rest of this thesis angular ordering was never enforced (Only the phase-
space constraints outlined in subsection 2.1.4 were implemented.).

2.3 Estimations on cascade evolution

2.3.1 Numbers of particles and parton branchings

0

0.2

0.4

P (Ns)

0 5 10 15
0

0.2

0.4

0 5 10 15
Ns

Figure 2.7: Probability P (Ns) that a parton cascade exhibits Ns splittings for Eini =
Q↑ = 10, 25, 50 GeV (upper left, upper right, and lower left panel, respectively) and
Q↓ = 1 GeV. The lower right panel compares the 3 cases. The vertical lines represent the
mean number of splittings and the corresponding colored bars their deviations.

The number of parton branchings per cascade Ns was examined for 3 different types of
cascades, where Eini = Q↑ = 10, 25, 50 GeV. Fig. 2.7 shows the corresponding probability
distributions P (Ns), Tab. 2.1 the corresponding average values of Ns. It can be seen that
for the virtuality scales considered, the average parton cascade splits up to Ns = 5 times,
until the virtualities of the particle reach the threshold Q↓ = 1 GeV.

Q↑ [GeV] 〈Ns〉 ∆Ns

10 1.582 2 1.000 0
25 3.223 6 2.236 1
50 5.228 5 3.316 6

Table 2.1: Mean number of splittings 〈Ns〉 and deviations ∆Ns for different maximal
virtuality scales Q↑.

2.3.2 Time evolution of parton cascades in the vacuum

In preparation for the studies of jet evolution in a medium, it was necessary to obtain
a notion of the ”life time” between the creation and annihilation (due to subsequent
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Figure 2.8: Mean number of partons radiated per cascade as functions of time for parton
cascades with initial energy and maximal virtuality scales of Q↑ = Eini = 10, 25, 50 GeV
(red dash dotted, blue dashed, and black solid curves, respectively). The lower virtuality
threshold is given as Q↓ = 1 GeV.

splittings) of the jet particles considered. Furthermore, being able to analyze the time
evolution of parton cascades – even in the vacuum – allows to estimate the time scales at
which most splittings happen, or which contribute the most to particular jet-observables.
In the current Monte-Carlo algorithm parton cascades were simulated using leading order
splitting functions, i.e. following probability distributions calculated in momentum space.
It follows from the uncertainty principle that an exact determination of the parton life-
times (or the distances traveled by the partons during those lifetimes) is not possible.17

However, one could estimate the lifetime ∆τ of a jet-particle in its own rest frame due to
the uncertainty principle to

∆τ ≈ 1

Q
, (2.36)

an approach considered previously also by (at least), cf. [105, 123]. Applying a Lorentz
boost to the laboratory frame (for the implemented M.-C. algorithm this reference frame
is defined as the frame, where the initial parton of the cascade has the energy Eini and
moves along the z-axis), one obtains the corresponding life times ∆t,

∆t ≈ E

Q2
, (2.37)

which is the estimation of particle life-times that is currently used in the M.-C. algorithm.
Other, similar variations of this estimation – which, therefore, consider time scales of the
same order of magnitude – have also been used in other event generators [103, 105]. E.g.,
Eq. (2.37) was also considered [113] as estimation for the average particle life-time 〈∆t〉,

17An alternative would consist in the use of Wigner distributions, i.e.: probability distributions for
both, the particle positions/times as well as particle momenta.
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Figure 2.9: The number of partons per cascade as a function of time for Q↑ = Eini =
50 GeV, and Q↓ = 1 GeV, together with its contributions from partons that have splitted
in total 0 (dashed), 1 (dash dotted), and 2 times (dotted), throughout their whole time-
evolution within the cascade, until time t.

whereas the actual life time was selected from a probability distribution that follows an

exponentially decay of the form 1
〈∆t〉

e− ∆t
〈∆t〉 . An extensive study of the times between two

splittings – also estimated via the uncertainty principle and an exponentially decaying
distribution – has been performed in Ref. [131]. Therein, the obtained time scales were
used, furthermore, in comparisons with the time scales of interaction with the medium.
Since this different approach uses the same average time scales, it can be argued that also
the average time evolution for jets will be identical.

In order to study the time evolution of jets in the vacuum, the time evolution of the
number of partons per cascade N(t)(number of all particles simulated at time t averaged
over the number of cascades) was studied. Some sample results are shown in Fig. 2.8:
N(t) is shown for 3 different types of cascades with Eini = Q↑ = 10, 25, 50 GeV, where
it can be seen that the number of finally obtained partons per cascade increases with
Q↑. After the parton cascades are initiated by a single parton and a few first parton
branchings, N(t) exhibits an increase following a power law between approximately 0.1
and 1 fm/c, followed by a saturation of N(t) between 1 and 10 fm/c. Radiation starts at
smaller time scales for larger Q↑, but also lasts on average longer until all particles are on-
the-mass-shell, i.e. until the aforementioned saturation of N(t) is reached. Fig. 2.9 shows
for cascades with Eini = Q↑ = 50 GeV the contributions from the initial partons together
with the partons produced in the first or second splitting. It can be seen that the number
of initial partons decreases almost like a power law in t for most of the studied time span,
filling the number of partons present after the first splitting: This curve increases up to
its maximum at 0.2 fm/c, when the number of second splittings starts to dominate over
the number of first splittings (however a significant number of partons produced in the
first splitting are already on the mass shell, so that a saturation is visible below 10 fm/c).
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The number of partons produced in the second splitting increases until 10 fm/c, when a
flattening of the curve is visible.

10−2 10−1 100 101
10−2

10−1

100

101 Eini = Q↑

t [fm/c]

〈∑i Qi(t)〉 [GeV]

Figure 2.10: Mean values of the sum of the virtualities of all off-shell particles per cascade,
averaged over all cascades as functions of time for parton cascades initiated by a quark
of Eini = Q↑ = 10, 25, 50 GeV (red dash dotted, blue dashed, and black solid curves,
respectively) and lower virtuality threshold Q↓ = 1 GeV.

Alternatively, one can also study the time scales on which partonic cascades are pro-
duced via the time evolution of parton virtualities. As a result Fig. 2.10 shows the time
evolution of the sum of the virtualities of all off-shell particles 〈∑i Qi(t)〉, and Fig. 2.11
the time evolution of the virtuality of the initial parton of the cascade, 〈QHF (t)〉 (again,
these averages are taken over the entirety of simulated cascades). 〈∑i Qi(t)〉 decreases
on longer timescales than 〈QHF (t)〉. However, both variables exhibit a strong decrease.
For the 3 different types of cascades simulated, 〈∑i Qi(t)〉 reaches the virtuality threshold
of Q↓ = 1 GeV in the range of 0.4 to 2 fm/c, and 〈QHF (t)〉 between 0.2 and 0.9 fm/c.
These behaviors demonstrate that for the types of cascades considered parton splittings
terminate on average on time scales of the order of magnitude of 1 fm/c in the vacuum. If
the partons produced in these cascades would have to pass through a QGP medium, this
time scale indicates, that the creation of the parton cascade and its propagation through
the medium are 2 processes that overlap in time.

The M.-C. algorithm simulates the parton cascades as Markovian type of processes, a
behavior that can be verified, e.g., in Fig. 2.11, by comparing curves for different values
of Q↑: The initial quark has an average virtuality 〈Q1〉 ≤ Q↑ and starts splitting at
time 〈t1〉. The same value 〈Q1〉 will be reached for a cascade with higher Q↑ at a later
time t1 + ∆t. Thus, if one compares the curves for 〈QHF (Q↑ = 50 GeV , t) to the curves
〈QHF (Q↑ = 10, 25 GeV , t + ∆t)〉, the 3 curves should coincide, if the M.-C. algorithm
simulates a genuine Markovian process. This appears not to be the case in Fig. 2.11 in
the comparison of the (shifted) curves for Q↑ = 10, 25 GeV to the curve for Q↑ = 50 GeV.
However, if one merely shifts the curves for 〈QHF (t)〉 by a certain time difference ∆t,
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Figure 2.11: Mean virtualities of the initial quark, tagged during further splittings, av-
eraged over all cascades as functions of time for parton cascades initiated by a quark
of Eini = Q↑ = 10, 25, 50 GeV (red dash dotted, blue dashed, and black solid curves,
respectively) and lower virtuality threshold Q↓ = 1 GeV.

one ignores the dependencies of the corresponding curves on the energies of their initial
quarks. After calculating the average energy for the initial quark at time t1 + ∆t for the
cascades with Q↑ = 50 GeV, one obtains

Q↑ [GeV] t1 + ∆t [fm/c] 〈E〉 [GeV]
25 0.0434 43.14
10 0.2092 33.31

Calculating cascades for the systems with Q↑ = 25 GeV, Eini = 43.14 GeV, and
Q↑ = 10 GeV, Eini = 33.31 GeV, respectively (instead of Q↑ = Eini = 25, 10 GeV) one can
make a suitable comparison with the curve for the cascades, where Q↑ = Eini = 50 GeV, as
can be seen in Fig. 2.12. A comparison of Figs. 2.11 and 2.12 shows that the ratio between
energy and virtuality is not constant throughout the time evolution of the parton cascade,
and that in different reference frames (with different Eini values) the parton virtualities
evolve differently with time, due to the influence of reference frame dependent integration
boundaries for the momentum fractions, x±(Q,E,Q↓), cf. Eq. (2.23).

The time dependence of the average ratio Q

E
between parton virtuality and energy is

shown directly in Fig. 2.13: While the left panel shows the average ratio with contributions
from all partons present at time t, the right panel shows only the contribution of partons
above the virtuality threshold Q↓ = 1 GeV. Partons that do no longer undergo further
splittings were attributed a residual virtuality of Q0 = 0.5 GeV (where Q0 = Q↓/2 is
obtained from Eq. (2.22), since the parameter ζ was set to zero, ζ = 0, in the simulations
for Fig. 2.13), which explains, why the curves in the left panel do not fall off to an average
of Q

E
≈ 0, but stabilize at values between 0.2 and 0.3. For off-shell particles the ratios

stay mostly below a value of 0.5, except for the contributions from off-shell particles at
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Figure 2.12: Average virtuality 〈QHF (t)〉 for parton cascades with Q↑ = Eini = 50 GeV
(solid, gray) in comparison to the average virtualities 〈QHF (t+ ∆t)〉 for partonic cascades
with Q↑ = 25 , 10 GeV and Eini = 43.14 , 33.31 GeV (blue dashed, and red dashed dotted
curve, respectively) shifted by the respective time spans of ∆t = 0.01 , 0.017 fm/c to the
right.

later time scales (after 2 fm/c): However, from Fig. 2.14, which shows the time evolution
of the parton numbers for off shell partons, one can estimate that there exist only few
off shell particles at these time scales. The ratio Q

E
can serve as a measure for particle

velocities β,

β =

√

1−
(
Q

E

)2

. (2.38)

Ratios below 0.5 would, thus, correspond to velocities above β =
√

3
4
≈ 0.866. There-

fore, it has been verified (for the parton cascades simulated) that the assumption of
relativistic cascade particles is valid. The resulting parton showers are strongly focussed
in forward direction, since the branching angles θ ∝ Q

E
are also proportional to the ratios

Q

E
. Thus, it has been also verified numerically that collinear splitting is given for all the

partons throughout the entire evolutions of the showers, a necessary prerequisite for the
validity of the DGLAP-approach to parton fragmentation (cf. Ref. [91]).

Furthermore, the constraints x± for the energy fractions used in the Sudakov factor,
Eq. (A.5), as well as in the selection of momentum fractions, Eq. (A.4), are proportional
to the parton velocities β: These constraints directly lead to the observed suppression
of particles with small velocities β, i.e. high ratios Q

E
. It can be inferred from Figs. 2.13

and 2.14, that the reference frame dependence in the constraints x± for the momentum
fractions are mainly relevant in the initial stages of the evolution of the partonic cascades.
For the parton cascades simulated the relevant time span is of the order of 1 fm/c, starting
from the creation of the initial parton.
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Figure 2.13: Average ratio
〈

Q

E
(t)
〉

of parton virtuality Q to energy E as a function of
time t for partonic cascades in the vacuum initiated by a quark of energy Eini and max-
imal virtuality Q↑ of Eini = Q↑ = 50, 25, 10 GeV (solid red, dashed green and dashed
dotted blue curves, respectively) and a minimal virtuality Q↓ = 1 GeV, together with the
corresponding standard deviation in the distributions of Q

E
(t) (dotted red, vertical green,

and diagonal blue patterns). The average is taken over the total number of partons that
contribute to the distributions of the ratios Q

E
at time t. Left panel: ratios for off- and

on-shell particles, where on-shell particles retain the minimal virtuality Q↓. Right panel:
ratios for off-shell particles (Q > Q↓).
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Figure 2.14: Average number N∗(t) of partons per cascade above the minimal virtuality
Q↓ = 1 GeV, as a function of time t for the same types of parton cascades as in Fig. 2.13.
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Chapter 3

Medium models

This chapter describes the different effective models of jet-medium interaction that are
used in this thesis.

In general, interactions with the hot and dense QGP medium are assumed to depend
on a spatially varying temperature1 T . This is due to a temperature dependent particle
density and, furthermore, T is also expected to set the scales for the momenta and ener-
gies of thermalised particles, which is often expressed by attributing an effective thermal
mass to jet particles in the medium [27, 28, 132, 133]. Different models for the spatial
dependence of the temperature exist, e.g.: hydrodynamical calculations.

In addition to parton branchings as in the vacuum, jet particles passing through a
medium scatter both elastically (i.e.: they collide with a medium particle without ra-
diating an additional particle. However, four-momentum is transferred to the medium
particle) and inelastically (i.e.: additional radiation from the jet-particle is induced by
the scattering) with medium particles. The aim of this thesis work is to study how
these different types of jet-medium interactions affect the structure of the resulting jets
expressed by observables such as two-particle correlations and vice versa to investigate
jet-medium interactions via their effects on two-particle correlations. For this purpose
effective models of in-medium parton-energy loss are introduced in Secs. 3.1 to 3.3. These
models simulate the effects of jet-medium interactions by changing the four-momenta of
cascade-partons during their propagation in the medium. These effects on the individual
cascade particles are briefly summarized in Sec. 3.4. The phenomenology of (heavy quark)
jets in the different effective models as compared to jets in the vacuum was studied in Sec.
3.5 by means of observables that were obtained from the number distributions of either
individual cascade particles (in subsection 3.5.1) or heavy quarks (cf. subsection 3.5.2).
Chap. 4 will continue the studies on jet-phenomenology: There, however, two-particle cor-
relations, which are obtained from the number distributions of pairs of cascade particles
will be studied instead.

It should be noted that the models for jet-medium interaction presented in this chapter
are effective in the sense that the medium effects are mediated by continuous changes over
time instead of the implementation of the interactions with the fundamental degrees of
freedom of the medium, the partons. Furthermore, due to the lack of such a microscopic
description the analogue of the LPM effect for a QCD medium [41–44] (cf. also sub-
subsection 1.2.3.3) as additional interference effect in the medium, cannot be considered
explicitly. It can be argued that one can account on average for the suppression of induced
gluon radiation by adjusting the numbers of additionally emitted gluons in the medium
model. Otherwise, one could introduce a minimal time span between 2 successive gluon
emissions, e.g. cf. Ref. [113] . So far, neither of these approaches has been implemented.

1It is estimated that T is of the order of magnitude of 200− 400 MeV .
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Trying to describe the in-medium evolution of parton cascades one has to account
first of all for the in-medium loss of individual partons, but furthermore for additional
medium effects, acting on the entire cascades. As it is often noted (cf. the introduction
in Ref. [101]), at least the following phenomena can be expected from jets propagating in
the medium:

1. An increased energy loss (in-medium parton-energy loss) compared to particles prop-
agating in the vacuum,

2. A higher portion of particles radiated at large angles with regard to the jet axis
(angular jet broadening),

3. An increased activity of the jet along the jet axis (larger intra-jet radiation),

4. and a (small) deflection of the jet axis due to collisions with the medium (jet de-
flection).

In this chapter, effective models of jet-medium interactions are proposed that aim at
including all of these four medium effects on jet evolution.

3.1 Radiative Energy Loss

This section describes an effective model for in-medium energy loss of jet partons due
to induced radiation.2 The corresponding processes describe the evolution of cascade
particles in addition to the branchings due to bremsstrahlung, already present in vacuum
(cf. Chap. 2). While many different models for medium modifications of partonic cascades
due to induced radiation exist (cf. Chap. 1), for this work an effective model based on
an early version of YaJEM [105] was chosen3: Parton cascades evolve between an initial
and final virtuality scale, Q↑ and Q↓, respectively, and follow the same splitting functions
and Sudakov factors as in the vacuum case outlined in Chap. 2. However, during the
lifetime Eq. (2.37) of a partons between to consecutive splittings, its virtuality is increased
following a behavior of the form

d

dt
Q2 = q̂R , (3.1)

where q̂R is a time-dependent function (described below) that simulates the effects of
four-momentum transfer from medium particles. Thus, q̂R depends on typical energy
and momentum scales of the medium particles and, thus, on the time-evolution of the
temperature. Eq. (3.1) gives the increases of squared virtuality for quarks. In order to
simulate the medium effects for gluons as well, q̂ was multiplied by a factor CA

CF
in the

currently implemented Monte-Carlo algorithm. Eq. (2.37) is solved self-consistently and,
thus, the life-time of partons is shortened. Since parton virtuality is increased by q̂R, the
number of parton branchings will increase as well.

This property of the model allows to effectively simulate the medium-modifications of
parton cascades due to induced radiation and, thus, increased intra-jet-radiation. Further-
more, due to the additional branchings, individual partons passing through the medium

2The model will be referred to either as model for radiative energy loss, or ”inelastic model”. This
name reflects the fact that the medium interactions lead to branchings, i.e. 1→ 2 processes in an effective
model, corresponding microscopically to (multiple) collisions followed by a medium induced radiation,
i.e.: 2→ 2→ · · · → 2→ 3 processes.

3The basic energy-loss mechanism in YaJEM of the version of Ref. [105] has the advantage that it is
particularly easy to describe and also to implement. Thus, this section first explains this basic mechanism
and only afterwards tries to justify the particular choice of model, vis-à-vis other approaches to radiative
energy loss.
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will on average lose more energy than in the vacuum. Also, the angles between the jet
axis and the three momenta of the cascade particles in their final states is, on average,
larger for cascades with additional induced branchings than for cascades in the vacuum.
For the initial partons of the cascades this effect of angular broadening corresponds to
larger deflections of their three-momenta from their original directions.

In order to properly describe the propagation of cascade particles in the medium, it is
crucial to know, how their four-momenta change, in order to yield the virtuality increases
over time described in Eq. (3.1). While different possibilities that correspond to the same
q̂R exist, this thesis attributes the virtuality increase to an increase in the cascade particle
energy, i.e.: Ė2 = Q̇2 = q̂R. The reason for this choice is that it leaves the parton three-
momenta unchanged during the particle propagation between two consecutive splittings
– only parton branchings affect the three-momenta. Thus, this choice allows to simulate
the effects of processes of induced radiation on parton cascades, while neglecting at the
same time the effects of collisions with medium particles completely4. Since Ė2 = Q̇2 the
energies of the partons in the cascade, and, thus, of the entire cascade is not conserved,
but rather energy is transferred from the medium to the passing cascade. Due to the
additional – induced – parton branchings the amount of energy radiated off a cascade
particle is larger than the energy gains during its in-medium propagation, resulting in an
overall energy loss for individual cascade particles, which is also larger than the energy
lost in the branchings of vacuum cascades.

Compared to other models that describe induced radiation, the YaJEM model [105]
has the particular advantage that it is simple to implement and to modify, allowing
to simulate jet-medium interactions of different strength (i.e. corresponding to different
temperature scales). Its main property is, that four-momenta of particles are changed due
to an effective and continuous field, when the particles propagate through the medium.
Thus, it is also easily possible to find an analogous model for in-medium energy loss due
to purely collisional processes (cf. Sec. 3.2) or a combination of both collisional and elastic
processes (cf. Sec. 3.3). It is then possible to study – consistently, within the same overall
framework – the effects of the different energy-loss mechanisms on various observables,
e.g. the ones shown in Sec. 3.5 (mostly for the purpose of calibrating the models), but,
most importantly, two-particle correlations studied in Chap. 4.

In this work if a parton is produced with a virtuality below a fixed virtuality threshold
Q↓ this parton will no longer undergo any splittings (as in the vacuum) or jet-medium
interactions (and, thus, its virtuality will never rise above the threshold again), because
at small virtuality scales a description of parton branchings that follows the DGLAP-
equations is no longer valid. The reason is that if the incoming parton is almost on-
shell the argument fails that the virtualities of cascade particles decrease strongly after
(induced) branching – a necessary condition for the description of parton evolution via
DGLAP-equations (cf. Chap. 2). Thus, it can be argued that descriptions of induced
radiation, where the incident cascade-particle is already on-the-mass-shell, such as, e.g.
Ref. [124, 134] are more suitable at this stage of the cascade evolution. On the other
hand, for highly virtual particles it is assumed that branching processes as in the vacuum
dominate the evolution of the cascades, with only slight modifications due to in-medium
propagation. This work focuses on the initial highly virtual branching processes with
particular emphasis on their effect on observables of the outgoing final jet particles, while
neglecting later medium modifications.

An essential ingredient of the model is the dependence of q̂R on time t. In general,
the q̂R that a particle experiences is a function of its trajectory ~r(t) and, thus, finally of

4The other extreme case of effective models for jet-medium interactions – a model for collisional
processes that neglects induced radiation completely – is presented in the next section.
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Figure 3.1: Virtuality transfer q̂R as function of time t for media with ∆Q2 = 10 GeV2

(blue, solid) and ∆Q2 = 3 GeV2 (red, dashed).

time t. E.g. Ref. [105] calculates q̂R in a hydrodynamical simulation. While principally
other descriptions of q̂R are possible, this thesis uses a fit [105] to the results of this
hydrodynamical approach,5

q̂R(t) =
a

(b+ t)c
. (3.2)

Ref. [105] mentions 3 scenarios for particle passing the medium. The one selected for
calculations of this thesis corresponds to an initial particle created at the center of a
medium extending until a length of L = 10 fm6. Accordingly, for the fit parameters the
choices b = 1.5 fm/c, and c = 2.2 were made (thus, time t is also given in units of fm/c
in the formula above). The parameter a is determined via a normalization of q̂R to an
overall squared virtuality increase ∆Q2

∆Q2 :=
∫ tf

t0

q̂R(t)dt , (3.3)

where t0 = 0 and tf = L = 10 fm/c was assumed, which yields a ≈ ∆Q2

0.47
. In the remainder

of this thesis, ∆Q2 is used as a measure for the strength of the jet-medium interactions.
Fig. 3.1 shows examples for q̂R(t) for the choices ∆Q2 = 3 GeV2 and ∆Q2 = 10 GeV2,
which can be used to match both, energy loss in the RHIC and LHC experiment (while
the actual coupling remains unknown).

Implementation of the model: The algorithm implemented discretizes time in
small time intervals ∆t and changes the cascade-parton virtuality Q and three-momentum

5It should be emphasized that this thesis focuses rather on a study of the mechanisms of jet-medium
interactions and their relative dominances than on the evolution of the strength of these effects within
the medium. Thus, once a reasonable time dependence of the strength of the jet-medium interactions is
found, this description is used for all cascades in the medium, even if the relative importances of collisional
and radiative processes varies among the corresponding systems.

6For simplicity – to avoid the simulation of q̂R with a hydrodynamical model – it was assumed that the
scenario for q̂R holds for all cascade particles, even though it was originally fitted for a certain trajectory.
By consequence, this simplification is valid for cascades where the particle trajectories lie in cones of
small opening angles.
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~p per time step ∆t in the following way

Q 7→
√
Q2 + ∆t q̂R(t) ,

~p 7→ ~p , (3.4)

which results in a continuous increase in cascade-parton energy E,

E 7→
√
E2 + ∆t q̂R(t) . (3.5)

3.2 Collisional energy loss

In contrast to the effective model for radiative parton-energy loss of the previous section,
this section introduces an effective model for parton-energy loss that does not involve
additional parton radiation, as compared to cascades evolving in the vacuum. Instead,
parton-energy loss is attributed to elastic 2 7→ 2 particle collisions (referred to as collisional
energy loss) between cascade and medium particles, which lead to an energy transfer from
the parton-cascade to the medium7

For such an effective model one can seek inspiration from genuine collisional models (cf.
subsection 1.2.3) and, in particular the general approach to parton in-medium propagation
via transport equations, cf. sub-subsection 1.2.3.1. Therefore, consider a cascade particle
that is sufficiently long lived, so that the interaction with the medium can be described
as a large number of elastic scatterings that only slightly change the momentum of the
incident particle (i.e. the cascade particle is too hard and/or massive to thermalize, cf.
discussion Chap. 1). There, the medium effects on the incident particle can be described
by an effective and continuous force. Its effect on the three-momenta ~p of cascade partons
can be described, transport equations as, e.g. the Fokker-Planck equation. The effective
force contains, thus, components of a longitudinal drag forces and stochastic, transverse
kicks. The longitudinal drag force ~A(t) can be defined as

~A(t) := − d

dt
〈~pL〉 , (3.6)

where 〈pL〉 is the average of the three-momentum component pL in the direction of the
three momentum of the incident cascade particle. As it can be seen in the definition in Eq.
(3.6), the drag force ~A leads directly to a decrease of the absolute values of the cascade-
parton three-momenta ‖~p‖, and, thus, also to a cascade-parton-energy loss. Therefore,

with a suitable description of ~A one can effectively account for the energy transfers from
cascade-partons to medium partons in 2 → 2-particle collisions. This model will be
extended to also include 2→ 3 processes in Sec. 3.3.

The effect of the stochastic force that acts transverse to the three-momenta directions
of the incident partons can be expressed via a squared transverse momentum transfer q̂C ,
i.e.:

q̂C(t) :=
d〈~p⊥〉2
dt

. (3.7)

7One can expect that during the in-medium propagation of jets, a combination of energy transfer to
the medium as well as medium-induced radiation contribute to parton-energy loss. The main interest of
introducing the two models of this section and the previous one lies in studying, later on (cf. Sec. 3.5 and
Chap. 4), whether these two opposing effects can be identified in jet-observables. However, with the aim
for a more realistic approximation to parton-energy loss, hybrid models that include collisional as well as
radiative contributions are introduced in Sec. 3.3.
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The stochastic and drag contributions to the effective force have to satisfy an Einstein
relation ([135], also cf. Chap. 1, Subsection 1.2.3.1):

q̂C(t) = κTA(t) , (3.8)

with the proportionality constant κ and temperature T . One can obtain a more quanti-
tative relation, by making use of two different types of transport cross sections, defined
in Ref. [135]: The first one, σtr

I , is an approximation for the scatterings of relativistic
particles with ‖~p‖ ≈ ‖~p ′‖ (for the incident(outgoing) parton momentum p(p′)), and only
small changes ∆~p⊥ of transverse momenta. For collisions at a relative velocity v with
medium particles that are distributed with a number density n σtr

I can be related to the
average rate of transverse momentum transfer q̂C . In the ultrarelativistic case v ≈ 1 one
obtains

σtr
I =

q̂C

2np2
. (3.9)

The other transport cross section, σtr
II , can be used to describe the loss of the longitudinal

momentum component, ~pL,

σtr
II =

A

pnv
, (3.10)

via the drag force A. For small parton energies E, the loss of longitudinal momentum is
mainly due to potential scattering, where ‖~p‖ = ‖~p′‖, leading to transverse momentum.
If E ≪ T

2
one can approximate σtr

I ≈ σtr
II . If, however, E ≫ T , the loss of longitudinal

momentum is mainly due to energy transfers from jet to medium particles, which does
not necessarily give rise to transverse momentum. It can be shown that in this case

q̂C

A
≈ 2Eσtr

I

σtr
II

. (3.11)

Eq. (3.11) further implies σtr
I ≪ σtr

II ≪ σtot.
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Figure 3.2: Figure taken from Ref. [135]: For the medium model of the current algorithm,
the case of a non-vanishing thermal mass from an HTL approach (dashed dotted) was
used.

As can be seen in Fig. 16 of Ref. [135] (cited as Fig. 3.2 in this chapter), the ratio
between q̂C and A is almost independent of the particle energy (cf. the left panel of the
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Figure 3.3: Temperature T (left panel), and drag force A (right panel) as functions of
time t for media with ∆Q2 = 10 GeV2 (blue, solid) and ∆Q2 = 3 GeV2 (red, dashed).

figure), whereas it rises roughly linear with the temperature T . With this reasoning one
can justify the following linear approximation (in units of GeV):

q̂C

A
≈ 0.56 + 1.44

T

Tc

, (3.12)

with the critical temperature Tc = 0.158 GeV.
Thus, using Eq. (3.12) one can determine the drag force ~A(t) from the transverse

momentum transfers q̂C and the temperature T . The jet collaboration has moreover
determined [136] that q̂C

T 3 ≈const. Therefore, this thesis uses the parametrization

q̂C = 7T 3 . (3.13)

Consequently, once the transverse momentum transfer q̂C is known for a given time t, so
is the temperature T and the longitudinal drag force ~A. For simplicity, the implemented
model assumes q̂C = q̂R. Corresponding to the q̂C, R(t) profile given in Fig. 3.1, Fig. 3.3
gives the time dependencies for A(t) and T (t)8. As the behavior of Fig. 3.3 (left panel)
suggests, one finds for the choices of q̂C(R) with ∆Q2 = 3, 10 GeV2 for the temperatures at
the initial stages of the plasma evolution (t ≈ 0) values of T = 420 MeV and T = 627 MeV,
respectively. Therefore, these T scales, and, thus, the corresponding ∆Q2 scales, will
serve as a crude approximation of the expected scales at RHIC and LHC experiment in
the remainder of this thesis. In an effective model for multiple 2 → 2 particle collisions
between cascade and medium particles, two different medium effects play a role:

1. thermalization: The incident jet partons are slowed down by jet-medium interac-
tions, due to the drag force ~A. After a thermalization time tT the absolute values
of their momenta are entirely determined by the distribution of parton momenta
within the medium.

8In the remainder of this thesis, the strength of the jet-medium interactions is denoted by a quantity
that is labelled ∆Q2, also in case of the effective model for elastic scattering, as well as for tentative
hybrid models (with the induced radiation model). This quantity is defined in the model for collisional

energy loss as ∆Q2 =
∫ L

0
q̂Cdt and corresponds, thus, to the in-medium gain in transverse momentum

instead of virtuality.
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2. isotropization: Due the stochastic transverse kicks on the incident particle, mediated
by q̂C , the parton momenta are deflected, when cascade partons pass a medium.
After an isotropization time tI the directions of the cascade-parton momenta follow
an isotropic distribution and are, thus, completely independent of the directions of
the momenta at the production of the cascade partons in parton branchings.

In order clarify which one of the two processes dominates inside the jet-medium inter-
actions, and at which stages of the cascade/medium evolution, one can estimate and
compare the timescales tT and tI . From the definitions of the drag force in Eq. (3.6) and
of the transverse momentum transfers in Eq. (3.7) one can calculate the absolute value of
the total drag, pD, (in the interval [ti, ti + ∆t]) to

pD =
∫ ti+∆t

ti

Adt , (3.14)

and the absolute value of the accumulated momenta from transverse kicks, pstoc. to

pstoc. =

√∫ ti+∆t

ti

q̂Cdt . (3.15)

In order to obtain tT and tI , it is assumed that the medium effects are approximately
as large as the incident parton momenta, i.e.: ‖~p‖ ≈ pD and ‖~p‖ ≈ pstoc., respectively.
Then ∆t = tT,I in the above formulas can be determined. Under the further assumption
of almost on-shell particles, i.e. ‖~p‖ ≈ E, one can obtain the estimations

tT =
E

A
, tI =

E2

q̂C

. (3.16)

Results for the timescales tT and tI are shown for different ∆Q2 values in Fig. 3.4. For the
obtained curves, the values of tT are smaller than the corresponding values of tI , for high
enough energies. Thus, it can be argued, that thermalization dominates over isotropiza-
tion. Therefore, in comparison to transverse kicks to the momenta of the incident jet
particles, a longitudinal drag force seems to be the more pertinent effect that needs to be
included in a suitable description of jet medium interactions (at least in the case of scat-
terings implying energy transfer to the medium). Only at small parton energies, below
10 GeV, isotropization dominates.

However, while isotropization is in general of minor importance, compared to ther-
malization, it is important to note that certain observables are particularly sensitive to
transverse forces and, thus, to isotropization, e.g. observables reflecting transverse mo-
mentum broadening (cf. sub-subsection 3.5.1.2). On the other hand, one can expect that
observables that depend solely on the absolute values of particle momenta, such as, in
particular, observables reflecting in-medium energy loss, can be suitably well described
by a longitudinal drag force alone. The question of whether observables are sensitive to
isotropization is revisited in Sec. 3.5, where also results for hybrid models (to be intro-
duced in Sec. 3.3) will be shown.

3.2.1 Implementation of the model

The second model considered effectively simulates elastic scattering of jet particles and
medium particles via a medium dependent force that continuously changes the particle 3
momenta ~p, but does not affect the virtuality of the jet particle.

Since this thesis aims at calculating correlations between particles of highly energetic
jets, E ≫ T , and, thus, Eq. (3.12) can be assumed. Since it was the goal of this model to
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Figure 3.4: Isotropization times tI (blue, solid) and thermalisation times tT (red, dashed)
in the implemented medium model, as a function of time t, defined via q̂ and A, as
shown in Figs. 3.1 and 3.3, for incoming particles of energies E = 2.5, 5, 10, 20, 40 GeV
(from curves at the bottom to the top). Left panels: ∆Q2 = 10 GeV2, Right panels:
∆Q2 = 3 GeV2.

study the medium effects on 2 particle correlations that are merely due to elastic processes
without induced radiation, the parton virtualities Q were set constant throughout the in
medium propagation of partons between 2 successive splittings: By consequence, both the
jet-particle 3-momenta, as well as the energies are affected by jet-medium interactions.

Thus, one obtains an algorithm, where for a cascade particle that propagates at time
t for a small timespan ∆t, the virtuality does not change, while the three-momentum is
affected by the drag force ~A(t) and the stochastic transverse force, represented by q̂C(t),
i.e.:

Q(t) 7→ Q(t+ ∆t) = Q(t) ,

~p(t) 7→ ~p(t+ ∆t) = ~p(t)− A(t)∆t
~p(t)

‖~p(t)‖ + ~n(t)
√
q̂C(t)∆t , (3.17)

with unit vectors p̂(t) in direction of ~p(t) and ~n(t) in a direction transverse to the incident
parton momentum ~p(t) (i.e.: ~n(t) · ~p(t) = 0). In a thermalized medium the distribution
of possible scattering centers is assumed to be (locally) isotropic around the incident jet
particle. Correspondingly, the azimuthal angle that determines the direction of ~n(t) in
the plane orthogonal to ~p(t) is selected from a uniform distribution in the Monte-Carlo
algorithm implemented.

It follows directly from Eq. (3.17), that the cascade-parton energy E(t) changes during
a time step ∆t of the particles in-medium propagation in the following way

E(t) 7→ E(t+ ∆t) =
√
E(t)2 − 2‖~p(t)‖A(t)∆t+ q̂C(t)∆t+O (∆t2) . (3.18)

Together with Eq. (3.12) one realizes that E decreases for

‖~p‖ > q̂C

2A
≈ 0.28 + 0.72

T

TC

, (3.19)
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and increases for smaller parton momenta that do not fulfill the above condition (again the
right-most part of the above relation is given in units of GeV). Regardless of the concrete
numerical values in Eq. (3.19), this type of relation implies, that for cascade particles
with momenta largely above the temperature of the medium, ‖~p‖ ≫ T , the cascade-
particle energies decrease, i.e.: energy is transferred to the medium. On the other hand,
for momenta below a certain scale, which is of the order of the medium temperature T ,
the stochastic force dominates, which can result in an energy transfer from the medium
to the cascade parton. In the implemented model, where the stochastic force only has
components transverse to the momentum of the incident parton, the energy of the cascade
parton always increases at these temperature scales.

The evolution of the three-momenta of partons subjected to the drag and stochastic
forces can be described by a corresponding Langevin-equation, cf. Eq. (1.6) (the distribu-
tion of these momenta follow a Fokker-Planck equation). While these transport equations
are often applied to on-the-mass-shell particles, one can argue that they are also valid for
off-the-mass-shell particles, as they describe quite generally the action of drag and stochas-
tic forces on a particle with certain three-momentum ~p – without an explicit dependence
on the virtuality of this particle.

It is the purpose of the effective models in the studies of this thesis, to provide an overall
framework that allows to consistently compare different types of jet-medium interactions
between identical jet evolution scales (i.e.: virtualities Q↑ and Q↓ and Eini) and for the
same global medium parameters (initial temperature, medium evolution). Thus, the
currently implemented version of the effective model for collisional energy loss does not
consider any medium effects for cascade particles of virtualities smaller than the threshold
Q↓, in order to allow for a consistent comparison between the results of this model with
the one for radiative energy loss, which is outlined in Sec. 3.1.

For a more realistic description of in-medium parton-energy loss, of course, it can
be even necessary to include also descriptions for the collisional energy loss of on-shell
particles, as numerous – analytic – energy loss models suggest (cf. Chap. 1). An appendix
will give a first such approach within the framework of the effective models shown in this
chapter.

3.3 Hybrid model for collisional and radiative energy

loss

Transfer of Energy and three-momentum between jet-partons and the medium, for which
an effective model was introduced in the last Sec. 3.2, can be viewed as a generic feature of
jet-medium interaction that can be found in processes of collisional as well as of radiative
energy loss. In the latter case it can be argued that medium-induced radiation occurs
only if jet and medium particles interact, which, in general, involves four-momentum
exchanges. One can argue that the contributions to energy loss from induced radiation(for
which an effective model was introduced in Sec. 3.1) and from momentum exchange with
medium particles do not affect one another: Thus, if one suitably well combines the
cascade-parton four-momentum changes of the two previous models, one should obtain
more reasonable hybrid models that contain the contributions from both parton-energy
loss due to momentum transfer to the medium as well as additional radiation. This section
describes two of these effective hybrid-models.
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3.3.1 Model with induced radiation and drag forces

This model allows for induced radiation as well as a longitudinal drag due to jet-medium
interaction. In this first hybrid model approach forces transverse to incident cascade
partons were neglected, because processes of thermalization can be expected to dominate
over processes of isotropization, as it was argued in Sec. 3.2.

The parton momenta and virtualities change at time t during a small time-step ∆t,
in the following way

Q(t) 7→ Q(t+ ∆t) =
√
Q(t)2 + ∆tq̂R(t) ,

~p(t) 7→ ~p(t+ ∆t) = ~p(t)− A(t)∆t
~p(t)

‖~p(t)‖ . (3.20)

In the concrete implementation of the model it is again assumed that q̂R = q̂C , which
appears in the above relations only implicitly via the qC dependence of the drag force A,
given via Eq. (3.8).

As a consequence of Eq. (3.20), also the parton energy changes

E(t) 7→ E(t+ ∆t) =
√
E2 + ∆t(q̂R(t)− 2A(t)‖~p(t)‖) +O(∆t2) . (3.21)

These energy changes follow the same behavior that was previously observed for the
effective model of purely collisional energy loss, i.e.: for momenta that fulfill Eq. (3.19)9

the energy of the cascade particle decreases, due to the influence of the drag force ~A, while
it increases for smaller momenta, that do not satisfy Eq. (3.19), although this is now the
outcome of virtuality increase.

3.3.2 Model with induced radiation, drag forces, and transverse
forces

In contrast to the hybrid model of the previous subsection, now a model with a stochastic
transverse force is introduced in order to allow a comparison of the two models and,
thus, a study on the importance of this transverse force. The same parton-virtuality as
in Eqs. (3.4) and (3.20) are considered in this model, in order to allow for a consistent
comparison. Consequently, there are not any effects of the stochastic transverse force on
the parton virtuality. Instead the stochastic transverse force affects the parton energy, as
it was already the case for the elastic effective model in Eqs. (3.17) and (3.18).

Thus, one can write for the virtualities and parton three-momenta

Q(t) 7→ Q(t+ ∆t) =
√
Q(t)2 + ∆tq̂R(t) ,

~p(t) 7→ ~p(t+ ∆t) = ~p(t)− A(t)∆t
~p(t)

‖~p(t)‖ + ~n(t)
√
q̂C(t)∆t . (3.22)

It follows from these relations that the parton energies have to change according to

E(t) 7→ E(t+ ∆t) =
√
E(t)2 + ∆t(q̂R(t) + q̂C(t)− 2‖~p(t)‖A(t)) +O (∆t2) . (3.23)

Again, it can be stated that the parton energy decreases for parton momenta ‖~p‖ ≫ T ,
but increases if

‖~p‖ > q̂C + q̂R

2A
. (3.24)

9In this context it is implicitly assumed, that for the corresponding relation in the hybrid model q̂C

in Eq. (3.19) has to be exchanged for q̂R (however, the drag force A is still derived from q̂C).
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In comparison the Eq. (3.19) and the analogous relation for the hybrid model that does
not contain the stochastic transverse force, the above relation contains contributions from
both q̂C and q̂R. For the choice q̂R = q̂C , which is used again in the implementation of
the current effective model, this implies that the momentum scales that separate parton-
energy decrease from increase is 2 times the corresponding scales of the elastic effective
model or the previous hybrid model.

3.4 Summary on effective models

For the description of jet-medium interactions three models were considered, in order
to study different possible medium effects on the evolution of partonic cascades in the
medium: These are effective models that involve additional radiation (hereafter also re-
ferred to as radiative or inelastic model, or model A), a model where the primary –in-
vacuum– radiation rate is unaffected, but where energy is transferred from the cascade
to the medium due to a drag-force, and the cascade particles are subjected to stochastic
kicks (hereafter also referred to as collisional, or elastic model, or model B), and two
hybrid models that include both momentum exchange with the medium as well as addi-
tional radiation, where the first considers the medium-induced parton branchings and a
longitudinal drag force but neglects transverse forces (hereafter also referred to as model
C) and a second one that furthermore also involves a stochastic transverse force (hereafter
referred to as model D).

In all of these models, the 4-momenta of the incident jet particles are changed by
multiple interactions with the medium. Thus, the cascade evolution can be globally
affected by additional splittings (due to increases of virtuality Q), as well as by forces
acting on the cascade parton 3-momenta ~p. These forces may include components in
longitudinal, as well as transverse directions to the incident parton 3 momenta, ~p‖ and
~p⊥, respectively Tab. 3.1 shows, which components of the parton 4-momenta change, due

model Q ~p‖ ~p⊥ E
A (radiative/YaJEM-like) ↑ = = ↑
B (collisional) = ↓ ↑ ↓↓↓↑
C (hybrid/no transverse force) ↑ ↓ = ↓↓↓↑
D (hybrid/transverse force) ↑ ↓ ↑ ↓↓↓↑

Table 3.1: The 4-momentum components affected by jet-medium interactions in the var-
ious models. The symbol ↑ (↓) signifies that the corresponding component increases
(decreases) due to medium effects, = that it remains the same. ↓↓↓↑ symbolizes that energy
decreases due to medium effects for high ‖~p‖, but increases for low ‖~p‖. This is explained
for model B in subsection 3.2.1 and for the hybrid models in Sec. 3.3.

to jet-medium interactions.
From a study of these effective models via the resulting observables one can learn

about the relative importance of different contributions to in-medium parton-energy loss:
A comparison of the collisional and the radiative model would allow to determine how,
and to which extent, these observables are sensitive to either four-momentum transfers to
the medium or to the medium-induced parton-radiation. In the most ideal case it should
then be possible to identify a set of observables that can be used as a tool to discriminate
among different models to parton-energy loss (cf. subsection 1.2.3) and to learn to which
extent collisional and radiative processes play a role.

If one wants to understand which one of the two contrary energy-loss mechanisms
dominates, when both of them contribute to the jet-medium interactions one can compare
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model A and B with the hybrid models. Comparisons between the two hybrid models
finally allow to determine whether there are still relevant contributions from processes
of isotropization to certain jet-phenomena, like, e.g. transverse momentum broadening or
angular broadening.

3.5 Observables
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Figure 3.5: Schematic organization of jet observables. The red arrows show the main
structure of the remainder of this chapter: To first produce some easily accessible (”naive”)
observables, in order to verify the presumed in-medium phenomenology, and then to
produce more realistic (i.e.: experimentally accessible) observables. This approach is
taken two times: First, to study the phenomenology of light particles and jets and a
second time to learn about the medium effects on heavy particles.

Jet-medium interactions can be characterized qualitatively by the 4 properties of jet-
broadening at large angles, in-medium energy loss, increased intra jet activity and small
deflection of the initial particle of a jet/of the jet axis. In order to quantitatively access
these behaviors of jets in the medium, numerous observables are considered in this sec-
tion. Fig. 3.5 gives a (non-exhaustive) list: These observables are either obtained from
(multiple) light particles in a jet or from individual heavy quarks/hadrons. The former
type has the advantage, that they can be easily obtained from Monte-Carlo simulations of
light parton cascades. The latter type gives access to the physics of heavy particles that
do not thermalize in the medium and are, thus, a valuable probe for the QGP, as Chap.
1 explains, and one of the main subjects of this thesis work. Furthermore, observables in
Fig. 3.5 were referred to as ”naive”, if they cannot be accessed directly by experiments.
E.g. the distributions of parton momenta

dNq,G

dp‖,⊥
,

dNq,G

d‖~p‖
(or the related distribution dN

d∆θjet

of the angles ∆θjet of the parton momenta ~p with the jet axis) are not measurable quanti-
ties, because due to confinement, only the resulting hadrons can be detected. Observables
that can in principle be measured by current heavy ion collision experiments, or which
have already been studied experimentally (e.g.: RAA, v2, jet imbalances, angular correla-
tions...) for genuine hadrons are referred to as ”realistic”. The remainder of this chapter
will, thus, take the approach that is outlined in Fig. 3.5: First, some naive observables for
light particles or the entire jet, respectively, are obtained with the jet-medium models of
the previous Secs. 3.1, 3.2, 3.3. They are used to verify that the effective models lead to
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a qualitatively reasonable phenomenology of jet-medium interactions (i.e.: the aforemen-
tioned media-effects) and to study these medium modifications of the naive observables.
Then more realistic observables will be constructed to further study the medium-effects
from the different effective models and to produce results that can, in principle, be com-
pared to experimental data. This approach (to first study naive and then more realistic
observables), is repeated for the study of the medium effects on heavy quarks.

Angular Energy Intra-Jet Jet
Broadening loss Radiation deflection

Thrust ×
dNq,G

dp‖,⊥
,

dNq,G

d‖~p‖
× ×

dN
dξ

× ×
jet imbalance × ×

dN
d∆φHH̄

× ×

RAA ×
v2 × ×
angular
correlations

× ×

Table 3.2: List of several observables and the jet-phenomena they can possibly reflect
(marked by the symbol ×).

Therefore, it is necessary to know which –qualitative– properties of jet-medium inter-
actions are reflected by which observables. Tab. 3.2 gives an overview.

3.5.1 Light particle and jet observables

3.5.1.1 Thrust

By its definition (cf. Sec. 2.2) thrust is a suitable infra-red and collinear safe observable
to study the isotropization or collimation of particle showers. The expected broadening
in the directions of particle propagation due to medium effects would result in smaller
values of T but larger Tmaj and Tmin values. On the other hand, due to the collinear safety
of the observables, if the jet-medium interactions lead to large amounts of additional
collinear radiation along the jet axis, this behavior does not necessarily affect the T ,
Tmaj, and Tmin values. It should be also noted that T , Tmaj, and Tmin represent naive
observables in the sense that they consider the entirety of outgoing particles of an event.
Thus, they do not distinguish between particle produced in hard collisions and remnants
of the underlying event. The current version of the Monte-Carlo algorithm simulates
parton cascades (considered as jets in the present context, without application of a jet-
algorithm) from an initial quark, without the simulation of the underlying event. Thus,
it is not yet evident whether the distributions of T , Tmaj, and Tmin that can be calculated
from the Monte-Carlo simulations of jets correspond to measurable quantities and this
would require further investigation.

Fig. 3.6 shows the distributions of T , Tmaj, and Tmin for parton cascades initiated
by a quark with Q↑ = Eini = 20 GeV which evolve down to scales Q↓ = 0.6 GeV. Due
to infrared safety of the observables, the distributions shown are largely unaffected by
changes of Q↓, and one would get almost indistinguishable results for, e.g.: Q↓ = 1 GeV.
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Figure 3.6: Results obtained from the Monte-Carlo simulations of cascades in the vacuum
(solid) and the medium for thrust T (left panel), thrust major (middle panel), and thrust
minor (right panel). Cascades in the medium were obtained within the three different
effective models, the elastic (dashed), the inelastic (dash dotted), and the hybrid model
C (dotted).

The distributions of the thrust T confirms the expectation that jet-propagation in the
medium leads to angular broadening: For the effective models of both inelastic, and elastic
scatterings as well as for the hybrid model C the number of cascades at smaller T values
is larger than for cascades that propagate in the vacuum. On the other hand, the peak
for ”pencil-like” events at T ≈ 1 is considerably diminished for cascades in the medium
– even for purely elastic scatterings, where a sizable peak is still visible. Consequently,
the largest angular broadening effect can be observed for the purely radiative model, and
the smallest one for the purely collisional model. The distributions for Tmin confirm these
tendencies. However, at large Tmaj values it appears that more vacuum than medium
cascades can be found. This effect is more than overcompensated by the larger number of
medium cascades that yield Tmaj values at intermediate regions between 0.2 and 0.5. Thus,
in comparison to vacuum cascades, the Tmaj values are higher for most of the medium
cascades.

3.5.1.2 Parton momenta distributions

In-medium parton-energy loss, as well as jet broadening can be considered as signal for
jet-medium interactions. Consequently, this section investigates, for different types of
jet-medium interactions, the distributions dN

d‖~p‖
(where ~p are the 3 momenta of individual

jet particles) as a means to quantify the corresponding parton energy distributions. Fur-
thermore, the components of ~p longitudinal and transverse to the jet axis, p‖ jet and p⊥ jet,
respectively, will be used to quantitatively understand jet broadening, in the implemented
models of jet-medium interactions.

Fig. 3.7 shows the distributions dN
d‖~p‖

(normalized to the average number of particles

produced per cascade)10 for cascade particles in their final states obtained with the elastic
or inelastic model, or the hybrid model C in comparison to the vacuum case. The most
striking medium effect in these plots is the largely increased number of radiated particles
– particularly for small ‖~p‖ – that occurs for the models that include medium-induced
radiation in comparison to the distributions for the elastic effective model or cascades in

10Unless stated otherwise, for any particle number distributions this type of normalization is used
throughout the remainder of the thesis.
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Figure 3.7: Distribution over the absolute values of jet-particle 3-momenta ‖~p‖ for jet
particles in the final states (solid) and at times t = 0.4, 1, 2 fm/c (dashed, dashed dotted,
dotted) for the vacuum (upper left panel) and for inelastic (upper right panel) and elastic
jet-medium interaction (lower left panel), as well as for model C (lower right panel). The
corresponding cascades are initiated by a quark with Q↑ = Eini = 20 GeV, and evolve
down to Q↓ = 0.6 GeV. For the medium ∆Q2 = 10 GeV2 was assumed.
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Figure 3.8: The distribution over the absolute values of jet-particle 3-momenta ‖~p‖ for
jet particles in the final states from Fig. 3.7 are shown here again in comparison to one
another.

the vacuum. On the other hand the medium modifications of the elastic effective model
appears to have little influence on the distribution, as compared to the distributions for
cascades in the vacuum. Furthermore, Fig. 3.7 also depicts dN

d‖~p‖
for three different times

t after the creation of the initial quark, in order to illustrate the time evolutions of these
distributions. The different time scales were selected at early and intermediate stages
of cascade evolution at t = 0.4 , 1 fm/c, where several splittings have already happened,
but a saturation of the number of produced particles is not yet visible, as well as at the
onset of saturation at t = 2 fm/c. As it can be seen in the figure the distributions over
‖~p‖ allow initially for larger contributions at higher momenta. Due to momentum loss
caused by splittings or scatterings, this region is depleted over time, while radiation of
soft partons is enhanced. From the large contributions at high momenta ‖~p‖ ≥ 10 GeV
in the distributions at time t = 0.4 fm/c the largest part is depleted at short time scales,
below t = 2 fm/c in case the particles are allowed to produce induced radiation, like in the
model for inelastic scatterings or model C. If these additional radiative processes are not
present, as, e.g., for the vacuum cascades, as well as for the cascades that only undergo
elastic scattering, the depletion of the initially present bump occurs at much larger time
scales, so that most of it is still present at t = 2 fm/c. This observation indicates that
the time evolution of parton cascades happens at much shorter time-scales, if cascade
particles are also allowed to produce medium induced radiation.

Fig. 3.8 compares for the four models of jet-medium interactions, as well as for the
vacuum, the distributions dN

d‖~p‖
of jet particles in their final states. These distributions

exhibit, in general, a strong decrease with increasing values of ‖~p‖. This kind of behavior
implies that the majority of particles radiated are soft, i.e. have small energies. The
distribution corresponding to the elastic energy loss model are slightly suppressed at
large momenta, which is to be expected, if energy of the incident parton is transfered to
the medium, due to the drag force ~A. An even stronger depletion at large ‖~p‖ values
can be observed for the model of purely inelastic energy loss, where it can be explained
by additional splittings of hard into soft partons. Therefore, the induced radiation is
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Figure 3.9: Distribution over parton momentum components transverse (left panel) as
well as longitudinal (right panel) to the jet axis for particles in their final state. For these
results, the same parton cascades as for Fig. 3.7 were used.

expected to occur at small ‖~p‖ values. In fact, the peak at small momenta is of almost
one order of magnitude larger than in the vacuum. For the hybrid models one observes
behaviors similar to the one of the purely inelastic model, which should be reflected in the
corresponding humped-back plateau distributions (to be studied in subsection 3.5.1.3).

Fig. 3.9 shows the distributions over the components transverse and longitudinal to
the jet axis for the different models of jet medium interactions together with the vac-
uum. The remainder of this chapter adopts the notation ~p‖ jet in order to specify for
the three-momentum of a cascade particle its component parallel to the jet-axis.11 For
the three-momentum component orthogonal to the jet axis, the notation ~p⊥ jet is adopted
analogously.

For the distributions of p⊥ jet := ‖~p⊥ jet‖ one observes a depletion at high values of
p⊥ jet for cascade particles in the purely radiative effective model A and the hybrid model
C, as compared to the corresponding distribution over cascade particles in the vacuum.
However, for parton cascades in effective models that include a stochastic transverse
force (i.e. models B and D) one observes an enhancement at large p⊥ jet values compared
to the corresponding distribution for the vacuum12. The enhancements at large p⊥ jet

values might be explained by the stochastic transverse force acting on incident cascade
particles, because by definition, this force accounts for transvere momentum transfers to
the incident cascade partons during small time steps, cf. Eq. (3.22) 13 . Furthermore, the
hybrid models C and D differ in their construction only by the inclusion of the transverse

11In order to avoid confusion with the parallel component to the beam axis of the jet three-momentum,
small letters p will always denote individual cascade particle momenta, while the global jet-momenta (if
ever needed), will be denoted by capital letters P .

12The hybrid model D exhibits also an enhancement at small p⊥ jet values. However, this behavior can
be attributed to medium induced radiation of soft particles and reflects, thus, the same physical effects
as model A and C at these small scales of transverve momentum, which are discussed further below.

13For strongly collimated jets (i.e.: for high initial jet-energies Eini) this stochastic transverse forces
can be also viewed as forces that act mainly transverse to the jet axis, provided their cumulative effect
on the propagation of the cascade partons is not too large, i.e. ‖~p‖2 ≫ ∆Q2.
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stochastic force (cf. Tab. 3.1), so that contributions from other effects can be excluded
(the additional enhancement at small p⊥ jet is already present in model C).

For the distributions over p‖ jet := ‖~p‖ jet‖, one observes qualitatively the same behavior
as for the distribution of ‖~p‖. Again, compared to jets in the vacuum the distribution is
more depleted for large p‖ jet values in case of elastic jet-medium interactions, even more
in case of inelastic scatterings and the hybrid models.

One of the most striking properties of these distributions of p‖ jet and p⊥ jet is the
large enhancement of the peaks at small momentum scales for the effective models that
include medium-induced radiation in comparison to the distributions of cascades in the
vacuum. The overall shifts towards smaller momentum scales correspond to increases in
soft parton radiation. The enhanced peaks at small p⊥ jet, in particular, are a signal for
either additional soft or collinear14 radiation (the former if the p‖ jet corresponding to an
individual particle is small, the latter, if p‖ jet is large). On the other hand, for the purely
elastic model one does not observe any enhancement at small momentum scales, and, in
case of the distribution of p⊥ jet, even a slight suppression. It can, thus, be concluded
that only in the effective models that allow for additional medium-induced radiation one
can observe a narrowing of the inner core of the jets, while this is not true for the purely
collisional effective medium model.

3.5.1.3 Humped-back plateau distribution

The humped-back plateau distributions dN
dξ

also allows to study the distributions of the

absolute values of cascade-parton momenta ‖~p‖ that was already directly shown previously
in Fig. 3.8. However, due to the definition ξ := − log(‖~p‖/Eini),

dN
dξ

is particularly suitable
to study the emission of soft particles. Consequently, in this sub-subsection, the humped-
back plateau distributions are primarily used to discuss two aspects: the differences in the
soft radiations of the models that include medium-induced radiation (which are hardly
visible in Fig. 3.8, due to the display in a semilogarithmic scale) and the influence of Q↓

in the different effective models.
The distributions for the cascade particles in the medium have to be interpreted with

care, as they likely cannot be translated directly into observable quantities at all ξ: For
the chosen initial energy of Eini = 20 GeV, temperature scales of, e.g., T ≈ 200 MeV or
T ≈ 400 MeV correspond to ξ ≈ 4.6 and ξ ≈ 3.9 respectively. Thus, contributions to dN

dξ

at these ξ-values, or above, stem from particles that have most likely thermalized with
the medium, and should, therefore, be ignored.

Fig. 3.10 shows corresponding results for parton cascades of light partons, initiated by
a quark with Q↑ = Eini = 20 GeV. In general, the distributions are depleted at low ξ (i.e.:
hard particles), while they are filled at higher ξ scales. Thus, the average parton momenta
and energies (represented by the ξ values) are smaller for medium cascade particles than
for those that propagate in vacuum: This behavior of dN

dξ
verifies an increased tendency

to jet splitting in the medium.
In consistency with observations for Fig. 3.8 one notices in detail: The distributions

for the purely elastic model are close to the corresponding distributions for the vacuum,
except for an increase of the peak for ∆Q2 = 10 GeV2 and Q↓ = 0.6 GeV. On the
other hand, for the models that involve medium-induced radiation one observes large
enhancements at large ξ values and slight depletions at small ξ.

For the hybrid models one observes: Model C, whose only difference to the inelastic
effective model A is the implementation of a drag force (cf. Tab. 3.1), is not as much
enhanced (as compared to the distributions for cascades in the vacuum) as the inelastic

14i.e.: collinear to the jet axis.

85



0 1 2 3 4 5 6 7

0

5

10
Q↓ = 0.6 GeV,

∆Q2 = 10 GeV2.

ξ

dN
dξ

vacuum

inelastic

elastic

model C

model D

0 1 2 3 4 5
0

0.5

1

1.5
Q↓ = 1 GeV, ∆Q2 = 10 GeV2.

ξ

dN
dξ

Figure 3.10: Humped-back plateau distribution of the variable ξ = − log(‖~p‖/Eini). For
these results, parton cascades that evolve down to Q↓ = 0.6 GeV (left panels) or Q↓ =
1 GeV (right panels) and that are initiated by a quark with Q↑ = Eini = 20 GeV were
simulated in the vacuum as well as in media with jet-medium interactions, described by
the models for inelastic (dashed dotted), or elastic scattering (dashed), or the hybrid
models C (dotted) and D (dash-dot-dotted).

effective model. The drag force yields an additional energy transfer to the medium (cf.
Eq (3.21)), which decreases also the energies of possible decay products. Since the parton
energies represent an upper limit to their virtualities, the number of radiated particles
is expected to be on average smaller. This effect can be compensated by an additional
stochastic transverse force, as it is shown by the corresponding distributions of model D.
There one observes, furthermore, that the maxima of the distributions occur at slightly
smaller ξ values, as compared to the inelastic effective model or model C. A tentative
explanation is given via Eq. (3.23), which implies that the energy transfer to the medium
is mitigated if a stochastic transverse force is implemented.

The distributions for cascades with Q↓ = 0.6 GeV are shown in the left panels of
Fig. 3.10, those for Q↓ = 1 GeV are shown in the right panels. One observes that
enhancement at large ξ for models that involve medium-induced radiation is several times
larger for Q↓ = 0.6 GeV than for Q↓ = 1 GeV. It follows that most of the additional parton
splittings, which occur in simulations with Q↓ = 0.6 GeV, happen at small virtuality scales
of the order of Q↓. From this comparison the idea emerges that the uncertainties due to
different choices for Q↓ lies mainly in the amount of radiated soft particles (even though
the behavior of the distributions and the changes due to medium effects are qualitatively
the same for both choices of Q↓).

It has been noticed that hadronization can play a major role for the behavior of
the humped-back plateau distributions, in particular at high ξ (cf. , e.g. , Ref. [123]).
Furthermore, it has been observed that the strong enhancement due to radiative processes
will be mitigated considerably, once hadronization is considered for both, cascades in the
medium and the vacuum [101]. Analogously, one can expect that the large enhancements
observed for models A, C, and D decrease, once a suitable hadronization model is applied
to the Monte-Carlo Algorithm.

If one was to consider the humped-back plateau distribution of heavy quarks instead
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Figure 3.11: Distributions over the angle ∆θjet between the parton three-momenta ~p and
the jet axis for cascade partons in the different effective models of jet-medium interaction
and the vacuum. For these results, the same parton cascades as for Fig. 3.7 were used.

that of light particles, one has to note that the heavy quark energy has to be at least as
large as its mass. For charm quarks in the current system the mass scale mc ≈ 1.5 GeV
corresponds to ξ ≈ 2.6. In comparison with the light parton cascades it becomes evident
that, if one neglects softer particles, much of the large differences in the peaks of the
distributions at large ξ are neglected as well. Thus, one can argue that, while it is pos-
sible to distinguish the different energy loss mechanism for light quarks by means of the
corresponding humped-back plateau distributions, the same cannot be stated automati-
cally for the energy loss mechanisms of heavy quarks. In particular, if one considered also
different temperature scales (represented by different ∆Q2 values in the effective mod-
els) the distributions for hard particles might even become indistinguishable. However,
these questions will not be studied in this sub-subsection, but in more detail later on, by
means of estimations of the nuclear modification factor in sub-subsection 3.5.1.5 for the
charged particles (where one can still argue that the different energy-loss mechanisms can
be identified via their soft particle yield) and in sub-subsection 3.5.2.1 for heavy quarks.

3.5.1.4 Single angular distribution

In this sub-subsection the distributions over the angle ∆θjet, defined as the angle between
the directions of cascade particle three momenta ~p with the jet axis are investigated. These
distributions simultaneously reflect the medium effects on p‖ jet and p⊥ jet that were shown
in Fig. 3.9. In particular, studying dN

d∆θjet
permits to understand, whether the enhancement

of dN
dp⊥ jet

that is observed for the models that include radiative energy loss at small p⊥ jet

values corresponds to additional soft or additional collinear radiation. Fig. 3.11 shows
results of these angular distributions for the models of jet medium interaction, and the
vacuum. While the left panel represents the distributions obtained from all particles in
their final states, the middle panel considers only the ones with ‖~p‖ < 2 GeV, the right
panel the remaining harder particles.

In general, for very small angles the distributions rise steeply, a behavior that originates
from the sin(∆θjet) factor of the phase space volume element, peak at a small angle and
decrease monotonously until π.

In particular in the left panel, one observes that the distribution for cascades in the
vacuum reaches its maximum at the smallest angles, compared to the distributions for any
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of the three effective models of jet-medium interaction, and falls off the fastest. Therefore,
for the models simulated, broadening of the jet cone, due to jet-medium interactions has
been verified numerically.

As the distributions for (components of) parton momenta before, the angular distri-
butions have been normalized to the mean number of particles produced per cascade 〈n〉,
i.e.: ∫ π

0

dN

d∆θjet

d∆θjet = 〈n〉 . (3.25)

Thus, it is visible in the left panel, that, in general, more particles have been radiated
in the inelastic model and in the hybrid models than in the vacuum, and that these
enhancements occur at large angles (leading to angular broadening), as well as at small
angles (increase of intra-jet radiation). On the other hand, for the elastic model, radiation
is largely suppressed at small angles. In case of the inelastic model and hybrid models
the additional radiation accounts also for the broadening of the distribution compared to
the vacuum case, while for the purely elastic model such a broadening effect can – per
definition of the model – only occur due to deflections of the cascade particles. Indeed,
one observes that more particles are radiated at larger angles, while small angle radiation
has been suppressed.

Particle cascades in the hybrid model C are subjected to both, medium-induced ra-
diation as well as to a drag force, parallel to the incident parton momenta. Both effects
lead to angular broadening: Due to the former effect, cascade partons undergo on average
a larger number of successive splittings (as compared to the vacuum), which allow the
accumulation of larger angles between the parton momenta and the jet axis. The latter
effect of the drag force leads to a decrease in the parton three-momenta, cf. Eq. (3.20).
Due to momentum conservation throughout parton branchings one can expect that com-
ponents of the radiated partons parallel to the decaying partons are smaller than for the
vacuum case, while the transverse components remain the same. By consequence, branch-
ing angles are large in models that contain a drag force. These behaviors of the hybrid
model C are well reflected in the left panel of Fig. 3.11: For large angles one observes a
larger enhancement of the vacuum distribution than for the purely elastic and the purely
inelastic effective models alone. This behavior can be interpreted as a signal that radiative
energy loss combined with a drag force add up to an even higher broadening effect. An
even higher angular broadening can be achieved, if the jet-medium interactions contain,
in addition to radiative energy loss and the drag force, also stochastic transverse force, as
it can be seen from the angular distribution for model D.

If one studies the contributions to the angular distribution from either soft partons,
where ‖~p‖ < 2 GeV (middle panel of Fig. 3.11), or hard partons, where ‖~p‖ ≥ 2 GeV
(right panel of Fig. 3.11) one observes for the three effective models that simulate radiative
energy loss that most of the additionally radiated particles are soft, i.e.:‖~p‖ < 2 GeV. In
particular for models A and C, the enhancement at large angles is almost entirely due to
soft particles – a behavior that is consistent with a picture of jet-shapes that has been
deduced from experimental data [137, 138]. While for model D also the contributions to
the angular distribution from hard partons are enhanced at large angles, for soft particles
the enhancement is much larger. For the purely elastic model the discrepancies in the
contributions to the angular distribution for soft and hard partons are not as large as for
the models that simulate radiative energy loss. For hard partons a residual enhancement
for larger angles can still be observed, while the distributions for model C lies even inside
the distribution for cascades in the vacuum and those for the inelastic effective model are
only slightly enhanced. However, as previously mentioned, the enhancement for model D
is considerably larger than those for the purely inelastic model A and model C. Except
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for the different behaviors at small angles the distributions for model B and D are almost
identical. These findings for the hybrid model D are consistent with the discussion of the
p⊥ jet distribution shown in Fig. 3.9: Analogously it is argued now that at soft energy and
momentum scales the number of radiated particles is largely increased, compared to the
vacuum, similar to the behavior of cascades in the inelastic effective model, while for hard
particles the angular distribution observes a broadening, similar to that observed for the
elastic effective model.

Summarizing, one can deduce the following overall picture for the effects of the different
effective medium models on the cascade evolutions in momentum space:

• In the effective models A and C the parton cascades contain a large amount of
additional soft particles, radiated at all angles (in comparison to cascades in the
vacuum). The harder the radiated partons, the more they are focused around the
jet axis. However, the emission of hard particles is suppressed.

• In the effective model B for collisional energy loss (without medium induced radi-
ation) parton cascades contain fewer soft particles than in the effective models for
radiative energy loss. Due to numerous deflections within the medium, the gener-
ally harder particles are radiated at an on average larger angle towards the jet axis.
Compared to cascades in the vacuum, directions close to the jet axis are depleted
with particles that are redistributed towards directions with larger angles to the
jet axis. This effect occurs at all of the investigated energy scales. Thus, the hard
particles are less focused around the jet axis than it was the case for models A and
C.

• Parton cascades in model D reflect a combination of both of the above behaviors:
A large amount of additional soft partons is emitted at all angles, due to processes
of medium-induced radiation. Thus, the production of hard particles is suppressed.
The remaining hard partons are less focused around the jet-axis than those in models
A and C or cascade partons in the vacuum.

3.5.1.5 Charged particle nuclear modification factor

A suitable observable for the study of the dependence of parton-energy loss in the medium
is the nuclear modification factor RAA (for the definition cf. Refs. [16, 17, 19] or subsec-
tion 1.2.1, which defines RAA completely analogously for heavy quarks.). In this sub-
subsection an approximation for the nuclear modification factor of charged particles is
obtained for the different effective medium models and subsequently used to study the
dependence of the in-medium parton-energy loss on the parameter ∆Q2, which charac-
terizes the strength of jet-medium interactions. Using RAA as a measure of in-medium
parton-energy loss has the particular advantage that the systematic uncertainties in the
particle yields obtained from either heavy ion or pp collisions can be expected to cancel
each other in their ratio.

Since the parton cascade evolution has not yet been convoluted with the underlying
events of hadronic collisions and, therefore, the incoming degrees of freedom are not
known, it is not possible to obtain a nuclear modification factor that strictly follows the
definition in Eq. (A.1). However, approximations to RAA can be made nevertheless: It
is assumed that in pp and heavy ion collisions parton cascades are produced, which are
initiated by a quark of a certain maximal virtuality Q↑ and energy Eini. In this simplifying
approach it is also assumed that both scales are the same for cascades produced in pp
and in heavy ion collisions. Thus, also initial state effects are neglected in this approach.
Consequently, the nuclear modification factor RAA can be approximated by the ratio of
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the particle yield of parton cascades in the medium to the one in the vacuum, which is
referred15 to as RMV(‖~p‖) throughout the remainder of this thesis, and is defined as

RMV(‖~p‖) :=

(
dN

d‖~p‖

)
medium(

dN
d‖~p‖

)
vacuum

. (3.26)

In this approximation the nuclear modification factor of charged particles is approached
by considering every final particle in the medium and vacuum cascades. The parton
momentum distributions dN

d‖~p‖
for the medium and the vacuum were used before in sub-

subsection 3.5.1.2 to directly study in-medium parton-energy loss. As indicated be-
fore, their ratio, Eq. (3.26), is independent of global normalization factors (an ambigu-
ity/systematic uncertainty of the distributions dN

d‖~p‖
). By its definition RMV represents the

medium effects on the ‖~p‖ distributions, and allows to study in particular the importance
of ∆Q2.
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Figure 3.12: The approximation RMV to the nuclear modification factor RAA, for the
cascade partons in their final state obtained from parton cascades simulated by Monte-
Carlo implementations of (vacuum) parton branchings and the elastic and inelastic effec-
tive models of in-medium parton propagation. The cascades are initiated by a quark
with Q↑ = Eini = 20 GeV and evolve down to scales Q↓ = 0.6 GeV. The results
shown correspond to ranges in ∆Q2 of different jet-medium interaction strengths between
∆Q2 = 3 GeV2 (dashed lines) and ∆Q2 = 20 GeV2 (solid lines).

Fig. 3.12 shows RMV for different values of ∆Q2, i.e.: 3 GeV2 ≤ Q2 ≤ 20 GeV2. In
general, one can observe a suppression, RMV ≤ 1, for high ‖~p‖ (in Fig. 3.12 this scale is
around ‖~p‖ ≈ 3 GeV) and an enhancement, RMV ≥ 1 for small ‖~p‖. For the same ∆Q2

values the medium effects seem to be stronger for the inelastic effective model than for
the elastic one. However, at large ‖~p‖ the same RMV values can be obtained from either
the elastic or the inelastic effective model. Since the corresponding ∆Q2 values are found

15The new notation RMV – where the subscript stands just for ”Medium to Vacuum” – is introduced,
in order to distinguish this function from theoretical results that contain the aforementioned additional
effects.
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to be considerably different, this implies that the same RMV values can be associated to
different types of jet-medium interactions either 2 → 2 scatterings at high ∆Q2 scales
or medium-induced radiation at lower ∆Q2 scales. This conclusion is consistent with
corresponding observations above in sub-subsection 3.5.1.3 for the humped-back plateau
distributions, where, at sufficiently hard parton-energy scales, the different mechanisms
yield comparable results.

Especially the inelastic effective model (cf. Sec. 3.1) was mainly motivated by an early
version of YaJEM [105]. In Refs. [105, 139] RAA was obtained in models that used a
transport coefficient q̂ that was fixed up to a global multiplicative factor K16. This factor
K was used to fit the RAA results to experimental data from PHENIX [140]. Compared
to the results from Refs. [105, 139] the results for RMV obtained within the inelastic
effective model shows the same qualitative behavior of small monotonous decreases for
increasing scales of parton momentum above ‖~p‖ = 5 GeV. However, the results for RMV

are considerably larger than the results from Refs. [105, 139], and also larger than the
experimental values from PHENIX. On the other hand, it should be emphasized that
analogous to the fit by Renk, the nuclear modification factor can probably be reproduced
by means of a fit with RMV obtained from the inelastic effective model17, where the
parameter ∆Q2 is used as a free parameter (instead of K).

3.5.2 Heavy particle observables

3.5.2.1 Heavy particle nuclear modification factor

This sub-subsection provides an approximation for the nuclear modification factor of
heavy quarks (and the resulting mesons) that is obtained from the currently implemented
Monte-Carlo simulations (in the vacuum and the effective medium models of Secs. 3.1,
3.2, and 3.3). As Ref. [28] notices, different types of jet-medium interactions can yield
the same RAA values for different scales of the coupling between heavy quark-jet and
medium particles (i.e. the parameter ∆Q2 in the context of the effective models of this
thesis). Thus, it is the main goal of this chapter to learn about the dependence of heavy
quark suppression on the parameter ∆Q2 (cf. the previous sub-subsection 3.5.1.5 for
the analogous study for charged particles) and to check within our framework, whether
different effective models can yield comparable results for heavy flavour RAA, if ∆Q2 is
varied.

As it was already shown in subsections 1.2.3 and 1.2.4 numerous models, based on both
collisional as well as a combination of collisional and radiative energy loss, reproduce the
RAA reasonably well. Here, it is verified that the purely radiative model of Sec. 3.1, and
the purely collisional model of Sec. 3.2 can yield the same estimation of RAA.

As before for the estimation of the nuclear modification factor of charged particles
in the previous sub-subsection 3.5.1.5 the heavy quark RAA is approximated by a ratio
RMV of parton-momentum distributions in the medium and the vacuum, analogous to Eq.
(3.26), with the only difference that instead of all final cascade partons, only heavy quarks
contribute to the distributions dN

d‖~p‖
18. Again, following the argument of subsection 1.4.1,

the explicit dependencies of the cascade evolution on the heavy quark mass were neglected.

16While q̂ relies on a hydrodynamical model and depends on the path of a particle in the medium, the
function q̂R (cf. Eq. (3.2)) represents a fit from Ref. [105] for a particular trajectory.

17The argument behind this statement is that both RMV and RAA behave qualitatively in the same
way, also with regard to variations of the parameters ∆Q2, or K, respectively.

18In this context, the present estimation of RAA corresponds also to the study of heavy quark momen-
tum distributions, which was suggested in the upper right quarter of Fig. 3.5.
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Instead, parton cascades were initiated by quarks, which were considered as heavy quarks.
In their final states these quarks were used for the calculation of RMV.
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heavy quarks

‖~p‖ [GeV]

RMV 3 GeV2 ≤ ∆Q2 ≤ 20 GeV2
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Figure 3.13: The approximation RMV to the nuclear modification factor RAA, for the
initial quark in its final state obtained from parton cascades simulated by Monte-Carlo
implementations of (vacuum) parton branchings and the elastic and inelastic effective
models of in-medium parton propagation. The cascades are initiated by a quark withQ↑ =
Eini = 20 GeV and evolve down to scales Q↓ = 0.6 GeV. The results shown correspond
to ranges in ∆Q2 of different jet-medium interaction strengths between ∆Q2 = 3 GeV2

(dashed lines) and ∆Q2 = 20 GeV2 (solid lines).

Fig. 3.13 presents some results for the heavy quark RMV for both the purely elastic and
inelastic models, each for ∆Q2 values in the range 3 GeV2 ≤ ∆Q2 ≤ 20 GeV2. Compared
to experimental values of RAA (cf., e.g., Figs. 1.3 and A.2), the RMV values shown in Fig.
3.13 are too high. One can explain this difference by the fact that the currently employed
effective models subject the cascade partons to interactions with the medium, only as long
as they are off-the-mass-shell. Thus, the results in Fig. 3.13 represent the contribution
to increased energy loss in the medium, stemming from off-shell particles, while a more
realistic approximation of RAA can be obtained, if one includes interactions between on-
shell heavy quarks with medium particles (the same statement applies to the interactions
of cascade and medium particles for the nuclear modification factor of charged particles).

The RMV values for the effective model of collisional energy loss are, in general, higher
than those for the effective model of radiative energy loss. However, for the collisional
model with ∆Q2 = 20 GeV2 and the radiative model with ∆Q2 = 3 GeV2 the curves
obtained for RMV are close to one another for momentum scales above ‖~p‖ ≈ 5 GeV.
While the corresponding values of the modification factor RMV, are more than twice as
large as experimental values for RAA one can argue that one would obtain more reasonable
values, if one considered models that include also the jet-medium interactions of on-shell
particles.19 For small ‖~p‖ values one obtains considerable differences between the results

19It is in fact possible to obtain quantitatively reasonable approximations to RAA from the type of
effective models presented in this chapter. However, these results demanded the constructions of new,
but similar models. This is why these RAA approximations are rather discussed in Chap. 5, for the sake
of conciseness in this chapter.
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from the different models, however, these scales are of the order of the charm mass of
mC ≈ 1.5 GeV or below. The explicit effects of the quark mass in parton fragmentation
might play a significant role at these small momentum scales, while they can be neglected
at higher ‖~p‖ values. The same statement can be made for the effects of thermalization
within the medium and hadronization, which also have not yet been included in the
Monte-Carlo algorithms.

3.5.2.2 Angular correlations dN
d∆φHH̄

of QQ̄ pairs in back to back emissions

In order to study the in-medium deflections of the initial quarks of jets one can investigate
angular correlations between the three-momenta of heavy hadron pairs, originating from
the back-to-back emission of heavy quark-antiquark pairs. Since, these initial quarks of
the cascade represent leading particles of the cascades, which contain most of their energy
and, thus, of the jet-momenta over long distances – a behavior that is even stronger for
massive quarks, due to the additional suppression of parton radiation due to the deadcone
effect– these heavy particle correlations also represent a measure of the deflection of the
entire heavy quark jets.

The investigated correlations are dN
d∆φHH̄

, where the ∆φHH̄ are defined as the differences

between the azimuthal angles φH of the hadronH originating from a heavy quark, and that
of the hadron stemming from the corresponding antiquark φH̄ . The azimuthal angles are
defined as polar angles of the particle three-momentum projections on a plane orthogonal
to the beam axis of the initially colliding heavy ion pairs.

0 π 2π
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100
Q↑ = Eini = 20 GeV,

Q↓ = 0.6 GeV,

∆Q2 = 10 GeV2.

∆φQQ̄ [rad]

dN
d∆φQQ̄

vacuum

inelastic

elastic

Figure 3.14: Distribution of the differences ∆φQQ̄ between the azimuthal angles of an ini-
tially back-to-back emitted quark antiquark pair after propagation of both of the partons
of the pair in either the vacuum or a medium. Each of the initial quarks can form parton
cascades as indicated on the left side of the legend. In the medium, they are also subjected
to either collisional or radiative jet-medium interactions, as indicated on he right side of
the legend.

Using the effective models of jet-medium interaction one can obtain estimations for
the correlations dN

d∆φHH̄
: From the simulated sets of parton cascades pairs were formed,

where the initial quarks of the cascades propagate antiparallel to one another. Instead
of the pair of heavy mesons H and H̄, pairs of these initial quarks in their final states
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were correlated by calculation of the differences in their azimuthal angles ∆φQQ̄. The
azimuthal angles were obtained in this estimation in the following way20: The momenta
of the heavy quark and anti-quark, both in their final states were projected onto a plane
parallel to the jet axis. The azimuthal angle ∆φHH̄ was then defined as the angle between
those directions. The jet axis was defined as parallel (anti-parallel) to the direction in
which the initial heavy quark (anti-quark) of the cascade was emitted.

Some examples of the resulting distributions dN
d∆φQQ̄

are shown in Fig. 3.14. Already

for the particles in the vacuum there is a considerable number of parton pairs that are
deflected from their initial back-to-back propagation, i.e.: ∆φQQ̄ = π. The reason for this
broadening are the parton branchings in vacuum. Nevertheless, one still observes a large
peak around ∆φQQ̄ = π. This behavior is only slightly affected by jet-medium interactions
which amount to an additional suppression of the peak and a simultaneous broadening of
the distributions. Thus, the overall behavior is that of a pair of leading particles that are
only slightly deflected by jet-medium interactions. In Fig. 3.14 there cannot be observed
large differences between the distributions obtained from cascades subjected to collisional
and radiative energy loss. The broadening effect seems to be slightly larger for the elastic
than for the inelastic effective model. The latter also leads to a larger peak at ∆φQQ̄ = π.
A tentative explanation of the differences could lie in the fact that in the elastic effective
model (off-shell) jet-particles are always deflected by a stochastic transverse force, while
in the additional parton branchings of the inelastic effective model a huge contributions
stems from collinear parton splittings.

Some results for dN
d∆φHH̄

of bb̄ and cc̄ quark pairs, were also obtained in Refs. [81, 141].

There, a sizable peak around π – i.e.: back-to-back correlations was obtained for the higher
parton momenta in the ranges [4, 10] GeV and [10, 20] GeV. However for small momentum
scales below 4 GeV, the distribution around a maximum at π is completely flattened out
and isotropized. These tendencies shown in Ref. [141] for dN

d∆φHH̄
have been verified also

for the corresponding distributions obtained from the purely elastic and inelastic effective
models via the currently implemented version of the Monte-Carlo Algorithm.

3.6 Conclusion and Perspectives

From the introduction in Chap. 1 it follows that there are up to now two main types of
energy loss mechanisms for hard jet-partons (in particular heavy quarks) in the medium,
collisional and radiative scattering processes. While both processes can act simultaneously
on propagating partons in the medium, their contributions to the total energy loss has
not yet been determined. Currently available experimental data (cf. Sec. 1.2.4) allow for
numerous different possibilities to combine the two effects.

In order to clarify this issue, in Secs. 3.1 to 3.3 effective models for collisional and
radiative energy loss, as well as a hybrid model were introduced. The main purpose
of these models is to study directly, how different types of jet-medium interactions are
reflected in observables and if it is possible to distinguish between their contributions.
For a description of the medium modifications of jets, the models were discretized with
regard to time and implemented on top of the already existing Monte-Carlo algorithm
for cascades in the vacuum outlined in Chap. 2. The effective model of radiative energy
loss is based on the YaJEM approach [105], which is then modified to account also for
collisional energy loss (in the other models).

Before these effective models of jet-medium interactions are used in the study of the
mechanisms of energy loss, it is necessary to verify, that they reproduce – at least qualita-

20This definition of the azimuthal angles is explained in more detail and justified later on in Sec. 4.1.
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tively – the observed phenomenology of jets in the medium. To this end, parton cascades
with Q↑ = Eini = 20 GeV were examined. The observed medium effects on the jet-
phenomenology are not expected to change qualitatively for different values of Q↑ and
Eini, since the implemented effective jet-medium interactions do not depend explicitly on
neither Q↑ nor Eini.

T , Tmaj, Tmin ‖~p‖, p‖ jet p⊥ jet ∆θjet ∆φQQ̄

model A ←→ ↑↑↑↓ ↑↑↑↓ ↑←→ ↓ ↑
model B ←→ ≈ ↓↑ ↓↑ ↓ ↑
model C ←→ ↑↑↑↓ ↑↑↑↓ ↑←→
model D ↑↑↑↓ ↑←→ ↑←→

Table 3.3: Medium effects on distributions dN
dx

, where x is one of the variables T , Tmaj,
Tmin, ‖~p‖, p‖ jet, p⊥ jet, ∆θjet, ∆φQQ̄ in the different effective models. ↑ symbolizes an
increase, ↓ a decrease, and ≈ no apparent change of the distributions. ↑↓ (↓↑) means
increases (decreases) of the distributions for small values of the variable with the opposite
effect at large values. Broadening of the distributions is indicated by the symbols ←→.
The effects on dN

dξ
are here represented by the behavior of ‖~p‖. For ∆θjet large effects

occur for models A, C, and D at small energy scales, but are strongly suppressed at large
scales.

Medium effects on jet-phenomenology (expressed as the number distributions of ob-
servables for single cascade particles) have been summarized in Tab. 3.3: The thrust
distributions of the cascades in the medium and the vacuum in Fig. 3.6 verify that the
simulated parton cascades experience angular broadening in the purely elastic and inelas-
tic models as well as the hybrid model C. Figs. 3.8 to 3.11 show that at small angles,
radiation is enhanced in the models that contain radiative energy loss (while increased
activity is also visible at higher angles). Fig. 3.10 verifies that, in general, in the medium
the individual partons lose more energy during the cascade evolution than in the vacuum.
This is true for the models that involve medium-induced parton branchings. For the elastic
effective model, hard particles lose energy, while soft particles can also gain energy due to
the transverse forces. Since, however, the latter phenomenon occurs at small energy scales
of the order of the temperature T , cf. Eq. (3.19), the energy loss mechanism dominates for
sufficiently hard cascade partons. Angular broadening (of cascade-parton three-momenta
with regard to the jet axis) was shown in Fig. 3.11. Fig. 3.14 finally shows that the initial
(heavy) quarks experience (compared to the initial quarks in the vacuum), in the medium
a slight additional deflection with regard to their initial direction of propagation.

Sub-subsection 3.5.1.4 obtained the following qualitative image of jets that interact
with the medium within the framework of the three effective models: Processes of medium-
induced radiation account for an additional production of soft particles, that propagate
at small as well as at large angles with the jet axis. While on average fewer hard particles
remain, their directions of propagation are mostly the same as for cascades in the vacuum.
On the other hand, if the jet-medium interactions are entirely described by the effective
model for collisional energy loss, the number of emitted soft particles does not increase.
However, the emission of hard particles is less focused and occurs also at larger angles.

After a study of the properties of the different effective models the following property
was encountered in sub-subsection 3.5.2.1: For heavy particles the different energy loss
mechanisms cannot necessarily be distinguished by the nuclear modification factor RAA.
For light cascade partons in the medium this problem did not occur, since Figs. 3.10
and 3.12 showed that for soft particles, sets of cascades undergoing additional radiative
processes can be distinguished fairly well from jets subjected to collisional processes only.
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However, as was argued in Chap. 1, heavy quark cascades would provide a more suitable
probe for the medium of QGP, as heavy quarks do not thermalize throughout their in-
medium propagation and due to the high energy threshold necessary to produce a heavy
quark antiquark pair they are most likely created at the initial stages of heavy ion colli-
sions. For the nuclear modification factor RAA (in this chapter estimated via the factor
RMV cf. Eq. (3.26)), differences between effective models can be absorbed in the ∆Q2

parameter. In particular, in some cases the same suppression behavior can be achieved
either by means of radiative energy loss in a medium that is described via a small ∆Q2

parameter, or by means of collisional energy loss in media with large ∆Q2 values.
Consequently, the following chapter will perform a search for observables that allow to

discriminate between the different mechanisms of (heavy) parton in-medium energy loss.
This study will be focused mainly on two particle correlations between the initial quark of
a (heavy) quark jet and a light parton. Not only can it be argued that the corresponding
particle pairs are created in branchings inside the medium – and, thus, allow for further
studies of the in-medium evolution of the jet; also the number of light partons that can be
correlated with the initial quark largely depends on the type of model used. Therefore,
two particle correlations are a quite promising tool to study jet-medium interactions.
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Chapter 4

Two particle correlations

This chapter discusses two-particle correlations between a heavy and a light particle as a
means to study medium effects on the evolution of heavy-quark jets. Particular emphasis
will be laid on the phenomenon of angular broadening, which is investigated via angular
correlations. In order to distinguish different mechanisms of in-medium parton-energy
loss – more specifically elastic and inelastic jet-medium interactions, the dependencies of
angular two-particle correlations on the absolute values of parton three-momenta ‖~p‖ is
studied in detail. The different types of jet-medium interactions were simulated via the
effective models of the previous chapter 3.

4.1 Introduction of the Distributions used

light
particle

Heavy quark

Beam axis Beam axis

∆θ

light
particle

~pl ⊥

~ph ⊥

Heavy quark

φas.

φt.

∆φ

Beam axis Beam axis

Figure 4.1: Angle ∆θ (left panel, red arrow) and azimuthal angle ∆φ (right panel, red
arrow): They are given (in each case) via the three-momenta of a heavy trigger particle
(orange line) and a light associated particle (orange spring). The vertical axis (black
arrow) is the direction of the three-momentum of the initial heavy quark of the cascade,
with angles (curved black arrows) φt., and φas. towards the projections (gray arrows in
the right panel) ~ph ⊥, and ~pl ⊥ of the heavy (h) and light (l) parton momenta.

This section explains how two-particle correlations were extracted from the cascades
simulated by the Monte-Carlo algorithm of Chaps. 2 and 3.

For the distributions of the two-particle correlations a definition is used that corre-
sponds well to the experimental treatment of jets, where a trigger particle is associated
to another particle (i.e. in the scope of heavy-light particle correlations, a heavy trigger
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particle and a light associated particle) that was produced in the pp or heavy ion collision
(cf. Sec. 1.3). For the two-particle correlations shown in this chapter, parton cascades
were initiated by a quark, which was identified as the heavy particle1. In its final state
this initial quark is correlated with another (light) parton of the cascade, which is also
considered only in its final – on-the-mass-shell – state.

Since they represent observables that are currently measured, or that will be obtained
experimentally in the near future (cf. Sec. 1.3), and since they reflect directly the medium
effect of angular broadening of the jet, this thesis particularly emphasizes angular two-
particle correlations. They can be defined as the distribution

1

Ncasc.

dN

dα
, (4.1)

of the number of heavy-light particle pairs N over an angle α, which is given by the
directions of the three-momenta of the heavy and the light particle, normalized by the
number of simulated cascades2 Ncasc.. The definitions for different choices of the angle α
are illustrated in Fig. 4.1, for the angle α = ∆θ (left panel) and azimuthal angle α = ∆φ
(right panel): The angle ∆θ is defined as the angle between the directions of the three
momenta of the heavy and the light particle, ~ph and ~pl, respectively, i.e.:

cos(∆θ) :=
~ph · ~pl

‖~ph‖‖~pl‖
. (4.2)

Number distributions over ∆θ show a behavior proportional to sin(∆θ) at small angles.3

This dependence is only due to the fact that the (infinitesimal) phase-space volume-
elements of the heavy-light particle pairs are proportional to sin(∆θ). In order to get rid
of such a behavior of non-dynamic origins the distributions 1

Ncasc.

dN
d cos(∆θ)

can be considered

instead of the distributions over ∆θ.
In the experiment, angles φ are obtained as azimuthal angles around the beam axis

(cf., e.g., Refs. [142, 143]). The difference ∆φ := φt. − φas. between the azimuthal angles
of the trigger and associated particles, φt. and φas., respectively is then used to obtain
the corresponding (azimuthal) angular two-particle correlations, following the definition
of Eq. (4.1). In this chapter the angle ∆φ was obtained from the Monte-Carlo simulated
cascades by means of a projection of the three-momenta ~ph and ~pl on the plane orthogonal
to the beam axis. From these projections, ~ph ⊥ and ~pl ⊥, respectively, one can then obtain
the angle ∆φ, which is defined as

cos(∆φ) :=
~ph ⊥ · ~pl ⊥

‖~ph ⊥‖‖~pl ⊥‖
. (4.3)

In contrast to the momenta ~ph and ~pl, their projections ~ph ⊥ and ~pl ⊥ are distributed over
a plane, rather than three-dimensional momentum space: Thus, there does not occur any
additional – non-dynamical – dependence on the angle ∆φ in its number distribution.
Since the underlying heavy ion collision has not yet been simulated in the current version
of the Monte-Carlo algorithm of Chaps. 2 and 3, the beam axis is not known for the
simulated parton cascades. Thus, the simplifying assumption was made that the initial
particle of a jet is emitted orthogonal to the beam axis (which is, in addition, always the

1Even though explicit mass dependencies were not included in the Monte-Carlo algorithm: cf. Sec.
1.4.1 for a justification of this approximation.

2For the current choice of trigger Ncasc. = Ntrig.. Thus, in Eq. (4.1) the same normalization is used
as for the experimental results introduced in Sec. 1.3 (cf. Eq. (1.15).).

3The same behavior occurs for the distributions over the angle ∆θjet between parton three-momenta
and the jet-axis, shown in Fig. 3.11, due to the same reasons as outlined in the current section 4.1.
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same direction for all simulated cascades). With this assumption, a direction orthogonal
to the three-momentum of the initial quark was randomly selected and considered as the
beam axis for all of the simulated cascades.

4.2 Angular broadening

In this section, angular broadening is studied for jets that undergo the different types of
jet-medium interactions that are effectively described by means of the four different models
introduced in Secs. 3.1 to 3.3. It is the goal of this kind of investigation to determine
observables that allow to distinguish between processes of radiative and collisional in-
medium parton-energy loss.

Before studying angular two-particle correlations the overall suppression or enhance-
ment of parton production of jets in the medium is investigated: To this end, the number
of parton pairs per cascade that contain the heavy trigger quark, N is shown in Tab.
4.1 for the different models of jet-medium interactions and vacuum cascades. N is also
chosen as the normalization of the angular two-particle correlations that are presented
in this chapter. A cut in the absolute value of the parton momentum was used: Either
all parton pairs of a cascade were considered in the calculation of N , i.e.: ‖~p‖cut = 0, or
only those, where the absolute values of the parton momenta of both particles are larger
than ‖~p‖cut = 2 GeV. From Tab. 4.1 one can see that for all of the effective models and
for the vacuum, most of the produced particle pairs contain at least one soft particle, i.e.
a particle with a momentum ~p that satisfies ‖~p‖ ≤ 2 GeV. In comparison to the number
of hard particle pairs, where the absolute values of both momenta lies above 2 GeV, the
numbers of produced soft particles vary greatly among different models and the vacuum.
While for models that also involve medium-induced radiation the number of additionally
radiated particles is largely increased, as compared to the numbers for vacuum cascades
(by roughly a factor of 2 for the hybrid model C in case Q↑ = Eini = 20 GeV and by
roughly a factor of 3 in all other cases), the numbers of partons produced in the purely
elastic effective model B are approximately the same as in vacuum.

N for Q↑ = Eini = 20 GeV and N for Q↑ = Eini = 40 GeV and
‖~p‖cut = 0 ‖~p‖cut = 2 GeV ‖~p‖cut = 0 ‖~p‖cut = 2 GeV

vacuum 6.07 1.68 9.80 3.84
inelastic 19.35 1.20 30.39 3.45
elastic 5.63 1.47 9.80 3.34

model C 11.90 1.08 27.70 2.48
model D 18.21 1.03 28.34 2.99

Table 4.1: Number N of correlated parton pairs used for the angular two-particle corre-
lations. In all simulations Q↓ = 0.6 GeV was assumed. For the medium models only the
results for ∆Q2 = 10 GeV2 are shown.

Angular broadening can be studied by means of the distributions over ∆θ. These
distributions allow to study angular correlations and, thus, broadening at large angles.
However, as mentioned before, at very small angles ∆θ → 0 a suppressing factor sin(∆θ)
appears, which stems from the volume element in spherical coordinates. On the other
hand, for the simulated sets of cascades, the distribution dN

d cos(∆θ)
exhibits a very steep in-

crease for ∆θ → 0. Thus, this section proceeds as follows: First, the effects of jet-medium
interactions on angular two-particle correlations are studied in subsection 4.2.1 via dN

d cos(∆θ)

in order to determine their behavior at large angles. By means of the average angles 〈∆θ〉
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the overall angular broadening in the different models is investigated and an observable
to distinguish the models is proposed. Then, in subsection 4.2.2, azimuthal correlations
for the same sets of parton pairs are studied, in order to investigate the increases and sup-
pressions at small azimuthal angles ∆φ, which reflect also the corresponding behaviors of
the ∆θ distributions.

4.2.1 Angular two-particle correlations over ∆θ

A first investigation verified the phenomenon of angular broadening of parton cascades
due to medium effects by means of angular two-particle correlations in the form dN

d cos(∆θ)
,

where the angle ∆θ is the angle between the directions of the three-momenta of the heavy
quark and an associated light cascade particle. Some results are shown in Fig. 4.2 for
the inelastic, and elastic model, as well as for the hybrid models, each simulated for two
different temperature profiles, represented by the corresponding values ∆Q2 = 3 , 10 GeV2

and compared to the correlations in vacuum4. The cascades simulated for this study evolve
down to a scale of Q↓ = 0.6 GeV, and are initiated by a quark of energy Eini and maximal
virtuality scale Q↑ of either Eini = Q↑ = 20 GeV (left panels) or Eini = Q↑ = 40 GeV
(right panels).

The distributions for cascades in the vacuum with Eini = Q↑ = 20 GeV and Eini =
Q↑ = 40 GeV exhibit the same qualitative behavior of a monotonous increase towards
smaller angles, and, in the vicinity of cos(∆θ) → 1, rising considerably more steeply
towards its maximum. Furthermore, for each of the investigated models these distribu-
tions show with increasing jet-medium interactions the analogous changes for Q↑ and Eini

scales5. Furthermore, the presented results for the angular 2-particle correlations were
obtained after the application of a cut of ‖~p‖ ≥ 2 GeV on the parton cascades simulated
via the Monte-Carlo algorithm. In the case of purely inelastic jet-medium interactions
the distributions shown are suppressed at large angles. However, for elastic scatterings
the correlations at large angles increase together with ∆Q2. This enhancement has to
be compensated by a suppression at small angles, since the overall parton production is
slightly suppressed, as compared to the vacuum, cf. Tab. 4.1. Analogous observations can
be made for model D.

Such a behavior can be interpreted as a redistribution of partons towards 3-momenta
that show large angles ∆θ with the heavy quark 3-momentum, due to medium effects.
It represents, thus, a verification of angular jet-broadening. For the hybrid model C,
similar to the purely inelastic effective model, one observes a depletion at large angles.
In conclusion, models B and D are enhanced at large angles, model A and C suppressed.
Since model D differs from model C only by the inclusion of the stochastic transverse
force, one can argue that a stochastic transverse force leads to an enhancement at large
angles. On the other hand, from the behavior of the distributions of model A it follows
that medium-induced radiation leads to a suppression at large angles.

In model A, the medium induced parton branchings are effectively simulated via the
same parton splitting functions that were also used for the description of parton cascades
in the vacuum. By construction medium induced radiation is, thus, predominantly soft,
while more realistic descriptions, such as, e.g. those given via the BDMPS approach, may
result in the radiation of harder partons. However, it can be argued that the qualitative
behavior of the obtained angular correlations will be that same in those models, since

4These two values of ∆Q2 were chosen as a rough estimate for the temperature scales at the experi-
ments at RHIC and LHC.

5Thus, only the results for one of the two cases, Eini = Q↑ = 20 GeV, are shown in the remainder of
this chapter. However, the results for Eini = Q↑ = 40 GeV have been studied for comparison as well.
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Figure 4.2: Angular correlations in the form of dN
d cos(∆θ)

between tagged heavy quarks and

light partons from cascades initiated by the heavy quark of energy and maximal virtuality
of either Eini = Q↑ = 20 GeV (left panels) or Eini = Q↑ = 40 GeV (right panels). Medium
effects are shown for the inelastic (top panels), the elastic (middle panels), as well as the
hybrid model C (bottom panels). Only angles between particles, where both particles
satisfy ‖~p‖ > 2 GeV, were considered for the distributions shown.
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Figure 4.3: Mean values 〈∆θ〉 of the angles ∆θ between a heavy and a light cascade
particle for ∆Q2 = 0, 3, and 10 GeV2. For the results shown only those particle pairs
were considered where both particles satisfy the conditions ‖~p‖ > 0, 2, and 4 GeV (upper,
middle, and lower panel, respectively). The same cascades were used as for the Eini =
Q↑ = 20 GeV results in Fig. 4.2.
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cascades were used as for Fig. 4.3.
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the principle of the radiative energy loss is a redistribution of the available jet-energy
among more particles and an angular broadening due to additional branchings. Thus,
angular correlations will be depleted at large angles, if a suitable cut in parton momenta is
applied. On the other hand, for collisional jet-medium interactions that involve stochastic
transverse kicks, such as models B and D, the same distributions are expected to be
enhanced in the medium.

However, if one does not impose any constraints on the absolute values of the parton
three-momenta, except ‖~p‖ ≥ 0 GeV, one obtains for the angular correlations of all four
medium models, enhancements at large angles (results not shown here).

Angular correlations were also studied for cascades, where the evolution was stopped at
a threshold virtuality Q↓ = 1 GeV for both Q↑ = Eini = 20 GeV and Q↑ = Eini = 40 GeV
(not shown here). In this case considerably fewer particles are produced. Consequently,
the angular correlations lie below the respective distributions for Q↓ = 0.6 GeV, at least
in case there is not any cut in ‖~p‖ applied. Thus, these distributions remain small over
a larger range in cos(∆θ) but rise more rapidly at small angles, where cos(∆θ) → 1.
Since fewer partons are radiated in general, also the amount of particles produced due
to medium-induced radiation is considerably smaller, and, therefore, also the associated
contribution to angular broadening. Consequently, since the total jet-momentum is dis-
tributed among fewer particles, the distributions corresponding to the inelastic model,
or the hybrid models, are less affected if a cut in ‖~p‖ is applied, than the corresponding
distributions for cascades with Q↓ = 0.6 GeV. For the specific cut ‖~p‖ ≥ 2 GeV the effect
of angular broadening due to induced radiation and elastic scattering remain comparable.
It should be noted that, nevertheless, whether one sets Q↓ = 0.6 GeV or Q↓ = 1 GeV, one
can observe the same tendencies for the angular correlations in both cases:

1. If a cut in ‖~p‖ is not applied, angular broadening can be observed for all four models
of jet-medium interaction.

2. If a cut is applied, angular broadening is less apparent in angular correlations of all
four models. However, the results from the elastic model and the model D are less
affected by this kind of filter than the other two models, which do not include the
stochastic transverse force.

Thus, the question arises, how – in each of the effective models – particles with dif-
ferent absolute values ‖~p‖ of their three-momenta ~p contribute to angular two-particle
correlations. To this end, the average values of ∆θ as functions of ∆Q2 were calculated
for different cuts in ‖~p‖, in each of the four models of jet-medium interaction. Some
results can be seen in Fig. 4.3 for the cuts ‖~p‖ ≥ 0, 2 and, 4 GeV (upper, middle, and
lower panel, respectively). The mean angles 〈∆θ〉 obtained from parton cascades without
the use of a cut in ‖~p‖ increase with ∆Q2 in all of the models. This behavior can be seen
as a verification of angular broadening, which was mentioned earlier for the distributions
of the angular two-particle correlations. Furthermore, it can be seen that the values ob-
tained for the purely inelastic model are practically indistinguishable from those of the
hybrid model C and they exhibit a much stronger increase than the values for the elastic
model, which contains the longitudinal drag and stochastic transverse forces alone, while
the hybrid model D, which includes, in addition, also medium-induced radiation exhibits
the strongest broadening effects of all of the four models.

However, for ‖~p‖ ≥ 2 GeV and for ‖~p‖ ≥ 4 GeV the values for both, the purely inelastic
model, as well as the hybrid model C are much less affected to changes in ∆Q2 than the
steeply rising values corresponding to the elastic model (and model D). It follows, that
for the purely inelastic model and the hybrid model C most of the contributions to the
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angular broadening that is observed in case no cut for ‖~p‖ is applied can be attributed to
soft particles, where ‖~p‖ ≤ 2 GeV. On the other hand, there are sizable contributions to
angular broadening from elastic scatterings (implemented in the purely elastic effective
model B and model D), even for partons with ‖~p‖ ≥ 2 GeV or ‖~p‖ ≥ 4 GeV. More
precisely, comparisons of the large angular broadening observed for model D with the
corresponding results for models A and C show, that angular broadening due to processes
of collisional energy loss receives its main contribution from a stochastic transverse force
(representing transverse kicks by medium particles).

In order to quantify the dependence of angular broadening on ‖~p‖, Fig. 4.4 shows 〈∆θ〉
as a function of the cut for the four different models of jet-medium interactions. It can
be seen that for the elastic model a considerable increase in 〈∆θ〉 remains even for large
cuts in ‖~p‖. In the range 1 GeV ≤ ‖~p‖cut ≤ 4 GeV, the angles 〈∆θ〉 are approximately
5
4

and 5
3

times larger for ∆Q2 = 3 GeV2 and ∆Q2 = 10 GeV2, respectively, than for the
vacuum. These relative increases are roughly the same for ‖~p‖cut ≥ 1 GeV. Only, if all soft
particles are considered for the calculation of 〈∆θ〉, the relative increases are considerably
smaller (by ≈ 10% for ∆Q2 = 3 GeV2 and by ≈ 25% for ∆Q2 = 10 GeV2). In sharp
contrast to this behavior, one can observe for both models that allow for medium induced
radiation that the angular broadening effects strongly decrease between ‖~p‖cut = 0 GeV
and ‖~p‖cut = 4 GeV. This behavior is slightly more pronounced for the purely inelastic
model in comparison to the hybrid model C, which still exhibits noticeable increases in
〈∆θ〉 for ‖~p‖cut = 2 GeV and 4 GeV. Similarly, for model D one observes a steep fall-
off with increasing ‖~p‖cut, while a considerable residual enhancement (comparable to the
one of the purely elastic model B) for the angle 〈∆θ〉 is observed at larger momentum
scales. This behavior is consistent with the picture that in model D the medium induced
radiation of soft particles contributes the most to angular broadening, however the smaller
broadening effect from processes of elastic energy loss concerns hard particles as well as
soft particles.

To Conclude: Elastic Collisions between jet and medium particles, described in the
effective models by longitudinal drag and stochastic transverse forces lead to broadening
effects at high as well as at low energy and momentum scales, while medium-induced ra-
diation, described in the effective models by an increase of cascade-parton virtuality, leads
to an angular broadening effect that relies predominantly on the emission of soft particles.
Furthermore, comparisons of models C and D show that for the broadening effects due
to mechanisms of collisional energy loss, the main contributions can be attributed to the
action of a stochastic transverse force.

In order to distinguish collisional from radiative energy loss mechanisms the average
angle 〈∆θ〉 between the three-momenta of a heavy trigger quark and an associated cascade
partons as functions of a momentum scale ‖~p‖cut represents a suitable observable.

4.2.2 Azimuthal Angular Correlations

Azimuthal angular correlations between heavy and light mesons obtained from heavy
quark jets created in heavy ion collisions are often studied experimentally as a tool to study
jet-medium interactions, in particular angular broadening. The azimuthal correlations
obtained for collisions that produce two heavy quark jets in back-to-back emissions exhibit,
in general, a behavior with two peaks: one at ∆φ = 0 – the near side peak – and one at
∆φ = π – the away side peak. Here, the direction corresponding to ∆φ = 0 is defined as
the jet axis of the jet with the larger absolute value of its three-momentum. Judging from
comparisons between the near and the away side contributions to azimuthal correlations
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Figure 4.5: Azimuthal angular correlations between a tagged heavy quark and a light
parton of partonic cascades initiated by a heavy quark with Eini = Q↑ = 20 GeV for the
inelastic (top panels), elastic (middle panels), and hybrid model C (lower panels), and for
∆Q2 = 0, 3, and 10 GeV2. For the results shown in the right panels only particle pairs
were considered, where both particles satisfy the condition ‖~p‖ ≥ 2 GeV, while for the
cascades in the left panel there was not imposed any cut on the cascades.
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or between azimuthal correlations obtained from p-p and heavy ion collisions, one can
estimate that jet-medium interactions lead to both, a decrease in the height of the peaks,
as well as increased contributions in the regions between the peaks. Such a behavior can
be regarded as a consequence of angular broadening.

With the Monte-Carlo algorithm discussed in Chaps. 2 and 3 the near side contri-
butions to azimuthal angular correlations can be studied. Results are shown in Fig.
4.5: Again, the simulations were made for heavy quark jets with Q↑ = Eini = 20 GeV,
Q↓ = 0.6 GeV, and again the vacuum behavior was compared to the 2 different tempera-
ture profiles represented by ∆Q2 = 3, 10 GeV2 in the four different models of jet-medium
interaction. The left panels show the azimuthal angular correlations obtained directly
from the simulated parton cascades, without prior application of a cut in ‖~p‖. To the
distributions shown, all possible pairs between the heavy quark and any other cascade
particle (both in their final states and both from the same cascades) contribute. The
obtained histograms were divided by the number of simulated cascades. Thus, the dis-
tributions shown are normalized to the average number of pairs of the heavy quarks
with light partons per cascade 〈Nh−l〉. For the left panel such a normalization implies
〈Nh−l〉 = 〈NS〉 = 〈Npart〉 − 1, for the right panel 〈Nh−l〉 = 〈Npart, eff〉 − 1. Here, Npart

is defined as the number of particles per cascade, and Npart, eff as the number of parti-
cles that satisfy ‖~p‖ ≥ 2 GeV for parton cascades, where also the heavy quark satisfies
‖~p‖ ≥ 2 GeV.

In the left panel of Fig. 4.5, the large increase in the number of emitted partons
in case of inelastic scattering is represented by the larger areas under the curves for
∆Q2 = 3, 10 GeV2 for the purely inelastic model, as well as for the hybrid models. For
the purely inelastic model, radiation is enhanced at both small, as well as large azimuthal
angles. In comparison to the purely inelastic model, the enhancement of the distributions
is weaker for the hybrid models – a discrepancy that can be observed at all azimuthal
angles. One can tentatively explain this kind of behavior by remembering (cf. Chap. 3)
that the drag force A(t) leads to a decrease in ‖~p‖, associated to a transfer of energy from
jet-particles to the medium6. Consequently, subsequent splittings will produce particles
whose virtualities are constrained to smaller values and are thus, more likely to allow for
more democratic branchings in parton energies, which corresponds to larger branching
angles ϑ , due to the relation ϑ ≈ Q

E
√

x(1−x)
. In sharp contrast to models that allow for

induced radiation, the normalizations of the distributions exhibit much smaller changes in
case of the elastic model, where parton production is slightly suppressed. With increasing
values of ∆Q2 contributions to the azimuthal correlations get more and more redistributed
from the peak at small angles ∆φ towards the minima at large angles. Such a behavior
can be explained by particle pairs that would contribute to the large peak at ∆φ = 0,
if the jet was propagating in the vacuum, but which experience transverse kicks in the
medium that lead to an increasing isotropization with rising temperature.

As can be seen in the right panel of Fig. 4.5, for the elastic model the contributions
to the azimuthal correlations from particles with ‖~p‖ ≥ 2 GeV exhibit qualitatively the
same behavior for increasing ∆Q2 as in the left panel, where no cut was applied. However,
it can be identified by the scales of the vertical axis, that the normalizations differ by a
factor of ≈ 2: This indicates, that approximately only 50% of heavy-light particle pairs
satisfy the constraints imposed by the cut, and were therefore considered. On the other
hand, for the models which allow for sizable inelastic jet-medium interactions the ∆Q2

dependence of the corresponding azimuthal angular correlations behaves qualitatively

6Since, also in model C, particle production is suppressed with regard to the purely inelastic effective
model one can make this conclusion, because the only difference in the construction of models A and C
lies in the inclusion of the drag force (cf. subsection 3.3.1).
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considerably different, if a cut in ‖~p‖ is applied: The maxima are smaller than in case
of the vacuum, and the order of the curves for different ∆Q2 values is, thus, opposite
than for the results that include soft particles. Furthermore, the increased contributions
at large angles, which are present in the plots in the left panels, do not appear, if the
cut is applied, except for model D, where a small contribution occurs. For large values
of ∆φ the azimuthal correlations for in-medium propagation and for the vacuum become
indistinguishable. In conclusion, the effect of angular broadening observed for the purely
inelastic model and the hybrid model C obtains its major contributions from particle
pairs, where at least one of the particles involved is soft, i.e. has a momentum of an
absolute value smaller than 2 GeV. As stated previously in Sec. 4.2, the same observation
can be made for model D, except that there, a residual broadening effect from processes
of collisional energy loss can be observed for hard particles. This conclusion corresponds
well with the previous discussion of Fig. 4.4, where, also, most of the increase of 〈∆θ〉
with ∆Q2 is found to disappear, if a cut of 2 GeV is applied. In addition, one can deduce
from Fig. 4.5, that the remaining increases in 〈∆θ〉 shown in Fig. 4.4 are, in fact, not due
to a radiation of hard particles at larger angles to the hard quark, but rather due to the
fact that fewer particles than in the vacuum propagate in directions collinear to the heavy
quark.

4.3 Evolution of Emission angles

x

x
x

NS = 1 NS = 2
x

x
x

NS eff = 1 NS eff = 2

Figure 4.6: Examples of parton cascades in the medium. Jet-medium interactions are
symbolized by a gluon exchange ending in an ”x”. The dashed gray lines indicate how NS

and NS eff are counted along the evolution of the cascade. Left diagram: cascade with
a total number of NS = 2 splittings in the medium. All splittings are counted. Right
panel: cascade with a number of NS eff = 2 splittings that produce partons that satisfy
‖~p‖ ≥ ‖~p‖cut. Only those splittings are counted. Partons where ‖~p‖ ≤ ‖~p‖cut, are drawn
in red.

In order to understand how angular correlations and in particular the effect of angular
broadening, both described in the previous section 4.2.2, are built up during the evolu-
tion of the parton cascade, the sets of parton cascades obtained from the Monte-Carlo
simulations were filtered with regard to specific contributions.

In a first attempt, the cascades were selected and further investigated if they matched
a certain type (referred to as ”topologies” in the remainder of this chapter.): These
topologies specify for every parton in the corresponding cascades, whether it is a quark or
a gluon and whether it splits (and also for each of its splitting products, if any, whether
they are quark or gluons and whether they split, etc.). Any of these topologies corresponds
to cascades with a certain number of NS splittings and thus NS + 1 final particles. The
left side of Fig. 4.6 shows a sketch of the example of a cascade with NS = 2 and 2 final
gluons radiated from an intermediate gluon.
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There exist, however, some issues with regard to this approach:

1. NS depends on the virtuality threshold Q↓. Therefore, if parton cascades are clas-
sified with regard to NS, this distribution of cascades is not stable if Q↓ is changed.

2. NS changes if additional soft particles are radiated, while the propagation of the
remaining partons in the cascade might be only weakly affected. This behavior poses
a problem specifically for the descriptions of inelastic jet-medium interactions, where
the distribution in NS is shifted, due to the production of induced radiation.

3. A more practical problem lies in the fact that a large number of different classes
in NS are produced, in particular in case of inelastic jet-medium interactions (see
above): Thus, the study of certain types of topologies (e.g. the ones where NS = 2)
appear to be of limited value, since they represent only a few per mill of the total
numbers of simulated cascades and are, therefore, not representative.

In order to obtain a more stable classification of parton cascades a cut in ‖~p‖ was used:
In this second approach parton cascades are identified with certain topologies, if they only
differ via the emission of additional soft partons, where ‖~p‖ < ‖~p‖cut. A corresponding
number of splittings that produce hard partons, NS eff was introduced. The right side
of Fig. 4.6 gives an example for NS eff = 2, and NS = 5. In the second approach, the
left and right side of Fig. 4.6 would be put in the same class, while the first approach
distinguishes between the 2 diagrams.
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Figure 4.7: Angular 2-particle correlations in the form dN
d∆θ

together with their contribu-
tions from several topologies with a particular NS eff as indicated, and the sum of all the
contributions from cascades with NS eff ≤ 3 (dashed lines). left panel: distributions in the
vacuum. right panel: distributions in a medium with ∆Q2 = 10 GeV2, where jet-medium
interactions are described in the purely inelastic model.

Fig. 4.7 verifies that for angular two-particle correlations (here in the form dN
d∆θ

) be-
tween sufficiently hard heavy and light partons the major contributions come from parton
cascades with a small value of NS eff . Therein, the results shown were obtained after
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application of a cut ‖~p‖cut = 2 GeV to vacuum cascades as well as cascades from the
inelastic model of jet-medium interactions with ∆Q2 = 10 GeV2. For Q↑ = Eini = 20 GeV
cascades, where NS eff ≤ 3, amount to ≈ 75% and ≈ 67% of events in the vacuum and
the medium. Cascades with NS eff = 2 of the topology where two final gluons are radi-
ated successively from the quark line (q → q∗ +G→ q +G+G) represent between 10%
(purely inelastic model and model C, both for ∆Q2 = 10 GeV2) and 16% (elastic model
for ∆Q2 = 10 GeV2) of cascades simulated.

It has to be noted that the application of a cut in ‖~p‖ has the effect of a depletion of
the angular correlations in particular – if induced radiation can occur – at large angles
∆θ, as it was discussed before in Sec.4.2. Furthermore, with rising values ‖~p‖cut, the
absolute values of more and more cascade particle three momenta lie below the cut and
are, consequently, neglected in the results. The corresponding cascades are then identified
with topologies of smaller and smaller values for NS eff . Less than 27% of all cascades are
found with NS = NS eff ≤ 3 in case ‖~p‖cut = 0, while for ‖~p‖cut = 2 GeV the majority of
cascades are found to be represented by topologies, where NS eff ≤ 3.

The above investigation show that parton cascades with a small number NS eff are
representative for the entire set of simulated parton cascades and, consequently the cor-
responding contributions for the overall results on angular two-particle correlations, pro-
vided a suitable cut in ‖~p‖ is applied. This allows for a detailed investigation of the evolu-
tion of twoparticle correlations by means of studies on cascades with particular topology.
To this end, one can study the branching angles ϑi, defined as the branching angle of the
ith consecutive splitting along the branch of a tree-like cascade that produces two partons
with ‖~p‖ ≥ ‖~p‖cut. For each of the two different topologies with NS eff = 2 that produce
two hard gluons and a hard quark, as well as for the cascades with NS eff = 3 Fig. 4.8
shows the results for the average branching angles 〈ϑi〉 (i = 1, 2, 3) as functions of ∆Q2

for the purely inelastic model of jet-medium interactions.
One can determine in all three panels of Fig. 4.8 that 〈ϑ1〉 > 〈ϑ2〉 > 〈ϑ3〉. A similar

ordering scheme was found in Ref. [144, 145], which shows that for successive splittings
(here labeled as i and i+ 1, with the corresponding branching angles ϑi and ϑi+1, respec-
tively.), branching angles that satisfy ϑi > ϑi+1 occur predominantly, while events where
this ordering is broken are largely suppressed. This behavior is generally referred to as
angular ordering. While this is an interference effect that applies, in general to consecu-
tive branchings in individual cascades in the vacuum, Fig. 4.8 verifies with 〈ϑi〉 > 〈ϑi+1〉
that on average the angles of those branchings that produce hard partons follow a similar
ordering scheme. It has to be emphasized that, as was mentioned briefly in Chap. 2, in
contrast to other algorithms, e.g. Refs. [103, 113] angular ordering ordering was never
built in by hand – in the attempt to study, whether this principle is violated, due to
multiple jet-medium interactions. The ordering found for the average branching angles
can be explained by their proportionality to the ratio between virtuality and energy of
the incident decaying parton i, i.e.: ϑi ∝ Qi

Ei
. This ratio can be shown to decrease strongly

during the evolution of parton cascades, cf. e.g. Fig. 2.13 for the time evolution for Q

E
for

vacuum cascades of different total energy and initial virtuality.
It was found for NS eff = 2 that the average value of the first branching angle 〈ϑ1〉 is

only slightly affected by increasing values of ∆Q2 in comparison to more strongly rising
values of 〈ϑ2〉. For NS eff = 3, 〈ϑ1〉 decreases, while 〈ϑ2〉 only changes weakly, and 〈ϑ3〉
increases considerably. For the purely inelastic model the effect of angular broadening,
observed in Fig. 4.3 for the average angles 〈∆θ〉 of a heavy light particle pair, can be
attributed to an overall increase in the branching angles ϑi, since the directions of the
three-momenta are not changed during the propagation of an intermediate particle, in
contrast to the elastic model of jet-medium interaction, where transverse momentum
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Figure 4.8: Average branching angles 〈ϑ1〉, 〈ϑ2〉, and –if present – 〈ϑ3〉 in cascades of
different topologies for the respective first, second and third splitting, which produces
parton pairs, where each parton individually fulfills the condition ‖~p‖ ≥ ‖~p‖cut = 2 GeV, as
a function of ∆Q2 in the inelastic model of jet-medium interactions. Top panel: NS eff =
2, final particles with ‖~p‖ ≥ 2 GeV are a quark and two gluons, radiated from the
quark. Middle panel: NS eff = 2, final particles with ‖~p‖ ≥ 2 GeV are a quark and 2
gluons, radiated both via a common intermediate gluon from the quark. Lowest panel:
all cascades where NS eff = 3.

transfers play a role. Thus, it can be concluded from the study of 〈ϑi〉 as functions of
∆Q2 that splittings that happen at a later stage in the evolution of the cascade contribute
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more to the effect of angular broadening in the medium. A tentative explanation is given
via the fact that parton virtualitiesQ are found to strongly decrease in successive splittings
(cf. Fig. 2.4 for virtuality distributions in vacuum.). Since for the life time of the particle
an approximation proportional to 1

Q
was used, cf. Eqs (2.36) and (2.37), the corresponding

incident branching partons exist for longer time spans than the branching partons involved
in earlier splittings. By consequence, their virtualities increase more due to their in-
medium propagation. Since the branching angles are approximately proportional to Q

E
it

follows, that medium effects are stronger for splittings that occur at later stages in the
cascade evolution.

The average values of ϑi were also investigated for cascades with ‖~p‖cut = 0 (not
shown here) in the same topologies as those shown in Fig. 4.8. As it was mentioned
before the results obtained in this first approach correspond to fewer cascades as those
from the second. However, for all branching angles investigated, there occurs in most
cases (except for 〈ϑ1〉 for NS = 3 and q → q∗ +G→ q +G+G which are approximately
constant ) a large increase with ∆Q2, which corresponds well to the overall behavior of
a strong effect of angular broadening observed in the top panel of Fig. 4.8. As before
one observes that splittings, which occur at a later stage in the cascade evolution, are
more affected by jet-medium interactions than earlier ones. In contrast to the behavior
for ‖~p‖cut = 2 GeV, for the additional soft particles that are considered, if ‖~p‖cut = 0 GeV
is used, the differences in the increases of the average branching angles are large enough
that the orderings of the average angles found for the vacuum, 〈ϑ1〉 ≥ 〈ϑ2〉 ≥ 〈ϑ3〉, are
inverted for ∆Q2 = 10 GeV2, i.e.: 〈ϑ3〉 ≥ 〈ϑ2〉 ≥ 〈ϑ1〉.

In conclusion of this section it can be summarized that Monte-Carlo simulated par-
ton cascades can be grouped in different cascade topologies. Then, the evolution of the
branching angles ϑi was studied in the vacuum and the medium, where it was found that
the medium effects on the cascade increase during its evolution, which can result in a
weakening of the ordering of the average branching angles 〈ϑi〉 that is found in the vac-
uum. Ideally, one would then desire to search for cascade topologies in real jets that are
produced in pp and heavy ion collisions. However, since in the experiments only the final
jet-particles are known, it is not trivial to identify the branching angles ϑi among the
angles between the momenta of these final particles. For given sets of simulated parton
cascades one could try to obtain the conditional probabilities that certain sets of final
particles correspond to particular cascade topologies, by means of a Bayesian approach.
Instead of such a study, the present section should serve here as a motivation to investi-
gate the evolution of angular jet-broadening for individual topologies, in order to better
understand the behavior for all Monte-Carlo simulated parton-cascades. This will be done
in the next section.

4.4 Distributions over two angles

Both collisional as well as radiative processes of jet-medium interaction may contribute
to angular jet-broadening (in addition to their contributions to parton-energy loss), a
phenomenon that was studied in Sec. 4.2.

The main goal of this section, however, is a better understanding of the underlying
cumulative mechanisms that yield the effect of angular jet-broadening in the medium.
A particular focus lies on the question, how much the (additional) radiation of light
partons at large angles contribute to angular broadening in comparison to deflections of
the incident heavy quark. To illustrate the problem, Fig. 4.9 depicts three angles that can
be expected to increase due to jet-medium interactions (at least on average). These are:
The angle between the three-momenta of a light and a heavy cascade particle, ∆θ, the
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angle between the three momentum of a light cascade particle and the jet-axis, ∆θjl, and
the angle between the the three momentum of the heavy quark and the jet-axis, ∆θjQ

7.

x

∆θjQ∆θjl

∆θ

jet axis

Figure 4.9: Illustration of the definition of the angles ∆θ, ∆θjQ, and ∆θjl for a sample
parton cascade that is initiated by a heavy quark.

In principle, it could be possible that one of these angles increases independently from
the other two (and, thus, contributes to angular jet-broadening)8. Fig. 4.10 illustrates two
different types of cascades, one, where both ∆θ and ∆θjQ are increased simultaneously
due to jet-medium interactions, and another one, where jet-medium interactions yield
an increase of ∆θjQ, while ∆θ remains unchanged. In the first case (in the left panel of
Fig. 4.10) the parton branching angle is increased, but there are no additional deflections.
This kind of behavior can occur, if the virtuality of the decaying partons are increased due
to jet-medium interactions, i.e. in the models that implement radiative energy loss. The
other case can occur, if the decaying partons experience forces that change the directions
of their three-momenta, i.e. in the models that describe collisional energy loss.

x

∆θjQ
∆θ

jet axis

x

∆θjQ

∆θ

∆θ

jet axis

Figure 4.10: left panel: example of a cascade, where ∆θ and ∆θjQ are simultaneously
changed via jet-medium interactions due to an increase of the branching angles. right
panel: example of a cascade, where the angle ∆θjQ is increased due to jet-medium in-
teractions, while the angle ∆θ is the same as in vacuum. In both panels: Jet-medium
interactions are symbolized via a gluon line ending in ”x”. The resulting changes of the di-
rections of parton momenta are symbolized with the bold arrows on the right side of each
panel. Dashed quarks and gluons symbolize the partons one would obtain in a cascade in
the vacuum.

In order to quantify, to which picture parton cascades that are subjected to different
kinds of jet-medium interactions correspond the most, it is necessary to study the distri-
butions for one angle (e.g.: ∆θjQ) for a fixed value of the other angle (in this example

7Since it is possible to reconstruct the direction of the jet axis from experimental data (e.g. by iden-
tifying a photon that was produced in the hard process of heavy quark production, or from the hadrons
produced in pp or heavy ion collisions by means of a suitable jet algorithm, etc.), the angles ∆θjQ and
∆θlj represent quantities that are in principle experimentally measurable.

8The remainder of this section then focuses solely on the pair of angles ∆θ and ∆θjQ, thus, neglecting
the other two equivalent possibilities.
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∆θ). This is why this section explores the distribution over the combinations of the two
angles ∆θ and ∆θjQ, i.e.: d2N

d∆θd∆θjQ
.

4.4.1 Results for the vacuum case

In order to identify medium effects in the distributions over two angles, it is necessary
to study these distributions for cascades in the vacuum before. Some results are shown
in Fig. 4.11. In order to understand the distribution for NS eff = 1 (upper left panel),
one can assume that the angle ∆θ is approximately the same as the splitting angle ϑbc

(for outgoing heavy quark b and gluon c) between the heavy quark and the produced
gluon, ∆θ ≈ ϑbc, since subsequent soft processes are expected to only slightly affect the
propagation of the hard partons. One can use the further approximation ϑ1 ≈ Q

E
√

x(1−x)
,

with the virtuality Q and energy E of the splitting parton and x (1 − x) the energy
fractions of the outgoing partons. Since NS eff = 1, small virtualities Q are possible.
They even can be supposed to represent the dominant scale for the corresponding splitting
processes, because the Sudakov form factor is peaked at virtualities of ≈ 10 GeV (cf. Fig.
2.4) and, furthermore, higher values of Q in such a first hard splitting are more likely to
allow subsequent further splittings. Therefore, one can assume a virtuality just above the
threshold Q↓ of the algorithm, e.g. Q ≈ 1 GeV, which yields Q

E
≈ 0.05. The maximal value

of
√
x(1− x) is x = 1

2
, its minimal value is given by the most unequal energy distribution

allowed, but since a cut of 2 GeV was imposed on the parton momenta, one obtains
the constraints 0.1 ≤ x ≤ 0.9. Thus, the angles between most pairs of a heavy and a
light parton lie within the range of ∆θ ≈ ϑbc ∈ [0.10, 0.15]. As can be seen in the left
upper panel of Fig. 4.11, this estimation approximates the relevant orders of magnitude
reasonably well. The second angle ∆θjQ can be approximated analogously as the angle
between the momenta of the incident and outgoing heavy quark in the corresponding
splitting process ϑb. Since ϑb = (1−x)ϑbc, one can estimate thus ∆θjQ ≈ (1−x)∆θ. Due

to x ∈ [0.1, 0.9], one obtains thus a distribution d2N
d∆θd∆θjQ

with its main contributions in

the half of the plane below the first median. Furthermore, in quark splittings high energy
fractions, x → 1 dominate and consequently predominantly small values of ∆θjQ. Both
tendencies can be verified in the figure.

Subsequently, the topologies for NS eff = 2 were studied. Results for the radiations
of 2 gluons from the heavy quark and an intermediate gluon are shown in the upper
middle and right panel of Fig. 4.11, respectively. In an NS eff = 2 topology one of the
outgoing partons of the first branching (which creates 2 partons above the ‖~p‖ cut) is an
intermediate parton that splits again into 2 partons above the ‖~p‖ cut. Thus, its typical
virtuality is expected to be higher than that of the corresponding outgoing parton in the
branching of the NS eff = 1 topology. By consequence, the virtuality of the initial parton
that has to create the intermediate parton in a splitting is supposed to be also larger than
its equivalent in the NS eff = 1.

Thus, in the case, where 2 gluons are emitted by the heavy quark, it follows from
this observation that the first splitting angle is on average larger than in the NS eff = 1
topology, yielding a larger value for ∆θ. On the other hand, for the second splitting, the
analogous estimation to the NS eff = 1 case can be made and, thus, for its contribution to
the distribution in ∆θ values comparable to those in the NS eff = 1 case can be expected.
The ∆θjQ values will be larger than for the NS eff = 1 topology, due to the larger splitting
angle in the first branching. Furthermore, the additional second splitting accounts for a
smearing effect, resulting in a broader distribution in the ∆θjQ direction.

In case two finally obtained gluons are emitted from an intermediate gluon one observes
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Figure 4.11: Distributions d2N
d∆θd∆θjQ

over the angle ∆θjQ (vertical axes) and ∆θ (horizontal

axes) for parton cascades in the vacuum with Q↑ = Eini = 20 GeV, Q↓ = 0.6 GeV (lower
middle panel) together with its contributions from cascades with NS eff = 1 (top left
panel), NS eff = 2 where the intermediate particle is either a heavy quark (top middle
panel) or a gluon (top right panel), or NS eff = 3 (lower left panel). The color bar on the
lower right indicates the values of the plotted distributions in % of their respective values
at the peaks. The lines ∆θjQ = ∆θ and ∆θjQ = 1

2
∆θ are also shown in black.

a large distribution in a certain direction in the vicinity of the ∆θjQ = 1
2
∆θ line. This

different behavior can be explained as follows: The intermediate gluon has to split into
2 gluons with ‖~p‖ values above the cut. Consequently, one can expect that this particle
is highly energetic. This constraint leads to a bias towards smaller energy fractions x in
the first branching9. This bias competes with the overall tendency towards large x values
in heavy quark splittings. It follows that for the selected cascades x peaks around a
certain value xtyp (in Fig. 4.11 xtyp ≈ 1

2
) that just allows for the 2 gluon production. The

corresponding distribution d2N
d∆θd∆θjQ

is then mostly peaked around the direction ∆θjQ =

(1− xtyp)∆θ10.
A qualitatively similar, albeit broader, distribution can be obtained for NS eff = 3

(lower left panel of Fig. 4.11). The results from all cascade topologies are shown in the
lower right panel of Fig. 4.11. For the cut ‖~p‖ ≥ 2 GeV contributions from NS eff > 3 play
only a negligible role, as was shown in Fig. 4.7. Thus, the behavior of the distribution
can be mostly explained by its already discussed NS eff ≤ 3 contributions.

9For the case of the emission of 2 gluons from the heavy quark, these considerations did not play a
role since the quark splitting function leads already to a strong tendency towards large energy fractions
x→ 1 of the heavy quark involved.

10With the splitting angle ϑBC of the first branching, one can argue that the distribution is peaked
around ∆θjQ = (1− xtyp)ϑBC . However, the direction of the 3 momenta of the gluons are –on average–
distributed symmetrically around the 3 momentum of the intermediate gluon. Thus, two contributions
to the distribution in ∆θ from each cascade are on average distributed symmetrically around ϑBC . As a
result one obtains a distribution with a smearing around a main ridge ∆θjQ = (1− xtyp)∆θ.

115



4.4.2 Results for the elastic effective model
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Figure 4.12: The same distributions as shown in Fig. 4.11 for cascades in the vacuum, now
for parton cascades in a medium, with jet-medium interactions described by the elastic
effective model with ∆Q2 = 10 GeV2.

In comparison to the vacuum case one obtains for the effective model of elastic jet-
medium interactions largely different results, both for the overall distributions as well as
for its contributions from the NS eff < 3 topologies, as can be seen in Fig. 4.12. In general,
one observes distributions that are peaked at larger ∆θjQ values, compared to the vacuum
case, and with sizable contributions in the half of the plane, where ∆θjQ > ∆θ. The mean
value 〈∆θjQ〉 appears to be almost independent of ∆θ, which suggests a weakening of the
correlation between the ∆θ and ∆θjQ values observed in Fig. 4.11. Furthermore, one
observes a broad distribution of ∆θ values. Since similar differences between vacuum
and medium results occur in all of the investigated cases, one can try to understand the
medium effects in the simplest case of NS eff = 1: There, the virtuality of the branching
parton is expected to be small, since only a single splitting occurs. By consequence, this
initial quark exists for large timescales and, thus, experiences a corresponding amount
of transverse momentum transfers. As a result, one obtains a broader distribution in
∆θjQ, with a higher average value 〈∆θjQ〉. The direction of the 3 momentum of the
branching heavy quark can be largely changed during the lifetime of this initial particle,
while the angle ∆θ depends only on its virtuality Q and energy E. By consequence, the
correlation between ∆θ and ∆θjQ is weaker than in case of jets in the vacuum. In contrast
to the transfers of transverse momentum to the incident splitting parton, where several
momentum transfers can annihilate as well as enhance one another, the energy transfer
to the medium is described in the model as an effect that accumulates over time. Since
the elastic scattering processes do not directly affect the virtuality of the initial quark,
the ratio Q

E
and, therefore, the branching angle ϑbc ≈ ∆θ can be expected to be larger

than in vacuum.
In the paragraph above the broadening of ∆θjQ in the medium due to elastic scattering
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was explained by the long lifetime of the initial quarks: While this argument was made
for the NS eff = 1 topologies, it can be generalized to any type of parton cascade by
acknowledging that for a series of heavy quark splittings, of all the intermediate heavy
quarks the one involved in the last splitting has the smallest virtuality and, therefore,
the longest lifetime. Thus, this last intermediate heavy quark contributes the most to
the broadening of ∆θjQ. This behavior can be verified in the comparison of the two
NS eff = 2 topologies studied: In both cases the virtuality of the initial heavy quark is
expected to be high. However, in case of gluon emission from the heavy quark, the heavy
quark undergoes a second splitting. The intermediate particle in this additional branching
accounts for a larger broadening effect of ∆θjQ in comparison to the case of the emission
of two gluons from an intermediate gluon, as can be seen in Fig. 4.12.

4.4.3 Results for the inelastic effective model
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Figure 4.13: Distribution over the angles ∆θ and ∆θjQ as in the lower middle panels of
Figs. 4.11 and 4.12, for parton cascades undergoing jet-medium interactions described
by the inelastic effective medium model (left panel), in comparison to the distributions of
parton cascades in the vacuum (right panel).

The d2N
d∆θd∆θjQ

distributions were also investigated in the effective model for purely

inelastic scattering. There, it can be expected that a broadening in the distributions of
∆θ as well as ∆θjQ occurs. The reason for such a behavior is, that both angles are directly
proportional to the virtuality, which increases due to the employed description of inelastic
jet-medium interactions. On the other hand, the ratio between ∆θjQ and ∆θ is unaffected
by interactions with the medium.

The results for the purely inelastic model of jet-medium interaction are shown in Fig.
4.13 (here without the additional investigation of NS eff ≤ 3 topologies). Indeed, this
distribution exhibits a very similar behavior (with a ridge of maximal values along a line
∆θjQ ≈ 1

2
∆θ) as the corresponding distribution for the vacuum, shown in Fig. 4.11, except

the fact, that it is broader in both directions.
Furthermore, it has to be emphasized that the distributions for the elastic and the

purely inelastic model of jet-medium interactions (cf. Figs. 4.12 and 4.13) are considerably
different: In comparison to the corresponding distribution for the elastic model, the one
shown in Fig. 4.13 exhibits a stronger correlation between the angles ∆θjQ and ∆θ and a
less apparent broadening in ∆θjQ direction. In particular, the maxima of the distribution
occurs for angles ∆θjQ < ∆θ, in contrast to the results obtained for the elastic model.
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4.4.4 Results for the hybrid models

0 0.15 0.3 0.45
0

0.15

0.3

0.45

∆θjQ [rad] inelastic

0 0.15 0.3 0.45

∆θjQ [rad] elastic

0 0.15 0.3 0.45
0

0.15

0.3

0.45

∆θ [rad]

model C

0 0.15 0.3 0.45

∆θ [rad]

model D

0

20

40

60

80

100

Figure 4.14: Distribution over the angles ∆θ and ∆θjQ for the two hybrid model C
(lower left) and model D (lower right) compared to the corresponding distributions for
the inelastic and elastic effective model (upper left and right, respectively). For the
simulations, the same conditions as in the previous figures ( Q↑ = Eini = 20 GeV, Q↓ =
0.6 GeV) were used. The jet-medium interaction is parametrized by ∆Q2 = 10 GeV2. A
cut of ‖~p‖ ≥ 2 GeV was applied.

In this subsection, the d2N
d∆θd∆θjQ

is studied for the two hybrid models in order to

understand the effects of the longitudinal drag force and the stochastic transverse force.
Results are shown in Fig. 4.14 in comparison to the corresponding distributions for the
inelastic and elastic effective model, that were both already studied before.

It can be seen that the distribution for model C exhibits its maximal values along a
ridge in the ∆θjQ = 1

2
∆θ direction, while the correlation between the two angles seems

to disappear in the corresponding distributions for model D. Analogous differences in the
medium effects occur in the distributions for the inelastic model and the elastic model. In
that case, the disappearance of the correlation between the two angles can be attributed,
at least, to processes of collisional energy loss. If one compares the distributions of model
C and D, one can specify this observation: The stochastic transverse forces lead to the
disappearance of the correlation of the two angles, since the effective models C and D
only differ with regard to this single aspect (cf. Fig. 3.1).

Furthermore, in comparison to the elastic effective model – where the most of the
largest values of the distribution occur in the ∆θjQ > ∆θ part of the plane – the corre-
sponding distribution for the model D appears to be shifted to the right – as the maximum
values occur in the ∆θjQ < ∆θ part of the plane. This behavior has to reflect the imple-
mentation of medium-induced radiation in model D, since this is the only aspect by which
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model D differs from the elastic model (cf. Fig. 3.1). Indeed the behavior is consistent
with the observation (made in the previous subsection 4.4.3) that the ridge along the
∆θjQ = 1

2
∆θ direction is broader in the distributions of the inelastic effective model than

in the vacuum case.

4.4.5 Comparison and Summary

In order to quantify the observations on the distributions over two angles made in the
previous subsections 4.4.1 to 4.4.4, this subsection shows in Fig. 4.2 a list of parameters
that define the combined and individual distributions over the two angles ∆θ and ∆θjQ.

Cov(∆θ,∆θjQ)
σ(∆θ)σ(∆θjQ)

〈∆θ〉 ± σ (∆θ) [rad] 〈∆θjQ〉 ± σ (∆θjQ) [rad]

vacuum 0.765 0.330± 0.350 0.200± 0.230
inelastic 0.709 0.360± 0.302 0.207± 0.200
elastic 0.554 0.518± 0.440 0.306± 0.265

model C 0.705 0.380± 0.325 0.213± 0.207
model D 0.473 0.560± 0.406 0.287± 0.238

Table 4.2: Parameters for the distributions in ∆θ and ∆θjQ for cascades in the vacuum
or subjected to effective medium models (the same sets of cascades as for Figs. 4.11
to 4.14 and a ‖~p‖-cut of 2 GeV was used), i.e.: Covariance Cov(∆θ,∆θjQ) of the d2N

d∆θd∆θjQ

distribution divided by the standard deviations σ (∆θ) and σ (∆θjQ) of the ∆θ and ∆θjQ

distributions, respectively (left column), mean values 〈∆θ〉 of the ∆θ distribution together
with their standard deviations σ (∆θ) (middle column), and mean values 〈∆θjQ〉 of the
∆θjQ distribution together with their standard deviations σ (∆θjQ) (right column).

The mean values and standard deviations for the distributions over a single angle, ∆θ
or ∆θjQ, of two particles with three-momenta that satisfy ‖~p‖ ≥ ‖~p‖cut = 2 GeV reflect a
rather small angular broadening for the models that do not contain a stochastic transverse
force compared to the elastic effective model and the model D that do contain this kind
of force. For the average values 〈∆θ〉 this behavior is consistent with Fig. 4.4, where
most angular broadening effects disappear for the inelastic effective model and model C
at ‖~p‖cut = 2 GeV, in contrast to the elastic effective model and model D.

In order to study the distributions over the two angles ∆θ and ∆θjQ correlation coef-

ficients
Cov(∆θ,∆θjQ)
σ(∆θ)σ(∆θjQ)

were calculated. The behavior observed in Figs. 4.11 to 4.14 before

is well reflected in these values: While for the cascades in the vacuum the angles ∆θ and
∆θjQ are strongly correlated and this correlation is still largely present (the correlation
coefficients decrease by ≈ 8%) for the inelastic effective model as well as model C, which
both do not contain a stochastic transverse force, for the elastic effective model as well as
the hybrid model D, which both contain such a stochastic transverse force, the decrease
in the correlation coefficient is much larger (≈ 27% for the elastic model and ≈ 38% for
model D).

To summarize: The distribution d2N
d∆θd∆θjQ

has been studied for cascades in the

vacuum as well as the different medium models in order to better understand how the
effects of parton radiation at larger angles (due to larger parton branching angles, as well
as due to additional branchings) and of in-medium deflection of the heavy quark result
in the behavior of angular jet-broadening. For cascades in the vacuum this deflection of
the heavy quark is entirely due to those parton branchings that involve the heavy quarks.
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The two angles ∆θjQ and ∆θ are correlated with peak values of the distribution d2N
d∆θd∆θjQ

around the direction ∆θ = 1
2
∆θjQ. This correlation was also found for parton cascades

that are subjected to processes of radiative energy loss alone (i.e. neglecting the three-
momentum exchanges in collisions of jet and medium particles) or even a longitudinal drag
force. However, it is a particular feature of models that contain a transverse stochastic
force that the correlation between the two angles is weakened. This kind of behavior
can be explained by large deflections of the heavy quark (resulting in larger ∆θjQ values)
before the radiation of gluons.

While angular jet-broadening is a phenomenon that can occur for both collisional and
radiative energy-loss mechanisms and can be observed already via the dN

d∆θjQ
and dN

d∆θ

distributions, the weakening of the correlations of the two angles cannot be described by
these two distributions alone. However, the d2N

d∆θd∆θjQ
distribution is a suitable observable

to study it.
In order to quantify the weakening of the correlation between ∆θjQ and ∆θ, correlation

coefficients have been calculated, which are smaller for the elastic effective model and the
hybrid model D than for the other models or for the vacuum.

4.5 Conclusions and Perspectives

This chapter has demonstrated that two-particle correlations can provide an additional
means to distinguish different mechanisms of in-medium parton energy-loss, i.e. collisional
and radiative scatterings off medium partons.

To this end, parton cascades were simulated within the effective models presented in
Chap. 3 – starting from the same quark (i.e. same Q↑, Eini) in all systems, and for media
with the same space-time evolution of the temperature. Then, two-particle correlations
were obtained from the four-momenta of two cascade particles, with systematic triggering
on one particle of the pair. Usually this trigger particle was the initial quark of the cascade
in its final state. Special emphasis was laid on investigations of angular correlations.

Sec. 4.2 investigated the angular correlations between such a trigger particle and any
of the remaining final particles of the cascades – representing heavy-light meson pairs.
In particular the average increase of the angle between the pairs of particles due to jet-
medium interactions was studied. When filtering the final particles with regard to the
absolute values of their three-momenta, ‖~p‖, one observes that, not only is this angular
broadening effect smaller for increasing momentum/energy scales, but also that this effect
is considerably different for the effective models of collisional and radiative energy loss.
Thus, it was found that for the effective model of radiative energy loss the angular broad-
ening effects are mainly due to the emission of soft particles, while for the elastic effective
model, the deflection of hard jet particles plays a considerable role. Consequently, the
angular broadening effect for cascades subjected to only processes of collisional energy
loss is more insensitive to the application of a cut in the parton momentum/energy scale.
It was found that the dependencies of the average angle 〈∆θ〉 on the cut ‖~p‖cut shown in
Fig. 4.4 provide a useful tool in order to distinguish between the different mechanisms of
in-medium parton energy-loss.

Sec. 4.3 followed the ambitious goal to study the history of angular jet-broadening: To
this end the sets of cascades that were obtained from the Monte-Carlo simulations were
regrouped into different classes of cascade topologies. It was then studied in particular,
how the average branching angles evolve in these topologies. Unfortunately, it was not
possible to construct observables that would directly reflect individual branching angles.
However, Sec. 4.3 motivated a search for observables (in the subsequent section 4.4) that
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allow to distinguish the contributions to angular jet-broadening by changes of the direction
of the parton three-momenta over time, due to jet-medium interactions (in models that
allow for processes of collisional energy loss) from the effects of the medium effects on
parton-branching angles11.

Sec. 4.4 complemented the studies of the angle ∆θ of parton pairs by a simultaneous
study of the angle ∆θjQ between the heavy quark and the jet axis. By studying the
distributions over the pairs of angles in Figs. 4.11, 4.12, and 4.13, one can obtain further,
valuable insights that also allow to distinguish between the effective medium models:
The two angles ∆θ and ∆θjQ are noticeably correlated for vacuum cascades but also for
cascades subjected to radiative energy loss alone. The ridge of those angle pairs that give
the maximal values of the distribution exhibit a characteristic linearly rising behavior.
On the other hand, for parton cascades in the elastic effective model, not only are the
maxima of the distributions shifted towards higher ∆θjQ, due to multiple deflections of
the heavy quark in the medium, but also the aforementioned correlations between the two
angles ∆θjQ and ∆θ are weakened.

Summarizing, one can conclude that this chapter identified the following characteristic
behaviors of quantities that are, in principle, observable, which allow to discriminate
between collisional and radiative energy loss:

1. The momentum scale dependence of the angular broadening, observed via the mean
angle 〈∆θ〉,

2. the (de)correlation of the angles ∆θjQ and ∆θ due to radiative (collisional) processes,

Of course, within the approaches taken towards two-particle correlation there are still
a lot of issues and/or phenomena that need to be addressed in the future: They can
be grouped into problems that demand changes and additions in the description of the
cascade evolution (and also the underlying hard heavy-ion or pp collisions) and possible
additional investigations in two-particle correlations.

The former part consists of issues such as: the missing description of a hard collision
that creates the first particle of a (time-like) cascade, as well as initial state radiations
and parton distributions of the colliding heavy ions/protons, the explicit consideration of
quark-mass effects, a hadronization model, a microscopic description of the jet-medium
interactions (with coherence effects) or an extension of the effective model beyond off-
shell cascade particles, recoil effects, jet-particles that stem from thermalized medium
particles, etc. They should be only mentioned here, but discussed in more detail in the
next chapter, as they do not concern the main focus of this chapter, the construction
of (new) observables to investigate and distinguish the mechanisms of in-medium energy
loss.

Thus, the second part is more relevant here: As Fig. 4.4 – and Sec. 4.2 in general –
shows, there is a clear correlation between the average angles 〈∆θ〉 and parton energies.
Studies of some joint distributions in angles and energies could provide a promising tool to
further quantify the observations made within Sec. 4.2. Two-particle energy correlations
or correlations between the momentum components transverse to the jet axis also have
not yet been considered. A substantial improvement to the approaches taken would be the
inclusion of jet algorithms (e.g.: [6–13]) and grooming algorithms (e.g.: [146]) in order to
identify sub-jets. This would allow to translate the different topologies studied in Sec. 4.3
into observable and infrared- and collinear safe quantities. This would allow to investigate
the in-medium evolution of the jets both experimentally as well as theoretically.

11A third aspect is of course the increased angular jet-broadening due to medium-induced radiation,
which, however, has been studied before in Sec. 4.2.
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Chapter 5

Conclusion and future work

This thesis proposed a strategy for studying the mechanisms of parton-energy loss in the
medium of QGP by means of two-particle correlations.

In order to perform the necessary investigations on jets and their observables, a Monte-
Carlo algorithm was implemented (cf. Chap. 2). This tool represents a Monte-Carlo sim-
ulation of the virtuality evolution of parton fragmentation that is given by the DGLAP
equations. Thus, parton radiation via bremsstrahlung in the vacuum has been resummed
with leading-log accuracy. This algorithm can be used to simulate parton cascades corre-
sponding to the jets created in the final state processes of heavy quarks produced in pp
collisions.

Several, qualitatively different effective models of jet-medium interaction were then
introduced in Chap. 3. They where implemented as medium modifications of the Monte-
Carlo algorithm. While the models are rather simplistic, they, however, do allow to
systematically study, in a consistent overall framework, the consequences of different types
of energy-loss mechanisms on single and multiple particle observables. In particular,
the two complementary mechanisms of radiative and collisional energy loss were each
studied within a corresponding effective model. While the first one leads to induced
parton branching, and, thus, to a larger number of partons within the cascade, the second
one corresponds to an energy transfer of cascade particles to the medium, both via a
longitudinal drag-force and a transverse stochastic force. Under the assumption that
both, collisional and radiative mechanisms are independent of one another, their combined
effects were considered in the hybrid models C and a tentative model D was proposed.
While the former effectively simulates induced radiation as well as a longitudinal drag
force, but lacks the transverse stochastic force of the model for collisional energy loss,
model D contains all three effects.

In a first study of some resulting observables, such as distributions over parton-
momentum components or angles with jet axes, in Chap. 3, it was found that the collisional
energy loss mechanisms lead to a momentum- and angular broadening for cascade partons
at all of the investigated energy scales, while for radiative energy loss angular broaden-
ing is obtained via the emission of multiple soft particles. Furthermore, since these soft
particles are obtained via parton branchings, particle distributions at high energies are
depleted in the effective model for radiative energy loss in comparison to the vacuum case.

In order to further quantify this observation and to further discriminate between the
different models, Chap. 4 developed a strategy using two-particle angular correlations as
observables: Thus, angular correlations were studied in the form of distributions over
angles ∆θ, which are the angles between the three momenta of the initial quark of a
cascade (representing a heavy quark in a heavy quark jet) and of another, associated
parton of the cascade in its final state. In particular the mean angle 〈∆θ〉 was investigated:
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First, Fig. 4.3 showed that this average angle increases with the strength of jet-medium
interactions (expressed via a parameter ∆Q2). Then, a tool to quantitatively discriminate
between the collisional and radiative energy loss mechanisms was given via Fig. 4.4, which
shows the mean angles 〈∆θ〉 as functions of a cut in parton momenta ‖~p‖cut. For the
model of collisional energy loss the mean angles 〈∆θ〉 are considerably larger than for
the vacuum case at all considered momentum cuts. For the model of radiative energy
loss, such an increased 〈∆θ〉 value can only be found at small momentum cuts, while
for larger scales the 〈∆θ〉 values drop steeply and approach the vacuum behavior. These
different behaviors can be either explained via a redistribution of parton momenta over a
large set of different directions due to elastic scattering processes in the medium, or by an
additional amount of soft particle emitted due to processes of medium-induced radiation.
By consequence, it can be argued, that the presented method to distinguish the different
types of parton cascades rely on general physical properties of the respective collisional and
radiative jet-medium interactions rather than on mere artifacts of the effective medium
models presented in Chap. 3. This kind of studies can be complemented, among other
investigations, with an additional examination of distributions over two angles ∆θ and
∆θjQ in Sec. 4.4. For the vacuum case, a correlation between the two angles has been
found, which retains much of its original behavior, if the cascade particles are subjected
to radiative energy loss. However, for cascades undergoing processes of collisional energy
loss, much of the initial correlation between the two angles is lost. This different behavior
is due to a large broadening of the corresponding angles, but mostly of ∆θjQ. It can be
interpreted as a sign of the larger isotropization of the corresponding parton momenta
due to the (stochastic) transverse forces they experience.

So far, Chap. 4 searched for two-particle observables that allow to distinguish types
of cascades that are subjected to different kinds of jet-medium interactions. Therein,
the sets of cascades that were compared, were obtained with simulations that used the
same value of the parameter ∆Q2. This model parameter corresponds to the strength of
the jet-medium interaction and, thus, to the temperature scales of the medium. For the
temperature profile given by Eqs. (3.2) and (3.13) (and the assumption that q̂R = q̂C)
that was used in the effective models, the choices of ∆Q2 = 3 GeV2 and Q2 = 10 GeV2

in Chap. 4 (and in most parts of Chap. 3) can serve as an estimation for the RHIC and
LHC temperature scales, respectively.

However, in order to distinguish models that yield the same predictions for physical
observables, one should rather compare different effective models that produce the same
values for the nuclear modification factor instead. As the results for the approximations
RMV to the nuclear modification factor RAA, obtained in Fig. 3.13 for both the collisional
and radiative effective model, suggest, the ∆Q2 values for different models that yield
the same nuclear modification factor can be largely different as well. Thus, even higher
discrepancies between the corresponding behaviors of the angular two-particle correlations
(e.g. expressed via the curves analogous to the ones found in Fig. 4.4) can be expected.

The implemented effective models describe jet-medium interactions only for off-the-
mass-shell particles of a virtuality above the threshold Q↓, while particles with smaller
virtualities are assumed as final particles that are neither allowed to split nor to change
their four-momenta. This restriction was made, since the range of possible momentum
fractions is very restricted for partons with virtualities slightly above Q↓, cf. Eqs. (2.21)
and (2.23). By consequence, if the effective model for radiative energy loss was modi-
fied in such a way that it allowed for on-the-mass-shell particles to regain virtuality and
split once the virtuality is above the threshold, one would obtain an unreasonably high
amount of partons produced in democratic branchings, where x ≈ z ≈ 1

2
. To avoid these

kind of problems jet-medium interactions were turned off for virtualities Q ≤ Q↓ in all of
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the effective models1. For an extension that includes medium effects of on-the-mass-shell
particles one can argue as follows: The currently implemented algorithm relies on the
DGLAP evolution of parton fragmentation. This approach is applicable, if the cascade
partons are strongly ordered in virtuality. If the cascade partons effectively acquire virtu-
ality due to scatterings off medium particles, the additional parton splittings can still be
described via the same splitting functions as in the vacuum case, if the additionally ac-
quired virtuality is small compared to the initial virtuality of the incident cascade parton.
For incident partons that are already on-the-mass-shell, or at the threshold virtuality, this
requirement is no longer satisfied. Thus, the collinear splitting functions need to be re-
placed at this scale with different probability densities that better apply to the domain of
small virtualities. A suitable description of induced particle radiation might be obtained
by the approach of Gunion and Bertsch [124], which calculates induced gluon radiation
for incident on-shell particles (cf. in particular Ref. [134] for an application to on-shell
heavy quarks in the medium).2 In order to obtain more realistic predictions (both for
the single particle observables, most notably the estimation RMV of the nuclear modifi-
cation factor as well as for angular correlations) the effective models established in this
thesis should be modified to include the jet-medium interactions of cascade partons with
virtualities smaller than Q↓. For the effective treatment of collisional energy loss, one
merely has to apply the drag and stochastic forces on the particles with Q ≤ Q↓ as they
were applied before on particles with Q > Q↓, cf. Sec. 3.2.1. The presented strategy to
distinguish radiative and collisional parton-energy-loss mechanisms via two-particle cor-
relations will remain the same for tentative extended models, because it relies on the fact
that parton-energy loss is either attributed to an energy transfer to the medium due to
a parton three-momentum change or to an additional number of parton branchings (and,
thus, a redistribution of energy), rather than on details of the specific models. However,
since the extended models will involve additional jet-medium interactions one will obtain
a larger energy-loss for the same ∆Q2 scales. For the estimation RMV of the nuclear
modification factor (cf. Fig. 3.13) one can, thus, expect smaller values. Especially for the
purely collisional model, which right now yields values that are too high (at ∆Q2 scales
that can be associated to reasonable temperature scales) compared to experimental data,
one can expect reasonable values.

Up to now, cascades were initiated by a quark that was considered as a heavy quark.
While such an approach can be justified by the fact that heavy quarks are automatically
labeled as triggers among the other partons, due to their large masses, their interactions
with the medium and spectra of radiated gluons might differ as well. However explicit
heavy quark-mass effects have not yet been included in the current version of the Monte-
Carlo algorithm. If the code would be adapted accordingly, one would, most notably,
observe the so-called dead-cone effect [47] in the resulting data: Correspondingly, collinear
parton branching would be suppressed and, by consequence, radiative energy loss would
decrease as well. Furthermore, a proper inclusion of heavy quarks in the Monte-Carlo
algorithm, will also give rise to QQ̄ production via gluon splitting at high energy and
virtuality scales above 2mQ These contributions can be simulated by implementing G→
QQ̄ splitting functions. By consequence, the production of heavy quarks at late stages
of the cascade evolution should then be possible as well. Furthermore, the simplifying

1While the aforementioned problem does not appear for collisional energy loss in the effective models
any jet-medium interaction was turned off for partons with Q ≤ Q↓ in order to allow for a consistent
comparison between the different models.

2Also, one should remember, that in the present algorithm, outlined in Chap. 2, the virtuality threshold
Q↓ is motivated by the introduction of a minimum virtuality scale Q0 of resolvable partons. One can
argue that within this model such a virtuality scale is independent of the position of a possible splitting
in space and time.
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assumption of this thesis that only a single heavy quark is present per cascade has then to
be dropped – with the result that corresponding two-particle correlations will be obtained
from more that one trigger particle per jet.

Summarizing, one could modify the Monte-Carlo Algorithm in a way that considerably
affects jet-phenomenology by allowing on-the-mass-shell jet-particles to interact with the
medium. Indeed, it is planned right now to extend the part for collisional energy loss in
the effective models to on-the-mass-shell partons. Considering the effective description of
medium induced radiation, the main goal is to implement a different approach for gluon
radiation off on-the-mass-shell cascade-particles, e.g.: using the formalism by Gunion
and Bertsch. Then, it will be necessary to find a suitable transition between the high
virtuality region where the emission of gluons can still be described via splitting functions
for collinear splitting and the low virtuality region. In addition, for the heavy quarks,
the quark mass should be included in the description of their evolution inside the parton
cascade, in order to account for phenomena such as the Dead-Cone effect.

Finally, on the side of the observables, a considerable improvement in the applicability
of the presented results could be achieved, if two-particle correlations were replaced by
the correlations between two different parts of a jet, where at least one of the two is
identified as a sub-jet: In contrast to individual particles sub-jets – that were obtained
with a suitable jet-algorithm – are entities that are stable under additional soft or collinear
parton branchings (cf. the discussion in, e.g., Ref. [8]). Thus, the choice of a virtuality
threshold, or possible hadronization effects, would play a smaller role. Once, sub-jets have
been identified via a suitable algorithm, an observable that represents a first direct test
on the jet-structure is the jet-fragmentation function [147].
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Montréal, Québec, Canada, June 29-July 3, 2015. 2016. arXiv: 1510.04464 [hep-ph].
url: http://inspirehep.net/record/1398053/files/arXiv:1510.04464.pdf.

133

http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/hep-ph/0210213
http://arxiv.org/abs/hep-ph/0210213
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/1310.6877
http://www.sciencedirect.com/science/article/pii/055032138490333X
http://www.sciencedirect.com/science/article/pii/055032138490333X
http://dx.doi.org/10.1140/epjc/s10052-009-1133-9
http://dx.doi.org/10.1140/epjc/s10052-009-1133-9
http://arxiv.org/abs/0909.2037
http://arxiv.org/abs/0804.3568
http://arxiv.org/abs/1212.1599
http://link.aps.org/doi/10.1103/PhysRevC.78.034908
http://link.aps.org/doi/10.1103/PhysRevC.78.034908
http://link.aps.org/doi/10.1103/PhysRevC.88.014905
http://link.aps.org/doi/10.1103/PhysRevC.88.014905
http://arxiv.org/abs/0712.3443
http://arxiv.org/abs/1407.0599
http://arxiv.org/abs/1407.0599
http://arxiv.org/abs/1311.5823
http://arxiv.org/abs/1510.04464
http://inspirehep.net/record/1398053/files/arXiv:1510.04464.pdf


[111] R. Baier et al. ““Bottom-up” thermalization in heavy ion collisions”. Physics Let-
ters B 502.1–4 (2001), 51 –58. url: http://www.sciencedirect.com/science/

article/pii/S0370269301001915.

[112] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. “Effective kinetic
theory for high temperature gauge theories”. JHEP 01 (2003), 030. arXiv: hep-

ph/0209353 [hep-ph].

[113] Korinna C. Zapp. “JEWEL 2.0.0: directions for use”. Eur.Phys.J. C74 (2014),
2762. arXiv: 1311.0048 [hep-ph].

[114] I. P. Lokhtin and A. M. Snigirev. “A model of jet quenching in ultrarelativistic
heavy ion collisions and high- p T hadron spectra at RHIC”. The European Physical
Journal C - Particles and Fields 45.1 (2006), 211–217. url: http://dx.doi.org/

10.1140/epjc/s2005-02426-3.

[115] R. Baier et al. “Angular dependence of the radiative gluon spectrum and the
energy loss of hard jets in QCD media”. Phys. Rev. C 60 (6 1999), 064902. url:
http://link.aps.org/doi/10.1103/PhysRevC.60.064902.

[116] R. Baier et al. “Angular dependence of the radiative gluon spectrum”. Phys. Rev.
C 64 (5 2001), 057902. url: http://link.aps.org/doi/10.1103/PhysRevC.

64.057902.

[117] Guang-You Qin et al. “Jet energy loss, photon production, and photon-hadron cor-
relations at RHIC”. Phys. Rev. C80 (2009), 054909. arXiv: 0906.3280 [hep-ph].

[118] Guang-You Qin et al. “Radiative jet energy loss in a three-dimensional hydrody-
namical medium and high pT azimuthal asymmetry of pi0 suppression at mid and
forward rapidity in Au+Au collisions at sNN=200 GeV”. Phys. Rev. C76 (2007),
064907. arXiv: 0705.2575 [hep-ph].

[119] Guang-You Qin et al. “Radiative and collisional jet energy loss in the quark-
gluon plasma at RHIC”. Phys. Rev. Lett. 100 (2008), 072301. arXiv: 0710.0605

[hep-ph].

[120] Peter Arnold, Guy D. Moore, and Laurence G. Yaffe. “Photon Emission from
Ultrarelativistic Plasmas”. Journal of High Energy Physics 2001.11 (2001), 057.
url: http://stacks.iop.org/1126-6708/2001/i=11/a=057.

[121] Peter Arnold, Guy D. Moore, and Laurence G. Yaffe. “Photon emission from quark-
gluon plasma: complete leading order results”. Journal of High Energy Physics
2001.12 (2001), 009. url: http://stacks.iop.org/1126-6708/2001/i=12/a=

009.

[122] Peter Arnold, Guy D. Moore, and Laurence G. Yaffe. “Photon and gluon emission
in relativistic plasmas”. Journal of High Energy Physics 2002.06 (2002), 030. url:
http://stacks.iop.org/1126-6708/2002/i=06/a=030.

[123] Korinna C. Zapp. “A Monte Carlo Model for Jet Evolution With Energy Loss”.
PhD thesis. Combined Faculties for the Natural Sciences and for Mathematics of
the Ruperto-Carola University of Heidelberg, Germany, 2008.

[124] J. F. Gunion and G. Bertsch. “Hadronization by color bremsstrahlung”. Phys. Rev.
D 25 (3 1982), 746–753. url: http://link.aps.org/doi/10.1103/PhysRevD.

25.746.

[125] T. Gleisberg et al. “Event generation with SHERPA 1.1”. Journal of High Energy
Physics 2009.02 (2009), 007. url: http://stacks.iop.org/1126-6708/2009/

i=02/a=007.

134

http://www.sciencedirect.com/science/article/pii/S0370269301001915
http://www.sciencedirect.com/science/article/pii/S0370269301001915
http://arxiv.org/abs/hep-ph/0209353
http://arxiv.org/abs/hep-ph/0209353
http://arxiv.org/abs/1311.0048
http://dx.doi.org/10.1140/epjc/s2005-02426-3
http://dx.doi.org/10.1140/epjc/s2005-02426-3
http://link.aps.org/doi/10.1103/PhysRevC.60.064902
http://link.aps.org/doi/10.1103/PhysRevC.64.057902
http://link.aps.org/doi/10.1103/PhysRevC.64.057902
http://arxiv.org/abs/0906.3280
http://arxiv.org/abs/0705.2575
http://arxiv.org/abs/0710.0605
http://arxiv.org/abs/0710.0605
http://stacks.iop.org/1126-6708/2001/i=11/a=057
http://stacks.iop.org/1126-6708/2001/i=12/a=009
http://stacks.iop.org/1126-6708/2001/i=12/a=009
http://stacks.iop.org/1126-6708/2002/i=06/a=030
http://link.aps.org/doi/10.1103/PhysRevD.25.746
http://link.aps.org/doi/10.1103/PhysRevD.25.746
http://stacks.iop.org/1126-6708/2009/i=02/a=007
http://stacks.iop.org/1126-6708/2009/i=02/a=007


[126] “Studies of QCD at e+e− centre-of-mass energies between 91 and 209 GeV”. En-
glish. The European Physical Journal C - Particles and Fields 35.4 (2004), 457–
486. url: http://dx.doi.org/10.1140/epjc/s2004-01891-4.

[127] Yuri L. Dokshitzer, Victor S. Fadin, and Valery A. Khoze. “Coherent Effects in
the Perturbative QCD Parton Jets”. Phys. Lett. B115 (1982), 242–246.

[128] C. P. Fong and B. R. Webber. “Higher Order QCD Corrections to Hadron Energy
Distributions in Jets”. Phys. Lett. B229 (1989), 289–292.

[129] Valery A. Khoze and Wolfgang Ochs. “Perturbative QCD approach to multiparticle
production”. Int. J. Mod. Phys. A12 (1997), 2949–3120. arXiv: hep-ph/9701421

[hep-ph].

[130] Korinna C. Zapp. Private Communication. 2016.

[131] Jorge Casalderrey-Solana, Jose Guilherme Milhano, and Paloma Quiroga-Arias.
“Out of Medium Fragmentation from Long-Lived Jet Showers”. Phys. Lett. B710
(2012), 175–181. arXiv: 1111.0310 [hep-ph].

[132] Eric Braaten and Tzu Chiang Yuan. “Calculation of screening in a hot plasma”.
Phys. Rev. Lett. 66 (17 1991), 2183–2186. url: http://link.aps.org/doi/10.

1103/PhysRevLett.66.2183.

[133] Eric Braaten and Markus H. Thoma. “Energy loss of a heavy quark in the quark-
gluon plasma”. Phys. Rev. D 44 (9 1991), R2625–R2630. url: http://link.aps.

org/doi/10.1103/PhysRevD.44.R2625.

[134] Joerg Aichelin, Pol Bernard Gossiaux, and Thierry Gousset. “Gluon radiation by
heavy quarks at intermediate energies”. Phys. Rev. D 89 (7 2014), 074018. url:
http://link.aps.org/doi/10.1103/PhysRevD.89.074018.

[135] Hamza Berrehrah et al. “Dynamical collisional energy loss and transport properties
of on- and off-shell heavy quarks in vacuum and in the Quark Gluon Plasma”. Phys.
Rev. C90.6 (2014), 064906. arXiv: 1405.3243 [hep-ph].

[136] Karen M. Burke et al. “Extracting the jet transport coefficient from jet quench-
ing in high-energy heavy-ion collisions”. Phys. Rev. C90.1 (2014), 014909. arXiv:
1312.5003 [nucl-th].

[137] Vardan Khachatryan et al. “Decomposing transverse momentum balance contribu-
tions for quenched jets in PbPb collisions at

√
sN N = 2.76 TeV”. JHEP 11 (2016),

055. arXiv: 1609.02466 [nucl-ex].

[138] Vardan Khachatryan et al. “Measurement of transverse momentum relative to dijet
systems in PbPb and pp collisions at

√
sNN = 2.76 TeV”. JHEP 01 (2016), 006.

arXiv: 1509.09029 [nucl-ex].

[139] Thorsten Renk. “Comparison study of medium-modified QCD shower evolution
scenarios”. Phys. Rev. C 79 (5 2009), 054906. url: http://link.aps.org/doi/

10.1103/PhysRevC.79.054906.

[140] M. Shimomura. “High- , η, identified and inclusive charged hadron spectra from
{PHENIX}”. Nuclear Physics A 774 (2006). {QUARK} {MATTER} 2005Pro-
ceedings of the 18th International Conference on Ultra-Relativistic Nucleus–Nucleus
Collisions, 457 –460. url: http://www.sciencedirect.com/science/article/

pii/S0375947406002971.

[141] Marlene Nahrgang et al. “Azimuthal correlations of heavy quarks in Pb + Pb
collisions at

√
s = 2.76 TeV at the CERN Large Hadron Collider”. Phys. Rev.

C90.2 (2014), 024907. arXiv: 1305.3823 [hep-ph].

135

http://dx.doi.org/10.1140/epjc/s2004-01891-4
http://arxiv.org/abs/hep-ph/9701421
http://arxiv.org/abs/hep-ph/9701421
http://arxiv.org/abs/1111.0310
http://link.aps.org/doi/10.1103/PhysRevLett.66.2183
http://link.aps.org/doi/10.1103/PhysRevLett.66.2183
http://link.aps.org/doi/10.1103/PhysRevD.44.R2625
http://link.aps.org/doi/10.1103/PhysRevD.44.R2625
http://link.aps.org/doi/10.1103/PhysRevD.89.074018
http://arxiv.org/abs/1405.3243
http://arxiv.org/abs/1312.5003
http://arxiv.org/abs/1609.02466
http://arxiv.org/abs/1509.09029
http://link.aps.org/doi/10.1103/PhysRevC.79.054906
http://link.aps.org/doi/10.1103/PhysRevC.79.054906
http://www.sciencedirect.com/science/article/pii/S0375947406002971
http://www.sciencedirect.com/science/article/pii/S0375947406002971
http://arxiv.org/abs/1305.3823


[142] Jaroslav Adam et al. “Evolution of the longitudinal and azimuthal structure of
the near-side jet peak in Pb-Pb collisions at

√
sNN = 2.76 TeV” (2016). arXiv:

1609.06667 [nucl-ex].

[143] Serguei Chatrchyan et al. “Studies of azimuthal dihadron correlations in ultra-
central PbPb collisions at

√
sNN = 2.76 TeV”. JHEP 02 (2014), 088. arXiv: 1312.

1845 [nucl-ex].

[144] Alfred H. Mueller. “On the Multiplicity of Hadrons in QCD Jets”. Phys. Lett.
B104 (1981), 161–164.

[145] B. I. Ermolaev and Victor S. Fadin. “Log - Log Asymptotic Form of Exclusive
Cross-Sections in Quantum Chromodynamics”. JETP Lett. 33 (1981). [Pisma Zh.
Eksp. Teor. Fiz.33,285(1981)], 269–272.

[146] Andrew J. Larkoski et al. “Soft Drop”. JHEP 05 (2014), 146. arXiv: 1402.2657

[hep-ph].

[147] Splitting function in pp and PbPb collisions at 5.02 TeV. Tech. rep. CMS-PAS-
HIN-16-006. Geneva: CERN, 2016. url: http://cds.cern.ch/record/2201026.

136

http://arxiv.org/abs/1609.06667
http://arxiv.org/abs/1312.1845
http://arxiv.org/abs/1312.1845
http://arxiv.org/abs/1402.2657
http://arxiv.org/abs/1402.2657
http://cds.cern.ch/record/2201026


Appendix A

Partie française de la thèse

L’un des buts principaux de la thèse est de trouver des moyens pour discriminer les
mécanismes de la perte d’énergie des partons dans le milieu chaud d’un plasma de quarks
et de gluons (PQG) avec des corrélations de deux particules comme observables prin-
cipaux. Ci-dessous se trouve le résumé de la thèse en français. Nous commençons par
éxpliquer les notions de base (Sec. A.1), ensuite la problèmatique (Sec. A.2), les méthodes
utilisées (Sec. A.3), les résultats (Sec. A.4), ainsi que leur conséquences et des questions
encore ouvertes (Sec. A.5).

A.1 Production de quarks lourds dans les collisions

d’ions lourds

A.1.1 La théorie de l’interaction forte: La chromodynamique

quantique

La matière peut être décrite par des particules différentes, par exemple des protons p et
neutrons n. Ils constituent les noyaux des atomes et ils sont membres d’une plus grande
famille des particules: les hadrons. Après la découverte d’un grand nombre d’hadrons
différents, souvent groupés par leur masses en baryons (par exemple les p et n) et mésons
(qui sont généralement plus légers; par exemple les pions π et les mésons D). On a cherché
pour un procedé systematique pour classer tous ces particules. Finalement on a prouvé,
que les hadrons sont eux-mêmes des états composés, constitués par des particules appelées
quarks. Ces derniers sont confinés par l’interaction forte, qui est transmise par l’échange
d’autres particules: les gluons. Pour des raisons historiques, les quarks et les gluons sont
appelés les partons.

Les quarks ont une charge qui existe en trois variations différentes; cette propriété a été
appelée couleur et on peut identifier des quarks ”rouges”, ”verts”, et ”bleus”. Les hadrons
existent que dans la forme des états qui sont neutre en couleur, ou ”blancs”. La théorie
qui décrit les hadrons comme des états composés de particules avec couleurs est appelée
la chromodynamique quantique (CDQ), d’après le mot grec pour couleur ”chroma”. Il est
une particularité de cette théorie, que les gluons qui transmettent le couleur portent eux-
mêmes de la couleur. Par conséquent, les gluons peuvent interagir avec d’autres gluons,
ainsi qu’avec des quarks. La CDQ connait donc les interactions suivantes:

En plus de la couleur, les quarks existent en plusieurs types, nommés ”saveurs”. Six
saveurs sont connus: up (u), down (d), strange (s), charm (c), bottom (b), et top (t).
Après chacunes de masses différentes les trois premières saveurs sont appelés les saveurs
légères, tandis que les autres trois sont appelés les saveurs lourdes.
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Figure A.1: Symbolisation des interactions fondamentales entre quarks (lignes droites
avec des flèches) et gluons (spirales). La direction du temps dans ces diagrammes n’a pas
été spécifié: Toutes les combinaisons de particules incidentes et sortantes possibles sont
permites.

A.1.2 Les sondes dures pour le diagramme de phase

Le couplage entre les partons n’est pas une constante et dépend de la largeur des change-
ments des impulsions que les partons subissent. A grande échelle le couplage devient
faible, un comportement appelé liberté asymptotique.

Pour des cas de faible couplage, on peut s’imaginer un nouvel état de matière où les
quarks et les gluons peuvent se propager à de grandes distances (i.e. plus grandes que
les largeurs typiques des hadrons) quasiment libre. Les partons ne sont pas confinés mais
interagissent plutôt par diffusion avec d’autres partons de ce milieu. Cet état est appelé
le plasma de quarks et de gluons.

Pour comprendre dans quelless conditions ce PQG peut exister, on peut étudier le
diagramme de phase de CDQ. A de faibles températures T et depotentielles chimiques µ,
la matière est confinée dans les états liés des hadrons. A de grandes valeurs de T et/ou
µ on suppose qu’il existe le PQG1. On suppose que la condition à grand T a eu lieu dans
les premières millisecondes après la création de l’univers, tandis que les états de matière
à grand µ peuvent être réalisés dans les étoiles à neutrons.

On peut essayer de récréer le PQG par des collisions d’ions lourdes. On possède des
évidences, que le PQG se forme dans l’expérience des collisions à grandes énergies. Ce
milieu n’existe que pour des temps et des extensions spatiales d’une échelle de quelques
fm (fm/c).

Pour étudier les propriétés du PQG, on a besoin des sondes particulières, qui ne se
thermalisent pas avec le milieu. Une possibilité est donnée par des quarks des saveurs
lourdes, b et c, qui traversent le milieu de PQG et formeront des mésons lourdes. On
pourrait également étudier les partons légers à hautes énergies, ce qui résulte dans des
particules chargés. Les interactions de ces sondes dures s’expriment aussi par une perte
d’énergie dans le milieu. Des observables additionnelles peuvent être obtenues, si on
considère plusieurs particules corrélées. Si elles se propagent avec de grandes impulsions,
très focalisées autour d’une direction commune, on parle de jets. Les sondes dures peuvent
être créees dans les collisions d’ions lourds.

A.2 La problematique

Il existe plusieurs modèles qui décrivent la perte d’énergie avec des combinaisons de perte
d’énergie collisionelles et radiatives. Jusqu’à présent, il n’a pas encore été clarifié quel(s)
type(s) de processus domine(nt) les interactions d’une particule dans une gerbe avec le
milieu de PQG. L’intérêt principal de cette thèse est de trouver des observables pour

1Par conséquence entre ces deux régimes on peut déduire qu’il doit exister soit une transition de phase
(estimé autour d’une température critique Tc ≈ 170 MeV pour le cas de petits µ), soit des milieux où les
deux phases sont présentes en même temps (appelé un ”cross-over” des phases).
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pouvoir identifier les contributions des mécanismes collisionnels et radiatifs de la perte
d’énergie d’une particule dans le milieu.

L’ignorance générale sur les mécanismes microscopiques de perte d’énergies se man-
ifeste aussi dans les observables de collisions d’ions lourds. Un exemple qui est souvent
discuté dans la littérature est donnée par la combinaison des observables du facteur de
modification nucléaire RAA et de l’ecoulement elliptique v2. Le RAA est défini comme:

RAA =
NAA

〈TAA〉σP P

, (A.1)

où NAA est le nombre de particules produites dans les collisions d’ions lourds, 〈TAA〉
la fonction de recouvrement nucléaire, et σP P , la section efficace pour la production de
particules dans les collisions de protons. Donc, le RAA représente le ratio entre les nombres
de particules produites (à un certain pT , centralité donnée, etc.) dans les collisions d’ions
lourds et de protons.
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Figure A.2: Facteur de modification nucléaire (à gauche) et ecoulement élliptique (à
droite) pour des mesons-D promptes, obtenues dans des collisions Pb-Pb en comparaison
avec des modèles théoriques, qui utilisent seulement la perte d’énergie collisionnelles (en
haut), ou une combinaison des mécanismes collisionels et radiatifs (en bas). La figure a
été prise de la Ref. [19].

Le v2 est défini comme le deuxième coefficient d’une évolution en série de Fourier de la
distribution en angle azimutale φ (défini par rapport au plan d’évènement) des particules
détectées après des collisions d’ions lourds, d2N

dpT dφ
. L’observation d’une anisotropie se fait

par la mésure du v2, car si v2 = 0, les particules pourraient être émises dans tous les angles
sur le plan d’évènement. Le v2 positif à petit pT peut être interprété comme un signal
pour des effets collectifs d’un milieu (par exemple une expansion anisotrope). Des valeurs
positives de v2 à grand pT peuvent indiquer que la perte d’énergie est anisotrope. La
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Fig. A.2 montre la combinaison des observables RAA et v2 – des données expérimentales
d’ALICE ainsi que des résultats théoriques des modèles basé sur des mécanismes de perte
d’énergie radiative ou sur des combinaisons des mécanismes radiatifs et collisionels. On
peut voir que la plupart des modèles peut reproduire une des deux observables plus
précisément que l’autre. En générale, si les valeurs pour RAA sont trop grandes, celles
pour v2 sont trop petites, et vice versa. Il suit de cette observation, que la combinaison
des observables RAA et v2 est un moyen très dépendant aux modèles différentes de la
perte d’énergie dans le milieu. On remarque que dans la Fig. A.2, il y a beaucoup
de modèles qui reproduisent des valeurs pour RAA et v2 qui sont simultanément dans
les barres d’erreurs. Donc, il est nécessaire de trouver des observables alternatives, qui
permettraient de distinguer ces modèles plus précisément. Pour cela les corrélations entres
des paires de particules de gerbes ont été proposées récemment. Le RAA et le v2 mesurent
une multitude d’impulsions de particules individuelles. Tandis que les objets mesurés
pour les corrélations de deux particules sont les impulsions de paires de particules. Même
si on peut reproduire les mêmes taux de perte d’énergie avec des processus radiatifs, ainsi
qu’avec des combinaisons de mécanismes radiatifs et collisionels. Le nombre de paires de
particules augmente pendant les processus radiatifs tandis qu’il reste invariant pendant
les collisions de deux particules initiales (de la gerbe et du milieu) vers deux particules
finales. Cette argumentation est reprise dans cette thèse. Elle comprend les corrélations
entre des particules lourdes et légères dans la gerbe – plus précisément les corrélations
angulaires – comme moyens pour discriminer les mécanismes radiatifs et collisionnels dans
le PQG.

A.3 Méthodes

Afin de pouvoir décrire les corrélations entre des paires des particules dans des sondes
dures on est suivi la notion de trouver, tout d’abord, une méthode pour construire la
gerbe des particules contenant les paires dont on déterminera les corrélations. Pour les
processus considérés, les transferts d’impulsions (mesuré par les virtualités Q2 dans la
suite) sont très grands comparés à l’échelle de confinement de CDQ: ΛQCD ≈ 200 MeV.
Cependant, on peut appliquer des méthodes perturbatives de la chromodynamique quan-
tique pour pouvoir décrire la création des particules de la gerbe. Il faut bien noter que
les particules créées dans la gerbe sont mesurées comme des état liés hadroniques. La
formation de ces états liés a lieu dans des processus de petite virtualité, de l’ordre de
grandeur de ΛQCD. Donc, elle ne peut pas être décrite par des méthodes perturbatives.
Néanmoins, on peut décrire les gerbes de particules créées dans des collisions d’ions lourds
avec bonne approximation, si on se concentre sur des processus perturbatives en négligeant
l’hadronisation, en utilisant les règles suivantes:

• les particules dures, dont on veut connaitre les corrélations, sont créées dans les
processus durs, perturbatifs, et sont juste soumises par la suite à des processus
d’hadronisation.

• dans les processus d’hadronisation on peut argumenter que les impulsions de partons
de la gerbe correspondent approximativement aux impulsions des hadrons, car on
observe une conservation globale des impulsions dans ces processus. Puisque l’on se
concentre sur des corrélations entre des impulsions pendant cette thèse on assume
cet argument valide.

Si on considère les processus d’émission de partons par des autres partons de manière
perturbative, on note que les mécanismes de rayonnement dominantes sont:
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• le rayonnement de particules à basse énergies (”mous”)

• le rayonnement de particules à petite angle par rapport à la particule incidente
(”colinéaires”).

Pendant l’évolution des partons, les processus de rayonnement mous et colinéaires se
répètent plusieurs fois, menant à une cascade de partons. Afin de décrire ces cascades,
on peut d’abord considérer des processus qui émettent (au moins) un parton, qui – soi-
même – émet une autre parton dans un rayonnement colinéaire. On note que l’on peut
factoriser ce processus en une partie qui décrit la création d’un parton intermédiaire, et
en une partie qui décrit l’embranchement de ce parton en deux (cf. Fig. A.3). Donc, ce
dernier processus peut être considéré indépendant du premier.

σn

σn+1

Q2

χ

1− χ

Figure A.3: Illustration d’un embranchement: factorisation de la section efficace, σn+1,
d’un processus qui produit n+1 particules en la section efficace d’un processus qui produit
n particules, σn, et un embranchement additionnel où les particules produites portent une
fraction χ (1−χ) de l’impulsion de la particule qui se désintègre et possède une virtualité
Q.

Une densité de probabilité

1

Q2

αs(F (χ,Q))

2π
P (χ) , (A.2)

est associée à cet embranchement, qui dépend de la virtualité Q de la particule in-
termédiaire, et de la fraction χ d’impulsion de la particule émise (cf. Fig. A.3). P (χ) est
appelée la fonction de splitting. Dokshitzer, Gribov, Altarelli, et Parisi (DGLAP [82, 83])
ont trouvé que les embranchements colinéaires successifs peuvent être ressommés par des
équations d’évolution en virtualité, les équations DGLAP:

dD(χ, Q, m)

d ln(Q2)
≃
∫ dz

z
D(

χ

z
, Q, m)P (z)dz . (A.3)

Les fonctions de fragmentation D(χ,Q2) représentent les densités de nombres de partons
rayonnés avec une certaine fraction d’impulsion à l’échelle Q2 de virtualité carré.

Cette thèse utilise la méthode suivante: dans le vide, les équations DGLAP sont
résolues par des simulations Monte-Carlo. C’est à dire que les fonctions de fragmentation
sont approximées par des distributions sur un large nombre de partons dans un large
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nombre des gerbes différentes. On considère des particules incidentes à une certaine échelle
d’énergie Eini et à une virtualité maximale Q↑ qui peuvent créer des gerbes de particules.
L’évolution en virtualité selon les fonctions de splitting est interprétée de manière suivante:
les fonctions de splitting représentent une densité de probabilité d’embranchement, avec
cette densité de probabilité on décide, si un parton peut se fragmenter ou non. Dans le
milieu, des modèles effectives sont appliqués aux gerbes.

A.3.1 L’approche dans le vide

Pour les cascades dans le vide, on implémente l’algorithme suivant:

0. Pour la particule initiale, on fixe sa virtualité maximale Q↑ et sa énergie Eini.

1. Pour cette particule initiale, on sélectionne sa virtualité Q1. Puis on utilise les
variables cinématiques qui décrivent la particule ”a” qui peut se fragmenter – ci-
dedans sa virtualité Qa – pour décrire les embranchements suivantes.

2. Si la virtualité Qa (ou Q1) est plus grande que le seuil Q↓ ce parton se fragmente,
autrement non.

3. S’il y a un embranchement, on en détermine les particules, i.e.: un quark plus un
gluon, deux gluons, ou une paire quark antiquark.

4. Dans une boucle de réjection des quadri-impulsions pour des partons rayonnés, b
et c sont déterminées: Les virtualités Qb et Qc sont sélectionnées, puis la fraction
d’impulsion χ. Pour la combinaison des valeurs Qa, Qb, Qc, et χ on calcule k⊥, la
composante des tri-impulsions les particules b et c qui est orthogonale par rapport
à la tri-impulsion de la particule a. Un embranchement est accepté, si la condi-
tion k2

⊥ ≥ 0 est satisfaite. Autrement l’embranchement sera rejeté et la boucle
recommence.

5. On sélectionne un angle azimutale des tri-impulsions des particules b et c par rapport
à la tri-impulsion de la particule a.

6. On calcule les composantes manquantes pour pouvoir décrire les quadri-impulsions
des particules b et c.

7. Les pas 1. à 6. sont répétés pour les particules b et c. Ainsi, l’algorithme est répété
génération par génération. Par la suite on va appeler ”génération n” toutes les
particules qui sont créées à partir du particule initiale par n embranchements. Si
toutes les particules d’une génération ont une virtualité plus basse que le seuil Q↓,
l’algorithme se termine.

Cette algorithme sera répété plusieurs fois afin de créer un nombre de cascades suffisam-
ment grand. Pour cette thèse des ensembles de 105 à 106 cascades ont été simulés.

Les fractions d’impulsion χ sont sélectionnées selon les fonctions de splitting comme
densité de probabilité, ou selon la fonction de partition suivante:

Wa→b,c(Qa, χ) :=
∫ χ

χ−

dχ̃

(
αs(F (χ̃, Q2

a))

2π
Pa→b,c(χ̃)

)
, (A.4)

Les virtualités Qa sont sélectionnées selon la fonction de partition suivante

Sa(Qa ↑, Qa) = exp


−

∫ Q2
a ↑

Q2
a

dQ2

Q2

∫ χ+

χ−

dχ
αs(F (χ,Q))

2π

∑

a→b ,c

Pa→b ,c(χ)


 . (A.5)
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La fonction ci-dessus est aussi appelé le facteur de forme de Sudakov. Elle est interprétée
comme la probabilité qu’il n’y a pas de splitting pour les virtualités dans l’intervalle
[Qa, Qa↑]. En ce qui concerne les bornes supérieures des virtualités (indiqué par la flèche
↑), on se rend compte que les gerbes que l’on considère sont des processus ”timelike”,
c’est à dire des virtualités décroissantes. Cependant, on prend la virtualité de la particule
qui se désintègrent comme borne supérieure pour les virtualités de ses produits, e.g.:
Qb↑ = Qc↑ = Qa. Pour les angles azimutales, on considère des distributions uniformes.
Des corrélations entre des angles azimutales des embranchements successives existent,
mais sont faibles (cf. Ref. [91], ch. 5).

A.3.2 Les approches dans le milieu

Pour le milieu, on cherche à trouver des modèles qui peuvent décrire soit des effets radia-
tives, soit des effets collisionnels, soit des combinaisons de ces effets.

L’approche de YaJEM [105] représente un modèle effectif qui simule la perte d’énergie
radiative par des gains en virtualités carrés q̂R que les particules intermédiaires de la
gerbe accumulent pendant leur propagation dans le milieu. Cependant, le nombre des
embranchements est augmenté car les intervalles de virtualités dans lesquelles il peut
se passer un embranchement ont été élargis par rapport au vide plusieurs fois pendant
l’évolution de la cascade.

Le principe simple du modèle YaJEM est que les effets du milieu sur l’évolution de la
gerbe sont simulés par des changements des quadri-impulsions des particules de gerbes.
Donc, on pourrait utiliser une approche analogue pour simuler les effets des processus de
perte d’énergie collisionnel comme des actions des forces sur les particules de la gerbe,
i.e.: des échanges tri-impulsions. Tandis qu’un modèle comme YaJEM, ou un modèle qui
contient aussi des effets collisionnels inspiré par YaJEM, est très simpliste, le principe de
changer dans le milieu que les quadri-impulsions des particules de gerbes permet d’étudier
et puis comparer les effets du milieu d’une manière pertinente. C’est pour cette raison
que l’on a choisi ce type de modèle.

En ce qui concerne la force effective, qui peut être construite pour un modèle,qui décrit
des effets collisionnels, on a considéré deux types de forces:

• une force de frottement ~A longitudinale, qui fait décroitre la composante de l’impulsion
longitudinale (i.e. parallèle à l’impulsion du particule incidente)

• une force transverse stochastique qui agit en direction orthogonale de l’impulsion
du particule incidente.

Le transfert des impulsions transverses q̂C a été relié à la valeur absolue de la force de
frottement ~A par une ratio entre deux sections efficaces de diffusion pour des particules
de la gerbe: une section efficace pour la diffusion ultra-relativiste dans un potentiel, une
autre pour la perte de l’impulsion longitudinale dans un potentiel [135]. On a supposé
que q̂R = q̂C et on a utilisé un fit [105] du résultat d’un calcul hydrodynamique, qui
parametrise q̂R comme une fonction de temps t.

Pour cette thèse, on a considéré quatre modèles effectives, qui simulent des effets
collisionnels et radiatifs:

• modèle A (appelé ”inelastic”), qui simule la radiation induite par le milieu avec une
augmentation du carré de la virtualité avec le temps, et est basé sur une version
ancienne de YaJEM [105],

• modèle B (appelé ”elastic”), qui simule les processus de la perte d’énergie collision-
nelle,
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• modèle C, qui est un modèle hybride et contient des effets radiatifs dans la façon
dont il sont simulés dans le modèle A, ainsi que la force de frottement ~A, mais qui
ne contient pas la force transverse stochastique,

• modèle D, qui est aussi un modèle hybride, qui contient les effets radiatifs et la force
de ~A également, mais aussi la force transverse stochastique.

Afin de mésurer pour le taux d’interaction entre les particules de la gerbe et du milieu,
on reprend la notation de la Ref. [105]:

∆Q2 :=
∫ tf

t0

q̂R(t)dt , (A.6)

∆Q2 est l’augmentation en virtualité carré d’une particule qui traverse le milieu du centre
(on a utilisé t0 = 0) jusqu’à l’extérieur du milieu (où on suppose que la frontière entre
le milieu et son extérieur se situe à distance tf = L de son centre), sans avoir fait aucun
embranchement. Pour le modèle élastique, cette définition ne fait pas de sens. Par
conséquent, on a défini ∆Q2 comme l’intégralle sur q̂C au lieu de q̂R.

A.3.3 Validation, etalonnage, et tendances des observables

A.3.3.1 Dans le vide
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Figure A.4: T , Tmaj, et Tmin, obtenus par des simulations Monte-Carlo pour des jets avec
une énergie totale et virtualité maximale de 100 GeV, en comparaison avec des données
d’ALEPH [126] pour des collisions e+ + e− avec

√
s = 200 GeV.
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Figure A.5: Humped-back plateau distributions. A gauche: résultats des simulations
Monte Carlo pour des jets avec une énergie totale et virtualité maximale de 100 GeV, en
comparaison avec data d’ALEPH [126] pour des collisions e+ + e− avec

√
s = 200 GeV.

A droite: résultats pour Q↓ = 1 GeV sans (rouge solide) et avec (rouge tirés-pointillés)
ordonnancement angulaire en comparaison des résultats correspondantes par Zapp [123].

Pour gagner un image qualitatif des jets avec notre algorithme on suit la stratégie
suivante; On considère un type d’observable, qui est très stable par rapport à la distribu-
tion moyenne des impulsions – c’est à dire, la forme globale des jets, négligeant des effets
des rayonnements mous. Ensuite, on considère une autre observable qui est dépendant
par rapport aux effets de la radiation molle. Pour le premier type on a considéré les
variables des thrust T , thrust majeur Tmaj, et thrust mineur Tmin, pour le deuxième type
on a utilisé la distribution appelé ”humped-back plateau distribution”, dN

dξ
.

T , Tmaj, et Tmin sont défini dans la façon suivante:

T = max
~n

∑
i |~pi · ~n|∑

i ‖~pi‖
, Tmaj = max

~n2
~n2·~n=0

∑
i |~pi · ~n2|∑

i ‖~pi‖
, Tmin =

∑
i |~pi · ~n3|∑

i ‖~pi‖
, (A.7)

Ces observables peuvent décrire la forme d’un ensemble des particules rayonnés dans
un évènement, parce que les particules émises dans les mêmes directions, ou dos-à-dos
représentent un évènement avec T = 1, Tmaj = Tmin = 0, tandis qu’un évènement où les
particules sont émises uniformément dans toutes les directions correspond à T = Tmaj =
Tmin = 1

2
. Si on considère tous les cas intermédiaires, on voit que ce type d’observable

montre les ouvertures angulaires par rapport aux axes des jets, pondérés par leurs impul-
sions.

La Fig. A.4 montre les distributions en T , Tmaj, et Tmin pour des jets initialisés par des
quarks de Q↑ = Eini = 100 GeV comparés aux mesures de l’expérience ALEPH pour des
collisions d’électrons et positons à une énergie dans le système de centre d’impulsions de
200 GeV. On peut voir, qu’il y a en générale un bon accord de manière qualitative entre
les résultats théoriques (obtenu pour des partons) et expérimentaux (où on a mesuré
des hadrons chargés). Par définition, T , Tmaj, et Tmin sont des observables, qui sont
indépendents par rapport aux rayonnements des particules molles. Ce n’est pas une
surprise car les effets de l’hadronisation ou le choix précis du seuil inférieur de virtualité,
Q↓, ne jouent qu’un rôle négligeable.
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La ”humped-back plateau distribution” est une distribution de nombres des particules
avec une certaine valeur de ξ – une variable définie comme:

ξ = − ln

(
‖~pparticle‖
Etotal

)
. (A.8)

dN
dξ

représente une distribution en énergies de partons, mais élargit particulièrement les
contributions des particules molles. Cependant, elle est très sensible par rapport aux
seuils de virtualités Q↓ comme la partie gauche de la Fig. A.5 démontre. Une fois encore,
nous avons comparé avec des données d’ALEPH, par contre on ne peut pas reproduire ces
données. La Ref. [123] note que les processus de l’hadronisation, qui se passent à basses
énergies, y jouent une grande rôle. On n’a pas implémenté un modèle d’hadronisation.
Par contre, on peut comparer les résultats de l’algorithme de cette thèse avec des résultats
pour les partons finaux (juste avant l’hadronisation), que la Ref. [123] a obtenu. Dans
cette référence, un modèle d’hadronisation a été utilisé et les résultats d’ALEPH ont
pu être reproduits. La partie droite de Fig. A.5 compare des résultats de la Ref. [123]
et de l’algorithme de cette thèse: Si on n’utilise pas des conditions pour renforcer de
l’ordonnancement angulaire, il n’y a pas de concordance avec les résultats de la Ref. [123].
Si on utilise les mêmes conditions pour implémenter l’ordonnancement angulaire [130],
on peut reproduire les résultats de la Ref. [123]2. Outre que cette comparaison avec
la Ref. [123], on n’a jamais utilisé les conditions d’ordonnancement angulaire pour des
raisons de simplicité.

A.3.3.2 Dans le milieu
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Figure A.6: Estimation RMV de la facteur de modification nucléaire, RAA, dans des mi-
lieux avec des ∆Q2 entre 3 GeV2 (tirés) et 20 GeV2 (solides). A gauche: particules
légers/chargés. A droite: Quarks lourds.

En principe, pour les cascades dans le milieu, les mêmes considérations jouent une rôle
que dans le vide. Par contre, il faut séparer les particules des gerbes de leur arrière plan

2L’ordonnancement angulaire correspond à une effet d’interférence: On a trouvé que des types de
cascades sont dominant, où l’angle de embranchement décroit d’embranchements successifs.
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des hadrons, qui ont leurs origines dans les particules thermalisées du milieu. Ici nous
n’avons pas affiché les résultats correspondants pour le milieu, mais plutôt les observables
qui ont souvent été mesuré: les facteurs de la modification nucléaire, RAA. On a estimé
ce facteur par un ratio entre particules produites dans le milieu et dans le vide: RMV. La
Fig. A.6 donne des résultats pour RMV de particules chargés (partie gauche) et de quarks
lourds (partie droite) pour les modèles A et B. En comparaison avec l’expérience [140], les
valeurs sont trop élevées. Dans la Ref. [105], les données de PHENIX ont été reproduites,
par contre le taux d’interaction a été parametrisé à ces résultats. On trouve le même
comportement des RMV et les résultats dans la Ref. [105]. Donc, si on avait parametrisé
∆Q2 sur des données de PHENIX on aurait pu le reproduire. Mais ce n’était pas le but
de cette thèse.

Un fait plus intéressant est que les mêmes valeurs en RMV peuvent être produites par
différents modèles. Il y a des régions au delà de 3 GeV dans la Fig. A.6, où les courbes
pour les modèles A et B sont très proches, voir identiques. Ce n’est pas un problème pour
les particules légères, où l’on peut identifier les mécanismes différents par le comportement
des courbes aux basses impulsions. Mais cela devient un problème pour les quarks lourds,
où les impulsions sont fortement plus grandes que les masses, qui sont déjà élevées à
mc ≈ 1.5 GeV. Ces observations correspondent à la problématique introduite dans la
Sec. A.2.

A.4 Résultats

Cette thèse a étudié les corrélations à deux particules. En particulier, nous avons consideré
des paires de particules dans les gerbes de quarks lourds créées avec l’algorithme Monte-
Carlo. Dont le quark lourd initial (en état finale) appelé la particule ”trigger” est associée
avec n’importe quel autre parton final dans la même cascade. On a calculé les distributions
sur des angles ∆θ, l’angle entre les quadri-impulsions du particule trigger et associé3. On a
remarqué dans plusieurs phases de travaux sur les résultats de l’algorithme Monte-Carlo,
que les énergies des particules émises à grands angles sont considérablement différentes
selon les modèles effectifs. Maintenant, on va démontrer cette observation qualitative par
les valeur moyennes de ∆θ: On a considéré une valeur minimale ‖~p‖cut pour les valeurs
absolues des tri-impulsions des partons trigger et associés. Cependant, si chacune des
deux particules d’une paire a une tri-impulsion avec une valeur absolue plus grande que
‖~p‖cut, le paire des particule contribue dans le calcul de 〈∆θ〉. La valeur ∆θ est moyennée
sur toutes les paires qui satisfassent la condition donnée par ‖~p‖cut.

Fig. A.7 montre 〈∆θ〉 en fonction de ‖~p‖cut pour les quatre modèles effectifs en com-
paraison avec les comportement dans le vide: Il semble que l’allure de la contribution ad-
ditionnelle (par rapport au vide), dans le milieu n’est pas la même pour tous les milieux.
Pour les modèles A et C, où les effets de milieu sont la radiation induite ou la combinaison
d’une radiation induite et une force de frottement, il y a un grand élargissement angulaire
à petits ‖~p‖cut, i.e.: l’émission des particules molles représente une grande contribution
à l’élargissement angulaire. A grand ‖~p‖cut on remarque des angles moyens proche aux
valeurs pour le vide.

Pour les modèles B et D on aperçoit que l’élargissement angulaire est moins dépendant
par rapport à la coupure ‖~p‖cut. On note, que les modèles B et D sont aussi les deux
modèles qui contiennent la force transverse stochastique. De ce fait, les contributions de
la force transverse expliquent la plupart des différences entre les allures des modèles B et

3Parmi plusieurs autre résultats produits, on a juste mentionné les résultats pour les distributions en
∆θ, pour des raisons de brèveté de ce résumé, puisqu’il s’agit ici d’un des résultats principaux de la thèse.

147



D en comparaison des modèles A et C, car le modèle C contient tous les effets du milieu
du modèle D, sauf la force transverse.

Les angles moyens 〈∆θ〉 en fonction d’une coupure ‖~p‖cut peuvent être utilisés comme
moyen pour distinguer les mécanismes de la perte d’énergie collisionnels et radiatives.
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Figure A.7: Angles moyens entre quarks lourds et partons légers en fonction d’une coupure
en valeur absolue d’impulsion de particule pour les modèles comme indiqués en compara-
ison avec le vide (courbes bleu solides).
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A.5 Conclusion et travail futur

Afin de trouver un moyen d’identifier des différents mécanismes de la perte d’énergie dans
le milieu du PQG par des observables, on a implémenté un algorithme Monte-Carlo pour
simuler des gerbes dans le vide suivant des évolutions décrites par les équations DGLAP.
Puis nous avons rajouté quatre modèles effectifs différentes pour définir le milieu. Ensuite,
on a cherché dans les corrélations, entre des paires de particules finales de la gerbe, des
observables qui permettent de discriminer les effets collisionnels des effets radiatifs dans
les modèles effectifs. On a trouvé finalement que l’élargissement angulaire des gerbes dans
le milieu dépend des échelles d’énergie et d’impulsion des partons suivant les modèles.

Une des tâches qui restent à faire est surtout de stabiliser les résultats par rapport aux
processus qui se passent pour des échelles basses en énergies et impulsions, notamment la
dépendance enQ↓. A l’échelleQ↓, des partons finales sont produits, sans introduction d’un
modèle d’hadronisation. Une possibilité serait d’introduire de l’hadronisation. Une autre
possibilité (qui n’introduit pas des dépendances explicites au modèle d’hadronisation)
serait d’étudier plutôt des observables qui sont indépendentes des processus qui se passent
aux échelles infrarouges. Des observables basées plutôt sur des sous-jets que des partic-
ules individuelles (ou paires des particules) représentent des exemples pour un tel type
d’observable. Des expériences comme CMS ont déjà produits des premières données. Un
deuxième aspect important négligé est l’effet explicite de la masse des quarks lourds. Tan-
dis qu e l’on a toujours fait l’approximation que les effets de la masse ne jouent qu’un
rôle négligeable dans la fragmentation des quarks lourdes à haute virtualité, Q ≫ M , il
y a tout de même des effets de la masse à petite virtualité. Dokshitzer a démontré, par
exemple, qu’il existe une dépendance de la masse M à un angle minimale pour le rayon-
nement d’un gluon à partir d’un quark lourd, un phénomène appelé ”dead-cone effect”.
Il serait intéressant de savoir comment les corrélations angulaires se changent si cet effet
est inclus dans la phénoménologie des jets.
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Voir ”Bibliography” dans la partie anglaise de la thèse.
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Résumé 
 
Contexte : La chromodynamique quantique (CDQ), 
théorie de l’interaction forte, prédit un nouvel état de la 
matière, le plasma de quarks et de gluons (PQG) dont 
les degrés de liberté fondamentale, les quarks et les 
gluons, peuvent bouger quasi-librement. Les hautes 
températures et densités de particules, qui sont 
nécessaires, sont supposées être les conditions de 
l’univers dans ses premiers moments ou dans les 
étoiles à neutrons. Récemment elles ont été recrées par 
des collisions de noyaux d’ions lourdes à hautes 
énergies. Ces expériences étudient le PQG par la 
détection des particules de hautes énergies qui 
traversent le milieu, notamment, les quarks lourds. Les 
mécanismes de leur perte d’énergie dans le PQG ne 
sont pas compris complètement. Particulièrement, ils 
sont attribués aux processus soit de radiation induite 
par le milieu, soit de collisions de particules de type 2 
vers 2, ou des combinaisons. 
Méthodes : Afin de trouver de nouvelles observables 
pour pouvoir distinguer les mécanismes de la perte 
d’énergie, on a implémenté un algorithme Monte-Carlo, 
qui simule la formation des cascades des particules à 
partir d’une particule initiale. Pour traiter le milieu, on a 
introduit des interactions PQG-jets, qui correspondent 
aux processus collisionnels et radiatifs. Les corrélations 
entre deux particules finales des cascades, dont une 
représente un quark trigger, ont été examinées comme 
moyen pour distinguer les modèles. 
Résultats : La dépendance de l’ouverture angulaire pour 
des corrélations entre deux particules en fonction des 
énergies des particules peut servir comme moyen pour 
séparer les mécanismes collisionnels et radiatifs de la 
perte d’énergie dans le milieu. 
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Abstract 
 
Context: Quantum chromodynamics (QCD), the theory 
of the strong interactions, predicts a new state of matter, 
the quark-gluon plasma (QGP), where its fundamental 
degrees of freedom, the quarks and gluons, behave 
quasi-freely. The required high temperatures and/or 
particle densities can be expected for the early stages of 
the universe and in neutron stars, but have lately 
become accessible by highly energetic collisions of 
heavy ion cores. Commonly, these experiments study 
the QGP by the detection of hard probes, i.e. highly 
energetic particles, most notably heavy quarks, that 
pass the medium. The mechanisms of their energy-loss 
in the QGP are not yet completely understood. In 
particular, they are attributed to processes of either 
additional, medium induced radiation or 2 to 2 particle 
scattering, or combinations thereof. 
Methods: In a theoretical, phenomenological approach 
to search for new observables that allow discriminating 
between these collisional and radiative energy-loss 
mechanisms a Monte-Carlo algorithm that simulates the 
formation of particle cascades from an initial particle 
was implemented. For the medium, different types of  
QGP-jet interactions, corresponding to collisional and/or 
radiative energy loss, were introduced. Correlations 
between pairs of final cascade particles, where one 
represents a heavy trigger quark, were investigated as a 
means to differentiate between these models. 
Findings: The dependence of angular opening for two-
particle correlations as a function of particle energy may 
provide a means to disentangle collisional and radiative 
mechanisms of in-medium energy loss. 
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